xref: /openbmc/linux/mm/vmscan.c (revision e6b58555558a1ea653e415fc45308964087f9053)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/*
82 	 * Scan pressure balancing between anon and file LRUs
83 	 */
84 	unsigned long	anon_cost;
85 	unsigned long	file_cost;
86 
87 	/* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 	unsigned int may_deactivate:2;
91 	unsigned int force_deactivate:1;
92 	unsigned int skipped_deactivate:1;
93 
94 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
95 	unsigned int may_writepage:1;
96 
97 	/* Can mapped pages be reclaimed? */
98 	unsigned int may_unmap:1;
99 
100 	/* Can pages be swapped as part of reclaim? */
101 	unsigned int may_swap:1;
102 
103 	/*
104 	 * Cgroup memory below memory.low is protected as long as we
105 	 * don't threaten to OOM. If any cgroup is reclaimed at
106 	 * reduced force or passed over entirely due to its memory.low
107 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 	 * result, then go back for one more cycle that reclaims the protected
109 	 * memory (memcg_low_reclaim) to avert OOM.
110 	 */
111 	unsigned int memcg_low_reclaim:1;
112 	unsigned int memcg_low_skipped:1;
113 
114 	unsigned int hibernation_mode:1;
115 
116 	/* One of the zones is ready for compaction */
117 	unsigned int compaction_ready:1;
118 
119 	/* There is easily reclaimable cold cache in the current node */
120 	unsigned int cache_trim_mode:1;
121 
122 	/* The file pages on the current node are dangerously low */
123 	unsigned int file_is_tiny:1;
124 
125 	/* Always discard instead of demoting to lower tier memory */
126 	unsigned int no_demotion:1;
127 
128 	/* Allocation order */
129 	s8 order;
130 
131 	/* Scan (total_size >> priority) pages at once */
132 	s8 priority;
133 
134 	/* The highest zone to isolate pages for reclaim from */
135 	s8 reclaim_idx;
136 
137 	/* This context's GFP mask */
138 	gfp_t gfp_mask;
139 
140 	/* Incremented by the number of inactive pages that were scanned */
141 	unsigned long nr_scanned;
142 
143 	/* Number of pages freed so far during a call to shrink_zones() */
144 	unsigned long nr_reclaimed;
145 
146 	struct {
147 		unsigned int dirty;
148 		unsigned int unqueued_dirty;
149 		unsigned int congested;
150 		unsigned int writeback;
151 		unsigned int immediate;
152 		unsigned int file_taken;
153 		unsigned int taken;
154 	} nr;
155 
156 	/* for recording the reclaimed slab by now */
157 	struct reclaim_state reclaim_state;
158 };
159 
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field)			\
162 	do {								\
163 		if ((_page)->lru.prev != _base) {			\
164 			struct page *prev;				\
165 									\
166 			prev = lru_to_page(&(_page->lru));		\
167 			prefetchw(&prev->_field);			\
168 		}							\
169 	} while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173 
174 /*
175  * From 0 .. 200.  Higher means more swappy.
176  */
177 int vm_swappiness = 60;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size)
218 {
219 	struct shrinker_info *new, *old;
220 	struct mem_cgroup_per_node *pn;
221 	int nid;
222 	int size = map_size + defer_size;
223 
224 	for_each_node(nid) {
225 		pn = memcg->nodeinfo[nid];
226 		old = shrinker_info_protected(memcg, nid);
227 		/* Not yet online memcg */
228 		if (!old)
229 			return 0;
230 
231 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 		if (!new)
233 			return -ENOMEM;
234 
235 		new->nr_deferred = (atomic_long_t *)(new + 1);
236 		new->map = (void *)new->nr_deferred + defer_size;
237 
238 		/* map: set all old bits, clear all new bits */
239 		memset(new->map, (int)0xff, old_map_size);
240 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 		/* nr_deferred: copy old values, clear all new values */
242 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 		memset((void *)new->nr_deferred + old_defer_size, 0,
244 		       defer_size - old_defer_size);
245 
246 		rcu_assign_pointer(pn->shrinker_info, new);
247 		kvfree_rcu(old, rcu);
248 	}
249 
250 	return 0;
251 }
252 
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 	struct mem_cgroup_per_node *pn;
256 	struct shrinker_info *info;
257 	int nid;
258 
259 	for_each_node(nid) {
260 		pn = memcg->nodeinfo[nid];
261 		info = rcu_dereference_protected(pn->shrinker_info, true);
262 		kvfree(info);
263 		rcu_assign_pointer(pn->shrinker_info, NULL);
264 	}
265 }
266 
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 	struct shrinker_info *info;
270 	int nid, size, ret = 0;
271 	int map_size, defer_size = 0;
272 
273 	down_write(&shrinker_rwsem);
274 	map_size = shrinker_map_size(shrinker_nr_max);
275 	defer_size = shrinker_defer_size(shrinker_nr_max);
276 	size = map_size + defer_size;
277 	for_each_node(nid) {
278 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 		if (!info) {
280 			free_shrinker_info(memcg);
281 			ret = -ENOMEM;
282 			break;
283 		}
284 		info->nr_deferred = (atomic_long_t *)(info + 1);
285 		info->map = (void *)info->nr_deferred + defer_size;
286 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 	}
288 	up_write(&shrinker_rwsem);
289 
290 	return ret;
291 }
292 
293 static inline bool need_expand(int nr_max)
294 {
295 	return round_up(nr_max, BITS_PER_LONG) >
296 	       round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298 
299 static int expand_shrinker_info(int new_id)
300 {
301 	int ret = 0;
302 	int new_nr_max = new_id + 1;
303 	int map_size, defer_size = 0;
304 	int old_map_size, old_defer_size = 0;
305 	struct mem_cgroup *memcg;
306 
307 	if (!need_expand(new_nr_max))
308 		goto out;
309 
310 	if (!root_mem_cgroup)
311 		goto out;
312 
313 	lockdep_assert_held(&shrinker_rwsem);
314 
315 	map_size = shrinker_map_size(new_nr_max);
316 	defer_size = shrinker_defer_size(new_nr_max);
317 	old_map_size = shrinker_map_size(shrinker_nr_max);
318 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
319 
320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 	do {
322 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 					       old_map_size, old_defer_size);
324 		if (ret) {
325 			mem_cgroup_iter_break(NULL, memcg);
326 			goto out;
327 		}
328 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 	if (!ret)
331 		shrinker_nr_max = new_nr_max;
332 
333 	return ret;
334 }
335 
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 		struct shrinker_info *info;
340 
341 		rcu_read_lock();
342 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 		/* Pairs with smp mb in shrink_slab() */
344 		smp_mb__before_atomic();
345 		set_bit(shrinker_id, info->map);
346 		rcu_read_unlock();
347 	}
348 }
349 
350 static DEFINE_IDR(shrinker_idr);
351 
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 	int id, ret = -ENOMEM;
355 
356 	if (mem_cgroup_disabled())
357 		return -ENOSYS;
358 
359 	down_write(&shrinker_rwsem);
360 	/* This may call shrinker, so it must use down_read_trylock() */
361 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 	if (id < 0)
363 		goto unlock;
364 
365 	if (id >= shrinker_nr_max) {
366 		if (expand_shrinker_info(id)) {
367 			idr_remove(&shrinker_idr, id);
368 			goto unlock;
369 		}
370 	}
371 	shrinker->id = id;
372 	ret = 0;
373 unlock:
374 	up_write(&shrinker_rwsem);
375 	return ret;
376 }
377 
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 	int id = shrinker->id;
381 
382 	BUG_ON(id < 0);
383 
384 	lockdep_assert_held(&shrinker_rwsem);
385 
386 	idr_remove(&shrinker_idr, id);
387 }
388 
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 				   struct mem_cgroup *memcg)
391 {
392 	struct shrinker_info *info;
393 
394 	info = shrinker_info_protected(memcg, nid);
395 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397 
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 				  struct mem_cgroup *memcg)
400 {
401 	struct shrinker_info *info;
402 
403 	info = shrinker_info_protected(memcg, nid);
404 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406 
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 	int i, nid;
410 	long nr;
411 	struct mem_cgroup *parent;
412 	struct shrinker_info *child_info, *parent_info;
413 
414 	parent = parent_mem_cgroup(memcg);
415 	if (!parent)
416 		parent = root_mem_cgroup;
417 
418 	/* Prevent from concurrent shrinker_info expand */
419 	down_read(&shrinker_rwsem);
420 	for_each_node(nid) {
421 		child_info = shrinker_info_protected(memcg, nid);
422 		parent_info = shrinker_info_protected(parent, nid);
423 		for (i = 0; i < shrinker_nr_max; i++) {
424 			nr = atomic_long_read(&child_info->nr_deferred[i]);
425 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 		}
427 	}
428 	up_read(&shrinker_rwsem);
429 }
430 
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 	return sc->target_mem_cgroup;
434 }
435 
436 /**
437  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438  * @sc: scan_control in question
439  *
440  * The normal page dirty throttling mechanism in balance_dirty_pages() is
441  * completely broken with the legacy memcg and direct stalling in
442  * shrink_page_list() is used for throttling instead, which lacks all the
443  * niceties such as fairness, adaptive pausing, bandwidth proportional
444  * allocation and configurability.
445  *
446  * This function tests whether the vmscan currently in progress can assume
447  * that the normal dirty throttling mechanism is operational.
448  */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 	if (!cgroup_reclaim(sc))
452 		return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 		return true;
456 #endif
457 	return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 	return -ENOSYS;
463 }
464 
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468 
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 				   struct mem_cgroup *memcg)
471 {
472 	return 0;
473 }
474 
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 				  struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 	return false;
484 }
485 
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 	return true;
489 }
490 #endif
491 
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 			     struct shrink_control *sc)
494 {
495 	int nid = sc->nid;
496 
497 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 		nid = 0;
499 
500 	if (sc->memcg &&
501 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 		return xchg_nr_deferred_memcg(nid, shrinker,
503 					      sc->memcg);
504 
505 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507 
508 
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 			    struct shrink_control *sc)
511 {
512 	int nid = sc->nid;
513 
514 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 		nid = 0;
516 
517 	if (sc->memcg &&
518 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 		return add_nr_deferred_memcg(nr, nid, shrinker,
520 					     sc->memcg);
521 
522 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524 
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 	if (!numa_demotion_enabled)
528 		return false;
529 	if (sc) {
530 		if (sc->no_demotion)
531 			return false;
532 		/* It is pointless to do demotion in memcg reclaim */
533 		if (cgroup_reclaim(sc))
534 			return false;
535 	}
536 	if (next_demotion_node(nid) == NUMA_NO_NODE)
537 		return false;
538 
539 	return true;
540 }
541 
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 					  int nid,
544 					  struct scan_control *sc)
545 {
546 	if (memcg == NULL) {
547 		/*
548 		 * For non-memcg reclaim, is there
549 		 * space in any swap device?
550 		 */
551 		if (get_nr_swap_pages() > 0)
552 			return true;
553 	} else {
554 		/* Is the memcg below its swap limit? */
555 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 			return true;
557 	}
558 
559 	/*
560 	 * The page can not be swapped.
561 	 *
562 	 * Can it be reclaimed from this node via demotion?
563 	 */
564 	return can_demote(nid, sc);
565 }
566 
567 /*
568  * This misses isolated pages which are not accounted for to save counters.
569  * As the data only determines if reclaim or compaction continues, it is
570  * not expected that isolated pages will be a dominating factor.
571  */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 	unsigned long nr;
575 
576 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581 
582 	return nr;
583 }
584 
585 /**
586  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
587  * @lruvec: lru vector
588  * @lru: lru to use
589  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590  */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 				     int zone_idx)
593 {
594 	unsigned long size = 0;
595 	int zid;
596 
597 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599 
600 		if (!managed_zone(zone))
601 			continue;
602 
603 		if (!mem_cgroup_disabled())
604 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 		else
606 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 	}
608 	return size;
609 }
610 
611 /*
612  * Add a shrinker callback to be called from the vm.
613  */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 	unsigned int size;
617 	int err;
618 
619 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 		err = prealloc_memcg_shrinker(shrinker);
621 		if (err != -ENOSYS)
622 			return err;
623 
624 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 	}
626 
627 	size = sizeof(*shrinker->nr_deferred);
628 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 		size *= nr_node_ids;
630 
631 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 	if (!shrinker->nr_deferred)
633 		return -ENOMEM;
634 
635 	return 0;
636 }
637 
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		down_write(&shrinker_rwsem);
642 		unregister_memcg_shrinker(shrinker);
643 		up_write(&shrinker_rwsem);
644 		return;
645 	}
646 
647 	kfree(shrinker->nr_deferred);
648 	shrinker->nr_deferred = NULL;
649 }
650 
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 	down_write(&shrinker_rwsem);
654 	list_add_tail(&shrinker->list, &shrinker_list);
655 	shrinker->flags |= SHRINKER_REGISTERED;
656 	up_write(&shrinker_rwsem);
657 }
658 
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 	int err = prealloc_shrinker(shrinker);
662 
663 	if (err)
664 		return err;
665 	register_shrinker_prepared(shrinker);
666 	return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669 
670 /*
671  * Remove one
672  */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 	if (!(shrinker->flags & SHRINKER_REGISTERED))
676 		return;
677 
678 	down_write(&shrinker_rwsem);
679 	list_del(&shrinker->list);
680 	shrinker->flags &= ~SHRINKER_REGISTERED;
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 		unregister_memcg_shrinker(shrinker);
683 	up_write(&shrinker_rwsem);
684 
685 	kfree(shrinker->nr_deferred);
686 	shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689 
690 /**
691  * synchronize_shrinkers - Wait for all running shrinkers to complete.
692  *
693  * This is equivalent to calling unregister_shrink() and register_shrinker(),
694  * but atomically and with less overhead. This is useful to guarantee that all
695  * shrinker invocations have seen an update, before freeing memory, similar to
696  * rcu.
697  */
698 void synchronize_shrinkers(void)
699 {
700 	down_write(&shrinker_rwsem);
701 	up_write(&shrinker_rwsem);
702 }
703 EXPORT_SYMBOL(synchronize_shrinkers);
704 
705 #define SHRINK_BATCH 128
706 
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 				    struct shrinker *shrinker, int priority)
709 {
710 	unsigned long freed = 0;
711 	unsigned long long delta;
712 	long total_scan;
713 	long freeable;
714 	long nr;
715 	long new_nr;
716 	long batch_size = shrinker->batch ? shrinker->batch
717 					  : SHRINK_BATCH;
718 	long scanned = 0, next_deferred;
719 
720 	freeable = shrinker->count_objects(shrinker, shrinkctl);
721 	if (freeable == 0 || freeable == SHRINK_EMPTY)
722 		return freeable;
723 
724 	/*
725 	 * copy the current shrinker scan count into a local variable
726 	 * and zero it so that other concurrent shrinker invocations
727 	 * don't also do this scanning work.
728 	 */
729 	nr = xchg_nr_deferred(shrinker, shrinkctl);
730 
731 	if (shrinker->seeks) {
732 		delta = freeable >> priority;
733 		delta *= 4;
734 		do_div(delta, shrinker->seeks);
735 	} else {
736 		/*
737 		 * These objects don't require any IO to create. Trim
738 		 * them aggressively under memory pressure to keep
739 		 * them from causing refetches in the IO caches.
740 		 */
741 		delta = freeable / 2;
742 	}
743 
744 	total_scan = nr >> priority;
745 	total_scan += delta;
746 	total_scan = min(total_scan, (2 * freeable));
747 
748 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 				   freeable, delta, total_scan, priority);
750 
751 	/*
752 	 * Normally, we should not scan less than batch_size objects in one
753 	 * pass to avoid too frequent shrinker calls, but if the slab has less
754 	 * than batch_size objects in total and we are really tight on memory,
755 	 * we will try to reclaim all available objects, otherwise we can end
756 	 * up failing allocations although there are plenty of reclaimable
757 	 * objects spread over several slabs with usage less than the
758 	 * batch_size.
759 	 *
760 	 * We detect the "tight on memory" situations by looking at the total
761 	 * number of objects we want to scan (total_scan). If it is greater
762 	 * than the total number of objects on slab (freeable), we must be
763 	 * scanning at high prio and therefore should try to reclaim as much as
764 	 * possible.
765 	 */
766 	while (total_scan >= batch_size ||
767 	       total_scan >= freeable) {
768 		unsigned long ret;
769 		unsigned long nr_to_scan = min(batch_size, total_scan);
770 
771 		shrinkctl->nr_to_scan = nr_to_scan;
772 		shrinkctl->nr_scanned = nr_to_scan;
773 		ret = shrinker->scan_objects(shrinker, shrinkctl);
774 		if (ret == SHRINK_STOP)
775 			break;
776 		freed += ret;
777 
778 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 		total_scan -= shrinkctl->nr_scanned;
780 		scanned += shrinkctl->nr_scanned;
781 
782 		cond_resched();
783 	}
784 
785 	/*
786 	 * The deferred work is increased by any new work (delta) that wasn't
787 	 * done, decreased by old deferred work that was done now.
788 	 *
789 	 * And it is capped to two times of the freeable items.
790 	 */
791 	next_deferred = max_t(long, (nr + delta - scanned), 0);
792 	next_deferred = min(next_deferred, (2 * freeable));
793 
794 	/*
795 	 * move the unused scan count back into the shrinker in a
796 	 * manner that handles concurrent updates.
797 	 */
798 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
799 
800 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
801 	return freed;
802 }
803 
804 #ifdef CONFIG_MEMCG
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 			struct mem_cgroup *memcg, int priority)
807 {
808 	struct shrinker_info *info;
809 	unsigned long ret, freed = 0;
810 	int i;
811 
812 	if (!mem_cgroup_online(memcg))
813 		return 0;
814 
815 	if (!down_read_trylock(&shrinker_rwsem))
816 		return 0;
817 
818 	info = shrinker_info_protected(memcg, nid);
819 	if (unlikely(!info))
820 		goto unlock;
821 
822 	for_each_set_bit(i, info->map, shrinker_nr_max) {
823 		struct shrink_control sc = {
824 			.gfp_mask = gfp_mask,
825 			.nid = nid,
826 			.memcg = memcg,
827 		};
828 		struct shrinker *shrinker;
829 
830 		shrinker = idr_find(&shrinker_idr, i);
831 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
832 			if (!shrinker)
833 				clear_bit(i, info->map);
834 			continue;
835 		}
836 
837 		/* Call non-slab shrinkers even though kmem is disabled */
838 		if (!memcg_kmem_enabled() &&
839 		    !(shrinker->flags & SHRINKER_NONSLAB))
840 			continue;
841 
842 		ret = do_shrink_slab(&sc, shrinker, priority);
843 		if (ret == SHRINK_EMPTY) {
844 			clear_bit(i, info->map);
845 			/*
846 			 * After the shrinker reported that it had no objects to
847 			 * free, but before we cleared the corresponding bit in
848 			 * the memcg shrinker map, a new object might have been
849 			 * added. To make sure, we have the bit set in this
850 			 * case, we invoke the shrinker one more time and reset
851 			 * the bit if it reports that it is not empty anymore.
