1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* 83 * Scan pressure balancing between anon and file LRUs 84 */ 85 unsigned long anon_cost; 86 unsigned long file_cost; 87 88 /* Can active pages be deactivated as part of reclaim? */ 89 #define DEACTIVATE_ANON 1 90 #define DEACTIVATE_FILE 2 91 unsigned int may_deactivate:2; 92 unsigned int force_deactivate:1; 93 unsigned int skipped_deactivate:1; 94 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 96 unsigned int may_writepage:1; 97 98 /* Can mapped pages be reclaimed? */ 99 unsigned int may_unmap:1; 100 101 /* Can pages be swapped as part of reclaim? */ 102 unsigned int may_swap:1; 103 104 /* 105 * Cgroups are not reclaimed below their configured memory.low, 106 * unless we threaten to OOM. If any cgroups are skipped due to 107 * memory.low and nothing was reclaimed, go back for memory.low. 108 */ 109 unsigned int memcg_low_reclaim:1; 110 unsigned int memcg_low_skipped:1; 111 112 unsigned int hibernation_mode:1; 113 114 /* One of the zones is ready for compaction */ 115 unsigned int compaction_ready:1; 116 117 /* There is easily reclaimable cold cache in the current node */ 118 unsigned int cache_trim_mode:1; 119 120 /* The file pages on the current node are dangerously low */ 121 unsigned int file_is_tiny:1; 122 123 /* Allocation order */ 124 s8 order; 125 126 /* Scan (total_size >> priority) pages at once */ 127 s8 priority; 128 129 /* The highest zone to isolate pages for reclaim from */ 130 s8 reclaim_idx; 131 132 /* This context's GFP mask */ 133 gfp_t gfp_mask; 134 135 /* Incremented by the number of inactive pages that were scanned */ 136 unsigned long nr_scanned; 137 138 /* Number of pages freed so far during a call to shrink_zones() */ 139 unsigned long nr_reclaimed; 140 141 struct { 142 unsigned int dirty; 143 unsigned int unqueued_dirty; 144 unsigned int congested; 145 unsigned int writeback; 146 unsigned int immediate; 147 unsigned int file_taken; 148 unsigned int taken; 149 } nr; 150 151 /* for recording the reclaimed slab by now */ 152 struct reclaim_state reclaim_state; 153 }; 154 155 #ifdef ARCH_HAS_PREFETCHW 156 #define prefetchw_prev_lru_page(_page, _base, _field) \ 157 do { \ 158 if ((_page)->lru.prev != _base) { \ 159 struct page *prev; \ 160 \ 161 prev = lru_to_page(&(_page->lru)); \ 162 prefetchw(&prev->_field); \ 163 } \ 164 } while (0) 165 #else 166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 167 #endif 168 169 /* 170 * From 0 .. 200. Higher means more swappy. 171 */ 172 int vm_swappiness = 60; 173 174 static void set_task_reclaim_state(struct task_struct *task, 175 struct reclaim_state *rs) 176 { 177 /* Check for an overwrite */ 178 WARN_ON_ONCE(rs && task->reclaim_state); 179 180 /* Check for the nulling of an already-nulled member */ 181 WARN_ON_ONCE(!rs && !task->reclaim_state); 182 183 task->reclaim_state = rs; 184 } 185 186 static LIST_HEAD(shrinker_list); 187 static DECLARE_RWSEM(shrinker_rwsem); 188 189 #ifdef CONFIG_MEMCG 190 /* 191 * We allow subsystems to populate their shrinker-related 192 * LRU lists before register_shrinker_prepared() is called 193 * for the shrinker, since we don't want to impose 194 * restrictions on their internal registration order. 195 * In this case shrink_slab_memcg() may find corresponding 196 * bit is set in the shrinkers map. 197 * 198 * This value is used by the function to detect registering 199 * shrinkers and to skip do_shrink_slab() calls for them. 200 */ 201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 202 203 static DEFINE_IDR(shrinker_idr); 204 static int shrinker_nr_max; 205 206 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 207 { 208 int id, ret = -ENOMEM; 209 210 down_write(&shrinker_rwsem); 211 /* This may call shrinker, so it must use down_read_trylock() */ 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 213 if (id < 0) 214 goto unlock; 215 216 if (id >= shrinker_nr_max) { 217 if (memcg_expand_shrinker_maps(id)) { 218 idr_remove(&shrinker_idr, id); 219 goto unlock; 220 } 221 222 shrinker_nr_max = id + 1; 223 } 224 shrinker->id = id; 225 ret = 0; 226 unlock: 227 up_write(&shrinker_rwsem); 228 return ret; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 int id = shrinker->id; 234 235 BUG_ON(id < 0); 236 237 down_write(&shrinker_rwsem); 238 idr_remove(&shrinker_idr, id); 239 up_write(&shrinker_rwsem); 240 } 241 242 static bool cgroup_reclaim(struct scan_control *sc) 243 { 244 return sc->target_mem_cgroup; 245 } 246 247 /** 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool writeback_throttling_sane(struct scan_control *sc) 261 { 262 if (!cgroup_reclaim(sc)) 263 return true; 264 #ifdef CONFIG_CGROUP_WRITEBACK 265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 266 return true; 267 #endif 268 return false; 269 } 270 #else 271 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 272 { 273 return 0; 274 } 275 276 static void unregister_memcg_shrinker(struct shrinker *shrinker) 277 { 278 } 279 280 static bool cgroup_reclaim(struct scan_control *sc) 281 { 282 return false; 283 } 284 285 static bool writeback_throttling_sane(struct scan_control *sc) 286 { 287 return true; 288 } 289 #endif 290 291 /* 292 * This misses isolated pages which are not accounted for to save counters. 293 * As the data only determines if reclaim or compaction continues, it is 294 * not expected that isolated pages will be a dominating factor. 295 */ 296 unsigned long zone_reclaimable_pages(struct zone *zone) 297 { 298 unsigned long nr; 299 300 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 301 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 302 if (get_nr_swap_pages() > 0) 303 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 304 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 305 306 return nr; 307 } 308 309 /** 310 * lruvec_lru_size - Returns the number of pages on the given LRU list. 311 * @lruvec: lru vector 312 * @lru: lru to use 313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 314 */ 315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 316 { 317 unsigned long size = 0; 318 int zid; 319 320 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 321 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 322 323 if (!managed_zone(zone)) 324 continue; 325 326 if (!mem_cgroup_disabled()) 327 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 328 else 329 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 330 } 331 return size; 332 } 333 334 /* 335 * Add a shrinker callback to be called from the vm. 336 */ 337 int prealloc_shrinker(struct shrinker *shrinker) 338 { 339 unsigned int size = sizeof(*shrinker->nr_deferred); 340 341 if (shrinker->flags & SHRINKER_NUMA_AWARE) 342 size *= nr_node_ids; 343 344 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 345 if (!shrinker->nr_deferred) 346 return -ENOMEM; 347 348 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 349 if (prealloc_memcg_shrinker(shrinker)) 350 goto free_deferred; 351 } 352 353 return 0; 354 355 free_deferred: 356 kfree(shrinker->nr_deferred); 357 shrinker->nr_deferred = NULL; 358 return -ENOMEM; 359 } 360 361 void free_prealloced_shrinker(struct shrinker *shrinker) 362 { 363 if (!shrinker->nr_deferred) 364 return; 365 366 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 367 unregister_memcg_shrinker(shrinker); 368 369 kfree(shrinker->nr_deferred); 370 shrinker->nr_deferred = NULL; 371 } 372 373 void register_shrinker_prepared(struct shrinker *shrinker) 374 { 375 down_write(&shrinker_rwsem); 376 list_add_tail(&shrinker->list, &shrinker_list); 377 #ifdef CONFIG_MEMCG 378 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 379 idr_replace(&shrinker_idr, shrinker, shrinker->id); 380 #endif 381 up_write(&shrinker_rwsem); 382 } 383 384 int register_shrinker(struct shrinker *shrinker) 385 { 386 int err = prealloc_shrinker(shrinker); 387 388 if (err) 389 return err; 390 register_shrinker_prepared(shrinker); 391 return 0; 392 } 393 EXPORT_SYMBOL(register_shrinker); 394 395 /* 396 * Remove one 397 */ 398 void unregister_shrinker(struct shrinker *shrinker) 399 { 400 if (!shrinker->nr_deferred) 401 return; 402 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 403 unregister_memcg_shrinker(shrinker); 404 down_write(&shrinker_rwsem); 405 list_del(&shrinker->list); 406 up_write(&shrinker_rwsem); 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 EXPORT_SYMBOL(unregister_shrinker); 411 412 #define SHRINK_BATCH 128 413 414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 415 struct shrinker *shrinker, int priority) 416 { 417 unsigned long freed = 0; 418 unsigned long long delta; 419 long total_scan; 420 long freeable; 421 long nr; 422 long new_nr; 423 int nid = shrinkctl->nid; 424 long batch_size = shrinker->batch ? shrinker->batch 425 : SHRINK_BATCH; 426 long scanned = 0, next_deferred; 427 428 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 429 nid = 0; 430 431 freeable = shrinker->count_objects(shrinker, shrinkctl); 432 if (freeable == 0 || freeable == SHRINK_EMPTY) 433 return freeable; 434 435 /* 436 * copy the current shrinker scan count into a local variable 437 * and zero it so that other concurrent shrinker invocations 438 * don't also do this scanning work. 439 */ 440 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 441 442 total_scan = nr; 443 if (shrinker->seeks) { 444 delta = freeable >> priority; 445 delta *= 4; 446 do_div(delta, shrinker->seeks); 447 } else { 448 /* 449 * These objects don't require any IO to create. Trim 450 * them aggressively under memory pressure to keep 451 * them from causing refetches in the IO caches. 452 */ 453 delta = freeable / 2; 454 } 455 456 total_scan += delta; 457 if (total_scan < 0) { 458 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 459 shrinker->scan_objects, total_scan); 460 total_scan = freeable; 461 next_deferred = nr; 462 } else 463 next_deferred = total_scan; 464 465 /* 466 * We need to avoid excessive windup on filesystem shrinkers 467 * due to large numbers of GFP_NOFS allocations causing the 468 * shrinkers to return -1 all the time. This results in a large 469 * nr being built up so when a shrink that can do some work 470 * comes along it empties the entire cache due to nr >>> 471 * freeable. This is bad for sustaining a working set in 472 * memory. 473 * 474 * Hence only allow the shrinker to scan the entire cache when 475 * a large delta change is calculated directly. 476 */ 477 if (delta < freeable / 4) 478 total_scan = min(total_scan, freeable / 2); 479 480 /* 481 * Avoid risking looping forever due to too large nr value: 482 * never try to free more than twice the estimate number of 483 * freeable entries. 484 */ 485 if (total_scan > freeable * 2) 486 total_scan = freeable * 2; 487 488 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 489 freeable, delta, total_scan, priority); 490 491 /* 492 * Normally, we should not scan less than batch_size objects in one 493 * pass to avoid too frequent shrinker calls, but if the slab has less 494 * than batch_size objects in total and we are really tight on memory, 495 * we will try to reclaim all available objects, otherwise we can end 496 * up failing allocations although there are plenty of reclaimable 497 * objects spread over several slabs with usage less than the 498 * batch_size. 499 * 500 * We detect the "tight on memory" situations by looking at the total 501 * number of objects we want to scan (total_scan). If it is greater 502 * than the total number of objects on slab (freeable), we must be 503 * scanning at high prio and therefore should try to reclaim as much as 504 * possible. 505 */ 506 while (total_scan >= batch_size || 507 total_scan >= freeable) { 508 unsigned long ret; 509 unsigned long nr_to_scan = min(batch_size, total_scan); 510 511 shrinkctl->nr_to_scan = nr_to_scan; 512 shrinkctl->nr_scanned = nr_to_scan; 513 ret = shrinker->scan_objects(shrinker, shrinkctl); 514 if (ret == SHRINK_STOP) 515 break; 516 freed += ret; 517 518 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 519 total_scan -= shrinkctl->nr_scanned; 520 scanned += shrinkctl->nr_scanned; 521 522 cond_resched(); 523 } 524 525 if (next_deferred >= scanned) 526 next_deferred -= scanned; 527 else 528 next_deferred = 0; 529 /* 530 * move the unused scan count back into the shrinker in a 531 * manner that handles concurrent updates. If we exhausted the 532 * scan, there is no need to do an update. 533 */ 534 if (next_deferred > 0) 535 new_nr = atomic_long_add_return(next_deferred, 536 &shrinker->nr_deferred[nid]); 537 else 538 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 539 540 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 541 return freed; 542 } 543 544 #ifdef CONFIG_MEMCG 545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 546 struct mem_cgroup *memcg, int priority) 547 { 548 struct memcg_shrinker_map *map; 549 unsigned long ret, freed = 0; 550 int i; 551 552 if (!mem_cgroup_online(memcg)) 553 return 0; 554 555 if (!down_read_trylock(&shrinker_rwsem)) 556 return 0; 557 558 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 559 true); 560 if (unlikely(!map)) 561 goto unlock; 562 563 for_each_set_bit(i, map->map, shrinker_nr_max) { 564 struct shrink_control sc = { 565 .gfp_mask = gfp_mask, 566 .nid = nid, 567 .memcg = memcg, 568 }; 569 struct shrinker *shrinker; 570 571 shrinker = idr_find(&shrinker_idr, i); 572 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 573 if (!shrinker) 574 clear_bit(i, map->map); 575 continue; 576 } 577 578 /* Call non-slab shrinkers even though kmem is disabled */ 579 if (!memcg_kmem_enabled() && 580 !(shrinker->flags & SHRINKER_NONSLAB)) 581 continue; 582 583 ret = do_shrink_slab(&sc, shrinker, priority); 584 if (ret == SHRINK_EMPTY) { 585 clear_bit(i, map->map); 586 /* 587 * After the shrinker reported that it had no objects to 588 * free, but before we cleared the corresponding bit in 589 * the memcg shrinker map, a new object might have been 590 * added. To make sure, we have the bit set in this 591 * case, we invoke the shrinker one more time and reset 592 * the bit if it reports that it is not empty anymore. 593 * The memory barrier here pairs with the barrier in 594 * memcg_set_shrinker_bit(): 595 * 596 * list_lru_add() shrink_slab_memcg() 597 * list_add_tail() clear_bit() 598 * <MB> <MB> 599 * set_bit() do_shrink_slab() 600 */ 601 smp_mb__after_atomic(); 602 ret = do_shrink_slab(&sc, shrinker, priority); 603 if (ret == SHRINK_EMPTY) 604 ret = 0; 605 else 606 memcg_set_shrinker_bit(memcg, nid, i); 607 } 608 freed += ret; 609 610 if (rwsem_is_contended(&shrinker_rwsem)) { 611 freed = freed ? : 1; 612 break; 613 } 614 } 615 unlock: 616 up_read(&shrinker_rwsem); 617 return freed; 618 } 619 #else /* CONFIG_MEMCG */ 620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 621 struct mem_cgroup *memcg, int priority) 622 { 623 return 0; 624 } 625 #endif /* CONFIG_MEMCG */ 626 627 /** 628 * shrink_slab - shrink slab caches 629 * @gfp_mask: allocation context 630 * @nid: node whose slab caches to target 631 * @memcg: memory cgroup whose slab caches to target 632 * @priority: the reclaim priority 633 * 634 * Call the shrink functions to age shrinkable caches. 635 * 636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 637 * unaware shrinkers will receive a node id of 0 instead. 638 * 639 * @memcg specifies the memory cgroup to target. Unaware shrinkers 640 * are called only if it is the root cgroup. 641 * 642 * @priority is sc->priority, we take the number of objects and >> by priority 643 * in order to get the scan target. 644 * 645 * Returns the number of reclaimed slab objects. 646 */ 647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 648 struct mem_cgroup *memcg, 649 int priority) 650 { 651 unsigned long ret, freed = 0; 652 struct shrinker *shrinker; 653 654 /* 655 * The root memcg might be allocated even though memcg is disabled 656 * via "cgroup_disable=memory" boot parameter. This could make 657 * mem_cgroup_is_root() return false, then just run memcg slab 658 * shrink, but skip global shrink. This may result in premature 659 * oom. 660 */ 661 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 662 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 663 664 if (!down_read_trylock(&shrinker_rwsem)) 665 goto out; 666 667 list_for_each_entry(shrinker, &shrinker_list, list) { 668 struct shrink_control sc = { 669 .gfp_mask = gfp_mask, 670 .nid = nid, 671 .memcg = memcg, 672 }; 673 674 ret = do_shrink_slab(&sc, shrinker, priority); 675 if (ret == SHRINK_EMPTY) 676 ret = 0; 677 freed += ret; 678 /* 679 * Bail out if someone want to register a new shrinker to 680 * prevent the registration from being stalled for long periods 681 * by parallel ongoing shrinking. 