xref: /openbmc/linux/mm/vmscan.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64 #include <linux/sched/sysctl.h>
65 
66 #include "internal.h"
67 #include "swap.h"
68 
69 #define CREATE_TRACE_POINTS
70 #include <trace/events/vmscan.h>
71 
72 struct scan_control {
73 	/* How many pages shrink_list() should reclaim */
74 	unsigned long nr_to_reclaim;
75 
76 	/*
77 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 	 * are scanned.
79 	 */
80 	nodemask_t	*nodemask;
81 
82 	/*
83 	 * The memory cgroup that hit its limit and as a result is the
84 	 * primary target of this reclaim invocation.
85 	 */
86 	struct mem_cgroup *target_mem_cgroup;
87 
88 	/*
89 	 * Scan pressure balancing between anon and file LRUs
90 	 */
91 	unsigned long	anon_cost;
92 	unsigned long	file_cost;
93 
94 	/* Can active folios be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 	unsigned int may_deactivate:2;
98 	unsigned int force_deactivate:1;
99 	unsigned int skipped_deactivate:1;
100 
101 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
102 	unsigned int may_writepage:1;
103 
104 	/* Can mapped folios be reclaimed? */
105 	unsigned int may_unmap:1;
106 
107 	/* Can folios be swapped as part of reclaim? */
108 	unsigned int may_swap:1;
109 
110 	/* Proactive reclaim invoked by userspace through memory.reclaim */
111 	unsigned int proactive:1;
112 
113 	/*
114 	 * Cgroup memory below memory.low is protected as long as we
115 	 * don't threaten to OOM. If any cgroup is reclaimed at
116 	 * reduced force or passed over entirely due to its memory.low
117 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 	 * result, then go back for one more cycle that reclaims the protected
119 	 * memory (memcg_low_reclaim) to avert OOM.
120 	 */
121 	unsigned int memcg_low_reclaim:1;
122 	unsigned int memcg_low_skipped:1;
123 
124 	unsigned int hibernation_mode:1;
125 
126 	/* One of the zones is ready for compaction */
127 	unsigned int compaction_ready:1;
128 
129 	/* There is easily reclaimable cold cache in the current node */
130 	unsigned int cache_trim_mode:1;
131 
132 	/* The file folios on the current node are dangerously low */
133 	unsigned int file_is_tiny:1;
134 
135 	/* Always discard instead of demoting to lower tier memory */
136 	unsigned int no_demotion:1;
137 
138 #ifdef CONFIG_LRU_GEN
139 	/* help kswapd make better choices among multiple memcgs */
140 	unsigned int memcgs_need_aging:1;
141 	unsigned long last_reclaimed;
142 #endif
143 
144 	/* Allocation order */
145 	s8 order;
146 
147 	/* Scan (total_size >> priority) pages at once */
148 	s8 priority;
149 
150 	/* The highest zone to isolate folios for reclaim from */
151 	s8 reclaim_idx;
152 
153 	/* This context's GFP mask */
154 	gfp_t gfp_mask;
155 
156 	/* Incremented by the number of inactive pages that were scanned */
157 	unsigned long nr_scanned;
158 
159 	/* Number of pages freed so far during a call to shrink_zones() */
160 	unsigned long nr_reclaimed;
161 
162 	struct {
163 		unsigned int dirty;
164 		unsigned int unqueued_dirty;
165 		unsigned int congested;
166 		unsigned int writeback;
167 		unsigned int immediate;
168 		unsigned int file_taken;
169 		unsigned int taken;
170 	} nr;
171 
172 	/* for recording the reclaimed slab by now */
173 	struct reclaim_state reclaim_state;
174 };
175 
176 #ifdef ARCH_HAS_PREFETCHW
177 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
178 	do {								\
179 		if ((_folio)->lru.prev != _base) {			\
180 			struct folio *prev;				\
181 									\
182 			prev = lru_to_folio(&(_folio->lru));		\
183 			prefetchw(&prev->_field);			\
184 		}							\
185 	} while (0)
186 #else
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 #endif
189 
190 /*
191  * From 0 .. 200.  Higher means more swappy.
192  */
193 int vm_swappiness = 60;
194 
195 static void set_task_reclaim_state(struct task_struct *task,
196 				   struct reclaim_state *rs)
197 {
198 	/* Check for an overwrite */
199 	WARN_ON_ONCE(rs && task->reclaim_state);
200 
201 	/* Check for the nulling of an already-nulled member */
202 	WARN_ON_ONCE(!rs && !task->reclaim_state);
203 
204 	task->reclaim_state = rs;
205 }
206 
207 LIST_HEAD(shrinker_list);
208 DECLARE_RWSEM(shrinker_rwsem);
209 
210 #ifdef CONFIG_MEMCG
211 static int shrinker_nr_max;
212 
213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
214 static inline int shrinker_map_size(int nr_items)
215 {
216 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
217 }
218 
219 static inline int shrinker_defer_size(int nr_items)
220 {
221 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
222 }
223 
224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
225 						     int nid)
226 {
227 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 					 lockdep_is_held(&shrinker_rwsem));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size)
234 {
235 	struct shrinker_info *new, *old;
236 	struct mem_cgroup_per_node *pn;
237 	int nid;
238 	int size = map_size + defer_size;
239 
240 	for_each_node(nid) {
241 		pn = memcg->nodeinfo[nid];
242 		old = shrinker_info_protected(memcg, nid);
243 		/* Not yet online memcg */
244 		if (!old)
245 			return 0;
246 
247 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
248 		if (!new)
249 			return -ENOMEM;
250 
251 		new->nr_deferred = (atomic_long_t *)(new + 1);
252 		new->map = (void *)new->nr_deferred + defer_size;
253 
254 		/* map: set all old bits, clear all new bits */
255 		memset(new->map, (int)0xff, old_map_size);
256 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 		/* nr_deferred: copy old values, clear all new values */
258 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 		memset((void *)new->nr_deferred + old_defer_size, 0,
260 		       defer_size - old_defer_size);
261 
262 		rcu_assign_pointer(pn->shrinker_info, new);
263 		kvfree_rcu(old, rcu);
264 	}
265 
266 	return 0;
267 }
268 
269 void free_shrinker_info(struct mem_cgroup *memcg)
270 {
271 	struct mem_cgroup_per_node *pn;
272 	struct shrinker_info *info;
273 	int nid;
274 
275 	for_each_node(nid) {
276 		pn = memcg->nodeinfo[nid];
277 		info = rcu_dereference_protected(pn->shrinker_info, true);
278 		kvfree(info);
279 		rcu_assign_pointer(pn->shrinker_info, NULL);
280 	}
281 }
282 
283 int alloc_shrinker_info(struct mem_cgroup *memcg)
284 {
285 	struct shrinker_info *info;
286 	int nid, size, ret = 0;
287 	int map_size, defer_size = 0;
288 
289 	down_write(&shrinker_rwsem);
290 	map_size = shrinker_map_size(shrinker_nr_max);
291 	defer_size = shrinker_defer_size(shrinker_nr_max);
292 	size = map_size + defer_size;
293 	for_each_node(nid) {
294 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
295 		if (!info) {
296 			free_shrinker_info(memcg);
297 			ret = -ENOMEM;
298 			break;
299 		}
300 		info->nr_deferred = (atomic_long_t *)(info + 1);
301 		info->map = (void *)info->nr_deferred + defer_size;
302 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
303 	}
304 	up_write(&shrinker_rwsem);
305 
306 	return ret;
307 }
308 
309 static inline bool need_expand(int nr_max)
310 {
311 	return round_up(nr_max, BITS_PER_LONG) >
312 	       round_up(shrinker_nr_max, BITS_PER_LONG);
313 }
314 
315 static int expand_shrinker_info(int new_id)
316 {
317 	int ret = 0;
318 	int new_nr_max = new_id + 1;
319 	int map_size, defer_size = 0;
320 	int old_map_size, old_defer_size = 0;
321 	struct mem_cgroup *memcg;
322 
323 	if (!need_expand(new_nr_max))
324 		goto out;
325 
326 	if (!root_mem_cgroup)
327 		goto out;
328 
329 	lockdep_assert_held(&shrinker_rwsem);
330 
331 	map_size = shrinker_map_size(new_nr_max);
332 	defer_size = shrinker_defer_size(new_nr_max);
333 	old_map_size = shrinker_map_size(shrinker_nr_max);
334 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
335 
336 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
337 	do {
338 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 					       old_map_size, old_defer_size);
340 		if (ret) {
341 			mem_cgroup_iter_break(NULL, memcg);
342 			goto out;
343 		}
344 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
345 out:
346 	if (!ret)
347 		shrinker_nr_max = new_nr_max;
348 
349 	return ret;
350 }
351 
352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 {
354 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
355 		struct shrinker_info *info;
356 
357 		rcu_read_lock();
358 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
359 		/* Pairs with smp mb in shrink_slab() */
360 		smp_mb__before_atomic();
361 		set_bit(shrinker_id, info->map);
362 		rcu_read_unlock();
363 	}
364 }
365 
366 static DEFINE_IDR(shrinker_idr);
367 
368 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
369 {
370 	int id, ret = -ENOMEM;
371 
372 	if (mem_cgroup_disabled())
373 		return -ENOSYS;
374 
375 	down_write(&shrinker_rwsem);
376 	/* This may call shrinker, so it must use down_read_trylock() */
377 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
378 	if (id < 0)
379 		goto unlock;
380 
381 	if (id >= shrinker_nr_max) {
382 		if (expand_shrinker_info(id)) {
383 			idr_remove(&shrinker_idr, id);
384 			goto unlock;
385 		}
386 	}
387 	shrinker->id = id;
388 	ret = 0;
389 unlock:
390 	up_write(&shrinker_rwsem);
391 	return ret;
392 }
393 
394 static void unregister_memcg_shrinker(struct shrinker *shrinker)
395 {
396 	int id = shrinker->id;
397 
398 	BUG_ON(id < 0);
399 
400 	lockdep_assert_held(&shrinker_rwsem);
401 
402 	idr_remove(&shrinker_idr, id);
403 }
404 
405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 				   struct mem_cgroup *memcg)
407 {
408 	struct shrinker_info *info;
409 
410 	info = shrinker_info_protected(memcg, nid);
411 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
412 }
413 
414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 				  struct mem_cgroup *memcg)
416 {
417 	struct shrinker_info *info;
418 
419 	info = shrinker_info_protected(memcg, nid);
420 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
421 }
422 
423 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
424 {
425 	int i, nid;
426 	long nr;
427 	struct mem_cgroup *parent;
428 	struct shrinker_info *child_info, *parent_info;
429 
430 	parent = parent_mem_cgroup(memcg);
431 	if (!parent)
432 		parent = root_mem_cgroup;
433 
434 	/* Prevent from concurrent shrinker_info expand */
435 	down_read(&shrinker_rwsem);
436 	for_each_node(nid) {
437 		child_info = shrinker_info_protected(memcg, nid);
438 		parent_info = shrinker_info_protected(parent, nid);
439 		for (i = 0; i < shrinker_nr_max; i++) {
440 			nr = atomic_long_read(&child_info->nr_deferred[i]);
441 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
442 		}
443 	}
444 	up_read(&shrinker_rwsem);
445 }
446 
447 static bool cgroup_reclaim(struct scan_control *sc)
448 {
449 	return sc->target_mem_cgroup;
450 }
451 
452 /**
453  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
454  * @sc: scan_control in question
455  *
456  * The normal page dirty throttling mechanism in balance_dirty_pages() is
457  * completely broken with the legacy memcg and direct stalling in
458  * shrink_folio_list() is used for throttling instead, which lacks all the
459  * niceties such as fairness, adaptive pausing, bandwidth proportional
460  * allocation and configurability.
461  *
462  * This function tests whether the vmscan currently in progress can assume
463  * that the normal dirty throttling mechanism is operational.
464  */
465 static bool writeback_throttling_sane(struct scan_control *sc)
466 {
467 	if (!cgroup_reclaim(sc))
468 		return true;
469 #ifdef CONFIG_CGROUP_WRITEBACK
470 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
471 		return true;
472 #endif
473 	return false;
474 }
475 #else
476 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
477 {
478 	return -ENOSYS;
479 }
480 
481 static void unregister_memcg_shrinker(struct shrinker *shrinker)
482 {
483 }
484 
485 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
486 				   struct mem_cgroup *memcg)
487 {
488 	return 0;
489 }
490 
491 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
492 				  struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static bool cgroup_reclaim(struct scan_control *sc)
498 {
499 	return false;
500 }
501 
502 static bool writeback_throttling_sane(struct scan_control *sc)
503 {
504 	return true;
505 }
506 #endif
507 
508 static long xchg_nr_deferred(struct shrinker *shrinker,
509 			     struct shrink_control *sc)
510 {
511 	int nid = sc->nid;
512 
513 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
514 		nid = 0;
515 
516 	if (sc->memcg &&
517 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
518 		return xchg_nr_deferred_memcg(nid, shrinker,
519 					      sc->memcg);
520 
521 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
522 }
523 
524 
525 static long add_nr_deferred(long nr, struct shrinker *shrinker,
526 			    struct shrink_control *sc)
527 {
528 	int nid = sc->nid;
529 
530 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
531 		nid = 0;
532 
533 	if (sc->memcg &&
534 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
535 		return add_nr_deferred_memcg(nr, nid, shrinker,
536 					     sc->memcg);
537 
538 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
539 }
540 
541 static bool can_demote(int nid, struct scan_control *sc)
542 {
543 	if (!numa_demotion_enabled)
544 		return false;
545 	if (sc && sc->no_demotion)
546 		return false;
547 	if (next_demotion_node(nid) == NUMA_NO_NODE)
548 		return false;
549 
550 	return true;
551 }
552 
553 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
554 					  int nid,
555 					  struct scan_control *sc)
556 {
557 	if (memcg == NULL) {
558 		/*
559 		 * For non-memcg reclaim, is there
560 		 * space in any swap device?
561 		 */
562 		if (get_nr_swap_pages() > 0)
563 			return true;
564 	} else {
565 		/* Is the memcg below its swap limit? */
566 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
567 			return true;
568 	}
569 
570 	/*
571 	 * The page can not be swapped.
572 	 *
573 	 * Can it be reclaimed from this node via demotion?
574 	 */
575 	return can_demote(nid, sc);
576 }
577 
578 /*
579  * This misses isolated folios which are not accounted for to save counters.
580  * As the data only determines if reclaim or compaction continues, it is
581  * not expected that isolated folios will be a dominating factor.
582  */
583 unsigned long zone_reclaimable_pages(struct zone *zone)
584 {
585 	unsigned long nr;
586 
587 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
588 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
589 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
590 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
591 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
592 
593 	return nr;
594 }
595 
596 /**
597  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
598  * @lruvec: lru vector
599  * @lru: lru to use
600  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
601  */
602 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
603 				     int zone_idx)
604 {
605 	unsigned long size = 0;
606 	int zid;
607 
608 	for (zid = 0; zid <= zone_idx; zid++) {
609 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
610 
611 		if (!managed_zone(zone))
612 			continue;
613 
614 		if (!mem_cgroup_disabled())
615 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
616 		else
617 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
618 	}
619 	return size;
620 }
621 
622 /*
623  * Add a shrinker callback to be called from the vm.
624  */
625 static int __prealloc_shrinker(struct shrinker *shrinker)
626 {
627 	unsigned int size;
628 	int err;
629 
630 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
631 		err = prealloc_memcg_shrinker(shrinker);
632 		if (err != -ENOSYS)
633 			return err;
634 
635 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
636 	}
637 
638 	size = sizeof(*shrinker->nr_deferred);
639 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
640 		size *= nr_node_ids;
641 
642 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
643 	if (!shrinker->nr_deferred)
644 		return -ENOMEM;
645 
646 	return 0;
647 }
648 
649 #ifdef CONFIG_SHRINKER_DEBUG
650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
651 {
652 	va_list ap;
653 	int err;
654 
655 	va_start(ap, fmt);
656 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
657 	va_end(ap);
658 	if (!shrinker->name)
659 		return -ENOMEM;
660 
661 	err = __prealloc_shrinker(shrinker);
662 	if (err) {
663 		kfree_const(shrinker->name);
664 		shrinker->name = NULL;
665 	}
666 
667 	return err;
668 }
669 #else
670 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
671 {
672 	return __prealloc_shrinker(shrinker);
673 }
674 #endif
675 
676 void free_prealloced_shrinker(struct shrinker *shrinker)
677 {
678 #ifdef CONFIG_SHRINKER_DEBUG
679 	kfree_const(shrinker->name);
680 	shrinker->name = NULL;
681 #endif
682 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
683 		down_write(&shrinker_rwsem);
684 		unregister_memcg_shrinker(shrinker);
685 		up_write(&shrinker_rwsem);
686 		return;
687 	}
688 
689 	kfree(shrinker->nr_deferred);
690 	shrinker->nr_deferred = NULL;
691 }
692 
693 void register_shrinker_prepared(struct shrinker *shrinker)
694 {
695 	down_write(&shrinker_rwsem);
696 	list_add_tail(&shrinker->list, &shrinker_list);
697 	shrinker->flags |= SHRINKER_REGISTERED;
698 	shrinker_debugfs_add(shrinker);
699 	up_write(&shrinker_rwsem);
700 }
701 
702 static int __register_shrinker(struct shrinker *shrinker)
703 {
704 	int err = __prealloc_shrinker(shrinker);
705 
706 	if (err)
707 		return err;
708 	register_shrinker_prepared(shrinker);
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __register_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 	return err;
730 }
731 #else
732 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
733 {
734 	return __register_shrinker(shrinker);
735 }
736 #endif
737 EXPORT_SYMBOL(register_shrinker);
738 
739 /*
740  * Remove one
741  */
742 void unregister_shrinker(struct shrinker *shrinker)
743 {
744 	struct dentry *debugfs_entry;
745 
746 	if (!(shrinker->flags & SHRINKER_REGISTERED))
747 		return;
748 
749 	down_write(&shrinker_rwsem);
750 	list_del(&shrinker->list);
751 	shrinker->flags &= ~SHRINKER_REGISTERED;
752 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
753 		unregister_memcg_shrinker(shrinker);
754 	debugfs_entry = shrinker_debugfs_remove(shrinker);
755 	up_write(&shrinker_rwsem);
756 
757 	debugfs_remove_recursive(debugfs_entry);
758 
759 	kfree(shrinker->nr_deferred);
760 	shrinker->nr_deferred = NULL;
761 }
762 EXPORT_SYMBOL(unregister_shrinker);
763 
764 /**
765  * synchronize_shrinkers - Wait for all running shrinkers to complete.
766  *
767  * This is equivalent to calling unregister_shrink() and register_shrinker(),
768  * but atomically and with less overhead. This is useful to guarantee that all
769  * shrinker invocations have seen an update, before freeing memory, similar to
770  * rcu.
771  */
772 void synchronize_shrinkers(void)
773 {
774 	down_write(&shrinker_rwsem);
775 	up_write(&shrinker_rwsem);
776 }
777 EXPORT_SYMBOL(synchronize_shrinkers);
778 
779 #define SHRINK_BATCH 128
780 
781 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
782 				    struct shrinker *shrinker, int priority)
783 {
784 	unsigned long freed = 0;
785 	unsigned long long delta;
786 	long total_scan;
787 	long freeable;
788 	long nr;
789 	long new_nr;
790 	long batch_size = shrinker->batch ? shrinker->batch
791 					  : SHRINK_BATCH;
792 	long scanned = 0, next_deferred;
793 
794 	freeable = shrinker->count_objects(shrinker, shrinkctl);
795 	if (freeable == 0 || freeable == SHRINK_EMPTY)
796 		return freeable;
797 
798 	/*
799 	 * copy the current shrinker scan count into a local variable
800 	 * and zero it so that other concurrent shrinker invocations
801 	 * don't also do this scanning work.
802 	 */
803 	nr = xchg_nr_deferred(shrinker, shrinkctl);
804 
805 	if (shrinker->seeks) {
806 		delta = freeable >> priority;
807 		delta *= 4;
808 		do_div(delta, shrinker->seeks);
809 	} else {
810 		/*
811 		 * These objects don't require any IO to create. Trim
812 		 * them aggressively under memory pressure to keep
813 		 * them from causing refetches in the IO caches.
814 		 */
815 		delta = freeable / 2;
816 	}
817 
818 	total_scan = nr >> priority;
819 	total_scan += delta;
820 	total_scan = min(total_scan, (2 * freeable));
821 
822 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
823 				   freeable, delta, total_scan, priority);
824 
825 	/*
826 	 * Normally, we should not scan less than batch_size objects in one
827 	 * pass to avoid too frequent shrinker calls, but if the slab has less
828 	 * than batch_size objects in total and we are really tight on memory,
829 	 * we will try to reclaim all available objects, otherwise we can end
830 	 * up failing allocations although there are plenty of reclaimable
831 	 * objects spread over several slabs with usage less than the
832 	 * batch_size.
833 	 *
834 	 * We detect the "tight on memory" situations by looking at the total
835 	 * number of objects we want to scan (total_scan). If it is greater
836 	 * than the total number of objects on slab (freeable), we must be
837 	 * scanning at high prio and therefore should try to reclaim as much as
838 	 * possible.
839 	 */
840 	while (total_scan >= batch_size ||
841 	       total_scan >= freeable) {
842 		unsigned long ret;
843 		unsigned long nr_to_scan = min(batch_size, total_scan);
844 
845 		shrinkctl->nr_to_scan = nr_to_scan;
846 		shrinkctl->nr_scanned = nr_to_scan;
847 		ret = shrinker->scan_objects(shrinker, shrinkctl);
848 		if (ret == SHRINK_STOP)
849 			break;
850 		freed += ret;
851 
852 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
853 		total_scan -= shrinkctl->nr_scanned;
854 		scanned += shrinkctl->nr_scanned;
855 
856 		cond_resched();
857 	}
858 
859 	/*
860 	 * The deferred work is increased by any new work (delta) that wasn't
861 	 * done, decreased by old deferred work that was done now.
862 	 *
863 	 * And it is capped to two times of the freeable items.
864 	 */
865 	next_deferred = max_t(long, (nr + delta - scanned), 0);
866 	next_deferred = min(next_deferred, (2 * freeable));
867 
868 	/*
869 	 * move the unused scan count back into the shrinker in a
870 	 * manner that handles concurrent updates.
871 	 */
872 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
873 
874 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
875 	return freed;
876 }
877 
878 #ifdef CONFIG_MEMCG
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 			struct mem_cgroup *memcg, int priority)
881 {
882 	struct shrinker_info *info;
883 	unsigned long ret, freed = 0;
884 	int i;
885 
886 	if (!mem_cgroup_online(memcg))
887 		return 0;
888 
889 	if (!down_read_trylock(&shrinker_rwsem))
890 		return 0;
891 
892 	info = shrinker_info_protected(memcg, nid);
893 	if (unlikely(!info))
894 		goto unlock;
895 
896 	for_each_set_bit(i, info->map, shrinker_nr_max) {
897 		struct shrink_control sc = {
898 			.gfp_mask = gfp_mask,
899 			.nid = nid,
900 			.memcg = memcg,
901 		};
902 		struct shrinker *shrinker;
903 
904 		shrinker = idr_find(&shrinker_idr, i);
905 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
906 			if (!shrinker)
907 				clear_bit(i, info->map);
908 			continue;
909 		}
910 
911 		/* Call non-slab shrinkers even though kmem is disabled */
912 		if (!memcg_kmem_enabled() &&
913 		    !(shrinker->flags & SHRINKER_NONSLAB))
914 			continue;
915 
916 		ret = do_shrink_slab(&sc, shrinker, priority);
917 		if (ret == SHRINK_EMPTY) {
918 			clear_bit(i, info->map);
919 			/*
920 			 * After the shrinker reported that it had no objects to
921 			 * free, but before we cleared the corresponding bit in
922 			 * the memcg shrinker map, a new object might have been
923 			 * added. To make sure, we have the bit set in this
924 			 * case, we invoke the shrinker one more time and reset
925 			 * the bit if it reports that it is not empty anymore.
926 			 * The memory barrier here pairs with the barrier in
927 			 * set_shrinker_bit():
928 			 *
929 			 * list_lru_add()     shrink_slab_memcg()
930 			 *   list_add_tail()    clear_bit()
931 			 *   <MB>               <MB>
932 			 *   set_bit()          do_shrink_slab()
933 			 */
934 			smp_mb__after_atomic();
935 			ret = do_shrink_slab(&sc, shrinker, priority);
936 			if (ret == SHRINK_EMPTY)
937 				ret = 0;
938 			else
939 				set_shrinker_bit(memcg, nid, i);
940 		}
941 		freed += ret;
942 
943 		if (rwsem_is_contended(&shrinker_rwsem)) {
944 			freed = freed ? : 1;
945 			break;
946 		}
947 	}
948 unlock:
949 	up_read(&shrinker_rwsem);
950 	return freed;
951 }
952 #else /* CONFIG_MEMCG */
953 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
954 			struct mem_cgroup *memcg, int priority)
955 {
956 	return 0;
957 }
958 #endif /* CONFIG_MEMCG */
959 
960 /**
961  * shrink_slab - shrink slab caches
962  * @gfp_mask: allocation context
963  * @nid: node whose slab caches to target
964  * @memcg: memory cgroup whose slab caches to target
965  * @priority: the reclaim priority
966  *
967  * Call the shrink functions to age shrinkable caches.
968  *
969  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
970  * unaware shrinkers will receive a node id of 0 instead.
971  *
972  * @memcg specifies the memory cgroup to target. Unaware shrinkers
973  * are called only if it is the root cgroup.
974  *
975  * @priority is sc->priority, we take the number of objects and >> by priority
976  * in order to get the scan target.
977  *
978  * Returns the number of reclaimed slab objects.
979  */
980 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
981 				 struct mem_cgroup *memcg,
982 				 int priority)
983 {
984 	unsigned long ret, freed = 0;
985 	struct shrinker *shrinker;
986 
987 	/*
988 	 * The root memcg might be allocated even though memcg is disabled
989 	 * via "cgroup_disable=memory" boot parameter.  This could make
990 	 * mem_cgroup_is_root() return false, then just run memcg slab
991 	 * shrink, but skip global shrink.  This may result in premature
992 	 * oom.
993 	 */
994 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
995 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
996 
997 	if (!down_read_trylock(&shrinker_rwsem))
998 		goto out;
999 
1000 	list_for_each_entry(shrinker, &shrinker_list, list) {
1001 		struct shrink_control sc = {
1002 			.gfp_mask = gfp_mask,
1003 			.nid = nid,
1004 			.memcg = memcg,
1005 		};
1006 
1007 		ret = do_shrink_slab(&sc, shrinker, priority);
1008 		if (ret == SHRINK_EMPTY)
1009 			ret = 0;
1010 		freed += ret;
1011 		/*
1012 		 * Bail out if someone want to register a new shrinker to
1013 		 * prevent the registration from being stalled for long periods
1014 		 * by parallel ongoing shrinking.
1015 		 */
1016 		if (rwsem_is_contended(&shrinker_rwsem)) {
1017 			freed = freed ? : 1;
1018 			break;
1019 		}
1020 	}
1021 
1022 	up_read(&shrinker_rwsem);
1023 out:
1024 	cond_resched();
1025 	return freed;
1026 }
1027 
1028 static unsigned long drop_slab_node(int nid)
1029 {
1030 	unsigned long freed = 0;
1031 	struct mem_cgroup *memcg = NULL;
1032 
1033 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1034 	do {
1035 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1036 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1037 
1038 	return freed;
1039 }
1040 
1041 void drop_slab(void)
1042 {
1043 	int nid;
1044 	int shift = 0;
1045 	unsigned long freed;
1046 
1047 	do {
1048 		freed = 0;
1049 		for_each_online_node(nid) {
1050 			if (fatal_signal_pending(current))
1051 				return;
1052 
1053 			freed += drop_slab_node(nid);
1054 		}
1055 	} while ((freed >> shift++) > 1);
1056 }
1057 
1058 static int reclaimer_offset(void)
1059 {
1060 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1061 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1062 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1063 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1064 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1065 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1066 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1067 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1068 
1069 	if (current_is_kswapd())
1070 		return 0;
1071 	if (current_is_khugepaged())
1072 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1073 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1074 }
1075 
1076 static inline int is_page_cache_freeable(struct folio *folio)
1077 {
1078 	/*
1079 	 * A freeable page cache folio is referenced only by the caller
1080 	 * that isolated the folio, the page cache and optional filesystem
1081 	 * private data at folio->private.
1082 	 */
1083 	return folio_ref_count(folio) - folio_test_private(folio) ==
1084 		1 + folio_nr_pages(folio);
1085 }
1086 
1087 /*
1088  * We detected a synchronous write error writing a folio out.  Probably
1089  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1090  * fsync(), msync() or close().
1091  *
1092  * The tricky part is that after writepage we cannot touch the mapping: nothing
1093  * prevents it from being freed up.  But we have a ref on the folio and once
1094  * that folio is locked, the mapping is pinned.
