1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 /* Can active folios be deactivated as part of reclaim? */ 97 #define DEACTIVATE_ANON 1 98 #define DEACTIVATE_FILE 2 99 unsigned int may_deactivate:2; 100 unsigned int force_deactivate:1; 101 unsigned int skipped_deactivate:1; 102 103 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 104 unsigned int may_writepage:1; 105 106 /* Can mapped folios be reclaimed? */ 107 unsigned int may_unmap:1; 108 109 /* Can folios be swapped as part of reclaim? */ 110 unsigned int may_swap:1; 111 112 /* Proactive reclaim invoked by userspace through memory.reclaim */ 113 unsigned int proactive:1; 114 115 /* 116 * Cgroup memory below memory.low is protected as long as we 117 * don't threaten to OOM. If any cgroup is reclaimed at 118 * reduced force or passed over entirely due to its memory.low 119 * setting (memcg_low_skipped), and nothing is reclaimed as a 120 * result, then go back for one more cycle that reclaims the protected 121 * memory (memcg_low_reclaim) to avert OOM. 122 */ 123 unsigned int memcg_low_reclaim:1; 124 unsigned int memcg_low_skipped:1; 125 126 unsigned int hibernation_mode:1; 127 128 /* One of the zones is ready for compaction */ 129 unsigned int compaction_ready:1; 130 131 /* There is easily reclaimable cold cache in the current node */ 132 unsigned int cache_trim_mode:1; 133 134 /* The file folios on the current node are dangerously low */ 135 unsigned int file_is_tiny:1; 136 137 /* Always discard instead of demoting to lower tier memory */ 138 unsigned int no_demotion:1; 139 140 /* Allocation order */ 141 s8 order; 142 143 /* Scan (total_size >> priority) pages at once */ 144 s8 priority; 145 146 /* The highest zone to isolate folios for reclaim from */ 147 s8 reclaim_idx; 148 149 /* This context's GFP mask */ 150 gfp_t gfp_mask; 151 152 /* Incremented by the number of inactive pages that were scanned */ 153 unsigned long nr_scanned; 154 155 /* Number of pages freed so far during a call to shrink_zones() */ 156 unsigned long nr_reclaimed; 157 158 struct { 159 unsigned int dirty; 160 unsigned int unqueued_dirty; 161 unsigned int congested; 162 unsigned int writeback; 163 unsigned int immediate; 164 unsigned int file_taken; 165 unsigned int taken; 166 } nr; 167 168 /* for recording the reclaimed slab by now */ 169 struct reclaim_state reclaim_state; 170 }; 171 172 #ifdef ARCH_HAS_PREFETCHW 173 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 174 do { \ 175 if ((_folio)->lru.prev != _base) { \ 176 struct folio *prev; \ 177 \ 178 prev = lru_to_folio(&(_folio->lru)); \ 179 prefetchw(&prev->_field); \ 180 } \ 181 } while (0) 182 #else 183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 184 #endif 185 186 /* 187 * From 0 .. 200. Higher means more swappy. 188 */ 189 int vm_swappiness = 60; 190 191 LIST_HEAD(shrinker_list); 192 DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size, 218 int new_nr_max) 219 { 220 struct shrinker_info *new, *old; 221 struct mem_cgroup_per_node *pn; 222 int nid; 223 int size = map_size + defer_size; 224 225 for_each_node(nid) { 226 pn = memcg->nodeinfo[nid]; 227 old = shrinker_info_protected(memcg, nid); 228 /* Not yet online memcg */ 229 if (!old) 230 return 0; 231 232 /* Already expanded this shrinker_info */ 233 if (new_nr_max <= old->map_nr_max) 234 continue; 235 236 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 237 if (!new) 238 return -ENOMEM; 239 240 new->nr_deferred = (atomic_long_t *)(new + 1); 241 new->map = (void *)new->nr_deferred + defer_size; 242 new->map_nr_max = new_nr_max; 243 244 /* map: set all old bits, clear all new bits */ 245 memset(new->map, (int)0xff, old_map_size); 246 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 247 /* nr_deferred: copy old values, clear all new values */ 248 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 249 memset((void *)new->nr_deferred + old_defer_size, 0, 250 defer_size - old_defer_size); 251 252 rcu_assign_pointer(pn->shrinker_info, new); 253 kvfree_rcu(old, rcu); 254 } 255 256 return 0; 257 } 258 259 void free_shrinker_info(struct mem_cgroup *memcg) 260 { 261 struct mem_cgroup_per_node *pn; 262 struct shrinker_info *info; 263 int nid; 264 265 for_each_node(nid) { 266 pn = memcg->nodeinfo[nid]; 267 info = rcu_dereference_protected(pn->shrinker_info, true); 268 kvfree(info); 269 rcu_assign_pointer(pn->shrinker_info, NULL); 270 } 271 } 272 273 int alloc_shrinker_info(struct mem_cgroup *memcg) 274 { 275 struct shrinker_info *info; 276 int nid, size, ret = 0; 277 int map_size, defer_size = 0; 278 279 down_write(&shrinker_rwsem); 280 map_size = shrinker_map_size(shrinker_nr_max); 281 defer_size = shrinker_defer_size(shrinker_nr_max); 282 size = map_size + defer_size; 283 for_each_node(nid) { 284 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 285 if (!info) { 286 free_shrinker_info(memcg); 287 ret = -ENOMEM; 288 break; 289 } 290 info->nr_deferred = (atomic_long_t *)(info + 1); 291 info->map = (void *)info->nr_deferred + defer_size; 292 info->map_nr_max = shrinker_nr_max; 293 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 294 } 295 up_write(&shrinker_rwsem); 296 297 return ret; 298 } 299 300 static int expand_shrinker_info(int new_id) 301 { 302 int ret = 0; 303 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG); 304 int map_size, defer_size = 0; 305 int old_map_size, old_defer_size = 0; 306 struct mem_cgroup *memcg; 307 308 if (!root_mem_cgroup) 309 goto out; 310 311 lockdep_assert_held(&shrinker_rwsem); 312 313 map_size = shrinker_map_size(new_nr_max); 314 defer_size = shrinker_defer_size(new_nr_max); 315 old_map_size = shrinker_map_size(shrinker_nr_max); 316 old_defer_size = shrinker_defer_size(shrinker_nr_max); 317 318 memcg = mem_cgroup_iter(NULL, NULL, NULL); 319 do { 320 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 321 old_map_size, old_defer_size, 322 new_nr_max); 323 if (ret) { 324 mem_cgroup_iter_break(NULL, memcg); 325 goto out; 326 } 327 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 328 out: 329 if (!ret) 330 shrinker_nr_max = new_nr_max; 331 332 return ret; 333 } 334 335 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 336 { 337 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 338 struct shrinker_info *info; 339 340 rcu_read_lock(); 341 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 342 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 } 347 rcu_read_unlock(); 348 } 349 } 350 351 static DEFINE_IDR(shrinker_idr); 352 353 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 354 { 355 int id, ret = -ENOMEM; 356 357 if (mem_cgroup_disabled()) 358 return -ENOSYS; 359 360 down_write(&shrinker_rwsem); 361 /* This may call shrinker, so it must use down_read_trylock() */ 362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 363 if (id < 0) 364 goto unlock; 365 366 if (id >= shrinker_nr_max) { 367 if (expand_shrinker_info(id)) { 368 idr_remove(&shrinker_idr, id); 369 goto unlock; 370 } 371 } 372 shrinker->id = id; 373 ret = 0; 374 unlock: 375 up_write(&shrinker_rwsem); 376 return ret; 377 } 378 379 static void unregister_memcg_shrinker(struct shrinker *shrinker) 380 { 381 int id = shrinker->id; 382 383 BUG_ON(id < 0); 384 385 lockdep_assert_held(&shrinker_rwsem); 386 387 idr_remove(&shrinker_idr, id); 388 } 389 390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 391 struct mem_cgroup *memcg) 392 { 393 struct shrinker_info *info; 394 395 info = shrinker_info_protected(memcg, nid); 396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 397 } 398 399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 400 struct mem_cgroup *memcg) 401 { 402 struct shrinker_info *info; 403 404 info = shrinker_info_protected(memcg, nid); 405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 406 } 407 408 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 409 { 410 int i, nid; 411 long nr; 412 struct mem_cgroup *parent; 413 struct shrinker_info *child_info, *parent_info; 414 415 parent = parent_mem_cgroup(memcg); 416 if (!parent) 417 parent = root_mem_cgroup; 418 419 /* Prevent from concurrent shrinker_info expand */ 420 down_read(&shrinker_rwsem); 421 for_each_node(nid) { 422 child_info = shrinker_info_protected(memcg, nid); 423 parent_info = shrinker_info_protected(parent, nid); 424 for (i = 0; i < child_info->map_nr_max; i++) { 425 nr = atomic_long_read(&child_info->nr_deferred[i]); 426 atomic_long_add(nr, &parent_info->nr_deferred[i]); 427 } 428 } 429 up_read(&shrinker_rwsem); 430 } 431 432 static bool cgroup_reclaim(struct scan_control *sc) 433 { 434 return sc->target_mem_cgroup; 435 } 436 437 static bool global_reclaim(struct scan_control *sc) 438 { 439 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 440 } 441 442 /** 443 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 444 * @sc: scan_control in question 445 * 446 * The normal page dirty throttling mechanism in balance_dirty_pages() is 447 * completely broken with the legacy memcg and direct stalling in 448 * shrink_folio_list() is used for throttling instead, which lacks all the 449 * niceties such as fairness, adaptive pausing, bandwidth proportional 450 * allocation and configurability. 451 * 452 * This function tests whether the vmscan currently in progress can assume 453 * that the normal dirty throttling mechanism is operational. 454 */ 455 static bool writeback_throttling_sane(struct scan_control *sc) 456 { 457 if (!cgroup_reclaim(sc)) 458 return true; 459 #ifdef CONFIG_CGROUP_WRITEBACK 460 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 461 return true; 462 #endif 463 return false; 464 } 465 #else 466 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 467 { 468 return -ENOSYS; 469 } 470 471 static void unregister_memcg_shrinker(struct shrinker *shrinker) 472 { 473 } 474 475 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 482 struct mem_cgroup *memcg) 483 { 484 return 0; 485 } 486 487 static bool cgroup_reclaim(struct scan_control *sc) 488 { 489 return false; 490 } 491 492 static bool global_reclaim(struct scan_control *sc) 493 { 494 return true; 495 } 496 497 static bool writeback_throttling_sane(struct scan_control *sc) 498 { 499 return true; 500 } 501 #endif 502 503 static void set_task_reclaim_state(struct task_struct *task, 504 struct reclaim_state *rs) 505 { 506 /* Check for an overwrite */ 507 WARN_ON_ONCE(rs && task->reclaim_state); 508 509 /* Check for the nulling of an already-nulled member */ 510 WARN_ON_ONCE(!rs && !task->reclaim_state); 511 512 task->reclaim_state = rs; 513 } 514 515 /* 516 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 517 * scan_control->nr_reclaimed. 518 */ 519 static void flush_reclaim_state(struct scan_control *sc) 520 { 521 /* 522 * Currently, reclaim_state->reclaimed includes three types of pages 523 * freed outside of vmscan: 524 * (1) Slab pages. 525 * (2) Clean file pages from pruned inodes (on highmem systems). 526 * (3) XFS freed buffer pages. 527 * 528 * For all of these cases, we cannot universally link the pages to a 529 * single memcg. For example, a memcg-aware shrinker can free one object 530 * charged to the target memcg, causing an entire page to be freed. 531 * If we count the entire page as reclaimed from the memcg, we end up 532 * overestimating the reclaimed amount (potentially under-reclaiming). 533 * 534 * Only count such pages for global reclaim to prevent under-reclaiming 535 * from the target memcg; preventing unnecessary retries during memcg 536 * charging and false positives from proactive reclaim. 537 * 538 * For uncommon cases where the freed pages were actually mostly 539 * charged to the target memcg, we end up underestimating the reclaimed 540 * amount. This should be fine. The freed pages will be uncharged 541 * anyway, even if they are not counted here properly, and we will be 542 * able to make forward progress in charging (which is usually in a 543 * retry loop). 544 * 545 * We can go one step further, and report the uncharged objcg pages in 546 * memcg reclaim, to make reporting more accurate and reduce 547 * underestimation, but it's probably not worth the complexity for now. 548 */ 549 if (current->reclaim_state && global_reclaim(sc)) { 550 sc->nr_reclaimed += current->reclaim_state->reclaimed; 551 current->reclaim_state->reclaimed = 0; 552 } 553 } 554 555 static long xchg_nr_deferred(struct shrinker *shrinker, 556 struct shrink_control *sc) 557 { 558 int nid = sc->nid; 559 560 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 561 nid = 0; 562 563 if (sc->memcg && 564 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 565 return xchg_nr_deferred_memcg(nid, shrinker, 566 sc->memcg); 567 568 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 569 } 570 571 572 static long add_nr_deferred(long nr, struct shrinker *shrinker, 573 struct shrink_control *sc) 574 { 575 int nid = sc->nid; 576 577 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 578 nid = 0; 579 580 if (sc->memcg && 581 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 582 return add_nr_deferred_memcg(nr, nid, shrinker, 583 sc->memcg); 584 585 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 586 } 587 588 static bool can_demote(int nid, struct scan_control *sc) 589 { 590 if (!numa_demotion_enabled) 591 return false; 592 if (sc && sc->no_demotion) 593 return false; 594 if (next_demotion_node(nid) == NUMA_NO_NODE) 595 return false; 596 597 return true; 598 } 599 600 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 601 int nid, 602 struct scan_control *sc) 603 { 604 if (memcg == NULL) { 605 /* 606 * For non-memcg reclaim, is there 607 * space in any swap device? 608 */ 609 if (get_nr_swap_pages() > 0) 610 return true; 611 } else { 612 /* Is the memcg below its swap limit? */ 613 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 614 return true; 615 } 616 617 /* 618 * The page can not be swapped. 619 * 620 * Can it be reclaimed from this node via demotion? 621 */ 622 return can_demote(nid, sc); 623 } 624 625 /* 626 * This misses isolated folios which are not accounted for to save counters. 627 * As the data only determines if reclaim or compaction continues, it is 628 * not expected that isolated folios will be a dominating factor. 629 */ 630 unsigned long zone_reclaimable_pages(struct zone *zone) 631 { 632 unsigned long nr; 633 634 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 635 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 636 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 637 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 638 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 639 640 return nr; 641 } 642 643 /** 644 * lruvec_lru_size - Returns the number of pages on the given LRU list. 645 * @lruvec: lru vector 646 * @lru: lru to use 647 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 648 */ 649 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 650 int zone_idx) 651 { 652 unsigned long size = 0; 653 int zid; 654 655 for (zid = 0; zid <= zone_idx; zid++) { 656 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 657 658 if (!managed_zone(zone)) 659 continue; 660 661 if (!mem_cgroup_disabled()) 662 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 663 else 664 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 665 } 666 return size; 667 } 668 669 /* 670 * Add a shrinker callback to be called from the vm. 671 */ 672 static int __prealloc_shrinker(struct shrinker *shrinker) 673 { 674 unsigned int size; 675 int err; 676 677 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 678 err = prealloc_memcg_shrinker(shrinker); 679 if (err != -ENOSYS) 680 return err; 681 682 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 683 } 684 685 size = sizeof(*shrinker->nr_deferred); 686 if (shrinker->flags & SHRINKER_NUMA_AWARE) 687 size *= nr_node_ids; 688 689 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 690 if (!shrinker->nr_deferred) 691 return -ENOMEM; 692 693 return 0; 694 } 695 696 #ifdef CONFIG_SHRINKER_DEBUG 697 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 698 { 699 va_list ap; 700 int err; 701 702 va_start(ap, fmt); 703 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 704 va_end(ap); 705 if (!shrinker->name) 706 return -ENOMEM; 707 708 err = __prealloc_shrinker(shrinker); 709 if (err) { 710 kfree_const(shrinker->name); 711 shrinker->name = NULL; 712 } 713 714 return err; 715 } 716 #else 717 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 718 { 719 return __prealloc_shrinker(shrinker); 720 } 721 #endif 722 723 void free_prealloced_shrinker(struct shrinker *shrinker) 724 { 725 #ifdef CONFIG_SHRINKER_DEBUG 726 kfree_const(shrinker->name); 727 shrinker->name = NULL; 728 #endif 729 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 730 down_write(&shrinker_rwsem); 731 unregister_memcg_shrinker(shrinker); 732 up_write(&shrinker_rwsem); 733 return; 734 } 735 736 kfree(shrinker->nr_deferred); 737 shrinker->nr_deferred = NULL; 738 } 739 740 void register_shrinker_prepared(struct shrinker *shrinker) 741 { 742 down_write(&shrinker_rwsem); 743 list_add_tail(&shrinker->list, &shrinker_list); 744 shrinker->flags |= SHRINKER_REGISTERED; 745 shrinker_debugfs_add(shrinker); 746 up_write(&shrinker_rwsem); 747 } 748 749 static int __register_shrinker(struct shrinker *shrinker) 750 { 751 int err = __prealloc_shrinker(shrinker); 752 753 if (err) 754 return err; 755 register_shrinker_prepared(shrinker); 756 return 0; 757 } 758 759 #ifdef CONFIG_SHRINKER_DEBUG 760 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 761 { 762 va_list ap; 763 int err; 764 765 va_start(ap, fmt); 766 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 767 va_end(ap); 768 if (!shrinker->name) 769 return -ENOMEM; 770 771 err = __register_shrinker(shrinker); 772 if (err) { 773 kfree_const(shrinker->name); 774 shrinker->name = NULL; 775 } 776 return err; 777 } 778 #else 779 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 780 { 781 return __register_shrinker(shrinker); 782 } 783 #endif 784 EXPORT_SYMBOL(register_shrinker); 785 786 /* 787 * Remove one 788 */ 789 void unregister_shrinker(struct shrinker *shrinker) 790 { 791 struct dentry *debugfs_entry; 792 int debugfs_id; 793 794 if (!(shrinker->flags & SHRINKER_REGISTERED)) 795 return; 796 797 down_write(&shrinker_rwsem); 798 list_del(&shrinker->list); 799 shrinker->flags &= ~SHRINKER_REGISTERED; 800 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 801 unregister_memcg_shrinker(shrinker); 802 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id); 803 up_write(&shrinker_rwsem); 804 805 shrinker_debugfs_remove(debugfs_entry, debugfs_id); 806 807 kfree(shrinker->nr_deferred); 808 shrinker->nr_deferred = NULL; 809 } 810 EXPORT_SYMBOL(unregister_shrinker); 811 812 /** 813 * synchronize_shrinkers - Wait for all running shrinkers to complete. 814 * 815 * This is equivalent to calling unregister_shrink() and register_shrinker(), 816 * but atomically and with less overhead. This is useful to guarantee that all 817 * shrinker invocations have seen an update, before freeing memory, similar to 818 * rcu. 819 */ 820 void synchronize_shrinkers(void) 821 { 822 down_write(&shrinker_rwsem); 823 up_write(&shrinker_rwsem); 824 } 825 EXPORT_SYMBOL(synchronize_shrinkers); 826 827 #define SHRINK_BATCH 128 828 829 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 830 struct shrinker *shrinker, int priority) 831 { 832 unsigned long freed = 0; 833 unsigned long long delta; 834 long total_scan; 835 long freeable; 836 long nr; 837 long new_nr; 838 long batch_size = shrinker->batch ? shrinker->batch 839 : SHRINK_BATCH; 840 long scanned = 0, next_deferred; 841 842 freeable = shrinker->count_objects(shrinker, shrinkctl); 843 if (freeable == 0 || freeable == SHRINK_EMPTY) 844 return freeable; 845 846 /* 847 * copy the current shrinker scan count into a local variable 848 * and zero it so that other concurrent shrinker invocations 849 * don't also do this scanning work. 850 */ 851 nr = xchg_nr_deferred(shrinker, shrinkctl); 852 853 if (shrinker->seeks) { 854 delta = freeable >> priority; 855 delta *= 4; 856 do_div(delta, shrinker->seeks); 857 } else { 858 /* 859 * These objects don't require any IO to create. Trim 860 * them aggressively under memory pressure to keep 861 * them from causing refetches in the IO caches. 862 */ 863 delta = freeable / 2; 864 } 865 866 total_scan = nr >> priority; 867 total_scan += delta; 868 total_scan = min(total_scan, (2 * freeable)); 869 870 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 871 freeable, delta, total_scan, priority); 872 873 /* 874 * Normally, we should not scan less than batch_size objects in one 875 * pass to avoid too frequent shrinker calls, but if the slab has less 876 * than batch_size objects in total and we are really tight on memory, 877 * we will try to reclaim all available objects, otherwise we can end 878 * up failing allocations although there are plenty of reclaimable 879 * objects spread over several slabs with usage less than the 880 * batch_size. 881 * 882 * We detect the "tight on memory" situations by looking at the total 883 * number of objects we want to scan (total_scan). If it is greater 884 * than the total number of objects on slab (freeable), we must be 885 * scanning at high prio and therefore should try to reclaim as much as 886 * possible. 887 */ 888 while (total_scan >= batch_size || 889 total_scan >= freeable) { 890 unsigned long ret; 891 unsigned long nr_to_scan = min(batch_size, total_scan); 892 893 shrinkctl->nr_to_scan = nr_to_scan; 894 shrinkctl->nr_scanned = nr_to_scan; 895 ret = shrinker->scan_objects(shrinker, shrinkctl); 896 if (ret == SHRINK_STOP) 897 break; 898 freed += ret; 899 900 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 901 total_scan -= shrinkctl->nr_scanned; 902 scanned += shrinkctl->nr_scanned; 903 904 cond_resched(); 905 } 906 907 /* 908 * The deferred work is increased by any new work (delta) that wasn't 909 * done, decreased by old deferred work that was done now. 910 * 911 * And it is capped to two times of the freeable items. 912 */ 913 next_deferred = max_t(long, (nr + delta - scanned), 0); 914 next_deferred = min(next_deferred, (2 * freeable)); 915 916 /* 917 * move the unused scan count back into the shrinker in a 918 * manner that handles concurrent updates. 919 */ 920 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 921 922 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 923 return freed; 924 } 925 926 #ifdef CONFIG_MEMCG 927 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 928 struct mem_cgroup *memcg, int priority) 929 { 930 struct shrinker_info *info; 931 unsigned long ret, freed = 0; 932 int i; 933 934 if (!mem_cgroup_online(memcg)) 935 return 0; 936 937 if (!down_read_trylock(&shrinker_rwsem)) 938 return 0; 939 940 info = shrinker_info_protected(memcg, nid); 941 if (unlikely(!info)) 942 goto unlock; 943 944 for_each_set_bit(i, info->map, info->map_nr_max) { 945 struct shrink_control sc = { 946 .gfp_mask = gfp_mask, 947 .nid = nid, 948 .memcg = memcg, 949 }; 950 struct shrinker *shrinker; 951 952 shrinker = idr_find(&shrinker_idr, i); 953 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 954 if (!shrinker) 955 clear_bit(i, info->map); 956 continue; 957 } 958 959 /* Call non-slab shrinkers even though kmem is disabled */ 960 if (!memcg_kmem_online() && 961 !(shrinker->flags & SHRINKER_NONSLAB)) 962 continue; 963 964 ret = do_shrink_slab(&sc, shrinker, priority); 965 if (ret == SHRINK_EMPTY) { 966 clear_bit(i, info->map); 967 /* 968 * After the shrinker reported that it had no objects to 969 * free, but before we cleared the corresponding bit in 970 * the memcg shrinker map, a new object might have been 971 * added. To make sure, we have the bit set in this 972 * case, we invoke the shrinker one more time and reset 973 * the bit if it reports that it is not empty anymore. 974 * The memory barrier here pairs with the barrier in 975 * set_shrinker_bit(): 976 * 977 * list_lru_add() shrink_slab_memcg() 978 * list_add_tail() clear_bit() 979 * <MB> <MB> 980 * set_bit() do_shrink_slab() 981 */ 982 smp_mb__after_atomic(); 983 ret = do_shrink_slab(&sc, shrinker, priority); 984 if (ret == SHRINK_EMPTY) 985 ret = 0; 986 else 987 set_shrinker_bit(memcg, nid, i); 988 } 989 freed += ret; 990 991 if (rwsem_is_contended(&shrinker_rwsem)) { 992 freed = freed ? : 1; 993 break; 994 } 995 } 996 unlock: 997 up_read(&shrinker_rwsem); 998 return freed; 999 } 1000 #else /* CONFIG_MEMCG */ 1001 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 1002 struct mem_cgroup *memcg, int priority) 1003 { 1004 return 0; 1005 } 1006 #endif /* CONFIG_MEMCG */ 1007 1008 /** 1009 * shrink_slab - shrink slab caches 1010 * @gfp_mask: allocation context 1011 * @nid: node whose slab caches to target 1012 * @memcg: memory cgroup whose slab caches to target 1013 * @priority: the reclaim priority 1014 * 1015 * Call the shrink functions to age shrinkable caches. 1016 * 1017 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 1018 * unaware shrinkers will receive a node id of 0 instead. 1019 * 1020 * @memcg specifies the memory cgroup to target. Unaware shrinkers 1021 * are called only if it is the root cgroup. 1022 * 1023 * @priority is sc->priority, we take the number of objects and >> by priority 1024 * in order to get the scan target. 1025 * 1026 * Returns the number of reclaimed slab objects. 1027 */ 1028 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 1029 struct mem_cgroup *memcg, 1030 int priority) 1031 { 1032 unsigned long ret, freed = 0; 1033 struct shrinker *shrinker; 1034 1035 /* 1036 * The root memcg might be allocated even though memcg is disabled 1037 * via "cgroup_disable=memory" boot parameter. This could make 1038 * mem_cgroup_is_root() return false, then just run memcg slab 1039 * shrink, but skip global shrink. This may result in premature 1040 * oom. 1041 */ 1042 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1043 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1044 1045 if (!down_read_trylock(&shrinker_rwsem)) 1046 goto out; 1047 1048 list_for_each_entry(shrinker, &shrinker_list, list) { 1049 struct shrink_control sc = { 1050 .gfp_mask = gfp_mask, 1051 .nid = nid, 1052 .memcg = memcg, 1053 }; 1054 1055 ret = do_shrink_slab(&sc, shrinker, priority); 1056 if (ret == SHRINK_EMPTY) 1057 ret = 0; 1058 freed += ret; 1059 /* 1060 * Bail out if someone want to register a new shrinker to 1061 * prevent the registration from being stalled for long periods 1062 * by parallel ongoing shrinking. 1063 */ 1064 if (rwsem_is_contended(&shrinker_rwsem)) { 1065 freed = freed ? : 1; 1066 break; 1067 } 1068 } 1069 1070 up_read(&shrinker_rwsem); 1071 out: 1072 cond_resched(); 1073 return freed; 1074 } 1075 1076 static unsigned long drop_slab_node(int nid) 1077 { 1078 unsigned long freed = 0; 1079 struct mem_cgroup *memcg = NULL; 1080 1081 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1082 do { 1083 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1084 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1085 1086 return freed; 1087 } 1088 1089 void drop_slab(void) 1090 { 1091 int nid; 1092 int shift = 0; 1093 unsigned long freed; 1094 1095 do { 1096 freed = 0; 1097 for_each_online_node(nid) { 1098 if (fatal_signal_pending(current)) 1099 return; 1100 1101 freed += drop_slab_node(nid); 1102 } 1103 } while ((freed >> shift++) > 1); 1104 } 1105 1106 static int reclaimer_offset(void) 1107 { 1108 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1109 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1110 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1111 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1112 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1113 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1114 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1115 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1116 1117 if (current_is_kswapd()) 1118 return 0; 1119 if (current_is_khugepaged()) 1120 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1121 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1122 } 1123 1124 static inline int is_page_cache_freeable(struct folio *folio) 1125 { 1126 /* 1127 * A freeable page cache folio is referenced only by the caller 1128 * that isolated the folio, the page cache and optional filesystem 1129 * private data at folio->private. 1130 */ 1131 return folio_ref_count(folio) - folio_test_private(folio) == 1132 1 + folio_nr_pages(folio); 1133 } 1134 1135 /* 1136 * We detected a synchronous write error writing a folio out. Probably 1137 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1138 * fsync(), msync() or close(). 1139 * 1140 * The tricky part is that after writepage we cannot touch the mapping: nothing 1141 * prevents it from being freed up. But we have a ref on the folio and once 1142 * that folio is locked, the mapping is pinned. 1143 * 1144 * We're allowed to run sleeping folio_lock() here because we know the caller has 1145 * __GFP_FS. 1146 */ 1147 static void handle_write_error(struct address_space *mapping, 1148 struct folio *folio, int error) 1149 { 1150 folio_lock(folio); 1151 if (folio_mapping(folio) == mapping) 1152 mapping_set_error(mapping, error); 1153 folio_unlock(folio); 1154 } 1155 1156 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1157 { 1158 int reclaimable = 0, write_pending = 0; 1159 int i; 1160 1161 /* 1162 * If kswapd is disabled, reschedule if necessary but do not 1163 * throttle as the system is likely near OOM. 1164 */ 1165 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1166 return true; 1167 1168 /* 1169 * If there are a lot of dirty/writeback folios then do not 1170 * throttle as throttling will occur when the folios cycle 1171 * towards the end of the LRU if still under writeback. 1172 */ 1173 for (i = 0; i < MAX_NR_ZONES; i++) { 1174 struct zone *zone = pgdat->node_zones + i; 1175 1176 if (!managed_zone(zone)) 1177 continue; 1178 1179 reclaimable += zone_reclaimable_pages(zone); 1180 write_pending += zone_page_state_snapshot(zone, 1181 NR_ZONE_WRITE_PENDING); 1182 } 1183 if (2 * write_pending <= reclaimable) 1184 return true; 1185 1186 return false; 1187 } 1188 1189 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1190 { 1191 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1192 long timeout, ret; 1193 DEFINE_WAIT(wait); 1194 1195 /* 1196 * Do not throttle user workers, kthreads other than kswapd or 1197 * workqueues. They may be required for reclaim to make 1198 * forward progress (e.g. journalling workqueues or kthreads). 