682 */ 683 if (rwsem_is_contended(&shrinker_rwsem)) { 684 freed = freed ? : 1; 685 break; 686 } 687 } 688 689 up_read(&shrinker_rwsem); 690 out: 691 cond_resched(); 692 return freed; 693 } 694 695 void drop_slab_node(int nid) 696 { 697 unsigned long freed; 698 699 do { 700 struct mem_cgroup *memcg = NULL; 701 702 freed = 0; 703 memcg = mem_cgroup_iter(NULL, NULL, NULL); 704 do { 705 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 706 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 707 } while (freed > 10); 708 } 709 710 void drop_slab(void) 711 { 712 int nid; 713 714 for_each_online_node(nid) 715 drop_slab_node(nid); 716 } 717 718 static inline int is_page_cache_freeable(struct page *page) 719 { 720 /* 721 * A freeable page cache page is referenced only by the caller 722 * that isolated the page, the page cache and optional buffer 723 * heads at page->private. 724 */ 725 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 726 HPAGE_PMD_NR : 1; 727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 728 } 729 730 static int may_write_to_inode(struct inode *inode) 731 { 732 if (current->flags & PF_SWAPWRITE) 733 return 1; 734 if (!inode_write_congested(inode)) 735 return 1; 736 if (inode_to_bdi(inode) == current->backing_dev_info) 737 return 1; 738 return 0; 739 } 740 741 /* 742 * We detected a synchronous write error writing a page out. Probably 743 * -ENOSPC. We need to propagate that into the address_space for a subsequent 744 * fsync(), msync() or close(). 745 * 746 * The tricky part is that after writepage we cannot touch the mapping: nothing 747 * prevents it from being freed up. But we have a ref on the page and once 748 * that page is locked, the mapping is pinned. 749 * 750 * We're allowed to run sleeping lock_page() here because we know the caller has 751 * __GFP_FS. 752 */ 753 static void handle_write_error(struct address_space *mapping, 754 struct page *page, int error) 755 { 756 lock_page(page); 757 if (page_mapping(page) == mapping) 758 mapping_set_error(mapping, error); 759 unlock_page(page); 760 } 761 762 /* possible outcome of pageout() */ 763 typedef enum { 764 /* failed to write page out, page is locked */ 765 PAGE_KEEP, 766 /* move page to the active list, page is locked */ 767 PAGE_ACTIVATE, 768 /* page has been sent to the disk successfully, page is unlocked */ 769 PAGE_SUCCESS, 770 /* page is clean and locked */ 771 PAGE_CLEAN, 772 } pageout_t; 773 774 /* 775 * pageout is called by shrink_page_list() for each dirty page. 776 * Calls ->writepage(). 777 */ 778 static pageout_t pageout(struct page *page, struct address_space *mapping) 779 { 780 /* 781 * If the page is dirty, only perform writeback if that write 782 * will be non-blocking. To prevent this allocation from being 783 * stalled by pagecache activity. But note that there may be 784 * stalls if we need to run get_block(). We could test 785 * PagePrivate for that. 786 * 787 * If this process is currently in __generic_file_write_iter() against 788 * this page's queue, we can perform writeback even if that 789 * will block. 790 * 791 * If the page is swapcache, write it back even if that would 792 * block, for some throttling. This happens by accident, because 793 * swap_backing_dev_info is bust: it doesn't reflect the 794 * congestion state of the swapdevs. Easy to fix, if needed. 795 */ 796 if (!is_page_cache_freeable(page)) 797 return PAGE_KEEP; 798 if (!mapping) { 799 /* 800 * Some data journaling orphaned pages can have 801 * page->mapping == NULL while being dirty with clean buffers. 802 */ 803 if (page_has_private(page)) { 804 if (try_to_free_buffers(page)) { 805 ClearPageDirty(page); 806 pr_info("%s: orphaned page\n", __func__); 807 return PAGE_CLEAN; 808 } 809 } 810 return PAGE_KEEP; 811 } 812 if (mapping->a_ops->writepage == NULL) 813 return PAGE_ACTIVATE; 814 if (!may_write_to_inode(mapping->host)) 815 return PAGE_KEEP; 816 817 if (clear_page_dirty_for_io(page)) { 818 int res; 819 struct writeback_control wbc = { 820 .sync_mode = WB_SYNC_NONE, 821 .nr_to_write = SWAP_CLUSTER_MAX, 822 .range_start = 0, 823 .range_end = LLONG_MAX, 824 .for_reclaim = 1, 825 }; 826 827 SetPageReclaim(page); 828 res = mapping->a_ops->writepage(page, &wbc); 829 if (res < 0) 830 handle_write_error(mapping, page, res); 831 if (res == AOP_WRITEPAGE_ACTIVATE) { 832 ClearPageReclaim(page); 833 return PAGE_ACTIVATE; 834 } 835 836 if (!PageWriteback(page)) { 837 /* synchronous write or broken a_ops? */ 838 ClearPageReclaim(page); 839 } 840 trace_mm_vmscan_writepage(page); 841 inc_node_page_state(page, NR_VMSCAN_WRITE); 842 return PAGE_SUCCESS; 843 } 844 845 return PAGE_CLEAN; 846 } 847 848 /* 849 * Same as remove_mapping, but if the page is removed from the mapping, it 850 * gets returned with a refcount of 0. 851 */ 852 static int __remove_mapping(struct address_space *mapping, struct page *page, 853 bool reclaimed, struct mem_cgroup *target_memcg) 854 { 855 unsigned long flags; 856 int refcount; 857 void *shadow = NULL; 858 859 BUG_ON(!PageLocked(page)); 860 BUG_ON(mapping != page_mapping(page)); 861 862 xa_lock_irqsave(&mapping->i_pages, flags); 863 /* 864 * The non racy check for a busy page. 865 * 866 * Must be careful with the order of the tests. When someone has 867 * a ref to the page, it may be possible that they dirty it then 868 * drop the reference. So if PageDirty is tested before page_count 869 * here, then the following race may occur: 870 * 871 * get_user_pages(&page); 872 * [user mapping goes away] 873 * write_to(page); 874 * !PageDirty(page) [good] 875 * SetPageDirty(page); 876 * put_page(page); 877 * !page_count(page) [good, discard it] 878 * 879 * [oops, our write_to data is lost] 880 * 881 * Reversing the order of the tests ensures such a situation cannot 882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 883 * load is not satisfied before that of page->_refcount. 884 * 885 * Note that if SetPageDirty is always performed via set_page_dirty, 886 * and thus under the i_pages lock, then this ordering is not required. 887 */ 888 refcount = 1 + compound_nr(page); 889 if (!page_ref_freeze(page, refcount)) 890 goto cannot_free; 891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 892 if (unlikely(PageDirty(page))) { 893 page_ref_unfreeze(page, refcount); 894 goto cannot_free; 895 } 896 897 if (PageSwapCache(page)) { 898 swp_entry_t swap = { .val = page_private(page) }; 899 mem_cgroup_swapout(page, swap); 900 if (reclaimed && !mapping_exiting(mapping)) 901 shadow = workingset_eviction(page, target_memcg); 902 __delete_from_swap_cache(page, swap, shadow); 903 xa_unlock_irqrestore(&mapping->i_pages, flags); 904 put_swap_page(page, swap); 905 } else { 906 void (*freepage)(struct page *); 907 908 freepage = mapping->a_ops->freepage; 909 /* 910 * Remember a shadow entry for reclaimed file cache in 911 * order to detect refaults, thus thrashing, later on. 912 * 913 * But don't store shadows in an address space that is 914 * already exiting. This is not just an optimization, 915 * inode reclaim needs to empty out the radix tree or 916 * the nodes are lost. Don't plant shadows behind its 917 * back. 918 * 919 * We also don't store shadows for DAX mappings because the 920 * only page cache pages found in these are zero pages 921 * covering holes, and because we don't want to mix DAX 922 * exceptional entries and shadow exceptional entries in the 923 * same address_space. 924 */ 925 if (reclaimed && page_is_file_lru(page) && 926 !mapping_exiting(mapping) && !dax_mapping(mapping)) 927 shadow = workingset_eviction(page, target_memcg); 928 __delete_from_page_cache(page, shadow); 929 xa_unlock_irqrestore(&mapping->i_pages, flags); 930 931 if (freepage != NULL) 932 freepage(page); 933 } 934 935 return 1; 936 937 cannot_free: 938 xa_unlock_irqrestore(&mapping->i_pages, flags); 939 return 0; 940 } 941 942 /* 943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 944 * someone else has a ref on the page, abort and return 0. If it was 945 * successfully detached, return 1. Assumes the caller has a single ref on 946 * this page. 947 */ 948 int remove_mapping(struct address_space *mapping, struct page *page) 949 { 950 if (__remove_mapping(mapping, page, false, NULL)) { 951 /* 952 * Unfreezing the refcount with 1 rather than 2 effectively 953 * drops the pagecache ref for us without requiring another 954 * atomic operation. 955 */ 956 page_ref_unfreeze(page, 1); 957 return 1; 958 } 959 return 0; 960 } 961 962 /** 963 * putback_lru_page - put previously isolated page onto appropriate LRU list 964 * @page: page to be put back to appropriate lru list 965 * 966 * Add previously isolated @page to appropriate LRU list. 967 * Page may still be unevictable for other reasons. 968 * 969 * lru_lock must not be held, interrupts must be enabled. 970 */ 971 void putback_lru_page(struct page *page) 972 { 973 lru_cache_add(page); 974 put_page(page); /* drop ref from isolate */ 975 } 976 977 enum page_references { 978 PAGEREF_RECLAIM, 979 PAGEREF_RECLAIM_CLEAN, 980 PAGEREF_KEEP, 981 PAGEREF_ACTIVATE, 982 }; 983 984 static enum page_references page_check_references(struct page *page, 985 struct scan_control *sc) 986 { 987 int referenced_ptes, referenced_page; 988 unsigned long vm_flags; 989 990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 991 &vm_flags); 992 referenced_page = TestClearPageReferenced(page); 993 994 /* 995 * Mlock lost the isolation race with us. Let try_to_unmap() 996 * move the page to the unevictable list. 997 */ 998 if (vm_flags & VM_LOCKED) 999 return PAGEREF_RECLAIM; 1000 1001 if (referenced_ptes) { 1002 /* 1003 * All mapped pages start out with page table 1004 * references from the instantiating fault, so we need 1005 * to look twice if a mapped file page is used more 1006 * than once. 1007 * 1008 * Mark it and spare it for another trip around the 1009 * inactive list. Another page table reference will 1010 * lead to its activation. 1011 * 1012 * Note: the mark is set for activated pages as well 1013 * so that recently deactivated but used pages are 1014 * quickly recovered. 1015 */ 1016 SetPageReferenced(page); 1017 1018 if (referenced_page || referenced_ptes > 1) 1019 return PAGEREF_ACTIVATE; 1020 1021 /* 1022 * Activate file-backed executable pages after first usage. 1023 */ 1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1025 return PAGEREF_ACTIVATE; 1026 1027 return PAGEREF_KEEP; 1028 } 1029 1030 /* Reclaim if clean, defer dirty pages to writeback */ 1031 if (referenced_page && !PageSwapBacked(page)) 1032 return PAGEREF_RECLAIM_CLEAN; 1033 1034 return PAGEREF_RECLAIM; 1035 } 1036 1037 /* Check if a page is dirty or under writeback */ 1038 static void page_check_dirty_writeback(struct page *page, 1039 bool *dirty, bool *writeback) 1040 { 1041 struct address_space *mapping; 1042 1043 /* 1044 * Anonymous pages are not handled by flushers and must be written 1045 * from reclaim context. Do not stall reclaim based on them 1046 */ 1047 if (!page_is_file_lru(page) || 1048 (PageAnon(page) && !PageSwapBacked(page))) { 1049 *dirty = false; 1050 *writeback = false; 1051 return; 1052 } 1053 1054 /* By default assume that the page flags are accurate */ 1055 *dirty = PageDirty(page); 1056 *writeback = PageWriteback(page); 1057 1058 /* Verify dirty/writeback state if the filesystem supports it */ 1059 if (!page_has_private(page)) 1060 return; 1061 1062 mapping = page_mapping(page); 1063 if (mapping && mapping->a_ops->is_dirty_writeback) 1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1065 } 1066 1067 /* 1068 * shrink_page_list() returns the number of reclaimed pages 1069 */ 1070 static unsigned int shrink_page_list(struct list_head *page_list, 1071 struct pglist_data *pgdat, 1072 struct scan_control *sc, 1073 enum ttu_flags ttu_flags, 1074 struct reclaim_stat *stat, 1075 bool ignore_references) 1076 { 1077 LIST_HEAD(ret_pages); 1078 LIST_HEAD(free_pages); 1079 unsigned int nr_reclaimed = 0; 1080 unsigned int pgactivate = 0; 1081 1082 memset(stat, 0, sizeof(*stat)); 1083 cond_resched(); 1084 1085 while (!list_empty(page_list)) { 1086 struct address_space *mapping; 1087 struct page *page; 1088 enum page_references references = PAGEREF_RECLAIM; 1089 bool dirty, writeback, may_enter_fs; 1090 unsigned int nr_pages; 1091 1092 cond_resched(); 1093 1094 page = lru_to_page(page_list); 1095 list_del(&page->lru); 1096 1097 if (!trylock_page(page)) 1098 goto keep; 1099 1100 VM_BUG_ON_PAGE(PageActive(page), page); 1101 1102 nr_pages = compound_nr(page); 1103 1104 /* Account the number of base pages even though THP */ 1105 sc->nr_scanned += nr_pages; 1106 1107 if (unlikely(!page_evictable(page))) 1108 goto activate_locked; 1109 1110 if (!sc->may_unmap && page_mapped(page)) 1111 goto keep_locked; 1112 1113 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1114 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1115 1116 /* 1117 * The number of dirty pages determines if a node is marked 1118 * reclaim_congested which affects wait_iff_congested. kswapd 1119 * will stall and start writing pages if the tail of the LRU 1120 * is all dirty unqueued pages. 1121 */ 1122 page_check_dirty_writeback(page, &dirty, &writeback); 1123 if (dirty || writeback) 1124 stat->nr_dirty++; 1125 1126 if (dirty && !writeback) 1127 stat->nr_unqueued_dirty++; 1128 1129 /* 1130 * Treat this page as congested if the underlying BDI is or if 1131 * pages are cycling through the LRU so quickly that the 1132 * pages marked for immediate reclaim are making it to the 1133 * end of the LRU a second time. 1134 */ 1135 mapping = page_mapping(page); 1136 if (((dirty || writeback) && mapping && 1137 inode_write_congested(mapping->host)) || 1138 (writeback && PageReclaim(page))) 1139 stat->nr_congested++; 1140 1141 /* 1142 * If a page at the tail of the LRU is under writeback, there 1143 * are three cases to consider. 1144 * 1145 * 1) If reclaim is encountering an excessive number of pages 1146 * under writeback and this page is both under writeback and 1147 * PageReclaim then it indicates that pages are being queued 1148 * for IO but are being recycled through the LRU before the 1149 * IO can complete. Waiting on the page itself risks an 1150 * indefinite stall if it is impossible to writeback the 1151 * page due to IO error or disconnected storage so instead 1152 * note that the LRU is being scanned too quickly and the 1153 * caller can stall after page list has been processed. 1154 * 1155 * 2) Global or new memcg reclaim encounters a page that is 1156 * not marked for immediate reclaim, or the caller does not 1157 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1158 * not to fs). In this case mark the page for immediate 1159 * reclaim and continue scanning. 1160 * 1161 * Require may_enter_fs because we would wait on fs, which 1162 * may not have submitted IO yet. And the loop driver might 1163 * enter reclaim, and deadlock if it waits on a page for 1164 * which it is needed to do the write (loop masks off 1165 * __GFP_IO|__GFP_FS for this reason); but more thought 1166 * would probably show more reasons. 1167 * 1168 * 3) Legacy memcg encounters a page that is already marked 1169 * PageReclaim. memcg does not have any dirty pages 1170 * throttling so we could easily OOM just because too many 1171 * pages are in writeback and there is nothing else to 1172 * reclaim. Wait for the writeback to complete. 1173 * 1174 * In cases 1) and 2) we activate the pages to get them out of 1175 * the way while we continue scanning for clean pages on the 1176 * inactive list and refilling from the active list. The 1177 * observation here is that waiting for disk writes is more 1178 * expensive than potentially causing reloads down the line. 1179 * Since they're marked for immediate reclaim, they won't put 1180 * memory pressure on the cache working set any longer than it 1181 * takes to write them to disk. 1182 */ 1183 if (PageWriteback(page)) { 1184 /* Case 1 above */ 1185 if (current_is_kswapd() && 1186 PageReclaim(page) && 1187 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1188 stat->nr_immediate++; 1189 goto activate_locked; 1190 1191 /* Case 2 above */ 1192 } else if (writeback_throttling_sane(sc) || 1193 !PageReclaim(page) || !may_enter_fs) { 1194 /* 1195 * This is slightly racy - end_page_writeback() 1196 * might have just cleared PageReclaim, then 1197 * setting PageReclaim here end up interpreted 1198 * as PageReadahead - but that does not matter 1199 * enough to care. What we do want is for this 1200 * page to have PageReclaim set next time memcg 1201 * reclaim reaches the tests above, so it will 1202 * then wait_on_page_writeback() to avoid OOM; 1203 * and it's also appropriate in global reclaim. 