xref: /openbmc/linux/mm/vmscan.c (revision d56ffd38a93841a07c839a375049a56b51e9567c)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can pages be swapped as part of reclaim? */
64 	int may_swap;
65 
66 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 	 * In this context, it doesn't matter that we scan the
69 	 * whole list at once. */
70 	int swap_cluster_max;
71 
72 	int swappiness;
73 
74 	int all_unreclaimable;
75 
76 	int order;
77 
78 	/* Which cgroup do we reclaim from */
79 	struct mem_cgroup *mem_cgroup;
80 
81 	/* Pluggable isolate pages callback */
82 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83 			unsigned long *scanned, int order, int mode,
84 			struct zone *z, struct mem_cgroup *mem_cont,
85 			int active, int file);
86 };
87 
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89 
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field)			\
92 	do {								\
93 		if ((_page)->lru.prev != _base) {			\
94 			struct page *prev;				\
95 									\
96 			prev = lru_to_page(&(_page->lru));		\
97 			prefetch(&prev->_field);			\
98 		}							\
99 	} while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103 
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field)			\
106 	do {								\
107 		if ((_page)->lru.prev != _base) {			\
108 			struct page *prev;				\
109 									\
110 			prev = lru_to_page(&(_page->lru));		\
111 			prefetchw(&prev->_field);			\
112 		}							\
113 	} while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117 
118 /*
119  * From 0 .. 100.  Higher means more swappy.
120  */
121 int vm_swappiness = 60;
122 long vm_total_pages;	/* The total number of pages which the VM controls */
123 
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_RWSEM(shrinker_rwsem);
126 
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
129 #else
130 #define scanning_global_lru(sc)	(1)
131 #endif
132 
133 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134 						  struct scan_control *sc)
135 {
136 	if (!scanning_global_lru(sc))
137 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
138 
139 	return &zone->reclaim_stat;
140 }
141 
142 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
143 				   enum lru_list lru)
144 {
145 	if (!scanning_global_lru(sc))
146 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
147 
148 	return zone_page_state(zone, NR_LRU_BASE + lru);
149 }
150 
151 
152 /*
153  * Add a shrinker callback to be called from the vm
154  */
155 void register_shrinker(struct shrinker *shrinker)
156 {
157 	shrinker->nr = 0;
158 	down_write(&shrinker_rwsem);
159 	list_add_tail(&shrinker->list, &shrinker_list);
160 	up_write(&shrinker_rwsem);
161 }
162 EXPORT_SYMBOL(register_shrinker);
163 
164 /*
165  * Remove one
166  */
167 void unregister_shrinker(struct shrinker *shrinker)
168 {
169 	down_write(&shrinker_rwsem);
170 	list_del(&shrinker->list);
171 	up_write(&shrinker_rwsem);
172 }
173 EXPORT_SYMBOL(unregister_shrinker);
174 
175 #define SHRINK_BATCH 128
176 /*
177  * Call the shrink functions to age shrinkable caches
178  *
179  * Here we assume it costs one seek to replace a lru page and that it also
180  * takes a seek to recreate a cache object.  With this in mind we age equal
181  * percentages of the lru and ageable caches.  This should balance the seeks
182  * generated by these structures.
183  *
184  * If the vm encountered mapped pages on the LRU it increase the pressure on
185  * slab to avoid swapping.
186  *
187  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
188  *
189  * `lru_pages' represents the number of on-LRU pages in all the zones which
190  * are eligible for the caller's allocation attempt.  It is used for balancing
191  * slab reclaim versus page reclaim.
192  *
193  * Returns the number of slab objects which we shrunk.
194  */
195 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
196 			unsigned long lru_pages)
197 {
198 	struct shrinker *shrinker;
199 	unsigned long ret = 0;
200 
201 	if (scanned == 0)
202 		scanned = SWAP_CLUSTER_MAX;
203 
204 	if (!down_read_trylock(&shrinker_rwsem))
205 		return 1;	/* Assume we'll be able to shrink next time */
206 
207 	list_for_each_entry(shrinker, &shrinker_list, list) {
208 		unsigned long long delta;
209 		unsigned long total_scan;
210 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
211 
212 		delta = (4 * scanned) / shrinker->seeks;
213 		delta *= max_pass;
214 		do_div(delta, lru_pages + 1);
215 		shrinker->nr += delta;
216 		if (shrinker->nr < 0) {
217 			printk(KERN_ERR "%s: nr=%ld\n",
218 					__func__, shrinker->nr);
219 			shrinker->nr = max_pass;
220 		}
221 
222 		/*
223 		 * Avoid risking looping forever due to too large nr value:
224 		 * never try to free more than twice the estimate number of
225 		 * freeable entries.
226 		 */
227 		if (shrinker->nr > max_pass * 2)
228 			shrinker->nr = max_pass * 2;
229 
230 		total_scan = shrinker->nr;
231 		shrinker->nr = 0;
232 
233 		while (total_scan >= SHRINK_BATCH) {
234 			long this_scan = SHRINK_BATCH;
235 			int shrink_ret;
236 			int nr_before;
237 
238 			nr_before = (*shrinker->shrink)(0, gfp_mask);
239 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
240 			if (shrink_ret == -1)
241 				break;
242 			if (shrink_ret < nr_before)
243 				ret += nr_before - shrink_ret;
244 			count_vm_events(SLABS_SCANNED, this_scan);
245 			total_scan -= this_scan;
246 
247 			cond_resched();
248 		}
249 
250 		shrinker->nr += total_scan;
251 	}
252 	up_read(&shrinker_rwsem);
253 	return ret;
254 }
255 
256 /* Called without lock on whether page is mapped, so answer is unstable */
257 static inline int page_mapping_inuse(struct page *page)
258 {
259 	struct address_space *mapping;
260 
261 	/* Page is in somebody's page tables. */
262 	if (page_mapped(page))
263 		return 1;
264 
265 	/* Be more reluctant to reclaim swapcache than pagecache */
266 	if (PageSwapCache(page))
267 		return 1;
268 
269 	mapping = page_mapping(page);
270 	if (!mapping)
271 		return 0;
272 
273 	/* File is mmap'd by somebody? */
274 	return mapping_mapped(mapping);
275 }
276 
277 static inline int is_page_cache_freeable(struct page *page)
278 {
279 	return page_count(page) - !!PagePrivate(page) == 2;
280 }
281 
282 static int may_write_to_queue(struct backing_dev_info *bdi)
283 {
284 	if (current->flags & PF_SWAPWRITE)
285 		return 1;
286 	if (!bdi_write_congested(bdi))
287 		return 1;
288 	if (bdi == current->backing_dev_info)
289 		return 1;
290 	return 0;
291 }
292 
293 /*
294  * We detected a synchronous write error writing a page out.  Probably
295  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
296  * fsync(), msync() or close().
297  *
298  * The tricky part is that after writepage we cannot touch the mapping: nothing
299  * prevents it from being freed up.  But we have a ref on the page and once
300  * that page is locked, the mapping is pinned.
301  *
302  * We're allowed to run sleeping lock_page() here because we know the caller has
303  * __GFP_FS.
304  */
305 static void handle_write_error(struct address_space *mapping,
306 				struct page *page, int error)
307 {
308 	lock_page(page);
309 	if (page_mapping(page) == mapping)
310 		mapping_set_error(mapping, error);
311 	unlock_page(page);
312 }
313 
314 /* Request for sync pageout. */
315 enum pageout_io {
316 	PAGEOUT_IO_ASYNC,
317 	PAGEOUT_IO_SYNC,
318 };
319 
320 /* possible outcome of pageout() */
321 typedef enum {
322 	/* failed to write page out, page is locked */
323 	PAGE_KEEP,
324 	/* move page to the active list, page is locked */
325 	PAGE_ACTIVATE,
326 	/* page has been sent to the disk successfully, page is unlocked */
327 	PAGE_SUCCESS,
328 	/* page is clean and locked */
329 	PAGE_CLEAN,
330 } pageout_t;
331 
332 /*
333  * pageout is called by shrink_page_list() for each dirty page.
334  * Calls ->writepage().
335  */
336 static pageout_t pageout(struct page *page, struct address_space *mapping,
337 						enum pageout_io sync_writeback)
338 {
339 	/*
340 	 * If the page is dirty, only perform writeback if that write
341 	 * will be non-blocking.  To prevent this allocation from being
342 	 * stalled by pagecache activity.  But note that there may be
343 	 * stalls if we need to run get_block().  We could test
344 	 * PagePrivate for that.
345 	 *
346 	 * If this process is currently in generic_file_write() against
347 	 * this page's queue, we can perform writeback even if that
348 	 * will block.