1199 */ 1200 if (!current_is_kswapd() && 1201 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 1202 cond_resched(); 1203 return; 1204 } 1205 1206 /* 1207 * These figures are pulled out of thin air. 1208 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1209 * parallel reclaimers which is a short-lived event so the timeout is 1210 * short. Failing to make progress or waiting on writeback are 1211 * potentially long-lived events so use a longer timeout. This is shaky 1212 * logic as a failure to make progress could be due to anything from 1213 * writeback to a slow device to excessive referenced folios at the tail 1214 * of the inactive LRU. 1215 */ 1216 switch(reason) { 1217 case VMSCAN_THROTTLE_WRITEBACK: 1218 timeout = HZ/10; 1219 1220 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1221 WRITE_ONCE(pgdat->nr_reclaim_start, 1222 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1223 } 1224 1225 break; 1226 case VMSCAN_THROTTLE_CONGESTED: 1227 fallthrough; 1228 case VMSCAN_THROTTLE_NOPROGRESS: 1229 if (skip_throttle_noprogress(pgdat)) { 1230 cond_resched(); 1231 return; 1232 } 1233 1234 timeout = 1; 1235 1236 break; 1237 case VMSCAN_THROTTLE_ISOLATED: 1238 timeout = HZ/50; 1239 break; 1240 default: 1241 WARN_ON_ONCE(1); 1242 timeout = HZ; 1243 break; 1244 } 1245 1246 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1247 ret = schedule_timeout(timeout); 1248 finish_wait(wqh, &wait); 1249 1250 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1251 atomic_dec(&pgdat->nr_writeback_throttled); 1252 1253 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1254 jiffies_to_usecs(timeout - ret), 1255 reason); 1256 } 1257 1258 /* 1259 * Account for folios written if tasks are throttled waiting on dirty 1260 * folios to clean. If enough folios have been cleaned since throttling 1261 * started then wakeup the throttled tasks. 1262 */ 1263 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1264 int nr_throttled) 1265 { 1266 unsigned long nr_written; 1267 1268 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1269 1270 /* 1271 * This is an inaccurate read as the per-cpu deltas may not 1272 * be synchronised. However, given that the system is 1273 * writeback throttled, it is not worth taking the penalty 1274 * of getting an accurate count. At worst, the throttle 1275 * timeout guarantees forward progress. 1276 */ 1277 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1278 READ_ONCE(pgdat->nr_reclaim_start); 1279 1280 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1281 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1282 } 1283 1284 /* possible outcome of pageout() */ 1285 typedef enum { 1286 /* failed to write folio out, folio is locked */ 1287 PAGE_KEEP, 1288 /* move folio to the active list, folio is locked */ 1289 PAGE_ACTIVATE, 1290 /* folio has been sent to the disk successfully, folio is unlocked */ 1291 PAGE_SUCCESS, 1292 /* folio is clean and locked */ 1293 PAGE_CLEAN, 1294 } pageout_t; 1295 1296 /* 1297 * pageout is called by shrink_folio_list() for each dirty folio. 1298 * Calls ->writepage(). 1299 */ 1300 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1301 struct swap_iocb **plug) 1302 { 1303 /* 1304 * If the folio is dirty, only perform writeback if that write 1305 * will be non-blocking. To prevent this allocation from being 1306 * stalled by pagecache activity. But note that there may be 1307 * stalls if we need to run get_block(). We could test 1308 * PagePrivate for that. 1309 * 1310 * If this process is currently in __generic_file_write_iter() against 1311 * this folio's queue, we can perform writeback even if that 1312 * will block. 1313 * 1314 * If the folio is swapcache, write it back even if that would 1315 * block, for some throttling. This happens by accident, because 1316 * swap_backing_dev_info is bust: it doesn't reflect the 1317 * congestion state of the swapdevs. Easy to fix, if needed. 1318 */ 1319 if (!is_page_cache_freeable(folio)) 1320 return PAGE_KEEP; 1321 if (!mapping) { 1322 /* 1323 * Some data journaling orphaned folios can have 1324 * folio->mapping == NULL while being dirty with clean buffers. 1325 */ 1326 if (folio_test_private(folio)) { 1327 if (try_to_free_buffers(folio)) { 1328 folio_clear_dirty(folio); 1329 pr_info("%s: orphaned folio\n", __func__); 1330 return PAGE_CLEAN; 1331 } 1332 } 1333 return PAGE_KEEP; 1334 } 1335 if (mapping->a_ops->writepage == NULL) 1336 return PAGE_ACTIVATE; 1337 1338 if (folio_clear_dirty_for_io(folio)) { 1339 int res; 1340 struct writeback_control wbc = { 1341 .sync_mode = WB_SYNC_NONE, 1342 .nr_to_write = SWAP_CLUSTER_MAX, 1343 .range_start = 0, 1344 .range_end = LLONG_MAX, 1345 .for_reclaim = 1, 1346 .swap_plug = plug, 1347 }; 1348 1349 folio_set_reclaim(folio); 1350 res = mapping->a_ops->writepage(&folio->page, &wbc); 1351 if (res < 0) 1352 handle_write_error(mapping, folio, res); 1353 if (res == AOP_WRITEPAGE_ACTIVATE) { 1354 folio_clear_reclaim(folio); 1355 return PAGE_ACTIVATE; 1356 } 1357 1358 if (!folio_test_writeback(folio)) { 1359 /* synchronous write or broken a_ops? */ 1360 folio_clear_reclaim(folio); 1361 } 1362 trace_mm_vmscan_write_folio(folio); 1363 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1364 return PAGE_SUCCESS; 1365 } 1366 1367 return PAGE_CLEAN; 1368 } 1369 1370 /* 1371 * Same as remove_mapping, but if the folio is removed from the mapping, it 1372 * gets returned with a refcount of 0. 1373 */ 1374 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1375 bool reclaimed, struct mem_cgroup *target_memcg) 1376 { 1377 int refcount; 1378 void *shadow = NULL; 1379 1380 BUG_ON(!folio_test_locked(folio)); 1381 BUG_ON(mapping != folio_mapping(folio)); 1382 1383 if (!folio_test_swapcache(folio)) 1384 spin_lock(&mapping->host->i_lock); 1385 xa_lock_irq(&mapping->i_pages); 1386 /* 1387 * The non racy check for a busy folio. 1388 * 1389 * Must be careful with the order of the tests. When someone has 1390 * a ref to the folio, it may be possible that they dirty it then 1391 * drop the reference. So if the dirty flag is tested before the 1392 * refcount here, then the following race may occur: 1393 * 1394 * get_user_pages(&page); 1395 * [user mapping goes away] 1396 * write_to(page); 1397 * !folio_test_dirty(folio) [good] 1398 * folio_set_dirty(folio); 1399 * folio_put(folio); 1400 * !refcount(folio) [good, discard it] 1401 * 1402 * [oops, our write_to data is lost] 1403 * 1404 * Reversing the order of the tests ensures such a situation cannot 1405 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1406 * load is not satisfied before that of folio->_refcount. 1407 * 1408 * Note that if the dirty flag is always set via folio_mark_dirty, 1409 * and thus under the i_pages lock, then this ordering is not required. 1410 */ 1411 refcount = 1 + folio_nr_pages(folio); 1412 if (!folio_ref_freeze(folio, refcount)) 1413 goto cannot_free; 1414 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1415 if (unlikely(folio_test_dirty(folio))) { 1416 folio_ref_unfreeze(folio, refcount); 1417 goto cannot_free; 1418 } 1419 1420 if (folio_test_swapcache(folio)) { 1421 swp_entry_t swap = folio_swap_entry(folio); 1422 1423 if (reclaimed && !mapping_exiting(mapping)) 1424 shadow = workingset_eviction(folio, target_memcg); 1425 __delete_from_swap_cache(folio, swap, shadow); 1426 mem_cgroup_swapout(folio, swap); 1427 xa_unlock_irq(&mapping->i_pages); 1428 put_swap_folio(folio, swap); 1429 } else { 1430 void (*free_folio)(struct folio *); 1431 1432 free_folio = mapping->a_ops->free_folio; 1433 /* 1434 * Remember a shadow entry for reclaimed file cache in 1435 * order to detect refaults, thus thrashing, later on. 1436 * 1437 * But don't store shadows in an address space that is 1438 * already exiting. This is not just an optimization, 1439 * inode reclaim needs to empty out the radix tree or 1440 * the nodes are lost. Don't plant shadows behind its 1441 * back. 1442 * 1443 * We also don't store shadows for DAX mappings because the 1444 * only page cache folios found in these are zero pages 1445 * covering holes, and because we don't want to mix DAX 1446 * exceptional entries and shadow exceptional entries in the 1447 * same address_space. 1448 */ 1449 if (reclaimed && folio_is_file_lru(folio) && 1450 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1451 shadow = workingset_eviction(folio, target_memcg); 1452 __filemap_remove_folio(folio, shadow); 1453 xa_unlock_irq(&mapping->i_pages); 1454 if (mapping_shrinkable(mapping)) 1455 inode_add_lru(mapping->host); 1456 spin_unlock(&mapping->host->i_lock); 1457 1458 if (free_folio) 1459 free_folio(folio); 1460 } 1461 1462 return 1; 1463 1464 cannot_free: 1465 xa_unlock_irq(&mapping->i_pages); 1466 if (!folio_test_swapcache(folio)) 1467 spin_unlock(&mapping->host->i_lock); 1468 return 0; 1469 } 1470 1471 /** 1472 * remove_mapping() - Attempt to remove a folio from its mapping. 1473 * @mapping: The address space. 1474 * @folio: The folio to remove. 1475 * 1476 * If the folio is dirty, under writeback or if someone else has a ref 1477 * on it, removal will fail. 1478 * Return: The number of pages removed from the mapping. 0 if the folio 1479 * could not be removed. 1480 * Context: The caller should have a single refcount on the folio and 1481 * hold its lock. 1482 */ 1483 long remove_mapping(struct address_space *mapping, struct folio *folio) 1484 { 1485 if (__remove_mapping(mapping, folio, false, NULL)) { 1486 /* 1487 * Unfreezing the refcount with 1 effectively 1488 * drops the pagecache ref for us without requiring another 1489 * atomic operation. 1490 */ 1491 folio_ref_unfreeze(folio, 1); 1492 return folio_nr_pages(folio); 1493 } 1494 return 0; 1495 } 1496 1497 /** 1498 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1499 * @folio: Folio to be returned to an LRU list. 1500 * 1501 * Add previously isolated @folio to appropriate LRU list. 1502 * The folio may still be unevictable for other reasons. 1503 * 1504 * Context: lru_lock must not be held, interrupts must be enabled. 1505 */ 1506 void folio_putback_lru(struct folio *folio) 1507 { 1508 folio_add_lru(folio); 1509 folio_put(folio); /* drop ref from isolate */ 1510 } 1511 1512 enum folio_references { 1513 FOLIOREF_RECLAIM, 1514 FOLIOREF_RECLAIM_CLEAN, 1515 FOLIOREF_KEEP, 1516 FOLIOREF_ACTIVATE, 1517 }; 1518 1519 static enum folio_references folio_check_references(struct folio *folio, 1520 struct scan_control *sc) 1521 { 1522 int referenced_ptes, referenced_folio; 1523 unsigned long vm_flags; 1524 1525 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1526 &vm_flags); 1527 referenced_folio = folio_test_clear_referenced(folio); 1528 1529 /* 1530 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1531 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1532 */ 1533 if (vm_flags & VM_LOCKED) 1534 return FOLIOREF_ACTIVATE; 1535 1536 /* rmap lock contention: rotate */ 1537 if (referenced_ptes == -1) 1538 return FOLIOREF_KEEP; 1539 1540 if (referenced_ptes) { 1541 /* 1542 * All mapped folios start out with page table 1543 * references from the instantiating fault, so we need 1544 * to look twice if a mapped file/anon folio is used more 1545 * than once. 1546 * 1547 * Mark it and spare it for another trip around the 1548 * inactive list. Another page table reference will 1549 * lead to its activation. 1550 * 1551 * Note: the mark is set for activated folios as well 1552 * so that recently deactivated but used folios are 1553 * quickly recovered. 1554 */ 1555 folio_set_referenced(folio); 1556 1557 if (referenced_folio || referenced_ptes > 1) 1558 return FOLIOREF_ACTIVATE; 1559 1560 /* 1561 * Activate file-backed executable folios after first usage. 1562 */ 1563 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1564 return FOLIOREF_ACTIVATE; 1565 1566 return FOLIOREF_KEEP; 1567 } 1568 1569 /* Reclaim if clean, defer dirty folios to writeback */ 1570 if (referenced_folio && folio_is_file_lru(folio)) 1571 return FOLIOREF_RECLAIM_CLEAN; 1572 1573 return FOLIOREF_RECLAIM; 1574 } 1575 1576 /* Check if a folio is dirty or under writeback */ 1577 static void folio_check_dirty_writeback(struct folio *folio, 1578 bool *dirty, bool *writeback) 1579 { 1580 struct address_space *mapping; 1581 1582 /* 1583 * Anonymous folios are not handled by flushers and must be written 1584 * from reclaim context. Do not stall reclaim based on them. 1585 * MADV_FREE anonymous folios are put into inactive file list too. 1586 * They could be mistakenly treated as file lru. So further anon 1587 * test is needed. 1588 */ 1589 if (!folio_is_file_lru(folio) || 1590 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1591 *dirty = false; 1592 *writeback = false; 1593 return; 1594 } 1595 1596 /* By default assume that the folio flags are accurate */ 1597 *dirty = folio_test_dirty(folio); 1598 *writeback = folio_test_writeback(folio); 1599 1600 /* Verify dirty/writeback state if the filesystem supports it */ 1601 if (!folio_test_private(folio)) 1602 return; 1603 1604 mapping = folio_mapping(folio); 1605 if (mapping && mapping->a_ops->is_dirty_writeback) 1606 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1607 } 1608 1609 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1610 { 1611 struct page *target_page; 1612 nodemask_t *allowed_mask; 1613 struct migration_target_control *mtc; 1614 1615 mtc = (struct migration_target_control *)private; 1616 1617 allowed_mask = mtc->nmask; 1618 /* 1619 * make sure we allocate from the target node first also trying to 1620 * demote or reclaim pages from the target node via kswapd if we are 1621 * low on free memory on target node. If we don't do this and if 1622 * we have free memory on the slower(lower) memtier, we would start 1623 * allocating pages from slower(lower) memory tiers without even forcing 1624 * a demotion of cold pages from the target memtier. This can result 1625 * in the kernel placing hot pages in slower(lower) memory tiers. 1626 */ 1627 mtc->nmask = NULL; 1628 mtc->gfp_mask |= __GFP_THISNODE; 1629 target_page = alloc_migration_target(page, (unsigned long)mtc); 1630 if (target_page) 1631 return target_page; 1632 1633 mtc->gfp_mask &= ~__GFP_THISNODE; 1634 mtc->nmask = allowed_mask; 1635 1636 return alloc_migration_target(page, (unsigned long)mtc); 1637 } 1638 1639 /* 1640 * Take folios on @demote_folios and attempt to demote them to another node. 1641 * Folios which are not demoted are left on @demote_folios. 1642 */ 1643 static unsigned int demote_folio_list(struct list_head *demote_folios, 1644 struct pglist_data *pgdat) 1645 { 1646 int target_nid = next_demotion_node(pgdat->node_id); 1647 unsigned int nr_succeeded; 1648 nodemask_t allowed_mask; 1649 1650 struct migration_target_control mtc = { 1651 /* 1652 * Allocate from 'node', or fail quickly and quietly. 1653 * When this happens, 'page' will likely just be discarded 1654 * instead of migrated. 1655 */ 1656 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1657 __GFP_NOMEMALLOC | GFP_NOWAIT, 1658 .nid = target_nid, 1659 .nmask = &allowed_mask 1660 }; 1661 1662 if (list_empty(demote_folios)) 1663 return 0; 1664 1665 if (target_nid == NUMA_NO_NODE) 1666 return 0; 1667 1668 node_get_allowed_targets(pgdat, &allowed_mask); 1669 1670 /* Demotion ignores all cpuset and mempolicy settings */ 1671 migrate_pages(demote_folios, alloc_demote_page, NULL, 1672 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1673 &nr_succeeded); 1674 1675 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1676 1677 return nr_succeeded; 1678 } 1679 1680 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1681 { 1682 if (gfp_mask & __GFP_FS) 1683 return true; 1684 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1685 return false; 1686 /* 1687 * We can "enter_fs" for swap-cache with only __GFP_IO 1688 * providing this isn't SWP_FS_OPS. 1689 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1690 * but that will never affect SWP_FS_OPS, so the data_race 1691 * is safe. 1692 */ 1693 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1694 } 1695 1696 /* 1697 * shrink_folio_list() returns the number of reclaimed pages 1698 */ 1699 static unsigned int shrink_folio_list(struct list_head *folio_list, 1700 struct pglist_data *pgdat, struct scan_control *sc, 1701 struct reclaim_stat *stat, bool ignore_references) 1702 { 1703 LIST_HEAD(ret_folios); 1704 LIST_HEAD(free_folios); 1705 LIST_HEAD(demote_folios); 1706 unsigned int nr_reclaimed = 0; 1707 unsigned int pgactivate = 0; 1708 bool do_demote_pass; 1709 struct swap_iocb *plug = NULL; 1710 1711 memset(stat, 0, sizeof(*stat)); 1712 cond_resched(); 1713 do_demote_pass = can_demote(pgdat->node_id, sc); 1714 1715 retry: 1716 while (!list_empty(folio_list)) { 1717 struct address_space *mapping; 1718 struct folio *folio; 1719 enum folio_references references = FOLIOREF_RECLAIM; 1720 bool dirty, writeback; 1721 unsigned int nr_pages; 1722 1723 cond_resched(); 1724 1725 folio = lru_to_folio(folio_list); 1726 list_del(&folio->lru); 1727 1728 if (!folio_trylock(folio)) 1729 goto keep; 1730 1731 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1732 1733 nr_pages = folio_nr_pages(folio); 1734 1735 /* Account the number of base pages */ 1736 sc->nr_scanned += nr_pages; 1737 1738 if (unlikely(!folio_evictable(folio))) 1739 goto activate_locked; 1740 1741 if (!sc->may_unmap && folio_mapped(folio)) 1742 goto keep_locked; 1743 1744 /* folio_update_gen() tried to promote this page? */ 1745 if (lru_gen_enabled() && !ignore_references && 1746 folio_mapped(folio) && folio_test_referenced(folio)) 1747 goto keep_locked; 1748 1749 /* 1750 * The number of dirty pages determines if a node is marked 1751 * reclaim_congested. kswapd will stall and start writing 1752 * folios if the tail of the LRU is all dirty unqueued folios. 1753 */ 1754 folio_check_dirty_writeback(folio, &dirty, &writeback); 1755 if (dirty || writeback) 1756 stat->nr_dirty += nr_pages; 1757 1758 if (dirty && !writeback) 1759 stat->nr_unqueued_dirty += nr_pages; 1760 1761 /* 1762 * Treat this folio as congested if folios are cycling 1763 * through the LRU so quickly that the folios marked 1764 * for immediate reclaim are making it to the end of 1765 * the LRU a second time. 1766 */ 1767 if (writeback && folio_test_reclaim(folio)) 1768 stat->nr_congested += nr_pages; 1769 1770 /* 1771 * If a folio at the tail of the LRU is under writeback, there 1772 * are three cases to consider. 1773 * 1774 * 1) If reclaim is encountering an excessive number 1775 * of folios under writeback and this folio has both 1776 * the writeback and reclaim flags set, then it 1777 * indicates that folios are being queued for I/O but 1778 * are being recycled through the LRU before the I/O 1779 * can complete. Waiting on the folio itself risks an 1780 * indefinite stall if it is impossible to writeback 1781 * the folio due to I/O error or disconnected storage 1782 * so instead note that the LRU is being scanned too 1783 * quickly and the caller can stall after the folio 1784 * list has been processed. 1785 * 1786 * 2) Global or new memcg reclaim encounters a folio that is 1787 * not marked for immediate reclaim, or the caller does not 1788 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1789 * not to fs). In this case mark the folio for immediate 1790 * reclaim and continue scanning. 1791 * 1792 * Require may_enter_fs() because we would wait on fs, which 1793 * may not have submitted I/O yet. And the loop driver might 1794 * enter reclaim, and deadlock if it waits on a folio for 1795 * which it is needed to do the write (loop masks off 1796 * __GFP_IO|__GFP_FS for this reason); but more thought 1797 * would probably show more reasons. 1798 * 1799 * 3) Legacy memcg encounters a folio that already has the 1800 * reclaim flag set. memcg does not have any dirty folio 1801 * throttling so we could easily OOM just because too many 1802 * folios are in writeback and there is nothing else to 1803 * reclaim. Wait for the writeback to complete. 1804 * 1805 * In cases 1) and 2) we activate the folios to get them out of 1806 * the way while we continue scanning for clean folios on the 1807 * inactive list and refilling from the active list. The 1808 * observation here is that waiting for disk writes is more 1809 * expensive than potentially causing reloads down the line. 1810 * Since they're marked for immediate reclaim, they won't put 1811 * memory pressure on the cache working set any longer than it 1812 * takes to write them to disk. 1813 */ 1814 if (folio_test_writeback(folio)) { 1815 /* Case 1 above */ 1816 if (current_is_kswapd() && 1817 folio_test_reclaim(folio) && 1818 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1819 stat->nr_immediate += nr_pages; 1820 goto activate_locked; 1821 1822 /* Case 2 above */ 1823 } else if (writeback_throttling_sane(sc) || 1824 !folio_test_reclaim(folio) || 1825 !may_enter_fs(folio, sc->gfp_mask)) { 1826 /* 1827 * This is slightly racy - 1828 * folio_end_writeback() might have 1829 * just cleared the reclaim flag, then 1830 * setting the reclaim flag here ends up 1831 * interpreted as the readahead flag - but 1832 * that does not matter enough to care. 1833 * What we do want is for this folio to 1834 * have the reclaim flag set next time 1835 * memcg reclaim reaches the tests above, 1836 * so it will then wait for writeback to 1837 * avoid OOM; and it's also appropriate 1838 * in global reclaim. 1839 */ 1840 folio_set_reclaim(folio); 1841 stat->nr_writeback += nr_pages; 1842 goto activate_locked; 1843 1844 /* Case 3 above */ 1845 } else { 1846 folio_unlock(folio); 1847 folio_wait_writeback(folio); 1848 /* then go back and try same folio again */ 1849 list_add_tail(&folio->lru, folio_list); 1850 continue; 1851 } 1852 } 1853 1854 if (!ignore_references) 1855 references = folio_check_references(folio, sc); 1856 1857 switch (references) { 1858 case FOLIOREF_ACTIVATE: 1859 goto activate_locked; 1860 case FOLIOREF_KEEP: 1861 stat->nr_ref_keep += nr_pages; 1862 goto keep_locked; 1863 case FOLIOREF_RECLAIM: 1864 case FOLIOREF_RECLAIM_CLEAN: 1865 ; /* try to reclaim the folio below */ 1866 } 1867 1868 /* 1869 * Before reclaiming the folio, try to relocate 1870 * its contents to another node. 1871 */ 1872 if (do_demote_pass && 1873 (thp_migration_supported() || !folio_test_large(folio))) { 1874 list_add(&folio->lru, &demote_folios); 1875 folio_unlock(folio); 1876 continue; 1877 } 1878 1879 /* 1880 * Anonymous process memory has backing store? 1881 * Try to allocate it some swap space here. 1882 * Lazyfree folio could be freed directly 1883 */ 1884 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1885 if (!folio_test_swapcache(folio)) { 1886 if (!(sc->gfp_mask & __GFP_IO)) 1887 goto keep_locked; 1888 if (folio_maybe_dma_pinned(folio)) 1889 goto keep_locked; 1890 if (folio_test_large(folio)) { 1891 /* cannot split folio, skip it */ 1892 if (!can_split_folio(folio, NULL)) 1893 goto activate_locked; 1894 /* 1895 * Split folios without a PMD map right 1896 * away. Chances are some or all of the 1897 * tail pages can be freed without IO. 1898 */ 1899 if (!folio_entire_mapcount(folio) && 1900 split_folio_to_list(folio, 1901 folio_list)) 1902 goto activate_locked; 1903 } 1904 if (!add_to_swap(folio)) { 1905 if (!folio_test_large(folio)) 1906 goto activate_locked_split; 1907 /* Fallback to swap normal pages */ 1908 if (split_folio_to_list(folio, 1909 folio_list)) 1910 goto activate_locked; 1911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1912 count_vm_event(THP_SWPOUT_FALLBACK); 1913 #endif 1914 if (!add_to_swap(folio)) 1915 goto activate_locked_split; 1916 } 1917 } 1918 } else if (folio_test_swapbacked(folio) && 1919 folio_test_large(folio)) { 1920 /* Split shmem folio */ 1921 if (split_folio_to_list(folio, folio_list)) 1922 goto keep_locked; 1923 } 1924 1925 /* 1926 * If the folio was split above, the tail pages will make 1927 * their own pass through this function and be accounted 1928 * then. 1929 */ 1930 if ((nr_pages > 1) && !folio_test_large(folio)) { 1931 sc->nr_scanned -= (nr_pages - 1); 1932 nr_pages = 1; 1933 } 1934 1935 /* 1936 * The folio is mapped into the page tables of one or more 1937 * processes. Try to unmap it here. 1938 */ 1939 if (folio_mapped(folio)) { 1940 enum ttu_flags flags = TTU_BATCH_FLUSH; 1941 bool was_swapbacked = folio_test_swapbacked(folio); 1942 1943 if (folio_test_pmd_mappable(folio)) 1944 flags |= TTU_SPLIT_HUGE_PMD; 1945 1946 try_to_unmap(folio, flags); 1947 if (folio_mapped(folio)) { 1948 stat->nr_unmap_fail += nr_pages; 1949 if (!was_swapbacked && 1950 folio_test_swapbacked(folio)) 1951 stat->nr_lazyfree_fail += nr_pages; 1952 goto activate_locked; 1953 } 1954 } 1955 1956 /* 1957 * Folio is unmapped now so it cannot be newly pinned anymore. 1958 * No point in trying to reclaim folio if it is pinned. 1959 * Furthermore we don't want to reclaim underlying fs metadata 1960 * if the folio is pinned and thus potentially modified by the 1961 * pinning process as that may upset the filesystem. 1962 */ 1963 if (folio_maybe_dma_pinned(folio)) 1964 goto activate_locked; 1965 1966 mapping = folio_mapping(folio); 1967 if (folio_test_dirty(folio)) { 1968 /* 1969 * Only kswapd can writeback filesystem folios 1970 * to avoid risk of stack overflow. But avoid 1971 * injecting inefficient single-folio I/O into 1972 * flusher writeback as much as possible: only 1973 * write folios when we've encountered many 1974 * dirty folios, and when we've already scanned 1975 * the rest of the LRU for clean folios and see 1976 * the same dirty folios again (with the reclaim 1977 * flag set). 1978 */ 1979 if (folio_is_file_lru(folio) && 1980 (!current_is_kswapd() || 1981 !folio_test_reclaim(folio) || 1982 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1983 /* 1984 * Immediately reclaim when written back. 1985 * Similar in principle to folio_deactivate() 1986 * except we already have the folio isolated 1987 * and know it's dirty 1988 */ 1989 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1990 nr_pages); 1991 folio_set_reclaim(folio); 1992 1993 goto activate_locked; 1994 } 1995 1996 if (references == FOLIOREF_RECLAIM_CLEAN) 1997 goto keep_locked; 1998 if (!may_enter_fs(folio, sc->gfp_mask)) 1999 goto keep_locked; 2000 if (!sc->may_writepage) 2001 goto keep_locked; 2002 2003 /* 2004 * Folio is dirty. Flush the TLB if a writable entry 2005 * potentially exists to avoid CPU writes after I/O 2006 * starts and then write it out here. 2007 */ 2008 try_to_unmap_flush_dirty(); 2009 switch (pageout(folio, mapping, &plug)) { 2010 case PAGE_KEEP: 2011 goto keep_locked; 2012 case PAGE_ACTIVATE: 2013 goto activate_locked; 2014 case PAGE_SUCCESS: 2015 stat->nr_pageout += nr_pages; 2016 2017 if (folio_test_writeback(folio)) 2018 goto keep; 2019 if (folio_test_dirty(folio)) 2020 goto keep; 2021 2022 /* 2023 * A synchronous write - probably a ramdisk. Go 2024 * ahead and try to reclaim the folio. 2025 */ 2026 if (!folio_trylock(folio)) 2027 goto keep; 2028 if (folio_test_dirty(folio) || 2029 folio_test_writeback(folio)) 2030 goto keep_locked; 2031 mapping = folio_mapping(folio); 2032 fallthrough; 2033 case PAGE_CLEAN: 2034 ; /* try to free the folio below */ 2035 } 2036 } 2037 2038 /* 2039 * If the folio has buffers, try to free the buffer 2040 * mappings associated with this folio. If we succeed 2041 * we try to free the folio as well. 2042 * 2043 * We do this even if the folio is dirty. 2044 * filemap_release_folio() does not perform I/O, but it 2045 * is possible for a folio to have the dirty flag set, 2046 * but it is actually clean (all its buffers are clean). 2047 * This happens if the buffers were written out directly, 2048 * with submit_bh(). ext3 will do this, as well as 2049 * the blockdev mapping. filemap_release_folio() will 2050 * discover that cleanness and will drop the buffers 2051 * and mark the folio clean - it can be freed. 2052 * 2053 * Rarely, folios can have buffers and no ->mapping. 2054 * These are the folios which were not successfully 2055 * invalidated in truncate_cleanup_folio(). We try to 2056 * drop those buffers here and if that worked, and the 2057 * folio is no longer mapped into process address space 2058 * (refcount == 1) it can be freed. Otherwise, leave 2059 * the folio on the LRU so it is swappable. 2060 */ 2061 if (folio_has_private(folio)) { 2062 if (!filemap_release_folio(folio, sc->gfp_mask)) 2063 goto activate_locked; 2064 if (!mapping && folio_ref_count(folio) == 1) { 2065 folio_unlock(folio); 2066 if (folio_put_testzero(folio)) 2067 goto free_it; 2068 else { 2069 /* 2070 * rare race with speculative reference. 2071 * the speculative reference will free 2072 * this folio shortly, so we may 2073 * increment nr_reclaimed here (and 2074 * leave it off the LRU). 2075 */ 2076 nr_reclaimed += nr_pages; 2077 continue; 2078 } 2079 } 2080 } 2081 2082 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2083 /* follow __remove_mapping for reference */ 2084 if (!folio_ref_freeze(folio, 1)) 2085 goto keep_locked; 2086 /* 2087 * The folio has only one reference left, which is 2088 * from the isolation. After the caller puts the 2089 * folio back on the lru and drops the reference, the 2090 * folio will be freed anyway. It doesn't matter 2091 * which lru it goes on. So we don't bother checking 2092 * the dirty flag here. 2093 */ 2094 count_vm_events(PGLAZYFREED, nr_pages); 2095 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2096 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2097 sc->target_mem_cgroup)) 2098 goto keep_locked; 2099 2100 folio_unlock(folio); 2101 free_it: 2102 /* 2103 * Folio may get swapped out as a whole, need to account 2104 * all pages in it. 2105 */ 2106 nr_reclaimed += nr_pages; 2107 2108 /* 2109 * Is there need to periodically free_folio_list? It would 2110 * appear not as the counts should be low 2111 */ 2112 if (unlikely(folio_test_large(folio))) 2113 destroy_large_folio(folio); 2114 else 2115 list_add(&folio->lru, &free_folios); 2116 continue; 2117 2118 activate_locked_split: 2119 /* 2120 * The tail pages that are failed to add into swap cache 2121 * reach here. Fixup nr_scanned and nr_pages. 