xref: /openbmc/linux/mm/vmscan.c (revision e6dec923)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h>	/* for try_to_release_page(),
31 					buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57 
58 #include "internal.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62 
63 struct scan_control {
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	/* This context's GFP mask */
68 	gfp_t gfp_mask;
69 
70 	/* Allocation order */
71 	int order;
72 
73 	/*
74 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 	 * are scanned.
76 	 */
77 	nodemask_t	*nodemask;
78 
79 	/*
80 	 * The memory cgroup that hit its limit and as a result is the
81 	 * primary target of this reclaim invocation.
82 	 */
83 	struct mem_cgroup *target_mem_cgroup;
84 
85 	/* Scan (total_size >> priority) pages at once */
86 	int priority;
87 
88 	/* The highest zone to isolate pages for reclaim from */
89 	enum zone_type reclaim_idx;
90 
91 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 	unsigned int may_writepage:1;
93 
94 	/* Can mapped pages be reclaimed? */
95 	unsigned int may_unmap:1;
96 
97 	/* Can pages be swapped as part of reclaim? */
98 	unsigned int may_swap:1;
99 
100 	/*
101 	 * Cgroups are not reclaimed below their configured memory.low,
102 	 * unless we threaten to OOM. If any cgroups are skipped due to
103 	 * memory.low and nothing was reclaimed, go back for memory.low.
104 	 */
105 	unsigned int memcg_low_reclaim:1;
106 	unsigned int memcg_low_skipped:1;
107 
108 	unsigned int hibernation_mode:1;
109 
110 	/* One of the zones is ready for compaction */
111 	unsigned int compaction_ready:1;
112 
113 	/* Incremented by the number of inactive pages that were scanned */
114 	unsigned long nr_scanned;
115 
116 	/* Number of pages freed so far during a call to shrink_zones() */
117 	unsigned long nr_reclaimed;
118 };
119 
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)			\
122 	do {								\
123 		if ((_page)->lru.prev != _base) {			\
124 			struct page *prev;				\
125 									\
126 			prev = lru_to_page(&(_page->lru));		\
127 			prefetch(&prev->_field);			\
128 		}							\
129 	} while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133 
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)			\
136 	do {								\
137 		if ((_page)->lru.prev != _base) {			\
138 			struct page *prev;				\
139 									\
140 			prev = lru_to_page(&(_page->lru));		\
141 			prefetchw(&prev->_field);			\
142 		}							\
143 	} while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147 
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 /*
153  * The total number of pages which are beyond the high watermark within all
154  * zones.
155  */
156 unsigned long vm_total_pages;
157 
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160 
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 	return !sc->target_mem_cgroup;
165 }
166 
167 /**
168  * sane_reclaim - is the usual dirty throttling mechanism operational?
169  * @sc: scan_control in question
170  *
171  * The normal page dirty throttling mechanism in balance_dirty_pages() is
172  * completely broken with the legacy memcg and direct stalling in
173  * shrink_page_list() is used for throttling instead, which lacks all the
174  * niceties such as fairness, adaptive pausing, bandwidth proportional
175  * allocation and configurability.
176  *
177  * This function tests whether the vmscan currently in progress can assume
178  * that the normal dirty throttling mechanism is operational.
179  */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
183 
184 	if (!memcg)
185 		return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 		return true;
189 #endif
190 	return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 	return true;
196 }
197 
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 	return true;
201 }
202 #endif
203 
204 /*
205  * This misses isolated pages which are not accounted for to save counters.
206  * As the data only determines if reclaim or compaction continues, it is
207  * not expected that isolated pages will be a dominating factor.
208  */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 	unsigned long nr;
212 
213 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 	if (get_nr_swap_pages() > 0)
216 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218 
219 	return nr;
220 }
221 
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 	unsigned long nr;
225 
226 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 
230 	if (get_nr_swap_pages() > 0)
231 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 
235 	return nr;
236 }
237 
238 /**
239  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
240  * @lruvec: lru vector
241  * @lru: lru to use
242  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243  */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 	unsigned long lru_size;
247 	int zid;
248 
249 	if (!mem_cgroup_disabled())
250 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 	else
252 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253 
254 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 		unsigned long size;
257 
258 		if (!managed_zone(zone))
259 			continue;
260 
261 		if (!mem_cgroup_disabled())
262 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 		else
264 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 				       NR_ZONE_LRU_BASE + lru);
266 		lru_size -= min(size, lru_size);
267 	}
268 
269 	return lru_size;
270 
271 }
272 
273 /*
274  * Add a shrinker callback to be called from the vm.
275  */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 	size_t size = sizeof(*shrinker->nr_deferred);
279 
280 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 		size *= nr_node_ids;
282 
283 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 	if (!shrinker->nr_deferred)
285 		return -ENOMEM;
286 
287 	down_write(&shrinker_rwsem);
288 	list_add_tail(&shrinker->list, &shrinker_list);
289 	up_write(&shrinker_rwsem);
290 	return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293 
294 /*
295  * Remove one
296  */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 	down_write(&shrinker_rwsem);
300 	list_del(&shrinker->list);
301 	up_write(&shrinker_rwsem);
302 	kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305 
306 #define SHRINK_BATCH 128
307 
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 				    struct shrinker *shrinker,
310 				    unsigned long nr_scanned,
311 				    unsigned long nr_eligible)
312 {
313 	unsigned long freed = 0;
314 	unsigned long long delta;
315 	long total_scan;
316 	long freeable;
317 	long nr;
318 	long new_nr;
319 	int nid = shrinkctl->nid;
320 	long batch_size = shrinker->batch ? shrinker->batch
321 					  : SHRINK_BATCH;
322 	long scanned = 0, next_deferred;
323 
324 	freeable = shrinker->count_objects(shrinker, shrinkctl);
325 	if (freeable == 0)
326 		return 0;
327 
328 	/*
329 	 * copy the current shrinker scan count into a local variable
330 	 * and zero it so that other concurrent shrinker invocations
331 	 * don't also do this scanning work.
332 	 */
333 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334 
335 	total_scan = nr;
336 	delta = (4 * nr_scanned) / shrinker->seeks;
337 	delta *= freeable;
338 	do_div(delta, nr_eligible + 1);
339 	total_scan += delta;
340 	if (total_scan < 0) {
341 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 		       shrinker->scan_objects, total_scan);
343 		total_scan = freeable;
344 		next_deferred = nr;
345 	} else
346 		next_deferred = total_scan;
347 
348 	/*
349 	 * We need to avoid excessive windup on filesystem shrinkers
350 	 * due to large numbers of GFP_NOFS allocations causing the
351 	 * shrinkers to return -1 all the time. This results in a large
352 	 * nr being built up so when a shrink that can do some work
353 	 * comes along it empties the entire cache due to nr >>>
354 	 * freeable. This is bad for sustaining a working set in
355 	 * memory.
356 	 *
357 	 * Hence only allow the shrinker to scan the entire cache when
358 	 * a large delta change is calculated directly.
359 	 */
360 	if (delta < freeable / 4)
361 		total_scan = min(total_scan, freeable / 2);
362 
363 	/*
364 	 * Avoid risking looping forever due to too large nr value:
365 	 * never try to free more than twice the estimate number of
366 	 * freeable entries.
367 	 */
368 	if (total_scan > freeable * 2)
369 		total_scan = freeable * 2;
370 
371 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 				   nr_scanned, nr_eligible,
373 				   freeable, delta, total_scan);
374 
375 	/*
376 	 * Normally, we should not scan less than batch_size objects in one
377 	 * pass to avoid too frequent shrinker calls, but if the slab has less
378 	 * than batch_size objects in total and we are really tight on memory,
379 	 * we will try to reclaim all available objects, otherwise we can end
380 	 * up failing allocations although there are plenty of reclaimable
381 	 * objects spread over several slabs with usage less than the
382 	 * batch_size.
383 	 *
384 	 * We detect the "tight on memory" situations by looking at the total
385 	 * number of objects we want to scan (total_scan). If it is greater
386 	 * than the total number of objects on slab (freeable), we must be
387 	 * scanning at high prio and therefore should try to reclaim as much as
388 	 * possible.
389 	 */
390 	while (total_scan >= batch_size ||
391 	       total_scan >= freeable) {
392 		unsigned long ret;
393 		unsigned long nr_to_scan = min(batch_size, total_scan);
394 
395 		shrinkctl->nr_to_scan = nr_to_scan;
396 		ret = shrinker->scan_objects(shrinker, shrinkctl);
397 		if (ret == SHRINK_STOP)
398 			break;
399 		freed += ret;
400 
401 		count_vm_events(SLABS_SCANNED, nr_to_scan);
402 		total_scan -= nr_to_scan;
403 		scanned += nr_to_scan;
404 
405 		cond_resched();
406 	}
407 
408 	if (next_deferred >= scanned)
409 		next_deferred -= scanned;
410 	else
411 		next_deferred = 0;
412 	/*
413 	 * move the unused scan count back into the shrinker in a
414 	 * manner that handles concurrent updates. If we exhausted the
415 	 * scan, there is no need to do an update.
416 	 */
417 	if (next_deferred > 0)
418 		new_nr = atomic_long_add_return(next_deferred,
419 						&shrinker->nr_deferred[nid]);
420 	else
421 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422 
423 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 	return freed;
425 }
426 
427 /**
428  * shrink_slab - shrink slab caches
429  * @gfp_mask: allocation context
430  * @nid: node whose slab caches to target
431  * @memcg: memory cgroup whose slab caches to target
432  * @nr_scanned: pressure numerator
433  * @nr_eligible: pressure denominator
434  *
435  * Call the shrink functions to age shrinkable caches.
436  *
437  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438  * unaware shrinkers will receive a node id of 0 instead.
439  *
440  * @memcg specifies the memory cgroup to target. If it is not NULL,
441  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442  * objects from the memory cgroup specified. Otherwise, only unaware
443  * shrinkers are called.
444  *
445  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446  * the available objects should be scanned.  Page reclaim for example
447  * passes the number of pages scanned and the number of pages on the
448  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449  * when it encountered mapped pages.  The ratio is further biased by
450  * the ->seeks setting of the shrink function, which indicates the
451  * cost to recreate an object relative to that of an LRU page.
452  *
453  * Returns the number of reclaimed slab objects.
454  */
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 				 struct mem_cgroup *memcg,
457 				 unsigned long nr_scanned,
458 				 unsigned long nr_eligible)
459 {
460 	struct shrinker *shrinker;
461 	unsigned long freed = 0;
462 
463 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 		return 0;
465 
466 	if (nr_scanned == 0)
467 		nr_scanned = SWAP_CLUSTER_MAX;
468 
469 	if (!down_read_trylock(&shrinker_rwsem)) {
470 		/*
471 		 * If we would return 0, our callers would understand that we
472 		 * have nothing else to shrink and give up trying. By returning
473 		 * 1 we keep it going and assume we'll be able to shrink next
474 		 * time.
475 		 */
476 		freed = 1;
477 		goto out;
478 	}
479 
480 	list_for_each_entry(shrinker, &shrinker_list, list) {
481 		struct shrink_control sc = {
482 			.gfp_mask = gfp_mask,
483 			.nid = nid,
484 			.memcg = memcg,
485 		};
486 
487 		/*
488 		 * If kernel memory accounting is disabled, we ignore
489 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 		 * passing NULL for memcg.
491 		 */
492 		if (memcg_kmem_enabled() &&
493 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 			continue;
495 
496 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 			sc.nid = 0;
498 
499 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
500 	}
501 
502 	up_read(&shrinker_rwsem);
503 out:
504 	cond_resched();
505 	return freed;
506 }
507 
508 void drop_slab_node(int nid)
509 {
510 	unsigned long freed;
511 
512 	do {
513 		struct mem_cgroup *memcg = NULL;
514 
515 		freed = 0;
516 		do {
517 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 					     1000, 1000);
519 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 	} while (freed > 10);
521 }
522 
523 void drop_slab(void)
524 {
525 	int nid;
526 
527 	for_each_online_node(nid)
528 		drop_slab_node(nid);
529 }
530 
531 static inline int is_page_cache_freeable(struct page *page)
532 {
533 	/*
534 	 * A freeable page cache page is referenced only by the caller
535 	 * that isolated the page, the page cache radix tree and
536 	 * optional buffer heads at page->private.
537 	 */
538 	return page_count(page) - page_has_private(page) == 2;
539 }
540 
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 {
543 	if (current->flags & PF_SWAPWRITE)
544 		return 1;
545 	if (!inode_write_congested(inode))
546 		return 1;
547 	if (inode_to_bdi(inode) == current->backing_dev_info)
548 		return 1;
549 	return 0;
550 }
551 
552 /*
553  * We detected a synchronous write error writing a page out.  Probably
554  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
555  * fsync(), msync() or close().
556  *
557  * The tricky part is that after writepage we cannot touch the mapping: nothing
558  * prevents it from being freed up.  But we have a ref on the page and once
559  * that page is locked, the mapping is pinned.
560  *
561  * We're allowed to run sleeping lock_page() here because we know the caller has
562  * __GFP_FS.
563  */
564 static void handle_write_error(struct address_space *mapping,
565 				struct page *page, int error)
566 {
567 	lock_page(page);
568 	if (page_mapping(page) == mapping)
569 		mapping_set_error(mapping, error);
570 	unlock_page(page);
571 }
572 
573 /* possible outcome of pageout() */
574 typedef enum {
575 	/* failed to write page out, page is locked */
576 	PAGE_KEEP,
577 	/* move page to the active list, page is locked */
578 	PAGE_ACTIVATE,
579 	/* page has been sent to the disk successfully, page is unlocked */
580 	PAGE_SUCCESS,
581 	/* page is clean and locked */
582 	PAGE_CLEAN,
583 } pageout_t;
584 
585 /*
586  * pageout is called by shrink_page_list() for each dirty page.
587  * Calls ->writepage().
588  */
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 			 struct scan_control *sc)
591 {
592 	/*
593 	 * If the page is dirty, only perform writeback if that write
594 	 * will be non-blocking.  To prevent this allocation from being
595 	 * stalled by pagecache activity.  But note that there may be
596 	 * stalls if we need to run get_block().  We could test
597 	 * PagePrivate for that.
598 	 *
599 	 * If this process is currently in __generic_file_write_iter() against
600 	 * this page's queue, we can perform writeback even if that
601 	 * will block.
602 	 *
603 	 * If the page is swapcache, write it back even if that would
604 	 * block, for some throttling. This happens by accident, because
605 	 * swap_backing_dev_info is bust: it doesn't reflect the
606 	 * congestion state of the swapdevs.  Easy to fix, if needed.
607 	 */
608 	if (!is_page_cache_freeable(page))
609 		return PAGE_KEEP;
610 	if (!mapping) {
611 		/*
612 		 * Some data journaling orphaned pages can have
613 		 * page->mapping == NULL while being dirty with clean buffers.
