xref: /openbmc/linux/mm/vmscan.c (revision d8932f38)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h>	/* for try_to_release_page(),
31 					buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57 
58 #include "internal.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62 
63 struct scan_control {
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	/* This context's GFP mask */
68 	gfp_t gfp_mask;
69 
70 	/* Allocation order */
71 	int order;
72 
73 	/*
74 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 	 * are scanned.
76 	 */
77 	nodemask_t	*nodemask;
78 
79 	/*
80 	 * The memory cgroup that hit its limit and as a result is the
81 	 * primary target of this reclaim invocation.
82 	 */
83 	struct mem_cgroup *target_mem_cgroup;
84 
85 	/* Scan (total_size >> priority) pages at once */
86 	int priority;
87 
88 	/* The highest zone to isolate pages for reclaim from */
89 	enum zone_type reclaim_idx;
90 
91 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 	unsigned int may_writepage:1;
93 
94 	/* Can mapped pages be reclaimed? */
95 	unsigned int may_unmap:1;
96 
97 	/* Can pages be swapped as part of reclaim? */
98 	unsigned int may_swap:1;
99 
100 	/*
101 	 * Cgroups are not reclaimed below their configured memory.low,
102 	 * unless we threaten to OOM. If any cgroups are skipped due to
103 	 * memory.low and nothing was reclaimed, go back for memory.low.
104 	 */
105 	unsigned int memcg_low_reclaim:1;
106 	unsigned int memcg_low_skipped:1;
107 
108 	unsigned int hibernation_mode:1;
109 
110 	/* One of the zones is ready for compaction */
111 	unsigned int compaction_ready:1;
112 
113 	/* Incremented by the number of inactive pages that were scanned */
114 	unsigned long nr_scanned;
115 
116 	/* Number of pages freed so far during a call to shrink_zones() */
117 	unsigned long nr_reclaimed;
118 };
119 
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)			\
122 	do {								\
123 		if ((_page)->lru.prev != _base) {			\
124 			struct page *prev;				\
125 									\
126 			prev = lru_to_page(&(_page->lru));		\
127 			prefetch(&prev->_field);			\
128 		}							\
129 	} while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133 
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)			\
136 	do {								\
137 		if ((_page)->lru.prev != _base) {			\
138 			struct page *prev;				\
139 									\
140 			prev = lru_to_page(&(_page->lru));		\
141 			prefetchw(&prev->_field);			\
142 		}							\
143 	} while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147 
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 /*
153  * The total number of pages which are beyond the high watermark within all
154  * zones.
155  */
156 unsigned long vm_total_pages;
157 
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160 
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 	return !sc->target_mem_cgroup;
165 }
166 
167 /**
168  * sane_reclaim - is the usual dirty throttling mechanism operational?
169  * @sc: scan_control in question
170  *
171  * The normal page dirty throttling mechanism in balance_dirty_pages() is
172  * completely broken with the legacy memcg and direct stalling in
173  * shrink_page_list() is used for throttling instead, which lacks all the
174  * niceties such as fairness, adaptive pausing, bandwidth proportional
175  * allocation and configurability.
176  *
177  * This function tests whether the vmscan currently in progress can assume
178  * that the normal dirty throttling mechanism is operational.
179  */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
183 
184 	if (!memcg)
185 		return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 		return true;
189 #endif
190 	return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 	return true;
196 }
197 
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 	return true;
201 }
202 #endif
203 
204 /*
205  * This misses isolated pages which are not accounted for to save counters.
206  * As the data only determines if reclaim or compaction continues, it is
207  * not expected that isolated pages will be a dominating factor.
208  */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 	unsigned long nr;
212 
213 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 	if (get_nr_swap_pages() > 0)
216 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218 
219 	return nr;
220 }
221 
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 	unsigned long nr;
225 
226 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 
230 	if (get_nr_swap_pages() > 0)
231 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 
235 	return nr;
236 }
237 
238 /**
239  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
240  * @lruvec: lru vector
241  * @lru: lru to use
242  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243  */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 	unsigned long lru_size;
247 	int zid;
248 
249 	if (!mem_cgroup_disabled())
250 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 	else
252 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253 
254 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 		unsigned long size;
257 
258 		if (!managed_zone(zone))
259 			continue;
260 
261 		if (!mem_cgroup_disabled())
262 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 		else
264 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 				       NR_ZONE_LRU_BASE + lru);
266 		lru_size -= min(size, lru_size);
267 	}
268 
269 	return lru_size;
270 
271 }
272 
273 /*
274  * Add a shrinker callback to be called from the vm.
275  */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 	size_t size = sizeof(*shrinker->nr_deferred);
279 
280 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 		size *= nr_node_ids;
282 
283 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 	if (!shrinker->nr_deferred)
285 		return -ENOMEM;
286 
287 	down_write(&shrinker_rwsem);
288 	list_add_tail(&shrinker->list, &shrinker_list);
289 	up_write(&shrinker_rwsem);
290 	return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293 
294 /*
295  * Remove one
296  */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 	down_write(&shrinker_rwsem);
300 	list_del(&shrinker->list);
301 	up_write(&shrinker_rwsem);
302 	kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305 
306 #define SHRINK_BATCH 128
307 
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 				    struct shrinker *shrinker,
310 				    unsigned long nr_scanned,
311 				    unsigned long nr_eligible)
312 {
313 	unsigned long freed = 0;
314 	unsigned long long delta;
315 	long total_scan;
316 	long freeable;
317 	long nr;
318 	long new_nr;
319 	int nid = shrinkctl->nid;
320 	long batch_size = shrinker->batch ? shrinker->batch
321 					  : SHRINK_BATCH;
322 	long scanned = 0, next_deferred;
323 
324 	freeable = shrinker->count_objects(shrinker, shrinkctl);
325 	if (freeable == 0)
326 		return 0;
327 
328 	/*
329 	 * copy the current shrinker scan count into a local variable
330 	 * and zero it so that other concurrent shrinker invocations
331 	 * don't also do this scanning work.
332 	 */
333 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334 
335 	total_scan = nr;
336 	delta = (4 * nr_scanned) / shrinker->seeks;
337 	delta *= freeable;
338 	do_div(delta, nr_eligible + 1);
339 	total_scan += delta;
340 	if (total_scan < 0) {
341 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 		       shrinker->scan_objects, total_scan);
343 		total_scan = freeable;
344 		next_deferred = nr;
345 	} else
346 		next_deferred = total_scan;
347 
348 	/*
349 	 * We need to avoid excessive windup on filesystem shrinkers
350 	 * due to large numbers of GFP_NOFS allocations causing the
351 	 * shrinkers to return -1 all the time. This results in a large
352 	 * nr being built up so when a shrink that can do some work
353 	 * comes along it empties the entire cache due to nr >>>
354 	 * freeable. This is bad for sustaining a working set in
355 	 * memory.
356 	 *
357 	 * Hence only allow the shrinker to scan the entire cache when
358 	 * a large delta change is calculated directly.
359 	 */
360 	if (delta < freeable / 4)
361 		total_scan = min(total_scan, freeable / 2);
362 
363 	/*
364 	 * Avoid risking looping forever due to too large nr value:
365 	 * never try to free more than twice the estimate number of
366 	 * freeable entries.
367 	 */
368 	if (total_scan > freeable * 2)
369 		total_scan = freeable * 2;
370 
371 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 				   nr_scanned, nr_eligible,
373 				   freeable, delta, total_scan);
374 
375 	/*
376 	 * Normally, we should not scan less than batch_size objects in one
377 	 * pass to avoid too frequent shrinker calls, but if the slab has less
378 	 * than batch_size objects in total and we are really tight on memory,
379 	 * we will try to reclaim all available objects, otherwise we can end
380 	 * up failing allocations although there are plenty of reclaimable
381 	 * objects spread over several slabs with usage less than the
382 	 * batch_size.
383 	 *
384 	 * We detect the "tight on memory" situations by looking at the total
385 	 * number of objects we want to scan (total_scan). If it is greater
386 	 * than the total number of objects on slab (freeable), we must be
387 	 * scanning at high prio and therefore should try to reclaim as much as
388 	 * possible.
389 	 */
390 	while (total_scan >= batch_size ||
391 	       total_scan >= freeable) {
392 		unsigned long ret;
393 		unsigned long nr_to_scan = min(batch_size, total_scan);
394 
395 		shrinkctl->nr_to_scan = nr_to_scan;
396 		shrinkctl->nr_scanned = nr_to_scan;
397 		ret = shrinker->scan_objects(shrinker, shrinkctl);
398 		if (ret == SHRINK_STOP)
399 			break;
400 		freed += ret;
401 
402 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
403 		total_scan -= shrinkctl->nr_scanned;
404 		scanned += shrinkctl->nr_scanned;
405 
406 		cond_resched();
407 	}
408 
409 	if (next_deferred >= scanned)
410 		next_deferred -= scanned;
411 	else
412 		next_deferred = 0;
413 	/*
414 	 * move the unused scan count back into the shrinker in a
415 	 * manner that handles concurrent updates. If we exhausted the
416 	 * scan, there is no need to do an update.
417 	 */
418 	if (next_deferred > 0)
419 		new_nr = atomic_long_add_return(next_deferred,
420 						&shrinker->nr_deferred[nid]);
421 	else
422 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423 
424 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
425 	return freed;
426 }
427 
428 /**
429  * shrink_slab - shrink slab caches
430  * @gfp_mask: allocation context
431  * @nid: node whose slab caches to target
432  * @memcg: memory cgroup whose slab caches to target
433  * @nr_scanned: pressure numerator
434  * @nr_eligible: pressure denominator
435  *
436  * Call the shrink functions to age shrinkable caches.
437  *
438  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
439  * unaware shrinkers will receive a node id of 0 instead.
440  *
441  * @memcg specifies the memory cgroup to target. If it is not NULL,
442  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443  * objects from the memory cgroup specified. Otherwise, only unaware
444  * shrinkers are called.
445  *
446  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
447  * the available objects should be scanned.  Page reclaim for example
448  * passes the number of pages scanned and the number of pages on the
449  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
450  * when it encountered mapped pages.  The ratio is further biased by
451  * the ->seeks setting of the shrink function, which indicates the
452  * cost to recreate an object relative to that of an LRU page.
453  *
454  * Returns the number of reclaimed slab objects.
455  */
456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
457 				 struct mem_cgroup *memcg,
458 				 unsigned long nr_scanned,
459 				 unsigned long nr_eligible)
460 {
461 	struct shrinker *shrinker;
462 	unsigned long freed = 0;
463 
464 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
465 		return 0;
466 
467 	if (nr_scanned == 0)
468 		nr_scanned = SWAP_CLUSTER_MAX;
469 
470 	if (!down_read_trylock(&shrinker_rwsem)) {
471 		/*
472 		 * If we would return 0, our callers would understand that we
473 		 * have nothing else to shrink and give up trying. By returning
474 		 * 1 we keep it going and assume we'll be able to shrink next
475 		 * time.
476 		 */
477 		freed = 1;
478 		goto out;
479 	}
480 
481 	list_for_each_entry(shrinker, &shrinker_list, list) {
482 		struct shrink_control sc = {
483 			.gfp_mask = gfp_mask,
484 			.nid = nid,
485 			.memcg = memcg,
486 		};
487 
488 		/*
489 		 * If kernel memory accounting is disabled, we ignore
490 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
491 		 * passing NULL for memcg.
492 		 */
493 		if (memcg_kmem_enabled() &&
494 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
495 			continue;
496 
497 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 			sc.nid = 0;
499 
500 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
501 	}
502 
503 	up_read(&shrinker_rwsem);
504 out:
505 	cond_resched();
506 	return freed;
507 }
508 
509 void drop_slab_node(int nid)
510 {
511 	unsigned long freed;
512 
513 	do {
514 		struct mem_cgroup *memcg = NULL;
515 
516 		freed = 0;
517 		do {
518 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
519 					     1000, 1000);
520 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
521 	} while (freed > 10);
522 }
523 
524 void drop_slab(void)
525 {
526 	int nid;
527 
528 	for_each_online_node(nid)
529 		drop_slab_node(nid);
530 }
531 
532 static inline int is_page_cache_freeable(struct page *page)
533 {
534 	/*
535 	 * A freeable page cache page is referenced only by the caller
536 	 * that isolated the page, the page cache radix tree and
537 	 * optional buffer heads at page->private.
538 	 */
539 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
540 		HPAGE_PMD_NR : 1;
541 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
542 }
543 
544 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
545 {
546 	if (current->flags & PF_SWAPWRITE)
547 		return 1;
548 	if (!inode_write_congested(inode))
549 		return 1;
550 	if (inode_to_bdi(inode) == current->backing_dev_info)
551 		return 1;
552 	return 0;
553 }
554 
555 /*
556  * We detected a synchronous write error writing a page out.  Probably
557  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
558  * fsync(), msync() or close().
559  *
560  * The tricky part is that after writepage we cannot touch the mapping: nothing
561  * prevents it from being freed up.  But we have a ref on the page and once
562  * that page is locked, the mapping is pinned.
563  *
564  * We're allowed to run sleeping lock_page() here because we know the caller has
565  * __GFP_FS.
566  */
567 static void handle_write_error(struct address_space *mapping,
568 				struct page *page, int error)
569 {
570 	lock_page(page);
571 	if (page_mapping(page) == mapping)
572 		mapping_set_error(mapping, error);
573 	unlock_page(page);
574 }
575 
576 /* possible outcome of pageout() */
577 typedef enum {
578 	/* failed to write page out, page is locked */
579 	PAGE_KEEP,
580 	/* move page to the active list, page is locked */
581 	PAGE_ACTIVATE,
582 	/* page has been sent to the disk successfully, page is unlocked */
583 	PAGE_SUCCESS,
584 	/* page is clean and locked */
585 	PAGE_CLEAN,
586 } pageout_t;
587 
588 /*
589  * pageout is called by shrink_page_list() for each dirty page.
590  * Calls ->writepage().
591  */
592 static pageout_t pageout(struct page *page, struct address_space *mapping,
593 			 struct scan_control *sc)
594 {
595 	/*
596 	 * If the page is dirty, only perform writeback if that write
597 	 * will be non-blocking.  To prevent this allocation from being
598 	 * stalled by pagecache activity.  But note that there may be
599 	 * stalls if we need to run get_block().  We could test
600 	 * PagePrivate for that.
601 	 *
602 	 * If this process is currently in __generic_file_write_iter() against
603 	 * this page's queue, we can perform writeback even if that
604 	 * will block.
605 	 *
606 	 * If the page is swapcache, write it back even if that would
607 	 * block, for some throttling. This happens by accident, because
608 	 * swap_backing_dev_info is bust: it doesn't reflect the
609 	 * congestion state of the swapdevs.  Easy to fix, if needed.
610 	 */
611 	if (!is_page_cache_freeable(page))
612 		return PAGE_KEEP;
613 	if (!mapping) {
614 		/*
615 		 * Some data journaling orphaned pages can have
616 		 * page->mapping == NULL while being dirty with clean buffers.