852 			 * The memory barrier here pairs with the barrier in
853 			 * set_shrinker_bit():
854 			 *
855 			 * list_lru_add()     shrink_slab_memcg()
856 			 *   list_add_tail()    clear_bit()
857 			 *   <MB>               <MB>
858 			 *   set_bit()          do_shrink_slab()
859 			 */
860 			smp_mb__after_atomic();
861 			ret = do_shrink_slab(&sc, shrinker, priority);
862 			if (ret == SHRINK_EMPTY)
863 				ret = 0;
864 			else
865 				set_shrinker_bit(memcg, nid, i);
866 		}
867 		freed += ret;
868 
869 		if (rwsem_is_contended(&shrinker_rwsem)) {
870 			freed = freed ? : 1;
871 			break;
872 		}
873 	}
874 unlock:
875 	up_read(&shrinker_rwsem);
876 	return freed;
877 }
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 			struct mem_cgroup *memcg, int priority)
881 {
882 	return 0;
883 }
884 #endif /* CONFIG_MEMCG */
885 
886 /**
887  * shrink_slab - shrink slab caches
888  * @gfp_mask: allocation context
889  * @nid: node whose slab caches to target
890  * @memcg: memory cgroup whose slab caches to target
891  * @priority: the reclaim priority
892  *
893  * Call the shrink functions to age shrinkable caches.
894  *
895  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896  * unaware shrinkers will receive a node id of 0 instead.
897  *
898  * @memcg specifies the memory cgroup to target. Unaware shrinkers
899  * are called only if it is the root cgroup.
900  *
901  * @priority is sc->priority, we take the number of objects and >> by priority
902  * in order to get the scan target.
903  *
904  * Returns the number of reclaimed slab objects.
905  */
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 				 struct mem_cgroup *memcg,
908 				 int priority)
909 {
910 	unsigned long ret, freed = 0;
911 	struct shrinker *shrinker;
912 
913 	/*
914 	 * The root memcg might be allocated even though memcg is disabled
915 	 * via "cgroup_disable=memory" boot parameter.  This could make
916 	 * mem_cgroup_is_root() return false, then just run memcg slab
917 	 * shrink, but skip global shrink.  This may result in premature
918 	 * oom.
919 	 */
920 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
922 
923 	if (!down_read_trylock(&shrinker_rwsem))
924 		goto out;
925 
926 	list_for_each_entry(shrinker, &shrinker_list, list) {
927 		struct shrink_control sc = {
928 			.gfp_mask = gfp_mask,
929 			.nid = nid,
930 			.memcg = memcg,
931 		};
932 
933 		ret = do_shrink_slab(&sc, shrinker, priority);
934 		if (ret == SHRINK_EMPTY)
935 			ret = 0;
936 		freed += ret;
937 		/*
938 		 * Bail out if someone want to register a new shrinker to
939 		 * prevent the registration from being stalled for long periods
940 		 * by parallel ongoing shrinking.
941 		 */
942 		if (rwsem_is_contended(&shrinker_rwsem)) {
943 			freed = freed ? : 1;
944 			break;
945 		}
946 	}
947 
948 	up_read(&shrinker_rwsem);
949 out:
950 	cond_resched();
951 	return freed;
952 }
953 
954 static void drop_slab_node(int nid)
955 {
956 	unsigned long freed;
957 	int shift = 0;
958 
959 	do {
960 		struct mem_cgroup *memcg = NULL;
961 
962 		if (fatal_signal_pending(current))
963 			return;
964 
965 		freed = 0;
966 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
967 		do {
968 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 	} while ((freed >> shift++) > 1);
971 }
972 
973 void drop_slab(void)
974 {
975 	int nid;
976 
977 	for_each_online_node(nid)
978 		drop_slab_node(nid);
979 }
980 
981 static inline int is_page_cache_freeable(struct page *page)
982 {
983 	/*
984 	 * A freeable page cache page is referenced only by the caller
985 	 * that isolated the page, the page cache and optional buffer
986 	 * heads at page->private.
987 	 */
988 	int page_cache_pins = thp_nr_pages(page);
989 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
990 }
991 
992 static int may_write_to_inode(struct inode *inode)
993 {
994 	if (current->flags & PF_SWAPWRITE)
995 		return 1;
996 	if (!inode_write_congested(inode))
997 		return 1;
998 	if (inode_to_bdi(inode) == current->backing_dev_info)
999 		return 1;
1000 	return 0;
1001 }
1002 
1003 /*
1004  * We detected a synchronous write error writing a page out.  Probably
1005  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1006  * fsync(), msync() or close().
1007  *
1008  * The tricky part is that after writepage we cannot touch the mapping: nothing
1009  * prevents it from being freed up.  But we have a ref on the page and once
1010  * that page is locked, the mapping is pinned.
1011  *
1012  * We're allowed to run sleeping lock_page() here because we know the caller has
1013  * __GFP_FS.
1014  */
1015 static void handle_write_error(struct address_space *mapping,
1016 				struct page *page, int error)
1017 {
1018 	lock_page(page);
1019 	if (page_mapping(page) == mapping)
1020 		mapping_set_error(mapping, error);
1021 	unlock_page(page);
1022 }
1023 
1024 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1025 {
1026 	int reclaimable = 0, write_pending = 0;
1027 	int i;
1028 
1029 	/*
1030 	 * If kswapd is disabled, reschedule if necessary but do not
1031 	 * throttle as the system is likely near OOM.
1032 	 */
1033 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1034 		return true;
1035 
1036 	/*
1037 	 * If there are a lot of dirty/writeback pages then do not
1038 	 * throttle as throttling will occur when the pages cycle
1039 	 * towards the end of the LRU if still under writeback.
1040 	 */
1041 	for (i = 0; i < MAX_NR_ZONES; i++) {
1042 		struct zone *zone = pgdat->node_zones + i;
1043 
1044 		if (!populated_zone(zone))
1045 			continue;
1046 
1047 		reclaimable += zone_reclaimable_pages(zone);
1048 		write_pending += zone_page_state_snapshot(zone,
1049 						  NR_ZONE_WRITE_PENDING);
1050 	}
1051 	if (2 * write_pending <= reclaimable)
1052 		return true;
1053 
1054 	return false;
1055 }
1056 
1057 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1058 {
1059 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1060 	long timeout, ret;
1061 	DEFINE_WAIT(wait);
1062 
1063 	/*
1064 	 * Do not throttle IO workers, kthreads other than kswapd or
1065 	 * workqueues. They may be required for reclaim to make
1066 	 * forward progress (e.g. journalling workqueues or kthreads).
1067 	 */
1068 	if (!current_is_kswapd() &&
1069 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1070 		cond_resched();
1071 		return;
1072 	}
1073 
1074 	/*
1075 	 * These figures are pulled out of thin air.
1076 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1077 	 * parallel reclaimers which is a short-lived event so the timeout is
1078 	 * short. Failing to make progress or waiting on writeback are
1079 	 * potentially long-lived events so use a longer timeout. This is shaky
1080 	 * logic as a failure to make progress could be due to anything from
1081 	 * writeback to a slow device to excessive references pages at the tail
1082 	 * of the inactive LRU.
1083 	 */
1084 	switch(reason) {
1085 	case VMSCAN_THROTTLE_WRITEBACK:
1086 		timeout = HZ/10;
1087 
1088 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1089 			WRITE_ONCE(pgdat->nr_reclaim_start,
1090 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1091 		}
1092 
1093 		break;
1094 	case VMSCAN_THROTTLE_CONGESTED:
1095 		fallthrough;
1096 	case VMSCAN_THROTTLE_NOPROGRESS:
1097 		if (skip_throttle_noprogress(pgdat)) {
1098 			cond_resched();
1099 			return;
1100 		}
1101 
1102 		timeout = 1;
1103 
1104 		break;
1105 	case VMSCAN_THROTTLE_ISOLATED:
1106 		timeout = HZ/50;
1107 		break;
1108 	default:
1109 		WARN_ON_ONCE(1);
1110 		timeout = HZ;
1111 		break;
1112 	}
1113 
1114 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1115 	ret = schedule_timeout(timeout);
1116 	finish_wait(wqh, &wait);
1117 
1118 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1119 		atomic_dec(&pgdat->nr_writeback_throttled);
1120 
1121 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1122 				jiffies_to_usecs(timeout - ret),
1123 				reason);
1124 }
1125 
1126 /*
1127  * Account for pages written if tasks are throttled waiting on dirty
1128  * pages to clean. If enough pages have been cleaned since throttling
1129  * started then wakeup the throttled tasks.
1130  */
1131 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1132 							int nr_throttled)
1133 {
1134 	unsigned long nr_written;
1135 
1136 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1137 
1138 	/*
1139 	 * This is an inaccurate read as the per-cpu deltas may not
1140 	 * be synchronised. However, given that the system is
1141 	 * writeback throttled, it is not worth taking the penalty
1142 	 * of getting an accurate count. At worst, the throttle
1143 	 * timeout guarantees forward progress.
1144 	 */
1145 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1146 		READ_ONCE(pgdat->nr_reclaim_start);
1147 
1148 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1149 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1150 }
1151 
1152 /* possible outcome of pageout() */
1153 typedef enum {
1154 	/* failed to write page out, page is locked */
1155 	PAGE_KEEP,
1156 	/* move page to the active list, page is locked */
1157 	PAGE_ACTIVATE,
1158 	/* page has been sent to the disk successfully, page is unlocked */
1159 	PAGE_SUCCESS,
1160 	/* page is clean and locked */
1161 	PAGE_CLEAN,
1162 } pageout_t;
1163 
1164 /*
1165  * pageout is called by shrink_page_list() for each dirty page.
1166  * Calls ->writepage().
1167  */
1168 static pageout_t pageout(struct page *page, struct address_space *mapping)
1169 {
1170 	/*
1171 	 * If the page is dirty, only perform writeback if that write
1172 	 * will be non-blocking.  To prevent this allocation from being
1173 	 * stalled by pagecache activity.  But note that there may be
1174 	 * stalls if we need to run get_block().  We could test
1175 	 * PagePrivate for that.
1176 	 *
1177 	 * If this process is currently in __generic_file_write_iter() against
1178 	 * this page's queue, we can perform writeback even if that
1179 	 * will block.
1180 	 *
1181 	 * If the page is swapcache, write it back even if that would
1182 	 * block, for some throttling. This happens by accident, because
1183 	 * swap_backing_dev_info is bust: it doesn't reflect the
1184 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1185 	 */
1186 	if (!is_page_cache_freeable(page))
1187 		return PAGE_KEEP;
1188 	if (!mapping) {
1189 		/*
1190 		 * Some data journaling orphaned pages can have
1191 		 * page->mapping == NULL while being dirty with clean buffers.
1192 		 */
1193 		if (page_has_private(page)) {
1194 			if (try_to_free_buffers(page)) {
1195 				ClearPageDirty(page);
1196 				pr_info("%s: orphaned page\n", __func__);
1197 				return PAGE_CLEAN;
1198 			}
1199 		}
1200 		return PAGE_KEEP;
1201 	}
1202 	if (mapping->a_ops->writepage == NULL)
1203 		return PAGE_ACTIVATE;
1204 	if (!may_write_to_inode(mapping->host))
1205 		return PAGE_KEEP;
1206 
1207 	if (clear_page_dirty_for_io(page)) {
1208 		int res;
1209 		struct writeback_control wbc = {
1210 			.sync_mode = WB_SYNC_NONE,
1211 			.nr_to_write = SWAP_CLUSTER_MAX,
1212 			.range_start = 0,
1213 			.range_end = LLONG_MAX,
1214 			.for_reclaim = 1,
1215 		};
1216 
1217 		SetPageReclaim(page);
1218 		res = mapping->a_ops->writepage(page, &wbc);
1219 		if (res < 0)
1220 			handle_write_error(mapping, page, res);
1221 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1222 			ClearPageReclaim(page);
1223 			return PAGE_ACTIVATE;
1224 		}
1225 
1226 		if (!PageWriteback(page)) {
1227 			/* synchronous write or broken a_ops? */
1228 			ClearPageReclaim(page);
1229 		}
1230 		trace_mm_vmscan_writepage(page);
1231 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1232 		return PAGE_SUCCESS;
1233 	}
1234 
1235 	return PAGE_CLEAN;
1236 }
1237 
1238 /*
1239  * Same as remove_mapping, but if the page is removed from the mapping, it
1240  * gets returned with a refcount of 0.
1241  */
1242 static int __remove_mapping(struct address_space *mapping, struct page *page,
1243 			    bool reclaimed, struct mem_cgroup *target_memcg)
1244 {
1245 	int refcount;
1246 	void *shadow = NULL;
1247 
1248 	BUG_ON(!PageLocked(page));
1249 	BUG_ON(mapping != page_mapping(page));
1250 
1251 	if (!PageSwapCache(page))
1252 		spin_lock(&mapping->host->i_lock);
1253 	xa_lock_irq(&mapping->i_pages);
1254 	/*
1255 	 * The non racy check for a busy page.
1256 	 *
1257 	 * Must be careful with the order of the tests. When someone has
1258 	 * a ref to the page, it may be possible that they dirty it then
1259 	 * drop the reference. So if PageDirty is tested before page_count
1260 	 * here, then the following race may occur:
1261 	 *
1262 	 * get_user_pages(&page);
1263 	 * [user mapping goes away]
1264 	 * write_to(page);
1265 	 *				!PageDirty(page)    [good]
1266 	 * SetPageDirty(page);
1267 	 * put_page(page);
1268 	 *				!page_count(page)   [good, discard it]
1269 	 *
1270 	 * [oops, our write_to data is lost]
1271 	 *
1272 	 * Reversing the order of the tests ensures such a situation cannot
1273 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1274 	 * load is not satisfied before that of page->_refcount.
1275 	 *
1276 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1277 	 * and thus under the i_pages lock, then this ordering is not required.
1278 	 */
1279 	refcount = 1 + compound_nr(page);
1280 	if (!page_ref_freeze(page, refcount))
1281 		goto cannot_free;
1282 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1283 	if (unlikely(PageDirty(page))) {
1284 		page_ref_unfreeze(page, refcount);
1285 		goto cannot_free;
1286 	}
1287 
1288 	if (PageSwapCache(page)) {
1289 		swp_entry_t swap = { .val = page_private(page) };
1290 		mem_cgroup_swapout(page, swap);
1291 		if (reclaimed && !mapping_exiting(mapping))
1292 			shadow = workingset_eviction(page, target_memcg);
1293 		__delete_from_swap_cache(page, swap, shadow);
1294 		xa_unlock_irq(&mapping->i_pages);
1295 		put_swap_page(page, swap);
1296 	} else {
1297 		void (*freepage)(struct page *);
1298 
1299 		freepage = mapping->a_ops->freepage;
1300 		/*
1301 		 * Remember a shadow entry for reclaimed file cache in
1302 		 * order to detect refaults, thus thrashing, later on.
1303 		 *
1304 		 * But don't store shadows in an address space that is
1305 		 * already exiting.  This is not just an optimization,
1306 		 * inode reclaim needs to empty out the radix tree or
1307 		 * the nodes are lost.  Don't plant shadows behind its
1308 		 * back.
1309 		 *
1310 		 * We also don't store shadows for DAX mappings because the
1311 		 * only page cache pages found in these are zero pages
1312 		 * covering holes, and because we don't want to mix DAX
1313 		 * exceptional entries and shadow exceptional entries in the
1314 		 * same address_space.
1315 		 */
1316 		if (reclaimed && page_is_file_lru(page) &&
1317 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1318 			shadow = workingset_eviction(page, target_memcg);
1319 		__delete_from_page_cache(page, shadow);
1320 		xa_unlock_irq(&mapping->i_pages);
1321 		if (mapping_shrinkable(mapping))
1322 			inode_add_lru(mapping->host);
1323 		spin_unlock(&mapping->host->i_lock);
1324 
1325 		if (freepage != NULL)
1326 			freepage(page);
1327 	}
1328 
1329 	return 1;
1330 
1331 cannot_free:
1332 	xa_unlock_irq(&mapping->i_pages);
1333 	if (!PageSwapCache(page))
1334 		spin_unlock(&mapping->host->i_lock);
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1340  * someone else has a ref on the page, abort and return 0.  If it was
1341  * successfully detached, return 1.  Assumes the caller has a single ref on
1342  * this page.
1343  */
1344 int remove_mapping(struct address_space *mapping, struct page *page)
1345 {
1346 	if (__remove_mapping(mapping, page, false, NULL)) {
1347 		/*
1348 		 * Unfreezing the refcount with 1 rather than 2 effectively
1349 		 * drops the pagecache ref for us without requiring another
1350 		 * atomic operation.
1351 		 */
1352 		page_ref_unfreeze(page, 1);
1353 		return 1;
1354 	}
1355 	return 0;
1356 }
1357 
1358 /**
1359  * putback_lru_page - put previously isolated page onto appropriate LRU list
1360  * @page: page to be put back to appropriate lru list
1361  *
1362  * Add previously isolated @page to appropriate LRU list.
1363  * Page may still be unevictable for other reasons.
1364  *
1365  * lru_lock must not be held, interrupts must be enabled.
1366  */
1367 void putback_lru_page(struct page *page)
1368 {
1369 	lru_cache_add(page);
1370 	put_page(page);		/* drop ref from isolate */
1371 }
1372 
1373 enum page_references {
1374 	PAGEREF_RECLAIM,
1375 	PAGEREF_RECLAIM_CLEAN,
1376 	PAGEREF_KEEP,
1377 	PAGEREF_ACTIVATE,
1378 };
1379 
1380 static enum page_references page_check_references(struct page *page,
1381 						  struct scan_control *sc)
1382 {
1383 	int referenced_ptes, referenced_page;
1384 	unsigned long vm_flags;
1385 
1386 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1387 					  &vm_flags);
1388 	referenced_page = TestClearPageReferenced(page);
1389 
1390 	/*
1391 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1392 	 * move the page to the unevictable list.
1393 	 */
1394 	if (vm_flags & VM_LOCKED)
1395 		return PAGEREF_RECLAIM;
1396 
1397 	if (referenced_ptes) {
1398 		/*
1399 		 * All mapped pages start out with page table
1400 		 * references from the instantiating fault, so we need
1401 		 * to look twice if a mapped file page is used more
1402 		 * than once.
1403 		 *
1404 		 * Mark it and spare it for another trip around the
1405 		 * inactive list.  Another page table reference will
1406 		 * lead to its activation.
1407 		 *
1408 		 * Note: the mark is set for activated pages as well
1409 		 * so that recently deactivated but used pages are
1410 		 * quickly recovered.
1411 		 */
1412 		SetPageReferenced(page);
1413 
1414 		if (referenced_page || referenced_ptes > 1)
1415 			return PAGEREF_ACTIVATE;
1416 
1417 		/*
1418 		 * Activate file-backed executable pages after first usage.