2122 */ 2123 if (nr_pages > 1) { 2124 sc->nr_scanned -= (nr_pages - 1); 2125 nr_pages = 1; 2126 } 2127 activate_locked: 2128 /* Not a candidate for swapping, so reclaim swap space. */ 2129 if (folio_test_swapcache(folio) && 2130 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2131 folio_free_swap(folio); 2132 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2133 if (!folio_test_mlocked(folio)) { 2134 int type = folio_is_file_lru(folio); 2135 folio_set_active(folio); 2136 stat->nr_activate[type] += nr_pages; 2137 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2138 } 2139 keep_locked: 2140 folio_unlock(folio); 2141 keep: 2142 list_add(&folio->lru, &ret_folios); 2143 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2144 folio_test_unevictable(folio), folio); 2145 } 2146 /* 'folio_list' is always empty here */ 2147 2148 /* Migrate folios selected for demotion */ 2149 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2150 /* Folios that could not be demoted are still in @demote_folios */ 2151 if (!list_empty(&demote_folios)) { 2152 /* Folios which weren't demoted go back on @folio_list */ 2153 list_splice_init(&demote_folios, folio_list); 2154 2155 /* 2156 * goto retry to reclaim the undemoted folios in folio_list if 2157 * desired. 2158 * 2159 * Reclaiming directly from top tier nodes is not often desired 2160 * due to it breaking the LRU ordering: in general memory 2161 * should be reclaimed from lower tier nodes and demoted from 2162 * top tier nodes. 2163 * 2164 * However, disabling reclaim from top tier nodes entirely 2165 * would cause ooms in edge scenarios where lower tier memory 2166 * is unreclaimable for whatever reason, eg memory being 2167 * mlocked or too hot to reclaim. We can disable reclaim 2168 * from top tier nodes in proactive reclaim though as that is 2169 * not real memory pressure. 2170 */ 2171 if (!sc->proactive) { 2172 do_demote_pass = false; 2173 goto retry; 2174 } 2175 } 2176 2177 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2178 2179 mem_cgroup_uncharge_list(&free_folios); 2180 try_to_unmap_flush(); 2181 free_unref_page_list(&free_folios); 2182 2183 list_splice(&ret_folios, folio_list); 2184 count_vm_events(PGACTIVATE, pgactivate); 2185 2186 if (plug) 2187 swap_write_unplug(plug); 2188 return nr_reclaimed; 2189 } 2190 2191 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2192 struct list_head *folio_list) 2193 { 2194 struct scan_control sc = { 2195 .gfp_mask = GFP_KERNEL, 2196 .may_unmap = 1, 2197 }; 2198 struct reclaim_stat stat; 2199 unsigned int nr_reclaimed; 2200 struct folio *folio, *next; 2201 LIST_HEAD(clean_folios); 2202 unsigned int noreclaim_flag; 2203 2204 list_for_each_entry_safe(folio, next, folio_list, lru) { 2205 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2206 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2207 !folio_test_unevictable(folio)) { 2208 folio_clear_active(folio); 2209 list_move(&folio->lru, &clean_folios); 2210 } 2211 } 2212 2213 /* 2214 * We should be safe here since we are only dealing with file pages and 2215 * we are not kswapd and therefore cannot write dirty file pages. But 2216 * call memalloc_noreclaim_save() anyway, just in case these conditions 2217 * change in the future. 2218 */ 2219 noreclaim_flag = memalloc_noreclaim_save(); 2220 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2221 &stat, true); 2222 memalloc_noreclaim_restore(noreclaim_flag); 2223 2224 list_splice(&clean_folios, folio_list); 2225 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2226 -(long)nr_reclaimed); 2227 /* 2228 * Since lazyfree pages are isolated from file LRU from the beginning, 2229 * they will rotate back to anonymous LRU in the end if it failed to 2230 * discard so isolated count will be mismatched. 2231 * Compensate the isolated count for both LRU lists. 2232 */ 2233 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2234 stat.nr_lazyfree_fail); 2235 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2236 -(long)stat.nr_lazyfree_fail); 2237 return nr_reclaimed; 2238 } 2239 2240 /* 2241 * Update LRU sizes after isolating pages. The LRU size updates must 2242 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2243 */ 2244 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2245 enum lru_list lru, unsigned long *nr_zone_taken) 2246 { 2247 int zid; 2248 2249 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2250 if (!nr_zone_taken[zid]) 2251 continue; 2252 2253 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2254 } 2255 2256 } 2257 2258 /* 2259 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2260 * 2261 * lruvec->lru_lock is heavily contended. Some of the functions that 2262 * shrink the lists perform better by taking out a batch of pages 2263 * and working on them outside the LRU lock. 2264 * 2265 * For pagecache intensive workloads, this function is the hottest 2266 * spot in the kernel (apart from copy_*_user functions). 2267 * 2268 * Lru_lock must be held before calling this function. 2269 * 2270 * @nr_to_scan: The number of eligible pages to look through on the list. 2271 * @lruvec: The LRU vector to pull pages from. 2272 * @dst: The temp list to put pages on to. 2273 * @nr_scanned: The number of pages that were scanned. 2274 * @sc: The scan_control struct for this reclaim session 2275 * @lru: LRU list id for isolating 2276 * 2277 * returns how many pages were moved onto *@dst. 2278 */ 2279 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2280 struct lruvec *lruvec, struct list_head *dst, 2281 unsigned long *nr_scanned, struct scan_control *sc, 2282 enum lru_list lru) 2283 { 2284 struct list_head *src = &lruvec->lists[lru]; 2285 unsigned long nr_taken = 0; 2286 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2287 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2288 unsigned long skipped = 0; 2289 unsigned long scan, total_scan, nr_pages; 2290 LIST_HEAD(folios_skipped); 2291 2292 total_scan = 0; 2293 scan = 0; 2294 while (scan < nr_to_scan && !list_empty(src)) { 2295 struct list_head *move_to = src; 2296 struct folio *folio; 2297 2298 folio = lru_to_folio(src); 2299 prefetchw_prev_lru_folio(folio, src, flags); 2300 2301 nr_pages = folio_nr_pages(folio); 2302 total_scan += nr_pages; 2303 2304 if (folio_zonenum(folio) > sc->reclaim_idx) { 2305 nr_skipped[folio_zonenum(folio)] += nr_pages; 2306 move_to = &folios_skipped; 2307 goto move; 2308 } 2309 2310 /* 2311 * Do not count skipped folios because that makes the function 2312 * return with no isolated folios if the LRU mostly contains 2313 * ineligible folios. This causes the VM to not reclaim any 2314 * folios, triggering a premature OOM. 2315 * Account all pages in a folio. 2316 */ 2317 scan += nr_pages; 2318 2319 if (!folio_test_lru(folio)) 2320 goto move; 2321 if (!sc->may_unmap && folio_mapped(folio)) 2322 goto move; 2323 2324 /* 2325 * Be careful not to clear the lru flag until after we're 2326 * sure the folio is not being freed elsewhere -- the 2327 * folio release code relies on it. 2328 */ 2329 if (unlikely(!folio_try_get(folio))) 2330 goto move; 2331 2332 if (!folio_test_clear_lru(folio)) { 2333 /* Another thread is already isolating this folio */ 2334 folio_put(folio); 2335 goto move; 2336 } 2337 2338 nr_taken += nr_pages; 2339 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2340 move_to = dst; 2341 move: 2342 list_move(&folio->lru, move_to); 2343 } 2344 2345 /* 2346 * Splice any skipped folios to the start of the LRU list. Note that 2347 * this disrupts the LRU order when reclaiming for lower zones but 2348 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2349 * scanning would soon rescan the same folios to skip and waste lots 2350 * of cpu cycles. 2351 */ 2352 if (!list_empty(&folios_skipped)) { 2353 int zid; 2354 2355 list_splice(&folios_skipped, src); 2356 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2357 if (!nr_skipped[zid]) 2358 continue; 2359 2360 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2361 skipped += nr_skipped[zid]; 2362 } 2363 } 2364 *nr_scanned = total_scan; 2365 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2366 total_scan, skipped, nr_taken, 2367 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2368 update_lru_sizes(lruvec, lru, nr_zone_taken); 2369 return nr_taken; 2370 } 2371 2372 /** 2373 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2374 * @folio: Folio to isolate from its LRU list. 2375 * 2376 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2377 * corresponding to whatever LRU list the folio was on. 2378 * 2379 * The folio will have its LRU flag cleared. If it was found on the 2380 * active list, it will have the Active flag set. If it was found on the 2381 * unevictable list, it will have the Unevictable flag set. These flags 2382 * may need to be cleared by the caller before letting the page go. 2383 * 2384 * Context: 2385 * 2386 * (1) Must be called with an elevated refcount on the folio. This is a 2387 * fundamental difference from isolate_lru_folios() (which is called 2388 * without a stable reference). 2389 * (2) The lru_lock must not be held. 2390 * (3) Interrupts must be enabled. 2391 * 2392 * Return: true if the folio was removed from an LRU list. 2393 * false if the folio was not on an LRU list. 2394 */ 2395 bool folio_isolate_lru(struct folio *folio) 2396 { 2397 bool ret = false; 2398 2399 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2400 2401 if (folio_test_clear_lru(folio)) { 2402 struct lruvec *lruvec; 2403 2404 folio_get(folio); 2405 lruvec = folio_lruvec_lock_irq(folio); 2406 lruvec_del_folio(lruvec, folio); 2407 unlock_page_lruvec_irq(lruvec); 2408 ret = true; 2409 } 2410 2411 return ret; 2412 } 2413 2414 /* 2415 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2416 * then get rescheduled. When there are massive number of tasks doing page 2417 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2418 * the LRU list will go small and be scanned faster than necessary, leading to 2419 * unnecessary swapping, thrashing and OOM. 2420 */ 2421 static int too_many_isolated(struct pglist_data *pgdat, int file, 2422 struct scan_control *sc) 2423 { 2424 unsigned long inactive, isolated; 2425 bool too_many; 2426 2427 if (current_is_kswapd()) 2428 return 0; 2429 2430 if (!writeback_throttling_sane(sc)) 2431 return 0; 2432 2433 if (file) { 2434 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2435 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2436 } else { 2437 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2438 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2439 } 2440 2441 /* 2442 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2443 * won't get blocked by normal direct-reclaimers, forming a circular 2444 * deadlock. 2445 */ 2446 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2447 inactive >>= 3; 2448 2449 too_many = isolated > inactive; 2450 2451 /* Wake up tasks throttled due to too_many_isolated. */ 2452 if (!too_many) 2453 wake_throttle_isolated(pgdat); 2454 2455 return too_many; 2456 } 2457 2458 /* 2459 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2460 * On return, @list is reused as a list of folios to be freed by the caller. 2461 * 2462 * Returns the number of pages moved to the given lruvec. 2463 */ 2464 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2465 struct list_head *list) 2466 { 2467 int nr_pages, nr_moved = 0; 2468 LIST_HEAD(folios_to_free); 2469 2470 while (!list_empty(list)) { 2471 struct folio *folio = lru_to_folio(list); 2472 2473 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2474 list_del(&folio->lru); 2475 if (unlikely(!folio_evictable(folio))) { 2476 spin_unlock_irq(&lruvec->lru_lock); 2477 folio_putback_lru(folio); 2478 spin_lock_irq(&lruvec->lru_lock); 2479 continue; 2480 } 2481 2482 /* 2483 * The folio_set_lru needs to be kept here for list integrity. 2484 * Otherwise: 2485 * #0 move_folios_to_lru #1 release_pages 2486 * if (!folio_put_testzero()) 2487 * if (folio_put_testzero()) 2488 * !lru //skip lru_lock 2489 * folio_set_lru() 2490 * list_add(&folio->lru,) 2491 * list_add(&folio->lru,) 2492 */ 2493 folio_set_lru(folio); 2494 2495 if (unlikely(folio_put_testzero(folio))) { 2496 __folio_clear_lru_flags(folio); 2497 2498 if (unlikely(folio_test_large(folio))) { 2499 spin_unlock_irq(&lruvec->lru_lock); 2500 destroy_large_folio(folio); 2501 spin_lock_irq(&lruvec->lru_lock); 2502 } else 2503 list_add(&folio->lru, &folios_to_free); 2504 2505 continue; 2506 } 2507 2508 /* 2509 * All pages were isolated from the same lruvec (and isolation 2510 * inhibits memcg migration). 2511 */ 2512 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2513 lruvec_add_folio(lruvec, folio); 2514 nr_pages = folio_nr_pages(folio); 2515 nr_moved += nr_pages; 2516 if (folio_test_active(folio)) 2517 workingset_age_nonresident(lruvec, nr_pages); 2518 } 2519 2520 /* 2521 * To save our caller's stack, now use input list for pages to free. 2522 */ 2523 list_splice(&folios_to_free, list); 2524 2525 return nr_moved; 2526 } 2527 2528 /* 2529 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2530 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2531 * we should not throttle. Otherwise it is safe to do so. 2532 */ 2533 static int current_may_throttle(void) 2534 { 2535 return !(current->flags & PF_LOCAL_THROTTLE); 2536 } 2537 2538 /* 2539 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2540 * of reclaimed pages 2541 */ 2542 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2543 struct lruvec *lruvec, struct scan_control *sc, 2544 enum lru_list lru) 2545 { 2546 LIST_HEAD(folio_list); 2547 unsigned long nr_scanned; 2548 unsigned int nr_reclaimed = 0; 2549 unsigned long nr_taken; 2550 struct reclaim_stat stat; 2551 bool file = is_file_lru(lru); 2552 enum vm_event_item item; 2553 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2554 bool stalled = false; 2555 2556 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2557 if (stalled) 2558 return 0; 2559 2560 /* wait a bit for the reclaimer. */ 2561 stalled = true; 2562 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2563 2564 /* We are about to die and free our memory. Return now. */ 2565 if (fatal_signal_pending(current)) 2566 return SWAP_CLUSTER_MAX; 2567 } 2568 2569 lru_add_drain(); 2570 2571 spin_lock_irq(&lruvec->lru_lock); 2572 2573 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2574 &nr_scanned, sc, lru); 2575 2576 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2577 item = PGSCAN_KSWAPD + reclaimer_offset(); 2578 if (!cgroup_reclaim(sc)) 2579 __count_vm_events(item, nr_scanned); 2580 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2581 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2582 2583 spin_unlock_irq(&lruvec->lru_lock); 2584 2585 if (nr_taken == 0) 2586 return 0; 2587 2588 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2589 2590 spin_lock_irq(&lruvec->lru_lock); 2591 move_folios_to_lru(lruvec, &folio_list); 2592 2593 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2594 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2595 if (!cgroup_reclaim(sc)) 2596 __count_vm_events(item, nr_reclaimed); 2597 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2598 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2599 spin_unlock_irq(&lruvec->lru_lock); 2600 2601 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2602 mem_cgroup_uncharge_list(&folio_list); 2603 free_unref_page_list(&folio_list); 2604 2605 /* 2606 * If dirty folios are scanned that are not queued for IO, it 2607 * implies that flushers are not doing their job. This can 2608 * happen when memory pressure pushes dirty folios to the end of 2609 * the LRU before the dirty limits are breached and the dirty 2610 * data has expired. It can also happen when the proportion of 2611 * dirty folios grows not through writes but through memory 2612 * pressure reclaiming all the clean cache. And in some cases, 2613 * the flushers simply cannot keep up with the allocation 2614 * rate. Nudge the flusher threads in case they are asleep. 2615 */ 2616 if (stat.nr_unqueued_dirty == nr_taken) { 2617 wakeup_flusher_threads(WB_REASON_VMSCAN); 2618 /* 2619 * For cgroupv1 dirty throttling is achieved by waking up 2620 * the kernel flusher here and later waiting on folios 2621 * which are in writeback to finish (see shrink_folio_list()). 2622 * 2623 * Flusher may not be able to issue writeback quickly 2624 * enough for cgroupv1 writeback throttling to work 2625 * on a large system. 2626 */ 2627 if (!writeback_throttling_sane(sc)) 2628 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2629 } 2630 2631 sc->nr.dirty += stat.nr_dirty; 2632 sc->nr.congested += stat.nr_congested; 2633 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2634 sc->nr.writeback += stat.nr_writeback; 2635 sc->nr.immediate += stat.nr_immediate; 2636 sc->nr.taken += nr_taken; 2637 if (file) 2638 sc->nr.file_taken += nr_taken; 2639 2640 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2641 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2642 return nr_reclaimed; 2643 } 2644 2645 /* 2646 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2647 * 2648 * We move them the other way if the folio is referenced by one or more 2649 * processes. 2650 * 2651 * If the folios are mostly unmapped, the processing is fast and it is 2652 * appropriate to hold lru_lock across the whole operation. But if 2653 * the folios are mapped, the processing is slow (folio_referenced()), so 2654 * we should drop lru_lock around each folio. It's impossible to balance 2655 * this, so instead we remove the folios from the LRU while processing them. 2656 * It is safe to rely on the active flag against the non-LRU folios in here 2657 * because nobody will play with that bit on a non-LRU folio. 2658 * 2659 * The downside is that we have to touch folio->_refcount against each folio. 2660 * But we had to alter folio->flags anyway. 2661 */ 2662 static void shrink_active_list(unsigned long nr_to_scan, 2663 struct lruvec *lruvec, 2664 struct scan_control *sc, 2665 enum lru_list lru) 2666 { 2667 unsigned long nr_taken; 2668 unsigned long nr_scanned; 2669 unsigned long vm_flags; 2670 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2671 LIST_HEAD(l_active); 2672 LIST_HEAD(l_inactive); 2673 unsigned nr_deactivate, nr_activate; 2674 unsigned nr_rotated = 0; 2675 int file = is_file_lru(lru); 2676 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2677 2678 lru_add_drain(); 2679 2680 spin_lock_irq(&lruvec->lru_lock); 2681 2682 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2683 &nr_scanned, sc, lru); 2684 2685 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2686 2687 if (!cgroup_reclaim(sc)) 2688 __count_vm_events(PGREFILL, nr_scanned); 2689 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2690 2691 spin_unlock_irq(&lruvec->lru_lock); 2692 2693 while (!list_empty(&l_hold)) { 2694 struct folio *folio; 2695 2696 cond_resched(); 2697 folio = lru_to_folio(&l_hold); 2698 list_del(&folio->lru); 2699 2700 if (unlikely(!folio_evictable(folio))) { 2701 folio_putback_lru(folio); 2702 continue; 2703 } 2704 2705 if (unlikely(buffer_heads_over_limit)) { 2706 if (folio_test_private(folio) && folio_trylock(folio)) { 2707 if (folio_test_private(folio)) 2708 filemap_release_folio(folio, 0); 2709 folio_unlock(folio); 2710 } 2711 } 2712 2713 /* Referenced or rmap lock contention: rotate */ 2714 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2715 &vm_flags) != 0) { 2716 /* 2717 * Identify referenced, file-backed active folios and 2718 * give them one more trip around the active list. So 2719 * that executable code get better chances to stay in 2720 * memory under moderate memory pressure. Anon folios 2721 * are not likely to be evicted by use-once streaming 2722 * IO, plus JVM can create lots of anon VM_EXEC folios, 2723 * so we ignore them here. 2724 */ 2725 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2726 nr_rotated += folio_nr_pages(folio); 2727 list_add(&folio->lru, &l_active); 2728 continue; 2729 } 2730 } 2731 2732 folio_clear_active(folio); /* we are de-activating */ 2733 folio_set_workingset(folio); 2734 list_add(&folio->lru, &l_inactive); 2735 } 2736 2737 /* 2738 * Move folios back to the lru list. 2739 */ 2740 spin_lock_irq(&lruvec->lru_lock); 2741 2742 nr_activate = move_folios_to_lru(lruvec, &l_active); 2743 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2744 /* Keep all free folios in l_active list */ 2745 list_splice(&l_inactive, &l_active); 2746 2747 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2748 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2749 2750 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2751 spin_unlock_irq(&lruvec->lru_lock); 2752 2753 if (nr_rotated) 2754 lru_note_cost(lruvec, file, 0, nr_rotated); 2755 mem_cgroup_uncharge_list(&l_active); 2756 free_unref_page_list(&l_active); 2757 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2758 nr_deactivate, nr_rotated, sc->priority, file); 2759 } 2760 2761 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2762 struct pglist_data *pgdat) 2763 { 2764 struct reclaim_stat dummy_stat; 2765 unsigned int nr_reclaimed; 2766 struct folio *folio; 2767 struct scan_control sc = { 2768 .gfp_mask = GFP_KERNEL, 2769 .may_writepage = 1, 2770 .may_unmap = 1, 2771 .may_swap = 1, 2772 .no_demotion = 1, 2773 }; 2774 2775 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2776 while (!list_empty(folio_list)) { 2777 folio = lru_to_folio(folio_list); 2778 list_del(&folio->lru); 2779 folio_putback_lru(folio); 2780 } 2781 2782 return nr_reclaimed; 2783 } 2784 2785 unsigned long reclaim_pages(struct list_head *folio_list) 2786 { 2787 int nid; 2788 unsigned int nr_reclaimed = 0; 2789 LIST_HEAD(node_folio_list); 2790 unsigned int noreclaim_flag; 2791 2792 if (list_empty(folio_list)) 2793 return nr_reclaimed; 2794 2795 noreclaim_flag = memalloc_noreclaim_save(); 2796 2797 nid = folio_nid(lru_to_folio(folio_list)); 2798 do { 2799 struct folio *folio = lru_to_folio(folio_list); 2800 2801 if (nid == folio_nid(folio)) { 2802 folio_clear_active(folio); 2803 list_move(&folio->lru, &node_folio_list); 2804 continue; 2805 } 2806 2807 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2808 nid = folio_nid(lru_to_folio(folio_list)); 2809 } while (!list_empty(folio_list)); 2810 2811 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2812 2813 memalloc_noreclaim_restore(noreclaim_flag); 2814 2815 return nr_reclaimed; 2816 } 2817 2818 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2819 struct lruvec *lruvec, struct scan_control *sc) 2820 { 2821 if (is_active_lru(lru)) { 2822 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2823 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2824 else 2825 sc->skipped_deactivate = 1; 2826 return 0; 2827 } 2828 2829 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2830 } 2831 2832 /* 2833 * The inactive anon list should be small enough that the VM never has 2834 * to do too much work. 2835 * 2836 * The inactive file list should be small enough to leave most memory 2837 * to the established workingset on the scan-resistant active list, 2838 * but large enough to avoid thrashing the aggregate readahead window. 2839 * 2840 * Both inactive lists should also be large enough that each inactive 2841 * folio has a chance to be referenced again before it is reclaimed. 2842 * 2843 * If that fails and refaulting is observed, the inactive list grows. 2844 * 2845 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2846 * on this LRU, maintained by the pageout code. An inactive_ratio 2847 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2848 * 2849 * total target max 2850 * memory ratio inactive 2851 * ------------------------------------- 2852 * 10MB 1 5MB 2853 * 100MB 1 50MB 2854 * 1GB 3 250MB 2855 * 10GB 10 0.9GB 2856 * 100GB 31 3GB 2857 * 1TB 101 10GB 2858 * 10TB 320 32GB 2859 */ 2860 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2861 { 2862 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2863 unsigned long inactive, active; 2864 unsigned long inactive_ratio; 2865 unsigned long gb; 2866 2867 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2868 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2869 2870 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2871 if (gb) 2872 inactive_ratio = int_sqrt(10 * gb); 2873 else 2874 inactive_ratio = 1; 2875 2876 return inactive * inactive_ratio < active; 2877 } 2878 2879 enum scan_balance { 2880 SCAN_EQUAL, 2881 SCAN_FRACT, 2882 SCAN_ANON, 2883 SCAN_FILE, 2884 }; 2885 2886 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2887 { 2888 unsigned long file; 2889 struct lruvec *target_lruvec; 2890 2891 if (lru_gen_enabled()) 2892 return; 2893 2894 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2895 2896 /* 2897 * Flush the memory cgroup stats, so that we read accurate per-memcg 2898 * lruvec stats for heuristics. 2899 */ 2900 mem_cgroup_flush_stats(); 2901 2902 /* 2903 * Determine the scan balance between anon and file LRUs. 2904 */ 2905 spin_lock_irq(&target_lruvec->lru_lock); 2906 sc->anon_cost = target_lruvec->anon_cost; 2907 sc->file_cost = target_lruvec->file_cost; 2908 spin_unlock_irq(&target_lruvec->lru_lock); 2909 2910 /* 2911 * Target desirable inactive:active list ratios for the anon 2912 * and file LRU lists. 2913 */ 2914 if (!sc->force_deactivate) { 2915 unsigned long refaults; 2916 2917 /* 2918 * When refaults are being observed, it means a new 2919 * workingset is being established. Deactivate to get 2920 * rid of any stale active pages quickly. 2921 */ 2922 refaults = lruvec_page_state(target_lruvec, 2923 WORKINGSET_ACTIVATE_ANON); 2924 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2925 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2926 sc->may_deactivate |= DEACTIVATE_ANON; 2927 else 2928 sc->may_deactivate &= ~DEACTIVATE_ANON; 2929 2930 refaults = lruvec_page_state(target_lruvec, 2931 WORKINGSET_ACTIVATE_FILE); 2932 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2933 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2934 sc->may_deactivate |= DEACTIVATE_FILE; 2935 else 2936 sc->may_deactivate &= ~DEACTIVATE_FILE; 2937 } else 2938 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2939 2940 /* 2941 * If we have plenty of inactive file pages that aren't 2942 * thrashing, try to reclaim those first before touching 2943 * anonymous pages. 2944 */ 2945 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2946 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2947 sc->cache_trim_mode = 1; 2948 else 2949 sc->cache_trim_mode = 0; 2950 2951 /* 2952 * Prevent the reclaimer from falling into the cache trap: as 2953 * cache pages start out inactive, every cache fault will tip 2954 * the scan balance towards the file LRU. And as the file LRU 2955 * shrinks, so does the window for rotation from references. 2956 * This means we have a runaway feedback loop where a tiny 2957 * thrashing file LRU becomes infinitely more attractive than 2958 * anon pages. Try to detect this based on file LRU size. 2959 */ 2960 if (!cgroup_reclaim(sc)) { 2961 unsigned long total_high_wmark = 0; 2962 unsigned long free, anon; 2963 int z; 2964 2965 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2966 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2967 node_page_state(pgdat, NR_INACTIVE_FILE); 2968 2969 for (z = 0; z < MAX_NR_ZONES; z++) { 2970 struct zone *zone = &pgdat->node_zones[z]; 2971 2972 if (!managed_zone(zone)) 2973 continue; 2974 2975 total_high_wmark += high_wmark_pages(zone); 2976 } 2977 2978 /* 2979 * Consider anon: if that's low too, this isn't a 2980 * runaway file reclaim problem, but rather just 2981 * extreme pressure. Reclaim as per usual then. 2982 */ 2983 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2984 2985 sc->file_is_tiny = 2986 file + free <= total_high_wmark && 2987 !(sc->may_deactivate & DEACTIVATE_ANON) && 2988 anon >> sc->priority; 2989 } 2990 } 2991 2992 /* 2993 * Determine how aggressively the anon and file LRU lists should be 2994 * scanned. 2995 * 2996 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2997 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2998 */ 2999 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 3000 unsigned long *nr) 3001 { 3002 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3003 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3004 unsigned long anon_cost, file_cost, total_cost; 3005 int swappiness = mem_cgroup_swappiness(memcg); 3006 u64 fraction[ANON_AND_FILE]; 3007 u64 denominator = 0; /* gcc */ 3008 enum scan_balance scan_balance; 3009 unsigned long ap, fp; 3010 enum lru_list lru; 3011 3012 /* If we have no swap space, do not bother scanning anon folios. */ 3013 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 3014 scan_balance = SCAN_FILE; 3015 goto out; 3016 } 3017 3018 /* 3019 * Global reclaim will swap to prevent OOM even with no 3020 * swappiness, but memcg users want to use this knob to 3021 * disable swapping for individual groups completely when 3022 * using the memory controller's swap limit feature would be 3023 * too expensive. 3024 */ 3025 if (cgroup_reclaim(sc) && !swappiness) { 3026 scan_balance = SCAN_FILE; 3027 goto out; 3028 } 3029 3030 /* 3031 * Do not apply any pressure balancing cleverness when the 3032 * system is close to OOM, scan both anon and file equally 3033 * (unless the swappiness setting disagrees with swapping). 3034 */ 3035 if (!sc->priority && swappiness) { 3036 scan_balance = SCAN_EQUAL; 3037 goto out; 3038 } 3039 3040 /* 3041 * If the system is almost out of file pages, force-scan anon. 3042 */ 3043 if (sc->file_is_tiny) { 3044 scan_balance = SCAN_ANON; 3045 goto out; 3046 } 3047 3048 /* 3049 * If there is enough inactive page cache, we do not reclaim 3050 * anything from the anonymous working right now. 3051 */ 3052 if (sc->cache_trim_mode) { 3053 scan_balance = SCAN_FILE; 3054 goto out; 3055 } 3056 3057 scan_balance = SCAN_FRACT; 3058 /* 3059 * Calculate the pressure balance between anon and file pages. 