614 		 */
615 		if (page_has_private(page)) {
616 			if (try_to_free_buffers(page)) {
617 				ClearPageDirty(page);
618 				pr_info("%s: orphaned page\n", __func__);
619 				return PAGE_CLEAN;
620 			}
621 		}
622 		return PAGE_KEEP;
623 	}
624 	if (mapping->a_ops->writepage == NULL)
625 		return PAGE_ACTIVATE;
626 	if (!may_write_to_inode(mapping->host, sc))
627 		return PAGE_KEEP;
628 
629 	if (clear_page_dirty_for_io(page)) {
630 		int res;
631 		struct writeback_control wbc = {
632 			.sync_mode = WB_SYNC_NONE,
633 			.nr_to_write = SWAP_CLUSTER_MAX,
634 			.range_start = 0,
635 			.range_end = LLONG_MAX,
636 			.for_reclaim = 1,
637 		};
638 
639 		SetPageReclaim(page);
640 		res = mapping->a_ops->writepage(page, &wbc);
641 		if (res < 0)
642 			handle_write_error(mapping, page, res);
643 		if (res == AOP_WRITEPAGE_ACTIVATE) {
644 			ClearPageReclaim(page);
645 			return PAGE_ACTIVATE;
646 		}
647 
648 		if (!PageWriteback(page)) {
649 			/* synchronous write or broken a_ops? */
650 			ClearPageReclaim(page);
651 		}
652 		trace_mm_vmscan_writepage(page);
653 		inc_node_page_state(page, NR_VMSCAN_WRITE);
654 		return PAGE_SUCCESS;
655 	}
656 
657 	return PAGE_CLEAN;
658 }
659 
660 /*
661  * Same as remove_mapping, but if the page is removed from the mapping, it
662  * gets returned with a refcount of 0.
663  */
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 			    bool reclaimed)
666 {
667 	unsigned long flags;
668 
669 	BUG_ON(!PageLocked(page));
670 	BUG_ON(mapping != page_mapping(page));
671 
672 	spin_lock_irqsave(&mapping->tree_lock, flags);
673 	/*
674 	 * The non racy check for a busy page.
675 	 *
676 	 * Must be careful with the order of the tests. When someone has
677 	 * a ref to the page, it may be possible that they dirty it then
678 	 * drop the reference. So if PageDirty is tested before page_count
679 	 * here, then the following race may occur:
680 	 *
681 	 * get_user_pages(&page);
682 	 * [user mapping goes away]
683 	 * write_to(page);
684 	 *				!PageDirty(page)    [good]
685 	 * SetPageDirty(page);
686 	 * put_page(page);
687 	 *				!page_count(page)   [good, discard it]
688 	 *
689 	 * [oops, our write_to data is lost]
690 	 *
691 	 * Reversing the order of the tests ensures such a situation cannot
692 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 	 * load is not satisfied before that of page->_refcount.
694 	 *
695 	 * Note that if SetPageDirty is always performed via set_page_dirty,
696 	 * and thus under tree_lock, then this ordering is not required.
697 	 */
698 	if (!page_ref_freeze(page, 2))
699 		goto cannot_free;
700 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 	if (unlikely(PageDirty(page))) {
702 		page_ref_unfreeze(page, 2);
703 		goto cannot_free;
704 	}
705 
706 	if (PageSwapCache(page)) {
707 		swp_entry_t swap = { .val = page_private(page) };
708 		mem_cgroup_swapout(page, swap);
709 		__delete_from_swap_cache(page);
710 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 		put_swap_page(page, swap);
712 	} else {
713 		void (*freepage)(struct page *);
714 		void *shadow = NULL;
715 
716 		freepage = mapping->a_ops->freepage;
717 		/*
718 		 * Remember a shadow entry for reclaimed file cache in
719 		 * order to detect refaults, thus thrashing, later on.
720 		 *
721 		 * But don't store shadows in an address space that is
722 		 * already exiting.  This is not just an optizimation,
723 		 * inode reclaim needs to empty out the radix tree or
724 		 * the nodes are lost.  Don't plant shadows behind its
725 		 * back.
726 		 *
727 		 * We also don't store shadows for DAX mappings because the
728 		 * only page cache pages found in these are zero pages
729 		 * covering holes, and because we don't want to mix DAX
730 		 * exceptional entries and shadow exceptional entries in the
731 		 * same page_tree.
732 		 */
733 		if (reclaimed && page_is_file_cache(page) &&
734 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735 			shadow = workingset_eviction(mapping, page);
736 		__delete_from_page_cache(page, shadow);
737 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 
739 		if (freepage != NULL)
740 			freepage(page);
741 	}
742 
743 	return 1;
744 
745 cannot_free:
746 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 	return 0;
748 }
749 
750 /*
751  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
752  * someone else has a ref on the page, abort and return 0.  If it was
753  * successfully detached, return 1.  Assumes the caller has a single ref on
754  * this page.
755  */
756 int remove_mapping(struct address_space *mapping, struct page *page)
757 {
758 	if (__remove_mapping(mapping, page, false)) {
759 		/*
760 		 * Unfreezing the refcount with 1 rather than 2 effectively
761 		 * drops the pagecache ref for us without requiring another
762 		 * atomic operation.
763 		 */
764 		page_ref_unfreeze(page, 1);
765 		return 1;
766 	}
767 	return 0;
768 }
769 
770 /**
771  * putback_lru_page - put previously isolated page onto appropriate LRU list
772  * @page: page to be put back to appropriate lru list
773  *
774  * Add previously isolated @page to appropriate LRU list.
775  * Page may still be unevictable for other reasons.
776  *
777  * lru_lock must not be held, interrupts must be enabled.
778  */
779 void putback_lru_page(struct page *page)
780 {
781 	bool is_unevictable;
782 	int was_unevictable = PageUnevictable(page);
783 
784 	VM_BUG_ON_PAGE(PageLRU(page), page);
785 
786 redo:
787 	ClearPageUnevictable(page);
788 
789 	if (page_evictable(page)) {
790 		/*
791 		 * For evictable pages, we can use the cache.
792 		 * In event of a race, worst case is we end up with an
793 		 * unevictable page on [in]active list.
794 		 * We know how to handle that.
795 		 */
796 		is_unevictable = false;
797 		lru_cache_add(page);
798 	} else {
799 		/*
800 		 * Put unevictable pages directly on zone's unevictable
801 		 * list.
802 		 */
803 		is_unevictable = true;
804 		add_page_to_unevictable_list(page);
805 		/*
806 		 * When racing with an mlock or AS_UNEVICTABLE clearing
807 		 * (page is unlocked) make sure that if the other thread
808 		 * does not observe our setting of PG_lru and fails
809 		 * isolation/check_move_unevictable_pages,
810 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 		 * the page back to the evictable list.
812 		 *
813 		 * The other side is TestClearPageMlocked() or shmem_lock().
814 		 */
815 		smp_mb();
816 	}
817 
818 	/*
819 	 * page's status can change while we move it among lru. If an evictable
820 	 * page is on unevictable list, it never be freed. To avoid that,
821 	 * check after we added it to the list, again.
822 	 */
823 	if (is_unevictable && page_evictable(page)) {
824 		if (!isolate_lru_page(page)) {
825 			put_page(page);
826 			goto redo;
827 		}
828 		/* This means someone else dropped this page from LRU
829 		 * So, it will be freed or putback to LRU again. There is
830 		 * nothing to do here.
831 		 */
832 	}
833 
834 	if (was_unevictable && !is_unevictable)
835 		count_vm_event(UNEVICTABLE_PGRESCUED);
836 	else if (!was_unevictable && is_unevictable)
837 		count_vm_event(UNEVICTABLE_PGCULLED);
838 
839 	put_page(page);		/* drop ref from isolate */
840 }
841 
842 enum page_references {
843 	PAGEREF_RECLAIM,
844 	PAGEREF_RECLAIM_CLEAN,
845 	PAGEREF_KEEP,
846 	PAGEREF_ACTIVATE,
847 };
848 
849 static enum page_references page_check_references(struct page *page,
850 						  struct scan_control *sc)
851 {
852 	int referenced_ptes, referenced_page;
853 	unsigned long vm_flags;
854 
855 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 					  &vm_flags);
857 	referenced_page = TestClearPageReferenced(page);
858 
859 	/*
860 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
861 	 * move the page to the unevictable list.
862 	 */
863 	if (vm_flags & VM_LOCKED)
864 		return PAGEREF_RECLAIM;
865 
866 	if (referenced_ptes) {
867 		if (PageSwapBacked(page))
868 			return PAGEREF_ACTIVATE;
869 		/*
870 		 * All mapped pages start out with page table
871 		 * references from the instantiating fault, so we need
872 		 * to look twice if a mapped file page is used more
873 		 * than once.
874 		 *
875 		 * Mark it and spare it for another trip around the
876 		 * inactive list.  Another page table reference will
877 		 * lead to its activation.
878 		 *
879 		 * Note: the mark is set for activated pages as well
880 		 * so that recently deactivated but used pages are
881 		 * quickly recovered.
882 		 */
883 		SetPageReferenced(page);
884 
885 		if (referenced_page || referenced_ptes > 1)
886 			return PAGEREF_ACTIVATE;
887 
888 		/*
889 		 * Activate file-backed executable pages after first usage.
890 		 */
891 		if (vm_flags & VM_EXEC)
892 			return PAGEREF_ACTIVATE;
893 
894 		return PAGEREF_KEEP;
895 	}
896 
897 	/* Reclaim if clean, defer dirty pages to writeback */
898 	if (referenced_page && !PageSwapBacked(page))
899 		return PAGEREF_RECLAIM_CLEAN;
900 
901 	return PAGEREF_RECLAIM;
902 }
903 
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 				       bool *dirty, bool *writeback)
907 {
908 	struct address_space *mapping;
909 
910 	/*
911 	 * Anonymous pages are not handled by flushers and must be written
912 	 * from reclaim context. Do not stall reclaim based on them
913 	 */
914 	if (!page_is_file_cache(page) ||
915 	    (PageAnon(page) && !PageSwapBacked(page))) {
916 		*dirty = false;
917 		*writeback = false;
918 		return;
919 	}
920 
921 	/* By default assume that the page flags are accurate */
922 	*dirty = PageDirty(page);
923 	*writeback = PageWriteback(page);
924 
925 	/* Verify dirty/writeback state if the filesystem supports it */
926 	if (!page_has_private(page))
927 		return;
928 
929 	mapping = page_mapping(page);
930 	if (mapping && mapping->a_ops->is_dirty_writeback)
931 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 }
933 
934 struct reclaim_stat {
935 	unsigned nr_dirty;
936 	unsigned nr_unqueued_dirty;
937 	unsigned nr_congested;
938 	unsigned nr_writeback;
939 	unsigned nr_immediate;
940 	unsigned nr_activate;
941 	unsigned nr_ref_keep;
942 	unsigned nr_unmap_fail;
943 };
944 
945 /*
946  * shrink_page_list() returns the number of reclaimed pages
947  */
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 				      struct pglist_data *pgdat,
950 				      struct scan_control *sc,
951 				      enum ttu_flags ttu_flags,
952 				      struct reclaim_stat *stat,
953 				      bool force_reclaim)
954 {
955 	LIST_HEAD(ret_pages);
956 	LIST_HEAD(free_pages);
957 	int pgactivate = 0;
958 	unsigned nr_unqueued_dirty = 0;
959 	unsigned nr_dirty = 0;
960 	unsigned nr_congested = 0;
961 	unsigned nr_reclaimed = 0;
962 	unsigned nr_writeback = 0;
963 	unsigned nr_immediate = 0;
964 	unsigned nr_ref_keep = 0;
965 	unsigned nr_unmap_fail = 0;
966 
967 	cond_resched();
968 
969 	while (!list_empty(page_list)) {
970 		struct address_space *mapping;
971 		struct page *page;
972 		int may_enter_fs;
973 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 		bool dirty, writeback;
975 
976 		cond_resched();
977 
978 		page = lru_to_page(page_list);
979 		list_del(&page->lru);
980 
981 		if (!trylock_page(page))
982 			goto keep;
983 
984 		VM_BUG_ON_PAGE(PageActive(page), page);
985 
986 		sc->nr_scanned++;
987 
988 		if (unlikely(!page_evictable(page)))
989 			goto activate_locked;
990 
991 		if (!sc->may_unmap && page_mapped(page))
992 			goto keep_locked;
993 
994 		/* Double the slab pressure for mapped and swapcache pages */
995 		if ((page_mapped(page) || PageSwapCache(page)) &&
996 		    !(PageAnon(page) && !PageSwapBacked(page)))
997 			sc->nr_scanned++;
998 
999 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001 
1002 		/*
1003 		 * The number of dirty pages determines if a zone is marked
1004 		 * reclaim_congested which affects wait_iff_congested. kswapd
1005 		 * will stall and start writing pages if the tail of the LRU
1006 		 * is all dirty unqueued pages.
1007 		 */
1008 		page_check_dirty_writeback(page, &dirty, &writeback);
1009 		if (dirty || writeback)
1010 			nr_dirty++;
1011 
1012 		if (dirty && !writeback)
1013 			nr_unqueued_dirty++;
1014 
1015 		/*
1016 		 * Treat this page as congested if the underlying BDI is or if
1017 		 * pages are cycling through the LRU so quickly that the
1018 		 * pages marked for immediate reclaim are making it to the
1019 		 * end of the LRU a second time.
1020 		 */
1021 		mapping = page_mapping(page);
1022 		if (((dirty || writeback) && mapping &&
1023 		     inode_write_congested(mapping->host)) ||
1024 		    (writeback && PageReclaim(page)))
1025 			nr_congested++;
1026 
1027 		/*
1028 		 * If a page at the tail of the LRU is under writeback, there
1029 		 * are three cases to consider.
1030 		 *
1031 		 * 1) If reclaim is encountering an excessive number of pages
1032 		 *    under writeback and this page is both under writeback and
1033 		 *    PageReclaim then it indicates that pages are being queued
1034 		 *    for IO but are being recycled through the LRU before the
1035 		 *    IO can complete. Waiting on the page itself risks an
1036 		 *    indefinite stall if it is impossible to writeback the
1037 		 *    page due to IO error or disconnected storage so instead
1038 		 *    note that the LRU is being scanned too quickly and the
1039 		 *    caller can stall after page list has been processed.
1040 		 *
1041 		 * 2) Global or new memcg reclaim encounters a page that is
1042 		 *    not marked for immediate reclaim, or the caller does not
1043 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 		 *    not to fs). In this case mark the page for immediate
1045 		 *    reclaim and continue scanning.
1046 		 *
1047 		 *    Require may_enter_fs because we would wait on fs, which
1048 		 *    may not have submitted IO yet. And the loop driver might
1049 		 *    enter reclaim, and deadlock if it waits on a page for
1050 		 *    which it is needed to do the write (loop masks off
1051 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1052 		 *    would probably show more reasons.
1053 		 *
1054 		 * 3) Legacy memcg encounters a page that is already marked
1055 		 *    PageReclaim. memcg does not have any dirty pages
1056 		 *    throttling so we could easily OOM just because too many
1057 		 *    pages are in writeback and there is nothing else to
1058 		 *    reclaim. Wait for the writeback to complete.
1059 		 *
1060 		 * In cases 1) and 2) we activate the pages to get them out of
1061 		 * the way while we continue scanning for clean pages on the
1062 		 * inactive list and refilling from the active list. The
1063 		 * observation here is that waiting for disk writes is more
1064 		 * expensive than potentially causing reloads down the line.
1065 		 * Since they're marked for immediate reclaim, they won't put
1066 		 * memory pressure on the cache working set any longer than it
1067 		 * takes to write them to disk.
1068 		 */
1069 		if (PageWriteback(page)) {
1070 			/* Case 1 above */
1071 			if (current_is_kswapd() &&
1072 			    PageReclaim(page) &&
1073 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074 				nr_immediate++;
1075 				goto activate_locked;
1076 
1077 			/* Case 2 above */
1078 			} else if (sane_reclaim(sc) ||
1079 			    !PageReclaim(page) || !may_enter_fs) {
1080 				/*
1081 				 * This is slightly racy - end_page_writeback()
1082 				 * might have just cleared PageReclaim, then
1083 				 * setting PageReclaim here end up interpreted
1084 				 * as PageReadahead - but that does not matter
1085 				 * enough to care.  What we do want is for this
1086 				 * page to have PageReclaim set next time memcg
1087 				 * reclaim reaches the tests above, so it will
1088 				 * then wait_on_page_writeback() to avoid OOM;
1089 				 * and it's also appropriate in global reclaim.
