xref: /openbmc/linux/mm/vmscan.c (revision e6d2c436ff693869e83a65e61643b922e193e162)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 	/* Can active folios be deactivated as part of reclaim? */
97 #define DEACTIVATE_ANON 1
98 #define DEACTIVATE_FILE 2
99 	unsigned int may_deactivate:2;
100 	unsigned int force_deactivate:1;
101 	unsigned int skipped_deactivate:1;
102 
103 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
104 	unsigned int may_writepage:1;
105 
106 	/* Can mapped folios be reclaimed? */
107 	unsigned int may_unmap:1;
108 
109 	/* Can folios be swapped as part of reclaim? */
110 	unsigned int may_swap:1;
111 
112 	/* Proactive reclaim invoked by userspace through memory.reclaim */
113 	unsigned int proactive:1;
114 
115 	/*
116 	 * Cgroup memory below memory.low is protected as long as we
117 	 * don't threaten to OOM. If any cgroup is reclaimed at
118 	 * reduced force or passed over entirely due to its memory.low
119 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
120 	 * result, then go back for one more cycle that reclaims the protected
121 	 * memory (memcg_low_reclaim) to avert OOM.
122 	 */
123 	unsigned int memcg_low_reclaim:1;
124 	unsigned int memcg_low_skipped:1;
125 
126 	unsigned int hibernation_mode:1;
127 
128 	/* One of the zones is ready for compaction */
129 	unsigned int compaction_ready:1;
130 
131 	/* There is easily reclaimable cold cache in the current node */
132 	unsigned int cache_trim_mode:1;
133 
134 	/* The file folios on the current node are dangerously low */
135 	unsigned int file_is_tiny:1;
136 
137 	/* Always discard instead of demoting to lower tier memory */
138 	unsigned int no_demotion:1;
139 
140 	/* Allocation order */
141 	s8 order;
142 
143 	/* Scan (total_size >> priority) pages at once */
144 	s8 priority;
145 
146 	/* The highest zone to isolate folios for reclaim from */
147 	s8 reclaim_idx;
148 
149 	/* This context's GFP mask */
150 	gfp_t gfp_mask;
151 
152 	/* Incremented by the number of inactive pages that were scanned */
153 	unsigned long nr_scanned;
154 
155 	/* Number of pages freed so far during a call to shrink_zones() */
156 	unsigned long nr_reclaimed;
157 
158 	struct {
159 		unsigned int dirty;
160 		unsigned int unqueued_dirty;
161 		unsigned int congested;
162 		unsigned int writeback;
163 		unsigned int immediate;
164 		unsigned int file_taken;
165 		unsigned int taken;
166 	} nr;
167 
168 	/* for recording the reclaimed slab by now */
169 	struct reclaim_state reclaim_state;
170 };
171 
172 #ifdef ARCH_HAS_PREFETCHW
173 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
174 	do {								\
175 		if ((_folio)->lru.prev != _base) {			\
176 			struct folio *prev;				\
177 									\
178 			prev = lru_to_folio(&(_folio->lru));		\
179 			prefetchw(&prev->_field);			\
180 		}							\
181 	} while (0)
182 #else
183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
184 #endif
185 
186 /*
187  * From 0 .. 200.  Higher means more swappy.
188  */
189 int vm_swappiness = 60;
190 
191 static void set_task_reclaim_state(struct task_struct *task,
192 				   struct reclaim_state *rs)
193 {
194 	/* Check for an overwrite */
195 	WARN_ON_ONCE(rs && task->reclaim_state);
196 
197 	/* Check for the nulling of an already-nulled member */
198 	WARN_ON_ONCE(!rs && !task->reclaim_state);
199 
200 	task->reclaim_state = rs;
201 }
202 
203 LIST_HEAD(shrinker_list);
204 DECLARE_RWSEM(shrinker_rwsem);
205 
206 #ifdef CONFIG_MEMCG
207 static int shrinker_nr_max;
208 
209 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
210 static inline int shrinker_map_size(int nr_items)
211 {
212 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
213 }
214 
215 static inline int shrinker_defer_size(int nr_items)
216 {
217 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
218 }
219 
220 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
221 						     int nid)
222 {
223 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
224 					 lockdep_is_held(&shrinker_rwsem));
225 }
226 
227 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
228 				    int map_size, int defer_size,
229 				    int old_map_size, int old_defer_size)
230 {
231 	struct shrinker_info *new, *old;
232 	struct mem_cgroup_per_node *pn;
233 	int nid;
234 	int size = map_size + defer_size;
235 
236 	for_each_node(nid) {
237 		pn = memcg->nodeinfo[nid];
238 		old = shrinker_info_protected(memcg, nid);
239 		/* Not yet online memcg */
240 		if (!old)
241 			return 0;
242 
243 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
244 		if (!new)
245 			return -ENOMEM;
246 
247 		new->nr_deferred = (atomic_long_t *)(new + 1);
248 		new->map = (void *)new->nr_deferred + defer_size;
249 
250 		/* map: set all old bits, clear all new bits */
251 		memset(new->map, (int)0xff, old_map_size);
252 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
253 		/* nr_deferred: copy old values, clear all new values */
254 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
255 		memset((void *)new->nr_deferred + old_defer_size, 0,
256 		       defer_size - old_defer_size);
257 
258 		rcu_assign_pointer(pn->shrinker_info, new);
259 		kvfree_rcu(old, rcu);
260 	}
261 
262 	return 0;
263 }
264 
265 void free_shrinker_info(struct mem_cgroup *memcg)
266 {
267 	struct mem_cgroup_per_node *pn;
268 	struct shrinker_info *info;
269 	int nid;
270 
271 	for_each_node(nid) {
272 		pn = memcg->nodeinfo[nid];
273 		info = rcu_dereference_protected(pn->shrinker_info, true);
274 		kvfree(info);
275 		rcu_assign_pointer(pn->shrinker_info, NULL);
276 	}
277 }
278 
279 int alloc_shrinker_info(struct mem_cgroup *memcg)
280 {
281 	struct shrinker_info *info;
282 	int nid, size, ret = 0;
283 	int map_size, defer_size = 0;
284 
285 	down_write(&shrinker_rwsem);
286 	map_size = shrinker_map_size(shrinker_nr_max);
287 	defer_size = shrinker_defer_size(shrinker_nr_max);
288 	size = map_size + defer_size;
289 	for_each_node(nid) {
290 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
291 		if (!info) {
292 			free_shrinker_info(memcg);
293 			ret = -ENOMEM;
294 			break;
295 		}
296 		info->nr_deferred = (atomic_long_t *)(info + 1);
297 		info->map = (void *)info->nr_deferred + defer_size;
298 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
299 	}
300 	up_write(&shrinker_rwsem);
301 
302 	return ret;
303 }
304 
305 static inline bool need_expand(int nr_max)
306 {
307 	return round_up(nr_max, BITS_PER_LONG) >
308 	       round_up(shrinker_nr_max, BITS_PER_LONG);
309 }
310 
311 static int expand_shrinker_info(int new_id)
312 {
313 	int ret = 0;
314 	int new_nr_max = new_id + 1;
315 	int map_size, defer_size = 0;
316 	int old_map_size, old_defer_size = 0;
317 	struct mem_cgroup *memcg;
318 
319 	if (!need_expand(new_nr_max))
320 		goto out;
321 
322 	if (!root_mem_cgroup)
323 		goto out;
324 
325 	lockdep_assert_held(&shrinker_rwsem);
326 
327 	map_size = shrinker_map_size(new_nr_max);
328 	defer_size = shrinker_defer_size(new_nr_max);
329 	old_map_size = shrinker_map_size(shrinker_nr_max);
330 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
331 
332 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
333 	do {
334 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
335 					       old_map_size, old_defer_size);
336 		if (ret) {
337 			mem_cgroup_iter_break(NULL, memcg);
338 			goto out;
339 		}
340 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
341 out:
342 	if (!ret)
343 		shrinker_nr_max = new_nr_max;
344 
345 	return ret;
346 }
347 
348 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
349 {
350 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
351 		struct shrinker_info *info;
352 
353 		rcu_read_lock();
354 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
355 		/* Pairs with smp mb in shrink_slab() */
356 		smp_mb__before_atomic();
357 		set_bit(shrinker_id, info->map);
358 		rcu_read_unlock();
359 	}
360 }
361 
362 static DEFINE_IDR(shrinker_idr);
363 
364 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
365 {
366 	int id, ret = -ENOMEM;
367 
368 	if (mem_cgroup_disabled())
369 		return -ENOSYS;
370 
371 	down_write(&shrinker_rwsem);
372 	/* This may call shrinker, so it must use down_read_trylock() */
373 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
374 	if (id < 0)
375 		goto unlock;
376 
377 	if (id >= shrinker_nr_max) {
378 		if (expand_shrinker_info(id)) {
379 			idr_remove(&shrinker_idr, id);
380 			goto unlock;
381 		}
382 	}
383 	shrinker->id = id;
384 	ret = 0;
385 unlock:
386 	up_write(&shrinker_rwsem);
387 	return ret;
388 }
389 
390 static void unregister_memcg_shrinker(struct shrinker *shrinker)
391 {
392 	int id = shrinker->id;
393 
394 	BUG_ON(id < 0);
395 
396 	lockdep_assert_held(&shrinker_rwsem);
397 
398 	idr_remove(&shrinker_idr, id);
399 }
400 
401 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
402 				   struct mem_cgroup *memcg)
403 {
404 	struct shrinker_info *info;
405 
406 	info = shrinker_info_protected(memcg, nid);
407 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
408 }
409 
410 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
411 				  struct mem_cgroup *memcg)
412 {
413 	struct shrinker_info *info;
414 
415 	info = shrinker_info_protected(memcg, nid);
416 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
417 }
418 
419 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
420 {
421 	int i, nid;
422 	long nr;
423 	struct mem_cgroup *parent;
424 	struct shrinker_info *child_info, *parent_info;
425 
426 	parent = parent_mem_cgroup(memcg);
427 	if (!parent)
428 		parent = root_mem_cgroup;
429 
430 	/* Prevent from concurrent shrinker_info expand */
431 	down_read(&shrinker_rwsem);
432 	for_each_node(nid) {
433 		child_info = shrinker_info_protected(memcg, nid);
434 		parent_info = shrinker_info_protected(parent, nid);
435 		for (i = 0; i < shrinker_nr_max; i++) {
436 			nr = atomic_long_read(&child_info->nr_deferred[i]);
437 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
438 		}
439 	}
440 	up_read(&shrinker_rwsem);
441 }
442 
443 static bool cgroup_reclaim(struct scan_control *sc)
444 {
445 	return sc->target_mem_cgroup;
446 }
447 
448 static bool global_reclaim(struct scan_control *sc)
449 {
450 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
451 }
452 
453 /**
454  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
455  * @sc: scan_control in question
456  *
457  * The normal page dirty throttling mechanism in balance_dirty_pages() is
458  * completely broken with the legacy memcg and direct stalling in
459  * shrink_folio_list() is used for throttling instead, which lacks all the
460  * niceties such as fairness, adaptive pausing, bandwidth proportional
461  * allocation and configurability.
462  *
463  * This function tests whether the vmscan currently in progress can assume
464  * that the normal dirty throttling mechanism is operational.
465  */
466 static bool writeback_throttling_sane(struct scan_control *sc)
467 {
468 	if (!cgroup_reclaim(sc))
469 		return true;
470 #ifdef CONFIG_CGROUP_WRITEBACK
471 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
472 		return true;
473 #endif
474 	return false;
475 }
476 #else
477 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
478 {
479 	return -ENOSYS;
480 }
481 
482 static void unregister_memcg_shrinker(struct shrinker *shrinker)
483 {
484 }
485 
486 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
487 				   struct mem_cgroup *memcg)
488 {
489 	return 0;
490 }
491 
492 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
493 				  struct mem_cgroup *memcg)
494 {
495 	return 0;
496 }
497 
498 static bool cgroup_reclaim(struct scan_control *sc)
499 {
500 	return false;
501 }
502 
503 static bool global_reclaim(struct scan_control *sc)
504 {
505 	return true;
506 }
507 
508 static bool writeback_throttling_sane(struct scan_control *sc)
509 {
510 	return true;
511 }
512 #endif
513 
514 static long xchg_nr_deferred(struct shrinker *shrinker,
515 			     struct shrink_control *sc)
516 {
517 	int nid = sc->nid;
518 
519 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
520 		nid = 0;
521 
522 	if (sc->memcg &&
523 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
524 		return xchg_nr_deferred_memcg(nid, shrinker,
525 					      sc->memcg);
526 
527 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
528 }
529 
530 
531 static long add_nr_deferred(long nr, struct shrinker *shrinker,
532 			    struct shrink_control *sc)
533 {
534 	int nid = sc->nid;
535 
536 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
537 		nid = 0;
538 
539 	if (sc->memcg &&
540 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
541 		return add_nr_deferred_memcg(nr, nid, shrinker,
542 					     sc->memcg);
543 
544 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
545 }
546 
547 static bool can_demote(int nid, struct scan_control *sc)
548 {
549 	if (!numa_demotion_enabled)
550 		return false;
551 	if (sc && sc->no_demotion)
552 		return false;
553 	if (next_demotion_node(nid) == NUMA_NO_NODE)
554 		return false;
555 
556 	return true;
557 }
558 
559 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
560 					  int nid,
561 					  struct scan_control *sc)
562 {
563 	if (memcg == NULL) {
564 		/*
565 		 * For non-memcg reclaim, is there
566 		 * space in any swap device?
567 		 */
568 		if (get_nr_swap_pages() > 0)
569 			return true;
570 	} else {
571 		/* Is the memcg below its swap limit? */
572 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
573 			return true;
574 	}
575 
576 	/*
577 	 * The page can not be swapped.
578 	 *
579 	 * Can it be reclaimed from this node via demotion?
580 	 */
581 	return can_demote(nid, sc);
582 }
583 
584 /*
585  * This misses isolated folios which are not accounted for to save counters.
586  * As the data only determines if reclaim or compaction continues, it is
587  * not expected that isolated folios will be a dominating factor.
588  */
589 unsigned long zone_reclaimable_pages(struct zone *zone)
590 {
591 	unsigned long nr;
592 
593 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
594 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
595 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
596 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
597 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
598 
599 	return nr;
600 }
601 
602 /**
603  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
604  * @lruvec: lru vector
605  * @lru: lru to use
606  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
607  */
608 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
609 				     int zone_idx)
610 {
611 	unsigned long size = 0;
612 	int zid;
613 
614 	for (zid = 0; zid <= zone_idx; zid++) {
615 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
616 
617 		if (!managed_zone(zone))
618 			continue;
619 
620 		if (!mem_cgroup_disabled())
621 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
622 		else
623 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
624 	}
625 	return size;
626 }
627 
628 /*
629  * Add a shrinker callback to be called from the vm.
630  */
631 static int __prealloc_shrinker(struct shrinker *shrinker)
632 {
633 	unsigned int size;
634 	int err;
635 
636 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
637 		err = prealloc_memcg_shrinker(shrinker);
638 		if (err != -ENOSYS)
639 			return err;
640 
641 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
642 	}
643 
644 	size = sizeof(*shrinker->nr_deferred);
645 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
646 		size *= nr_node_ids;
647 
648 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
649 	if (!shrinker->nr_deferred)
650 		return -ENOMEM;
651 
652 	return 0;
653 }
654 
655 #ifdef CONFIG_SHRINKER_DEBUG
656 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
657 {
658 	va_list ap;
659 	int err;
660 
661 	va_start(ap, fmt);
662 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
663 	va_end(ap);
664 	if (!shrinker->name)
665 		return -ENOMEM;
666 
667 	err = __prealloc_shrinker(shrinker);
668 	if (err) {
669 		kfree_const(shrinker->name);
670 		shrinker->name = NULL;
671 	}
672 
673 	return err;
674 }
675 #else
676 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
677 {
678 	return __prealloc_shrinker(shrinker);
679 }
680 #endif
681 
682 void free_prealloced_shrinker(struct shrinker *shrinker)
683 {
684 #ifdef CONFIG_SHRINKER_DEBUG
685 	kfree_const(shrinker->name);
686 	shrinker->name = NULL;
687 #endif
688 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
689 		down_write(&shrinker_rwsem);
690 		unregister_memcg_shrinker(shrinker);
691 		up_write(&shrinker_rwsem);
692 		return;
693 	}
694 
695 	kfree(shrinker->nr_deferred);
696 	shrinker->nr_deferred = NULL;
697 }
698 
699 void register_shrinker_prepared(struct shrinker *shrinker)
700 {
701 	down_write(&shrinker_rwsem);
702 	list_add_tail(&shrinker->list, &shrinker_list);
703 	shrinker->flags |= SHRINKER_REGISTERED;
704 	shrinker_debugfs_add(shrinker);
705 	up_write(&shrinker_rwsem);
706 }
707 
708 static int __register_shrinker(struct shrinker *shrinker)
709 {
710 	int err = __prealloc_shrinker(shrinker);
711 
712 	if (err)
713 		return err;
714 	register_shrinker_prepared(shrinker);
715 	return 0;
716 }
717 
718 #ifdef CONFIG_SHRINKER_DEBUG
719 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
720 {
721 	va_list ap;
722 	int err;
723 
724 	va_start(ap, fmt);
725 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
726 	va_end(ap);
727 	if (!shrinker->name)
728 		return -ENOMEM;
729 
730 	err = __register_shrinker(shrinker);
731 	if (err) {
732 		kfree_const(shrinker->name);
733 		shrinker->name = NULL;
734 	}
735 	return err;
736 }
737 #else
738 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
739 {
740 	return __register_shrinker(shrinker);
741 }
742 #endif
743 EXPORT_SYMBOL(register_shrinker);
744 
745 /*
746  * Remove one
747  */
748 void unregister_shrinker(struct shrinker *shrinker)
749 {
750 	if (!(shrinker->flags & SHRINKER_REGISTERED))
751 		return;
752 
753 	down_write(&shrinker_rwsem);
754 	list_del(&shrinker->list);
755 	shrinker->flags &= ~SHRINKER_REGISTERED;
756 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
757 		unregister_memcg_shrinker(shrinker);
758 	shrinker_debugfs_remove(shrinker);
759 	up_write(&shrinker_rwsem);
760 
761 	kfree(shrinker->nr_deferred);
762 	shrinker->nr_deferred = NULL;
763 }
764 EXPORT_SYMBOL(unregister_shrinker);
765 
766 /**
767  * synchronize_shrinkers - Wait for all running shrinkers to complete.
768  *
769  * This is equivalent to calling unregister_shrink() and register_shrinker(),
770  * but atomically and with less overhead. This is useful to guarantee that all
771  * shrinker invocations have seen an update, before freeing memory, similar to
772  * rcu.
773  */
774 void synchronize_shrinkers(void)
775 {
776 	down_write(&shrinker_rwsem);
777 	up_write(&shrinker_rwsem);
778 }
779 EXPORT_SYMBOL(synchronize_shrinkers);
780 
781 #define SHRINK_BATCH 128
782 
783 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
784 				    struct shrinker *shrinker, int priority)
785 {
786 	unsigned long freed = 0;
787 	unsigned long long delta;
788 	long total_scan;
789 	long freeable;
790 	long nr;
791 	long new_nr;
792 	long batch_size = shrinker->batch ? shrinker->batch
793 					  : SHRINK_BATCH;
794 	long scanned = 0, next_deferred;
795 
796 	freeable = shrinker->count_objects(shrinker, shrinkctl);
797 	if (freeable == 0 || freeable == SHRINK_EMPTY)
798 		return freeable;
799 
800 	/*
801 	 * copy the current shrinker scan count into a local variable
802 	 * and zero it so that other concurrent shrinker invocations
803 	 * don't also do this scanning work.
804 	 */
805 	nr = xchg_nr_deferred(shrinker, shrinkctl);
806 
807 	if (shrinker->seeks) {
808 		delta = freeable >> priority;
809 		delta *= 4;
810 		do_div(delta, shrinker->seeks);
811 	} else {
812 		/*
813 		 * These objects don't require any IO to create. Trim
814 		 * them aggressively under memory pressure to keep
815 		 * them from causing refetches in the IO caches.
816 		 */
817 		delta = freeable / 2;
818 	}
819 
820 	total_scan = nr >> priority;
821 	total_scan += delta;
822 	total_scan = min(total_scan, (2 * freeable));
823 
824 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
825 				   freeable, delta, total_scan, priority);
826 
827 	/*
828 	 * Normally, we should not scan less than batch_size objects in one
829 	 * pass to avoid too frequent shrinker calls, but if the slab has less
830 	 * than batch_size objects in total and we are really tight on memory,
831 	 * we will try to reclaim all available objects, otherwise we can end
832 	 * up failing allocations although there are plenty of reclaimable
833 	 * objects spread over several slabs with usage less than the
834 	 * batch_size.
835 	 *
836 	 * We detect the "tight on memory" situations by looking at the total
837 	 * number of objects we want to scan (total_scan). If it is greater
838 	 * than the total number of objects on slab (freeable), we must be
839 	 * scanning at high prio and therefore should try to reclaim as much as
840 	 * possible.
841 	 */
842 	while (total_scan >= batch_size ||
843 	       total_scan >= freeable) {
844 		unsigned long ret;
845 		unsigned long nr_to_scan = min(batch_size, total_scan);
846 
847 		shrinkctl->nr_to_scan = nr_to_scan;
848 		shrinkctl->nr_scanned = nr_to_scan;
849 		ret = shrinker->scan_objects(shrinker, shrinkctl);
850 		if (ret == SHRINK_STOP)
851 			break;
852 		freed += ret;
853 
854 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
855 		total_scan -= shrinkctl->nr_scanned;
856 		scanned += shrinkctl->nr_scanned;
857 
858 		cond_resched();
859 	}
860 
861 	/*
862 	 * The deferred work is increased by any new work (delta) that wasn't
863 	 * done, decreased by old deferred work that was done now.
864 	 *
865 	 * And it is capped to two times of the freeable items.
866 	 */
867 	next_deferred = max_t(long, (nr + delta - scanned), 0);
868 	next_deferred = min(next_deferred, (2 * freeable));
869 
870 	/*
871 	 * move the unused scan count back into the shrinker in a
872 	 * manner that handles concurrent updates.
873 	 */
874 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
875 
876 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
877 	return freed;
878 }
879 
880 #ifdef CONFIG_MEMCG
881 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 			struct mem_cgroup *memcg, int priority)
883 {
884 	struct shrinker_info *info;
885 	unsigned long ret, freed = 0;
886 	int i;
887 
888 	if (!mem_cgroup_online(memcg))
889 		return 0;
890 
891 	if (!down_read_trylock(&shrinker_rwsem))
892 		return 0;
893 
894 	info = shrinker_info_protected(memcg, nid);
895 	if (unlikely(!info))
896 		goto unlock;
897 
898 	for_each_set_bit(i, info->map, shrinker_nr_max) {
899 		struct shrink_control sc = {
900 			.gfp_mask = gfp_mask,
901 			.nid = nid,
902 			.memcg = memcg,
903 		};
904 		struct shrinker *shrinker;
905 
906 		shrinker = idr_find(&shrinker_idr, i);
907 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
908 			if (!shrinker)
909 				clear_bit(i, info->map);
910 			continue;
911 		}
912 
913 		/* Call non-slab shrinkers even though kmem is disabled */
914 		if (!memcg_kmem_enabled() &&
915 		    !(shrinker->flags & SHRINKER_NONSLAB))
916 			continue;
917 
918 		ret = do_shrink_slab(&sc, shrinker, priority);
919 		if (ret == SHRINK_EMPTY) {
920 			clear_bit(i, info->map);
921 			/*
922 			 * After the shrinker reported that it had no objects to
923 			 * free, but before we cleared the corresponding bit in
924 			 * the memcg shrinker map, a new object might have been
925 			 * added. To make sure, we have the bit set in this
926 			 * case, we invoke the shrinker one more time and reset
927 			 * the bit if it reports that it is not empty anymore.
928 			 * The memory barrier here pairs with the barrier in
929 			 * set_shrinker_bit():
930 			 *
931 			 * list_lru_add()     shrink_slab_memcg()
932 			 *   list_add_tail()    clear_bit()
933 			 *   <MB>               <MB>
934 			 *   set_bit()          do_shrink_slab()
935 			 */
936 			smp_mb__after_atomic();
937 			ret = do_shrink_slab(&sc, shrinker, priority);
938 			if (ret == SHRINK_EMPTY)
939 				ret = 0;
940 			else
941 				set_shrinker_bit(memcg, nid, i);
942 		}
943 		freed += ret;
944 
945 		if (rwsem_is_contended(&shrinker_rwsem)) {
946 			freed = freed ? : 1;
947 			break;
948 		}
949 	}
950 unlock:
951 	up_read(&shrinker_rwsem);
952 	return freed;
953 }
954 #else /* CONFIG_MEMCG */
955 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
956 			struct mem_cgroup *memcg, int priority)
957 {
958 	return 0;
959 }
960 #endif /* CONFIG_MEMCG */
961 
962 /**
963  * shrink_slab - shrink slab caches
964  * @gfp_mask: allocation context
965  * @nid: node whose slab caches to target
966  * @memcg: memory cgroup whose slab caches to target
967  * @priority: the reclaim priority
968  *
969  * Call the shrink functions to age shrinkable caches.
970  *
971  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
972  * unaware shrinkers will receive a node id of 0 instead.
973  *
974  * @memcg specifies the memory cgroup to target. Unaware shrinkers
975  * are called only if it is the root cgroup.
976  *
977  * @priority is sc->priority, we take the number of objects and >> by priority
978  * in order to get the scan target.
979  *
980  * Returns the number of reclaimed slab objects.
981  */
982 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
983 				 struct mem_cgroup *memcg,
984 				 int priority)
985 {
986 	unsigned long ret, freed = 0;
987 	struct shrinker *shrinker;
988 
989 	/*
990 	 * The root memcg might be allocated even though memcg is disabled
991 	 * via "cgroup_disable=memory" boot parameter.  This could make
992 	 * mem_cgroup_is_root() return false, then just run memcg slab
993 	 * shrink, but skip global shrink.  This may result in premature
994 	 * oom.
995 	 */
996 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
997 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
998 
999 	if (!down_read_trylock(&shrinker_rwsem))
1000 		goto out;
1001 
1002 	list_for_each_entry(shrinker, &shrinker_list, list) {
1003 		struct shrink_control sc = {
1004 			.gfp_mask = gfp_mask,
1005 			.nid = nid,
1006 			.memcg = memcg,
1007 		};
1008 
1009 		ret = do_shrink_slab(&sc, shrinker, priority);
1010 		if (ret == SHRINK_EMPTY)
1011 			ret = 0;
1012 		freed += ret;
1013 		/*
1014 		 * Bail out if someone want to register a new shrinker to
1015 		 * prevent the registration from being stalled for long periods
1016 		 * by parallel ongoing shrinking.
1017 		 */
1018 		if (rwsem_is_contended(&shrinker_rwsem)) {
1019 			freed = freed ? : 1;
1020 			break;
1021 		}
1022 	}
1023 
1024 	up_read(&shrinker_rwsem);
1025 out:
1026 	cond_resched();
1027 	return freed;
1028 }
1029 
1030 static unsigned long drop_slab_node(int nid)
1031 {
1032 	unsigned long freed = 0;
1033 	struct mem_cgroup *memcg = NULL;
1034 
1035 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1036 	do {
1037 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1038 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1039 
1040 	return freed;
1041 }
1042 
1043 void drop_slab(void)
1044 {
1045 	int nid;
1046 	int shift = 0;
1047 	unsigned long freed;
1048 
1049 	do {
1050 		freed = 0;
1051 		for_each_online_node(nid) {
1052 			if (fatal_signal_pending(current))
1053 				return;
1054 
1055 			freed += drop_slab_node(nid);
1056 		}
1057 	} while ((freed >> shift++) > 1);
1058 }
1059 
1060 static int reclaimer_offset(void)
1061 {
1062 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1063 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1064 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1065 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1066 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1067 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1068 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1069 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1070 
1071 	if (current_is_kswapd())
1072 		return 0;
1073 	if (current_is_khugepaged())
1074 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1075 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1076 }
1077 
1078 static inline int is_page_cache_freeable(struct folio *folio)
1079 {
1080 	/*
1081 	 * A freeable page cache folio is referenced only by the caller
1082 	 * that isolated the folio, the page cache and optional filesystem
1083 	 * private data at folio->private.
1084 	 */
1085 	return folio_ref_count(folio) - folio_test_private(folio) ==
1086 		1 + folio_nr_pages(folio);
1087 }
1088 
1089 /*
1090  * We detected a synchronous write error writing a folio out.  Probably
1091  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1092  * fsync(), msync() or close().
1093  *
1094  * The tricky part is that after writepage we cannot touch the mapping: nothing
1095  * prevents it from being freed up.  But we have a ref on the folio and once
1096  * that folio is locked, the mapping is pinned.
1097  *
1098  * We're allowed to run sleeping folio_lock() here because we know the caller has
1099  * __GFP_FS.
1100  */
1101 static void handle_write_error(struct address_space *mapping,
1102 				struct folio *folio, int error)
1103 {
1104 	folio_lock(folio);
1105 	if (folio_mapping(folio) == mapping)
1106 		mapping_set_error(mapping, error);
1107 	folio_unlock(folio);
1108 }
1109 
1110 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1111 {
1112 	int reclaimable = 0, write_pending = 0;
1113 	int i;
1114 
1115 	/*
1116 	 * If kswapd is disabled, reschedule if necessary but do not
1117 	 * throttle as the system is likely near OOM.