1095  *
1096  * We're allowed to run sleeping folio_lock() here because we know the caller has
1097  * __GFP_FS.
1098  */
1099 static void handle_write_error(struct address_space *mapping,
1100 				struct folio *folio, int error)
1101 {
1102 	folio_lock(folio);
1103 	if (folio_mapping(folio) == mapping)
1104 		mapping_set_error(mapping, error);
1105 	folio_unlock(folio);
1106 }
1107 
1108 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1109 {
1110 	int reclaimable = 0, write_pending = 0;
1111 	int i;
1112 
1113 	/*
1114 	 * If kswapd is disabled, reschedule if necessary but do not
1115 	 * throttle as the system is likely near OOM.
1116 	 */
1117 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1118 		return true;
1119 
1120 	/*
1121 	 * If there are a lot of dirty/writeback folios then do not
1122 	 * throttle as throttling will occur when the folios cycle
1123 	 * towards the end of the LRU if still under writeback.
1124 	 */
1125 	for (i = 0; i < MAX_NR_ZONES; i++) {
1126 		struct zone *zone = pgdat->node_zones + i;
1127 
1128 		if (!managed_zone(zone))
1129 			continue;
1130 
1131 		reclaimable += zone_reclaimable_pages(zone);
1132 		write_pending += zone_page_state_snapshot(zone,
1133 						  NR_ZONE_WRITE_PENDING);
1134 	}
1135 	if (2 * write_pending <= reclaimable)
1136 		return true;
1137 
1138 	return false;
1139 }
1140 
1141 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1142 {
1143 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1144 	long timeout, ret;
1145 	DEFINE_WAIT(wait);
1146 
1147 	/*
1148 	 * Do not throttle IO workers, kthreads other than kswapd or
1149 	 * workqueues. They may be required for reclaim to make
1150 	 * forward progress (e.g. journalling workqueues or kthreads).
1151 	 */
1152 	if (!current_is_kswapd() &&
1153 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1154 		cond_resched();
1155 		return;
1156 	}
1157 
1158 	/*
1159 	 * These figures are pulled out of thin air.
1160 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1161 	 * parallel reclaimers which is a short-lived event so the timeout is
1162 	 * short. Failing to make progress or waiting on writeback are
1163 	 * potentially long-lived events so use a longer timeout. This is shaky
1164 	 * logic as a failure to make progress could be due to anything from
1165 	 * writeback to a slow device to excessive referenced folios at the tail
1166 	 * of the inactive LRU.
1167 	 */
1168 	switch(reason) {
1169 	case VMSCAN_THROTTLE_WRITEBACK:
1170 		timeout = HZ/10;
1171 
1172 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1173 			WRITE_ONCE(pgdat->nr_reclaim_start,
1174 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1175 		}
1176 
1177 		break;
1178 	case VMSCAN_THROTTLE_CONGESTED:
1179 		fallthrough;
1180 	case VMSCAN_THROTTLE_NOPROGRESS:
1181 		if (skip_throttle_noprogress(pgdat)) {
1182 			cond_resched();
1183 			return;
1184 		}
1185 
1186 		timeout = 1;
1187 
1188 		break;
1189 	case VMSCAN_THROTTLE_ISOLATED:
1190 		timeout = HZ/50;
1191 		break;
1192 	default:
1193 		WARN_ON_ONCE(1);
1194 		timeout = HZ;
1195 		break;
1196 	}
1197 
1198 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1199 	ret = schedule_timeout(timeout);
1200 	finish_wait(wqh, &wait);
1201 
1202 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1203 		atomic_dec(&pgdat->nr_writeback_throttled);
1204 
1205 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1206 				jiffies_to_usecs(timeout - ret),
1207 				reason);
1208 }
1209 
1210 /*
1211  * Account for folios written if tasks are throttled waiting on dirty
1212  * folios to clean. If enough folios have been cleaned since throttling
1213  * started then wakeup the throttled tasks.
1214  */
1215 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1216 							int nr_throttled)
1217 {
1218 	unsigned long nr_written;
1219 
1220 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1221 
1222 	/*
1223 	 * This is an inaccurate read as the per-cpu deltas may not
1224 	 * be synchronised. However, given that the system is
1225 	 * writeback throttled, it is not worth taking the penalty
1226 	 * of getting an accurate count. At worst, the throttle
1227 	 * timeout guarantees forward progress.
1228 	 */
1229 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1230 		READ_ONCE(pgdat->nr_reclaim_start);
1231 
1232 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1233 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1234 }
1235 
1236 /* possible outcome of pageout() */
1237 typedef enum {
1238 	/* failed to write folio out, folio is locked */
1239 	PAGE_KEEP,
1240 	/* move folio to the active list, folio is locked */
1241 	PAGE_ACTIVATE,
1242 	/* folio has been sent to the disk successfully, folio is unlocked */
1243 	PAGE_SUCCESS,
1244 	/* folio is clean and locked */
1245 	PAGE_CLEAN,
1246 } pageout_t;
1247 
1248 /*
1249  * pageout is called by shrink_folio_list() for each dirty folio.
1250  * Calls ->writepage().
1251  */
1252 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1253 			 struct swap_iocb **plug)
1254 {
1255 	/*
1256 	 * If the folio is dirty, only perform writeback if that write
1257 	 * will be non-blocking.  To prevent this allocation from being
1258 	 * stalled by pagecache activity.  But note that there may be
1259 	 * stalls if we need to run get_block().  We could test
1260 	 * PagePrivate for that.
1261 	 *
1262 	 * If this process is currently in __generic_file_write_iter() against
1263 	 * this folio's queue, we can perform writeback even if that
1264 	 * will block.
1265 	 *
1266 	 * If the folio is swapcache, write it back even if that would
1267 	 * block, for some throttling. This happens by accident, because
1268 	 * swap_backing_dev_info is bust: it doesn't reflect the
1269 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1270 	 */
1271 	if (!is_page_cache_freeable(folio))
1272 		return PAGE_KEEP;
1273 	if (!mapping) {
1274 		/*
1275 		 * Some data journaling orphaned folios can have
1276 		 * folio->mapping == NULL while being dirty with clean buffers.
1277 		 */
1278 		if (folio_test_private(folio)) {
1279 			if (try_to_free_buffers(folio)) {
1280 				folio_clear_dirty(folio);
1281 				pr_info("%s: orphaned folio\n", __func__);
1282 				return PAGE_CLEAN;
1283 			}
1284 		}
1285 		return PAGE_KEEP;
1286 	}
1287 	if (mapping->a_ops->writepage == NULL)
1288 		return PAGE_ACTIVATE;
1289 
1290 	if (folio_clear_dirty_for_io(folio)) {
1291 		int res;
1292 		struct writeback_control wbc = {
1293 			.sync_mode = WB_SYNC_NONE,
1294 			.nr_to_write = SWAP_CLUSTER_MAX,
1295 			.range_start = 0,
1296 			.range_end = LLONG_MAX,
1297 			.for_reclaim = 1,
1298 			.swap_plug = plug,
1299 		};
1300 
1301 		folio_set_reclaim(folio);
1302 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1303 		if (res < 0)
1304 			handle_write_error(mapping, folio, res);
1305 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1306 			folio_clear_reclaim(folio);
1307 			return PAGE_ACTIVATE;
1308 		}
1309 
1310 		if (!folio_test_writeback(folio)) {
1311 			/* synchronous write or broken a_ops? */
1312 			folio_clear_reclaim(folio);
1313 		}
1314 		trace_mm_vmscan_write_folio(folio);
1315 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1316 		return PAGE_SUCCESS;
1317 	}
1318 
1319 	return PAGE_CLEAN;
1320 }
1321 
1322 /*
1323  * Same as remove_mapping, but if the folio is removed from the mapping, it
1324  * gets returned with a refcount of 0.
1325  */
1326 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1327 			    bool reclaimed, struct mem_cgroup *target_memcg)
1328 {
1329 	int refcount;
1330 	void *shadow = NULL;
1331 
1332 	BUG_ON(!folio_test_locked(folio));
1333 	BUG_ON(mapping != folio_mapping(folio));
1334 
1335 	if (!folio_test_swapcache(folio))
1336 		spin_lock(&mapping->host->i_lock);
1337 	xa_lock_irq(&mapping->i_pages);
1338 	/*
1339 	 * The non racy check for a busy folio.
1340 	 *
1341 	 * Must be careful with the order of the tests. When someone has
1342 	 * a ref to the folio, it may be possible that they dirty it then
1343 	 * drop the reference. So if the dirty flag is tested before the
1344 	 * refcount here, then the following race may occur:
1345 	 *
1346 	 * get_user_pages(&page);
1347 	 * [user mapping goes away]
1348 	 * write_to(page);
1349 	 *				!folio_test_dirty(folio)    [good]
1350 	 * folio_set_dirty(folio);
1351 	 * folio_put(folio);
1352 	 *				!refcount(folio)   [good, discard it]
1353 	 *
1354 	 * [oops, our write_to data is lost]
1355 	 *
1356 	 * Reversing the order of the tests ensures such a situation cannot
1357 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1358 	 * load is not satisfied before that of folio->_refcount.
1359 	 *
1360 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1361 	 * and thus under the i_pages lock, then this ordering is not required.
1362 	 */
1363 	refcount = 1 + folio_nr_pages(folio);
1364 	if (!folio_ref_freeze(folio, refcount))
1365 		goto cannot_free;
1366 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1367 	if (unlikely(folio_test_dirty(folio))) {
1368 		folio_ref_unfreeze(folio, refcount);
1369 		goto cannot_free;
1370 	}
1371 
1372 	if (folio_test_swapcache(folio)) {
1373 		swp_entry_t swap = folio_swap_entry(folio);
1374 
1375 		if (reclaimed && !mapping_exiting(mapping))
1376 			shadow = workingset_eviction(folio, target_memcg);
1377 		__delete_from_swap_cache(folio, swap, shadow);
1378 		mem_cgroup_swapout(folio, swap);
1379 		xa_unlock_irq(&mapping->i_pages);
1380 		put_swap_folio(folio, swap);
1381 	} else {
1382 		void (*free_folio)(struct folio *);
1383 
1384 		free_folio = mapping->a_ops->free_folio;
1385 		/*
1386 		 * Remember a shadow entry for reclaimed file cache in
1387 		 * order to detect refaults, thus thrashing, later on.
1388 		 *
1389 		 * But don't store shadows in an address space that is
1390 		 * already exiting.  This is not just an optimization,
1391 		 * inode reclaim needs to empty out the radix tree or
1392 		 * the nodes are lost.  Don't plant shadows behind its
1393 		 * back.
1394 		 *
1395 		 * We also don't store shadows for DAX mappings because the
1396 		 * only page cache folios found in these are zero pages
1397 		 * covering holes, and because we don't want to mix DAX
1398 		 * exceptional entries and shadow exceptional entries in the
1399 		 * same address_space.
1400 		 */
1401 		if (reclaimed && folio_is_file_lru(folio) &&
1402 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1403 			shadow = workingset_eviction(folio, target_memcg);
1404 		__filemap_remove_folio(folio, shadow);
1405 		xa_unlock_irq(&mapping->i_pages);
1406 		if (mapping_shrinkable(mapping))
1407 			inode_add_lru(mapping->host);
1408 		spin_unlock(&mapping->host->i_lock);
1409 
1410 		if (free_folio)
1411 			free_folio(folio);
1412 	}
1413 
1414 	return 1;
1415 
1416 cannot_free:
1417 	xa_unlock_irq(&mapping->i_pages);
1418 	if (!folio_test_swapcache(folio))
1419 		spin_unlock(&mapping->host->i_lock);
1420 	return 0;
1421 }
1422 
1423 /**
1424  * remove_mapping() - Attempt to remove a folio from its mapping.
1425  * @mapping: The address space.
1426  * @folio: The folio to remove.
1427  *
1428  * If the folio is dirty, under writeback or if someone else has a ref
1429  * on it, removal will fail.
1430  * Return: The number of pages removed from the mapping.  0 if the folio
1431  * could not be removed.
1432  * Context: The caller should have a single refcount on the folio and
1433  * hold its lock.
1434  */
1435 long remove_mapping(struct address_space *mapping, struct folio *folio)
1436 {
1437 	if (__remove_mapping(mapping, folio, false, NULL)) {
1438 		/*
1439 		 * Unfreezing the refcount with 1 effectively
1440 		 * drops the pagecache ref for us without requiring another
1441 		 * atomic operation.
1442 		 */
1443 		folio_ref_unfreeze(folio, 1);
1444 		return folio_nr_pages(folio);
1445 	}
1446 	return 0;
1447 }
1448 
1449 /**
1450  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1451  * @folio: Folio to be returned to an LRU list.
1452  *
1453  * Add previously isolated @folio to appropriate LRU list.
1454  * The folio may still be unevictable for other reasons.
1455  *
1456  * Context: lru_lock must not be held, interrupts must be enabled.
1457  */
1458 void folio_putback_lru(struct folio *folio)
1459 {
1460 	folio_add_lru(folio);
1461 	folio_put(folio);		/* drop ref from isolate */
1462 }
1463 
1464 enum folio_references {
1465 	FOLIOREF_RECLAIM,
1466 	FOLIOREF_RECLAIM_CLEAN,
1467 	FOLIOREF_KEEP,
1468 	FOLIOREF_ACTIVATE,
1469 };
1470 
1471 static enum folio_references folio_check_references(struct folio *folio,
1472 						  struct scan_control *sc)
1473 {
1474 	int referenced_ptes, referenced_folio;
1475 	unsigned long vm_flags;
1476 
1477 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1478 					   &vm_flags);
1479 	referenced_folio = folio_test_clear_referenced(folio);
1480 
1481 	/*
1482 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1483 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1484 	 */
1485 	if (vm_flags & VM_LOCKED)
1486 		return FOLIOREF_ACTIVATE;
1487 
1488 	/* rmap lock contention: rotate */
1489 	if (referenced_ptes == -1)
1490 		return FOLIOREF_KEEP;
1491 
1492 	if (referenced_ptes) {
1493 		/*
1494 		 * All mapped folios start out with page table
1495 		 * references from the instantiating fault, so we need
1496 		 * to look twice if a mapped file/anon folio is used more
1497 		 * than once.
1498 		 *
1499 		 * Mark it and spare it for another trip around the
1500 		 * inactive list.  Another page table reference will
1501 		 * lead to its activation.
1502 		 *
1503 		 * Note: the mark is set for activated folios as well
1504 		 * so that recently deactivated but used folios are
1505 		 * quickly recovered.
1506 		 */
1507 		folio_set_referenced(folio);
1508 
1509 		if (referenced_folio || referenced_ptes > 1)
1510 			return FOLIOREF_ACTIVATE;
1511 
1512 		/*
1513 		 * Activate file-backed executable folios after first usage.
1514 		 */
1515 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1516 			return FOLIOREF_ACTIVATE;
1517 
1518 		return FOLIOREF_KEEP;
1519 	}
1520 
1521 	/* Reclaim if clean, defer dirty folios to writeback */
1522 	if (referenced_folio && folio_is_file_lru(folio))
1523 		return FOLIOREF_RECLAIM_CLEAN;
1524 
1525 	return FOLIOREF_RECLAIM;
1526 }
1527 
1528 /* Check if a folio is dirty or under writeback */
1529 static void folio_check_dirty_writeback(struct folio *folio,
1530 				       bool *dirty, bool *writeback)
1531 {
1532 	struct address_space *mapping;
1533 
1534 	/*
1535 	 * Anonymous folios are not handled by flushers and must be written
1536 	 * from reclaim context. Do not stall reclaim based on them.
1537 	 * MADV_FREE anonymous folios are put into inactive file list too.
1538 	 * They could be mistakenly treated as file lru. So further anon
1539 	 * test is needed.
1540 	 */
1541 	if (!folio_is_file_lru(folio) ||
1542 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1543 		*dirty = false;
1544 		*writeback = false;
1545 		return;
1546 	}
1547 
1548 	/* By default assume that the folio flags are accurate */
1549 	*dirty = folio_test_dirty(folio);
1550 	*writeback = folio_test_writeback(folio);
1551 
1552 	/* Verify dirty/writeback state if the filesystem supports it */
1553 	if (!folio_test_private(folio))
1554 		return;
1555 
1556 	mapping = folio_mapping(folio);
1557 	if (mapping && mapping->a_ops->is_dirty_writeback)
1558 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1559 }
1560 
1561 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1562 {
1563 	struct page *target_page;
1564 	nodemask_t *allowed_mask;
1565 	struct migration_target_control *mtc;
1566 
1567 	mtc = (struct migration_target_control *)private;
1568 
1569 	allowed_mask = mtc->nmask;
1570 	/*
1571 	 * make sure we allocate from the target node first also trying to
1572 	 * demote or reclaim pages from the target node via kswapd if we are
1573 	 * low on free memory on target node. If we don't do this and if
1574 	 * we have free memory on the slower(lower) memtier, we would start
1575 	 * allocating pages from slower(lower) memory tiers without even forcing
1576 	 * a demotion of cold pages from the target memtier. This can result
1577 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1578 	 */
1579 	mtc->nmask = NULL;
1580 	mtc->gfp_mask |= __GFP_THISNODE;
1581 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1582 	if (target_page)
1583 		return target_page;
1584 
1585 	mtc->gfp_mask &= ~__GFP_THISNODE;
1586 	mtc->nmask = allowed_mask;
1587 
1588 	return alloc_migration_target(page, (unsigned long)mtc);
1589 }
1590 
1591 /*
1592  * Take folios on @demote_folios and attempt to demote them to another node.
1593  * Folios which are not demoted are left on @demote_folios.
1594  */
1595 static unsigned int demote_folio_list(struct list_head *demote_folios,
1596 				     struct pglist_data *pgdat)
1597 {
1598 	int target_nid = next_demotion_node(pgdat->node_id);
1599 	unsigned int nr_succeeded;
1600 	nodemask_t allowed_mask;
1601 
1602 	struct migration_target_control mtc = {
1603 		/*
1604 		 * Allocate from 'node', or fail quickly and quietly.
1605 		 * When this happens, 'page' will likely just be discarded
1606 		 * instead of migrated.
1607 		 */
1608 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1609 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1610 		.nid = target_nid,
1611 		.nmask = &allowed_mask
1612 	};
1613 
1614 	if (list_empty(demote_folios))
1615 		return 0;
1616 
1617 	if (target_nid == NUMA_NO_NODE)
1618 		return 0;
1619 
1620 	node_get_allowed_targets(pgdat, &allowed_mask);
1621 
1622 	/* Demotion ignores all cpuset and mempolicy settings */
1623 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1624 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1625 		      &nr_succeeded);
1626 
1627 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1628 
1629 	return nr_succeeded;
1630 }
1631 
1632 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1633 {
1634 	if (gfp_mask & __GFP_FS)
1635 		return true;
1636 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1637 		return false;
1638 	/*
1639 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1640 	 * providing this isn't SWP_FS_OPS.
1641 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1642 	 * but that will never affect SWP_FS_OPS, so the data_race
1643 	 * is safe.
1644 	 */
1645 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1646 }
1647 
1648 /*
1649  * shrink_folio_list() returns the number of reclaimed pages
1650  */
1651 static unsigned int shrink_folio_list(struct list_head *folio_list,
1652 		struct pglist_data *pgdat, struct scan_control *sc,
1653 		struct reclaim_stat *stat, bool ignore_references)
1654 {
1655 	LIST_HEAD(ret_folios);
1656 	LIST_HEAD(free_folios);
1657 	LIST_HEAD(demote_folios);
1658 	unsigned int nr_reclaimed = 0;
1659 	unsigned int pgactivate = 0;
1660 	bool do_demote_pass;
1661 	struct swap_iocb *plug = NULL;
1662 
1663 	memset(stat, 0, sizeof(*stat));
1664 	cond_resched();
1665 	do_demote_pass = can_demote(pgdat->node_id, sc);
1666 
1667 retry:
1668 	while (!list_empty(folio_list)) {
1669 		struct address_space *mapping;
1670 		struct folio *folio;
1671 		enum folio_references references = FOLIOREF_RECLAIM;
1672 		bool dirty, writeback;
1673 		unsigned int nr_pages;
1674 
1675 		cond_resched();
1676 
1677 		folio = lru_to_folio(folio_list);
1678 		list_del(&folio->lru);
1679 
1680 		if (!folio_trylock(folio))
1681 			goto keep;
1682 
1683 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1684 
1685 		nr_pages = folio_nr_pages(folio);
1686 
1687 		/* Account the number of base pages */
1688 		sc->nr_scanned += nr_pages;
1689 
1690 		if (unlikely(!folio_evictable(folio)))
1691 			goto activate_locked;
1692 
1693 		if (!sc->may_unmap && folio_mapped(folio))
1694 			goto keep_locked;
1695 
1696 		/* folio_update_gen() tried to promote this page? */
1697 		if (lru_gen_enabled() && !ignore_references &&
1698 		    folio_mapped(folio) && folio_test_referenced(folio))
1699 			goto keep_locked;
1700 
1701 		/*
1702 		 * The number of dirty pages determines if a node is marked
1703 		 * reclaim_congested. kswapd will stall and start writing
1704 		 * folios if the tail of the LRU is all dirty unqueued folios.
1705 		 */
1706 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1707 		if (dirty || writeback)
1708 			stat->nr_dirty += nr_pages;
1709 
1710 		if (dirty && !writeback)
1711 			stat->nr_unqueued_dirty += nr_pages;
1712 
1713 		/*
1714 		 * Treat this folio as congested if folios are cycling
1715 		 * through the LRU so quickly that the folios marked
1716 		 * for immediate reclaim are making it to the end of
1717 		 * the LRU a second time.
1718 		 */
1719 		if (writeback && folio_test_reclaim(folio))
1720 			stat->nr_congested += nr_pages;
1721 
1722 		/*
1723 		 * If a folio at the tail of the LRU is under writeback, there
1724 		 * are three cases to consider.
1725 		 *
1726 		 * 1) If reclaim is encountering an excessive number
1727 		 *    of folios under writeback and this folio has both
1728 		 *    the writeback and reclaim flags set, then it
1729 		 *    indicates that folios are being queued for I/O but
1730 		 *    are being recycled through the LRU before the I/O
1731 		 *    can complete. Waiting on the folio itself risks an
1732 		 *    indefinite stall if it is impossible to writeback
1733 		 *    the folio due to I/O error or disconnected storage
1734 		 *    so instead note that the LRU is being scanned too
1735 		 *    quickly and the caller can stall after the folio
1736 		 *    list has been processed.
1737 		 *
1738 		 * 2) Global or new memcg reclaim encounters a folio that is
1739 		 *    not marked for immediate reclaim, or the caller does not
1740 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1741 		 *    not to fs). In this case mark the folio for immediate
1742 		 *    reclaim and continue scanning.
1743 		 *
1744 		 *    Require may_enter_fs() because we would wait on fs, which
1745 		 *    may not have submitted I/O yet. And the loop driver might
1746 		 *    enter reclaim, and deadlock if it waits on a folio for
1747 		 *    which it is needed to do the write (loop masks off
1748 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1749 		 *    would probably show more reasons.
1750 		 *
1751 		 * 3) Legacy memcg encounters a folio that already has the
1752 		 *    reclaim flag set. memcg does not have any dirty folio
1753 		 *    throttling so we could easily OOM just because too many
1754 		 *    folios are in writeback and there is nothing else to
1755 		 *    reclaim. Wait for the writeback to complete.
1756 		 *
1757 		 * In cases 1) and 2) we activate the folios to get them out of
1758 		 * the way while we continue scanning for clean folios on the
1759 		 * inactive list and refilling from the active list. The
1760 		 * observation here is that waiting for disk writes is more
1761 		 * expensive than potentially causing reloads down the line.
1762 		 * Since they're marked for immediate reclaim, they won't put
1763 		 * memory pressure on the cache working set any longer than it
1764 		 * takes to write them to disk.
1765 		 */
1766 		if (folio_test_writeback(folio)) {
1767 			/* Case 1 above */
1768 			if (current_is_kswapd() &&
1769 			    folio_test_reclaim(folio) &&
1770 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1771 				stat->nr_immediate += nr_pages;
1772 				goto activate_locked;
1773 
1774 			/* Case 2 above */
1775 			} else if (writeback_throttling_sane(sc) ||
1776 			    !folio_test_reclaim(folio) ||
1777 			    !may_enter_fs(folio, sc->gfp_mask)) {
1778 				/*
1779 				 * This is slightly racy -
1780 				 * folio_end_writeback() might have
1781 				 * just cleared the reclaim flag, then
1782 				 * setting the reclaim flag here ends up
1783 				 * interpreted as the readahead flag - but
1784 				 * that does not matter enough to care.
1785 				 * What we do want is for this folio to
1786 				 * have the reclaim flag set next time
1787 				 * memcg reclaim reaches the tests above,
1788 				 * so it will then wait for writeback to
1789 				 * avoid OOM; and it's also appropriate
1790 				 * in global reclaim.
1791 				 */
1792 				folio_set_reclaim(folio);
1793 				stat->nr_writeback += nr_pages;
1794 				goto activate_locked;
1795 
1796 			/* Case 3 above */
1797 			} else {
1798 				folio_unlock(folio);
1799 				folio_wait_writeback(folio);
1800 				/* then go back and try same folio again */
1801 				list_add_tail(&folio->lru, folio_list);
1802 				continue;
1803 			}
1804 		}
1805 
1806 		if (!ignore_references)
1807 			references = folio_check_references(folio, sc);
1808 
1809 		switch (references) {
1810 		case FOLIOREF_ACTIVATE:
1811 			goto activate_locked;
1812 		case FOLIOREF_KEEP:
1813 			stat->nr_ref_keep += nr_pages;
1814 			goto keep_locked;
1815 		case FOLIOREF_RECLAIM:
1816 		case FOLIOREF_RECLAIM_CLEAN:
1817 			; /* try to reclaim the folio below */
1818 		}
1819 
1820 		/*
1821 		 * Before reclaiming the folio, try to relocate
1822 		 * its contents to another node.
1823 		 */
1824 		if (do_demote_pass &&
1825 		    (thp_migration_supported() || !folio_test_large(folio))) {
1826 			list_add(&folio->lru, &demote_folios);
1827 			folio_unlock(folio);
1828 			continue;
1829 		}
1830 
1831 		/*
1832 		 * Anonymous process memory has backing store?
1833 		 * Try to allocate it some swap space here.
1834 		 * Lazyfree folio could be freed directly
1835 		 */
1836 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1837 			if (!folio_test_swapcache(folio)) {
1838 				if (!(sc->gfp_mask & __GFP_IO))
1839 					goto keep_locked;
1840 				if (folio_maybe_dma_pinned(folio))
1841 					goto keep_locked;
1842 				if (folio_test_large(folio)) {
1843 					/* cannot split folio, skip it */
1844 					if (!can_split_folio(folio, NULL))
1845 						goto activate_locked;
1846 					/*
1847 					 * Split folios without a PMD map right
1848 					 * away. Chances are some or all of the
1849 					 * tail pages can be freed without IO.
1850 					 */
1851 					if (!folio_entire_mapcount(folio) &&
1852 					    split_folio_to_list(folio,
1853 								folio_list))
1854 						goto activate_locked;
1855 				}
1856 				if (!add_to_swap(folio)) {
1857 					if (!folio_test_large(folio))
1858 						goto activate_locked_split;
1859 					/* Fallback to swap normal pages */
1860 					if (split_folio_to_list(folio,
1861 								folio_list))
1862 						goto activate_locked;
1863 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1864 					count_vm_event(THP_SWPOUT_FALLBACK);
1865 #endif
1866 					if (!add_to_swap(folio))
1867 						goto activate_locked_split;
1868 				}
1869 			}
1870 		} else if (folio_test_swapbacked(folio) &&
1871 			   folio_test_large(folio)) {
1872 			/* Split shmem folio */
1873 			if (split_folio_to_list(folio, folio_list))
1874 				goto keep_locked;
1875 		}
1876 
1877 		/*
1878 		 * If the folio was split above, the tail pages will make
1879 		 * their own pass through this function and be accounted
1880 		 * then.
1881 		 */
1882 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1883 			sc->nr_scanned -= (nr_pages - 1);
1884 			nr_pages = 1;
1885 		}
1886 
1887 		/*
1888 		 * The folio is mapped into the page tables of one or more
1889 		 * processes. Try to unmap it here.