1090 				 */
1091 				SetPageReclaim(page);
1092 				nr_writeback++;
1093 				goto activate_locked;
1094 
1095 			/* Case 3 above */
1096 			} else {
1097 				unlock_page(page);
1098 				wait_on_page_writeback(page);
1099 				/* then go back and try same page again */
1100 				list_add_tail(&page->lru, page_list);
1101 				continue;
1102 			}
1103 		}
1104 
1105 		if (!force_reclaim)
1106 			references = page_check_references(page, sc);
1107 
1108 		switch (references) {
1109 		case PAGEREF_ACTIVATE:
1110 			goto activate_locked;
1111 		case PAGEREF_KEEP:
1112 			nr_ref_keep++;
1113 			goto keep_locked;
1114 		case PAGEREF_RECLAIM:
1115 		case PAGEREF_RECLAIM_CLEAN:
1116 			; /* try to reclaim the page below */
1117 		}
1118 
1119 		/*
1120 		 * Anonymous process memory has backing store?
1121 		 * Try to allocate it some swap space here.
1122 		 * Lazyfree page could be freed directly
1123 		 */
1124 		if (PageAnon(page) && PageSwapBacked(page) &&
1125 		    !PageSwapCache(page)) {
1126 			if (!(sc->gfp_mask & __GFP_IO))
1127 				goto keep_locked;
1128 			if (PageTransHuge(page)) {
1129 				/* cannot split THP, skip it */
1130 				if (!can_split_huge_page(page, NULL))
1131 					goto activate_locked;
1132 				/*
1133 				 * Split pages without a PMD map right
1134 				 * away. Chances are some or all of the
1135 				 * tail pages can be freed without IO.
1136 				 */
1137 				if (!compound_mapcount(page) &&
1138 				    split_huge_page_to_list(page, page_list))
1139 					goto activate_locked;
1140 			}
1141 			if (!add_to_swap(page)) {
1142 				if (!PageTransHuge(page))
1143 					goto activate_locked;
1144 				/* Split THP and swap individual base pages */
1145 				if (split_huge_page_to_list(page, page_list))
1146 					goto activate_locked;
1147 				if (!add_to_swap(page))
1148 					goto activate_locked;
1149 			}
1150 
1151 			/* XXX: We don't support THP writes */
1152 			if (PageTransHuge(page) &&
1153 				  split_huge_page_to_list(page, page_list)) {
1154 				delete_from_swap_cache(page);
1155 				goto activate_locked;
1156 			}
1157 
1158 			may_enter_fs = 1;
1159 
1160 			/* Adding to swap updated mapping */
1161 			mapping = page_mapping(page);
1162 		} else if (unlikely(PageTransHuge(page))) {
1163 			/* Split file THP */
1164 			if (split_huge_page_to_list(page, page_list))
1165 				goto keep_locked;
1166 		}
1167 
1168 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1169 
1170 		/*
1171 		 * The page is mapped into the page tables of one or more
1172 		 * processes. Try to unmap it here.
1173 		 */
1174 		if (page_mapped(page)) {
1175 			if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1176 				nr_unmap_fail++;
1177 				goto activate_locked;
1178 			}
1179 		}
1180 
1181 		if (PageDirty(page)) {
1182 			/*
1183 			 * Only kswapd can writeback filesystem pages
1184 			 * to avoid risk of stack overflow. But avoid
1185 			 * injecting inefficient single-page IO into
1186 			 * flusher writeback as much as possible: only
1187 			 * write pages when we've encountered many
1188 			 * dirty pages, and when we've already scanned
1189 			 * the rest of the LRU for clean pages and see
1190 			 * the same dirty pages again (PageReclaim).
1191 			 */
1192 			if (page_is_file_cache(page) &&
1193 			    (!current_is_kswapd() || !PageReclaim(page) ||
1194 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1195 				/*
1196 				 * Immediately reclaim when written back.
1197 				 * Similar in principal to deactivate_page()
1198 				 * except we already have the page isolated
1199 				 * and know it's dirty
1200 				 */
1201 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1202 				SetPageReclaim(page);
1203 
1204 				goto activate_locked;
1205 			}
1206 
1207 			if (references == PAGEREF_RECLAIM_CLEAN)
1208 				goto keep_locked;
1209 			if (!may_enter_fs)
1210 				goto keep_locked;
1211 			if (!sc->may_writepage)
1212 				goto keep_locked;
1213 
1214 			/*
1215 			 * Page is dirty. Flush the TLB if a writable entry
1216 			 * potentially exists to avoid CPU writes after IO
1217 			 * starts and then write it out here.
1218 			 */
1219 			try_to_unmap_flush_dirty();
1220 			switch (pageout(page, mapping, sc)) {
1221 			case PAGE_KEEP:
1222 				goto keep_locked;
1223 			case PAGE_ACTIVATE:
1224 				goto activate_locked;
1225 			case PAGE_SUCCESS:
1226 				if (PageWriteback(page))
1227 					goto keep;
1228 				if (PageDirty(page))
1229 					goto keep;
1230 
1231 				/*
1232 				 * A synchronous write - probably a ramdisk.  Go
1233 				 * ahead and try to reclaim the page.
1234 				 */
1235 				if (!trylock_page(page))
1236 					goto keep;
1237 				if (PageDirty(page) || PageWriteback(page))
1238 					goto keep_locked;
1239 				mapping = page_mapping(page);
1240 			case PAGE_CLEAN:
1241 				; /* try to free the page below */
1242 			}
1243 		}
1244 
1245 		/*
1246 		 * If the page has buffers, try to free the buffer mappings
1247 		 * associated with this page. If we succeed we try to free
1248 		 * the page as well.
1249 		 *
1250 		 * We do this even if the page is PageDirty().
1251 		 * try_to_release_page() does not perform I/O, but it is
1252 		 * possible for a page to have PageDirty set, but it is actually
1253 		 * clean (all its buffers are clean).  This happens if the
1254 		 * buffers were written out directly, with submit_bh(). ext3
1255 		 * will do this, as well as the blockdev mapping.
1256 		 * try_to_release_page() will discover that cleanness and will
1257 		 * drop the buffers and mark the page clean - it can be freed.
1258 		 *
1259 		 * Rarely, pages can have buffers and no ->mapping.  These are
1260 		 * the pages which were not successfully invalidated in
1261 		 * truncate_complete_page().  We try to drop those buffers here
1262 		 * and if that worked, and the page is no longer mapped into
1263 		 * process address space (page_count == 1) it can be freed.
1264 		 * Otherwise, leave the page on the LRU so it is swappable.
1265 		 */
1266 		if (page_has_private(page)) {
1267 			if (!try_to_release_page(page, sc->gfp_mask))
1268 				goto activate_locked;
1269 			if (!mapping && page_count(page) == 1) {
1270 				unlock_page(page);
1271 				if (put_page_testzero(page))
1272 					goto free_it;
1273 				else {
1274 					/*
1275 					 * rare race with speculative reference.
1276 					 * the speculative reference will free
1277 					 * this page shortly, so we may
1278 					 * increment nr_reclaimed here (and
1279 					 * leave it off the LRU).
1280 					 */
1281 					nr_reclaimed++;
1282 					continue;
1283 				}
1284 			}
1285 		}
1286 
1287 		if (PageAnon(page) && !PageSwapBacked(page)) {
1288 			/* follow __remove_mapping for reference */
1289 			if (!page_ref_freeze(page, 1))
1290 				goto keep_locked;
1291 			if (PageDirty(page)) {
1292 				page_ref_unfreeze(page, 1);
1293 				goto keep_locked;
1294 			}
1295 
1296 			count_vm_event(PGLAZYFREED);
1297 			count_memcg_page_event(page, PGLAZYFREED);
1298 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1299 			goto keep_locked;
1300 		/*
1301 		 * At this point, we have no other references and there is
1302 		 * no way to pick any more up (removed from LRU, removed
1303 		 * from pagecache). Can use non-atomic bitops now (and
1304 		 * we obviously don't have to worry about waking up a process
1305 		 * waiting on the page lock, because there are no references.
1306 		 */
1307 		__ClearPageLocked(page);
1308 free_it:
1309 		nr_reclaimed++;
1310 
1311 		/*
1312 		 * Is there need to periodically free_page_list? It would
1313 		 * appear not as the counts should be low
1314 		 */
1315 		list_add(&page->lru, &free_pages);
1316 		continue;
1317 
1318 activate_locked:
1319 		/* Not a candidate for swapping, so reclaim swap space. */
1320 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1321 						PageMlocked(page)))
1322 			try_to_free_swap(page);
1323 		VM_BUG_ON_PAGE(PageActive(page), page);
1324 		if (!PageMlocked(page)) {
1325 			SetPageActive(page);
1326 			pgactivate++;
1327 			count_memcg_page_event(page, PGACTIVATE);
1328 		}
1329 keep_locked:
1330 		unlock_page(page);
1331 keep:
1332 		list_add(&page->lru, &ret_pages);
1333 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1334 	}
1335 
1336 	mem_cgroup_uncharge_list(&free_pages);
1337 	try_to_unmap_flush();
1338 	free_hot_cold_page_list(&free_pages, true);
1339 
1340 	list_splice(&ret_pages, page_list);
1341 	count_vm_events(PGACTIVATE, pgactivate);
1342 
1343 	if (stat) {
1344 		stat->nr_dirty = nr_dirty;
1345 		stat->nr_congested = nr_congested;
1346 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1347 		stat->nr_writeback = nr_writeback;
1348 		stat->nr_immediate = nr_immediate;
1349 		stat->nr_activate = pgactivate;
1350 		stat->nr_ref_keep = nr_ref_keep;
1351 		stat->nr_unmap_fail = nr_unmap_fail;
1352 	}
1353 	return nr_reclaimed;
1354 }
1355 
1356 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1357 					    struct list_head *page_list)
1358 {
1359 	struct scan_control sc = {
1360 		.gfp_mask = GFP_KERNEL,
1361 		.priority = DEF_PRIORITY,
1362 		.may_unmap = 1,
1363 	};
1364 	unsigned long ret;
1365 	struct page *page, *next;
1366 	LIST_HEAD(clean_pages);
1367 
1368 	list_for_each_entry_safe(page, next, page_list, lru) {
1369 		if (page_is_file_cache(page) && !PageDirty(page) &&
1370 		    !__PageMovable(page)) {
1371 			ClearPageActive(page);
1372 			list_move(&page->lru, &clean_pages);
1373 		}
1374 	}
1375 
1376 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1377 			TTU_IGNORE_ACCESS, NULL, true);
1378 	list_splice(&clean_pages, page_list);
1379 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1380 	return ret;
1381 }
1382 
1383 /*
1384  * Attempt to remove the specified page from its LRU.  Only take this page
1385  * if it is of the appropriate PageActive status.  Pages which are being
1386  * freed elsewhere are also ignored.
1387  *
1388  * page:	page to consider
1389  * mode:	one of the LRU isolation modes defined above
1390  *
1391  * returns 0 on success, -ve errno on failure.
1392  */
1393 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1394 {
1395 	int ret = -EINVAL;
1396 
1397 	/* Only take pages on the LRU. */
1398 	if (!PageLRU(page))
1399 		return ret;
1400 
1401 	/* Compaction should not handle unevictable pages but CMA can do so */
1402 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1403 		return ret;
1404 
1405 	ret = -EBUSY;
1406 
1407 	/*
1408 	 * To minimise LRU disruption, the caller can indicate that it only
1409 	 * wants to isolate pages it will be able to operate on without
1410 	 * blocking - clean pages for the most part.
1411 	 *
1412 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1413 	 * that it is possible to migrate without blocking
1414 	 */
1415 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1416 		/* All the caller can do on PageWriteback is block */
1417 		if (PageWriteback(page))
1418 			return ret;
1419 
1420 		if (PageDirty(page)) {
1421 			struct address_space *mapping;
1422 
1423 			/*
1424 			 * Only pages without mappings or that have a
1425 			 * ->migratepage callback are possible to migrate
1426 			 * without blocking
1427 			 */
1428 			mapping = page_mapping(page);
1429 			if (mapping && !mapping->a_ops->migratepage)
1430 				return ret;
1431 		}
1432 	}
1433 
1434 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1435 		return ret;
1436 
1437 	if (likely(get_page_unless_zero(page))) {
1438 		/*
1439 		 * Be careful not to clear PageLRU until after we're
1440 		 * sure the page is not being freed elsewhere -- the
1441 		 * page release code relies on it.
1442 		 */
1443 		ClearPageLRU(page);
1444 		ret = 0;
1445 	}
1446 
1447 	return ret;
1448 }
1449 
1450 
1451 /*
1452  * Update LRU sizes after isolating pages. The LRU size updates must
1453  * be complete before mem_cgroup_update_lru_size due to a santity check.
1454  */
1455 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1456 			enum lru_list lru, unsigned long *nr_zone_taken)
1457 {
1458 	int zid;
1459 
1460 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 		if (!nr_zone_taken[zid])
1462 			continue;
1463 
1464 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1465 #ifdef CONFIG_MEMCG
1466 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1467 #endif
1468 	}
1469 
1470 }
1471 
1472 /*
1473  * zone_lru_lock is heavily contended.  Some of the functions that
1474  * shrink the lists perform better by taking out a batch of pages
1475  * and working on them outside the LRU lock.
1476  *
1477  * For pagecache intensive workloads, this function is the hottest
1478  * spot in the kernel (apart from copy_*_user functions).
1479  *
1480  * Appropriate locks must be held before calling this function.
1481  *
1482  * @nr_to_scan:	The number of eligible pages to look through on the list.
1483  * @lruvec:	The LRU vector to pull pages from.
1484  * @dst:	The temp list to put pages on to.
1485  * @nr_scanned:	The number of pages that were scanned.
1486  * @sc:		The scan_control struct for this reclaim session
1487  * @mode:	One of the LRU isolation modes
1488  * @lru:	LRU list id for isolating
1489  *
1490  * returns how many pages were moved onto *@dst.
1491  */
1492 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1493 		struct lruvec *lruvec, struct list_head *dst,
1494 		unsigned long *nr_scanned, struct scan_control *sc,
1495 		isolate_mode_t mode, enum lru_list lru)
1496 {
1497 	struct list_head *src = &lruvec->lists[lru];
1498 	unsigned long nr_taken = 0;
1499 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1500 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1501 	unsigned long skipped = 0;
1502 	unsigned long scan, total_scan, nr_pages;
1503 	LIST_HEAD(pages_skipped);
1504 
1505 	scan = 0;
1506 	for (total_scan = 0;
1507 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1508 	     total_scan++) {
1509 		struct page *page;
1510 
1511 		page = lru_to_page(src);
1512 		prefetchw_prev_lru_page(page, src, flags);
1513 
1514 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1515 
1516 		if (page_zonenum(page) > sc->reclaim_idx) {
1517 			list_move(&page->lru, &pages_skipped);
1518 			nr_skipped[page_zonenum(page)]++;
1519 			continue;
1520 		}
1521 
1522 		/*
1523 		 * Do not count skipped pages because that makes the function
1524 		 * return with no isolated pages if the LRU mostly contains
1525 		 * ineligible pages.  This causes the VM to not reclaim any
1526 		 * pages, triggering a premature OOM.