617 		 */
618 		if (page_has_private(page)) {
619 			if (try_to_free_buffers(page)) {
620 				ClearPageDirty(page);
621 				pr_info("%s: orphaned page\n", __func__);
622 				return PAGE_CLEAN;
623 			}
624 		}
625 		return PAGE_KEEP;
626 	}
627 	if (mapping->a_ops->writepage == NULL)
628 		return PAGE_ACTIVATE;
629 	if (!may_write_to_inode(mapping->host, sc))
630 		return PAGE_KEEP;
631 
632 	if (clear_page_dirty_for_io(page)) {
633 		int res;
634 		struct writeback_control wbc = {
635 			.sync_mode = WB_SYNC_NONE,
636 			.nr_to_write = SWAP_CLUSTER_MAX,
637 			.range_start = 0,
638 			.range_end = LLONG_MAX,
639 			.for_reclaim = 1,
640 		};
641 
642 		SetPageReclaim(page);
643 		res = mapping->a_ops->writepage(page, &wbc);
644 		if (res < 0)
645 			handle_write_error(mapping, page, res);
646 		if (res == AOP_WRITEPAGE_ACTIVATE) {
647 			ClearPageReclaim(page);
648 			return PAGE_ACTIVATE;
649 		}
650 
651 		if (!PageWriteback(page)) {
652 			/* synchronous write or broken a_ops? */
653 			ClearPageReclaim(page);
654 		}
655 		trace_mm_vmscan_writepage(page);
656 		inc_node_page_state(page, NR_VMSCAN_WRITE);
657 		return PAGE_SUCCESS;
658 	}
659 
660 	return PAGE_CLEAN;
661 }
662 
663 /*
664  * Same as remove_mapping, but if the page is removed from the mapping, it
665  * gets returned with a refcount of 0.
666  */
667 static int __remove_mapping(struct address_space *mapping, struct page *page,
668 			    bool reclaimed)
669 {
670 	unsigned long flags;
671 	int refcount;
672 
673 	BUG_ON(!PageLocked(page));
674 	BUG_ON(mapping != page_mapping(page));
675 
676 	spin_lock_irqsave(&mapping->tree_lock, flags);
677 	/*
678 	 * The non racy check for a busy page.
679 	 *
680 	 * Must be careful with the order of the tests. When someone has
681 	 * a ref to the page, it may be possible that they dirty it then
682 	 * drop the reference. So if PageDirty is tested before page_count
683 	 * here, then the following race may occur:
684 	 *
685 	 * get_user_pages(&page);
686 	 * [user mapping goes away]
687 	 * write_to(page);
688 	 *				!PageDirty(page)    [good]
689 	 * SetPageDirty(page);
690 	 * put_page(page);
691 	 *				!page_count(page)   [good, discard it]
692 	 *
693 	 * [oops, our write_to data is lost]
694 	 *
695 	 * Reversing the order of the tests ensures such a situation cannot
696 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
697 	 * load is not satisfied before that of page->_refcount.
698 	 *
699 	 * Note that if SetPageDirty is always performed via set_page_dirty,
700 	 * and thus under tree_lock, then this ordering is not required.
701 	 */
702 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
703 		refcount = 1 + HPAGE_PMD_NR;
704 	else
705 		refcount = 2;
706 	if (!page_ref_freeze(page, refcount))
707 		goto cannot_free;
708 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
709 	if (unlikely(PageDirty(page))) {
710 		page_ref_unfreeze(page, refcount);
711 		goto cannot_free;
712 	}
713 
714 	if (PageSwapCache(page)) {
715 		swp_entry_t swap = { .val = page_private(page) };
716 		mem_cgroup_swapout(page, swap);
717 		__delete_from_swap_cache(page);
718 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
719 		put_swap_page(page, swap);
720 	} else {
721 		void (*freepage)(struct page *);
722 		void *shadow = NULL;
723 
724 		freepage = mapping->a_ops->freepage;
725 		/*
726 		 * Remember a shadow entry for reclaimed file cache in
727 		 * order to detect refaults, thus thrashing, later on.
728 		 *
729 		 * But don't store shadows in an address space that is
730 		 * already exiting.  This is not just an optizimation,
731 		 * inode reclaim needs to empty out the radix tree or
732 		 * the nodes are lost.  Don't plant shadows behind its
733 		 * back.
734 		 *
735 		 * We also don't store shadows for DAX mappings because the
736 		 * only page cache pages found in these are zero pages
737 		 * covering holes, and because we don't want to mix DAX
738 		 * exceptional entries and shadow exceptional entries in the
739 		 * same page_tree.
740 		 */
741 		if (reclaimed && page_is_file_cache(page) &&
742 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
743 			shadow = workingset_eviction(mapping, page);
744 		__delete_from_page_cache(page, shadow);
745 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
746 
747 		if (freepage != NULL)
748 			freepage(page);
749 	}
750 
751 	return 1;
752 
753 cannot_free:
754 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
755 	return 0;
756 }
757 
758 /*
759  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
760  * someone else has a ref on the page, abort and return 0.  If it was
761  * successfully detached, return 1.  Assumes the caller has a single ref on
762  * this page.
763  */
764 int remove_mapping(struct address_space *mapping, struct page *page)
765 {
766 	if (__remove_mapping(mapping, page, false)) {
767 		/*
768 		 * Unfreezing the refcount with 1 rather than 2 effectively
769 		 * drops the pagecache ref for us without requiring another
770 		 * atomic operation.
771 		 */
772 		page_ref_unfreeze(page, 1);
773 		return 1;
774 	}
775 	return 0;
776 }
777 
778 /**
779  * putback_lru_page - put previously isolated page onto appropriate LRU list
780  * @page: page to be put back to appropriate lru list
781  *
782  * Add previously isolated @page to appropriate LRU list.
783  * Page may still be unevictable for other reasons.
784  *
785  * lru_lock must not be held, interrupts must be enabled.
786  */
787 void putback_lru_page(struct page *page)
788 {
789 	bool is_unevictable;
790 	int was_unevictable = PageUnevictable(page);
791 
792 	VM_BUG_ON_PAGE(PageLRU(page), page);
793 
794 redo:
795 	ClearPageUnevictable(page);
796 
797 	if (page_evictable(page)) {
798 		/*
799 		 * For evictable pages, we can use the cache.
800 		 * In event of a race, worst case is we end up with an
801 		 * unevictable page on [in]active list.
802 		 * We know how to handle that.
803 		 */
804 		is_unevictable = false;
805 		lru_cache_add(page);
806 	} else {
807 		/*
808 		 * Put unevictable pages directly on zone's unevictable
809 		 * list.
810 		 */
811 		is_unevictable = true;
812 		add_page_to_unevictable_list(page);
813 		/*
814 		 * When racing with an mlock or AS_UNEVICTABLE clearing
815 		 * (page is unlocked) make sure that if the other thread
816 		 * does not observe our setting of PG_lru and fails
817 		 * isolation/check_move_unevictable_pages,
818 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
819 		 * the page back to the evictable list.
820 		 *
821 		 * The other side is TestClearPageMlocked() or shmem_lock().
822 		 */
823 		smp_mb();
824 	}
825 
826 	/*
827 	 * page's status can change while we move it among lru. If an evictable
828 	 * page is on unevictable list, it never be freed. To avoid that,
829 	 * check after we added it to the list, again.
830 	 */
831 	if (is_unevictable && page_evictable(page)) {
832 		if (!isolate_lru_page(page)) {
833 			put_page(page);
834 			goto redo;
835 		}
836 		/* This means someone else dropped this page from LRU
837 		 * So, it will be freed or putback to LRU again. There is
838 		 * nothing to do here.
839 		 */
840 	}
841 
842 	if (was_unevictable && !is_unevictable)
843 		count_vm_event(UNEVICTABLE_PGRESCUED);
844 	else if (!was_unevictable && is_unevictable)
845 		count_vm_event(UNEVICTABLE_PGCULLED);
846 
847 	put_page(page);		/* drop ref from isolate */
848 }
849 
850 enum page_references {
851 	PAGEREF_RECLAIM,
852 	PAGEREF_RECLAIM_CLEAN,
853 	PAGEREF_KEEP,
854 	PAGEREF_ACTIVATE,
855 };
856 
857 static enum page_references page_check_references(struct page *page,
858 						  struct scan_control *sc)
859 {
860 	int referenced_ptes, referenced_page;
861 	unsigned long vm_flags;
862 
863 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
864 					  &vm_flags);
865 	referenced_page = TestClearPageReferenced(page);
866 
867 	/*
868 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
869 	 * move the page to the unevictable list.
870 	 */
871 	if (vm_flags & VM_LOCKED)
872 		return PAGEREF_RECLAIM;
873 
874 	if (referenced_ptes) {
875 		if (PageSwapBacked(page))
876 			return PAGEREF_ACTIVATE;
877 		/*
878 		 * All mapped pages start out with page table
879 		 * references from the instantiating fault, so we need
880 		 * to look twice if a mapped file page is used more
881 		 * than once.
882 		 *
883 		 * Mark it and spare it for another trip around the
884 		 * inactive list.  Another page table reference will
885 		 * lead to its activation.
886 		 *
887 		 * Note: the mark is set for activated pages as well
888 		 * so that recently deactivated but used pages are
889 		 * quickly recovered.
890 		 */
891 		SetPageReferenced(page);
892 
893 		if (referenced_page || referenced_ptes > 1)
894 			return PAGEREF_ACTIVATE;
895 
896 		/*
897 		 * Activate file-backed executable pages after first usage.
898 		 */
899 		if (vm_flags & VM_EXEC)
900 			return PAGEREF_ACTIVATE;
901 
902 		return PAGEREF_KEEP;
903 	}
904 
905 	/* Reclaim if clean, defer dirty pages to writeback */
906 	if (referenced_page && !PageSwapBacked(page))
907 		return PAGEREF_RECLAIM_CLEAN;
908 
909 	return PAGEREF_RECLAIM;
910 }
911 
912 /* Check if a page is dirty or under writeback */
913 static void page_check_dirty_writeback(struct page *page,
914 				       bool *dirty, bool *writeback)
915 {
916 	struct address_space *mapping;
917 
918 	/*
919 	 * Anonymous pages are not handled by flushers and must be written
920 	 * from reclaim context. Do not stall reclaim based on them
921 	 */
922 	if (!page_is_file_cache(page) ||
923 	    (PageAnon(page) && !PageSwapBacked(page))) {
924 		*dirty = false;
925 		*writeback = false;
926 		return;
927 	}
928 
929 	/* By default assume that the page flags are accurate */
930 	*dirty = PageDirty(page);
931 	*writeback = PageWriteback(page);
932 
933 	/* Verify dirty/writeback state if the filesystem supports it */
934 	if (!page_has_private(page))
935 		return;
936 
937 	mapping = page_mapping(page);
938 	if (mapping && mapping->a_ops->is_dirty_writeback)
939 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
940 }
941 
942 struct reclaim_stat {
943 	unsigned nr_dirty;
944 	unsigned nr_unqueued_dirty;
945 	unsigned nr_congested;
946 	unsigned nr_writeback;
947 	unsigned nr_immediate;
948 	unsigned nr_activate;
949 	unsigned nr_ref_keep;
950 	unsigned nr_unmap_fail;
951 };
952 
953 /*
954  * shrink_page_list() returns the number of reclaimed pages
955  */
956 static unsigned long shrink_page_list(struct list_head *page_list,
957 				      struct pglist_data *pgdat,
958 				      struct scan_control *sc,
959 				      enum ttu_flags ttu_flags,
960 				      struct reclaim_stat *stat,
961 				      bool force_reclaim)
962 {
963 	LIST_HEAD(ret_pages);
964 	LIST_HEAD(free_pages);
965 	int pgactivate = 0;
966 	unsigned nr_unqueued_dirty = 0;
967 	unsigned nr_dirty = 0;
968 	unsigned nr_congested = 0;
969 	unsigned nr_reclaimed = 0;
970 	unsigned nr_writeback = 0;
971 	unsigned nr_immediate = 0;
972 	unsigned nr_ref_keep = 0;
973 	unsigned nr_unmap_fail = 0;
974 
975 	cond_resched();
976 
977 	while (!list_empty(page_list)) {
978 		struct address_space *mapping;
979 		struct page *page;
980 		int may_enter_fs;
981 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
982 		bool dirty, writeback;
983 
984 		cond_resched();
985 
986 		page = lru_to_page(page_list);
987 		list_del(&page->lru);
988 
989 		if (!trylock_page(page))
990 			goto keep;
991 
992 		VM_BUG_ON_PAGE(PageActive(page), page);
993 
994 		sc->nr_scanned++;
995 
996 		if (unlikely(!page_evictable(page)))
997 			goto activate_locked;
998 
999 		if (!sc->may_unmap && page_mapped(page))
1000 			goto keep_locked;
1001 
1002 		/* Double the slab pressure for mapped and swapcache pages */
1003 		if ((page_mapped(page) || PageSwapCache(page)) &&
1004 		    !(PageAnon(page) && !PageSwapBacked(page)))
1005 			sc->nr_scanned++;
1006 
1007 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1008 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1009 
1010 		/*
1011 		 * The number of dirty pages determines if a zone is marked
1012 		 * reclaim_congested which affects wait_iff_congested. kswapd
1013 		 * will stall and start writing pages if the tail of the LRU
1014 		 * is all dirty unqueued pages.
1015 		 */
1016 		page_check_dirty_writeback(page, &dirty, &writeback);
1017 		if (dirty || writeback)
1018 			nr_dirty++;
1019 
1020 		if (dirty && !writeback)
1021 			nr_unqueued_dirty++;
1022 
1023 		/*
1024 		 * Treat this page as congested if the underlying BDI is or if
1025 		 * pages are cycling through the LRU so quickly that the
1026 		 * pages marked for immediate reclaim are making it to the
1027 		 * end of the LRU a second time.
1028 		 */
1029 		mapping = page_mapping(page);
1030 		if (((dirty || writeback) && mapping &&
1031 		     inode_write_congested(mapping->host)) ||
1032 		    (writeback && PageReclaim(page)))
1033 			nr_congested++;
1034 
1035 		/*
1036 		 * If a page at the tail of the LRU is under writeback, there
1037 		 * are three cases to consider.
1038 		 *
1039 		 * 1) If reclaim is encountering an excessive number of pages
1040 		 *    under writeback and this page is both under writeback and
1041 		 *    PageReclaim then it indicates that pages are being queued
1042 		 *    for IO but are being recycled through the LRU before the
1043 		 *    IO can complete. Waiting on the page itself risks an
1044 		 *    indefinite stall if it is impossible to writeback the
1045 		 *    page due to IO error or disconnected storage so instead
1046 		 *    note that the LRU is being scanned too quickly and the
1047 		 *    caller can stall after page list has been processed.
1048 		 *
1049 		 * 2) Global or new memcg reclaim encounters a page that is
1050 		 *    not marked for immediate reclaim, or the caller does not
1051 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1052 		 *    not to fs). In this case mark the page for immediate
1053 		 *    reclaim and continue scanning.
1054 		 *
1055 		 *    Require may_enter_fs because we would wait on fs, which
1056 		 *    may not have submitted IO yet. And the loop driver might
1057 		 *    enter reclaim, and deadlock if it waits on a page for
1058 		 *    which it is needed to do the write (loop masks off
1059 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1060 		 *    would probably show more reasons.
1061 		 *
1062 		 * 3) Legacy memcg encounters a page that is already marked
1063 		 *    PageReclaim. memcg does not have any dirty pages
1064 		 *    throttling so we could easily OOM just because too many
1065 		 *    pages are in writeback and there is nothing else to
1066 		 *    reclaim. Wait for the writeback to complete.
1067 		 *
1068 		 * In cases 1) and 2) we activate the pages to get them out of
1069 		 * the way while we continue scanning for clean pages on the
1070 		 * inactive list and refilling from the active list. The
1071 		 * observation here is that waiting for disk writes is more
1072 		 * expensive than potentially causing reloads down the line.
1073 		 * Since they're marked for immediate reclaim, they won't put
1074 		 * memory pressure on the cache working set any longer than it
1075 		 * takes to write them to disk.