1890 		 */
1891 		if (folio_mapped(folio)) {
1892 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1893 			bool was_swapbacked = folio_test_swapbacked(folio);
1894 
1895 			if (folio_test_pmd_mappable(folio))
1896 				flags |= TTU_SPLIT_HUGE_PMD;
1897 
1898 			try_to_unmap(folio, flags);
1899 			if (folio_mapped(folio)) {
1900 				stat->nr_unmap_fail += nr_pages;
1901 				if (!was_swapbacked &&
1902 				    folio_test_swapbacked(folio))
1903 					stat->nr_lazyfree_fail += nr_pages;
1904 				goto activate_locked;
1905 			}
1906 		}
1907 
1908 		mapping = folio_mapping(folio);
1909 		if (folio_test_dirty(folio)) {
1910 			/*
1911 			 * Only kswapd can writeback filesystem folios
1912 			 * to avoid risk of stack overflow. But avoid
1913 			 * injecting inefficient single-folio I/O into
1914 			 * flusher writeback as much as possible: only
1915 			 * write folios when we've encountered many
1916 			 * dirty folios, and when we've already scanned
1917 			 * the rest of the LRU for clean folios and see
1918 			 * the same dirty folios again (with the reclaim
1919 			 * flag set).
1920 			 */
1921 			if (folio_is_file_lru(folio) &&
1922 			    (!current_is_kswapd() ||
1923 			     !folio_test_reclaim(folio) ||
1924 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1925 				/*
1926 				 * Immediately reclaim when written back.
1927 				 * Similar in principle to deactivate_page()
1928 				 * except we already have the folio isolated
1929 				 * and know it's dirty
1930 				 */
1931 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1932 						nr_pages);
1933 				folio_set_reclaim(folio);
1934 
1935 				goto activate_locked;
1936 			}
1937 
1938 			if (references == FOLIOREF_RECLAIM_CLEAN)
1939 				goto keep_locked;
1940 			if (!may_enter_fs(folio, sc->gfp_mask))
1941 				goto keep_locked;
1942 			if (!sc->may_writepage)
1943 				goto keep_locked;
1944 
1945 			/*
1946 			 * Folio is dirty. Flush the TLB if a writable entry
1947 			 * potentially exists to avoid CPU writes after I/O
1948 			 * starts and then write it out here.
1949 			 */
1950 			try_to_unmap_flush_dirty();
1951 			switch (pageout(folio, mapping, &plug)) {
1952 			case PAGE_KEEP:
1953 				goto keep_locked;
1954 			case PAGE_ACTIVATE:
1955 				goto activate_locked;
1956 			case PAGE_SUCCESS:
1957 				stat->nr_pageout += nr_pages;
1958 
1959 				if (folio_test_writeback(folio))
1960 					goto keep;
1961 				if (folio_test_dirty(folio))
1962 					goto keep;
1963 
1964 				/*
1965 				 * A synchronous write - probably a ramdisk.  Go
1966 				 * ahead and try to reclaim the folio.
1967 				 */
1968 				if (!folio_trylock(folio))
1969 					goto keep;
1970 				if (folio_test_dirty(folio) ||
1971 				    folio_test_writeback(folio))
1972 					goto keep_locked;
1973 				mapping = folio_mapping(folio);
1974 				fallthrough;
1975 			case PAGE_CLEAN:
1976 				; /* try to free the folio below */
1977 			}
1978 		}
1979 
1980 		/*
1981 		 * If the folio has buffers, try to free the buffer
1982 		 * mappings associated with this folio. If we succeed
1983 		 * we try to free the folio as well.
1984 		 *
1985 		 * We do this even if the folio is dirty.
1986 		 * filemap_release_folio() does not perform I/O, but it
1987 		 * is possible for a folio to have the dirty flag set,
1988 		 * but it is actually clean (all its buffers are clean).
1989 		 * This happens if the buffers were written out directly,
1990 		 * with submit_bh(). ext3 will do this, as well as
1991 		 * the blockdev mapping.  filemap_release_folio() will
1992 		 * discover that cleanness and will drop the buffers
1993 		 * and mark the folio clean - it can be freed.
1994 		 *
1995 		 * Rarely, folios can have buffers and no ->mapping.
1996 		 * These are the folios which were not successfully
1997 		 * invalidated in truncate_cleanup_folio().  We try to
1998 		 * drop those buffers here and if that worked, and the
1999 		 * folio is no longer mapped into process address space
2000 		 * (refcount == 1) it can be freed.  Otherwise, leave
2001 		 * the folio on the LRU so it is swappable.
2002 		 */
2003 		if (folio_has_private(folio)) {
2004 			if (!filemap_release_folio(folio, sc->gfp_mask))
2005 				goto activate_locked;
2006 			if (!mapping && folio_ref_count(folio) == 1) {
2007 				folio_unlock(folio);
2008 				if (folio_put_testzero(folio))
2009 					goto free_it;
2010 				else {
2011 					/*
2012 					 * rare race with speculative reference.
2013 					 * the speculative reference will free
2014 					 * this folio shortly, so we may
2015 					 * increment nr_reclaimed here (and
2016 					 * leave it off the LRU).
2017 					 */
2018 					nr_reclaimed += nr_pages;
2019 					continue;
2020 				}
2021 			}
2022 		}
2023 
2024 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2025 			/* follow __remove_mapping for reference */
2026 			if (!folio_ref_freeze(folio, 1))
2027 				goto keep_locked;
2028 			/*
2029 			 * The folio has only one reference left, which is
2030 			 * from the isolation. After the caller puts the
2031 			 * folio back on the lru and drops the reference, the
2032 			 * folio will be freed anyway. It doesn't matter
2033 			 * which lru it goes on. So we don't bother checking
2034 			 * the dirty flag here.
2035 			 */
2036 			count_vm_events(PGLAZYFREED, nr_pages);
2037 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2038 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2039 							 sc->target_mem_cgroup))
2040 			goto keep_locked;
2041 
2042 		folio_unlock(folio);
2043 free_it:
2044 		/*
2045 		 * Folio may get swapped out as a whole, need to account
2046 		 * all pages in it.
2047 		 */
2048 		nr_reclaimed += nr_pages;
2049 
2050 		/*
2051 		 * Is there need to periodically free_folio_list? It would
2052 		 * appear not as the counts should be low
2053 		 */
2054 		if (unlikely(folio_test_large(folio)))
2055 			destroy_large_folio(folio);
2056 		else
2057 			list_add(&folio->lru, &free_folios);
2058 		continue;
2059 
2060 activate_locked_split:
2061 		/*
2062 		 * The tail pages that are failed to add into swap cache
2063 		 * reach here.  Fixup nr_scanned and nr_pages.
2064 		 */
2065 		if (nr_pages > 1) {
2066 			sc->nr_scanned -= (nr_pages - 1);
2067 			nr_pages = 1;
2068 		}
2069 activate_locked:
2070 		/* Not a candidate for swapping, so reclaim swap space. */
2071 		if (folio_test_swapcache(folio) &&
2072 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2073 			folio_free_swap(folio);
2074 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2075 		if (!folio_test_mlocked(folio)) {
2076 			int type = folio_is_file_lru(folio);
2077 			folio_set_active(folio);
2078 			stat->nr_activate[type] += nr_pages;
2079 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2080 		}
2081 keep_locked:
2082 		folio_unlock(folio);
2083 keep:
2084 		list_add(&folio->lru, &ret_folios);
2085 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2086 				folio_test_unevictable(folio), folio);
2087 	}
2088 	/* 'folio_list' is always empty here */
2089 
2090 	/* Migrate folios selected for demotion */
2091 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2092 	/* Folios that could not be demoted are still in @demote_folios */
2093 	if (!list_empty(&demote_folios)) {
2094 		/* Folios which weren't demoted go back on @folio_list */
2095 		list_splice_init(&demote_folios, folio_list);
2096 
2097 		/*
2098 		 * goto retry to reclaim the undemoted folios in folio_list if
2099 		 * desired.
2100 		 *
2101 		 * Reclaiming directly from top tier nodes is not often desired
2102 		 * due to it breaking the LRU ordering: in general memory
2103 		 * should be reclaimed from lower tier nodes and demoted from
2104 		 * top tier nodes.
2105 		 *
2106 		 * However, disabling reclaim from top tier nodes entirely
2107 		 * would cause ooms in edge scenarios where lower tier memory
2108 		 * is unreclaimable for whatever reason, eg memory being
2109 		 * mlocked or too hot to reclaim. We can disable reclaim
2110 		 * from top tier nodes in proactive reclaim though as that is
2111 		 * not real memory pressure.
2112 		 */
2113 		if (!sc->proactive) {
2114 			do_demote_pass = false;
2115 			goto retry;
2116 		}
2117 	}
2118 
2119 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2120 
2121 	mem_cgroup_uncharge_list(&free_folios);
2122 	try_to_unmap_flush();
2123 	free_unref_page_list(&free_folios);
2124 
2125 	list_splice(&ret_folios, folio_list);
2126 	count_vm_events(PGACTIVATE, pgactivate);
2127 
2128 	if (plug)
2129 		swap_write_unplug(plug);
2130 	return nr_reclaimed;
2131 }
2132 
2133 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2134 					   struct list_head *folio_list)
2135 {
2136 	struct scan_control sc = {
2137 		.gfp_mask = GFP_KERNEL,
2138 		.may_unmap = 1,
2139 	};
2140 	struct reclaim_stat stat;
2141 	unsigned int nr_reclaimed;
2142 	struct folio *folio, *next;
2143 	LIST_HEAD(clean_folios);
2144 	unsigned int noreclaim_flag;
2145 
2146 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2147 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2148 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2149 		    !folio_test_unevictable(folio)) {
2150 			folio_clear_active(folio);
2151 			list_move(&folio->lru, &clean_folios);
2152 		}
2153 	}
2154 
2155 	/*
2156 	 * We should be safe here since we are only dealing with file pages and
2157 	 * we are not kswapd and therefore cannot write dirty file pages. But
2158 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2159 	 * change in the future.
2160 	 */
2161 	noreclaim_flag = memalloc_noreclaim_save();
2162 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2163 					&stat, true);
2164 	memalloc_noreclaim_restore(noreclaim_flag);
2165 
2166 	list_splice(&clean_folios, folio_list);
2167 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2168 			    -(long)nr_reclaimed);
2169 	/*
2170 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2171 	 * they will rotate back to anonymous LRU in the end if it failed to
2172 	 * discard so isolated count will be mismatched.
2173 	 * Compensate the isolated count for both LRU lists.
2174 	 */
2175 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2176 			    stat.nr_lazyfree_fail);
2177 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2178 			    -(long)stat.nr_lazyfree_fail);
2179 	return nr_reclaimed;
2180 }
2181 
2182 /*
2183  * Update LRU sizes after isolating pages. The LRU size updates must
2184  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2185  */
2186 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2187 			enum lru_list lru, unsigned long *nr_zone_taken)
2188 {
2189 	int zid;
2190 
2191 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2192 		if (!nr_zone_taken[zid])
2193 			continue;
2194 
2195 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2196 	}
2197 
2198 }
2199 
2200 /*
2201  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2202  *
2203  * lruvec->lru_lock is heavily contended.  Some of the functions that
2204  * shrink the lists perform better by taking out a batch of pages
2205  * and working on them outside the LRU lock.
2206  *
2207  * For pagecache intensive workloads, this function is the hottest
2208  * spot in the kernel (apart from copy_*_user functions).
2209  *
2210  * Lru_lock must be held before calling this function.
2211  *
2212  * @nr_to_scan:	The number of eligible pages to look through on the list.
2213  * @lruvec:	The LRU vector to pull pages from.
2214  * @dst:	The temp list to put pages on to.
2215  * @nr_scanned:	The number of pages that were scanned.
2216  * @sc:		The scan_control struct for this reclaim session
2217  * @lru:	LRU list id for isolating
2218  *
2219  * returns how many pages were moved onto *@dst.
2220  */
2221 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2222 		struct lruvec *lruvec, struct list_head *dst,
2223 		unsigned long *nr_scanned, struct scan_control *sc,
2224 		enum lru_list lru)
2225 {
2226 	struct list_head *src = &lruvec->lists[lru];
2227 	unsigned long nr_taken = 0;
2228 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2229 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2230 	unsigned long skipped = 0;
2231 	unsigned long scan, total_scan, nr_pages;
2232 	LIST_HEAD(folios_skipped);
2233 
2234 	total_scan = 0;
2235 	scan = 0;
2236 	while (scan < nr_to_scan && !list_empty(src)) {
2237 		struct list_head *move_to = src;
2238 		struct folio *folio;
2239 
2240 		folio = lru_to_folio(src);
2241 		prefetchw_prev_lru_folio(folio, src, flags);
2242 
2243 		nr_pages = folio_nr_pages(folio);
2244 		total_scan += nr_pages;
2245 
2246 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2247 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2248 			move_to = &folios_skipped;
2249 			goto move;
2250 		}
2251 
2252 		/*
2253 		 * Do not count skipped folios because that makes the function
2254 		 * return with no isolated folios if the LRU mostly contains
2255 		 * ineligible folios.  This causes the VM to not reclaim any
2256 		 * folios, triggering a premature OOM.
2257 		 * Account all pages in a folio.
2258 		 */
2259 		scan += nr_pages;
2260 
2261 		if (!folio_test_lru(folio))
2262 			goto move;
2263 		if (!sc->may_unmap && folio_mapped(folio))
2264 			goto move;
2265 
2266 		/*
2267 		 * Be careful not to clear the lru flag until after we're
2268 		 * sure the folio is not being freed elsewhere -- the
2269 		 * folio release code relies on it.
2270 		 */
2271 		if (unlikely(!folio_try_get(folio)))
2272 			goto move;
2273 
2274 		if (!folio_test_clear_lru(folio)) {
2275 			/* Another thread is already isolating this folio */
2276 			folio_put(folio);
2277 			goto move;
2278 		}
2279 
2280 		nr_taken += nr_pages;
2281 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2282 		move_to = dst;
2283 move:
2284 		list_move(&folio->lru, move_to);
2285 	}
2286 
2287 	/*
2288 	 * Splice any skipped folios to the start of the LRU list. Note that
2289 	 * this disrupts the LRU order when reclaiming for lower zones but
2290 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2291 	 * scanning would soon rescan the same folios to skip and waste lots
2292 	 * of cpu cycles.
2293 	 */
2294 	if (!list_empty(&folios_skipped)) {
2295 		int zid;
2296 
2297 		list_splice(&folios_skipped, src);
2298 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2299 			if (!nr_skipped[zid])
2300 				continue;
2301 
2302 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2303 			skipped += nr_skipped[zid];
2304 		}
2305 	}
2306 	*nr_scanned = total_scan;
2307 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2308 				    total_scan, skipped, nr_taken,
2309 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2310 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2311 	return nr_taken;
2312 }
2313 
2314 /**
2315  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2316  * @folio: Folio to isolate from its LRU list.
2317  *
2318  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2319  * corresponding to whatever LRU list the folio was on.
2320  *
2321  * The folio will have its LRU flag cleared.  If it was found on the
2322  * active list, it will have the Active flag set.  If it was found on the
2323  * unevictable list, it will have the Unevictable flag set.  These flags
2324  * may need to be cleared by the caller before letting the page go.
2325  *
2326  * Context:
2327  *
2328  * (1) Must be called with an elevated refcount on the folio. This is a
2329  *     fundamental difference from isolate_lru_folios() (which is called
2330  *     without a stable reference).
2331  * (2) The lru_lock must not be held.
2332  * (3) Interrupts must be enabled.
2333  *
2334  * Return: 0 if the folio was removed from an LRU list.
2335  * -EBUSY if the folio was not on an LRU list.
2336  */
2337 int folio_isolate_lru(struct folio *folio)
2338 {
2339 	int ret = -EBUSY;
2340 
2341 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2342 
2343 	if (folio_test_clear_lru(folio)) {
2344 		struct lruvec *lruvec;
2345 
2346 		folio_get(folio);
2347 		lruvec = folio_lruvec_lock_irq(folio);
2348 		lruvec_del_folio(lruvec, folio);
2349 		unlock_page_lruvec_irq(lruvec);
2350 		ret = 0;
2351 	}
2352 
2353 	return ret;
2354 }
2355 
2356 /*
2357  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2358  * then get rescheduled. When there are massive number of tasks doing page
2359  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2360  * the LRU list will go small and be scanned faster than necessary, leading to
2361  * unnecessary swapping, thrashing and OOM.
2362  */
2363 static int too_many_isolated(struct pglist_data *pgdat, int file,
2364 		struct scan_control *sc)
2365 {
2366 	unsigned long inactive, isolated;
2367 	bool too_many;
2368 
2369 	if (current_is_kswapd())
2370 		return 0;
2371 
2372 	if (!writeback_throttling_sane(sc))
2373 		return 0;
2374 
2375 	if (file) {
2376 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2377 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2378 	} else {
2379 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2380 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2381 	}
2382 
2383 	/*
2384 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2385 	 * won't get blocked by normal direct-reclaimers, forming a circular
2386 	 * deadlock.
2387 	 */
2388 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2389 		inactive >>= 3;
2390 
2391 	too_many = isolated > inactive;
2392 
2393 	/* Wake up tasks throttled due to too_many_isolated. */
2394 	if (!too_many)
2395 		wake_throttle_isolated(pgdat);
2396 
2397 	return too_many;
2398 }
2399 
2400 /*
2401  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2402  * On return, @list is reused as a list of folios to be freed by the caller.
2403  *
2404  * Returns the number of pages moved to the given lruvec.
2405  */
2406 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2407 		struct list_head *list)
2408 {
2409 	int nr_pages, nr_moved = 0;
2410 	LIST_HEAD(folios_to_free);
2411 
2412 	while (!list_empty(list)) {
2413 		struct folio *folio = lru_to_folio(list);
2414 
2415 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2416 		list_del(&folio->lru);
2417 		if (unlikely(!folio_evictable(folio))) {
2418 			spin_unlock_irq(&lruvec->lru_lock);
2419 			folio_putback_lru(folio);
2420 			spin_lock_irq(&lruvec->lru_lock);
2421 			continue;
2422 		}
2423 
2424 		/*
2425 		 * The folio_set_lru needs to be kept here for list integrity.
2426 		 * Otherwise:
2427 		 *   #0 move_folios_to_lru             #1 release_pages
2428 		 *   if (!folio_put_testzero())
2429 		 *				      if (folio_put_testzero())
2430 		 *				        !lru //skip lru_lock
2431 		 *     folio_set_lru()
2432 		 *     list_add(&folio->lru,)
2433 		 *                                        list_add(&folio->lru,)
2434 		 */
2435 		folio_set_lru(folio);
2436 
2437 		if (unlikely(folio_put_testzero(folio))) {
2438 			__folio_clear_lru_flags(folio);
2439 
2440 			if (unlikely(folio_test_large(folio))) {
2441 				spin_unlock_irq(&lruvec->lru_lock);
2442 				destroy_large_folio(folio);
2443 				spin_lock_irq(&lruvec->lru_lock);
2444 			} else
2445 				list_add(&folio->lru, &folios_to_free);
2446 
2447 			continue;
2448 		}
2449 
2450 		/*
2451 		 * All pages were isolated from the same lruvec (and isolation
2452 		 * inhibits memcg migration).
2453 		 */
2454 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2455 		lruvec_add_folio(lruvec, folio);
2456 		nr_pages = folio_nr_pages(folio);
2457 		nr_moved += nr_pages;
2458 		if (folio_test_active(folio))
2459 			workingset_age_nonresident(lruvec, nr_pages);
2460 	}
2461 
2462 	/*
2463 	 * To save our caller's stack, now use input list for pages to free.
2464 	 */
2465 	list_splice(&folios_to_free, list);
2466 
2467 	return nr_moved;
2468 }
2469 
2470 /*
2471  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2472  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2473  * we should not throttle.  Otherwise it is safe to do so.
2474  */
2475 static int current_may_throttle(void)
2476 {
2477 	return !(current->flags & PF_LOCAL_THROTTLE);
2478 }
2479 
2480 /*
2481  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2482  * of reclaimed pages
2483  */
2484 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2485 		struct lruvec *lruvec, struct scan_control *sc,
2486 		enum lru_list lru)
2487 {
2488 	LIST_HEAD(folio_list);
2489 	unsigned long nr_scanned;
2490 	unsigned int nr_reclaimed = 0;
2491 	unsigned long nr_taken;
2492 	struct reclaim_stat stat;
2493 	bool file = is_file_lru(lru);
2494 	enum vm_event_item item;
2495 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2496 	bool stalled = false;
2497 
2498 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2499 		if (stalled)
2500 			return 0;
2501 
2502 		/* wait a bit for the reclaimer. */
2503 		stalled = true;
2504 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2505 
2506 		/* We are about to die and free our memory. Return now. */
2507 		if (fatal_signal_pending(current))
2508 			return SWAP_CLUSTER_MAX;
2509 	}
2510 
2511 	lru_add_drain();
2512 
2513 	spin_lock_irq(&lruvec->lru_lock);
2514 
2515 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2516 				     &nr_scanned, sc, lru);
2517 
2518 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2519 	item = PGSCAN_KSWAPD + reclaimer_offset();
2520 	if (!cgroup_reclaim(sc))
2521 		__count_vm_events(item, nr_scanned);
2522 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2523 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2524 
2525 	spin_unlock_irq(&lruvec->lru_lock);
2526 
2527 	if (nr_taken == 0)
2528 		return 0;
2529 
2530 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2531 
2532 	spin_lock_irq(&lruvec->lru_lock);
2533 	move_folios_to_lru(lruvec, &folio_list);
2534 
2535 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2536 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2537 	if (!cgroup_reclaim(sc))
2538 		__count_vm_events(item, nr_reclaimed);
2539 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2540 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2541 	spin_unlock_irq(&lruvec->lru_lock);
2542 
2543 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2544 	mem_cgroup_uncharge_list(&folio_list);
2545 	free_unref_page_list(&folio_list);
2546 
2547 	/*
2548 	 * If dirty folios are scanned that are not queued for IO, it
2549 	 * implies that flushers are not doing their job. This can
2550 	 * happen when memory pressure pushes dirty folios to the end of
2551 	 * the LRU before the dirty limits are breached and the dirty
2552 	 * data has expired. It can also happen when the proportion of
2553 	 * dirty folios grows not through writes but through memory
2554 	 * pressure reclaiming all the clean cache. And in some cases,
2555 	 * the flushers simply cannot keep up with the allocation
2556 	 * rate. Nudge the flusher threads in case they are asleep.
2557 	 */
2558 	if (stat.nr_unqueued_dirty == nr_taken) {
2559 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2560 		/*
2561 		 * For cgroupv1 dirty throttling is achieved by waking up
2562 		 * the kernel flusher here and later waiting on folios
2563 		 * which are in writeback to finish (see shrink_folio_list()).
2564 		 *
2565 		 * Flusher may not be able to issue writeback quickly
2566 		 * enough for cgroupv1 writeback throttling to work
2567 		 * on a large system.
2568 		 */
2569 		if (!writeback_throttling_sane(sc))
2570 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2571 	}
2572 
2573 	sc->nr.dirty += stat.nr_dirty;
2574 	sc->nr.congested += stat.nr_congested;
2575 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2576 	sc->nr.writeback += stat.nr_writeback;
2577 	sc->nr.immediate += stat.nr_immediate;
2578 	sc->nr.taken += nr_taken;
2579 	if (file)
2580 		sc->nr.file_taken += nr_taken;
2581 
2582 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2583 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2584 	return nr_reclaimed;
2585 }
2586 
2587 /*
2588  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2589  *
2590  * We move them the other way if the folio is referenced by one or more
2591  * processes.
2592  *
2593  * If the folios are mostly unmapped, the processing is fast and it is
2594  * appropriate to hold lru_lock across the whole operation.  But if
2595  * the folios are mapped, the processing is slow (folio_referenced()), so
2596  * we should drop lru_lock around each folio.  It's impossible to balance
2597  * this, so instead we remove the folios from the LRU while processing them.
2598  * It is safe to rely on the active flag against the non-LRU folios in here
2599  * because nobody will play with that bit on a non-LRU folio.
2600  *
2601  * The downside is that we have to touch folio->_refcount against each folio.
2602  * But we had to alter folio->flags anyway.
2603  */
2604 static void shrink_active_list(unsigned long nr_to_scan,
2605 			       struct lruvec *lruvec,
2606 			       struct scan_control *sc,
2607 			       enum lru_list lru)
2608 {
2609 	unsigned long nr_taken;
2610 	unsigned long nr_scanned;
2611 	unsigned long vm_flags;
2612 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2613 	LIST_HEAD(l_active);
2614 	LIST_HEAD(l_inactive);
2615 	unsigned nr_deactivate, nr_activate;
2616 	unsigned nr_rotated = 0;
2617 	int file = is_file_lru(lru);
2618 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2619 
2620 	lru_add_drain();
2621 
2622 	spin_lock_irq(&lruvec->lru_lock);
2623 
2624 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2625 				     &nr_scanned, sc, lru);
2626 
2627 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2628 
2629 	if (!cgroup_reclaim(sc))
2630 		__count_vm_events(PGREFILL, nr_scanned);
2631 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2632 
2633 	spin_unlock_irq(&lruvec->lru_lock);
2634 
2635 	while (!list_empty(&l_hold)) {
2636 		struct folio *folio;
2637 
2638 		cond_resched();
2639 		folio = lru_to_folio(&l_hold);
2640 		list_del(&folio->lru);
2641 
2642 		if (unlikely(!folio_evictable(folio))) {
2643 			folio_putback_lru(folio);
2644 			continue;
2645 		}
2646 
2647 		if (unlikely(buffer_heads_over_limit)) {
2648 			if (folio_test_private(folio) && folio_trylock(folio)) {
2649 				if (folio_test_private(folio))
2650 					filemap_release_folio(folio, 0);
2651 				folio_unlock(folio);
2652 			}
2653 		}
2654 
2655 		/* Referenced or rmap lock contention: rotate */
2656 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2657 				     &vm_flags) != 0) {
2658 			/*
2659 			 * Identify referenced, file-backed active folios and
2660 			 * give them one more trip around the active list. So
2661 			 * that executable code get better chances to stay in
2662 			 * memory under moderate memory pressure.  Anon folios
2663 			 * are not likely to be evicted by use-once streaming
2664 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2665 			 * so we ignore them here.
2666 			 */
2667 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2668 				nr_rotated += folio_nr_pages(folio);
2669 				list_add(&folio->lru, &l_active);
2670 				continue;
2671 			}
2672 		}
2673 
2674 		folio_clear_active(folio);	/* we are de-activating */
2675 		folio_set_workingset(folio);
2676 		list_add(&folio->lru, &l_inactive);
2677 	}
2678 
2679 	/*
2680 	 * Move folios back to the lru list.
2681 	 */
2682 	spin_lock_irq(&lruvec->lru_lock);
2683 
2684 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2685 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2686 	/* Keep all free folios in l_active list */
2687 	list_splice(&l_inactive, &l_active);
2688 
2689 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2690 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2691 
2692 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2693 	spin_unlock_irq(&lruvec->lru_lock);
2694 
2695 	if (nr_rotated)
2696 		lru_note_cost(lruvec, file, 0, nr_rotated);
2697 	mem_cgroup_uncharge_list(&l_active);
2698 	free_unref_page_list(&l_active);
2699 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2700 			nr_deactivate, nr_rotated, sc->priority, file);
2701 }
2702 
2703 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2704 				      struct pglist_data *pgdat)
2705 {
2706 	struct reclaim_stat dummy_stat;
2707 	unsigned int nr_reclaimed;
2708 	struct folio *folio;
2709 	struct scan_control sc = {
2710 		.gfp_mask = GFP_KERNEL,
2711 		.may_writepage = 1,
2712 		.may_unmap = 1,
2713 		.may_swap = 1,
2714 		.no_demotion = 1,
2715 	};
2716 
2717 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2718 	while (!list_empty(folio_list)) {
2719 		folio = lru_to_folio(folio_list);
2720 		list_del(&folio->lru);
2721 		folio_putback_lru(folio);
2722 	}
2723 
2724 	return nr_reclaimed;
2725 }
2726 
2727 unsigned long reclaim_pages(struct list_head *folio_list)
2728 {
2729 	int nid;
2730 	unsigned int nr_reclaimed = 0;
2731 	LIST_HEAD(node_folio_list);
2732 	unsigned int noreclaim_flag;
2733 
2734 	if (list_empty(folio_list))
2735 		return nr_reclaimed;
2736 
2737 	noreclaim_flag = memalloc_noreclaim_save();
2738 
2739 	nid = folio_nid(lru_to_folio(folio_list));
2740 	do {
2741 		struct folio *folio = lru_to_folio(folio_list);
2742 
2743 		if (nid == folio_nid(folio)) {
2744 			folio_clear_active(folio);
2745 			list_move(&folio->lru, &node_folio_list);
2746 			continue;
2747 		}
2748 
2749 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2750 		nid = folio_nid(lru_to_folio(folio_list));
2751 	} while (!list_empty(folio_list));
2752 
2753 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2754 
2755 	memalloc_noreclaim_restore(noreclaim_flag);
2756 
2757 	return nr_reclaimed;
2758 }
2759 
2760 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2761 				 struct lruvec *lruvec, struct scan_control *sc)
2762 {
2763 	if (is_active_lru(lru)) {
2764 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2765 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2766 		else
2767 			sc->skipped_deactivate = 1;
2768 		return 0;
2769 	}
2770 
2771 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2772 }
2773 
2774 /*
2775  * The inactive anon list should be small enough that the VM never has
2776  * to do too much work.