1527 		 */
1528 		scan++;
1529 		switch (__isolate_lru_page(page, mode)) {
1530 		case 0:
1531 			nr_pages = hpage_nr_pages(page);
1532 			nr_taken += nr_pages;
1533 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1534 			list_move(&page->lru, dst);
1535 			break;
1536 
1537 		case -EBUSY:
1538 			/* else it is being freed elsewhere */
1539 			list_move(&page->lru, src);
1540 			continue;
1541 
1542 		default:
1543 			BUG();
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * Splice any skipped pages to the start of the LRU list. Note that
1549 	 * this disrupts the LRU order when reclaiming for lower zones but
1550 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1551 	 * scanning would soon rescan the same pages to skip and put the
1552 	 * system at risk of premature OOM.
1553 	 */
1554 	if (!list_empty(&pages_skipped)) {
1555 		int zid;
1556 
1557 		list_splice(&pages_skipped, src);
1558 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1559 			if (!nr_skipped[zid])
1560 				continue;
1561 
1562 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1563 			skipped += nr_skipped[zid];
1564 		}
1565 	}
1566 	*nr_scanned = total_scan;
1567 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1568 				    total_scan, skipped, nr_taken, mode, lru);
1569 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1570 	return nr_taken;
1571 }
1572 
1573 /**
1574  * isolate_lru_page - tries to isolate a page from its LRU list
1575  * @page: page to isolate from its LRU list
1576  *
1577  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1578  * vmstat statistic corresponding to whatever LRU list the page was on.
1579  *
1580  * Returns 0 if the page was removed from an LRU list.
1581  * Returns -EBUSY if the page was not on an LRU list.
1582  *
1583  * The returned page will have PageLRU() cleared.  If it was found on
1584  * the active list, it will have PageActive set.  If it was found on
1585  * the unevictable list, it will have the PageUnevictable bit set. That flag
1586  * may need to be cleared by the caller before letting the page go.
1587  *
1588  * The vmstat statistic corresponding to the list on which the page was
1589  * found will be decremented.
1590  *
1591  * Restrictions:
1592  * (1) Must be called with an elevated refcount on the page. This is a
1593  *     fundamentnal difference from isolate_lru_pages (which is called
1594  *     without a stable reference).
1595  * (2) the lru_lock must not be held.
1596  * (3) interrupts must be enabled.
1597  */
1598 int isolate_lru_page(struct page *page)
1599 {
1600 	int ret = -EBUSY;
1601 
1602 	VM_BUG_ON_PAGE(!page_count(page), page);
1603 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1604 
1605 	if (PageLRU(page)) {
1606 		struct zone *zone = page_zone(page);
1607 		struct lruvec *lruvec;
1608 
1609 		spin_lock_irq(zone_lru_lock(zone));
1610 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1611 		if (PageLRU(page)) {
1612 			int lru = page_lru(page);
1613 			get_page(page);
1614 			ClearPageLRU(page);
1615 			del_page_from_lru_list(page, lruvec, lru);
1616 			ret = 0;
1617 		}
1618 		spin_unlock_irq(zone_lru_lock(zone));
1619 	}
1620 	return ret;
1621 }
1622 
1623 /*
1624  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1625  * then get resheduled. When there are massive number of tasks doing page
1626  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1627  * the LRU list will go small and be scanned faster than necessary, leading to
1628  * unnecessary swapping, thrashing and OOM.
1629  */
1630 static int too_many_isolated(struct pglist_data *pgdat, int file,
1631 		struct scan_control *sc)
1632 {
1633 	unsigned long inactive, isolated;
1634 
1635 	if (current_is_kswapd())
1636 		return 0;
1637 
1638 	if (!sane_reclaim(sc))
1639 		return 0;
1640 
1641 	if (file) {
1642 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1643 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1644 	} else {
1645 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1646 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1647 	}
1648 
1649 	/*
1650 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1651 	 * won't get blocked by normal direct-reclaimers, forming a circular
1652 	 * deadlock.
1653 	 */
1654 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1655 		inactive >>= 3;
1656 
1657 	return isolated > inactive;
1658 }
1659 
1660 static noinline_for_stack void
1661 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1662 {
1663 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1664 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1665 	LIST_HEAD(pages_to_free);
1666 
1667 	/*
1668 	 * Put back any unfreeable pages.
1669 	 */
1670 	while (!list_empty(page_list)) {
1671 		struct page *page = lru_to_page(page_list);
1672 		int lru;
1673 
1674 		VM_BUG_ON_PAGE(PageLRU(page), page);
1675 		list_del(&page->lru);
1676 		if (unlikely(!page_evictable(page))) {
1677 			spin_unlock_irq(&pgdat->lru_lock);
1678 			putback_lru_page(page);
1679 			spin_lock_irq(&pgdat->lru_lock);
1680 			continue;
1681 		}
1682 
1683 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1684 
1685 		SetPageLRU(page);
1686 		lru = page_lru(page);
1687 		add_page_to_lru_list(page, lruvec, lru);
1688 
1689 		if (is_active_lru(lru)) {
1690 			int file = is_file_lru(lru);
1691 			int numpages = hpage_nr_pages(page);
1692 			reclaim_stat->recent_rotated[file] += numpages;
1693 		}
1694 		if (put_page_testzero(page)) {
1695 			__ClearPageLRU(page);
1696 			__ClearPageActive(page);
1697 			del_page_from_lru_list(page, lruvec, lru);
1698 
1699 			if (unlikely(PageCompound(page))) {
1700 				spin_unlock_irq(&pgdat->lru_lock);
1701 				mem_cgroup_uncharge(page);
1702 				(*get_compound_page_dtor(page))(page);
1703 				spin_lock_irq(&pgdat->lru_lock);
1704 			} else
1705 				list_add(&page->lru, &pages_to_free);
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * To save our caller's stack, now use input list for pages to free.
1711 	 */
1712 	list_splice(&pages_to_free, page_list);
1713 }
1714 
1715 /*
1716  * If a kernel thread (such as nfsd for loop-back mounts) services
1717  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1718  * In that case we should only throttle if the backing device it is
1719  * writing to is congested.  In other cases it is safe to throttle.
1720  */
1721 static int current_may_throttle(void)
1722 {
1723 	return !(current->flags & PF_LESS_THROTTLE) ||
1724 		current->backing_dev_info == NULL ||
1725 		bdi_write_congested(current->backing_dev_info);
1726 }
1727 
1728 /*
1729  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1730  * of reclaimed pages
1731  */
1732 static noinline_for_stack unsigned long
1733 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1734 		     struct scan_control *sc, enum lru_list lru)
1735 {
1736 	LIST_HEAD(page_list);
1737 	unsigned long nr_scanned;
1738 	unsigned long nr_reclaimed = 0;
1739 	unsigned long nr_taken;
1740 	struct reclaim_stat stat = {};
1741 	isolate_mode_t isolate_mode = 0;
1742 	int file = is_file_lru(lru);
1743 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1744 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1745 
1746 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1747 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1748 
1749 		/* We are about to die and free our memory. Return now. */
1750 		if (fatal_signal_pending(current))
1751 			return SWAP_CLUSTER_MAX;
1752 	}
1753 
1754 	lru_add_drain();
1755 
1756 	if (!sc->may_unmap)
1757 		isolate_mode |= ISOLATE_UNMAPPED;
1758 
1759 	spin_lock_irq(&pgdat->lru_lock);
1760 
1761 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1762 				     &nr_scanned, sc, isolate_mode, lru);
1763 
1764 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1765 	reclaim_stat->recent_scanned[file] += nr_taken;
1766 
1767 	if (current_is_kswapd()) {
1768 		if (global_reclaim(sc))
1769 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1770 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1771 				   nr_scanned);
1772 	} else {
1773 		if (global_reclaim(sc))
1774 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1775 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1776 				   nr_scanned);
1777 	}
1778 	spin_unlock_irq(&pgdat->lru_lock);
1779 
1780 	if (nr_taken == 0)
1781 		return 0;
1782 
1783 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1784 				&stat, false);
1785 
1786 	spin_lock_irq(&pgdat->lru_lock);
1787 
1788 	if (current_is_kswapd()) {
1789 		if (global_reclaim(sc))
1790 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1791 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1792 				   nr_reclaimed);
1793 	} else {
1794 		if (global_reclaim(sc))
1795 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1796 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1797 				   nr_reclaimed);
1798 	}
1799 
1800 	putback_inactive_pages(lruvec, &page_list);
1801 
1802 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1803 
1804 	spin_unlock_irq(&pgdat->lru_lock);
1805 
1806 	mem_cgroup_uncharge_list(&page_list);
1807 	free_hot_cold_page_list(&page_list, true);
1808 
1809 	/*
1810 	 * If reclaim is isolating dirty pages under writeback, it implies
1811 	 * that the long-lived page allocation rate is exceeding the page
1812 	 * laundering rate. Either the global limits are not being effective
1813 	 * at throttling processes due to the page distribution throughout
1814 	 * zones or there is heavy usage of a slow backing device. The
1815 	 * only option is to throttle from reclaim context which is not ideal
1816 	 * as there is no guarantee the dirtying process is throttled in the
1817 	 * same way balance_dirty_pages() manages.
1818 	 *
1819 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1820 	 * of pages under pages flagged for immediate reclaim and stall if any
1821 	 * are encountered in the nr_immediate check below.
1822 	 */
1823 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1824 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1825 
1826 	/*
1827 	 * Legacy memcg will stall in page writeback so avoid forcibly
1828 	 * stalling here.
1829 	 */
1830 	if (sane_reclaim(sc)) {
1831 		/*
1832 		 * Tag a zone as congested if all the dirty pages scanned were
1833 		 * backed by a congested BDI and wait_iff_congested will stall.
1834 		 */
1835 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1836 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1837 
1838 		/*
1839 		 * If dirty pages are scanned that are not queued for IO, it
1840 		 * implies that flushers are not doing their job. This can
1841 		 * happen when memory pressure pushes dirty pages to the end of
1842 		 * the LRU before the dirty limits are breached and the dirty
1843 		 * data has expired. It can also happen when the proportion of
1844 		 * dirty pages grows not through writes but through memory
1845 		 * pressure reclaiming all the clean cache. And in some cases,
1846 		 * the flushers simply cannot keep up with the allocation
1847 		 * rate. Nudge the flusher threads in case they are asleep, but
1848 		 * also allow kswapd to start writing pages during reclaim.
1849 		 */
1850 		if (stat.nr_unqueued_dirty == nr_taken) {
1851 			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1852 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1853 		}
1854 
1855 		/*
1856 		 * If kswapd scans pages marked marked for immediate
1857 		 * reclaim and under writeback (nr_immediate), it implies
1858 		 * that pages are cycling through the LRU faster than
1859 		 * they are written so also forcibly stall.
1860 		 */
1861 		if (stat.nr_immediate && current_may_throttle())
1862 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1863 	}
1864 
1865 	/*
1866 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1867 	 * is congested. Allow kswapd to continue until it starts encountering
1868 	 * unqueued dirty pages or cycling through the LRU too quickly.
1869 	 */
1870 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1871 	    current_may_throttle())
1872 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1873 
1874 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1875 			nr_scanned, nr_reclaimed,
1876 			stat.nr_dirty,  stat.nr_writeback,
1877 			stat.nr_congested, stat.nr_immediate,
1878 			stat.nr_activate, stat.nr_ref_keep,
1879 			stat.nr_unmap_fail,
1880 			sc->priority, file);
1881 	return nr_reclaimed;
1882 }
1883 
1884 /*
1885  * This moves pages from the active list to the inactive list.
1886  *
1887  * We move them the other way if the page is referenced by one or more
1888  * processes, from rmap.
1889  *
1890  * If the pages are mostly unmapped, the processing is fast and it is
1891  * appropriate to hold zone_lru_lock across the whole operation.  But if
1892  * the pages are mapped, the processing is slow (page_referenced()) so we
1893  * should drop zone_lru_lock around each page.  It's impossible to balance
1894  * this, so instead we remove the pages from the LRU while processing them.
1895  * It is safe to rely on PG_active against the non-LRU pages in here because
1896  * nobody will play with that bit on a non-LRU page.
1897  *
1898  * The downside is that we have to touch page->_refcount against each page.
1899  * But we had to alter page->flags anyway.
1900  *
1901  * Returns the number of pages moved to the given lru.
1902  */
1903 
1904 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1905 				     struct list_head *list,
1906 				     struct list_head *pages_to_free,
1907 				     enum lru_list lru)
1908 {
1909 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1910 	struct page *page;
1911 	int nr_pages;
1912 	int nr_moved = 0;
1913 
1914 	while (!list_empty(list)) {
1915 		page = lru_to_page(list);
1916 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1917 
1918 		VM_BUG_ON_PAGE(PageLRU(page), page);
1919 		SetPageLRU(page);
1920 
1921 		nr_pages = hpage_nr_pages(page);
1922 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1923 		list_move(&page->lru, &lruvec->lists[lru]);
1924 
1925 		if (put_page_testzero(page)) {
1926 			__ClearPageLRU(page);
1927 			__ClearPageActive(page);
1928 			del_page_from_lru_list(page, lruvec, lru);
1929 
1930 			if (unlikely(PageCompound(page))) {
1931 				spin_unlock_irq(&pgdat->lru_lock);
1932 				mem_cgroup_uncharge(page);
1933 				(*get_compound_page_dtor(page))(page);
1934 				spin_lock_irq(&pgdat->lru_lock);
1935 			} else
1936 				list_add(&page->lru, pages_to_free);
1937 		} else {
1938 			nr_moved += nr_pages;
1939 		}
1940 	}
1941 
1942 	if (!is_active_lru(lru)) {
1943 		__count_vm_events(PGDEACTIVATE, nr_moved);
1944 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1945 				   nr_moved);
1946 	}
1947 
1948 	return nr_moved;
1949 }
1950 
1951 static void shrink_active_list(unsigned long nr_to_scan,
1952 			       struct lruvec *lruvec,
1953 			       struct scan_control *sc,
1954 			       enum lru_list lru)
1955 {
1956 	unsigned long nr_taken;
1957 	unsigned long nr_scanned;
1958 	unsigned long vm_flags;
1959 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1960 	LIST_HEAD(l_active);
1961 	LIST_HEAD(l_inactive);
1962 	struct page *page;
1963 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1964 	unsigned nr_deactivate, nr_activate;
1965 	unsigned nr_rotated = 0;
1966 	isolate_mode_t isolate_mode = 0;
1967 	int file = is_file_lru(lru);
1968 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1969 
1970 	lru_add_drain();
1971 
1972 	if (!sc->may_unmap)
1973 		isolate_mode |= ISOLATE_UNMAPPED;
1974 
1975 	spin_lock_irq(&pgdat->lru_lock);
1976 
1977 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1978 				     &nr_scanned, sc, isolate_mode, lru);
1979 
1980 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1981 	reclaim_stat->recent_scanned[file] += nr_taken;
1982 
1983 	__count_vm_events(PGREFILL, nr_scanned);
1984 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1985 
1986 	spin_unlock_irq(&pgdat->lru_lock);
1987 
1988 	while (!list_empty(&l_hold)) {
1989 		cond_resched();
1990 		page = lru_to_page(&l_hold);
1991 		list_del(&page->lru);
1992 
1993 		if (unlikely(!page_evictable(page))) {
1994 			putback_lru_page(page);
1995 			continue;
1996 		}
1997 
1998 		if (unlikely(buffer_heads_over_limit)) {
1999 			if (page_has_private(page) && trylock_page(page)) {
2000 				if (page_has_private(page))
2001 					try_to_release_page(page, 0);
2002 				unlock_page(page);
2003 			}
2004 		}
2005 
2006 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2007 				    &vm_flags)) {
2008 			nr_rotated += hpage_nr_pages(page);
2009 			/*
2010 			 * Identify referenced, file-backed active pages and
2011 			 * give them one more trip around the active list. So
2012 			 * that executable code get better chances to stay in
2013 			 * memory under moderate memory pressure.  Anon pages
2014 			 * are not likely to be evicted by use-once streaming
2015 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2016 			 * so we ignore them here.