349 	 *
350 	 * If the page is swapcache, write it back even if that would
351 	 * block, for some throttling. This happens by accident, because
352 	 * swap_backing_dev_info is bust: it doesn't reflect the
353 	 * congestion state of the swapdevs.  Easy to fix, if needed.
354 	 * See swapfile.c:page_queue_congested().
355 	 */
356 	if (!is_page_cache_freeable(page))
357 		return PAGE_KEEP;
358 	if (!mapping) {
359 		/*
360 		 * Some data journaling orphaned pages can have
361 		 * page->mapping == NULL while being dirty with clean buffers.
362 		 */
363 		if (PagePrivate(page)) {
364 			if (try_to_free_buffers(page)) {
365 				ClearPageDirty(page);
366 				printk("%s: orphaned page\n", __func__);
367 				return PAGE_CLEAN;
368 			}
369 		}
370 		return PAGE_KEEP;
371 	}
372 	if (mapping->a_ops->writepage == NULL)
373 		return PAGE_ACTIVATE;
374 	if (!may_write_to_queue(mapping->backing_dev_info))
375 		return PAGE_KEEP;
376 
377 	if (clear_page_dirty_for_io(page)) {
378 		int res;
379 		struct writeback_control wbc = {
380 			.sync_mode = WB_SYNC_NONE,
381 			.nr_to_write = SWAP_CLUSTER_MAX,
382 			.range_start = 0,
383 			.range_end = LLONG_MAX,
384 			.nonblocking = 1,
385 			.for_reclaim = 1,
386 		};
387 
388 		SetPageReclaim(page);
389 		res = mapping->a_ops->writepage(page, &wbc);
390 		if (res < 0)
391 			handle_write_error(mapping, page, res);
392 		if (res == AOP_WRITEPAGE_ACTIVATE) {
393 			ClearPageReclaim(page);
394 			return PAGE_ACTIVATE;
395 		}
396 
397 		/*
398 		 * Wait on writeback if requested to. This happens when
399 		 * direct reclaiming a large contiguous area and the
400 		 * first attempt to free a range of pages fails.
401 		 */
402 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
403 			wait_on_page_writeback(page);
404 
405 		if (!PageWriteback(page)) {
406 			/* synchronous write or broken a_ops? */
407 			ClearPageReclaim(page);
408 		}
409 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
410 		return PAGE_SUCCESS;
411 	}
412 
413 	return PAGE_CLEAN;
414 }
415 
416 /*
417  * Same as remove_mapping, but if the page is removed from the mapping, it
418  * gets returned with a refcount of 0.
419  */
420 static int __remove_mapping(struct address_space *mapping, struct page *page)
421 {
422 	BUG_ON(!PageLocked(page));
423 	BUG_ON(mapping != page_mapping(page));
424 
425 	spin_lock_irq(&mapping->tree_lock);
426 	/*
427 	 * The non racy check for a busy page.
428 	 *
429 	 * Must be careful with the order of the tests. When someone has
430 	 * a ref to the page, it may be possible that they dirty it then
431 	 * drop the reference. So if PageDirty is tested before page_count
432 	 * here, then the following race may occur:
433 	 *
434 	 * get_user_pages(&page);
435 	 * [user mapping goes away]
436 	 * write_to(page);
437 	 *				!PageDirty(page)    [good]
438 	 * SetPageDirty(page);
439 	 * put_page(page);
440 	 *				!page_count(page)   [good, discard it]
441 	 *
442 	 * [oops, our write_to data is lost]
443 	 *
444 	 * Reversing the order of the tests ensures such a situation cannot
445 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
446 	 * load is not satisfied before that of page->_count.
447 	 *
448 	 * Note that if SetPageDirty is always performed via set_page_dirty,
449 	 * and thus under tree_lock, then this ordering is not required.
450 	 */
451 	if (!page_freeze_refs(page, 2))
452 		goto cannot_free;
453 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
454 	if (unlikely(PageDirty(page))) {
455 		page_unfreeze_refs(page, 2);
456 		goto cannot_free;
457 	}
458 
459 	if (PageSwapCache(page)) {
460 		swp_entry_t swap = { .val = page_private(page) };
461 		__delete_from_swap_cache(page);
462 		spin_unlock_irq(&mapping->tree_lock);
463 		swap_free(swap);
464 	} else {
465 		__remove_from_page_cache(page);
466 		spin_unlock_irq(&mapping->tree_lock);
467 	}
468 
469 	return 1;
470 
471 cannot_free:
472 	spin_unlock_irq(&mapping->tree_lock);
473 	return 0;
474 }
475 
476 /*
477  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
478  * someone else has a ref on the page, abort and return 0.  If it was
479  * successfully detached, return 1.  Assumes the caller has a single ref on
480  * this page.
481  */
482 int remove_mapping(struct address_space *mapping, struct page *page)
483 {
484 	if (__remove_mapping(mapping, page)) {
485 		/*
486 		 * Unfreezing the refcount with 1 rather than 2 effectively
487 		 * drops the pagecache ref for us without requiring another
488 		 * atomic operation.
489 		 */
490 		page_unfreeze_refs(page, 1);
491 		return 1;
492 	}
493 	return 0;
494 }
495 
496 /**
497  * putback_lru_page - put previously isolated page onto appropriate LRU list
498  * @page: page to be put back to appropriate lru list
499  *
500  * Add previously isolated @page to appropriate LRU list.
501  * Page may still be unevictable for other reasons.
502  *
503  * lru_lock must not be held, interrupts must be enabled.
504  */
505 #ifdef CONFIG_UNEVICTABLE_LRU
506 void putback_lru_page(struct page *page)
507 {
508 	int lru;
509 	int active = !!TestClearPageActive(page);
510 	int was_unevictable = PageUnevictable(page);
511 
512 	VM_BUG_ON(PageLRU(page));
513 
514 redo:
515 	ClearPageUnevictable(page);
516 
517 	if (page_evictable(page, NULL)) {
518 		/*
519 		 * For evictable pages, we can use the cache.
520 		 * In event of a race, worst case is we end up with an
521 		 * unevictable page on [in]active list.
522 		 * We know how to handle that.
523 		 */
524 		lru = active + page_is_file_cache(page);
525 		lru_cache_add_lru(page, lru);
526 	} else {
527 		/*
528 		 * Put unevictable pages directly on zone's unevictable
529 		 * list.
530 		 */
531 		lru = LRU_UNEVICTABLE;
532 		add_page_to_unevictable_list(page);
533 	}
534 
535 	/*
536 	 * page's status can change while we move it among lru. If an evictable
537 	 * page is on unevictable list, it never be freed. To avoid that,
538 	 * check after we added it to the list, again.
539 	 */
540 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
541 		if (!isolate_lru_page(page)) {
542 			put_page(page);
543 			goto redo;
544 		}
545 		/* This means someone else dropped this page from LRU
546 		 * So, it will be freed or putback to LRU again. There is
547 		 * nothing to do here.
548 		 */
549 	}
550 
551 	if (was_unevictable && lru != LRU_UNEVICTABLE)
552 		count_vm_event(UNEVICTABLE_PGRESCUED);
553 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
554 		count_vm_event(UNEVICTABLE_PGCULLED);
555 
556 	put_page(page);		/* drop ref from isolate */
557 }
558 
559 #else /* CONFIG_UNEVICTABLE_LRU */
560 
561 void putback_lru_page(struct page *page)
562 {
563 	int lru;
564 	VM_BUG_ON(PageLRU(page));
565 
566 	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
567 	lru_cache_add_lru(page, lru);
568 	put_page(page);
569 }
570 #endif /* CONFIG_UNEVICTABLE_LRU */
571 
572 
573 /*
574  * shrink_page_list() returns the number of reclaimed pages
575  */
576 static unsigned long shrink_page_list(struct list_head *page_list,
577 					struct scan_control *sc,
578 					enum pageout_io sync_writeback)
579 {
580 	LIST_HEAD(ret_pages);
581 	struct pagevec freed_pvec;
582 	int pgactivate = 0;
583 	unsigned long nr_reclaimed = 0;
584 
585 	cond_resched();
586 
587 	pagevec_init(&freed_pvec, 1);
588 	while (!list_empty(page_list)) {
589 		struct address_space *mapping;
590 		struct page *page;
591 		int may_enter_fs;
592 		int referenced;
593 
594 		cond_resched();
595 
596 		page = lru_to_page(page_list);
597 		list_del(&page->lru);
598 
599 		if (!trylock_page(page))
600 			goto keep;
601 
602 		VM_BUG_ON(PageActive(page));
603 
604 		sc->nr_scanned++;
605 
606 		if (unlikely(!page_evictable(page, NULL)))
607 			goto cull_mlocked;
608 
609 		if (!sc->may_swap && page_mapped(page))
610 			goto keep_locked;
611 
612 		/* Double the slab pressure for mapped and swapcache pages */
613 		if (page_mapped(page) || PageSwapCache(page))
614 			sc->nr_scanned++;
615 
616 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
617 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
618 
619 		if (PageWriteback(page)) {
620 			/*
621 			 * Synchronous reclaim is performed in two passes,
622 			 * first an asynchronous pass over the list to
623 			 * start parallel writeback, and a second synchronous
624 			 * pass to wait for the IO to complete.  Wait here
625 			 * for any page for which writeback has already
626 			 * started.