2777  *
2778  * The inactive file list should be small enough to leave most memory
2779  * to the established workingset on the scan-resistant active list,
2780  * but large enough to avoid thrashing the aggregate readahead window.
2781  *
2782  * Both inactive lists should also be large enough that each inactive
2783  * folio has a chance to be referenced again before it is reclaimed.
2784  *
2785  * If that fails and refaulting is observed, the inactive list grows.
2786  *
2787  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2788  * on this LRU, maintained by the pageout code. An inactive_ratio
2789  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2790  *
2791  * total     target    max
2792  * memory    ratio     inactive
2793  * -------------------------------------
2794  *   10MB       1         5MB
2795  *  100MB       1        50MB
2796  *    1GB       3       250MB
2797  *   10GB      10       0.9GB
2798  *  100GB      31         3GB
2799  *    1TB     101        10GB
2800  *   10TB     320        32GB
2801  */
2802 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2803 {
2804 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2805 	unsigned long inactive, active;
2806 	unsigned long inactive_ratio;
2807 	unsigned long gb;
2808 
2809 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2810 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2811 
2812 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2813 	if (gb)
2814 		inactive_ratio = int_sqrt(10 * gb);
2815 	else
2816 		inactive_ratio = 1;
2817 
2818 	return inactive * inactive_ratio < active;
2819 }
2820 
2821 enum scan_balance {
2822 	SCAN_EQUAL,
2823 	SCAN_FRACT,
2824 	SCAN_ANON,
2825 	SCAN_FILE,
2826 };
2827 
2828 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2829 {
2830 	unsigned long file;
2831 	struct lruvec *target_lruvec;
2832 
2833 	if (lru_gen_enabled())
2834 		return;
2835 
2836 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2837 
2838 	/*
2839 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2840 	 * lruvec stats for heuristics.
2841 	 */
2842 	mem_cgroup_flush_stats();
2843 
2844 	/*
2845 	 * Determine the scan balance between anon and file LRUs.
2846 	 */
2847 	spin_lock_irq(&target_lruvec->lru_lock);
2848 	sc->anon_cost = target_lruvec->anon_cost;
2849 	sc->file_cost = target_lruvec->file_cost;
2850 	spin_unlock_irq(&target_lruvec->lru_lock);
2851 
2852 	/*
2853 	 * Target desirable inactive:active list ratios for the anon
2854 	 * and file LRU lists.
2855 	 */
2856 	if (!sc->force_deactivate) {
2857 		unsigned long refaults;
2858 
2859 		/*
2860 		 * When refaults are being observed, it means a new
2861 		 * workingset is being established. Deactivate to get
2862 		 * rid of any stale active pages quickly.
2863 		 */
2864 		refaults = lruvec_page_state(target_lruvec,
2865 				WORKINGSET_ACTIVATE_ANON);
2866 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2867 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2868 			sc->may_deactivate |= DEACTIVATE_ANON;
2869 		else
2870 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2871 
2872 		refaults = lruvec_page_state(target_lruvec,
2873 				WORKINGSET_ACTIVATE_FILE);
2874 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2875 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2876 			sc->may_deactivate |= DEACTIVATE_FILE;
2877 		else
2878 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2879 	} else
2880 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2881 
2882 	/*
2883 	 * If we have plenty of inactive file pages that aren't
2884 	 * thrashing, try to reclaim those first before touching
2885 	 * anonymous pages.
2886 	 */
2887 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2888 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2889 		sc->cache_trim_mode = 1;
2890 	else
2891 		sc->cache_trim_mode = 0;
2892 
2893 	/*
2894 	 * Prevent the reclaimer from falling into the cache trap: as
2895 	 * cache pages start out inactive, every cache fault will tip
2896 	 * the scan balance towards the file LRU.  And as the file LRU
2897 	 * shrinks, so does the window for rotation from references.
2898 	 * This means we have a runaway feedback loop where a tiny
2899 	 * thrashing file LRU becomes infinitely more attractive than
2900 	 * anon pages.  Try to detect this based on file LRU size.
2901 	 */
2902 	if (!cgroup_reclaim(sc)) {
2903 		unsigned long total_high_wmark = 0;
2904 		unsigned long free, anon;
2905 		int z;
2906 
2907 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2908 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2909 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2910 
2911 		for (z = 0; z < MAX_NR_ZONES; z++) {
2912 			struct zone *zone = &pgdat->node_zones[z];
2913 
2914 			if (!managed_zone(zone))
2915 				continue;
2916 
2917 			total_high_wmark += high_wmark_pages(zone);
2918 		}
2919 
2920 		/*
2921 		 * Consider anon: if that's low too, this isn't a
2922 		 * runaway file reclaim problem, but rather just
2923 		 * extreme pressure. Reclaim as per usual then.
2924 		 */
2925 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2926 
2927 		sc->file_is_tiny =
2928 			file + free <= total_high_wmark &&
2929 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2930 			anon >> sc->priority;
2931 	}
2932 }
2933 
2934 /*
2935  * Determine how aggressively the anon and file LRU lists should be
2936  * scanned.
2937  *
2938  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2939  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2940  */
2941 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2942 			   unsigned long *nr)
2943 {
2944 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2945 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2946 	unsigned long anon_cost, file_cost, total_cost;
2947 	int swappiness = mem_cgroup_swappiness(memcg);
2948 	u64 fraction[ANON_AND_FILE];
2949 	u64 denominator = 0;	/* gcc */
2950 	enum scan_balance scan_balance;
2951 	unsigned long ap, fp;
2952 	enum lru_list lru;
2953 
2954 	/* If we have no swap space, do not bother scanning anon folios. */
2955 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2956 		scan_balance = SCAN_FILE;
2957 		goto out;
2958 	}
2959 
2960 	/*
2961 	 * Global reclaim will swap to prevent OOM even with no
2962 	 * swappiness, but memcg users want to use this knob to
2963 	 * disable swapping for individual groups completely when
2964 	 * using the memory controller's swap limit feature would be
2965 	 * too expensive.
2966 	 */
2967 	if (cgroup_reclaim(sc) && !swappiness) {
2968 		scan_balance = SCAN_FILE;
2969 		goto out;
2970 	}
2971 
2972 	/*
2973 	 * Do not apply any pressure balancing cleverness when the
2974 	 * system is close to OOM, scan both anon and file equally
2975 	 * (unless the swappiness setting disagrees with swapping).
2976 	 */
2977 	if (!sc->priority && swappiness) {
2978 		scan_balance = SCAN_EQUAL;
2979 		goto out;
2980 	}
2981 
2982 	/*
2983 	 * If the system is almost out of file pages, force-scan anon.
2984 	 */
2985 	if (sc->file_is_tiny) {
2986 		scan_balance = SCAN_ANON;
2987 		goto out;
2988 	}
2989 
2990 	/*
2991 	 * If there is enough inactive page cache, we do not reclaim
2992 	 * anything from the anonymous working right now.
2993 	 */
2994 	if (sc->cache_trim_mode) {
2995 		scan_balance = SCAN_FILE;
2996 		goto out;
2997 	}
2998 
2999 	scan_balance = SCAN_FRACT;
3000 	/*
3001 	 * Calculate the pressure balance between anon and file pages.
3002 	 *
3003 	 * The amount of pressure we put on each LRU is inversely
3004 	 * proportional to the cost of reclaiming each list, as
3005 	 * determined by the share of pages that are refaulting, times
3006 	 * the relative IO cost of bringing back a swapped out
3007 	 * anonymous page vs reloading a filesystem page (swappiness).
3008 	 *
3009 	 * Although we limit that influence to ensure no list gets
3010 	 * left behind completely: at least a third of the pressure is
3011 	 * applied, before swappiness.
3012 	 *
3013 	 * With swappiness at 100, anon and file have equal IO cost.
3014 	 */
3015 	total_cost = sc->anon_cost + sc->file_cost;
3016 	anon_cost = total_cost + sc->anon_cost;
3017 	file_cost = total_cost + sc->file_cost;
3018 	total_cost = anon_cost + file_cost;
3019 
3020 	ap = swappiness * (total_cost + 1);
3021 	ap /= anon_cost + 1;
3022 
3023 	fp = (200 - swappiness) * (total_cost + 1);
3024 	fp /= file_cost + 1;
3025 
3026 	fraction[0] = ap;
3027 	fraction[1] = fp;
3028 	denominator = ap + fp;
3029 out:
3030 	for_each_evictable_lru(lru) {
3031 		int file = is_file_lru(lru);
3032 		unsigned long lruvec_size;
3033 		unsigned long low, min;
3034 		unsigned long scan;
3035 
3036 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3037 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3038 				      &min, &low);
3039 
3040 		if (min || low) {
3041 			/*
3042 			 * Scale a cgroup's reclaim pressure by proportioning
3043 			 * its current usage to its memory.low or memory.min
3044 			 * setting.
3045 			 *
3046 			 * This is important, as otherwise scanning aggression
3047 			 * becomes extremely binary -- from nothing as we
3048 			 * approach the memory protection threshold, to totally
3049 			 * nominal as we exceed it.  This results in requiring
3050 			 * setting extremely liberal protection thresholds. It
3051 			 * also means we simply get no protection at all if we
3052 			 * set it too low, which is not ideal.
3053 			 *
3054 			 * If there is any protection in place, we reduce scan
3055 			 * pressure by how much of the total memory used is
3056 			 * within protection thresholds.
3057 			 *
3058 			 * There is one special case: in the first reclaim pass,
3059 			 * we skip over all groups that are within their low
3060 			 * protection. If that fails to reclaim enough pages to
3061 			 * satisfy the reclaim goal, we come back and override
3062 			 * the best-effort low protection. However, we still
3063 			 * ideally want to honor how well-behaved groups are in
3064 			 * that case instead of simply punishing them all
3065 			 * equally. As such, we reclaim them based on how much
3066 			 * memory they are using, reducing the scan pressure
3067 			 * again by how much of the total memory used is under
3068 			 * hard protection.
3069 			 */
3070 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3071 			unsigned long protection;
3072 
3073 			/* memory.low scaling, make sure we retry before OOM */
3074 			if (!sc->memcg_low_reclaim && low > min) {
3075 				protection = low;
3076 				sc->memcg_low_skipped = 1;
3077 			} else {
3078 				protection = min;
3079 			}
3080 
3081 			/* Avoid TOCTOU with earlier protection check */
3082 			cgroup_size = max(cgroup_size, protection);
3083 
3084 			scan = lruvec_size - lruvec_size * protection /
3085 				(cgroup_size + 1);
3086 
3087 			/*
3088 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3089 			 * reclaim moving forwards, avoiding decrementing
3090 			 * sc->priority further than desirable.
3091 			 */
3092 			scan = max(scan, SWAP_CLUSTER_MAX);
3093 		} else {
3094 			scan = lruvec_size;
3095 		}
3096 
3097 		scan >>= sc->priority;
3098 
3099 		/*
3100 		 * If the cgroup's already been deleted, make sure to
3101 		 * scrape out the remaining cache.
3102 		 */
3103 		if (!scan && !mem_cgroup_online(memcg))
3104 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3105 
3106 		switch (scan_balance) {
3107 		case SCAN_EQUAL:
3108 			/* Scan lists relative to size */
3109 			break;
3110 		case SCAN_FRACT:
3111 			/*
3112 			 * Scan types proportional to swappiness and
3113 			 * their relative recent reclaim efficiency.
3114 			 * Make sure we don't miss the last page on
3115 			 * the offlined memory cgroups because of a
3116 			 * round-off error.
3117 			 */
3118 			scan = mem_cgroup_online(memcg) ?
3119 			       div64_u64(scan * fraction[file], denominator) :
3120 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3121 						  denominator);
3122 			break;
3123 		case SCAN_FILE:
3124 		case SCAN_ANON:
3125 			/* Scan one type exclusively */
3126 			if ((scan_balance == SCAN_FILE) != file)
3127 				scan = 0;
3128 			break;
3129 		default:
3130 			/* Look ma, no brain */
3131 			BUG();
3132 		}
3133 
3134 		nr[lru] = scan;
3135 	}
3136 }
3137 
3138 /*
3139  * Anonymous LRU management is a waste if there is
3140  * ultimately no way to reclaim the memory.
3141  */
3142 static bool can_age_anon_pages(struct pglist_data *pgdat,
3143 			       struct scan_control *sc)
3144 {
3145 	/* Aging the anon LRU is valuable if swap is present: */
3146 	if (total_swap_pages > 0)
3147 		return true;
3148 
3149 	/* Also valuable if anon pages can be demoted: */
3150 	return can_demote(pgdat->node_id, sc);
3151 }
3152 
3153 #ifdef CONFIG_LRU_GEN
3154 
3155 #ifdef CONFIG_LRU_GEN_ENABLED
3156 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3157 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3158 #else
3159 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3160 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3161 #endif
3162 
3163 /******************************************************************************
3164  *                          shorthand helpers
3165  ******************************************************************************/
3166 
3167 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3168 
3169 #define DEFINE_MAX_SEQ(lruvec)						\
3170 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3171 
3172 #define DEFINE_MIN_SEQ(lruvec)						\
3173 	unsigned long min_seq[ANON_AND_FILE] = {			\
3174 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3175 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3176 	}
3177 
3178 #define for_each_gen_type_zone(gen, type, zone)				\
3179 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3180 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3181 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3182 
3183 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3184 {
3185 	struct pglist_data *pgdat = NODE_DATA(nid);
3186 
3187 #ifdef CONFIG_MEMCG
3188 	if (memcg) {
3189 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3190 
3191 		/* see the comment in mem_cgroup_lruvec() */
3192 		if (!lruvec->pgdat)
3193 			lruvec->pgdat = pgdat;
3194 
3195 		return lruvec;
3196 	}
3197 #endif
3198 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3199 
3200 	return &pgdat->__lruvec;
3201 }
3202 
3203 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3204 {
3205 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3206 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3207 
3208 	if (!can_demote(pgdat->node_id, sc) &&
3209 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3210 		return 0;
3211 
3212 	return mem_cgroup_swappiness(memcg);
3213 }
3214 
3215 static int get_nr_gens(struct lruvec *lruvec, int type)
3216 {
3217 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3218 }
3219 
3220 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3221 {
3222 	/* see the comment on lru_gen_struct */
3223 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3224 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3225 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3226 }
3227 
3228 /******************************************************************************
3229  *                          mm_struct list
3230  ******************************************************************************/
3231 
3232 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3233 {
3234 	static struct lru_gen_mm_list mm_list = {
3235 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3236 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3237 	};
3238 
3239 #ifdef CONFIG_MEMCG
3240 	if (memcg)
3241 		return &memcg->mm_list;
3242 #endif
3243 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3244 
3245 	return &mm_list;
3246 }
3247 
3248 void lru_gen_add_mm(struct mm_struct *mm)
3249 {
3250 	int nid;
3251 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3252 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3253 
3254 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3255 #ifdef CONFIG_MEMCG
3256 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3257 	mm->lru_gen.memcg = memcg;
3258 #endif
3259 	spin_lock(&mm_list->lock);
3260 
3261 	for_each_node_state(nid, N_MEMORY) {
3262 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3263 
3264 		/* the first addition since the last iteration */
3265 		if (lruvec->mm_state.tail == &mm_list->fifo)
3266 			lruvec->mm_state.tail = &mm->lru_gen.list;
3267 	}
3268 
3269 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3270 
3271 	spin_unlock(&mm_list->lock);
3272 }
3273 
3274 void lru_gen_del_mm(struct mm_struct *mm)
3275 {
3276 	int nid;
3277 	struct lru_gen_mm_list *mm_list;
3278 	struct mem_cgroup *memcg = NULL;
3279 
3280 	if (list_empty(&mm->lru_gen.list))
3281 		return;
3282 
3283 #ifdef CONFIG_MEMCG
3284 	memcg = mm->lru_gen.memcg;
3285 #endif
3286 	mm_list = get_mm_list(memcg);
3287 
3288 	spin_lock(&mm_list->lock);
3289 
3290 	for_each_node(nid) {
3291 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3292 
3293 		/* where the last iteration ended (exclusive) */
3294 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3295 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3296 
3297 		/* where the current iteration continues (inclusive) */
3298 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3299 			continue;
3300 
3301 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3302 		/* the deletion ends the current iteration */
3303 		if (lruvec->mm_state.head == &mm_list->fifo)
3304 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3305 	}
3306 
3307 	list_del_init(&mm->lru_gen.list);
3308 
3309 	spin_unlock(&mm_list->lock);
3310 
3311 #ifdef CONFIG_MEMCG
3312 	mem_cgroup_put(mm->lru_gen.memcg);
3313 	mm->lru_gen.memcg = NULL;
3314 #endif
3315 }
3316 
3317 #ifdef CONFIG_MEMCG
3318 void lru_gen_migrate_mm(struct mm_struct *mm)
3319 {
3320 	struct mem_cgroup *memcg;
3321 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3322 
3323 	VM_WARN_ON_ONCE(task->mm != mm);
3324 	lockdep_assert_held(&task->alloc_lock);
3325 
3326 	/* for mm_update_next_owner() */
3327 	if (mem_cgroup_disabled())
3328 		return;
3329 
3330 	/* migration can happen before addition */
3331 	if (!mm->lru_gen.memcg)
3332 		return;
3333 
3334 	rcu_read_lock();
3335 	memcg = mem_cgroup_from_task(task);
3336 	rcu_read_unlock();
3337 	if (memcg == mm->lru_gen.memcg)
3338 		return;
3339 
3340 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3341 
3342 	lru_gen_del_mm(mm);
3343 	lru_gen_add_mm(mm);
3344 }
3345 #endif
3346 
3347 /*
3348  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3349  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3350  * bits in a bitmap, k is the number of hash functions and n is the number of
3351  * inserted items.
3352  *
3353  * Page table walkers use one of the two filters to reduce their search space.
3354  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3355  * aging uses the double-buffering technique to flip to the other filter each
3356  * time it produces a new generation. For non-leaf entries that have enough
3357  * leaf entries, the aging carries them over to the next generation in
3358  * walk_pmd_range(); the eviction also report them when walking the rmap
3359  * in lru_gen_look_around().
3360  *
3361  * For future optimizations:
3362  * 1. It's not necessary to keep both filters all the time. The spare one can be
3363  *    freed after the RCU grace period and reallocated if needed again.
3364  * 2. And when reallocating, it's worth scaling its size according to the number
3365  *    of inserted entries in the other filter, to reduce the memory overhead on
3366  *    small systems and false positives on large systems.
3367  * 3. Jenkins' hash function is an alternative to Knuth's.
3368  */
3369 #define BLOOM_FILTER_SHIFT	15
3370 
3371 static inline int filter_gen_from_seq(unsigned long seq)
3372 {
3373 	return seq % NR_BLOOM_FILTERS;
3374 }
3375 
3376 static void get_item_key(void *item, int *key)
3377 {
3378 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3379 
3380 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3381 
3382 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3383 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3384 }
3385 
3386 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3387 {
3388 	unsigned long *filter;
3389 	int gen = filter_gen_from_seq(seq);
3390 
3391 	filter = lruvec->mm_state.filters[gen];
3392 	if (filter) {
3393 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3394 		return;
3395 	}
3396 
3397 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3398 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3399 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3400 }
3401 
3402 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3403 {
3404 	int key[2];
3405 	unsigned long *filter;
3406 	int gen = filter_gen_from_seq(seq);
3407 
3408 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3409 	if (!filter)
3410 		return;
3411 
3412 	get_item_key(item, key);
3413 
3414 	if (!test_bit(key[0], filter))
3415 		set_bit(key[0], filter);
3416 	if (!test_bit(key[1], filter))
3417 		set_bit(key[1], filter);
3418 }
3419 
3420 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3421 {
3422 	int key[2];
3423 	unsigned long *filter;
3424 	int gen = filter_gen_from_seq(seq);
3425 
3426 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3427 	if (!filter)
3428 		return true;
3429 
3430 	get_item_key(item, key);
3431 
3432 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3433 }
3434 
3435 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3436 {
3437 	int i;
3438 	int hist;
3439 
3440 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3441 
3442 	if (walk) {
3443 		hist = lru_hist_from_seq(walk->max_seq);
3444 
3445 		for (i = 0; i < NR_MM_STATS; i++) {
3446 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3447 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3448 			walk->mm_stats[i] = 0;
3449 		}
3450 	}
3451 
3452 	if (NR_HIST_GENS > 1 && last) {
3453 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3454 
3455 		for (i = 0; i < NR_MM_STATS; i++)
3456 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3457 	}
3458 }
3459 
3460 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3461 {
3462 	int type;
3463 	unsigned long size = 0;
3464 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3465 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3466 
3467 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3468 		return true;
3469 
3470 	clear_bit(key, &mm->lru_gen.bitmap);
3471 
3472 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3473 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3474 			       get_mm_counter(mm, MM_ANONPAGES) +
3475 			       get_mm_counter(mm, MM_SHMEMPAGES);
3476 	}
3477 
3478 	if (size < MIN_LRU_BATCH)
3479 		return true;
3480 
3481 	return !mmget_not_zero(mm);
3482 }
3483 
3484 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3485 			    struct mm_struct **iter)
3486 {
3487 	bool first = false;
3488 	bool last = true;
3489 	struct mm_struct *mm = NULL;
3490 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3491 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3492 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3493 
3494 	/*
3495 	 * There are four interesting cases for this page table walker:
3496 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3497 	 *    there is nothing left to do.
3498 	 * 2. It's the first of the current generation, and it needs to reset
3499 	 *    the Bloom filter for the next generation.
3500 	 * 3. It reaches the end of mm_list, and it needs to increment
3501 	 *    mm_state->seq; the iteration is done.
3502 	 * 4. It's the last of the current generation, and it needs to reset the
3503 	 *    mm stats counters for the next generation.
3504 	 */
3505 	spin_lock(&mm_list->lock);
3506 
3507 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3508 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3509 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3510 
3511 	if (walk->max_seq <= mm_state->seq) {
3512 		if (!*iter)
3513 			last = false;
3514 		goto done;
3515 	}
3516 
3517 	if (!mm_state->nr_walkers) {
3518 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3519 
3520 		mm_state->head = mm_list->fifo.next;
3521 		first = true;
3522 	}
3523 
3524 	while (!mm && mm_state->head != &mm_list->fifo) {
3525 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3526 
3527 		mm_state->head = mm_state->head->next;
3528 
3529 		/* force scan for those added after the last iteration */
3530 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3531 			mm_state->tail = mm_state->head;
3532 			walk->force_scan = true;
3533 		}
3534 
3535 		if (should_skip_mm(mm, walk))
3536 			mm = NULL;
3537 	}
3538 
3539 	if (mm_state->head == &mm_list->fifo)
3540 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3541 done:
3542 	if (*iter && !mm)
3543 		mm_state->nr_walkers--;
3544 	if (!*iter && mm)
3545 		mm_state->nr_walkers++;
3546 
3547 	if (mm_state->nr_walkers)
3548 		last = false;
3549 
3550 	if (*iter || last)
3551 		reset_mm_stats(lruvec, walk, last);
3552 
3553 	spin_unlock(&mm_list->lock);
3554 
3555 	if (mm && first)
3556 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3557 
3558 	if (*iter)
3559 		mmput_async(*iter);
3560 
3561 	*iter = mm;
3562 
3563 	return last;
3564 }
3565 
3566 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3567 {
3568 	bool success = false;
3569 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3570 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3571 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3572 
3573 	spin_lock(&mm_list->lock);
3574 
3575 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3576 
3577 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3578 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3579 
3580 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3581 		reset_mm_stats(lruvec, NULL, true);
3582 		success = true;
3583 	}
3584 
3585 	spin_unlock(&mm_list->lock);
3586 
3587 	return success;
3588 }
3589 
3590 /******************************************************************************
3591  *                          refault feedback loop
3592  ******************************************************************************/
3593 
3594 /*
3595  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3596  *
3597  * The P term is refaulted/(evicted+protected) from a tier in the generation
3598  * currently being evicted; the I term is the exponential moving average of the
3599  * P term over the generations previously evicted, using the smoothing factor
3600  * 1/2; the D term isn't supported.
3601  *
3602  * The setpoint (SP) is always the first tier of one type; the process variable
3603  * (PV) is either any tier of the other type or any other tier of the same
3604  * type.
3605  *
3606  * The error is the difference between the SP and the PV; the correction is to
3607  * turn off protection when SP>PV or turn on protection when SP<PV.
3608  *
3609  * For future optimizations:
3610  * 1. The D term may discount the other two terms over time so that long-lived
3611  *    generations can resist stale information.
3612  */
3613 struct ctrl_pos {
3614 	unsigned long refaulted;
3615 	unsigned long total;
3616 	int gain;
3617 };
3618 
3619 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3620 			  struct ctrl_pos *pos)
3621 {
3622 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3623 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3624 
3625 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3626 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3627 	pos->total = lrugen->avg_total[type][tier] +
3628 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3629 	if (tier)
3630 		pos->total += lrugen->protected[hist][type][tier - 1];
3631 	pos->gain = gain;
3632 }
3633 
3634 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3635 {
3636 	int hist, tier;
3637 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3638 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3639 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3640 
3641 	lockdep_assert_held(&lruvec->lru_lock);
3642 
3643 	if (!carryover && !clear)
3644 		return;
3645 
3646 	hist = lru_hist_from_seq(seq);
3647 
3648 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3649 		if (carryover) {
3650 			unsigned long sum;
3651 
3652 			sum = lrugen->avg_refaulted[type][tier] +
3653 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3654 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3655 
3656 			sum = lrugen->avg_total[type][tier] +
3657 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3658 			if (tier)
3659 				sum += lrugen->protected[hist][type][tier - 1];
3660 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3661 		}
3662 
3663 		if (clear) {
3664 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3665 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3666 			if (tier)
3667 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3668 		}
3669 	}
3670 }
3671 
3672 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3673 {
3674 	/*
3675 	 * Return true if the PV has a limited number of refaults or a lower
3676 	 * refaulted/total than the SP.
3677 	 */
3678 	return pv->refaulted < MIN_LRU_BATCH ||
3679 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3680 	       (sp->refaulted + 1) * pv->total * pv->gain;
3681 }
3682 
3683 /******************************************************************************
3684  *                          the aging
3685  ******************************************************************************/
3686 
3687 /* promote pages accessed through page tables */
3688 static int folio_update_gen(struct folio *folio, int gen)
3689 {
3690 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3691 
3692 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3693 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3694 
3695 	do {
3696 		/* lru_gen_del_folio() has isolated this page? */
3697 		if (!(old_flags & LRU_GEN_MASK)) {
3698 			/* for shrink_folio_list() */
3699 			new_flags = old_flags | BIT(PG_referenced);
3700 			continue;
3701 		}
3702 
3703 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3704 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3705 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3706 
3707 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3708 }
3709 
3710 /* protect pages accessed multiple times through file descriptors */
3711 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3712 {
3713 	int type = folio_is_file_lru(folio);
3714 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3715 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3716 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3717 
3718 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3719 
3720 	do {
3721 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3722 		/* folio_update_gen() has promoted this page? */
3723 		if (new_gen >= 0 && new_gen != old_gen)
3724 			return new_gen;
3725 
3726 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3727 
3728 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3729 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3730 		/* for folio_end_writeback() */
3731 		if (reclaiming)
3732 			new_flags |= BIT(PG_reclaim);
3733 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3734 
3735 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3736 
3737 	return new_gen;
3738 }
3739 
3740 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3741 			      int old_gen, int new_gen)
3742 {
3743 	int type = folio_is_file_lru(folio);
3744 	int zone = folio_zonenum(folio);
3745 	int delta = folio_nr_pages(folio);
3746 
3747 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3748 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3749 
3750 	walk->batched++;
3751 
3752 	walk->nr_pages[old_gen][type][zone] -= delta;
3753 	walk->nr_pages[new_gen][type][zone] += delta;
3754 }
3755 
3756 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3757 {
3758 	int gen, type, zone;
3759 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3760 
3761 	walk->batched = 0;
3762 
3763 	for_each_gen_type_zone(gen, type, zone) {
3764 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3765 		int delta = walk->nr_pages[gen][type][zone];
3766 
3767 		if (!delta)
3768 			continue;
3769 
3770 		walk->nr_pages[gen][type][zone] = 0;
3771 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3772 			   lrugen->nr_pages[gen][type][zone] + delta);
3773 
3774 		if (lru_gen_is_active(lruvec, gen))
3775 			lru += LRU_ACTIVE;
3776 		__update_lru_size(lruvec, lru, zone, delta);
3777 	}
3778 }
3779 
3780 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3781 {
3782 	struct address_space *mapping;
3783 	struct vm_area_struct *vma = args->vma;
3784 	struct lru_gen_mm_walk *walk = args->private;
3785 
3786 	if (!vma_is_accessible(vma))
3787 		return true;
3788 
3789 	if (is_vm_hugetlb_page(vma))
3790 		return true;
3791 
3792 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3793 		return true;
3794 
3795 	if (vma == get_gate_vma(vma->vm_mm))
3796 		return true;
3797 
3798 	if (vma_is_anonymous(vma))
3799 		return !walk->can_swap;
3800 
3801 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3802 		return true;
3803 
3804 	mapping = vma->vm_file->f_mapping;
3805 	if (mapping_unevictable(mapping))
3806 		return true;
3807 
3808 	if (shmem_mapping(mapping))
3809 		return !walk->can_swap;
3810 
3811 	/* to exclude special mappings like dax, etc. */
3812 	return !mapping->a_ops->read_folio;
3813 }
3814 
3815 /*
3816  * Some userspace memory allocators map many single-page VMAs. Instead of
3817  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3818  * table to reduce zigzags and improve cache performance.