1204 */ 1205 SetPageReclaim(page); 1206 stat->nr_writeback++; 1207 goto activate_locked; 1208 1209 /* Case 3 above */ 1210 } else { 1211 unlock_page(page); 1212 wait_on_page_writeback(page); 1213 /* then go back and try same page again */ 1214 list_add_tail(&page->lru, page_list); 1215 continue; 1216 } 1217 } 1218 1219 if (!ignore_references) 1220 references = page_check_references(page, sc); 1221 1222 switch (references) { 1223 case PAGEREF_ACTIVATE: 1224 goto activate_locked; 1225 case PAGEREF_KEEP: 1226 stat->nr_ref_keep += nr_pages; 1227 goto keep_locked; 1228 case PAGEREF_RECLAIM: 1229 case PAGEREF_RECLAIM_CLEAN: 1230 ; /* try to reclaim the page below */ 1231 } 1232 1233 /* 1234 * Anonymous process memory has backing store? 1235 * Try to allocate it some swap space here. 1236 * Lazyfree page could be freed directly 1237 */ 1238 if (PageAnon(page) && PageSwapBacked(page)) { 1239 if (!PageSwapCache(page)) { 1240 if (!(sc->gfp_mask & __GFP_IO)) 1241 goto keep_locked; 1242 if (PageTransHuge(page)) { 1243 /* cannot split THP, skip it */ 1244 if (!can_split_huge_page(page, NULL)) 1245 goto activate_locked; 1246 /* 1247 * Split pages without a PMD map right 1248 * away. Chances are some or all of the 1249 * tail pages can be freed without IO. 1250 */ 1251 if (!compound_mapcount(page) && 1252 split_huge_page_to_list(page, 1253 page_list)) 1254 goto activate_locked; 1255 } 1256 if (!add_to_swap(page)) { 1257 if (!PageTransHuge(page)) 1258 goto activate_locked_split; 1259 /* Fallback to swap normal pages */ 1260 if (split_huge_page_to_list(page, 1261 page_list)) 1262 goto activate_locked; 1263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1264 count_vm_event(THP_SWPOUT_FALLBACK); 1265 #endif 1266 if (!add_to_swap(page)) 1267 goto activate_locked_split; 1268 } 1269 1270 may_enter_fs = true; 1271 1272 /* Adding to swap updated mapping */ 1273 mapping = page_mapping(page); 1274 } 1275 } else if (unlikely(PageTransHuge(page))) { 1276 /* Split file THP */ 1277 if (split_huge_page_to_list(page, page_list)) 1278 goto keep_locked; 1279 } 1280 1281 /* 1282 * THP may get split above, need minus tail pages and update 1283 * nr_pages to avoid accounting tail pages twice. 1284 * 1285 * The tail pages that are added into swap cache successfully 1286 * reach here. 1287 */ 1288 if ((nr_pages > 1) && !PageTransHuge(page)) { 1289 sc->nr_scanned -= (nr_pages - 1); 1290 nr_pages = 1; 1291 } 1292 1293 /* 1294 * The page is mapped into the page tables of one or more 1295 * processes. Try to unmap it here. 1296 */ 1297 if (page_mapped(page)) { 1298 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1299 bool was_swapbacked = PageSwapBacked(page); 1300 1301 if (unlikely(PageTransHuge(page))) 1302 flags |= TTU_SPLIT_HUGE_PMD; 1303 1304 if (!try_to_unmap(page, flags)) { 1305 stat->nr_unmap_fail += nr_pages; 1306 if (!was_swapbacked && PageSwapBacked(page)) 1307 stat->nr_lazyfree_fail += nr_pages; 1308 goto activate_locked; 1309 } 1310 } 1311 1312 if (PageDirty(page)) { 1313 /* 1314 * Only kswapd can writeback filesystem pages 1315 * to avoid risk of stack overflow. But avoid 1316 * injecting inefficient single-page IO into 1317 * flusher writeback as much as possible: only 1318 * write pages when we've encountered many 1319 * dirty pages, and when we've already scanned 1320 * the rest of the LRU for clean pages and see 1321 * the same dirty pages again (PageReclaim). 1322 */ 1323 if (page_is_file_lru(page) && 1324 (!current_is_kswapd() || !PageReclaim(page) || 1325 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1326 /* 1327 * Immediately reclaim when written back. 1328 * Similar in principal to deactivate_page() 1329 * except we already have the page isolated 1330 * and know it's dirty 1331 */ 1332 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1333 SetPageReclaim(page); 1334 1335 goto activate_locked; 1336 } 1337 1338 if (references == PAGEREF_RECLAIM_CLEAN) 1339 goto keep_locked; 1340 if (!may_enter_fs) 1341 goto keep_locked; 1342 if (!sc->may_writepage) 1343 goto keep_locked; 1344 1345 /* 1346 * Page is dirty. Flush the TLB if a writable entry 1347 * potentially exists to avoid CPU writes after IO 1348 * starts and then write it out here. 1349 */ 1350 try_to_unmap_flush_dirty(); 1351 switch (pageout(page, mapping)) { 1352 case PAGE_KEEP: 1353 goto keep_locked; 1354 case PAGE_ACTIVATE: 1355 goto activate_locked; 1356 case PAGE_SUCCESS: 1357 stat->nr_pageout += thp_nr_pages(page); 1358 1359 if (PageWriteback(page)) 1360 goto keep; 1361 if (PageDirty(page)) 1362 goto keep; 1363 1364 /* 1365 * A synchronous write - probably a ramdisk. Go 1366 * ahead and try to reclaim the page. 1367 */ 1368 if (!trylock_page(page)) 1369 goto keep; 1370 if (PageDirty(page) || PageWriteback(page)) 1371 goto keep_locked; 1372 mapping = page_mapping(page); 1373 case PAGE_CLEAN: 1374 ; /* try to free the page below */ 1375 } 1376 } 1377 1378 /* 1379 * If the page has buffers, try to free the buffer mappings 1380 * associated with this page. If we succeed we try to free 1381 * the page as well. 1382 * 1383 * We do this even if the page is PageDirty(). 1384 * try_to_release_page() does not perform I/O, but it is 1385 * possible for a page to have PageDirty set, but it is actually 1386 * clean (all its buffers are clean). This happens if the 1387 * buffers were written out directly, with submit_bh(). ext3 1388 * will do this, as well as the blockdev mapping. 1389 * try_to_release_page() will discover that cleanness and will 1390 * drop the buffers and mark the page clean - it can be freed. 1391 * 1392 * Rarely, pages can have buffers and no ->mapping. These are 1393 * the pages which were not successfully invalidated in 1394 * truncate_complete_page(). We try to drop those buffers here 1395 * and if that worked, and the page is no longer mapped into 1396 * process address space (page_count == 1) it can be freed. 1397 * Otherwise, leave the page on the LRU so it is swappable. 1398 */ 1399 if (page_has_private(page)) { 1400 if (!try_to_release_page(page, sc->gfp_mask)) 1401 goto activate_locked; 1402 if (!mapping && page_count(page) == 1) { 1403 unlock_page(page); 1404 if (put_page_testzero(page)) 1405 goto free_it; 1406 else { 1407 /* 1408 * rare race with speculative reference. 1409 * the speculative reference will free 1410 * this page shortly, so we may 1411 * increment nr_reclaimed here (and 1412 * leave it off the LRU). 1413 */ 1414 nr_reclaimed++; 1415 continue; 1416 } 1417 } 1418 } 1419 1420 if (PageAnon(page) && !PageSwapBacked(page)) { 1421 /* follow __remove_mapping for reference */ 1422 if (!page_ref_freeze(page, 1)) 1423 goto keep_locked; 1424 if (PageDirty(page)) { 1425 page_ref_unfreeze(page, 1); 1426 goto keep_locked; 1427 } 1428 1429 count_vm_event(PGLAZYFREED); 1430 count_memcg_page_event(page, PGLAZYFREED); 1431 } else if (!mapping || !__remove_mapping(mapping, page, true, 1432 sc->target_mem_cgroup)) 1433 goto keep_locked; 1434 1435 unlock_page(page); 1436 free_it: 1437 /* 1438 * THP may get swapped out in a whole, need account 1439 * all base pages. 1440 */ 1441 nr_reclaimed += nr_pages; 1442 1443 /* 1444 * Is there need to periodically free_page_list? It would 1445 * appear not as the counts should be low 1446 */ 1447 if (unlikely(PageTransHuge(page))) 1448 destroy_compound_page(page); 1449 else 1450 list_add(&page->lru, &free_pages); 1451 continue; 1452 1453 activate_locked_split: 1454 /* 1455 * The tail pages that are failed to add into swap cache 1456 * reach here. Fixup nr_scanned and nr_pages. 1457 */ 1458 if (nr_pages > 1) { 1459 sc->nr_scanned -= (nr_pages - 1); 1460 nr_pages = 1; 1461 } 1462 activate_locked: 1463 /* Not a candidate for swapping, so reclaim swap space. */ 1464 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1465 PageMlocked(page))) 1466 try_to_free_swap(page); 1467 VM_BUG_ON_PAGE(PageActive(page), page); 1468 if (!PageMlocked(page)) { 1469 int type = page_is_file_lru(page); 1470 SetPageActive(page); 1471 stat->nr_activate[type] += nr_pages; 1472 count_memcg_page_event(page, PGACTIVATE); 1473 } 1474 keep_locked: 1475 unlock_page(page); 1476 keep: 1477 list_add(&page->lru, &ret_pages); 1478 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1479 } 1480 1481 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1482 1483 mem_cgroup_uncharge_list(&free_pages); 1484 try_to_unmap_flush(); 1485 free_unref_page_list(&free_pages); 1486 1487 list_splice(&ret_pages, page_list); 1488 count_vm_events(PGACTIVATE, pgactivate); 1489 1490 return nr_reclaimed; 1491 } 1492 1493 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1494 struct list_head *page_list) 1495 { 1496 struct scan_control sc = { 1497 .gfp_mask = GFP_KERNEL, 1498 .priority = DEF_PRIORITY, 1499 .may_unmap = 1, 1500 }; 1501 struct reclaim_stat stat; 1502 unsigned int nr_reclaimed; 1503 struct page *page, *next; 1504 LIST_HEAD(clean_pages); 1505 1506 list_for_each_entry_safe(page, next, page_list, lru) { 1507 if (page_is_file_lru(page) && !PageDirty(page) && 1508 !__PageMovable(page) && !PageUnevictable(page)) { 1509 ClearPageActive(page); 1510 list_move(&page->lru, &clean_pages); 1511 } 1512 } 1513 1514 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1515 TTU_IGNORE_ACCESS, &stat, true); 1516 list_splice(&clean_pages, page_list); 1517 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed); 1518 /* 1519 * Since lazyfree pages are isolated from file LRU from the beginning, 1520 * they will rotate back to anonymous LRU in the end if it failed to 1521 * discard so isolated count will be mismatched. 1522 * Compensate the isolated count for both LRU lists. 1523 */ 1524 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1525 stat.nr_lazyfree_fail); 1526 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1527 -stat.nr_lazyfree_fail); 1528 return nr_reclaimed; 1529 } 1530 1531 /* 1532 * Attempt to remove the specified page from its LRU. Only take this page 1533 * if it is of the appropriate PageActive status. Pages which are being 1534 * freed elsewhere are also ignored. 1535 * 1536 * page: page to consider 1537 * mode: one of the LRU isolation modes defined above 1538 * 1539 * returns 0 on success, -ve errno on failure. 1540 */ 1541 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1542 { 1543 int ret = -EINVAL; 1544 1545 /* Only take pages on the LRU. */ 1546 if (!PageLRU(page)) 1547 return ret; 1548 1549 /* Compaction should not handle unevictable pages but CMA can do so */ 1550 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1551 return ret; 1552 1553 ret = -EBUSY; 1554 1555 /* 1556 * To minimise LRU disruption, the caller can indicate that it only 1557 * wants to isolate pages it will be able to operate on without 1558 * blocking - clean pages for the most part. 1559 * 1560 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1561 * that it is possible to migrate without blocking 1562 */ 1563 if (mode & ISOLATE_ASYNC_MIGRATE) { 1564 /* All the caller can do on PageWriteback is block */ 1565 if (PageWriteback(page)) 1566 return ret; 1567 1568 if (PageDirty(page)) { 1569 struct address_space *mapping; 1570 bool migrate_dirty; 1571 1572 /* 1573 * Only pages without mappings or that have a 1574 * ->migratepage callback are possible to migrate 1575 * without blocking. However, we can be racing with 1576 * truncation so it's necessary to lock the page 1577 * to stabilise the mapping as truncation holds 1578 * the page lock until after the page is removed 1579 * from the page cache. 1580 */ 1581 if (!trylock_page(page)) 1582 return ret; 1583 1584 mapping = page_mapping(page); 1585 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1586 unlock_page(page); 1587 if (!migrate_dirty) 1588 return ret; 1589 } 1590 } 1591 1592 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1593 return ret; 1594 1595 if (likely(get_page_unless_zero(page))) { 1596 /* 1597 * Be careful not to clear PageLRU until after we're 1598 * sure the page is not being freed elsewhere -- the 1599 * page release code relies on it. 1600 */ 1601 ClearPageLRU(page); 1602 ret = 0; 1603 } 1604 1605 return ret; 1606 } 1607 1608 1609 /* 1610 * Update LRU sizes after isolating pages. The LRU size updates must 1611 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1612 */ 1613 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1614 enum lru_list lru, unsigned long *nr_zone_taken) 1615 { 1616 int zid; 1617 1618 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1619 if (!nr_zone_taken[zid]) 1620 continue; 1621 1622 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1623 } 1624 1625 } 1626 1627 /** 1628 * pgdat->lru_lock is heavily contended. Some of the functions that 1629 * shrink the lists perform better by taking out a batch of pages 1630 * and working on them outside the LRU lock. 1631 * 1632 * For pagecache intensive workloads, this function is the hottest 1633 * spot in the kernel (apart from copy_*_user functions). 1634 * 1635 * Appropriate locks must be held before calling this function. 1636 * 1637 * @nr_to_scan: The number of eligible pages to look through on the list. 1638 * @lruvec: The LRU vector to pull pages from. 1639 * @dst: The temp list to put pages on to. 1640 * @nr_scanned: The number of pages that were scanned. 1641 * @sc: The scan_control struct for this reclaim session 1642 * @lru: LRU list id for isolating 1643 * 1644 * returns how many pages were moved onto *@dst. 1645 */ 1646 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1647 struct lruvec *lruvec, struct list_head *dst, 1648 unsigned long *nr_scanned, struct scan_control *sc, 1649 enum lru_list lru) 1650 { 1651 struct list_head *src = &lruvec->lists[lru]; 1652 unsigned long nr_taken = 0; 1653 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1654 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1655 unsigned long skipped = 0; 1656 unsigned long scan, total_scan, nr_pages; 1657 LIST_HEAD(pages_skipped); 1658 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1659 1660 total_scan = 0; 1661 scan = 0; 1662 while (scan < nr_to_scan && !list_empty(src)) { 1663 struct page *page; 1664 1665 page = lru_to_page(src); 1666 prefetchw_prev_lru_page(page, src, flags); 1667 1668 VM_BUG_ON_PAGE(!PageLRU(page), page); 1669 1670 nr_pages = compound_nr(page); 1671 total_scan += nr_pages; 1672 1673 if (page_zonenum(page) > sc->reclaim_idx) { 1674 list_move(&page->lru, &pages_skipped); 1675 nr_skipped[page_zonenum(page)] += nr_pages; 1676 continue; 1677 } 1678 1679 /* 1680 * Do not count skipped pages because that makes the function 1681 * return with no isolated pages if the LRU mostly contains 1682 * ineligible pages. This causes the VM to not reclaim any 1683 * pages, triggering a premature OOM. 1684 * 1685 * Account all tail pages of THP. This would not cause 1686 * premature OOM since __isolate_lru_page() returns -EBUSY 1687 * only when the page is being freed somewhere else. 1688 */ 1689 scan += nr_pages; 1690 switch (__isolate_lru_page(page, mode)) { 1691 case 0: 1692 nr_taken += nr_pages; 1693 nr_zone_taken[page_zonenum(page)] += nr_pages; 1694 list_move(&page->lru, dst); 1695 break; 1696 1697 case -EBUSY: 1698 /* else it is being freed elsewhere */ 1699 list_move(&page->lru, src); 1700 continue; 1701 1702 default: 1703 BUG(); 1704 } 1705 } 1706 1707 /* 1708 * Splice any skipped pages to the start of the LRU list. Note that 1709 * this disrupts the LRU order when reclaiming for lower zones but 1710 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1711 * scanning would soon rescan the same pages to skip and put the 1712 * system at risk of premature OOM. 1713 */ 1714 if (!list_empty(&pages_skipped)) { 1715 int zid; 1716 1717 list_splice(&pages_skipped, src); 1718 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1719 if (!nr_skipped[zid]) 1720 continue; 1721 1722 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1723 skipped += nr_skipped[zid]; 1724 } 1725 } 1726 *nr_scanned = total_scan; 1727 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1728 total_scan, skipped, nr_taken, mode, lru); 1729 update_lru_sizes(lruvec, lru, nr_zone_taken); 1730 return nr_taken; 1731 } 1732 1733 /** 1734 * isolate_lru_page - tries to isolate a page from its LRU list 1735 * @page: page to isolate from its LRU list 1736 * 1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1738 * vmstat statistic corresponding to whatever LRU list the page was on. 1739 * 1740 * Returns 0 if the page was removed from an LRU list. 1741 * Returns -EBUSY if the page was not on an LRU list. 1742 * 1743 * The returned page will have PageLRU() cleared. If it was found on 1744 * the active list, it will have PageActive set. If it was found on 1745 * the unevictable list, it will have the PageUnevictable bit set. That flag 1746 * may need to be cleared by the caller before letting the page go. 1747 * 1748 * The vmstat statistic corresponding to the list on which the page was 1749 * found will be decremented. 