1076 		 */
1077 		if (PageWriteback(page)) {
1078 			/* Case 1 above */
1079 			if (current_is_kswapd() &&
1080 			    PageReclaim(page) &&
1081 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1082 				nr_immediate++;
1083 				goto activate_locked;
1084 
1085 			/* Case 2 above */
1086 			} else if (sane_reclaim(sc) ||
1087 			    !PageReclaim(page) || !may_enter_fs) {
1088 				/*
1089 				 * This is slightly racy - end_page_writeback()
1090 				 * might have just cleared PageReclaim, then
1091 				 * setting PageReclaim here end up interpreted
1092 				 * as PageReadahead - but that does not matter
1093 				 * enough to care.  What we do want is for this
1094 				 * page to have PageReclaim set next time memcg
1095 				 * reclaim reaches the tests above, so it will
1096 				 * then wait_on_page_writeback() to avoid OOM;
1097 				 * and it's also appropriate in global reclaim.
1098 				 */
1099 				SetPageReclaim(page);
1100 				nr_writeback++;
1101 				goto activate_locked;
1102 
1103 			/* Case 3 above */
1104 			} else {
1105 				unlock_page(page);
1106 				wait_on_page_writeback(page);
1107 				/* then go back and try same page again */
1108 				list_add_tail(&page->lru, page_list);
1109 				continue;
1110 			}
1111 		}
1112 
1113 		if (!force_reclaim)
1114 			references = page_check_references(page, sc);
1115 
1116 		switch (references) {
1117 		case PAGEREF_ACTIVATE:
1118 			goto activate_locked;
1119 		case PAGEREF_KEEP:
1120 			nr_ref_keep++;
1121 			goto keep_locked;
1122 		case PAGEREF_RECLAIM:
1123 		case PAGEREF_RECLAIM_CLEAN:
1124 			; /* try to reclaim the page below */
1125 		}
1126 
1127 		/*
1128 		 * Anonymous process memory has backing store?
1129 		 * Try to allocate it some swap space here.
1130 		 * Lazyfree page could be freed directly
1131 		 */
1132 		if (PageAnon(page) && PageSwapBacked(page)) {
1133 			if (!PageSwapCache(page)) {
1134 				if (!(sc->gfp_mask & __GFP_IO))
1135 					goto keep_locked;
1136 				if (PageTransHuge(page)) {
1137 					/* cannot split THP, skip it */
1138 					if (!can_split_huge_page(page, NULL))
1139 						goto activate_locked;
1140 					/*
1141 					 * Split pages without a PMD map right
1142 					 * away. Chances are some or all of the
1143 					 * tail pages can be freed without IO.
1144 					 */
1145 					if (!compound_mapcount(page) &&
1146 					    split_huge_page_to_list(page,
1147 								    page_list))
1148 						goto activate_locked;
1149 				}
1150 				if (!add_to_swap(page)) {
1151 					if (!PageTransHuge(page))
1152 						goto activate_locked;
1153 					/* Fallback to swap normal pages */
1154 					if (split_huge_page_to_list(page,
1155 								    page_list))
1156 						goto activate_locked;
1157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1158 					count_vm_event(THP_SWPOUT_FALLBACK);
1159 #endif
1160 					if (!add_to_swap(page))
1161 						goto activate_locked;
1162 				}
1163 
1164 				may_enter_fs = 1;
1165 
1166 				/* Adding to swap updated mapping */
1167 				mapping = page_mapping(page);
1168 			}
1169 		} else if (unlikely(PageTransHuge(page))) {
1170 			/* Split file THP */
1171 			if (split_huge_page_to_list(page, page_list))
1172 				goto keep_locked;
1173 		}
1174 
1175 		/*
1176 		 * The page is mapped into the page tables of one or more
1177 		 * processes. Try to unmap it here.
1178 		 */
1179 		if (page_mapped(page)) {
1180 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1181 
1182 			if (unlikely(PageTransHuge(page)))
1183 				flags |= TTU_SPLIT_HUGE_PMD;
1184 			if (!try_to_unmap(page, flags)) {
1185 				nr_unmap_fail++;
1186 				goto activate_locked;
1187 			}
1188 		}
1189 
1190 		if (PageDirty(page)) {
1191 			/*
1192 			 * Only kswapd can writeback filesystem pages
1193 			 * to avoid risk of stack overflow. But avoid
1194 			 * injecting inefficient single-page IO into
1195 			 * flusher writeback as much as possible: only
1196 			 * write pages when we've encountered many
1197 			 * dirty pages, and when we've already scanned
1198 			 * the rest of the LRU for clean pages and see
1199 			 * the same dirty pages again (PageReclaim).
1200 			 */
1201 			if (page_is_file_cache(page) &&
1202 			    (!current_is_kswapd() || !PageReclaim(page) ||
1203 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1204 				/*
1205 				 * Immediately reclaim when written back.
1206 				 * Similar in principal to deactivate_page()
1207 				 * except we already have the page isolated
1208 				 * and know it's dirty
1209 				 */
1210 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1211 				SetPageReclaim(page);
1212 
1213 				goto activate_locked;
1214 			}
1215 
1216 			if (references == PAGEREF_RECLAIM_CLEAN)
1217 				goto keep_locked;
1218 			if (!may_enter_fs)
1219 				goto keep_locked;
1220 			if (!sc->may_writepage)
1221 				goto keep_locked;
1222 
1223 			/*
1224 			 * Page is dirty. Flush the TLB if a writable entry
1225 			 * potentially exists to avoid CPU writes after IO
1226 			 * starts and then write it out here.
1227 			 */
1228 			try_to_unmap_flush_dirty();
1229 			switch (pageout(page, mapping, sc)) {
1230 			case PAGE_KEEP:
1231 				goto keep_locked;
1232 			case PAGE_ACTIVATE:
1233 				goto activate_locked;
1234 			case PAGE_SUCCESS:
1235 				if (PageWriteback(page))
1236 					goto keep;
1237 				if (PageDirty(page))
1238 					goto keep;
1239 
1240 				/*
1241 				 * A synchronous write - probably a ramdisk.  Go
1242 				 * ahead and try to reclaim the page.
1243 				 */
1244 				if (!trylock_page(page))
1245 					goto keep;
1246 				if (PageDirty(page) || PageWriteback(page))
1247 					goto keep_locked;
1248 				mapping = page_mapping(page);
1249 			case PAGE_CLEAN:
1250 				; /* try to free the page below */
1251 			}
1252 		}
1253 
1254 		/*
1255 		 * If the page has buffers, try to free the buffer mappings
1256 		 * associated with this page. If we succeed we try to free
1257 		 * the page as well.
1258 		 *
1259 		 * We do this even if the page is PageDirty().
1260 		 * try_to_release_page() does not perform I/O, but it is
1261 		 * possible for a page to have PageDirty set, but it is actually
1262 		 * clean (all its buffers are clean).  This happens if the
1263 		 * buffers were written out directly, with submit_bh(). ext3
1264 		 * will do this, as well as the blockdev mapping.
1265 		 * try_to_release_page() will discover that cleanness and will
1266 		 * drop the buffers and mark the page clean - it can be freed.
1267 		 *
1268 		 * Rarely, pages can have buffers and no ->mapping.  These are
1269 		 * the pages which were not successfully invalidated in
1270 		 * truncate_complete_page().  We try to drop those buffers here
1271 		 * and if that worked, and the page is no longer mapped into
1272 		 * process address space (page_count == 1) it can be freed.
1273 		 * Otherwise, leave the page on the LRU so it is swappable.
1274 		 */
1275 		if (page_has_private(page)) {
1276 			if (!try_to_release_page(page, sc->gfp_mask))
1277 				goto activate_locked;
1278 			if (!mapping && page_count(page) == 1) {
1279 				unlock_page(page);
1280 				if (put_page_testzero(page))
1281 					goto free_it;
1282 				else {
1283 					/*
1284 					 * rare race with speculative reference.
1285 					 * the speculative reference will free
1286 					 * this page shortly, so we may
1287 					 * increment nr_reclaimed here (and
1288 					 * leave it off the LRU).
1289 					 */
1290 					nr_reclaimed++;
1291 					continue;
1292 				}
1293 			}
1294 		}
1295 
1296 		if (PageAnon(page) && !PageSwapBacked(page)) {
1297 			/* follow __remove_mapping for reference */
1298 			if (!page_ref_freeze(page, 1))
1299 				goto keep_locked;
1300 			if (PageDirty(page)) {
1301 				page_ref_unfreeze(page, 1);
1302 				goto keep_locked;
1303 			}
1304 
1305 			count_vm_event(PGLAZYFREED);
1306 			count_memcg_page_event(page, PGLAZYFREED);
1307 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1308 			goto keep_locked;
1309 		/*
1310 		 * At this point, we have no other references and there is
1311 		 * no way to pick any more up (removed from LRU, removed
1312 		 * from pagecache). Can use non-atomic bitops now (and
1313 		 * we obviously don't have to worry about waking up a process
1314 		 * waiting on the page lock, because there are no references.
1315 		 */
1316 		__ClearPageLocked(page);
1317 free_it:
1318 		nr_reclaimed++;
1319 
1320 		/*
1321 		 * Is there need to periodically free_page_list? It would
1322 		 * appear not as the counts should be low
1323 		 */
1324 		if (unlikely(PageTransHuge(page))) {
1325 			mem_cgroup_uncharge(page);
1326 			(*get_compound_page_dtor(page))(page);
1327 		} else
1328 			list_add(&page->lru, &free_pages);
1329 		continue;
1330 
1331 activate_locked:
1332 		/* Not a candidate for swapping, so reclaim swap space. */
1333 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1334 						PageMlocked(page)))
1335 			try_to_free_swap(page);
1336 		VM_BUG_ON_PAGE(PageActive(page), page);
1337 		if (!PageMlocked(page)) {
1338 			SetPageActive(page);
1339 			pgactivate++;
1340 			count_memcg_page_event(page, PGACTIVATE);
1341 		}
1342 keep_locked:
1343 		unlock_page(page);
1344 keep:
1345 		list_add(&page->lru, &ret_pages);
1346 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1347 	}
1348 
1349 	mem_cgroup_uncharge_list(&free_pages);
1350 	try_to_unmap_flush();
1351 	free_hot_cold_page_list(&free_pages, true);
1352 
1353 	list_splice(&ret_pages, page_list);
1354 	count_vm_events(PGACTIVATE, pgactivate);
1355 
1356 	if (stat) {
1357 		stat->nr_dirty = nr_dirty;
1358 		stat->nr_congested = nr_congested;
1359 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1360 		stat->nr_writeback = nr_writeback;
1361 		stat->nr_immediate = nr_immediate;
1362 		stat->nr_activate = pgactivate;
1363 		stat->nr_ref_keep = nr_ref_keep;
1364 		stat->nr_unmap_fail = nr_unmap_fail;
1365 	}
1366 	return nr_reclaimed;
1367 }
1368 
1369 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1370 					    struct list_head *page_list)
1371 {
1372 	struct scan_control sc = {
1373 		.gfp_mask = GFP_KERNEL,
1374 		.priority = DEF_PRIORITY,
1375 		.may_unmap = 1,
1376 	};
1377 	unsigned long ret;
1378 	struct page *page, *next;
1379 	LIST_HEAD(clean_pages);
1380 
1381 	list_for_each_entry_safe(page, next, page_list, lru) {
1382 		if (page_is_file_cache(page) && !PageDirty(page) &&
1383 		    !__PageMovable(page)) {
1384 			ClearPageActive(page);
1385 			list_move(&page->lru, &clean_pages);
1386 		}
1387 	}
1388 
1389 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1390 			TTU_IGNORE_ACCESS, NULL, true);
1391 	list_splice(&clean_pages, page_list);
1392 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Attempt to remove the specified page from its LRU.  Only take this page
1398  * if it is of the appropriate PageActive status.  Pages which are being
1399  * freed elsewhere are also ignored.
1400  *
1401  * page:	page to consider
1402  * mode:	one of the LRU isolation modes defined above
1403  *
1404  * returns 0 on success, -ve errno on failure.
1405  */
1406 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1407 {
1408 	int ret = -EINVAL;
1409 
1410 	/* Only take pages on the LRU. */
1411 	if (!PageLRU(page))
1412 		return ret;
1413 
1414 	/* Compaction should not handle unevictable pages but CMA can do so */
1415 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1416 		return ret;
1417 
1418 	ret = -EBUSY;
1419 
1420 	/*
1421 	 * To minimise LRU disruption, the caller can indicate that it only
1422 	 * wants to isolate pages it will be able to operate on without
1423 	 * blocking - clean pages for the most part.
1424 	 *
1425 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1426 	 * that it is possible to migrate without blocking
1427 	 */
1428 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1429 		/* All the caller can do on PageWriteback is block */
1430 		if (PageWriteback(page))
1431 			return ret;
1432 
1433 		if (PageDirty(page)) {
1434 			struct address_space *mapping;
1435 
1436 			/*
1437 			 * Only pages without mappings or that have a
1438 			 * ->migratepage callback are possible to migrate
1439 			 * without blocking
1440 			 */
1441 			mapping = page_mapping(page);
1442 			if (mapping && !mapping->a_ops->migratepage)
1443 				return ret;
1444 		}
1445 	}
1446 
1447 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1448 		return ret;
1449 
1450 	if (likely(get_page_unless_zero(page))) {
1451 		/*
1452 		 * Be careful not to clear PageLRU until after we're
1453 		 * sure the page is not being freed elsewhere -- the
1454 		 * page release code relies on it.
1455 		 */
1456 		ClearPageLRU(page);
1457 		ret = 0;
1458 	}
1459 
1460 	return ret;
1461 }
1462 
1463 
1464 /*
1465  * Update LRU sizes after isolating pages. The LRU size updates must
1466  * be complete before mem_cgroup_update_lru_size due to a santity check.
1467  */
1468 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1469 			enum lru_list lru, unsigned long *nr_zone_taken)
1470 {
1471 	int zid;
1472 
1473 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 		if (!nr_zone_taken[zid])
1475 			continue;
1476 
1477 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1478 #ifdef CONFIG_MEMCG
1479 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1480 #endif
1481 	}
1482 
1483 }
1484 
1485 /*
1486  * zone_lru_lock is heavily contended.  Some of the functions that
1487  * shrink the lists perform better by taking out a batch of pages
1488  * and working on them outside the LRU lock.
1489  *
1490  * For pagecache intensive workloads, this function is the hottest
1491  * spot in the kernel (apart from copy_*_user functions).
1492  *
1493  * Appropriate locks must be held before calling this function.
1494  *
1495  * @nr_to_scan:	The number of eligible pages to look through on the list.
1496  * @lruvec:	The LRU vector to pull pages from.
1497  * @dst:	The temp list to put pages on to.
1498  * @nr_scanned:	The number of pages that were scanned.
1499  * @sc:		The scan_control struct for this reclaim session
1500  * @mode:	One of the LRU isolation modes
1501  * @lru:	LRU list id for isolating
1502  *
1503  * returns how many pages were moved onto *@dst.
1504  */
1505 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1506 		struct lruvec *lruvec, struct list_head *dst,
1507 		unsigned long *nr_scanned, struct scan_control *sc,
1508 		isolate_mode_t mode, enum lru_list lru)
1509 {
1510 	struct list_head *src = &lruvec->lists[lru];
1511 	unsigned long nr_taken = 0;
1512 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1513 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1514 	unsigned long skipped = 0;
1515 	unsigned long scan, total_scan, nr_pages;
1516 	LIST_HEAD(pages_skipped);
1517 
1518 	scan = 0;
1519 	for (total_scan = 0;
1520 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1521 	     total_scan++) {
1522 		struct page *page;
1523 
1524 		page = lru_to_page(src);
1525 		prefetchw_prev_lru_page(page, src, flags);
1526 
1527 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1528 
1529 		if (page_zonenum(page) > sc->reclaim_idx) {
1530 			list_move(&page->lru, &pages_skipped);
1531 			nr_skipped[page_zonenum(page)]++;
1532 			continue;
1533 		}
1534 
1535 		/*
1536 		 * Do not count skipped pages because that makes the function
1537 		 * return with no isolated pages if the LRU mostly contains
1538 		 * ineligible pages.  This causes the VM to not reclaim any
1539 		 * pages, triggering a premature OOM.