1419 		 */
1420 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1421 			return PAGEREF_ACTIVATE;
1422 
1423 		return PAGEREF_KEEP;
1424 	}
1425 
1426 	/* Reclaim if clean, defer dirty pages to writeback */
1427 	if (referenced_page && !PageSwapBacked(page))
1428 		return PAGEREF_RECLAIM_CLEAN;
1429 
1430 	return PAGEREF_RECLAIM;
1431 }
1432 
1433 /* Check if a page is dirty or under writeback */
1434 static void page_check_dirty_writeback(struct page *page,
1435 				       bool *dirty, bool *writeback)
1436 {
1437 	struct address_space *mapping;
1438 
1439 	/*
1440 	 * Anonymous pages are not handled by flushers and must be written
1441 	 * from reclaim context. Do not stall reclaim based on them
1442 	 */
1443 	if (!page_is_file_lru(page) ||
1444 	    (PageAnon(page) && !PageSwapBacked(page))) {
1445 		*dirty = false;
1446 		*writeback = false;
1447 		return;
1448 	}
1449 
1450 	/* By default assume that the page flags are accurate */
1451 	*dirty = PageDirty(page);
1452 	*writeback = PageWriteback(page);
1453 
1454 	/* Verify dirty/writeback state if the filesystem supports it */
1455 	if (!page_has_private(page))
1456 		return;
1457 
1458 	mapping = page_mapping(page);
1459 	if (mapping && mapping->a_ops->is_dirty_writeback)
1460 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1461 }
1462 
1463 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1464 {
1465 	struct migration_target_control mtc = {
1466 		/*
1467 		 * Allocate from 'node', or fail quickly and quietly.
1468 		 * When this happens, 'page' will likely just be discarded
1469 		 * instead of migrated.
1470 		 */
1471 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1472 			    __GFP_THISNODE  | __GFP_NOWARN |
1473 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1474 		.nid = node
1475 	};
1476 
1477 	return alloc_migration_target(page, (unsigned long)&mtc);
1478 }
1479 
1480 /*
1481  * Take pages on @demote_list and attempt to demote them to
1482  * another node.  Pages which are not demoted are left on
1483  * @demote_pages.
1484  */
1485 static unsigned int demote_page_list(struct list_head *demote_pages,
1486 				     struct pglist_data *pgdat)
1487 {
1488 	int target_nid = next_demotion_node(pgdat->node_id);
1489 	unsigned int nr_succeeded;
1490 
1491 	if (list_empty(demote_pages))
1492 		return 0;
1493 
1494 	if (target_nid == NUMA_NO_NODE)
1495 		return 0;
1496 
1497 	/* Demotion ignores all cpuset and mempolicy settings */
1498 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1499 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1500 			    &nr_succeeded);
1501 
1502 	if (current_is_kswapd())
1503 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1504 	else
1505 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1506 
1507 	return nr_succeeded;
1508 }
1509 
1510 /*
1511  * shrink_page_list() returns the number of reclaimed pages
1512  */
1513 static unsigned int shrink_page_list(struct list_head *page_list,
1514 				     struct pglist_data *pgdat,
1515 				     struct scan_control *sc,
1516 				     struct reclaim_stat *stat,
1517 				     bool ignore_references)
1518 {
1519 	LIST_HEAD(ret_pages);
1520 	LIST_HEAD(free_pages);
1521 	LIST_HEAD(demote_pages);
1522 	unsigned int nr_reclaimed = 0;
1523 	unsigned int pgactivate = 0;
1524 	bool do_demote_pass;
1525 
1526 	memset(stat, 0, sizeof(*stat));
1527 	cond_resched();
1528 	do_demote_pass = can_demote(pgdat->node_id, sc);
1529 
1530 retry:
1531 	while (!list_empty(page_list)) {
1532 		struct address_space *mapping;
1533 		struct page *page;
1534 		enum page_references references = PAGEREF_RECLAIM;
1535 		bool dirty, writeback, may_enter_fs;
1536 		unsigned int nr_pages;
1537 
1538 		cond_resched();
1539 
1540 		page = lru_to_page(page_list);
1541 		list_del(&page->lru);
1542 
1543 		if (!trylock_page(page))
1544 			goto keep;
1545 
1546 		VM_BUG_ON_PAGE(PageActive(page), page);
1547 
1548 		nr_pages = compound_nr(page);
1549 
1550 		/* Account the number of base pages even though THP */
1551 		sc->nr_scanned += nr_pages;
1552 
1553 		if (unlikely(!page_evictable(page)))
1554 			goto activate_locked;
1555 
1556 		if (!sc->may_unmap && page_mapped(page))
1557 			goto keep_locked;
1558 
1559 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1560 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1561 
1562 		/*
1563 		 * The number of dirty pages determines if a node is marked
1564 		 * reclaim_congested. kswapd will stall and start writing
1565 		 * pages if the tail of the LRU is all dirty unqueued pages.
1566 		 */
1567 		page_check_dirty_writeback(page, &dirty, &writeback);
1568 		if (dirty || writeback)
1569 			stat->nr_dirty++;
1570 
1571 		if (dirty && !writeback)
1572 			stat->nr_unqueued_dirty++;
1573 
1574 		/*
1575 		 * Treat this page as congested if the underlying BDI is or if
1576 		 * pages are cycling through the LRU so quickly that the
1577 		 * pages marked for immediate reclaim are making it to the
1578 		 * end of the LRU a second time.
1579 		 */
1580 		mapping = page_mapping(page);
1581 		if (((dirty || writeback) && mapping &&
1582 		     inode_write_congested(mapping->host)) ||
1583 		    (writeback && PageReclaim(page)))
1584 			stat->nr_congested++;
1585 
1586 		/*
1587 		 * If a page at the tail of the LRU is under writeback, there
1588 		 * are three cases to consider.
1589 		 *
1590 		 * 1) If reclaim is encountering an excessive number of pages
1591 		 *    under writeback and this page is both under writeback and
1592 		 *    PageReclaim then it indicates that pages are being queued
1593 		 *    for IO but are being recycled through the LRU before the
1594 		 *    IO can complete. Waiting on the page itself risks an
1595 		 *    indefinite stall if it is impossible to writeback the
1596 		 *    page due to IO error or disconnected storage so instead
1597 		 *    note that the LRU is being scanned too quickly and the
1598 		 *    caller can stall after page list has been processed.
1599 		 *
1600 		 * 2) Global or new memcg reclaim encounters a page that is
1601 		 *    not marked for immediate reclaim, or the caller does not
1602 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1603 		 *    not to fs). In this case mark the page for immediate
1604 		 *    reclaim and continue scanning.
1605 		 *
1606 		 *    Require may_enter_fs because we would wait on fs, which
1607 		 *    may not have submitted IO yet. And the loop driver might
1608 		 *    enter reclaim, and deadlock if it waits on a page for
1609 		 *    which it is needed to do the write (loop masks off
1610 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1611 		 *    would probably show more reasons.
1612 		 *
1613 		 * 3) Legacy memcg encounters a page that is already marked
1614 		 *    PageReclaim. memcg does not have any dirty pages
1615 		 *    throttling so we could easily OOM just because too many
1616 		 *    pages are in writeback and there is nothing else to
1617 		 *    reclaim. Wait for the writeback to complete.
1618 		 *
1619 		 * In cases 1) and 2) we activate the pages to get them out of
1620 		 * the way while we continue scanning for clean pages on the
1621 		 * inactive list and refilling from the active list. The
1622 		 * observation here is that waiting for disk writes is more
1623 		 * expensive than potentially causing reloads down the line.
1624 		 * Since they're marked for immediate reclaim, they won't put
1625 		 * memory pressure on the cache working set any longer than it
1626 		 * takes to write them to disk.
1627 		 */
1628 		if (PageWriteback(page)) {
1629 			/* Case 1 above */
1630 			if (current_is_kswapd() &&
1631 			    PageReclaim(page) &&
1632 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1633 				stat->nr_immediate++;
1634 				goto activate_locked;
1635 
1636 			/* Case 2 above */
1637 			} else if (writeback_throttling_sane(sc) ||
1638 			    !PageReclaim(page) || !may_enter_fs) {
1639 				/*
1640 				 * This is slightly racy - end_page_writeback()
1641 				 * might have just cleared PageReclaim, then
1642 				 * setting PageReclaim here end up interpreted
1643 				 * as PageReadahead - but that does not matter
1644 				 * enough to care.  What we do want is for this
1645 				 * page to have PageReclaim set next time memcg
1646 				 * reclaim reaches the tests above, so it will
1647 				 * then wait_on_page_writeback() to avoid OOM;
1648 				 * and it's also appropriate in global reclaim.
1649 				 */
1650 				SetPageReclaim(page);
1651 				stat->nr_writeback++;
1652 				goto activate_locked;
1653 
1654 			/* Case 3 above */
1655 			} else {
1656 				unlock_page(page);
1657 				wait_on_page_writeback(page);
1658 				/* then go back and try same page again */
1659 				list_add_tail(&page->lru, page_list);
1660 				continue;
1661 			}
1662 		}
1663 
1664 		if (!ignore_references)
1665 			references = page_check_references(page, sc);
1666 
1667 		switch (references) {
1668 		case PAGEREF_ACTIVATE:
1669 			goto activate_locked;
1670 		case PAGEREF_KEEP:
1671 			stat->nr_ref_keep += nr_pages;
1672 			goto keep_locked;
1673 		case PAGEREF_RECLAIM:
1674 		case PAGEREF_RECLAIM_CLEAN:
1675 			; /* try to reclaim the page below */
1676 		}
1677 
1678 		/*
1679 		 * Before reclaiming the page, try to relocate
1680 		 * its contents to another node.
1681 		 */
1682 		if (do_demote_pass &&
1683 		    (thp_migration_supported() || !PageTransHuge(page))) {
1684 			list_add(&page->lru, &demote_pages);
1685 			unlock_page(page);
1686 			continue;
1687 		}
1688 
1689 		/*
1690 		 * Anonymous process memory has backing store?
1691 		 * Try to allocate it some swap space here.
1692 		 * Lazyfree page could be freed directly
1693 		 */
1694 		if (PageAnon(page) && PageSwapBacked(page)) {
1695 			if (!PageSwapCache(page)) {
1696 				if (!(sc->gfp_mask & __GFP_IO))
1697 					goto keep_locked;
1698 				if (page_maybe_dma_pinned(page))
1699 					goto keep_locked;
1700 				if (PageTransHuge(page)) {
1701 					/* cannot split THP, skip it */
1702 					if (!can_split_huge_page(page, NULL))
1703 						goto activate_locked;
1704 					/*
1705 					 * Split pages without a PMD map right
1706 					 * away. Chances are some or all of the
1707 					 * tail pages can be freed without IO.
1708 					 */
1709 					if (!compound_mapcount(page) &&
1710 					    split_huge_page_to_list(page,
1711 								    page_list))
1712 						goto activate_locked;
1713 				}
1714 				if (!add_to_swap(page)) {
1715 					if (!PageTransHuge(page))
1716 						goto activate_locked_split;
1717 					/* Fallback to swap normal pages */
1718 					if (split_huge_page_to_list(page,
1719 								    page_list))
1720 						goto activate_locked;
1721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1722 					count_vm_event(THP_SWPOUT_FALLBACK);
1723 #endif
1724 					if (!add_to_swap(page))
1725 						goto activate_locked_split;
1726 				}
1727 
1728 				may_enter_fs = true;
1729 
1730 				/* Adding to swap updated mapping */
1731 				mapping = page_mapping(page);
1732 			}
1733 		} else if (unlikely(PageTransHuge(page))) {
1734 			/* Split file THP */
1735 			if (split_huge_page_to_list(page, page_list))
1736 				goto keep_locked;
1737 		}
1738 
1739 		/*
1740 		 * THP may get split above, need minus tail pages and update
1741 		 * nr_pages to avoid accounting tail pages twice.
1742 		 *
1743 		 * The tail pages that are added into swap cache successfully
1744 		 * reach here.
1745 		 */
1746 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1747 			sc->nr_scanned -= (nr_pages - 1);
1748 			nr_pages = 1;
1749 		}
1750 
1751 		/*
1752 		 * The page is mapped into the page tables of one or more
1753 		 * processes. Try to unmap it here.
1754 		 */
1755 		if (page_mapped(page)) {
1756 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1757 			bool was_swapbacked = PageSwapBacked(page);
1758 
1759 			if (unlikely(PageTransHuge(page)))
1760 				flags |= TTU_SPLIT_HUGE_PMD;
1761 
1762 			try_to_unmap(page, flags);
1763 			if (page_mapped(page)) {
1764 				stat->nr_unmap_fail += nr_pages;
1765 				if (!was_swapbacked && PageSwapBacked(page))
1766 					stat->nr_lazyfree_fail += nr_pages;
1767 				goto activate_locked;
1768 			}
1769 		}
1770 
1771 		if (PageDirty(page)) {
1772 			/*
1773 			 * Only kswapd can writeback filesystem pages
1774 			 * to avoid risk of stack overflow. But avoid
1775 			 * injecting inefficient single-page IO into
1776 			 * flusher writeback as much as possible: only
1777 			 * write pages when we've encountered many
1778 			 * dirty pages, and when we've already scanned
1779 			 * the rest of the LRU for clean pages and see
1780 			 * the same dirty pages again (PageReclaim).
1781 			 */
1782 			if (page_is_file_lru(page) &&
1783 			    (!current_is_kswapd() || !PageReclaim(page) ||
1784 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1785 				/*
1786 				 * Immediately reclaim when written back.
1787 				 * Similar in principal to deactivate_page()
1788 				 * except we already have the page isolated
1789 				 * and know it's dirty
1790 				 */
1791 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1792 				SetPageReclaim(page);
1793 
1794 				goto activate_locked;
1795 			}
1796 
1797 			if (references == PAGEREF_RECLAIM_CLEAN)
1798 				goto keep_locked;
1799 			if (!may_enter_fs)
1800 				goto keep_locked;
1801 			if (!sc->may_writepage)
1802 				goto keep_locked;
1803 
1804 			/*
1805 			 * Page is dirty. Flush the TLB if a writable entry
1806 			 * potentially exists to avoid CPU writes after IO
1807 			 * starts and then write it out here.
1808 			 */
1809 			try_to_unmap_flush_dirty();
1810 			switch (pageout(page, mapping)) {
1811 			case PAGE_KEEP:
1812 				goto keep_locked;
1813 			case PAGE_ACTIVATE:
1814 				goto activate_locked;
1815 			case PAGE_SUCCESS:
1816 				stat->nr_pageout += thp_nr_pages(page);
1817 
1818 				if (PageWriteback(page))
1819 					goto keep;
1820 				if (PageDirty(page))
1821 					goto keep;
1822 
1823 				/*
1824 				 * A synchronous write - probably a ramdisk.  Go
1825 				 * ahead and try to reclaim the page.
1826 				 */
1827 				if (!trylock_page(page))
1828 					goto keep;
1829 				if (PageDirty(page) || PageWriteback(page))
1830 					goto keep_locked;
1831 				mapping = page_mapping(page);
1832 				fallthrough;
1833 			case PAGE_CLEAN:
1834 				; /* try to free the page below */
1835 			}
1836 		}
1837 
1838 		/*
1839 		 * If the page has buffers, try to free the buffer mappings
1840 		 * associated with this page. If we succeed we try to free
1841 		 * the page as well.
1842 		 *
1843 		 * We do this even if the page is PageDirty().
1844 		 * try_to_release_page() does not perform I/O, but it is
1845 		 * possible for a page to have PageDirty set, but it is actually
1846 		 * clean (all its buffers are clean).  This happens if the
1847 		 * buffers were written out directly, with submit_bh(). ext3
1848 		 * will do this, as well as the blockdev mapping.
1849 		 * try_to_release_page() will discover that cleanness and will
1850 		 * drop the buffers and mark the page clean - it can be freed.
1851 		 *
1852 		 * Rarely, pages can have buffers and no ->mapping.  These are
1853 		 * the pages which were not successfully invalidated in
1854 		 * truncate_cleanup_page().  We try to drop those buffers here
1855 		 * and if that worked, and the page is no longer mapped into
1856 		 * process address space (page_count == 1) it can be freed.
1857 		 * Otherwise, leave the page on the LRU so it is swappable.
1858 		 */
1859 		if (page_has_private(page)) {
1860 			if (!try_to_release_page(page, sc->gfp_mask))
1861 				goto activate_locked;
1862 			if (!mapping && page_count(page) == 1) {
1863 				unlock_page(page);
1864 				if (put_page_testzero(page))
1865 					goto free_it;
1866 				else {
1867 					/*
1868 					 * rare race with speculative reference.
1869 					 * the speculative reference will free
1870 					 * this page shortly, so we may
1871 					 * increment nr_reclaimed here (and
1872 					 * leave it off the LRU).
1873 					 */
1874 					nr_reclaimed++;
1875 					continue;
1876 				}
1877 			}
1878 		}
1879 
1880 		if (PageAnon(page) && !PageSwapBacked(page)) {
1881 			/* follow __remove_mapping for reference */
1882 			if (!page_ref_freeze(page, 1))
1883 				goto keep_locked;
1884 			/*
1885 			 * The page has only one reference left, which is
1886 			 * from the isolation. After the caller puts the
1887 			 * page back on lru and drops the reference, the
1888 			 * page will be freed anyway. It doesn't matter
1889 			 * which lru it goes. So we don't bother checking
1890 			 * PageDirty here.
1891 			 */
1892 			count_vm_event(PGLAZYFREED);
1893 			count_memcg_page_event(page, PGLAZYFREED);
1894 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1895 							 sc->target_mem_cgroup))
1896 			goto keep_locked;
1897 
1898 		unlock_page(page);
1899 free_it:
1900 		/*
1901 		 * THP may get swapped out in a whole, need account
1902 		 * all base pages.
1903 		 */
1904 		nr_reclaimed += nr_pages;
1905 
1906 		/*
1907 		 * Is there need to periodically free_page_list? It would
1908 		 * appear not as the counts should be low
1909 		 */
1910 		if (unlikely(PageTransHuge(page)))
1911 			destroy_compound_page(page);
1912 		else
1913 			list_add(&page->lru, &free_pages);
1914 		continue;
1915 
1916 activate_locked_split:
1917 		/*
1918 		 * The tail pages that are failed to add into swap cache
1919 		 * reach here.  Fixup nr_scanned and nr_pages.