1750 * 1751 * Restrictions: 1752 * 1753 * (1) Must be called with an elevated refcount on the page. This is a 1754 * fundamentnal difference from isolate_lru_pages (which is called 1755 * without a stable reference). 1756 * (2) the lru_lock must not be held. 1757 * (3) interrupts must be enabled. 1758 */ 1759 int isolate_lru_page(struct page *page) 1760 { 1761 int ret = -EBUSY; 1762 1763 VM_BUG_ON_PAGE(!page_count(page), page); 1764 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1765 1766 if (PageLRU(page)) { 1767 pg_data_t *pgdat = page_pgdat(page); 1768 struct lruvec *lruvec; 1769 1770 spin_lock_irq(&pgdat->lru_lock); 1771 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1772 if (PageLRU(page)) { 1773 int lru = page_lru(page); 1774 get_page(page); 1775 ClearPageLRU(page); 1776 del_page_from_lru_list(page, lruvec, lru); 1777 ret = 0; 1778 } 1779 spin_unlock_irq(&pgdat->lru_lock); 1780 } 1781 return ret; 1782 } 1783 1784 /* 1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1786 * then get rescheduled. When there are massive number of tasks doing page 1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1788 * the LRU list will go small and be scanned faster than necessary, leading to 1789 * unnecessary swapping, thrashing and OOM. 1790 */ 1791 static int too_many_isolated(struct pglist_data *pgdat, int file, 1792 struct scan_control *sc) 1793 { 1794 unsigned long inactive, isolated; 1795 1796 if (current_is_kswapd()) 1797 return 0; 1798 1799 if (!writeback_throttling_sane(sc)) 1800 return 0; 1801 1802 if (file) { 1803 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1804 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1805 } else { 1806 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1807 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1808 } 1809 1810 /* 1811 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1812 * won't get blocked by normal direct-reclaimers, forming a circular 1813 * deadlock. 1814 */ 1815 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1816 inactive >>= 3; 1817 1818 return isolated > inactive; 1819 } 1820 1821 /* 1822 * This moves pages from @list to corresponding LRU list. 1823 * 1824 * We move them the other way if the page is referenced by one or more 1825 * processes, from rmap. 1826 * 1827 * If the pages are mostly unmapped, the processing is fast and it is 1828 * appropriate to hold zone_lru_lock across the whole operation. But if 1829 * the pages are mapped, the processing is slow (page_referenced()) so we 1830 * should drop zone_lru_lock around each page. It's impossible to balance 1831 * this, so instead we remove the pages from the LRU while processing them. 1832 * It is safe to rely on PG_active against the non-LRU pages in here because 1833 * nobody will play with that bit on a non-LRU page. 1834 * 1835 * The downside is that we have to touch page->_refcount against each page. 1836 * But we had to alter page->flags anyway. 1837 * 1838 * Returns the number of pages moved to the given lruvec. 1839 */ 1840 1841 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1842 struct list_head *list) 1843 { 1844 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1845 int nr_pages, nr_moved = 0; 1846 LIST_HEAD(pages_to_free); 1847 struct page *page; 1848 enum lru_list lru; 1849 1850 while (!list_empty(list)) { 1851 page = lru_to_page(list); 1852 VM_BUG_ON_PAGE(PageLRU(page), page); 1853 if (unlikely(!page_evictable(page))) { 1854 list_del(&page->lru); 1855 spin_unlock_irq(&pgdat->lru_lock); 1856 putback_lru_page(page); 1857 spin_lock_irq(&pgdat->lru_lock); 1858 continue; 1859 } 1860 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1861 1862 SetPageLRU(page); 1863 lru = page_lru(page); 1864 1865 nr_pages = thp_nr_pages(page); 1866 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1867 list_move(&page->lru, &lruvec->lists[lru]); 1868 1869 if (put_page_testzero(page)) { 1870 __ClearPageLRU(page); 1871 __ClearPageActive(page); 1872 del_page_from_lru_list(page, lruvec, lru); 1873 1874 if (unlikely(PageCompound(page))) { 1875 spin_unlock_irq(&pgdat->lru_lock); 1876 destroy_compound_page(page); 1877 spin_lock_irq(&pgdat->lru_lock); 1878 } else 1879 list_add(&page->lru, &pages_to_free); 1880 } else { 1881 nr_moved += nr_pages; 1882 if (PageActive(page)) 1883 workingset_age_nonresident(lruvec, nr_pages); 1884 } 1885 } 1886 1887 /* 1888 * To save our caller's stack, now use input list for pages to free. 1889 */ 1890 list_splice(&pages_to_free, list); 1891 1892 return nr_moved; 1893 } 1894 1895 /* 1896 * If a kernel thread (such as nfsd for loop-back mounts) services 1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1898 * In that case we should only throttle if the backing device it is 1899 * writing to is congested. In other cases it is safe to throttle. 1900 */ 1901 static int current_may_throttle(void) 1902 { 1903 return !(current->flags & PF_LOCAL_THROTTLE) || 1904 current->backing_dev_info == NULL || 1905 bdi_write_congested(current->backing_dev_info); 1906 } 1907 1908 /* 1909 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1910 * of reclaimed pages 1911 */ 1912 static noinline_for_stack unsigned long 1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1914 struct scan_control *sc, enum lru_list lru) 1915 { 1916 LIST_HEAD(page_list); 1917 unsigned long nr_scanned; 1918 unsigned int nr_reclaimed = 0; 1919 unsigned long nr_taken; 1920 struct reclaim_stat stat; 1921 bool file = is_file_lru(lru); 1922 enum vm_event_item item; 1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1924 bool stalled = false; 1925 1926 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1927 if (stalled) 1928 return 0; 1929 1930 /* wait a bit for the reclaimer. */ 1931 msleep(100); 1932 stalled = true; 1933 1934 /* We are about to die and free our memory. Return now. */ 1935 if (fatal_signal_pending(current)) 1936 return SWAP_CLUSTER_MAX; 1937 } 1938 1939 lru_add_drain(); 1940 1941 spin_lock_irq(&pgdat->lru_lock); 1942 1943 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1944 &nr_scanned, sc, lru); 1945 1946 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1947 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1948 if (!cgroup_reclaim(sc)) 1949 __count_vm_events(item, nr_scanned); 1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1951 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1952 1953 spin_unlock_irq(&pgdat->lru_lock); 1954 1955 if (nr_taken == 0) 1956 return 0; 1957 1958 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1959 &stat, false); 1960 1961 spin_lock_irq(&pgdat->lru_lock); 1962 1963 move_pages_to_lru(lruvec, &page_list); 1964 1965 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1966 lru_note_cost(lruvec, file, stat.nr_pageout); 1967 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1968 if (!cgroup_reclaim(sc)) 1969 __count_vm_events(item, nr_reclaimed); 1970 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1971 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1972 1973 spin_unlock_irq(&pgdat->lru_lock); 1974 1975 mem_cgroup_uncharge_list(&page_list); 1976 free_unref_page_list(&page_list); 1977 1978 /* 1979 * If dirty pages are scanned that are not queued for IO, it 1980 * implies that flushers are not doing their job. This can 1981 * happen when memory pressure pushes dirty pages to the end of 1982 * the LRU before the dirty limits are breached and the dirty 1983 * data has expired. It can also happen when the proportion of 1984 * dirty pages grows not through writes but through memory 1985 * pressure reclaiming all the clean cache. And in some cases, 1986 * the flushers simply cannot keep up with the allocation 1987 * rate. Nudge the flusher threads in case they are asleep. 1988 */ 1989 if (stat.nr_unqueued_dirty == nr_taken) 1990 wakeup_flusher_threads(WB_REASON_VMSCAN); 1991 1992 sc->nr.dirty += stat.nr_dirty; 1993 sc->nr.congested += stat.nr_congested; 1994 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1995 sc->nr.writeback += stat.nr_writeback; 1996 sc->nr.immediate += stat.nr_immediate; 1997 sc->nr.taken += nr_taken; 1998 if (file) 1999 sc->nr.file_taken += nr_taken; 2000 2001 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2002 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2003 return nr_reclaimed; 2004 } 2005 2006 static void shrink_active_list(unsigned long nr_to_scan, 2007 struct lruvec *lruvec, 2008 struct scan_control *sc, 2009 enum lru_list lru) 2010 { 2011 unsigned long nr_taken; 2012 unsigned long nr_scanned; 2013 unsigned long vm_flags; 2014 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2015 LIST_HEAD(l_active); 2016 LIST_HEAD(l_inactive); 2017 struct page *page; 2018 unsigned nr_deactivate, nr_activate; 2019 unsigned nr_rotated = 0; 2020 int file = is_file_lru(lru); 2021 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2022 2023 lru_add_drain(); 2024 2025 spin_lock_irq(&pgdat->lru_lock); 2026 2027 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2028 &nr_scanned, sc, lru); 2029 2030 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2031 2032 if (!cgroup_reclaim(sc)) 2033 __count_vm_events(PGREFILL, nr_scanned); 2034 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2035 2036 spin_unlock_irq(&pgdat->lru_lock); 2037 2038 while (!list_empty(&l_hold)) { 2039 cond_resched(); 2040 page = lru_to_page(&l_hold); 2041 list_del(&page->lru); 2042 2043 if (unlikely(!page_evictable(page))) { 2044 putback_lru_page(page); 2045 continue; 2046 } 2047 2048 if (unlikely(buffer_heads_over_limit)) { 2049 if (page_has_private(page) && trylock_page(page)) { 2050 if (page_has_private(page)) 2051 try_to_release_page(page, 0); 2052 unlock_page(page); 2053 } 2054 } 2055 2056 if (page_referenced(page, 0, sc->target_mem_cgroup, 2057 &vm_flags)) { 2058 /* 2059 * Identify referenced, file-backed active pages and 2060 * give them one more trip around the active list. So 2061 * that executable code get better chances to stay in 2062 * memory under moderate memory pressure. Anon pages 2063 * are not likely to be evicted by use-once streaming 2064 * IO, plus JVM can create lots of anon VM_EXEC pages, 2065 * so we ignore them here. 2066 */ 2067 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2068 nr_rotated += thp_nr_pages(page); 2069 list_add(&page->lru, &l_active); 2070 continue; 2071 } 2072 } 2073 2074 ClearPageActive(page); /* we are de-activating */ 2075 SetPageWorkingset(page); 2076 list_add(&page->lru, &l_inactive); 2077 } 2078 2079 /* 2080 * Move pages back to the lru list. 2081 */ 2082 spin_lock_irq(&pgdat->lru_lock); 2083 2084 nr_activate = move_pages_to_lru(lruvec, &l_active); 2085 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2086 /* Keep all free pages in l_active list */ 2087 list_splice(&l_inactive, &l_active); 2088 2089 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2090 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2091 2092 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2093 spin_unlock_irq(&pgdat->lru_lock); 2094 2095 mem_cgroup_uncharge_list(&l_active); 2096 free_unref_page_list(&l_active); 2097 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2098 nr_deactivate, nr_rotated, sc->priority, file); 2099 } 2100 2101 unsigned long reclaim_pages(struct list_head *page_list) 2102 { 2103 int nid = NUMA_NO_NODE; 2104 unsigned int nr_reclaimed = 0; 2105 LIST_HEAD(node_page_list); 2106 struct reclaim_stat dummy_stat; 2107 struct page *page; 2108 struct scan_control sc = { 2109 .gfp_mask = GFP_KERNEL, 2110 .priority = DEF_PRIORITY, 2111 .may_writepage = 1, 2112 .may_unmap = 1, 2113 .may_swap = 1, 2114 }; 2115 2116 while (!list_empty(page_list)) { 2117 page = lru_to_page(page_list); 2118 if (nid == NUMA_NO_NODE) { 2119 nid = page_to_nid(page); 2120 INIT_LIST_HEAD(&node_page_list); 2121 } 2122 2123 if (nid == page_to_nid(page)) { 2124 ClearPageActive(page); 2125 list_move(&page->lru, &node_page_list); 2126 continue; 2127 } 2128 2129 nr_reclaimed += shrink_page_list(&node_page_list, 2130 NODE_DATA(nid), 2131 &sc, 0, 2132 &dummy_stat, false); 2133 while (!list_empty(&node_page_list)) { 2134 page = lru_to_page(&node_page_list); 2135 list_del(&page->lru); 2136 putback_lru_page(page); 2137 } 2138 2139 nid = NUMA_NO_NODE; 2140 } 2141 2142 if (!list_empty(&node_page_list)) { 2143 nr_reclaimed += shrink_page_list(&node_page_list, 2144 NODE_DATA(nid), 2145 &sc, 0, 2146 &dummy_stat, false); 2147 while (!list_empty(&node_page_list)) { 2148 page = lru_to_page(&node_page_list); 2149 list_del(&page->lru); 2150 putback_lru_page(page); 2151 } 2152 } 2153 2154 return nr_reclaimed; 2155 } 2156 2157 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2158 struct lruvec *lruvec, struct scan_control *sc) 2159 { 2160 if (is_active_lru(lru)) { 2161 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2162 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2163 else 2164 sc->skipped_deactivate = 1; 2165 return 0; 2166 } 2167 2168 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2169 } 2170 2171 /* 2172 * The inactive anon list should be small enough that the VM never has 2173 * to do too much work. 2174 * 2175 * The inactive file list should be small enough to leave most memory 2176 * to the established workingset on the scan-resistant active list, 2177 * but large enough to avoid thrashing the aggregate readahead window. 2178 * 2179 * Both inactive lists should also be large enough that each inactive 2180 * page has a chance to be referenced again before it is reclaimed. 2181 * 2182 * If that fails and refaulting is observed, the inactive list grows. 2183 * 2184 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2185 * on this LRU, maintained by the pageout code. An inactive_ratio 2186 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2187 * 2188 * total target max 2189 * memory ratio inactive 2190 * ------------------------------------- 2191 * 10MB 1 5MB 2192 * 100MB 1 50MB 2193 * 1GB 3 250MB 2194 * 10GB 10 0.9GB 2195 * 100GB 31 3GB 2196 * 1TB 101 10GB 2197 * 10TB 320 32GB 2198 */ 2199 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2200 { 2201 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2202 unsigned long inactive, active; 2203 unsigned long inactive_ratio; 2204 unsigned long gb; 2205 2206 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2207 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2208 2209 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2210 if (gb) 2211 inactive_ratio = int_sqrt(10 * gb); 2212 else 2213 inactive_ratio = 1; 2214 2215 return inactive * inactive_ratio < active; 2216 } 2217 2218 enum scan_balance { 2219 SCAN_EQUAL, 2220 SCAN_FRACT, 2221 SCAN_ANON, 2222 SCAN_FILE, 2223 }; 2224 2225 /* 2226 * Determine how aggressively the anon and file LRU lists should be 2227 * scanned. The relative value of each set of LRU lists is determined 2228 * by looking at the fraction of the pages scanned we did rotate back 2229 * onto the active list instead of evict. 2230 * 2231 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2232 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2233 */ 2234 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2235 unsigned long *nr) 2236 { 2237 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2238 unsigned long anon_cost, file_cost, total_cost; 2239 int swappiness = mem_cgroup_swappiness(memcg); 2240 u64 fraction[2]; 2241 u64 denominator = 0; /* gcc */ 2242 enum scan_balance scan_balance; 2243 unsigned long ap, fp; 2244 enum lru_list lru; 2245 2246 /* If we have no swap space, do not bother scanning anon pages. */ 2247 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2248 scan_balance = SCAN_FILE; 2249 goto out; 2250 } 2251 2252 /* 2253 * Global reclaim will swap to prevent OOM even with no 2254 * swappiness, but memcg users want to use this knob to 2255 * disable swapping for individual groups completely when 2256 * using the memory controller's swap limit feature would be 2257 * too expensive. 2258 */ 2259 if (cgroup_reclaim(sc) && !swappiness) { 2260 scan_balance = SCAN_FILE; 2261 goto out; 2262 } 2263 2264 /* 2265 * Do not apply any pressure balancing cleverness when the 2266 * system is close to OOM, scan both anon and file equally 2267 * (unless the swappiness setting disagrees with swapping). 