1540 		 */
1541 		scan++;
1542 		switch (__isolate_lru_page(page, mode)) {
1543 		case 0:
1544 			nr_pages = hpage_nr_pages(page);
1545 			nr_taken += nr_pages;
1546 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1547 			list_move(&page->lru, dst);
1548 			break;
1549 
1550 		case -EBUSY:
1551 			/* else it is being freed elsewhere */
1552 			list_move(&page->lru, src);
1553 			continue;
1554 
1555 		default:
1556 			BUG();
1557 		}
1558 	}
1559 
1560 	/*
1561 	 * Splice any skipped pages to the start of the LRU list. Note that
1562 	 * this disrupts the LRU order when reclaiming for lower zones but
1563 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1564 	 * scanning would soon rescan the same pages to skip and put the
1565 	 * system at risk of premature OOM.
1566 	 */
1567 	if (!list_empty(&pages_skipped)) {
1568 		int zid;
1569 
1570 		list_splice(&pages_skipped, src);
1571 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1572 			if (!nr_skipped[zid])
1573 				continue;
1574 
1575 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1576 			skipped += nr_skipped[zid];
1577 		}
1578 	}
1579 	*nr_scanned = total_scan;
1580 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1581 				    total_scan, skipped, nr_taken, mode, lru);
1582 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1583 	return nr_taken;
1584 }
1585 
1586 /**
1587  * isolate_lru_page - tries to isolate a page from its LRU list
1588  * @page: page to isolate from its LRU list
1589  *
1590  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1591  * vmstat statistic corresponding to whatever LRU list the page was on.
1592  *
1593  * Returns 0 if the page was removed from an LRU list.
1594  * Returns -EBUSY if the page was not on an LRU list.
1595  *
1596  * The returned page will have PageLRU() cleared.  If it was found on
1597  * the active list, it will have PageActive set.  If it was found on
1598  * the unevictable list, it will have the PageUnevictable bit set. That flag
1599  * may need to be cleared by the caller before letting the page go.
1600  *
1601  * The vmstat statistic corresponding to the list on which the page was
1602  * found will be decremented.
1603  *
1604  * Restrictions:
1605  * (1) Must be called with an elevated refcount on the page. This is a
1606  *     fundamentnal difference from isolate_lru_pages (which is called
1607  *     without a stable reference).
1608  * (2) the lru_lock must not be held.
1609  * (3) interrupts must be enabled.
1610  */
1611 int isolate_lru_page(struct page *page)
1612 {
1613 	int ret = -EBUSY;
1614 
1615 	VM_BUG_ON_PAGE(!page_count(page), page);
1616 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1617 
1618 	if (PageLRU(page)) {
1619 		struct zone *zone = page_zone(page);
1620 		struct lruvec *lruvec;
1621 
1622 		spin_lock_irq(zone_lru_lock(zone));
1623 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1624 		if (PageLRU(page)) {
1625 			int lru = page_lru(page);
1626 			get_page(page);
1627 			ClearPageLRU(page);
1628 			del_page_from_lru_list(page, lruvec, lru);
1629 			ret = 0;
1630 		}
1631 		spin_unlock_irq(zone_lru_lock(zone));
1632 	}
1633 	return ret;
1634 }
1635 
1636 /*
1637  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1638  * then get resheduled. When there are massive number of tasks doing page
1639  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1640  * the LRU list will go small and be scanned faster than necessary, leading to
1641  * unnecessary swapping, thrashing and OOM.
1642  */
1643 static int too_many_isolated(struct pglist_data *pgdat, int file,
1644 		struct scan_control *sc)
1645 {
1646 	unsigned long inactive, isolated;
1647 
1648 	if (current_is_kswapd())
1649 		return 0;
1650 
1651 	if (!sane_reclaim(sc))
1652 		return 0;
1653 
1654 	if (file) {
1655 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1656 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1657 	} else {
1658 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1659 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1660 	}
1661 
1662 	/*
1663 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1664 	 * won't get blocked by normal direct-reclaimers, forming a circular
1665 	 * deadlock.
1666 	 */
1667 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1668 		inactive >>= 3;
1669 
1670 	return isolated > inactive;
1671 }
1672 
1673 static noinline_for_stack void
1674 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1675 {
1676 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1677 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1678 	LIST_HEAD(pages_to_free);
1679 
1680 	/*
1681 	 * Put back any unfreeable pages.
1682 	 */
1683 	while (!list_empty(page_list)) {
1684 		struct page *page = lru_to_page(page_list);
1685 		int lru;
1686 
1687 		VM_BUG_ON_PAGE(PageLRU(page), page);
1688 		list_del(&page->lru);
1689 		if (unlikely(!page_evictable(page))) {
1690 			spin_unlock_irq(&pgdat->lru_lock);
1691 			putback_lru_page(page);
1692 			spin_lock_irq(&pgdat->lru_lock);
1693 			continue;
1694 		}
1695 
1696 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1697 
1698 		SetPageLRU(page);
1699 		lru = page_lru(page);
1700 		add_page_to_lru_list(page, lruvec, lru);
1701 
1702 		if (is_active_lru(lru)) {
1703 			int file = is_file_lru(lru);
1704 			int numpages = hpage_nr_pages(page);
1705 			reclaim_stat->recent_rotated[file] += numpages;
1706 		}
1707 		if (put_page_testzero(page)) {
1708 			__ClearPageLRU(page);
1709 			__ClearPageActive(page);
1710 			del_page_from_lru_list(page, lruvec, lru);
1711 
1712 			if (unlikely(PageCompound(page))) {
1713 				spin_unlock_irq(&pgdat->lru_lock);
1714 				mem_cgroup_uncharge(page);
1715 				(*get_compound_page_dtor(page))(page);
1716 				spin_lock_irq(&pgdat->lru_lock);
1717 			} else
1718 				list_add(&page->lru, &pages_to_free);
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * To save our caller's stack, now use input list for pages to free.
1724 	 */
1725 	list_splice(&pages_to_free, page_list);
1726 }
1727 
1728 /*
1729  * If a kernel thread (such as nfsd for loop-back mounts) services
1730  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1731  * In that case we should only throttle if the backing device it is
1732  * writing to is congested.  In other cases it is safe to throttle.
1733  */
1734 static int current_may_throttle(void)
1735 {
1736 	return !(current->flags & PF_LESS_THROTTLE) ||
1737 		current->backing_dev_info == NULL ||
1738 		bdi_write_congested(current->backing_dev_info);
1739 }
1740 
1741 /*
1742  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1743  * of reclaimed pages
1744  */
1745 static noinline_for_stack unsigned long
1746 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1747 		     struct scan_control *sc, enum lru_list lru)
1748 {
1749 	LIST_HEAD(page_list);
1750 	unsigned long nr_scanned;
1751 	unsigned long nr_reclaimed = 0;
1752 	unsigned long nr_taken;
1753 	struct reclaim_stat stat = {};
1754 	isolate_mode_t isolate_mode = 0;
1755 	int file = is_file_lru(lru);
1756 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1757 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1758 	bool stalled = false;
1759 
1760 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1761 		if (stalled)
1762 			return 0;
1763 
1764 		/* wait a bit for the reclaimer. */
1765 		msleep(100);
1766 		stalled = true;
1767 
1768 		/* We are about to die and free our memory. Return now. */
1769 		if (fatal_signal_pending(current))
1770 			return SWAP_CLUSTER_MAX;
1771 	}
1772 
1773 	lru_add_drain();
1774 
1775 	if (!sc->may_unmap)
1776 		isolate_mode |= ISOLATE_UNMAPPED;
1777 
1778 	spin_lock_irq(&pgdat->lru_lock);
1779 
1780 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1781 				     &nr_scanned, sc, isolate_mode, lru);
1782 
1783 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1784 	reclaim_stat->recent_scanned[file] += nr_taken;
1785 
1786 	if (current_is_kswapd()) {
1787 		if (global_reclaim(sc))
1788 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1789 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1790 				   nr_scanned);
1791 	} else {
1792 		if (global_reclaim(sc))
1793 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1794 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1795 				   nr_scanned);
1796 	}
1797 	spin_unlock_irq(&pgdat->lru_lock);
1798 
1799 	if (nr_taken == 0)
1800 		return 0;
1801 
1802 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1803 				&stat, false);
1804 
1805 	spin_lock_irq(&pgdat->lru_lock);
1806 
1807 	if (current_is_kswapd()) {
1808 		if (global_reclaim(sc))
1809 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1810 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1811 				   nr_reclaimed);
1812 	} else {
1813 		if (global_reclaim(sc))
1814 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1815 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1816 				   nr_reclaimed);
1817 	}
1818 
1819 	putback_inactive_pages(lruvec, &page_list);
1820 
1821 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1822 
1823 	spin_unlock_irq(&pgdat->lru_lock);
1824 
1825 	mem_cgroup_uncharge_list(&page_list);
1826 	free_hot_cold_page_list(&page_list, true);
1827 
1828 	/*
1829 	 * If reclaim is isolating dirty pages under writeback, it implies
1830 	 * that the long-lived page allocation rate is exceeding the page
1831 	 * laundering rate. Either the global limits are not being effective
1832 	 * at throttling processes due to the page distribution throughout
1833 	 * zones or there is heavy usage of a slow backing device. The
1834 	 * only option is to throttle from reclaim context which is not ideal
1835 	 * as there is no guarantee the dirtying process is throttled in the
1836 	 * same way balance_dirty_pages() manages.
1837 	 *
1838 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1839 	 * of pages under pages flagged for immediate reclaim and stall if any
1840 	 * are encountered in the nr_immediate check below.
1841 	 */
1842 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1843 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1844 
1845 	/*
1846 	 * Legacy memcg will stall in page writeback so avoid forcibly
1847 	 * stalling here.
1848 	 */
1849 	if (sane_reclaim(sc)) {
1850 		/*
1851 		 * Tag a zone as congested if all the dirty pages scanned were
1852 		 * backed by a congested BDI and wait_iff_congested will stall.
1853 		 */
1854 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1855 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1856 
1857 		/*
1858 		 * If dirty pages are scanned that are not queued for IO, it
1859 		 * implies that flushers are not doing their job. This can
1860 		 * happen when memory pressure pushes dirty pages to the end of
1861 		 * the LRU before the dirty limits are breached and the dirty
1862 		 * data has expired. It can also happen when the proportion of
1863 		 * dirty pages grows not through writes but through memory
1864 		 * pressure reclaiming all the clean cache. And in some cases,
1865 		 * the flushers simply cannot keep up with the allocation
1866 		 * rate. Nudge the flusher threads in case they are asleep, but
1867 		 * also allow kswapd to start writing pages during reclaim.
1868 		 */
1869 		if (stat.nr_unqueued_dirty == nr_taken) {
1870 			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1871 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1872 		}
1873 
1874 		/*
1875 		 * If kswapd scans pages marked marked for immediate
1876 		 * reclaim and under writeback (nr_immediate), it implies
1877 		 * that pages are cycling through the LRU faster than
1878 		 * they are written so also forcibly stall.
1879 		 */
1880 		if (stat.nr_immediate && current_may_throttle())
1881 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1882 	}
1883 
1884 	/*
1885 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1886 	 * is congested. Allow kswapd to continue until it starts encountering
1887 	 * unqueued dirty pages or cycling through the LRU too quickly.
1888 	 */
1889 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1890 	    current_may_throttle())
1891 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1892 
1893 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1894 			nr_scanned, nr_reclaimed,
1895 			stat.nr_dirty,  stat.nr_writeback,
1896 			stat.nr_congested, stat.nr_immediate,
1897 			stat.nr_activate, stat.nr_ref_keep,
1898 			stat.nr_unmap_fail,
1899 			sc->priority, file);
1900 	return nr_reclaimed;
1901 }
1902 
1903 /*
1904  * This moves pages from the active list to the inactive list.
1905  *
1906  * We move them the other way if the page is referenced by one or more
1907  * processes, from rmap.
1908  *
1909  * If the pages are mostly unmapped, the processing is fast and it is
1910  * appropriate to hold zone_lru_lock across the whole operation.  But if
1911  * the pages are mapped, the processing is slow (page_referenced()) so we
1912  * should drop zone_lru_lock around each page.  It's impossible to balance
1913  * this, so instead we remove the pages from the LRU while processing them.
1914  * It is safe to rely on PG_active against the non-LRU pages in here because
1915  * nobody will play with that bit on a non-LRU page.
1916  *
1917  * The downside is that we have to touch page->_refcount against each page.
1918  * But we had to alter page->flags anyway.
1919  *
1920  * Returns the number of pages moved to the given lru.
1921  */
1922 
1923 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1924 				     struct list_head *list,
1925 				     struct list_head *pages_to_free,
1926 				     enum lru_list lru)
1927 {
1928 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1929 	struct page *page;
1930 	int nr_pages;
1931 	int nr_moved = 0;
1932 
1933 	while (!list_empty(list)) {
1934 		page = lru_to_page(list);
1935 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1936 
1937 		VM_BUG_ON_PAGE(PageLRU(page), page);
1938 		SetPageLRU(page);
1939 
1940 		nr_pages = hpage_nr_pages(page);
1941 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1942 		list_move(&page->lru, &lruvec->lists[lru]);
1943 
1944 		if (put_page_testzero(page)) {
1945 			__ClearPageLRU(page);
1946 			__ClearPageActive(page);
1947 			del_page_from_lru_list(page, lruvec, lru);
1948 
1949 			if (unlikely(PageCompound(page))) {
1950 				spin_unlock_irq(&pgdat->lru_lock);
1951 				mem_cgroup_uncharge(page);
1952 				(*get_compound_page_dtor(page))(page);
1953 				spin_lock_irq(&pgdat->lru_lock);
1954 			} else
1955 				list_add(&page->lru, pages_to_free);
1956 		} else {
1957 			nr_moved += nr_pages;
1958 		}
1959 	}
1960 
1961 	if (!is_active_lru(lru)) {
1962 		__count_vm_events(PGDEACTIVATE, nr_moved);
1963 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1964 				   nr_moved);
1965 	}
1966 
1967 	return nr_moved;
1968 }
1969 
1970 static void shrink_active_list(unsigned long nr_to_scan,
1971 			       struct lruvec *lruvec,
1972 			       struct scan_control *sc,
1973 			       enum lru_list lru)
1974 {
1975 	unsigned long nr_taken;
1976 	unsigned long nr_scanned;
1977 	unsigned long vm_flags;
1978 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1979 	LIST_HEAD(l_active);
1980 	LIST_HEAD(l_inactive);
1981 	struct page *page;
1982 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1983 	unsigned nr_deactivate, nr_activate;
1984 	unsigned nr_rotated = 0;
1985 	isolate_mode_t isolate_mode = 0;
1986 	int file = is_file_lru(lru);
1987 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1988 
1989 	lru_add_drain();
1990 
1991 	if (!sc->may_unmap)
1992 		isolate_mode |= ISOLATE_UNMAPPED;
1993 
1994 	spin_lock_irq(&pgdat->lru_lock);
1995 
1996 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1997 				     &nr_scanned, sc, isolate_mode, lru);
1998 
1999 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2000 	reclaim_stat->recent_scanned[file] += nr_taken;
2001 
2002 	__count_vm_events(PGREFILL, nr_scanned);
2003 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2004 
2005 	spin_unlock_irq(&pgdat->lru_lock);
2006 
2007 	while (!list_empty(&l_hold)) {
2008 		cond_resched();
2009 		page = lru_to_page(&l_hold);
2010 		list_del(&page->lru);
2011 
2012 		if (unlikely(!page_evictable(page))) {
2013 			putback_lru_page(page);
2014 			continue;
2015 		}
2016 
2017 		if (unlikely(buffer_heads_over_limit)) {
2018 			if (page_has_private(page) && trylock_page(page)) {
2019 				if (page_has_private(page))
2020 					try_to_release_page(page, 0);
2021 				unlock_page(page);
2022 			}
2023 		}
2024 
2025 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2026 				    &vm_flags)) {
2027 			nr_rotated += hpage_nr_pages(page);
2028 			/*
2029 			 * Identify referenced, file-backed active pages and
2030 			 * give them one more trip around the active list. So
2031 			 * that executable code get better chances to stay in
2032 			 * memory under moderate memory pressure.  Anon pages
2033 			 * are not likely to be evicted by use-once streaming
2034 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2035 			 * so we ignore them here.