2017 			 */
2018 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2019 				list_add(&page->lru, &l_active);
2020 				continue;
2021 			}
2022 		}
2023 
2024 		ClearPageActive(page);	/* we are de-activating */
2025 		list_add(&page->lru, &l_inactive);
2026 	}
2027 
2028 	/*
2029 	 * Move pages back to the lru list.
2030 	 */
2031 	spin_lock_irq(&pgdat->lru_lock);
2032 	/*
2033 	 * Count referenced pages from currently used mappings as rotated,
2034 	 * even though only some of them are actually re-activated.  This
2035 	 * helps balance scan pressure between file and anonymous pages in
2036 	 * get_scan_count.
2037 	 */
2038 	reclaim_stat->recent_rotated[file] += nr_rotated;
2039 
2040 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2041 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2042 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2043 	spin_unlock_irq(&pgdat->lru_lock);
2044 
2045 	mem_cgroup_uncharge_list(&l_hold);
2046 	free_hot_cold_page_list(&l_hold, true);
2047 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2048 			nr_deactivate, nr_rotated, sc->priority, file);
2049 }
2050 
2051 /*
2052  * The inactive anon list should be small enough that the VM never has
2053  * to do too much work.
2054  *
2055  * The inactive file list should be small enough to leave most memory
2056  * to the established workingset on the scan-resistant active list,
2057  * but large enough to avoid thrashing the aggregate readahead window.
2058  *
2059  * Both inactive lists should also be large enough that each inactive
2060  * page has a chance to be referenced again before it is reclaimed.
2061  *
2062  * If that fails and refaulting is observed, the inactive list grows.
2063  *
2064  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2065  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2066  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2067  *
2068  * total     target    max
2069  * memory    ratio     inactive
2070  * -------------------------------------
2071  *   10MB       1         5MB
2072  *  100MB       1        50MB
2073  *    1GB       3       250MB
2074  *   10GB      10       0.9GB
2075  *  100GB      31         3GB
2076  *    1TB     101        10GB
2077  *   10TB     320        32GB
2078  */
2079 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2080 				 struct mem_cgroup *memcg,
2081 				 struct scan_control *sc, bool actual_reclaim)
2082 {
2083 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2084 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2085 	enum lru_list inactive_lru = file * LRU_FILE;
2086 	unsigned long inactive, active;
2087 	unsigned long inactive_ratio;
2088 	unsigned long refaults;
2089 	unsigned long gb;
2090 
2091 	/*
2092 	 * If we don't have swap space, anonymous page deactivation
2093 	 * is pointless.
2094 	 */
2095 	if (!file && !total_swap_pages)
2096 		return false;
2097 
2098 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2099 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2100 
2101 	if (memcg)
2102 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2103 	else
2104 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2105 
2106 	/*
2107 	 * When refaults are being observed, it means a new workingset
2108 	 * is being established. Disable active list protection to get
2109 	 * rid of the stale workingset quickly.
2110 	 */
2111 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2112 		inactive_ratio = 0;
2113 	} else {
2114 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2115 		if (gb)
2116 			inactive_ratio = int_sqrt(10 * gb);
2117 		else
2118 			inactive_ratio = 1;
2119 	}
2120 
2121 	if (actual_reclaim)
2122 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2123 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2124 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2125 			inactive_ratio, file);
2126 
2127 	return inactive * inactive_ratio < active;
2128 }
2129 
2130 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2131 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2132 				 struct scan_control *sc)
2133 {
2134 	if (is_active_lru(lru)) {
2135 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2136 					 memcg, sc, true))
2137 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2138 		return 0;
2139 	}
2140 
2141 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2142 }
2143 
2144 enum scan_balance {
2145 	SCAN_EQUAL,
2146 	SCAN_FRACT,
2147 	SCAN_ANON,
2148 	SCAN_FILE,
2149 };
2150 
2151 /*
2152  * Determine how aggressively the anon and file LRU lists should be
2153  * scanned.  The relative value of each set of LRU lists is determined
2154  * by looking at the fraction of the pages scanned we did rotate back
2155  * onto the active list instead of evict.
2156  *
2157  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2158  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2159  */
2160 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2161 			   struct scan_control *sc, unsigned long *nr,
2162 			   unsigned long *lru_pages)
2163 {
2164 	int swappiness = mem_cgroup_swappiness(memcg);
2165 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2166 	u64 fraction[2];
2167 	u64 denominator = 0;	/* gcc */
2168 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2169 	unsigned long anon_prio, file_prio;
2170 	enum scan_balance scan_balance;
2171 	unsigned long anon, file;
2172 	unsigned long ap, fp;
2173 	enum lru_list lru;
2174 
2175 	/* If we have no swap space, do not bother scanning anon pages. */
2176 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2177 		scan_balance = SCAN_FILE;
2178 		goto out;
2179 	}
2180 
2181 	/*
2182 	 * Global reclaim will swap to prevent OOM even with no
2183 	 * swappiness, but memcg users want to use this knob to
2184 	 * disable swapping for individual groups completely when
2185 	 * using the memory controller's swap limit feature would be
2186 	 * too expensive.
2187 	 */
2188 	if (!global_reclaim(sc) && !swappiness) {
2189 		scan_balance = SCAN_FILE;
2190 		goto out;
2191 	}
2192 
2193 	/*
2194 	 * Do not apply any pressure balancing cleverness when the
2195 	 * system is close to OOM, scan both anon and file equally
2196 	 * (unless the swappiness setting disagrees with swapping).
2197 	 */
2198 	if (!sc->priority && swappiness) {
2199 		scan_balance = SCAN_EQUAL;
2200 		goto out;
2201 	}
2202 
2203 	/*
2204 	 * Prevent the reclaimer from falling into the cache trap: as
2205 	 * cache pages start out inactive, every cache fault will tip
2206 	 * the scan balance towards the file LRU.  And as the file LRU
2207 	 * shrinks, so does the window for rotation from references.
2208 	 * This means we have a runaway feedback loop where a tiny
2209 	 * thrashing file LRU becomes infinitely more attractive than
2210 	 * anon pages.  Try to detect this based on file LRU size.
2211 	 */
2212 	if (global_reclaim(sc)) {
2213 		unsigned long pgdatfile;
2214 		unsigned long pgdatfree;
2215 		int z;
2216 		unsigned long total_high_wmark = 0;
2217 
2218 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2219 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2220 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2221 
2222 		for (z = 0; z < MAX_NR_ZONES; z++) {
2223 			struct zone *zone = &pgdat->node_zones[z];
2224 			if (!managed_zone(zone))
2225 				continue;
2226 
2227 			total_high_wmark += high_wmark_pages(zone);
2228 		}
2229 
2230 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2231 			/*
2232 			 * Force SCAN_ANON if there are enough inactive
2233 			 * anonymous pages on the LRU in eligible zones.
2234 			 * Otherwise, the small LRU gets thrashed.
2235 			 */
2236 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2237 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2238 					>> sc->priority) {
2239 				scan_balance = SCAN_ANON;
2240 				goto out;
2241 			}
2242 		}
2243 	}
2244 
2245 	/*
2246 	 * If there is enough inactive page cache, i.e. if the size of the
2247 	 * inactive list is greater than that of the active list *and* the
2248 	 * inactive list actually has some pages to scan on this priority, we
2249 	 * do not reclaim anything from the anonymous working set right now.
2250 	 * Without the second condition we could end up never scanning an
2251 	 * lruvec even if it has plenty of old anonymous pages unless the
2252 	 * system is under heavy pressure.
2253 	 */
2254 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2255 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2256 		scan_balance = SCAN_FILE;
2257 		goto out;
2258 	}
2259 
2260 	scan_balance = SCAN_FRACT;
2261 
2262 	/*
2263 	 * With swappiness at 100, anonymous and file have the same priority.
2264 	 * This scanning priority is essentially the inverse of IO cost.
2265 	 */
2266 	anon_prio = swappiness;
2267 	file_prio = 200 - anon_prio;
2268 
2269 	/*
2270 	 * OK, so we have swap space and a fair amount of page cache
2271 	 * pages.  We use the recently rotated / recently scanned
2272 	 * ratios to determine how valuable each cache is.
2273 	 *
2274 	 * Because workloads change over time (and to avoid overflow)
2275 	 * we keep these statistics as a floating average, which ends
2276 	 * up weighing recent references more than old ones.
2277 	 *
2278 	 * anon in [0], file in [1]
2279 	 */
2280 
2281 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2282 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2283 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2284 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2285 
2286 	spin_lock_irq(&pgdat->lru_lock);
2287 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2288 		reclaim_stat->recent_scanned[0] /= 2;
2289 		reclaim_stat->recent_rotated[0] /= 2;
2290 	}
2291 
2292 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2293 		reclaim_stat->recent_scanned[1] /= 2;
2294 		reclaim_stat->recent_rotated[1] /= 2;
2295 	}
2296 
2297 	/*
2298 	 * The amount of pressure on anon vs file pages is inversely
2299 	 * proportional to the fraction of recently scanned pages on
2300 	 * each list that were recently referenced and in active use.
2301 	 */
2302 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2303 	ap /= reclaim_stat->recent_rotated[0] + 1;
2304 
2305 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2306 	fp /= reclaim_stat->recent_rotated[1] + 1;
2307 	spin_unlock_irq(&pgdat->lru_lock);
2308 
2309 	fraction[0] = ap;
2310 	fraction[1] = fp;
2311 	denominator = ap + fp + 1;
2312 out:
2313 	*lru_pages = 0;
2314 	for_each_evictable_lru(lru) {
2315 		int file = is_file_lru(lru);
2316 		unsigned long size;
2317 		unsigned long scan;
2318 
2319 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2320 		scan = size >> sc->priority;
2321 		/*
2322 		 * If the cgroup's already been deleted, make sure to
2323 		 * scrape out the remaining cache.
2324 		 */
2325 		if (!scan && !mem_cgroup_online(memcg))
2326 			scan = min(size, SWAP_CLUSTER_MAX);
2327 
2328 		switch (scan_balance) {
2329 		case SCAN_EQUAL:
2330 			/* Scan lists relative to size */
2331 			break;
2332 		case SCAN_FRACT:
2333 			/*
2334 			 * Scan types proportional to swappiness and
2335 			 * their relative recent reclaim efficiency.
2336 			 */
2337 			scan = div64_u64(scan * fraction[file],
2338 					 denominator);
2339 			break;
2340 		case SCAN_FILE:
2341 		case SCAN_ANON:
2342 			/* Scan one type exclusively */
2343 			if ((scan_balance == SCAN_FILE) != file) {
2344 				size = 0;
2345 				scan = 0;
2346 			}
2347 			break;
2348 		default:
2349 			/* Look ma, no brain */
2350 			BUG();
2351 		}
2352 
2353 		*lru_pages += size;
2354 		nr[lru] = scan;
2355 	}
2356 }
2357 
2358 /*
2359  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2360  */
2361 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2362 			      struct scan_control *sc, unsigned long *lru_pages)
2363 {
2364 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2365 	unsigned long nr[NR_LRU_LISTS];
2366 	unsigned long targets[NR_LRU_LISTS];
2367 	unsigned long nr_to_scan;
2368 	enum lru_list lru;
2369 	unsigned long nr_reclaimed = 0;
2370 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2371 	struct blk_plug plug;
2372 	bool scan_adjusted;
2373 
2374 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2375 
2376 	/* Record the original scan target for proportional adjustments later */
2377 	memcpy(targets, nr, sizeof(nr));
2378 
2379 	/*
2380 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2381 	 * event that can occur when there is little memory pressure e.g.
2382 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2383 	 * when the requested number of pages are reclaimed when scanning at
2384 	 * DEF_PRIORITY on the assumption that the fact we are direct
2385 	 * reclaiming implies that kswapd is not keeping up and it is best to
2386 	 * do a batch of work at once. For memcg reclaim one check is made to
2387 	 * abort proportional reclaim if either the file or anon lru has already
2388 	 * dropped to zero at the first pass.
2389 	 */
2390 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2391 			 sc->priority == DEF_PRIORITY);
2392 
2393 	blk_start_plug(&plug);
2394 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2395 					nr[LRU_INACTIVE_FILE]) {
2396 		unsigned long nr_anon, nr_file, percentage;
2397 		unsigned long nr_scanned;
2398 
2399 		for_each_evictable_lru(lru) {
2400 			if (nr[lru]) {
2401 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2402 				nr[lru] -= nr_to_scan;
2403 
2404 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2405 							    lruvec, memcg, sc);
2406 			}
2407 		}
2408 
2409 		cond_resched();
2410 
2411 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2412 			continue;
2413 
2414 		/*
2415 		 * For kswapd and memcg, reclaim at least the number of pages
2416 		 * requested. Ensure that the anon and file LRUs are scanned
2417 		 * proportionally what was requested by get_scan_count(). We
2418 		 * stop reclaiming one LRU and reduce the amount scanning
2419 		 * proportional to the original scan target.
2420 		 */
2421 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2422 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2423 
2424 		/*
2425 		 * It's just vindictive to attack the larger once the smaller
2426 		 * has gone to zero.  And given the way we stop scanning the
2427 		 * smaller below, this makes sure that we only make one nudge
2428 		 * towards proportionality once we've got nr_to_reclaim.
2429 		 */
2430 		if (!nr_file || !nr_anon)
2431 			break;
2432 
2433 		if (nr_file > nr_anon) {
2434 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2435 						targets[LRU_ACTIVE_ANON] + 1;
2436 			lru = LRU_BASE;
2437 			percentage = nr_anon * 100 / scan_target;
2438 		} else {
2439 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2440 						targets[LRU_ACTIVE_FILE] + 1;
2441 			lru = LRU_FILE;
2442 			percentage = nr_file * 100 / scan_target;
2443 		}
2444 
2445 		/* Stop scanning the smaller of the LRU */
2446 		nr[lru] = 0;
2447 		nr[lru + LRU_ACTIVE] = 0;
2448 
2449 		/*
2450 		 * Recalculate the other LRU scan count based on its original
2451 		 * scan target and the percentage scanning already complete
2452 		 */
2453 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2454 		nr_scanned = targets[lru] - nr[lru];
2455 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2456 		nr[lru] -= min(nr[lru], nr_scanned);
2457 
2458 		lru += LRU_ACTIVE;
2459 		nr_scanned = targets[lru] - nr[lru];
2460 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2461 		nr[lru] -= min(nr[lru], nr_scanned);
2462 
2463 		scan_adjusted = true;
2464 	}
2465 	blk_finish_plug(&plug);
2466 	sc->nr_reclaimed += nr_reclaimed;
2467 
2468 	/*
2469 	 * Even if we did not try to evict anon pages at all, we want to
2470 	 * rebalance the anon lru active/inactive ratio.
2471 	 */
2472 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2473 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2474 				   sc, LRU_ACTIVE_ANON);
2475 }
2476 
2477 /* Use reclaim/compaction for costly allocs or under memory pressure */
2478 static bool in_reclaim_compaction(struct scan_control *sc)
2479 {
2480 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2481 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2482 			 sc->priority < DEF_PRIORITY - 2))
2483 		return true;
2484 
2485 	return false;
2486 }
2487 
2488 /*
2489  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2490  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2491  * true if more pages should be reclaimed such that when the page allocator
2492  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2493  * It will give up earlier than that if there is difficulty reclaiming pages.