3060 * 3061 * The amount of pressure we put on each LRU is inversely 3062 * proportional to the cost of reclaiming each list, as 3063 * determined by the share of pages that are refaulting, times 3064 * the relative IO cost of bringing back a swapped out 3065 * anonymous page vs reloading a filesystem page (swappiness). 3066 * 3067 * Although we limit that influence to ensure no list gets 3068 * left behind completely: at least a third of the pressure is 3069 * applied, before swappiness. 3070 * 3071 * With swappiness at 100, anon and file have equal IO cost. 3072 */ 3073 total_cost = sc->anon_cost + sc->file_cost; 3074 anon_cost = total_cost + sc->anon_cost; 3075 file_cost = total_cost + sc->file_cost; 3076 total_cost = anon_cost + file_cost; 3077 3078 ap = swappiness * (total_cost + 1); 3079 ap /= anon_cost + 1; 3080 3081 fp = (200 - swappiness) * (total_cost + 1); 3082 fp /= file_cost + 1; 3083 3084 fraction[0] = ap; 3085 fraction[1] = fp; 3086 denominator = ap + fp; 3087 out: 3088 for_each_evictable_lru(lru) { 3089 int file = is_file_lru(lru); 3090 unsigned long lruvec_size; 3091 unsigned long low, min; 3092 unsigned long scan; 3093 3094 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3095 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3096 &min, &low); 3097 3098 if (min || low) { 3099 /* 3100 * Scale a cgroup's reclaim pressure by proportioning 3101 * its current usage to its memory.low or memory.min 3102 * setting. 3103 * 3104 * This is important, as otherwise scanning aggression 3105 * becomes extremely binary -- from nothing as we 3106 * approach the memory protection threshold, to totally 3107 * nominal as we exceed it. This results in requiring 3108 * setting extremely liberal protection thresholds. It 3109 * also means we simply get no protection at all if we 3110 * set it too low, which is not ideal. 3111 * 3112 * If there is any protection in place, we reduce scan 3113 * pressure by how much of the total memory used is 3114 * within protection thresholds. 3115 * 3116 * There is one special case: in the first reclaim pass, 3117 * we skip over all groups that are within their low 3118 * protection. If that fails to reclaim enough pages to 3119 * satisfy the reclaim goal, we come back and override 3120 * the best-effort low protection. However, we still 3121 * ideally want to honor how well-behaved groups are in 3122 * that case instead of simply punishing them all 3123 * equally. As such, we reclaim them based on how much 3124 * memory they are using, reducing the scan pressure 3125 * again by how much of the total memory used is under 3126 * hard protection. 3127 */ 3128 unsigned long cgroup_size = mem_cgroup_size(memcg); 3129 unsigned long protection; 3130 3131 /* memory.low scaling, make sure we retry before OOM */ 3132 if (!sc->memcg_low_reclaim && low > min) { 3133 protection = low; 3134 sc->memcg_low_skipped = 1; 3135 } else { 3136 protection = min; 3137 } 3138 3139 /* Avoid TOCTOU with earlier protection check */ 3140 cgroup_size = max(cgroup_size, protection); 3141 3142 scan = lruvec_size - lruvec_size * protection / 3143 (cgroup_size + 1); 3144 3145 /* 3146 * Minimally target SWAP_CLUSTER_MAX pages to keep 3147 * reclaim moving forwards, avoiding decrementing 3148 * sc->priority further than desirable. 3149 */ 3150 scan = max(scan, SWAP_CLUSTER_MAX); 3151 } else { 3152 scan = lruvec_size; 3153 } 3154 3155 scan >>= sc->priority; 3156 3157 /* 3158 * If the cgroup's already been deleted, make sure to 3159 * scrape out the remaining cache. 3160 */ 3161 if (!scan && !mem_cgroup_online(memcg)) 3162 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3163 3164 switch (scan_balance) { 3165 case SCAN_EQUAL: 3166 /* Scan lists relative to size */ 3167 break; 3168 case SCAN_FRACT: 3169 /* 3170 * Scan types proportional to swappiness and 3171 * their relative recent reclaim efficiency. 3172 * Make sure we don't miss the last page on 3173 * the offlined memory cgroups because of a 3174 * round-off error. 3175 */ 3176 scan = mem_cgroup_online(memcg) ? 3177 div64_u64(scan * fraction[file], denominator) : 3178 DIV64_U64_ROUND_UP(scan * fraction[file], 3179 denominator); 3180 break; 3181 case SCAN_FILE: 3182 case SCAN_ANON: 3183 /* Scan one type exclusively */ 3184 if ((scan_balance == SCAN_FILE) != file) 3185 scan = 0; 3186 break; 3187 default: 3188 /* Look ma, no brain */ 3189 BUG(); 3190 } 3191 3192 nr[lru] = scan; 3193 } 3194 } 3195 3196 /* 3197 * Anonymous LRU management is a waste if there is 3198 * ultimately no way to reclaim the memory. 3199 */ 3200 static bool can_age_anon_pages(struct pglist_data *pgdat, 3201 struct scan_control *sc) 3202 { 3203 /* Aging the anon LRU is valuable if swap is present: */ 3204 if (total_swap_pages > 0) 3205 return true; 3206 3207 /* Also valuable if anon pages can be demoted: */ 3208 return can_demote(pgdat->node_id, sc); 3209 } 3210 3211 #ifdef CONFIG_LRU_GEN 3212 3213 #ifdef CONFIG_LRU_GEN_ENABLED 3214 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3215 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3216 #else 3217 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3218 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3219 #endif 3220 3221 /****************************************************************************** 3222 * shorthand helpers 3223 ******************************************************************************/ 3224 3225 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3226 3227 #define DEFINE_MAX_SEQ(lruvec) \ 3228 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3229 3230 #define DEFINE_MIN_SEQ(lruvec) \ 3231 unsigned long min_seq[ANON_AND_FILE] = { \ 3232 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3233 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3234 } 3235 3236 #define for_each_gen_type_zone(gen, type, zone) \ 3237 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3238 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3239 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3240 3241 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3242 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3243 3244 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3245 { 3246 struct pglist_data *pgdat = NODE_DATA(nid); 3247 3248 #ifdef CONFIG_MEMCG 3249 if (memcg) { 3250 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3251 3252 /* see the comment in mem_cgroup_lruvec() */ 3253 if (!lruvec->pgdat) 3254 lruvec->pgdat = pgdat; 3255 3256 return lruvec; 3257 } 3258 #endif 3259 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3260 3261 return &pgdat->__lruvec; 3262 } 3263 3264 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3265 { 3266 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3267 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3268 3269 if (!sc->may_swap) 3270 return 0; 3271 3272 if (!can_demote(pgdat->node_id, sc) && 3273 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3274 return 0; 3275 3276 return mem_cgroup_swappiness(memcg); 3277 } 3278 3279 static int get_nr_gens(struct lruvec *lruvec, int type) 3280 { 3281 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3282 } 3283 3284 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3285 { 3286 /* see the comment on lru_gen_folio */ 3287 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3288 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3289 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3290 } 3291 3292 /****************************************************************************** 3293 * Bloom filters 3294 ******************************************************************************/ 3295 3296 /* 3297 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3298 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3299 * bits in a bitmap, k is the number of hash functions and n is the number of 3300 * inserted items. 3301 * 3302 * Page table walkers use one of the two filters to reduce their search space. 3303 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3304 * aging uses the double-buffering technique to flip to the other filter each 3305 * time it produces a new generation. For non-leaf entries that have enough 3306 * leaf entries, the aging carries them over to the next generation in 3307 * walk_pmd_range(); the eviction also report them when walking the rmap 3308 * in lru_gen_look_around(). 3309 * 3310 * For future optimizations: 3311 * 1. It's not necessary to keep both filters all the time. The spare one can be 3312 * freed after the RCU grace period and reallocated if needed again. 3313 * 2. And when reallocating, it's worth scaling its size according to the number 3314 * of inserted entries in the other filter, to reduce the memory overhead on 3315 * small systems and false positives on large systems. 3316 * 3. Jenkins' hash function is an alternative to Knuth's. 3317 */ 3318 #define BLOOM_FILTER_SHIFT 15 3319 3320 static inline int filter_gen_from_seq(unsigned long seq) 3321 { 3322 return seq % NR_BLOOM_FILTERS; 3323 } 3324 3325 static void get_item_key(void *item, int *key) 3326 { 3327 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3328 3329 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3330 3331 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3332 key[1] = hash >> BLOOM_FILTER_SHIFT; 3333 } 3334 3335 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3336 { 3337 int key[2]; 3338 unsigned long *filter; 3339 int gen = filter_gen_from_seq(seq); 3340 3341 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3342 if (!filter) 3343 return true; 3344 3345 get_item_key(item, key); 3346 3347 return test_bit(key[0], filter) && test_bit(key[1], filter); 3348 } 3349 3350 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3351 { 3352 int key[2]; 3353 unsigned long *filter; 3354 int gen = filter_gen_from_seq(seq); 3355 3356 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3357 if (!filter) 3358 return; 3359 3360 get_item_key(item, key); 3361 3362 if (!test_bit(key[0], filter)) 3363 set_bit(key[0], filter); 3364 if (!test_bit(key[1], filter)) 3365 set_bit(key[1], filter); 3366 } 3367 3368 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3369 { 3370 unsigned long *filter; 3371 int gen = filter_gen_from_seq(seq); 3372 3373 filter = lruvec->mm_state.filters[gen]; 3374 if (filter) { 3375 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3376 return; 3377 } 3378 3379 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3380 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3381 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3382 } 3383 3384 /****************************************************************************** 3385 * mm_struct list 3386 ******************************************************************************/ 3387 3388 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3389 { 3390 static struct lru_gen_mm_list mm_list = { 3391 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3392 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3393 }; 3394 3395 #ifdef CONFIG_MEMCG 3396 if (memcg) 3397 return &memcg->mm_list; 3398 #endif 3399 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3400 3401 return &mm_list; 3402 } 3403 3404 void lru_gen_add_mm(struct mm_struct *mm) 3405 { 3406 int nid; 3407 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3408 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3409 3410 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3411 #ifdef CONFIG_MEMCG 3412 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3413 mm->lru_gen.memcg = memcg; 3414 #endif 3415 spin_lock(&mm_list->lock); 3416 3417 for_each_node_state(nid, N_MEMORY) { 3418 struct lruvec *lruvec = get_lruvec(memcg, nid); 3419 3420 /* the first addition since the last iteration */ 3421 if (lruvec->mm_state.tail == &mm_list->fifo) 3422 lruvec->mm_state.tail = &mm->lru_gen.list; 3423 } 3424 3425 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3426 3427 spin_unlock(&mm_list->lock); 3428 } 3429 3430 void lru_gen_del_mm(struct mm_struct *mm) 3431 { 3432 int nid; 3433 struct lru_gen_mm_list *mm_list; 3434 struct mem_cgroup *memcg = NULL; 3435 3436 if (list_empty(&mm->lru_gen.list)) 3437 return; 3438 3439 #ifdef CONFIG_MEMCG 3440 memcg = mm->lru_gen.memcg; 3441 #endif 3442 mm_list = get_mm_list(memcg); 3443 3444 spin_lock(&mm_list->lock); 3445 3446 for_each_node(nid) { 3447 struct lruvec *lruvec = get_lruvec(memcg, nid); 3448 3449 /* where the current iteration continues after */ 3450 if (lruvec->mm_state.head == &mm->lru_gen.list) 3451 lruvec->mm_state.head = lruvec->mm_state.head->prev; 3452 3453 /* where the last iteration ended before */ 3454 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3455 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3456 } 3457 3458 list_del_init(&mm->lru_gen.list); 3459 3460 spin_unlock(&mm_list->lock); 3461 3462 #ifdef CONFIG_MEMCG 3463 mem_cgroup_put(mm->lru_gen.memcg); 3464 mm->lru_gen.memcg = NULL; 3465 #endif 3466 } 3467 3468 #ifdef CONFIG_MEMCG 3469 void lru_gen_migrate_mm(struct mm_struct *mm) 3470 { 3471 struct mem_cgroup *memcg; 3472 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3473 3474 VM_WARN_ON_ONCE(task->mm != mm); 3475 lockdep_assert_held(&task->alloc_lock); 3476 3477 /* for mm_update_next_owner() */ 3478 if (mem_cgroup_disabled()) 3479 return; 3480 3481 /* migration can happen before addition */ 3482 if (!mm->lru_gen.memcg) 3483 return; 3484 3485 rcu_read_lock(); 3486 memcg = mem_cgroup_from_task(task); 3487 rcu_read_unlock(); 3488 if (memcg == mm->lru_gen.memcg) 3489 return; 3490 3491 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3492 3493 lru_gen_del_mm(mm); 3494 lru_gen_add_mm(mm); 3495 } 3496 #endif 3497 3498 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3499 { 3500 int i; 3501 int hist; 3502 3503 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3504 3505 if (walk) { 3506 hist = lru_hist_from_seq(walk->max_seq); 3507 3508 for (i = 0; i < NR_MM_STATS; i++) { 3509 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3510 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3511 walk->mm_stats[i] = 0; 3512 } 3513 } 3514 3515 if (NR_HIST_GENS > 1 && last) { 3516 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3517 3518 for (i = 0; i < NR_MM_STATS; i++) 3519 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3520 } 3521 } 3522 3523 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3524 { 3525 int type; 3526 unsigned long size = 0; 3527 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3528 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3529 3530 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3531 return true; 3532 3533 clear_bit(key, &mm->lru_gen.bitmap); 3534 3535 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3536 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3537 get_mm_counter(mm, MM_ANONPAGES) + 3538 get_mm_counter(mm, MM_SHMEMPAGES); 3539 } 3540 3541 if (size < MIN_LRU_BATCH) 3542 return true; 3543 3544 return !mmget_not_zero(mm); 3545 } 3546 3547 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3548 struct mm_struct **iter) 3549 { 3550 bool first = false; 3551 bool last = false; 3552 struct mm_struct *mm = NULL; 3553 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3554 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3555 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3556 3557 /* 3558 * mm_state->seq is incremented after each iteration of mm_list. There 3559 * are three interesting cases for this page table walker: 3560 * 1. It tries to start a new iteration with a stale max_seq: there is 3561 * nothing left to do. 3562 * 2. It started the next iteration: it needs to reset the Bloom filter 3563 * so that a fresh set of PTE tables can be recorded. 3564 * 3. It ended the current iteration: it needs to reset the mm stats 3565 * counters and tell its caller to increment max_seq. 3566 */ 3567 spin_lock(&mm_list->lock); 3568 3569 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3570 3571 if (walk->max_seq <= mm_state->seq) 3572 goto done; 3573 3574 if (!mm_state->head) 3575 mm_state->head = &mm_list->fifo; 3576 3577 if (mm_state->head == &mm_list->fifo) 3578 first = true; 3579 3580 do { 3581 mm_state->head = mm_state->head->next; 3582 if (mm_state->head == &mm_list->fifo) { 3583 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3584 last = true; 3585 break; 3586 } 3587 3588 /* force scan for those added after the last iteration */ 3589 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3590 mm_state->tail = mm_state->head->next; 3591 walk->force_scan = true; 3592 } 3593 3594 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3595 if (should_skip_mm(mm, walk)) 3596 mm = NULL; 3597 } while (!mm); 3598 done: 3599 if (*iter || last) 3600 reset_mm_stats(lruvec, walk, last); 3601 3602 spin_unlock(&mm_list->lock); 3603 3604 if (mm && first) 3605 reset_bloom_filter(lruvec, walk->max_seq + 1); 3606 3607 if (*iter) 3608 mmput_async(*iter); 3609 3610 *iter = mm; 3611 3612 return last; 3613 } 3614 3615 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3616 { 3617 bool success = false; 3618 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3619 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3620 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3621 3622 spin_lock(&mm_list->lock); 3623 3624 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3625 3626 if (max_seq > mm_state->seq) { 3627 mm_state->head = NULL; 3628 mm_state->tail = NULL; 3629 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3630 reset_mm_stats(lruvec, NULL, true); 3631 success = true; 3632 } 3633 3634 spin_unlock(&mm_list->lock); 3635 3636 return success; 3637 } 3638 3639 /****************************************************************************** 3640 * PID controller 3641 ******************************************************************************/ 3642 3643 /* 3644 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3645 * 3646 * The P term is refaulted/(evicted+protected) from a tier in the generation 3647 * currently being evicted; the I term is the exponential moving average of the 3648 * P term over the generations previously evicted, using the smoothing factor 3649 * 1/2; the D term isn't supported. 3650 * 3651 * The setpoint (SP) is always the first tier of one type; the process variable 3652 * (PV) is either any tier of the other type or any other tier of the same 3653 * type. 3654 * 3655 * The error is the difference between the SP and the PV; the correction is to 3656 * turn off protection when SP>PV or turn on protection when SP<PV. 3657 * 3658 * For future optimizations: 3659 * 1. The D term may discount the other two terms over time so that long-lived 3660 * generations can resist stale information. 3661 */ 3662 struct ctrl_pos { 3663 unsigned long refaulted; 3664 unsigned long total; 3665 int gain; 3666 }; 3667 3668 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3669 struct ctrl_pos *pos) 3670 { 3671 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3672 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3673 3674 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3675 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3676 pos->total = lrugen->avg_total[type][tier] + 3677 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3678 if (tier) 3679 pos->total += lrugen->protected[hist][type][tier - 1]; 3680 pos->gain = gain; 3681 } 3682 3683 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3684 { 3685 int hist, tier; 3686 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3687 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3688 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3689 3690 lockdep_assert_held(&lruvec->lru_lock); 3691 3692 if (!carryover && !clear) 3693 return; 3694 3695 hist = lru_hist_from_seq(seq); 3696 3697 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3698 if (carryover) { 3699 unsigned long sum; 3700 3701 sum = lrugen->avg_refaulted[type][tier] + 3702 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3703 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3704 3705 sum = lrugen->avg_total[type][tier] + 3706 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3707 if (tier) 3708 sum += lrugen->protected[hist][type][tier - 1]; 3709 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3710 } 3711 3712 if (clear) { 3713 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3714 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3715 if (tier) 3716 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3717 } 3718 } 3719 } 3720 3721 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3722 { 3723 /* 3724 * Return true if the PV has a limited number of refaults or a lower 3725 * refaulted/total than the SP. 3726 */ 3727 return pv->refaulted < MIN_LRU_BATCH || 3728 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3729 (sp->refaulted + 1) * pv->total * pv->gain; 3730 } 3731 3732 /****************************************************************************** 3733 * the aging 3734 ******************************************************************************/ 3735 3736 /* promote pages accessed through page tables */ 3737 static int folio_update_gen(struct folio *folio, int gen) 3738 { 3739 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3740 3741 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3742 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3743 3744 do { 3745 /* lru_gen_del_folio() has isolated this page? */ 3746 if (!(old_flags & LRU_GEN_MASK)) { 3747 /* for shrink_folio_list() */ 3748 new_flags = old_flags | BIT(PG_referenced); 3749 continue; 3750 } 3751 3752 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3753 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3754 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3755 3756 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3757 } 3758 3759 /* protect pages accessed multiple times through file descriptors */ 3760 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3761 { 3762 int type = folio_is_file_lru(folio); 3763 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3764 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3765 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3766 3767 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3768 3769 do { 3770 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3771 /* folio_update_gen() has promoted this page? */ 3772 if (new_gen >= 0 && new_gen != old_gen) 3773 return new_gen; 3774 3775 new_gen = (old_gen + 1) % MAX_NR_GENS; 3776 3777 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3778 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3779 /* for folio_end_writeback() */ 3780 if (reclaiming) 3781 new_flags |= BIT(PG_reclaim); 3782 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3783 3784 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3785 3786 return new_gen; 3787 } 3788 3789 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3790 int old_gen, int new_gen) 3791 { 3792 int type = folio_is_file_lru(folio); 3793 int zone = folio_zonenum(folio); 3794 int delta = folio_nr_pages(folio); 3795 3796 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3797 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3798 3799 walk->batched++; 3800 3801 walk->nr_pages[old_gen][type][zone] -= delta; 3802 walk->nr_pages[new_gen][type][zone] += delta; 3803 } 3804 3805 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3806 { 3807 int gen, type, zone; 3808 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3809 3810 walk->batched = 0; 3811 3812 for_each_gen_type_zone(gen, type, zone) { 3813 enum lru_list lru = type * LRU_INACTIVE_FILE; 3814 int delta = walk->nr_pages[gen][type][zone]; 3815 3816 if (!delta) 3817 continue; 3818 3819 walk->nr_pages[gen][type][zone] = 0; 3820 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3821 lrugen->nr_pages[gen][type][zone] + delta); 3822 3823 if (lru_gen_is_active(lruvec, gen)) 3824 lru += LRU_ACTIVE; 3825 __update_lru_size(lruvec, lru, zone, delta); 3826 } 3827 } 3828 3829 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3830 { 3831 struct address_space *mapping; 3832 struct vm_area_struct *vma = args->vma; 3833 struct lru_gen_mm_walk *walk = args->private; 3834 3835 if (!vma_is_accessible(vma)) 3836 return true; 3837 3838 if (is_vm_hugetlb_page(vma)) 3839 return true; 3840 3841 if (!vma_has_recency(vma)) 3842 return true; 3843 3844 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3845 return true; 3846 3847 if (vma == get_gate_vma(vma->vm_mm)) 3848 return true; 3849 3850 if (vma_is_anonymous(vma)) 3851 return !walk->can_swap; 3852 3853 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3854 return true; 3855 3856 mapping = vma->vm_file->f_mapping; 3857 if (mapping_unevictable(mapping)) 3858 return true; 3859 3860 if (shmem_mapping(mapping)) 3861 return !walk->can_swap; 3862 3863 /* to exclude special mappings like dax, etc. */ 3864 return !mapping->a_ops->read_folio; 3865 } 3866 3867 /* 3868 * Some userspace memory allocators map many single-page VMAs. Instead of 3869 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3870 * table to reduce zigzags and improve cache performance. 3871 */ 3872 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3873 unsigned long *vm_start, unsigned long *vm_end) 3874 { 3875 unsigned long start = round_up(*vm_end, size); 3876 unsigned long end = (start | ~mask) + 1; 3877 VMA_ITERATOR(vmi, args->mm, start); 3878 3879 VM_WARN_ON_ONCE(mask & size); 3880 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3881 3882 for_each_vma(vmi, args->vma) { 3883 if (end && end <= args->vma->vm_start) 3884 return false; 3885 3886 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3887 continue; 3888 3889 *vm_start = max(start, args->vma->vm_start); 3890 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3891 3892 return true; 3893 } 3894 3895 return false; 3896 } 3897 3898 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3899 { 3900 unsigned long pfn = pte_pfn(pte); 3901 3902 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3903 3904 if (!pte_present(pte) || is_zero_pfn(pfn)) 3905 return -1; 3906 3907 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3908 return -1; 3909 3910 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3911 return -1; 3912 3913 return pfn; 3914 } 3915 3916 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3917 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3918 { 3919 unsigned long pfn = pmd_pfn(pmd); 3920 3921 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3922 3923 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3924 return -1; 3925 3926 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3927 return -1; 3928 3929 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3930 return -1; 3931 3932 return pfn; 3933 } 3934 #endif 3935 3936 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3937 struct pglist_data *pgdat, bool can_swap) 3938 { 3939 struct folio *folio; 3940 3941 /* try to avoid unnecessary memory loads */ 3942 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3943 return NULL; 3944 3945 folio = pfn_folio(pfn); 3946 if (folio_nid(folio) != pgdat->node_id) 3947 return NULL; 3948 3949 if (folio_memcg_rcu(folio) != memcg) 3950 return NULL; 3951 3952 /* file VMAs can contain anon pages from COW */ 3953 if (!folio_is_file_lru(folio) && !can_swap) 3954 return NULL; 3955 3956 return folio; 3957 } 3958 3959 static bool suitable_to_scan(int total, int young) 3960 { 3961 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3962 3963 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3964 return young * n >= total; 3965 } 3966 3967 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3968 struct mm_walk *args) 3969 { 3970 int i; 3971 pte_t *pte; 3972 spinlock_t *ptl; 3973 unsigned long addr; 3974 int total = 0; 3975 int young = 0; 3976 struct lru_gen_mm_walk *walk = args->private; 3977 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3978 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3979 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3980 3981 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3982 3983 ptl = pte_lockptr(args->mm, pmd); 3984 if (!spin_trylock(ptl)) 3985 return false; 3986 3987 arch_enter_lazy_mmu_mode(); 3988 3989 pte = pte_offset_map(pmd, start & PMD_MASK); 3990 restart: 3991 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3992 unsigned long pfn; 3993 struct folio *folio; 3994 3995 total++; 3996 walk->mm_stats[MM_LEAF_TOTAL]++; 3997 3998 pfn = get_pte_pfn(pte[i], args->vma, addr); 3999 if (pfn == -1) 4000 continue; 4001 4002 if (!pte_young(pte[i])) { 4003 walk->mm_stats[MM_LEAF_OLD]++; 4004 continue; 4005 } 4006 4007 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4008 if (!folio) 4009 continue; 4010 4011 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 4012 VM_WARN_ON_ONCE(true); 4013 4014 young++; 4015 walk->mm_stats[MM_LEAF_YOUNG]++; 4016 4017 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4018 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4019 !folio_test_swapcache(folio))) 4020 folio_mark_dirty(folio); 4021 4022 old_gen = folio_update_gen(folio, new_gen); 4023 if (old_gen >= 0 && old_gen != new_gen) 4024 update_batch_size(walk, folio, old_gen, new_gen); 4025 } 4026 4027 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 4028 goto restart; 4029 4030 pte_unmap(pte); 4031 4032 arch_leave_lazy_mmu_mode(); 4033 spin_unlock(ptl); 4034 4035 return suitable_to_scan(total, young); 4036 } 4037 4038 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 4039 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4040 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4041 { 4042 int i; 4043 pmd_t *pmd; 4044 spinlock_t *ptl; 4045 struct lru_gen_mm_walk *walk = args->private; 4046 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4047 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4048 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4049 4050 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4051 4052 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4053 if (*first == -1) { 4054 *first = addr; 4055 bitmap_zero(bitmap, MIN_LRU_BATCH); 4056 return; 4057 } 4058 4059 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 4060 if (i && i <= MIN_LRU_BATCH) { 4061 __set_bit(i - 1, bitmap); 4062 return; 4063 } 4064 4065 pmd = pmd_offset(pud, *first); 4066 4067 ptl = pmd_lockptr(args->mm, pmd); 4068 if (!spin_trylock(ptl)) 4069 goto done; 4070 4071 arch_enter_lazy_mmu_mode(); 4072 4073 do { 4074 unsigned long pfn; 4075 struct folio *folio; 4076 4077 /* don't round down the first address */ 4078 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 4079 4080 pfn = get_pmd_pfn(pmd[i], vma, addr); 4081 if (pfn == -1) 4082 goto next; 4083 4084 if (!pmd_trans_huge(pmd[i])) { 4085 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 4086 pmdp_test_and_clear_young(vma, addr, pmd + i); 4087 goto next; 4088 } 4089 4090 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4091 if (!folio) 4092 goto next; 4093 4094 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4095 goto next; 4096 4097 walk->mm_stats[MM_LEAF_YOUNG]++; 4098 4099 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4100 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4101 !folio_test_swapcache(folio))) 4102 folio_mark_dirty(folio); 4103 4104 old_gen = folio_update_gen(folio, new_gen); 4105 if (old_gen >= 0 && old_gen != new_gen) 4106 update_batch_size(walk, folio, old_gen, new_gen); 4107 next: 4108 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4109 } while (i <= MIN_LRU_BATCH); 4110 4111 arch_leave_lazy_mmu_mode(); 4112 spin_unlock(ptl); 4113 done: 4114 *first = -1; 4115 } 4116 #else 4117 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4118 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4119 { 4120 } 4121 #endif 4122 4123 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4124 struct mm_walk *args) 4125 { 4126 int i; 4127 pmd_t *pmd; 4128 unsigned long next; 4129 unsigned long addr; 4130 struct vm_area_struct *vma; 4131 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)]; 4132 unsigned long first = -1; 4133 struct lru_gen_mm_walk *walk = args->private; 4134 4135 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4136 4137 /* 4138 * Finish an entire PMD in two passes: the first only reaches to PTE 4139 * tables to avoid taking the PMD lock; the second, if necessary, takes 4140 * the PMD lock to clear the accessed bit in PMD entries. 