627 			 */
628 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
629 				wait_on_page_writeback(page);
630 			else
631 				goto keep_locked;
632 		}
633 
634 		referenced = page_referenced(page, 1, sc->mem_cgroup);
635 		/* In active use or really unfreeable?  Activate it. */
636 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
637 					referenced && page_mapping_inuse(page))
638 			goto activate_locked;
639 
640 		/*
641 		 * Anonymous process memory has backing store?
642 		 * Try to allocate it some swap space here.
643 		 */
644 		if (PageAnon(page) && !PageSwapCache(page)) {
645 			if (!(sc->gfp_mask & __GFP_IO))
646 				goto keep_locked;
647 			if (!add_to_swap(page))
648 				goto activate_locked;
649 			may_enter_fs = 1;
650 		}
651 
652 		mapping = page_mapping(page);
653 
654 		/*
655 		 * The page is mapped into the page tables of one or more
656 		 * processes. Try to unmap it here.
657 		 */
658 		if (page_mapped(page) && mapping) {
659 			switch (try_to_unmap(page, 0)) {
660 			case SWAP_FAIL:
661 				goto activate_locked;
662 			case SWAP_AGAIN:
663 				goto keep_locked;
664 			case SWAP_MLOCK:
665 				goto cull_mlocked;
666 			case SWAP_SUCCESS:
667 				; /* try to free the page below */
668 			}
669 		}
670 
671 		if (PageDirty(page)) {
672 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
673 				goto keep_locked;
674 			if (!may_enter_fs)
675 				goto keep_locked;
676 			if (!sc->may_writepage)
677 				goto keep_locked;
678 
679 			/* Page is dirty, try to write it out here */
680 			switch (pageout(page, mapping, sync_writeback)) {
681 			case PAGE_KEEP:
682 				goto keep_locked;
683 			case PAGE_ACTIVATE:
684 				goto activate_locked;
685 			case PAGE_SUCCESS:
686 				if (PageWriteback(page) || PageDirty(page))
687 					goto keep;
688 				/*
689 				 * A synchronous write - probably a ramdisk.  Go
690 				 * ahead and try to reclaim the page.
691 				 */
692 				if (!trylock_page(page))
693 					goto keep;
694 				if (PageDirty(page) || PageWriteback(page))
695 					goto keep_locked;
696 				mapping = page_mapping(page);
697 			case PAGE_CLEAN:
698 				; /* try to free the page below */
699 			}
700 		}
701 
702 		/*
703 		 * If the page has buffers, try to free the buffer mappings
704 		 * associated with this page. If we succeed we try to free
705 		 * the page as well.
706 		 *
707 		 * We do this even if the page is PageDirty().
708 		 * try_to_release_page() does not perform I/O, but it is
709 		 * possible for a page to have PageDirty set, but it is actually
710 		 * clean (all its buffers are clean).  This happens if the
711 		 * buffers were written out directly, with submit_bh(). ext3
712 		 * will do this, as well as the blockdev mapping.
713 		 * try_to_release_page() will discover that cleanness and will
714 		 * drop the buffers and mark the page clean - it can be freed.
715 		 *
716 		 * Rarely, pages can have buffers and no ->mapping.  These are
717 		 * the pages which were not successfully invalidated in
718 		 * truncate_complete_page().  We try to drop those buffers here
719 		 * and if that worked, and the page is no longer mapped into
720 		 * process address space (page_count == 1) it can be freed.
721 		 * Otherwise, leave the page on the LRU so it is swappable.
722 		 */
723 		if (PagePrivate(page)) {
724 			if (!try_to_release_page(page, sc->gfp_mask))
725 				goto activate_locked;
726 			if (!mapping && page_count(page) == 1) {
727 				unlock_page(page);
728 				if (put_page_testzero(page))
729 					goto free_it;
730 				else {
731 					/*
732 					 * rare race with speculative reference.
733 					 * the speculative reference will free
734 					 * this page shortly, so we may
735 					 * increment nr_reclaimed here (and
736 					 * leave it off the LRU).
737 					 */
738 					nr_reclaimed++;
739 					continue;
740 				}
741 			}
742 		}
743 
744 		if (!mapping || !__remove_mapping(mapping, page))
745 			goto keep_locked;
746 
747 		/*
748 		 * At this point, we have no other references and there is
749 		 * no way to pick any more up (removed from LRU, removed
750 		 * from pagecache). Can use non-atomic bitops now (and
751 		 * we obviously don't have to worry about waking up a process
752 		 * waiting on the page lock, because there are no references.
753 		 */
754 		__clear_page_locked(page);
755 free_it:
756 		nr_reclaimed++;
757 		if (!pagevec_add(&freed_pvec, page)) {
758 			__pagevec_free(&freed_pvec);
759 			pagevec_reinit(&freed_pvec);
760 		}
761 		continue;
762 
763 cull_mlocked:
764 		if (PageSwapCache(page))
765 			try_to_free_swap(page);
766 		unlock_page(page);
767 		putback_lru_page(page);
768 		continue;
769 
770 activate_locked:
771 		/* Not a candidate for swapping, so reclaim swap space. */
772 		if (PageSwapCache(page) && vm_swap_full())
773 			try_to_free_swap(page);
774 		VM_BUG_ON(PageActive(page));
775 		SetPageActive(page);
776 		pgactivate++;
777 keep_locked:
778 		unlock_page(page);
779 keep:
780 		list_add(&page->lru, &ret_pages);
781 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
782 	}
783 	list_splice(&ret_pages, page_list);
784 	if (pagevec_count(&freed_pvec))
785 		__pagevec_free(&freed_pvec);
786 	count_vm_events(PGACTIVATE, pgactivate);
787 	return nr_reclaimed;
788 }
789 
790 /* LRU Isolation modes. */
791 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
792 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
793 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
794 
795 /*
796  * Attempt to remove the specified page from its LRU.  Only take this page
797  * if it is of the appropriate PageActive status.  Pages which are being
798  * freed elsewhere are also ignored.
799  *
800  * page:	page to consider
801  * mode:	one of the LRU isolation modes defined above
802  *
803  * returns 0 on success, -ve errno on failure.
804  */
805 int __isolate_lru_page(struct page *page, int mode, int file)
806 {
807 	int ret = -EINVAL;
808 
809 	/* Only take pages on the LRU. */
810 	if (!PageLRU(page))
811 		return ret;
812 
813 	/*
814 	 * When checking the active state, we need to be sure we are
815 	 * dealing with comparible boolean values.  Take the logical not
816 	 * of each.
817 	 */
818 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
819 		return ret;
820 
821 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
822 		return ret;
823 
824 	/*
825 	 * When this function is being called for lumpy reclaim, we
826 	 * initially look into all LRU pages, active, inactive and
827 	 * unevictable; only give shrink_page_list evictable pages.
828 	 */
829 	if (PageUnevictable(page))
830 		return ret;
831 
832 	ret = -EBUSY;
833 
834 	if (likely(get_page_unless_zero(page))) {
835 		/*
836 		 * Be careful not to clear PageLRU until after we're
837 		 * sure the page is not being freed elsewhere -- the
838 		 * page release code relies on it.
839 		 */
840 		ClearPageLRU(page);
841 		ret = 0;
842 		mem_cgroup_del_lru(page);
843 	}
844 
845 	return ret;
846 }
847 
848 /*
849  * zone->lru_lock is heavily contended.  Some of the functions that
850  * shrink the lists perform better by taking out a batch of pages
851  * and working on them outside the LRU lock.
852  *
853  * For pagecache intensive workloads, this function is the hottest
854  * spot in the kernel (apart from copy_*_user functions).
855  *
856  * Appropriate locks must be held before calling this function.
857  *
858  * @nr_to_scan:	The number of pages to look through on the list.
859  * @src:	The LRU list to pull pages off.
860  * @dst:	The temp list to put pages on to.
861  * @scanned:	The number of pages that were scanned.
862  * @order:	The caller's attempted allocation order
863  * @mode:	One of the LRU isolation modes
864  * @file:	True [1] if isolating file [!anon] pages
865  *
866  * returns how many pages were moved onto *@dst.