2268 */ 2269 if (!sc->priority && swappiness) { 2270 scan_balance = SCAN_EQUAL; 2271 goto out; 2272 } 2273 2274 /* 2275 * If the system is almost out of file pages, force-scan anon. 2276 */ 2277 if (sc->file_is_tiny) { 2278 scan_balance = SCAN_ANON; 2279 goto out; 2280 } 2281 2282 /* 2283 * If there is enough inactive page cache, we do not reclaim 2284 * anything from the anonymous working right now. 2285 */ 2286 if (sc->cache_trim_mode) { 2287 scan_balance = SCAN_FILE; 2288 goto out; 2289 } 2290 2291 scan_balance = SCAN_FRACT; 2292 /* 2293 * Calculate the pressure balance between anon and file pages. 2294 * 2295 * The amount of pressure we put on each LRU is inversely 2296 * proportional to the cost of reclaiming each list, as 2297 * determined by the share of pages that are refaulting, times 2298 * the relative IO cost of bringing back a swapped out 2299 * anonymous page vs reloading a filesystem page (swappiness). 2300 * 2301 * Although we limit that influence to ensure no list gets 2302 * left behind completely: at least a third of the pressure is 2303 * applied, before swappiness. 2304 * 2305 * With swappiness at 100, anon and file have equal IO cost. 2306 */ 2307 total_cost = sc->anon_cost + sc->file_cost; 2308 anon_cost = total_cost + sc->anon_cost; 2309 file_cost = total_cost + sc->file_cost; 2310 total_cost = anon_cost + file_cost; 2311 2312 ap = swappiness * (total_cost + 1); 2313 ap /= anon_cost + 1; 2314 2315 fp = (200 - swappiness) * (total_cost + 1); 2316 fp /= file_cost + 1; 2317 2318 fraction[0] = ap; 2319 fraction[1] = fp; 2320 denominator = ap + fp; 2321 out: 2322 for_each_evictable_lru(lru) { 2323 int file = is_file_lru(lru); 2324 unsigned long lruvec_size; 2325 unsigned long scan; 2326 unsigned long protection; 2327 2328 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2329 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2330 memcg, 2331 sc->memcg_low_reclaim); 2332 2333 if (protection) { 2334 /* 2335 * Scale a cgroup's reclaim pressure by proportioning 2336 * its current usage to its memory.low or memory.min 2337 * setting. 2338 * 2339 * This is important, as otherwise scanning aggression 2340 * becomes extremely binary -- from nothing as we 2341 * approach the memory protection threshold, to totally 2342 * nominal as we exceed it. This results in requiring 2343 * setting extremely liberal protection thresholds. It 2344 * also means we simply get no protection at all if we 2345 * set it too low, which is not ideal. 2346 * 2347 * If there is any protection in place, we reduce scan 2348 * pressure by how much of the total memory used is 2349 * within protection thresholds. 2350 * 2351 * There is one special case: in the first reclaim pass, 2352 * we skip over all groups that are within their low 2353 * protection. If that fails to reclaim enough pages to 2354 * satisfy the reclaim goal, we come back and override 2355 * the best-effort low protection. However, we still 2356 * ideally want to honor how well-behaved groups are in 2357 * that case instead of simply punishing them all 2358 * equally. As such, we reclaim them based on how much 2359 * memory they are using, reducing the scan pressure 2360 * again by how much of the total memory used is under 2361 * hard protection. 2362 */ 2363 unsigned long cgroup_size = mem_cgroup_size(memcg); 2364 2365 /* Avoid TOCTOU with earlier protection check */ 2366 cgroup_size = max(cgroup_size, protection); 2367 2368 scan = lruvec_size - lruvec_size * protection / 2369 cgroup_size; 2370 2371 /* 2372 * Minimally target SWAP_CLUSTER_MAX pages to keep 2373 * reclaim moving forwards, avoiding decrementing 2374 * sc->priority further than desirable. 2375 */ 2376 scan = max(scan, SWAP_CLUSTER_MAX); 2377 } else { 2378 scan = lruvec_size; 2379 } 2380 2381 scan >>= sc->priority; 2382 2383 /* 2384 * If the cgroup's already been deleted, make sure to 2385 * scrape out the remaining cache. 2386 */ 2387 if (!scan && !mem_cgroup_online(memcg)) 2388 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2389 2390 switch (scan_balance) { 2391 case SCAN_EQUAL: 2392 /* Scan lists relative to size */ 2393 break; 2394 case SCAN_FRACT: 2395 /* 2396 * Scan types proportional to swappiness and 2397 * their relative recent reclaim efficiency. 2398 * Make sure we don't miss the last page on 2399 * the offlined memory cgroups because of a 2400 * round-off error. 2401 */ 2402 scan = mem_cgroup_online(memcg) ? 2403 div64_u64(scan * fraction[file], denominator) : 2404 DIV64_U64_ROUND_UP(scan * fraction[file], 2405 denominator); 2406 break; 2407 case SCAN_FILE: 2408 case SCAN_ANON: 2409 /* Scan one type exclusively */ 2410 if ((scan_balance == SCAN_FILE) != file) 2411 scan = 0; 2412 break; 2413 default: 2414 /* Look ma, no brain */ 2415 BUG(); 2416 } 2417 2418 nr[lru] = scan; 2419 } 2420 } 2421 2422 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2423 { 2424 unsigned long nr[NR_LRU_LISTS]; 2425 unsigned long targets[NR_LRU_LISTS]; 2426 unsigned long nr_to_scan; 2427 enum lru_list lru; 2428 unsigned long nr_reclaimed = 0; 2429 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2430 struct blk_plug plug; 2431 bool scan_adjusted; 2432 2433 get_scan_count(lruvec, sc, nr); 2434 2435 /* Record the original scan target for proportional adjustments later */ 2436 memcpy(targets, nr, sizeof(nr)); 2437 2438 /* 2439 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2440 * event that can occur when there is little memory pressure e.g. 2441 * multiple streaming readers/writers. Hence, we do not abort scanning 2442 * when the requested number of pages are reclaimed when scanning at 2443 * DEF_PRIORITY on the assumption that the fact we are direct 2444 * reclaiming implies that kswapd is not keeping up and it is best to 2445 * do a batch of work at once. For memcg reclaim one check is made to 2446 * abort proportional reclaim if either the file or anon lru has already 2447 * dropped to zero at the first pass. 2448 */ 2449 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2450 sc->priority == DEF_PRIORITY); 2451 2452 blk_start_plug(&plug); 2453 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2454 nr[LRU_INACTIVE_FILE]) { 2455 unsigned long nr_anon, nr_file, percentage; 2456 unsigned long nr_scanned; 2457 2458 for_each_evictable_lru(lru) { 2459 if (nr[lru]) { 2460 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2461 nr[lru] -= nr_to_scan; 2462 2463 nr_reclaimed += shrink_list(lru, nr_to_scan, 2464 lruvec, sc); 2465 } 2466 } 2467 2468 cond_resched(); 2469 2470 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2471 continue; 2472 2473 /* 2474 * For kswapd and memcg, reclaim at least the number of pages 2475 * requested. Ensure that the anon and file LRUs are scanned 2476 * proportionally what was requested by get_scan_count(). We 2477 * stop reclaiming one LRU and reduce the amount scanning 2478 * proportional to the original scan target. 2479 */ 2480 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2481 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2482 2483 /* 2484 * It's just vindictive to attack the larger once the smaller 2485 * has gone to zero. And given the way we stop scanning the 2486 * smaller below, this makes sure that we only make one nudge 2487 * towards proportionality once we've got nr_to_reclaim. 2488 */ 2489 if (!nr_file || !nr_anon) 2490 break; 2491 2492 if (nr_file > nr_anon) { 2493 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2494 targets[LRU_ACTIVE_ANON] + 1; 2495 lru = LRU_BASE; 2496 percentage = nr_anon * 100 / scan_target; 2497 } else { 2498 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2499 targets[LRU_ACTIVE_FILE] + 1; 2500 lru = LRU_FILE; 2501 percentage = nr_file * 100 / scan_target; 2502 } 2503 2504 /* Stop scanning the smaller of the LRU */ 2505 nr[lru] = 0; 2506 nr[lru + LRU_ACTIVE] = 0; 2507 2508 /* 2509 * Recalculate the other LRU scan count based on its original 2510 * scan target and the percentage scanning already complete 2511 */ 2512 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2513 nr_scanned = targets[lru] - nr[lru]; 2514 nr[lru] = targets[lru] * (100 - percentage) / 100; 2515 nr[lru] -= min(nr[lru], nr_scanned); 2516 2517 lru += LRU_ACTIVE; 2518 nr_scanned = targets[lru] - nr[lru]; 2519 nr[lru] = targets[lru] * (100 - percentage) / 100; 2520 nr[lru] -= min(nr[lru], nr_scanned); 2521 2522 scan_adjusted = true; 2523 } 2524 blk_finish_plug(&plug); 2525 sc->nr_reclaimed += nr_reclaimed; 2526 2527 /* 2528 * Even if we did not try to evict anon pages at all, we want to 2529 * rebalance the anon lru active/inactive ratio. 2530 */ 2531 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2532 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2533 sc, LRU_ACTIVE_ANON); 2534 } 2535 2536 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2537 static bool in_reclaim_compaction(struct scan_control *sc) 2538 { 2539 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2540 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2541 sc->priority < DEF_PRIORITY - 2)) 2542 return true; 2543 2544 return false; 2545 } 2546 2547 /* 2548 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2549 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2550 * true if more pages should be reclaimed such that when the page allocator 2551 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2552 * It will give up earlier than that if there is difficulty reclaiming pages. 2553 */ 2554 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2555 unsigned long nr_reclaimed, 2556 struct scan_control *sc) 2557 { 2558 unsigned long pages_for_compaction; 2559 unsigned long inactive_lru_pages; 2560 int z; 2561 2562 /* If not in reclaim/compaction mode, stop */ 2563 if (!in_reclaim_compaction(sc)) 2564 return false; 2565 2566 /* 2567 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2568 * number of pages that were scanned. This will return to the caller 2569 * with the risk reclaim/compaction and the resulting allocation attempt 2570 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2571 * allocations through requiring that the full LRU list has been scanned 2572 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2573 * scan, but that approximation was wrong, and there were corner cases 2574 * where always a non-zero amount of pages were scanned. 2575 */ 2576 if (!nr_reclaimed) 2577 return false; 2578 2579 /* If compaction would go ahead or the allocation would succeed, stop */ 2580 for (z = 0; z <= sc->reclaim_idx; z++) { 2581 struct zone *zone = &pgdat->node_zones[z]; 2582 if (!managed_zone(zone)) 2583 continue; 2584 2585 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2586 case COMPACT_SUCCESS: 2587 case COMPACT_CONTINUE: 2588 return false; 2589 default: 2590 /* check next zone */ 2591 ; 2592 } 2593 } 2594 2595 /* 2596 * If we have not reclaimed enough pages for compaction and the 2597 * inactive lists are large enough, continue reclaiming 2598 */ 2599 pages_for_compaction = compact_gap(sc->order); 2600 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2601 if (get_nr_swap_pages() > 0) 2602 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2603 2604 return inactive_lru_pages > pages_for_compaction; 2605 } 2606 2607 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2608 { 2609 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2610 struct mem_cgroup *memcg; 2611 2612 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2613 do { 2614 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2615 unsigned long reclaimed; 2616 unsigned long scanned; 2617 2618 mem_cgroup_calculate_protection(target_memcg, memcg); 2619 2620 if (mem_cgroup_below_min(memcg)) { 2621 /* 2622 * Hard protection. 2623 * If there is no reclaimable memory, OOM. 2624 */ 2625 continue; 2626 } else if (mem_cgroup_below_low(memcg)) { 2627 /* 2628 * Soft protection. 2629 * Respect the protection only as long as 2630 * there is an unprotected supply 2631 * of reclaimable memory from other cgroups. 2632 */ 2633 if (!sc->memcg_low_reclaim) { 2634 sc->memcg_low_skipped = 1; 2635 continue; 2636 } 2637 memcg_memory_event(memcg, MEMCG_LOW); 2638 } 2639 2640 reclaimed = sc->nr_reclaimed; 2641 scanned = sc->nr_scanned; 2642 2643 shrink_lruvec(lruvec, sc); 2644 2645 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2646 sc->priority); 2647 2648 /* Record the group's reclaim efficiency */ 2649 vmpressure(sc->gfp_mask, memcg, false, 2650 sc->nr_scanned - scanned, 2651 sc->nr_reclaimed - reclaimed); 2652 2653 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2654 } 2655 2656 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2657 { 2658 struct reclaim_state *reclaim_state = current->reclaim_state; 2659 unsigned long nr_reclaimed, nr_scanned; 2660 struct lruvec *target_lruvec; 2661 bool reclaimable = false; 2662 unsigned long file; 2663 2664 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2665 2666 again: 2667 memset(&sc->nr, 0, sizeof(sc->nr)); 2668 2669 nr_reclaimed = sc->nr_reclaimed; 2670 nr_scanned = sc->nr_scanned; 2671 2672 /* 2673 * Determine the scan balance between anon and file LRUs. 2674 */ 2675 spin_lock_irq(&pgdat->lru_lock); 2676 sc->anon_cost = target_lruvec->anon_cost; 2677 sc->file_cost = target_lruvec->file_cost; 2678 spin_unlock_irq(&pgdat->lru_lock); 2679 2680 /* 2681 * Target desirable inactive:active list ratios for the anon 2682 * and file LRU lists. 2683 */ 2684 if (!sc->force_deactivate) { 2685 unsigned long refaults; 2686 2687 refaults = lruvec_page_state(target_lruvec, 2688 WORKINGSET_ACTIVATE_ANON); 2689 if (refaults != target_lruvec->refaults[0] || 2690 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2691 sc->may_deactivate |= DEACTIVATE_ANON; 2692 else 2693 sc->may_deactivate &= ~DEACTIVATE_ANON; 2694 2695 /* 2696 * When refaults are being observed, it means a new 2697 * workingset is being established. Deactivate to get 2698 * rid of any stale active pages quickly. 2699 */ 2700 refaults = lruvec_page_state(target_lruvec, 2701 WORKINGSET_ACTIVATE_FILE); 2702 if (refaults != target_lruvec->refaults[1] || 2703 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2704 sc->may_deactivate |= DEACTIVATE_FILE; 2705 else 2706 sc->may_deactivate &= ~DEACTIVATE_FILE; 2707 } else 2708 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2709 2710 /* 2711 * If we have plenty of inactive file pages that aren't 2712 * thrashing, try to reclaim those first before touching 2713 * anonymous pages. 2714 */ 2715 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2716 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2717 sc->cache_trim_mode = 1; 2718 else 2719 sc->cache_trim_mode = 0; 2720 2721 /* 2722 * Prevent the reclaimer from falling into the cache trap: as 2723 * cache pages start out inactive, every cache fault will tip 2724 * the scan balance towards the file LRU. And as the file LRU 2725 * shrinks, so does the window for rotation from references. 2726 * This means we have a runaway feedback loop where a tiny 2727 * thrashing file LRU becomes infinitely more attractive than 2728 * anon pages. Try to detect this based on file LRU size. 2729 */ 2730 if (!cgroup_reclaim(sc)) { 2731 unsigned long total_high_wmark = 0; 2732 unsigned long free, anon; 2733 int z; 2734 2735 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2736 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2737 node_page_state(pgdat, NR_INACTIVE_FILE); 2738 2739 for (z = 0; z < MAX_NR_ZONES; z++) { 2740 struct zone *zone = &pgdat->node_zones[z]; 2741 if (!managed_zone(zone)) 2742 continue; 2743 2744 total_high_wmark += high_wmark_pages(zone); 2745 } 2746 2747 /* 2748 * Consider anon: if that's low too, this isn't a 2749 * runaway file reclaim problem, but rather just 2750 * extreme pressure. Reclaim as per usual then. 2751 */ 2752 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2753 2754 sc->file_is_tiny = 2755 file + free <= total_high_wmark && 2756 !(sc->may_deactivate & DEACTIVATE_ANON) && 2757 anon >> sc->priority; 2758 } 2759 2760 shrink_node_memcgs(pgdat, sc); 2761 2762 if (reclaim_state) { 2763 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2764 reclaim_state->reclaimed_slab = 0; 2765 } 2766 2767 /* Record the subtree's reclaim efficiency */ 2768 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2769 sc->nr_scanned - nr_scanned, 2770 sc->nr_reclaimed - nr_reclaimed); 2771 2772 if (sc->nr_reclaimed - nr_reclaimed) 2773 reclaimable = true; 2774 2775 if (current_is_kswapd()) { 2776 /* 2777 * If reclaim is isolating dirty pages under writeback, 2778 * it implies that the long-lived page allocation rate 2779 * is exceeding the page laundering rate. Either the 2780 * global limits are not being effective at throttling 2781 * processes due to the page distribution throughout 2782 * zones or there is heavy usage of a slow backing 2783 * device. The only option is to throttle from reclaim 2784 * context which is not ideal as there is no guarantee 2785 * the dirtying process is throttled in the same way 2786 * balance_dirty_pages() manages. 