4141 */ 4142 pmd = pmd_offset(pud, start & PUD_MASK); 4143 restart: 4144 /* walk_pte_range() may call get_next_vma() */ 4145 vma = args->vma; 4146 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4147 pmd_t val = pmdp_get_lockless(pmd + i); 4148 4149 next = pmd_addr_end(addr, end); 4150 4151 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4152 walk->mm_stats[MM_LEAF_TOTAL]++; 4153 continue; 4154 } 4155 4156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4157 if (pmd_trans_huge(val)) { 4158 unsigned long pfn = pmd_pfn(val); 4159 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4160 4161 walk->mm_stats[MM_LEAF_TOTAL]++; 4162 4163 if (!pmd_young(val)) { 4164 walk->mm_stats[MM_LEAF_OLD]++; 4165 continue; 4166 } 4167 4168 /* try to avoid unnecessary memory loads */ 4169 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4170 continue; 4171 4172 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4173 continue; 4174 } 4175 #endif 4176 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4177 4178 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4179 if (!pmd_young(val)) 4180 continue; 4181 4182 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4183 } 4184 4185 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4186 continue; 4187 4188 walk->mm_stats[MM_NONLEAF_FOUND]++; 4189 4190 if (!walk_pte_range(&val, addr, next, args)) 4191 continue; 4192 4193 walk->mm_stats[MM_NONLEAF_ADDED]++; 4194 4195 /* carry over to the next generation */ 4196 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4197 } 4198 4199 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 4200 4201 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4202 goto restart; 4203 } 4204 4205 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4206 struct mm_walk *args) 4207 { 4208 int i; 4209 pud_t *pud; 4210 unsigned long addr; 4211 unsigned long next; 4212 struct lru_gen_mm_walk *walk = args->private; 4213 4214 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4215 4216 pud = pud_offset(p4d, start & P4D_MASK); 4217 restart: 4218 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4219 pud_t val = READ_ONCE(pud[i]); 4220 4221 next = pud_addr_end(addr, end); 4222 4223 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4224 continue; 4225 4226 walk_pmd_range(&val, addr, next, args); 4227 4228 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4229 end = (addr | ~PUD_MASK) + 1; 4230 goto done; 4231 } 4232 } 4233 4234 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4235 goto restart; 4236 4237 end = round_up(end, P4D_SIZE); 4238 done: 4239 if (!end || !args->vma) 4240 return 1; 4241 4242 walk->next_addr = max(end, args->vma->vm_start); 4243 4244 return -EAGAIN; 4245 } 4246 4247 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4248 { 4249 static const struct mm_walk_ops mm_walk_ops = { 4250 .test_walk = should_skip_vma, 4251 .p4d_entry = walk_pud_range, 4252 }; 4253 4254 int err; 4255 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4256 4257 walk->next_addr = FIRST_USER_ADDRESS; 4258 4259 do { 4260 DEFINE_MAX_SEQ(lruvec); 4261 4262 err = -EBUSY; 4263 4264 /* another thread might have called inc_max_seq() */ 4265 if (walk->max_seq != max_seq) 4266 break; 4267 4268 /* folio_update_gen() requires stable folio_memcg() */ 4269 if (!mem_cgroup_trylock_pages(memcg)) 4270 break; 4271 4272 /* the caller might be holding the lock for write */ 4273 if (mmap_read_trylock(mm)) { 4274 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4275 4276 mmap_read_unlock(mm); 4277 } 4278 4279 mem_cgroup_unlock_pages(); 4280 4281 if (walk->batched) { 4282 spin_lock_irq(&lruvec->lru_lock); 4283 reset_batch_size(lruvec, walk); 4284 spin_unlock_irq(&lruvec->lru_lock); 4285 } 4286 4287 cond_resched(); 4288 } while (err == -EAGAIN); 4289 } 4290 4291 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4292 { 4293 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4294 4295 if (pgdat && current_is_kswapd()) { 4296 VM_WARN_ON_ONCE(walk); 4297 4298 walk = &pgdat->mm_walk; 4299 } else if (!walk && force_alloc) { 4300 VM_WARN_ON_ONCE(current_is_kswapd()); 4301 4302 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4303 } 4304 4305 current->reclaim_state->mm_walk = walk; 4306 4307 return walk; 4308 } 4309 4310 static void clear_mm_walk(void) 4311 { 4312 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4313 4314 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4315 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4316 4317 current->reclaim_state->mm_walk = NULL; 4318 4319 if (!current_is_kswapd()) 4320 kfree(walk); 4321 } 4322 4323 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4324 { 4325 int zone; 4326 int remaining = MAX_LRU_BATCH; 4327 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4328 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4329 4330 if (type == LRU_GEN_ANON && !can_swap) 4331 goto done; 4332 4333 /* prevent cold/hot inversion if force_scan is true */ 4334 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4335 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4336 4337 while (!list_empty(head)) { 4338 struct folio *folio = lru_to_folio(head); 4339 4340 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4341 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4342 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4343 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4344 4345 new_gen = folio_inc_gen(lruvec, folio, false); 4346 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4347 4348 if (!--remaining) 4349 return false; 4350 } 4351 } 4352 done: 4353 reset_ctrl_pos(lruvec, type, true); 4354 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4355 4356 return true; 4357 } 4358 4359 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4360 { 4361 int gen, type, zone; 4362 bool success = false; 4363 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4364 DEFINE_MIN_SEQ(lruvec); 4365 4366 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4367 4368 /* find the oldest populated generation */ 4369 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4370 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4371 gen = lru_gen_from_seq(min_seq[type]); 4372 4373 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4374 if (!list_empty(&lrugen->folios[gen][type][zone])) 4375 goto next; 4376 } 4377 4378 min_seq[type]++; 4379 } 4380 next: 4381 ; 4382 } 4383 4384 /* see the comment on lru_gen_folio */ 4385 if (can_swap) { 4386 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4387 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4388 } 4389 4390 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4391 if (min_seq[type] == lrugen->min_seq[type]) 4392 continue; 4393 4394 reset_ctrl_pos(lruvec, type, true); 4395 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4396 success = true; 4397 } 4398 4399 return success; 4400 } 4401 4402 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4403 { 4404 int prev, next; 4405 int type, zone; 4406 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4407 4408 spin_lock_irq(&lruvec->lru_lock); 4409 4410 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4411 4412 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4413 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4414 continue; 4415 4416 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4417 4418 while (!inc_min_seq(lruvec, type, can_swap)) { 4419 spin_unlock_irq(&lruvec->lru_lock); 4420 cond_resched(); 4421 spin_lock_irq(&lruvec->lru_lock); 4422 } 4423 } 4424 4425 /* 4426 * Update the active/inactive LRU sizes for compatibility. Both sides of 4427 * the current max_seq need to be covered, since max_seq+1 can overlap 4428 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4429 * overlap, cold/hot inversion happens. 4430 */ 4431 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4432 next = lru_gen_from_seq(lrugen->max_seq + 1); 4433 4434 for (type = 0; type < ANON_AND_FILE; type++) { 4435 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4436 enum lru_list lru = type * LRU_INACTIVE_FILE; 4437 long delta = lrugen->nr_pages[prev][type][zone] - 4438 lrugen->nr_pages[next][type][zone]; 4439 4440 if (!delta) 4441 continue; 4442 4443 __update_lru_size(lruvec, lru, zone, delta); 4444 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4445 } 4446 } 4447 4448 for (type = 0; type < ANON_AND_FILE; type++) 4449 reset_ctrl_pos(lruvec, type, false); 4450 4451 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4452 /* make sure preceding modifications appear */ 4453 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4454 4455 spin_unlock_irq(&lruvec->lru_lock); 4456 } 4457 4458 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4459 struct scan_control *sc, bool can_swap, bool force_scan) 4460 { 4461 bool success; 4462 struct lru_gen_mm_walk *walk; 4463 struct mm_struct *mm = NULL; 4464 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4465 4466 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4467 4468 /* see the comment in iterate_mm_list() */ 4469 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4470 success = false; 4471 goto done; 4472 } 4473 4474 /* 4475 * If the hardware doesn't automatically set the accessed bit, fallback 4476 * to lru_gen_look_around(), which only clears the accessed bit in a 4477 * handful of PTEs. Spreading the work out over a period of time usually 4478 * is less efficient, but it avoids bursty page faults. 4479 */ 4480 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) { 4481 success = iterate_mm_list_nowalk(lruvec, max_seq); 4482 goto done; 4483 } 4484 4485 walk = set_mm_walk(NULL, true); 4486 if (!walk) { 4487 success = iterate_mm_list_nowalk(lruvec, max_seq); 4488 goto done; 4489 } 4490 4491 walk->lruvec = lruvec; 4492 walk->max_seq = max_seq; 4493 walk->can_swap = can_swap; 4494 walk->force_scan = force_scan; 4495 4496 do { 4497 success = iterate_mm_list(lruvec, walk, &mm); 4498 if (mm) 4499 walk_mm(lruvec, mm, walk); 4500 } while (mm); 4501 done: 4502 if (success) 4503 inc_max_seq(lruvec, can_swap, force_scan); 4504 4505 return success; 4506 } 4507 4508 /****************************************************************************** 4509 * working set protection 4510 ******************************************************************************/ 4511 4512 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4513 { 4514 int gen, type, zone; 4515 unsigned long total = 0; 4516 bool can_swap = get_swappiness(lruvec, sc); 4517 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4518 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4519 DEFINE_MAX_SEQ(lruvec); 4520 DEFINE_MIN_SEQ(lruvec); 4521 4522 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4523 unsigned long seq; 4524 4525 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4526 gen = lru_gen_from_seq(seq); 4527 4528 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4529 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4530 } 4531 } 4532 4533 /* whether the size is big enough to be helpful */ 4534 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4535 } 4536 4537 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4538 unsigned long min_ttl) 4539 { 4540 int gen; 4541 unsigned long birth; 4542 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4543 DEFINE_MIN_SEQ(lruvec); 4544 4545 /* see the comment on lru_gen_folio */ 4546 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4547 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4548 4549 if (time_is_after_jiffies(birth + min_ttl)) 4550 return false; 4551 4552 if (!lruvec_is_sizable(lruvec, sc)) 4553 return false; 4554 4555 mem_cgroup_calculate_protection(NULL, memcg); 4556 4557 return !mem_cgroup_below_min(NULL, memcg); 4558 } 4559 4560 /* to protect the working set of the last N jiffies */ 4561 static unsigned long lru_gen_min_ttl __read_mostly; 4562 4563 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4564 { 4565 struct mem_cgroup *memcg; 4566 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4567 4568 VM_WARN_ON_ONCE(!current_is_kswapd()); 4569 4570 /* check the order to exclude compaction-induced reclaim */ 4571 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4572 return; 4573 4574 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4575 do { 4576 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4577 4578 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4579 mem_cgroup_iter_break(NULL, memcg); 4580 return; 4581 } 4582 4583 cond_resched(); 4584 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4585 4586 /* 4587 * The main goal is to OOM kill if every generation from all memcgs is 4588 * younger than min_ttl. However, another possibility is all memcgs are 4589 * either too small or below min. 4590 */ 4591 if (mutex_trylock(&oom_lock)) { 4592 struct oom_control oc = { 4593 .gfp_mask = sc->gfp_mask, 4594 }; 4595 4596 out_of_memory(&oc); 4597 4598 mutex_unlock(&oom_lock); 4599 } 4600 } 4601 4602 /****************************************************************************** 4603 * rmap/PT walk feedback 4604 ******************************************************************************/ 4605 4606 /* 4607 * This function exploits spatial locality when shrink_folio_list() walks the 4608 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4609 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4610 * the PTE table to the Bloom filter. This forms a feedback loop between the 4611 * eviction and the aging. 4612 */ 4613 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4614 { 4615 int i; 4616 unsigned long start; 4617 unsigned long end; 4618 struct lru_gen_mm_walk *walk; 4619 int young = 0; 4620 pte_t *pte = pvmw->pte; 4621 unsigned long addr = pvmw->address; 4622 struct folio *folio = pfn_folio(pvmw->pfn); 4623 struct mem_cgroup *memcg = folio_memcg(folio); 4624 struct pglist_data *pgdat = folio_pgdat(folio); 4625 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4626 DEFINE_MAX_SEQ(lruvec); 4627 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4628 4629 lockdep_assert_held(pvmw->ptl); 4630 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4631 4632 if (spin_is_contended(pvmw->ptl)) 4633 return; 4634 4635 /* avoid taking the LRU lock under the PTL when possible */ 4636 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4637 4638 start = max(addr & PMD_MASK, pvmw->vma->vm_start); 4639 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4640 4641 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4642 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4643 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4644 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4645 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4646 else { 4647 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4648 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4649 } 4650 } 4651 4652 /* folio_update_gen() requires stable folio_memcg() */ 4653 if (!mem_cgroup_trylock_pages(memcg)) 4654 return; 4655 4656 arch_enter_lazy_mmu_mode(); 4657 4658 pte -= (addr - start) / PAGE_SIZE; 4659 4660 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4661 unsigned long pfn; 4662 4663 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4664 if (pfn == -1) 4665 continue; 4666 4667 if (!pte_young(pte[i])) 4668 continue; 4669 4670 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4671 if (!folio) 4672 continue; 4673 4674 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4675 VM_WARN_ON_ONCE(true); 4676 4677 young++; 4678 4679 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4680 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4681 !folio_test_swapcache(folio))) 4682 folio_mark_dirty(folio); 4683 4684 if (walk) { 4685 old_gen = folio_update_gen(folio, new_gen); 4686 if (old_gen >= 0 && old_gen != new_gen) 4687 update_batch_size(walk, folio, old_gen, new_gen); 4688 4689 continue; 4690 } 4691 4692 old_gen = folio_lru_gen(folio); 4693 if (old_gen < 0) 4694 folio_set_referenced(folio); 4695 else if (old_gen != new_gen) 4696 folio_activate(folio); 4697 } 4698 4699 arch_leave_lazy_mmu_mode(); 4700 mem_cgroup_unlock_pages(); 4701 4702 /* feedback from rmap walkers to page table walkers */ 4703 if (suitable_to_scan(i, young)) 4704 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4705 } 4706 4707 /****************************************************************************** 4708 * memcg LRU 4709 ******************************************************************************/ 4710 4711 /* see the comment on MEMCG_NR_GENS */ 4712 enum { 4713 MEMCG_LRU_NOP, 4714 MEMCG_LRU_HEAD, 4715 MEMCG_LRU_TAIL, 4716 MEMCG_LRU_OLD, 4717 MEMCG_LRU_YOUNG, 4718 }; 4719 4720 #ifdef CONFIG_MEMCG 4721 4722 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4723 { 4724 return READ_ONCE(lruvec->lrugen.seg); 4725 } 4726 4727 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4728 { 4729 int seg; 4730 int old, new; 4731 int bin = get_random_u32_below(MEMCG_NR_BINS); 4732 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4733 4734 spin_lock(&pgdat->memcg_lru.lock); 4735 4736 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4737 4738 seg = 0; 4739 new = old = lruvec->lrugen.gen; 4740 4741 /* see the comment on MEMCG_NR_GENS */ 4742 if (op == MEMCG_LRU_HEAD) 4743 seg = MEMCG_LRU_HEAD; 4744 else if (op == MEMCG_LRU_TAIL) 4745 seg = MEMCG_LRU_TAIL; 4746 else if (op == MEMCG_LRU_OLD) 4747 new = get_memcg_gen(pgdat->memcg_lru.seq); 4748 else if (op == MEMCG_LRU_YOUNG) 4749 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4750 else 4751 VM_WARN_ON_ONCE(true); 4752 4753 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4754 4755 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4756 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4757 else 4758 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4759 4760 pgdat->memcg_lru.nr_memcgs[old]--; 4761 pgdat->memcg_lru.nr_memcgs[new]++; 4762 4763 lruvec->lrugen.gen = new; 4764 WRITE_ONCE(lruvec->lrugen.seg, seg); 4765 4766 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4767 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4768 4769 spin_unlock(&pgdat->memcg_lru.lock); 4770 } 4771 4772 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4773 { 4774 int gen; 4775 int nid; 4776 int bin = get_random_u32_below(MEMCG_NR_BINS); 4777 4778 for_each_node(nid) { 4779 struct pglist_data *pgdat = NODE_DATA(nid); 4780 struct lruvec *lruvec = get_lruvec(memcg, nid); 4781 4782 spin_lock(&pgdat->memcg_lru.lock); 4783 4784 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4785 4786 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4787 4788 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4789 pgdat->memcg_lru.nr_memcgs[gen]++; 4790 4791 lruvec->lrugen.gen = gen; 4792 4793 spin_unlock(&pgdat->memcg_lru.lock); 4794 } 4795 } 4796 4797 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4798 { 4799 int nid; 4800 4801 for_each_node(nid) { 4802 struct lruvec *lruvec = get_lruvec(memcg, nid); 4803 4804 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4805 } 4806 } 4807 4808 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4809 { 4810 int gen; 4811 int nid; 4812 4813 for_each_node(nid) { 4814 struct pglist_data *pgdat = NODE_DATA(nid); 4815 struct lruvec *lruvec = get_lruvec(memcg, nid); 4816 4817 spin_lock(&pgdat->memcg_lru.lock); 4818 4819 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4820 4821 gen = lruvec->lrugen.gen; 4822 4823 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4824 pgdat->memcg_lru.nr_memcgs[gen]--; 4825 4826 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4827 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4828 4829 spin_unlock(&pgdat->memcg_lru.lock); 4830 } 4831 } 4832 4833 void lru_gen_soft_reclaim(struct lruvec *lruvec) 4834 { 4835 /* see the comment on MEMCG_NR_GENS */ 4836 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4837 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4838 } 4839 4840 #else /* !CONFIG_MEMCG */ 4841 4842 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4843 { 4844 return 0; 4845 } 4846 4847 #endif 4848 4849 /****************************************************************************** 4850 * the eviction 4851 ******************************************************************************/ 4852 4853 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4854 { 4855 bool success; 4856 int gen = folio_lru_gen(folio); 4857 int type = folio_is_file_lru(folio); 4858 int zone = folio_zonenum(folio); 4859 int delta = folio_nr_pages(folio); 4860 int refs = folio_lru_refs(folio); 4861 int tier = lru_tier_from_refs(refs); 4862 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4863 4864 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4865 4866 /* unevictable */ 4867 if (!folio_evictable(folio)) { 4868 success = lru_gen_del_folio(lruvec, folio, true); 4869 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4870 folio_set_unevictable(folio); 4871 lruvec_add_folio(lruvec, folio); 4872 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4873 return true; 4874 } 4875 4876 /* dirty lazyfree */ 4877 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4878 success = lru_gen_del_folio(lruvec, folio, true); 4879 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4880 folio_set_swapbacked(folio); 4881 lruvec_add_folio_tail(lruvec, folio); 4882 return true; 4883 } 4884 4885 /* promoted */ 4886 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4887 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4888 return true; 4889 } 4890 4891 /* protected */ 4892 if (tier > tier_idx) { 4893 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4894 4895 gen = folio_inc_gen(lruvec, folio, false); 4896 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4897 4898 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4899 lrugen->protected[hist][type][tier - 1] + delta); 4900 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4901 return true; 4902 } 4903 4904 /* waiting for writeback */ 4905 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4906 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4907 gen = folio_inc_gen(lruvec, folio, true); 4908 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4909 return true; 4910 } 4911 4912 return false; 4913 } 4914 4915 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4916 { 4917 bool success; 4918 4919 /* swapping inhibited */ 4920 if (!(sc->gfp_mask & __GFP_IO) && 4921 (folio_test_dirty(folio) || 4922 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4923 return false; 4924 4925 /* raced with release_pages() */ 4926 if (!folio_try_get(folio)) 4927 return false; 4928 4929 /* raced with another isolation */ 4930 if (!folio_test_clear_lru(folio)) { 4931 folio_put(folio); 4932 return false; 4933 } 4934 4935 /* see the comment on MAX_NR_TIERS */ 4936 if (!folio_test_referenced(folio)) 4937 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4938 4939 /* for shrink_folio_list() */ 4940 folio_clear_reclaim(folio); 4941 folio_clear_referenced(folio); 4942 4943 success = lru_gen_del_folio(lruvec, folio, true); 4944 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4945 4946 return true; 4947 } 4948 4949 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4950 int type, int tier, struct list_head *list) 4951 { 4952 int gen, zone; 4953 enum vm_event_item item; 4954 int sorted = 0; 4955 int scanned = 0; 4956 int isolated = 0; 4957 int remaining = MAX_LRU_BATCH; 4958 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4959 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4960 4961 VM_WARN_ON_ONCE(!list_empty(list)); 4962 4963 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4964 return 0; 4965 4966 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4967 4968 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4969 LIST_HEAD(moved); 4970 int skipped = 0; 4971 struct list_head *head = &lrugen->folios[gen][type][zone]; 4972 4973 while (!list_empty(head)) { 4974 struct folio *folio = lru_to_folio(head); 4975 int delta = folio_nr_pages(folio); 4976 4977 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4978 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4979 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4980 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4981 4982 scanned += delta; 4983 4984 if (sort_folio(lruvec, folio, tier)) 4985 sorted += delta; 4986 else if (isolate_folio(lruvec, folio, sc)) { 4987 list_add(&folio->lru, list); 4988 isolated += delta; 4989 } else { 4990 list_move(&folio->lru, &moved); 4991 skipped += delta; 4992 } 4993 4994 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4995 break; 4996 } 4997 4998 if (skipped) { 4999 list_splice(&moved, head); 5000 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 5001 } 5002 5003 if (!remaining || isolated >= MIN_LRU_BATCH) 5004 break; 5005 } 5006 5007 item = PGSCAN_KSWAPD + reclaimer_offset(); 5008 if (!cgroup_reclaim(sc)) { 5009 __count_vm_events(item, isolated); 5010 __count_vm_events(PGREFILL, sorted); 5011 } 5012 __count_memcg_events(memcg, item, isolated); 5013 __count_memcg_events(memcg, PGREFILL, sorted); 5014 __count_vm_events(PGSCAN_ANON + type, isolated); 5015 5016 /* 5017 * There might not be eligible folios due to reclaim_idx. Check the 5018 * remaining to prevent livelock if it's not making progress. 5019 */ 5020 return isolated || !remaining ? scanned : 0; 5021 } 5022 5023 static int get_tier_idx(struct lruvec *lruvec, int type) 5024 { 5025 int tier; 5026 struct ctrl_pos sp, pv; 5027 5028 /* 5029 * To leave a margin for fluctuations, use a larger gain factor (1:2). 5030 * This value is chosen because any other tier would have at least twice 5031 * as many refaults as the first tier. 5032 */ 5033 read_ctrl_pos(lruvec, type, 0, 1, &sp); 5034 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5035 read_ctrl_pos(lruvec, type, tier, 2, &pv); 5036 if (!positive_ctrl_err(&sp, &pv)) 5037 break; 5038 } 5039 5040 return tier - 1; 5041 } 5042 5043 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 5044 { 5045 int type, tier; 5046 struct ctrl_pos sp, pv; 5047 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 5048 5049 /* 5050 * Compare the first tier of anon with that of file to determine which 5051 * type to scan. Also need to compare other tiers of the selected type 5052 * with the first tier of the other type to determine the last tier (of 5053 * the selected type) to evict. 5054 */ 5055 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 5056 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 5057 type = positive_ctrl_err(&sp, &pv); 5058 5059 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 5060 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5061 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 5062 if (!positive_ctrl_err(&sp, &pv)) 5063 break; 5064 } 5065 5066 *tier_idx = tier - 1; 5067 5068 return type; 5069 } 5070 5071 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5072 int *type_scanned, struct list_head *list) 5073 { 5074 int i; 5075 int type; 5076 int scanned; 5077 int tier = -1; 5078 DEFINE_MIN_SEQ(lruvec); 5079 5080 /* 5081 * Try to make the obvious choice first. When anon and file are both 5082 * available from the same generation, interpret swappiness 1 as file 5083 * first and 200 as anon first. 