867  */
868 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
869 		struct list_head *src, struct list_head *dst,
870 		unsigned long *scanned, int order, int mode, int file)
871 {
872 	unsigned long nr_taken = 0;
873 	unsigned long scan;
874 
875 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
876 		struct page *page;
877 		unsigned long pfn;
878 		unsigned long end_pfn;
879 		unsigned long page_pfn;
880 		int zone_id;
881 
882 		page = lru_to_page(src);
883 		prefetchw_prev_lru_page(page, src, flags);
884 
885 		VM_BUG_ON(!PageLRU(page));
886 
887 		switch (__isolate_lru_page(page, mode, file)) {
888 		case 0:
889 			list_move(&page->lru, dst);
890 			nr_taken++;
891 			break;
892 
893 		case -EBUSY:
894 			/* else it is being freed elsewhere */
895 			list_move(&page->lru, src);
896 			continue;
897 
898 		default:
899 			BUG();
900 		}
901 
902 		if (!order)
903 			continue;
904 
905 		/*
906 		 * Attempt to take all pages in the order aligned region
907 		 * surrounding the tag page.  Only take those pages of
908 		 * the same active state as that tag page.  We may safely
909 		 * round the target page pfn down to the requested order
910 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
911 		 * where that page is in a different zone we will detect
912 		 * it from its zone id and abort this block scan.
913 		 */
914 		zone_id = page_zone_id(page);
915 		page_pfn = page_to_pfn(page);
916 		pfn = page_pfn & ~((1 << order) - 1);
917 		end_pfn = pfn + (1 << order);
918 		for (; pfn < end_pfn; pfn++) {
919 			struct page *cursor_page;
920 
921 			/* The target page is in the block, ignore it. */
922 			if (unlikely(pfn == page_pfn))
923 				continue;
924 
925 			/* Avoid holes within the zone. */
926 			if (unlikely(!pfn_valid_within(pfn)))
927 				break;
928 
929 			cursor_page = pfn_to_page(pfn);
930 
931 			/* Check that we have not crossed a zone boundary. */
932 			if (unlikely(page_zone_id(cursor_page) != zone_id))
933 				continue;
934 			switch (__isolate_lru_page(cursor_page, mode, file)) {
935 			case 0:
936 				list_move(&cursor_page->lru, dst);
937 				nr_taken++;
938 				scan++;
939 				break;
940 
941 			case -EBUSY:
942 				/* else it is being freed elsewhere */
943 				list_move(&cursor_page->lru, src);
944 			default:
945 				break;	/* ! on LRU or wrong list */
946 			}
947 		}
948 	}
949 
950 	*scanned = scan;
951 	return nr_taken;
952 }
953 
954 static unsigned long isolate_pages_global(unsigned long nr,
955 					struct list_head *dst,
956 					unsigned long *scanned, int order,
957 					int mode, struct zone *z,
958 					struct mem_cgroup *mem_cont,
959 					int active, int file)
960 {
961 	int lru = LRU_BASE;
962 	if (active)
963 		lru += LRU_ACTIVE;
964 	if (file)
965 		lru += LRU_FILE;
966 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
967 								mode, !!file);
968 }
969 
970 /*
971  * clear_active_flags() is a helper for shrink_active_list(), clearing
972  * any active bits from the pages in the list.
973  */
974 static unsigned long clear_active_flags(struct list_head *page_list,
975 					unsigned int *count)
976 {
977 	int nr_active = 0;
978 	int lru;
979 	struct page *page;
980 
981 	list_for_each_entry(page, page_list, lru) {
982 		lru = page_is_file_cache(page);
983 		if (PageActive(page)) {
984 			lru += LRU_ACTIVE;
985 			ClearPageActive(page);
986 			nr_active++;
987 		}
988 		count[lru]++;
989 	}
990 
991 	return nr_active;
992 }
993 
994 /**
995  * isolate_lru_page - tries to isolate a page from its LRU list
996  * @page: page to isolate from its LRU list
997  *
998  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
999  * vmstat statistic corresponding to whatever LRU list the page was on.
1000  *
1001  * Returns 0 if the page was removed from an LRU list.
1002  * Returns -EBUSY if the page was not on an LRU list.
1003  *
1004  * The returned page will have PageLRU() cleared.  If it was found on
1005  * the active list, it will have PageActive set.  If it was found on
1006  * the unevictable list, it will have the PageUnevictable bit set. That flag
1007  * may need to be cleared by the caller before letting the page go.
1008  *
1009  * The vmstat statistic corresponding to the list on which the page was
1010  * found will be decremented.
1011  *
1012  * Restrictions:
1013  * (1) Must be called with an elevated refcount on the page. This is a
1014  *     fundamentnal difference from isolate_lru_pages (which is called
1015  *     without a stable reference).
1016  * (2) the lru_lock must not be held.
1017  * (3) interrupts must be enabled.
1018  */
1019 int isolate_lru_page(struct page *page)
1020 {
1021 	int ret = -EBUSY;
1022 
1023 	if (PageLRU(page)) {
1024 		struct zone *zone = page_zone(page);
1025 
1026 		spin_lock_irq(&zone->lru_lock);
1027 		if (PageLRU(page) && get_page_unless_zero(page)) {
1028 			int lru = page_lru(page);
1029 			ret = 0;
1030 			ClearPageLRU(page);
1031 
1032 			del_page_from_lru_list(zone, page, lru);
1033 		}
1034 		spin_unlock_irq(&zone->lru_lock);
1035 	}
1036 	return ret;
1037 }
1038 
1039 /*
1040  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1041  * of reclaimed pages
1042  */
1043 static unsigned long shrink_inactive_list(unsigned long max_scan,
1044 			struct zone *zone, struct scan_control *sc,
1045 			int priority, int file)
1046 {
1047 	LIST_HEAD(page_list);
1048 	struct pagevec pvec;
1049 	unsigned long nr_scanned = 0;
1050 	unsigned long nr_reclaimed = 0;
1051 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1052 
1053 	pagevec_init(&pvec, 1);
1054 
1055 	lru_add_drain();
1056 	spin_lock_irq(&zone->lru_lock);
1057 	do {
1058 		struct page *page;
1059 		unsigned long nr_taken;
1060 		unsigned long nr_scan;
1061 		unsigned long nr_freed;
1062 		unsigned long nr_active;
1063 		unsigned int count[NR_LRU_LISTS] = { 0, };
1064 		int mode = ISOLATE_INACTIVE;
1065 
1066 		/*
1067 		 * If we need a large contiguous chunk of memory, or have
1068 		 * trouble getting a small set of contiguous pages, we
1069 		 * will reclaim both active and inactive pages.
1070 		 *
1071 		 * We use the same threshold as pageout congestion_wait below.
1072 		 */
1073 		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1074 			mode = ISOLATE_BOTH;
1075 		else if (sc->order && priority < DEF_PRIORITY - 2)
1076 			mode = ISOLATE_BOTH;
1077 
1078 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1079 			     &page_list, &nr_scan, sc->order, mode,
1080 				zone, sc->mem_cgroup, 0, file);
1081 		nr_active = clear_active_flags(&page_list, count);
1082 		__count_vm_events(PGDEACTIVATE, nr_active);
1083 
1084 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1085 						-count[LRU_ACTIVE_FILE]);
1086 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1087 						-count[LRU_INACTIVE_FILE]);
1088 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1089 						-count[LRU_ACTIVE_ANON]);
1090 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1091 						-count[LRU_INACTIVE_ANON]);
1092 
1093 		if (scanning_global_lru(sc))
1094 			zone->pages_scanned += nr_scan;
1095 
1096 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1097 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1098 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1099 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1100 
1101 		spin_unlock_irq(&zone->lru_lock);
1102 
1103 		nr_scanned += nr_scan;
1104 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1105 
1106 		/*
1107 		 * If we are direct reclaiming for contiguous pages and we do
1108 		 * not reclaim everything in the list, try again and wait
1109 		 * for IO to complete. This will stall high-order allocations
1110 		 * but that should be acceptable to the caller
1111 		 */
1112 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1113 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1114 			congestion_wait(WRITE, HZ/10);
1115 
1116 			/*
1117 			 * The attempt at page out may have made some
1118 			 * of the pages active, mark them inactive again.