1920 		 */
1921 		if (nr_pages > 1) {
1922 			sc->nr_scanned -= (nr_pages - 1);
1923 			nr_pages = 1;
1924 		}
1925 activate_locked:
1926 		/* Not a candidate for swapping, so reclaim swap space. */
1927 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1928 						PageMlocked(page)))
1929 			try_to_free_swap(page);
1930 		VM_BUG_ON_PAGE(PageActive(page), page);
1931 		if (!PageMlocked(page)) {
1932 			int type = page_is_file_lru(page);
1933 			SetPageActive(page);
1934 			stat->nr_activate[type] += nr_pages;
1935 			count_memcg_page_event(page, PGACTIVATE);
1936 		}
1937 keep_locked:
1938 		unlock_page(page);
1939 keep:
1940 		list_add(&page->lru, &ret_pages);
1941 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1942 	}
1943 	/* 'page_list' is always empty here */
1944 
1945 	/* Migrate pages selected for demotion */
1946 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1947 	/* Pages that could not be demoted are still in @demote_pages */
1948 	if (!list_empty(&demote_pages)) {
1949 		/* Pages which failed to demoted go back on @page_list for retry: */
1950 		list_splice_init(&demote_pages, page_list);
1951 		do_demote_pass = false;
1952 		goto retry;
1953 	}
1954 
1955 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1956 
1957 	mem_cgroup_uncharge_list(&free_pages);
1958 	try_to_unmap_flush();
1959 	free_unref_page_list(&free_pages);
1960 
1961 	list_splice(&ret_pages, page_list);
1962 	count_vm_events(PGACTIVATE, pgactivate);
1963 
1964 	return nr_reclaimed;
1965 }
1966 
1967 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1968 					    struct list_head *page_list)
1969 {
1970 	struct scan_control sc = {
1971 		.gfp_mask = GFP_KERNEL,
1972 		.may_unmap = 1,
1973 	};
1974 	struct reclaim_stat stat;
1975 	unsigned int nr_reclaimed;
1976 	struct page *page, *next;
1977 	LIST_HEAD(clean_pages);
1978 	unsigned int noreclaim_flag;
1979 
1980 	list_for_each_entry_safe(page, next, page_list, lru) {
1981 		if (!PageHuge(page) && page_is_file_lru(page) &&
1982 		    !PageDirty(page) && !__PageMovable(page) &&
1983 		    !PageUnevictable(page)) {
1984 			ClearPageActive(page);
1985 			list_move(&page->lru, &clean_pages);
1986 		}
1987 	}
1988 
1989 	/*
1990 	 * We should be safe here since we are only dealing with file pages and
1991 	 * we are not kswapd and therefore cannot write dirty file pages. But
1992 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1993 	 * change in the future.
1994 	 */
1995 	noreclaim_flag = memalloc_noreclaim_save();
1996 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1997 					&stat, true);
1998 	memalloc_noreclaim_restore(noreclaim_flag);
1999 
2000 	list_splice(&clean_pages, page_list);
2001 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2002 			    -(long)nr_reclaimed);
2003 	/*
2004 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2005 	 * they will rotate back to anonymous LRU in the end if it failed to
2006 	 * discard so isolated count will be mismatched.
2007 	 * Compensate the isolated count for both LRU lists.
2008 	 */
2009 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2010 			    stat.nr_lazyfree_fail);
2011 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2012 			    -(long)stat.nr_lazyfree_fail);
2013 	return nr_reclaimed;
2014 }
2015 
2016 /*
2017  * Attempt to remove the specified page from its LRU.  Only take this page
2018  * if it is of the appropriate PageActive status.  Pages which are being
2019  * freed elsewhere are also ignored.
2020  *
2021  * page:	page to consider
2022  * mode:	one of the LRU isolation modes defined above
2023  *
2024  * returns true on success, false on failure.
2025  */
2026 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
2027 {
2028 	/* Only take pages on the LRU. */
2029 	if (!PageLRU(page))
2030 		return false;
2031 
2032 	/* Compaction should not handle unevictable pages but CMA can do so */
2033 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
2034 		return false;
2035 
2036 	/*
2037 	 * To minimise LRU disruption, the caller can indicate that it only
2038 	 * wants to isolate pages it will be able to operate on without
2039 	 * blocking - clean pages for the most part.
2040 	 *
2041 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2042 	 * that it is possible to migrate without blocking
2043 	 */
2044 	if (mode & ISOLATE_ASYNC_MIGRATE) {
2045 		/* All the caller can do on PageWriteback is block */
2046 		if (PageWriteback(page))
2047 			return false;
2048 
2049 		if (PageDirty(page)) {
2050 			struct address_space *mapping;
2051 			bool migrate_dirty;
2052 
2053 			/*
2054 			 * Only pages without mappings or that have a
2055 			 * ->migratepage callback are possible to migrate
2056 			 * without blocking. However, we can be racing with
2057 			 * truncation so it's necessary to lock the page
2058 			 * to stabilise the mapping as truncation holds
2059 			 * the page lock until after the page is removed
2060 			 * from the page cache.
2061 			 */
2062 			if (!trylock_page(page))
2063 				return false;
2064 
2065 			mapping = page_mapping(page);
2066 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
2067 			unlock_page(page);
2068 			if (!migrate_dirty)
2069 				return false;
2070 		}
2071 	}
2072 
2073 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2074 		return false;
2075 
2076 	return true;
2077 }
2078 
2079 /*
2080  * Update LRU sizes after isolating pages. The LRU size updates must
2081  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2082  */
2083 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2084 			enum lru_list lru, unsigned long *nr_zone_taken)
2085 {
2086 	int zid;
2087 
2088 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2089 		if (!nr_zone_taken[zid])
2090 			continue;
2091 
2092 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2093 	}
2094 
2095 }
2096 
2097 /*
2098  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2099  *
2100  * lruvec->lru_lock is heavily contended.  Some of the functions that
2101  * shrink the lists perform better by taking out a batch of pages
2102  * and working on them outside the LRU lock.
2103  *
2104  * For pagecache intensive workloads, this function is the hottest
2105  * spot in the kernel (apart from copy_*_user functions).
2106  *
2107  * Lru_lock must be held before calling this function.
2108  *
2109  * @nr_to_scan:	The number of eligible pages to look through on the list.
2110  * @lruvec:	The LRU vector to pull pages from.
2111  * @dst:	The temp list to put pages on to.
2112  * @nr_scanned:	The number of pages that were scanned.
2113  * @sc:		The scan_control struct for this reclaim session
2114  * @lru:	LRU list id for isolating
2115  *
2116  * returns how many pages were moved onto *@dst.
2117  */
2118 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2119 		struct lruvec *lruvec, struct list_head *dst,
2120 		unsigned long *nr_scanned, struct scan_control *sc,
2121 		enum lru_list lru)
2122 {
2123 	struct list_head *src = &lruvec->lists[lru];
2124 	unsigned long nr_taken = 0;
2125 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2126 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2127 	unsigned long skipped = 0;
2128 	unsigned long scan, total_scan, nr_pages;
2129 	LIST_HEAD(pages_skipped);
2130 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2131 
2132 	total_scan = 0;
2133 	scan = 0;
2134 	while (scan < nr_to_scan && !list_empty(src)) {
2135 		struct page *page;
2136 
2137 		page = lru_to_page(src);
2138 		prefetchw_prev_lru_page(page, src, flags);
2139 
2140 		nr_pages = compound_nr(page);
2141 		total_scan += nr_pages;
2142 
2143 		if (page_zonenum(page) > sc->reclaim_idx) {
2144 			list_move(&page->lru, &pages_skipped);
2145 			nr_skipped[page_zonenum(page)] += nr_pages;
2146 			continue;
2147 		}
2148 
2149 		/*
2150 		 * Do not count skipped pages because that makes the function
2151 		 * return with no isolated pages if the LRU mostly contains
2152 		 * ineligible pages.  This causes the VM to not reclaim any
2153 		 * pages, triggering a premature OOM.
2154 		 *
2155 		 * Account all tail pages of THP.  This would not cause
2156 		 * premature OOM since __isolate_lru_page() returns -EBUSY
2157 		 * only when the page is being freed somewhere else.
2158 		 */
2159 		scan += nr_pages;
2160 		if (!__isolate_lru_page_prepare(page, mode)) {
2161 			/* It is being freed elsewhere */
2162 			list_move(&page->lru, src);
2163 			continue;
2164 		}
2165 		/*
2166 		 * Be careful not to clear PageLRU until after we're
2167 		 * sure the page is not being freed elsewhere -- the
2168 		 * page release code relies on it.
2169 		 */
2170 		if (unlikely(!get_page_unless_zero(page))) {
2171 			list_move(&page->lru, src);
2172 			continue;
2173 		}
2174 
2175 		if (!TestClearPageLRU(page)) {
2176 			/* Another thread is already isolating this page */
2177 			put_page(page);
2178 			list_move(&page->lru, src);
2179 			continue;
2180 		}
2181 
2182 		nr_taken += nr_pages;
2183 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2184 		list_move(&page->lru, dst);
2185 	}
2186 
2187 	/*
2188 	 * Splice any skipped pages to the start of the LRU list. Note that
2189 	 * this disrupts the LRU order when reclaiming for lower zones but
2190 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2191 	 * scanning would soon rescan the same pages to skip and put the
2192 	 * system at risk of premature OOM.
2193 	 */
2194 	if (!list_empty(&pages_skipped)) {
2195 		int zid;
2196 
2197 		list_splice(&pages_skipped, src);
2198 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2199 			if (!nr_skipped[zid])
2200 				continue;
2201 
2202 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2203 			skipped += nr_skipped[zid];
2204 		}
2205 	}
2206 	*nr_scanned = total_scan;
2207 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2208 				    total_scan, skipped, nr_taken, mode, lru);
2209 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2210 	return nr_taken;
2211 }
2212 
2213 /**
2214  * isolate_lru_page - tries to isolate a page from its LRU list
2215  * @page: page to isolate from its LRU list
2216  *
2217  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2218  * vmstat statistic corresponding to whatever LRU list the page was on.
2219  *
2220  * Returns 0 if the page was removed from an LRU list.
2221  * Returns -EBUSY if the page was not on an LRU list.
2222  *
2223  * The returned page will have PageLRU() cleared.  If it was found on
2224  * the active list, it will have PageActive set.  If it was found on
2225  * the unevictable list, it will have the PageUnevictable bit set. That flag
2226  * may need to be cleared by the caller before letting the page go.
2227  *
2228  * The vmstat statistic corresponding to the list on which the page was
2229  * found will be decremented.
2230  *
2231  * Restrictions:
2232  *
2233  * (1) Must be called with an elevated refcount on the page. This is a
2234  *     fundamental difference from isolate_lru_pages (which is called
2235  *     without a stable reference).
2236  * (2) the lru_lock must not be held.
2237  * (3) interrupts must be enabled.
2238  */
2239 int isolate_lru_page(struct page *page)
2240 {
2241 	struct folio *folio = page_folio(page);
2242 	int ret = -EBUSY;
2243 
2244 	VM_BUG_ON_PAGE(!page_count(page), page);
2245 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2246 
2247 	if (TestClearPageLRU(page)) {
2248 		struct lruvec *lruvec;
2249 
2250 		get_page(page);
2251 		lruvec = folio_lruvec_lock_irq(folio);
2252 		del_page_from_lru_list(page, lruvec);
2253 		unlock_page_lruvec_irq(lruvec);
2254 		ret = 0;
2255 	}
2256 
2257 	return ret;
2258 }
2259 
2260 /*
2261  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2262  * then get rescheduled. When there are massive number of tasks doing page
2263  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2264  * the LRU list will go small and be scanned faster than necessary, leading to
2265  * unnecessary swapping, thrashing and OOM.
2266  */
2267 static int too_many_isolated(struct pglist_data *pgdat, int file,
2268 		struct scan_control *sc)
2269 {
2270 	unsigned long inactive, isolated;
2271 	bool too_many;
2272 
2273 	if (current_is_kswapd())
2274 		return 0;
2275 
2276 	if (!writeback_throttling_sane(sc))
2277 		return 0;
2278 
2279 	if (file) {
2280 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2281 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2282 	} else {
2283 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2284 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2285 	}
2286 
2287 	/*
2288 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2289 	 * won't get blocked by normal direct-reclaimers, forming a circular
2290 	 * deadlock.
2291 	 */
2292 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2293 		inactive >>= 3;
2294 
2295 	too_many = isolated > inactive;
2296 
2297 	/* Wake up tasks throttled due to too_many_isolated. */
2298 	if (!too_many)
2299 		wake_throttle_isolated(pgdat);
2300 
2301 	return too_many;
2302 }
2303 
2304 /*
2305  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2306  * On return, @list is reused as a list of pages to be freed by the caller.
2307  *
2308  * Returns the number of pages moved to the given lruvec.
2309  */
2310 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2311 				      struct list_head *list)
2312 {
2313 	int nr_pages, nr_moved = 0;
2314 	LIST_HEAD(pages_to_free);
2315 	struct page *page;
2316 
2317 	while (!list_empty(list)) {
2318 		page = lru_to_page(list);
2319 		VM_BUG_ON_PAGE(PageLRU(page), page);
2320 		list_del(&page->lru);
2321 		if (unlikely(!page_evictable(page))) {
2322 			spin_unlock_irq(&lruvec->lru_lock);
2323 			putback_lru_page(page);
2324 			spin_lock_irq(&lruvec->lru_lock);
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * The SetPageLRU needs to be kept here for list integrity.
2330 		 * Otherwise:
2331 		 *   #0 move_pages_to_lru             #1 release_pages
2332 		 *   if !put_page_testzero
2333 		 *				      if (put_page_testzero())
2334 		 *				        !PageLRU //skip lru_lock
2335 		 *     SetPageLRU()
2336 		 *     list_add(&page->lru,)
2337 		 *                                        list_add(&page->lru,)
2338 		 */
2339 		SetPageLRU(page);
2340 
2341 		if (unlikely(put_page_testzero(page))) {
2342 			__clear_page_lru_flags(page);
2343 
2344 			if (unlikely(PageCompound(page))) {
2345 				spin_unlock_irq(&lruvec->lru_lock);
2346 				destroy_compound_page(page);
2347 				spin_lock_irq(&lruvec->lru_lock);
2348 			} else
2349 				list_add(&page->lru, &pages_to_free);
2350 
2351 			continue;
2352 		}
2353 
2354 		/*
2355 		 * All pages were isolated from the same lruvec (and isolation
2356 		 * inhibits memcg migration).
2357 		 */
2358 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2359 		add_page_to_lru_list(page, lruvec);
2360 		nr_pages = thp_nr_pages(page);
2361 		nr_moved += nr_pages;
2362 		if (PageActive(page))
2363 			workingset_age_nonresident(lruvec, nr_pages);
2364 	}
2365 
2366 	/*
2367 	 * To save our caller's stack, now use input list for pages to free.
2368 	 */
2369 	list_splice(&pages_to_free, list);
2370 
2371 	return nr_moved;
2372 }
2373 
2374 /*
2375  * If a kernel thread (such as nfsd for loop-back mounts) services
2376  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2377  * In that case we should only throttle if the backing device it is
2378  * writing to is congested.  In other cases it is safe to throttle.
2379  */
2380 static int current_may_throttle(void)
2381 {
2382 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2383 		current->backing_dev_info == NULL ||
2384 		bdi_write_congested(current->backing_dev_info);
2385 }
2386 
2387 /*
2388  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2389  * of reclaimed pages
2390  */
2391 static unsigned long
2392 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2393 		     struct scan_control *sc, enum lru_list lru)
2394 {
2395 	LIST_HEAD(page_list);
2396 	unsigned long nr_scanned;
2397 	unsigned int nr_reclaimed = 0;
2398 	unsigned long nr_taken;
2399 	struct reclaim_stat stat;
2400 	bool file = is_file_lru(lru);
2401 	enum vm_event_item item;
2402 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2403 	bool stalled = false;
2404 
2405 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2406 		if (stalled)
2407 			return 0;
2408 
2409 		/* wait a bit for the reclaimer. */
2410 		stalled = true;
2411 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2412 
2413 		/* We are about to die and free our memory. Return now. */
2414 		if (fatal_signal_pending(current))
2415 			return SWAP_CLUSTER_MAX;
2416 	}
2417 
2418 	lru_add_drain();
2419 
2420 	spin_lock_irq(&lruvec->lru_lock);
2421 
2422 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2423 				     &nr_scanned, sc, lru);
2424 
2425 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2426 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2427 	if (!cgroup_reclaim(sc))
2428 		__count_vm_events(item, nr_scanned);
2429 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2430 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2431 
2432 	spin_unlock_irq(&lruvec->lru_lock);
2433 
2434 	if (nr_taken == 0)
2435 		return 0;
2436 
2437 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2438 
2439 	spin_lock_irq(&lruvec->lru_lock);
2440 	move_pages_to_lru(lruvec, &page_list);
2441 
2442 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2443 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2444 	if (!cgroup_reclaim(sc))
2445 		__count_vm_events(item, nr_reclaimed);
2446 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2447 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2448 	spin_unlock_irq(&lruvec->lru_lock);
2449 
2450 	lru_note_cost(lruvec, file, stat.nr_pageout);
2451 	mem_cgroup_uncharge_list(&page_list);
2452 	free_unref_page_list(&page_list);
2453 
2454 	/*
2455 	 * If dirty pages are scanned that are not queued for IO, it
2456 	 * implies that flushers are not doing their job. This can
2457 	 * happen when memory pressure pushes dirty pages to the end of
2458 	 * the LRU before the dirty limits are breached and the dirty
2459 	 * data has expired. It can also happen when the proportion of
2460 	 * dirty pages grows not through writes but through memory
2461 	 * pressure reclaiming all the clean cache. And in some cases,
2462 	 * the flushers simply cannot keep up with the allocation
2463 	 * rate. Nudge the flusher threads in case they are asleep.
2464 	 */
2465 	if (stat.nr_unqueued_dirty == nr_taken)
2466 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2467 
2468 	sc->nr.dirty += stat.nr_dirty;
2469 	sc->nr.congested += stat.nr_congested;
2470 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2471 	sc->nr.writeback += stat.nr_writeback;
2472 	sc->nr.immediate += stat.nr_immediate;
2473 	sc->nr.taken += nr_taken;
2474 	if (file)
2475 		sc->nr.file_taken += nr_taken;
2476 
2477 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2478 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2479 	return nr_reclaimed;
2480 }
2481 
2482 /*
2483  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2484  *
2485  * We move them the other way if the page is referenced by one or more
2486  * processes.
2487  *
2488  * If the pages are mostly unmapped, the processing is fast and it is
2489  * appropriate to hold lru_lock across the whole operation.  But if
2490  * the pages are mapped, the processing is slow (page_referenced()), so
2491  * we should drop lru_lock around each page.  It's impossible to balance
2492  * this, so instead we remove the pages from the LRU while processing them.
2493  * It is safe to rely on PG_active against the non-LRU pages in here because
2494  * nobody will play with that bit on a non-LRU page.
2495  *
2496  * The downside is that we have to touch page->_refcount against each page.
2497  * But we had to alter page->flags anyway.