5084 */ 5085 if (!swappiness) 5086 type = LRU_GEN_FILE; 5087 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 5088 type = LRU_GEN_ANON; 5089 else if (swappiness == 1) 5090 type = LRU_GEN_FILE; 5091 else if (swappiness == 200) 5092 type = LRU_GEN_ANON; 5093 else 5094 type = get_type_to_scan(lruvec, swappiness, &tier); 5095 5096 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5097 if (tier < 0) 5098 tier = get_tier_idx(lruvec, type); 5099 5100 scanned = scan_folios(lruvec, sc, type, tier, list); 5101 if (scanned) 5102 break; 5103 5104 type = !type; 5105 tier = -1; 5106 } 5107 5108 *type_scanned = type; 5109 5110 return scanned; 5111 } 5112 5113 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5114 { 5115 int type; 5116 int scanned; 5117 int reclaimed; 5118 LIST_HEAD(list); 5119 LIST_HEAD(clean); 5120 struct folio *folio; 5121 struct folio *next; 5122 enum vm_event_item item; 5123 struct reclaim_stat stat; 5124 struct lru_gen_mm_walk *walk; 5125 bool skip_retry = false; 5126 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5127 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5128 5129 spin_lock_irq(&lruvec->lru_lock); 5130 5131 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5132 5133 scanned += try_to_inc_min_seq(lruvec, swappiness); 5134 5135 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5136 scanned = 0; 5137 5138 spin_unlock_irq(&lruvec->lru_lock); 5139 5140 if (list_empty(&list)) 5141 return scanned; 5142 retry: 5143 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5144 sc->nr_reclaimed += reclaimed; 5145 5146 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5147 if (!folio_evictable(folio)) { 5148 list_del(&folio->lru); 5149 folio_putback_lru(folio); 5150 continue; 5151 } 5152 5153 if (folio_test_reclaim(folio) && 5154 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5155 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5156 if (folio_test_workingset(folio)) 5157 folio_set_referenced(folio); 5158 continue; 5159 } 5160 5161 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5162 folio_mapped(folio) || folio_test_locked(folio) || 5163 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5164 /* don't add rejected folios to the oldest generation */ 5165 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5166 BIT(PG_active)); 5167 continue; 5168 } 5169 5170 /* retry folios that may have missed folio_rotate_reclaimable() */ 5171 list_move(&folio->lru, &clean); 5172 sc->nr_scanned -= folio_nr_pages(folio); 5173 } 5174 5175 spin_lock_irq(&lruvec->lru_lock); 5176 5177 move_folios_to_lru(lruvec, &list); 5178 5179 walk = current->reclaim_state->mm_walk; 5180 if (walk && walk->batched) 5181 reset_batch_size(lruvec, walk); 5182 5183 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5184 if (!cgroup_reclaim(sc)) 5185 __count_vm_events(item, reclaimed); 5186 __count_memcg_events(memcg, item, reclaimed); 5187 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5188 5189 spin_unlock_irq(&lruvec->lru_lock); 5190 5191 mem_cgroup_uncharge_list(&list); 5192 free_unref_page_list(&list); 5193 5194 INIT_LIST_HEAD(&list); 5195 list_splice_init(&clean, &list); 5196 5197 if (!list_empty(&list)) { 5198 skip_retry = true; 5199 goto retry; 5200 } 5201 5202 return scanned; 5203 } 5204 5205 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5206 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5207 { 5208 int gen, type, zone; 5209 unsigned long old = 0; 5210 unsigned long young = 0; 5211 unsigned long total = 0; 5212 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5213 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5214 DEFINE_MIN_SEQ(lruvec); 5215 5216 /* whether this lruvec is completely out of cold folios */ 5217 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5218 *nr_to_scan = 0; 5219 return true; 5220 } 5221 5222 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5223 unsigned long seq; 5224 5225 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5226 unsigned long size = 0; 5227 5228 gen = lru_gen_from_seq(seq); 5229 5230 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5231 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5232 5233 total += size; 5234 if (seq == max_seq) 5235 young += size; 5236 else if (seq + MIN_NR_GENS == max_seq) 5237 old += size; 5238 } 5239 } 5240 5241 /* try to scrape all its memory if this memcg was deleted */ 5242 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 5243 5244 /* 5245 * The aging tries to be lazy to reduce the overhead, while the eviction 5246 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5247 * ideal number of generations is MIN_NR_GENS+1. 5248 */ 5249 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5250 return false; 5251 5252 /* 5253 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5254 * of the total number of pages for each generation. A reasonable range 5255 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5256 * aging cares about the upper bound of hot pages, while the eviction 5257 * cares about the lower bound of cold pages. 5258 */ 5259 if (young * MIN_NR_GENS > total) 5260 return true; 5261 if (old * (MIN_NR_GENS + 2) < total) 5262 return true; 5263 5264 return false; 5265 } 5266 5267 /* 5268 * For future optimizations: 5269 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5270 * reclaim. 5271 */ 5272 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5273 { 5274 unsigned long nr_to_scan; 5275 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5276 DEFINE_MAX_SEQ(lruvec); 5277 5278 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5279 return 0; 5280 5281 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5282 return nr_to_scan; 5283 5284 /* skip the aging path at the default priority */ 5285 if (sc->priority == DEF_PRIORITY) 5286 return nr_to_scan; 5287 5288 /* skip this lruvec as it's low on cold folios */ 5289 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5290 } 5291 5292 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5293 { 5294 /* don't abort memcg reclaim to ensure fairness */ 5295 if (!global_reclaim(sc)) 5296 return -1; 5297 5298 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5299 } 5300 5301 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5302 { 5303 long nr_to_scan; 5304 unsigned long scanned = 0; 5305 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5306 int swappiness = get_swappiness(lruvec, sc); 5307 5308 /* clean file folios are more likely to exist */ 5309 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5310 swappiness = 1; 5311 5312 while (true) { 5313 int delta; 5314 5315 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5316 if (nr_to_scan <= 0) 5317 break; 5318 5319 delta = evict_folios(lruvec, sc, swappiness); 5320 if (!delta) 5321 break; 5322 5323 scanned += delta; 5324 if (scanned >= nr_to_scan) 5325 break; 5326 5327 if (sc->nr_reclaimed >= nr_to_reclaim) 5328 break; 5329 5330 cond_resched(); 5331 } 5332 5333 /* whether try_to_inc_max_seq() was successful */ 5334 return nr_to_scan < 0; 5335 } 5336 5337 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5338 { 5339 bool success; 5340 unsigned long scanned = sc->nr_scanned; 5341 unsigned long reclaimed = sc->nr_reclaimed; 5342 int seg = lru_gen_memcg_seg(lruvec); 5343 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5344 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5345 5346 /* see the comment on MEMCG_NR_GENS */ 5347 if (!lruvec_is_sizable(lruvec, sc)) 5348 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5349 5350 mem_cgroup_calculate_protection(NULL, memcg); 5351 5352 if (mem_cgroup_below_min(NULL, memcg)) 5353 return MEMCG_LRU_YOUNG; 5354 5355 if (mem_cgroup_below_low(NULL, memcg)) { 5356 /* see the comment on MEMCG_NR_GENS */ 5357 if (seg != MEMCG_LRU_TAIL) 5358 return MEMCG_LRU_TAIL; 5359 5360 memcg_memory_event(memcg, MEMCG_LOW); 5361 } 5362 5363 success = try_to_shrink_lruvec(lruvec, sc); 5364 5365 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5366 5367 if (!sc->proactive) 5368 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5369 sc->nr_reclaimed - reclaimed); 5370 5371 flush_reclaim_state(sc); 5372 5373 return success ? MEMCG_LRU_YOUNG : 0; 5374 } 5375 5376 #ifdef CONFIG_MEMCG 5377 5378 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5379 { 5380 int op; 5381 int gen; 5382 int bin; 5383 int first_bin; 5384 struct lruvec *lruvec; 5385 struct lru_gen_folio *lrugen; 5386 struct mem_cgroup *memcg; 5387 const struct hlist_nulls_node *pos; 5388 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5389 5390 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5391 restart: 5392 op = 0; 5393 memcg = NULL; 5394 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5395 5396 rcu_read_lock(); 5397 5398 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5399 if (op) 5400 lru_gen_rotate_memcg(lruvec, op); 5401 5402 mem_cgroup_put(memcg); 5403 5404 lruvec = container_of(lrugen, struct lruvec, lrugen); 5405 memcg = lruvec_memcg(lruvec); 5406 5407 if (!mem_cgroup_tryget(memcg)) { 5408 op = 0; 5409 memcg = NULL; 5410 continue; 5411 } 5412 5413 rcu_read_unlock(); 5414 5415 op = shrink_one(lruvec, sc); 5416 5417 rcu_read_lock(); 5418 5419 if (sc->nr_reclaimed >= nr_to_reclaim) 5420 break; 5421 } 5422 5423 rcu_read_unlock(); 5424 5425 if (op) 5426 lru_gen_rotate_memcg(lruvec, op); 5427 5428 mem_cgroup_put(memcg); 5429 5430 if (sc->nr_reclaimed >= nr_to_reclaim) 5431 return; 5432 5433 /* restart if raced with lru_gen_rotate_memcg() */ 5434 if (gen != get_nulls_value(pos)) 5435 goto restart; 5436 5437 /* try the rest of the bins of the current generation */ 5438 bin = get_memcg_bin(bin + 1); 5439 if (bin != first_bin) 5440 goto restart; 5441 } 5442 5443 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5444 { 5445 struct blk_plug plug; 5446 5447 VM_WARN_ON_ONCE(global_reclaim(sc)); 5448 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5449 5450 lru_add_drain(); 5451 5452 blk_start_plug(&plug); 5453 5454 set_mm_walk(NULL, sc->proactive); 5455 5456 if (try_to_shrink_lruvec(lruvec, sc)) 5457 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5458 5459 clear_mm_walk(); 5460 5461 blk_finish_plug(&plug); 5462 } 5463 5464 #else /* !CONFIG_MEMCG */ 5465 5466 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5467 { 5468 BUILD_BUG(); 5469 } 5470 5471 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5472 { 5473 BUILD_BUG(); 5474 } 5475 5476 #endif 5477 5478 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 5479 { 5480 int priority; 5481 unsigned long reclaimable; 5482 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 5483 5484 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 5485 return; 5486 /* 5487 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> 5488 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the 5489 * estimated reclaimed_to_scanned_ratio = inactive / total. 5490 */ 5491 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 5492 if (get_swappiness(lruvec, sc)) 5493 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 5494 5495 reclaimable /= MEMCG_NR_GENS; 5496 5497 /* round down reclaimable and round up sc->nr_to_reclaim */ 5498 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 5499 5500 sc->priority = clamp(priority, 0, DEF_PRIORITY); 5501 } 5502 5503 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5504 { 5505 struct blk_plug plug; 5506 unsigned long reclaimed = sc->nr_reclaimed; 5507 5508 VM_WARN_ON_ONCE(!global_reclaim(sc)); 5509 5510 /* 5511 * Unmapped clean folios are already prioritized. Scanning for more of 5512 * them is likely futile and can cause high reclaim latency when there 5513 * is a large number of memcgs. 5514 */ 5515 if (!sc->may_writepage || !sc->may_unmap) 5516 goto done; 5517 5518 lru_add_drain(); 5519 5520 blk_start_plug(&plug); 5521 5522 set_mm_walk(pgdat, sc->proactive); 5523 5524 set_initial_priority(pgdat, sc); 5525 5526 if (current_is_kswapd()) 5527 sc->nr_reclaimed = 0; 5528 5529 if (mem_cgroup_disabled()) 5530 shrink_one(&pgdat->__lruvec, sc); 5531 else 5532 shrink_many(pgdat, sc); 5533 5534 if (current_is_kswapd()) 5535 sc->nr_reclaimed += reclaimed; 5536 5537 clear_mm_walk(); 5538 5539 blk_finish_plug(&plug); 5540 done: 5541 /* kswapd should never fail */ 5542 pgdat->kswapd_failures = 0; 5543 } 5544 5545 /****************************************************************************** 5546 * state change 5547 ******************************************************************************/ 5548 5549 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5550 { 5551 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5552 5553 if (lrugen->enabled) { 5554 enum lru_list lru; 5555 5556 for_each_evictable_lru(lru) { 5557 if (!list_empty(&lruvec->lists[lru])) 5558 return false; 5559 } 5560 } else { 5561 int gen, type, zone; 5562 5563 for_each_gen_type_zone(gen, type, zone) { 5564 if (!list_empty(&lrugen->folios[gen][type][zone])) 5565 return false; 5566 } 5567 } 5568 5569 return true; 5570 } 5571 5572 static bool fill_evictable(struct lruvec *lruvec) 5573 { 5574 enum lru_list lru; 5575 int remaining = MAX_LRU_BATCH; 5576 5577 for_each_evictable_lru(lru) { 5578 int type = is_file_lru(lru); 5579 bool active = is_active_lru(lru); 5580 struct list_head *head = &lruvec->lists[lru]; 5581 5582 while (!list_empty(head)) { 5583 bool success; 5584 struct folio *folio = lru_to_folio(head); 5585 5586 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5587 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5588 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5589 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5590 5591 lruvec_del_folio(lruvec, folio); 5592 success = lru_gen_add_folio(lruvec, folio, false); 5593 VM_WARN_ON_ONCE(!success); 5594 5595 if (!--remaining) 5596 return false; 5597 } 5598 } 5599 5600 return true; 5601 } 5602 5603 static bool drain_evictable(struct lruvec *lruvec) 5604 { 5605 int gen, type, zone; 5606 int remaining = MAX_LRU_BATCH; 5607 5608 for_each_gen_type_zone(gen, type, zone) { 5609 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5610 5611 while (!list_empty(head)) { 5612 bool success; 5613 struct folio *folio = lru_to_folio(head); 5614 5615 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5616 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5617 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5618 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5619 5620 success = lru_gen_del_folio(lruvec, folio, false); 5621 VM_WARN_ON_ONCE(!success); 5622 lruvec_add_folio(lruvec, folio); 5623 5624 if (!--remaining) 5625 return false; 5626 } 5627 } 5628 5629 return true; 5630 } 5631 5632 static void lru_gen_change_state(bool enabled) 5633 { 5634 static DEFINE_MUTEX(state_mutex); 5635 5636 struct mem_cgroup *memcg; 5637 5638 cgroup_lock(); 5639 cpus_read_lock(); 5640 get_online_mems(); 5641 mutex_lock(&state_mutex); 5642 5643 if (enabled == lru_gen_enabled()) 5644 goto unlock; 5645 5646 if (enabled) 5647 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5648 else 5649 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5650 5651 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5652 do { 5653 int nid; 5654 5655 for_each_node(nid) { 5656 struct lruvec *lruvec = get_lruvec(memcg, nid); 5657 5658 spin_lock_irq(&lruvec->lru_lock); 5659 5660 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5661 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5662 5663 lruvec->lrugen.enabled = enabled; 5664 5665 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5666 spin_unlock_irq(&lruvec->lru_lock); 5667 cond_resched(); 5668 spin_lock_irq(&lruvec->lru_lock); 5669 } 5670 5671 spin_unlock_irq(&lruvec->lru_lock); 5672 } 5673 5674 cond_resched(); 5675 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5676 unlock: 5677 mutex_unlock(&state_mutex); 5678 put_online_mems(); 5679 cpus_read_unlock(); 5680 cgroup_unlock(); 5681 } 5682 5683 /****************************************************************************** 5684 * sysfs interface 5685 ******************************************************************************/ 5686 5687 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5688 { 5689 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5690 } 5691 5692 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5693 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5694 const char *buf, size_t len) 5695 { 5696 unsigned int msecs; 5697 5698 if (kstrtouint(buf, 0, &msecs)) 5699 return -EINVAL; 5700 5701 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5702 5703 return len; 5704 } 5705 5706 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5707 5708 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5709 { 5710 unsigned int caps = 0; 5711 5712 if (get_cap(LRU_GEN_CORE)) 5713 caps |= BIT(LRU_GEN_CORE); 5714 5715 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5716 caps |= BIT(LRU_GEN_MM_WALK); 5717 5718 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5719 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5720 5721 return sysfs_emit(buf, "0x%04x\n", caps); 5722 } 5723 5724 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5725 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5726 const char *buf, size_t len) 5727 { 5728 int i; 5729 unsigned int caps; 5730 5731 if (tolower(*buf) == 'n') 5732 caps = 0; 5733 else if (tolower(*buf) == 'y') 5734 caps = -1; 5735 else if (kstrtouint(buf, 0, &caps)) 5736 return -EINVAL; 5737 5738 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5739 bool enabled = caps & BIT(i); 5740 5741 if (i == LRU_GEN_CORE) 5742 lru_gen_change_state(enabled); 5743 else if (enabled) 5744 static_branch_enable(&lru_gen_caps[i]); 5745 else 5746 static_branch_disable(&lru_gen_caps[i]); 5747 } 5748 5749 return len; 5750 } 5751 5752 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5753 5754 static struct attribute *lru_gen_attrs[] = { 5755 &lru_gen_min_ttl_attr.attr, 5756 &lru_gen_enabled_attr.attr, 5757 NULL 5758 }; 5759 5760 static const struct attribute_group lru_gen_attr_group = { 5761 .name = "lru_gen", 5762 .attrs = lru_gen_attrs, 5763 }; 5764 5765 /****************************************************************************** 5766 * debugfs interface 5767 ******************************************************************************/ 5768 5769 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5770 { 5771 struct mem_cgroup *memcg; 5772 loff_t nr_to_skip = *pos; 5773 5774 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5775 if (!m->private) 5776 return ERR_PTR(-ENOMEM); 5777 5778 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5779 do { 5780 int nid; 5781 5782 for_each_node_state(nid, N_MEMORY) { 5783 if (!nr_to_skip--) 5784 return get_lruvec(memcg, nid); 5785 } 5786 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5787 5788 return NULL; 5789 } 5790 5791 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5792 { 5793 if (!IS_ERR_OR_NULL(v)) 5794 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5795 5796 kvfree(m->private); 5797 m->private = NULL; 5798 } 5799 5800 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5801 { 5802 int nid = lruvec_pgdat(v)->node_id; 5803 struct mem_cgroup *memcg = lruvec_memcg(v); 5804 5805 ++*pos; 5806 5807 nid = next_memory_node(nid); 5808 if (nid == MAX_NUMNODES) { 5809 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5810 if (!memcg) 5811 return NULL; 5812 5813 nid = first_memory_node; 5814 } 5815 5816 return get_lruvec(memcg, nid); 5817 } 5818 5819 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5820 unsigned long max_seq, unsigned long *min_seq, 5821 unsigned long seq) 5822 { 5823 int i; 5824 int type, tier; 5825 int hist = lru_hist_from_seq(seq); 5826 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5827 5828 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5829 seq_printf(m, " %10d", tier); 5830 for (type = 0; type < ANON_AND_FILE; type++) { 5831 const char *s = " "; 5832 unsigned long n[3] = {}; 5833 5834 if (seq == max_seq) { 5835 s = "RT "; 5836 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5837 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5838 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5839 s = "rep"; 5840 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5841 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5842 if (tier) 5843 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5844 } 5845 5846 for (i = 0; i < 3; i++) 5847 seq_printf(m, " %10lu%c", n[i], s[i]); 5848 } 5849 seq_putc(m, '\n'); 5850 } 5851 5852 seq_puts(m, " "); 5853 for (i = 0; i < NR_MM_STATS; i++) { 5854 const char *s = " "; 5855 unsigned long n = 0; 5856 5857 if (seq == max_seq && NR_HIST_GENS == 1) { 5858 s = "LOYNFA"; 5859 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5860 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5861 s = "loynfa"; 5862 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5863 } 5864 5865 seq_printf(m, " %10lu%c", n, s[i]); 5866 } 5867 seq_putc(m, '\n'); 5868 } 5869 5870 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5871 static int lru_gen_seq_show(struct seq_file *m, void *v) 5872 { 5873 unsigned long seq; 5874 bool full = !debugfs_real_fops(m->file)->write; 5875 struct lruvec *lruvec = v; 5876 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5877 int nid = lruvec_pgdat(lruvec)->node_id; 5878 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5879 DEFINE_MAX_SEQ(lruvec); 5880 DEFINE_MIN_SEQ(lruvec); 5881 5882 if (nid == first_memory_node) { 5883 const char *path = memcg ? m->private : ""; 5884 5885 #ifdef CONFIG_MEMCG 5886 if (memcg) 5887 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5888 #endif 5889 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5890 } 5891 5892 seq_printf(m, " node %5d\n", nid); 5893 5894 if (!full) 5895 seq = min_seq[LRU_GEN_ANON]; 5896 else if (max_seq >= MAX_NR_GENS) 5897 seq = max_seq - MAX_NR_GENS + 1; 5898 else 5899 seq = 0; 5900 5901 for (; seq <= max_seq; seq++) { 5902 int type, zone; 5903 int gen = lru_gen_from_seq(seq); 5904 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5905 5906 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5907 5908 for (type = 0; type < ANON_AND_FILE; type++) { 5909 unsigned long size = 0; 5910 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5911 5912 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5913 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5914 5915 seq_printf(m, " %10lu%c", size, mark); 5916 } 5917 5918 seq_putc(m, '\n'); 5919 5920 if (full) 5921 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5922 } 5923 5924 return 0; 5925 } 5926 5927 static const struct seq_operations lru_gen_seq_ops = { 5928 .start = lru_gen_seq_start, 5929 .stop = lru_gen_seq_stop, 5930 .next = lru_gen_seq_next, 5931 .show = lru_gen_seq_show, 5932 }; 5933 5934 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5935 bool can_swap, bool force_scan) 5936 { 5937 DEFINE_MAX_SEQ(lruvec); 5938 DEFINE_MIN_SEQ(lruvec); 5939 5940 if (seq < max_seq) 5941 return 0; 5942 5943 if (seq > max_seq) 5944 return -EINVAL; 5945 5946 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5947 return -ERANGE; 5948 5949 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5950 5951 return 0; 5952 } 5953 5954 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5955 int swappiness, unsigned long nr_to_reclaim) 5956 { 5957 DEFINE_MAX_SEQ(lruvec); 5958 5959 if (seq + MIN_NR_GENS > max_seq) 5960 return -EINVAL; 5961 5962 sc->nr_reclaimed = 0; 5963 5964 while (!signal_pending(current)) { 5965 DEFINE_MIN_SEQ(lruvec); 5966 5967 if (seq < min_seq[!swappiness]) 5968 return 0; 5969 5970 if (sc->nr_reclaimed >= nr_to_reclaim) 5971 return 0; 5972 5973 if (!evict_folios(lruvec, sc, swappiness)) 5974 return 0; 5975 5976 cond_resched(); 5977 } 5978 5979 return -EINTR; 5980 } 5981 5982 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5983 struct scan_control *sc, int swappiness, unsigned long opt) 5984 { 5985 struct lruvec *lruvec; 5986 int err = -EINVAL; 5987 struct mem_cgroup *memcg = NULL; 5988 5989 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5990 return -EINVAL; 5991 5992 if (!mem_cgroup_disabled()) { 5993 rcu_read_lock(); 5994 5995 memcg = mem_cgroup_from_id(memcg_id); 5996 if (!mem_cgroup_tryget(memcg)) 5997 memcg = NULL; 5998 5999 rcu_read_unlock(); 6000 6001 if (!memcg) 6002 return -EINVAL; 6003 } 6004 6005 if (memcg_id != mem_cgroup_id(memcg)) 6006 goto done; 6007 6008 lruvec = get_lruvec(memcg, nid); 6009 6010 if (swappiness < 0) 6011 swappiness = get_swappiness(lruvec, sc); 6012 else if (swappiness > 200) 6013 goto done; 6014 6015 switch (cmd) { 6016 case '+': 6017 err = run_aging(lruvec, seq, sc, swappiness, opt); 6018 break; 6019 case '-': 6020 err = run_eviction(lruvec, seq, sc, swappiness, opt); 6021 break; 6022 } 6023 done: 6024 mem_cgroup_put(memcg); 6025 6026 return err; 6027 } 6028 6029 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 6030 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 6031 size_t len, loff_t *pos) 6032 { 6033 void *buf; 6034 char *cur, *next; 6035 unsigned int flags; 6036 struct blk_plug plug; 6037 int err = -EINVAL; 6038 struct scan_control sc = { 6039 .may_writepage = true, 6040 .may_unmap = true, 6041 .may_swap = true, 6042 .reclaim_idx = MAX_NR_ZONES - 1, 6043 .gfp_mask = GFP_KERNEL, 6044 }; 6045 6046 buf = kvmalloc(len + 1, GFP_KERNEL); 6047 if (!buf) 6048 return -ENOMEM; 6049 6050 if (copy_from_user(buf, src, len)) { 6051 kvfree(buf); 6052 return -EFAULT; 6053 } 6054 6055 set_task_reclaim_state(current, &sc.reclaim_state); 6056 flags = memalloc_noreclaim_save(); 6057 blk_start_plug(&plug); 6058 if (!set_mm_walk(NULL, true)) { 6059 err = -ENOMEM; 6060 goto done; 6061 } 6062 6063 next = buf; 6064 next[len] = '\0'; 6065 6066 while ((cur = strsep(&next, ",;\n"))) { 6067 int n; 6068 int end; 6069 char cmd; 6070 unsigned int memcg_id; 6071 unsigned int nid; 6072 unsigned long seq; 6073 unsigned int swappiness = -1; 6074 unsigned long opt = -1; 6075 6076 cur = skip_spaces(cur); 6077 if (!*cur) 6078 continue; 6079 6080 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 6081 &seq, &end, &swappiness, &end, &opt, &end); 6082 if (n < 4 || cur[end]) { 6083 err = -EINVAL; 6084 break; 6085 } 6086 6087 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 6088 if (err) 6089 break; 6090 } 6091 done: 6092 clear_mm_walk(); 6093 blk_finish_plug(&plug); 6094 memalloc_noreclaim_restore(flags); 6095 set_task_reclaim_state(current, NULL); 6096 6097 kvfree(buf); 6098 6099 return err ? : len; 6100 } 6101 6102 static int lru_gen_seq_open(struct inode *inode, struct file *file) 6103 { 6104 return seq_open(file, &lru_gen_seq_ops); 6105 } 6106 6107 static const struct file_operations lru_gen_rw_fops = { 6108 .open = lru_gen_seq_open, 6109 .read = seq_read, 6110 .write = lru_gen_seq_write, 6111 .llseek = seq_lseek, 6112 .release = seq_release, 6113 }; 6114 6115 static const struct file_operations lru_gen_ro_fops = { 6116 .open = lru_gen_seq_open, 6117 .read = seq_read, 6118 .llseek = seq_lseek, 6119 .release = seq_release, 6120 }; 6121 6122 /****************************************************************************** 6123 * initialization 6124 ******************************************************************************/ 6125 6126 void lru_gen_init_lruvec(struct lruvec *lruvec) 6127 { 6128 int i; 6129 int gen, type, zone; 6130 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6131 6132 lrugen->max_seq = MIN_NR_GENS + 1; 6133 lrugen->enabled = lru_gen_enabled(); 6134 6135 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6136 lrugen->timestamps[i] = jiffies; 6137 6138 for_each_gen_type_zone(gen, type, zone) 6139 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6140 6141 lruvec->mm_state.seq = MIN_NR_GENS; 6142 } 6143 6144 #ifdef CONFIG_MEMCG 6145 6146 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6147 { 6148 int i, j; 6149 6150 spin_lock_init(&pgdat->memcg_lru.lock); 6151 6152 for (i = 0; i < MEMCG_NR_GENS; i++) { 6153 for (j = 0; j < MEMCG_NR_BINS; j++) 6154 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6155 } 6156 } 6157 6158 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6159 { 6160 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6161 spin_lock_init(&memcg->mm_list.lock); 6162 } 6163 6164 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6165 { 6166 int i; 6167 int nid; 6168 6169 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 6170 6171 for_each_node(nid) { 6172 struct lruvec *lruvec = get_lruvec(memcg, nid); 6173 6174 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6175 sizeof(lruvec->lrugen.nr_pages))); 6176 6177 lruvec->lrugen.list.next = LIST_POISON1; 6178 6179 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6180 bitmap_free(lruvec->mm_state.filters[i]); 6181 lruvec->mm_state.filters[i] = NULL; 6182 } 6183 } 6184 } 6185 6186 #endif /* CONFIG_MEMCG */ 6187 6188 static int __init init_lru_gen(void) 6189 { 6190 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6191 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6192 6193 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6194 pr_err("lru_gen: failed to create sysfs group\n"); 6195 6196 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6197 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6198 6199 return 0; 6200 }; 6201 late_initcall(init_lru_gen); 6202 6203 #else /* !CONFIG_LRU_GEN */ 6204 6205 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6206 { 6207 } 6208 6209 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6210 { 6211 } 6212 6213 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6214 { 6215 } 6216 6217 #endif /* CONFIG_LRU_GEN */ 6218 6219 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6220 { 6221 unsigned long nr[NR_LRU_LISTS]; 6222 unsigned long targets[NR_LRU_LISTS]; 6223 unsigned long nr_to_scan; 6224 enum lru_list lru; 6225 unsigned long nr_reclaimed = 0; 6226 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6227 bool proportional_reclaim; 6228 struct blk_plug plug; 6229 6230 if (lru_gen_enabled() && !global_reclaim(sc)) { 6231 lru_gen_shrink_lruvec(lruvec, sc); 6232 return; 6233 } 6234 6235 get_scan_count(lruvec, sc, nr); 6236 6237 /* Record the original scan target for proportional adjustments later */ 6238 memcpy(targets, nr, sizeof(nr)); 6239 6240 /* 6241 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6242 * event that can occur when there is little memory pressure e.g. 6243 * multiple streaming readers/writers. Hence, we do not abort scanning 6244 * when the requested number of pages are reclaimed when scanning at 6245 * DEF_PRIORITY on the assumption that the fact we are direct 6246 * reclaiming implies that kswapd is not keeping up and it is best to 6247 * do a batch of work at once. For memcg reclaim one check is made to 6248 * abort proportional reclaim if either the file or anon lru has already 6249 * dropped to zero at the first pass. 6250 */ 6251 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6252 sc->priority == DEF_PRIORITY); 6253 6254 blk_start_plug(&plug); 6255 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6256 nr[LRU_INACTIVE_FILE]) { 6257 unsigned long nr_anon, nr_file, percentage; 6258 unsigned long nr_scanned; 6259 6260 for_each_evictable_lru(lru) { 6261 if (nr[lru]) { 6262 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6263 nr[lru] -= nr_to_scan; 6264 6265 nr_reclaimed += shrink_list(lru, nr_to_scan, 6266 lruvec, sc); 6267 } 6268 } 6269 6270 cond_resched(); 6271 6272 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6273 continue; 6274 6275 /* 6276 * For kswapd and memcg, reclaim at least the number of pages 6277 * requested. Ensure that the anon and file LRUs are scanned 6278 * proportionally what was requested by get_scan_count(). We 6279 * stop reclaiming one LRU and reduce the amount scanning 6280 * proportional to the original scan target. 