1119 			 */
1120 			nr_active = clear_active_flags(&page_list, count);
1121 			count_vm_events(PGDEACTIVATE, nr_active);
1122 
1123 			nr_freed += shrink_page_list(&page_list, sc,
1124 							PAGEOUT_IO_SYNC);
1125 		}
1126 
1127 		nr_reclaimed += nr_freed;
1128 		local_irq_disable();
1129 		if (current_is_kswapd()) {
1130 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1131 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1132 		} else if (scanning_global_lru(sc))
1133 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1134 
1135 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1136 
1137 		if (nr_taken == 0)
1138 			goto done;
1139 
1140 		spin_lock(&zone->lru_lock);
1141 		/*
1142 		 * Put back any unfreeable pages.
1143 		 */
1144 		while (!list_empty(&page_list)) {
1145 			int lru;
1146 			page = lru_to_page(&page_list);
1147 			VM_BUG_ON(PageLRU(page));
1148 			list_del(&page->lru);
1149 			if (unlikely(!page_evictable(page, NULL))) {
1150 				spin_unlock_irq(&zone->lru_lock);
1151 				putback_lru_page(page);
1152 				spin_lock_irq(&zone->lru_lock);
1153 				continue;
1154 			}
1155 			SetPageLRU(page);
1156 			lru = page_lru(page);
1157 			add_page_to_lru_list(zone, page, lru);
1158 			if (PageActive(page)) {
1159 				int file = !!page_is_file_cache(page);
1160 				reclaim_stat->recent_rotated[file]++;
1161 			}
1162 			if (!pagevec_add(&pvec, page)) {
1163 				spin_unlock_irq(&zone->lru_lock);
1164 				__pagevec_release(&pvec);
1165 				spin_lock_irq(&zone->lru_lock);
1166 			}
1167 		}
1168   	} while (nr_scanned < max_scan);
1169 	spin_unlock(&zone->lru_lock);
1170 done:
1171 	local_irq_enable();
1172 	pagevec_release(&pvec);
1173 	return nr_reclaimed;
1174 }
1175 
1176 /*
1177  * We are about to scan this zone at a certain priority level.  If that priority
1178  * level is smaller (ie: more urgent) than the previous priority, then note
1179  * that priority level within the zone.  This is done so that when the next
1180  * process comes in to scan this zone, it will immediately start out at this
1181  * priority level rather than having to build up its own scanning priority.
1182  * Here, this priority affects only the reclaim-mapped threshold.
1183  */
1184 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1185 {
1186 	if (priority < zone->prev_priority)
1187 		zone->prev_priority = priority;
1188 }
1189 
1190 /*
1191  * This moves pages from the active list to the inactive list.
1192  *
1193  * We move them the other way if the page is referenced by one or more
1194  * processes, from rmap.
1195  *
1196  * If the pages are mostly unmapped, the processing is fast and it is
1197  * appropriate to hold zone->lru_lock across the whole operation.  But if
1198  * the pages are mapped, the processing is slow (page_referenced()) so we
1199  * should drop zone->lru_lock around each page.  It's impossible to balance
1200  * this, so instead we remove the pages from the LRU while processing them.
1201  * It is safe to rely on PG_active against the non-LRU pages in here because
1202  * nobody will play with that bit on a non-LRU page.
1203  *
1204  * The downside is that we have to touch page->_count against each page.
1205  * But we had to alter page->flags anyway.
1206  */
1207 
1208 
1209 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1210 			struct scan_control *sc, int priority, int file)
1211 {
1212 	unsigned long pgmoved;
1213 	int pgdeactivate = 0;
1214 	unsigned long pgscanned;
1215 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1216 	LIST_HEAD(l_inactive);
1217 	struct page *page;
1218 	struct pagevec pvec;
1219 	enum lru_list lru;
1220 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1221 
1222 	lru_add_drain();
1223 	spin_lock_irq(&zone->lru_lock);
1224 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1225 					ISOLATE_ACTIVE, zone,
1226 					sc->mem_cgroup, 1, file);
1227 	/*
1228 	 * zone->pages_scanned is used for detect zone's oom
1229 	 * mem_cgroup remembers nr_scan by itself.
1230 	 */
1231 	if (scanning_global_lru(sc)) {
1232 		zone->pages_scanned += pgscanned;
1233 	}
1234 	reclaim_stat->recent_scanned[!!file] += pgmoved;
1235 
1236 	if (file)
1237 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1238 	else
1239 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1240 	spin_unlock_irq(&zone->lru_lock);
1241 
1242 	pgmoved = 0;
1243 	while (!list_empty(&l_hold)) {
1244 		cond_resched();
1245 		page = lru_to_page(&l_hold);
1246 		list_del(&page->lru);
1247 
1248 		if (unlikely(!page_evictable(page, NULL))) {
1249 			putback_lru_page(page);
1250 			continue;
1251 		}
1252 
1253 		/* page_referenced clears PageReferenced */
1254 		if (page_mapping_inuse(page) &&
1255 		    page_referenced(page, 0, sc->mem_cgroup))
1256 			pgmoved++;
1257 
1258 		list_add(&page->lru, &l_inactive);
1259 	}
1260 
1261 	/*
1262 	 * Move the pages to the [file or anon] inactive list.
1263 	 */
1264 	pagevec_init(&pvec, 1);
1265 	lru = LRU_BASE + file * LRU_FILE;
1266 
1267 	spin_lock_irq(&zone->lru_lock);
1268 	/*
1269 	 * Count referenced pages from currently used mappings as
1270 	 * rotated, even though they are moved to the inactive list.
1271 	 * This helps balance scan pressure between file and anonymous
1272 	 * pages in get_scan_ratio.
1273 	 */
1274 	reclaim_stat->recent_rotated[!!file] += pgmoved;
1275 
1276 	pgmoved = 0;
1277 	while (!list_empty(&l_inactive)) {
1278 		page = lru_to_page(&l_inactive);
1279 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1280 		VM_BUG_ON(PageLRU(page));
1281 		SetPageLRU(page);
1282 		VM_BUG_ON(!PageActive(page));
1283 		ClearPageActive(page);
1284 
1285 		list_move(&page->lru, &zone->lru[lru].list);
1286 		mem_cgroup_add_lru_list(page, lru);
1287 		pgmoved++;
1288 		if (!pagevec_add(&pvec, page)) {
1289 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1290 			spin_unlock_irq(&zone->lru_lock);
1291 			pgdeactivate += pgmoved;
1292 			pgmoved = 0;
1293 			if (buffer_heads_over_limit)
1294 				pagevec_strip(&pvec);
1295 			__pagevec_release(&pvec);
1296 			spin_lock_irq(&zone->lru_lock);
1297 		}
1298 	}
1299 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1300 	pgdeactivate += pgmoved;
1301 	if (buffer_heads_over_limit) {
1302 		spin_unlock_irq(&zone->lru_lock);
1303 		pagevec_strip(&pvec);
1304 		spin_lock_irq(&zone->lru_lock);
1305 	}
1306 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1307 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1308 	spin_unlock_irq(&zone->lru_lock);
1309 	if (vm_swap_full())
1310 		pagevec_swap_free(&pvec);
1311 
1312 	pagevec_release(&pvec);
1313 }
1314 
1315 static int inactive_anon_is_low_global(struct zone *zone)
1316 {
1317 	unsigned long active, inactive;
1318 
1319 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1320 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321 
1322 	if (inactive * zone->inactive_ratio < active)
1323 		return 1;
1324 
1325 	return 0;
1326 }
1327 
1328 /**
1329  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1330  * @zone: zone to check
1331  * @sc:   scan control of this context
1332  *
1333  * Returns true if the zone does not have enough inactive anon pages,
1334  * meaning some active anon pages need to be deactivated.
1335  */
1336 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1337 {
1338 	int low;
1339 
1340 	if (scanning_global_lru(sc))
1341 		low = inactive_anon_is_low_global(zone);
1342 	else
1343 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1344 	return low;
1345 }
1346 
1347 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1348 	struct zone *zone, struct scan_control *sc, int priority)
1349 {
1350 	int file = is_file_lru(lru);
1351 
1352 	if (lru == LRU_ACTIVE_FILE) {
1353 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1354 		return 0;
1355 	}
1356 
1357 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1358 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1359 		return 0;
1360 	}
1361 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1362 }
1363 
1364 /*
1365  * Determine how aggressively the anon and file LRU lists should be
1366  * scanned.  The relative value of each set of LRU lists is determined
1367  * by looking at the fraction of the pages scanned we did rotate back
1368  * onto the active list instead of evict.
1369  *
1370  * percent[0] specifies how much pressure to put on ram/swap backed
1371  * memory, while percent[1] determines pressure on the file LRUs.