2036 			 */
2037 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2038 				list_add(&page->lru, &l_active);
2039 				continue;
2040 			}
2041 		}
2042 
2043 		ClearPageActive(page);	/* we are de-activating */
2044 		list_add(&page->lru, &l_inactive);
2045 	}
2046 
2047 	/*
2048 	 * Move pages back to the lru list.
2049 	 */
2050 	spin_lock_irq(&pgdat->lru_lock);
2051 	/*
2052 	 * Count referenced pages from currently used mappings as rotated,
2053 	 * even though only some of them are actually re-activated.  This
2054 	 * helps balance scan pressure between file and anonymous pages in
2055 	 * get_scan_count.
2056 	 */
2057 	reclaim_stat->recent_rotated[file] += nr_rotated;
2058 
2059 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2060 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2061 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2062 	spin_unlock_irq(&pgdat->lru_lock);
2063 
2064 	mem_cgroup_uncharge_list(&l_hold);
2065 	free_hot_cold_page_list(&l_hold, true);
2066 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2067 			nr_deactivate, nr_rotated, sc->priority, file);
2068 }
2069 
2070 /*
2071  * The inactive anon list should be small enough that the VM never has
2072  * to do too much work.
2073  *
2074  * The inactive file list should be small enough to leave most memory
2075  * to the established workingset on the scan-resistant active list,
2076  * but large enough to avoid thrashing the aggregate readahead window.
2077  *
2078  * Both inactive lists should also be large enough that each inactive
2079  * page has a chance to be referenced again before it is reclaimed.
2080  *
2081  * If that fails and refaulting is observed, the inactive list grows.
2082  *
2083  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2084  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2085  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2086  *
2087  * total     target    max
2088  * memory    ratio     inactive
2089  * -------------------------------------
2090  *   10MB       1         5MB
2091  *  100MB       1        50MB
2092  *    1GB       3       250MB
2093  *   10GB      10       0.9GB
2094  *  100GB      31         3GB
2095  *    1TB     101        10GB
2096  *   10TB     320        32GB
2097  */
2098 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2099 				 struct mem_cgroup *memcg,
2100 				 struct scan_control *sc, bool actual_reclaim)
2101 {
2102 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2103 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2104 	enum lru_list inactive_lru = file * LRU_FILE;
2105 	unsigned long inactive, active;
2106 	unsigned long inactive_ratio;
2107 	unsigned long refaults;
2108 	unsigned long gb;
2109 
2110 	/*
2111 	 * If we don't have swap space, anonymous page deactivation
2112 	 * is pointless.
2113 	 */
2114 	if (!file && !total_swap_pages)
2115 		return false;
2116 
2117 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2118 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2119 
2120 	if (memcg)
2121 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2122 	else
2123 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2124 
2125 	/*
2126 	 * When refaults are being observed, it means a new workingset
2127 	 * is being established. Disable active list protection to get
2128 	 * rid of the stale workingset quickly.
2129 	 */
2130 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2131 		inactive_ratio = 0;
2132 	} else {
2133 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2134 		if (gb)
2135 			inactive_ratio = int_sqrt(10 * gb);
2136 		else
2137 			inactive_ratio = 1;
2138 	}
2139 
2140 	if (actual_reclaim)
2141 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2142 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2143 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2144 			inactive_ratio, file);
2145 
2146 	return inactive * inactive_ratio < active;
2147 }
2148 
2149 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2150 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2151 				 struct scan_control *sc)
2152 {
2153 	if (is_active_lru(lru)) {
2154 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2155 					 memcg, sc, true))
2156 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2157 		return 0;
2158 	}
2159 
2160 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2161 }
2162 
2163 enum scan_balance {
2164 	SCAN_EQUAL,
2165 	SCAN_FRACT,
2166 	SCAN_ANON,
2167 	SCAN_FILE,
2168 };
2169 
2170 /*
2171  * Determine how aggressively the anon and file LRU lists should be
2172  * scanned.  The relative value of each set of LRU lists is determined
2173  * by looking at the fraction of the pages scanned we did rotate back
2174  * onto the active list instead of evict.
2175  *
2176  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2177  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2178  */
2179 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2180 			   struct scan_control *sc, unsigned long *nr,
2181 			   unsigned long *lru_pages)
2182 {
2183 	int swappiness = mem_cgroup_swappiness(memcg);
2184 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2185 	u64 fraction[2];
2186 	u64 denominator = 0;	/* gcc */
2187 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2188 	unsigned long anon_prio, file_prio;
2189 	enum scan_balance scan_balance;
2190 	unsigned long anon, file;
2191 	unsigned long ap, fp;
2192 	enum lru_list lru;
2193 
2194 	/* If we have no swap space, do not bother scanning anon pages. */
2195 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2196 		scan_balance = SCAN_FILE;
2197 		goto out;
2198 	}
2199 
2200 	/*
2201 	 * Global reclaim will swap to prevent OOM even with no
2202 	 * swappiness, but memcg users want to use this knob to
2203 	 * disable swapping for individual groups completely when
2204 	 * using the memory controller's swap limit feature would be
2205 	 * too expensive.
2206 	 */
2207 	if (!global_reclaim(sc) && !swappiness) {
2208 		scan_balance = SCAN_FILE;
2209 		goto out;
2210 	}
2211 
2212 	/*
2213 	 * Do not apply any pressure balancing cleverness when the
2214 	 * system is close to OOM, scan both anon and file equally
2215 	 * (unless the swappiness setting disagrees with swapping).
2216 	 */
2217 	if (!sc->priority && swappiness) {
2218 		scan_balance = SCAN_EQUAL;
2219 		goto out;
2220 	}
2221 
2222 	/*
2223 	 * Prevent the reclaimer from falling into the cache trap: as
2224 	 * cache pages start out inactive, every cache fault will tip
2225 	 * the scan balance towards the file LRU.  And as the file LRU
2226 	 * shrinks, so does the window for rotation from references.
2227 	 * This means we have a runaway feedback loop where a tiny
2228 	 * thrashing file LRU becomes infinitely more attractive than
2229 	 * anon pages.  Try to detect this based on file LRU size.
2230 	 */
2231 	if (global_reclaim(sc)) {
2232 		unsigned long pgdatfile;
2233 		unsigned long pgdatfree;
2234 		int z;
2235 		unsigned long total_high_wmark = 0;
2236 
2237 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2238 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2239 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2240 
2241 		for (z = 0; z < MAX_NR_ZONES; z++) {
2242 			struct zone *zone = &pgdat->node_zones[z];
2243 			if (!managed_zone(zone))
2244 				continue;
2245 
2246 			total_high_wmark += high_wmark_pages(zone);
2247 		}
2248 
2249 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2250 			/*
2251 			 * Force SCAN_ANON if there are enough inactive
2252 			 * anonymous pages on the LRU in eligible zones.
2253 			 * Otherwise, the small LRU gets thrashed.
2254 			 */
2255 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2256 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2257 					>> sc->priority) {
2258 				scan_balance = SCAN_ANON;
2259 				goto out;
2260 			}
2261 		}
2262 	}
2263 
2264 	/*
2265 	 * If there is enough inactive page cache, i.e. if the size of the
2266 	 * inactive list is greater than that of the active list *and* the
2267 	 * inactive list actually has some pages to scan on this priority, we
2268 	 * do not reclaim anything from the anonymous working set right now.
2269 	 * Without the second condition we could end up never scanning an
2270 	 * lruvec even if it has plenty of old anonymous pages unless the
2271 	 * system is under heavy pressure.
2272 	 */
2273 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2274 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2275 		scan_balance = SCAN_FILE;
2276 		goto out;
2277 	}
2278 
2279 	scan_balance = SCAN_FRACT;
2280 
2281 	/*
2282 	 * With swappiness at 100, anonymous and file have the same priority.
2283 	 * This scanning priority is essentially the inverse of IO cost.
2284 	 */
2285 	anon_prio = swappiness;
2286 	file_prio = 200 - anon_prio;
2287 
2288 	/*
2289 	 * OK, so we have swap space and a fair amount of page cache
2290 	 * pages.  We use the recently rotated / recently scanned
2291 	 * ratios to determine how valuable each cache is.
2292 	 *
2293 	 * Because workloads change over time (and to avoid overflow)
2294 	 * we keep these statistics as a floating average, which ends
2295 	 * up weighing recent references more than old ones.
2296 	 *
2297 	 * anon in [0], file in [1]
2298 	 */
2299 
2300 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2301 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2302 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2303 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2304 
2305 	spin_lock_irq(&pgdat->lru_lock);
2306 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2307 		reclaim_stat->recent_scanned[0] /= 2;
2308 		reclaim_stat->recent_rotated[0] /= 2;
2309 	}
2310 
2311 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2312 		reclaim_stat->recent_scanned[1] /= 2;
2313 		reclaim_stat->recent_rotated[1] /= 2;
2314 	}
2315 
2316 	/*
2317 	 * The amount of pressure on anon vs file pages is inversely
2318 	 * proportional to the fraction of recently scanned pages on
2319 	 * each list that were recently referenced and in active use.
2320 	 */
2321 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2322 	ap /= reclaim_stat->recent_rotated[0] + 1;
2323 
2324 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2325 	fp /= reclaim_stat->recent_rotated[1] + 1;
2326 	spin_unlock_irq(&pgdat->lru_lock);
2327 
2328 	fraction[0] = ap;
2329 	fraction[1] = fp;
2330 	denominator = ap + fp + 1;
2331 out:
2332 	*lru_pages = 0;
2333 	for_each_evictable_lru(lru) {
2334 		int file = is_file_lru(lru);
2335 		unsigned long size;
2336 		unsigned long scan;
2337 
2338 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2339 		scan = size >> sc->priority;
2340 		/*
2341 		 * If the cgroup's already been deleted, make sure to
2342 		 * scrape out the remaining cache.
2343 		 */
2344 		if (!scan && !mem_cgroup_online(memcg))
2345 			scan = min(size, SWAP_CLUSTER_MAX);
2346 
2347 		switch (scan_balance) {
2348 		case SCAN_EQUAL:
2349 			/* Scan lists relative to size */
2350 			break;
2351 		case SCAN_FRACT:
2352 			/*
2353 			 * Scan types proportional to swappiness and
2354 			 * their relative recent reclaim efficiency.
2355 			 */
2356 			scan = div64_u64(scan * fraction[file],
2357 					 denominator);
2358 			break;
2359 		case SCAN_FILE:
2360 		case SCAN_ANON:
2361 			/* Scan one type exclusively */
2362 			if ((scan_balance == SCAN_FILE) != file) {
2363 				size = 0;
2364 				scan = 0;
2365 			}
2366 			break;
2367 		default:
2368 			/* Look ma, no brain */
2369 			BUG();
2370 		}
2371 
2372 		*lru_pages += size;
2373 		nr[lru] = scan;
2374 	}
2375 }
2376 
2377 /*
2378  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2379  */
2380 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2381 			      struct scan_control *sc, unsigned long *lru_pages)
2382 {
2383 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2384 	unsigned long nr[NR_LRU_LISTS];
2385 	unsigned long targets[NR_LRU_LISTS];
2386 	unsigned long nr_to_scan;
2387 	enum lru_list lru;
2388 	unsigned long nr_reclaimed = 0;
2389 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2390 	struct blk_plug plug;
2391 	bool scan_adjusted;
2392 
2393 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2394 
2395 	/* Record the original scan target for proportional adjustments later */
2396 	memcpy(targets, nr, sizeof(nr));
2397 
2398 	/*
2399 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2400 	 * event that can occur when there is little memory pressure e.g.
2401 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2402 	 * when the requested number of pages are reclaimed when scanning at
2403 	 * DEF_PRIORITY on the assumption that the fact we are direct
2404 	 * reclaiming implies that kswapd is not keeping up and it is best to
2405 	 * do a batch of work at once. For memcg reclaim one check is made to
2406 	 * abort proportional reclaim if either the file or anon lru has already
2407 	 * dropped to zero at the first pass.
2408 	 */
2409 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2410 			 sc->priority == DEF_PRIORITY);
2411 
2412 	blk_start_plug(&plug);
2413 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2414 					nr[LRU_INACTIVE_FILE]) {
2415 		unsigned long nr_anon, nr_file, percentage;
2416 		unsigned long nr_scanned;
2417 
2418 		for_each_evictable_lru(lru) {
2419 			if (nr[lru]) {
2420 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2421 				nr[lru] -= nr_to_scan;
2422 
2423 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2424 							    lruvec, memcg, sc);
2425 			}
2426 		}
2427 
2428 		cond_resched();
2429 
2430 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2431 			continue;
2432 
2433 		/*
2434 		 * For kswapd and memcg, reclaim at least the number of pages
2435 		 * requested. Ensure that the anon and file LRUs are scanned
2436 		 * proportionally what was requested by get_scan_count(). We
2437 		 * stop reclaiming one LRU and reduce the amount scanning
2438 		 * proportional to the original scan target.
2439 		 */
2440 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2441 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2442 
2443 		/*
2444 		 * It's just vindictive to attack the larger once the smaller
2445 		 * has gone to zero.  And given the way we stop scanning the
2446 		 * smaller below, this makes sure that we only make one nudge
2447 		 * towards proportionality once we've got nr_to_reclaim.
2448 		 */
2449 		if (!nr_file || !nr_anon)
2450 			break;
2451 
2452 		if (nr_file > nr_anon) {
2453 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2454 						targets[LRU_ACTIVE_ANON] + 1;
2455 			lru = LRU_BASE;
2456 			percentage = nr_anon * 100 / scan_target;
2457 		} else {
2458 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2459 						targets[LRU_ACTIVE_FILE] + 1;
2460 			lru = LRU_FILE;
2461 			percentage = nr_file * 100 / scan_target;
2462 		}
2463 
2464 		/* Stop scanning the smaller of the LRU */
2465 		nr[lru] = 0;
2466 		nr[lru + LRU_ACTIVE] = 0;
2467 
2468 		/*
2469 		 * Recalculate the other LRU scan count based on its original
2470 		 * scan target and the percentage scanning already complete
2471 		 */
2472 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2473 		nr_scanned = targets[lru] - nr[lru];
2474 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2475 		nr[lru] -= min(nr[lru], nr_scanned);
2476 
2477 		lru += LRU_ACTIVE;
2478 		nr_scanned = targets[lru] - nr[lru];
2479 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2480 		nr[lru] -= min(nr[lru], nr_scanned);
2481 
2482 		scan_adjusted = true;
2483 	}
2484 	blk_finish_plug(&plug);
2485 	sc->nr_reclaimed += nr_reclaimed;
2486 
2487 	/*
2488 	 * Even if we did not try to evict anon pages at all, we want to
2489 	 * rebalance the anon lru active/inactive ratio.
2490 	 */
2491 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2492 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2493 				   sc, LRU_ACTIVE_ANON);
2494 }
2495 
2496 /* Use reclaim/compaction for costly allocs or under memory pressure */
2497 static bool in_reclaim_compaction(struct scan_control *sc)
2498 {
2499 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2500 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2501 			 sc->priority < DEF_PRIORITY - 2))
2502 		return true;
2503 
2504 	return false;
2505 }
2506 
2507 /*
2508  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2509  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2510  * true if more pages should be reclaimed such that when the page allocator
2511  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2512  * It will give up earlier than that if there is difficulty reclaiming pages.