6281 */ 6282 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6283 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6284 6285 /* 6286 * It's just vindictive to attack the larger once the smaller 6287 * has gone to zero. And given the way we stop scanning the 6288 * smaller below, this makes sure that we only make one nudge 6289 * towards proportionality once we've got nr_to_reclaim. 6290 */ 6291 if (!nr_file || !nr_anon) 6292 break; 6293 6294 if (nr_file > nr_anon) { 6295 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6296 targets[LRU_ACTIVE_ANON] + 1; 6297 lru = LRU_BASE; 6298 percentage = nr_anon * 100 / scan_target; 6299 } else { 6300 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6301 targets[LRU_ACTIVE_FILE] + 1; 6302 lru = LRU_FILE; 6303 percentage = nr_file * 100 / scan_target; 6304 } 6305 6306 /* Stop scanning the smaller of the LRU */ 6307 nr[lru] = 0; 6308 nr[lru + LRU_ACTIVE] = 0; 6309 6310 /* 6311 * Recalculate the other LRU scan count based on its original 6312 * scan target and the percentage scanning already complete 6313 */ 6314 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6315 nr_scanned = targets[lru] - nr[lru]; 6316 nr[lru] = targets[lru] * (100 - percentage) / 100; 6317 nr[lru] -= min(nr[lru], nr_scanned); 6318 6319 lru += LRU_ACTIVE; 6320 nr_scanned = targets[lru] - nr[lru]; 6321 nr[lru] = targets[lru] * (100 - percentage) / 100; 6322 nr[lru] -= min(nr[lru], nr_scanned); 6323 } 6324 blk_finish_plug(&plug); 6325 sc->nr_reclaimed += nr_reclaimed; 6326 6327 /* 6328 * Even if we did not try to evict anon pages at all, we want to 6329 * rebalance the anon lru active/inactive ratio. 6330 */ 6331 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6332 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6333 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6334 sc, LRU_ACTIVE_ANON); 6335 } 6336 6337 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6338 static bool in_reclaim_compaction(struct scan_control *sc) 6339 { 6340 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6341 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6342 sc->priority < DEF_PRIORITY - 2)) 6343 return true; 6344 6345 return false; 6346 } 6347 6348 /* 6349 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6350 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6351 * true if more pages should be reclaimed such that when the page allocator 6352 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6353 * It will give up earlier than that if there is difficulty reclaiming pages. 6354 */ 6355 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6356 unsigned long nr_reclaimed, 6357 struct scan_control *sc) 6358 { 6359 unsigned long pages_for_compaction; 6360 unsigned long inactive_lru_pages; 6361 int z; 6362 6363 /* If not in reclaim/compaction mode, stop */ 6364 if (!in_reclaim_compaction(sc)) 6365 return false; 6366 6367 /* 6368 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6369 * number of pages that were scanned. This will return to the caller 6370 * with the risk reclaim/compaction and the resulting allocation attempt 6371 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6372 * allocations through requiring that the full LRU list has been scanned 6373 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6374 * scan, but that approximation was wrong, and there were corner cases 6375 * where always a non-zero amount of pages were scanned. 6376 */ 6377 if (!nr_reclaimed) 6378 return false; 6379 6380 /* If compaction would go ahead or the allocation would succeed, stop */ 6381 for (z = 0; z <= sc->reclaim_idx; z++) { 6382 struct zone *zone = &pgdat->node_zones[z]; 6383 if (!managed_zone(zone)) 6384 continue; 6385 6386 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6387 case COMPACT_SUCCESS: 6388 case COMPACT_CONTINUE: 6389 return false; 6390 default: 6391 /* check next zone */ 6392 ; 6393 } 6394 } 6395 6396 /* 6397 * If we have not reclaimed enough pages for compaction and the 6398 * inactive lists are large enough, continue reclaiming 6399 */ 6400 pages_for_compaction = compact_gap(sc->order); 6401 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6402 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6403 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6404 6405 return inactive_lru_pages > pages_for_compaction; 6406 } 6407 6408 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6409 { 6410 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6411 struct mem_cgroup *memcg; 6412 6413 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6414 do { 6415 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6416 unsigned long reclaimed; 6417 unsigned long scanned; 6418 6419 /* 6420 * This loop can become CPU-bound when target memcgs 6421 * aren't eligible for reclaim - either because they 6422 * don't have any reclaimable pages, or because their 6423 * memory is explicitly protected. Avoid soft lockups. 6424 */ 6425 cond_resched(); 6426 6427 mem_cgroup_calculate_protection(target_memcg, memcg); 6428 6429 if (mem_cgroup_below_min(target_memcg, memcg)) { 6430 /* 6431 * Hard protection. 6432 * If there is no reclaimable memory, OOM. 6433 */ 6434 continue; 6435 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6436 /* 6437 * Soft protection. 6438 * Respect the protection only as long as 6439 * there is an unprotected supply 6440 * of reclaimable memory from other cgroups. 6441 */ 6442 if (!sc->memcg_low_reclaim) { 6443 sc->memcg_low_skipped = 1; 6444 continue; 6445 } 6446 memcg_memory_event(memcg, MEMCG_LOW); 6447 } 6448 6449 reclaimed = sc->nr_reclaimed; 6450 scanned = sc->nr_scanned; 6451 6452 shrink_lruvec(lruvec, sc); 6453 6454 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6455 sc->priority); 6456 6457 /* Record the group's reclaim efficiency */ 6458 if (!sc->proactive) 6459 vmpressure(sc->gfp_mask, memcg, false, 6460 sc->nr_scanned - scanned, 6461 sc->nr_reclaimed - reclaimed); 6462 6463 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6464 } 6465 6466 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6467 { 6468 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6469 struct lruvec *target_lruvec; 6470 bool reclaimable = false; 6471 6472 if (lru_gen_enabled() && global_reclaim(sc)) { 6473 lru_gen_shrink_node(pgdat, sc); 6474 return; 6475 } 6476 6477 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6478 6479 again: 6480 memset(&sc->nr, 0, sizeof(sc->nr)); 6481 6482 nr_reclaimed = sc->nr_reclaimed; 6483 nr_scanned = sc->nr_scanned; 6484 6485 prepare_scan_count(pgdat, sc); 6486 6487 shrink_node_memcgs(pgdat, sc); 6488 6489 flush_reclaim_state(sc); 6490 6491 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6492 6493 /* Record the subtree's reclaim efficiency */ 6494 if (!sc->proactive) 6495 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6496 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6497 6498 if (nr_node_reclaimed) 6499 reclaimable = true; 6500 6501 if (current_is_kswapd()) { 6502 /* 6503 * If reclaim is isolating dirty pages under writeback, 6504 * it implies that the long-lived page allocation rate 6505 * is exceeding the page laundering rate. Either the 6506 * global limits are not being effective at throttling 6507 * processes due to the page distribution throughout 6508 * zones or there is heavy usage of a slow backing 6509 * device. The only option is to throttle from reclaim 6510 * context which is not ideal as there is no guarantee 6511 * the dirtying process is throttled in the same way 6512 * balance_dirty_pages() manages. 6513 * 6514 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6515 * count the number of pages under pages flagged for 6516 * immediate reclaim and stall if any are encountered 6517 * in the nr_immediate check below. 6518 */ 6519 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6520 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6521 6522 /* Allow kswapd to start writing pages during reclaim.*/ 6523 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6524 set_bit(PGDAT_DIRTY, &pgdat->flags); 6525 6526 /* 6527 * If kswapd scans pages marked for immediate 6528 * reclaim and under writeback (nr_immediate), it 6529 * implies that pages are cycling through the LRU 6530 * faster than they are written so forcibly stall 6531 * until some pages complete writeback. 6532 */ 6533 if (sc->nr.immediate) 6534 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6535 } 6536 6537 /* 6538 * Tag a node/memcg as congested if all the dirty pages were marked 6539 * for writeback and immediate reclaim (counted in nr.congested). 6540 * 6541 * Legacy memcg will stall in page writeback so avoid forcibly 6542 * stalling in reclaim_throttle(). 6543 */ 6544 if ((current_is_kswapd() || 6545 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6546 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6547 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6548 6549 /* 6550 * Stall direct reclaim for IO completions if the lruvec is 6551 * node is congested. Allow kswapd to continue until it 6552 * starts encountering unqueued dirty pages or cycling through 6553 * the LRU too quickly. 6554 */ 6555 if (!current_is_kswapd() && current_may_throttle() && 6556 !sc->hibernation_mode && 6557 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6558 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6559 6560 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6561 goto again; 6562 6563 /* 6564 * Kswapd gives up on balancing particular nodes after too 6565 * many failures to reclaim anything from them and goes to 6566 * sleep. On reclaim progress, reset the failure counter. A 6567 * successful direct reclaim run will revive a dormant kswapd. 6568 */ 6569 if (reclaimable) 6570 pgdat->kswapd_failures = 0; 6571 } 6572 6573 /* 6574 * Returns true if compaction should go ahead for a costly-order request, or 6575 * the allocation would already succeed without compaction. Return false if we 6576 * should reclaim first. 6577 */ 6578 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6579 { 6580 unsigned long watermark; 6581 enum compact_result suitable; 6582 6583 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6584 if (suitable == COMPACT_SUCCESS) 6585 /* Allocation should succeed already. Don't reclaim. */ 6586 return true; 6587 if (suitable == COMPACT_SKIPPED) 6588 /* Compaction cannot yet proceed. Do reclaim. */ 6589 return false; 6590 6591 /* 6592 * Compaction is already possible, but it takes time to run and there 6593 * are potentially other callers using the pages just freed. So proceed 6594 * with reclaim to make a buffer of free pages available to give 6595 * compaction a reasonable chance of completing and allocating the page. 6596 * Note that we won't actually reclaim the whole buffer in one attempt 6597 * as the target watermark in should_continue_reclaim() is lower. But if 6598 * we are already above the high+gap watermark, don't reclaim at all. 6599 */ 6600 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6601 6602 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6603 } 6604 6605 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6606 { 6607 /* 6608 * If reclaim is making progress greater than 12% efficiency then 6609 * wake all the NOPROGRESS throttled tasks. 6610 */ 6611 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6612 wait_queue_head_t *wqh; 6613 6614 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6615 if (waitqueue_active(wqh)) 6616 wake_up(wqh); 6617 6618 return; 6619 } 6620 6621 /* 6622 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6623 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6624 * under writeback and marked for immediate reclaim at the tail of the 6625 * LRU. 6626 */ 6627 if (current_is_kswapd() || cgroup_reclaim(sc)) 6628 return; 6629 6630 /* Throttle if making no progress at high prioities. */ 6631 if (sc->priority == 1 && !sc->nr_reclaimed) 6632 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6633 } 6634 6635 /* 6636 * This is the direct reclaim path, for page-allocating processes. We only 6637 * try to reclaim pages from zones which will satisfy the caller's allocation 6638 * request. 6639 * 6640 * If a zone is deemed to be full of pinned pages then just give it a light 6641 * scan then give up on it. 6642 */ 6643 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6644 { 6645 struct zoneref *z; 6646 struct zone *zone; 6647 unsigned long nr_soft_reclaimed; 6648 unsigned long nr_soft_scanned; 6649 gfp_t orig_mask; 6650 pg_data_t *last_pgdat = NULL; 6651 pg_data_t *first_pgdat = NULL; 6652 6653 /* 6654 * If the number of buffer_heads in the machine exceeds the maximum 6655 * allowed level, force direct reclaim to scan the highmem zone as 6656 * highmem pages could be pinning lowmem pages storing buffer_heads 6657 */ 6658 orig_mask = sc->gfp_mask; 6659 if (buffer_heads_over_limit) { 6660 sc->gfp_mask |= __GFP_HIGHMEM; 6661 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6662 } 6663 6664 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6665 sc->reclaim_idx, sc->nodemask) { 6666 /* 6667 * Take care memory controller reclaiming has small influence 6668 * to global LRU. 6669 */ 6670 if (!cgroup_reclaim(sc)) { 6671 if (!cpuset_zone_allowed(zone, 6672 GFP_KERNEL | __GFP_HARDWALL)) 6673 continue; 6674 6675 /* 6676 * If we already have plenty of memory free for 6677 * compaction in this zone, don't free any more. 6678 * Even though compaction is invoked for any 6679 * non-zero order, only frequent costly order 6680 * reclamation is disruptive enough to become a 6681 * noticeable problem, like transparent huge 6682 * page allocations. 6683 */ 6684 if (IS_ENABLED(CONFIG_COMPACTION) && 6685 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6686 compaction_ready(zone, sc)) { 6687 sc->compaction_ready = true; 6688 continue; 6689 } 6690 6691 /* 6692 * Shrink each node in the zonelist once. If the 6693 * zonelist is ordered by zone (not the default) then a 6694 * node may be shrunk multiple times but in that case 6695 * the user prefers lower zones being preserved. 6696 */ 6697 if (zone->zone_pgdat == last_pgdat) 6698 continue; 6699 6700 /* 6701 * This steals pages from memory cgroups over softlimit 6702 * and returns the number of reclaimed pages and 6703 * scanned pages. This works for global memory pressure 6704 * and balancing, not for a memcg's limit. 6705 */ 6706 nr_soft_scanned = 0; 6707 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6708 sc->order, sc->gfp_mask, 6709 &nr_soft_scanned); 6710 sc->nr_reclaimed += nr_soft_reclaimed; 6711 sc->nr_scanned += nr_soft_scanned; 6712 /* need some check for avoid more shrink_zone() */ 6713 } 6714 6715 if (!first_pgdat) 6716 first_pgdat = zone->zone_pgdat; 6717 6718 /* See comment about same check for global reclaim above */ 6719 if (zone->zone_pgdat == last_pgdat) 6720 continue; 6721 last_pgdat = zone->zone_pgdat; 6722 shrink_node(zone->zone_pgdat, sc); 6723 } 6724 6725 if (first_pgdat) 6726 consider_reclaim_throttle(first_pgdat, sc); 6727 6728 /* 6729 * Restore to original mask to avoid the impact on the caller if we 6730 * promoted it to __GFP_HIGHMEM. 6731 */ 6732 sc->gfp_mask = orig_mask; 6733 } 6734 6735 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6736 { 6737 struct lruvec *target_lruvec; 6738 unsigned long refaults; 6739 6740 if (lru_gen_enabled()) 6741 return; 6742 6743 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6744 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6745 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6746 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6747 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6748 } 6749 6750 /* 6751 * This is the main entry point to direct page reclaim. 6752 * 6753 * If a full scan of the inactive list fails to free enough memory then we 6754 * are "out of memory" and something needs to be killed. 6755 * 6756 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6757 * high - the zone may be full of dirty or under-writeback pages, which this 6758 * caller can't do much about. We kick the writeback threads and take explicit 6759 * naps in the hope that some of these pages can be written. But if the 6760 * allocating task holds filesystem locks which prevent writeout this might not 6761 * work, and the allocation attempt will fail. 6762 * 6763 * returns: 0, if no pages reclaimed 6764 * else, the number of pages reclaimed 6765 */ 6766 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6767 struct scan_control *sc) 6768 { 6769 int initial_priority = sc->priority; 6770 pg_data_t *last_pgdat; 6771 struct zoneref *z; 6772 struct zone *zone; 6773 retry: 6774 delayacct_freepages_start(); 6775 6776 if (!cgroup_reclaim(sc)) 6777 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6778 6779 do { 6780 if (!sc->proactive) 6781 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6782 sc->priority); 6783 sc->nr_scanned = 0; 6784 shrink_zones(zonelist, sc); 6785 6786 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6787 break; 6788 6789 if (sc->compaction_ready) 6790 break; 6791 6792 /* 6793 * If we're getting trouble reclaiming, start doing 6794 * writepage even in laptop mode. 6795 */ 6796 if (sc->priority < DEF_PRIORITY - 2) 6797 sc->may_writepage = 1; 6798 } while (--sc->priority >= 0); 6799 6800 last_pgdat = NULL; 6801 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6802 sc->nodemask) { 6803 if (zone->zone_pgdat == last_pgdat) 6804 continue; 6805 last_pgdat = zone->zone_pgdat; 6806 6807 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6808 6809 if (cgroup_reclaim(sc)) { 6810 struct lruvec *lruvec; 6811 6812 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6813 zone->zone_pgdat); 6814 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6815 } 6816 } 6817 6818 delayacct_freepages_end(); 6819 6820 if (sc->nr_reclaimed) 6821 return sc->nr_reclaimed; 6822 6823 /* Aborted reclaim to try compaction? don't OOM, then */ 6824 if (sc->compaction_ready) 6825 return 1; 6826 6827 /* 6828 * We make inactive:active ratio decisions based on the node's 6829 * composition of memory, but a restrictive reclaim_idx or a 6830 * memory.low cgroup setting can exempt large amounts of 6831 * memory from reclaim. Neither of which are very common, so 6832 * instead of doing costly eligibility calculations of the 6833 * entire cgroup subtree up front, we assume the estimates are 6834 * good, and retry with forcible deactivation if that fails. 6835 */ 6836 if (sc->skipped_deactivate) { 6837 sc->priority = initial_priority; 6838 sc->force_deactivate = 1; 6839 sc->skipped_deactivate = 0; 6840 goto retry; 6841 } 6842 6843 /* Untapped cgroup reserves? Don't OOM, retry. */ 6844 if (sc->memcg_low_skipped) { 6845 sc->priority = initial_priority; 6846 sc->force_deactivate = 0; 6847 sc->memcg_low_reclaim = 1; 6848 sc->memcg_low_skipped = 0; 6849 goto retry; 6850 } 6851 6852 return 0; 6853 } 6854 6855 static bool allow_direct_reclaim(pg_data_t *pgdat) 6856 { 6857 struct zone *zone; 6858 unsigned long pfmemalloc_reserve = 0; 6859 unsigned long free_pages = 0; 6860 int i; 6861 bool wmark_ok; 6862 6863 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6864 return true; 6865 6866 for (i = 0; i <= ZONE_NORMAL; i++) { 6867 zone = &pgdat->node_zones[i]; 6868 if (!managed_zone(zone)) 6869 continue; 6870 6871 if (!zone_reclaimable_pages(zone)) 6872 continue; 6873 6874 pfmemalloc_reserve += min_wmark_pages(zone); 6875 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6876 } 6877 6878 /* If there are no reserves (unexpected config) then do not throttle */ 6879 if (!pfmemalloc_reserve) 6880 return true; 6881 6882 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6883 6884 /* kswapd must be awake if processes are being throttled */ 6885 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6886 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6887 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6888 6889 wake_up_interruptible(&pgdat->kswapd_wait); 6890 } 6891 6892 return wmark_ok; 6893 } 6894 6895 /* 6896 * Throttle direct reclaimers if backing storage is backed by the network 6897 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6898 * depleted. kswapd will continue to make progress and wake the processes 6899 * when the low watermark is reached. 6900 * 6901 * Returns true if a fatal signal was delivered during throttling. If this 6902 * happens, the page allocator should not consider triggering the OOM killer. 6903 */ 6904 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6905 nodemask_t *nodemask) 6906 { 6907 struct zoneref *z; 6908 struct zone *zone; 6909 pg_data_t *pgdat = NULL; 6910 6911 /* 6912 * Kernel threads should not be throttled as they may be indirectly 6913 * responsible for cleaning pages necessary for reclaim to make forward 6914 * progress. kjournald for example may enter direct reclaim while 6915 * committing a transaction where throttling it could forcing other 6916 * processes to block on log_wait_commit(). 6917 */ 6918 if (current->flags & PF_KTHREAD) 6919 goto out; 6920 6921 /* 6922 * If a fatal signal is pending, this process should not throttle. 6923 * It should return quickly so it can exit and free its memory 6924 */ 6925 if (fatal_signal_pending(current)) 6926 goto out; 6927 6928 /* 6929 * Check if the pfmemalloc reserves are ok by finding the first node 6930 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6931 * GFP_KERNEL will be required for allocating network buffers when 6932 * swapping over the network so ZONE_HIGHMEM is unusable. 6933 * 6934 * Throttling is based on the first usable node and throttled processes 6935 * wait on a queue until kswapd makes progress and wakes them. There 6936 * is an affinity then between processes waking up and where reclaim 6937 * progress has been made assuming the process wakes on the same node. 6938 * More importantly, processes running on remote nodes will not compete 6939 * for remote pfmemalloc reserves and processes on different nodes 6940 * should make reasonable progress. 6941 */ 6942 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6943 gfp_zone(gfp_mask), nodemask) { 6944 if (zone_idx(zone) > ZONE_NORMAL) 6945 continue; 6946 6947 /* Throttle based on the first usable node */ 6948 pgdat = zone->zone_pgdat; 6949 if (allow_direct_reclaim(pgdat)) 6950 goto out; 6951 break; 6952 } 6953 6954 /* If no zone was usable by the allocation flags then do not throttle */ 6955 if (!pgdat) 6956 goto out; 6957 6958 /* Account for the throttling */ 6959 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6960 6961 /* 6962 * If the caller cannot enter the filesystem, it's possible that it 6963 * is due to the caller holding an FS lock or performing a journal 6964 * transaction in the case of a filesystem like ext[3|4]. In this case, 6965 * it is not safe to block on pfmemalloc_wait as kswapd could be 6966 * blocked waiting on the same lock. Instead, throttle for up to a 6967 * second before continuing. 6968 */ 6969 if (!(gfp_mask & __GFP_FS)) 6970 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6971 allow_direct_reclaim(pgdat), HZ); 6972 else 6973 /* Throttle until kswapd wakes the process */ 6974 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6975 allow_direct_reclaim(pgdat)); 6976 6977 if (fatal_signal_pending(current)) 6978 return true; 6979 6980 out: 6981 return false; 6982 } 6983 6984 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6985 gfp_t gfp_mask, nodemask_t *nodemask) 6986 { 6987 unsigned long nr_reclaimed; 6988 struct scan_control sc = { 6989 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6990 .gfp_mask = current_gfp_context(gfp_mask), 6991 .reclaim_idx = gfp_zone(gfp_mask), 6992 .order = order, 6993 .nodemask = nodemask, 6994 .priority = DEF_PRIORITY, 6995 .may_writepage = !laptop_mode, 6996 .may_unmap = 1, 6997 .may_swap = 1, 6998 }; 6999 7000 /* 7001 * scan_control uses s8 fields for order, priority, and reclaim_idx. 7002 * Confirm they are large enough for max values. 7003 */ 7004 BUILD_BUG_ON(MAX_ORDER >= S8_MAX); 7005 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 7006 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 7007 7008 /* 7009 * Do not enter reclaim if fatal signal was delivered while throttled. 7010 * 1 is returned so that the page allocator does not OOM kill at this 7011 * point. 7012 */ 7013 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 7014 return 1; 7015 7016 set_task_reclaim_state(current, &sc.reclaim_state); 7017 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 7018 7019 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7020 7021 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 7022 set_task_reclaim_state(current, NULL); 7023 7024 return nr_reclaimed; 7025 } 7026 7027 #ifdef CONFIG_MEMCG 7028 7029 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 7030 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 7031 gfp_t gfp_mask, bool noswap, 7032 pg_data_t *pgdat, 7033 unsigned long *nr_scanned) 7034 { 7035 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 7036 struct scan_control sc = { 7037 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7038 .target_mem_cgroup = memcg, 7039 .may_writepage = !laptop_mode, 7040 .may_unmap = 1, 7041 .reclaim_idx = MAX_NR_ZONES - 1, 7042 .may_swap = !noswap, 7043 }; 7044 7045 WARN_ON_ONCE(!current->reclaim_state); 7046 7047 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 7048 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 7049 7050 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7051 sc.gfp_mask); 7052 7053 /* 7054 * NOTE: Although we can get the priority field, using it 7055 * here is not a good idea, since it limits the pages we can scan. 7056 * if we don't reclaim here, the shrink_node from balance_pgdat 7057 * will pick up pages from other mem cgroup's as well. We hack 7058 * the priority and make it zero. 7059 */ 7060 shrink_lruvec(lruvec, &sc); 7061 7062 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7063 7064 *nr_scanned = sc.nr_scanned; 7065 7066 return sc.nr_reclaimed; 7067 } 7068 7069 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7070 unsigned long nr_pages, 7071 gfp_t gfp_mask, 7072 unsigned int reclaim_options) 7073 { 7074 unsigned long nr_reclaimed; 7075 unsigned int noreclaim_flag; 7076 struct scan_control sc = { 7077 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7078 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7079 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7080 .reclaim_idx = MAX_NR_ZONES - 1, 7081 .target_mem_cgroup = memcg, 7082 .priority = DEF_PRIORITY, 7083 .may_writepage = !laptop_mode, 7084 .may_unmap = 1, 7085 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7086 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7087 }; 7088 /* 7089 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7090 * equal pressure on all the nodes. This is based on the assumption that 7091 * the reclaim does not bail out early. 7092 */ 7093 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7094 7095 set_task_reclaim_state(current, &sc.reclaim_state); 7096 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7097 noreclaim_flag = memalloc_noreclaim_save(); 7098 7099 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7100 7101 memalloc_noreclaim_restore(noreclaim_flag); 7102 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7103 set_task_reclaim_state(current, NULL); 7104 7105 return nr_reclaimed; 7106 } 7107 #endif 7108 7109 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7110 { 7111 struct mem_cgroup *memcg; 7112 struct lruvec *lruvec; 7113 7114 if (lru_gen_enabled()) { 7115 lru_gen_age_node(pgdat, sc); 7116 return; 7117 } 7118 7119 if (!can_age_anon_pages(pgdat, sc)) 7120 return; 7121 7122 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7123 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7124 return; 7125 7126 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7127 do { 7128 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7129 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7130 sc, LRU_ACTIVE_ANON); 7131 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7132 } while (memcg); 7133 } 7134 7135 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7136 { 7137 int i; 7138 struct zone *zone; 7139 7140 /* 7141 * Check for watermark boosts top-down as the higher zones 7142 * are more likely to be boosted. Both watermarks and boosts 7143 * should not be checked at the same time as reclaim would 7144 * start prematurely when there is no boosting and a lower 7145 * zone is balanced. 7146 */ 7147 for (i = highest_zoneidx; i >= 0; i--) { 7148 zone = pgdat->node_zones + i; 7149 if (!managed_zone(zone)) 7150 continue; 7151 7152 if (zone->watermark_boost) 7153 return true; 7154 } 7155 7156 return false; 7157 } 7158 7159 /* 7160 * Returns true if there is an eligible zone balanced for the request order 7161 * and highest_zoneidx 7162 */ 7163 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7164 { 7165 int i; 7166 unsigned long mark = -1; 7167 struct zone *zone; 7168 7169 /* 7170 * Check watermarks bottom-up as lower zones are more likely to 7171 * meet watermarks. 