2787 * 2788 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2789 * count the number of pages under pages flagged for 2790 * immediate reclaim and stall if any are encountered 2791 * in the nr_immediate check below. 2792 */ 2793 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2794 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2795 2796 /* Allow kswapd to start writing pages during reclaim.*/ 2797 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2798 set_bit(PGDAT_DIRTY, &pgdat->flags); 2799 2800 /* 2801 * If kswapd scans pages marked for immediate 2802 * reclaim and under writeback (nr_immediate), it 2803 * implies that pages are cycling through the LRU 2804 * faster than they are written so also forcibly stall. 2805 */ 2806 if (sc->nr.immediate) 2807 congestion_wait(BLK_RW_ASYNC, HZ/10); 2808 } 2809 2810 /* 2811 * Tag a node/memcg as congested if all the dirty pages 2812 * scanned were backed by a congested BDI and 2813 * wait_iff_congested will stall. 2814 * 2815 * Legacy memcg will stall in page writeback so avoid forcibly 2816 * stalling in wait_iff_congested(). 2817 */ 2818 if ((current_is_kswapd() || 2819 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2820 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2821 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2822 2823 /* 2824 * Stall direct reclaim for IO completions if underlying BDIs 2825 * and node is congested. Allow kswapd to continue until it 2826 * starts encountering unqueued dirty pages or cycling through 2827 * the LRU too quickly. 2828 */ 2829 if (!current_is_kswapd() && current_may_throttle() && 2830 !sc->hibernation_mode && 2831 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2832 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2833 2834 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2835 sc)) 2836 goto again; 2837 2838 /* 2839 * Kswapd gives up on balancing particular nodes after too 2840 * many failures to reclaim anything from them and goes to 2841 * sleep. On reclaim progress, reset the failure counter. A 2842 * successful direct reclaim run will revive a dormant kswapd. 2843 */ 2844 if (reclaimable) 2845 pgdat->kswapd_failures = 0; 2846 } 2847 2848 /* 2849 * Returns true if compaction should go ahead for a costly-order request, or 2850 * the allocation would already succeed without compaction. Return false if we 2851 * should reclaim first. 2852 */ 2853 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2854 { 2855 unsigned long watermark; 2856 enum compact_result suitable; 2857 2858 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2859 if (suitable == COMPACT_SUCCESS) 2860 /* Allocation should succeed already. Don't reclaim. */ 2861 return true; 2862 if (suitable == COMPACT_SKIPPED) 2863 /* Compaction cannot yet proceed. Do reclaim. */ 2864 return false; 2865 2866 /* 2867 * Compaction is already possible, but it takes time to run and there 2868 * are potentially other callers using the pages just freed. So proceed 2869 * with reclaim to make a buffer of free pages available to give 2870 * compaction a reasonable chance of completing and allocating the page. 2871 * Note that we won't actually reclaim the whole buffer in one attempt 2872 * as the target watermark in should_continue_reclaim() is lower. But if 2873 * we are already above the high+gap watermark, don't reclaim at all. 2874 */ 2875 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2876 2877 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2878 } 2879 2880 /* 2881 * This is the direct reclaim path, for page-allocating processes. We only 2882 * try to reclaim pages from zones which will satisfy the caller's allocation 2883 * request. 2884 * 2885 * If a zone is deemed to be full of pinned pages then just give it a light 2886 * scan then give up on it. 2887 */ 2888 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2889 { 2890 struct zoneref *z; 2891 struct zone *zone; 2892 unsigned long nr_soft_reclaimed; 2893 unsigned long nr_soft_scanned; 2894 gfp_t orig_mask; 2895 pg_data_t *last_pgdat = NULL; 2896 2897 /* 2898 * If the number of buffer_heads in the machine exceeds the maximum 2899 * allowed level, force direct reclaim to scan the highmem zone as 2900 * highmem pages could be pinning lowmem pages storing buffer_heads 2901 */ 2902 orig_mask = sc->gfp_mask; 2903 if (buffer_heads_over_limit) { 2904 sc->gfp_mask |= __GFP_HIGHMEM; 2905 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2906 } 2907 2908 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2909 sc->reclaim_idx, sc->nodemask) { 2910 /* 2911 * Take care memory controller reclaiming has small influence 2912 * to global LRU. 2913 */ 2914 if (!cgroup_reclaim(sc)) { 2915 if (!cpuset_zone_allowed(zone, 2916 GFP_KERNEL | __GFP_HARDWALL)) 2917 continue; 2918 2919 /* 2920 * If we already have plenty of memory free for 2921 * compaction in this zone, don't free any more. 2922 * Even though compaction is invoked for any 2923 * non-zero order, only frequent costly order 2924 * reclamation is disruptive enough to become a 2925 * noticeable problem, like transparent huge 2926 * page allocations. 2927 */ 2928 if (IS_ENABLED(CONFIG_COMPACTION) && 2929 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2930 compaction_ready(zone, sc)) { 2931 sc->compaction_ready = true; 2932 continue; 2933 } 2934 2935 /* 2936 * Shrink each node in the zonelist once. If the 2937 * zonelist is ordered by zone (not the default) then a 2938 * node may be shrunk multiple times but in that case 2939 * the user prefers lower zones being preserved. 2940 */ 2941 if (zone->zone_pgdat == last_pgdat) 2942 continue; 2943 2944 /* 2945 * This steals pages from memory cgroups over softlimit 2946 * and returns the number of reclaimed pages and 2947 * scanned pages. This works for global memory pressure 2948 * and balancing, not for a memcg's limit. 2949 */ 2950 nr_soft_scanned = 0; 2951 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2952 sc->order, sc->gfp_mask, 2953 &nr_soft_scanned); 2954 sc->nr_reclaimed += nr_soft_reclaimed; 2955 sc->nr_scanned += nr_soft_scanned; 2956 /* need some check for avoid more shrink_zone() */ 2957 } 2958 2959 /* See comment about same check for global reclaim above */ 2960 if (zone->zone_pgdat == last_pgdat) 2961 continue; 2962 last_pgdat = zone->zone_pgdat; 2963 shrink_node(zone->zone_pgdat, sc); 2964 } 2965 2966 /* 2967 * Restore to original mask to avoid the impact on the caller if we 2968 * promoted it to __GFP_HIGHMEM. 2969 */ 2970 sc->gfp_mask = orig_mask; 2971 } 2972 2973 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2974 { 2975 struct lruvec *target_lruvec; 2976 unsigned long refaults; 2977 2978 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2979 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 2980 target_lruvec->refaults[0] = refaults; 2981 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 2982 target_lruvec->refaults[1] = refaults; 2983 } 2984 2985 /* 2986 * This is the main entry point to direct page reclaim. 2987 * 2988 * If a full scan of the inactive list fails to free enough memory then we 2989 * are "out of memory" and something needs to be killed. 2990 * 2991 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2992 * high - the zone may be full of dirty or under-writeback pages, which this 2993 * caller can't do much about. We kick the writeback threads and take explicit 2994 * naps in the hope that some of these pages can be written. But if the 2995 * allocating task holds filesystem locks which prevent writeout this might not 2996 * work, and the allocation attempt will fail. 2997 * 2998 * returns: 0, if no pages reclaimed 2999 * else, the number of pages reclaimed 3000 */ 3001 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3002 struct scan_control *sc) 3003 { 3004 int initial_priority = sc->priority; 3005 pg_data_t *last_pgdat; 3006 struct zoneref *z; 3007 struct zone *zone; 3008 retry: 3009 delayacct_freepages_start(); 3010 3011 if (!cgroup_reclaim(sc)) 3012 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3013 3014 do { 3015 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3016 sc->priority); 3017 sc->nr_scanned = 0; 3018 shrink_zones(zonelist, sc); 3019 3020 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3021 break; 3022 3023 if (sc->compaction_ready) 3024 break; 3025 3026 /* 3027 * If we're getting trouble reclaiming, start doing 3028 * writepage even in laptop mode. 3029 */ 3030 if (sc->priority < DEF_PRIORITY - 2) 3031 sc->may_writepage = 1; 3032 } while (--sc->priority >= 0); 3033 3034 last_pgdat = NULL; 3035 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3036 sc->nodemask) { 3037 if (zone->zone_pgdat == last_pgdat) 3038 continue; 3039 last_pgdat = zone->zone_pgdat; 3040 3041 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3042 3043 if (cgroup_reclaim(sc)) { 3044 struct lruvec *lruvec; 3045 3046 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3047 zone->zone_pgdat); 3048 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3049 } 3050 } 3051 3052 delayacct_freepages_end(); 3053 3054 if (sc->nr_reclaimed) 3055 return sc->nr_reclaimed; 3056 3057 /* Aborted reclaim to try compaction? don't OOM, then */ 3058 if (sc->compaction_ready) 3059 return 1; 3060 3061 /* 3062 * We make inactive:active ratio decisions based on the node's 3063 * composition of memory, but a restrictive reclaim_idx or a 3064 * memory.low cgroup setting can exempt large amounts of 3065 * memory from reclaim. Neither of which are very common, so 3066 * instead of doing costly eligibility calculations of the 3067 * entire cgroup subtree up front, we assume the estimates are 3068 * good, and retry with forcible deactivation if that fails. 3069 */ 3070 if (sc->skipped_deactivate) { 3071 sc->priority = initial_priority; 3072 sc->force_deactivate = 1; 3073 sc->skipped_deactivate = 0; 3074 goto retry; 3075 } 3076 3077 /* Untapped cgroup reserves? Don't OOM, retry. */ 3078 if (sc->memcg_low_skipped) { 3079 sc->priority = initial_priority; 3080 sc->force_deactivate = 0; 3081 sc->memcg_low_reclaim = 1; 3082 sc->memcg_low_skipped = 0; 3083 goto retry; 3084 } 3085 3086 return 0; 3087 } 3088 3089 static bool allow_direct_reclaim(pg_data_t *pgdat) 3090 { 3091 struct zone *zone; 3092 unsigned long pfmemalloc_reserve = 0; 3093 unsigned long free_pages = 0; 3094 int i; 3095 bool wmark_ok; 3096 3097 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3098 return true; 3099 3100 for (i = 0; i <= ZONE_NORMAL; i++) { 3101 zone = &pgdat->node_zones[i]; 3102 if (!managed_zone(zone)) 3103 continue; 3104 3105 if (!zone_reclaimable_pages(zone)) 3106 continue; 3107 3108 pfmemalloc_reserve += min_wmark_pages(zone); 3109 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3110 } 3111 3112 /* If there are no reserves (unexpected config) then do not throttle */ 3113 if (!pfmemalloc_reserve) 3114 return true; 3115 3116 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3117 3118 /* kswapd must be awake if processes are being throttled */ 3119 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3120 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3121 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3122 3123 wake_up_interruptible(&pgdat->kswapd_wait); 3124 } 3125 3126 return wmark_ok; 3127 } 3128 3129 /* 3130 * Throttle direct reclaimers if backing storage is backed by the network 3131 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3132 * depleted. kswapd will continue to make progress and wake the processes 3133 * when the low watermark is reached. 3134 * 3135 * Returns true if a fatal signal was delivered during throttling. If this 3136 * happens, the page allocator should not consider triggering the OOM killer. 3137 */ 3138 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3139 nodemask_t *nodemask) 3140 { 3141 struct zoneref *z; 3142 struct zone *zone; 3143 pg_data_t *pgdat = NULL; 3144 3145 /* 3146 * Kernel threads should not be throttled as they may be indirectly 3147 * responsible for cleaning pages necessary for reclaim to make forward 3148 * progress. kjournald for example may enter direct reclaim while 3149 * committing a transaction where throttling it could forcing other 3150 * processes to block on log_wait_commit(). 3151 */ 3152 if (current->flags & PF_KTHREAD) 3153 goto out; 3154 3155 /* 3156 * If a fatal signal is pending, this process should not throttle. 3157 * It should return quickly so it can exit and free its memory 3158 */ 3159 if (fatal_signal_pending(current)) 3160 goto out; 3161 3162 /* 3163 * Check if the pfmemalloc reserves are ok by finding the first node 3164 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3165 * GFP_KERNEL will be required for allocating network buffers when 3166 * swapping over the network so ZONE_HIGHMEM is unusable. 3167 * 3168 * Throttling is based on the first usable node and throttled processes 3169 * wait on a queue until kswapd makes progress and wakes them. There 3170 * is an affinity then between processes waking up and where reclaim 3171 * progress has been made assuming the process wakes on the same node. 3172 * More importantly, processes running on remote nodes will not compete 3173 * for remote pfmemalloc reserves and processes on different nodes 3174 * should make reasonable progress. 3175 */ 3176 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3177 gfp_zone(gfp_mask), nodemask) { 3178 if (zone_idx(zone) > ZONE_NORMAL) 3179 continue; 3180 3181 /* Throttle based on the first usable node */ 3182 pgdat = zone->zone_pgdat; 3183 if (allow_direct_reclaim(pgdat)) 3184 goto out; 3185 break; 3186 } 3187 3188 /* If no zone was usable by the allocation flags then do not throttle */ 3189 if (!pgdat) 3190 goto out; 3191 3192 /* Account for the throttling */ 3193 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3194 3195 /* 3196 * If the caller cannot enter the filesystem, it's possible that it 3197 * is due to the caller holding an FS lock or performing a journal 3198 * transaction in the case of a filesystem like ext[3|4]. In this case, 3199 * it is not safe to block on pfmemalloc_wait as kswapd could be 3200 * blocked waiting on the same lock. Instead, throttle for up to a 3201 * second before continuing. 3202 */ 3203 if (!(gfp_mask & __GFP_FS)) { 3204 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3205 allow_direct_reclaim(pgdat), HZ); 3206 3207 goto check_pending; 3208 } 3209 3210 /* Throttle until kswapd wakes the process */ 3211 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3212 allow_direct_reclaim(pgdat)); 3213 3214 check_pending: 3215 if (fatal_signal_pending(current)) 3216 return true; 3217 3218 out: 3219 return false; 3220 } 3221 3222 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3223 gfp_t gfp_mask, nodemask_t *nodemask) 3224 { 3225 unsigned long nr_reclaimed; 3226 struct scan_control sc = { 3227 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3228 .gfp_mask = current_gfp_context(gfp_mask), 3229 .reclaim_idx = gfp_zone(gfp_mask), 3230 .order = order, 3231 .nodemask = nodemask, 3232 .priority = DEF_PRIORITY, 3233 .may_writepage = !laptop_mode, 3234 .may_unmap = 1, 3235 .may_swap = 1, 3236 }; 3237 3238 /* 3239 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3240 * Confirm they are large enough for max values. 3241 */ 3242 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3243 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3244 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3245 3246 /* 3247 * Do not enter reclaim if fatal signal was delivered while throttled. 3248 * 1 is returned so that the page allocator does not OOM kill at this 3249 * point. 