1118 	 */
1119 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1120 		return true;
1121 
1122 	/*
1123 	 * If there are a lot of dirty/writeback folios then do not
1124 	 * throttle as throttling will occur when the folios cycle
1125 	 * towards the end of the LRU if still under writeback.
1126 	 */
1127 	for (i = 0; i < MAX_NR_ZONES; i++) {
1128 		struct zone *zone = pgdat->node_zones + i;
1129 
1130 		if (!managed_zone(zone))
1131 			continue;
1132 
1133 		reclaimable += zone_reclaimable_pages(zone);
1134 		write_pending += zone_page_state_snapshot(zone,
1135 						  NR_ZONE_WRITE_PENDING);
1136 	}
1137 	if (2 * write_pending <= reclaimable)
1138 		return true;
1139 
1140 	return false;
1141 }
1142 
1143 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1144 {
1145 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1146 	long timeout, ret;
1147 	DEFINE_WAIT(wait);
1148 
1149 	/*
1150 	 * Do not throttle IO workers, kthreads other than kswapd or
1151 	 * workqueues. They may be required for reclaim to make
1152 	 * forward progress (e.g. journalling workqueues or kthreads).
1153 	 */
1154 	if (!current_is_kswapd() &&
1155 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1156 		cond_resched();
1157 		return;
1158 	}
1159 
1160 	/*
1161 	 * These figures are pulled out of thin air.
1162 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1163 	 * parallel reclaimers which is a short-lived event so the timeout is
1164 	 * short. Failing to make progress or waiting on writeback are
1165 	 * potentially long-lived events so use a longer timeout. This is shaky
1166 	 * logic as a failure to make progress could be due to anything from
1167 	 * writeback to a slow device to excessive referenced folios at the tail
1168 	 * of the inactive LRU.
1169 	 */
1170 	switch(reason) {
1171 	case VMSCAN_THROTTLE_WRITEBACK:
1172 		timeout = HZ/10;
1173 
1174 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1175 			WRITE_ONCE(pgdat->nr_reclaim_start,
1176 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1177 		}
1178 
1179 		break;
1180 	case VMSCAN_THROTTLE_CONGESTED:
1181 		fallthrough;
1182 	case VMSCAN_THROTTLE_NOPROGRESS:
1183 		if (skip_throttle_noprogress(pgdat)) {
1184 			cond_resched();
1185 			return;
1186 		}
1187 
1188 		timeout = 1;
1189 
1190 		break;
1191 	case VMSCAN_THROTTLE_ISOLATED:
1192 		timeout = HZ/50;
1193 		break;
1194 	default:
1195 		WARN_ON_ONCE(1);
1196 		timeout = HZ;
1197 		break;
1198 	}
1199 
1200 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1201 	ret = schedule_timeout(timeout);
1202 	finish_wait(wqh, &wait);
1203 
1204 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1205 		atomic_dec(&pgdat->nr_writeback_throttled);
1206 
1207 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1208 				jiffies_to_usecs(timeout - ret),
1209 				reason);
1210 }
1211 
1212 /*
1213  * Account for folios written if tasks are throttled waiting on dirty
1214  * folios to clean. If enough folios have been cleaned since throttling
1215  * started then wakeup the throttled tasks.
1216  */
1217 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1218 							int nr_throttled)
1219 {
1220 	unsigned long nr_written;
1221 
1222 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1223 
1224 	/*
1225 	 * This is an inaccurate read as the per-cpu deltas may not
1226 	 * be synchronised. However, given that the system is
1227 	 * writeback throttled, it is not worth taking the penalty
1228 	 * of getting an accurate count. At worst, the throttle
1229 	 * timeout guarantees forward progress.
1230 	 */
1231 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1232 		READ_ONCE(pgdat->nr_reclaim_start);
1233 
1234 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1235 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1236 }
1237 
1238 /* possible outcome of pageout() */
1239 typedef enum {
1240 	/* failed to write folio out, folio is locked */
1241 	PAGE_KEEP,
1242 	/* move folio to the active list, folio is locked */
1243 	PAGE_ACTIVATE,
1244 	/* folio has been sent to the disk successfully, folio is unlocked */
1245 	PAGE_SUCCESS,
1246 	/* folio is clean and locked */
1247 	PAGE_CLEAN,
1248 } pageout_t;
1249 
1250 /*
1251  * pageout is called by shrink_folio_list() for each dirty folio.
1252  * Calls ->writepage().
1253  */
1254 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1255 			 struct swap_iocb **plug)
1256 {
1257 	/*
1258 	 * If the folio is dirty, only perform writeback if that write
1259 	 * will be non-blocking.  To prevent this allocation from being
1260 	 * stalled by pagecache activity.  But note that there may be
1261 	 * stalls if we need to run get_block().  We could test
1262 	 * PagePrivate for that.
1263 	 *
1264 	 * If this process is currently in __generic_file_write_iter() against
1265 	 * this folio's queue, we can perform writeback even if that
1266 	 * will block.
1267 	 *
1268 	 * If the folio is swapcache, write it back even if that would
1269 	 * block, for some throttling. This happens by accident, because
1270 	 * swap_backing_dev_info is bust: it doesn't reflect the
1271 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1272 	 */
1273 	if (!is_page_cache_freeable(folio))
1274 		return PAGE_KEEP;
1275 	if (!mapping) {
1276 		/*
1277 		 * Some data journaling orphaned folios can have
1278 		 * folio->mapping == NULL while being dirty with clean buffers.
1279 		 */
1280 		if (folio_test_private(folio)) {
1281 			if (try_to_free_buffers(folio)) {
1282 				folio_clear_dirty(folio);
1283 				pr_info("%s: orphaned folio\n", __func__);
1284 				return PAGE_CLEAN;
1285 			}
1286 		}
1287 		return PAGE_KEEP;
1288 	}
1289 	if (mapping->a_ops->writepage == NULL)
1290 		return PAGE_ACTIVATE;
1291 
1292 	if (folio_clear_dirty_for_io(folio)) {
1293 		int res;
1294 		struct writeback_control wbc = {
1295 			.sync_mode = WB_SYNC_NONE,
1296 			.nr_to_write = SWAP_CLUSTER_MAX,
1297 			.range_start = 0,
1298 			.range_end = LLONG_MAX,
1299 			.for_reclaim = 1,
1300 			.swap_plug = plug,
1301 		};
1302 
1303 		folio_set_reclaim(folio);
1304 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1305 		if (res < 0)
1306 			handle_write_error(mapping, folio, res);
1307 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1308 			folio_clear_reclaim(folio);
1309 			return PAGE_ACTIVATE;
1310 		}
1311 
1312 		if (!folio_test_writeback(folio)) {
1313 			/* synchronous write or broken a_ops? */
1314 			folio_clear_reclaim(folio);
1315 		}
1316 		trace_mm_vmscan_write_folio(folio);
1317 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1318 		return PAGE_SUCCESS;
1319 	}
1320 
1321 	return PAGE_CLEAN;
1322 }
1323 
1324 /*
1325  * Same as remove_mapping, but if the folio is removed from the mapping, it
1326  * gets returned with a refcount of 0.
1327  */
1328 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1329 			    bool reclaimed, struct mem_cgroup *target_memcg)
1330 {
1331 	int refcount;
1332 	void *shadow = NULL;
1333 
1334 	BUG_ON(!folio_test_locked(folio));
1335 	BUG_ON(mapping != folio_mapping(folio));
1336 
1337 	if (!folio_test_swapcache(folio))
1338 		spin_lock(&mapping->host->i_lock);
1339 	xa_lock_irq(&mapping->i_pages);
1340 	/*
1341 	 * The non racy check for a busy folio.
1342 	 *
1343 	 * Must be careful with the order of the tests. When someone has
1344 	 * a ref to the folio, it may be possible that they dirty it then
1345 	 * drop the reference. So if the dirty flag is tested before the
1346 	 * refcount here, then the following race may occur:
1347 	 *
1348 	 * get_user_pages(&page);
1349 	 * [user mapping goes away]
1350 	 * write_to(page);
1351 	 *				!folio_test_dirty(folio)    [good]
1352 	 * folio_set_dirty(folio);
1353 	 * folio_put(folio);
1354 	 *				!refcount(folio)   [good, discard it]
1355 	 *
1356 	 * [oops, our write_to data is lost]
1357 	 *
1358 	 * Reversing the order of the tests ensures such a situation cannot
1359 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1360 	 * load is not satisfied before that of folio->_refcount.
1361 	 *
1362 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1363 	 * and thus under the i_pages lock, then this ordering is not required.
1364 	 */
1365 	refcount = 1 + folio_nr_pages(folio);
1366 	if (!folio_ref_freeze(folio, refcount))
1367 		goto cannot_free;
1368 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1369 	if (unlikely(folio_test_dirty(folio))) {
1370 		folio_ref_unfreeze(folio, refcount);
1371 		goto cannot_free;
1372 	}
1373 
1374 	if (folio_test_swapcache(folio)) {
1375 		swp_entry_t swap = folio_swap_entry(folio);
1376 
1377 		if (reclaimed && !mapping_exiting(mapping))
1378 			shadow = workingset_eviction(folio, target_memcg);
1379 		__delete_from_swap_cache(folio, swap, shadow);
1380 		mem_cgroup_swapout(folio, swap);
1381 		xa_unlock_irq(&mapping->i_pages);
1382 		put_swap_folio(folio, swap);
1383 	} else {
1384 		void (*free_folio)(struct folio *);
1385 
1386 		free_folio = mapping->a_ops->free_folio;
1387 		/*
1388 		 * Remember a shadow entry for reclaimed file cache in
1389 		 * order to detect refaults, thus thrashing, later on.
1390 		 *
1391 		 * But don't store shadows in an address space that is
1392 		 * already exiting.  This is not just an optimization,
1393 		 * inode reclaim needs to empty out the radix tree or
1394 		 * the nodes are lost.  Don't plant shadows behind its
1395 		 * back.
1396 		 *
1397 		 * We also don't store shadows for DAX mappings because the
1398 		 * only page cache folios found in these are zero pages
1399 		 * covering holes, and because we don't want to mix DAX
1400 		 * exceptional entries and shadow exceptional entries in the
1401 		 * same address_space.
1402 		 */
1403 		if (reclaimed && folio_is_file_lru(folio) &&
1404 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1405 			shadow = workingset_eviction(folio, target_memcg);
1406 		__filemap_remove_folio(folio, shadow);
1407 		xa_unlock_irq(&mapping->i_pages);
1408 		if (mapping_shrinkable(mapping))
1409 			inode_add_lru(mapping->host);
1410 		spin_unlock(&mapping->host->i_lock);
1411 
1412 		if (free_folio)
1413 			free_folio(folio);
1414 	}
1415 
1416 	return 1;
1417 
1418 cannot_free:
1419 	xa_unlock_irq(&mapping->i_pages);
1420 	if (!folio_test_swapcache(folio))
1421 		spin_unlock(&mapping->host->i_lock);
1422 	return 0;
1423 }
1424 
1425 /**
1426  * remove_mapping() - Attempt to remove a folio from its mapping.
1427  * @mapping: The address space.
1428  * @folio: The folio to remove.
1429  *
1430  * If the folio is dirty, under writeback or if someone else has a ref
1431  * on it, removal will fail.
1432  * Return: The number of pages removed from the mapping.  0 if the folio
1433  * could not be removed.
1434  * Context: The caller should have a single refcount on the folio and
1435  * hold its lock.
1436  */
1437 long remove_mapping(struct address_space *mapping, struct folio *folio)
1438 {
1439 	if (__remove_mapping(mapping, folio, false, NULL)) {
1440 		/*
1441 		 * Unfreezing the refcount with 1 effectively
1442 		 * drops the pagecache ref for us without requiring another
1443 		 * atomic operation.
1444 		 */
1445 		folio_ref_unfreeze(folio, 1);
1446 		return folio_nr_pages(folio);
1447 	}
1448 	return 0;
1449 }
1450 
1451 /**
1452  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1453  * @folio: Folio to be returned to an LRU list.
1454  *
1455  * Add previously isolated @folio to appropriate LRU list.
1456  * The folio may still be unevictable for other reasons.
1457  *
1458  * Context: lru_lock must not be held, interrupts must be enabled.
1459  */
1460 void folio_putback_lru(struct folio *folio)
1461 {
1462 	folio_add_lru(folio);
1463 	folio_put(folio);		/* drop ref from isolate */
1464 }
1465 
1466 enum folio_references {
1467 	FOLIOREF_RECLAIM,
1468 	FOLIOREF_RECLAIM_CLEAN,
1469 	FOLIOREF_KEEP,
1470 	FOLIOREF_ACTIVATE,
1471 };
1472 
1473 static enum folio_references folio_check_references(struct folio *folio,
1474 						  struct scan_control *sc)
1475 {
1476 	int referenced_ptes, referenced_folio;
1477 	unsigned long vm_flags;
1478 
1479 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1480 					   &vm_flags);
1481 	referenced_folio = folio_test_clear_referenced(folio);
1482 
1483 	/*
1484 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1485 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1486 	 */
1487 	if (vm_flags & VM_LOCKED)
1488 		return FOLIOREF_ACTIVATE;
1489 
1490 	/* rmap lock contention: rotate */
1491 	if (referenced_ptes == -1)
1492 		return FOLIOREF_KEEP;
1493 
1494 	if (referenced_ptes) {
1495 		/*
1496 		 * All mapped folios start out with page table
1497 		 * references from the instantiating fault, so we need
1498 		 * to look twice if a mapped file/anon folio is used more
1499 		 * than once.
1500 		 *
1501 		 * Mark it and spare it for another trip around the
1502 		 * inactive list.  Another page table reference will
1503 		 * lead to its activation.
1504 		 *
1505 		 * Note: the mark is set for activated folios as well
1506 		 * so that recently deactivated but used folios are
1507 		 * quickly recovered.
1508 		 */
1509 		folio_set_referenced(folio);
1510 
1511 		if (referenced_folio || referenced_ptes > 1)
1512 			return FOLIOREF_ACTIVATE;
1513 
1514 		/*
1515 		 * Activate file-backed executable folios after first usage.
1516 		 */
1517 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1518 			return FOLIOREF_ACTIVATE;
1519 
1520 		return FOLIOREF_KEEP;
1521 	}
1522 
1523 	/* Reclaim if clean, defer dirty folios to writeback */
1524 	if (referenced_folio && folio_is_file_lru(folio))
1525 		return FOLIOREF_RECLAIM_CLEAN;
1526 
1527 	return FOLIOREF_RECLAIM;
1528 }
1529 
1530 /* Check if a folio is dirty or under writeback */
1531 static void folio_check_dirty_writeback(struct folio *folio,
1532 				       bool *dirty, bool *writeback)
1533 {
1534 	struct address_space *mapping;
1535 
1536 	/*
1537 	 * Anonymous folios are not handled by flushers and must be written
1538 	 * from reclaim context. Do not stall reclaim based on them.
1539 	 * MADV_FREE anonymous folios are put into inactive file list too.
1540 	 * They could be mistakenly treated as file lru. So further anon
1541 	 * test is needed.
1542 	 */
1543 	if (!folio_is_file_lru(folio) ||
1544 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1545 		*dirty = false;
1546 		*writeback = false;
1547 		return;
1548 	}
1549 
1550 	/* By default assume that the folio flags are accurate */
1551 	*dirty = folio_test_dirty(folio);
1552 	*writeback = folio_test_writeback(folio);
1553 
1554 	/* Verify dirty/writeback state if the filesystem supports it */
1555 	if (!folio_test_private(folio))
1556 		return;
1557 
1558 	mapping = folio_mapping(folio);
1559 	if (mapping && mapping->a_ops->is_dirty_writeback)
1560 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1561 }
1562 
1563 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1564 {
1565 	struct page *target_page;
1566 	nodemask_t *allowed_mask;
1567 	struct migration_target_control *mtc;
1568 
1569 	mtc = (struct migration_target_control *)private;
1570 
1571 	allowed_mask = mtc->nmask;
1572 	/*
1573 	 * make sure we allocate from the target node first also trying to
1574 	 * demote or reclaim pages from the target node via kswapd if we are
1575 	 * low on free memory on target node. If we don't do this and if
1576 	 * we have free memory on the slower(lower) memtier, we would start
1577 	 * allocating pages from slower(lower) memory tiers without even forcing
1578 	 * a demotion of cold pages from the target memtier. This can result
1579 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1580 	 */
1581 	mtc->nmask = NULL;
1582 	mtc->gfp_mask |= __GFP_THISNODE;
1583 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1584 	if (target_page)
1585 		return target_page;
1586 
1587 	mtc->gfp_mask &= ~__GFP_THISNODE;
1588 	mtc->nmask = allowed_mask;
1589 
1590 	return alloc_migration_target(page, (unsigned long)mtc);
1591 }
1592 
1593 /*
1594  * Take folios on @demote_folios and attempt to demote them to another node.
1595  * Folios which are not demoted are left on @demote_folios.
1596  */
1597 static unsigned int demote_folio_list(struct list_head *demote_folios,
1598 				     struct pglist_data *pgdat)
1599 {
1600 	int target_nid = next_demotion_node(pgdat->node_id);
1601 	unsigned int nr_succeeded;
1602 	nodemask_t allowed_mask;
1603 
1604 	struct migration_target_control mtc = {
1605 		/*
1606 		 * Allocate from 'node', or fail quickly and quietly.
1607 		 * When this happens, 'page' will likely just be discarded
1608 		 * instead of migrated.
1609 		 */
1610 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1611 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1612 		.nid = target_nid,
1613 		.nmask = &allowed_mask
1614 	};
1615 
1616 	if (list_empty(demote_folios))
1617 		return 0;
1618 
1619 	if (target_nid == NUMA_NO_NODE)
1620 		return 0;
1621 
1622 	node_get_allowed_targets(pgdat, &allowed_mask);
1623 
1624 	/* Demotion ignores all cpuset and mempolicy settings */
1625 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1626 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1627 		      &nr_succeeded);
1628 
1629 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1630 
1631 	return nr_succeeded;
1632 }
1633 
1634 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1635 {
1636 	if (gfp_mask & __GFP_FS)
1637 		return true;
1638 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1639 		return false;
1640 	/*
1641 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1642 	 * providing this isn't SWP_FS_OPS.
1643 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1644 	 * but that will never affect SWP_FS_OPS, so the data_race
1645 	 * is safe.
1646 	 */
1647 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1648 }
1649 
1650 /*
1651  * shrink_folio_list() returns the number of reclaimed pages
1652  */
1653 static unsigned int shrink_folio_list(struct list_head *folio_list,
1654 		struct pglist_data *pgdat, struct scan_control *sc,
1655 		struct reclaim_stat *stat, bool ignore_references)
1656 {
1657 	LIST_HEAD(ret_folios);
1658 	LIST_HEAD(free_folios);
1659 	LIST_HEAD(demote_folios);
1660 	unsigned int nr_reclaimed = 0;
1661 	unsigned int pgactivate = 0;
1662 	bool do_demote_pass;
1663 	struct swap_iocb *plug = NULL;
1664 
1665 	memset(stat, 0, sizeof(*stat));
1666 	cond_resched();
1667 	do_demote_pass = can_demote(pgdat->node_id, sc);
1668 
1669 retry:
1670 	while (!list_empty(folio_list)) {
1671 		struct address_space *mapping;
1672 		struct folio *folio;
1673 		enum folio_references references = FOLIOREF_RECLAIM;
1674 		bool dirty, writeback;
1675 		unsigned int nr_pages;
1676 
1677 		cond_resched();
1678 
1679 		folio = lru_to_folio(folio_list);
1680 		list_del(&folio->lru);
1681 
1682 		if (!folio_trylock(folio))
1683 			goto keep;
1684 
1685 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1686 
1687 		nr_pages = folio_nr_pages(folio);
1688 
1689 		/* Account the number of base pages */
1690 		sc->nr_scanned += nr_pages;
1691 
1692 		if (unlikely(!folio_evictable(folio)))
1693 			goto activate_locked;
1694 
1695 		if (!sc->may_unmap && folio_mapped(folio))
1696 			goto keep_locked;
1697 
1698 		/* folio_update_gen() tried to promote this page? */
1699 		if (lru_gen_enabled() && !ignore_references &&
1700 		    folio_mapped(folio) && folio_test_referenced(folio))
1701 			goto keep_locked;
1702 
1703 		/*
1704 		 * The number of dirty pages determines if a node is marked
1705 		 * reclaim_congested. kswapd will stall and start writing
1706 		 * folios if the tail of the LRU is all dirty unqueued folios.
1707 		 */
1708 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1709 		if (dirty || writeback)
1710 			stat->nr_dirty += nr_pages;
1711 
1712 		if (dirty && !writeback)
1713 			stat->nr_unqueued_dirty += nr_pages;
1714 
1715 		/*
1716 		 * Treat this folio as congested if folios are cycling
1717 		 * through the LRU so quickly that the folios marked
1718 		 * for immediate reclaim are making it to the end of
1719 		 * the LRU a second time.
1720 		 */
1721 		if (writeback && folio_test_reclaim(folio))
1722 			stat->nr_congested += nr_pages;
1723 
1724 		/*
1725 		 * If a folio at the tail of the LRU is under writeback, there
1726 		 * are three cases to consider.
1727 		 *
1728 		 * 1) If reclaim is encountering an excessive number
1729 		 *    of folios under writeback and this folio has both
1730 		 *    the writeback and reclaim flags set, then it
1731 		 *    indicates that folios are being queued for I/O but
1732 		 *    are being recycled through the LRU before the I/O
1733 		 *    can complete. Waiting on the folio itself risks an
1734 		 *    indefinite stall if it is impossible to writeback
1735 		 *    the folio due to I/O error or disconnected storage
1736 		 *    so instead note that the LRU is being scanned too
1737 		 *    quickly and the caller can stall after the folio
1738 		 *    list has been processed.
1739 		 *
1740 		 * 2) Global or new memcg reclaim encounters a folio that is
1741 		 *    not marked for immediate reclaim, or the caller does not
1742 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1743 		 *    not to fs). In this case mark the folio for immediate
1744 		 *    reclaim and continue scanning.
1745 		 *
1746 		 *    Require may_enter_fs() because we would wait on fs, which
1747 		 *    may not have submitted I/O yet. And the loop driver might
1748 		 *    enter reclaim, and deadlock if it waits on a folio for
1749 		 *    which it is needed to do the write (loop masks off
1750 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1751 		 *    would probably show more reasons.
1752 		 *
1753 		 * 3) Legacy memcg encounters a folio that already has the
1754 		 *    reclaim flag set. memcg does not have any dirty folio
1755 		 *    throttling so we could easily OOM just because too many
1756 		 *    folios are in writeback and there is nothing else to
1757 		 *    reclaim. Wait for the writeback to complete.
1758 		 *
1759 		 * In cases 1) and 2) we activate the folios to get them out of
1760 		 * the way while we continue scanning for clean folios on the
1761 		 * inactive list and refilling from the active list. The
1762 		 * observation here is that waiting for disk writes is more
1763 		 * expensive than potentially causing reloads down the line.
1764 		 * Since they're marked for immediate reclaim, they won't put
1765 		 * memory pressure on the cache working set any longer than it
1766 		 * takes to write them to disk.
1767 		 */
1768 		if (folio_test_writeback(folio)) {
1769 			/* Case 1 above */
1770 			if (current_is_kswapd() &&
1771 			    folio_test_reclaim(folio) &&
1772 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1773 				stat->nr_immediate += nr_pages;
1774 				goto activate_locked;
1775 
1776 			/* Case 2 above */
1777 			} else if (writeback_throttling_sane(sc) ||
1778 			    !folio_test_reclaim(folio) ||
1779 			    !may_enter_fs(folio, sc->gfp_mask)) {
1780 				/*
1781 				 * This is slightly racy -
1782 				 * folio_end_writeback() might have
1783 				 * just cleared the reclaim flag, then
1784 				 * setting the reclaim flag here ends up
1785 				 * interpreted as the readahead flag - but
1786 				 * that does not matter enough to care.
1787 				 * What we do want is for this folio to
1788 				 * have the reclaim flag set next time
1789 				 * memcg reclaim reaches the tests above,
1790 				 * so it will then wait for writeback to
1791 				 * avoid OOM; and it's also appropriate
1792 				 * in global reclaim.
1793 				 */
1794 				folio_set_reclaim(folio);
1795 				stat->nr_writeback += nr_pages;
1796 				goto activate_locked;
1797 
1798 			/* Case 3 above */
1799 			} else {
1800 				folio_unlock(folio);
1801 				folio_wait_writeback(folio);
1802 				/* then go back and try same folio again */
1803 				list_add_tail(&folio->lru, folio_list);
1804 				continue;
1805 			}
1806 		}
1807 
1808 		if (!ignore_references)
1809 			references = folio_check_references(folio, sc);
1810 
1811 		switch (references) {
1812 		case FOLIOREF_ACTIVATE:
1813 			goto activate_locked;
1814 		case FOLIOREF_KEEP:
1815 			stat->nr_ref_keep += nr_pages;
1816 			goto keep_locked;
1817 		case FOLIOREF_RECLAIM:
1818 		case FOLIOREF_RECLAIM_CLEAN:
1819 			; /* try to reclaim the folio below */
1820 		}
1821 
1822 		/*
1823 		 * Before reclaiming the folio, try to relocate
1824 		 * its contents to another node.
1825 		 */
1826 		if (do_demote_pass &&
1827 		    (thp_migration_supported() || !folio_test_large(folio))) {
1828 			list_add(&folio->lru, &demote_folios);
1829 			folio_unlock(folio);
1830 			continue;
1831 		}
1832 
1833 		/*
1834 		 * Anonymous process memory has backing store?
1835 		 * Try to allocate it some swap space here.
1836 		 * Lazyfree folio could be freed directly
1837 		 */
1838 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1839 			if (!folio_test_swapcache(folio)) {
1840 				if (!(sc->gfp_mask & __GFP_IO))
1841 					goto keep_locked;
1842 				if (folio_maybe_dma_pinned(folio))
1843 					goto keep_locked;
1844 				if (folio_test_large(folio)) {
1845 					/* cannot split folio, skip it */
1846 					if (!can_split_folio(folio, NULL))
1847 						goto activate_locked;
1848 					/*
1849 					 * Split folios without a PMD map right
1850 					 * away. Chances are some or all of the
1851 					 * tail pages can be freed without IO.
1852 					 */
1853 					if (!folio_entire_mapcount(folio) &&
1854 					    split_folio_to_list(folio,
1855 								folio_list))
1856 						goto activate_locked;
1857 				}
1858 				if (!add_to_swap(folio)) {
1859 					if (!folio_test_large(folio))
1860 						goto activate_locked_split;
1861 					/* Fallback to swap normal pages */
1862 					if (split_folio_to_list(folio,
1863 								folio_list))
1864 						goto activate_locked;
1865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1866 					count_vm_event(THP_SWPOUT_FALLBACK);
1867 #endif
1868 					if (!add_to_swap(folio))
1869 						goto activate_locked_split;
1870 				}
1871 			}
1872 		} else if (folio_test_swapbacked(folio) &&
1873 			   folio_test_large(folio)) {
1874 			/* Split shmem folio */
1875 			if (split_folio_to_list(folio, folio_list))
1876 				goto keep_locked;
1877 		}
1878 
1879 		/*
1880 		 * If the folio was split above, the tail pages will make
1881 		 * their own pass through this function and be accounted
1882 		 * then.
1883 		 */
1884 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1885 			sc->nr_scanned -= (nr_pages - 1);
1886 			nr_pages = 1;
1887 		}
1888 
1889 		/*
1890 		 * The folio is mapped into the page tables of one or more
1891 		 * processes. Try to unmap it here.
1892 		 */
1893 		if (folio_mapped(folio)) {
1894 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1895 			bool was_swapbacked = folio_test_swapbacked(folio);
1896 
1897 			if (folio_test_pmd_mappable(folio))
1898 				flags |= TTU_SPLIT_HUGE_PMD;
1899 
1900 			try_to_unmap(folio, flags);
1901 			if (folio_mapped(folio)) {
1902 				stat->nr_unmap_fail += nr_pages;
1903 				if (!was_swapbacked &&
1904 				    folio_test_swapbacked(folio))
1905 					stat->nr_lazyfree_fail += nr_pages;
1906 				goto activate_locked;
1907 			}
1908 		}
1909 
1910 		mapping = folio_mapping(folio);
1911 		if (folio_test_dirty(folio)) {
1912 			/*
1913 			 * Only kswapd can writeback filesystem folios
1914 			 * to avoid risk of stack overflow. But avoid
1915 			 * injecting inefficient single-folio I/O into
1916 			 * flusher writeback as much as possible: only
1917 			 * write folios when we've encountered many
1918 			 * dirty folios, and when we've already scanned
1919 			 * the rest of the LRU for clean folios and see
1920 			 * the same dirty folios again (with the reclaim
1921 			 * flag set).
1922 			 */
1923 			if (folio_is_file_lru(folio) &&
1924 			    (!current_is_kswapd() ||
1925 			     !folio_test_reclaim(folio) ||
1926 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1927 				/*
1928 				 * Immediately reclaim when written back.
1929 				 * Similar in principle to folio_deactivate()
1930 				 * except we already have the folio isolated
1931 				 * and know it's dirty
1932 				 */
1933 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1934 						nr_pages);
1935 				folio_set_reclaim(folio);
1936 
1937 				goto activate_locked;
1938 			}
1939 
1940 			if (references == FOLIOREF_RECLAIM_CLEAN)
1941 				goto keep_locked;
1942 			if (!may_enter_fs(folio, sc->gfp_mask))
1943 				goto keep_locked;
1944 			if (!sc->may_writepage)
1945 				goto keep_locked;
1946 
1947 			/*
1948 			 * Folio is dirty. Flush the TLB if a writable entry
1949 			 * potentially exists to avoid CPU writes after I/O
1950 			 * starts and then write it out here.