7172 */ 7173 for (i = 0; i <= highest_zoneidx; i++) { 7174 zone = pgdat->node_zones + i; 7175 7176 if (!managed_zone(zone)) 7177 continue; 7178 7179 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7180 mark = wmark_pages(zone, WMARK_PROMO); 7181 else 7182 mark = high_wmark_pages(zone); 7183 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7184 return true; 7185 } 7186 7187 /* 7188 * If a node has no managed zone within highest_zoneidx, it does not 7189 * need balancing by definition. This can happen if a zone-restricted 7190 * allocation tries to wake a remote kswapd. 7191 */ 7192 if (mark == -1) 7193 return true; 7194 7195 return false; 7196 } 7197 7198 /* Clear pgdat state for congested, dirty or under writeback. */ 7199 static void clear_pgdat_congested(pg_data_t *pgdat) 7200 { 7201 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7202 7203 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 7204 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7205 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7206 } 7207 7208 /* 7209 * Prepare kswapd for sleeping. This verifies that there are no processes 7210 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7211 * 7212 * Returns true if kswapd is ready to sleep 7213 */ 7214 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7215 int highest_zoneidx) 7216 { 7217 /* 7218 * The throttled processes are normally woken up in balance_pgdat() as 7219 * soon as allow_direct_reclaim() is true. But there is a potential 7220 * race between when kswapd checks the watermarks and a process gets 7221 * throttled. There is also a potential race if processes get 7222 * throttled, kswapd wakes, a large process exits thereby balancing the 7223 * zones, which causes kswapd to exit balance_pgdat() before reaching 7224 * the wake up checks. If kswapd is going to sleep, no process should 7225 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7226 * the wake up is premature, processes will wake kswapd and get 7227 * throttled again. The difference from wake ups in balance_pgdat() is 7228 * that here we are under prepare_to_wait(). 7229 */ 7230 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7231 wake_up_all(&pgdat->pfmemalloc_wait); 7232 7233 /* Hopeless node, leave it to direct reclaim */ 7234 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7235 return true; 7236 7237 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7238 clear_pgdat_congested(pgdat); 7239 return true; 7240 } 7241 7242 return false; 7243 } 7244 7245 /* 7246 * kswapd shrinks a node of pages that are at or below the highest usable 7247 * zone that is currently unbalanced. 7248 * 7249 * Returns true if kswapd scanned at least the requested number of pages to 7250 * reclaim or if the lack of progress was due to pages under writeback. 7251 * This is used to determine if the scanning priority needs to be raised. 7252 */ 7253 static bool kswapd_shrink_node(pg_data_t *pgdat, 7254 struct scan_control *sc) 7255 { 7256 struct zone *zone; 7257 int z; 7258 7259 /* Reclaim a number of pages proportional to the number of zones */ 7260 sc->nr_to_reclaim = 0; 7261 for (z = 0; z <= sc->reclaim_idx; z++) { 7262 zone = pgdat->node_zones + z; 7263 if (!managed_zone(zone)) 7264 continue; 7265 7266 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7267 } 7268 7269 /* 7270 * Historically care was taken to put equal pressure on all zones but 7271 * now pressure is applied based on node LRU order. 7272 */ 7273 shrink_node(pgdat, sc); 7274 7275 /* 7276 * Fragmentation may mean that the system cannot be rebalanced for 7277 * high-order allocations. If twice the allocation size has been 7278 * reclaimed then recheck watermarks only at order-0 to prevent 7279 * excessive reclaim. Assume that a process requested a high-order 7280 * can direct reclaim/compact. 7281 */ 7282 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7283 sc->order = 0; 7284 7285 return sc->nr_scanned >= sc->nr_to_reclaim; 7286 } 7287 7288 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7289 static inline void 7290 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7291 { 7292 int i; 7293 struct zone *zone; 7294 7295 for (i = 0; i <= highest_zoneidx; i++) { 7296 zone = pgdat->node_zones + i; 7297 7298 if (!managed_zone(zone)) 7299 continue; 7300 7301 if (active) 7302 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7303 else 7304 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7305 } 7306 } 7307 7308 static inline void 7309 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7310 { 7311 update_reclaim_active(pgdat, highest_zoneidx, true); 7312 } 7313 7314 static inline void 7315 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7316 { 7317 update_reclaim_active(pgdat, highest_zoneidx, false); 7318 } 7319 7320 /* 7321 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7322 * that are eligible for use by the caller until at least one zone is 7323 * balanced. 7324 * 7325 * Returns the order kswapd finished reclaiming at. 7326 * 7327 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7328 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7329 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7330 * or lower is eligible for reclaim until at least one usable zone is 7331 * balanced. 7332 */ 7333 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7334 { 7335 int i; 7336 unsigned long nr_soft_reclaimed; 7337 unsigned long nr_soft_scanned; 7338 unsigned long pflags; 7339 unsigned long nr_boost_reclaim; 7340 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7341 bool boosted; 7342 struct zone *zone; 7343 struct scan_control sc = { 7344 .gfp_mask = GFP_KERNEL, 7345 .order = order, 7346 .may_unmap = 1, 7347 }; 7348 7349 set_task_reclaim_state(current, &sc.reclaim_state); 7350 psi_memstall_enter(&pflags); 7351 __fs_reclaim_acquire(_THIS_IP_); 7352 7353 count_vm_event(PAGEOUTRUN); 7354 7355 /* 7356 * Account for the reclaim boost. Note that the zone boost is left in 7357 * place so that parallel allocations that are near the watermark will 7358 * stall or direct reclaim until kswapd is finished. 7359 */ 7360 nr_boost_reclaim = 0; 7361 for (i = 0; i <= highest_zoneidx; i++) { 7362 zone = pgdat->node_zones + i; 7363 if (!managed_zone(zone)) 7364 continue; 7365 7366 nr_boost_reclaim += zone->watermark_boost; 7367 zone_boosts[i] = zone->watermark_boost; 7368 } 7369 boosted = nr_boost_reclaim; 7370 7371 restart: 7372 set_reclaim_active(pgdat, highest_zoneidx); 7373 sc.priority = DEF_PRIORITY; 7374 do { 7375 unsigned long nr_reclaimed = sc.nr_reclaimed; 7376 bool raise_priority = true; 7377 bool balanced; 7378 bool ret; 7379 7380 sc.reclaim_idx = highest_zoneidx; 7381 7382 /* 7383 * If the number of buffer_heads exceeds the maximum allowed 7384 * then consider reclaiming from all zones. This has a dual 7385 * purpose -- on 64-bit systems it is expected that 7386 * buffer_heads are stripped during active rotation. On 32-bit 7387 * systems, highmem pages can pin lowmem memory and shrinking 7388 * buffers can relieve lowmem pressure. Reclaim may still not 7389 * go ahead if all eligible zones for the original allocation 7390 * request are balanced to avoid excessive reclaim from kswapd. 7391 */ 7392 if (buffer_heads_over_limit) { 7393 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7394 zone = pgdat->node_zones + i; 7395 if (!managed_zone(zone)) 7396 continue; 7397 7398 sc.reclaim_idx = i; 7399 break; 7400 } 7401 } 7402 7403 /* 7404 * If the pgdat is imbalanced then ignore boosting and preserve 7405 * the watermarks for a later time and restart. Note that the 7406 * zone watermarks will be still reset at the end of balancing 7407 * on the grounds that the normal reclaim should be enough to 7408 * re-evaluate if boosting is required when kswapd next wakes. 7409 */ 7410 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7411 if (!balanced && nr_boost_reclaim) { 7412 nr_boost_reclaim = 0; 7413 goto restart; 7414 } 7415 7416 /* 7417 * If boosting is not active then only reclaim if there are no 7418 * eligible zones. Note that sc.reclaim_idx is not used as 7419 * buffer_heads_over_limit may have adjusted it. 7420 */ 7421 if (!nr_boost_reclaim && balanced) 7422 goto out; 7423 7424 /* Limit the priority of boosting to avoid reclaim writeback */ 7425 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7426 raise_priority = false; 7427 7428 /* 7429 * Do not writeback or swap pages for boosted reclaim. The 7430 * intent is to relieve pressure not issue sub-optimal IO 7431 * from reclaim context. If no pages are reclaimed, the 7432 * reclaim will be aborted. 7433 */ 7434 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7435 sc.may_swap = !nr_boost_reclaim; 7436 7437 /* 7438 * Do some background aging, to give pages a chance to be 7439 * referenced before reclaiming. All pages are rotated 7440 * regardless of classzone as this is about consistent aging. 7441 */ 7442 kswapd_age_node(pgdat, &sc); 7443 7444 /* 7445 * If we're getting trouble reclaiming, start doing writepage 7446 * even in laptop mode. 7447 */ 7448 if (sc.priority < DEF_PRIORITY - 2) 7449 sc.may_writepage = 1; 7450 7451 /* Call soft limit reclaim before calling shrink_node. */ 7452 sc.nr_scanned = 0; 7453 nr_soft_scanned = 0; 7454 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7455 sc.gfp_mask, &nr_soft_scanned); 7456 sc.nr_reclaimed += nr_soft_reclaimed; 7457 7458 /* 7459 * There should be no need to raise the scanning priority if 7460 * enough pages are already being scanned that that high 7461 * watermark would be met at 100% efficiency. 7462 */ 7463 if (kswapd_shrink_node(pgdat, &sc)) 7464 raise_priority = false; 7465 7466 /* 7467 * If the low watermark is met there is no need for processes 7468 * to be throttled on pfmemalloc_wait as they should not be 7469 * able to safely make forward progress. Wake them 7470 */ 7471 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7472 allow_direct_reclaim(pgdat)) 7473 wake_up_all(&pgdat->pfmemalloc_wait); 7474 7475 /* Check if kswapd should be suspending */ 7476 __fs_reclaim_release(_THIS_IP_); 7477 ret = try_to_freeze(); 7478 __fs_reclaim_acquire(_THIS_IP_); 7479 if (ret || kthread_should_stop()) 7480 break; 7481 7482 /* 7483 * Raise priority if scanning rate is too low or there was no 7484 * progress in reclaiming pages 7485 */ 7486 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7487 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7488 7489 /* 7490 * If reclaim made no progress for a boost, stop reclaim as 7491 * IO cannot be queued and it could be an infinite loop in 7492 * extreme circumstances. 7493 */ 7494 if (nr_boost_reclaim && !nr_reclaimed) 7495 break; 7496 7497 if (raise_priority || !nr_reclaimed) 7498 sc.priority--; 7499 } while (sc.priority >= 1); 7500 7501 if (!sc.nr_reclaimed) 7502 pgdat->kswapd_failures++; 7503 7504 out: 7505 clear_reclaim_active(pgdat, highest_zoneidx); 7506 7507 /* If reclaim was boosted, account for the reclaim done in this pass */ 7508 if (boosted) { 7509 unsigned long flags; 7510 7511 for (i = 0; i <= highest_zoneidx; i++) { 7512 if (!zone_boosts[i]) 7513 continue; 7514 7515 /* Increments are under the zone lock */ 7516 zone = pgdat->node_zones + i; 7517 spin_lock_irqsave(&zone->lock, flags); 7518 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7519 spin_unlock_irqrestore(&zone->lock, flags); 7520 } 7521 7522 /* 7523 * As there is now likely space, wakeup kcompact to defragment 7524 * pageblocks. 7525 */ 7526 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7527 } 7528 7529 snapshot_refaults(NULL, pgdat); 7530 __fs_reclaim_release(_THIS_IP_); 7531 psi_memstall_leave(&pflags); 7532 set_task_reclaim_state(current, NULL); 7533 7534 /* 7535 * Return the order kswapd stopped reclaiming at as 7536 * prepare_kswapd_sleep() takes it into account. If another caller 7537 * entered the allocator slow path while kswapd was awake, order will 7538 * remain at the higher level. 7539 */ 7540 return sc.order; 7541 } 7542 7543 /* 7544 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7545 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7546 * not a valid index then either kswapd runs for first time or kswapd couldn't 7547 * sleep after previous reclaim attempt (node is still unbalanced). In that 7548 * case return the zone index of the previous kswapd reclaim cycle. 7549 */ 7550 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7551 enum zone_type prev_highest_zoneidx) 7552 { 7553 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7554 7555 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7556 } 7557 7558 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7559 unsigned int highest_zoneidx) 7560 { 7561 long remaining = 0; 7562 DEFINE_WAIT(wait); 7563 7564 if (freezing(current) || kthread_should_stop()) 7565 return; 7566 7567 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7568 7569 /* 7570 * Try to sleep for a short interval. Note that kcompactd will only be 7571 * woken if it is possible to sleep for a short interval. This is 7572 * deliberate on the assumption that if reclaim cannot keep an 7573 * eligible zone balanced that it's also unlikely that compaction will 7574 * succeed. 7575 */ 7576 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7577 /* 7578 * Compaction records what page blocks it recently failed to 7579 * isolate pages from and skips them in the future scanning. 7580 * When kswapd is going to sleep, it is reasonable to assume 7581 * that pages and compaction may succeed so reset the cache. 7582 */ 7583 reset_isolation_suitable(pgdat); 7584 7585 /* 7586 * We have freed the memory, now we should compact it to make 7587 * allocation of the requested order possible. 7588 */ 7589 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7590 7591 remaining = schedule_timeout(HZ/10); 7592 7593 /* 7594 * If woken prematurely then reset kswapd_highest_zoneidx and 7595 * order. The values will either be from a wakeup request or 7596 * the previous request that slept prematurely. 7597 */ 7598 if (remaining) { 7599 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7600 kswapd_highest_zoneidx(pgdat, 7601 highest_zoneidx)); 7602 7603 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7604 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7605 } 7606 7607 finish_wait(&pgdat->kswapd_wait, &wait); 7608 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7609 } 7610 7611 /* 7612 * After a short sleep, check if it was a premature sleep. If not, then 7613 * go fully to sleep until explicitly woken up. 7614 */ 7615 if (!remaining && 7616 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7617 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7618 7619 /* 7620 * vmstat counters are not perfectly accurate and the estimated 7621 * value for counters such as NR_FREE_PAGES can deviate from the 7622 * true value by nr_online_cpus * threshold. To avoid the zone 7623 * watermarks being breached while under pressure, we reduce the 7624 * per-cpu vmstat threshold while kswapd is awake and restore 7625 * them before going back to sleep. 7626 */ 7627 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7628 7629 if (!kthread_should_stop()) 7630 schedule(); 7631 7632 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7633 } else { 7634 if (remaining) 7635 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7636 else 7637 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7638 } 7639 finish_wait(&pgdat->kswapd_wait, &wait); 7640 } 7641 7642 /* 7643 * The background pageout daemon, started as a kernel thread 7644 * from the init process. 7645 * 7646 * This basically trickles out pages so that we have _some_ 7647 * free memory available even if there is no other activity 7648 * that frees anything up. This is needed for things like routing 7649 * etc, where we otherwise might have all activity going on in 7650 * asynchronous contexts that cannot page things out. 7651 * 7652 * If there are applications that are active memory-allocators 7653 * (most normal use), this basically shouldn't matter. 7654 */ 7655 static int kswapd(void *p) 7656 { 7657 unsigned int alloc_order, reclaim_order; 7658 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7659 pg_data_t *pgdat = (pg_data_t *)p; 7660 struct task_struct *tsk = current; 7661 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7662 7663 if (!cpumask_empty(cpumask)) 7664 set_cpus_allowed_ptr(tsk, cpumask); 7665 7666 /* 7667 * Tell the memory management that we're a "memory allocator", 7668 * and that if we need more memory we should get access to it 7669 * regardless (see "__alloc_pages()"). "kswapd" should 7670 * never get caught in the normal page freeing logic. 7671 * 7672 * (Kswapd normally doesn't need memory anyway, but sometimes 7673 * you need a small amount of memory in order to be able to 7674 * page out something else, and this flag essentially protects 7675 * us from recursively trying to free more memory as we're 7676 * trying to free the first piece of memory in the first place). 7677 */ 7678 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7679 set_freezable(); 7680 7681 WRITE_ONCE(pgdat->kswapd_order, 0); 7682 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7683 atomic_set(&pgdat->nr_writeback_throttled, 0); 7684 for ( ; ; ) { 7685 bool ret; 7686 7687 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7688 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7689 highest_zoneidx); 7690 7691 kswapd_try_sleep: 7692 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7693 highest_zoneidx); 7694 7695 /* Read the new order and highest_zoneidx */ 7696 alloc_order = READ_ONCE(pgdat->kswapd_order); 7697 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7698 highest_zoneidx); 7699 WRITE_ONCE(pgdat->kswapd_order, 0); 7700 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7701 7702 ret = try_to_freeze(); 7703 if (kthread_should_stop()) 7704 break; 7705 7706 /* 7707 * We can speed up thawing tasks if we don't call balance_pgdat 7708 * after returning from the refrigerator 7709 */ 7710 if (ret) 7711 continue; 7712 7713 /* 7714 * Reclaim begins at the requested order but if a high-order 7715 * reclaim fails then kswapd falls back to reclaiming for 7716 * order-0. If that happens, kswapd will consider sleeping 7717 * for the order it finished reclaiming at (reclaim_order) 7718 * but kcompactd is woken to compact for the original 7719 * request (alloc_order). 7720 */ 7721 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7722 alloc_order); 7723 reclaim_order = balance_pgdat(pgdat, alloc_order, 7724 highest_zoneidx); 7725 if (reclaim_order < alloc_order) 7726 goto kswapd_try_sleep; 7727 } 7728 7729 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7730 7731 return 0; 7732 } 7733 7734 /* 7735 * A zone is low on free memory or too fragmented for high-order memory. If 7736 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7737 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7738 * has failed or is not needed, still wake up kcompactd if only compaction is 7739 * needed. 7740 */ 7741 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7742 enum zone_type highest_zoneidx) 7743 { 7744 pg_data_t *pgdat; 7745 enum zone_type curr_idx; 7746 7747 if (!managed_zone(zone)) 7748 return; 7749 7750 if (!cpuset_zone_allowed(zone, gfp_flags)) 7751 return; 7752 7753 pgdat = zone->zone_pgdat; 7754 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7755 7756 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7757 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7758 7759 if (READ_ONCE(pgdat->kswapd_order) < order) 7760 WRITE_ONCE(pgdat->kswapd_order, order); 7761 7762 if (!waitqueue_active(&pgdat->kswapd_wait)) 7763 return; 7764 7765 /* Hopeless node, leave it to direct reclaim if possible */ 7766 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7767 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7768 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7769 /* 7770 * There may be plenty of free memory available, but it's too 7771 * fragmented for high-order allocations. Wake up kcompactd 7772 * and rely on compaction_suitable() to determine if it's 7773 * needed. If it fails, it will defer subsequent attempts to 7774 * ratelimit its work. 7775 */ 7776 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7777 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7778 return; 7779 } 7780 7781 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7782 gfp_flags); 7783 wake_up_interruptible(&pgdat->kswapd_wait); 7784 } 7785 7786 #ifdef CONFIG_HIBERNATION 7787 /* 7788 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7789 * freed pages. 7790 * 7791 * Rather than trying to age LRUs the aim is to preserve the overall 7792 * LRU order by reclaiming preferentially 7793 * inactive > active > active referenced > active mapped 7794 */ 7795 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7796 { 7797 struct scan_control sc = { 7798 .nr_to_reclaim = nr_to_reclaim, 7799 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7800 .reclaim_idx = MAX_NR_ZONES - 1, 7801 .priority = DEF_PRIORITY, 7802 .may_writepage = 1, 7803 .may_unmap = 1, 7804 .may_swap = 1, 7805 .hibernation_mode = 1, 7806 }; 7807 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7808 unsigned long nr_reclaimed; 7809 unsigned int noreclaim_flag; 7810 7811 fs_reclaim_acquire(sc.gfp_mask); 7812 noreclaim_flag = memalloc_noreclaim_save(); 7813 set_task_reclaim_state(current, &sc.reclaim_state); 7814 7815 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7816 7817 set_task_reclaim_state(current, NULL); 7818 memalloc_noreclaim_restore(noreclaim_flag); 7819 fs_reclaim_release(sc.gfp_mask); 7820 7821 return nr_reclaimed; 7822 } 7823 #endif /* CONFIG_HIBERNATION */ 7824 7825 /* 7826 * This kswapd start function will be called by init and node-hot-add. 7827 */ 7828 void kswapd_run(int nid) 7829 { 7830 pg_data_t *pgdat = NODE_DATA(nid); 7831 7832 pgdat_kswapd_lock(pgdat); 7833 if (!pgdat->kswapd) { 7834 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7835 if (IS_ERR(pgdat->kswapd)) { 7836 /* failure at boot is fatal */ 7837 BUG_ON(system_state < SYSTEM_RUNNING); 7838 pr_err("Failed to start kswapd on node %d\n", nid); 7839 pgdat->kswapd = NULL; 7840 } 7841 } 7842 pgdat_kswapd_unlock(pgdat); 7843 } 7844 7845 /* 7846 * Called by memory hotplug when all memory in a node is offlined. Caller must 7847 * be holding mem_hotplug_begin/done(). 7848 */ 7849 void kswapd_stop(int nid) 7850 { 7851 pg_data_t *pgdat = NODE_DATA(nid); 7852 struct task_struct *kswapd; 7853 7854 pgdat_kswapd_lock(pgdat); 7855 kswapd = pgdat->kswapd; 7856 if (kswapd) { 7857 kthread_stop(kswapd); 7858 pgdat->kswapd = NULL; 7859 } 7860 pgdat_kswapd_unlock(pgdat); 7861 } 7862 7863 static int __init kswapd_init(void) 7864 { 7865 int nid; 7866 7867 swap_setup(); 7868 for_each_node_state(nid, N_MEMORY) 7869 kswapd_run(nid); 7870 return 0; 7871 } 7872 7873 module_init(kswapd_init) 7874 7875 #ifdef CONFIG_NUMA 7876 /* 7877 * Node reclaim mode 7878 * 7879 * If non-zero call node_reclaim when the number of free pages falls below 7880 * the watermarks. 7881 */ 7882 int node_reclaim_mode __read_mostly; 7883 7884 /* 7885 * Priority for NODE_RECLAIM. This determines the fraction of pages 7886 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7887 * a zone. 7888 */ 7889 #define NODE_RECLAIM_PRIORITY 4 7890 7891 /* 7892 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7893 * occur. 7894 */ 7895 int sysctl_min_unmapped_ratio = 1; 7896 7897 /* 7898 * If the number of slab pages in a zone grows beyond this percentage then 7899 * slab reclaim needs to occur. 7900 */ 7901 int sysctl_min_slab_ratio = 5; 7902 7903 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7904 { 7905 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7906 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7907 node_page_state(pgdat, NR_ACTIVE_FILE); 7908 7909 /* 7910 * It's possible for there to be more file mapped pages than 7911 * accounted for by the pages on the file LRU lists because 7912 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7913 */ 7914 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7915 } 7916 7917 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7918 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7919 { 7920 unsigned long nr_pagecache_reclaimable; 7921 unsigned long delta = 0; 7922 7923 /* 7924 * If RECLAIM_UNMAP is set, then all file pages are considered 7925 * potentially reclaimable. Otherwise, we have to worry about 7926 * pages like swapcache and node_unmapped_file_pages() provides 7927 * a better estimate 7928 */ 7929 if (node_reclaim_mode & RECLAIM_UNMAP) 7930 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7931 else 7932 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7933 7934 /* If we can't clean pages, remove dirty pages from consideration */ 7935 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7936 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7937 7938 /* Watch for any possible underflows due to delta */ 7939 if (unlikely(delta > nr_pagecache_reclaimable)) 7940 delta = nr_pagecache_reclaimable; 7941 7942 return nr_pagecache_reclaimable - delta; 7943 } 7944 7945 /* 7946 * Try to free up some pages from this node through reclaim. 7947 */ 7948 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7949 { 7950 /* Minimum pages needed in order to stay on node */ 7951 const unsigned long nr_pages = 1 << order; 7952 struct task_struct *p = current; 7953 unsigned int noreclaim_flag; 7954 struct scan_control sc = { 7955 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7956 .gfp_mask = current_gfp_context(gfp_mask), 7957 .order = order, 7958 .priority = NODE_RECLAIM_PRIORITY, 7959 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7960 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7961 .may_swap = 1, 7962 .reclaim_idx = gfp_zone(gfp_mask), 7963 }; 7964 unsigned long pflags; 7965 7966 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7967 sc.gfp_mask); 7968 7969 cond_resched(); 7970 psi_memstall_enter(&pflags); 7971 fs_reclaim_acquire(sc.gfp_mask); 7972 /* 7973 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7974 */ 7975 noreclaim_flag = memalloc_noreclaim_save(); 7976 set_task_reclaim_state(p, &sc.reclaim_state); 7977 7978 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7979 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7980 /* 7981 * Free memory by calling shrink node with increasing 7982 * priorities until we have enough memory freed. 7983 */ 7984 do { 7985 shrink_node(pgdat, &sc); 7986 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7987 } 7988 7989 set_task_reclaim_state(p, NULL); 7990 memalloc_noreclaim_restore(noreclaim_flag); 7991 fs_reclaim_release(sc.gfp_mask); 7992 psi_memstall_leave(&pflags); 7993 7994 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7995 7996 return sc.nr_reclaimed >= nr_pages; 7997 } 7998 7999 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 8000 { 8001 int ret; 8002 8003 /* 8004 * Node reclaim reclaims unmapped file backed pages and 8005 * slab pages if we are over the defined limits. 8006 * 8007 * A small portion of unmapped file backed pages is needed for 8008 * file I/O otherwise pages read by file I/O will be immediately 8009 * thrown out if the node is overallocated. So we do not reclaim 8010 * if less than a specified percentage of the node is used by 8011 * unmapped file backed pages. 8012 */ 8013 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 8014 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 8015 pgdat->min_slab_pages) 8016 return NODE_RECLAIM_FULL; 8017 8018 /* 8019 * Do not scan if the allocation should not be delayed. 8020 */ 8021 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 8022 return NODE_RECLAIM_NOSCAN; 8023 8024 /* 8025 * Only run node reclaim on the local node or on nodes that do not 8026 * have associated processors. This will favor the local processor 8027 * over remote processors and spread off node memory allocations 8028 * as wide as possible. 8029 */ 8030 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 8031 return NODE_RECLAIM_NOSCAN; 8032 8033 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 8034 return NODE_RECLAIM_NOSCAN; 8035 8036 ret = __node_reclaim(pgdat, gfp_mask, order); 8037 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 8038 8039 if (!ret) 8040 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 8041 8042 return ret; 8043 } 8044 #endif 8045 8046 void check_move_unevictable_pages(struct pagevec *pvec) 8047 { 8048 struct folio_batch fbatch; 8049 unsigned i; 8050 8051 folio_batch_init(&fbatch); 8052 for (i = 0; i < pvec->nr; i++) { 8053 struct page *page = pvec->pages[i]; 8054 8055 if (PageTransTail(page)) 8056 continue; 8057 folio_batch_add(&fbatch, page_folio(page)); 8058 } 8059 check_move_unevictable_folios(&fbatch); 8060 } 8061 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 8062 8063 /** 8064 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8065 * lru list 8066 * @fbatch: Batch of lru folios to check. 8067 * 8068 * Checks folios for evictability, if an evictable folio is in the unevictable 8069 * lru list, moves it to the appropriate evictable lru list. This function 8070 * should be only used for lru folios. 8071 */ 8072 void check_move_unevictable_folios(struct folio_batch *fbatch) 8073 { 8074 struct lruvec *lruvec = NULL; 8075 int pgscanned = 0; 8076 int pgrescued = 0; 8077 int i; 8078 8079 for (i = 0; i < fbatch->nr; i++) { 8080 struct folio *folio = fbatch->folios[i]; 8081 int nr_pages = folio_nr_pages(folio); 8082 8083 pgscanned += nr_pages; 8084 8085 /* block memcg migration while the folio moves between lrus */ 8086 if (!folio_test_clear_lru(folio)) 8087 continue; 8088 8089 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8090 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8091 lruvec_del_folio(lruvec, folio); 8092 folio_clear_unevictable(folio); 8093 lruvec_add_folio(lruvec, folio); 8094 pgrescued += nr_pages; 8095 } 8096 folio_set_lru(folio); 8097 } 8098 8099 if (lruvec) { 8100 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8101 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8102 unlock_page_lruvec_irq(lruvec); 8103 } else if (pgscanned) { 8104 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8105 } 8106 } 8107 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8108