2494  */
2495 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2496 					unsigned long nr_reclaimed,
2497 					unsigned long nr_scanned,
2498 					struct scan_control *sc)
2499 {
2500 	unsigned long pages_for_compaction;
2501 	unsigned long inactive_lru_pages;
2502 	int z;
2503 
2504 	/* If not in reclaim/compaction mode, stop */
2505 	if (!in_reclaim_compaction(sc))
2506 		return false;
2507 
2508 	/* Consider stopping depending on scan and reclaim activity */
2509 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2510 		/*
2511 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2512 		 * full LRU list has been scanned and we are still failing
2513 		 * to reclaim pages. This full LRU scan is potentially
2514 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2515 		 */
2516 		if (!nr_reclaimed && !nr_scanned)
2517 			return false;
2518 	} else {
2519 		/*
2520 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2521 		 * fail without consequence, stop if we failed to reclaim
2522 		 * any pages from the last SWAP_CLUSTER_MAX number of
2523 		 * pages that were scanned. This will return to the
2524 		 * caller faster at the risk reclaim/compaction and
2525 		 * the resulting allocation attempt fails
2526 		 */
2527 		if (!nr_reclaimed)
2528 			return false;
2529 	}
2530 
2531 	/*
2532 	 * If we have not reclaimed enough pages for compaction and the
2533 	 * inactive lists are large enough, continue reclaiming
2534 	 */
2535 	pages_for_compaction = compact_gap(sc->order);
2536 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2537 	if (get_nr_swap_pages() > 0)
2538 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2539 	if (sc->nr_reclaimed < pages_for_compaction &&
2540 			inactive_lru_pages > pages_for_compaction)
2541 		return true;
2542 
2543 	/* If compaction would go ahead or the allocation would succeed, stop */
2544 	for (z = 0; z <= sc->reclaim_idx; z++) {
2545 		struct zone *zone = &pgdat->node_zones[z];
2546 		if (!managed_zone(zone))
2547 			continue;
2548 
2549 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2550 		case COMPACT_SUCCESS:
2551 		case COMPACT_CONTINUE:
2552 			return false;
2553 		default:
2554 			/* check next zone */
2555 			;
2556 		}
2557 	}
2558 	return true;
2559 }
2560 
2561 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2562 {
2563 	struct reclaim_state *reclaim_state = current->reclaim_state;
2564 	unsigned long nr_reclaimed, nr_scanned;
2565 	bool reclaimable = false;
2566 
2567 	do {
2568 		struct mem_cgroup *root = sc->target_mem_cgroup;
2569 		struct mem_cgroup_reclaim_cookie reclaim = {
2570 			.pgdat = pgdat,
2571 			.priority = sc->priority,
2572 		};
2573 		unsigned long node_lru_pages = 0;
2574 		struct mem_cgroup *memcg;
2575 
2576 		nr_reclaimed = sc->nr_reclaimed;
2577 		nr_scanned = sc->nr_scanned;
2578 
2579 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2580 		do {
2581 			unsigned long lru_pages;
2582 			unsigned long reclaimed;
2583 			unsigned long scanned;
2584 
2585 			if (mem_cgroup_low(root, memcg)) {
2586 				if (!sc->memcg_low_reclaim) {
2587 					sc->memcg_low_skipped = 1;
2588 					continue;
2589 				}
2590 				mem_cgroup_event(memcg, MEMCG_LOW);
2591 			}
2592 
2593 			reclaimed = sc->nr_reclaimed;
2594 			scanned = sc->nr_scanned;
2595 
2596 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2597 			node_lru_pages += lru_pages;
2598 
2599 			if (memcg)
2600 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2601 					    memcg, sc->nr_scanned - scanned,
2602 					    lru_pages);
2603 
2604 			/* Record the group's reclaim efficiency */
2605 			vmpressure(sc->gfp_mask, memcg, false,
2606 				   sc->nr_scanned - scanned,
2607 				   sc->nr_reclaimed - reclaimed);
2608 
2609 			/*
2610 			 * Direct reclaim and kswapd have to scan all memory
2611 			 * cgroups to fulfill the overall scan target for the
2612 			 * node.
2613 			 *
2614 			 * Limit reclaim, on the other hand, only cares about
2615 			 * nr_to_reclaim pages to be reclaimed and it will
2616 			 * retry with decreasing priority if one round over the
2617 			 * whole hierarchy is not sufficient.
2618 			 */
2619 			if (!global_reclaim(sc) &&
2620 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2621 				mem_cgroup_iter_break(root, memcg);
2622 				break;
2623 			}
2624 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2625 
2626 		/*
2627 		 * Shrink the slab caches in the same proportion that
2628 		 * the eligible LRU pages were scanned.
2629 		 */
2630 		if (global_reclaim(sc))
2631 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2632 				    sc->nr_scanned - nr_scanned,
2633 				    node_lru_pages);
2634 
2635 		if (reclaim_state) {
2636 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2637 			reclaim_state->reclaimed_slab = 0;
2638 		}
2639 
2640 		/* Record the subtree's reclaim efficiency */
2641 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2642 			   sc->nr_scanned - nr_scanned,
2643 			   sc->nr_reclaimed - nr_reclaimed);
2644 
2645 		if (sc->nr_reclaimed - nr_reclaimed)
2646 			reclaimable = true;
2647 
2648 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2649 					 sc->nr_scanned - nr_scanned, sc));
2650 
2651 	/*
2652 	 * Kswapd gives up on balancing particular nodes after too
2653 	 * many failures to reclaim anything from them and goes to
2654 	 * sleep. On reclaim progress, reset the failure counter. A
2655 	 * successful direct reclaim run will revive a dormant kswapd.
2656 	 */
2657 	if (reclaimable)
2658 		pgdat->kswapd_failures = 0;
2659 
2660 	return reclaimable;
2661 }
2662 
2663 /*
2664  * Returns true if compaction should go ahead for a costly-order request, or
2665  * the allocation would already succeed without compaction. Return false if we
2666  * should reclaim first.
2667  */
2668 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2669 {
2670 	unsigned long watermark;
2671 	enum compact_result suitable;
2672 
2673 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2674 	if (suitable == COMPACT_SUCCESS)
2675 		/* Allocation should succeed already. Don't reclaim. */
2676 		return true;
2677 	if (suitable == COMPACT_SKIPPED)
2678 		/* Compaction cannot yet proceed. Do reclaim. */
2679 		return false;
2680 
2681 	/*
2682 	 * Compaction is already possible, but it takes time to run and there
2683 	 * are potentially other callers using the pages just freed. So proceed
2684 	 * with reclaim to make a buffer of free pages available to give
2685 	 * compaction a reasonable chance of completing and allocating the page.
2686 	 * Note that we won't actually reclaim the whole buffer in one attempt
2687 	 * as the target watermark in should_continue_reclaim() is lower. But if
2688 	 * we are already above the high+gap watermark, don't reclaim at all.
2689 	 */
2690 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2691 
2692 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2693 }
2694 
2695 /*
2696  * This is the direct reclaim path, for page-allocating processes.  We only
2697  * try to reclaim pages from zones which will satisfy the caller's allocation
2698  * request.
2699  *
2700  * If a zone is deemed to be full of pinned pages then just give it a light
2701  * scan then give up on it.
2702  */
2703 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2704 {
2705 	struct zoneref *z;
2706 	struct zone *zone;
2707 	unsigned long nr_soft_reclaimed;
2708 	unsigned long nr_soft_scanned;
2709 	gfp_t orig_mask;
2710 	pg_data_t *last_pgdat = NULL;
2711 
2712 	/*
2713 	 * If the number of buffer_heads in the machine exceeds the maximum
2714 	 * allowed level, force direct reclaim to scan the highmem zone as
2715 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2716 	 */
2717 	orig_mask = sc->gfp_mask;
2718 	if (buffer_heads_over_limit) {
2719 		sc->gfp_mask |= __GFP_HIGHMEM;
2720 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2721 	}
2722 
2723 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2724 					sc->reclaim_idx, sc->nodemask) {
2725 		/*
2726 		 * Take care memory controller reclaiming has small influence
2727 		 * to global LRU.
2728 		 */
2729 		if (global_reclaim(sc)) {
2730 			if (!cpuset_zone_allowed(zone,
2731 						 GFP_KERNEL | __GFP_HARDWALL))
2732 				continue;
2733 
2734 			/*
2735 			 * If we already have plenty of memory free for
2736 			 * compaction in this zone, don't free any more.
2737 			 * Even though compaction is invoked for any
2738 			 * non-zero order, only frequent costly order
2739 			 * reclamation is disruptive enough to become a
2740 			 * noticeable problem, like transparent huge
2741 			 * page allocations.
2742 			 */
2743 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2744 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2745 			    compaction_ready(zone, sc)) {
2746 				sc->compaction_ready = true;
2747 				continue;
2748 			}
2749 
2750 			/*
2751 			 * Shrink each node in the zonelist once. If the
2752 			 * zonelist is ordered by zone (not the default) then a
2753 			 * node may be shrunk multiple times but in that case
2754 			 * the user prefers lower zones being preserved.
2755 			 */
2756 			if (zone->zone_pgdat == last_pgdat)
2757 				continue;
2758 
2759 			/*
2760 			 * This steals pages from memory cgroups over softlimit
2761 			 * and returns the number of reclaimed pages and
2762 			 * scanned pages. This works for global memory pressure
2763 			 * and balancing, not for a memcg's limit.
2764 			 */
2765 			nr_soft_scanned = 0;
2766 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2767 						sc->order, sc->gfp_mask,
2768 						&nr_soft_scanned);
2769 			sc->nr_reclaimed += nr_soft_reclaimed;
2770 			sc->nr_scanned += nr_soft_scanned;
2771 			/* need some check for avoid more shrink_zone() */
2772 		}
2773 
2774 		/* See comment about same check for global reclaim above */
2775 		if (zone->zone_pgdat == last_pgdat)
2776 			continue;
2777 		last_pgdat = zone->zone_pgdat;
2778 		shrink_node(zone->zone_pgdat, sc);
2779 	}
2780 
2781 	/*
2782 	 * Restore to original mask to avoid the impact on the caller if we
2783 	 * promoted it to __GFP_HIGHMEM.
2784 	 */
2785 	sc->gfp_mask = orig_mask;
2786 }
2787 
2788 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2789 {
2790 	struct mem_cgroup *memcg;
2791 
2792 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2793 	do {
2794 		unsigned long refaults;
2795 		struct lruvec *lruvec;
2796 
2797 		if (memcg)
2798 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2799 		else
2800 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2801 
2802 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2803 		lruvec->refaults = refaults;
2804 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2805 }
2806 
2807 /*
2808  * This is the main entry point to direct page reclaim.
2809  *
2810  * If a full scan of the inactive list fails to free enough memory then we
2811  * are "out of memory" and something needs to be killed.
2812  *
2813  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2814  * high - the zone may be full of dirty or under-writeback pages, which this
2815  * caller can't do much about.  We kick the writeback threads and take explicit
2816  * naps in the hope that some of these pages can be written.  But if the
2817  * allocating task holds filesystem locks which prevent writeout this might not
2818  * work, and the allocation attempt will fail.
2819  *
2820  * returns:	0, if no pages reclaimed
2821  * 		else, the number of pages reclaimed
2822  */
2823 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2824 					  struct scan_control *sc)
2825 {
2826 	int initial_priority = sc->priority;
2827 	pg_data_t *last_pgdat;
2828 	struct zoneref *z;
2829 	struct zone *zone;
2830 retry:
2831 	delayacct_freepages_start();
2832 
2833 	if (global_reclaim(sc))
2834 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2835 
2836 	do {
2837 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2838 				sc->priority);
2839 		sc->nr_scanned = 0;
2840 		shrink_zones(zonelist, sc);
2841 
2842 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2843 			break;
2844 
2845 		if (sc->compaction_ready)
2846 			break;
2847 
2848 		/*
2849 		 * If we're getting trouble reclaiming, start doing
2850 		 * writepage even in laptop mode.
2851 		 */
2852 		if (sc->priority < DEF_PRIORITY - 2)
2853 			sc->may_writepage = 1;
2854 	} while (--sc->priority >= 0);
2855 
2856 	last_pgdat = NULL;
2857 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2858 					sc->nodemask) {
2859 		if (zone->zone_pgdat == last_pgdat)
2860 			continue;
2861 		last_pgdat = zone->zone_pgdat;
2862 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2863 	}
2864 
2865 	delayacct_freepages_end();
2866 
2867 	if (sc->nr_reclaimed)
2868 		return sc->nr_reclaimed;
2869 
2870 	/* Aborted reclaim to try compaction? don't OOM, then */
2871 	if (sc->compaction_ready)
2872 		return 1;
2873 
2874 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2875 	if (sc->memcg_low_skipped) {
2876 		sc->priority = initial_priority;
2877 		sc->memcg_low_reclaim = 1;
2878 		sc->memcg_low_skipped = 0;
2879 		goto retry;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static bool allow_direct_reclaim(pg_data_t *pgdat)
2886 {
2887 	struct zone *zone;
2888 	unsigned long pfmemalloc_reserve = 0;
2889 	unsigned long free_pages = 0;
2890 	int i;
2891 	bool wmark_ok;
2892 
2893 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2894 		return true;
2895 
2896 	for (i = 0; i <= ZONE_NORMAL; i++) {
2897 		zone = &pgdat->node_zones[i];
2898 		if (!managed_zone(zone))
2899 			continue;
2900 
2901 		if (!zone_reclaimable_pages(zone))
2902 			continue;
2903 
2904 		pfmemalloc_reserve += min_wmark_pages(zone);
2905 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2906 	}
2907 
2908 	/* If there are no reserves (unexpected config) then do not throttle */
2909 	if (!pfmemalloc_reserve)
2910 		return true;
2911 
2912 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2913 
2914 	/* kswapd must be awake if processes are being throttled */
2915 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2916 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2917 						(enum zone_type)ZONE_NORMAL);
2918 		wake_up_interruptible(&pgdat->kswapd_wait);
2919 	}
2920 
2921 	return wmark_ok;
2922 }
2923 
2924 /*
2925  * Throttle direct reclaimers if backing storage is backed by the network
2926  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2927  * depleted. kswapd will continue to make progress and wake the processes
2928  * when the low watermark is reached.
2929  *
2930  * Returns true if a fatal signal was delivered during throttling. If this
2931  * happens, the page allocator should not consider triggering the OOM killer.
2932  */
2933 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2934 					nodemask_t *nodemask)
2935 {
2936 	struct zoneref *z;
2937 	struct zone *zone;
2938 	pg_data_t *pgdat = NULL;
2939 
2940 	/*
2941 	 * Kernel threads should not be throttled as they may be indirectly
2942 	 * responsible for cleaning pages necessary for reclaim to make forward
2943 	 * progress. kjournald for example may enter direct reclaim while
2944 	 * committing a transaction where throttling it could forcing other
2945 	 * processes to block on log_wait_commit().
2946 	 */
2947 	if (current->flags & PF_KTHREAD)
2948 		goto out;
2949 
2950 	/*
2951 	 * If a fatal signal is pending, this process should not throttle.
2952 	 * It should return quickly so it can exit and free its memory
2953 	 */
2954 	if (fatal_signal_pending(current))
2955 		goto out;
2956 
2957 	/*
2958 	 * Check if the pfmemalloc reserves are ok by finding the first node
2959 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2960 	 * GFP_KERNEL will be required for allocating network buffers when
2961 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2962 	 *
2963 	 * Throttling is based on the first usable node and throttled processes
2964 	 * wait on a queue until kswapd makes progress and wakes them. There
2965 	 * is an affinity then between processes waking up and where reclaim
2966 	 * progress has been made assuming the process wakes on the same node.
2967 	 * More importantly, processes running on remote nodes will not compete
2968 	 * for remote pfmemalloc reserves and processes on different nodes
2969 	 * should make reasonable progress.