2498  */
2499 static void shrink_active_list(unsigned long nr_to_scan,
2500 			       struct lruvec *lruvec,
2501 			       struct scan_control *sc,
2502 			       enum lru_list lru)
2503 {
2504 	unsigned long nr_taken;
2505 	unsigned long nr_scanned;
2506 	unsigned long vm_flags;
2507 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2508 	LIST_HEAD(l_active);
2509 	LIST_HEAD(l_inactive);
2510 	struct page *page;
2511 	unsigned nr_deactivate, nr_activate;
2512 	unsigned nr_rotated = 0;
2513 	int file = is_file_lru(lru);
2514 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2515 
2516 	lru_add_drain();
2517 
2518 	spin_lock_irq(&lruvec->lru_lock);
2519 
2520 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2521 				     &nr_scanned, sc, lru);
2522 
2523 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2524 
2525 	if (!cgroup_reclaim(sc))
2526 		__count_vm_events(PGREFILL, nr_scanned);
2527 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2528 
2529 	spin_unlock_irq(&lruvec->lru_lock);
2530 
2531 	while (!list_empty(&l_hold)) {
2532 		cond_resched();
2533 		page = lru_to_page(&l_hold);
2534 		list_del(&page->lru);
2535 
2536 		if (unlikely(!page_evictable(page))) {
2537 			putback_lru_page(page);
2538 			continue;
2539 		}
2540 
2541 		if (unlikely(buffer_heads_over_limit)) {
2542 			if (page_has_private(page) && trylock_page(page)) {
2543 				if (page_has_private(page))
2544 					try_to_release_page(page, 0);
2545 				unlock_page(page);
2546 			}
2547 		}
2548 
2549 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2550 				    &vm_flags)) {
2551 			/*
2552 			 * Identify referenced, file-backed active pages and
2553 			 * give them one more trip around the active list. So
2554 			 * that executable code get better chances to stay in
2555 			 * memory under moderate memory pressure.  Anon pages
2556 			 * are not likely to be evicted by use-once streaming
2557 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2558 			 * so we ignore them here.
2559 			 */
2560 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2561 				nr_rotated += thp_nr_pages(page);
2562 				list_add(&page->lru, &l_active);
2563 				continue;
2564 			}
2565 		}
2566 
2567 		ClearPageActive(page);	/* we are de-activating */
2568 		SetPageWorkingset(page);
2569 		list_add(&page->lru, &l_inactive);
2570 	}
2571 
2572 	/*
2573 	 * Move pages back to the lru list.
2574 	 */
2575 	spin_lock_irq(&lruvec->lru_lock);
2576 
2577 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2578 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2579 	/* Keep all free pages in l_active list */
2580 	list_splice(&l_inactive, &l_active);
2581 
2582 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2583 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2584 
2585 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2586 	spin_unlock_irq(&lruvec->lru_lock);
2587 
2588 	mem_cgroup_uncharge_list(&l_active);
2589 	free_unref_page_list(&l_active);
2590 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2591 			nr_deactivate, nr_rotated, sc->priority, file);
2592 }
2593 
2594 unsigned long reclaim_pages(struct list_head *page_list)
2595 {
2596 	int nid = NUMA_NO_NODE;
2597 	unsigned int nr_reclaimed = 0;
2598 	LIST_HEAD(node_page_list);
2599 	struct reclaim_stat dummy_stat;
2600 	struct page *page;
2601 	unsigned int noreclaim_flag;
2602 	struct scan_control sc = {
2603 		.gfp_mask = GFP_KERNEL,
2604 		.may_writepage = 1,
2605 		.may_unmap = 1,
2606 		.may_swap = 1,
2607 		.no_demotion = 1,
2608 	};
2609 
2610 	noreclaim_flag = memalloc_noreclaim_save();
2611 
2612 	while (!list_empty(page_list)) {
2613 		page = lru_to_page(page_list);
2614 		if (nid == NUMA_NO_NODE) {
2615 			nid = page_to_nid(page);
2616 			INIT_LIST_HEAD(&node_page_list);
2617 		}
2618 
2619 		if (nid == page_to_nid(page)) {
2620 			ClearPageActive(page);
2621 			list_move(&page->lru, &node_page_list);
2622 			continue;
2623 		}
2624 
2625 		nr_reclaimed += shrink_page_list(&node_page_list,
2626 						NODE_DATA(nid),
2627 						&sc, &dummy_stat, false);
2628 		while (!list_empty(&node_page_list)) {
2629 			page = lru_to_page(&node_page_list);
2630 			list_del(&page->lru);
2631 			putback_lru_page(page);
2632 		}
2633 
2634 		nid = NUMA_NO_NODE;
2635 	}
2636 
2637 	if (!list_empty(&node_page_list)) {
2638 		nr_reclaimed += shrink_page_list(&node_page_list,
2639 						NODE_DATA(nid),
2640 						&sc, &dummy_stat, false);
2641 		while (!list_empty(&node_page_list)) {
2642 			page = lru_to_page(&node_page_list);
2643 			list_del(&page->lru);
2644 			putback_lru_page(page);
2645 		}
2646 	}
2647 
2648 	memalloc_noreclaim_restore(noreclaim_flag);
2649 
2650 	return nr_reclaimed;
2651 }
2652 
2653 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2654 				 struct lruvec *lruvec, struct scan_control *sc)
2655 {
2656 	if (is_active_lru(lru)) {
2657 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2658 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2659 		else
2660 			sc->skipped_deactivate = 1;
2661 		return 0;
2662 	}
2663 
2664 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2665 }
2666 
2667 /*
2668  * The inactive anon list should be small enough that the VM never has
2669  * to do too much work.
2670  *
2671  * The inactive file list should be small enough to leave most memory
2672  * to the established workingset on the scan-resistant active list,
2673  * but large enough to avoid thrashing the aggregate readahead window.
2674  *
2675  * Both inactive lists should also be large enough that each inactive
2676  * page has a chance to be referenced again before it is reclaimed.
2677  *
2678  * If that fails and refaulting is observed, the inactive list grows.
2679  *
2680  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2681  * on this LRU, maintained by the pageout code. An inactive_ratio
2682  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2683  *
2684  * total     target    max
2685  * memory    ratio     inactive
2686  * -------------------------------------
2687  *   10MB       1         5MB
2688  *  100MB       1        50MB
2689  *    1GB       3       250MB
2690  *   10GB      10       0.9GB
2691  *  100GB      31         3GB
2692  *    1TB     101        10GB
2693  *   10TB     320        32GB
2694  */
2695 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2696 {
2697 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2698 	unsigned long inactive, active;
2699 	unsigned long inactive_ratio;
2700 	unsigned long gb;
2701 
2702 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2703 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2704 
2705 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2706 	if (gb)
2707 		inactive_ratio = int_sqrt(10 * gb);
2708 	else
2709 		inactive_ratio = 1;
2710 
2711 	return inactive * inactive_ratio < active;
2712 }
2713 
2714 enum scan_balance {
2715 	SCAN_EQUAL,
2716 	SCAN_FRACT,
2717 	SCAN_ANON,
2718 	SCAN_FILE,
2719 };
2720 
2721 /*
2722  * Determine how aggressively the anon and file LRU lists should be
2723  * scanned.  The relative value of each set of LRU lists is determined
2724  * by looking at the fraction of the pages scanned we did rotate back
2725  * onto the active list instead of evict.
2726  *
2727  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2728  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2729  */
2730 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2731 			   unsigned long *nr)
2732 {
2733 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2734 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2735 	unsigned long anon_cost, file_cost, total_cost;
2736 	int swappiness = mem_cgroup_swappiness(memcg);
2737 	u64 fraction[ANON_AND_FILE];
2738 	u64 denominator = 0;	/* gcc */
2739 	enum scan_balance scan_balance;
2740 	unsigned long ap, fp;
2741 	enum lru_list lru;
2742 
2743 	/* If we have no swap space, do not bother scanning anon pages. */
2744 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2745 		scan_balance = SCAN_FILE;
2746 		goto out;
2747 	}
2748 
2749 	/*
2750 	 * Global reclaim will swap to prevent OOM even with no
2751 	 * swappiness, but memcg users want to use this knob to
2752 	 * disable swapping for individual groups completely when
2753 	 * using the memory controller's swap limit feature would be
2754 	 * too expensive.
2755 	 */
2756 	if (cgroup_reclaim(sc) && !swappiness) {
2757 		scan_balance = SCAN_FILE;
2758 		goto out;
2759 	}
2760 
2761 	/*
2762 	 * Do not apply any pressure balancing cleverness when the
2763 	 * system is close to OOM, scan both anon and file equally
2764 	 * (unless the swappiness setting disagrees with swapping).
2765 	 */
2766 	if (!sc->priority && swappiness) {
2767 		scan_balance = SCAN_EQUAL;
2768 		goto out;
2769 	}
2770 
2771 	/*
2772 	 * If the system is almost out of file pages, force-scan anon.
2773 	 */
2774 	if (sc->file_is_tiny) {
2775 		scan_balance = SCAN_ANON;
2776 		goto out;
2777 	}
2778 
2779 	/*
2780 	 * If there is enough inactive page cache, we do not reclaim
2781 	 * anything from the anonymous working right now.
2782 	 */
2783 	if (sc->cache_trim_mode) {
2784 		scan_balance = SCAN_FILE;
2785 		goto out;
2786 	}
2787 
2788 	scan_balance = SCAN_FRACT;
2789 	/*
2790 	 * Calculate the pressure balance between anon and file pages.
2791 	 *
2792 	 * The amount of pressure we put on each LRU is inversely
2793 	 * proportional to the cost of reclaiming each list, as
2794 	 * determined by the share of pages that are refaulting, times
2795 	 * the relative IO cost of bringing back a swapped out
2796 	 * anonymous page vs reloading a filesystem page (swappiness).
2797 	 *
2798 	 * Although we limit that influence to ensure no list gets
2799 	 * left behind completely: at least a third of the pressure is
2800 	 * applied, before swappiness.
2801 	 *
2802 	 * With swappiness at 100, anon and file have equal IO cost.
2803 	 */
2804 	total_cost = sc->anon_cost + sc->file_cost;
2805 	anon_cost = total_cost + sc->anon_cost;
2806 	file_cost = total_cost + sc->file_cost;
2807 	total_cost = anon_cost + file_cost;
2808 
2809 	ap = swappiness * (total_cost + 1);
2810 	ap /= anon_cost + 1;
2811 
2812 	fp = (200 - swappiness) * (total_cost + 1);
2813 	fp /= file_cost + 1;
2814 
2815 	fraction[0] = ap;
2816 	fraction[1] = fp;
2817 	denominator = ap + fp;
2818 out:
2819 	for_each_evictable_lru(lru) {
2820 		int file = is_file_lru(lru);
2821 		unsigned long lruvec_size;
2822 		unsigned long low, min;
2823 		unsigned long scan;
2824 
2825 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2826 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2827 				      &min, &low);
2828 
2829 		if (min || low) {
2830 			/*
2831 			 * Scale a cgroup's reclaim pressure by proportioning
2832 			 * its current usage to its memory.low or memory.min
2833 			 * setting.
2834 			 *
2835 			 * This is important, as otherwise scanning aggression
2836 			 * becomes extremely binary -- from nothing as we
2837 			 * approach the memory protection threshold, to totally
2838 			 * nominal as we exceed it.  This results in requiring
2839 			 * setting extremely liberal protection thresholds. It
2840 			 * also means we simply get no protection at all if we
2841 			 * set it too low, which is not ideal.
2842 			 *
2843 			 * If there is any protection in place, we reduce scan
2844 			 * pressure by how much of the total memory used is
2845 			 * within protection thresholds.
2846 			 *
2847 			 * There is one special case: in the first reclaim pass,
2848 			 * we skip over all groups that are within their low
2849 			 * protection. If that fails to reclaim enough pages to
2850 			 * satisfy the reclaim goal, we come back and override
2851 			 * the best-effort low protection. However, we still
2852 			 * ideally want to honor how well-behaved groups are in
2853 			 * that case instead of simply punishing them all
2854 			 * equally. As such, we reclaim them based on how much
2855 			 * memory they are using, reducing the scan pressure
2856 			 * again by how much of the total memory used is under
2857 			 * hard protection.
2858 			 */
2859 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2860 			unsigned long protection;
2861 
2862 			/* memory.low scaling, make sure we retry before OOM */
2863 			if (!sc->memcg_low_reclaim && low > min) {
2864 				protection = low;
2865 				sc->memcg_low_skipped = 1;
2866 			} else {
2867 				protection = min;
2868 			}
2869 
2870 			/* Avoid TOCTOU with earlier protection check */
2871 			cgroup_size = max(cgroup_size, protection);
2872 
2873 			scan = lruvec_size - lruvec_size * protection /
2874 				(cgroup_size + 1);
2875 
2876 			/*
2877 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2878 			 * reclaim moving forwards, avoiding decrementing
2879 			 * sc->priority further than desirable.
2880 			 */
2881 			scan = max(scan, SWAP_CLUSTER_MAX);
2882 		} else {
2883 			scan = lruvec_size;
2884 		}
2885 
2886 		scan >>= sc->priority;
2887 
2888 		/*
2889 		 * If the cgroup's already been deleted, make sure to
2890 		 * scrape out the remaining cache.
2891 		 */
2892 		if (!scan && !mem_cgroup_online(memcg))
2893 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2894 
2895 		switch (scan_balance) {
2896 		case SCAN_EQUAL:
2897 			/* Scan lists relative to size */
2898 			break;
2899 		case SCAN_FRACT:
2900 			/*
2901 			 * Scan types proportional to swappiness and
2902 			 * their relative recent reclaim efficiency.
2903 			 * Make sure we don't miss the last page on
2904 			 * the offlined memory cgroups because of a
2905 			 * round-off error.
2906 			 */
2907 			scan = mem_cgroup_online(memcg) ?
2908 			       div64_u64(scan * fraction[file], denominator) :
2909 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2910 						  denominator);
2911 			break;
2912 		case SCAN_FILE:
2913 		case SCAN_ANON:
2914 			/* Scan one type exclusively */
2915 			if ((scan_balance == SCAN_FILE) != file)
2916 				scan = 0;
2917 			break;
2918 		default:
2919 			/* Look ma, no brain */
2920 			BUG();
2921 		}
2922 
2923 		nr[lru] = scan;
2924 	}
2925 }
2926 
2927 /*
2928  * Anonymous LRU management is a waste if there is
2929  * ultimately no way to reclaim the memory.
2930  */
2931 static bool can_age_anon_pages(struct pglist_data *pgdat,
2932 			       struct scan_control *sc)
2933 {
2934 	/* Aging the anon LRU is valuable if swap is present: */
2935 	if (total_swap_pages > 0)
2936 		return true;
2937 
2938 	/* Also valuable if anon pages can be demoted: */
2939 	return can_demote(pgdat->node_id, sc);
2940 }
2941 
2942 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2943 {
2944 	unsigned long nr[NR_LRU_LISTS];
2945 	unsigned long targets[NR_LRU_LISTS];
2946 	unsigned long nr_to_scan;
2947 	enum lru_list lru;
2948 	unsigned long nr_reclaimed = 0;
2949 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2950 	struct blk_plug plug;
2951 	bool scan_adjusted;
2952 
2953 	get_scan_count(lruvec, sc, nr);
2954 
2955 	/* Record the original scan target for proportional adjustments later */
2956 	memcpy(targets, nr, sizeof(nr));
2957 
2958 	/*
2959 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2960 	 * event that can occur when there is little memory pressure e.g.
2961 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2962 	 * when the requested number of pages are reclaimed when scanning at
2963 	 * DEF_PRIORITY on the assumption that the fact we are direct
2964 	 * reclaiming implies that kswapd is not keeping up and it is best to
2965 	 * do a batch of work at once. For memcg reclaim one check is made to
2966 	 * abort proportional reclaim if either the file or anon lru has already
2967 	 * dropped to zero at the first pass.
2968 	 */
2969 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2970 			 sc->priority == DEF_PRIORITY);
2971 
2972 	blk_start_plug(&plug);
2973 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2974 					nr[LRU_INACTIVE_FILE]) {
2975 		unsigned long nr_anon, nr_file, percentage;
2976 		unsigned long nr_scanned;
2977 
2978 		for_each_evictable_lru(lru) {
2979 			if (nr[lru]) {
2980 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2981 				nr[lru] -= nr_to_scan;
2982 
2983 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2984 							    lruvec, sc);
2985 			}
2986 		}
2987 
2988 		cond_resched();
2989 
2990 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2991 			continue;
2992 
2993 		/*
2994 		 * For kswapd and memcg, reclaim at least the number of pages
2995 		 * requested. Ensure that the anon and file LRUs are scanned
2996 		 * proportionally what was requested by get_scan_count(). We
2997 		 * stop reclaiming one LRU and reduce the amount scanning
2998 		 * proportional to the original scan target.
2999 		 */
3000 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3001 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3002 
3003 		/*
3004 		 * It's just vindictive to attack the larger once the smaller
3005 		 * has gone to zero.  And given the way we stop scanning the
3006 		 * smaller below, this makes sure that we only make one nudge
3007 		 * towards proportionality once we've got nr_to_reclaim.
3008 		 */
3009 		if (!nr_file || !nr_anon)
3010 			break;
3011 
3012 		if (nr_file > nr_anon) {
3013 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3014 						targets[LRU_ACTIVE_ANON] + 1;
3015 			lru = LRU_BASE;
3016 			percentage = nr_anon * 100 / scan_target;
3017 		} else {
3018 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3019 						targets[LRU_ACTIVE_FILE] + 1;
3020 			lru = LRU_FILE;
3021 			percentage = nr_file * 100 / scan_target;
3022 		}
3023 
3024 		/* Stop scanning the smaller of the LRU */
3025 		nr[lru] = 0;
3026 		nr[lru + LRU_ACTIVE] = 0;
3027 
3028 		/*
3029 		 * Recalculate the other LRU scan count based on its original
3030 		 * scan target and the percentage scanning already complete
3031 		 */
3032 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3033 		nr_scanned = targets[lru] - nr[lru];
3034 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3035 		nr[lru] -= min(nr[lru], nr_scanned);
3036 
3037 		lru += LRU_ACTIVE;
3038 		nr_scanned = targets[lru] - nr[lru];
3039 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3040 		nr[lru] -= min(nr[lru], nr_scanned);
3041 
3042 		scan_adjusted = true;
3043 	}
3044 	blk_finish_plug(&plug);
3045 	sc->nr_reclaimed += nr_reclaimed;
3046 
3047 	/*
3048 	 * Even if we did not try to evict anon pages at all, we want to
3049 	 * rebalance the anon lru active/inactive ratio.
3050 	 */
3051 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3052 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3053 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3054 				   sc, LRU_ACTIVE_ANON);
3055 }
3056 
3057 /* Use reclaim/compaction for costly allocs or under memory pressure */
3058 static bool in_reclaim_compaction(struct scan_control *sc)
3059 {
3060 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3061 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3062 			 sc->priority < DEF_PRIORITY - 2))
3063 		return true;
3064 
3065 	return false;
3066 }
3067 
3068 /*
3069  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3070  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3071  * true if more pages should be reclaimed such that when the page allocator
3072  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3073  * It will give up earlier than that if there is difficulty reclaiming pages.
3074  */
3075 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3076 					unsigned long nr_reclaimed,
3077 					struct scan_control *sc)
3078 {
3079 	unsigned long pages_for_compaction;
3080 	unsigned long inactive_lru_pages;
3081 	int z;
3082 
3083 	/* If not in reclaim/compaction mode, stop */
3084 	if (!in_reclaim_compaction(sc))
3085 		return false;
3086 
3087 	/*
3088 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3089 	 * number of pages that were scanned. This will return to the caller
3090 	 * with the risk reclaim/compaction and the resulting allocation attempt
3091 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3092 	 * allocations through requiring that the full LRU list has been scanned
3093 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3094 	 * scan, but that approximation was wrong, and there were corner cases
3095 	 * where always a non-zero amount of pages were scanned.