1372  */
1373 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1374 					unsigned long *percent)
1375 {
1376 	unsigned long anon, file, free;
1377 	unsigned long anon_prio, file_prio;
1378 	unsigned long ap, fp;
1379 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1380 
1381 	/* If we have no swap space, do not bother scanning anon pages. */
1382 	if (nr_swap_pages <= 0) {
1383 		percent[0] = 0;
1384 		percent[1] = 100;
1385 		return;
1386 	}
1387 
1388 	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1389 		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1390 	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1391 		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1392 
1393 	if (scanning_global_lru(sc)) {
1394 		free  = zone_page_state(zone, NR_FREE_PAGES);
1395 		/* If we have very few page cache pages,
1396 		   force-scan anon pages. */
1397 		if (unlikely(file + free <= zone->pages_high)) {
1398 			percent[0] = 100;
1399 			percent[1] = 0;
1400 			return;
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * OK, so we have swap space and a fair amount of page cache
1406 	 * pages.  We use the recently rotated / recently scanned
1407 	 * ratios to determine how valuable each cache is.
1408 	 *
1409 	 * Because workloads change over time (and to avoid overflow)
1410 	 * we keep these statistics as a floating average, which ends
1411 	 * up weighing recent references more than old ones.
1412 	 *
1413 	 * anon in [0], file in [1]
1414 	 */
1415 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1416 		spin_lock_irq(&zone->lru_lock);
1417 		reclaim_stat->recent_scanned[0] /= 2;
1418 		reclaim_stat->recent_rotated[0] /= 2;
1419 		spin_unlock_irq(&zone->lru_lock);
1420 	}
1421 
1422 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1423 		spin_lock_irq(&zone->lru_lock);
1424 		reclaim_stat->recent_scanned[1] /= 2;
1425 		reclaim_stat->recent_rotated[1] /= 2;
1426 		spin_unlock_irq(&zone->lru_lock);
1427 	}
1428 
1429 	/*
1430 	 * With swappiness at 100, anonymous and file have the same priority.
1431 	 * This scanning priority is essentially the inverse of IO cost.
1432 	 */
1433 	anon_prio = sc->swappiness;
1434 	file_prio = 200 - sc->swappiness;
1435 
1436 	/*
1437 	 * The amount of pressure on anon vs file pages is inversely
1438 	 * proportional to the fraction of recently scanned pages on
1439 	 * each list that were recently referenced and in active use.
1440 	 */
1441 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1442 	ap /= reclaim_stat->recent_rotated[0] + 1;
1443 
1444 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1445 	fp /= reclaim_stat->recent_rotated[1] + 1;
1446 
1447 	/* Normalize to percentages */
1448 	percent[0] = 100 * ap / (ap + fp + 1);
1449 	percent[1] = 100 - percent[0];
1450 }
1451 
1452 
1453 /*
1454  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1455  */
1456 static void shrink_zone(int priority, struct zone *zone,
1457 				struct scan_control *sc)
1458 {
1459 	unsigned long nr[NR_LRU_LISTS];
1460 	unsigned long nr_to_scan;
1461 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1462 	enum lru_list l;
1463 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1464 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1465 
1466 	get_scan_ratio(zone, sc, percent);
1467 
1468 	for_each_evictable_lru(l) {
1469 		int file = is_file_lru(l);
1470 		int scan;
1471 
1472 		scan = zone_nr_pages(zone, sc, l);
1473 		if (priority) {
1474 			scan >>= priority;
1475 			scan = (scan * percent[file]) / 100;
1476 		}
1477 		if (scanning_global_lru(sc)) {
1478 			zone->lru[l].nr_scan += scan;
1479 			nr[l] = zone->lru[l].nr_scan;
1480 			if (nr[l] >= swap_cluster_max)
1481 				zone->lru[l].nr_scan = 0;
1482 			else
1483 				nr[l] = 0;
1484 		} else
1485 			nr[l] = scan;
1486 	}
1487 
1488 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1489 					nr[LRU_INACTIVE_FILE]) {
1490 		for_each_evictable_lru(l) {
1491 			if (nr[l]) {
1492 				nr_to_scan = min(nr[l], swap_cluster_max);
1493 				nr[l] -= nr_to_scan;
1494 
1495 				nr_reclaimed += shrink_list(l, nr_to_scan,
1496 							    zone, sc, priority);
1497 			}
1498 		}
1499 		/*
1500 		 * On large memory systems, scan >> priority can become
1501 		 * really large. This is fine for the starting priority;
1502 		 * we want to put equal scanning pressure on each zone.
1503 		 * However, if the VM has a harder time of freeing pages,
1504 		 * with multiple processes reclaiming pages, the total
1505 		 * freeing target can get unreasonably large.
1506 		 */
1507 		if (nr_reclaimed > swap_cluster_max &&
1508 			priority < DEF_PRIORITY && !current_is_kswapd())
1509 			break;
1510 	}
1511 
1512 	sc->nr_reclaimed = nr_reclaimed;
1513 
1514 	/*
1515 	 * Even if we did not try to evict anon pages at all, we want to
1516 	 * rebalance the anon lru active/inactive ratio.
1517 	 */
1518 	if (inactive_anon_is_low(zone, sc))
1519 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1520 
1521 	throttle_vm_writeout(sc->gfp_mask);
1522 }
1523 
1524 /*
1525  * This is the direct reclaim path, for page-allocating processes.  We only
1526  * try to reclaim pages from zones which will satisfy the caller's allocation
1527  * request.
1528  *
1529  * We reclaim from a zone even if that zone is over pages_high.  Because:
1530  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1531  *    allocation or
1532  * b) The zones may be over pages_high but they must go *over* pages_high to
1533  *    satisfy the `incremental min' zone defense algorithm.
1534  *
1535  * If a zone is deemed to be full of pinned pages then just give it a light
1536  * scan then give up on it.
1537  */
1538 static void shrink_zones(int priority, struct zonelist *zonelist,
1539 					struct scan_control *sc)
1540 {
1541 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1542 	struct zoneref *z;
1543 	struct zone *zone;
1544 
1545 	sc->all_unreclaimable = 1;
1546 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1547 		if (!populated_zone(zone))
1548 			continue;
1549 		/*
1550 		 * Take care memory controller reclaiming has small influence
1551 		 * to global LRU.
1552 		 */
1553 		if (scanning_global_lru(sc)) {
1554 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1555 				continue;
1556 			note_zone_scanning_priority(zone, priority);
1557 
1558 			if (zone_is_all_unreclaimable(zone) &&
1559 						priority != DEF_PRIORITY)
1560 				continue;	/* Let kswapd poll it */
1561 			sc->all_unreclaimable = 0;
1562 		} else {
1563 			/*
1564 			 * Ignore cpuset limitation here. We just want to reduce
1565 			 * # of used pages by us regardless of memory shortage.
1566 			 */
1567 			sc->all_unreclaimable = 0;
1568 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1569 							priority);
1570 		}
1571 
1572 		shrink_zone(priority, zone, sc);
1573 	}
1574 }
1575 
1576 /*
1577  * This is the main entry point to direct page reclaim.
1578  *
1579  * If a full scan of the inactive list fails to free enough memory then we
1580  * are "out of memory" and something needs to be killed.
1581  *
1582  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1583  * high - the zone may be full of dirty or under-writeback pages, which this
1584  * caller can't do much about.  We kick pdflush and take explicit naps in the
1585  * hope that some of these pages can be written.  But if the allocating task
1586  * holds filesystem locks which prevent writeout this might not work, and the
1587  * allocation attempt will fail.
1588  *
1589  * returns:	0, if no pages reclaimed
1590  * 		else, the number of pages reclaimed
1591  */
1592 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1593 					struct scan_control *sc)
1594 {
1595 	int priority;
1596 	unsigned long ret = 0;
1597 	unsigned long total_scanned = 0;
1598 	struct reclaim_state *reclaim_state = current->reclaim_state;
1599 	unsigned long lru_pages = 0;
1600 	struct zoneref *z;
1601 	struct zone *zone;
1602 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1603 
1604 	delayacct_freepages_start();
1605 
1606 	if (scanning_global_lru(sc))
1607 		count_vm_event(ALLOCSTALL);
1608 	/*
1609 	 * mem_cgroup will not do shrink_slab.
1610 	 */
1611 	if (scanning_global_lru(sc)) {
1612 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1613 
1614 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1615 				continue;
1616 
1617 			lru_pages += zone_lru_pages(zone);
1618 		}
1619 	}
1620 
1621 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1622 		sc->nr_scanned = 0;
1623 		if (!priority)
1624 			disable_swap_token();
1625 		shrink_zones(priority, zonelist, sc);
1626 		/*
1627 		 * Don't shrink slabs when reclaiming memory from
1628 		 * over limit cgroups
1629 		 */
1630 		if (scanning_global_lru(sc)) {
1631 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1632 			if (reclaim_state) {
1633 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1634 				reclaim_state->reclaimed_slab = 0;
1635 			}
1636 		}
1637 		total_scanned += sc->nr_scanned;
1638 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1639 			ret = sc->nr_reclaimed;
1640 			goto out;
1641 		}
1642 
1643 		/*
1644 		 * Try to write back as many pages as we just scanned.  This
1645 		 * tends to cause slow streaming writers to write data to the
1646 		 * disk smoothly, at the dirtying rate, which is nice.   But
1647 		 * that's undesirable in laptop mode, where we *want* lumpy
1648 		 * writeout.  So in laptop mode, write out the whole world.