2513  */
2514 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2515 					unsigned long nr_reclaimed,
2516 					unsigned long nr_scanned,
2517 					struct scan_control *sc)
2518 {
2519 	unsigned long pages_for_compaction;
2520 	unsigned long inactive_lru_pages;
2521 	int z;
2522 
2523 	/* If not in reclaim/compaction mode, stop */
2524 	if (!in_reclaim_compaction(sc))
2525 		return false;
2526 
2527 	/* Consider stopping depending on scan and reclaim activity */
2528 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2529 		/*
2530 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2531 		 * full LRU list has been scanned and we are still failing
2532 		 * to reclaim pages. This full LRU scan is potentially
2533 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2534 		 */
2535 		if (!nr_reclaimed && !nr_scanned)
2536 			return false;
2537 	} else {
2538 		/*
2539 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2540 		 * fail without consequence, stop if we failed to reclaim
2541 		 * any pages from the last SWAP_CLUSTER_MAX number of
2542 		 * pages that were scanned. This will return to the
2543 		 * caller faster at the risk reclaim/compaction and
2544 		 * the resulting allocation attempt fails
2545 		 */
2546 		if (!nr_reclaimed)
2547 			return false;
2548 	}
2549 
2550 	/*
2551 	 * If we have not reclaimed enough pages for compaction and the
2552 	 * inactive lists are large enough, continue reclaiming
2553 	 */
2554 	pages_for_compaction = compact_gap(sc->order);
2555 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2556 	if (get_nr_swap_pages() > 0)
2557 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2558 	if (sc->nr_reclaimed < pages_for_compaction &&
2559 			inactive_lru_pages > pages_for_compaction)
2560 		return true;
2561 
2562 	/* If compaction would go ahead or the allocation would succeed, stop */
2563 	for (z = 0; z <= sc->reclaim_idx; z++) {
2564 		struct zone *zone = &pgdat->node_zones[z];
2565 		if (!managed_zone(zone))
2566 			continue;
2567 
2568 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2569 		case COMPACT_SUCCESS:
2570 		case COMPACT_CONTINUE:
2571 			return false;
2572 		default:
2573 			/* check next zone */
2574 			;
2575 		}
2576 	}
2577 	return true;
2578 }
2579 
2580 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2581 {
2582 	struct reclaim_state *reclaim_state = current->reclaim_state;
2583 	unsigned long nr_reclaimed, nr_scanned;
2584 	bool reclaimable = false;
2585 
2586 	do {
2587 		struct mem_cgroup *root = sc->target_mem_cgroup;
2588 		struct mem_cgroup_reclaim_cookie reclaim = {
2589 			.pgdat = pgdat,
2590 			.priority = sc->priority,
2591 		};
2592 		unsigned long node_lru_pages = 0;
2593 		struct mem_cgroup *memcg;
2594 
2595 		nr_reclaimed = sc->nr_reclaimed;
2596 		nr_scanned = sc->nr_scanned;
2597 
2598 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2599 		do {
2600 			unsigned long lru_pages;
2601 			unsigned long reclaimed;
2602 			unsigned long scanned;
2603 
2604 			if (mem_cgroup_low(root, memcg)) {
2605 				if (!sc->memcg_low_reclaim) {
2606 					sc->memcg_low_skipped = 1;
2607 					continue;
2608 				}
2609 				mem_cgroup_event(memcg, MEMCG_LOW);
2610 			}
2611 
2612 			reclaimed = sc->nr_reclaimed;
2613 			scanned = sc->nr_scanned;
2614 
2615 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2616 			node_lru_pages += lru_pages;
2617 
2618 			if (memcg)
2619 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2620 					    memcg, sc->nr_scanned - scanned,
2621 					    lru_pages);
2622 
2623 			/* Record the group's reclaim efficiency */
2624 			vmpressure(sc->gfp_mask, memcg, false,
2625 				   sc->nr_scanned - scanned,
2626 				   sc->nr_reclaimed - reclaimed);
2627 
2628 			/*
2629 			 * Direct reclaim and kswapd have to scan all memory
2630 			 * cgroups to fulfill the overall scan target for the
2631 			 * node.
2632 			 *
2633 			 * Limit reclaim, on the other hand, only cares about
2634 			 * nr_to_reclaim pages to be reclaimed and it will
2635 			 * retry with decreasing priority if one round over the
2636 			 * whole hierarchy is not sufficient.
2637 			 */
2638 			if (!global_reclaim(sc) &&
2639 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2640 				mem_cgroup_iter_break(root, memcg);
2641 				break;
2642 			}
2643 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2644 
2645 		/*
2646 		 * Shrink the slab caches in the same proportion that
2647 		 * the eligible LRU pages were scanned.
2648 		 */
2649 		if (global_reclaim(sc))
2650 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2651 				    sc->nr_scanned - nr_scanned,
2652 				    node_lru_pages);
2653 
2654 		if (reclaim_state) {
2655 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2656 			reclaim_state->reclaimed_slab = 0;
2657 		}
2658 
2659 		/* Record the subtree's reclaim efficiency */
2660 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2661 			   sc->nr_scanned - nr_scanned,
2662 			   sc->nr_reclaimed - nr_reclaimed);
2663 
2664 		if (sc->nr_reclaimed - nr_reclaimed)
2665 			reclaimable = true;
2666 
2667 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2668 					 sc->nr_scanned - nr_scanned, sc));
2669 
2670 	/*
2671 	 * Kswapd gives up on balancing particular nodes after too
2672 	 * many failures to reclaim anything from them and goes to
2673 	 * sleep. On reclaim progress, reset the failure counter. A
2674 	 * successful direct reclaim run will revive a dormant kswapd.
2675 	 */
2676 	if (reclaimable)
2677 		pgdat->kswapd_failures = 0;
2678 
2679 	return reclaimable;
2680 }
2681 
2682 /*
2683  * Returns true if compaction should go ahead for a costly-order request, or
2684  * the allocation would already succeed without compaction. Return false if we
2685  * should reclaim first.
2686  */
2687 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2688 {
2689 	unsigned long watermark;
2690 	enum compact_result suitable;
2691 
2692 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2693 	if (suitable == COMPACT_SUCCESS)
2694 		/* Allocation should succeed already. Don't reclaim. */
2695 		return true;
2696 	if (suitable == COMPACT_SKIPPED)
2697 		/* Compaction cannot yet proceed. Do reclaim. */
2698 		return false;
2699 
2700 	/*
2701 	 * Compaction is already possible, but it takes time to run and there
2702 	 * are potentially other callers using the pages just freed. So proceed
2703 	 * with reclaim to make a buffer of free pages available to give
2704 	 * compaction a reasonable chance of completing and allocating the page.
2705 	 * Note that we won't actually reclaim the whole buffer in one attempt
2706 	 * as the target watermark in should_continue_reclaim() is lower. But if
2707 	 * we are already above the high+gap watermark, don't reclaim at all.
2708 	 */
2709 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2710 
2711 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2712 }
2713 
2714 /*
2715  * This is the direct reclaim path, for page-allocating processes.  We only
2716  * try to reclaim pages from zones which will satisfy the caller's allocation
2717  * request.
2718  *
2719  * If a zone is deemed to be full of pinned pages then just give it a light
2720  * scan then give up on it.
2721  */
2722 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2723 {
2724 	struct zoneref *z;
2725 	struct zone *zone;
2726 	unsigned long nr_soft_reclaimed;
2727 	unsigned long nr_soft_scanned;
2728 	gfp_t orig_mask;
2729 	pg_data_t *last_pgdat = NULL;
2730 
2731 	/*
2732 	 * If the number of buffer_heads in the machine exceeds the maximum
2733 	 * allowed level, force direct reclaim to scan the highmem zone as
2734 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2735 	 */
2736 	orig_mask = sc->gfp_mask;
2737 	if (buffer_heads_over_limit) {
2738 		sc->gfp_mask |= __GFP_HIGHMEM;
2739 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2740 	}
2741 
2742 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2743 					sc->reclaim_idx, sc->nodemask) {
2744 		/*
2745 		 * Take care memory controller reclaiming has small influence
2746 		 * to global LRU.
2747 		 */
2748 		if (global_reclaim(sc)) {
2749 			if (!cpuset_zone_allowed(zone,
2750 						 GFP_KERNEL | __GFP_HARDWALL))
2751 				continue;
2752 
2753 			/*
2754 			 * If we already have plenty of memory free for
2755 			 * compaction in this zone, don't free any more.
2756 			 * Even though compaction is invoked for any
2757 			 * non-zero order, only frequent costly order
2758 			 * reclamation is disruptive enough to become a
2759 			 * noticeable problem, like transparent huge
2760 			 * page allocations.
2761 			 */
2762 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2763 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2764 			    compaction_ready(zone, sc)) {
2765 				sc->compaction_ready = true;
2766 				continue;
2767 			}
2768 
2769 			/*
2770 			 * Shrink each node in the zonelist once. If the
2771 			 * zonelist is ordered by zone (not the default) then a
2772 			 * node may be shrunk multiple times but in that case
2773 			 * the user prefers lower zones being preserved.
2774 			 */
2775 			if (zone->zone_pgdat == last_pgdat)
2776 				continue;
2777 
2778 			/*
2779 			 * This steals pages from memory cgroups over softlimit
2780 			 * and returns the number of reclaimed pages and
2781 			 * scanned pages. This works for global memory pressure
2782 			 * and balancing, not for a memcg's limit.
2783 			 */
2784 			nr_soft_scanned = 0;
2785 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2786 						sc->order, sc->gfp_mask,
2787 						&nr_soft_scanned);
2788 			sc->nr_reclaimed += nr_soft_reclaimed;
2789 			sc->nr_scanned += nr_soft_scanned;
2790 			/* need some check for avoid more shrink_zone() */
2791 		}
2792 
2793 		/* See comment about same check for global reclaim above */
2794 		if (zone->zone_pgdat == last_pgdat)
2795 			continue;
2796 		last_pgdat = zone->zone_pgdat;
2797 		shrink_node(zone->zone_pgdat, sc);
2798 	}
2799 
2800 	/*
2801 	 * Restore to original mask to avoid the impact on the caller if we
2802 	 * promoted it to __GFP_HIGHMEM.
2803 	 */
2804 	sc->gfp_mask = orig_mask;
2805 }
2806 
2807 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2808 {
2809 	struct mem_cgroup *memcg;
2810 
2811 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2812 	do {
2813 		unsigned long refaults;
2814 		struct lruvec *lruvec;
2815 
2816 		if (memcg)
2817 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2818 		else
2819 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2820 
2821 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2822 		lruvec->refaults = refaults;
2823 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2824 }
2825 
2826 /*
2827  * This is the main entry point to direct page reclaim.
2828  *
2829  * If a full scan of the inactive list fails to free enough memory then we
2830  * are "out of memory" and something needs to be killed.
2831  *
2832  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2833  * high - the zone may be full of dirty or under-writeback pages, which this
2834  * caller can't do much about.  We kick the writeback threads and take explicit
2835  * naps in the hope that some of these pages can be written.  But if the
2836  * allocating task holds filesystem locks which prevent writeout this might not
2837  * work, and the allocation attempt will fail.
2838  *
2839  * returns:	0, if no pages reclaimed
2840  * 		else, the number of pages reclaimed
2841  */
2842 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2843 					  struct scan_control *sc)
2844 {
2845 	int initial_priority = sc->priority;
2846 	pg_data_t *last_pgdat;
2847 	struct zoneref *z;
2848 	struct zone *zone;
2849 retry:
2850 	delayacct_freepages_start();
2851 
2852 	if (global_reclaim(sc))
2853 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2854 
2855 	do {
2856 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2857 				sc->priority);
2858 		sc->nr_scanned = 0;
2859 		shrink_zones(zonelist, sc);
2860 
2861 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2862 			break;
2863 
2864 		if (sc->compaction_ready)
2865 			break;
2866 
2867 		/*
2868 		 * If we're getting trouble reclaiming, start doing
2869 		 * writepage even in laptop mode.
2870 		 */
2871 		if (sc->priority < DEF_PRIORITY - 2)
2872 			sc->may_writepage = 1;
2873 	} while (--sc->priority >= 0);
2874 
2875 	last_pgdat = NULL;
2876 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2877 					sc->nodemask) {
2878 		if (zone->zone_pgdat == last_pgdat)
2879 			continue;
2880 		last_pgdat = zone->zone_pgdat;
2881 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2882 	}
2883 
2884 	delayacct_freepages_end();
2885 
2886 	if (sc->nr_reclaimed)
2887 		return sc->nr_reclaimed;
2888 
2889 	/* Aborted reclaim to try compaction? don't OOM, then */
2890 	if (sc->compaction_ready)
2891 		return 1;
2892 
2893 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2894 	if (sc->memcg_low_skipped) {
2895 		sc->priority = initial_priority;
2896 		sc->memcg_low_reclaim = 1;
2897 		sc->memcg_low_skipped = 0;
2898 		goto retry;
2899 	}
2900 
2901 	return 0;
2902 }
2903 
2904 static bool allow_direct_reclaim(pg_data_t *pgdat)
2905 {
2906 	struct zone *zone;
2907 	unsigned long pfmemalloc_reserve = 0;
2908 	unsigned long free_pages = 0;
2909 	int i;
2910 	bool wmark_ok;
2911 
2912 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2913 		return true;
2914 
2915 	for (i = 0; i <= ZONE_NORMAL; i++) {
2916 		zone = &pgdat->node_zones[i];
2917 		if (!managed_zone(zone))
2918 			continue;
2919 
2920 		if (!zone_reclaimable_pages(zone))
2921 			continue;
2922 
2923 		pfmemalloc_reserve += min_wmark_pages(zone);
2924 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2925 	}
2926 
2927 	/* If there are no reserves (unexpected config) then do not throttle */
2928 	if (!pfmemalloc_reserve)
2929 		return true;
2930 
2931 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2932 
2933 	/* kswapd must be awake if processes are being throttled */
2934 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2935 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2936 						(enum zone_type)ZONE_NORMAL);
2937 		wake_up_interruptible(&pgdat->kswapd_wait);
2938 	}
2939 
2940 	return wmark_ok;
2941 }
2942 
2943 /*
2944  * Throttle direct reclaimers if backing storage is backed by the network
2945  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2946  * depleted. kswapd will continue to make progress and wake the processes
2947  * when the low watermark is reached.
2948  *
2949  * Returns true if a fatal signal was delivered during throttling. If this
2950  * happens, the page allocator should not consider triggering the OOM killer.
2951  */
2952 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2953 					nodemask_t *nodemask)
2954 {
2955 	struct zoneref *z;
2956 	struct zone *zone;
2957 	pg_data_t *pgdat = NULL;
2958 
2959 	/*
2960 	 * Kernel threads should not be throttled as they may be indirectly
2961 	 * responsible for cleaning pages necessary for reclaim to make forward
2962 	 * progress. kjournald for example may enter direct reclaim while
2963 	 * committing a transaction where throttling it could forcing other
2964 	 * processes to block on log_wait_commit().
2965 	 */
2966 	if (current->flags & PF_KTHREAD)
2967 		goto out;
2968 
2969 	/*
2970 	 * If a fatal signal is pending, this process should not throttle.
2971 	 * It should return quickly so it can exit and free its memory
2972 	 */
2973 	if (fatal_signal_pending(current))
2974 		goto out;
2975 
2976 	/*
2977 	 * Check if the pfmemalloc reserves are ok by finding the first node
2978 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2979 	 * GFP_KERNEL will be required for allocating network buffers when
2980 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2981 	 *
2982 	 * Throttling is based on the first usable node and throttled processes
2983 	 * wait on a queue until kswapd makes progress and wakes them. There
2984 	 * is an affinity then between processes waking up and where reclaim
2985 	 * progress has been made assuming the process wakes on the same node.