3096 	 */
3097 	if (!nr_reclaimed)
3098 		return false;
3099 
3100 	/* If compaction would go ahead or the allocation would succeed, stop */
3101 	for (z = 0; z <= sc->reclaim_idx; z++) {
3102 		struct zone *zone = &pgdat->node_zones[z];
3103 		if (!managed_zone(zone))
3104 			continue;
3105 
3106 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3107 		case COMPACT_SUCCESS:
3108 		case COMPACT_CONTINUE:
3109 			return false;
3110 		default:
3111 			/* check next zone */
3112 			;
3113 		}
3114 	}
3115 
3116 	/*
3117 	 * If we have not reclaimed enough pages for compaction and the
3118 	 * inactive lists are large enough, continue reclaiming
3119 	 */
3120 	pages_for_compaction = compact_gap(sc->order);
3121 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3122 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3123 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3124 
3125 	return inactive_lru_pages > pages_for_compaction;
3126 }
3127 
3128 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3129 {
3130 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3131 	struct mem_cgroup *memcg;
3132 
3133 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3134 	do {
3135 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3136 		unsigned long reclaimed;
3137 		unsigned long scanned;
3138 
3139 		/*
3140 		 * This loop can become CPU-bound when target memcgs
3141 		 * aren't eligible for reclaim - either because they
3142 		 * don't have any reclaimable pages, or because their
3143 		 * memory is explicitly protected. Avoid soft lockups.
3144 		 */
3145 		cond_resched();
3146 
3147 		mem_cgroup_calculate_protection(target_memcg, memcg);
3148 
3149 		if (mem_cgroup_below_min(memcg)) {
3150 			/*
3151 			 * Hard protection.
3152 			 * If there is no reclaimable memory, OOM.
3153 			 */
3154 			continue;
3155 		} else if (mem_cgroup_below_low(memcg)) {
3156 			/*
3157 			 * Soft protection.
3158 			 * Respect the protection only as long as
3159 			 * there is an unprotected supply
3160 			 * of reclaimable memory from other cgroups.
3161 			 */
3162 			if (!sc->memcg_low_reclaim) {
3163 				sc->memcg_low_skipped = 1;
3164 				continue;
3165 			}
3166 			memcg_memory_event(memcg, MEMCG_LOW);
3167 		}
3168 
3169 		reclaimed = sc->nr_reclaimed;
3170 		scanned = sc->nr_scanned;
3171 
3172 		shrink_lruvec(lruvec, sc);
3173 
3174 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3175 			    sc->priority);
3176 
3177 		/* Record the group's reclaim efficiency */
3178 		vmpressure(sc->gfp_mask, memcg, false,
3179 			   sc->nr_scanned - scanned,
3180 			   sc->nr_reclaimed - reclaimed);
3181 
3182 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3183 }
3184 
3185 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3186 {
3187 	struct reclaim_state *reclaim_state = current->reclaim_state;
3188 	unsigned long nr_reclaimed, nr_scanned;
3189 	struct lruvec *target_lruvec;
3190 	bool reclaimable = false;
3191 	unsigned long file;
3192 
3193 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3194 
3195 again:
3196 	/*
3197 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3198 	 * lruvec stats for heuristics.
3199 	 */
3200 	mem_cgroup_flush_stats();
3201 
3202 	memset(&sc->nr, 0, sizeof(sc->nr));
3203 
3204 	nr_reclaimed = sc->nr_reclaimed;
3205 	nr_scanned = sc->nr_scanned;
3206 
3207 	/*
3208 	 * Determine the scan balance between anon and file LRUs.
3209 	 */
3210 	spin_lock_irq(&target_lruvec->lru_lock);
3211 	sc->anon_cost = target_lruvec->anon_cost;
3212 	sc->file_cost = target_lruvec->file_cost;
3213 	spin_unlock_irq(&target_lruvec->lru_lock);
3214 
3215 	/*
3216 	 * Target desirable inactive:active list ratios for the anon
3217 	 * and file LRU lists.
3218 	 */
3219 	if (!sc->force_deactivate) {
3220 		unsigned long refaults;
3221 
3222 		refaults = lruvec_page_state(target_lruvec,
3223 				WORKINGSET_ACTIVATE_ANON);
3224 		if (refaults != target_lruvec->refaults[0] ||
3225 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3226 			sc->may_deactivate |= DEACTIVATE_ANON;
3227 		else
3228 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3229 
3230 		/*
3231 		 * When refaults are being observed, it means a new
3232 		 * workingset is being established. Deactivate to get
3233 		 * rid of any stale active pages quickly.
3234 		 */
3235 		refaults = lruvec_page_state(target_lruvec,
3236 				WORKINGSET_ACTIVATE_FILE);
3237 		if (refaults != target_lruvec->refaults[1] ||
3238 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3239 			sc->may_deactivate |= DEACTIVATE_FILE;
3240 		else
3241 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3242 	} else
3243 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3244 
3245 	/*
3246 	 * If we have plenty of inactive file pages that aren't
3247 	 * thrashing, try to reclaim those first before touching
3248 	 * anonymous pages.
3249 	 */
3250 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3251 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3252 		sc->cache_trim_mode = 1;
3253 	else
3254 		sc->cache_trim_mode = 0;
3255 
3256 	/*
3257 	 * Prevent the reclaimer from falling into the cache trap: as
3258 	 * cache pages start out inactive, every cache fault will tip
3259 	 * the scan balance towards the file LRU.  And as the file LRU
3260 	 * shrinks, so does the window for rotation from references.
3261 	 * This means we have a runaway feedback loop where a tiny
3262 	 * thrashing file LRU becomes infinitely more attractive than
3263 	 * anon pages.  Try to detect this based on file LRU size.
3264 	 */
3265 	if (!cgroup_reclaim(sc)) {
3266 		unsigned long total_high_wmark = 0;
3267 		unsigned long free, anon;
3268 		int z;
3269 
3270 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3271 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3272 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3273 
3274 		for (z = 0; z < MAX_NR_ZONES; z++) {
3275 			struct zone *zone = &pgdat->node_zones[z];
3276 			if (!managed_zone(zone))
3277 				continue;
3278 
3279 			total_high_wmark += high_wmark_pages(zone);
3280 		}
3281 
3282 		/*
3283 		 * Consider anon: if that's low too, this isn't a
3284 		 * runaway file reclaim problem, but rather just
3285 		 * extreme pressure. Reclaim as per usual then.
3286 		 */
3287 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3288 
3289 		sc->file_is_tiny =
3290 			file + free <= total_high_wmark &&
3291 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3292 			anon >> sc->priority;
3293 	}
3294 
3295 	shrink_node_memcgs(pgdat, sc);
3296 
3297 	if (reclaim_state) {
3298 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3299 		reclaim_state->reclaimed_slab = 0;
3300 	}
3301 
3302 	/* Record the subtree's reclaim efficiency */
3303 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3304 		   sc->nr_scanned - nr_scanned,
3305 		   sc->nr_reclaimed - nr_reclaimed);
3306 
3307 	if (sc->nr_reclaimed - nr_reclaimed)
3308 		reclaimable = true;
3309 
3310 	if (current_is_kswapd()) {
3311 		/*
3312 		 * If reclaim is isolating dirty pages under writeback,
3313 		 * it implies that the long-lived page allocation rate
3314 		 * is exceeding the page laundering rate. Either the
3315 		 * global limits are not being effective at throttling
3316 		 * processes due to the page distribution throughout
3317 		 * zones or there is heavy usage of a slow backing
3318 		 * device. The only option is to throttle from reclaim
3319 		 * context which is not ideal as there is no guarantee
3320 		 * the dirtying process is throttled in the same way
3321 		 * balance_dirty_pages() manages.
3322 		 *
3323 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3324 		 * count the number of pages under pages flagged for
3325 		 * immediate reclaim and stall if any are encountered
3326 		 * in the nr_immediate check below.
3327 		 */
3328 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3329 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3330 
3331 		/* Allow kswapd to start writing pages during reclaim.*/
3332 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3333 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3334 
3335 		/*
3336 		 * If kswapd scans pages marked for immediate
3337 		 * reclaim and under writeback (nr_immediate), it
3338 		 * implies that pages are cycling through the LRU
3339 		 * faster than they are written so forcibly stall
3340 		 * until some pages complete writeback.
3341 		 */
3342 		if (sc->nr.immediate)
3343 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3344 	}
3345 
3346 	/*
3347 	 * Tag a node/memcg as congested if all the dirty pages were marked
3348 	 * for writeback and immediate reclaim (counted in nr.congested).
3349 	 *
3350 	 * Legacy memcg will stall in page writeback so avoid forcibly
3351 	 * stalling in reclaim_throttle().
3352 	 */
3353 	if ((current_is_kswapd() ||
3354 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3355 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3356 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3357 
3358 	/*
3359 	 * Stall direct reclaim for IO completions if the lruvec is
3360 	 * node is congested. Allow kswapd to continue until it
3361 	 * starts encountering unqueued dirty pages or cycling through
3362 	 * the LRU too quickly.
3363 	 */
3364 	if (!current_is_kswapd() && current_may_throttle() &&
3365 	    !sc->hibernation_mode &&
3366 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3367 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3368 
3369 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3370 				    sc))
3371 		goto again;
3372 
3373 	/*
3374 	 * Kswapd gives up on balancing particular nodes after too
3375 	 * many failures to reclaim anything from them and goes to
3376 	 * sleep. On reclaim progress, reset the failure counter. A
3377 	 * successful direct reclaim run will revive a dormant kswapd.
3378 	 */
3379 	if (reclaimable)
3380 		pgdat->kswapd_failures = 0;
3381 }
3382 
3383 /*
3384  * Returns true if compaction should go ahead for a costly-order request, or
3385  * the allocation would already succeed without compaction. Return false if we
3386  * should reclaim first.
3387  */
3388 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3389 {
3390 	unsigned long watermark;
3391 	enum compact_result suitable;
3392 
3393 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3394 	if (suitable == COMPACT_SUCCESS)
3395 		/* Allocation should succeed already. Don't reclaim. */
3396 		return true;
3397 	if (suitable == COMPACT_SKIPPED)
3398 		/* Compaction cannot yet proceed. Do reclaim. */
3399 		return false;
3400 
3401 	/*
3402 	 * Compaction is already possible, but it takes time to run and there
3403 	 * are potentially other callers using the pages just freed. So proceed
3404 	 * with reclaim to make a buffer of free pages available to give
3405 	 * compaction a reasonable chance of completing and allocating the page.
3406 	 * Note that we won't actually reclaim the whole buffer in one attempt
3407 	 * as the target watermark in should_continue_reclaim() is lower. But if
3408 	 * we are already above the high+gap watermark, don't reclaim at all.
3409 	 */
3410 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3411 
3412 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3413 }
3414 
3415 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3416 {
3417 	/*
3418 	 * If reclaim is making progress greater than 12% efficiency then
3419 	 * wake all the NOPROGRESS throttled tasks.
3420 	 */
3421 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3422 		wait_queue_head_t *wqh;
3423 
3424 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3425 		if (waitqueue_active(wqh))
3426 			wake_up(wqh);
3427 
3428 		return;
3429 	}
3430 
3431 	/*
3432 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3433 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3434 	 * under writeback and marked for immediate reclaim at the tail of the
3435 	 * LRU.
3436 	 */
3437 	if (current_is_kswapd() || cgroup_reclaim(sc))
3438 		return;
3439 
3440 	/* Throttle if making no progress at high prioities. */
3441 	if (sc->priority == 1 && !sc->nr_reclaimed)
3442 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3443 }
3444 
3445 /*
3446  * This is the direct reclaim path, for page-allocating processes.  We only
3447  * try to reclaim pages from zones which will satisfy the caller's allocation
3448  * request.
3449  *
3450  * If a zone is deemed to be full of pinned pages then just give it a light
3451  * scan then give up on it.
3452  */
3453 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3454 {
3455 	struct zoneref *z;
3456 	struct zone *zone;
3457 	unsigned long nr_soft_reclaimed;
3458 	unsigned long nr_soft_scanned;
3459 	gfp_t orig_mask;
3460 	pg_data_t *last_pgdat = NULL;
3461 	pg_data_t *first_pgdat = NULL;
3462 
3463 	/*
3464 	 * If the number of buffer_heads in the machine exceeds the maximum
3465 	 * allowed level, force direct reclaim to scan the highmem zone as
3466 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3467 	 */
3468 	orig_mask = sc->gfp_mask;
3469 	if (buffer_heads_over_limit) {
3470 		sc->gfp_mask |= __GFP_HIGHMEM;
3471 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3472 	}
3473 
3474 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3475 					sc->reclaim_idx, sc->nodemask) {
3476 		/*
3477 		 * Take care memory controller reclaiming has small influence
3478 		 * to global LRU.
3479 		 */
3480 		if (!cgroup_reclaim(sc)) {
3481 			if (!cpuset_zone_allowed(zone,
3482 						 GFP_KERNEL | __GFP_HARDWALL))
3483 				continue;
3484 
3485 			/*
3486 			 * If we already have plenty of memory free for
3487 			 * compaction in this zone, don't free any more.
3488 			 * Even though compaction is invoked for any
3489 			 * non-zero order, only frequent costly order
3490 			 * reclamation is disruptive enough to become a
3491 			 * noticeable problem, like transparent huge
3492 			 * page allocations.
3493 			 */
3494 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3495 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3496 			    compaction_ready(zone, sc)) {
3497 				sc->compaction_ready = true;
3498 				continue;
3499 			}
3500 
3501 			/*
3502 			 * Shrink each node in the zonelist once. If the
3503 			 * zonelist is ordered by zone (not the default) then a
3504 			 * node may be shrunk multiple times but in that case
3505 			 * the user prefers lower zones being preserved.
3506 			 */
3507 			if (zone->zone_pgdat == last_pgdat)
3508 				continue;
3509 
3510 			/*
3511 			 * This steals pages from memory cgroups over softlimit
3512 			 * and returns the number of reclaimed pages and
3513 			 * scanned pages. This works for global memory pressure
3514 			 * and balancing, not for a memcg's limit.
3515 			 */
3516 			nr_soft_scanned = 0;
3517 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3518 						sc->order, sc->gfp_mask,
3519 						&nr_soft_scanned);
3520 			sc->nr_reclaimed += nr_soft_reclaimed;
3521 			sc->nr_scanned += nr_soft_scanned;
3522 			/* need some check for avoid more shrink_zone() */
3523 		}
3524 
3525 		if (!first_pgdat)
3526 			first_pgdat = zone->zone_pgdat;
3527 
3528 		/* See comment about same check for global reclaim above */
3529 		if (zone->zone_pgdat == last_pgdat)
3530 			continue;
3531 		last_pgdat = zone->zone_pgdat;
3532 		shrink_node(zone->zone_pgdat, sc);
3533 	}
3534 
3535 	if (first_pgdat)
3536 		consider_reclaim_throttle(first_pgdat, sc);
3537 
3538 	/*
3539 	 * Restore to original mask to avoid the impact on the caller if we
3540 	 * promoted it to __GFP_HIGHMEM.
3541 	 */
3542 	sc->gfp_mask = orig_mask;
3543 }
3544 
3545 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3546 {
3547 	struct lruvec *target_lruvec;
3548 	unsigned long refaults;
3549 
3550 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3551 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3552 	target_lruvec->refaults[0] = refaults;
3553 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3554 	target_lruvec->refaults[1] = refaults;
3555 }
3556 
3557 /*
3558  * This is the main entry point to direct page reclaim.
3559  *
3560  * If a full scan of the inactive list fails to free enough memory then we
3561  * are "out of memory" and something needs to be killed.
3562  *
3563  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3564  * high - the zone may be full of dirty or under-writeback pages, which this
3565  * caller can't do much about.  We kick the writeback threads and take explicit
3566  * naps in the hope that some of these pages can be written.  But if the
3567  * allocating task holds filesystem locks which prevent writeout this might not
3568  * work, and the allocation attempt will fail.
3569  *
3570  * returns:	0, if no pages reclaimed
3571  * 		else, the number of pages reclaimed
3572  */
3573 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3574 					  struct scan_control *sc)
3575 {
3576 	int initial_priority = sc->priority;
3577 	pg_data_t *last_pgdat;
3578 	struct zoneref *z;
3579 	struct zone *zone;
3580 retry:
3581 	delayacct_freepages_start();
3582 
3583 	if (!cgroup_reclaim(sc))
3584 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3585 
3586 	do {
3587 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3588 				sc->priority);
3589 		sc->nr_scanned = 0;
3590 		shrink_zones(zonelist, sc);
3591 
3592 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3593 			break;
3594 
3595 		if (sc->compaction_ready)
3596 			break;
3597 
3598 		/*
3599 		 * If we're getting trouble reclaiming, start doing
3600 		 * writepage even in laptop mode.
3601 		 */
3602 		if (sc->priority < DEF_PRIORITY - 2)
3603 			sc->may_writepage = 1;
3604 	} while (--sc->priority >= 0);
3605 
3606 	last_pgdat = NULL;
3607 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3608 					sc->nodemask) {
3609 		if (zone->zone_pgdat == last_pgdat)
3610 			continue;
3611 		last_pgdat = zone->zone_pgdat;
3612 
3613 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3614 
3615 		if (cgroup_reclaim(sc)) {
3616 			struct lruvec *lruvec;
3617 
3618 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3619 						   zone->zone_pgdat);
3620 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3621 		}
3622 	}
3623 
3624 	delayacct_freepages_end();
3625 
3626 	if (sc->nr_reclaimed)
3627 		return sc->nr_reclaimed;
3628 
3629 	/* Aborted reclaim to try compaction? don't OOM, then */
3630 	if (sc->compaction_ready)
3631 		return 1;
3632 
3633 	/*
3634 	 * We make inactive:active ratio decisions based on the node's
3635 	 * composition of memory, but a restrictive reclaim_idx or a
3636 	 * memory.low cgroup setting can exempt large amounts of
3637 	 * memory from reclaim. Neither of which are very common, so
3638 	 * instead of doing costly eligibility calculations of the
3639 	 * entire cgroup subtree up front, we assume the estimates are
3640 	 * good, and retry with forcible deactivation if that fails.
3641 	 */
3642 	if (sc->skipped_deactivate) {
3643 		sc->priority = initial_priority;
3644 		sc->force_deactivate = 1;
3645 		sc->skipped_deactivate = 0;
3646 		goto retry;
3647 	}
3648 
3649 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3650 	if (sc->memcg_low_skipped) {
3651 		sc->priority = initial_priority;
3652 		sc->force_deactivate = 0;
3653 		sc->memcg_low_reclaim = 1;
3654 		sc->memcg_low_skipped = 0;
3655 		goto retry;
3656 	}
3657 
3658 	return 0;
3659 }
3660 
3661 static bool allow_direct_reclaim(pg_data_t *pgdat)
3662 {
3663 	struct zone *zone;
3664 	unsigned long pfmemalloc_reserve = 0;
3665 	unsigned long free_pages = 0;
3666 	int i;
3667 	bool wmark_ok;
3668 
3669 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3670 		return true;
3671 
3672 	for (i = 0; i <= ZONE_NORMAL; i++) {
3673 		zone = &pgdat->node_zones[i];
3674 		if (!managed_zone(zone))
3675 			continue;
3676 
3677 		if (!zone_reclaimable_pages(zone))
3678 			continue;
3679 
3680 		pfmemalloc_reserve += min_wmark_pages(zone);
3681 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3682 	}
3683 
3684 	/* If there are no reserves (unexpected config) then do not throttle */
3685 	if (!pfmemalloc_reserve)
3686 		return true;
3687 
3688 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3689 
3690 	/* kswapd must be awake if processes are being throttled */
3691 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3692 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3693 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3694 
3695 		wake_up_interruptible(&pgdat->kswapd_wait);
3696 	}
3697 
3698 	return wmark_ok;
3699 }
3700 
3701 /*
3702  * Throttle direct reclaimers if backing storage is backed by the network
3703  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3704  * depleted. kswapd will continue to make progress and wake the processes
3705  * when the low watermark is reached.