2970 	 */
2971 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2972 					gfp_zone(gfp_mask), nodemask) {
2973 		if (zone_idx(zone) > ZONE_NORMAL)
2974 			continue;
2975 
2976 		/* Throttle based on the first usable node */
2977 		pgdat = zone->zone_pgdat;
2978 		if (allow_direct_reclaim(pgdat))
2979 			goto out;
2980 		break;
2981 	}
2982 
2983 	/* If no zone was usable by the allocation flags then do not throttle */
2984 	if (!pgdat)
2985 		goto out;
2986 
2987 	/* Account for the throttling */
2988 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2989 
2990 	/*
2991 	 * If the caller cannot enter the filesystem, it's possible that it
2992 	 * is due to the caller holding an FS lock or performing a journal
2993 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2994 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2995 	 * blocked waiting on the same lock. Instead, throttle for up to a
2996 	 * second before continuing.
2997 	 */
2998 	if (!(gfp_mask & __GFP_FS)) {
2999 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3000 			allow_direct_reclaim(pgdat), HZ);
3001 
3002 		goto check_pending;
3003 	}
3004 
3005 	/* Throttle until kswapd wakes the process */
3006 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3007 		allow_direct_reclaim(pgdat));
3008 
3009 check_pending:
3010 	if (fatal_signal_pending(current))
3011 		return true;
3012 
3013 out:
3014 	return false;
3015 }
3016 
3017 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3018 				gfp_t gfp_mask, nodemask_t *nodemask)
3019 {
3020 	unsigned long nr_reclaimed;
3021 	struct scan_control sc = {
3022 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3023 		.gfp_mask = current_gfp_context(gfp_mask),
3024 		.reclaim_idx = gfp_zone(gfp_mask),
3025 		.order = order,
3026 		.nodemask = nodemask,
3027 		.priority = DEF_PRIORITY,
3028 		.may_writepage = !laptop_mode,
3029 		.may_unmap = 1,
3030 		.may_swap = 1,
3031 	};
3032 
3033 	/*
3034 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3035 	 * 1 is returned so that the page allocator does not OOM kill at this
3036 	 * point.
3037 	 */
3038 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3039 		return 1;
3040 
3041 	trace_mm_vmscan_direct_reclaim_begin(order,
3042 				sc.may_writepage,
3043 				sc.gfp_mask,
3044 				sc.reclaim_idx);
3045 
3046 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3047 
3048 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3049 
3050 	return nr_reclaimed;
3051 }
3052 
3053 #ifdef CONFIG_MEMCG
3054 
3055 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3056 						gfp_t gfp_mask, bool noswap,
3057 						pg_data_t *pgdat,
3058 						unsigned long *nr_scanned)
3059 {
3060 	struct scan_control sc = {
3061 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3062 		.target_mem_cgroup = memcg,
3063 		.may_writepage = !laptop_mode,
3064 		.may_unmap = 1,
3065 		.reclaim_idx = MAX_NR_ZONES - 1,
3066 		.may_swap = !noswap,
3067 	};
3068 	unsigned long lru_pages;
3069 
3070 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3071 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3072 
3073 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3074 						      sc.may_writepage,
3075 						      sc.gfp_mask,
3076 						      sc.reclaim_idx);
3077 
3078 	/*
3079 	 * NOTE: Although we can get the priority field, using it
3080 	 * here is not a good idea, since it limits the pages we can scan.
3081 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3082 	 * will pick up pages from other mem cgroup's as well. We hack
3083 	 * the priority and make it zero.
3084 	 */
3085 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3086 
3087 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3088 
3089 	*nr_scanned = sc.nr_scanned;
3090 	return sc.nr_reclaimed;
3091 }
3092 
3093 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3094 					   unsigned long nr_pages,
3095 					   gfp_t gfp_mask,
3096 					   bool may_swap)
3097 {
3098 	struct zonelist *zonelist;
3099 	unsigned long nr_reclaimed;
3100 	int nid;
3101 	unsigned int noreclaim_flag;
3102 	struct scan_control sc = {
3103 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3104 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3105 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3106 		.reclaim_idx = MAX_NR_ZONES - 1,
3107 		.target_mem_cgroup = memcg,
3108 		.priority = DEF_PRIORITY,
3109 		.may_writepage = !laptop_mode,
3110 		.may_unmap = 1,
3111 		.may_swap = may_swap,
3112 	};
3113 
3114 	/*
3115 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3116 	 * take care of from where we get pages. So the node where we start the
3117 	 * scan does not need to be the current node.
3118 	 */
3119 	nid = mem_cgroup_select_victim_node(memcg);
3120 
3121 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3122 
3123 	trace_mm_vmscan_memcg_reclaim_begin(0,
3124 					    sc.may_writepage,
3125 					    sc.gfp_mask,
3126 					    sc.reclaim_idx);
3127 
3128 	noreclaim_flag = memalloc_noreclaim_save();
3129 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3130 	memalloc_noreclaim_restore(noreclaim_flag);
3131 
3132 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3133 
3134 	return nr_reclaimed;
3135 }
3136 #endif
3137 
3138 static void age_active_anon(struct pglist_data *pgdat,
3139 				struct scan_control *sc)
3140 {
3141 	struct mem_cgroup *memcg;
3142 
3143 	if (!total_swap_pages)
3144 		return;
3145 
3146 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3147 	do {
3148 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3149 
3150 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3151 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3152 					   sc, LRU_ACTIVE_ANON);
3153 
3154 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3155 	} while (memcg);
3156 }
3157 
3158 /*
3159  * Returns true if there is an eligible zone balanced for the request order
3160  * and classzone_idx
3161  */
3162 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3163 {
3164 	int i;
3165 	unsigned long mark = -1;
3166 	struct zone *zone;
3167 
3168 	for (i = 0; i <= classzone_idx; i++) {
3169 		zone = pgdat->node_zones + i;
3170 
3171 		if (!managed_zone(zone))
3172 			continue;
3173 
3174 		mark = high_wmark_pages(zone);
3175 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3176 			return true;
3177 	}
3178 
3179 	/*
3180 	 * If a node has no populated zone within classzone_idx, it does not
3181 	 * need balancing by definition. This can happen if a zone-restricted
3182 	 * allocation tries to wake a remote kswapd.
3183 	 */
3184 	if (mark == -1)
3185 		return true;
3186 
3187 	return false;
3188 }
3189 
3190 /* Clear pgdat state for congested, dirty or under writeback. */
3191 static void clear_pgdat_congested(pg_data_t *pgdat)
3192 {
3193 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3194 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3195 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3196 }
3197 
3198 /*
3199  * Prepare kswapd for sleeping. This verifies that there are no processes
3200  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3201  *
3202  * Returns true if kswapd is ready to sleep
3203  */
3204 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3205 {
3206 	/*
3207 	 * The throttled processes are normally woken up in balance_pgdat() as
3208 	 * soon as allow_direct_reclaim() is true. But there is a potential
3209 	 * race between when kswapd checks the watermarks and a process gets
3210 	 * throttled. There is also a potential race if processes get
3211 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3212 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3213 	 * the wake up checks. If kswapd is going to sleep, no process should
3214 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3215 	 * the wake up is premature, processes will wake kswapd and get
3216 	 * throttled again. The difference from wake ups in balance_pgdat() is
3217 	 * that here we are under prepare_to_wait().
3218 	 */
3219 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3220 		wake_up_all(&pgdat->pfmemalloc_wait);
3221 
3222 	/* Hopeless node, leave it to direct reclaim */
3223 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3224 		return true;
3225 
3226 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3227 		clear_pgdat_congested(pgdat);
3228 		return true;
3229 	}
3230 
3231 	return false;
3232 }
3233 
3234 /*
3235  * kswapd shrinks a node of pages that are at or below the highest usable
3236  * zone that is currently unbalanced.
3237  *
3238  * Returns true if kswapd scanned at least the requested number of pages to
3239  * reclaim or if the lack of progress was due to pages under writeback.
3240  * This is used to determine if the scanning priority needs to be raised.
3241  */
3242 static bool kswapd_shrink_node(pg_data_t *pgdat,
3243 			       struct scan_control *sc)
3244 {
3245 	struct zone *zone;
3246 	int z;
3247 
3248 	/* Reclaim a number of pages proportional to the number of zones */
3249 	sc->nr_to_reclaim = 0;
3250 	for (z = 0; z <= sc->reclaim_idx; z++) {
3251 		zone = pgdat->node_zones + z;
3252 		if (!managed_zone(zone))
3253 			continue;
3254 
3255 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3256 	}
3257 
3258 	/*
3259 	 * Historically care was taken to put equal pressure on all zones but
3260 	 * now pressure is applied based on node LRU order.
3261 	 */
3262 	shrink_node(pgdat, sc);
3263 
3264 	/*
3265 	 * Fragmentation may mean that the system cannot be rebalanced for
3266 	 * high-order allocations. If twice the allocation size has been
3267 	 * reclaimed then recheck watermarks only at order-0 to prevent
3268 	 * excessive reclaim. Assume that a process requested a high-order
3269 	 * can direct reclaim/compact.
3270 	 */
3271 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3272 		sc->order = 0;
3273 
3274 	return sc->nr_scanned >= sc->nr_to_reclaim;
3275 }
3276 
3277 /*
3278  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3279  * that are eligible for use by the caller until at least one zone is
3280  * balanced.
3281  *
3282  * Returns the order kswapd finished reclaiming at.
3283  *
3284  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3285  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3286  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3287  * or lower is eligible for reclaim until at least one usable zone is
3288  * balanced.
3289  */
3290 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3291 {
3292 	int i;
3293 	unsigned long nr_soft_reclaimed;
3294 	unsigned long nr_soft_scanned;
3295 	struct zone *zone;
3296 	struct scan_control sc = {
3297 		.gfp_mask = GFP_KERNEL,
3298 		.order = order,
3299 		.priority = DEF_PRIORITY,
3300 		.may_writepage = !laptop_mode,
3301 		.may_unmap = 1,
3302 		.may_swap = 1,
3303 	};
3304 	count_vm_event(PAGEOUTRUN);
3305 
3306 	do {
3307 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3308 		bool raise_priority = true;
3309 
3310 		sc.reclaim_idx = classzone_idx;
3311 
3312 		/*
3313 		 * If the number of buffer_heads exceeds the maximum allowed
3314 		 * then consider reclaiming from all zones. This has a dual
3315 		 * purpose -- on 64-bit systems it is expected that
3316 		 * buffer_heads are stripped during active rotation. On 32-bit
3317 		 * systems, highmem pages can pin lowmem memory and shrinking
3318 		 * buffers can relieve lowmem pressure. Reclaim may still not
3319 		 * go ahead if all eligible zones for the original allocation
3320 		 * request are balanced to avoid excessive reclaim from kswapd.
3321 		 */
3322 		if (buffer_heads_over_limit) {
3323 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3324 				zone = pgdat->node_zones + i;
3325 				if (!managed_zone(zone))
3326 					continue;
3327 
3328 				sc.reclaim_idx = i;
3329 				break;
3330 			}
3331 		}
3332 
3333 		/*
3334 		 * Only reclaim if there are no eligible zones. Note that
3335 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3336 		 * have adjusted it.
3337 		 */
3338 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3339 			goto out;
3340 
3341 		/*
3342 		 * Do some background aging of the anon list, to give
3343 		 * pages a chance to be referenced before reclaiming. All
3344 		 * pages are rotated regardless of classzone as this is
3345 		 * about consistent aging.
3346 		 */
3347 		age_active_anon(pgdat, &sc);
3348 
3349 		/*
3350 		 * If we're getting trouble reclaiming, start doing writepage
3351 		 * even in laptop mode.
3352 		 */
3353 		if (sc.priority < DEF_PRIORITY - 2)
3354 			sc.may_writepage = 1;
3355 
3356 		/* Call soft limit reclaim before calling shrink_node. */
3357 		sc.nr_scanned = 0;
3358 		nr_soft_scanned = 0;
3359 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3360 						sc.gfp_mask, &nr_soft_scanned);
3361 		sc.nr_reclaimed += nr_soft_reclaimed;
3362 
3363 		/*
3364 		 * There should be no need to raise the scanning priority if
3365 		 * enough pages are already being scanned that that high
3366 		 * watermark would be met at 100% efficiency.
3367 		 */
3368 		if (kswapd_shrink_node(pgdat, &sc))
3369 			raise_priority = false;
3370 
3371 		/*
3372 		 * If the low watermark is met there is no need for processes
3373 		 * to be throttled on pfmemalloc_wait as they should not be
3374 		 * able to safely make forward progress. Wake them
3375 		 */
3376 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3377 				allow_direct_reclaim(pgdat))
3378 			wake_up_all(&pgdat->pfmemalloc_wait);
3379 
3380 		/* Check if kswapd should be suspending */
3381 		if (try_to_freeze() || kthread_should_stop())
3382 			break;
3383 
3384 		/*
3385 		 * Raise priority if scanning rate is too low or there was no
3386 		 * progress in reclaiming pages
3387 		 */
3388 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3389 		if (raise_priority || !nr_reclaimed)
3390 			sc.priority--;
3391 	} while (sc.priority >= 1);
3392 
3393 	if (!sc.nr_reclaimed)
3394 		pgdat->kswapd_failures++;
3395 
3396 out:
3397 	snapshot_refaults(NULL, pgdat);
3398 	/*
3399 	 * Return the order kswapd stopped reclaiming at as
3400 	 * prepare_kswapd_sleep() takes it into account. If another caller
3401 	 * entered the allocator slow path while kswapd was awake, order will
3402 	 * remain at the higher level.
3403 	 */
3404 	return sc.order;
3405 }
3406 
3407 /*
3408  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3409  * allocation request woke kswapd for. When kswapd has not woken recently,
3410  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3411  * given classzone and returns it or the highest classzone index kswapd
3412  * was recently woke for.
3413  */
3414 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3415 					   enum zone_type classzone_idx)
3416 {
3417 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3418 		return classzone_idx;
3419 
3420 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3421 }
3422 
3423 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3424 				unsigned int classzone_idx)
3425 {
3426 	long remaining = 0;
3427 	DEFINE_WAIT(wait);
3428 
3429 	if (freezing(current) || kthread_should_stop())
3430 		return;
3431 
3432 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3433 
3434 	/*
3435 	 * Try to sleep for a short interval. Note that kcompactd will only be
3436 	 * woken if it is possible to sleep for a short interval. This is
3437 	 * deliberate on the assumption that if reclaim cannot keep an
3438 	 * eligible zone balanced that it's also unlikely that compaction will
3439 	 * succeed.
3440 	 */
3441 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3442 		/*
3443 		 * Compaction records what page blocks it recently failed to
3444 		 * isolate pages from and skips them in the future scanning.
3445 		 * When kswapd is going to sleep, it is reasonable to assume
3446 		 * that pages and compaction may succeed so reset the cache.
3447 		 */
3448 		reset_isolation_suitable(pgdat);
3449 
3450 		/*
3451 		 * We have freed the memory, now we should compact it to make
3452 		 * allocation of the requested order possible.
3453 		 */
3454 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3455 
3456 		remaining = schedule_timeout(HZ/10);
3457 
3458 		/*
3459 		 * If woken prematurely then reset kswapd_classzone_idx and
3460 		 * order. The values will either be from a wakeup request or
3461 		 * the previous request that slept prematurely.
3462 		 */
3463 		if (remaining) {
3464 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3465 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3466 		}
3467 
3468 		finish_wait(&pgdat->kswapd_wait, &wait);
3469 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3470 	}
3471 
3472 	/*
3473 	 * After a short sleep, check if it was a premature sleep. If not, then
3474 	 * go fully to sleep until explicitly woken up.