1951 			 */
1952 			try_to_unmap_flush_dirty();
1953 			switch (pageout(folio, mapping, &plug)) {
1954 			case PAGE_KEEP:
1955 				goto keep_locked;
1956 			case PAGE_ACTIVATE:
1957 				goto activate_locked;
1958 			case PAGE_SUCCESS:
1959 				stat->nr_pageout += nr_pages;
1960 
1961 				if (folio_test_writeback(folio))
1962 					goto keep;
1963 				if (folio_test_dirty(folio))
1964 					goto keep;
1965 
1966 				/*
1967 				 * A synchronous write - probably a ramdisk.  Go
1968 				 * ahead and try to reclaim the folio.
1969 				 */
1970 				if (!folio_trylock(folio))
1971 					goto keep;
1972 				if (folio_test_dirty(folio) ||
1973 				    folio_test_writeback(folio))
1974 					goto keep_locked;
1975 				mapping = folio_mapping(folio);
1976 				fallthrough;
1977 			case PAGE_CLEAN:
1978 				; /* try to free the folio below */
1979 			}
1980 		}
1981 
1982 		/*
1983 		 * If the folio has buffers, try to free the buffer
1984 		 * mappings associated with this folio. If we succeed
1985 		 * we try to free the folio as well.
1986 		 *
1987 		 * We do this even if the folio is dirty.
1988 		 * filemap_release_folio() does not perform I/O, but it
1989 		 * is possible for a folio to have the dirty flag set,
1990 		 * but it is actually clean (all its buffers are clean).
1991 		 * This happens if the buffers were written out directly,
1992 		 * with submit_bh(). ext3 will do this, as well as
1993 		 * the blockdev mapping.  filemap_release_folio() will
1994 		 * discover that cleanness and will drop the buffers
1995 		 * and mark the folio clean - it can be freed.
1996 		 *
1997 		 * Rarely, folios can have buffers and no ->mapping.
1998 		 * These are the folios which were not successfully
1999 		 * invalidated in truncate_cleanup_folio().  We try to
2000 		 * drop those buffers here and if that worked, and the
2001 		 * folio is no longer mapped into process address space
2002 		 * (refcount == 1) it can be freed.  Otherwise, leave
2003 		 * the folio on the LRU so it is swappable.
2004 		 */
2005 		if (folio_has_private(folio)) {
2006 			if (!filemap_release_folio(folio, sc->gfp_mask))
2007 				goto activate_locked;
2008 			if (!mapping && folio_ref_count(folio) == 1) {
2009 				folio_unlock(folio);
2010 				if (folio_put_testzero(folio))
2011 					goto free_it;
2012 				else {
2013 					/*
2014 					 * rare race with speculative reference.
2015 					 * the speculative reference will free
2016 					 * this folio shortly, so we may
2017 					 * increment nr_reclaimed here (and
2018 					 * leave it off the LRU).
2019 					 */
2020 					nr_reclaimed += nr_pages;
2021 					continue;
2022 				}
2023 			}
2024 		}
2025 
2026 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2027 			/* follow __remove_mapping for reference */
2028 			if (!folio_ref_freeze(folio, 1))
2029 				goto keep_locked;
2030 			/*
2031 			 * The folio has only one reference left, which is
2032 			 * from the isolation. After the caller puts the
2033 			 * folio back on the lru and drops the reference, the
2034 			 * folio will be freed anyway. It doesn't matter
2035 			 * which lru it goes on. So we don't bother checking
2036 			 * the dirty flag here.
2037 			 */
2038 			count_vm_events(PGLAZYFREED, nr_pages);
2039 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2040 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2041 							 sc->target_mem_cgroup))
2042 			goto keep_locked;
2043 
2044 		folio_unlock(folio);
2045 free_it:
2046 		/*
2047 		 * Folio may get swapped out as a whole, need to account
2048 		 * all pages in it.
2049 		 */
2050 		nr_reclaimed += nr_pages;
2051 
2052 		/*
2053 		 * Is there need to periodically free_folio_list? It would
2054 		 * appear not as the counts should be low
2055 		 */
2056 		if (unlikely(folio_test_large(folio)))
2057 			destroy_large_folio(folio);
2058 		else
2059 			list_add(&folio->lru, &free_folios);
2060 		continue;
2061 
2062 activate_locked_split:
2063 		/*
2064 		 * The tail pages that are failed to add into swap cache
2065 		 * reach here.  Fixup nr_scanned and nr_pages.
2066 		 */
2067 		if (nr_pages > 1) {
2068 			sc->nr_scanned -= (nr_pages - 1);
2069 			nr_pages = 1;
2070 		}
2071 activate_locked:
2072 		/* Not a candidate for swapping, so reclaim swap space. */
2073 		if (folio_test_swapcache(folio) &&
2074 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2075 			folio_free_swap(folio);
2076 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2077 		if (!folio_test_mlocked(folio)) {
2078 			int type = folio_is_file_lru(folio);
2079 			folio_set_active(folio);
2080 			stat->nr_activate[type] += nr_pages;
2081 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2082 		}
2083 keep_locked:
2084 		folio_unlock(folio);
2085 keep:
2086 		list_add(&folio->lru, &ret_folios);
2087 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2088 				folio_test_unevictable(folio), folio);
2089 	}
2090 	/* 'folio_list' is always empty here */
2091 
2092 	/* Migrate folios selected for demotion */
2093 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2094 	/* Folios that could not be demoted are still in @demote_folios */
2095 	if (!list_empty(&demote_folios)) {
2096 		/* Folios which weren't demoted go back on @folio_list */
2097 		list_splice_init(&demote_folios, folio_list);
2098 
2099 		/*
2100 		 * goto retry to reclaim the undemoted folios in folio_list if
2101 		 * desired.
2102 		 *
2103 		 * Reclaiming directly from top tier nodes is not often desired
2104 		 * due to it breaking the LRU ordering: in general memory
2105 		 * should be reclaimed from lower tier nodes and demoted from
2106 		 * top tier nodes.
2107 		 *
2108 		 * However, disabling reclaim from top tier nodes entirely
2109 		 * would cause ooms in edge scenarios where lower tier memory
2110 		 * is unreclaimable for whatever reason, eg memory being
2111 		 * mlocked or too hot to reclaim. We can disable reclaim
2112 		 * from top tier nodes in proactive reclaim though as that is
2113 		 * not real memory pressure.
2114 		 */
2115 		if (!sc->proactive) {
2116 			do_demote_pass = false;
2117 			goto retry;
2118 		}
2119 	}
2120 
2121 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2122 
2123 	mem_cgroup_uncharge_list(&free_folios);
2124 	try_to_unmap_flush();
2125 	free_unref_page_list(&free_folios);
2126 
2127 	list_splice(&ret_folios, folio_list);
2128 	count_vm_events(PGACTIVATE, pgactivate);
2129 
2130 	if (plug)
2131 		swap_write_unplug(plug);
2132 	return nr_reclaimed;
2133 }
2134 
2135 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2136 					   struct list_head *folio_list)
2137 {
2138 	struct scan_control sc = {
2139 		.gfp_mask = GFP_KERNEL,
2140 		.may_unmap = 1,
2141 	};
2142 	struct reclaim_stat stat;
2143 	unsigned int nr_reclaimed;
2144 	struct folio *folio, *next;
2145 	LIST_HEAD(clean_folios);
2146 	unsigned int noreclaim_flag;
2147 
2148 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2149 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2150 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2151 		    !folio_test_unevictable(folio)) {
2152 			folio_clear_active(folio);
2153 			list_move(&folio->lru, &clean_folios);
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * We should be safe here since we are only dealing with file pages and
2159 	 * we are not kswapd and therefore cannot write dirty file pages. But
2160 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2161 	 * change in the future.
2162 	 */
2163 	noreclaim_flag = memalloc_noreclaim_save();
2164 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2165 					&stat, true);
2166 	memalloc_noreclaim_restore(noreclaim_flag);
2167 
2168 	list_splice(&clean_folios, folio_list);
2169 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2170 			    -(long)nr_reclaimed);
2171 	/*
2172 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2173 	 * they will rotate back to anonymous LRU in the end if it failed to
2174 	 * discard so isolated count will be mismatched.
2175 	 * Compensate the isolated count for both LRU lists.
2176 	 */
2177 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2178 			    stat.nr_lazyfree_fail);
2179 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2180 			    -(long)stat.nr_lazyfree_fail);
2181 	return nr_reclaimed;
2182 }
2183 
2184 /*
2185  * Update LRU sizes after isolating pages. The LRU size updates must
2186  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2187  */
2188 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2189 			enum lru_list lru, unsigned long *nr_zone_taken)
2190 {
2191 	int zid;
2192 
2193 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2194 		if (!nr_zone_taken[zid])
2195 			continue;
2196 
2197 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2198 	}
2199 
2200 }
2201 
2202 /*
2203  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2204  *
2205  * lruvec->lru_lock is heavily contended.  Some of the functions that
2206  * shrink the lists perform better by taking out a batch of pages
2207  * and working on them outside the LRU lock.
2208  *
2209  * For pagecache intensive workloads, this function is the hottest
2210  * spot in the kernel (apart from copy_*_user functions).
2211  *
2212  * Lru_lock must be held before calling this function.
2213  *
2214  * @nr_to_scan:	The number of eligible pages to look through on the list.
2215  * @lruvec:	The LRU vector to pull pages from.
2216  * @dst:	The temp list to put pages on to.
2217  * @nr_scanned:	The number of pages that were scanned.
2218  * @sc:		The scan_control struct for this reclaim session
2219  * @lru:	LRU list id for isolating
2220  *
2221  * returns how many pages were moved onto *@dst.
2222  */
2223 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2224 		struct lruvec *lruvec, struct list_head *dst,
2225 		unsigned long *nr_scanned, struct scan_control *sc,
2226 		enum lru_list lru)
2227 {
2228 	struct list_head *src = &lruvec->lists[lru];
2229 	unsigned long nr_taken = 0;
2230 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2231 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2232 	unsigned long skipped = 0;
2233 	unsigned long scan, total_scan, nr_pages;
2234 	LIST_HEAD(folios_skipped);
2235 
2236 	total_scan = 0;
2237 	scan = 0;
2238 	while (scan < nr_to_scan && !list_empty(src)) {
2239 		struct list_head *move_to = src;
2240 		struct folio *folio;
2241 
2242 		folio = lru_to_folio(src);
2243 		prefetchw_prev_lru_folio(folio, src, flags);
2244 
2245 		nr_pages = folio_nr_pages(folio);
2246 		total_scan += nr_pages;
2247 
2248 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2249 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2250 			move_to = &folios_skipped;
2251 			goto move;
2252 		}
2253 
2254 		/*
2255 		 * Do not count skipped folios because that makes the function
2256 		 * return with no isolated folios if the LRU mostly contains
2257 		 * ineligible folios.  This causes the VM to not reclaim any
2258 		 * folios, triggering a premature OOM.
2259 		 * Account all pages in a folio.
2260 		 */
2261 		scan += nr_pages;
2262 
2263 		if (!folio_test_lru(folio))
2264 			goto move;
2265 		if (!sc->may_unmap && folio_mapped(folio))
2266 			goto move;
2267 
2268 		/*
2269 		 * Be careful not to clear the lru flag until after we're
2270 		 * sure the folio is not being freed elsewhere -- the
2271 		 * folio release code relies on it.
2272 		 */
2273 		if (unlikely(!folio_try_get(folio)))
2274 			goto move;
2275 
2276 		if (!folio_test_clear_lru(folio)) {
2277 			/* Another thread is already isolating this folio */
2278 			folio_put(folio);
2279 			goto move;
2280 		}
2281 
2282 		nr_taken += nr_pages;
2283 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2284 		move_to = dst;
2285 move:
2286 		list_move(&folio->lru, move_to);
2287 	}
2288 
2289 	/*
2290 	 * Splice any skipped folios to the start of the LRU list. Note that
2291 	 * this disrupts the LRU order when reclaiming for lower zones but
2292 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2293 	 * scanning would soon rescan the same folios to skip and waste lots
2294 	 * of cpu cycles.
2295 	 */
2296 	if (!list_empty(&folios_skipped)) {
2297 		int zid;
2298 
2299 		list_splice(&folios_skipped, src);
2300 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2301 			if (!nr_skipped[zid])
2302 				continue;
2303 
2304 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2305 			skipped += nr_skipped[zid];
2306 		}
2307 	}
2308 	*nr_scanned = total_scan;
2309 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2310 				    total_scan, skipped, nr_taken,
2311 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2312 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2313 	return nr_taken;
2314 }
2315 
2316 /**
2317  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2318  * @folio: Folio to isolate from its LRU list.
2319  *
2320  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2321  * corresponding to whatever LRU list the folio was on.
2322  *
2323  * The folio will have its LRU flag cleared.  If it was found on the
2324  * active list, it will have the Active flag set.  If it was found on the
2325  * unevictable list, it will have the Unevictable flag set.  These flags
2326  * may need to be cleared by the caller before letting the page go.
2327  *
2328  * Context:
2329  *
2330  * (1) Must be called with an elevated refcount on the folio. This is a
2331  *     fundamental difference from isolate_lru_folios() (which is called
2332  *     without a stable reference).
2333  * (2) The lru_lock must not be held.
2334  * (3) Interrupts must be enabled.
2335  *
2336  * Return: 0 if the folio was removed from an LRU list.
2337  * -EBUSY if the folio was not on an LRU list.
2338  */
2339 int folio_isolate_lru(struct folio *folio)
2340 {
2341 	int ret = -EBUSY;
2342 
2343 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2344 
2345 	if (folio_test_clear_lru(folio)) {
2346 		struct lruvec *lruvec;
2347 
2348 		folio_get(folio);
2349 		lruvec = folio_lruvec_lock_irq(folio);
2350 		lruvec_del_folio(lruvec, folio);
2351 		unlock_page_lruvec_irq(lruvec);
2352 		ret = 0;
2353 	}
2354 
2355 	return ret;
2356 }
2357 
2358 /*
2359  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2360  * then get rescheduled. When there are massive number of tasks doing page
2361  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2362  * the LRU list will go small and be scanned faster than necessary, leading to
2363  * unnecessary swapping, thrashing and OOM.
2364  */
2365 static int too_many_isolated(struct pglist_data *pgdat, int file,
2366 		struct scan_control *sc)
2367 {
2368 	unsigned long inactive, isolated;
2369 	bool too_many;
2370 
2371 	if (current_is_kswapd())
2372 		return 0;
2373 
2374 	if (!writeback_throttling_sane(sc))
2375 		return 0;
2376 
2377 	if (file) {
2378 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2379 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2380 	} else {
2381 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2382 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2383 	}
2384 
2385 	/*
2386 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2387 	 * won't get blocked by normal direct-reclaimers, forming a circular
2388 	 * deadlock.
2389 	 */
2390 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2391 		inactive >>= 3;
2392 
2393 	too_many = isolated > inactive;
2394 
2395 	/* Wake up tasks throttled due to too_many_isolated. */
2396 	if (!too_many)
2397 		wake_throttle_isolated(pgdat);
2398 
2399 	return too_many;
2400 }
2401 
2402 /*
2403  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2404  * On return, @list is reused as a list of folios to be freed by the caller.
2405  *
2406  * Returns the number of pages moved to the given lruvec.
2407  */
2408 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2409 		struct list_head *list)
2410 {
2411 	int nr_pages, nr_moved = 0;
2412 	LIST_HEAD(folios_to_free);
2413 
2414 	while (!list_empty(list)) {
2415 		struct folio *folio = lru_to_folio(list);
2416 
2417 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2418 		list_del(&folio->lru);
2419 		if (unlikely(!folio_evictable(folio))) {
2420 			spin_unlock_irq(&lruvec->lru_lock);
2421 			folio_putback_lru(folio);
2422 			spin_lock_irq(&lruvec->lru_lock);
2423 			continue;
2424 		}
2425 
2426 		/*
2427 		 * The folio_set_lru needs to be kept here for list integrity.
2428 		 * Otherwise:
2429 		 *   #0 move_folios_to_lru             #1 release_pages
2430 		 *   if (!folio_put_testzero())
2431 		 *				      if (folio_put_testzero())
2432 		 *				        !lru //skip lru_lock
2433 		 *     folio_set_lru()
2434 		 *     list_add(&folio->lru,)
2435 		 *                                        list_add(&folio->lru,)
2436 		 */
2437 		folio_set_lru(folio);
2438 
2439 		if (unlikely(folio_put_testzero(folio))) {
2440 			__folio_clear_lru_flags(folio);
2441 
2442 			if (unlikely(folio_test_large(folio))) {
2443 				spin_unlock_irq(&lruvec->lru_lock);
2444 				destroy_large_folio(folio);
2445 				spin_lock_irq(&lruvec->lru_lock);
2446 			} else
2447 				list_add(&folio->lru, &folios_to_free);
2448 
2449 			continue;
2450 		}
2451 
2452 		/*
2453 		 * All pages were isolated from the same lruvec (and isolation
2454 		 * inhibits memcg migration).
2455 		 */
2456 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2457 		lruvec_add_folio(lruvec, folio);
2458 		nr_pages = folio_nr_pages(folio);
2459 		nr_moved += nr_pages;
2460 		if (folio_test_active(folio))
2461 			workingset_age_nonresident(lruvec, nr_pages);
2462 	}
2463 
2464 	/*
2465 	 * To save our caller's stack, now use input list for pages to free.
2466 	 */
2467 	list_splice(&folios_to_free, list);
2468 
2469 	return nr_moved;
2470 }
2471 
2472 /*
2473  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2474  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2475  * we should not throttle.  Otherwise it is safe to do so.
2476  */
2477 static int current_may_throttle(void)
2478 {
2479 	return !(current->flags & PF_LOCAL_THROTTLE);
2480 }
2481 
2482 /*
2483  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2484  * of reclaimed pages
2485  */
2486 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2487 		struct lruvec *lruvec, struct scan_control *sc,
2488 		enum lru_list lru)
2489 {
2490 	LIST_HEAD(folio_list);
2491 	unsigned long nr_scanned;
2492 	unsigned int nr_reclaimed = 0;
2493 	unsigned long nr_taken;
2494 	struct reclaim_stat stat;
2495 	bool file = is_file_lru(lru);
2496 	enum vm_event_item item;
2497 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2498 	bool stalled = false;
2499 
2500 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2501 		if (stalled)
2502 			return 0;
2503 
2504 		/* wait a bit for the reclaimer. */
2505 		stalled = true;
2506 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2507 
2508 		/* We are about to die and free our memory. Return now. */
2509 		if (fatal_signal_pending(current))
2510 			return SWAP_CLUSTER_MAX;
2511 	}
2512 
2513 	lru_add_drain();
2514 
2515 	spin_lock_irq(&lruvec->lru_lock);
2516 
2517 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2518 				     &nr_scanned, sc, lru);
2519 
2520 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2521 	item = PGSCAN_KSWAPD + reclaimer_offset();
2522 	if (!cgroup_reclaim(sc))
2523 		__count_vm_events(item, nr_scanned);
2524 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2525 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2526 
2527 	spin_unlock_irq(&lruvec->lru_lock);
2528 
2529 	if (nr_taken == 0)
2530 		return 0;
2531 
2532 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2533 
2534 	spin_lock_irq(&lruvec->lru_lock);
2535 	move_folios_to_lru(lruvec, &folio_list);
2536 
2537 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2538 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2539 	if (!cgroup_reclaim(sc))
2540 		__count_vm_events(item, nr_reclaimed);
2541 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2542 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2543 	spin_unlock_irq(&lruvec->lru_lock);
2544 
2545 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2546 	mem_cgroup_uncharge_list(&folio_list);
2547 	free_unref_page_list(&folio_list);
2548 
2549 	/*
2550 	 * If dirty folios are scanned that are not queued for IO, it
2551 	 * implies that flushers are not doing their job. This can
2552 	 * happen when memory pressure pushes dirty folios to the end of
2553 	 * the LRU before the dirty limits are breached and the dirty
2554 	 * data has expired. It can also happen when the proportion of
2555 	 * dirty folios grows not through writes but through memory
2556 	 * pressure reclaiming all the clean cache. And in some cases,
2557 	 * the flushers simply cannot keep up with the allocation
2558 	 * rate. Nudge the flusher threads in case they are asleep.
2559 	 */
2560 	if (stat.nr_unqueued_dirty == nr_taken) {
2561 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2562 		/*
2563 		 * For cgroupv1 dirty throttling is achieved by waking up
2564 		 * the kernel flusher here and later waiting on folios
2565 		 * which are in writeback to finish (see shrink_folio_list()).
2566 		 *
2567 		 * Flusher may not be able to issue writeback quickly
2568 		 * enough for cgroupv1 writeback throttling to work
2569 		 * on a large system.
2570 		 */
2571 		if (!writeback_throttling_sane(sc))
2572 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2573 	}
2574 
2575 	sc->nr.dirty += stat.nr_dirty;
2576 	sc->nr.congested += stat.nr_congested;
2577 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2578 	sc->nr.writeback += stat.nr_writeback;
2579 	sc->nr.immediate += stat.nr_immediate;
2580 	sc->nr.taken += nr_taken;
2581 	if (file)
2582 		sc->nr.file_taken += nr_taken;
2583 
2584 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2585 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2586 	return nr_reclaimed;
2587 }
2588 
2589 /*
2590  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2591  *
2592  * We move them the other way if the folio is referenced by one or more
2593  * processes.
2594  *
2595  * If the folios are mostly unmapped, the processing is fast and it is
2596  * appropriate to hold lru_lock across the whole operation.  But if
2597  * the folios are mapped, the processing is slow (folio_referenced()), so
2598  * we should drop lru_lock around each folio.  It's impossible to balance
2599  * this, so instead we remove the folios from the LRU while processing them.
2600  * It is safe to rely on the active flag against the non-LRU folios in here
2601  * because nobody will play with that bit on a non-LRU folio.
2602  *
2603  * The downside is that we have to touch folio->_refcount against each folio.
2604  * But we had to alter folio->flags anyway.
2605  */
2606 static void shrink_active_list(unsigned long nr_to_scan,
2607 			       struct lruvec *lruvec,
2608 			       struct scan_control *sc,
2609 			       enum lru_list lru)
2610 {
2611 	unsigned long nr_taken;
2612 	unsigned long nr_scanned;
2613 	unsigned long vm_flags;
2614 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2615 	LIST_HEAD(l_active);
2616 	LIST_HEAD(l_inactive);
2617 	unsigned nr_deactivate, nr_activate;
2618 	unsigned nr_rotated = 0;
2619 	int file = is_file_lru(lru);
2620 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2621 
2622 	lru_add_drain();
2623 
2624 	spin_lock_irq(&lruvec->lru_lock);
2625 
2626 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2627 				     &nr_scanned, sc, lru);
2628 
2629 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2630 
2631 	if (!cgroup_reclaim(sc))
2632 		__count_vm_events(PGREFILL, nr_scanned);
2633 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2634 
2635 	spin_unlock_irq(&lruvec->lru_lock);
2636 
2637 	while (!list_empty(&l_hold)) {
2638 		struct folio *folio;
2639 
2640 		cond_resched();
2641 		folio = lru_to_folio(&l_hold);
2642 		list_del(&folio->lru);
2643 
2644 		if (unlikely(!folio_evictable(folio))) {
2645 			folio_putback_lru(folio);
2646 			continue;
2647 		}
2648 
2649 		if (unlikely(buffer_heads_over_limit)) {
2650 			if (folio_test_private(folio) && folio_trylock(folio)) {
2651 				if (folio_test_private(folio))
2652 					filemap_release_folio(folio, 0);
2653 				folio_unlock(folio);
2654 			}
2655 		}
2656 
2657 		/* Referenced or rmap lock contention: rotate */
2658 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2659 				     &vm_flags) != 0) {
2660 			/*
2661 			 * Identify referenced, file-backed active folios and
2662 			 * give them one more trip around the active list. So
2663 			 * that executable code get better chances to stay in
2664 			 * memory under moderate memory pressure.  Anon folios
2665 			 * are not likely to be evicted by use-once streaming
2666 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2667 			 * so we ignore them here.
2668 			 */
2669 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2670 				nr_rotated += folio_nr_pages(folio);
2671 				list_add(&folio->lru, &l_active);
2672 				continue;
2673 			}
2674 		}
2675 
2676 		folio_clear_active(folio);	/* we are de-activating */
2677 		folio_set_workingset(folio);
2678 		list_add(&folio->lru, &l_inactive);
2679 	}
2680 
2681 	/*
2682 	 * Move folios back to the lru list.
2683 	 */
2684 	spin_lock_irq(&lruvec->lru_lock);
2685 
2686 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2687 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2688 	/* Keep all free folios in l_active list */
2689 	list_splice(&l_inactive, &l_active);
2690 
2691 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2692 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2693 
2694 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2695 	spin_unlock_irq(&lruvec->lru_lock);
2696 
2697 	if (nr_rotated)
2698 		lru_note_cost(lruvec, file, 0, nr_rotated);
2699 	mem_cgroup_uncharge_list(&l_active);
2700 	free_unref_page_list(&l_active);
2701 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2702 			nr_deactivate, nr_rotated, sc->priority, file);
2703 }
2704 
2705 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2706 				      struct pglist_data *pgdat)
2707 {
2708 	struct reclaim_stat dummy_stat;
2709 	unsigned int nr_reclaimed;
2710 	struct folio *folio;
2711 	struct scan_control sc = {
2712 		.gfp_mask = GFP_KERNEL,
2713 		.may_writepage = 1,
2714 		.may_unmap = 1,
2715 		.may_swap = 1,
2716 		.no_demotion = 1,
2717 	};
2718 
2719 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2720 	while (!list_empty(folio_list)) {
2721 		folio = lru_to_folio(folio_list);
2722 		list_del(&folio->lru);
2723 		folio_putback_lru(folio);
2724 	}
2725 
2726 	return nr_reclaimed;
2727 }
2728 
2729 unsigned long reclaim_pages(struct list_head *folio_list)
2730 {
2731 	int nid;
2732 	unsigned int nr_reclaimed = 0;
2733 	LIST_HEAD(node_folio_list);
2734 	unsigned int noreclaim_flag;
2735 
2736 	if (list_empty(folio_list))
2737 		return nr_reclaimed;
2738 
2739 	noreclaim_flag = memalloc_noreclaim_save();
2740 
2741 	nid = folio_nid(lru_to_folio(folio_list));
2742 	do {
2743 		struct folio *folio = lru_to_folio(folio_list);
2744 
2745 		if (nid == folio_nid(folio)) {
2746 			folio_clear_active(folio);
2747 			list_move(&folio->lru, &node_folio_list);
2748 			continue;
2749 		}
2750 
2751 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2752 		nid = folio_nid(lru_to_folio(folio_list));
2753 	} while (!list_empty(folio_list));
2754 
2755 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2756 
2757 	memalloc_noreclaim_restore(noreclaim_flag);
2758 
2759 	return nr_reclaimed;
2760 }
2761 
2762 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2763 				 struct lruvec *lruvec, struct scan_control *sc)
2764 {
2765 	if (is_active_lru(lru)) {
2766 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2767 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2768 		else
2769 			sc->skipped_deactivate = 1;
2770 		return 0;
2771 	}
2772 
2773 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2774 }
2775 
2776 /*
2777  * The inactive anon list should be small enough that the VM never has
2778  * to do too much work.
2779  *
2780  * The inactive file list should be small enough to leave most memory
2781  * to the established workingset on the scan-resistant active list,
2782  * but large enough to avoid thrashing the aggregate readahead window.
2783  *
2784  * Both inactive lists should also be large enough that each inactive
2785  * folio has a chance to be referenced again before it is reclaimed.
2786  *
2787  * If that fails and refaulting is observed, the inactive list grows.
2788  *
2789  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2790  * on this LRU, maintained by the pageout code. An inactive_ratio
2791  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2792  *
2793  * total     target    max
2794  * memory    ratio     inactive
2795  * -------------------------------------
2796  *   10MB       1         5MB
2797  *  100MB       1        50MB
2798  *    1GB       3       250MB
2799  *   10GB      10       0.9GB
2800  *  100GB      31         3GB
2801  *    1TB     101        10GB
2802  *   10TB     320        32GB
2803  */
2804 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2805 {
2806 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2807 	unsigned long inactive, active;
2808 	unsigned long inactive_ratio;
2809 	unsigned long gb;
2810 
2811 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2812 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2813 
2814 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2815 	if (gb)
2816 		inactive_ratio = int_sqrt(10 * gb);
2817 	else
2818 		inactive_ratio = 1;
2819 
2820 	return inactive * inactive_ratio < active;
2821 }
2822 
2823 enum scan_balance {
2824 	SCAN_EQUAL,
2825 	SCAN_FRACT,
2826 	SCAN_ANON,
2827 	SCAN_FILE,
2828 };
2829 
2830 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2831 {
2832 	unsigned long file;
2833 	struct lruvec *target_lruvec;
2834 
2835 	if (lru_gen_enabled())
2836 		return;
2837 
2838 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2839 
2840 	/*
2841 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2842 	 * lruvec stats for heuristics.
2843 	 */
2844 	mem_cgroup_flush_stats();
2845 
2846 	/*
2847 	 * Determine the scan balance between anon and file LRUs.
2848 	 */
2849 	spin_lock_irq(&target_lruvec->lru_lock);
2850 	sc->anon_cost = target_lruvec->anon_cost;
2851 	sc->file_cost = target_lruvec->file_cost;
2852 	spin_unlock_irq(&target_lruvec->lru_lock);
2853 
2854 	/*
2855 	 * Target desirable inactive:active list ratios for the anon
2856 	 * and file LRU lists.