3819  */
3820 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3821 			 unsigned long *vm_start, unsigned long *vm_end)
3822 {
3823 	unsigned long start = round_up(*vm_end, size);
3824 	unsigned long end = (start | ~mask) + 1;
3825 	VMA_ITERATOR(vmi, args->mm, start);
3826 
3827 	VM_WARN_ON_ONCE(mask & size);
3828 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3829 
3830 	for_each_vma(vmi, args->vma) {
3831 		if (end && end <= args->vma->vm_start)
3832 			return false;
3833 
3834 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3835 			continue;
3836 
3837 		*vm_start = max(start, args->vma->vm_start);
3838 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3839 
3840 		return true;
3841 	}
3842 
3843 	return false;
3844 }
3845 
3846 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3847 {
3848 	unsigned long pfn = pte_pfn(pte);
3849 
3850 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3851 
3852 	if (!pte_present(pte) || is_zero_pfn(pfn))
3853 		return -1;
3854 
3855 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3856 		return -1;
3857 
3858 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3859 		return -1;
3860 
3861 	return pfn;
3862 }
3863 
3864 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3865 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3866 {
3867 	unsigned long pfn = pmd_pfn(pmd);
3868 
3869 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3870 
3871 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3872 		return -1;
3873 
3874 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3875 		return -1;
3876 
3877 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3878 		return -1;
3879 
3880 	return pfn;
3881 }
3882 #endif
3883 
3884 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3885 				   struct pglist_data *pgdat, bool can_swap)
3886 {
3887 	struct folio *folio;
3888 
3889 	/* try to avoid unnecessary memory loads */
3890 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3891 		return NULL;
3892 
3893 	folio = pfn_folio(pfn);
3894 	if (folio_nid(folio) != pgdat->node_id)
3895 		return NULL;
3896 
3897 	if (folio_memcg_rcu(folio) != memcg)
3898 		return NULL;
3899 
3900 	/* file VMAs can contain anon pages from COW */
3901 	if (!folio_is_file_lru(folio) && !can_swap)
3902 		return NULL;
3903 
3904 	return folio;
3905 }
3906 
3907 static bool suitable_to_scan(int total, int young)
3908 {
3909 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3910 
3911 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3912 	return young * n >= total;
3913 }
3914 
3915 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3916 			   struct mm_walk *args)
3917 {
3918 	int i;
3919 	pte_t *pte;
3920 	spinlock_t *ptl;
3921 	unsigned long addr;
3922 	int total = 0;
3923 	int young = 0;
3924 	struct lru_gen_mm_walk *walk = args->private;
3925 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3926 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3927 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3928 
3929 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3930 
3931 	ptl = pte_lockptr(args->mm, pmd);
3932 	if (!spin_trylock(ptl))
3933 		return false;
3934 
3935 	arch_enter_lazy_mmu_mode();
3936 
3937 	pte = pte_offset_map(pmd, start & PMD_MASK);
3938 restart:
3939 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3940 		unsigned long pfn;
3941 		struct folio *folio;
3942 
3943 		total++;
3944 		walk->mm_stats[MM_LEAF_TOTAL]++;
3945 
3946 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3947 		if (pfn == -1)
3948 			continue;
3949 
3950 		if (!pte_young(pte[i])) {
3951 			walk->mm_stats[MM_LEAF_OLD]++;
3952 			continue;
3953 		}
3954 
3955 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3956 		if (!folio)
3957 			continue;
3958 
3959 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3960 			VM_WARN_ON_ONCE(true);
3961 
3962 		young++;
3963 		walk->mm_stats[MM_LEAF_YOUNG]++;
3964 
3965 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3966 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3967 		      !folio_test_swapcache(folio)))
3968 			folio_mark_dirty(folio);
3969 
3970 		old_gen = folio_update_gen(folio, new_gen);
3971 		if (old_gen >= 0 && old_gen != new_gen)
3972 			update_batch_size(walk, folio, old_gen, new_gen);
3973 	}
3974 
3975 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3976 		goto restart;
3977 
3978 	pte_unmap(pte);
3979 
3980 	arch_leave_lazy_mmu_mode();
3981 	spin_unlock(ptl);
3982 
3983 	return suitable_to_scan(total, young);
3984 }
3985 
3986 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3987 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3988 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3989 {
3990 	int i;
3991 	pmd_t *pmd;
3992 	spinlock_t *ptl;
3993 	struct lru_gen_mm_walk *walk = args->private;
3994 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3995 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3996 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3997 
3998 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3999 
4000 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4001 	if (*start == -1) {
4002 		*start = next;
4003 		return;
4004 	}
4005 
4006 	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4007 	if (i && i <= MIN_LRU_BATCH) {
4008 		__set_bit(i - 1, bitmap);
4009 		return;
4010 	}
4011 
4012 	pmd = pmd_offset(pud, *start);
4013 
4014 	ptl = pmd_lockptr(args->mm, pmd);
4015 	if (!spin_trylock(ptl))
4016 		goto done;
4017 
4018 	arch_enter_lazy_mmu_mode();
4019 
4020 	do {
4021 		unsigned long pfn;
4022 		struct folio *folio;
4023 		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4024 
4025 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4026 		if (pfn == -1)
4027 			goto next;
4028 
4029 		if (!pmd_trans_huge(pmd[i])) {
4030 			if (arch_has_hw_nonleaf_pmd_young() &&
4031 			    get_cap(LRU_GEN_NONLEAF_YOUNG))
4032 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4033 			goto next;
4034 		}
4035 
4036 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4037 		if (!folio)
4038 			goto next;
4039 
4040 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4041 			goto next;
4042 
4043 		walk->mm_stats[MM_LEAF_YOUNG]++;
4044 
4045 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4046 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4047 		      !folio_test_swapcache(folio)))
4048 			folio_mark_dirty(folio);
4049 
4050 		old_gen = folio_update_gen(folio, new_gen);
4051 		if (old_gen >= 0 && old_gen != new_gen)
4052 			update_batch_size(walk, folio, old_gen, new_gen);
4053 next:
4054 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4055 	} while (i <= MIN_LRU_BATCH);
4056 
4057 	arch_leave_lazy_mmu_mode();
4058 	spin_unlock(ptl);
4059 done:
4060 	*start = -1;
4061 	bitmap_zero(bitmap, MIN_LRU_BATCH);
4062 }
4063 #else
4064 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4065 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4066 {
4067 }
4068 #endif
4069 
4070 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4071 			   struct mm_walk *args)
4072 {
4073 	int i;
4074 	pmd_t *pmd;
4075 	unsigned long next;
4076 	unsigned long addr;
4077 	struct vm_area_struct *vma;
4078 	unsigned long pos = -1;
4079 	struct lru_gen_mm_walk *walk = args->private;
4080 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4081 
4082 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4083 
4084 	/*
4085 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4086 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4087 	 * the PMD lock to clear the accessed bit in PMD entries.
4088 	 */
4089 	pmd = pmd_offset(pud, start & PUD_MASK);
4090 restart:
4091 	/* walk_pte_range() may call get_next_vma() */
4092 	vma = args->vma;
4093 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4094 		pmd_t val = pmdp_get_lockless(pmd + i);
4095 
4096 		next = pmd_addr_end(addr, end);
4097 
4098 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4099 			walk->mm_stats[MM_LEAF_TOTAL]++;
4100 			continue;
4101 		}
4102 
4103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4104 		if (pmd_trans_huge(val)) {
4105 			unsigned long pfn = pmd_pfn(val);
4106 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4107 
4108 			walk->mm_stats[MM_LEAF_TOTAL]++;
4109 
4110 			if (!pmd_young(val)) {
4111 				walk->mm_stats[MM_LEAF_OLD]++;
4112 				continue;
4113 			}
4114 
4115 			/* try to avoid unnecessary memory loads */
4116 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4117 				continue;
4118 
4119 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4120 			continue;
4121 		}
4122 #endif
4123 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4124 
4125 		if (arch_has_hw_nonleaf_pmd_young() &&
4126 		    get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4127 			if (!pmd_young(val))
4128 				continue;
4129 
4130 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4131 		}
4132 
4133 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4134 			continue;
4135 
4136 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4137 
4138 		if (!walk_pte_range(&val, addr, next, args))
4139 			continue;
4140 
4141 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4142 
4143 		/* carry over to the next generation */
4144 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4145 	}
4146 
4147 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4148 
4149 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4150 		goto restart;
4151 }
4152 
4153 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4154 			  struct mm_walk *args)
4155 {
4156 	int i;
4157 	pud_t *pud;
4158 	unsigned long addr;
4159 	unsigned long next;
4160 	struct lru_gen_mm_walk *walk = args->private;
4161 
4162 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4163 
4164 	pud = pud_offset(p4d, start & P4D_MASK);
4165 restart:
4166 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4167 		pud_t val = READ_ONCE(pud[i]);
4168 
4169 		next = pud_addr_end(addr, end);
4170 
4171 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4172 			continue;
4173 
4174 		walk_pmd_range(&val, addr, next, args);
4175 
4176 		/* a racy check to curtail the waiting time */
4177 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4178 			return 1;
4179 
4180 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4181 			end = (addr | ~PUD_MASK) + 1;
4182 			goto done;
4183 		}
4184 	}
4185 
4186 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4187 		goto restart;
4188 
4189 	end = round_up(end, P4D_SIZE);
4190 done:
4191 	if (!end || !args->vma)
4192 		return 1;
4193 
4194 	walk->next_addr = max(end, args->vma->vm_start);
4195 
4196 	return -EAGAIN;
4197 }
4198 
4199 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4200 {
4201 	static const struct mm_walk_ops mm_walk_ops = {
4202 		.test_walk = should_skip_vma,
4203 		.p4d_entry = walk_pud_range,
4204 	};
4205 
4206 	int err;
4207 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4208 
4209 	walk->next_addr = FIRST_USER_ADDRESS;
4210 
4211 	do {
4212 		err = -EBUSY;
4213 
4214 		/* folio_update_gen() requires stable folio_memcg() */
4215 		if (!mem_cgroup_trylock_pages(memcg))
4216 			break;
4217 
4218 		/* the caller might be holding the lock for write */
4219 		if (mmap_read_trylock(mm)) {
4220 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4221 
4222 			mmap_read_unlock(mm);
4223 		}
4224 
4225 		mem_cgroup_unlock_pages();
4226 
4227 		if (walk->batched) {
4228 			spin_lock_irq(&lruvec->lru_lock);
4229 			reset_batch_size(lruvec, walk);
4230 			spin_unlock_irq(&lruvec->lru_lock);
4231 		}
4232 
4233 		cond_resched();
4234 	} while (err == -EAGAIN);
4235 }
4236 
4237 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4238 {
4239 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4240 
4241 	if (pgdat && current_is_kswapd()) {
4242 		VM_WARN_ON_ONCE(walk);
4243 
4244 		walk = &pgdat->mm_walk;
4245 	} else if (!pgdat && !walk) {
4246 		VM_WARN_ON_ONCE(current_is_kswapd());
4247 
4248 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4249 	}
4250 
4251 	current->reclaim_state->mm_walk = walk;
4252 
4253 	return walk;
4254 }
4255 
4256 static void clear_mm_walk(void)
4257 {
4258 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4259 
4260 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4261 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4262 
4263 	current->reclaim_state->mm_walk = NULL;
4264 
4265 	if (!current_is_kswapd())
4266 		kfree(walk);
4267 }
4268 
4269 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4270 {
4271 	int zone;
4272 	int remaining = MAX_LRU_BATCH;
4273 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4274 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4275 
4276 	if (type == LRU_GEN_ANON && !can_swap)
4277 		goto done;
4278 
4279 	/* prevent cold/hot inversion if force_scan is true */
4280 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4281 		struct list_head *head = &lrugen->lists[old_gen][type][zone];
4282 
4283 		while (!list_empty(head)) {
4284 			struct folio *folio = lru_to_folio(head);
4285 
4286 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4287 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4288 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4289 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4290 
4291 			new_gen = folio_inc_gen(lruvec, folio, false);
4292 			list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4293 
4294 			if (!--remaining)
4295 				return false;
4296 		}
4297 	}
4298 done:
4299 	reset_ctrl_pos(lruvec, type, true);
4300 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4301 
4302 	return true;
4303 }
4304 
4305 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4306 {
4307 	int gen, type, zone;
4308 	bool success = false;
4309 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4310 	DEFINE_MIN_SEQ(lruvec);
4311 
4312 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4313 
4314 	/* find the oldest populated generation */
4315 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4316 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4317 			gen = lru_gen_from_seq(min_seq[type]);
4318 
4319 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4320 				if (!list_empty(&lrugen->lists[gen][type][zone]))
4321 					goto next;
4322 			}
4323 
4324 			min_seq[type]++;
4325 		}
4326 next:
4327 		;
4328 	}
4329 
4330 	/* see the comment on lru_gen_struct */
4331 	if (can_swap) {
4332 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4333 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4334 	}
4335 
4336 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4337 		if (min_seq[type] == lrugen->min_seq[type])
4338 			continue;
4339 
4340 		reset_ctrl_pos(lruvec, type, true);
4341 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4342 		success = true;
4343 	}
4344 
4345 	return success;
4346 }
4347 
4348 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4349 {
4350 	int prev, next;
4351 	int type, zone;
4352 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4353 
4354 	spin_lock_irq(&lruvec->lru_lock);
4355 
4356 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4357 
4358 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4359 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4360 			continue;
4361 
4362 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4363 
4364 		while (!inc_min_seq(lruvec, type, can_swap)) {
4365 			spin_unlock_irq(&lruvec->lru_lock);
4366 			cond_resched();
4367 			spin_lock_irq(&lruvec->lru_lock);
4368 		}
4369 	}
4370 
4371 	/*
4372 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4373 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4374 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4375 	 * overlap, cold/hot inversion happens.
4376 	 */
4377 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4378 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4379 
4380 	for (type = 0; type < ANON_AND_FILE; type++) {
4381 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4382 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4383 			long delta = lrugen->nr_pages[prev][type][zone] -
4384 				     lrugen->nr_pages[next][type][zone];
4385 
4386 			if (!delta)
4387 				continue;
4388 
4389 			__update_lru_size(lruvec, lru, zone, delta);
4390 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4391 		}
4392 	}
4393 
4394 	for (type = 0; type < ANON_AND_FILE; type++)
4395 		reset_ctrl_pos(lruvec, type, false);
4396 
4397 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4398 	/* make sure preceding modifications appear */
4399 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4400 
4401 	spin_unlock_irq(&lruvec->lru_lock);
4402 }
4403 
4404 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4405 			       struct scan_control *sc, bool can_swap, bool force_scan)
4406 {
4407 	bool success;
4408 	struct lru_gen_mm_walk *walk;
4409 	struct mm_struct *mm = NULL;
4410 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4411 
4412 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4413 
4414 	/* see the comment in iterate_mm_list() */
4415 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4416 		success = false;
4417 		goto done;
4418 	}
4419 
4420 	/*
4421 	 * If the hardware doesn't automatically set the accessed bit, fallback
4422 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4423 	 * handful of PTEs. Spreading the work out over a period of time usually
4424 	 * is less efficient, but it avoids bursty page faults.
4425 	 */
4426 	if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4427 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4428 		goto done;
4429 	}
4430 
4431 	walk = set_mm_walk(NULL);
4432 	if (!walk) {
4433 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4434 		goto done;
4435 	}
4436 
4437 	walk->lruvec = lruvec;
4438 	walk->max_seq = max_seq;
4439 	walk->can_swap = can_swap;
4440 	walk->force_scan = force_scan;
4441 
4442 	do {
4443 		success = iterate_mm_list(lruvec, walk, &mm);
4444 		if (mm)
4445 			walk_mm(lruvec, mm, walk);
4446 
4447 		cond_resched();
4448 	} while (mm);
4449 done:
4450 	if (!success) {
4451 		if (sc->priority <= DEF_PRIORITY - 2)
4452 			wait_event_killable(lruvec->mm_state.wait,
4453 					    max_seq < READ_ONCE(lrugen->max_seq));
4454 
4455 		return max_seq < READ_ONCE(lrugen->max_seq);
4456 	}
4457 
4458 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4459 
4460 	inc_max_seq(lruvec, can_swap, force_scan);
4461 	/* either this sees any waiters or they will see updated max_seq */
4462 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4463 		wake_up_all(&lruvec->mm_state.wait);
4464 
4465 	return true;
4466 }
4467 
4468 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4469 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4470 {
4471 	int gen, type, zone;
4472 	unsigned long old = 0;
4473 	unsigned long young = 0;
4474 	unsigned long total = 0;
4475 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4476 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4477 
4478 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4479 		unsigned long seq;
4480 
4481 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4482 			unsigned long size = 0;
4483 
4484 			gen = lru_gen_from_seq(seq);
4485 
4486 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4487 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4488 
4489 			total += size;
4490 			if (seq == max_seq)
4491 				young += size;
4492 			else if (seq + MIN_NR_GENS == max_seq)
4493 				old += size;
4494 		}
4495 	}
4496 
4497 	/* try to scrape all its memory if this memcg was deleted */
4498 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4499 
4500 	/*
4501 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4502 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4503 	 * ideal number of generations is MIN_NR_GENS+1.
4504 	 */
4505 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4506 		return true;
4507 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4508 		return false;
4509 
4510 	/*
4511 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4512 	 * of the total number of pages for each generation. A reasonable range
4513 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4514 	 * aging cares about the upper bound of hot pages, while the eviction
4515 	 * cares about the lower bound of cold pages.
4516 	 */
4517 	if (young * MIN_NR_GENS > total)
4518 		return true;
4519 	if (old * (MIN_NR_GENS + 2) < total)
4520 		return true;
4521 
4522 	return false;
4523 }
4524 
4525 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4526 {
4527 	bool need_aging;
4528 	unsigned long nr_to_scan;
4529 	int swappiness = get_swappiness(lruvec, sc);
4530 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4531 	DEFINE_MAX_SEQ(lruvec);
4532 	DEFINE_MIN_SEQ(lruvec);
4533 
4534 	VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4535 
4536 	mem_cgroup_calculate_protection(NULL, memcg);
4537 
4538 	if (mem_cgroup_below_min(NULL, memcg))
4539 		return false;
4540 
4541 	need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4542 
4543 	if (min_ttl) {
4544 		int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4545 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4546 
4547 		if (time_is_after_jiffies(birth + min_ttl))
4548 			return false;
4549 
4550 		/* the size is likely too small to be helpful */
4551 		if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4552 			return false;
4553 	}
4554 
4555 	if (need_aging)
4556 		try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4557 
4558 	return true;
4559 }
4560 
4561 /* to protect the working set of the last N jiffies */
4562 static unsigned long lru_gen_min_ttl __read_mostly;
4563 
4564 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4565 {
4566 	struct mem_cgroup *memcg;
4567 	bool success = false;
4568 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4569 
4570 	VM_WARN_ON_ONCE(!current_is_kswapd());
4571 
4572 	sc->last_reclaimed = sc->nr_reclaimed;
4573 
4574 	/*
4575 	 * To reduce the chance of going into the aging path, which can be
4576 	 * costly, optimistically skip it if the flag below was cleared in the
4577 	 * eviction path. This improves the overall performance when multiple
4578 	 * memcgs are available.
4579 	 */
4580 	if (!sc->memcgs_need_aging) {
4581 		sc->memcgs_need_aging = true;
4582 		return;
4583 	}
4584 
4585 	set_mm_walk(pgdat);
4586 
4587 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4588 	do {
4589 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4590 
4591 		if (age_lruvec(lruvec, sc, min_ttl))
4592 			success = true;
4593 
4594 		cond_resched();
4595 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4596 
4597 	clear_mm_walk();
4598 
4599 	/* check the order to exclude compaction-induced reclaim */
4600 	if (success || !min_ttl || sc->order)
4601 		return;
4602 
4603 	/*
4604 	 * The main goal is to OOM kill if every generation from all memcgs is
4605 	 * younger than min_ttl. However, another possibility is all memcgs are
4606 	 * either below min or empty.
4607 	 */
4608 	if (mutex_trylock(&oom_lock)) {
4609 		struct oom_control oc = {
4610 			.gfp_mask = sc->gfp_mask,
4611 		};
4612 
4613 		out_of_memory(&oc);
4614 
4615 		mutex_unlock(&oom_lock);
4616 	}
4617 }
4618 
4619 /*
4620  * This function exploits spatial locality when shrink_folio_list() walks the
4621  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4622  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4623  * the PTE table to the Bloom filter. This forms a feedback loop between the
4624  * eviction and the aging.
4625  */
4626 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4627 {
4628 	int i;
4629 	pte_t *pte;
4630 	unsigned long start;
4631 	unsigned long end;
4632 	unsigned long addr;
4633 	struct lru_gen_mm_walk *walk;
4634 	int young = 0;
4635 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4636 	struct folio *folio = pfn_folio(pvmw->pfn);
4637 	struct mem_cgroup *memcg = folio_memcg(folio);
4638 	struct pglist_data *pgdat = folio_pgdat(folio);
4639 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4640 	DEFINE_MAX_SEQ(lruvec);
4641 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4642 
4643 	lockdep_assert_held(pvmw->ptl);
4644 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4645 
4646 	if (spin_is_contended(pvmw->ptl))
4647 		return;
4648 
4649 	/* avoid taking the LRU lock under the PTL when possible */
4650 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4651 
4652 	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4653 	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4654 
4655 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4656 		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4657 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4658 		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4659 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4660 		else {
4661 			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4662 			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4663 		}
4664 	}
4665 
4666 	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4667 
4668 	rcu_read_lock();
4669 	arch_enter_lazy_mmu_mode();
4670 
4671 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4672 		unsigned long pfn;
4673 
4674 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4675 		if (pfn == -1)
4676 			continue;
4677 
4678 		if (!pte_young(pte[i]))
4679 			continue;
4680 
4681 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4682 		if (!folio)
4683 			continue;
4684 
4685 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4686 			VM_WARN_ON_ONCE(true);
4687 
4688 		young++;
4689 
4690 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4691 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4692 		      !folio_test_swapcache(folio)))
4693 			folio_mark_dirty(folio);
4694 
4695 		old_gen = folio_lru_gen(folio);
4696 		if (old_gen < 0)
4697 			folio_set_referenced(folio);
4698 		else if (old_gen != new_gen)
4699 			__set_bit(i, bitmap);
4700 	}
4701 
4702 	arch_leave_lazy_mmu_mode();
4703 	rcu_read_unlock();
4704 
4705 	/* feedback from rmap walkers to page table walkers */
4706 	if (suitable_to_scan(i, young))
4707 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4708 
4709 	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4710 		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4711 			folio = pfn_folio(pte_pfn(pte[i]));
4712 			folio_activate(folio);
4713 		}
4714 		return;
4715 	}
4716 
4717 	/* folio_update_gen() requires stable folio_memcg() */
4718 	if (!mem_cgroup_trylock_pages(memcg))
4719 		return;
4720 
4721 	if (!walk) {
4722 		spin_lock_irq(&lruvec->lru_lock);
4723 		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4724 	}
4725 
4726 	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4727 		folio = pfn_folio(pte_pfn(pte[i]));
4728 		if (folio_memcg_rcu(folio) != memcg)
4729 			continue;
4730 
4731 		old_gen = folio_update_gen(folio, new_gen);
4732 		if (old_gen < 0 || old_gen == new_gen)
4733 			continue;
4734 
4735 		if (walk)
4736 			update_batch_size(walk, folio, old_gen, new_gen);
4737 		else
4738 			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4739 	}
4740 
4741 	if (!walk)
4742 		spin_unlock_irq(&lruvec->lru_lock);
4743 
4744 	mem_cgroup_unlock_pages();
4745 }
4746 
4747 /******************************************************************************
4748  *                          the eviction
4749  ******************************************************************************/
4750 
4751 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4752 {
4753 	bool success;
4754 	int gen = folio_lru_gen(folio);
4755 	int type = folio_is_file_lru(folio);
4756 	int zone = folio_zonenum(folio);
4757 	int delta = folio_nr_pages(folio);
4758 	int refs = folio_lru_refs(folio);
4759 	int tier = lru_tier_from_refs(refs);
4760 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4761 
4762 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4763 
4764 	/* unevictable */
4765 	if (!folio_evictable(folio)) {
4766 		success = lru_gen_del_folio(lruvec, folio, true);
4767 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4768 		folio_set_unevictable(folio);
4769 		lruvec_add_folio(lruvec, folio);
4770 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4771 		return true;
4772 	}
4773 
4774 	/* dirty lazyfree */
4775 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4776 		success = lru_gen_del_folio(lruvec, folio, true);
4777 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4778 		folio_set_swapbacked(folio);
4779 		lruvec_add_folio_tail(lruvec, folio);
4780 		return true;
4781 	}
4782 
4783 	/* promoted */
4784 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4785 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4786 		return true;
4787 	}
4788 
4789 	/* protected */
4790 	if (tier > tier_idx) {
4791 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4792 
4793 		gen = folio_inc_gen(lruvec, folio, false);
4794 		list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4795 
4796 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4797 			   lrugen->protected[hist][type][tier - 1] + delta);
4798 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4799 		return true;
4800 	}
4801 
4802 	/* waiting for writeback */
4803 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4804 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4805 		gen = folio_inc_gen(lruvec, folio, true);
4806 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4807 		return true;
4808 	}
4809 
4810 	return false;
4811 }
4812 
4813 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4814 {
4815 	bool success;
4816 
4817 	/* unmapping inhibited */
4818 	if (!sc->may_unmap && folio_mapped(folio))
4819 		return false;
4820 
4821 	/* swapping inhibited */
4822 	if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4823 	    (folio_test_dirty(folio) ||
4824 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4825 		return false;
4826 
4827 	/* raced with release_pages() */
4828 	if (!folio_try_get(folio))
4829 		return false;
4830 
4831 	/* raced with another isolation */
4832 	if (!folio_test_clear_lru(folio)) {
4833 		folio_put(folio);
4834 		return false;
4835 	}
4836 
4837 	/* see the comment on MAX_NR_TIERS */
4838 	if (!folio_test_referenced(folio))
4839 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4840 
4841 	/* for shrink_folio_list() */
4842 	folio_clear_reclaim(folio);
4843 	folio_clear_referenced(folio);
4844 
4845 	success = lru_gen_del_folio(lruvec, folio, true);
4846 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4847 
4848 	return true;
4849 }
4850 
4851 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4852 		       int type, int tier, struct list_head *list)
4853 {
4854 	int gen, zone;
4855 	enum vm_event_item item;
4856 	int sorted = 0;
4857 	int scanned = 0;
4858 	int isolated = 0;
4859 	int remaining = MAX_LRU_BATCH;
4860 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4861 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4862 
4863 	VM_WARN_ON_ONCE(!list_empty(list));
4864 
4865 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4866 		return 0;
4867 
4868 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4869 
4870 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4871 		LIST_HEAD(moved);
4872 		int skipped = 0;
4873 		struct list_head *head = &lrugen->lists[gen][type][zone];
4874 
4875 		while (!list_empty(head)) {
4876 			struct folio *folio = lru_to_folio(head);
4877 			int delta = folio_nr_pages(folio);
4878 
4879 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4880 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4881 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4882 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4883 
4884 			scanned += delta;
4885 
4886 			if (sort_folio(lruvec, folio, tier))
4887 				sorted += delta;
4888 			else if (isolate_folio(lruvec, folio, sc)) {
4889 				list_add(&folio->lru, list);
4890 				isolated += delta;
4891 			} else {
4892 				list_move(&folio->lru, &moved);
4893 				skipped += delta;
4894 			}
4895 
4896 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4897 				break;
4898 		}
4899 
4900 		if (skipped) {
4901 			list_splice(&moved, head);
4902 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4903 		}
4904 
4905 		if (!remaining || isolated >= MIN_LRU_BATCH)
4906 			break;
4907 	}
4908 
4909 	item = PGSCAN_KSWAPD + reclaimer_offset();
4910 	if (!cgroup_reclaim(sc)) {
4911 		__count_vm_events(item, isolated);
4912 		__count_vm_events(PGREFILL, sorted);
4913 	}
4914 	__count_memcg_events(memcg, item, isolated);
4915 	__count_memcg_events(memcg, PGREFILL, sorted);
4916 	__count_vm_events(PGSCAN_ANON + type, isolated);
4917 
4918 	/*
4919 	 * There might not be eligible pages due to reclaim_idx, may_unmap and
4920 	 * may_writepage. Check the remaining to prevent livelock if it's not
4921 	 * making progress.