2986 	 * More importantly, processes running on remote nodes will not compete
2987 	 * for remote pfmemalloc reserves and processes on different nodes
2988 	 * should make reasonable progress.
2989 	 */
2990 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2991 					gfp_zone(gfp_mask), nodemask) {
2992 		if (zone_idx(zone) > ZONE_NORMAL)
2993 			continue;
2994 
2995 		/* Throttle based on the first usable node */
2996 		pgdat = zone->zone_pgdat;
2997 		if (allow_direct_reclaim(pgdat))
2998 			goto out;
2999 		break;
3000 	}
3001 
3002 	/* If no zone was usable by the allocation flags then do not throttle */
3003 	if (!pgdat)
3004 		goto out;
3005 
3006 	/* Account for the throttling */
3007 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3008 
3009 	/*
3010 	 * If the caller cannot enter the filesystem, it's possible that it
3011 	 * is due to the caller holding an FS lock or performing a journal
3012 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3013 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3014 	 * blocked waiting on the same lock. Instead, throttle for up to a
3015 	 * second before continuing.
3016 	 */
3017 	if (!(gfp_mask & __GFP_FS)) {
3018 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3019 			allow_direct_reclaim(pgdat), HZ);
3020 
3021 		goto check_pending;
3022 	}
3023 
3024 	/* Throttle until kswapd wakes the process */
3025 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3026 		allow_direct_reclaim(pgdat));
3027 
3028 check_pending:
3029 	if (fatal_signal_pending(current))
3030 		return true;
3031 
3032 out:
3033 	return false;
3034 }
3035 
3036 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3037 				gfp_t gfp_mask, nodemask_t *nodemask)
3038 {
3039 	unsigned long nr_reclaimed;
3040 	struct scan_control sc = {
3041 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3042 		.gfp_mask = current_gfp_context(gfp_mask),
3043 		.reclaim_idx = gfp_zone(gfp_mask),
3044 		.order = order,
3045 		.nodemask = nodemask,
3046 		.priority = DEF_PRIORITY,
3047 		.may_writepage = !laptop_mode,
3048 		.may_unmap = 1,
3049 		.may_swap = 1,
3050 	};
3051 
3052 	/*
3053 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3054 	 * 1 is returned so that the page allocator does not OOM kill at this
3055 	 * point.
3056 	 */
3057 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3058 		return 1;
3059 
3060 	trace_mm_vmscan_direct_reclaim_begin(order,
3061 				sc.may_writepage,
3062 				sc.gfp_mask,
3063 				sc.reclaim_idx);
3064 
3065 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3066 
3067 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3068 
3069 	return nr_reclaimed;
3070 }
3071 
3072 #ifdef CONFIG_MEMCG
3073 
3074 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3075 						gfp_t gfp_mask, bool noswap,
3076 						pg_data_t *pgdat,
3077 						unsigned long *nr_scanned)
3078 {
3079 	struct scan_control sc = {
3080 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3081 		.target_mem_cgroup = memcg,
3082 		.may_writepage = !laptop_mode,
3083 		.may_unmap = 1,
3084 		.reclaim_idx = MAX_NR_ZONES - 1,
3085 		.may_swap = !noswap,
3086 	};
3087 	unsigned long lru_pages;
3088 
3089 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3090 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3091 
3092 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3093 						      sc.may_writepage,
3094 						      sc.gfp_mask,
3095 						      sc.reclaim_idx);
3096 
3097 	/*
3098 	 * NOTE: Although we can get the priority field, using it
3099 	 * here is not a good idea, since it limits the pages we can scan.
3100 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3101 	 * will pick up pages from other mem cgroup's as well. We hack
3102 	 * the priority and make it zero.
3103 	 */
3104 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3105 
3106 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3107 
3108 	*nr_scanned = sc.nr_scanned;
3109 	return sc.nr_reclaimed;
3110 }
3111 
3112 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3113 					   unsigned long nr_pages,
3114 					   gfp_t gfp_mask,
3115 					   bool may_swap)
3116 {
3117 	struct zonelist *zonelist;
3118 	unsigned long nr_reclaimed;
3119 	int nid;
3120 	unsigned int noreclaim_flag;
3121 	struct scan_control sc = {
3122 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3123 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3124 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3125 		.reclaim_idx = MAX_NR_ZONES - 1,
3126 		.target_mem_cgroup = memcg,
3127 		.priority = DEF_PRIORITY,
3128 		.may_writepage = !laptop_mode,
3129 		.may_unmap = 1,
3130 		.may_swap = may_swap,
3131 	};
3132 
3133 	/*
3134 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3135 	 * take care of from where we get pages. So the node where we start the
3136 	 * scan does not need to be the current node.
3137 	 */
3138 	nid = mem_cgroup_select_victim_node(memcg);
3139 
3140 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3141 
3142 	trace_mm_vmscan_memcg_reclaim_begin(0,
3143 					    sc.may_writepage,
3144 					    sc.gfp_mask,
3145 					    sc.reclaim_idx);
3146 
3147 	noreclaim_flag = memalloc_noreclaim_save();
3148 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3149 	memalloc_noreclaim_restore(noreclaim_flag);
3150 
3151 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3152 
3153 	return nr_reclaimed;
3154 }
3155 #endif
3156 
3157 static void age_active_anon(struct pglist_data *pgdat,
3158 				struct scan_control *sc)
3159 {
3160 	struct mem_cgroup *memcg;
3161 
3162 	if (!total_swap_pages)
3163 		return;
3164 
3165 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3166 	do {
3167 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3168 
3169 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3170 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3171 					   sc, LRU_ACTIVE_ANON);
3172 
3173 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3174 	} while (memcg);
3175 }
3176 
3177 /*
3178  * Returns true if there is an eligible zone balanced for the request order
3179  * and classzone_idx
3180  */
3181 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3182 {
3183 	int i;
3184 	unsigned long mark = -1;
3185 	struct zone *zone;
3186 
3187 	for (i = 0; i <= classzone_idx; i++) {
3188 		zone = pgdat->node_zones + i;
3189 
3190 		if (!managed_zone(zone))
3191 			continue;
3192 
3193 		mark = high_wmark_pages(zone);
3194 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3195 			return true;
3196 	}
3197 
3198 	/*
3199 	 * If a node has no populated zone within classzone_idx, it does not
3200 	 * need balancing by definition. This can happen if a zone-restricted
3201 	 * allocation tries to wake a remote kswapd.
3202 	 */
3203 	if (mark == -1)
3204 		return true;
3205 
3206 	return false;
3207 }
3208 
3209 /* Clear pgdat state for congested, dirty or under writeback. */
3210 static void clear_pgdat_congested(pg_data_t *pgdat)
3211 {
3212 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3213 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3214 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3215 }
3216 
3217 /*
3218  * Prepare kswapd for sleeping. This verifies that there are no processes
3219  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3220  *
3221  * Returns true if kswapd is ready to sleep
3222  */
3223 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3224 {
3225 	/*
3226 	 * The throttled processes are normally woken up in balance_pgdat() as
3227 	 * soon as allow_direct_reclaim() is true. But there is a potential
3228 	 * race between when kswapd checks the watermarks and a process gets
3229 	 * throttled. There is also a potential race if processes get
3230 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3231 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3232 	 * the wake up checks. If kswapd is going to sleep, no process should
3233 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3234 	 * the wake up is premature, processes will wake kswapd and get
3235 	 * throttled again. The difference from wake ups in balance_pgdat() is
3236 	 * that here we are under prepare_to_wait().
3237 	 */
3238 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3239 		wake_up_all(&pgdat->pfmemalloc_wait);
3240 
3241 	/* Hopeless node, leave it to direct reclaim */
3242 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3243 		return true;
3244 
3245 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3246 		clear_pgdat_congested(pgdat);
3247 		return true;
3248 	}
3249 
3250 	return false;
3251 }
3252 
3253 /*
3254  * kswapd shrinks a node of pages that are at or below the highest usable
3255  * zone that is currently unbalanced.
3256  *
3257  * Returns true if kswapd scanned at least the requested number of pages to
3258  * reclaim or if the lack of progress was due to pages under writeback.
3259  * This is used to determine if the scanning priority needs to be raised.
3260  */
3261 static bool kswapd_shrink_node(pg_data_t *pgdat,
3262 			       struct scan_control *sc)
3263 {
3264 	struct zone *zone;
3265 	int z;
3266 
3267 	/* Reclaim a number of pages proportional to the number of zones */
3268 	sc->nr_to_reclaim = 0;
3269 	for (z = 0; z <= sc->reclaim_idx; z++) {
3270 		zone = pgdat->node_zones + z;
3271 		if (!managed_zone(zone))
3272 			continue;
3273 
3274 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3275 	}
3276 
3277 	/*
3278 	 * Historically care was taken to put equal pressure on all zones but
3279 	 * now pressure is applied based on node LRU order.
3280 	 */
3281 	shrink_node(pgdat, sc);
3282 
3283 	/*
3284 	 * Fragmentation may mean that the system cannot be rebalanced for
3285 	 * high-order allocations. If twice the allocation size has been
3286 	 * reclaimed then recheck watermarks only at order-0 to prevent
3287 	 * excessive reclaim. Assume that a process requested a high-order
3288 	 * can direct reclaim/compact.
3289 	 */
3290 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3291 		sc->order = 0;
3292 
3293 	return sc->nr_scanned >= sc->nr_to_reclaim;
3294 }
3295 
3296 /*
3297  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3298  * that are eligible for use by the caller until at least one zone is
3299  * balanced.
3300  *
3301  * Returns the order kswapd finished reclaiming at.
3302  *
3303  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3304  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3305  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3306  * or lower is eligible for reclaim until at least one usable zone is
3307  * balanced.
3308  */
3309 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3310 {
3311 	int i;
3312 	unsigned long nr_soft_reclaimed;
3313 	unsigned long nr_soft_scanned;
3314 	struct zone *zone;
3315 	struct scan_control sc = {
3316 		.gfp_mask = GFP_KERNEL,
3317 		.order = order,
3318 		.priority = DEF_PRIORITY,
3319 		.may_writepage = !laptop_mode,
3320 		.may_unmap = 1,
3321 		.may_swap = 1,
3322 	};
3323 	count_vm_event(PAGEOUTRUN);
3324 
3325 	do {
3326 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3327 		bool raise_priority = true;
3328 
3329 		sc.reclaim_idx = classzone_idx;
3330 
3331 		/*
3332 		 * If the number of buffer_heads exceeds the maximum allowed
3333 		 * then consider reclaiming from all zones. This has a dual
3334 		 * purpose -- on 64-bit systems it is expected that
3335 		 * buffer_heads are stripped during active rotation. On 32-bit
3336 		 * systems, highmem pages can pin lowmem memory and shrinking
3337 		 * buffers can relieve lowmem pressure. Reclaim may still not
3338 		 * go ahead if all eligible zones for the original allocation
3339 		 * request are balanced to avoid excessive reclaim from kswapd.
3340 		 */
3341 		if (buffer_heads_over_limit) {
3342 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3343 				zone = pgdat->node_zones + i;
3344 				if (!managed_zone(zone))
3345 					continue;
3346 
3347 				sc.reclaim_idx = i;
3348 				break;
3349 			}
3350 		}
3351 
3352 		/*
3353 		 * Only reclaim if there are no eligible zones. Note that
3354 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3355 		 * have adjusted it.
3356 		 */
3357 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3358 			goto out;
3359 
3360 		/*
3361 		 * Do some background aging of the anon list, to give
3362 		 * pages a chance to be referenced before reclaiming. All
3363 		 * pages are rotated regardless of classzone as this is
3364 		 * about consistent aging.
3365 		 */
3366 		age_active_anon(pgdat, &sc);
3367 
3368 		/*
3369 		 * If we're getting trouble reclaiming, start doing writepage
3370 		 * even in laptop mode.
3371 		 */
3372 		if (sc.priority < DEF_PRIORITY - 2)
3373 			sc.may_writepage = 1;
3374 
3375 		/* Call soft limit reclaim before calling shrink_node. */
3376 		sc.nr_scanned = 0;
3377 		nr_soft_scanned = 0;
3378 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3379 						sc.gfp_mask, &nr_soft_scanned);
3380 		sc.nr_reclaimed += nr_soft_reclaimed;
3381 
3382 		/*
3383 		 * There should be no need to raise the scanning priority if
3384 		 * enough pages are already being scanned that that high
3385 		 * watermark would be met at 100% efficiency.
3386 		 */
3387 		if (kswapd_shrink_node(pgdat, &sc))
3388 			raise_priority = false;
3389 
3390 		/*
3391 		 * If the low watermark is met there is no need for processes
3392 		 * to be throttled on pfmemalloc_wait as they should not be
3393 		 * able to safely make forward progress. Wake them
3394 		 */
3395 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3396 				allow_direct_reclaim(pgdat))
3397 			wake_up_all(&pgdat->pfmemalloc_wait);
3398 
3399 		/* Check if kswapd should be suspending */
3400 		if (try_to_freeze() || kthread_should_stop())
3401 			break;
3402 
3403 		/*
3404 		 * Raise priority if scanning rate is too low or there was no
3405 		 * progress in reclaiming pages
3406 		 */
3407 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3408 		if (raise_priority || !nr_reclaimed)
3409 			sc.priority--;
3410 	} while (sc.priority >= 1);
3411 
3412 	if (!sc.nr_reclaimed)
3413 		pgdat->kswapd_failures++;
3414 
3415 out:
3416 	snapshot_refaults(NULL, pgdat);
3417 	/*
3418 	 * Return the order kswapd stopped reclaiming at as
3419 	 * prepare_kswapd_sleep() takes it into account. If another caller
3420 	 * entered the allocator slow path while kswapd was awake, order will
3421 	 * remain at the higher level.
3422 	 */
3423 	return sc.order;
3424 }
3425 
3426 /*
3427  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3428  * allocation request woke kswapd for. When kswapd has not woken recently,
3429  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3430  * given classzone and returns it or the highest classzone index kswapd
3431  * was recently woke for.
3432  */
3433 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3434 					   enum zone_type classzone_idx)
3435 {
3436 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3437 		return classzone_idx;
3438 
3439 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3440 }
3441 
3442 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3443 				unsigned int classzone_idx)
3444 {
3445 	long remaining = 0;
3446 	DEFINE_WAIT(wait);
3447 
3448 	if (freezing(current) || kthread_should_stop())
3449 		return;
3450 
3451 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3452 
3453 	/*
3454 	 * Try to sleep for a short interval. Note that kcompactd will only be
3455 	 * woken if it is possible to sleep for a short interval. This is
3456 	 * deliberate on the assumption that if reclaim cannot keep an
3457 	 * eligible zone balanced that it's also unlikely that compaction will
3458 	 * succeed.
3459 	 */
3460 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3461 		/*
3462 		 * Compaction records what page blocks it recently failed to
3463 		 * isolate pages from and skips them in the future scanning.
3464 		 * When kswapd is going to sleep, it is reasonable to assume
3465 		 * that pages and compaction may succeed so reset the cache.
3466 		 */
3467 		reset_isolation_suitable(pgdat);
3468 
3469 		/*
3470 		 * We have freed the memory, now we should compact it to make
3471 		 * allocation of the requested order possible.
3472 		 */
3473 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3474 
3475 		remaining = schedule_timeout(HZ/10);
3476 
3477 		/*
3478 		 * If woken prematurely then reset kswapd_classzone_idx and
3479 		 * order. The values will either be from a wakeup request or
3480 		 * the previous request that slept prematurely.
3481 		 */
3482 		if (remaining) {
3483 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3484 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3485 		}
3486 
3487 		finish_wait(&pgdat->kswapd_wait, &wait);
3488 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3489 	}
3490 
3491 	/*
3492 	 * After a short sleep, check if it was a premature sleep. If not, then
3493 	 * go fully to sleep until explicitly woken up.