3706  *
3707  * Returns true if a fatal signal was delivered during throttling. If this
3708  * happens, the page allocator should not consider triggering the OOM killer.
3709  */
3710 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3711 					nodemask_t *nodemask)
3712 {
3713 	struct zoneref *z;
3714 	struct zone *zone;
3715 	pg_data_t *pgdat = NULL;
3716 
3717 	/*
3718 	 * Kernel threads should not be throttled as they may be indirectly
3719 	 * responsible for cleaning pages necessary for reclaim to make forward
3720 	 * progress. kjournald for example may enter direct reclaim while
3721 	 * committing a transaction where throttling it could forcing other
3722 	 * processes to block on log_wait_commit().
3723 	 */
3724 	if (current->flags & PF_KTHREAD)
3725 		goto out;
3726 
3727 	/*
3728 	 * If a fatal signal is pending, this process should not throttle.
3729 	 * It should return quickly so it can exit and free its memory
3730 	 */
3731 	if (fatal_signal_pending(current))
3732 		goto out;
3733 
3734 	/*
3735 	 * Check if the pfmemalloc reserves are ok by finding the first node
3736 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3737 	 * GFP_KERNEL will be required for allocating network buffers when
3738 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3739 	 *
3740 	 * Throttling is based on the first usable node and throttled processes
3741 	 * wait on a queue until kswapd makes progress and wakes them. There
3742 	 * is an affinity then between processes waking up and where reclaim
3743 	 * progress has been made assuming the process wakes on the same node.
3744 	 * More importantly, processes running on remote nodes will not compete
3745 	 * for remote pfmemalloc reserves and processes on different nodes
3746 	 * should make reasonable progress.
3747 	 */
3748 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3749 					gfp_zone(gfp_mask), nodemask) {
3750 		if (zone_idx(zone) > ZONE_NORMAL)
3751 			continue;
3752 
3753 		/* Throttle based on the first usable node */
3754 		pgdat = zone->zone_pgdat;
3755 		if (allow_direct_reclaim(pgdat))
3756 			goto out;
3757 		break;
3758 	}
3759 
3760 	/* If no zone was usable by the allocation flags then do not throttle */
3761 	if (!pgdat)
3762 		goto out;
3763 
3764 	/* Account for the throttling */
3765 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3766 
3767 	/*
3768 	 * If the caller cannot enter the filesystem, it's possible that it
3769 	 * is due to the caller holding an FS lock or performing a journal
3770 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3771 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3772 	 * blocked waiting on the same lock. Instead, throttle for up to a
3773 	 * second before continuing.
3774 	 */
3775 	if (!(gfp_mask & __GFP_FS))
3776 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3777 			allow_direct_reclaim(pgdat), HZ);
3778 	else
3779 		/* Throttle until kswapd wakes the process */
3780 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3781 			allow_direct_reclaim(pgdat));
3782 
3783 	if (fatal_signal_pending(current))
3784 		return true;
3785 
3786 out:
3787 	return false;
3788 }
3789 
3790 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3791 				gfp_t gfp_mask, nodemask_t *nodemask)
3792 {
3793 	unsigned long nr_reclaimed;
3794 	struct scan_control sc = {
3795 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3796 		.gfp_mask = current_gfp_context(gfp_mask),
3797 		.reclaim_idx = gfp_zone(gfp_mask),
3798 		.order = order,
3799 		.nodemask = nodemask,
3800 		.priority = DEF_PRIORITY,
3801 		.may_writepage = !laptop_mode,
3802 		.may_unmap = 1,
3803 		.may_swap = 1,
3804 	};
3805 
3806 	/*
3807 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3808 	 * Confirm they are large enough for max values.
3809 	 */
3810 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3811 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3812 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3813 
3814 	/*
3815 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3816 	 * 1 is returned so that the page allocator does not OOM kill at this
3817 	 * point.
3818 	 */
3819 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3820 		return 1;
3821 
3822 	set_task_reclaim_state(current, &sc.reclaim_state);
3823 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3824 
3825 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3826 
3827 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3828 	set_task_reclaim_state(current, NULL);
3829 
3830 	return nr_reclaimed;
3831 }
3832 
3833 #ifdef CONFIG_MEMCG
3834 
3835 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3836 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3837 						gfp_t gfp_mask, bool noswap,
3838 						pg_data_t *pgdat,
3839 						unsigned long *nr_scanned)
3840 {
3841 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3842 	struct scan_control sc = {
3843 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3844 		.target_mem_cgroup = memcg,
3845 		.may_writepage = !laptop_mode,
3846 		.may_unmap = 1,
3847 		.reclaim_idx = MAX_NR_ZONES - 1,
3848 		.may_swap = !noswap,
3849 	};
3850 
3851 	WARN_ON_ONCE(!current->reclaim_state);
3852 
3853 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3854 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3855 
3856 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3857 						      sc.gfp_mask);
3858 
3859 	/*
3860 	 * NOTE: Although we can get the priority field, using it
3861 	 * here is not a good idea, since it limits the pages we can scan.
3862 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3863 	 * will pick up pages from other mem cgroup's as well. We hack
3864 	 * the priority and make it zero.
3865 	 */
3866 	shrink_lruvec(lruvec, &sc);
3867 
3868 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3869 
3870 	*nr_scanned = sc.nr_scanned;
3871 
3872 	return sc.nr_reclaimed;
3873 }
3874 
3875 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3876 					   unsigned long nr_pages,
3877 					   gfp_t gfp_mask,
3878 					   bool may_swap)
3879 {
3880 	unsigned long nr_reclaimed;
3881 	unsigned int noreclaim_flag;
3882 	struct scan_control sc = {
3883 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3884 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3885 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3886 		.reclaim_idx = MAX_NR_ZONES - 1,
3887 		.target_mem_cgroup = memcg,
3888 		.priority = DEF_PRIORITY,
3889 		.may_writepage = !laptop_mode,
3890 		.may_unmap = 1,
3891 		.may_swap = may_swap,
3892 	};
3893 	/*
3894 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3895 	 * equal pressure on all the nodes. This is based on the assumption that
3896 	 * the reclaim does not bail out early.
3897 	 */
3898 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3899 
3900 	set_task_reclaim_state(current, &sc.reclaim_state);
3901 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3902 	noreclaim_flag = memalloc_noreclaim_save();
3903 
3904 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3905 
3906 	memalloc_noreclaim_restore(noreclaim_flag);
3907 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3908 	set_task_reclaim_state(current, NULL);
3909 
3910 	return nr_reclaimed;
3911 }
3912 #endif
3913 
3914 static void age_active_anon(struct pglist_data *pgdat,
3915 				struct scan_control *sc)
3916 {
3917 	struct mem_cgroup *memcg;
3918 	struct lruvec *lruvec;
3919 
3920 	if (!can_age_anon_pages(pgdat, sc))
3921 		return;
3922 
3923 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3924 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3925 		return;
3926 
3927 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3928 	do {
3929 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3930 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3931 				   sc, LRU_ACTIVE_ANON);
3932 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3933 	} while (memcg);
3934 }
3935 
3936 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3937 {
3938 	int i;
3939 	struct zone *zone;
3940 
3941 	/*
3942 	 * Check for watermark boosts top-down as the higher zones
3943 	 * are more likely to be boosted. Both watermarks and boosts
3944 	 * should not be checked at the same time as reclaim would
3945 	 * start prematurely when there is no boosting and a lower
3946 	 * zone is balanced.
3947 	 */
3948 	for (i = highest_zoneidx; i >= 0; i--) {
3949 		zone = pgdat->node_zones + i;
3950 		if (!managed_zone(zone))
3951 			continue;
3952 
3953 		if (zone->watermark_boost)
3954 			return true;
3955 	}
3956 
3957 	return false;
3958 }
3959 
3960 /*
3961  * Returns true if there is an eligible zone balanced for the request order
3962  * and highest_zoneidx
3963  */
3964 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3965 {
3966 	int i;
3967 	unsigned long mark = -1;
3968 	struct zone *zone;
3969 
3970 	/*
3971 	 * Check watermarks bottom-up as lower zones are more likely to
3972 	 * meet watermarks.
3973 	 */
3974 	for (i = 0; i <= highest_zoneidx; i++) {
3975 		zone = pgdat->node_zones + i;
3976 
3977 		if (!managed_zone(zone))
3978 			continue;
3979 
3980 		mark = high_wmark_pages(zone);
3981 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3982 			return true;
3983 	}
3984 
3985 	/*
3986 	 * If a node has no populated zone within highest_zoneidx, it does not
3987 	 * need balancing by definition. This can happen if a zone-restricted
3988 	 * allocation tries to wake a remote kswapd.
3989 	 */
3990 	if (mark == -1)
3991 		return true;
3992 
3993 	return false;
3994 }
3995 
3996 /* Clear pgdat state for congested, dirty or under writeback. */
3997 static void clear_pgdat_congested(pg_data_t *pgdat)
3998 {
3999 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4000 
4001 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4002 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
4003 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4004 }
4005 
4006 /*
4007  * Prepare kswapd for sleeping. This verifies that there are no processes
4008  * waiting in throttle_direct_reclaim() and that watermarks have been met.
4009  *
4010  * Returns true if kswapd is ready to sleep
4011  */
4012 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4013 				int highest_zoneidx)
4014 {
4015 	/*
4016 	 * The throttled processes are normally woken up in balance_pgdat() as
4017 	 * soon as allow_direct_reclaim() is true. But there is a potential
4018 	 * race between when kswapd checks the watermarks and a process gets
4019 	 * throttled. There is also a potential race if processes get
4020 	 * throttled, kswapd wakes, a large process exits thereby balancing the
4021 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
4022 	 * the wake up checks. If kswapd is going to sleep, no process should
4023 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4024 	 * the wake up is premature, processes will wake kswapd and get
4025 	 * throttled again. The difference from wake ups in balance_pgdat() is
4026 	 * that here we are under prepare_to_wait().
4027 	 */
4028 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
4029 		wake_up_all(&pgdat->pfmemalloc_wait);
4030 
4031 	/* Hopeless node, leave it to direct reclaim */
4032 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4033 		return true;
4034 
4035 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4036 		clear_pgdat_congested(pgdat);
4037 		return true;
4038 	}
4039 
4040 	return false;
4041 }
4042 
4043 /*
4044  * kswapd shrinks a node of pages that are at or below the highest usable
4045  * zone that is currently unbalanced.
4046  *
4047  * Returns true if kswapd scanned at least the requested number of pages to
4048  * reclaim or if the lack of progress was due to pages under writeback.
4049  * This is used to determine if the scanning priority needs to be raised.
4050  */
4051 static bool kswapd_shrink_node(pg_data_t *pgdat,
4052 			       struct scan_control *sc)
4053 {
4054 	struct zone *zone;
4055 	int z;
4056 
4057 	/* Reclaim a number of pages proportional to the number of zones */
4058 	sc->nr_to_reclaim = 0;
4059 	for (z = 0; z <= sc->reclaim_idx; z++) {
4060 		zone = pgdat->node_zones + z;
4061 		if (!managed_zone(zone))
4062 			continue;
4063 
4064 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4065 	}
4066 
4067 	/*
4068 	 * Historically care was taken to put equal pressure on all zones but
4069 	 * now pressure is applied based on node LRU order.
4070 	 */
4071 	shrink_node(pgdat, sc);
4072 
4073 	/*
4074 	 * Fragmentation may mean that the system cannot be rebalanced for
4075 	 * high-order allocations. If twice the allocation size has been
4076 	 * reclaimed then recheck watermarks only at order-0 to prevent
4077 	 * excessive reclaim. Assume that a process requested a high-order
4078 	 * can direct reclaim/compact.
4079 	 */
4080 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4081 		sc->order = 0;
4082 
4083 	return sc->nr_scanned >= sc->nr_to_reclaim;
4084 }
4085 
4086 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4087 static inline void
4088 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4089 {
4090 	int i;
4091 	struct zone *zone;
4092 
4093 	for (i = 0; i <= highest_zoneidx; i++) {
4094 		zone = pgdat->node_zones + i;
4095 
4096 		if (!managed_zone(zone))
4097 			continue;
4098 
4099 		if (active)
4100 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4101 		else
4102 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4103 	}
4104 }
4105 
4106 static inline void
4107 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4108 {
4109 	update_reclaim_active(pgdat, highest_zoneidx, true);
4110 }
4111 
4112 static inline void
4113 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4114 {
4115 	update_reclaim_active(pgdat, highest_zoneidx, false);
4116 }
4117 
4118 /*
4119  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4120  * that are eligible for use by the caller until at least one zone is
4121  * balanced.
4122  *
4123  * Returns the order kswapd finished reclaiming at.
4124  *
4125  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4126  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4127  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4128  * or lower is eligible for reclaim until at least one usable zone is
4129  * balanced.
4130  */
4131 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4132 {
4133 	int i;
4134 	unsigned long nr_soft_reclaimed;
4135 	unsigned long nr_soft_scanned;
4136 	unsigned long pflags;
4137 	unsigned long nr_boost_reclaim;
4138 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4139 	bool boosted;
4140 	struct zone *zone;
4141 	struct scan_control sc = {
4142 		.gfp_mask = GFP_KERNEL,
4143 		.order = order,
4144 		.may_unmap = 1,
4145 	};
4146 
4147 	set_task_reclaim_state(current, &sc.reclaim_state);
4148 	psi_memstall_enter(&pflags);
4149 	__fs_reclaim_acquire(_THIS_IP_);
4150 
4151 	count_vm_event(PAGEOUTRUN);
4152 
4153 	/*
4154 	 * Account for the reclaim boost. Note that the zone boost is left in
4155 	 * place so that parallel allocations that are near the watermark will
4156 	 * stall or direct reclaim until kswapd is finished.
4157 	 */
4158 	nr_boost_reclaim = 0;
4159 	for (i = 0; i <= highest_zoneidx; i++) {
4160 		zone = pgdat->node_zones + i;
4161 		if (!managed_zone(zone))
4162 			continue;
4163 
4164 		nr_boost_reclaim += zone->watermark_boost;
4165 		zone_boosts[i] = zone->watermark_boost;
4166 	}
4167 	boosted = nr_boost_reclaim;
4168 
4169 restart:
4170 	set_reclaim_active(pgdat, highest_zoneidx);
4171 	sc.priority = DEF_PRIORITY;
4172 	do {
4173 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4174 		bool raise_priority = true;
4175 		bool balanced;
4176 		bool ret;
4177 
4178 		sc.reclaim_idx = highest_zoneidx;
4179 
4180 		/*
4181 		 * If the number of buffer_heads exceeds the maximum allowed
4182 		 * then consider reclaiming from all zones. This has a dual
4183 		 * purpose -- on 64-bit systems it is expected that
4184 		 * buffer_heads are stripped during active rotation. On 32-bit
4185 		 * systems, highmem pages can pin lowmem memory and shrinking
4186 		 * buffers can relieve lowmem pressure. Reclaim may still not
4187 		 * go ahead if all eligible zones for the original allocation
4188 		 * request are balanced to avoid excessive reclaim from kswapd.
4189 		 */
4190 		if (buffer_heads_over_limit) {
4191 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4192 				zone = pgdat->node_zones + i;
4193 				if (!managed_zone(zone))
4194 					continue;
4195 
4196 				sc.reclaim_idx = i;
4197 				break;
4198 			}
4199 		}
4200 
4201 		/*
4202 		 * If the pgdat is imbalanced then ignore boosting and preserve
4203 		 * the watermarks for a later time and restart. Note that the
4204 		 * zone watermarks will be still reset at the end of balancing
4205 		 * on the grounds that the normal reclaim should be enough to
4206 		 * re-evaluate if boosting is required when kswapd next wakes.
4207 		 */
4208 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4209 		if (!balanced && nr_boost_reclaim) {
4210 			nr_boost_reclaim = 0;
4211 			goto restart;
4212 		}
4213 
4214 		/*
4215 		 * If boosting is not active then only reclaim if there are no
4216 		 * eligible zones. Note that sc.reclaim_idx is not used as
4217 		 * buffer_heads_over_limit may have adjusted it.
4218 		 */
4219 		if (!nr_boost_reclaim && balanced)
4220 			goto out;
4221 
4222 		/* Limit the priority of boosting to avoid reclaim writeback */
4223 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4224 			raise_priority = false;
4225 
4226 		/*
4227 		 * Do not writeback or swap pages for boosted reclaim. The
4228 		 * intent is to relieve pressure not issue sub-optimal IO
4229 		 * from reclaim context. If no pages are reclaimed, the
4230 		 * reclaim will be aborted.
4231 		 */
4232 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4233 		sc.may_swap = !nr_boost_reclaim;
4234 
4235 		/*
4236 		 * Do some background aging of the anon list, to give
4237 		 * pages a chance to be referenced before reclaiming. All
4238 		 * pages are rotated regardless of classzone as this is
4239 		 * about consistent aging.
4240 		 */
4241 		age_active_anon(pgdat, &sc);
4242 
4243 		/*
4244 		 * If we're getting trouble reclaiming, start doing writepage
4245 		 * even in laptop mode.
4246 		 */
4247 		if (sc.priority < DEF_PRIORITY - 2)
4248 			sc.may_writepage = 1;
4249 
4250 		/* Call soft limit reclaim before calling shrink_node. */
4251 		sc.nr_scanned = 0;
4252 		nr_soft_scanned = 0;
4253 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4254 						sc.gfp_mask, &nr_soft_scanned);
4255 		sc.nr_reclaimed += nr_soft_reclaimed;
4256 
4257 		/*
4258 		 * There should be no need to raise the scanning priority if
4259 		 * enough pages are already being scanned that that high
4260 		 * watermark would be met at 100% efficiency.