4922 	 */
4923 	return isolated || !remaining ? scanned : 0;
4924 }
4925 
4926 static int get_tier_idx(struct lruvec *lruvec, int type)
4927 {
4928 	int tier;
4929 	struct ctrl_pos sp, pv;
4930 
4931 	/*
4932 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4933 	 * This value is chosen because any other tier would have at least twice
4934 	 * as many refaults as the first tier.
4935 	 */
4936 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4937 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4938 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4939 		if (!positive_ctrl_err(&sp, &pv))
4940 			break;
4941 	}
4942 
4943 	return tier - 1;
4944 }
4945 
4946 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4947 {
4948 	int type, tier;
4949 	struct ctrl_pos sp, pv;
4950 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4951 
4952 	/*
4953 	 * Compare the first tier of anon with that of file to determine which
4954 	 * type to scan. Also need to compare other tiers of the selected type
4955 	 * with the first tier of the other type to determine the last tier (of
4956 	 * the selected type) to evict.
4957 	 */
4958 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4959 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4960 	type = positive_ctrl_err(&sp, &pv);
4961 
4962 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4963 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4964 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4965 		if (!positive_ctrl_err(&sp, &pv))
4966 			break;
4967 	}
4968 
4969 	*tier_idx = tier - 1;
4970 
4971 	return type;
4972 }
4973 
4974 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4975 			  int *type_scanned, struct list_head *list)
4976 {
4977 	int i;
4978 	int type;
4979 	int scanned;
4980 	int tier = -1;
4981 	DEFINE_MIN_SEQ(lruvec);
4982 
4983 	/*
4984 	 * Try to make the obvious choice first. When anon and file are both
4985 	 * available from the same generation, interpret swappiness 1 as file
4986 	 * first and 200 as anon first.
4987 	 */
4988 	if (!swappiness)
4989 		type = LRU_GEN_FILE;
4990 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4991 		type = LRU_GEN_ANON;
4992 	else if (swappiness == 1)
4993 		type = LRU_GEN_FILE;
4994 	else if (swappiness == 200)
4995 		type = LRU_GEN_ANON;
4996 	else
4997 		type = get_type_to_scan(lruvec, swappiness, &tier);
4998 
4999 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5000 		if (tier < 0)
5001 			tier = get_tier_idx(lruvec, type);
5002 
5003 		scanned = scan_folios(lruvec, sc, type, tier, list);
5004 		if (scanned)
5005 			break;
5006 
5007 		type = !type;
5008 		tier = -1;
5009 	}
5010 
5011 	*type_scanned = type;
5012 
5013 	return scanned;
5014 }
5015 
5016 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5017 			bool *need_swapping)
5018 {
5019 	int type;
5020 	int scanned;
5021 	int reclaimed;
5022 	LIST_HEAD(list);
5023 	LIST_HEAD(clean);
5024 	struct folio *folio;
5025 	struct folio *next;
5026 	enum vm_event_item item;
5027 	struct reclaim_stat stat;
5028 	struct lru_gen_mm_walk *walk;
5029 	bool skip_retry = false;
5030 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5031 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5032 
5033 	spin_lock_irq(&lruvec->lru_lock);
5034 
5035 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5036 
5037 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5038 
5039 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5040 		scanned = 0;
5041 
5042 	spin_unlock_irq(&lruvec->lru_lock);
5043 
5044 	if (list_empty(&list))
5045 		return scanned;
5046 retry:
5047 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5048 	sc->nr_reclaimed += reclaimed;
5049 
5050 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5051 		if (!folio_evictable(folio)) {
5052 			list_del(&folio->lru);
5053 			folio_putback_lru(folio);
5054 			continue;
5055 		}
5056 
5057 		if (folio_test_reclaim(folio) &&
5058 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5059 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5060 			if (folio_test_workingset(folio))
5061 				folio_set_referenced(folio);
5062 			continue;
5063 		}
5064 
5065 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5066 		    folio_mapped(folio) || folio_test_locked(folio) ||
5067 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5068 			/* don't add rejected folios to the oldest generation */
5069 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5070 				      BIT(PG_active));
5071 			continue;
5072 		}
5073 
5074 		/* retry folios that may have missed folio_rotate_reclaimable() */
5075 		list_move(&folio->lru, &clean);
5076 		sc->nr_scanned -= folio_nr_pages(folio);
5077 	}
5078 
5079 	spin_lock_irq(&lruvec->lru_lock);
5080 
5081 	move_folios_to_lru(lruvec, &list);
5082 
5083 	walk = current->reclaim_state->mm_walk;
5084 	if (walk && walk->batched)
5085 		reset_batch_size(lruvec, walk);
5086 
5087 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5088 	if (!cgroup_reclaim(sc))
5089 		__count_vm_events(item, reclaimed);
5090 	__count_memcg_events(memcg, item, reclaimed);
5091 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5092 
5093 	spin_unlock_irq(&lruvec->lru_lock);
5094 
5095 	mem_cgroup_uncharge_list(&list);
5096 	free_unref_page_list(&list);
5097 
5098 	INIT_LIST_HEAD(&list);
5099 	list_splice_init(&clean, &list);
5100 
5101 	if (!list_empty(&list)) {
5102 		skip_retry = true;
5103 		goto retry;
5104 	}
5105 
5106 	if (need_swapping && type == LRU_GEN_ANON)
5107 		*need_swapping = true;
5108 
5109 	return scanned;
5110 }
5111 
5112 /*
5113  * For future optimizations:
5114  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5115  *    reclaim.
5116  */
5117 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5118 				    bool can_swap, bool *need_aging)
5119 {
5120 	unsigned long nr_to_scan;
5121 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5122 	DEFINE_MAX_SEQ(lruvec);
5123 	DEFINE_MIN_SEQ(lruvec);
5124 
5125 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) ||
5126 	    (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) &&
5127 	     !sc->memcg_low_reclaim))
5128 		return 0;
5129 
5130 	*need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5131 	if (!*need_aging)
5132 		return nr_to_scan;
5133 
5134 	/* skip the aging path at the default priority */
5135 	if (sc->priority == DEF_PRIORITY)
5136 		goto done;
5137 
5138 	/* leave the work to lru_gen_age_node() */
5139 	if (current_is_kswapd())
5140 		return 0;
5141 
5142 	if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5143 		return nr_to_scan;
5144 done:
5145 	return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5146 }
5147 
5148 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5149 			      struct scan_control *sc, bool need_swapping)
5150 {
5151 	int i;
5152 	DEFINE_MAX_SEQ(lruvec);
5153 
5154 	if (!current_is_kswapd()) {
5155 		/* age each memcg at most once to ensure fairness */
5156 		if (max_seq - seq > 1)
5157 			return true;
5158 
5159 		/* over-swapping can increase allocation latency */
5160 		if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5161 			return true;
5162 
5163 		/* give this thread a chance to exit and free its memory */
5164 		if (fatal_signal_pending(current)) {
5165 			sc->nr_reclaimed += MIN_LRU_BATCH;
5166 			return true;
5167 		}
5168 
5169 		if (cgroup_reclaim(sc))
5170 			return false;
5171 	} else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5172 		return false;
5173 
5174 	/* keep scanning at low priorities to ensure fairness */
5175 	if (sc->priority > DEF_PRIORITY - 2)
5176 		return false;
5177 
5178 	/*
5179 	 * A minimum amount of work was done under global memory pressure. For
5180 	 * kswapd, it may be overshooting. For direct reclaim, the allocation
5181 	 * may succeed if all suitable zones are somewhat safe. In either case,
5182 	 * it's better to stop now, and restart later if necessary.
5183 	 */
5184 	for (i = 0; i <= sc->reclaim_idx; i++) {
5185 		unsigned long wmark;
5186 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5187 
5188 		if (!managed_zone(zone))
5189 			continue;
5190 
5191 		wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5192 		if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5193 			return false;
5194 	}
5195 
5196 	sc->nr_reclaimed += MIN_LRU_BATCH;
5197 
5198 	return true;
5199 }
5200 
5201 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5202 {
5203 	struct blk_plug plug;
5204 	bool need_aging = false;
5205 	bool need_swapping = false;
5206 	unsigned long scanned = 0;
5207 	unsigned long reclaimed = sc->nr_reclaimed;
5208 	DEFINE_MAX_SEQ(lruvec);
5209 
5210 	lru_add_drain();
5211 
5212 	blk_start_plug(&plug);
5213 
5214 	set_mm_walk(lruvec_pgdat(lruvec));
5215 
5216 	while (true) {
5217 		int delta;
5218 		int swappiness;
5219 		unsigned long nr_to_scan;
5220 
5221 		if (sc->may_swap)
5222 			swappiness = get_swappiness(lruvec, sc);
5223 		else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5224 			swappiness = 1;
5225 		else
5226 			swappiness = 0;
5227 
5228 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5229 		if (!nr_to_scan)
5230 			goto done;
5231 
5232 		delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
5233 		if (!delta)
5234 			goto done;
5235 
5236 		scanned += delta;
5237 		if (scanned >= nr_to_scan)
5238 			break;
5239 
5240 		if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5241 			break;
5242 
5243 		cond_resched();
5244 	}
5245 
5246 	/* see the comment in lru_gen_age_node() */
5247 	if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5248 		sc->memcgs_need_aging = false;
5249 done:
5250 	clear_mm_walk();
5251 
5252 	blk_finish_plug(&plug);
5253 }
5254 
5255 /******************************************************************************
5256  *                          state change
5257  ******************************************************************************/
5258 
5259 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5260 {
5261 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5262 
5263 	if (lrugen->enabled) {
5264 		enum lru_list lru;
5265 
5266 		for_each_evictable_lru(lru) {
5267 			if (!list_empty(&lruvec->lists[lru]))
5268 				return false;
5269 		}
5270 	} else {
5271 		int gen, type, zone;
5272 
5273 		for_each_gen_type_zone(gen, type, zone) {
5274 			if (!list_empty(&lrugen->lists[gen][type][zone]))
5275 				return false;
5276 		}
5277 	}
5278 
5279 	return true;
5280 }
5281 
5282 static bool fill_evictable(struct lruvec *lruvec)
5283 {
5284 	enum lru_list lru;
5285 	int remaining = MAX_LRU_BATCH;
5286 
5287 	for_each_evictable_lru(lru) {
5288 		int type = is_file_lru(lru);
5289 		bool active = is_active_lru(lru);
5290 		struct list_head *head = &lruvec->lists[lru];
5291 
5292 		while (!list_empty(head)) {
5293 			bool success;
5294 			struct folio *folio = lru_to_folio(head);
5295 
5296 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5297 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5298 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5299 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5300 
5301 			lruvec_del_folio(lruvec, folio);
5302 			success = lru_gen_add_folio(lruvec, folio, false);
5303 			VM_WARN_ON_ONCE(!success);
5304 
5305 			if (!--remaining)
5306 				return false;
5307 		}
5308 	}
5309 
5310 	return true;
5311 }
5312 
5313 static bool drain_evictable(struct lruvec *lruvec)
5314 {
5315 	int gen, type, zone;
5316 	int remaining = MAX_LRU_BATCH;
5317 
5318 	for_each_gen_type_zone(gen, type, zone) {
5319 		struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5320 
5321 		while (!list_empty(head)) {
5322 			bool success;
5323 			struct folio *folio = lru_to_folio(head);
5324 
5325 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5326 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5327 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5328 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5329 
5330 			success = lru_gen_del_folio(lruvec, folio, false);
5331 			VM_WARN_ON_ONCE(!success);
5332 			lruvec_add_folio(lruvec, folio);
5333 
5334 			if (!--remaining)
5335 				return false;
5336 		}
5337 	}
5338 
5339 	return true;
5340 }
5341 
5342 static void lru_gen_change_state(bool enabled)
5343 {
5344 	static DEFINE_MUTEX(state_mutex);
5345 
5346 	struct mem_cgroup *memcg;
5347 
5348 	cgroup_lock();
5349 	cpus_read_lock();
5350 	get_online_mems();
5351 	mutex_lock(&state_mutex);
5352 
5353 	if (enabled == lru_gen_enabled())
5354 		goto unlock;
5355 
5356 	if (enabled)
5357 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5358 	else
5359 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5360 
5361 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5362 	do {
5363 		int nid;
5364 
5365 		for_each_node(nid) {
5366 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5367 
5368 			spin_lock_irq(&lruvec->lru_lock);
5369 
5370 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5371 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5372 
5373 			lruvec->lrugen.enabled = enabled;
5374 
5375 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5376 				spin_unlock_irq(&lruvec->lru_lock);
5377 				cond_resched();
5378 				spin_lock_irq(&lruvec->lru_lock);
5379 			}
5380 
5381 			spin_unlock_irq(&lruvec->lru_lock);
5382 		}
5383 
5384 		cond_resched();
5385 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5386 unlock:
5387 	mutex_unlock(&state_mutex);
5388 	put_online_mems();
5389 	cpus_read_unlock();
5390 	cgroup_unlock();
5391 }
5392 
5393 /******************************************************************************
5394  *                          sysfs interface
5395  ******************************************************************************/
5396 
5397 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5398 {
5399 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5400 }
5401 
5402 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5403 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5404 			     const char *buf, size_t len)
5405 {
5406 	unsigned int msecs;
5407 
5408 	if (kstrtouint(buf, 0, &msecs))
5409 		return -EINVAL;
5410 
5411 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5412 
5413 	return len;
5414 }
5415 
5416 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5417 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5418 );
5419 
5420 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5421 {
5422 	unsigned int caps = 0;
5423 
5424 	if (get_cap(LRU_GEN_CORE))
5425 		caps |= BIT(LRU_GEN_CORE);
5426 
5427 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5428 		caps |= BIT(LRU_GEN_MM_WALK);
5429 
5430 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5431 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5432 
5433 	return sysfs_emit(buf, "0x%04x\n", caps);
5434 }
5435 
5436 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5437 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5438 			     const char *buf, size_t len)
5439 {
5440 	int i;
5441 	unsigned int caps;
5442 
5443 	if (tolower(*buf) == 'n')
5444 		caps = 0;
5445 	else if (tolower(*buf) == 'y')
5446 		caps = -1;
5447 	else if (kstrtouint(buf, 0, &caps))
5448 		return -EINVAL;
5449 
5450 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5451 		bool enabled = caps & BIT(i);
5452 
5453 		if (i == LRU_GEN_CORE)
5454 			lru_gen_change_state(enabled);
5455 		else if (enabled)
5456 			static_branch_enable(&lru_gen_caps[i]);
5457 		else
5458 			static_branch_disable(&lru_gen_caps[i]);
5459 	}
5460 
5461 	return len;
5462 }
5463 
5464 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5465 	enabled, 0644, show_enabled, store_enabled
5466 );
5467 
5468 static struct attribute *lru_gen_attrs[] = {
5469 	&lru_gen_min_ttl_attr.attr,
5470 	&lru_gen_enabled_attr.attr,
5471 	NULL
5472 };
5473 
5474 static struct attribute_group lru_gen_attr_group = {
5475 	.name = "lru_gen",
5476 	.attrs = lru_gen_attrs,
5477 };
5478 
5479 /******************************************************************************
5480  *                          debugfs interface
5481  ******************************************************************************/
5482 
5483 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5484 {
5485 	struct mem_cgroup *memcg;
5486 	loff_t nr_to_skip = *pos;
5487 
5488 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5489 	if (!m->private)
5490 		return ERR_PTR(-ENOMEM);
5491 
5492 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5493 	do {
5494 		int nid;
5495 
5496 		for_each_node_state(nid, N_MEMORY) {
5497 			if (!nr_to_skip--)
5498 				return get_lruvec(memcg, nid);
5499 		}
5500 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5501 
5502 	return NULL;
5503 }
5504 
5505 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5506 {
5507 	if (!IS_ERR_OR_NULL(v))
5508 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5509 
5510 	kvfree(m->private);
5511 	m->private = NULL;
5512 }
5513 
5514 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5515 {
5516 	int nid = lruvec_pgdat(v)->node_id;
5517 	struct mem_cgroup *memcg = lruvec_memcg(v);
5518 
5519 	++*pos;
5520 
5521 	nid = next_memory_node(nid);
5522 	if (nid == MAX_NUMNODES) {
5523 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5524 		if (!memcg)
5525 			return NULL;
5526 
5527 		nid = first_memory_node;
5528 	}
5529 
5530 	return get_lruvec(memcg, nid);
5531 }
5532 
5533 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5534 				  unsigned long max_seq, unsigned long *min_seq,
5535 				  unsigned long seq)
5536 {
5537 	int i;
5538 	int type, tier;
5539 	int hist = lru_hist_from_seq(seq);
5540 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5541 
5542 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5543 		seq_printf(m, "            %10d", tier);
5544 		for (type = 0; type < ANON_AND_FILE; type++) {
5545 			const char *s = "   ";
5546 			unsigned long n[3] = {};
5547 
5548 			if (seq == max_seq) {
5549 				s = "RT ";
5550 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5551 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5552 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5553 				s = "rep";
5554 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5555 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5556 				if (tier)
5557 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5558 			}
5559 
5560 			for (i = 0; i < 3; i++)
5561 				seq_printf(m, " %10lu%c", n[i], s[i]);
5562 		}
5563 		seq_putc(m, '\n');
5564 	}
5565 
5566 	seq_puts(m, "                      ");
5567 	for (i = 0; i < NR_MM_STATS; i++) {
5568 		const char *s = "      ";
5569 		unsigned long n = 0;
5570 
5571 		if (seq == max_seq && NR_HIST_GENS == 1) {
5572 			s = "LOYNFA";
5573 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5574 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5575 			s = "loynfa";
5576 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5577 		}
5578 
5579 		seq_printf(m, " %10lu%c", n, s[i]);
5580 	}
5581 	seq_putc(m, '\n');
5582 }
5583 
5584 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5585 static int lru_gen_seq_show(struct seq_file *m, void *v)
5586 {
5587 	unsigned long seq;
5588 	bool full = !debugfs_real_fops(m->file)->write;
5589 	struct lruvec *lruvec = v;
5590 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5591 	int nid = lruvec_pgdat(lruvec)->node_id;
5592 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5593 	DEFINE_MAX_SEQ(lruvec);
5594 	DEFINE_MIN_SEQ(lruvec);
5595 
5596 	if (nid == first_memory_node) {
5597 		const char *path = memcg ? m->private : "";
5598 
5599 #ifdef CONFIG_MEMCG
5600 		if (memcg)
5601 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5602 #endif
5603 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5604 	}
5605 
5606 	seq_printf(m, " node %5d\n", nid);
5607 
5608 	if (!full)
5609 		seq = min_seq[LRU_GEN_ANON];
5610 	else if (max_seq >= MAX_NR_GENS)
5611 		seq = max_seq - MAX_NR_GENS + 1;
5612 	else
5613 		seq = 0;
5614 
5615 	for (; seq <= max_seq; seq++) {
5616 		int type, zone;
5617 		int gen = lru_gen_from_seq(seq);
5618 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5619 
5620 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5621 
5622 		for (type = 0; type < ANON_AND_FILE; type++) {
5623 			unsigned long size = 0;
5624 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5625 
5626 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5627 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5628 
5629 			seq_printf(m, " %10lu%c", size, mark);
5630 		}
5631 
5632 		seq_putc(m, '\n');
5633 
5634 		if (full)
5635 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5636 	}
5637 
5638 	return 0;
5639 }
5640 
5641 static const struct seq_operations lru_gen_seq_ops = {
5642 	.start = lru_gen_seq_start,
5643 	.stop = lru_gen_seq_stop,
5644 	.next = lru_gen_seq_next,
5645 	.show = lru_gen_seq_show,
5646 };
5647 
5648 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5649 		     bool can_swap, bool force_scan)
5650 {
5651 	DEFINE_MAX_SEQ(lruvec);
5652 	DEFINE_MIN_SEQ(lruvec);
5653 
5654 	if (seq < max_seq)
5655 		return 0;
5656 
5657 	if (seq > max_seq)
5658 		return -EINVAL;
5659 
5660 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5661 		return -ERANGE;
5662 
5663 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5664 
5665 	return 0;
5666 }
5667 
5668 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5669 			int swappiness, unsigned long nr_to_reclaim)
5670 {
5671 	DEFINE_MAX_SEQ(lruvec);
5672 
5673 	if (seq + MIN_NR_GENS > max_seq)
5674 		return -EINVAL;
5675 
5676 	sc->nr_reclaimed = 0;
5677 
5678 	while (!signal_pending(current)) {
5679 		DEFINE_MIN_SEQ(lruvec);
5680 
5681 		if (seq < min_seq[!swappiness])
5682 			return 0;
5683 
5684 		if (sc->nr_reclaimed >= nr_to_reclaim)
5685 			return 0;
5686 
5687 		if (!evict_folios(lruvec, sc, swappiness, NULL))
5688 			return 0;
5689 
5690 		cond_resched();
5691 	}
5692 
5693 	return -EINTR;
5694 }
5695 
5696 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5697 		   struct scan_control *sc, int swappiness, unsigned long opt)
5698 {
5699 	struct lruvec *lruvec;
5700 	int err = -EINVAL;
5701 	struct mem_cgroup *memcg = NULL;
5702 
5703 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5704 		return -EINVAL;
5705 
5706 	if (!mem_cgroup_disabled()) {
5707 		rcu_read_lock();
5708 		memcg = mem_cgroup_from_id(memcg_id);
5709 #ifdef CONFIG_MEMCG
5710 		if (memcg && !css_tryget(&memcg->css))
5711 			memcg = NULL;
5712 #endif
5713 		rcu_read_unlock();
5714 
5715 		if (!memcg)
5716 			return -EINVAL;
5717 	}
5718 
5719 	if (memcg_id != mem_cgroup_id(memcg))
5720 		goto done;
5721 
5722 	lruvec = get_lruvec(memcg, nid);
5723 
5724 	if (swappiness < 0)
5725 		swappiness = get_swappiness(lruvec, sc);
5726 	else if (swappiness > 200)
5727 		goto done;
5728 
5729 	switch (cmd) {
5730 	case '+':
5731 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5732 		break;
5733 	case '-':
5734 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5735 		break;
5736 	}
5737 done:
5738 	mem_cgroup_put(memcg);
5739 
5740 	return err;
5741 }
5742 
5743 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5744 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5745 				 size_t len, loff_t *pos)
5746 {
5747 	void *buf;
5748 	char *cur, *next;
5749 	unsigned int flags;
5750 	struct blk_plug plug;
5751 	int err = -EINVAL;
5752 	struct scan_control sc = {
5753 		.may_writepage = true,
5754 		.may_unmap = true,
5755 		.may_swap = true,
5756 		.reclaim_idx = MAX_NR_ZONES - 1,
5757 		.gfp_mask = GFP_KERNEL,
5758 	};
5759 
5760 	buf = kvmalloc(len + 1, GFP_KERNEL);
5761 	if (!buf)
5762 		return -ENOMEM;
5763 
5764 	if (copy_from_user(buf, src, len)) {
5765 		kvfree(buf);
5766 		return -EFAULT;
5767 	}
5768 
5769 	set_task_reclaim_state(current, &sc.reclaim_state);
5770 	flags = memalloc_noreclaim_save();
5771 	blk_start_plug(&plug);
5772 	if (!set_mm_walk(NULL)) {
5773 		err = -ENOMEM;
5774 		goto done;
5775 	}
5776 
5777 	next = buf;
5778 	next[len] = '\0';
5779 
5780 	while ((cur = strsep(&next, ",;\n"))) {
5781 		int n;
5782 		int end;
5783 		char cmd;
5784 		unsigned int memcg_id;
5785 		unsigned int nid;
5786 		unsigned long seq;
5787 		unsigned int swappiness = -1;
5788 		unsigned long opt = -1;
5789 
5790 		cur = skip_spaces(cur);
5791 		if (!*cur)
5792 			continue;
5793 
5794 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5795 			   &seq, &end, &swappiness, &end, &opt, &end);
5796 		if (n < 4 || cur[end]) {
5797 			err = -EINVAL;
5798 			break;
5799 		}
5800 
5801 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5802 		if (err)
5803 			break;
5804 	}
5805 done:
5806 	clear_mm_walk();
5807 	blk_finish_plug(&plug);
5808 	memalloc_noreclaim_restore(flags);
5809 	set_task_reclaim_state(current, NULL);
5810 
5811 	kvfree(buf);
5812 
5813 	return err ? : len;
5814 }
5815 
5816 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5817 {
5818 	return seq_open(file, &lru_gen_seq_ops);
5819 }
5820 
5821 static const struct file_operations lru_gen_rw_fops = {
5822 	.open = lru_gen_seq_open,
5823 	.read = seq_read,
5824 	.write = lru_gen_seq_write,
5825 	.llseek = seq_lseek,
5826 	.release = seq_release,
5827 };
5828 
5829 static const struct file_operations lru_gen_ro_fops = {
5830 	.open = lru_gen_seq_open,
5831 	.read = seq_read,
5832 	.llseek = seq_lseek,
5833 	.release = seq_release,
5834 };
5835 
5836 /******************************************************************************
5837  *                          initialization
5838  ******************************************************************************/
5839 
5840 void lru_gen_init_lruvec(struct lruvec *lruvec)
5841 {
5842 	int i;
5843 	int gen, type, zone;
5844 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5845 
5846 	lrugen->max_seq = MIN_NR_GENS + 1;
5847 	lrugen->enabled = lru_gen_enabled();
5848 
5849 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5850 		lrugen->timestamps[i] = jiffies;
5851 
5852 	for_each_gen_type_zone(gen, type, zone)
5853 		INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5854 
5855 	lruvec->mm_state.seq = MIN_NR_GENS;
5856 	init_waitqueue_head(&lruvec->mm_state.wait);
5857 }
5858 
5859 #ifdef CONFIG_MEMCG
5860 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5861 {
5862 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
5863 	spin_lock_init(&memcg->mm_list.lock);
5864 }
5865 
5866 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5867 {
5868 	int i;
5869 	int nid;
5870 
5871 	for_each_node(nid) {
5872 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5873 
5874 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5875 					   sizeof(lruvec->lrugen.nr_pages)));
5876 
5877 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5878 			bitmap_free(lruvec->mm_state.filters[i]);
5879 			lruvec->mm_state.filters[i] = NULL;
5880 		}
5881 	}
5882 }
5883 #endif
5884 
5885 static int __init init_lru_gen(void)
5886 {
5887 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5888 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5889 
5890 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5891 		pr_err("lru_gen: failed to create sysfs group\n");
5892 
5893 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5894 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5895 
5896 	return 0;
5897 };
5898 late_initcall(init_lru_gen);
5899 
5900 #else /* !CONFIG_LRU_GEN */
5901 
5902 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5903 {
5904 }
5905 
5906 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5907 {
5908 }
5909 
5910 #endif /* CONFIG_LRU_GEN */
5911 
5912 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5913 {
5914 	unsigned long nr[NR_LRU_LISTS];
5915 	unsigned long targets[NR_LRU_LISTS];
5916 	unsigned long nr_to_scan;
5917 	enum lru_list lru;
5918 	unsigned long nr_reclaimed = 0;
5919 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5920 	bool proportional_reclaim;
5921 	struct blk_plug plug;
5922 
5923 	if (lru_gen_enabled()) {
5924 		lru_gen_shrink_lruvec(lruvec, sc);
5925 		return;
5926 	}
5927 
5928 	get_scan_count(lruvec, sc, nr);
5929 
5930 	/* Record the original scan target for proportional adjustments later */
5931 	memcpy(targets, nr, sizeof(nr));
5932 
5933 	/*
5934 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5935 	 * event that can occur when there is little memory pressure e.g.
5936 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5937 	 * when the requested number of pages are reclaimed when scanning at
5938 	 * DEF_PRIORITY on the assumption that the fact we are direct
5939 	 * reclaiming implies that kswapd is not keeping up and it is best to
5940 	 * do a batch of work at once. For memcg reclaim one check is made to
5941 	 * abort proportional reclaim if either the file or anon lru has already
5942 	 * dropped to zero at the first pass.
5943 	 */
5944 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5945 				sc->priority == DEF_PRIORITY);
5946 
5947 	blk_start_plug(&plug);
5948 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5949 					nr[LRU_INACTIVE_FILE]) {
5950 		unsigned long nr_anon, nr_file, percentage;
5951 		unsigned long nr_scanned;
5952 
5953 		for_each_evictable_lru(lru) {
5954 			if (nr[lru]) {
5955 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5956 				nr[lru] -= nr_to_scan;
5957 
5958 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5959 							    lruvec, sc);
5960 			}
5961 		}
5962 
5963 		cond_resched();
5964 
5965 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5966 			continue;
5967 
5968 		/*
5969 		 * For kswapd and memcg, reclaim at least the number of pages
5970 		 * requested. Ensure that the anon and file LRUs are scanned
5971 		 * proportionally what was requested by get_scan_count(). We
5972 		 * stop reclaiming one LRU and reduce the amount scanning
5973 		 * proportional to the original scan target.