2857 	 */
2858 	if (!sc->force_deactivate) {
2859 		unsigned long refaults;
2860 
2861 		/*
2862 		 * When refaults are being observed, it means a new
2863 		 * workingset is being established. Deactivate to get
2864 		 * rid of any stale active pages quickly.
2865 		 */
2866 		refaults = lruvec_page_state(target_lruvec,
2867 				WORKINGSET_ACTIVATE_ANON);
2868 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2869 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2870 			sc->may_deactivate |= DEACTIVATE_ANON;
2871 		else
2872 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2873 
2874 		refaults = lruvec_page_state(target_lruvec,
2875 				WORKINGSET_ACTIVATE_FILE);
2876 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2877 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2878 			sc->may_deactivate |= DEACTIVATE_FILE;
2879 		else
2880 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2881 	} else
2882 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2883 
2884 	/*
2885 	 * If we have plenty of inactive file pages that aren't
2886 	 * thrashing, try to reclaim those first before touching
2887 	 * anonymous pages.
2888 	 */
2889 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2890 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2891 		sc->cache_trim_mode = 1;
2892 	else
2893 		sc->cache_trim_mode = 0;
2894 
2895 	/*
2896 	 * Prevent the reclaimer from falling into the cache trap: as
2897 	 * cache pages start out inactive, every cache fault will tip
2898 	 * the scan balance towards the file LRU.  And as the file LRU
2899 	 * shrinks, so does the window for rotation from references.
2900 	 * This means we have a runaway feedback loop where a tiny
2901 	 * thrashing file LRU becomes infinitely more attractive than
2902 	 * anon pages.  Try to detect this based on file LRU size.
2903 	 */
2904 	if (!cgroup_reclaim(sc)) {
2905 		unsigned long total_high_wmark = 0;
2906 		unsigned long free, anon;
2907 		int z;
2908 
2909 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2910 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2911 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2912 
2913 		for (z = 0; z < MAX_NR_ZONES; z++) {
2914 			struct zone *zone = &pgdat->node_zones[z];
2915 
2916 			if (!managed_zone(zone))
2917 				continue;
2918 
2919 			total_high_wmark += high_wmark_pages(zone);
2920 		}
2921 
2922 		/*
2923 		 * Consider anon: if that's low too, this isn't a
2924 		 * runaway file reclaim problem, but rather just
2925 		 * extreme pressure. Reclaim as per usual then.
2926 		 */
2927 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2928 
2929 		sc->file_is_tiny =
2930 			file + free <= total_high_wmark &&
2931 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2932 			anon >> sc->priority;
2933 	}
2934 }
2935 
2936 /*
2937  * Determine how aggressively the anon and file LRU lists should be
2938  * scanned.
2939  *
2940  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2941  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2942  */
2943 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2944 			   unsigned long *nr)
2945 {
2946 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2947 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2948 	unsigned long anon_cost, file_cost, total_cost;
2949 	int swappiness = mem_cgroup_swappiness(memcg);
2950 	u64 fraction[ANON_AND_FILE];
2951 	u64 denominator = 0;	/* gcc */
2952 	enum scan_balance scan_balance;
2953 	unsigned long ap, fp;
2954 	enum lru_list lru;
2955 
2956 	/* If we have no swap space, do not bother scanning anon folios. */
2957 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2958 		scan_balance = SCAN_FILE;
2959 		goto out;
2960 	}
2961 
2962 	/*
2963 	 * Global reclaim will swap to prevent OOM even with no
2964 	 * swappiness, but memcg users want to use this knob to
2965 	 * disable swapping for individual groups completely when
2966 	 * using the memory controller's swap limit feature would be
2967 	 * too expensive.
2968 	 */
2969 	if (cgroup_reclaim(sc) && !swappiness) {
2970 		scan_balance = SCAN_FILE;
2971 		goto out;
2972 	}
2973 
2974 	/*
2975 	 * Do not apply any pressure balancing cleverness when the
2976 	 * system is close to OOM, scan both anon and file equally
2977 	 * (unless the swappiness setting disagrees with swapping).
2978 	 */
2979 	if (!sc->priority && swappiness) {
2980 		scan_balance = SCAN_EQUAL;
2981 		goto out;
2982 	}
2983 
2984 	/*
2985 	 * If the system is almost out of file pages, force-scan anon.
2986 	 */
2987 	if (sc->file_is_tiny) {
2988 		scan_balance = SCAN_ANON;
2989 		goto out;
2990 	}
2991 
2992 	/*
2993 	 * If there is enough inactive page cache, we do not reclaim
2994 	 * anything from the anonymous working right now.
2995 	 */
2996 	if (sc->cache_trim_mode) {
2997 		scan_balance = SCAN_FILE;
2998 		goto out;
2999 	}
3000 
3001 	scan_balance = SCAN_FRACT;
3002 	/*
3003 	 * Calculate the pressure balance between anon and file pages.
3004 	 *
3005 	 * The amount of pressure we put on each LRU is inversely
3006 	 * proportional to the cost of reclaiming each list, as
3007 	 * determined by the share of pages that are refaulting, times
3008 	 * the relative IO cost of bringing back a swapped out
3009 	 * anonymous page vs reloading a filesystem page (swappiness).
3010 	 *
3011 	 * Although we limit that influence to ensure no list gets
3012 	 * left behind completely: at least a third of the pressure is
3013 	 * applied, before swappiness.
3014 	 *
3015 	 * With swappiness at 100, anon and file have equal IO cost.
3016 	 */
3017 	total_cost = sc->anon_cost + sc->file_cost;
3018 	anon_cost = total_cost + sc->anon_cost;
3019 	file_cost = total_cost + sc->file_cost;
3020 	total_cost = anon_cost + file_cost;
3021 
3022 	ap = swappiness * (total_cost + 1);
3023 	ap /= anon_cost + 1;
3024 
3025 	fp = (200 - swappiness) * (total_cost + 1);
3026 	fp /= file_cost + 1;
3027 
3028 	fraction[0] = ap;
3029 	fraction[1] = fp;
3030 	denominator = ap + fp;
3031 out:
3032 	for_each_evictable_lru(lru) {
3033 		int file = is_file_lru(lru);
3034 		unsigned long lruvec_size;
3035 		unsigned long low, min;
3036 		unsigned long scan;
3037 
3038 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3039 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3040 				      &min, &low);
3041 
3042 		if (min || low) {
3043 			/*
3044 			 * Scale a cgroup's reclaim pressure by proportioning
3045 			 * its current usage to its memory.low or memory.min
3046 			 * setting.
3047 			 *
3048 			 * This is important, as otherwise scanning aggression
3049 			 * becomes extremely binary -- from nothing as we
3050 			 * approach the memory protection threshold, to totally
3051 			 * nominal as we exceed it.  This results in requiring
3052 			 * setting extremely liberal protection thresholds. It
3053 			 * also means we simply get no protection at all if we
3054 			 * set it too low, which is not ideal.
3055 			 *
3056 			 * If there is any protection in place, we reduce scan
3057 			 * pressure by how much of the total memory used is
3058 			 * within protection thresholds.
3059 			 *
3060 			 * There is one special case: in the first reclaim pass,
3061 			 * we skip over all groups that are within their low
3062 			 * protection. If that fails to reclaim enough pages to
3063 			 * satisfy the reclaim goal, we come back and override
3064 			 * the best-effort low protection. However, we still
3065 			 * ideally want to honor how well-behaved groups are in
3066 			 * that case instead of simply punishing them all
3067 			 * equally. As such, we reclaim them based on how much
3068 			 * memory they are using, reducing the scan pressure
3069 			 * again by how much of the total memory used is under
3070 			 * hard protection.
3071 			 */
3072 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3073 			unsigned long protection;
3074 
3075 			/* memory.low scaling, make sure we retry before OOM */
3076 			if (!sc->memcg_low_reclaim && low > min) {
3077 				protection = low;
3078 				sc->memcg_low_skipped = 1;
3079 			} else {
3080 				protection = min;
3081 			}
3082 
3083 			/* Avoid TOCTOU with earlier protection check */
3084 			cgroup_size = max(cgroup_size, protection);
3085 
3086 			scan = lruvec_size - lruvec_size * protection /
3087 				(cgroup_size + 1);
3088 
3089 			/*
3090 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3091 			 * reclaim moving forwards, avoiding decrementing
3092 			 * sc->priority further than desirable.
3093 			 */
3094 			scan = max(scan, SWAP_CLUSTER_MAX);
3095 		} else {
3096 			scan = lruvec_size;
3097 		}
3098 
3099 		scan >>= sc->priority;
3100 
3101 		/*
3102 		 * If the cgroup's already been deleted, make sure to
3103 		 * scrape out the remaining cache.
3104 		 */
3105 		if (!scan && !mem_cgroup_online(memcg))
3106 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3107 
3108 		switch (scan_balance) {
3109 		case SCAN_EQUAL:
3110 			/* Scan lists relative to size */
3111 			break;
3112 		case SCAN_FRACT:
3113 			/*
3114 			 * Scan types proportional to swappiness and
3115 			 * their relative recent reclaim efficiency.
3116 			 * Make sure we don't miss the last page on
3117 			 * the offlined memory cgroups because of a
3118 			 * round-off error.
3119 			 */
3120 			scan = mem_cgroup_online(memcg) ?
3121 			       div64_u64(scan * fraction[file], denominator) :
3122 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3123 						  denominator);
3124 			break;
3125 		case SCAN_FILE:
3126 		case SCAN_ANON:
3127 			/* Scan one type exclusively */
3128 			if ((scan_balance == SCAN_FILE) != file)
3129 				scan = 0;
3130 			break;
3131 		default:
3132 			/* Look ma, no brain */
3133 			BUG();
3134 		}
3135 
3136 		nr[lru] = scan;
3137 	}
3138 }
3139 
3140 /*
3141  * Anonymous LRU management is a waste if there is
3142  * ultimately no way to reclaim the memory.
3143  */
3144 static bool can_age_anon_pages(struct pglist_data *pgdat,
3145 			       struct scan_control *sc)
3146 {
3147 	/* Aging the anon LRU is valuable if swap is present: */
3148 	if (total_swap_pages > 0)
3149 		return true;
3150 
3151 	/* Also valuable if anon pages can be demoted: */
3152 	return can_demote(pgdat->node_id, sc);
3153 }
3154 
3155 #ifdef CONFIG_LRU_GEN
3156 
3157 #ifdef CONFIG_LRU_GEN_ENABLED
3158 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3159 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3160 #else
3161 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3162 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3163 #endif
3164 
3165 /******************************************************************************
3166  *                          shorthand helpers
3167  ******************************************************************************/
3168 
3169 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3170 
3171 #define DEFINE_MAX_SEQ(lruvec)						\
3172 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3173 
3174 #define DEFINE_MIN_SEQ(lruvec)						\
3175 	unsigned long min_seq[ANON_AND_FILE] = {			\
3176 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3177 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3178 	}
3179 
3180 #define for_each_gen_type_zone(gen, type, zone)				\
3181 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3182 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3183 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3184 
3185 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3186 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3187 
3188 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3189 {
3190 	struct pglist_data *pgdat = NODE_DATA(nid);
3191 
3192 #ifdef CONFIG_MEMCG
3193 	if (memcg) {
3194 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3195 
3196 		/* see the comment in mem_cgroup_lruvec() */
3197 		if (!lruvec->pgdat)
3198 			lruvec->pgdat = pgdat;
3199 
3200 		return lruvec;
3201 	}
3202 #endif
3203 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3204 
3205 	return &pgdat->__lruvec;
3206 }
3207 
3208 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3209 {
3210 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3211 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3212 
3213 	if (!sc->may_swap)
3214 		return 0;
3215 
3216 	if (!can_demote(pgdat->node_id, sc) &&
3217 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3218 		return 0;
3219 
3220 	return mem_cgroup_swappiness(memcg);
3221 }
3222 
3223 static int get_nr_gens(struct lruvec *lruvec, int type)
3224 {
3225 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3226 }
3227 
3228 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3229 {
3230 	/* see the comment on lru_gen_folio */
3231 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3232 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3233 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3234 }
3235 
3236 /******************************************************************************
3237  *                          mm_struct list
3238  ******************************************************************************/
3239 
3240 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3241 {
3242 	static struct lru_gen_mm_list mm_list = {
3243 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3244 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3245 	};
3246 
3247 #ifdef CONFIG_MEMCG
3248 	if (memcg)
3249 		return &memcg->mm_list;
3250 #endif
3251 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3252 
3253 	return &mm_list;
3254 }
3255 
3256 void lru_gen_add_mm(struct mm_struct *mm)
3257 {
3258 	int nid;
3259 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3260 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3261 
3262 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3263 #ifdef CONFIG_MEMCG
3264 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3265 	mm->lru_gen.memcg = memcg;
3266 #endif
3267 	spin_lock(&mm_list->lock);
3268 
3269 	for_each_node_state(nid, N_MEMORY) {
3270 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3271 
3272 		/* the first addition since the last iteration */
3273 		if (lruvec->mm_state.tail == &mm_list->fifo)
3274 			lruvec->mm_state.tail = &mm->lru_gen.list;
3275 	}
3276 
3277 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3278 
3279 	spin_unlock(&mm_list->lock);
3280 }
3281 
3282 void lru_gen_del_mm(struct mm_struct *mm)
3283 {
3284 	int nid;
3285 	struct lru_gen_mm_list *mm_list;
3286 	struct mem_cgroup *memcg = NULL;
3287 
3288 	if (list_empty(&mm->lru_gen.list))
3289 		return;
3290 
3291 #ifdef CONFIG_MEMCG
3292 	memcg = mm->lru_gen.memcg;
3293 #endif
3294 	mm_list = get_mm_list(memcg);
3295 
3296 	spin_lock(&mm_list->lock);
3297 
3298 	for_each_node(nid) {
3299 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3300 
3301 		/* where the last iteration ended (exclusive) */
3302 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3303 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3304 
3305 		/* where the current iteration continues (inclusive) */
3306 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3307 			continue;
3308 
3309 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3310 		/* the deletion ends the current iteration */
3311 		if (lruvec->mm_state.head == &mm_list->fifo)
3312 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3313 	}
3314 
3315 	list_del_init(&mm->lru_gen.list);
3316 
3317 	spin_unlock(&mm_list->lock);
3318 
3319 #ifdef CONFIG_MEMCG
3320 	mem_cgroup_put(mm->lru_gen.memcg);
3321 	mm->lru_gen.memcg = NULL;
3322 #endif
3323 }
3324 
3325 #ifdef CONFIG_MEMCG
3326 void lru_gen_migrate_mm(struct mm_struct *mm)
3327 {
3328 	struct mem_cgroup *memcg;
3329 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3330 
3331 	VM_WARN_ON_ONCE(task->mm != mm);
3332 	lockdep_assert_held(&task->alloc_lock);
3333 
3334 	/* for mm_update_next_owner() */
3335 	if (mem_cgroup_disabled())
3336 		return;
3337 
3338 	/* migration can happen before addition */
3339 	if (!mm->lru_gen.memcg)
3340 		return;
3341 
3342 	rcu_read_lock();
3343 	memcg = mem_cgroup_from_task(task);
3344 	rcu_read_unlock();
3345 	if (memcg == mm->lru_gen.memcg)
3346 		return;
3347 
3348 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3349 
3350 	lru_gen_del_mm(mm);
3351 	lru_gen_add_mm(mm);
3352 }
3353 #endif
3354 
3355 /*
3356  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3357  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3358  * bits in a bitmap, k is the number of hash functions and n is the number of
3359  * inserted items.
3360  *
3361  * Page table walkers use one of the two filters to reduce their search space.
3362  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3363  * aging uses the double-buffering technique to flip to the other filter each
3364  * time it produces a new generation. For non-leaf entries that have enough
3365  * leaf entries, the aging carries them over to the next generation in
3366  * walk_pmd_range(); the eviction also report them when walking the rmap
3367  * in lru_gen_look_around().
3368  *
3369  * For future optimizations:
3370  * 1. It's not necessary to keep both filters all the time. The spare one can be
3371  *    freed after the RCU grace period and reallocated if needed again.
3372  * 2. And when reallocating, it's worth scaling its size according to the number
3373  *    of inserted entries in the other filter, to reduce the memory overhead on
3374  *    small systems and false positives on large systems.
3375  * 3. Jenkins' hash function is an alternative to Knuth's.
3376  */
3377 #define BLOOM_FILTER_SHIFT	15
3378 
3379 static inline int filter_gen_from_seq(unsigned long seq)
3380 {
3381 	return seq % NR_BLOOM_FILTERS;
3382 }
3383 
3384 static void get_item_key(void *item, int *key)
3385 {
3386 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3387 
3388 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3389 
3390 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3391 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3392 }
3393 
3394 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3395 {
3396 	unsigned long *filter;
3397 	int gen = filter_gen_from_seq(seq);
3398 
3399 	filter = lruvec->mm_state.filters[gen];
3400 	if (filter) {
3401 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3402 		return;
3403 	}
3404 
3405 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3406 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3407 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3408 }
3409 
3410 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3411 {
3412 	int key[2];
3413 	unsigned long *filter;
3414 	int gen = filter_gen_from_seq(seq);
3415 
3416 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3417 	if (!filter)
3418 		return;
3419 
3420 	get_item_key(item, key);
3421 
3422 	if (!test_bit(key[0], filter))
3423 		set_bit(key[0], filter);
3424 	if (!test_bit(key[1], filter))
3425 		set_bit(key[1], filter);
3426 }
3427 
3428 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3429 {
3430 	int key[2];
3431 	unsigned long *filter;
3432 	int gen = filter_gen_from_seq(seq);
3433 
3434 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3435 	if (!filter)
3436 		return true;
3437 
3438 	get_item_key(item, key);
3439 
3440 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3441 }
3442 
3443 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3444 {
3445 	int i;
3446 	int hist;
3447 
3448 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3449 
3450 	if (walk) {
3451 		hist = lru_hist_from_seq(walk->max_seq);
3452 
3453 		for (i = 0; i < NR_MM_STATS; i++) {
3454 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3455 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3456 			walk->mm_stats[i] = 0;
3457 		}
3458 	}
3459 
3460 	if (NR_HIST_GENS > 1 && last) {
3461 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3462 
3463 		for (i = 0; i < NR_MM_STATS; i++)
3464 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3465 	}
3466 }
3467 
3468 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3469 {
3470 	int type;
3471 	unsigned long size = 0;
3472 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3473 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3474 
3475 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3476 		return true;
3477 
3478 	clear_bit(key, &mm->lru_gen.bitmap);
3479 
3480 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3481 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3482 			       get_mm_counter(mm, MM_ANONPAGES) +
3483 			       get_mm_counter(mm, MM_SHMEMPAGES);
3484 	}
3485 
3486 	if (size < MIN_LRU_BATCH)
3487 		return true;
3488 
3489 	return !mmget_not_zero(mm);
3490 }
3491 
3492 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3493 			    struct mm_struct **iter)
3494 {
3495 	bool first = false;
3496 	bool last = true;
3497 	struct mm_struct *mm = NULL;
3498 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3499 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3500 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3501 
3502 	/*
3503 	 * There are four interesting cases for this page table walker:
3504 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3505 	 *    there is nothing left to do.
3506 	 * 2. It's the first of the current generation, and it needs to reset
3507 	 *    the Bloom filter for the next generation.
3508 	 * 3. It reaches the end of mm_list, and it needs to increment
3509 	 *    mm_state->seq; the iteration is done.
3510 	 * 4. It's the last of the current generation, and it needs to reset the
3511 	 *    mm stats counters for the next generation.
3512 	 */
3513 	spin_lock(&mm_list->lock);
3514 
3515 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3516 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3517 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3518 
3519 	if (walk->max_seq <= mm_state->seq) {
3520 		if (!*iter)
3521 			last = false;
3522 		goto done;
3523 	}
3524 
3525 	if (!mm_state->nr_walkers) {
3526 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3527 
3528 		mm_state->head = mm_list->fifo.next;
3529 		first = true;
3530 	}
3531 
3532 	while (!mm && mm_state->head != &mm_list->fifo) {
3533 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3534 
3535 		mm_state->head = mm_state->head->next;
3536 
3537 		/* force scan for those added after the last iteration */
3538 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3539 			mm_state->tail = mm_state->head;
3540 			walk->force_scan = true;
3541 		}
3542 
3543 		if (should_skip_mm(mm, walk))
3544 			mm = NULL;
3545 	}
3546 
3547 	if (mm_state->head == &mm_list->fifo)
3548 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3549 done:
3550 	if (*iter && !mm)
3551 		mm_state->nr_walkers--;
3552 	if (!*iter && mm)
3553 		mm_state->nr_walkers++;
3554 
3555 	if (mm_state->nr_walkers)
3556 		last = false;
3557 
3558 	if (*iter || last)
3559 		reset_mm_stats(lruvec, walk, last);
3560 
3561 	spin_unlock(&mm_list->lock);
3562 
3563 	if (mm && first)
3564 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3565 
3566 	if (*iter)
3567 		mmput_async(*iter);
3568 
3569 	*iter = mm;
3570 
3571 	return last;
3572 }
3573 
3574 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3575 {
3576 	bool success = false;
3577 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3578 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3579 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3580 
3581 	spin_lock(&mm_list->lock);
3582 
3583 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3584 
3585 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3586 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3587 
3588 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3589 		reset_mm_stats(lruvec, NULL, true);
3590 		success = true;
3591 	}
3592 
3593 	spin_unlock(&mm_list->lock);
3594 
3595 	return success;
3596 }
3597 
3598 /******************************************************************************
3599  *                          refault feedback loop
3600  ******************************************************************************/
3601 
3602 /*
3603  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3604  *
3605  * The P term is refaulted/(evicted+protected) from a tier in the generation
3606  * currently being evicted; the I term is the exponential moving average of the
3607  * P term over the generations previously evicted, using the smoothing factor
3608  * 1/2; the D term isn't supported.
3609  *
3610  * The setpoint (SP) is always the first tier of one type; the process variable
3611  * (PV) is either any tier of the other type or any other tier of the same
3612  * type.
3613  *
3614  * The error is the difference between the SP and the PV; the correction is to
3615  * turn off protection when SP>PV or turn on protection when SP<PV.
3616  *
3617  * For future optimizations:
3618  * 1. The D term may discount the other two terms over time so that long-lived
3619  *    generations can resist stale information.
3620  */
3621 struct ctrl_pos {
3622 	unsigned long refaulted;
3623 	unsigned long total;
3624 	int gain;
3625 };
3626 
3627 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3628 			  struct ctrl_pos *pos)
3629 {
3630 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3631 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3632 
3633 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3634 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3635 	pos->total = lrugen->avg_total[type][tier] +
3636 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3637 	if (tier)
3638 		pos->total += lrugen->protected[hist][type][tier - 1];
3639 	pos->gain = gain;
3640 }
3641 
3642 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3643 {
3644 	int hist, tier;
3645 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3646 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3647 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3648 
3649 	lockdep_assert_held(&lruvec->lru_lock);
3650 
3651 	if (!carryover && !clear)
3652 		return;
3653 
3654 	hist = lru_hist_from_seq(seq);
3655 
3656 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3657 		if (carryover) {
3658 			unsigned long sum;
3659 
3660 			sum = lrugen->avg_refaulted[type][tier] +
3661 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3662 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3663 
3664 			sum = lrugen->avg_total[type][tier] +
3665 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3666 			if (tier)
3667 				sum += lrugen->protected[hist][type][tier - 1];
3668 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3669 		}
3670 
3671 		if (clear) {
3672 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3673 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3674 			if (tier)
3675 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3676 		}
3677 	}
3678 }
3679 
3680 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3681 {
3682 	/*
3683 	 * Return true if the PV has a limited number of refaults or a lower
3684 	 * refaulted/total than the SP.
3685 	 */
3686 	return pv->refaulted < MIN_LRU_BATCH ||
3687 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3688 	       (sp->refaulted + 1) * pv->total * pv->gain;
3689 }
3690 
3691 /******************************************************************************
3692  *                          the aging
3693  ******************************************************************************/
3694 
3695 /* promote pages accessed through page tables */
3696 static int folio_update_gen(struct folio *folio, int gen)
3697 {
3698 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3699 
3700 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3701 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3702 
3703 	do {
3704 		/* lru_gen_del_folio() has isolated this page? */
3705 		if (!(old_flags & LRU_GEN_MASK)) {
3706 			/* for shrink_folio_list() */
3707 			new_flags = old_flags | BIT(PG_referenced);
3708 			continue;
3709 		}
3710 
3711 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3712 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3713 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3714 
3715 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3716 }
3717 
3718 /* protect pages accessed multiple times through file descriptors */
3719 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3720 {
3721 	int type = folio_is_file_lru(folio);
3722 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3723 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3724 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3725 
3726 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3727 
3728 	do {
3729 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3730 		/* folio_update_gen() has promoted this page? */
3731 		if (new_gen >= 0 && new_gen != old_gen)
3732 			return new_gen;
3733 
3734 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3735 
3736 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3737 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3738 		/* for folio_end_writeback() */
3739 		if (reclaiming)
3740 			new_flags |= BIT(PG_reclaim);
3741 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3742 
3743 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3744 
3745 	return new_gen;
3746 }
3747 
3748 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3749 			      int old_gen, int new_gen)
3750 {
3751 	int type = folio_is_file_lru(folio);
3752 	int zone = folio_zonenum(folio);
3753 	int delta = folio_nr_pages(folio);
3754 
3755 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3756 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3757 
3758 	walk->batched++;
3759 
3760 	walk->nr_pages[old_gen][type][zone] -= delta;
3761 	walk->nr_pages[new_gen][type][zone] += delta;
3762 }
3763 
3764 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3765 {
3766 	int gen, type, zone;
3767 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3768 
3769 	walk->batched = 0;
3770 
3771 	for_each_gen_type_zone(gen, type, zone) {
3772 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3773 		int delta = walk->nr_pages[gen][type][zone];
3774 
3775 		if (!delta)
3776 			continue;
3777 
3778 		walk->nr_pages[gen][type][zone] = 0;
3779 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3780 			   lrugen->nr_pages[gen][type][zone] + delta);
3781 
3782 		if (lru_gen_is_active(lruvec, gen))
3783 			lru += LRU_ACTIVE;
3784 		__update_lru_size(lruvec, lru, zone, delta);
3785 	}
3786 }
3787 
3788 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3789 {
3790 	struct address_space *mapping;
3791 	struct vm_area_struct *vma = args->vma;
3792 	struct lru_gen_mm_walk *walk = args->private;
3793 
3794 	if (!vma_is_accessible(vma))
3795 		return true;
3796 
3797 	if (is_vm_hugetlb_page(vma))
3798 		return true;
3799 
3800 	if (!vma_has_recency(vma))
3801 		return true;
3802 
3803 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3804 		return true;
3805 
3806 	if (vma == get_gate_vma(vma->vm_mm))
3807 		return true;
3808 
3809 	if (vma_is_anonymous(vma))
3810 		return !walk->can_swap;
3811 
3812 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3813 		return true;
3814 
3815 	mapping = vma->vm_file->f_mapping;
3816 	if (mapping_unevictable(mapping))
3817 		return true;
3818 
3819 	if (shmem_mapping(mapping))
3820 		return !walk->can_swap;
3821 
3822 	/* to exclude special mappings like dax, etc. */
3823 	return !mapping->a_ops->read_folio;
3824 }
3825 
3826 /*
3827  * Some userspace memory allocators map many single-page VMAs. Instead of
3828  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3829  * table to reduce zigzags and improve cache performance.