3250 */ 3251 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3252 return 1; 3253 3254 set_task_reclaim_state(current, &sc.reclaim_state); 3255 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3256 3257 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3258 3259 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3260 set_task_reclaim_state(current, NULL); 3261 3262 return nr_reclaimed; 3263 } 3264 3265 #ifdef CONFIG_MEMCG 3266 3267 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3268 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3269 gfp_t gfp_mask, bool noswap, 3270 pg_data_t *pgdat, 3271 unsigned long *nr_scanned) 3272 { 3273 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3274 struct scan_control sc = { 3275 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3276 .target_mem_cgroup = memcg, 3277 .may_writepage = !laptop_mode, 3278 .may_unmap = 1, 3279 .reclaim_idx = MAX_NR_ZONES - 1, 3280 .may_swap = !noswap, 3281 }; 3282 3283 WARN_ON_ONCE(!current->reclaim_state); 3284 3285 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3286 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3287 3288 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3289 sc.gfp_mask); 3290 3291 /* 3292 * NOTE: Although we can get the priority field, using it 3293 * here is not a good idea, since it limits the pages we can scan. 3294 * if we don't reclaim here, the shrink_node from balance_pgdat 3295 * will pick up pages from other mem cgroup's as well. We hack 3296 * the priority and make it zero. 3297 */ 3298 shrink_lruvec(lruvec, &sc); 3299 3300 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3301 3302 *nr_scanned = sc.nr_scanned; 3303 3304 return sc.nr_reclaimed; 3305 } 3306 3307 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3308 unsigned long nr_pages, 3309 gfp_t gfp_mask, 3310 bool may_swap) 3311 { 3312 unsigned long nr_reclaimed; 3313 unsigned int noreclaim_flag; 3314 struct scan_control sc = { 3315 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3316 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3317 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3318 .reclaim_idx = MAX_NR_ZONES - 1, 3319 .target_mem_cgroup = memcg, 3320 .priority = DEF_PRIORITY, 3321 .may_writepage = !laptop_mode, 3322 .may_unmap = 1, 3323 .may_swap = may_swap, 3324 }; 3325 /* 3326 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3327 * equal pressure on all the nodes. This is based on the assumption that 3328 * the reclaim does not bail out early. 3329 */ 3330 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3331 3332 set_task_reclaim_state(current, &sc.reclaim_state); 3333 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3334 noreclaim_flag = memalloc_noreclaim_save(); 3335 3336 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3337 3338 memalloc_noreclaim_restore(noreclaim_flag); 3339 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3340 set_task_reclaim_state(current, NULL); 3341 3342 return nr_reclaimed; 3343 } 3344 #endif 3345 3346 static void age_active_anon(struct pglist_data *pgdat, 3347 struct scan_control *sc) 3348 { 3349 struct mem_cgroup *memcg; 3350 struct lruvec *lruvec; 3351 3352 if (!total_swap_pages) 3353 return; 3354 3355 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3356 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3357 return; 3358 3359 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3360 do { 3361 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3362 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3363 sc, LRU_ACTIVE_ANON); 3364 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3365 } while (memcg); 3366 } 3367 3368 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3369 { 3370 int i; 3371 struct zone *zone; 3372 3373 /* 3374 * Check for watermark boosts top-down as the higher zones 3375 * are more likely to be boosted. Both watermarks and boosts 3376 * should not be checked at the same time as reclaim would 3377 * start prematurely when there is no boosting and a lower 3378 * zone is balanced. 3379 */ 3380 for (i = highest_zoneidx; i >= 0; i--) { 3381 zone = pgdat->node_zones + i; 3382 if (!managed_zone(zone)) 3383 continue; 3384 3385 if (zone->watermark_boost) 3386 return true; 3387 } 3388 3389 return false; 3390 } 3391 3392 /* 3393 * Returns true if there is an eligible zone balanced for the request order 3394 * and highest_zoneidx 3395 */ 3396 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3397 { 3398 int i; 3399 unsigned long mark = -1; 3400 struct zone *zone; 3401 3402 /* 3403 * Check watermarks bottom-up as lower zones are more likely to 3404 * meet watermarks. 3405 */ 3406 for (i = 0; i <= highest_zoneidx; i++) { 3407 zone = pgdat->node_zones + i; 3408 3409 if (!managed_zone(zone)) 3410 continue; 3411 3412 mark = high_wmark_pages(zone); 3413 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3414 return true; 3415 } 3416 3417 /* 3418 * If a node has no populated zone within highest_zoneidx, it does not 3419 * need balancing by definition. This can happen if a zone-restricted 3420 * allocation tries to wake a remote kswapd. 3421 */ 3422 if (mark == -1) 3423 return true; 3424 3425 return false; 3426 } 3427 3428 /* Clear pgdat state for congested, dirty or under writeback. */ 3429 static void clear_pgdat_congested(pg_data_t *pgdat) 3430 { 3431 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3432 3433 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3434 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3435 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3436 } 3437 3438 /* 3439 * Prepare kswapd for sleeping. This verifies that there are no processes 3440 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3441 * 3442 * Returns true if kswapd is ready to sleep 3443 */ 3444 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3445 int highest_zoneidx) 3446 { 3447 /* 3448 * The throttled processes are normally woken up in balance_pgdat() as 3449 * soon as allow_direct_reclaim() is true. But there is a potential 3450 * race between when kswapd checks the watermarks and a process gets 3451 * throttled. There is also a potential race if processes get 3452 * throttled, kswapd wakes, a large process exits thereby balancing the 3453 * zones, which causes kswapd to exit balance_pgdat() before reaching 3454 * the wake up checks. If kswapd is going to sleep, no process should 3455 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3456 * the wake up is premature, processes will wake kswapd and get 3457 * throttled again. The difference from wake ups in balance_pgdat() is 3458 * that here we are under prepare_to_wait(). 3459 */ 3460 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3461 wake_up_all(&pgdat->pfmemalloc_wait); 3462 3463 /* Hopeless node, leave it to direct reclaim */ 3464 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3465 return true; 3466 3467 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3468 clear_pgdat_congested(pgdat); 3469 return true; 3470 } 3471 3472 return false; 3473 } 3474 3475 /* 3476 * kswapd shrinks a node of pages that are at or below the highest usable 3477 * zone that is currently unbalanced. 3478 * 3479 * Returns true if kswapd scanned at least the requested number of pages to 3480 * reclaim or if the lack of progress was due to pages under writeback. 3481 * This is used to determine if the scanning priority needs to be raised. 3482 */ 3483 static bool kswapd_shrink_node(pg_data_t *pgdat, 3484 struct scan_control *sc) 3485 { 3486 struct zone *zone; 3487 int z; 3488 3489 /* Reclaim a number of pages proportional to the number of zones */ 3490 sc->nr_to_reclaim = 0; 3491 for (z = 0; z <= sc->reclaim_idx; z++) { 3492 zone = pgdat->node_zones + z; 3493 if (!managed_zone(zone)) 3494 continue; 3495 3496 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3497 } 3498 3499 /* 3500 * Historically care was taken to put equal pressure on all zones but 3501 * now pressure is applied based on node LRU order. 3502 */ 3503 shrink_node(pgdat, sc); 3504 3505 /* 3506 * Fragmentation may mean that the system cannot be rebalanced for 3507 * high-order allocations. If twice the allocation size has been 3508 * reclaimed then recheck watermarks only at order-0 to prevent 3509 * excessive reclaim. Assume that a process requested a high-order 3510 * can direct reclaim/compact. 3511 */ 3512 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3513 sc->order = 0; 3514 3515 return sc->nr_scanned >= sc->nr_to_reclaim; 3516 } 3517 3518 /* 3519 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3520 * that are eligible for use by the caller until at least one zone is 3521 * balanced. 3522 * 3523 * Returns the order kswapd finished reclaiming at. 3524 * 3525 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3526 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3527 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3528 * or lower is eligible for reclaim until at least one usable zone is 3529 * balanced. 3530 */ 3531 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3532 { 3533 int i; 3534 unsigned long nr_soft_reclaimed; 3535 unsigned long nr_soft_scanned; 3536 unsigned long pflags; 3537 unsigned long nr_boost_reclaim; 3538 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3539 bool boosted; 3540 struct zone *zone; 3541 struct scan_control sc = { 3542 .gfp_mask = GFP_KERNEL, 3543 .order = order, 3544 .may_unmap = 1, 3545 }; 3546 3547 set_task_reclaim_state(current, &sc.reclaim_state); 3548 psi_memstall_enter(&pflags); 3549 __fs_reclaim_acquire(); 3550 3551 count_vm_event(PAGEOUTRUN); 3552 3553 /* 3554 * Account for the reclaim boost. Note that the zone boost is left in 3555 * place so that parallel allocations that are near the watermark will 3556 * stall or direct reclaim until kswapd is finished. 3557 */ 3558 nr_boost_reclaim = 0; 3559 for (i = 0; i <= highest_zoneidx; i++) { 3560 zone = pgdat->node_zones + i; 3561 if (!managed_zone(zone)) 3562 continue; 3563 3564 nr_boost_reclaim += zone->watermark_boost; 3565 zone_boosts[i] = zone->watermark_boost; 3566 } 3567 boosted = nr_boost_reclaim; 3568 3569 restart: 3570 sc.priority = DEF_PRIORITY; 3571 do { 3572 unsigned long nr_reclaimed = sc.nr_reclaimed; 3573 bool raise_priority = true; 3574 bool balanced; 3575 bool ret; 3576 3577 sc.reclaim_idx = highest_zoneidx; 3578 3579 /* 3580 * If the number of buffer_heads exceeds the maximum allowed 3581 * then consider reclaiming from all zones. This has a dual 3582 * purpose -- on 64-bit systems it is expected that 3583 * buffer_heads are stripped during active rotation. On 32-bit 3584 * systems, highmem pages can pin lowmem memory and shrinking 3585 * buffers can relieve lowmem pressure. Reclaim may still not 3586 * go ahead if all eligible zones for the original allocation 3587 * request are balanced to avoid excessive reclaim from kswapd. 3588 */ 3589 if (buffer_heads_over_limit) { 3590 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3591 zone = pgdat->node_zones + i; 3592 if (!managed_zone(zone)) 3593 continue; 3594 3595 sc.reclaim_idx = i; 3596 break; 3597 } 3598 } 3599 3600 /* 3601 * If the pgdat is imbalanced then ignore boosting and preserve 3602 * the watermarks for a later time and restart. Note that the 3603 * zone watermarks will be still reset at the end of balancing 3604 * on the grounds that the normal reclaim should be enough to 3605 * re-evaluate if boosting is required when kswapd next wakes. 3606 */ 3607 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3608 if (!balanced && nr_boost_reclaim) { 3609 nr_boost_reclaim = 0; 3610 goto restart; 3611 } 3612 3613 /* 3614 * If boosting is not active then only reclaim if there are no 3615 * eligible zones. Note that sc.reclaim_idx is not used as 3616 * buffer_heads_over_limit may have adjusted it. 3617 */ 3618 if (!nr_boost_reclaim && balanced) 3619 goto out; 3620 3621 /* Limit the priority of boosting to avoid reclaim writeback */ 3622 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3623 raise_priority = false; 3624 3625 /* 3626 * Do not writeback or swap pages for boosted reclaim. The 3627 * intent is to relieve pressure not issue sub-optimal IO 3628 * from reclaim context. If no pages are reclaimed, the 3629 * reclaim will be aborted. 3630 */ 3631 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3632 sc.may_swap = !nr_boost_reclaim; 3633 3634 /* 3635 * Do some background aging of the anon list, to give 3636 * pages a chance to be referenced before reclaiming. All 3637 * pages are rotated regardless of classzone as this is 3638 * about consistent aging. 3639 */ 3640 age_active_anon(pgdat, &sc); 3641 3642 /* 3643 * If we're getting trouble reclaiming, start doing writepage 3644 * even in laptop mode. 3645 */ 3646 if (sc.priority < DEF_PRIORITY - 2) 3647 sc.may_writepage = 1; 3648 3649 /* Call soft limit reclaim before calling shrink_node. */ 3650 sc.nr_scanned = 0; 3651 nr_soft_scanned = 0; 3652 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3653 sc.gfp_mask, &nr_soft_scanned); 3654 sc.nr_reclaimed += nr_soft_reclaimed; 3655 3656 /* 3657 * There should be no need to raise the scanning priority if 3658 * enough pages are already being scanned that that high 3659 * watermark would be met at 100% efficiency. 3660 */ 3661 if (kswapd_shrink_node(pgdat, &sc)) 3662 raise_priority = false; 3663 3664 /* 3665 * If the low watermark is met there is no need for processes 3666 * to be throttled on pfmemalloc_wait as they should not be 3667 * able to safely make forward progress. Wake them 3668 */ 3669 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3670 allow_direct_reclaim(pgdat)) 3671 wake_up_all(&pgdat->pfmemalloc_wait); 3672 3673 /* Check if kswapd should be suspending */ 3674 __fs_reclaim_release(); 3675 ret = try_to_freeze(); 3676 __fs_reclaim_acquire(); 3677 if (ret || kthread_should_stop()) 3678 break; 3679 3680 /* 3681 * Raise priority if scanning rate is too low or there was no 3682 * progress in reclaiming pages 3683 */ 3684 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3685 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3686 3687 /* 3688 * If reclaim made no progress for a boost, stop reclaim as 3689 * IO cannot be queued and it could be an infinite loop in 3690 * extreme circumstances. 3691 */ 3692 if (nr_boost_reclaim && !nr_reclaimed) 3693 break; 3694 3695 if (raise_priority || !nr_reclaimed) 3696 sc.priority--; 3697 } while (sc.priority >= 1); 3698 3699 if (!sc.nr_reclaimed) 3700 pgdat->kswapd_failures++; 3701 3702 out: 3703 /* If reclaim was boosted, account for the reclaim done in this pass */ 3704 if (boosted) { 3705 unsigned long flags; 3706 3707 for (i = 0; i <= highest_zoneidx; i++) { 3708 if (!zone_boosts[i]) 3709 continue; 3710 3711 /* Increments are under the zone lock */ 3712 zone = pgdat->node_zones + i; 3713 spin_lock_irqsave(&zone->lock, flags); 3714 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3715 spin_unlock_irqrestore(&zone->lock, flags); 3716 } 3717 3718 /* 3719 * As there is now likely space, wakeup kcompact to defragment 3720 * pageblocks. 3721 */ 3722 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3723 } 3724 3725 snapshot_refaults(NULL, pgdat); 3726 __fs_reclaim_release(); 3727 psi_memstall_leave(&pflags); 3728 set_task_reclaim_state(current, NULL); 3729 3730 /* 3731 * Return the order kswapd stopped reclaiming at as 3732 * prepare_kswapd_sleep() takes it into account. If another caller 3733 * entered the allocator slow path while kswapd was awake, order will 3734 * remain at the higher level. 3735 */ 3736 return sc.order; 3737 } 3738 3739 /* 3740 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3741 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3742 * not a valid index then either kswapd runs for first time or kswapd couldn't 3743 * sleep after previous reclaim attempt (node is still unbalanced). In that 3744 * case return the zone index of the previous kswapd reclaim cycle. 3745 */ 3746 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3747 enum zone_type prev_highest_zoneidx) 3748 { 3749 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3750 3751 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3752 } 3753 3754 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3755 unsigned int highest_zoneidx) 3756 { 3757 long remaining = 0; 3758 DEFINE_WAIT(wait); 3759 3760 if (freezing(current) || kthread_should_stop()) 3761 return; 3762 3763 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3764 3765 /* 3766 * Try to sleep for a short interval. Note that kcompactd will only be 3767 * woken if it is possible to sleep for a short interval. This is 3768 * deliberate on the assumption that if reclaim cannot keep an 3769 * eligible zone balanced that it's also unlikely that compaction will 3770 * succeed. 3771 */ 3772 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3773 /* 3774 * Compaction records what page blocks it recently failed to 3775 * isolate pages from and skips them in the future scanning. 3776 * When kswapd is going to sleep, it is reasonable to assume 3777 * that pages and compaction may succeed so reset the cache. 