4261 		 */
4262 		if (kswapd_shrink_node(pgdat, &sc))
4263 			raise_priority = false;
4264 
4265 		/*
4266 		 * If the low watermark is met there is no need for processes
4267 		 * to be throttled on pfmemalloc_wait as they should not be
4268 		 * able to safely make forward progress. Wake them
4269 		 */
4270 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4271 				allow_direct_reclaim(pgdat))
4272 			wake_up_all(&pgdat->pfmemalloc_wait);
4273 
4274 		/* Check if kswapd should be suspending */
4275 		__fs_reclaim_release(_THIS_IP_);
4276 		ret = try_to_freeze();
4277 		__fs_reclaim_acquire(_THIS_IP_);
4278 		if (ret || kthread_should_stop())
4279 			break;
4280 
4281 		/*
4282 		 * Raise priority if scanning rate is too low or there was no
4283 		 * progress in reclaiming pages
4284 		 */
4285 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4286 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4287 
4288 		/*
4289 		 * If reclaim made no progress for a boost, stop reclaim as
4290 		 * IO cannot be queued and it could be an infinite loop in
4291 		 * extreme circumstances.
4292 		 */
4293 		if (nr_boost_reclaim && !nr_reclaimed)
4294 			break;
4295 
4296 		if (raise_priority || !nr_reclaimed)
4297 			sc.priority--;
4298 	} while (sc.priority >= 1);
4299 
4300 	if (!sc.nr_reclaimed)
4301 		pgdat->kswapd_failures++;
4302 
4303 out:
4304 	clear_reclaim_active(pgdat, highest_zoneidx);
4305 
4306 	/* If reclaim was boosted, account for the reclaim done in this pass */
4307 	if (boosted) {
4308 		unsigned long flags;
4309 
4310 		for (i = 0; i <= highest_zoneidx; i++) {
4311 			if (!zone_boosts[i])
4312 				continue;
4313 
4314 			/* Increments are under the zone lock */
4315 			zone = pgdat->node_zones + i;
4316 			spin_lock_irqsave(&zone->lock, flags);
4317 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4318 			spin_unlock_irqrestore(&zone->lock, flags);
4319 		}
4320 
4321 		/*
4322 		 * As there is now likely space, wakeup kcompact to defragment
4323 		 * pageblocks.
4324 		 */
4325 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4326 	}
4327 
4328 	snapshot_refaults(NULL, pgdat);
4329 	__fs_reclaim_release(_THIS_IP_);
4330 	psi_memstall_leave(&pflags);
4331 	set_task_reclaim_state(current, NULL);
4332 
4333 	/*
4334 	 * Return the order kswapd stopped reclaiming at as
4335 	 * prepare_kswapd_sleep() takes it into account. If another caller
4336 	 * entered the allocator slow path while kswapd was awake, order will
4337 	 * remain at the higher level.
4338 	 */
4339 	return sc.order;
4340 }
4341 
4342 /*
4343  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4344  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4345  * not a valid index then either kswapd runs for first time or kswapd couldn't
4346  * sleep after previous reclaim attempt (node is still unbalanced). In that
4347  * case return the zone index of the previous kswapd reclaim cycle.
4348  */
4349 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4350 					   enum zone_type prev_highest_zoneidx)
4351 {
4352 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4353 
4354 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4355 }
4356 
4357 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4358 				unsigned int highest_zoneidx)
4359 {
4360 	long remaining = 0;
4361 	DEFINE_WAIT(wait);
4362 
4363 	if (freezing(current) || kthread_should_stop())
4364 		return;
4365 
4366 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4367 
4368 	/*
4369 	 * Try to sleep for a short interval. Note that kcompactd will only be
4370 	 * woken if it is possible to sleep for a short interval. This is
4371 	 * deliberate on the assumption that if reclaim cannot keep an
4372 	 * eligible zone balanced that it's also unlikely that compaction will
4373 	 * succeed.
4374 	 */
4375 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4376 		/*
4377 		 * Compaction records what page blocks it recently failed to
4378 		 * isolate pages from and skips them in the future scanning.
4379 		 * When kswapd is going to sleep, it is reasonable to assume
4380 		 * that pages and compaction may succeed so reset the cache.
4381 		 */
4382 		reset_isolation_suitable(pgdat);
4383 
4384 		/*
4385 		 * We have freed the memory, now we should compact it to make
4386 		 * allocation of the requested order possible.
4387 		 */
4388 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4389 
4390 		remaining = schedule_timeout(HZ/10);
4391 
4392 		/*
4393 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4394 		 * order. The values will either be from a wakeup request or
4395 		 * the previous request that slept prematurely.
4396 		 */
4397 		if (remaining) {
4398 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4399 					kswapd_highest_zoneidx(pgdat,
4400 							highest_zoneidx));
4401 
4402 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4403 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4404 		}
4405 
4406 		finish_wait(&pgdat->kswapd_wait, &wait);
4407 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4408 	}
4409 
4410 	/*
4411 	 * After a short sleep, check if it was a premature sleep. If not, then
4412 	 * go fully to sleep until explicitly woken up.
4413 	 */
4414 	if (!remaining &&
4415 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4416 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4417 
4418 		/*
4419 		 * vmstat counters are not perfectly accurate and the estimated
4420 		 * value for counters such as NR_FREE_PAGES can deviate from the
4421 		 * true value by nr_online_cpus * threshold. To avoid the zone
4422 		 * watermarks being breached while under pressure, we reduce the
4423 		 * per-cpu vmstat threshold while kswapd is awake and restore
4424 		 * them before going back to sleep.
4425 		 */
4426 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4427 
4428 		if (!kthread_should_stop())
4429 			schedule();
4430 
4431 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4432 	} else {
4433 		if (remaining)
4434 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4435 		else
4436 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4437 	}
4438 	finish_wait(&pgdat->kswapd_wait, &wait);
4439 }
4440 
4441 /*
4442  * The background pageout daemon, started as a kernel thread
4443  * from the init process.
4444  *
4445  * This basically trickles out pages so that we have _some_
4446  * free memory available even if there is no other activity
4447  * that frees anything up. This is needed for things like routing
4448  * etc, where we otherwise might have all activity going on in
4449  * asynchronous contexts that cannot page things out.
4450  *
4451  * If there are applications that are active memory-allocators
4452  * (most normal use), this basically shouldn't matter.
4453  */
4454 static int kswapd(void *p)
4455 {
4456 	unsigned int alloc_order, reclaim_order;
4457 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4458 	pg_data_t *pgdat = (pg_data_t *)p;
4459 	struct task_struct *tsk = current;
4460 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4461 
4462 	if (!cpumask_empty(cpumask))
4463 		set_cpus_allowed_ptr(tsk, cpumask);
4464 
4465 	/*
4466 	 * Tell the memory management that we're a "memory allocator",
4467 	 * and that if we need more memory we should get access to it
4468 	 * regardless (see "__alloc_pages()"). "kswapd" should
4469 	 * never get caught in the normal page freeing logic.
4470 	 *
4471 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4472 	 * you need a small amount of memory in order to be able to
4473 	 * page out something else, and this flag essentially protects
4474 	 * us from recursively trying to free more memory as we're
4475 	 * trying to free the first piece of memory in the first place).
4476 	 */
4477 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4478 	set_freezable();
4479 
4480 	WRITE_ONCE(pgdat->kswapd_order, 0);
4481 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4482 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4483 	for ( ; ; ) {
4484 		bool ret;
4485 
4486 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4487 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4488 							highest_zoneidx);
4489 
4490 kswapd_try_sleep:
4491 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4492 					highest_zoneidx);
4493 
4494 		/* Read the new order and highest_zoneidx */
4495 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4496 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4497 							highest_zoneidx);
4498 		WRITE_ONCE(pgdat->kswapd_order, 0);
4499 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4500 
4501 		ret = try_to_freeze();
4502 		if (kthread_should_stop())
4503 			break;
4504 
4505 		/*
4506 		 * We can speed up thawing tasks if we don't call balance_pgdat
4507 		 * after returning from the refrigerator
4508 		 */
4509 		if (ret)
4510 			continue;
4511 
4512 		/*
4513 		 * Reclaim begins at the requested order but if a high-order
4514 		 * reclaim fails then kswapd falls back to reclaiming for
4515 		 * order-0. If that happens, kswapd will consider sleeping
4516 		 * for the order it finished reclaiming at (reclaim_order)
4517 		 * but kcompactd is woken to compact for the original
4518 		 * request (alloc_order).
4519 		 */
4520 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4521 						alloc_order);
4522 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4523 						highest_zoneidx);
4524 		if (reclaim_order < alloc_order)
4525 			goto kswapd_try_sleep;
4526 	}
4527 
4528 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4529 
4530 	return 0;
4531 }
4532 
4533 /*
4534  * A zone is low on free memory or too fragmented for high-order memory.  If
4535  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4536  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4537  * has failed or is not needed, still wake up kcompactd if only compaction is
4538  * needed.
4539  */
4540 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4541 		   enum zone_type highest_zoneidx)
4542 {
4543 	pg_data_t *pgdat;
4544 	enum zone_type curr_idx;
4545 
4546 	if (!managed_zone(zone))
4547 		return;
4548 
4549 	if (!cpuset_zone_allowed(zone, gfp_flags))
4550 		return;
4551 
4552 	pgdat = zone->zone_pgdat;
4553 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4554 
4555 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4556 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4557 
4558 	if (READ_ONCE(pgdat->kswapd_order) < order)
4559 		WRITE_ONCE(pgdat->kswapd_order, order);
4560 
4561 	if (!waitqueue_active(&pgdat->kswapd_wait))
4562 		return;
4563 
4564 	/* Hopeless node, leave it to direct reclaim if possible */
4565 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4566 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4567 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4568 		/*
4569 		 * There may be plenty of free memory available, but it's too
4570 		 * fragmented for high-order allocations.  Wake up kcompactd
4571 		 * and rely on compaction_suitable() to determine if it's
4572 		 * needed.  If it fails, it will defer subsequent attempts to
4573 		 * ratelimit its work.
4574 		 */
4575 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4576 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4577 		return;
4578 	}
4579 
4580 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4581 				      gfp_flags);
4582 	wake_up_interruptible(&pgdat->kswapd_wait);
4583 }
4584 
4585 #ifdef CONFIG_HIBERNATION
4586 /*
4587  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4588  * freed pages.
4589  *
4590  * Rather than trying to age LRUs the aim is to preserve the overall
4591  * LRU order by reclaiming preferentially
4592  * inactive > active > active referenced > active mapped
4593  */
4594 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4595 {
4596 	struct scan_control sc = {
4597 		.nr_to_reclaim = nr_to_reclaim,
4598 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4599 		.reclaim_idx = MAX_NR_ZONES - 1,
4600 		.priority = DEF_PRIORITY,
4601 		.may_writepage = 1,
4602 		.may_unmap = 1,
4603 		.may_swap = 1,
4604 		.hibernation_mode = 1,
4605 	};
4606 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4607 	unsigned long nr_reclaimed;
4608 	unsigned int noreclaim_flag;
4609 
4610 	fs_reclaim_acquire(sc.gfp_mask);
4611 	noreclaim_flag = memalloc_noreclaim_save();
4612 	set_task_reclaim_state(current, &sc.reclaim_state);
4613 
4614 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4615 
4616 	set_task_reclaim_state(current, NULL);
4617 	memalloc_noreclaim_restore(noreclaim_flag);
4618 	fs_reclaim_release(sc.gfp_mask);
4619 
4620 	return nr_reclaimed;
4621 }
4622 #endif /* CONFIG_HIBERNATION */
4623 
4624 /*
4625  * This kswapd start function will be called by init and node-hot-add.
4626  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4627  */
4628 void kswapd_run(int nid)
4629 {
4630 	pg_data_t *pgdat = NODE_DATA(nid);
4631 
4632 	if (pgdat->kswapd)
4633 		return;
4634 
4635 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4636 	if (IS_ERR(pgdat->kswapd)) {
4637 		/* failure at boot is fatal */
4638 		BUG_ON(system_state < SYSTEM_RUNNING);
4639 		pr_err("Failed to start kswapd on node %d\n", nid);
4640 		pgdat->kswapd = NULL;
4641 	}
4642 }
4643 
4644 /*
4645  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4646  * hold mem_hotplug_begin/end().
4647  */
4648 void kswapd_stop(int nid)
4649 {
4650 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4651 
4652 	if (kswapd) {
4653 		kthread_stop(kswapd);
4654 		NODE_DATA(nid)->kswapd = NULL;
4655 	}
4656 }
4657 
4658 static int __init kswapd_init(void)
4659 {
4660 	int nid;
4661 
4662 	swap_setup();
4663 	for_each_node_state(nid, N_MEMORY)
4664  		kswapd_run(nid);
4665 	return 0;
4666 }
4667 
4668 module_init(kswapd_init)
4669 
4670 #ifdef CONFIG_NUMA
4671 /*
4672  * Node reclaim mode
4673  *
4674  * If non-zero call node_reclaim when the number of free pages falls below
4675  * the watermarks.
4676  */
4677 int node_reclaim_mode __read_mostly;
4678 
4679 /*
4680  * Priority for NODE_RECLAIM. This determines the fraction of pages
4681  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4682  * a zone.
4683  */
4684 #define NODE_RECLAIM_PRIORITY 4
4685 
4686 /*
4687  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4688  * occur.
4689  */
4690 int sysctl_min_unmapped_ratio = 1;
4691 
4692 /*
4693  * If the number of slab pages in a zone grows beyond this percentage then
4694  * slab reclaim needs to occur.
4695  */
4696 int sysctl_min_slab_ratio = 5;
4697 
4698 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4699 {
4700 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4701 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4702 		node_page_state(pgdat, NR_ACTIVE_FILE);
4703 
4704 	/*
4705 	 * It's possible for there to be more file mapped pages than
4706 	 * accounted for by the pages on the file LRU lists because
4707 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4708 	 */
4709 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4710 }
4711 
4712 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4713 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4714 {
4715 	unsigned long nr_pagecache_reclaimable;
4716 	unsigned long delta = 0;
4717 
4718 	/*
4719 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4720 	 * potentially reclaimable. Otherwise, we have to worry about
4721 	 * pages like swapcache and node_unmapped_file_pages() provides
4722 	 * a better estimate
4723 	 */
4724 	if (node_reclaim_mode & RECLAIM_UNMAP)
4725 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4726 	else
4727 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4728 
4729 	/* If we can't clean pages, remove dirty pages from consideration */
4730 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4731 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4732 
4733 	/* Watch for any possible underflows due to delta */
4734 	if (unlikely(delta > nr_pagecache_reclaimable))
4735 		delta = nr_pagecache_reclaimable;
4736 
4737 	return nr_pagecache_reclaimable - delta;
4738 }
4739 
4740 /*
4741  * Try to free up some pages from this node through reclaim.
4742  */
4743 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4744 {
4745 	/* Minimum pages needed in order to stay on node */
4746 	const unsigned long nr_pages = 1 << order;
4747 	struct task_struct *p = current;
4748 	unsigned int noreclaim_flag;
4749 	struct scan_control sc = {
4750 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4751 		.gfp_mask = current_gfp_context(gfp_mask),
4752 		.order = order,
4753 		.priority = NODE_RECLAIM_PRIORITY,
4754 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4755 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4756 		.may_swap = 1,
4757 		.reclaim_idx = gfp_zone(gfp_mask),
4758 	};
4759 	unsigned long pflags;
4760 
4761 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4762 					   sc.gfp_mask);
4763 
4764 	cond_resched();
4765 	psi_memstall_enter(&pflags);
4766 	fs_reclaim_acquire(sc.gfp_mask);
4767 	/*
4768 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4769 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4770 	 * and RECLAIM_UNMAP.
4771 	 */
4772 	noreclaim_flag = memalloc_noreclaim_save();
4773 	p->flags |= PF_SWAPWRITE;
4774 	set_task_reclaim_state(p, &sc.reclaim_state);
4775 
4776 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4777 		/*
4778 		 * Free memory by calling shrink node with increasing
4779 		 * priorities until we have enough memory freed.
4780 		 */
4781 		do {
4782 			shrink_node(pgdat, &sc);
4783 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4784 	}
4785 
4786 	set_task_reclaim_state(p, NULL);
4787 	current->flags &= ~PF_SWAPWRITE;
4788 	memalloc_noreclaim_restore(noreclaim_flag);
4789 	fs_reclaim_release(sc.gfp_mask);
4790 	psi_memstall_leave(&pflags);
4791 
4792 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4793 
4794 	return sc.nr_reclaimed >= nr_pages;
4795 }
4796 
4797 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4798 {
4799 	int ret;
4800 
4801 	/*
4802 	 * Node reclaim reclaims unmapped file backed pages and
4803 	 * slab pages if we are over the defined limits.
4804 	 *
4805 	 * A small portion of unmapped file backed pages is needed for
4806 	 * file I/O otherwise pages read by file I/O will be immediately
4807 	 * thrown out if the node is overallocated. So we do not reclaim
4808 	 * if less than a specified percentage of the node is used by
4809 	 * unmapped file backed pages.
4810 	 */
4811 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4812 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4813 	    pgdat->min_slab_pages)
4814 		return NODE_RECLAIM_FULL;
4815 
4816 	/*
4817 	 * Do not scan if the allocation should not be delayed.
4818 	 */
4819 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4820 		return NODE_RECLAIM_NOSCAN;
4821 
4822 	/*
4823 	 * Only run node reclaim on the local node or on nodes that do not
4824 	 * have associated processors. This will favor the local processor
4825 	 * over remote processors and spread off node memory allocations
4826 	 * as wide as possible.
4827 	 */
4828 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4829 		return NODE_RECLAIM_NOSCAN;
4830 
4831 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4832 		return NODE_RECLAIM_NOSCAN;
4833 
4834 	ret = __node_reclaim(pgdat, gfp_mask, order);
4835 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4836 
4837 	if (!ret)
4838 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4839 
4840 	return ret;
4841 }
4842 #endif
4843 
4844 /**
4845  * check_move_unevictable_pages - check pages for evictability and move to
4846  * appropriate zone lru list
4847  * @pvec: pagevec with lru pages to check
4848  *
4849  * Checks pages for evictability, if an evictable page is in the unevictable
4850  * lru list, moves it to the appropriate evictable lru list. This function
4851  * should be only used for lru pages.
4852  */
4853 void check_move_unevictable_pages(struct pagevec *pvec)
4854 {
4855 	struct lruvec *lruvec = NULL;
4856 	int pgscanned = 0;
4857 	int pgrescued = 0;
4858 	int i;
4859 
4860 	for (i = 0; i < pvec->nr; i++) {
4861 		struct page *page = pvec->pages[i];
4862 		struct folio *folio = page_folio(page);
4863 		int nr_pages;
4864 
4865 		if (PageTransTail(page))
4866 			continue;
4867 
4868 		nr_pages = thp_nr_pages(page);
4869 		pgscanned += nr_pages;
4870 
4871 		/* block memcg migration during page moving between lru */
4872 		if (!TestClearPageLRU(page))
4873 			continue;
4874 
4875 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4876 		if (page_evictable(page) && PageUnevictable(page)) {
4877 			del_page_from_lru_list(page, lruvec);
4878 			ClearPageUnevictable(page);
4879 			add_page_to_lru_list(page, lruvec);
4880 			pgrescued += nr_pages;
4881 		}
4882 		SetPageLRU(page);
4883 	}
4884 
4885 	if (lruvec) {
4886 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4887 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4888 		unlock_page_lruvec_irq(lruvec);
4889 	} else if (pgscanned) {
4890 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4891 	}
4892 }
4893 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4894