3830  */
3831 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3832 			 unsigned long *vm_start, unsigned long *vm_end)
3833 {
3834 	unsigned long start = round_up(*vm_end, size);
3835 	unsigned long end = (start | ~mask) + 1;
3836 	VMA_ITERATOR(vmi, args->mm, start);
3837 
3838 	VM_WARN_ON_ONCE(mask & size);
3839 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3840 
3841 	for_each_vma(vmi, args->vma) {
3842 		if (end && end <= args->vma->vm_start)
3843 			return false;
3844 
3845 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3846 			continue;
3847 
3848 		*vm_start = max(start, args->vma->vm_start);
3849 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3850 
3851 		return true;
3852 	}
3853 
3854 	return false;
3855 }
3856 
3857 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3858 {
3859 	unsigned long pfn = pte_pfn(pte);
3860 
3861 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3862 
3863 	if (!pte_present(pte) || is_zero_pfn(pfn))
3864 		return -1;
3865 
3866 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3867 		return -1;
3868 
3869 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3870 		return -1;
3871 
3872 	return pfn;
3873 }
3874 
3875 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3876 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3877 {
3878 	unsigned long pfn = pmd_pfn(pmd);
3879 
3880 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3881 
3882 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3883 		return -1;
3884 
3885 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3886 		return -1;
3887 
3888 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3889 		return -1;
3890 
3891 	return pfn;
3892 }
3893 #endif
3894 
3895 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3896 				   struct pglist_data *pgdat, bool can_swap)
3897 {
3898 	struct folio *folio;
3899 
3900 	/* try to avoid unnecessary memory loads */
3901 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3902 		return NULL;
3903 
3904 	folio = pfn_folio(pfn);
3905 	if (folio_nid(folio) != pgdat->node_id)
3906 		return NULL;
3907 
3908 	if (folio_memcg_rcu(folio) != memcg)
3909 		return NULL;
3910 
3911 	/* file VMAs can contain anon pages from COW */
3912 	if (!folio_is_file_lru(folio) && !can_swap)
3913 		return NULL;
3914 
3915 	return folio;
3916 }
3917 
3918 static bool suitable_to_scan(int total, int young)
3919 {
3920 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3921 
3922 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3923 	return young * n >= total;
3924 }
3925 
3926 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3927 			   struct mm_walk *args)
3928 {
3929 	int i;
3930 	pte_t *pte;
3931 	spinlock_t *ptl;
3932 	unsigned long addr;
3933 	int total = 0;
3934 	int young = 0;
3935 	struct lru_gen_mm_walk *walk = args->private;
3936 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3937 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3938 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3939 
3940 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3941 
3942 	ptl = pte_lockptr(args->mm, pmd);
3943 	if (!spin_trylock(ptl))
3944 		return false;
3945 
3946 	arch_enter_lazy_mmu_mode();
3947 
3948 	pte = pte_offset_map(pmd, start & PMD_MASK);
3949 restart:
3950 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3951 		unsigned long pfn;
3952 		struct folio *folio;
3953 
3954 		total++;
3955 		walk->mm_stats[MM_LEAF_TOTAL]++;
3956 
3957 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3958 		if (pfn == -1)
3959 			continue;
3960 
3961 		if (!pte_young(pte[i])) {
3962 			walk->mm_stats[MM_LEAF_OLD]++;
3963 			continue;
3964 		}
3965 
3966 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3967 		if (!folio)
3968 			continue;
3969 
3970 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3971 			VM_WARN_ON_ONCE(true);
3972 
3973 		young++;
3974 		walk->mm_stats[MM_LEAF_YOUNG]++;
3975 
3976 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3977 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3978 		      !folio_test_swapcache(folio)))
3979 			folio_mark_dirty(folio);
3980 
3981 		old_gen = folio_update_gen(folio, new_gen);
3982 		if (old_gen >= 0 && old_gen != new_gen)
3983 			update_batch_size(walk, folio, old_gen, new_gen);
3984 	}
3985 
3986 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3987 		goto restart;
3988 
3989 	pte_unmap(pte);
3990 
3991 	arch_leave_lazy_mmu_mode();
3992 	spin_unlock(ptl);
3993 
3994 	return suitable_to_scan(total, young);
3995 }
3996 
3997 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3998 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3999 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4000 {
4001 	int i;
4002 	pmd_t *pmd;
4003 	spinlock_t *ptl;
4004 	struct lru_gen_mm_walk *walk = args->private;
4005 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4006 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4007 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4008 
4009 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4010 
4011 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4012 	if (*start == -1) {
4013 		*start = next;
4014 		return;
4015 	}
4016 
4017 	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4018 	if (i && i <= MIN_LRU_BATCH) {
4019 		__set_bit(i - 1, bitmap);
4020 		return;
4021 	}
4022 
4023 	pmd = pmd_offset(pud, *start);
4024 
4025 	ptl = pmd_lockptr(args->mm, pmd);
4026 	if (!spin_trylock(ptl))
4027 		goto done;
4028 
4029 	arch_enter_lazy_mmu_mode();
4030 
4031 	do {
4032 		unsigned long pfn;
4033 		struct folio *folio;
4034 		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4035 
4036 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4037 		if (pfn == -1)
4038 			goto next;
4039 
4040 		if (!pmd_trans_huge(pmd[i])) {
4041 			if (arch_has_hw_nonleaf_pmd_young() &&
4042 			    get_cap(LRU_GEN_NONLEAF_YOUNG))
4043 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4044 			goto next;
4045 		}
4046 
4047 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4048 		if (!folio)
4049 			goto next;
4050 
4051 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4052 			goto next;
4053 
4054 		walk->mm_stats[MM_LEAF_YOUNG]++;
4055 
4056 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4057 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4058 		      !folio_test_swapcache(folio)))
4059 			folio_mark_dirty(folio);
4060 
4061 		old_gen = folio_update_gen(folio, new_gen);
4062 		if (old_gen >= 0 && old_gen != new_gen)
4063 			update_batch_size(walk, folio, old_gen, new_gen);
4064 next:
4065 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4066 	} while (i <= MIN_LRU_BATCH);
4067 
4068 	arch_leave_lazy_mmu_mode();
4069 	spin_unlock(ptl);
4070 done:
4071 	*start = -1;
4072 	bitmap_zero(bitmap, MIN_LRU_BATCH);
4073 }
4074 #else
4075 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4076 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4077 {
4078 }
4079 #endif
4080 
4081 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4082 			   struct mm_walk *args)
4083 {
4084 	int i;
4085 	pmd_t *pmd;
4086 	unsigned long next;
4087 	unsigned long addr;
4088 	struct vm_area_struct *vma;
4089 	unsigned long pos = -1;
4090 	struct lru_gen_mm_walk *walk = args->private;
4091 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4092 
4093 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4094 
4095 	/*
4096 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4097 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4098 	 * the PMD lock to clear the accessed bit in PMD entries.
4099 	 */
4100 	pmd = pmd_offset(pud, start & PUD_MASK);
4101 restart:
4102 	/* walk_pte_range() may call get_next_vma() */
4103 	vma = args->vma;
4104 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4105 		pmd_t val = pmdp_get_lockless(pmd + i);
4106 
4107 		next = pmd_addr_end(addr, end);
4108 
4109 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4110 			walk->mm_stats[MM_LEAF_TOTAL]++;
4111 			continue;
4112 		}
4113 
4114 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4115 		if (pmd_trans_huge(val)) {
4116 			unsigned long pfn = pmd_pfn(val);
4117 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4118 
4119 			walk->mm_stats[MM_LEAF_TOTAL]++;
4120 
4121 			if (!pmd_young(val)) {
4122 				walk->mm_stats[MM_LEAF_OLD]++;
4123 				continue;
4124 			}
4125 
4126 			/* try to avoid unnecessary memory loads */
4127 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4128 				continue;
4129 
4130 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4131 			continue;
4132 		}
4133 #endif
4134 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4135 
4136 		if (arch_has_hw_nonleaf_pmd_young() &&
4137 		    get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4138 			if (!pmd_young(val))
4139 				continue;
4140 
4141 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4142 		}
4143 
4144 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4145 			continue;
4146 
4147 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4148 
4149 		if (!walk_pte_range(&val, addr, next, args))
4150 			continue;
4151 
4152 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4153 
4154 		/* carry over to the next generation */
4155 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4156 	}
4157 
4158 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4159 
4160 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4161 		goto restart;
4162 }
4163 
4164 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4165 			  struct mm_walk *args)
4166 {
4167 	int i;
4168 	pud_t *pud;
4169 	unsigned long addr;
4170 	unsigned long next;
4171 	struct lru_gen_mm_walk *walk = args->private;
4172 
4173 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4174 
4175 	pud = pud_offset(p4d, start & P4D_MASK);
4176 restart:
4177 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4178 		pud_t val = READ_ONCE(pud[i]);
4179 
4180 		next = pud_addr_end(addr, end);
4181 
4182 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4183 			continue;
4184 
4185 		walk_pmd_range(&val, addr, next, args);
4186 
4187 		/* a racy check to curtail the waiting time */
4188 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4189 			return 1;
4190 
4191 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4192 			end = (addr | ~PUD_MASK) + 1;
4193 			goto done;
4194 		}
4195 	}
4196 
4197 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4198 		goto restart;
4199 
4200 	end = round_up(end, P4D_SIZE);
4201 done:
4202 	if (!end || !args->vma)
4203 		return 1;
4204 
4205 	walk->next_addr = max(end, args->vma->vm_start);
4206 
4207 	return -EAGAIN;
4208 }
4209 
4210 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4211 {
4212 	static const struct mm_walk_ops mm_walk_ops = {
4213 		.test_walk = should_skip_vma,
4214 		.p4d_entry = walk_pud_range,
4215 	};
4216 
4217 	int err;
4218 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4219 
4220 	walk->next_addr = FIRST_USER_ADDRESS;
4221 
4222 	do {
4223 		err = -EBUSY;
4224 
4225 		/* folio_update_gen() requires stable folio_memcg() */
4226 		if (!mem_cgroup_trylock_pages(memcg))
4227 			break;
4228 
4229 		/* the caller might be holding the lock for write */
4230 		if (mmap_read_trylock(mm)) {
4231 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4232 
4233 			mmap_read_unlock(mm);
4234 		}
4235 
4236 		mem_cgroup_unlock_pages();
4237 
4238 		if (walk->batched) {
4239 			spin_lock_irq(&lruvec->lru_lock);
4240 			reset_batch_size(lruvec, walk);
4241 			spin_unlock_irq(&lruvec->lru_lock);
4242 		}
4243 
4244 		cond_resched();
4245 	} while (err == -EAGAIN);
4246 }
4247 
4248 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4249 {
4250 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4251 
4252 	if (pgdat && current_is_kswapd()) {
4253 		VM_WARN_ON_ONCE(walk);
4254 
4255 		walk = &pgdat->mm_walk;
4256 	} else if (!walk && force_alloc) {
4257 		VM_WARN_ON_ONCE(current_is_kswapd());
4258 
4259 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4260 	}
4261 
4262 	current->reclaim_state->mm_walk = walk;
4263 
4264 	return walk;
4265 }
4266 
4267 static void clear_mm_walk(void)
4268 {
4269 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4270 
4271 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4272 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4273 
4274 	current->reclaim_state->mm_walk = NULL;
4275 
4276 	if (!current_is_kswapd())
4277 		kfree(walk);
4278 }
4279 
4280 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4281 {
4282 	int zone;
4283 	int remaining = MAX_LRU_BATCH;
4284 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4285 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4286 
4287 	if (type == LRU_GEN_ANON && !can_swap)
4288 		goto done;
4289 
4290 	/* prevent cold/hot inversion if force_scan is true */
4291 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4292 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4293 
4294 		while (!list_empty(head)) {
4295 			struct folio *folio = lru_to_folio(head);
4296 
4297 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4298 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4299 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4300 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4301 
4302 			new_gen = folio_inc_gen(lruvec, folio, false);
4303 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4304 
4305 			if (!--remaining)
4306 				return false;
4307 		}
4308 	}
4309 done:
4310 	reset_ctrl_pos(lruvec, type, true);
4311 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4312 
4313 	return true;
4314 }
4315 
4316 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4317 {
4318 	int gen, type, zone;
4319 	bool success = false;
4320 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4321 	DEFINE_MIN_SEQ(lruvec);
4322 
4323 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4324 
4325 	/* find the oldest populated generation */
4326 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4327 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4328 			gen = lru_gen_from_seq(min_seq[type]);
4329 
4330 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4331 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4332 					goto next;
4333 			}
4334 
4335 			min_seq[type]++;
4336 		}
4337 next:
4338 		;
4339 	}
4340 
4341 	/* see the comment on lru_gen_folio */
4342 	if (can_swap) {
4343 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4344 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4345 	}
4346 
4347 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4348 		if (min_seq[type] == lrugen->min_seq[type])
4349 			continue;
4350 
4351 		reset_ctrl_pos(lruvec, type, true);
4352 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4353 		success = true;
4354 	}
4355 
4356 	return success;
4357 }
4358 
4359 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4360 {
4361 	int prev, next;
4362 	int type, zone;
4363 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4364 
4365 	spin_lock_irq(&lruvec->lru_lock);
4366 
4367 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4368 
4369 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4370 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4371 			continue;
4372 
4373 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4374 
4375 		while (!inc_min_seq(lruvec, type, can_swap)) {
4376 			spin_unlock_irq(&lruvec->lru_lock);
4377 			cond_resched();
4378 			spin_lock_irq(&lruvec->lru_lock);
4379 		}
4380 	}
4381 
4382 	/*
4383 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4384 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4385 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4386 	 * overlap, cold/hot inversion happens.
4387 	 */
4388 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4389 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4390 
4391 	for (type = 0; type < ANON_AND_FILE; type++) {
4392 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4393 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4394 			long delta = lrugen->nr_pages[prev][type][zone] -
4395 				     lrugen->nr_pages[next][type][zone];
4396 
4397 			if (!delta)
4398 				continue;
4399 
4400 			__update_lru_size(lruvec, lru, zone, delta);
4401 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4402 		}
4403 	}
4404 
4405 	for (type = 0; type < ANON_AND_FILE; type++)
4406 		reset_ctrl_pos(lruvec, type, false);
4407 
4408 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4409 	/* make sure preceding modifications appear */
4410 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4411 
4412 	spin_unlock_irq(&lruvec->lru_lock);
4413 }
4414 
4415 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4416 			       struct scan_control *sc, bool can_swap, bool force_scan)
4417 {
4418 	bool success;
4419 	struct lru_gen_mm_walk *walk;
4420 	struct mm_struct *mm = NULL;
4421 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4422 
4423 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4424 
4425 	/* see the comment in iterate_mm_list() */
4426 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4427 		success = false;
4428 		goto done;
4429 	}
4430 
4431 	/*
4432 	 * If the hardware doesn't automatically set the accessed bit, fallback
4433 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4434 	 * handful of PTEs. Spreading the work out over a period of time usually
4435 	 * is less efficient, but it avoids bursty page faults.
4436 	 */
4437 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4438 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4439 		goto done;
4440 	}
4441 
4442 	walk = set_mm_walk(NULL, true);
4443 	if (!walk) {
4444 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4445 		goto done;
4446 	}
4447 
4448 	walk->lruvec = lruvec;
4449 	walk->max_seq = max_seq;
4450 	walk->can_swap = can_swap;
4451 	walk->force_scan = force_scan;
4452 
4453 	do {
4454 		success = iterate_mm_list(lruvec, walk, &mm);
4455 		if (mm)
4456 			walk_mm(lruvec, mm, walk);
4457 
4458 		cond_resched();
4459 	} while (mm);
4460 done:
4461 	if (!success) {
4462 		if (sc->priority <= DEF_PRIORITY - 2)
4463 			wait_event_killable(lruvec->mm_state.wait,
4464 					    max_seq < READ_ONCE(lrugen->max_seq));
4465 		return false;
4466 	}
4467 
4468 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4469 
4470 	inc_max_seq(lruvec, can_swap, force_scan);
4471 	/* either this sees any waiters or they will see updated max_seq */
4472 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4473 		wake_up_all(&lruvec->mm_state.wait);
4474 
4475 	return true;
4476 }
4477 
4478 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4479 {
4480 	int gen, type, zone;
4481 	unsigned long total = 0;
4482 	bool can_swap = get_swappiness(lruvec, sc);
4483 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4484 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4485 	DEFINE_MAX_SEQ(lruvec);
4486 	DEFINE_MIN_SEQ(lruvec);
4487 
4488 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4489 		unsigned long seq;
4490 
4491 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4492 			gen = lru_gen_from_seq(seq);
4493 
4494 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4495 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4496 		}
4497 	}
4498 
4499 	/* whether the size is big enough to be helpful */
4500 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4501 }
4502 
4503 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4504 				  unsigned long min_ttl)
4505 {
4506 	int gen;
4507 	unsigned long birth;
4508 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4509 	DEFINE_MIN_SEQ(lruvec);
4510 
4511 	/* see the comment on lru_gen_folio */
4512 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4513 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4514 
4515 	if (time_is_after_jiffies(birth + min_ttl))
4516 		return false;
4517 
4518 	if (!lruvec_is_sizable(lruvec, sc))
4519 		return false;
4520 
4521 	mem_cgroup_calculate_protection(NULL, memcg);
4522 
4523 	return !mem_cgroup_below_min(NULL, memcg);
4524 }
4525 
4526 /* to protect the working set of the last N jiffies */
4527 static unsigned long lru_gen_min_ttl __read_mostly;
4528 
4529 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4530 {
4531 	struct mem_cgroup *memcg;
4532 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4533 
4534 	VM_WARN_ON_ONCE(!current_is_kswapd());
4535 
4536 	/* check the order to exclude compaction-induced reclaim */
4537 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4538 		return;
4539 
4540 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4541 	do {
4542 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4543 
4544 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4545 			mem_cgroup_iter_break(NULL, memcg);
4546 			return;
4547 		}
4548 
4549 		cond_resched();
4550 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4551 
4552 	/*
4553 	 * The main goal is to OOM kill if every generation from all memcgs is
4554 	 * younger than min_ttl. However, another possibility is all memcgs are
4555 	 * either too small or below min.
4556 	 */
4557 	if (mutex_trylock(&oom_lock)) {
4558 		struct oom_control oc = {
4559 			.gfp_mask = sc->gfp_mask,
4560 		};
4561 
4562 		out_of_memory(&oc);
4563 
4564 		mutex_unlock(&oom_lock);
4565 	}
4566 }
4567 
4568 /*
4569  * This function exploits spatial locality when shrink_folio_list() walks the
4570  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4571  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4572  * the PTE table to the Bloom filter. This forms a feedback loop between the
4573  * eviction and the aging.
4574  */
4575 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4576 {
4577 	int i;
4578 	pte_t *pte;
4579 	unsigned long start;
4580 	unsigned long end;
4581 	unsigned long addr;
4582 	struct lru_gen_mm_walk *walk;
4583 	int young = 0;
4584 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4585 	struct folio *folio = pfn_folio(pvmw->pfn);
4586 	struct mem_cgroup *memcg = folio_memcg(folio);
4587 	struct pglist_data *pgdat = folio_pgdat(folio);
4588 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4589 	DEFINE_MAX_SEQ(lruvec);
4590 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4591 
4592 	lockdep_assert_held(pvmw->ptl);
4593 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4594 
4595 	if (spin_is_contended(pvmw->ptl))
4596 		return;
4597 
4598 	/* avoid taking the LRU lock under the PTL when possible */
4599 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4600 
4601 	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4602 	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4603 
4604 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4605 		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4606 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4607 		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4608 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4609 		else {
4610 			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4611 			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4612 		}
4613 	}
4614 
4615 	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4616 
4617 	rcu_read_lock();
4618 	arch_enter_lazy_mmu_mode();
4619 
4620 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4621 		unsigned long pfn;
4622 
4623 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4624 		if (pfn == -1)
4625 			continue;
4626 
4627 		if (!pte_young(pte[i]))
4628 			continue;
4629 
4630 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4631 		if (!folio)
4632 			continue;
4633 
4634 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4635 			VM_WARN_ON_ONCE(true);
4636 
4637 		young++;
4638 
4639 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4640 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4641 		      !folio_test_swapcache(folio)))
4642 			folio_mark_dirty(folio);
4643 
4644 		old_gen = folio_lru_gen(folio);
4645 		if (old_gen < 0)
4646 			folio_set_referenced(folio);
4647 		else if (old_gen != new_gen)
4648 			__set_bit(i, bitmap);
4649 	}
4650 
4651 	arch_leave_lazy_mmu_mode();
4652 	rcu_read_unlock();
4653 
4654 	/* feedback from rmap walkers to page table walkers */
4655 	if (suitable_to_scan(i, young))
4656 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4657 
4658 	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4659 		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4660 			folio = pfn_folio(pte_pfn(pte[i]));
4661 			folio_activate(folio);
4662 		}
4663 		return;
4664 	}
4665 
4666 	/* folio_update_gen() requires stable folio_memcg() */
4667 	if (!mem_cgroup_trylock_pages(memcg))
4668 		return;
4669 
4670 	if (!walk) {
4671 		spin_lock_irq(&lruvec->lru_lock);
4672 		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4673 	}
4674 
4675 	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4676 		folio = pfn_folio(pte_pfn(pte[i]));
4677 		if (folio_memcg_rcu(folio) != memcg)
4678 			continue;
4679 
4680 		old_gen = folio_update_gen(folio, new_gen);
4681 		if (old_gen < 0 || old_gen == new_gen)
4682 			continue;
4683 
4684 		if (walk)
4685 			update_batch_size(walk, folio, old_gen, new_gen);
4686 		else
4687 			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4688 	}
4689 
4690 	if (!walk)
4691 		spin_unlock_irq(&lruvec->lru_lock);
4692 
4693 	mem_cgroup_unlock_pages();
4694 }
4695 
4696 /******************************************************************************
4697  *                          the eviction
4698  ******************************************************************************/
4699 
4700 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4701 {
4702 	bool success;
4703 	int gen = folio_lru_gen(folio);
4704 	int type = folio_is_file_lru(folio);
4705 	int zone = folio_zonenum(folio);
4706 	int delta = folio_nr_pages(folio);
4707 	int refs = folio_lru_refs(folio);
4708 	int tier = lru_tier_from_refs(refs);
4709 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4710 
4711 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4712 
4713 	/* unevictable */
4714 	if (!folio_evictable(folio)) {
4715 		success = lru_gen_del_folio(lruvec, folio, true);
4716 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4717 		folio_set_unevictable(folio);
4718 		lruvec_add_folio(lruvec, folio);
4719 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4720 		return true;
4721 	}
4722 
4723 	/* dirty lazyfree */
4724 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4725 		success = lru_gen_del_folio(lruvec, folio, true);
4726 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4727 		folio_set_swapbacked(folio);
4728 		lruvec_add_folio_tail(lruvec, folio);
4729 		return true;
4730 	}
4731 
4732 	/* promoted */
4733 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4734 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4735 		return true;
4736 	}
4737 
4738 	/* protected */
4739 	if (tier > tier_idx) {
4740 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4741 
4742 		gen = folio_inc_gen(lruvec, folio, false);
4743 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4744 
4745 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4746 			   lrugen->protected[hist][type][tier - 1] + delta);
4747 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4748 		return true;
4749 	}
4750 
4751 	/* waiting for writeback */
4752 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4753 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4754 		gen = folio_inc_gen(lruvec, folio, true);
4755 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4756 		return true;
4757 	}
4758 
4759 	return false;
4760 }
4761 
4762 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4763 {
4764 	bool success;
4765 
4766 	/* swapping inhibited */
4767 	if (!(sc->gfp_mask & __GFP_IO) &&
4768 	    (folio_test_dirty(folio) ||
4769 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4770 		return false;
4771 
4772 	/* raced with release_pages() */
4773 	if (!folio_try_get(folio))
4774 		return false;
4775 
4776 	/* raced with another isolation */
4777 	if (!folio_test_clear_lru(folio)) {
4778 		folio_put(folio);
4779 		return false;
4780 	}
4781 
4782 	/* see the comment on MAX_NR_TIERS */
4783 	if (!folio_test_referenced(folio))
4784 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4785 
4786 	/* for shrink_folio_list() */
4787 	folio_clear_reclaim(folio);
4788 	folio_clear_referenced(folio);
4789 
4790 	success = lru_gen_del_folio(lruvec, folio, true);
4791 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4792 
4793 	return true;
4794 }
4795 
4796 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4797 		       int type, int tier, struct list_head *list)
4798 {
4799 	int gen, zone;
4800 	enum vm_event_item item;
4801 	int sorted = 0;
4802 	int scanned = 0;
4803 	int isolated = 0;
4804 	int remaining = MAX_LRU_BATCH;
4805 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4806 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4807 
4808 	VM_WARN_ON_ONCE(!list_empty(list));
4809 
4810 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4811 		return 0;
4812 
4813 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4814 
4815 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4816 		LIST_HEAD(moved);
4817 		int skipped = 0;
4818 		struct list_head *head = &lrugen->folios[gen][type][zone];
4819 
4820 		while (!list_empty(head)) {
4821 			struct folio *folio = lru_to_folio(head);
4822 			int delta = folio_nr_pages(folio);
4823 
4824 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4825 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4826 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4827 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4828 
4829 			scanned += delta;
4830 
4831 			if (sort_folio(lruvec, folio, tier))
4832 				sorted += delta;
4833 			else if (isolate_folio(lruvec, folio, sc)) {
4834 				list_add(&folio->lru, list);
4835 				isolated += delta;
4836 			} else {
4837 				list_move(&folio->lru, &moved);
4838 				skipped += delta;
4839 			}
4840 
4841 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4842 				break;
4843 		}
4844 
4845 		if (skipped) {
4846 			list_splice(&moved, head);
4847 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4848 		}
4849 
4850 		if (!remaining || isolated >= MIN_LRU_BATCH)
4851 			break;
4852 	}
4853 
4854 	item = PGSCAN_KSWAPD + reclaimer_offset();
4855 	if (!cgroup_reclaim(sc)) {
4856 		__count_vm_events(item, isolated);
4857 		__count_vm_events(PGREFILL, sorted);
4858 	}
4859 	__count_memcg_events(memcg, item, isolated);
4860 	__count_memcg_events(memcg, PGREFILL, sorted);
4861 	__count_vm_events(PGSCAN_ANON + type, isolated);
4862 
4863 	/*
4864 	 * There might not be eligible folios due to reclaim_idx. Check the
4865 	 * remaining to prevent livelock if it's not making progress.
4866 	 */
4867 	return isolated || !remaining ? scanned : 0;
4868 }
4869 
4870 static int get_tier_idx(struct lruvec *lruvec, int type)
4871 {
4872 	int tier;
4873 	struct ctrl_pos sp, pv;
4874 
4875 	/*
4876 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4877 	 * This value is chosen because any other tier would have at least twice
4878 	 * as many refaults as the first tier.
4879 	 */
4880 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4881 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4882 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4883 		if (!positive_ctrl_err(&sp, &pv))
4884 			break;
4885 	}
4886 
4887 	return tier - 1;
4888 }
4889 
4890 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4891 {
4892 	int type, tier;
4893 	struct ctrl_pos sp, pv;
4894 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4895 
4896 	/*
4897 	 * Compare the first tier of anon with that of file to determine which
4898 	 * type to scan. Also need to compare other tiers of the selected type
4899 	 * with the first tier of the other type to determine the last tier (of
4900 	 * the selected type) to evict.
4901 	 */
4902 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4903 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4904 	type = positive_ctrl_err(&sp, &pv);
4905 
4906 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4907 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4908 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4909 		if (!positive_ctrl_err(&sp, &pv))
4910 			break;
4911 	}
4912 
4913 	*tier_idx = tier - 1;
4914 
4915 	return type;
4916 }
4917 
4918 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4919 			  int *type_scanned, struct list_head *list)
4920 {
4921 	int i;
4922 	int type;
4923 	int scanned;
4924 	int tier = -1;
4925 	DEFINE_MIN_SEQ(lruvec);
4926 
4927 	/*
4928 	 * Try to make the obvious choice first. When anon and file are both
4929 	 * available from the same generation, interpret swappiness 1 as file
4930 	 * first and 200 as anon first.
4931 	 */
4932 	if (!swappiness)
4933 		type = LRU_GEN_FILE;
4934 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4935 		type = LRU_GEN_ANON;
4936 	else if (swappiness == 1)
4937 		type = LRU_GEN_FILE;
4938 	else if (swappiness == 200)
4939 		type = LRU_GEN_ANON;
4940 	else
4941 		type = get_type_to_scan(lruvec, swappiness, &tier);
4942 
4943 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4944 		if (tier < 0)
4945 			tier = get_tier_idx(lruvec, type);
4946 
4947 		scanned = scan_folios(lruvec, sc, type, tier, list);
4948 		if (scanned)
4949 			break;
4950 
4951 		type = !type;
4952 		tier = -1;
4953 	}
4954 
4955 	*type_scanned = type;
4956 
4957 	return scanned;
4958 }
4959 
4960 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4961 {
4962 	int type;
4963 	int scanned;
4964 	int reclaimed;
4965 	LIST_HEAD(list);
4966 	LIST_HEAD(clean);
4967 	struct folio *folio;
4968 	struct folio *next;
4969 	enum vm_event_item item;
4970 	struct reclaim_stat stat;
4971 	struct lru_gen_mm_walk *walk;
4972 	bool skip_retry = false;
4973 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4974 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4975 
4976 	spin_lock_irq(&lruvec->lru_lock);
4977 
4978 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4979 
4980 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4981 
4982 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4983 		scanned = 0;
4984 
4985 	spin_unlock_irq(&lruvec->lru_lock);
4986 
4987 	if (list_empty(&list))
4988 		return scanned;
4989 retry:
4990 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4991 	sc->nr_reclaimed += reclaimed;
4992 
4993 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4994 		if (!folio_evictable(folio)) {
4995 			list_del(&folio->lru);
4996 			folio_putback_lru(folio);
4997 			continue;
4998 		}
4999 
5000 		if (folio_test_reclaim(folio) &&
5001 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5002 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5003 			if (folio_test_workingset(folio))
5004 				folio_set_referenced(folio);
5005 			continue;
5006 		}
5007 
5008 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5009 		    folio_mapped(folio) || folio_test_locked(folio) ||
5010 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5011 			/* don't add rejected folios to the oldest generation */
5012 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5013 				      BIT(PG_active));
5014 			continue;
5015 		}
5016 
5017 		/* retry folios that may have missed folio_rotate_reclaimable() */
5018 		list_move(&folio->lru, &clean);
5019 		sc->nr_scanned -= folio_nr_pages(folio);
5020 	}
5021 
5022 	spin_lock_irq(&lruvec->lru_lock);
5023 
5024 	move_folios_to_lru(lruvec, &list);
5025 
5026 	walk = current->reclaim_state->mm_walk;
5027 	if (walk && walk->batched)
5028 		reset_batch_size(lruvec, walk);
5029 
5030 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5031 	if (!cgroup_reclaim(sc))
5032 		__count_vm_events(item, reclaimed);
5033 	__count_memcg_events(memcg, item, reclaimed);
5034 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5035 
5036 	spin_unlock_irq(&lruvec->lru_lock);
5037 
5038 	mem_cgroup_uncharge_list(&list);
5039 	free_unref_page_list(&list);
5040 
5041 	INIT_LIST_HEAD(&list);
5042 	list_splice_init(&clean, &list);
5043 
5044 	if (!list_empty(&list)) {
5045 		skip_retry = true;
5046 		goto retry;
5047 	}
5048 
5049 	return scanned;
5050 }
5051 
5052 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5053 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5054 {
5055 	int gen, type, zone;
5056 	unsigned long old = 0;
5057 	unsigned long young = 0;
5058 	unsigned long total = 0;
5059 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5060 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5061 	DEFINE_MIN_SEQ(lruvec);
5062 
5063 	/* whether this lruvec is completely out of cold folios */
5064 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5065 		*nr_to_scan = 0;
5066 		return true;
5067 	}
5068 
5069 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5070 		unsigned long seq;
5071 
5072 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5073 			unsigned long size = 0;
5074 
5075 			gen = lru_gen_from_seq(seq);
5076 
5077 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5078 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5079 
5080 			total += size;
5081 			if (seq == max_seq)
5082 				young += size;
5083 			else if (seq + MIN_NR_GENS == max_seq)
5084 				old += size;
5085 		}
5086 	}
5087 
5088 	/* try to scrape all its memory if this memcg was deleted */
5089 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5090 
5091 	/*
5092 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5093 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5094 	 * ideal number of generations is MIN_NR_GENS+1.