5974 		 */
5975 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5976 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5977 
5978 		/*
5979 		 * It's just vindictive to attack the larger once the smaller
5980 		 * has gone to zero.  And given the way we stop scanning the
5981 		 * smaller below, this makes sure that we only make one nudge
5982 		 * towards proportionality once we've got nr_to_reclaim.
5983 		 */
5984 		if (!nr_file || !nr_anon)
5985 			break;
5986 
5987 		if (nr_file > nr_anon) {
5988 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5989 						targets[LRU_ACTIVE_ANON] + 1;
5990 			lru = LRU_BASE;
5991 			percentage = nr_anon * 100 / scan_target;
5992 		} else {
5993 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5994 						targets[LRU_ACTIVE_FILE] + 1;
5995 			lru = LRU_FILE;
5996 			percentage = nr_file * 100 / scan_target;
5997 		}
5998 
5999 		/* Stop scanning the smaller of the LRU */
6000 		nr[lru] = 0;
6001 		nr[lru + LRU_ACTIVE] = 0;
6002 
6003 		/*
6004 		 * Recalculate the other LRU scan count based on its original
6005 		 * scan target and the percentage scanning already complete
6006 		 */
6007 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6008 		nr_scanned = targets[lru] - nr[lru];
6009 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6010 		nr[lru] -= min(nr[lru], nr_scanned);
6011 
6012 		lru += LRU_ACTIVE;
6013 		nr_scanned = targets[lru] - nr[lru];
6014 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6015 		nr[lru] -= min(nr[lru], nr_scanned);
6016 	}
6017 	blk_finish_plug(&plug);
6018 	sc->nr_reclaimed += nr_reclaimed;
6019 
6020 	/*
6021 	 * Even if we did not try to evict anon pages at all, we want to
6022 	 * rebalance the anon lru active/inactive ratio.
6023 	 */
6024 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6025 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6026 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6027 				   sc, LRU_ACTIVE_ANON);
6028 }
6029 
6030 /* Use reclaim/compaction for costly allocs or under memory pressure */
6031 static bool in_reclaim_compaction(struct scan_control *sc)
6032 {
6033 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6034 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6035 			 sc->priority < DEF_PRIORITY - 2))
6036 		return true;
6037 
6038 	return false;
6039 }
6040 
6041 /*
6042  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6043  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6044  * true if more pages should be reclaimed such that when the page allocator
6045  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6046  * It will give up earlier than that if there is difficulty reclaiming pages.
6047  */
6048 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6049 					unsigned long nr_reclaimed,
6050 					struct scan_control *sc)
6051 {
6052 	unsigned long pages_for_compaction;
6053 	unsigned long inactive_lru_pages;
6054 	int z;
6055 
6056 	/* If not in reclaim/compaction mode, stop */
6057 	if (!in_reclaim_compaction(sc))
6058 		return false;
6059 
6060 	/*
6061 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6062 	 * number of pages that were scanned. This will return to the caller
6063 	 * with the risk reclaim/compaction and the resulting allocation attempt
6064 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6065 	 * allocations through requiring that the full LRU list has been scanned
6066 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6067 	 * scan, but that approximation was wrong, and there were corner cases
6068 	 * where always a non-zero amount of pages were scanned.
6069 	 */
6070 	if (!nr_reclaimed)
6071 		return false;
6072 
6073 	/* If compaction would go ahead or the allocation would succeed, stop */
6074 	for (z = 0; z <= sc->reclaim_idx; z++) {
6075 		struct zone *zone = &pgdat->node_zones[z];
6076 		if (!managed_zone(zone))
6077 			continue;
6078 
6079 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6080 		case COMPACT_SUCCESS:
6081 		case COMPACT_CONTINUE:
6082 			return false;
6083 		default:
6084 			/* check next zone */
6085 			;
6086 		}
6087 	}
6088 
6089 	/*
6090 	 * If we have not reclaimed enough pages for compaction and the
6091 	 * inactive lists are large enough, continue reclaiming
6092 	 */
6093 	pages_for_compaction = compact_gap(sc->order);
6094 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6095 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6096 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6097 
6098 	return inactive_lru_pages > pages_for_compaction;
6099 }
6100 
6101 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6102 {
6103 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6104 	struct mem_cgroup *memcg;
6105 
6106 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6107 	do {
6108 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6109 		unsigned long reclaimed;
6110 		unsigned long scanned;
6111 
6112 		/*
6113 		 * This loop can become CPU-bound when target memcgs
6114 		 * aren't eligible for reclaim - either because they
6115 		 * don't have any reclaimable pages, or because their
6116 		 * memory is explicitly protected. Avoid soft lockups.
6117 		 */
6118 		cond_resched();
6119 
6120 		mem_cgroup_calculate_protection(target_memcg, memcg);
6121 
6122 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6123 			/*
6124 			 * Hard protection.
6125 			 * If there is no reclaimable memory, OOM.
6126 			 */
6127 			continue;
6128 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6129 			/*
6130 			 * Soft protection.
6131 			 * Respect the protection only as long as
6132 			 * there is an unprotected supply
6133 			 * of reclaimable memory from other cgroups.
6134 			 */
6135 			if (!sc->memcg_low_reclaim) {
6136 				sc->memcg_low_skipped = 1;
6137 				continue;
6138 			}
6139 			memcg_memory_event(memcg, MEMCG_LOW);
6140 		}
6141 
6142 		reclaimed = sc->nr_reclaimed;
6143 		scanned = sc->nr_scanned;
6144 
6145 		shrink_lruvec(lruvec, sc);
6146 
6147 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6148 			    sc->priority);
6149 
6150 		/* Record the group's reclaim efficiency */
6151 		if (!sc->proactive)
6152 			vmpressure(sc->gfp_mask, memcg, false,
6153 				   sc->nr_scanned - scanned,
6154 				   sc->nr_reclaimed - reclaimed);
6155 
6156 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6157 }
6158 
6159 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6160 {
6161 	struct reclaim_state *reclaim_state = current->reclaim_state;
6162 	unsigned long nr_reclaimed, nr_scanned;
6163 	struct lruvec *target_lruvec;
6164 	bool reclaimable = false;
6165 
6166 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6167 
6168 again:
6169 	memset(&sc->nr, 0, sizeof(sc->nr));
6170 
6171 	nr_reclaimed = sc->nr_reclaimed;
6172 	nr_scanned = sc->nr_scanned;
6173 
6174 	prepare_scan_count(pgdat, sc);
6175 
6176 	shrink_node_memcgs(pgdat, sc);
6177 
6178 	if (reclaim_state) {
6179 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6180 		reclaim_state->reclaimed_slab = 0;
6181 	}
6182 
6183 	/* Record the subtree's reclaim efficiency */
6184 	if (!sc->proactive)
6185 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6186 			   sc->nr_scanned - nr_scanned,
6187 			   sc->nr_reclaimed - nr_reclaimed);
6188 
6189 	if (sc->nr_reclaimed - nr_reclaimed)
6190 		reclaimable = true;
6191 
6192 	if (current_is_kswapd()) {
6193 		/*
6194 		 * If reclaim is isolating dirty pages under writeback,
6195 		 * it implies that the long-lived page allocation rate
6196 		 * is exceeding the page laundering rate. Either the
6197 		 * global limits are not being effective at throttling
6198 		 * processes due to the page distribution throughout
6199 		 * zones or there is heavy usage of a slow backing
6200 		 * device. The only option is to throttle from reclaim
6201 		 * context which is not ideal as there is no guarantee
6202 		 * the dirtying process is throttled in the same way
6203 		 * balance_dirty_pages() manages.
6204 		 *
6205 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6206 		 * count the number of pages under pages flagged for
6207 		 * immediate reclaim and stall if any are encountered
6208 		 * in the nr_immediate check below.
6209 		 */
6210 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6211 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6212 
6213 		/* Allow kswapd to start writing pages during reclaim.*/
6214 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6215 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6216 
6217 		/*
6218 		 * If kswapd scans pages marked for immediate
6219 		 * reclaim and under writeback (nr_immediate), it
6220 		 * implies that pages are cycling through the LRU
6221 		 * faster than they are written so forcibly stall
6222 		 * until some pages complete writeback.
6223 		 */
6224 		if (sc->nr.immediate)
6225 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6226 	}
6227 
6228 	/*
6229 	 * Tag a node/memcg as congested if all the dirty pages were marked
6230 	 * for writeback and immediate reclaim (counted in nr.congested).
6231 	 *
6232 	 * Legacy memcg will stall in page writeback so avoid forcibly
6233 	 * stalling in reclaim_throttle().
6234 	 */
6235 	if ((current_is_kswapd() ||
6236 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6237 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6238 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6239 
6240 	/*
6241 	 * Stall direct reclaim for IO completions if the lruvec is
6242 	 * node is congested. Allow kswapd to continue until it
6243 	 * starts encountering unqueued dirty pages or cycling through
6244 	 * the LRU too quickly.
6245 	 */
6246 	if (!current_is_kswapd() && current_may_throttle() &&
6247 	    !sc->hibernation_mode &&
6248 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6249 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6250 
6251 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6252 				    sc))
6253 		goto again;
6254 
6255 	/*
6256 	 * Kswapd gives up on balancing particular nodes after too
6257 	 * many failures to reclaim anything from them and goes to
6258 	 * sleep. On reclaim progress, reset the failure counter. A
6259 	 * successful direct reclaim run will revive a dormant kswapd.
6260 	 */
6261 	if (reclaimable)
6262 		pgdat->kswapd_failures = 0;
6263 }
6264 
6265 /*
6266  * Returns true if compaction should go ahead for a costly-order request, or
6267  * the allocation would already succeed without compaction. Return false if we
6268  * should reclaim first.
6269  */
6270 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6271 {
6272 	unsigned long watermark;
6273 	enum compact_result suitable;
6274 
6275 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6276 	if (suitable == COMPACT_SUCCESS)
6277 		/* Allocation should succeed already. Don't reclaim. */
6278 		return true;
6279 	if (suitable == COMPACT_SKIPPED)
6280 		/* Compaction cannot yet proceed. Do reclaim. */
6281 		return false;
6282 
6283 	/*
6284 	 * Compaction is already possible, but it takes time to run and there
6285 	 * are potentially other callers using the pages just freed. So proceed
6286 	 * with reclaim to make a buffer of free pages available to give
6287 	 * compaction a reasonable chance of completing and allocating the page.
6288 	 * Note that we won't actually reclaim the whole buffer in one attempt
6289 	 * as the target watermark in should_continue_reclaim() is lower. But if
6290 	 * we are already above the high+gap watermark, don't reclaim at all.
6291 	 */
6292 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6293 
6294 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6295 }
6296 
6297 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6298 {
6299 	/*
6300 	 * If reclaim is making progress greater than 12% efficiency then
6301 	 * wake all the NOPROGRESS throttled tasks.
6302 	 */
6303 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6304 		wait_queue_head_t *wqh;
6305 
6306 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6307 		if (waitqueue_active(wqh))
6308 			wake_up(wqh);
6309 
6310 		return;
6311 	}
6312 
6313 	/*
6314 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6315 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6316 	 * under writeback and marked for immediate reclaim at the tail of the
6317 	 * LRU.
6318 	 */
6319 	if (current_is_kswapd() || cgroup_reclaim(sc))
6320 		return;
6321 
6322 	/* Throttle if making no progress at high prioities. */
6323 	if (sc->priority == 1 && !sc->nr_reclaimed)
6324 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6325 }
6326 
6327 /*
6328  * This is the direct reclaim path, for page-allocating processes.  We only
6329  * try to reclaim pages from zones which will satisfy the caller's allocation
6330  * request.
6331  *
6332  * If a zone is deemed to be full of pinned pages then just give it a light
6333  * scan then give up on it.
6334  */
6335 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6336 {
6337 	struct zoneref *z;
6338 	struct zone *zone;
6339 	unsigned long nr_soft_reclaimed;
6340 	unsigned long nr_soft_scanned;
6341 	gfp_t orig_mask;
6342 	pg_data_t *last_pgdat = NULL;
6343 	pg_data_t *first_pgdat = NULL;
6344 
6345 	/*
6346 	 * If the number of buffer_heads in the machine exceeds the maximum
6347 	 * allowed level, force direct reclaim to scan the highmem zone as
6348 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6349 	 */
6350 	orig_mask = sc->gfp_mask;
6351 	if (buffer_heads_over_limit) {
6352 		sc->gfp_mask |= __GFP_HIGHMEM;
6353 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6354 	}
6355 
6356 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6357 					sc->reclaim_idx, sc->nodemask) {
6358 		/*
6359 		 * Take care memory controller reclaiming has small influence
6360 		 * to global LRU.
6361 		 */
6362 		if (!cgroup_reclaim(sc)) {
6363 			if (!cpuset_zone_allowed(zone,
6364 						 GFP_KERNEL | __GFP_HARDWALL))
6365 				continue;
6366 
6367 			/*
6368 			 * If we already have plenty of memory free for
6369 			 * compaction in this zone, don't free any more.
6370 			 * Even though compaction is invoked for any
6371 			 * non-zero order, only frequent costly order
6372 			 * reclamation is disruptive enough to become a
6373 			 * noticeable problem, like transparent huge
6374 			 * page allocations.
6375 			 */
6376 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6377 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6378 			    compaction_ready(zone, sc)) {
6379 				sc->compaction_ready = true;
6380 				continue;
6381 			}
6382 
6383 			/*
6384 			 * Shrink each node in the zonelist once. If the
6385 			 * zonelist is ordered by zone (not the default) then a
6386 			 * node may be shrunk multiple times but in that case
6387 			 * the user prefers lower zones being preserved.
6388 			 */
6389 			if (zone->zone_pgdat == last_pgdat)
6390 				continue;
6391 
6392 			/*
6393 			 * This steals pages from memory cgroups over softlimit
6394 			 * and returns the number of reclaimed pages and
6395 			 * scanned pages. This works for global memory pressure
6396 			 * and balancing, not for a memcg's limit.
6397 			 */
6398 			nr_soft_scanned = 0;
6399 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6400 						sc->order, sc->gfp_mask,
6401 						&nr_soft_scanned);
6402 			sc->nr_reclaimed += nr_soft_reclaimed;
6403 			sc->nr_scanned += nr_soft_scanned;
6404 			/* need some check for avoid more shrink_zone() */
6405 		}
6406 
6407 		if (!first_pgdat)
6408 			first_pgdat = zone->zone_pgdat;
6409 
6410 		/* See comment about same check for global reclaim above */
6411 		if (zone->zone_pgdat == last_pgdat)
6412 			continue;
6413 		last_pgdat = zone->zone_pgdat;
6414 		shrink_node(zone->zone_pgdat, sc);
6415 	}
6416 
6417 	if (first_pgdat)
6418 		consider_reclaim_throttle(first_pgdat, sc);
6419 
6420 	/*
6421 	 * Restore to original mask to avoid the impact on the caller if we
6422 	 * promoted it to __GFP_HIGHMEM.
6423 	 */
6424 	sc->gfp_mask = orig_mask;
6425 }
6426 
6427 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6428 {
6429 	struct lruvec *target_lruvec;
6430 	unsigned long refaults;
6431 
6432 	if (lru_gen_enabled())
6433 		return;
6434 
6435 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6436 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6437 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6438 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6439 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6440 }
6441 
6442 /*
6443  * This is the main entry point to direct page reclaim.
6444  *
6445  * If a full scan of the inactive list fails to free enough memory then we
6446  * are "out of memory" and something needs to be killed.
6447  *
6448  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6449  * high - the zone may be full of dirty or under-writeback pages, which this
6450  * caller can't do much about.  We kick the writeback threads and take explicit
6451  * naps in the hope that some of these pages can be written.  But if the
6452  * allocating task holds filesystem locks which prevent writeout this might not
6453  * work, and the allocation attempt will fail.
6454  *
6455  * returns:	0, if no pages reclaimed
6456  * 		else, the number of pages reclaimed
6457  */
6458 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6459 					  struct scan_control *sc)
6460 {
6461 	int initial_priority = sc->priority;
6462 	pg_data_t *last_pgdat;
6463 	struct zoneref *z;
6464 	struct zone *zone;
6465 retry:
6466 	delayacct_freepages_start();
6467 
6468 	if (!cgroup_reclaim(sc))
6469 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6470 
6471 	do {
6472 		if (!sc->proactive)
6473 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6474 					sc->priority);
6475 		sc->nr_scanned = 0;
6476 		shrink_zones(zonelist, sc);
6477 
6478 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6479 			break;
6480 
6481 		if (sc->compaction_ready)
6482 			break;
6483 
6484 		/*
6485 		 * If we're getting trouble reclaiming, start doing
6486 		 * writepage even in laptop mode.
6487 		 */
6488 		if (sc->priority < DEF_PRIORITY - 2)
6489 			sc->may_writepage = 1;
6490 	} while (--sc->priority >= 0);
6491 
6492 	last_pgdat = NULL;
6493 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6494 					sc->nodemask) {
6495 		if (zone->zone_pgdat == last_pgdat)
6496 			continue;
6497 		last_pgdat = zone->zone_pgdat;
6498 
6499 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6500 
6501 		if (cgroup_reclaim(sc)) {
6502 			struct lruvec *lruvec;
6503 
6504 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6505 						   zone->zone_pgdat);
6506 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6507 		}
6508 	}
6509 
6510 	delayacct_freepages_end();
6511 
6512 	if (sc->nr_reclaimed)
6513 		return sc->nr_reclaimed;
6514 
6515 	/* Aborted reclaim to try compaction? don't OOM, then */
6516 	if (sc->compaction_ready)
6517 		return 1;
6518 
6519 	/*
6520 	 * We make inactive:active ratio decisions based on the node's
6521 	 * composition of memory, but a restrictive reclaim_idx or a
6522 	 * memory.low cgroup setting can exempt large amounts of
6523 	 * memory from reclaim. Neither of which are very common, so
6524 	 * instead of doing costly eligibility calculations of the
6525 	 * entire cgroup subtree up front, we assume the estimates are
6526 	 * good, and retry with forcible deactivation if that fails.
6527 	 */
6528 	if (sc->skipped_deactivate) {
6529 		sc->priority = initial_priority;
6530 		sc->force_deactivate = 1;
6531 		sc->skipped_deactivate = 0;
6532 		goto retry;
6533 	}
6534 
6535 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6536 	if (sc->memcg_low_skipped) {
6537 		sc->priority = initial_priority;
6538 		sc->force_deactivate = 0;
6539 		sc->memcg_low_reclaim = 1;
6540 		sc->memcg_low_skipped = 0;
6541 		goto retry;
6542 	}
6543 
6544 	return 0;
6545 }
6546 
6547 static bool allow_direct_reclaim(pg_data_t *pgdat)
6548 {
6549 	struct zone *zone;
6550 	unsigned long pfmemalloc_reserve = 0;
6551 	unsigned long free_pages = 0;
6552 	int i;
6553 	bool wmark_ok;
6554 
6555 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6556 		return true;
6557 
6558 	for (i = 0; i <= ZONE_NORMAL; i++) {
6559 		zone = &pgdat->node_zones[i];
6560 		if (!managed_zone(zone))
6561 			continue;
6562 
6563 		if (!zone_reclaimable_pages(zone))
6564 			continue;
6565 
6566 		pfmemalloc_reserve += min_wmark_pages(zone);
6567 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6568 	}
6569 
6570 	/* If there are no reserves (unexpected config) then do not throttle */
6571 	if (!pfmemalloc_reserve)
6572 		return true;
6573 
6574 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6575 
6576 	/* kswapd must be awake if processes are being throttled */
6577 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6578 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6579 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6580 
6581 		wake_up_interruptible(&pgdat->kswapd_wait);
6582 	}
6583 
6584 	return wmark_ok;
6585 }
6586 
6587 /*
6588  * Throttle direct reclaimers if backing storage is backed by the network
6589  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6590  * depleted. kswapd will continue to make progress and wake the processes
6591  * when the low watermark is reached.
6592  *
6593  * Returns true if a fatal signal was delivered during throttling. If this
6594  * happens, the page allocator should not consider triggering the OOM killer.
6595  */
6596 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6597 					nodemask_t *nodemask)
6598 {
6599 	struct zoneref *z;
6600 	struct zone *zone;
6601 	pg_data_t *pgdat = NULL;
6602 
6603 	/*
6604 	 * Kernel threads should not be throttled as they may be indirectly
6605 	 * responsible for cleaning pages necessary for reclaim to make forward
6606 	 * progress. kjournald for example may enter direct reclaim while
6607 	 * committing a transaction where throttling it could forcing other
6608 	 * processes to block on log_wait_commit().
6609 	 */
6610 	if (current->flags & PF_KTHREAD)
6611 		goto out;
6612 
6613 	/*
6614 	 * If a fatal signal is pending, this process should not throttle.
6615 	 * It should return quickly so it can exit and free its memory
6616 	 */
6617 	if (fatal_signal_pending(current))
6618 		goto out;
6619 
6620 	/*
6621 	 * Check if the pfmemalloc reserves are ok by finding the first node
6622 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6623 	 * GFP_KERNEL will be required for allocating network buffers when
6624 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6625 	 *
6626 	 * Throttling is based on the first usable node and throttled processes
6627 	 * wait on a queue until kswapd makes progress and wakes them. There
6628 	 * is an affinity then between processes waking up and where reclaim
6629 	 * progress has been made assuming the process wakes on the same node.
6630 	 * More importantly, processes running on remote nodes will not compete
6631 	 * for remote pfmemalloc reserves and processes on different nodes
6632 	 * should make reasonable progress.
6633 	 */
6634 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6635 					gfp_zone(gfp_mask), nodemask) {
6636 		if (zone_idx(zone) > ZONE_NORMAL)
6637 			continue;
6638 
6639 		/* Throttle based on the first usable node */
6640 		pgdat = zone->zone_pgdat;
6641 		if (allow_direct_reclaim(pgdat))
6642 			goto out;
6643 		break;
6644 	}
6645 
6646 	/* If no zone was usable by the allocation flags then do not throttle */
6647 	if (!pgdat)
6648 		goto out;
6649 
6650 	/* Account for the throttling */
6651 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6652 
6653 	/*
6654 	 * If the caller cannot enter the filesystem, it's possible that it
6655 	 * is due to the caller holding an FS lock or performing a journal
6656 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6657 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6658 	 * blocked waiting on the same lock. Instead, throttle for up to a
6659 	 * second before continuing.
6660 	 */
6661 	if (!(gfp_mask & __GFP_FS))
6662 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6663 			allow_direct_reclaim(pgdat), HZ);
6664 	else
6665 		/* Throttle until kswapd wakes the process */
6666 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6667 			allow_direct_reclaim(pgdat));
6668 
6669 	if (fatal_signal_pending(current))
6670 		return true;
6671 
6672 out:
6673 	return false;
6674 }
6675 
6676 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6677 				gfp_t gfp_mask, nodemask_t *nodemask)
6678 {
6679 	unsigned long nr_reclaimed;
6680 	struct scan_control sc = {
6681 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6682 		.gfp_mask = current_gfp_context(gfp_mask),
6683 		.reclaim_idx = gfp_zone(gfp_mask),
6684 		.order = order,
6685 		.nodemask = nodemask,
6686 		.priority = DEF_PRIORITY,
6687 		.may_writepage = !laptop_mode,
6688 		.may_unmap = 1,
6689 		.may_swap = 1,
6690 	};
6691 
6692 	/*
6693 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6694 	 * Confirm they are large enough for max values.
6695 	 */
6696 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6697 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6698 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6699 
6700 	/*
6701 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6702 	 * 1 is returned so that the page allocator does not OOM kill at this
6703 	 * point.
6704 	 */
6705 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6706 		return 1;
6707 
6708 	set_task_reclaim_state(current, &sc.reclaim_state);
6709 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6710 
6711 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6712 
6713 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6714 	set_task_reclaim_state(current, NULL);
6715 
6716 	return nr_reclaimed;
6717 }
6718 
6719 #ifdef CONFIG_MEMCG
6720 
6721 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6722 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6723 						gfp_t gfp_mask, bool noswap,
6724 						pg_data_t *pgdat,
6725 						unsigned long *nr_scanned)
6726 {
6727 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6728 	struct scan_control sc = {
6729 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6730 		.target_mem_cgroup = memcg,
6731 		.may_writepage = !laptop_mode,
6732 		.may_unmap = 1,
6733 		.reclaim_idx = MAX_NR_ZONES - 1,
6734 		.may_swap = !noswap,
6735 	};
6736 
6737 	WARN_ON_ONCE(!current->reclaim_state);
6738 
6739 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6740 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6741 
6742 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6743 						      sc.gfp_mask);
6744 
6745 	/*
6746 	 * NOTE: Although we can get the priority field, using it
6747 	 * here is not a good idea, since it limits the pages we can scan.
6748 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6749 	 * will pick up pages from other mem cgroup's as well. We hack
6750 	 * the priority and make it zero.
6751 	 */
6752 	shrink_lruvec(lruvec, &sc);
6753 
6754 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6755 
6756 	*nr_scanned = sc.nr_scanned;
6757 
6758 	return sc.nr_reclaimed;
6759 }
6760 
6761 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6762 					   unsigned long nr_pages,
6763 					   gfp_t gfp_mask,
6764 					   unsigned int reclaim_options)
6765 {
6766 	unsigned long nr_reclaimed;
6767 	unsigned int noreclaim_flag;
6768 	struct scan_control sc = {
6769 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6770 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6771 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6772 		.reclaim_idx = MAX_NR_ZONES - 1,
6773 		.target_mem_cgroup = memcg,
6774 		.priority = DEF_PRIORITY,
6775 		.may_writepage = !laptop_mode,
6776 		.may_unmap = 1,
6777 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6778 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6779 	};
6780 	/*
6781 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6782 	 * equal pressure on all the nodes. This is based on the assumption that
6783 	 * the reclaim does not bail out early.
6784 	 */
6785 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6786 
6787 	set_task_reclaim_state(current, &sc.reclaim_state);
6788 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6789 	noreclaim_flag = memalloc_noreclaim_save();
6790 
6791 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6792 
6793 	memalloc_noreclaim_restore(noreclaim_flag);
6794 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6795 	set_task_reclaim_state(current, NULL);
6796 
6797 	return nr_reclaimed;
6798 }
6799 #endif
6800 
6801 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6802 {
6803 	struct mem_cgroup *memcg;
6804 	struct lruvec *lruvec;
6805 
6806 	if (lru_gen_enabled()) {
6807 		lru_gen_age_node(pgdat, sc);
6808 		return;
6809 	}
6810 
6811 	if (!can_age_anon_pages(pgdat, sc))
6812 		return;
6813 
6814 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6815 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6816 		return;
6817 
6818 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6819 	do {
6820 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6821 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6822 				   sc, LRU_ACTIVE_ANON);
6823 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6824 	} while (memcg);
6825 }
6826 
6827 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6828 {
6829 	int i;
6830 	struct zone *zone;
6831 
6832 	/*
6833 	 * Check for watermark boosts top-down as the higher zones
6834 	 * are more likely to be boosted. Both watermarks and boosts
6835 	 * should not be checked at the same time as reclaim would
6836 	 * start prematurely when there is no boosting and a lower
6837 	 * zone is balanced.
6838 	 */
6839 	for (i = highest_zoneidx; i >= 0; i--) {
6840 		zone = pgdat->node_zones + i;
6841 		if (!managed_zone(zone))
6842 			continue;
6843 
6844 		if (zone->watermark_boost)
6845 			return true;
6846 	}
6847 
6848 	return false;
6849 }
6850 
6851 /*
6852  * Returns true if there is an eligible zone balanced for the request order
6853  * and highest_zoneidx
6854  */
6855 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6856 {
6857 	int i;
6858 	unsigned long mark = -1;
6859 	struct zone *zone;
6860 
6861 	/*
6862 	 * Check watermarks bottom-up as lower zones are more likely to
6863 	 * meet watermarks.
6864 	 */
6865 	for (i = 0; i <= highest_zoneidx; i++) {
6866 		zone = pgdat->node_zones + i;
6867 
6868 		if (!managed_zone(zone))
6869 			continue;
6870 
6871 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6872 			mark = wmark_pages(zone, WMARK_PROMO);
6873 		else
6874 			mark = high_wmark_pages(zone);
6875 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6876 			return true;
6877 	}
6878 
6879 	/*
6880 	 * If a node has no managed zone within highest_zoneidx, it does not
6881 	 * need balancing by definition. This can happen if a zone-restricted
6882 	 * allocation tries to wake a remote kswapd.