3475 	 */
3476 	if (!remaining &&
3477 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3478 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3479 
3480 		/*
3481 		 * vmstat counters are not perfectly accurate and the estimated
3482 		 * value for counters such as NR_FREE_PAGES can deviate from the
3483 		 * true value by nr_online_cpus * threshold. To avoid the zone
3484 		 * watermarks being breached while under pressure, we reduce the
3485 		 * per-cpu vmstat threshold while kswapd is awake and restore
3486 		 * them before going back to sleep.
3487 		 */
3488 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3489 
3490 		if (!kthread_should_stop())
3491 			schedule();
3492 
3493 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3494 	} else {
3495 		if (remaining)
3496 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3497 		else
3498 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3499 	}
3500 	finish_wait(&pgdat->kswapd_wait, &wait);
3501 }
3502 
3503 /*
3504  * The background pageout daemon, started as a kernel thread
3505  * from the init process.
3506  *
3507  * This basically trickles out pages so that we have _some_
3508  * free memory available even if there is no other activity
3509  * that frees anything up. This is needed for things like routing
3510  * etc, where we otherwise might have all activity going on in
3511  * asynchronous contexts that cannot page things out.
3512  *
3513  * If there are applications that are active memory-allocators
3514  * (most normal use), this basically shouldn't matter.
3515  */
3516 static int kswapd(void *p)
3517 {
3518 	unsigned int alloc_order, reclaim_order;
3519 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3520 	pg_data_t *pgdat = (pg_data_t*)p;
3521 	struct task_struct *tsk = current;
3522 
3523 	struct reclaim_state reclaim_state = {
3524 		.reclaimed_slab = 0,
3525 	};
3526 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3527 
3528 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3529 
3530 	if (!cpumask_empty(cpumask))
3531 		set_cpus_allowed_ptr(tsk, cpumask);
3532 	current->reclaim_state = &reclaim_state;
3533 
3534 	/*
3535 	 * Tell the memory management that we're a "memory allocator",
3536 	 * and that if we need more memory we should get access to it
3537 	 * regardless (see "__alloc_pages()"). "kswapd" should
3538 	 * never get caught in the normal page freeing logic.
3539 	 *
3540 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3541 	 * you need a small amount of memory in order to be able to
3542 	 * page out something else, and this flag essentially protects
3543 	 * us from recursively trying to free more memory as we're
3544 	 * trying to free the first piece of memory in the first place).
3545 	 */
3546 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3547 	set_freezable();
3548 
3549 	pgdat->kswapd_order = 0;
3550 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3551 	for ( ; ; ) {
3552 		bool ret;
3553 
3554 		alloc_order = reclaim_order = pgdat->kswapd_order;
3555 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3556 
3557 kswapd_try_sleep:
3558 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3559 					classzone_idx);
3560 
3561 		/* Read the new order and classzone_idx */
3562 		alloc_order = reclaim_order = pgdat->kswapd_order;
3563 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3564 		pgdat->kswapd_order = 0;
3565 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3566 
3567 		ret = try_to_freeze();
3568 		if (kthread_should_stop())
3569 			break;
3570 
3571 		/*
3572 		 * We can speed up thawing tasks if we don't call balance_pgdat
3573 		 * after returning from the refrigerator
3574 		 */
3575 		if (ret)
3576 			continue;
3577 
3578 		/*
3579 		 * Reclaim begins at the requested order but if a high-order
3580 		 * reclaim fails then kswapd falls back to reclaiming for
3581 		 * order-0. If that happens, kswapd will consider sleeping
3582 		 * for the order it finished reclaiming at (reclaim_order)
3583 		 * but kcompactd is woken to compact for the original
3584 		 * request (alloc_order).
3585 		 */
3586 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3587 						alloc_order);
3588 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3589 		if (reclaim_order < alloc_order)
3590 			goto kswapd_try_sleep;
3591 	}
3592 
3593 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3594 	current->reclaim_state = NULL;
3595 	lockdep_clear_current_reclaim_state();
3596 
3597 	return 0;
3598 }
3599 
3600 /*
3601  * A zone is low on free memory, so wake its kswapd task to service it.
3602  */
3603 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3604 {
3605 	pg_data_t *pgdat;
3606 
3607 	if (!managed_zone(zone))
3608 		return;
3609 
3610 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3611 		return;
3612 	pgdat = zone->zone_pgdat;
3613 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3614 							   classzone_idx);
3615 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3616 	if (!waitqueue_active(&pgdat->kswapd_wait))
3617 		return;
3618 
3619 	/* Hopeless node, leave it to direct reclaim */
3620 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3621 		return;
3622 
3623 	if (pgdat_balanced(pgdat, order, classzone_idx))
3624 		return;
3625 
3626 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3627 	wake_up_interruptible(&pgdat->kswapd_wait);
3628 }
3629 
3630 #ifdef CONFIG_HIBERNATION
3631 /*
3632  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3633  * freed pages.
3634  *
3635  * Rather than trying to age LRUs the aim is to preserve the overall
3636  * LRU order by reclaiming preferentially
3637  * inactive > active > active referenced > active mapped
3638  */
3639 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3640 {
3641 	struct reclaim_state reclaim_state;
3642 	struct scan_control sc = {
3643 		.nr_to_reclaim = nr_to_reclaim,
3644 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3645 		.reclaim_idx = MAX_NR_ZONES - 1,
3646 		.priority = DEF_PRIORITY,
3647 		.may_writepage = 1,
3648 		.may_unmap = 1,
3649 		.may_swap = 1,
3650 		.hibernation_mode = 1,
3651 	};
3652 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3653 	struct task_struct *p = current;
3654 	unsigned long nr_reclaimed;
3655 	unsigned int noreclaim_flag;
3656 
3657 	noreclaim_flag = memalloc_noreclaim_save();
3658 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3659 	reclaim_state.reclaimed_slab = 0;
3660 	p->reclaim_state = &reclaim_state;
3661 
3662 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3663 
3664 	p->reclaim_state = NULL;
3665 	lockdep_clear_current_reclaim_state();
3666 	memalloc_noreclaim_restore(noreclaim_flag);
3667 
3668 	return nr_reclaimed;
3669 }
3670 #endif /* CONFIG_HIBERNATION */
3671 
3672 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3673    not required for correctness.  So if the last cpu in a node goes
3674    away, we get changed to run anywhere: as the first one comes back,
3675    restore their cpu bindings. */
3676 static int kswapd_cpu_online(unsigned int cpu)
3677 {
3678 	int nid;
3679 
3680 	for_each_node_state(nid, N_MEMORY) {
3681 		pg_data_t *pgdat = NODE_DATA(nid);
3682 		const struct cpumask *mask;
3683 
3684 		mask = cpumask_of_node(pgdat->node_id);
3685 
3686 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3687 			/* One of our CPUs online: restore mask */
3688 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3689 	}
3690 	return 0;
3691 }
3692 
3693 /*
3694  * This kswapd start function will be called by init and node-hot-add.
3695  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3696  */
3697 int kswapd_run(int nid)
3698 {
3699 	pg_data_t *pgdat = NODE_DATA(nid);
3700 	int ret = 0;
3701 
3702 	if (pgdat->kswapd)
3703 		return 0;
3704 
3705 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3706 	if (IS_ERR(pgdat->kswapd)) {
3707 		/* failure at boot is fatal */
3708 		BUG_ON(system_state < SYSTEM_RUNNING);
3709 		pr_err("Failed to start kswapd on node %d\n", nid);
3710 		ret = PTR_ERR(pgdat->kswapd);
3711 		pgdat->kswapd = NULL;
3712 	}
3713 	return ret;
3714 }
3715 
3716 /*
3717  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3718  * hold mem_hotplug_begin/end().
3719  */
3720 void kswapd_stop(int nid)
3721 {
3722 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3723 
3724 	if (kswapd) {
3725 		kthread_stop(kswapd);
3726 		NODE_DATA(nid)->kswapd = NULL;
3727 	}
3728 }
3729 
3730 static int __init kswapd_init(void)
3731 {
3732 	int nid, ret;
3733 
3734 	swap_setup();
3735 	for_each_node_state(nid, N_MEMORY)
3736  		kswapd_run(nid);
3737 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3738 					"mm/vmscan:online", kswapd_cpu_online,
3739 					NULL);
3740 	WARN_ON(ret < 0);
3741 	return 0;
3742 }
3743 
3744 module_init(kswapd_init)
3745 
3746 #ifdef CONFIG_NUMA
3747 /*
3748  * Node reclaim mode
3749  *
3750  * If non-zero call node_reclaim when the number of free pages falls below
3751  * the watermarks.
3752  */
3753 int node_reclaim_mode __read_mostly;
3754 
3755 #define RECLAIM_OFF 0
3756 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3757 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3758 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3759 
3760 /*
3761  * Priority for NODE_RECLAIM. This determines the fraction of pages
3762  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3763  * a zone.
3764  */
3765 #define NODE_RECLAIM_PRIORITY 4
3766 
3767 /*
3768  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3769  * occur.
3770  */
3771 int sysctl_min_unmapped_ratio = 1;
3772 
3773 /*
3774  * If the number of slab pages in a zone grows beyond this percentage then
3775  * slab reclaim needs to occur.
3776  */
3777 int sysctl_min_slab_ratio = 5;
3778 
3779 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3780 {
3781 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3782 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3783 		node_page_state(pgdat, NR_ACTIVE_FILE);
3784 
3785 	/*
3786 	 * It's possible for there to be more file mapped pages than
3787 	 * accounted for by the pages on the file LRU lists because
3788 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3789 	 */
3790 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3791 }
3792 
3793 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3794 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3795 {
3796 	unsigned long nr_pagecache_reclaimable;
3797 	unsigned long delta = 0;
3798 
3799 	/*
3800 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3801 	 * potentially reclaimable. Otherwise, we have to worry about
3802 	 * pages like swapcache and node_unmapped_file_pages() provides
3803 	 * a better estimate
3804 	 */
3805 	if (node_reclaim_mode & RECLAIM_UNMAP)
3806 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3807 	else
3808 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3809 
3810 	/* If we can't clean pages, remove dirty pages from consideration */
3811 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3812 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3813 
3814 	/* Watch for any possible underflows due to delta */
3815 	if (unlikely(delta > nr_pagecache_reclaimable))
3816 		delta = nr_pagecache_reclaimable;
3817 
3818 	return nr_pagecache_reclaimable - delta;
3819 }
3820 
3821 /*
3822  * Try to free up some pages from this node through reclaim.
3823  */
3824 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3825 {
3826 	/* Minimum pages needed in order to stay on node */
3827 	const unsigned long nr_pages = 1 << order;
3828 	struct task_struct *p = current;
3829 	struct reclaim_state reclaim_state;
3830 	unsigned int noreclaim_flag;
3831 	struct scan_control sc = {
3832 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3833 		.gfp_mask = current_gfp_context(gfp_mask),
3834 		.order = order,
3835 		.priority = NODE_RECLAIM_PRIORITY,
3836 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3837 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3838 		.may_swap = 1,
3839 		.reclaim_idx = gfp_zone(gfp_mask),
3840 	};
3841 
3842 	cond_resched();
3843 	/*
3844 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3845 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3846 	 * and RECLAIM_UNMAP.
3847 	 */
3848 	noreclaim_flag = memalloc_noreclaim_save();
3849 	p->flags |= PF_SWAPWRITE;
3850 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3851 	reclaim_state.reclaimed_slab = 0;
3852 	p->reclaim_state = &reclaim_state;
3853 
3854 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3855 		/*
3856 		 * Free memory by calling shrink zone with increasing
3857 		 * priorities until we have enough memory freed.
3858 		 */
3859 		do {
3860 			shrink_node(pgdat, &sc);
3861 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3862 	}
3863 
3864 	p->reclaim_state = NULL;
3865 	current->flags &= ~PF_SWAPWRITE;
3866 	memalloc_noreclaim_restore(noreclaim_flag);
3867 	lockdep_clear_current_reclaim_state();
3868 	return sc.nr_reclaimed >= nr_pages;
3869 }
3870 
3871 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3872 {
3873 	int ret;
3874 
3875 	/*
3876 	 * Node reclaim reclaims unmapped file backed pages and
3877 	 * slab pages if we are over the defined limits.
3878 	 *
3879 	 * A small portion of unmapped file backed pages is needed for
3880 	 * file I/O otherwise pages read by file I/O will be immediately
3881 	 * thrown out if the node is overallocated. So we do not reclaim
3882 	 * if less than a specified percentage of the node is used by
3883 	 * unmapped file backed pages.
3884 	 */
3885 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3886 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3887 		return NODE_RECLAIM_FULL;
3888 
3889 	/*
3890 	 * Do not scan if the allocation should not be delayed.
3891 	 */
3892 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3893 		return NODE_RECLAIM_NOSCAN;
3894 
3895 	/*
3896 	 * Only run node reclaim on the local node or on nodes that do not
3897 	 * have associated processors. This will favor the local processor
3898 	 * over remote processors and spread off node memory allocations
3899 	 * as wide as possible.
3900 	 */
3901 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3902 		return NODE_RECLAIM_NOSCAN;
3903 
3904 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3905 		return NODE_RECLAIM_NOSCAN;
3906 
3907 	ret = __node_reclaim(pgdat, gfp_mask, order);
3908 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3909 
3910 	if (!ret)
3911 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3912 
3913 	return ret;
3914 }
3915 #endif
3916 
3917 /*
3918  * page_evictable - test whether a page is evictable
3919  * @page: the page to test
3920  *
3921  * Test whether page is evictable--i.e., should be placed on active/inactive
3922  * lists vs unevictable list.
3923  *
3924  * Reasons page might not be evictable:
3925  * (1) page's mapping marked unevictable
3926  * (2) page is part of an mlocked VMA
3927  *
3928  */
3929 int page_evictable(struct page *page)
3930 {
3931 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3932 }
3933 
3934 #ifdef CONFIG_SHMEM
3935 /**
3936  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3937  * @pages:	array of pages to check
3938  * @nr_pages:	number of pages to check
3939  *
3940  * Checks pages for evictability and moves them to the appropriate lru list.
3941  *
3942  * This function is only used for SysV IPC SHM_UNLOCK.
3943  */
3944 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3945 {
3946 	struct lruvec *lruvec;
3947 	struct pglist_data *pgdat = NULL;
3948 	int pgscanned = 0;
3949 	int pgrescued = 0;
3950 	int i;
3951 
3952 	for (i = 0; i < nr_pages; i++) {
3953 		struct page *page = pages[i];
3954 		struct pglist_data *pagepgdat = page_pgdat(page);
3955 
3956 		pgscanned++;
3957 		if (pagepgdat != pgdat) {
3958 			if (pgdat)
3959 				spin_unlock_irq(&pgdat->lru_lock);
3960 			pgdat = pagepgdat;
3961 			spin_lock_irq(&pgdat->lru_lock);
3962 		}
3963 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3964 
3965 		if (!PageLRU(page) || !PageUnevictable(page))
3966 			continue;
3967 
3968 		if (page_evictable(page)) {
3969 			enum lru_list lru = page_lru_base_type(page);
3970 
3971 			VM_BUG_ON_PAGE(PageActive(page), page);
3972 			ClearPageUnevictable(page);
3973 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3974 			add_page_to_lru_list(page, lruvec, lru);
3975 			pgrescued++;
3976 		}
3977 	}
3978 
3979 	if (pgdat) {
3980 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3981 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3982 		spin_unlock_irq(&pgdat->lru_lock);
3983 	}
3984 }
3985 #endif /* CONFIG_SHMEM */
3986