5095 	 */
5096 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5097 		return false;
5098 
5099 	/*
5100 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5101 	 * of the total number of pages for each generation. A reasonable range
5102 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5103 	 * aging cares about the upper bound of hot pages, while the eviction
5104 	 * cares about the lower bound of cold pages.
5105 	 */
5106 	if (young * MIN_NR_GENS > total)
5107 		return true;
5108 	if (old * (MIN_NR_GENS + 2) < total)
5109 		return true;
5110 
5111 	return false;
5112 }
5113 
5114 /*
5115  * For future optimizations:
5116  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5117  *    reclaim.
5118  */
5119 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5120 {
5121 	unsigned long nr_to_scan;
5122 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5123 	DEFINE_MAX_SEQ(lruvec);
5124 
5125 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5126 		return 0;
5127 
5128 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5129 		return nr_to_scan;
5130 
5131 	/* skip the aging path at the default priority */
5132 	if (sc->priority == DEF_PRIORITY)
5133 		return nr_to_scan;
5134 
5135 	/* skip this lruvec as it's low on cold folios */
5136 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5137 }
5138 
5139 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5140 {
5141 	/* don't abort memcg reclaim to ensure fairness */
5142 	if (!global_reclaim(sc))
5143 		return -1;
5144 
5145 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5146 }
5147 
5148 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5149 {
5150 	long nr_to_scan;
5151 	unsigned long scanned = 0;
5152 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5153 	int swappiness = get_swappiness(lruvec, sc);
5154 
5155 	/* clean file folios are more likely to exist */
5156 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5157 		swappiness = 1;
5158 
5159 	while (true) {
5160 		int delta;
5161 
5162 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5163 		if (nr_to_scan <= 0)
5164 			break;
5165 
5166 		delta = evict_folios(lruvec, sc, swappiness);
5167 		if (!delta)
5168 			break;
5169 
5170 		scanned += delta;
5171 		if (scanned >= nr_to_scan)
5172 			break;
5173 
5174 		if (sc->nr_reclaimed >= nr_to_reclaim)
5175 			break;
5176 
5177 		cond_resched();
5178 	}
5179 
5180 	/* whether try_to_inc_max_seq() was successful */
5181 	return nr_to_scan < 0;
5182 }
5183 
5184 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5185 {
5186 	bool success;
5187 	unsigned long scanned = sc->nr_scanned;
5188 	unsigned long reclaimed = sc->nr_reclaimed;
5189 	int seg = lru_gen_memcg_seg(lruvec);
5190 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5191 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5192 
5193 	/* see the comment on MEMCG_NR_GENS */
5194 	if (!lruvec_is_sizable(lruvec, sc))
5195 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5196 
5197 	mem_cgroup_calculate_protection(NULL, memcg);
5198 
5199 	if (mem_cgroup_below_min(NULL, memcg))
5200 		return MEMCG_LRU_YOUNG;
5201 
5202 	if (mem_cgroup_below_low(NULL, memcg)) {
5203 		/* see the comment on MEMCG_NR_GENS */
5204 		if (seg != MEMCG_LRU_TAIL)
5205 			return MEMCG_LRU_TAIL;
5206 
5207 		memcg_memory_event(memcg, MEMCG_LOW);
5208 	}
5209 
5210 	success = try_to_shrink_lruvec(lruvec, sc);
5211 
5212 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5213 
5214 	if (!sc->proactive)
5215 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5216 			   sc->nr_reclaimed - reclaimed);
5217 
5218 	sc->nr_reclaimed += current->reclaim_state->reclaimed_slab;
5219 	current->reclaim_state->reclaimed_slab = 0;
5220 
5221 	return success ? MEMCG_LRU_YOUNG : 0;
5222 }
5223 
5224 #ifdef CONFIG_MEMCG
5225 
5226 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5227 {
5228 	int gen;
5229 	int bin;
5230 	int first_bin;
5231 	struct lruvec *lruvec;
5232 	struct lru_gen_folio *lrugen;
5233 	const struct hlist_nulls_node *pos;
5234 	int op = 0;
5235 	struct mem_cgroup *memcg = NULL;
5236 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5237 
5238 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5239 restart:
5240 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5241 
5242 	rcu_read_lock();
5243 
5244 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5245 		if (op)
5246 			lru_gen_rotate_memcg(lruvec, op);
5247 
5248 		mem_cgroup_put(memcg);
5249 
5250 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5251 		memcg = lruvec_memcg(lruvec);
5252 
5253 		if (!mem_cgroup_tryget(memcg)) {
5254 			op = 0;
5255 			memcg = NULL;
5256 			continue;
5257 		}
5258 
5259 		rcu_read_unlock();
5260 
5261 		op = shrink_one(lruvec, sc);
5262 
5263 		if (sc->nr_reclaimed >= nr_to_reclaim)
5264 			goto success;
5265 
5266 		rcu_read_lock();
5267 	}
5268 
5269 	rcu_read_unlock();
5270 
5271 	/* restart if raced with lru_gen_rotate_memcg() */
5272 	if (gen != get_nulls_value(pos))
5273 		goto restart;
5274 
5275 	/* try the rest of the bins of the current generation */
5276 	bin = get_memcg_bin(bin + 1);
5277 	if (bin != first_bin)
5278 		goto restart;
5279 success:
5280 	if (op)
5281 		lru_gen_rotate_memcg(lruvec, op);
5282 
5283 	mem_cgroup_put(memcg);
5284 }
5285 
5286 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5287 {
5288 	struct blk_plug plug;
5289 
5290 	VM_WARN_ON_ONCE(global_reclaim(sc));
5291 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5292 
5293 	lru_add_drain();
5294 
5295 	blk_start_plug(&plug);
5296 
5297 	set_mm_walk(NULL, sc->proactive);
5298 
5299 	if (try_to_shrink_lruvec(lruvec, sc))
5300 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5301 
5302 	clear_mm_walk();
5303 
5304 	blk_finish_plug(&plug);
5305 }
5306 
5307 #else /* !CONFIG_MEMCG */
5308 
5309 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5310 {
5311 	BUILD_BUG();
5312 }
5313 
5314 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5315 {
5316 	BUILD_BUG();
5317 }
5318 
5319 #endif
5320 
5321 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5322 {
5323 	int priority;
5324 	unsigned long reclaimable;
5325 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5326 
5327 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5328 		return;
5329 	/*
5330 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5331 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5332 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5333 	 */
5334 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5335 	if (get_swappiness(lruvec, sc))
5336 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5337 
5338 	reclaimable /= MEMCG_NR_GENS;
5339 
5340 	/* round down reclaimable and round up sc->nr_to_reclaim */
5341 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5342 
5343 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5344 }
5345 
5346 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5347 {
5348 	struct blk_plug plug;
5349 	unsigned long reclaimed = sc->nr_reclaimed;
5350 
5351 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5352 
5353 	/*
5354 	 * Unmapped clean folios are already prioritized. Scanning for more of
5355 	 * them is likely futile and can cause high reclaim latency when there
5356 	 * is a large number of memcgs.
5357 	 */
5358 	if (!sc->may_writepage || !sc->may_unmap)
5359 		goto done;
5360 
5361 	lru_add_drain();
5362 
5363 	blk_start_plug(&plug);
5364 
5365 	set_mm_walk(pgdat, sc->proactive);
5366 
5367 	set_initial_priority(pgdat, sc);
5368 
5369 	if (current_is_kswapd())
5370 		sc->nr_reclaimed = 0;
5371 
5372 	if (mem_cgroup_disabled())
5373 		shrink_one(&pgdat->__lruvec, sc);
5374 	else
5375 		shrink_many(pgdat, sc);
5376 
5377 	if (current_is_kswapd())
5378 		sc->nr_reclaimed += reclaimed;
5379 
5380 	clear_mm_walk();
5381 
5382 	blk_finish_plug(&plug);
5383 done:
5384 	/* kswapd should never fail */
5385 	pgdat->kswapd_failures = 0;
5386 }
5387 
5388 #ifdef CONFIG_MEMCG
5389 void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
5390 {
5391 	int seg;
5392 	int old, new;
5393 	int bin = get_random_u32_below(MEMCG_NR_BINS);
5394 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5395 
5396 	spin_lock(&pgdat->memcg_lru.lock);
5397 
5398 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
5399 
5400 	seg = 0;
5401 	new = old = lruvec->lrugen.gen;
5402 
5403 	/* see the comment on MEMCG_NR_GENS */
5404 	if (op == MEMCG_LRU_HEAD)
5405 		seg = MEMCG_LRU_HEAD;
5406 	else if (op == MEMCG_LRU_TAIL)
5407 		seg = MEMCG_LRU_TAIL;
5408 	else if (op == MEMCG_LRU_OLD)
5409 		new = get_memcg_gen(pgdat->memcg_lru.seq);
5410 	else if (op == MEMCG_LRU_YOUNG)
5411 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
5412 	else
5413 		VM_WARN_ON_ONCE(true);
5414 
5415 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
5416 
5417 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
5418 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
5419 	else
5420 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
5421 
5422 	pgdat->memcg_lru.nr_memcgs[old]--;
5423 	pgdat->memcg_lru.nr_memcgs[new]++;
5424 
5425 	lruvec->lrugen.gen = new;
5426 	WRITE_ONCE(lruvec->lrugen.seg, seg);
5427 
5428 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
5429 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
5430 
5431 	spin_unlock(&pgdat->memcg_lru.lock);
5432 }
5433 #endif
5434 
5435 /******************************************************************************
5436  *                          state change
5437  ******************************************************************************/
5438 
5439 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5440 {
5441 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5442 
5443 	if (lrugen->enabled) {
5444 		enum lru_list lru;
5445 
5446 		for_each_evictable_lru(lru) {
5447 			if (!list_empty(&lruvec->lists[lru]))
5448 				return false;
5449 		}
5450 	} else {
5451 		int gen, type, zone;
5452 
5453 		for_each_gen_type_zone(gen, type, zone) {
5454 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5455 				return false;
5456 		}
5457 	}
5458 
5459 	return true;
5460 }
5461 
5462 static bool fill_evictable(struct lruvec *lruvec)
5463 {
5464 	enum lru_list lru;
5465 	int remaining = MAX_LRU_BATCH;
5466 
5467 	for_each_evictable_lru(lru) {
5468 		int type = is_file_lru(lru);
5469 		bool active = is_active_lru(lru);
5470 		struct list_head *head = &lruvec->lists[lru];
5471 
5472 		while (!list_empty(head)) {
5473 			bool success;
5474 			struct folio *folio = lru_to_folio(head);
5475 
5476 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5477 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5478 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5479 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5480 
5481 			lruvec_del_folio(lruvec, folio);
5482 			success = lru_gen_add_folio(lruvec, folio, false);
5483 			VM_WARN_ON_ONCE(!success);
5484 
5485 			if (!--remaining)
5486 				return false;
5487 		}
5488 	}
5489 
5490 	return true;
5491 }
5492 
5493 static bool drain_evictable(struct lruvec *lruvec)
5494 {
5495 	int gen, type, zone;
5496 	int remaining = MAX_LRU_BATCH;
5497 
5498 	for_each_gen_type_zone(gen, type, zone) {
5499 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5500 
5501 		while (!list_empty(head)) {
5502 			bool success;
5503 			struct folio *folio = lru_to_folio(head);
5504 
5505 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5506 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5507 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5508 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5509 
5510 			success = lru_gen_del_folio(lruvec, folio, false);
5511 			VM_WARN_ON_ONCE(!success);
5512 			lruvec_add_folio(lruvec, folio);
5513 
5514 			if (!--remaining)
5515 				return false;
5516 		}
5517 	}
5518 
5519 	return true;
5520 }
5521 
5522 static void lru_gen_change_state(bool enabled)
5523 {
5524 	static DEFINE_MUTEX(state_mutex);
5525 
5526 	struct mem_cgroup *memcg;
5527 
5528 	cgroup_lock();
5529 	cpus_read_lock();
5530 	get_online_mems();
5531 	mutex_lock(&state_mutex);
5532 
5533 	if (enabled == lru_gen_enabled())
5534 		goto unlock;
5535 
5536 	if (enabled)
5537 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5538 	else
5539 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5540 
5541 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5542 	do {
5543 		int nid;
5544 
5545 		for_each_node(nid) {
5546 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5547 
5548 			spin_lock_irq(&lruvec->lru_lock);
5549 
5550 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5551 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5552 
5553 			lruvec->lrugen.enabled = enabled;
5554 
5555 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5556 				spin_unlock_irq(&lruvec->lru_lock);
5557 				cond_resched();
5558 				spin_lock_irq(&lruvec->lru_lock);
5559 			}
5560 
5561 			spin_unlock_irq(&lruvec->lru_lock);
5562 		}
5563 
5564 		cond_resched();
5565 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5566 unlock:
5567 	mutex_unlock(&state_mutex);
5568 	put_online_mems();
5569 	cpus_read_unlock();
5570 	cgroup_unlock();
5571 }
5572 
5573 /******************************************************************************
5574  *                          sysfs interface
5575  ******************************************************************************/
5576 
5577 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5578 {
5579 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5580 }
5581 
5582 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5583 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5584 			     const char *buf, size_t len)
5585 {
5586 	unsigned int msecs;
5587 
5588 	if (kstrtouint(buf, 0, &msecs))
5589 		return -EINVAL;
5590 
5591 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5592 
5593 	return len;
5594 }
5595 
5596 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5597 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5598 );
5599 
5600 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5601 {
5602 	unsigned int caps = 0;
5603 
5604 	if (get_cap(LRU_GEN_CORE))
5605 		caps |= BIT(LRU_GEN_CORE);
5606 
5607 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5608 		caps |= BIT(LRU_GEN_MM_WALK);
5609 
5610 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5611 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5612 
5613 	return sysfs_emit(buf, "0x%04x\n", caps);
5614 }
5615 
5616 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5617 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5618 			     const char *buf, size_t len)
5619 {
5620 	int i;
5621 	unsigned int caps;
5622 
5623 	if (tolower(*buf) == 'n')
5624 		caps = 0;
5625 	else if (tolower(*buf) == 'y')
5626 		caps = -1;
5627 	else if (kstrtouint(buf, 0, &caps))
5628 		return -EINVAL;
5629 
5630 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5631 		bool enabled = caps & BIT(i);
5632 
5633 		if (i == LRU_GEN_CORE)
5634 			lru_gen_change_state(enabled);
5635 		else if (enabled)
5636 			static_branch_enable(&lru_gen_caps[i]);
5637 		else
5638 			static_branch_disable(&lru_gen_caps[i]);
5639 	}
5640 
5641 	return len;
5642 }
5643 
5644 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5645 	enabled, 0644, show_enabled, store_enabled
5646 );
5647 
5648 static struct attribute *lru_gen_attrs[] = {
5649 	&lru_gen_min_ttl_attr.attr,
5650 	&lru_gen_enabled_attr.attr,
5651 	NULL
5652 };
5653 
5654 static struct attribute_group lru_gen_attr_group = {
5655 	.name = "lru_gen",
5656 	.attrs = lru_gen_attrs,
5657 };
5658 
5659 /******************************************************************************
5660  *                          debugfs interface
5661  ******************************************************************************/
5662 
5663 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5664 {
5665 	struct mem_cgroup *memcg;
5666 	loff_t nr_to_skip = *pos;
5667 
5668 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5669 	if (!m->private)
5670 		return ERR_PTR(-ENOMEM);
5671 
5672 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5673 	do {
5674 		int nid;
5675 
5676 		for_each_node_state(nid, N_MEMORY) {
5677 			if (!nr_to_skip--)
5678 				return get_lruvec(memcg, nid);
5679 		}
5680 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5681 
5682 	return NULL;
5683 }
5684 
5685 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5686 {
5687 	if (!IS_ERR_OR_NULL(v))
5688 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5689 
5690 	kvfree(m->private);
5691 	m->private = NULL;
5692 }
5693 
5694 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5695 {
5696 	int nid = lruvec_pgdat(v)->node_id;
5697 	struct mem_cgroup *memcg = lruvec_memcg(v);
5698 
5699 	++*pos;
5700 
5701 	nid = next_memory_node(nid);
5702 	if (nid == MAX_NUMNODES) {
5703 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5704 		if (!memcg)
5705 			return NULL;
5706 
5707 		nid = first_memory_node;
5708 	}
5709 
5710 	return get_lruvec(memcg, nid);
5711 }
5712 
5713 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5714 				  unsigned long max_seq, unsigned long *min_seq,
5715 				  unsigned long seq)
5716 {
5717 	int i;
5718 	int type, tier;
5719 	int hist = lru_hist_from_seq(seq);
5720 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5721 
5722 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5723 		seq_printf(m, "            %10d", tier);
5724 		for (type = 0; type < ANON_AND_FILE; type++) {
5725 			const char *s = "   ";
5726 			unsigned long n[3] = {};
5727 
5728 			if (seq == max_seq) {
5729 				s = "RT ";
5730 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5731 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5732 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5733 				s = "rep";
5734 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5735 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5736 				if (tier)
5737 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5738 			}
5739 
5740 			for (i = 0; i < 3; i++)
5741 				seq_printf(m, " %10lu%c", n[i], s[i]);
5742 		}
5743 		seq_putc(m, '\n');
5744 	}
5745 
5746 	seq_puts(m, "                      ");
5747 	for (i = 0; i < NR_MM_STATS; i++) {
5748 		const char *s = "      ";
5749 		unsigned long n = 0;
5750 
5751 		if (seq == max_seq && NR_HIST_GENS == 1) {
5752 			s = "LOYNFA";
5753 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5754 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5755 			s = "loynfa";
5756 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5757 		}
5758 
5759 		seq_printf(m, " %10lu%c", n, s[i]);
5760 	}
5761 	seq_putc(m, '\n');
5762 }
5763 
5764 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5765 static int lru_gen_seq_show(struct seq_file *m, void *v)
5766 {
5767 	unsigned long seq;
5768 	bool full = !debugfs_real_fops(m->file)->write;
5769 	struct lruvec *lruvec = v;
5770 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5771 	int nid = lruvec_pgdat(lruvec)->node_id;
5772 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5773 	DEFINE_MAX_SEQ(lruvec);
5774 	DEFINE_MIN_SEQ(lruvec);
5775 
5776 	if (nid == first_memory_node) {
5777 		const char *path = memcg ? m->private : "";
5778 
5779 #ifdef CONFIG_MEMCG
5780 		if (memcg)
5781 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5782 #endif
5783 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5784 	}
5785 
5786 	seq_printf(m, " node %5d\n", nid);
5787 
5788 	if (!full)
5789 		seq = min_seq[LRU_GEN_ANON];
5790 	else if (max_seq >= MAX_NR_GENS)
5791 		seq = max_seq - MAX_NR_GENS + 1;
5792 	else
5793 		seq = 0;
5794 
5795 	for (; seq <= max_seq; seq++) {
5796 		int type, zone;
5797 		int gen = lru_gen_from_seq(seq);
5798 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5799 
5800 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5801 
5802 		for (type = 0; type < ANON_AND_FILE; type++) {
5803 			unsigned long size = 0;
5804 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5805 
5806 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5807 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5808 
5809 			seq_printf(m, " %10lu%c", size, mark);
5810 		}
5811 
5812 		seq_putc(m, '\n');
5813 
5814 		if (full)
5815 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5816 	}
5817 
5818 	return 0;
5819 }
5820 
5821 static const struct seq_operations lru_gen_seq_ops = {
5822 	.start = lru_gen_seq_start,
5823 	.stop = lru_gen_seq_stop,
5824 	.next = lru_gen_seq_next,
5825 	.show = lru_gen_seq_show,
5826 };
5827 
5828 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5829 		     bool can_swap, bool force_scan)
5830 {
5831 	DEFINE_MAX_SEQ(lruvec);
5832 	DEFINE_MIN_SEQ(lruvec);
5833 
5834 	if (seq < max_seq)
5835 		return 0;
5836 
5837 	if (seq > max_seq)
5838 		return -EINVAL;
5839 
5840 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5841 		return -ERANGE;
5842 
5843 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5844 
5845 	return 0;
5846 }
5847 
5848 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5849 			int swappiness, unsigned long nr_to_reclaim)
5850 {
5851 	DEFINE_MAX_SEQ(lruvec);
5852 
5853 	if (seq + MIN_NR_GENS > max_seq)
5854 		return -EINVAL;
5855 
5856 	sc->nr_reclaimed = 0;
5857 
5858 	while (!signal_pending(current)) {
5859 		DEFINE_MIN_SEQ(lruvec);
5860 
5861 		if (seq < min_seq[!swappiness])
5862 			return 0;
5863 
5864 		if (sc->nr_reclaimed >= nr_to_reclaim)
5865 			return 0;
5866 
5867 		if (!evict_folios(lruvec, sc, swappiness))
5868 			return 0;
5869 
5870 		cond_resched();
5871 	}
5872 
5873 	return -EINTR;
5874 }
5875 
5876 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5877 		   struct scan_control *sc, int swappiness, unsigned long opt)
5878 {
5879 	struct lruvec *lruvec;
5880 	int err = -EINVAL;
5881 	struct mem_cgroup *memcg = NULL;
5882 
5883 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5884 		return -EINVAL;
5885 
5886 	if (!mem_cgroup_disabled()) {
5887 		rcu_read_lock();
5888 
5889 		memcg = mem_cgroup_from_id(memcg_id);
5890 		if (!mem_cgroup_tryget(memcg))
5891 			memcg = NULL;
5892 
5893 		rcu_read_unlock();
5894 
5895 		if (!memcg)
5896 			return -EINVAL;
5897 	}
5898 
5899 	if (memcg_id != mem_cgroup_id(memcg))
5900 		goto done;
5901 
5902 	lruvec = get_lruvec(memcg, nid);
5903 
5904 	if (swappiness < 0)
5905 		swappiness = get_swappiness(lruvec, sc);
5906 	else if (swappiness > 200)
5907 		goto done;
5908 
5909 	switch (cmd) {
5910 	case '+':
5911 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5912 		break;
5913 	case '-':
5914 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5915 		break;
5916 	}
5917 done:
5918 	mem_cgroup_put(memcg);
5919 
5920 	return err;
5921 }
5922 
5923 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5924 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5925 				 size_t len, loff_t *pos)
5926 {
5927 	void *buf;
5928 	char *cur, *next;
5929 	unsigned int flags;
5930 	struct blk_plug plug;
5931 	int err = -EINVAL;
5932 	struct scan_control sc = {
5933 		.may_writepage = true,
5934 		.may_unmap = true,
5935 		.may_swap = true,
5936 		.reclaim_idx = MAX_NR_ZONES - 1,
5937 		.gfp_mask = GFP_KERNEL,
5938 	};
5939 
5940 	buf = kvmalloc(len + 1, GFP_KERNEL);
5941 	if (!buf)
5942 		return -ENOMEM;
5943 
5944 	if (copy_from_user(buf, src, len)) {
5945 		kvfree(buf);
5946 		return -EFAULT;
5947 	}
5948 
5949 	set_task_reclaim_state(current, &sc.reclaim_state);
5950 	flags = memalloc_noreclaim_save();
5951 	blk_start_plug(&plug);
5952 	if (!set_mm_walk(NULL, true)) {
5953 		err = -ENOMEM;
5954 		goto done;
5955 	}
5956 
5957 	next = buf;
5958 	next[len] = '\0';
5959 
5960 	while ((cur = strsep(&next, ",;\n"))) {
5961 		int n;
5962 		int end;
5963 		char cmd;
5964 		unsigned int memcg_id;
5965 		unsigned int nid;
5966 		unsigned long seq;
5967 		unsigned int swappiness = -1;
5968 		unsigned long opt = -1;
5969 
5970 		cur = skip_spaces(cur);
5971 		if (!*cur)
5972 			continue;
5973 
5974 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5975 			   &seq, &end, &swappiness, &end, &opt, &end);
5976 		if (n < 4 || cur[end]) {
5977 			err = -EINVAL;
5978 			break;
5979 		}
5980 
5981 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5982 		if (err)
5983 			break;
5984 	}
5985 done:
5986 	clear_mm_walk();
5987 	blk_finish_plug(&plug);
5988 	memalloc_noreclaim_restore(flags);
5989 	set_task_reclaim_state(current, NULL);
5990 
5991 	kvfree(buf);
5992 
5993 	return err ? : len;
5994 }
5995 
5996 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5997 {
5998 	return seq_open(file, &lru_gen_seq_ops);
5999 }
6000 
6001 static const struct file_operations lru_gen_rw_fops = {
6002 	.open = lru_gen_seq_open,
6003 	.read = seq_read,
6004 	.write = lru_gen_seq_write,
6005 	.llseek = seq_lseek,
6006 	.release = seq_release,
6007 };
6008 
6009 static const struct file_operations lru_gen_ro_fops = {
6010 	.open = lru_gen_seq_open,
6011 	.read = seq_read,
6012 	.llseek = seq_lseek,
6013 	.release = seq_release,
6014 };
6015 
6016 /******************************************************************************
6017  *                          initialization
6018  ******************************************************************************/
6019 
6020 void lru_gen_init_lruvec(struct lruvec *lruvec)
6021 {
6022 	int i;
6023 	int gen, type, zone;
6024 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6025 
6026 	lrugen->max_seq = MIN_NR_GENS + 1;
6027 	lrugen->enabled = lru_gen_enabled();
6028 
6029 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6030 		lrugen->timestamps[i] = jiffies;
6031 
6032 	for_each_gen_type_zone(gen, type, zone)
6033 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6034 
6035 	lruvec->mm_state.seq = MIN_NR_GENS;
6036 	init_waitqueue_head(&lruvec->mm_state.wait);
6037 }
6038 
6039 #ifdef CONFIG_MEMCG
6040 
6041 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6042 {
6043 	int i, j;
6044 
6045 	spin_lock_init(&pgdat->memcg_lru.lock);
6046 
6047 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6048 		for (j = 0; j < MEMCG_NR_BINS; j++)
6049 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6050 	}
6051 }
6052 
6053 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6054 {
6055 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6056 	spin_lock_init(&memcg->mm_list.lock);
6057 }
6058 
6059 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6060 {
6061 	int i;
6062 	int nid;
6063 
6064 	for_each_node(nid) {
6065 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6066 
6067 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6068 					   sizeof(lruvec->lrugen.nr_pages)));
6069 
6070 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6071 			bitmap_free(lruvec->mm_state.filters[i]);
6072 			lruvec->mm_state.filters[i] = NULL;
6073 		}
6074 	}
6075 }
6076 
6077 void lru_gen_online_memcg(struct mem_cgroup *memcg)
6078 {
6079 	int gen;
6080 	int nid;
6081 	int bin = get_random_u32_below(MEMCG_NR_BINS);
6082 
6083 	for_each_node(nid) {
6084 		struct pglist_data *pgdat = NODE_DATA(nid);
6085 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6086 
6087 		spin_lock(&pgdat->memcg_lru.lock);
6088 
6089 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
6090 
6091 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
6092 
6093 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
6094 		pgdat->memcg_lru.nr_memcgs[gen]++;
6095 
6096 		lruvec->lrugen.gen = gen;
6097 
6098 		spin_unlock(&pgdat->memcg_lru.lock);
6099 	}
6100 }
6101 
6102 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
6103 {
6104 	int nid;
6105 
6106 	for_each_node(nid) {
6107 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6108 
6109 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
6110 	}
6111 }
6112 
6113 void lru_gen_release_memcg(struct mem_cgroup *memcg)
6114 {
6115 	int gen;
6116 	int nid;
6117 
6118 	for_each_node(nid) {
6119 		struct pglist_data *pgdat = NODE_DATA(nid);
6120 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6121 
6122 		spin_lock(&pgdat->memcg_lru.lock);
6123 
6124 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
6125 
6126 		gen = lruvec->lrugen.gen;
6127 
6128 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
6129 		pgdat->memcg_lru.nr_memcgs[gen]--;
6130 
6131 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
6132 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
6133 
6134 		spin_unlock(&pgdat->memcg_lru.lock);
6135 	}
6136 }
6137 
6138 #endif /* CONFIG_MEMCG */
6139 
6140 static int __init init_lru_gen(void)
6141 {
6142 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6143 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6144 
6145 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6146 		pr_err("lru_gen: failed to create sysfs group\n");
6147 
6148 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6149 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6150 
6151 	return 0;
6152 };
6153 late_initcall(init_lru_gen);
6154 
6155 #else /* !CONFIG_LRU_GEN */
6156 
6157 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6158 {
6159 }
6160 
6161 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6162 {
6163 }
6164 
6165 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6166 {
6167 }
6168 
6169 #endif /* CONFIG_LRU_GEN */
6170 
6171 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6172 {
6173 	unsigned long nr[NR_LRU_LISTS];
6174 	unsigned long targets[NR_LRU_LISTS];
6175 	unsigned long nr_to_scan;
6176 	enum lru_list lru;
6177 	unsigned long nr_reclaimed = 0;
6178 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6179 	bool proportional_reclaim;
6180 	struct blk_plug plug;
6181 
6182 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6183 		lru_gen_shrink_lruvec(lruvec, sc);
6184 		return;
6185 	}
6186 
6187 	get_scan_count(lruvec, sc, nr);
6188 
6189 	/* Record the original scan target for proportional adjustments later */
6190 	memcpy(targets, nr, sizeof(nr));
6191 
6192 	/*
6193 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6194 	 * event that can occur when there is little memory pressure e.g.