1649 		 */
1650 		if (total_scanned > sc->swap_cluster_max +
1651 					sc->swap_cluster_max / 2) {
1652 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1653 			sc->may_writepage = 1;
1654 		}
1655 
1656 		/* Take a nap, wait for some writeback to complete */
1657 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1658 			congestion_wait(WRITE, HZ/10);
1659 	}
1660 	/* top priority shrink_zones still had more to do? don't OOM, then */
1661 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1662 		ret = sc->nr_reclaimed;
1663 out:
1664 	/*
1665 	 * Now that we've scanned all the zones at this priority level, note
1666 	 * that level within the zone so that the next thread which performs
1667 	 * scanning of this zone will immediately start out at this priority
1668 	 * level.  This affects only the decision whether or not to bring
1669 	 * mapped pages onto the inactive list.
1670 	 */
1671 	if (priority < 0)
1672 		priority = 0;
1673 
1674 	if (scanning_global_lru(sc)) {
1675 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1676 
1677 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1678 				continue;
1679 
1680 			zone->prev_priority = priority;
1681 		}
1682 	} else
1683 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1684 
1685 	delayacct_freepages_end();
1686 
1687 	return ret;
1688 }
1689 
1690 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1691 								gfp_t gfp_mask)
1692 {
1693 	struct scan_control sc = {
1694 		.gfp_mask = gfp_mask,
1695 		.may_writepage = !laptop_mode,
1696 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1697 		.may_swap = 1,
1698 		.swappiness = vm_swappiness,
1699 		.order = order,
1700 		.mem_cgroup = NULL,
1701 		.isolate_pages = isolate_pages_global,
1702 	};
1703 
1704 	return do_try_to_free_pages(zonelist, &sc);
1705 }
1706 
1707 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1708 
1709 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1710 					   gfp_t gfp_mask,
1711 					   bool noswap,
1712 					   unsigned int swappiness)
1713 {
1714 	struct scan_control sc = {
1715 		.may_writepage = !laptop_mode,
1716 		.may_swap = 1,
1717 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1718 		.swappiness = swappiness,
1719 		.order = 0,
1720 		.mem_cgroup = mem_cont,
1721 		.isolate_pages = mem_cgroup_isolate_pages,
1722 	};
1723 	struct zonelist *zonelist;
1724 
1725 	if (noswap)
1726 		sc.may_swap = 0;
1727 
1728 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1729 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1730 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1731 	return do_try_to_free_pages(zonelist, &sc);
1732 }
1733 #endif
1734 
1735 /*
1736  * For kswapd, balance_pgdat() will work across all this node's zones until
1737  * they are all at pages_high.
1738  *
1739  * Returns the number of pages which were actually freed.
1740  *
1741  * There is special handling here for zones which are full of pinned pages.
1742  * This can happen if the pages are all mlocked, or if they are all used by
1743  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1744  * What we do is to detect the case where all pages in the zone have been
1745  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1746  * dead and from now on, only perform a short scan.  Basically we're polling
1747  * the zone for when the problem goes away.
1748  *
1749  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1750  * zones which have free_pages > pages_high, but once a zone is found to have
1751  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1752  * of the number of free pages in the lower zones.  This interoperates with
1753  * the page allocator fallback scheme to ensure that aging of pages is balanced
1754  * across the zones.
1755  */
1756 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1757 {
1758 	int all_zones_ok;
1759 	int priority;
1760 	int i;
1761 	unsigned long total_scanned;
1762 	struct reclaim_state *reclaim_state = current->reclaim_state;
1763 	struct scan_control sc = {
1764 		.gfp_mask = GFP_KERNEL,
1765 		.may_swap = 1,
1766 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1767 		.swappiness = vm_swappiness,
1768 		.order = order,
1769 		.mem_cgroup = NULL,
1770 		.isolate_pages = isolate_pages_global,
1771 	};
1772 	/*
1773 	 * temp_priority is used to remember the scanning priority at which
1774 	 * this zone was successfully refilled to free_pages == pages_high.
1775 	 */
1776 	int temp_priority[MAX_NR_ZONES];
1777 
1778 loop_again:
1779 	total_scanned = 0;
1780 	sc.nr_reclaimed = 0;
1781 	sc.may_writepage = !laptop_mode;
1782 	count_vm_event(PAGEOUTRUN);
1783 
1784 	for (i = 0; i < pgdat->nr_zones; i++)
1785 		temp_priority[i] = DEF_PRIORITY;
1786 
1787 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1788 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1789 		unsigned long lru_pages = 0;
1790 
1791 		/* The swap token gets in the way of swapout... */
1792 		if (!priority)
1793 			disable_swap_token();
1794 
1795 		all_zones_ok = 1;
1796 
1797 		/*
1798 		 * Scan in the highmem->dma direction for the highest
1799 		 * zone which needs scanning
1800 		 */
1801 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1802 			struct zone *zone = pgdat->node_zones + i;
1803 
1804 			if (!populated_zone(zone))
1805 				continue;
1806 
1807 			if (zone_is_all_unreclaimable(zone) &&
1808 			    priority != DEF_PRIORITY)
1809 				continue;
1810 
1811 			/*
1812 			 * Do some background aging of the anon list, to give
1813 			 * pages a chance to be referenced before reclaiming.
1814 			 */
1815 			if (inactive_anon_is_low(zone, &sc))
1816 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1817 							&sc, priority, 0);
1818 
1819 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1820 					       0, 0)) {
1821 				end_zone = i;
1822 				break;
1823 			}
1824 		}
1825 		if (i < 0)
1826 			goto out;
1827 
1828 		for (i = 0; i <= end_zone; i++) {
1829 			struct zone *zone = pgdat->node_zones + i;
1830 
1831 			lru_pages += zone_lru_pages(zone);
1832 		}
1833 
1834 		/*
1835 		 * Now scan the zone in the dma->highmem direction, stopping
1836 		 * at the last zone which needs scanning.
1837 		 *
1838 		 * We do this because the page allocator works in the opposite
1839 		 * direction.  This prevents the page allocator from allocating
1840 		 * pages behind kswapd's direction of progress, which would
1841 		 * cause too much scanning of the lower zones.
1842 		 */
1843 		for (i = 0; i <= end_zone; i++) {
1844 			struct zone *zone = pgdat->node_zones + i;
1845 			int nr_slab;
1846 
1847 			if (!populated_zone(zone))
1848 				continue;
1849 
1850 			if (zone_is_all_unreclaimable(zone) &&
1851 					priority != DEF_PRIORITY)
1852 				continue;
1853 
1854 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1855 					       end_zone, 0))
1856 				all_zones_ok = 0;
1857 			temp_priority[i] = priority;
1858 			sc.nr_scanned = 0;
1859 			note_zone_scanning_priority(zone, priority);
1860 			/*
1861 			 * We put equal pressure on every zone, unless one
1862 			 * zone has way too many pages free already.
1863 			 */
1864 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1865 						end_zone, 0))
1866 				shrink_zone(priority, zone, &sc);
1867 			reclaim_state->reclaimed_slab = 0;
1868 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1869 						lru_pages);
1870 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1871 			total_scanned += sc.nr_scanned;
1872 			if (zone_is_all_unreclaimable(zone))
1873 				continue;
1874 			if (nr_slab == 0 && zone->pages_scanned >=
1875 						(zone_lru_pages(zone) * 6))
1876 					zone_set_flag(zone,
1877 						      ZONE_ALL_UNRECLAIMABLE);
1878 			/*
1879 			 * If we've done a decent amount of scanning and
1880 			 * the reclaim ratio is low, start doing writepage
1881 			 * even in laptop mode
1882 			 */
1883 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1884 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1885 				sc.may_writepage = 1;
1886 		}
1887 		if (all_zones_ok)
1888 			break;		/* kswapd: all done */
1889 		/*
1890 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1891 		 * another pass across the zones.
1892 		 */
1893 		if (total_scanned && priority < DEF_PRIORITY - 2)
1894 			congestion_wait(WRITE, HZ/10);
1895 
1896 		/*
1897 		 * We do this so kswapd doesn't build up large priorities for
1898 		 * example when it is freeing in parallel with allocators. It
1899 		 * matches the direct reclaim path behaviour in terms of impact
1900 		 * on zone->*_priority.