3778 */ 3779 reset_isolation_suitable(pgdat); 3780 3781 /* 3782 * We have freed the memory, now we should compact it to make 3783 * allocation of the requested order possible. 3784 */ 3785 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3786 3787 remaining = schedule_timeout(HZ/10); 3788 3789 /* 3790 * If woken prematurely then reset kswapd_highest_zoneidx and 3791 * order. The values will either be from a wakeup request or 3792 * the previous request that slept prematurely. 3793 */ 3794 if (remaining) { 3795 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3796 kswapd_highest_zoneidx(pgdat, 3797 highest_zoneidx)); 3798 3799 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3800 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3801 } 3802 3803 finish_wait(&pgdat->kswapd_wait, &wait); 3804 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3805 } 3806 3807 /* 3808 * After a short sleep, check if it was a premature sleep. If not, then 3809 * go fully to sleep until explicitly woken up. 3810 */ 3811 if (!remaining && 3812 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3813 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3814 3815 /* 3816 * vmstat counters are not perfectly accurate and the estimated 3817 * value for counters such as NR_FREE_PAGES can deviate from the 3818 * true value by nr_online_cpus * threshold. To avoid the zone 3819 * watermarks being breached while under pressure, we reduce the 3820 * per-cpu vmstat threshold while kswapd is awake and restore 3821 * them before going back to sleep. 3822 */ 3823 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3824 3825 if (!kthread_should_stop()) 3826 schedule(); 3827 3828 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3829 } else { 3830 if (remaining) 3831 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3832 else 3833 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3834 } 3835 finish_wait(&pgdat->kswapd_wait, &wait); 3836 } 3837 3838 /* 3839 * The background pageout daemon, started as a kernel thread 3840 * from the init process. 3841 * 3842 * This basically trickles out pages so that we have _some_ 3843 * free memory available even if there is no other activity 3844 * that frees anything up. This is needed for things like routing 3845 * etc, where we otherwise might have all activity going on in 3846 * asynchronous contexts that cannot page things out. 3847 * 3848 * If there are applications that are active memory-allocators 3849 * (most normal use), this basically shouldn't matter. 3850 */ 3851 static int kswapd(void *p) 3852 { 3853 unsigned int alloc_order, reclaim_order; 3854 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3855 pg_data_t *pgdat = (pg_data_t*)p; 3856 struct task_struct *tsk = current; 3857 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3858 3859 if (!cpumask_empty(cpumask)) 3860 set_cpus_allowed_ptr(tsk, cpumask); 3861 3862 /* 3863 * Tell the memory management that we're a "memory allocator", 3864 * and that if we need more memory we should get access to it 3865 * regardless (see "__alloc_pages()"). "kswapd" should 3866 * never get caught in the normal page freeing logic. 3867 * 3868 * (Kswapd normally doesn't need memory anyway, but sometimes 3869 * you need a small amount of memory in order to be able to 3870 * page out something else, and this flag essentially protects 3871 * us from recursively trying to free more memory as we're 3872 * trying to free the first piece of memory in the first place). 3873 */ 3874 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3875 set_freezable(); 3876 3877 WRITE_ONCE(pgdat->kswapd_order, 0); 3878 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3879 for ( ; ; ) { 3880 bool ret; 3881 3882 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3883 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3884 highest_zoneidx); 3885 3886 kswapd_try_sleep: 3887 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3888 highest_zoneidx); 3889 3890 /* Read the new order and highest_zoneidx */ 3891 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3892 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3893 highest_zoneidx); 3894 WRITE_ONCE(pgdat->kswapd_order, 0); 3895 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3896 3897 ret = try_to_freeze(); 3898 if (kthread_should_stop()) 3899 break; 3900 3901 /* 3902 * We can speed up thawing tasks if we don't call balance_pgdat 3903 * after returning from the refrigerator 3904 */ 3905 if (ret) 3906 continue; 3907 3908 /* 3909 * Reclaim begins at the requested order but if a high-order 3910 * reclaim fails then kswapd falls back to reclaiming for 3911 * order-0. If that happens, kswapd will consider sleeping 3912 * for the order it finished reclaiming at (reclaim_order) 3913 * but kcompactd is woken to compact for the original 3914 * request (alloc_order). 3915 */ 3916 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3917 alloc_order); 3918 reclaim_order = balance_pgdat(pgdat, alloc_order, 3919 highest_zoneidx); 3920 if (reclaim_order < alloc_order) 3921 goto kswapd_try_sleep; 3922 } 3923 3924 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3925 3926 return 0; 3927 } 3928 3929 /* 3930 * A zone is low on free memory or too fragmented for high-order memory. If 3931 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3932 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3933 * has failed or is not needed, still wake up kcompactd if only compaction is 3934 * needed. 3935 */ 3936 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3937 enum zone_type highest_zoneidx) 3938 { 3939 pg_data_t *pgdat; 3940 enum zone_type curr_idx; 3941 3942 if (!managed_zone(zone)) 3943 return; 3944 3945 if (!cpuset_zone_allowed(zone, gfp_flags)) 3946 return; 3947 3948 pgdat = zone->zone_pgdat; 3949 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3950 3951 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3952 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3953 3954 if (READ_ONCE(pgdat->kswapd_order) < order) 3955 WRITE_ONCE(pgdat->kswapd_order, order); 3956 3957 if (!waitqueue_active(&pgdat->kswapd_wait)) 3958 return; 3959 3960 /* Hopeless node, leave it to direct reclaim if possible */ 3961 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3962 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3963 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3964 /* 3965 * There may be plenty of free memory available, but it's too 3966 * fragmented for high-order allocations. Wake up kcompactd 3967 * and rely on compaction_suitable() to determine if it's 3968 * needed. If it fails, it will defer subsequent attempts to 3969 * ratelimit its work. 3970 */ 3971 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3972 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3973 return; 3974 } 3975 3976 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3977 gfp_flags); 3978 wake_up_interruptible(&pgdat->kswapd_wait); 3979 } 3980 3981 #ifdef CONFIG_HIBERNATION 3982 /* 3983 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3984 * freed pages. 3985 * 3986 * Rather than trying to age LRUs the aim is to preserve the overall 3987 * LRU order by reclaiming preferentially 3988 * inactive > active > active referenced > active mapped 3989 */ 3990 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3991 { 3992 struct scan_control sc = { 3993 .nr_to_reclaim = nr_to_reclaim, 3994 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3995 .reclaim_idx = MAX_NR_ZONES - 1, 3996 .priority = DEF_PRIORITY, 3997 .may_writepage = 1, 3998 .may_unmap = 1, 3999 .may_swap = 1, 4000 .hibernation_mode = 1, 4001 }; 4002 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4003 unsigned long nr_reclaimed; 4004 unsigned int noreclaim_flag; 4005 4006 fs_reclaim_acquire(sc.gfp_mask); 4007 noreclaim_flag = memalloc_noreclaim_save(); 4008 set_task_reclaim_state(current, &sc.reclaim_state); 4009 4010 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4011 4012 set_task_reclaim_state(current, NULL); 4013 memalloc_noreclaim_restore(noreclaim_flag); 4014 fs_reclaim_release(sc.gfp_mask); 4015 4016 return nr_reclaimed; 4017 } 4018 #endif /* CONFIG_HIBERNATION */ 4019 4020 /* 4021 * This kswapd start function will be called by init and node-hot-add. 4022 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4023 */ 4024 int kswapd_run(int nid) 4025 { 4026 pg_data_t *pgdat = NODE_DATA(nid); 4027 int ret = 0; 4028 4029 if (pgdat->kswapd) 4030 return 0; 4031 4032 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4033 if (IS_ERR(pgdat->kswapd)) { 4034 /* failure at boot is fatal */ 4035 BUG_ON(system_state < SYSTEM_RUNNING); 4036 pr_err("Failed to start kswapd on node %d\n", nid); 4037 ret = PTR_ERR(pgdat->kswapd); 4038 pgdat->kswapd = NULL; 4039 } 4040 return ret; 4041 } 4042 4043 /* 4044 * Called by memory hotplug when all memory in a node is offlined. Caller must 4045 * hold mem_hotplug_begin/end(). 4046 */ 4047 void kswapd_stop(int nid) 4048 { 4049 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4050 4051 if (kswapd) { 4052 kthread_stop(kswapd); 4053 NODE_DATA(nid)->kswapd = NULL; 4054 } 4055 } 4056 4057 static int __init kswapd_init(void) 4058 { 4059 int nid; 4060 4061 swap_setup(); 4062 for_each_node_state(nid, N_MEMORY) 4063 kswapd_run(nid); 4064 return 0; 4065 } 4066 4067 module_init(kswapd_init) 4068 4069 #ifdef CONFIG_NUMA 4070 /* 4071 * Node reclaim mode 4072 * 4073 * If non-zero call node_reclaim when the number of free pages falls below 4074 * the watermarks. 4075 */ 4076 int node_reclaim_mode __read_mostly; 4077 4078 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4079 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4080 4081 /* 4082 * Priority for NODE_RECLAIM. This determines the fraction of pages 4083 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4084 * a zone. 4085 */ 4086 #define NODE_RECLAIM_PRIORITY 4 4087 4088 /* 4089 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4090 * occur. 4091 */ 4092 int sysctl_min_unmapped_ratio = 1; 4093 4094 /* 4095 * If the number of slab pages in a zone grows beyond this percentage then 4096 * slab reclaim needs to occur. 4097 */ 4098 int sysctl_min_slab_ratio = 5; 4099 4100 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4101 { 4102 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4103 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4104 node_page_state(pgdat, NR_ACTIVE_FILE); 4105 4106 /* 4107 * It's possible for there to be more file mapped pages than 4108 * accounted for by the pages on the file LRU lists because 4109 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4110 */ 4111 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4112 } 4113 4114 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4115 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4116 { 4117 unsigned long nr_pagecache_reclaimable; 4118 unsigned long delta = 0; 4119 4120 /* 4121 * If RECLAIM_UNMAP is set, then all file pages are considered 4122 * potentially reclaimable. Otherwise, we have to worry about 4123 * pages like swapcache and node_unmapped_file_pages() provides 4124 * a better estimate 4125 */ 4126 if (node_reclaim_mode & RECLAIM_UNMAP) 4127 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4128 else 4129 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4130 4131 /* If we can't clean pages, remove dirty pages from consideration */ 4132 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4133 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4134 4135 /* Watch for any possible underflows due to delta */ 4136 if (unlikely(delta > nr_pagecache_reclaimable)) 4137 delta = nr_pagecache_reclaimable; 4138 4139 return nr_pagecache_reclaimable - delta; 4140 } 4141 4142 /* 4143 * Try to free up some pages from this node through reclaim. 4144 */ 4145 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4146 { 4147 /* Minimum pages needed in order to stay on node */ 4148 const unsigned long nr_pages = 1 << order; 4149 struct task_struct *p = current; 4150 unsigned int noreclaim_flag; 4151 struct scan_control sc = { 4152 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4153 .gfp_mask = current_gfp_context(gfp_mask), 4154 .order = order, 4155 .priority = NODE_RECLAIM_PRIORITY, 4156 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4157 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4158 .may_swap = 1, 4159 .reclaim_idx = gfp_zone(gfp_mask), 4160 }; 4161 4162 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4163 sc.gfp_mask); 4164 4165 cond_resched(); 4166 fs_reclaim_acquire(sc.gfp_mask); 4167 /* 4168 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4169 * and we also need to be able to write out pages for RECLAIM_WRITE 4170 * and RECLAIM_UNMAP. 4171 */ 4172 noreclaim_flag = memalloc_noreclaim_save(); 4173 p->flags |= PF_SWAPWRITE; 4174 set_task_reclaim_state(p, &sc.reclaim_state); 4175 4176 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4177 /* 4178 * Free memory by calling shrink node with increasing 4179 * priorities until we have enough memory freed. 4180 */ 4181 do { 4182 shrink_node(pgdat, &sc); 4183 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4184 } 4185 4186 set_task_reclaim_state(p, NULL); 4187 current->flags &= ~PF_SWAPWRITE; 4188 memalloc_noreclaim_restore(noreclaim_flag); 4189 fs_reclaim_release(sc.gfp_mask); 4190 4191 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4192 4193 return sc.nr_reclaimed >= nr_pages; 4194 } 4195 4196 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4197 { 4198 int ret; 4199 4200 /* 4201 * Node reclaim reclaims unmapped file backed pages and 4202 * slab pages if we are over the defined limits. 4203 * 4204 * A small portion of unmapped file backed pages is needed for 4205 * file I/O otherwise pages read by file I/O will be immediately 4206 * thrown out if the node is overallocated. So we do not reclaim 4207 * if less than a specified percentage of the node is used by 4208 * unmapped file backed pages. 4209 */ 4210 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4211 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4212 pgdat->min_slab_pages) 4213 return NODE_RECLAIM_FULL; 4214 4215 /* 4216 * Do not scan if the allocation should not be delayed. 4217 */ 4218 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4219 return NODE_RECLAIM_NOSCAN; 4220 4221 /* 4222 * Only run node reclaim on the local node or on nodes that do not 4223 * have associated processors. This will favor the local processor 4224 * over remote processors and spread off node memory allocations 4225 * as wide as possible. 4226 */ 4227 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4228 return NODE_RECLAIM_NOSCAN; 4229 4230 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4231 return NODE_RECLAIM_NOSCAN; 4232 4233 ret = __node_reclaim(pgdat, gfp_mask, order); 4234 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4235 4236 if (!ret) 4237 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4238 4239 return ret; 4240 } 4241 #endif 4242 4243 /** 4244 * check_move_unevictable_pages - check pages for evictability and move to 4245 * appropriate zone lru list 4246 * @pvec: pagevec with lru pages to check 4247 * 4248 * Checks pages for evictability, if an evictable page is in the unevictable 4249 * lru list, moves it to the appropriate evictable lru list. This function 4250 * should be only used for lru pages. 4251 */ 4252 void check_move_unevictable_pages(struct pagevec *pvec) 4253 { 4254 struct lruvec *lruvec; 4255 struct pglist_data *pgdat = NULL; 4256 int pgscanned = 0; 4257 int pgrescued = 0; 4258 int i; 4259 4260 for (i = 0; i < pvec->nr; i++) { 4261 struct page *page = pvec->pages[i]; 4262 struct pglist_data *pagepgdat = page_pgdat(page); 4263 4264 pgscanned++; 4265 if (pagepgdat != pgdat) { 4266 if (pgdat) 4267 spin_unlock_irq(&pgdat->lru_lock); 4268 pgdat = pagepgdat; 4269 spin_lock_irq(&pgdat->lru_lock); 4270 } 4271 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4272 4273 if (!PageLRU(page) || !PageUnevictable(page)) 4274 continue; 4275 4276 if (page_evictable(page)) { 4277 enum lru_list lru = page_lru_base_type(page); 4278 4279 VM_BUG_ON_PAGE(PageActive(page), page); 4280 ClearPageUnevictable(page); 4281 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4282 add_page_to_lru_list(page, lruvec, lru); 4283 pgrescued++; 4284 } 4285 } 4286 4287 if (pgdat) { 4288 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4289 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4290 spin_unlock_irq(&pgdat->lru_lock); 4291 } 4292 } 4293 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4294