6195 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6196 	 * when the requested number of pages are reclaimed when scanning at
6197 	 * DEF_PRIORITY on the assumption that the fact we are direct
6198 	 * reclaiming implies that kswapd is not keeping up and it is best to
6199 	 * do a batch of work at once. For memcg reclaim one check is made to
6200 	 * abort proportional reclaim if either the file or anon lru has already
6201 	 * dropped to zero at the first pass.
6202 	 */
6203 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6204 				sc->priority == DEF_PRIORITY);
6205 
6206 	blk_start_plug(&plug);
6207 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6208 					nr[LRU_INACTIVE_FILE]) {
6209 		unsigned long nr_anon, nr_file, percentage;
6210 		unsigned long nr_scanned;
6211 
6212 		for_each_evictable_lru(lru) {
6213 			if (nr[lru]) {
6214 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6215 				nr[lru] -= nr_to_scan;
6216 
6217 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6218 							    lruvec, sc);
6219 			}
6220 		}
6221 
6222 		cond_resched();
6223 
6224 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6225 			continue;
6226 
6227 		/*
6228 		 * For kswapd and memcg, reclaim at least the number of pages
6229 		 * requested. Ensure that the anon and file LRUs are scanned
6230 		 * proportionally what was requested by get_scan_count(). We
6231 		 * stop reclaiming one LRU and reduce the amount scanning
6232 		 * proportional to the original scan target.
6233 		 */
6234 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6235 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6236 
6237 		/*
6238 		 * It's just vindictive to attack the larger once the smaller
6239 		 * has gone to zero.  And given the way we stop scanning the
6240 		 * smaller below, this makes sure that we only make one nudge
6241 		 * towards proportionality once we've got nr_to_reclaim.
6242 		 */
6243 		if (!nr_file || !nr_anon)
6244 			break;
6245 
6246 		if (nr_file > nr_anon) {
6247 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6248 						targets[LRU_ACTIVE_ANON] + 1;
6249 			lru = LRU_BASE;
6250 			percentage = nr_anon * 100 / scan_target;
6251 		} else {
6252 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6253 						targets[LRU_ACTIVE_FILE] + 1;
6254 			lru = LRU_FILE;
6255 			percentage = nr_file * 100 / scan_target;
6256 		}
6257 
6258 		/* Stop scanning the smaller of the LRU */
6259 		nr[lru] = 0;
6260 		nr[lru + LRU_ACTIVE] = 0;
6261 
6262 		/*
6263 		 * Recalculate the other LRU scan count based on its original
6264 		 * scan target and the percentage scanning already complete
6265 		 */
6266 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6267 		nr_scanned = targets[lru] - nr[lru];
6268 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6269 		nr[lru] -= min(nr[lru], nr_scanned);
6270 
6271 		lru += LRU_ACTIVE;
6272 		nr_scanned = targets[lru] - nr[lru];
6273 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6274 		nr[lru] -= min(nr[lru], nr_scanned);
6275 	}
6276 	blk_finish_plug(&plug);
6277 	sc->nr_reclaimed += nr_reclaimed;
6278 
6279 	/*
6280 	 * Even if we did not try to evict anon pages at all, we want to
6281 	 * rebalance the anon lru active/inactive ratio.
6282 	 */
6283 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6284 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6285 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6286 				   sc, LRU_ACTIVE_ANON);
6287 }
6288 
6289 /* Use reclaim/compaction for costly allocs or under memory pressure */
6290 static bool in_reclaim_compaction(struct scan_control *sc)
6291 {
6292 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6293 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6294 			 sc->priority < DEF_PRIORITY - 2))
6295 		return true;
6296 
6297 	return false;
6298 }
6299 
6300 /*
6301  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6302  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6303  * true if more pages should be reclaimed such that when the page allocator
6304  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6305  * It will give up earlier than that if there is difficulty reclaiming pages.
6306  */
6307 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6308 					unsigned long nr_reclaimed,
6309 					struct scan_control *sc)
6310 {
6311 	unsigned long pages_for_compaction;
6312 	unsigned long inactive_lru_pages;
6313 	int z;
6314 
6315 	/* If not in reclaim/compaction mode, stop */
6316 	if (!in_reclaim_compaction(sc))
6317 		return false;
6318 
6319 	/*
6320 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6321 	 * number of pages that were scanned. This will return to the caller
6322 	 * with the risk reclaim/compaction and the resulting allocation attempt
6323 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6324 	 * allocations through requiring that the full LRU list has been scanned
6325 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6326 	 * scan, but that approximation was wrong, and there were corner cases
6327 	 * where always a non-zero amount of pages were scanned.
6328 	 */
6329 	if (!nr_reclaimed)
6330 		return false;
6331 
6332 	/* If compaction would go ahead or the allocation would succeed, stop */
6333 	for (z = 0; z <= sc->reclaim_idx; z++) {
6334 		struct zone *zone = &pgdat->node_zones[z];
6335 		if (!managed_zone(zone))
6336 			continue;
6337 
6338 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6339 		case COMPACT_SUCCESS:
6340 		case COMPACT_CONTINUE:
6341 			return false;
6342 		default:
6343 			/* check next zone */
6344 			;
6345 		}
6346 	}
6347 
6348 	/*
6349 	 * If we have not reclaimed enough pages for compaction and the
6350 	 * inactive lists are large enough, continue reclaiming
6351 	 */
6352 	pages_for_compaction = compact_gap(sc->order);
6353 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6354 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6355 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6356 
6357 	return inactive_lru_pages > pages_for_compaction;
6358 }
6359 
6360 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6361 {
6362 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6363 	struct mem_cgroup *memcg;
6364 
6365 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6366 	do {
6367 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6368 		unsigned long reclaimed;
6369 		unsigned long scanned;
6370 
6371 		/*
6372 		 * This loop can become CPU-bound when target memcgs
6373 		 * aren't eligible for reclaim - either because they
6374 		 * don't have any reclaimable pages, or because their
6375 		 * memory is explicitly protected. Avoid soft lockups.
6376 		 */
6377 		cond_resched();
6378 
6379 		mem_cgroup_calculate_protection(target_memcg, memcg);
6380 
6381 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6382 			/*
6383 			 * Hard protection.
6384 			 * If there is no reclaimable memory, OOM.
6385 			 */
6386 			continue;
6387 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6388 			/*
6389 			 * Soft protection.
6390 			 * Respect the protection only as long as
6391 			 * there is an unprotected supply
6392 			 * of reclaimable memory from other cgroups.
6393 			 */
6394 			if (!sc->memcg_low_reclaim) {
6395 				sc->memcg_low_skipped = 1;
6396 				continue;
6397 			}
6398 			memcg_memory_event(memcg, MEMCG_LOW);
6399 		}
6400 
6401 		reclaimed = sc->nr_reclaimed;
6402 		scanned = sc->nr_scanned;
6403 
6404 		shrink_lruvec(lruvec, sc);
6405 
6406 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6407 			    sc->priority);
6408 
6409 		/* Record the group's reclaim efficiency */
6410 		if (!sc->proactive)
6411 			vmpressure(sc->gfp_mask, memcg, false,
6412 				   sc->nr_scanned - scanned,
6413 				   sc->nr_reclaimed - reclaimed);
6414 
6415 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6416 }
6417 
6418 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6419 {
6420 	struct reclaim_state *reclaim_state = current->reclaim_state;
6421 	unsigned long nr_reclaimed, nr_scanned;
6422 	struct lruvec *target_lruvec;
6423 	bool reclaimable = false;
6424 
6425 	if (lru_gen_enabled() && global_reclaim(sc)) {
6426 		lru_gen_shrink_node(pgdat, sc);
6427 		return;
6428 	}
6429 
6430 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6431 
6432 again:
6433 	memset(&sc->nr, 0, sizeof(sc->nr));
6434 
6435 	nr_reclaimed = sc->nr_reclaimed;
6436 	nr_scanned = sc->nr_scanned;
6437 
6438 	prepare_scan_count(pgdat, sc);
6439 
6440 	shrink_node_memcgs(pgdat, sc);
6441 
6442 	if (reclaim_state) {
6443 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6444 		reclaim_state->reclaimed_slab = 0;
6445 	}
6446 
6447 	/* Record the subtree's reclaim efficiency */
6448 	if (!sc->proactive)
6449 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6450 			   sc->nr_scanned - nr_scanned,
6451 			   sc->nr_reclaimed - nr_reclaimed);
6452 
6453 	if (sc->nr_reclaimed - nr_reclaimed)
6454 		reclaimable = true;
6455 
6456 	if (current_is_kswapd()) {
6457 		/*
6458 		 * If reclaim is isolating dirty pages under writeback,
6459 		 * it implies that the long-lived page allocation rate
6460 		 * is exceeding the page laundering rate. Either the
6461 		 * global limits are not being effective at throttling
6462 		 * processes due to the page distribution throughout
6463 		 * zones or there is heavy usage of a slow backing
6464 		 * device. The only option is to throttle from reclaim
6465 		 * context which is not ideal as there is no guarantee
6466 		 * the dirtying process is throttled in the same way
6467 		 * balance_dirty_pages() manages.
6468 		 *
6469 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6470 		 * count the number of pages under pages flagged for
6471 		 * immediate reclaim and stall if any are encountered
6472 		 * in the nr_immediate check below.
6473 		 */
6474 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6475 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6476 
6477 		/* Allow kswapd to start writing pages during reclaim.*/
6478 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6479 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6480 
6481 		/*
6482 		 * If kswapd scans pages marked for immediate
6483 		 * reclaim and under writeback (nr_immediate), it
6484 		 * implies that pages are cycling through the LRU
6485 		 * faster than they are written so forcibly stall
6486 		 * until some pages complete writeback.
6487 		 */
6488 		if (sc->nr.immediate)
6489 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6490 	}
6491 
6492 	/*
6493 	 * Tag a node/memcg as congested if all the dirty pages were marked
6494 	 * for writeback and immediate reclaim (counted in nr.congested).
6495 	 *
6496 	 * Legacy memcg will stall in page writeback so avoid forcibly
6497 	 * stalling in reclaim_throttle().
6498 	 */
6499 	if ((current_is_kswapd() ||
6500 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6501 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6502 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6503 
6504 	/*
6505 	 * Stall direct reclaim for IO completions if the lruvec is
6506 	 * node is congested. Allow kswapd to continue until it
6507 	 * starts encountering unqueued dirty pages or cycling through
6508 	 * the LRU too quickly.
6509 	 */
6510 	if (!current_is_kswapd() && current_may_throttle() &&
6511 	    !sc->hibernation_mode &&
6512 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6513 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6514 
6515 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6516 				    sc))
6517 		goto again;
6518 
6519 	/*
6520 	 * Kswapd gives up on balancing particular nodes after too
6521 	 * many failures to reclaim anything from them and goes to
6522 	 * sleep. On reclaim progress, reset the failure counter. A
6523 	 * successful direct reclaim run will revive a dormant kswapd.
6524 	 */
6525 	if (reclaimable)
6526 		pgdat->kswapd_failures = 0;
6527 }
6528 
6529 /*
6530  * Returns true if compaction should go ahead for a costly-order request, or
6531  * the allocation would already succeed without compaction. Return false if we
6532  * should reclaim first.
6533  */
6534 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6535 {
6536 	unsigned long watermark;
6537 	enum compact_result suitable;
6538 
6539 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6540 	if (suitable == COMPACT_SUCCESS)
6541 		/* Allocation should succeed already. Don't reclaim. */
6542 		return true;
6543 	if (suitable == COMPACT_SKIPPED)
6544 		/* Compaction cannot yet proceed. Do reclaim. */
6545 		return false;
6546 
6547 	/*
6548 	 * Compaction is already possible, but it takes time to run and there
6549 	 * are potentially other callers using the pages just freed. So proceed
6550 	 * with reclaim to make a buffer of free pages available to give
6551 	 * compaction a reasonable chance of completing and allocating the page.
6552 	 * Note that we won't actually reclaim the whole buffer in one attempt
6553 	 * as the target watermark in should_continue_reclaim() is lower. But if
6554 	 * we are already above the high+gap watermark, don't reclaim at all.
6555 	 */
6556 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6557 
6558 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6559 }
6560 
6561 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6562 {
6563 	/*
6564 	 * If reclaim is making progress greater than 12% efficiency then
6565 	 * wake all the NOPROGRESS throttled tasks.
6566 	 */
6567 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6568 		wait_queue_head_t *wqh;
6569 
6570 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6571 		if (waitqueue_active(wqh))
6572 			wake_up(wqh);
6573 
6574 		return;
6575 	}
6576 
6577 	/*
6578 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6579 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6580 	 * under writeback and marked for immediate reclaim at the tail of the
6581 	 * LRU.
6582 	 */
6583 	if (current_is_kswapd() || cgroup_reclaim(sc))
6584 		return;
6585 
6586 	/* Throttle if making no progress at high prioities. */
6587 	if (sc->priority == 1 && !sc->nr_reclaimed)
6588 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6589 }
6590 
6591 /*
6592  * This is the direct reclaim path, for page-allocating processes.  We only
6593  * try to reclaim pages from zones which will satisfy the caller's allocation
6594  * request.
6595  *
6596  * If a zone is deemed to be full of pinned pages then just give it a light
6597  * scan then give up on it.
6598  */
6599 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6600 {
6601 	struct zoneref *z;
6602 	struct zone *zone;
6603 	unsigned long nr_soft_reclaimed;
6604 	unsigned long nr_soft_scanned;
6605 	gfp_t orig_mask;
6606 	pg_data_t *last_pgdat = NULL;
6607 	pg_data_t *first_pgdat = NULL;
6608 
6609 	/*
6610 	 * If the number of buffer_heads in the machine exceeds the maximum
6611 	 * allowed level, force direct reclaim to scan the highmem zone as
6612 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6613 	 */
6614 	orig_mask = sc->gfp_mask;
6615 	if (buffer_heads_over_limit) {
6616 		sc->gfp_mask |= __GFP_HIGHMEM;
6617 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6618 	}
6619 
6620 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6621 					sc->reclaim_idx, sc->nodemask) {
6622 		/*
6623 		 * Take care memory controller reclaiming has small influence
6624 		 * to global LRU.
6625 		 */
6626 		if (!cgroup_reclaim(sc)) {
6627 			if (!cpuset_zone_allowed(zone,
6628 						 GFP_KERNEL | __GFP_HARDWALL))
6629 				continue;
6630 
6631 			/*
6632 			 * If we already have plenty of memory free for
6633 			 * compaction in this zone, don't free any more.
6634 			 * Even though compaction is invoked for any
6635 			 * non-zero order, only frequent costly order
6636 			 * reclamation is disruptive enough to become a
6637 			 * noticeable problem, like transparent huge
6638 			 * page allocations.
6639 			 */
6640 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6641 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6642 			    compaction_ready(zone, sc)) {
6643 				sc->compaction_ready = true;
6644 				continue;
6645 			}
6646 
6647 			/*
6648 			 * Shrink each node in the zonelist once. If the
6649 			 * zonelist is ordered by zone (not the default) then a
6650 			 * node may be shrunk multiple times but in that case
6651 			 * the user prefers lower zones being preserved.
6652 			 */
6653 			if (zone->zone_pgdat == last_pgdat)
6654 				continue;
6655 
6656 			/*
6657 			 * This steals pages from memory cgroups over softlimit
6658 			 * and returns the number of reclaimed pages and
6659 			 * scanned pages. This works for global memory pressure
6660 			 * and balancing, not for a memcg's limit.
6661 			 */
6662 			nr_soft_scanned = 0;
6663 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6664 						sc->order, sc->gfp_mask,
6665 						&nr_soft_scanned);
6666 			sc->nr_reclaimed += nr_soft_reclaimed;
6667 			sc->nr_scanned += nr_soft_scanned;
6668 			/* need some check for avoid more shrink_zone() */
6669 		}
6670 
6671 		if (!first_pgdat)
6672 			first_pgdat = zone->zone_pgdat;
6673 
6674 		/* See comment about same check for global reclaim above */
6675 		if (zone->zone_pgdat == last_pgdat)
6676 			continue;
6677 		last_pgdat = zone->zone_pgdat;
6678 		shrink_node(zone->zone_pgdat, sc);
6679 	}
6680 
6681 	if (first_pgdat)
6682 		consider_reclaim_throttle(first_pgdat, sc);
6683 
6684 	/*
6685 	 * Restore to original mask to avoid the impact on the caller if we
6686 	 * promoted it to __GFP_HIGHMEM.
6687 	 */
6688 	sc->gfp_mask = orig_mask;
6689 }
6690 
6691 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6692 {
6693 	struct lruvec *target_lruvec;
6694 	unsigned long refaults;
6695 
6696 	if (lru_gen_enabled())
6697 		return;
6698 
6699 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6700 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6701 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6702 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6703 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6704 }
6705 
6706 /*
6707  * This is the main entry point to direct page reclaim.
6708  *
6709  * If a full scan of the inactive list fails to free enough memory then we
6710  * are "out of memory" and something needs to be killed.
6711  *
6712  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6713  * high - the zone may be full of dirty or under-writeback pages, which this
6714  * caller can't do much about.  We kick the writeback threads and take explicit
6715  * naps in the hope that some of these pages can be written.  But if the
6716  * allocating task holds filesystem locks which prevent writeout this might not
6717  * work, and the allocation attempt will fail.
6718  *
6719  * returns:	0, if no pages reclaimed
6720  * 		else, the number of pages reclaimed
6721  */
6722 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6723 					  struct scan_control *sc)
6724 {
6725 	int initial_priority = sc->priority;
6726 	pg_data_t *last_pgdat;
6727 	struct zoneref *z;
6728 	struct zone *zone;
6729 retry:
6730 	delayacct_freepages_start();
6731 
6732 	if (!cgroup_reclaim(sc))
6733 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6734 
6735 	do {
6736 		if (!sc->proactive)
6737 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6738 					sc->priority);
6739 		sc->nr_scanned = 0;
6740 		shrink_zones(zonelist, sc);
6741 
6742 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6743 			break;
6744 
6745 		if (sc->compaction_ready)
6746 			break;
6747 
6748 		/*
6749 		 * If we're getting trouble reclaiming, start doing
6750 		 * writepage even in laptop mode.
6751 		 */
6752 		if (sc->priority < DEF_PRIORITY - 2)
6753 			sc->may_writepage = 1;
6754 	} while (--sc->priority >= 0);
6755 
6756 	last_pgdat = NULL;
6757 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6758 					sc->nodemask) {
6759 		if (zone->zone_pgdat == last_pgdat)
6760 			continue;
6761 		last_pgdat = zone->zone_pgdat;
6762 
6763 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6764 
6765 		if (cgroup_reclaim(sc)) {
6766 			struct lruvec *lruvec;
6767 
6768 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6769 						   zone->zone_pgdat);
6770 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6771 		}
6772 	}
6773 
6774 	delayacct_freepages_end();
6775 
6776 	if (sc->nr_reclaimed)
6777 		return sc->nr_reclaimed;
6778 
6779 	/* Aborted reclaim to try compaction? don't OOM, then */
6780 	if (sc->compaction_ready)
6781 		return 1;
6782 
6783 	/*
6784 	 * We make inactive:active ratio decisions based on the node's
6785 	 * composition of memory, but a restrictive reclaim_idx or a
6786 	 * memory.low cgroup setting can exempt large amounts of
6787 	 * memory from reclaim. Neither of which are very common, so
6788 	 * instead of doing costly eligibility calculations of the
6789 	 * entire cgroup subtree up front, we assume the estimates are
6790 	 * good, and retry with forcible deactivation if that fails.
6791 	 */
6792 	if (sc->skipped_deactivate) {
6793 		sc->priority = initial_priority;
6794 		sc->force_deactivate = 1;
6795 		sc->skipped_deactivate = 0;
6796 		goto retry;
6797 	}
6798 
6799 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6800 	if (sc->memcg_low_skipped) {
6801 		sc->priority = initial_priority;
6802 		sc->force_deactivate = 0;
6803 		sc->memcg_low_reclaim = 1;
6804 		sc->memcg_low_skipped = 0;
6805 		goto retry;
6806 	}
6807 
6808 	return 0;
6809 }
6810 
6811 static bool allow_direct_reclaim(pg_data_t *pgdat)
6812 {
6813 	struct zone *zone;
6814 	unsigned long pfmemalloc_reserve = 0;
6815 	unsigned long free_pages = 0;
6816 	int i;
6817 	bool wmark_ok;
6818 
6819 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6820 		return true;
6821 
6822 	for (i = 0; i <= ZONE_NORMAL; i++) {
6823 		zone = &pgdat->node_zones[i];
6824 		if (!managed_zone(zone))
6825 			continue;
6826 
6827 		if (!zone_reclaimable_pages(zone))
6828 			continue;
6829 
6830 		pfmemalloc_reserve += min_wmark_pages(zone);
6831 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6832 	}
6833 
6834 	/* If there are no reserves (unexpected config) then do not throttle */
6835 	if (!pfmemalloc_reserve)
6836 		return true;
6837 
6838 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6839 
6840 	/* kswapd must be awake if processes are being throttled */
6841 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6842 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6843 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6844 
6845 		wake_up_interruptible(&pgdat->kswapd_wait);
6846 	}
6847 
6848 	return wmark_ok;
6849 }
6850 
6851 /*
6852  * Throttle direct reclaimers if backing storage is backed by the network
6853  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6854  * depleted. kswapd will continue to make progress and wake the processes
6855  * when the low watermark is reached.
6856  *
6857  * Returns true if a fatal signal was delivered during throttling. If this
6858  * happens, the page allocator should not consider triggering the OOM killer.
6859  */
6860 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6861 					nodemask_t *nodemask)
6862 {
6863 	struct zoneref *z;
6864 	struct zone *zone;
6865 	pg_data_t *pgdat = NULL;
6866 
6867 	/*
6868 	 * Kernel threads should not be throttled as they may be indirectly
6869 	 * responsible for cleaning pages necessary for reclaim to make forward
6870 	 * progress. kjournald for example may enter direct reclaim while
6871 	 * committing a transaction where throttling it could forcing other
6872 	 * processes to block on log_wait_commit().
6873 	 */
6874 	if (current->flags & PF_KTHREAD)
6875 		goto out;
6876 
6877 	/*
6878 	 * If a fatal signal is pending, this process should not throttle.
6879 	 * It should return quickly so it can exit and free its memory
6880 	 */
6881 	if (fatal_signal_pending(current))
6882 		goto out;
6883 
6884 	/*
6885 	 * Check if the pfmemalloc reserves are ok by finding the first node
6886 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6887 	 * GFP_KERNEL will be required for allocating network buffers when
6888 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6889 	 *
6890 	 * Throttling is based on the first usable node and throttled processes
6891 	 * wait on a queue until kswapd makes progress and wakes them. There
6892 	 * is an affinity then between processes waking up and where reclaim
6893 	 * progress has been made assuming the process wakes on the same node.
6894 	 * More importantly, processes running on remote nodes will not compete
6895 	 * for remote pfmemalloc reserves and processes on different nodes
6896 	 * should make reasonable progress.
6897 	 */
6898 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6899 					gfp_zone(gfp_mask), nodemask) {
6900 		if (zone_idx(zone) > ZONE_NORMAL)
6901 			continue;
6902 
6903 		/* Throttle based on the first usable node */
6904 		pgdat = zone->zone_pgdat;
6905 		if (allow_direct_reclaim(pgdat))
6906 			goto out;
6907 		break;
6908 	}
6909 
6910 	/* If no zone was usable by the allocation flags then do not throttle */
6911 	if (!pgdat)
6912 		goto out;
6913 
6914 	/* Account for the throttling */
6915 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6916 
6917 	/*
6918 	 * If the caller cannot enter the filesystem, it's possible that it
6919 	 * is due to the caller holding an FS lock or performing a journal
6920 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6921 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6922 	 * blocked waiting on the same lock. Instead, throttle for up to a
6923 	 * second before continuing.
6924 	 */
6925 	if (!(gfp_mask & __GFP_FS))
6926 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6927 			allow_direct_reclaim(pgdat), HZ);
6928 	else
6929 		/* Throttle until kswapd wakes the process */
6930 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6931 			allow_direct_reclaim(pgdat));
6932 
6933 	if (fatal_signal_pending(current))
6934 		return true;
6935 
6936 out:
6937 	return false;
6938 }
6939 
6940 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6941 				gfp_t gfp_mask, nodemask_t *nodemask)
6942 {
6943 	unsigned long nr_reclaimed;
6944 	struct scan_control sc = {
6945 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6946 		.gfp_mask = current_gfp_context(gfp_mask),
6947 		.reclaim_idx = gfp_zone(gfp_mask),
6948 		.order = order,
6949 		.nodemask = nodemask,
6950 		.priority = DEF_PRIORITY,
6951 		.may_writepage = !laptop_mode,
6952 		.may_unmap = 1,
6953 		.may_swap = 1,
6954 	};
6955 
6956 	/*
6957 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6958 	 * Confirm they are large enough for max values.
6959 	 */
6960 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6961 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6962 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6963 
6964 	/*
6965 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6966 	 * 1 is returned so that the page allocator does not OOM kill at this
6967 	 * point.
6968 	 */
6969 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6970 		return 1;
6971 
6972 	set_task_reclaim_state(current, &sc.reclaim_state);
6973 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6974 
6975 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6976 
6977 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6978 	set_task_reclaim_state(current, NULL);
6979 
6980 	return nr_reclaimed;
6981 }
6982 
6983 #ifdef CONFIG_MEMCG
6984 
6985 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6986 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6987 						gfp_t gfp_mask, bool noswap,
6988 						pg_data_t *pgdat,
6989 						unsigned long *nr_scanned)
6990 {
6991 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6992 	struct scan_control sc = {
6993 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6994 		.target_mem_cgroup = memcg,
6995 		.may_writepage = !laptop_mode,
6996 		.may_unmap = 1,
6997 		.reclaim_idx = MAX_NR_ZONES - 1,
6998 		.may_swap = !noswap,
6999 	};
7000 
7001 	WARN_ON_ONCE(!current->reclaim_state);
7002 
7003 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7004 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7005 
7006 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7007 						      sc.gfp_mask);
7008 
7009 	/*
7010 	 * NOTE: Although we can get the priority field, using it
7011 	 * here is not a good idea, since it limits the pages we can scan.
7012 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7013 	 * will pick up pages from other mem cgroup's as well. We hack
7014 	 * the priority and make it zero.
7015 	 */
7016 	shrink_lruvec(lruvec, &sc);
7017 
7018 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7019 
7020 	*nr_scanned = sc.nr_scanned;
7021 
7022 	return sc.nr_reclaimed;
7023 }
7024 
7025 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7026 					   unsigned long nr_pages,
7027 					   gfp_t gfp_mask,
7028 					   unsigned int reclaim_options)
7029 {
7030 	unsigned long nr_reclaimed;
7031 	unsigned int noreclaim_flag;
7032 	struct scan_control sc = {
7033 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7034 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7035 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7036 		.reclaim_idx = MAX_NR_ZONES - 1,
7037 		.target_mem_cgroup = memcg,
7038 		.priority = DEF_PRIORITY,
7039 		.may_writepage = !laptop_mode,
7040 		.may_unmap = 1,
7041 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7042 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7043 	};
7044 	/*
7045 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7046 	 * equal pressure on all the nodes. This is based on the assumption that
7047 	 * the reclaim does not bail out early.
7048 	 */
7049 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7050 
7051 	set_task_reclaim_state(current, &sc.reclaim_state);
7052 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7053 	noreclaim_flag = memalloc_noreclaim_save();
7054 
7055 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7056 
7057 	memalloc_noreclaim_restore(noreclaim_flag);
7058 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7059 	set_task_reclaim_state(current, NULL);
7060 
7061 	return nr_reclaimed;
7062 }
7063 #endif
7064 
7065 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7066 {
7067 	struct mem_cgroup *memcg;
7068 	struct lruvec *lruvec;
7069 
7070 	if (lru_gen_enabled()) {
7071 		lru_gen_age_node(pgdat, sc);
7072 		return;
7073 	}
7074 
7075 	if (!can_age_anon_pages(pgdat, sc))
7076 		return;
7077 
7078 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7079 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7080 		return;
7081 
7082 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7083 	do {
7084 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7085 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7086 				   sc, LRU_ACTIVE_ANON);
7087 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7088 	} while (memcg);
7089 }
7090 
7091 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7092 {
7093 	int i;
7094 	struct zone *zone;
7095 
7096 	/*
7097 	 * Check for watermark boosts top-down as the higher zones
7098 	 * are more likely to be boosted. Both watermarks and boosts
7099 	 * should not be checked at the same time as reclaim would
7100 	 * start prematurely when there is no boosting and a lower
7101 	 * zone is balanced.
7102 	 */
7103 	for (i = highest_zoneidx; i >= 0; i--) {
7104 		zone = pgdat->node_zones + i;
7105 		if (!managed_zone(zone))
7106 			continue;
7107 
7108 		if (zone->watermark_boost)
7109 			return true;
7110 	}
7111 
7112 	return false;
7113 }
7114 
7115 /*
7116  * Returns true if there is an eligible zone balanced for the request order
7117  * and highest_zoneidx
7118  */
7119 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7120 {
7121 	int i;
7122 	unsigned long mark = -1;
7123 	struct zone *zone;
7124 
7125 	/*
7126 	 * Check watermarks bottom-up as lower zones are more likely to
7127 	 * meet watermarks.