6883 	 */
6884 	if (mark == -1)
6885 		return true;
6886 
6887 	return false;
6888 }
6889 
6890 /* Clear pgdat state for congested, dirty or under writeback. */
6891 static void clear_pgdat_congested(pg_data_t *pgdat)
6892 {
6893 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6894 
6895 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6896 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6897 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6898 }
6899 
6900 /*
6901  * Prepare kswapd for sleeping. This verifies that there are no processes
6902  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6903  *
6904  * Returns true if kswapd is ready to sleep
6905  */
6906 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6907 				int highest_zoneidx)
6908 {
6909 	/*
6910 	 * The throttled processes are normally woken up in balance_pgdat() as
6911 	 * soon as allow_direct_reclaim() is true. But there is a potential
6912 	 * race between when kswapd checks the watermarks and a process gets
6913 	 * throttled. There is also a potential race if processes get
6914 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6915 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6916 	 * the wake up checks. If kswapd is going to sleep, no process should
6917 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6918 	 * the wake up is premature, processes will wake kswapd and get
6919 	 * throttled again. The difference from wake ups in balance_pgdat() is
6920 	 * that here we are under prepare_to_wait().
6921 	 */
6922 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6923 		wake_up_all(&pgdat->pfmemalloc_wait);
6924 
6925 	/* Hopeless node, leave it to direct reclaim */
6926 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6927 		return true;
6928 
6929 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6930 		clear_pgdat_congested(pgdat);
6931 		return true;
6932 	}
6933 
6934 	return false;
6935 }
6936 
6937 /*
6938  * kswapd shrinks a node of pages that are at or below the highest usable
6939  * zone that is currently unbalanced.
6940  *
6941  * Returns true if kswapd scanned at least the requested number of pages to
6942  * reclaim or if the lack of progress was due to pages under writeback.
6943  * This is used to determine if the scanning priority needs to be raised.
6944  */
6945 static bool kswapd_shrink_node(pg_data_t *pgdat,
6946 			       struct scan_control *sc)
6947 {
6948 	struct zone *zone;
6949 	int z;
6950 
6951 	/* Reclaim a number of pages proportional to the number of zones */
6952 	sc->nr_to_reclaim = 0;
6953 	for (z = 0; z <= sc->reclaim_idx; z++) {
6954 		zone = pgdat->node_zones + z;
6955 		if (!managed_zone(zone))
6956 			continue;
6957 
6958 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6959 	}
6960 
6961 	/*
6962 	 * Historically care was taken to put equal pressure on all zones but
6963 	 * now pressure is applied based on node LRU order.
6964 	 */
6965 	shrink_node(pgdat, sc);
6966 
6967 	/*
6968 	 * Fragmentation may mean that the system cannot be rebalanced for
6969 	 * high-order allocations. If twice the allocation size has been
6970 	 * reclaimed then recheck watermarks only at order-0 to prevent
6971 	 * excessive reclaim. Assume that a process requested a high-order
6972 	 * can direct reclaim/compact.
6973 	 */
6974 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6975 		sc->order = 0;
6976 
6977 	return sc->nr_scanned >= sc->nr_to_reclaim;
6978 }
6979 
6980 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6981 static inline void
6982 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6983 {
6984 	int i;
6985 	struct zone *zone;
6986 
6987 	for (i = 0; i <= highest_zoneidx; i++) {
6988 		zone = pgdat->node_zones + i;
6989 
6990 		if (!managed_zone(zone))
6991 			continue;
6992 
6993 		if (active)
6994 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6995 		else
6996 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6997 	}
6998 }
6999 
7000 static inline void
7001 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7002 {
7003 	update_reclaim_active(pgdat, highest_zoneidx, true);
7004 }
7005 
7006 static inline void
7007 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7008 {
7009 	update_reclaim_active(pgdat, highest_zoneidx, false);
7010 }
7011 
7012 /*
7013  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7014  * that are eligible for use by the caller until at least one zone is
7015  * balanced.
7016  *
7017  * Returns the order kswapd finished reclaiming at.
7018  *
7019  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7020  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7021  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7022  * or lower is eligible for reclaim until at least one usable zone is
7023  * balanced.
7024  */
7025 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7026 {
7027 	int i;
7028 	unsigned long nr_soft_reclaimed;
7029 	unsigned long nr_soft_scanned;
7030 	unsigned long pflags;
7031 	unsigned long nr_boost_reclaim;
7032 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7033 	bool boosted;
7034 	struct zone *zone;
7035 	struct scan_control sc = {
7036 		.gfp_mask = GFP_KERNEL,
7037 		.order = order,
7038 		.may_unmap = 1,
7039 	};
7040 
7041 	set_task_reclaim_state(current, &sc.reclaim_state);
7042 	psi_memstall_enter(&pflags);
7043 	__fs_reclaim_acquire(_THIS_IP_);
7044 
7045 	count_vm_event(PAGEOUTRUN);
7046 
7047 	/*
7048 	 * Account for the reclaim boost. Note that the zone boost is left in
7049 	 * place so that parallel allocations that are near the watermark will
7050 	 * stall or direct reclaim until kswapd is finished.
7051 	 */
7052 	nr_boost_reclaim = 0;
7053 	for (i = 0; i <= highest_zoneidx; i++) {
7054 		zone = pgdat->node_zones + i;
7055 		if (!managed_zone(zone))
7056 			continue;
7057 
7058 		nr_boost_reclaim += zone->watermark_boost;
7059 		zone_boosts[i] = zone->watermark_boost;
7060 	}
7061 	boosted = nr_boost_reclaim;
7062 
7063 restart:
7064 	set_reclaim_active(pgdat, highest_zoneidx);
7065 	sc.priority = DEF_PRIORITY;
7066 	do {
7067 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7068 		bool raise_priority = true;
7069 		bool balanced;
7070 		bool ret;
7071 
7072 		sc.reclaim_idx = highest_zoneidx;
7073 
7074 		/*
7075 		 * If the number of buffer_heads exceeds the maximum allowed
7076 		 * then consider reclaiming from all zones. This has a dual
7077 		 * purpose -- on 64-bit systems it is expected that
7078 		 * buffer_heads are stripped during active rotation. On 32-bit
7079 		 * systems, highmem pages can pin lowmem memory and shrinking
7080 		 * buffers can relieve lowmem pressure. Reclaim may still not
7081 		 * go ahead if all eligible zones for the original allocation
7082 		 * request are balanced to avoid excessive reclaim from kswapd.
7083 		 */
7084 		if (buffer_heads_over_limit) {
7085 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7086 				zone = pgdat->node_zones + i;
7087 				if (!managed_zone(zone))
7088 					continue;
7089 
7090 				sc.reclaim_idx = i;
7091 				break;
7092 			}
7093 		}
7094 
7095 		/*
7096 		 * If the pgdat is imbalanced then ignore boosting and preserve
7097 		 * the watermarks for a later time and restart. Note that the
7098 		 * zone watermarks will be still reset at the end of balancing
7099 		 * on the grounds that the normal reclaim should be enough to
7100 		 * re-evaluate if boosting is required when kswapd next wakes.
7101 		 */
7102 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7103 		if (!balanced && nr_boost_reclaim) {
7104 			nr_boost_reclaim = 0;
7105 			goto restart;
7106 		}
7107 
7108 		/*
7109 		 * If boosting is not active then only reclaim if there are no
7110 		 * eligible zones. Note that sc.reclaim_idx is not used as
7111 		 * buffer_heads_over_limit may have adjusted it.
7112 		 */
7113 		if (!nr_boost_reclaim && balanced)
7114 			goto out;
7115 
7116 		/* Limit the priority of boosting to avoid reclaim writeback */
7117 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7118 			raise_priority = false;
7119 
7120 		/*
7121 		 * Do not writeback or swap pages for boosted reclaim. The
7122 		 * intent is to relieve pressure not issue sub-optimal IO
7123 		 * from reclaim context. If no pages are reclaimed, the
7124 		 * reclaim will be aborted.
7125 		 */
7126 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7127 		sc.may_swap = !nr_boost_reclaim;
7128 
7129 		/*
7130 		 * Do some background aging, to give pages a chance to be
7131 		 * referenced before reclaiming. All pages are rotated
7132 		 * regardless of classzone as this is about consistent aging.
7133 		 */
7134 		kswapd_age_node(pgdat, &sc);
7135 
7136 		/*
7137 		 * If we're getting trouble reclaiming, start doing writepage
7138 		 * even in laptop mode.
7139 		 */
7140 		if (sc.priority < DEF_PRIORITY - 2)
7141 			sc.may_writepage = 1;
7142 
7143 		/* Call soft limit reclaim before calling shrink_node. */
7144 		sc.nr_scanned = 0;
7145 		nr_soft_scanned = 0;
7146 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7147 						sc.gfp_mask, &nr_soft_scanned);
7148 		sc.nr_reclaimed += nr_soft_reclaimed;
7149 
7150 		/*
7151 		 * There should be no need to raise the scanning priority if
7152 		 * enough pages are already being scanned that that high
7153 		 * watermark would be met at 100% efficiency.
7154 		 */
7155 		if (kswapd_shrink_node(pgdat, &sc))
7156 			raise_priority = false;
7157 
7158 		/*
7159 		 * If the low watermark is met there is no need for processes
7160 		 * to be throttled on pfmemalloc_wait as they should not be
7161 		 * able to safely make forward progress. Wake them
7162 		 */
7163 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7164 				allow_direct_reclaim(pgdat))
7165 			wake_up_all(&pgdat->pfmemalloc_wait);
7166 
7167 		/* Check if kswapd should be suspending */
7168 		__fs_reclaim_release(_THIS_IP_);
7169 		ret = try_to_freeze();
7170 		__fs_reclaim_acquire(_THIS_IP_);
7171 		if (ret || kthread_should_stop())
7172 			break;
7173 
7174 		/*
7175 		 * Raise priority if scanning rate is too low or there was no
7176 		 * progress in reclaiming pages
7177 		 */
7178 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7179 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7180 
7181 		/*
7182 		 * If reclaim made no progress for a boost, stop reclaim as
7183 		 * IO cannot be queued and it could be an infinite loop in
7184 		 * extreme circumstances.
7185 		 */
7186 		if (nr_boost_reclaim && !nr_reclaimed)
7187 			break;
7188 
7189 		if (raise_priority || !nr_reclaimed)
7190 			sc.priority--;
7191 	} while (sc.priority >= 1);
7192 
7193 	if (!sc.nr_reclaimed)
7194 		pgdat->kswapd_failures++;
7195 
7196 out:
7197 	clear_reclaim_active(pgdat, highest_zoneidx);
7198 
7199 	/* If reclaim was boosted, account for the reclaim done in this pass */
7200 	if (boosted) {
7201 		unsigned long flags;
7202 
7203 		for (i = 0; i <= highest_zoneidx; i++) {
7204 			if (!zone_boosts[i])
7205 				continue;
7206 
7207 			/* Increments are under the zone lock */
7208 			zone = pgdat->node_zones + i;
7209 			spin_lock_irqsave(&zone->lock, flags);
7210 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7211 			spin_unlock_irqrestore(&zone->lock, flags);
7212 		}
7213 
7214 		/*
7215 		 * As there is now likely space, wakeup kcompact to defragment
7216 		 * pageblocks.
7217 		 */
7218 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7219 	}
7220 
7221 	snapshot_refaults(NULL, pgdat);
7222 	__fs_reclaim_release(_THIS_IP_);
7223 	psi_memstall_leave(&pflags);
7224 	set_task_reclaim_state(current, NULL);
7225 
7226 	/*
7227 	 * Return the order kswapd stopped reclaiming at as
7228 	 * prepare_kswapd_sleep() takes it into account. If another caller
7229 	 * entered the allocator slow path while kswapd was awake, order will
7230 	 * remain at the higher level.
7231 	 */
7232 	return sc.order;
7233 }
7234 
7235 /*
7236  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7237  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7238  * not a valid index then either kswapd runs for first time or kswapd couldn't
7239  * sleep after previous reclaim attempt (node is still unbalanced). In that
7240  * case return the zone index of the previous kswapd reclaim cycle.
7241  */
7242 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7243 					   enum zone_type prev_highest_zoneidx)
7244 {
7245 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7246 
7247 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7248 }
7249 
7250 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7251 				unsigned int highest_zoneidx)
7252 {
7253 	long remaining = 0;
7254 	DEFINE_WAIT(wait);
7255 
7256 	if (freezing(current) || kthread_should_stop())
7257 		return;
7258 
7259 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7260 
7261 	/*
7262 	 * Try to sleep for a short interval. Note that kcompactd will only be
7263 	 * woken if it is possible to sleep for a short interval. This is
7264 	 * deliberate on the assumption that if reclaim cannot keep an
7265 	 * eligible zone balanced that it's also unlikely that compaction will
7266 	 * succeed.
7267 	 */
7268 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7269 		/*
7270 		 * Compaction records what page blocks it recently failed to
7271 		 * isolate pages from and skips them in the future scanning.
7272 		 * When kswapd is going to sleep, it is reasonable to assume
7273 		 * that pages and compaction may succeed so reset the cache.
7274 		 */
7275 		reset_isolation_suitable(pgdat);
7276 
7277 		/*
7278 		 * We have freed the memory, now we should compact it to make
7279 		 * allocation of the requested order possible.
7280 		 */
7281 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7282 
7283 		remaining = schedule_timeout(HZ/10);
7284 
7285 		/*
7286 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7287 		 * order. The values will either be from a wakeup request or
7288 		 * the previous request that slept prematurely.
7289 		 */
7290 		if (remaining) {
7291 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7292 					kswapd_highest_zoneidx(pgdat,
7293 							highest_zoneidx));
7294 
7295 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7296 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7297 		}
7298 
7299 		finish_wait(&pgdat->kswapd_wait, &wait);
7300 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7301 	}
7302 
7303 	/*
7304 	 * After a short sleep, check if it was a premature sleep. If not, then
7305 	 * go fully to sleep until explicitly woken up.
7306 	 */
7307 	if (!remaining &&
7308 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7309 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7310 
7311 		/*
7312 		 * vmstat counters are not perfectly accurate and the estimated
7313 		 * value for counters such as NR_FREE_PAGES can deviate from the
7314 		 * true value by nr_online_cpus * threshold. To avoid the zone
7315 		 * watermarks being breached while under pressure, we reduce the
7316 		 * per-cpu vmstat threshold while kswapd is awake and restore
7317 		 * them before going back to sleep.
7318 		 */
7319 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7320 
7321 		if (!kthread_should_stop())
7322 			schedule();
7323 
7324 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7325 	} else {
7326 		if (remaining)
7327 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7328 		else
7329 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7330 	}
7331 	finish_wait(&pgdat->kswapd_wait, &wait);
7332 }
7333 
7334 /*
7335  * The background pageout daemon, started as a kernel thread
7336  * from the init process.
7337  *
7338  * This basically trickles out pages so that we have _some_
7339  * free memory available even if there is no other activity
7340  * that frees anything up. This is needed for things like routing
7341  * etc, where we otherwise might have all activity going on in
7342  * asynchronous contexts that cannot page things out.
7343  *
7344  * If there are applications that are active memory-allocators
7345  * (most normal use), this basically shouldn't matter.
7346  */
7347 static int kswapd(void *p)
7348 {
7349 	unsigned int alloc_order, reclaim_order;
7350 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7351 	pg_data_t *pgdat = (pg_data_t *)p;
7352 	struct task_struct *tsk = current;
7353 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7354 
7355 	if (!cpumask_empty(cpumask))
7356 		set_cpus_allowed_ptr(tsk, cpumask);
7357 
7358 	/*
7359 	 * Tell the memory management that we're a "memory allocator",
7360 	 * and that if we need more memory we should get access to it
7361 	 * regardless (see "__alloc_pages()"). "kswapd" should
7362 	 * never get caught in the normal page freeing logic.
7363 	 *
7364 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7365 	 * you need a small amount of memory in order to be able to
7366 	 * page out something else, and this flag essentially protects
7367 	 * us from recursively trying to free more memory as we're
7368 	 * trying to free the first piece of memory in the first place).
7369 	 */
7370 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7371 	set_freezable();
7372 
7373 	WRITE_ONCE(pgdat->kswapd_order, 0);
7374 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7375 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7376 	for ( ; ; ) {
7377 		bool ret;
7378 
7379 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7380 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7381 							highest_zoneidx);
7382 
7383 kswapd_try_sleep:
7384 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7385 					highest_zoneidx);
7386 
7387 		/* Read the new order and highest_zoneidx */
7388 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7389 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7390 							highest_zoneidx);
7391 		WRITE_ONCE(pgdat->kswapd_order, 0);
7392 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7393 
7394 		ret = try_to_freeze();
7395 		if (kthread_should_stop())
7396 			break;
7397 
7398 		/*
7399 		 * We can speed up thawing tasks if we don't call balance_pgdat
7400 		 * after returning from the refrigerator
7401 		 */
7402 		if (ret)
7403 			continue;
7404 
7405 		/*
7406 		 * Reclaim begins at the requested order but if a high-order
7407 		 * reclaim fails then kswapd falls back to reclaiming for
7408 		 * order-0. If that happens, kswapd will consider sleeping
7409 		 * for the order it finished reclaiming at (reclaim_order)
7410 		 * but kcompactd is woken to compact for the original
7411 		 * request (alloc_order).
7412 		 */
7413 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7414 						alloc_order);
7415 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7416 						highest_zoneidx);
7417 		if (reclaim_order < alloc_order)
7418 			goto kswapd_try_sleep;
7419 	}
7420 
7421 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7422 
7423 	return 0;
7424 }
7425 
7426 /*
7427  * A zone is low on free memory or too fragmented for high-order memory.  If
7428  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7429  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7430  * has failed or is not needed, still wake up kcompactd if only compaction is
7431  * needed.
7432  */
7433 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7434 		   enum zone_type highest_zoneidx)
7435 {
7436 	pg_data_t *pgdat;
7437 	enum zone_type curr_idx;
7438 
7439 	if (!managed_zone(zone))
7440 		return;
7441 
7442 	if (!cpuset_zone_allowed(zone, gfp_flags))
7443 		return;
7444 
7445 	pgdat = zone->zone_pgdat;
7446 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7447 
7448 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7449 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7450 
7451 	if (READ_ONCE(pgdat->kswapd_order) < order)
7452 		WRITE_ONCE(pgdat->kswapd_order, order);
7453 
7454 	if (!waitqueue_active(&pgdat->kswapd_wait))
7455 		return;
7456 
7457 	/* Hopeless node, leave it to direct reclaim if possible */
7458 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7459 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7460 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7461 		/*
7462 		 * There may be plenty of free memory available, but it's too
7463 		 * fragmented for high-order allocations.  Wake up kcompactd
7464 		 * and rely on compaction_suitable() to determine if it's
7465 		 * needed.  If it fails, it will defer subsequent attempts to
7466 		 * ratelimit its work.
7467 		 */
7468 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7469 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7470 		return;
7471 	}
7472 
7473 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7474 				      gfp_flags);
7475 	wake_up_interruptible(&pgdat->kswapd_wait);
7476 }
7477 
7478 #ifdef CONFIG_HIBERNATION
7479 /*
7480  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7481  * freed pages.
7482  *
7483  * Rather than trying to age LRUs the aim is to preserve the overall
7484  * LRU order by reclaiming preferentially
7485  * inactive > active > active referenced > active mapped
7486  */
7487 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7488 {
7489 	struct scan_control sc = {
7490 		.nr_to_reclaim = nr_to_reclaim,
7491 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7492 		.reclaim_idx = MAX_NR_ZONES - 1,
7493 		.priority = DEF_PRIORITY,
7494 		.may_writepage = 1,
7495 		.may_unmap = 1,
7496 		.may_swap = 1,
7497 		.hibernation_mode = 1,
7498 	};
7499 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7500 	unsigned long nr_reclaimed;
7501 	unsigned int noreclaim_flag;
7502 
7503 	fs_reclaim_acquire(sc.gfp_mask);
7504 	noreclaim_flag = memalloc_noreclaim_save();
7505 	set_task_reclaim_state(current, &sc.reclaim_state);
7506 
7507 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7508 
7509 	set_task_reclaim_state(current, NULL);
7510 	memalloc_noreclaim_restore(noreclaim_flag);
7511 	fs_reclaim_release(sc.gfp_mask);
7512 
7513 	return nr_reclaimed;
7514 }
7515 #endif /* CONFIG_HIBERNATION */
7516 
7517 /*
7518  * This kswapd start function will be called by init and node-hot-add.
7519  */
7520 void kswapd_run(int nid)
7521 {
7522 	pg_data_t *pgdat = NODE_DATA(nid);
7523 
7524 	pgdat_kswapd_lock(pgdat);
7525 	if (!pgdat->kswapd) {
7526 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7527 		if (IS_ERR(pgdat->kswapd)) {
7528 			/* failure at boot is fatal */
7529 			BUG_ON(system_state < SYSTEM_RUNNING);
7530 			pr_err("Failed to start kswapd on node %d\n", nid);
7531 			pgdat->kswapd = NULL;
7532 		}
7533 	}
7534 	pgdat_kswapd_unlock(pgdat);
7535 }
7536 
7537 /*
7538  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7539  * be holding mem_hotplug_begin/done().
7540  */
7541 void kswapd_stop(int nid)
7542 {
7543 	pg_data_t *pgdat = NODE_DATA(nid);
7544 	struct task_struct *kswapd;
7545 
7546 	pgdat_kswapd_lock(pgdat);
7547 	kswapd = pgdat->kswapd;
7548 	if (kswapd) {
7549 		kthread_stop(kswapd);
7550 		pgdat->kswapd = NULL;
7551 	}
7552 	pgdat_kswapd_unlock(pgdat);
7553 }
7554 
7555 static int __init kswapd_init(void)
7556 {
7557 	int nid;
7558 
7559 	swap_setup();
7560 	for_each_node_state(nid, N_MEMORY)
7561  		kswapd_run(nid);
7562 	return 0;
7563 }
7564 
7565 module_init(kswapd_init)
7566 
7567 #ifdef CONFIG_NUMA
7568 /*
7569  * Node reclaim mode
7570  *
7571  * If non-zero call node_reclaim when the number of free pages falls below
7572  * the watermarks.
7573  */
7574 int node_reclaim_mode __read_mostly;
7575 
7576 /*
7577  * Priority for NODE_RECLAIM. This determines the fraction of pages
7578  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7579  * a zone.
7580  */
7581 #define NODE_RECLAIM_PRIORITY 4
7582 
7583 /*
7584  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7585  * occur.
7586  */
7587 int sysctl_min_unmapped_ratio = 1;
7588 
7589 /*
7590  * If the number of slab pages in a zone grows beyond this percentage then
7591  * slab reclaim needs to occur.
7592  */
7593 int sysctl_min_slab_ratio = 5;
7594 
7595 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7596 {
7597 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7598 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7599 		node_page_state(pgdat, NR_ACTIVE_FILE);
7600 
7601 	/*
7602 	 * It's possible for there to be more file mapped pages than
7603 	 * accounted for by the pages on the file LRU lists because
7604 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7605 	 */
7606 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7607 }
7608 
7609 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7610 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7611 {
7612 	unsigned long nr_pagecache_reclaimable;
7613 	unsigned long delta = 0;
7614 
7615 	/*
7616 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7617 	 * potentially reclaimable. Otherwise, we have to worry about
7618 	 * pages like swapcache and node_unmapped_file_pages() provides
7619 	 * a better estimate
7620 	 */
7621 	if (node_reclaim_mode & RECLAIM_UNMAP)
7622 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7623 	else
7624 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7625 
7626 	/* If we can't clean pages, remove dirty pages from consideration */
7627 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7628 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7629 
7630 	/* Watch for any possible underflows due to delta */
7631 	if (unlikely(delta > nr_pagecache_reclaimable))
7632 		delta = nr_pagecache_reclaimable;
7633 
7634 	return nr_pagecache_reclaimable - delta;
7635 }
7636 
7637 /*
7638  * Try to free up some pages from this node through reclaim.
7639  */
7640 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7641 {
7642 	/* Minimum pages needed in order to stay on node */
7643 	const unsigned long nr_pages = 1 << order;
7644 	struct task_struct *p = current;
7645 	unsigned int noreclaim_flag;
7646 	struct scan_control sc = {
7647 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7648 		.gfp_mask = current_gfp_context(gfp_mask),
7649 		.order = order,
7650 		.priority = NODE_RECLAIM_PRIORITY,
7651 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7652 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7653 		.may_swap = 1,
7654 		.reclaim_idx = gfp_zone(gfp_mask),
7655 	};
7656 	unsigned long pflags;
7657 
7658 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7659 					   sc.gfp_mask);
7660 
7661 	cond_resched();
7662 	psi_memstall_enter(&pflags);
7663 	fs_reclaim_acquire(sc.gfp_mask);
7664 	/*
7665 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7666 	 */
7667 	noreclaim_flag = memalloc_noreclaim_save();
7668 	set_task_reclaim_state(p, &sc.reclaim_state);
7669 
7670 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7671 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7672 		/*
7673 		 * Free memory by calling shrink node with increasing
7674 		 * priorities until we have enough memory freed.
7675 		 */
7676 		do {
7677 			shrink_node(pgdat, &sc);
7678 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7679 	}
7680 
7681 	set_task_reclaim_state(p, NULL);
7682 	memalloc_noreclaim_restore(noreclaim_flag);
7683 	fs_reclaim_release(sc.gfp_mask);
7684 	psi_memstall_leave(&pflags);
7685 
7686 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7687 
7688 	return sc.nr_reclaimed >= nr_pages;
7689 }
7690 
7691 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7692 {
7693 	int ret;
7694 
7695 	/*
7696 	 * Node reclaim reclaims unmapped file backed pages and
7697 	 * slab pages if we are over the defined limits.
7698 	 *
7699 	 * A small portion of unmapped file backed pages is needed for
7700 	 * file I/O otherwise pages read by file I/O will be immediately
7701 	 * thrown out if the node is overallocated. So we do not reclaim
7702 	 * if less than a specified percentage of the node is used by
7703 	 * unmapped file backed pages.
7704 	 */
7705 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7706 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7707 	    pgdat->min_slab_pages)
7708 		return NODE_RECLAIM_FULL;
7709 
7710 	/*
7711 	 * Do not scan if the allocation should not be delayed.
7712 	 */
7713 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7714 		return NODE_RECLAIM_NOSCAN;
7715 
7716 	/*
7717 	 * Only run node reclaim on the local node or on nodes that do not
7718 	 * have associated processors. This will favor the local processor
7719 	 * over remote processors and spread off node memory allocations
7720 	 * as wide as possible.
7721 	 */
7722 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7723 		return NODE_RECLAIM_NOSCAN;
7724 
7725 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7726 		return NODE_RECLAIM_NOSCAN;
7727 
7728 	ret = __node_reclaim(pgdat, gfp_mask, order);
7729 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7730 
7731 	if (!ret)
7732 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7733 
7734 	return ret;
7735 }
7736 #endif
7737 
7738 void check_move_unevictable_pages(struct pagevec *pvec)
7739 {
7740 	struct folio_batch fbatch;
7741 	unsigned i;
7742 
7743 	folio_batch_init(&fbatch);
7744 	for (i = 0; i < pvec->nr; i++) {
7745 		struct page *page = pvec->pages[i];
7746 
7747 		if (PageTransTail(page))
7748 			continue;
7749 		folio_batch_add(&fbatch, page_folio(page));
7750 	}
7751 	check_move_unevictable_folios(&fbatch);
7752 }
7753 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7754 
7755 /**
7756  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7757  * lru list
7758  * @fbatch: Batch of lru folios to check.
7759  *
7760  * Checks folios for evictability, if an evictable folio is in the unevictable
7761  * lru list, moves it to the appropriate evictable lru list. This function
7762  * should be only used for lru folios.
7763  */
7764 void check_move_unevictable_folios(struct folio_batch *fbatch)
7765 {
7766 	struct lruvec *lruvec = NULL;
7767 	int pgscanned = 0;
7768 	int pgrescued = 0;
7769 	int i;
7770 
7771 	for (i = 0; i < fbatch->nr; i++) {
7772 		struct folio *folio = fbatch->folios[i];
7773 		int nr_pages = folio_nr_pages(folio);
7774 
7775 		pgscanned += nr_pages;
7776 
7777 		/* block memcg migration while the folio moves between lrus */
7778 		if (!folio_test_clear_lru(folio))
7779 			continue;
7780 
7781 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7782 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7783 			lruvec_del_folio(lruvec, folio);
7784 			folio_clear_unevictable(folio);
7785 			lruvec_add_folio(lruvec, folio);
7786 			pgrescued += nr_pages;
7787 		}
7788 		folio_set_lru(folio);
7789 	}
7790 
7791 	if (lruvec) {
7792 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7793 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7794 		unlock_page_lruvec_irq(lruvec);
7795 	} else if (pgscanned) {
7796 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7797 	}
7798 }
7799 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7800