3494 	 */
3495 	if (!remaining &&
3496 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3497 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3498 
3499 		/*
3500 		 * vmstat counters are not perfectly accurate and the estimated
3501 		 * value for counters such as NR_FREE_PAGES can deviate from the
3502 		 * true value by nr_online_cpus * threshold. To avoid the zone
3503 		 * watermarks being breached while under pressure, we reduce the
3504 		 * per-cpu vmstat threshold while kswapd is awake and restore
3505 		 * them before going back to sleep.
3506 		 */
3507 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3508 
3509 		if (!kthread_should_stop())
3510 			schedule();
3511 
3512 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3513 	} else {
3514 		if (remaining)
3515 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3516 		else
3517 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3518 	}
3519 	finish_wait(&pgdat->kswapd_wait, &wait);
3520 }
3521 
3522 /*
3523  * The background pageout daemon, started as a kernel thread
3524  * from the init process.
3525  *
3526  * This basically trickles out pages so that we have _some_
3527  * free memory available even if there is no other activity
3528  * that frees anything up. This is needed for things like routing
3529  * etc, where we otherwise might have all activity going on in
3530  * asynchronous contexts that cannot page things out.
3531  *
3532  * If there are applications that are active memory-allocators
3533  * (most normal use), this basically shouldn't matter.
3534  */
3535 static int kswapd(void *p)
3536 {
3537 	unsigned int alloc_order, reclaim_order;
3538 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3539 	pg_data_t *pgdat = (pg_data_t*)p;
3540 	struct task_struct *tsk = current;
3541 
3542 	struct reclaim_state reclaim_state = {
3543 		.reclaimed_slab = 0,
3544 	};
3545 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3546 
3547 	if (!cpumask_empty(cpumask))
3548 		set_cpus_allowed_ptr(tsk, cpumask);
3549 	current->reclaim_state = &reclaim_state;
3550 
3551 	/*
3552 	 * Tell the memory management that we're a "memory allocator",
3553 	 * and that if we need more memory we should get access to it
3554 	 * regardless (see "__alloc_pages()"). "kswapd" should
3555 	 * never get caught in the normal page freeing logic.
3556 	 *
3557 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3558 	 * you need a small amount of memory in order to be able to
3559 	 * page out something else, and this flag essentially protects
3560 	 * us from recursively trying to free more memory as we're
3561 	 * trying to free the first piece of memory in the first place).
3562 	 */
3563 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3564 	set_freezable();
3565 
3566 	pgdat->kswapd_order = 0;
3567 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3568 	for ( ; ; ) {
3569 		bool ret;
3570 
3571 		alloc_order = reclaim_order = pgdat->kswapd_order;
3572 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3573 
3574 kswapd_try_sleep:
3575 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3576 					classzone_idx);
3577 
3578 		/* Read the new order and classzone_idx */
3579 		alloc_order = reclaim_order = pgdat->kswapd_order;
3580 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3581 		pgdat->kswapd_order = 0;
3582 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3583 
3584 		ret = try_to_freeze();
3585 		if (kthread_should_stop())
3586 			break;
3587 
3588 		/*
3589 		 * We can speed up thawing tasks if we don't call balance_pgdat
3590 		 * after returning from the refrigerator
3591 		 */
3592 		if (ret)
3593 			continue;
3594 
3595 		/*
3596 		 * Reclaim begins at the requested order but if a high-order
3597 		 * reclaim fails then kswapd falls back to reclaiming for
3598 		 * order-0. If that happens, kswapd will consider sleeping
3599 		 * for the order it finished reclaiming at (reclaim_order)
3600 		 * but kcompactd is woken to compact for the original
3601 		 * request (alloc_order).
3602 		 */
3603 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3604 						alloc_order);
3605 		fs_reclaim_acquire(GFP_KERNEL);
3606 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3607 		fs_reclaim_release(GFP_KERNEL);
3608 		if (reclaim_order < alloc_order)
3609 			goto kswapd_try_sleep;
3610 	}
3611 
3612 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3613 	current->reclaim_state = NULL;
3614 
3615 	return 0;
3616 }
3617 
3618 /*
3619  * A zone is low on free memory, so wake its kswapd task to service it.
3620  */
3621 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3622 {
3623 	pg_data_t *pgdat;
3624 
3625 	if (!managed_zone(zone))
3626 		return;
3627 
3628 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3629 		return;
3630 	pgdat = zone->zone_pgdat;
3631 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3632 							   classzone_idx);
3633 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3634 	if (!waitqueue_active(&pgdat->kswapd_wait))
3635 		return;
3636 
3637 	/* Hopeless node, leave it to direct reclaim */
3638 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3639 		return;
3640 
3641 	if (pgdat_balanced(pgdat, order, classzone_idx))
3642 		return;
3643 
3644 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3645 	wake_up_interruptible(&pgdat->kswapd_wait);
3646 }
3647 
3648 #ifdef CONFIG_HIBERNATION
3649 /*
3650  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3651  * freed pages.
3652  *
3653  * Rather than trying to age LRUs the aim is to preserve the overall
3654  * LRU order by reclaiming preferentially
3655  * inactive > active > active referenced > active mapped
3656  */
3657 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3658 {
3659 	struct reclaim_state reclaim_state;
3660 	struct scan_control sc = {
3661 		.nr_to_reclaim = nr_to_reclaim,
3662 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3663 		.reclaim_idx = MAX_NR_ZONES - 1,
3664 		.priority = DEF_PRIORITY,
3665 		.may_writepage = 1,
3666 		.may_unmap = 1,
3667 		.may_swap = 1,
3668 		.hibernation_mode = 1,
3669 	};
3670 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3671 	struct task_struct *p = current;
3672 	unsigned long nr_reclaimed;
3673 	unsigned int noreclaim_flag;
3674 
3675 	noreclaim_flag = memalloc_noreclaim_save();
3676 	fs_reclaim_acquire(sc.gfp_mask);
3677 	reclaim_state.reclaimed_slab = 0;
3678 	p->reclaim_state = &reclaim_state;
3679 
3680 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3681 
3682 	p->reclaim_state = NULL;
3683 	fs_reclaim_release(sc.gfp_mask);
3684 	memalloc_noreclaim_restore(noreclaim_flag);
3685 
3686 	return nr_reclaimed;
3687 }
3688 #endif /* CONFIG_HIBERNATION */
3689 
3690 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3691    not required for correctness.  So if the last cpu in a node goes
3692    away, we get changed to run anywhere: as the first one comes back,
3693    restore their cpu bindings. */
3694 static int kswapd_cpu_online(unsigned int cpu)
3695 {
3696 	int nid;
3697 
3698 	for_each_node_state(nid, N_MEMORY) {
3699 		pg_data_t *pgdat = NODE_DATA(nid);
3700 		const struct cpumask *mask;
3701 
3702 		mask = cpumask_of_node(pgdat->node_id);
3703 
3704 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3705 			/* One of our CPUs online: restore mask */
3706 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3707 	}
3708 	return 0;
3709 }
3710 
3711 /*
3712  * This kswapd start function will be called by init and node-hot-add.
3713  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3714  */
3715 int kswapd_run(int nid)
3716 {
3717 	pg_data_t *pgdat = NODE_DATA(nid);
3718 	int ret = 0;
3719 
3720 	if (pgdat->kswapd)
3721 		return 0;
3722 
3723 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3724 	if (IS_ERR(pgdat->kswapd)) {
3725 		/* failure at boot is fatal */
3726 		BUG_ON(system_state < SYSTEM_RUNNING);
3727 		pr_err("Failed to start kswapd on node %d\n", nid);
3728 		ret = PTR_ERR(pgdat->kswapd);
3729 		pgdat->kswapd = NULL;
3730 	}
3731 	return ret;
3732 }
3733 
3734 /*
3735  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3736  * hold mem_hotplug_begin/end().
3737  */
3738 void kswapd_stop(int nid)
3739 {
3740 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3741 
3742 	if (kswapd) {
3743 		kthread_stop(kswapd);
3744 		NODE_DATA(nid)->kswapd = NULL;
3745 	}
3746 }
3747 
3748 static int __init kswapd_init(void)
3749 {
3750 	int nid, ret;
3751 
3752 	swap_setup();
3753 	for_each_node_state(nid, N_MEMORY)
3754  		kswapd_run(nid);
3755 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3756 					"mm/vmscan:online", kswapd_cpu_online,
3757 					NULL);
3758 	WARN_ON(ret < 0);
3759 	return 0;
3760 }
3761 
3762 module_init(kswapd_init)
3763 
3764 #ifdef CONFIG_NUMA
3765 /*
3766  * Node reclaim mode
3767  *
3768  * If non-zero call node_reclaim when the number of free pages falls below
3769  * the watermarks.
3770  */
3771 int node_reclaim_mode __read_mostly;
3772 
3773 #define RECLAIM_OFF 0
3774 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3775 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3776 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3777 
3778 /*
3779  * Priority for NODE_RECLAIM. This determines the fraction of pages
3780  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3781  * a zone.
3782  */
3783 #define NODE_RECLAIM_PRIORITY 4
3784 
3785 /*
3786  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3787  * occur.
3788  */
3789 int sysctl_min_unmapped_ratio = 1;
3790 
3791 /*
3792  * If the number of slab pages in a zone grows beyond this percentage then
3793  * slab reclaim needs to occur.
3794  */
3795 int sysctl_min_slab_ratio = 5;
3796 
3797 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3798 {
3799 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3800 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3801 		node_page_state(pgdat, NR_ACTIVE_FILE);
3802 
3803 	/*
3804 	 * It's possible for there to be more file mapped pages than
3805 	 * accounted for by the pages on the file LRU lists because
3806 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3807 	 */
3808 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3809 }
3810 
3811 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3812 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3813 {
3814 	unsigned long nr_pagecache_reclaimable;
3815 	unsigned long delta = 0;
3816 
3817 	/*
3818 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3819 	 * potentially reclaimable. Otherwise, we have to worry about
3820 	 * pages like swapcache and node_unmapped_file_pages() provides
3821 	 * a better estimate
3822 	 */
3823 	if (node_reclaim_mode & RECLAIM_UNMAP)
3824 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3825 	else
3826 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3827 
3828 	/* If we can't clean pages, remove dirty pages from consideration */
3829 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3830 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3831 
3832 	/* Watch for any possible underflows due to delta */
3833 	if (unlikely(delta > nr_pagecache_reclaimable))
3834 		delta = nr_pagecache_reclaimable;
3835 
3836 	return nr_pagecache_reclaimable - delta;
3837 }
3838 
3839 /*
3840  * Try to free up some pages from this node through reclaim.
3841  */
3842 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3843 {
3844 	/* Minimum pages needed in order to stay on node */
3845 	const unsigned long nr_pages = 1 << order;
3846 	struct task_struct *p = current;
3847 	struct reclaim_state reclaim_state;
3848 	unsigned int noreclaim_flag;
3849 	struct scan_control sc = {
3850 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3851 		.gfp_mask = current_gfp_context(gfp_mask),
3852 		.order = order,
3853 		.priority = NODE_RECLAIM_PRIORITY,
3854 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3855 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3856 		.may_swap = 1,
3857 		.reclaim_idx = gfp_zone(gfp_mask),
3858 	};
3859 
3860 	cond_resched();
3861 	/*
3862 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3863 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3864 	 * and RECLAIM_UNMAP.
3865 	 */
3866 	noreclaim_flag = memalloc_noreclaim_save();
3867 	p->flags |= PF_SWAPWRITE;
3868 	fs_reclaim_acquire(sc.gfp_mask);
3869 	reclaim_state.reclaimed_slab = 0;
3870 	p->reclaim_state = &reclaim_state;
3871 
3872 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3873 		/*
3874 		 * Free memory by calling shrink zone with increasing
3875 		 * priorities until we have enough memory freed.
3876 		 */
3877 		do {
3878 			shrink_node(pgdat, &sc);
3879 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3880 	}
3881 
3882 	p->reclaim_state = NULL;
3883 	fs_reclaim_release(gfp_mask);
3884 	current->flags &= ~PF_SWAPWRITE;
3885 	memalloc_noreclaim_restore(noreclaim_flag);
3886 	return sc.nr_reclaimed >= nr_pages;
3887 }
3888 
3889 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3890 {
3891 	int ret;
3892 
3893 	/*
3894 	 * Node reclaim reclaims unmapped file backed pages and
3895 	 * slab pages if we are over the defined limits.
3896 	 *
3897 	 * A small portion of unmapped file backed pages is needed for
3898 	 * file I/O otherwise pages read by file I/O will be immediately
3899 	 * thrown out if the node is overallocated. So we do not reclaim
3900 	 * if less than a specified percentage of the node is used by
3901 	 * unmapped file backed pages.
3902 	 */
3903 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3904 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3905 		return NODE_RECLAIM_FULL;
3906 
3907 	/*
3908 	 * Do not scan if the allocation should not be delayed.
3909 	 */
3910 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3911 		return NODE_RECLAIM_NOSCAN;
3912 
3913 	/*
3914 	 * Only run node reclaim on the local node or on nodes that do not
3915 	 * have associated processors. This will favor the local processor
3916 	 * over remote processors and spread off node memory allocations
3917 	 * as wide as possible.
3918 	 */
3919 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3920 		return NODE_RECLAIM_NOSCAN;
3921 
3922 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3923 		return NODE_RECLAIM_NOSCAN;
3924 
3925 	ret = __node_reclaim(pgdat, gfp_mask, order);
3926 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3927 
3928 	if (!ret)
3929 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3930 
3931 	return ret;
3932 }
3933 #endif
3934 
3935 /*
3936  * page_evictable - test whether a page is evictable
3937  * @page: the page to test
3938  *
3939  * Test whether page is evictable--i.e., should be placed on active/inactive
3940  * lists vs unevictable list.
3941  *
3942  * Reasons page might not be evictable:
3943  * (1) page's mapping marked unevictable
3944  * (2) page is part of an mlocked VMA
3945  *
3946  */
3947 int page_evictable(struct page *page)
3948 {
3949 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3950 }
3951 
3952 #ifdef CONFIG_SHMEM
3953 /**
3954  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3955  * @pages:	array of pages to check
3956  * @nr_pages:	number of pages to check
3957  *
3958  * Checks pages for evictability and moves them to the appropriate lru list.
3959  *
3960  * This function is only used for SysV IPC SHM_UNLOCK.
3961  */
3962 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3963 {
3964 	struct lruvec *lruvec;
3965 	struct pglist_data *pgdat = NULL;
3966 	int pgscanned = 0;
3967 	int pgrescued = 0;
3968 	int i;
3969 
3970 	for (i = 0; i < nr_pages; i++) {
3971 		struct page *page = pages[i];
3972 		struct pglist_data *pagepgdat = page_pgdat(page);
3973 
3974 		pgscanned++;
3975 		if (pagepgdat != pgdat) {
3976 			if (pgdat)
3977 				spin_unlock_irq(&pgdat->lru_lock);
3978 			pgdat = pagepgdat;
3979 			spin_lock_irq(&pgdat->lru_lock);
3980 		}
3981 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3982 
3983 		if (!PageLRU(page) || !PageUnevictable(page))
3984 			continue;
3985 
3986 		if (page_evictable(page)) {
3987 			enum lru_list lru = page_lru_base_type(page);
3988 
3989 			VM_BUG_ON_PAGE(PageActive(page), page);
3990 			ClearPageUnevictable(page);
3991 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3992 			add_page_to_lru_list(page, lruvec, lru);
3993 			pgrescued++;
3994 		}
3995 	}
3996 
3997 	if (pgdat) {
3998 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3999 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4000 		spin_unlock_irq(&pgdat->lru_lock);
4001 	}
4002 }
4003 #endif /* CONFIG_SHMEM */
4004