7128 	 */
7129 	for (i = 0; i <= highest_zoneidx; i++) {
7130 		zone = pgdat->node_zones + i;
7131 
7132 		if (!managed_zone(zone))
7133 			continue;
7134 
7135 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7136 			mark = wmark_pages(zone, WMARK_PROMO);
7137 		else
7138 			mark = high_wmark_pages(zone);
7139 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7140 			return true;
7141 	}
7142 
7143 	/*
7144 	 * If a node has no managed zone within highest_zoneidx, it does not
7145 	 * need balancing by definition. This can happen if a zone-restricted
7146 	 * allocation tries to wake a remote kswapd.
7147 	 */
7148 	if (mark == -1)
7149 		return true;
7150 
7151 	return false;
7152 }
7153 
7154 /* Clear pgdat state for congested, dirty or under writeback. */
7155 static void clear_pgdat_congested(pg_data_t *pgdat)
7156 {
7157 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7158 
7159 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7160 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7161 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7162 }
7163 
7164 /*
7165  * Prepare kswapd for sleeping. This verifies that there are no processes
7166  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7167  *
7168  * Returns true if kswapd is ready to sleep
7169  */
7170 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7171 				int highest_zoneidx)
7172 {
7173 	/*
7174 	 * The throttled processes are normally woken up in balance_pgdat() as
7175 	 * soon as allow_direct_reclaim() is true. But there is a potential
7176 	 * race between when kswapd checks the watermarks and a process gets
7177 	 * throttled. There is also a potential race if processes get
7178 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7179 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7180 	 * the wake up checks. If kswapd is going to sleep, no process should
7181 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7182 	 * the wake up is premature, processes will wake kswapd and get
7183 	 * throttled again. The difference from wake ups in balance_pgdat() is
7184 	 * that here we are under prepare_to_wait().
7185 	 */
7186 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7187 		wake_up_all(&pgdat->pfmemalloc_wait);
7188 
7189 	/* Hopeless node, leave it to direct reclaim */
7190 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7191 		return true;
7192 
7193 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7194 		clear_pgdat_congested(pgdat);
7195 		return true;
7196 	}
7197 
7198 	return false;
7199 }
7200 
7201 /*
7202  * kswapd shrinks a node of pages that are at or below the highest usable
7203  * zone that is currently unbalanced.
7204  *
7205  * Returns true if kswapd scanned at least the requested number of pages to
7206  * reclaim or if the lack of progress was due to pages under writeback.
7207  * This is used to determine if the scanning priority needs to be raised.
7208  */
7209 static bool kswapd_shrink_node(pg_data_t *pgdat,
7210 			       struct scan_control *sc)
7211 {
7212 	struct zone *zone;
7213 	int z;
7214 
7215 	/* Reclaim a number of pages proportional to the number of zones */
7216 	sc->nr_to_reclaim = 0;
7217 	for (z = 0; z <= sc->reclaim_idx; z++) {
7218 		zone = pgdat->node_zones + z;
7219 		if (!managed_zone(zone))
7220 			continue;
7221 
7222 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7223 	}
7224 
7225 	/*
7226 	 * Historically care was taken to put equal pressure on all zones but
7227 	 * now pressure is applied based on node LRU order.
7228 	 */
7229 	shrink_node(pgdat, sc);
7230 
7231 	/*
7232 	 * Fragmentation may mean that the system cannot be rebalanced for
7233 	 * high-order allocations. If twice the allocation size has been
7234 	 * reclaimed then recheck watermarks only at order-0 to prevent
7235 	 * excessive reclaim. Assume that a process requested a high-order
7236 	 * can direct reclaim/compact.
7237 	 */
7238 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7239 		sc->order = 0;
7240 
7241 	return sc->nr_scanned >= sc->nr_to_reclaim;
7242 }
7243 
7244 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7245 static inline void
7246 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7247 {
7248 	int i;
7249 	struct zone *zone;
7250 
7251 	for (i = 0; i <= highest_zoneidx; i++) {
7252 		zone = pgdat->node_zones + i;
7253 
7254 		if (!managed_zone(zone))
7255 			continue;
7256 
7257 		if (active)
7258 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7259 		else
7260 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7261 	}
7262 }
7263 
7264 static inline void
7265 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7266 {
7267 	update_reclaim_active(pgdat, highest_zoneidx, true);
7268 }
7269 
7270 static inline void
7271 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7272 {
7273 	update_reclaim_active(pgdat, highest_zoneidx, false);
7274 }
7275 
7276 /*
7277  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7278  * that are eligible for use by the caller until at least one zone is
7279  * balanced.
7280  *
7281  * Returns the order kswapd finished reclaiming at.
7282  *
7283  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7284  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7285  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7286  * or lower is eligible for reclaim until at least one usable zone is
7287  * balanced.
7288  */
7289 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7290 {
7291 	int i;
7292 	unsigned long nr_soft_reclaimed;
7293 	unsigned long nr_soft_scanned;
7294 	unsigned long pflags;
7295 	unsigned long nr_boost_reclaim;
7296 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7297 	bool boosted;
7298 	struct zone *zone;
7299 	struct scan_control sc = {
7300 		.gfp_mask = GFP_KERNEL,
7301 		.order = order,
7302 		.may_unmap = 1,
7303 	};
7304 
7305 	set_task_reclaim_state(current, &sc.reclaim_state);
7306 	psi_memstall_enter(&pflags);
7307 	__fs_reclaim_acquire(_THIS_IP_);
7308 
7309 	count_vm_event(PAGEOUTRUN);
7310 
7311 	/*
7312 	 * Account for the reclaim boost. Note that the zone boost is left in
7313 	 * place so that parallel allocations that are near the watermark will
7314 	 * stall or direct reclaim until kswapd is finished.
7315 	 */
7316 	nr_boost_reclaim = 0;
7317 	for (i = 0; i <= highest_zoneidx; i++) {
7318 		zone = pgdat->node_zones + i;
7319 		if (!managed_zone(zone))
7320 			continue;
7321 
7322 		nr_boost_reclaim += zone->watermark_boost;
7323 		zone_boosts[i] = zone->watermark_boost;
7324 	}
7325 	boosted = nr_boost_reclaim;
7326 
7327 restart:
7328 	set_reclaim_active(pgdat, highest_zoneidx);
7329 	sc.priority = DEF_PRIORITY;
7330 	do {
7331 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7332 		bool raise_priority = true;
7333 		bool balanced;
7334 		bool ret;
7335 
7336 		sc.reclaim_idx = highest_zoneidx;
7337 
7338 		/*
7339 		 * If the number of buffer_heads exceeds the maximum allowed
7340 		 * then consider reclaiming from all zones. This has a dual
7341 		 * purpose -- on 64-bit systems it is expected that
7342 		 * buffer_heads are stripped during active rotation. On 32-bit
7343 		 * systems, highmem pages can pin lowmem memory and shrinking
7344 		 * buffers can relieve lowmem pressure. Reclaim may still not
7345 		 * go ahead if all eligible zones for the original allocation
7346 		 * request are balanced to avoid excessive reclaim from kswapd.
7347 		 */
7348 		if (buffer_heads_over_limit) {
7349 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7350 				zone = pgdat->node_zones + i;
7351 				if (!managed_zone(zone))
7352 					continue;
7353 
7354 				sc.reclaim_idx = i;
7355 				break;
7356 			}
7357 		}
7358 
7359 		/*
7360 		 * If the pgdat is imbalanced then ignore boosting and preserve
7361 		 * the watermarks for a later time and restart. Note that the
7362 		 * zone watermarks will be still reset at the end of balancing
7363 		 * on the grounds that the normal reclaim should be enough to
7364 		 * re-evaluate if boosting is required when kswapd next wakes.
7365 		 */
7366 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7367 		if (!balanced && nr_boost_reclaim) {
7368 			nr_boost_reclaim = 0;
7369 			goto restart;
7370 		}
7371 
7372 		/*
7373 		 * If boosting is not active then only reclaim if there are no
7374 		 * eligible zones. Note that sc.reclaim_idx is not used as
7375 		 * buffer_heads_over_limit may have adjusted it.
7376 		 */
7377 		if (!nr_boost_reclaim && balanced)
7378 			goto out;
7379 
7380 		/* Limit the priority of boosting to avoid reclaim writeback */
7381 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7382 			raise_priority = false;
7383 
7384 		/*
7385 		 * Do not writeback or swap pages for boosted reclaim. The
7386 		 * intent is to relieve pressure not issue sub-optimal IO
7387 		 * from reclaim context. If no pages are reclaimed, the
7388 		 * reclaim will be aborted.
7389 		 */
7390 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7391 		sc.may_swap = !nr_boost_reclaim;
7392 
7393 		/*
7394 		 * Do some background aging, to give pages a chance to be
7395 		 * referenced before reclaiming. All pages are rotated
7396 		 * regardless of classzone as this is about consistent aging.
7397 		 */
7398 		kswapd_age_node(pgdat, &sc);
7399 
7400 		/*
7401 		 * If we're getting trouble reclaiming, start doing writepage
7402 		 * even in laptop mode.
7403 		 */
7404 		if (sc.priority < DEF_PRIORITY - 2)
7405 			sc.may_writepage = 1;
7406 
7407 		/* Call soft limit reclaim before calling shrink_node. */
7408 		sc.nr_scanned = 0;
7409 		nr_soft_scanned = 0;
7410 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7411 						sc.gfp_mask, &nr_soft_scanned);
7412 		sc.nr_reclaimed += nr_soft_reclaimed;
7413 
7414 		/*
7415 		 * There should be no need to raise the scanning priority if
7416 		 * enough pages are already being scanned that that high
7417 		 * watermark would be met at 100% efficiency.
7418 		 */
7419 		if (kswapd_shrink_node(pgdat, &sc))
7420 			raise_priority = false;
7421 
7422 		/*
7423 		 * If the low watermark is met there is no need for processes
7424 		 * to be throttled on pfmemalloc_wait as they should not be
7425 		 * able to safely make forward progress. Wake them
7426 		 */
7427 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7428 				allow_direct_reclaim(pgdat))
7429 			wake_up_all(&pgdat->pfmemalloc_wait);
7430 
7431 		/* Check if kswapd should be suspending */
7432 		__fs_reclaim_release(_THIS_IP_);
7433 		ret = try_to_freeze();
7434 		__fs_reclaim_acquire(_THIS_IP_);
7435 		if (ret || kthread_should_stop())
7436 			break;
7437 
7438 		/*
7439 		 * Raise priority if scanning rate is too low or there was no
7440 		 * progress in reclaiming pages
7441 		 */
7442 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7443 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7444 
7445 		/*
7446 		 * If reclaim made no progress for a boost, stop reclaim as
7447 		 * IO cannot be queued and it could be an infinite loop in
7448 		 * extreme circumstances.
7449 		 */
7450 		if (nr_boost_reclaim && !nr_reclaimed)
7451 			break;
7452 
7453 		if (raise_priority || !nr_reclaimed)
7454 			sc.priority--;
7455 	} while (sc.priority >= 1);
7456 
7457 	if (!sc.nr_reclaimed)
7458 		pgdat->kswapd_failures++;
7459 
7460 out:
7461 	clear_reclaim_active(pgdat, highest_zoneidx);
7462 
7463 	/* If reclaim was boosted, account for the reclaim done in this pass */
7464 	if (boosted) {
7465 		unsigned long flags;
7466 
7467 		for (i = 0; i <= highest_zoneidx; i++) {
7468 			if (!zone_boosts[i])
7469 				continue;
7470 
7471 			/* Increments are under the zone lock */
7472 			zone = pgdat->node_zones + i;
7473 			spin_lock_irqsave(&zone->lock, flags);
7474 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7475 			spin_unlock_irqrestore(&zone->lock, flags);
7476 		}
7477 
7478 		/*
7479 		 * As there is now likely space, wakeup kcompact to defragment
7480 		 * pageblocks.
7481 		 */
7482 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7483 	}
7484 
7485 	snapshot_refaults(NULL, pgdat);
7486 	__fs_reclaim_release(_THIS_IP_);
7487 	psi_memstall_leave(&pflags);
7488 	set_task_reclaim_state(current, NULL);
7489 
7490 	/*
7491 	 * Return the order kswapd stopped reclaiming at as
7492 	 * prepare_kswapd_sleep() takes it into account. If another caller
7493 	 * entered the allocator slow path while kswapd was awake, order will
7494 	 * remain at the higher level.
7495 	 */
7496 	return sc.order;
7497 }
7498 
7499 /*
7500  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7501  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7502  * not a valid index then either kswapd runs for first time or kswapd couldn't
7503  * sleep after previous reclaim attempt (node is still unbalanced). In that
7504  * case return the zone index of the previous kswapd reclaim cycle.
7505  */
7506 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7507 					   enum zone_type prev_highest_zoneidx)
7508 {
7509 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7510 
7511 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7512 }
7513 
7514 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7515 				unsigned int highest_zoneidx)
7516 {
7517 	long remaining = 0;
7518 	DEFINE_WAIT(wait);
7519 
7520 	if (freezing(current) || kthread_should_stop())
7521 		return;
7522 
7523 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7524 
7525 	/*
7526 	 * Try to sleep for a short interval. Note that kcompactd will only be
7527 	 * woken if it is possible to sleep for a short interval. This is
7528 	 * deliberate on the assumption that if reclaim cannot keep an
7529 	 * eligible zone balanced that it's also unlikely that compaction will
7530 	 * succeed.
7531 	 */
7532 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7533 		/*
7534 		 * Compaction records what page blocks it recently failed to
7535 		 * isolate pages from and skips them in the future scanning.
7536 		 * When kswapd is going to sleep, it is reasonable to assume
7537 		 * that pages and compaction may succeed so reset the cache.
7538 		 */
7539 		reset_isolation_suitable(pgdat);
7540 
7541 		/*
7542 		 * We have freed the memory, now we should compact it to make
7543 		 * allocation of the requested order possible.
7544 		 */
7545 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7546 
7547 		remaining = schedule_timeout(HZ/10);
7548 
7549 		/*
7550 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7551 		 * order. The values will either be from a wakeup request or
7552 		 * the previous request that slept prematurely.
7553 		 */
7554 		if (remaining) {
7555 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7556 					kswapd_highest_zoneidx(pgdat,
7557 							highest_zoneidx));
7558 
7559 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7560 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7561 		}
7562 
7563 		finish_wait(&pgdat->kswapd_wait, &wait);
7564 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7565 	}
7566 
7567 	/*
7568 	 * After a short sleep, check if it was a premature sleep. If not, then
7569 	 * go fully to sleep until explicitly woken up.
7570 	 */
7571 	if (!remaining &&
7572 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7573 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7574 
7575 		/*
7576 		 * vmstat counters are not perfectly accurate and the estimated
7577 		 * value for counters such as NR_FREE_PAGES can deviate from the
7578 		 * true value by nr_online_cpus * threshold. To avoid the zone
7579 		 * watermarks being breached while under pressure, we reduce the
7580 		 * per-cpu vmstat threshold while kswapd is awake and restore
7581 		 * them before going back to sleep.
7582 		 */
7583 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7584 
7585 		if (!kthread_should_stop())
7586 			schedule();
7587 
7588 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7589 	} else {
7590 		if (remaining)
7591 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7592 		else
7593 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7594 	}
7595 	finish_wait(&pgdat->kswapd_wait, &wait);
7596 }
7597 
7598 /*
7599  * The background pageout daemon, started as a kernel thread
7600  * from the init process.
7601  *
7602  * This basically trickles out pages so that we have _some_
7603  * free memory available even if there is no other activity
7604  * that frees anything up. This is needed for things like routing
7605  * etc, where we otherwise might have all activity going on in
7606  * asynchronous contexts that cannot page things out.
7607  *
7608  * If there are applications that are active memory-allocators
7609  * (most normal use), this basically shouldn't matter.
7610  */
7611 static int kswapd(void *p)
7612 {
7613 	unsigned int alloc_order, reclaim_order;
7614 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7615 	pg_data_t *pgdat = (pg_data_t *)p;
7616 	struct task_struct *tsk = current;
7617 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7618 
7619 	if (!cpumask_empty(cpumask))
7620 		set_cpus_allowed_ptr(tsk, cpumask);
7621 
7622 	/*
7623 	 * Tell the memory management that we're a "memory allocator",
7624 	 * and that if we need more memory we should get access to it
7625 	 * regardless (see "__alloc_pages()"). "kswapd" should
7626 	 * never get caught in the normal page freeing logic.
7627 	 *
7628 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7629 	 * you need a small amount of memory in order to be able to
7630 	 * page out something else, and this flag essentially protects
7631 	 * us from recursively trying to free more memory as we're
7632 	 * trying to free the first piece of memory in the first place).
7633 	 */
7634 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7635 	set_freezable();
7636 
7637 	WRITE_ONCE(pgdat->kswapd_order, 0);
7638 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7639 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7640 	for ( ; ; ) {
7641 		bool ret;
7642 
7643 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7644 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7645 							highest_zoneidx);
7646 
7647 kswapd_try_sleep:
7648 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7649 					highest_zoneidx);
7650 
7651 		/* Read the new order and highest_zoneidx */
7652 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7653 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7654 							highest_zoneidx);
7655 		WRITE_ONCE(pgdat->kswapd_order, 0);
7656 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7657 
7658 		ret = try_to_freeze();
7659 		if (kthread_should_stop())
7660 			break;
7661 
7662 		/*
7663 		 * We can speed up thawing tasks if we don't call balance_pgdat
7664 		 * after returning from the refrigerator
7665 		 */
7666 		if (ret)
7667 			continue;
7668 
7669 		/*
7670 		 * Reclaim begins at the requested order but if a high-order
7671 		 * reclaim fails then kswapd falls back to reclaiming for
7672 		 * order-0. If that happens, kswapd will consider sleeping
7673 		 * for the order it finished reclaiming at (reclaim_order)
7674 		 * but kcompactd is woken to compact for the original
7675 		 * request (alloc_order).
7676 		 */
7677 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7678 						alloc_order);
7679 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7680 						highest_zoneidx);
7681 		if (reclaim_order < alloc_order)
7682 			goto kswapd_try_sleep;
7683 	}
7684 
7685 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7686 
7687 	return 0;
7688 }
7689 
7690 /*
7691  * A zone is low on free memory or too fragmented for high-order memory.  If
7692  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7693  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7694  * has failed or is not needed, still wake up kcompactd if only compaction is
7695  * needed.
7696  */
7697 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7698 		   enum zone_type highest_zoneidx)
7699 {
7700 	pg_data_t *pgdat;
7701 	enum zone_type curr_idx;
7702 
7703 	if (!managed_zone(zone))
7704 		return;
7705 
7706 	if (!cpuset_zone_allowed(zone, gfp_flags))
7707 		return;
7708 
7709 	pgdat = zone->zone_pgdat;
7710 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7711 
7712 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7713 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7714 
7715 	if (READ_ONCE(pgdat->kswapd_order) < order)
7716 		WRITE_ONCE(pgdat->kswapd_order, order);
7717 
7718 	if (!waitqueue_active(&pgdat->kswapd_wait))
7719 		return;
7720 
7721 	/* Hopeless node, leave it to direct reclaim if possible */
7722 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7723 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7724 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7725 		/*
7726 		 * There may be plenty of free memory available, but it's too
7727 		 * fragmented for high-order allocations.  Wake up kcompactd
7728 		 * and rely on compaction_suitable() to determine if it's
7729 		 * needed.  If it fails, it will defer subsequent attempts to
7730 		 * ratelimit its work.
7731 		 */
7732 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7733 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7734 		return;
7735 	}
7736 
7737 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7738 				      gfp_flags);
7739 	wake_up_interruptible(&pgdat->kswapd_wait);
7740 }
7741 
7742 #ifdef CONFIG_HIBERNATION
7743 /*
7744  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7745  * freed pages.
7746  *
7747  * Rather than trying to age LRUs the aim is to preserve the overall
7748  * LRU order by reclaiming preferentially
7749  * inactive > active > active referenced > active mapped
7750  */
7751 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7752 {
7753 	struct scan_control sc = {
7754 		.nr_to_reclaim = nr_to_reclaim,
7755 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7756 		.reclaim_idx = MAX_NR_ZONES - 1,
7757 		.priority = DEF_PRIORITY,
7758 		.may_writepage = 1,
7759 		.may_unmap = 1,
7760 		.may_swap = 1,
7761 		.hibernation_mode = 1,
7762 	};
7763 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7764 	unsigned long nr_reclaimed;
7765 	unsigned int noreclaim_flag;
7766 
7767 	fs_reclaim_acquire(sc.gfp_mask);
7768 	noreclaim_flag = memalloc_noreclaim_save();
7769 	set_task_reclaim_state(current, &sc.reclaim_state);
7770 
7771 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7772 
7773 	set_task_reclaim_state(current, NULL);
7774 	memalloc_noreclaim_restore(noreclaim_flag);
7775 	fs_reclaim_release(sc.gfp_mask);
7776 
7777 	return nr_reclaimed;
7778 }
7779 #endif /* CONFIG_HIBERNATION */
7780 
7781 /*
7782  * This kswapd start function will be called by init and node-hot-add.
7783  */
7784 void kswapd_run(int nid)
7785 {
7786 	pg_data_t *pgdat = NODE_DATA(nid);
7787 
7788 	pgdat_kswapd_lock(pgdat);
7789 	if (!pgdat->kswapd) {
7790 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7791 		if (IS_ERR(pgdat->kswapd)) {
7792 			/* failure at boot is fatal */
7793 			BUG_ON(system_state < SYSTEM_RUNNING);
7794 			pr_err("Failed to start kswapd on node %d\n", nid);
7795 			pgdat->kswapd = NULL;
7796 		}
7797 	}
7798 	pgdat_kswapd_unlock(pgdat);
7799 }
7800 
7801 /*
7802  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7803  * be holding mem_hotplug_begin/done().
7804  */
7805 void kswapd_stop(int nid)
7806 {
7807 	pg_data_t *pgdat = NODE_DATA(nid);
7808 	struct task_struct *kswapd;
7809 
7810 	pgdat_kswapd_lock(pgdat);
7811 	kswapd = pgdat->kswapd;
7812 	if (kswapd) {
7813 		kthread_stop(kswapd);
7814 		pgdat->kswapd = NULL;
7815 	}
7816 	pgdat_kswapd_unlock(pgdat);
7817 }
7818 
7819 static int __init kswapd_init(void)
7820 {
7821 	int nid;
7822 
7823 	swap_setup();
7824 	for_each_node_state(nid, N_MEMORY)
7825  		kswapd_run(nid);
7826 	return 0;
7827 }
7828 
7829 module_init(kswapd_init)
7830 
7831 #ifdef CONFIG_NUMA
7832 /*
7833  * Node reclaim mode
7834  *
7835  * If non-zero call node_reclaim when the number of free pages falls below
7836  * the watermarks.
7837  */
7838 int node_reclaim_mode __read_mostly;
7839 
7840 /*
7841  * Priority for NODE_RECLAIM. This determines the fraction of pages
7842  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7843  * a zone.
7844  */
7845 #define NODE_RECLAIM_PRIORITY 4
7846 
7847 /*
7848  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7849  * occur.
7850  */
7851 int sysctl_min_unmapped_ratio = 1;
7852 
7853 /*
7854  * If the number of slab pages in a zone grows beyond this percentage then
7855  * slab reclaim needs to occur.
7856  */
7857 int sysctl_min_slab_ratio = 5;
7858 
7859 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7860 {
7861 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7862 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7863 		node_page_state(pgdat, NR_ACTIVE_FILE);
7864 
7865 	/*
7866 	 * It's possible for there to be more file mapped pages than
7867 	 * accounted for by the pages on the file LRU lists because
7868 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7869 	 */
7870 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7871 }
7872 
7873 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7874 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7875 {
7876 	unsigned long nr_pagecache_reclaimable;
7877 	unsigned long delta = 0;
7878 
7879 	/*
7880 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7881 	 * potentially reclaimable. Otherwise, we have to worry about
7882 	 * pages like swapcache and node_unmapped_file_pages() provides
7883 	 * a better estimate
7884 	 */
7885 	if (node_reclaim_mode & RECLAIM_UNMAP)
7886 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7887 	else
7888 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7889 
7890 	/* If we can't clean pages, remove dirty pages from consideration */
7891 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7892 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7893 
7894 	/* Watch for any possible underflows due to delta */
7895 	if (unlikely(delta > nr_pagecache_reclaimable))
7896 		delta = nr_pagecache_reclaimable;
7897 
7898 	return nr_pagecache_reclaimable - delta;
7899 }
7900 
7901 /*
7902  * Try to free up some pages from this node through reclaim.
7903  */
7904 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7905 {
7906 	/* Minimum pages needed in order to stay on node */
7907 	const unsigned long nr_pages = 1 << order;
7908 	struct task_struct *p = current;
7909 	unsigned int noreclaim_flag;
7910 	struct scan_control sc = {
7911 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7912 		.gfp_mask = current_gfp_context(gfp_mask),
7913 		.order = order,
7914 		.priority = NODE_RECLAIM_PRIORITY,
7915 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7916 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7917 		.may_swap = 1,
7918 		.reclaim_idx = gfp_zone(gfp_mask),
7919 	};
7920 	unsigned long pflags;
7921 
7922 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7923 					   sc.gfp_mask);
7924 
7925 	cond_resched();
7926 	psi_memstall_enter(&pflags);
7927 	fs_reclaim_acquire(sc.gfp_mask);
7928 	/*
7929 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7930 	 */
7931 	noreclaim_flag = memalloc_noreclaim_save();
7932 	set_task_reclaim_state(p, &sc.reclaim_state);
7933 
7934 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7935 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7936 		/*
7937 		 * Free memory by calling shrink node with increasing
7938 		 * priorities until we have enough memory freed.
7939 		 */
7940 		do {
7941 			shrink_node(pgdat, &sc);
7942 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7943 	}
7944 
7945 	set_task_reclaim_state(p, NULL);
7946 	memalloc_noreclaim_restore(noreclaim_flag);
7947 	fs_reclaim_release(sc.gfp_mask);
7948 	psi_memstall_leave(&pflags);
7949 
7950 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7951 
7952 	return sc.nr_reclaimed >= nr_pages;
7953 }
7954 
7955 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7956 {
7957 	int ret;
7958 
7959 	/*
7960 	 * Node reclaim reclaims unmapped file backed pages and
7961 	 * slab pages if we are over the defined limits.
7962 	 *
7963 	 * A small portion of unmapped file backed pages is needed for
7964 	 * file I/O otherwise pages read by file I/O will be immediately
7965 	 * thrown out if the node is overallocated. So we do not reclaim
7966 	 * if less than a specified percentage of the node is used by
7967 	 * unmapped file backed pages.
7968 	 */
7969 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7970 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7971 	    pgdat->min_slab_pages)
7972 		return NODE_RECLAIM_FULL;
7973 
7974 	/*
7975 	 * Do not scan if the allocation should not be delayed.
7976 	 */
7977 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7978 		return NODE_RECLAIM_NOSCAN;
7979 
7980 	/*
7981 	 * Only run node reclaim on the local node or on nodes that do not
7982 	 * have associated processors. This will favor the local processor
7983 	 * over remote processors and spread off node memory allocations
7984 	 * as wide as possible.
7985 	 */
7986 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7987 		return NODE_RECLAIM_NOSCAN;
7988 
7989 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7990 		return NODE_RECLAIM_NOSCAN;
7991 
7992 	ret = __node_reclaim(pgdat, gfp_mask, order);
7993 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7994 
7995 	if (!ret)
7996 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7997 
7998 	return ret;
7999 }
8000 #endif
8001 
8002 void check_move_unevictable_pages(struct pagevec *pvec)
8003 {
8004 	struct folio_batch fbatch;
8005 	unsigned i;
8006 
8007 	folio_batch_init(&fbatch);
8008 	for (i = 0; i < pvec->nr; i++) {
8009 		struct page *page = pvec->pages[i];
8010 
8011 		if (PageTransTail(page))
8012 			continue;
8013 		folio_batch_add(&fbatch, page_folio(page));
8014 	}
8015 	check_move_unevictable_folios(&fbatch);
8016 }
8017 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8018 
8019 /**
8020  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8021  * lru list
8022  * @fbatch: Batch of lru folios to check.
8023  *
8024  * Checks folios for evictability, if an evictable folio is in the unevictable
8025  * lru list, moves it to the appropriate evictable lru list. This function
8026  * should be only used for lru folios.
8027  */
8028 void check_move_unevictable_folios(struct folio_batch *fbatch)
8029 {
8030 	struct lruvec *lruvec = NULL;
8031 	int pgscanned = 0;
8032 	int pgrescued = 0;
8033 	int i;
8034 
8035 	for (i = 0; i < fbatch->nr; i++) {
8036 		struct folio *folio = fbatch->folios[i];
8037 		int nr_pages = folio_nr_pages(folio);
8038 
8039 		pgscanned += nr_pages;
8040 
8041 		/* block memcg migration while the folio moves between lrus */
8042 		if (!folio_test_clear_lru(folio))
8043 			continue;
8044 
8045 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8046 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8047 			lruvec_del_folio(lruvec, folio);
8048 			folio_clear_unevictable(folio);
8049 			lruvec_add_folio(lruvec, folio);
8050 			pgrescued += nr_pages;
8051 		}
8052 		folio_set_lru(folio);
8053 	}
8054 
8055 	if (lruvec) {
8056 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8057 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8058 		unlock_page_lruvec_irq(lruvec);
8059 	} else if (pgscanned) {
8060 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8061 	}
8062 }
8063 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8064