1901 		 */
1902 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1903 			break;
1904 	}
1905 out:
1906 	/*
1907 	 * Note within each zone the priority level at which this zone was
1908 	 * brought into a happy state.  So that the next thread which scans this
1909 	 * zone will start out at that priority level.
1910 	 */
1911 	for (i = 0; i < pgdat->nr_zones; i++) {
1912 		struct zone *zone = pgdat->node_zones + i;
1913 
1914 		zone->prev_priority = temp_priority[i];
1915 	}
1916 	if (!all_zones_ok) {
1917 		cond_resched();
1918 
1919 		try_to_freeze();
1920 
1921 		/*
1922 		 * Fragmentation may mean that the system cannot be
1923 		 * rebalanced for high-order allocations in all zones.
1924 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1925 		 * it means the zones have been fully scanned and are still
1926 		 * not balanced. For high-order allocations, there is
1927 		 * little point trying all over again as kswapd may
1928 		 * infinite loop.
1929 		 *
1930 		 * Instead, recheck all watermarks at order-0 as they
1931 		 * are the most important. If watermarks are ok, kswapd will go
1932 		 * back to sleep. High-order users can still perform direct
1933 		 * reclaim if they wish.
1934 		 */
1935 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1936 			order = sc.order = 0;
1937 
1938 		goto loop_again;
1939 	}
1940 
1941 	return sc.nr_reclaimed;
1942 }
1943 
1944 /*
1945  * The background pageout daemon, started as a kernel thread
1946  * from the init process.
1947  *
1948  * This basically trickles out pages so that we have _some_
1949  * free memory available even if there is no other activity
1950  * that frees anything up. This is needed for things like routing
1951  * etc, where we otherwise might have all activity going on in
1952  * asynchronous contexts that cannot page things out.
1953  *
1954  * If there are applications that are active memory-allocators
1955  * (most normal use), this basically shouldn't matter.
1956  */
1957 static int kswapd(void *p)
1958 {
1959 	unsigned long order;
1960 	pg_data_t *pgdat = (pg_data_t*)p;
1961 	struct task_struct *tsk = current;
1962 	DEFINE_WAIT(wait);
1963 	struct reclaim_state reclaim_state = {
1964 		.reclaimed_slab = 0,
1965 	};
1966 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1967 
1968 	if (!cpumask_empty(cpumask))
1969 		set_cpus_allowed_ptr(tsk, cpumask);
1970 	current->reclaim_state = &reclaim_state;
1971 
1972 	/*
1973 	 * Tell the memory management that we're a "memory allocator",
1974 	 * and that if we need more memory we should get access to it
1975 	 * regardless (see "__alloc_pages()"). "kswapd" should
1976 	 * never get caught in the normal page freeing logic.
1977 	 *
1978 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1979 	 * you need a small amount of memory in order to be able to
1980 	 * page out something else, and this flag essentially protects
1981 	 * us from recursively trying to free more memory as we're
1982 	 * trying to free the first piece of memory in the first place).
1983 	 */
1984 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1985 	set_freezable();
1986 
1987 	order = 0;
1988 	for ( ; ; ) {
1989 		unsigned long new_order;
1990 
1991 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1992 		new_order = pgdat->kswapd_max_order;
1993 		pgdat->kswapd_max_order = 0;
1994 		if (order < new_order) {
1995 			/*
1996 			 * Don't sleep if someone wants a larger 'order'
1997 			 * allocation
1998 			 */
1999 			order = new_order;
2000 		} else {
2001 			if (!freezing(current))
2002 				schedule();
2003 
2004 			order = pgdat->kswapd_max_order;
2005 		}
2006 		finish_wait(&pgdat->kswapd_wait, &wait);
2007 
2008 		if (!try_to_freeze()) {
2009 			/* We can speed up thawing tasks if we don't call
2010 			 * balance_pgdat after returning from the refrigerator
2011 			 */
2012 			balance_pgdat(pgdat, order);
2013 		}
2014 	}
2015 	return 0;
2016 }
2017 
2018 /*
2019  * A zone is low on free memory, so wake its kswapd task to service it.
2020  */
2021 void wakeup_kswapd(struct zone *zone, int order)
2022 {
2023 	pg_data_t *pgdat;
2024 
2025 	if (!populated_zone(zone))
2026 		return;
2027 
2028 	pgdat = zone->zone_pgdat;
2029 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2030 		return;
2031 	if (pgdat->kswapd_max_order < order)
2032 		pgdat->kswapd_max_order = order;
2033 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2034 		return;
2035 	if (!waitqueue_active(&pgdat->kswapd_wait))
2036 		return;
2037 	wake_up_interruptible(&pgdat->kswapd_wait);
2038 }
2039 
2040 unsigned long global_lru_pages(void)
2041 {
2042 	return global_page_state(NR_ACTIVE_ANON)
2043 		+ global_page_state(NR_ACTIVE_FILE)
2044 		+ global_page_state(NR_INACTIVE_ANON)
2045 		+ global_page_state(NR_INACTIVE_FILE);
2046 }
2047 
2048 #ifdef CONFIG_PM
2049 /*
2050  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2051  * from LRU lists system-wide, for given pass and priority, and returns the
2052  * number of reclaimed pages
2053  *
2054  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2055  */
2056 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2057 				      int pass, struct scan_control *sc)
2058 {
2059 	struct zone *zone;
2060 	unsigned long ret = 0;
2061 
2062 	for_each_zone(zone) {
2063 		enum lru_list l;
2064 
2065 		if (!populated_zone(zone))
2066 			continue;
2067 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2068 			continue;
2069 
2070 		for_each_evictable_lru(l) {
2071 			enum zone_stat_item ls = NR_LRU_BASE + l;
2072 			unsigned long lru_pages = zone_page_state(zone, ls);
2073 
2074 			/* For pass = 0, we don't shrink the active list */
2075 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2076 						l == LRU_ACTIVE_FILE))
2077 				continue;
2078 
2079 			zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2080 			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2081 				unsigned long nr_to_scan;
2082 
2083 				zone->lru[l].nr_scan = 0;
2084 				nr_to_scan = min(nr_pages, lru_pages);
2085 				ret += shrink_list(l, nr_to_scan, zone,
2086 								sc, prio);
2087 				if (ret >= nr_pages)
2088 					return ret;
2089 			}
2090 		}
2091 	}
2092 	return ret;
2093 }
2094 
2095 /*
2096  * Try to free `nr_pages' of memory, system-wide, and return the number of
2097  * freed pages.
2098  *
2099  * Rather than trying to age LRUs the aim is to preserve the overall
2100  * LRU order by reclaiming preferentially
2101  * inactive > active > active referenced > active mapped
2102  */
2103 unsigned long shrink_all_memory(unsigned long nr_pages)
2104 {
2105 	unsigned long lru_pages, nr_slab;
2106 	unsigned long ret = 0;
2107 	int pass;
2108 	struct reclaim_state reclaim_state;
2109 	struct scan_control sc = {
2110 		.gfp_mask = GFP_KERNEL,
2111 		.may_swap = 0,
2112 		.swap_cluster_max = nr_pages,
2113 		.may_writepage = 1,
2114 		.isolate_pages = isolate_pages_global,
2115 	};
2116 
2117 	current->reclaim_state = &reclaim_state;
2118 
2119 	lru_pages = global_lru_pages();
2120 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2121 	/* If slab caches are huge, it's better to hit them first */
2122 	while (nr_slab >= lru_pages) {
2123 		reclaim_state.reclaimed_slab = 0;
2124 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2125 		if (!reclaim_state.reclaimed_slab)
2126 			break;
2127 
2128 		ret += reclaim_state.reclaimed_slab;
2129 		if (ret >= nr_pages)
2130 			goto out;
2131 
2132 		nr_slab -= reclaim_state.reclaimed_slab;
2133 	}
2134 
2135 	/*
2136 	 * We try to shrink LRUs in 5 passes:
2137 	 * 0 = Reclaim from inactive_list only
2138 	 * 1 = Reclaim from active list but don't reclaim mapped
2139 	 * 2 = 2nd pass of type 1
2140 	 * 3 = Reclaim mapped (normal reclaim)
2141 	 * 4 = 2nd pass of type 3
2142 	 */
2143 	for (pass = 0; pass < 5; pass++) {
2144 		int prio;
2145 
2146 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2147 		if (pass > 2)
2148 			sc.may_swap = 1;
2149 
2150 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2151 			unsigned long nr_to_scan = nr_pages - ret;
2152 
2153 			sc.nr_scanned = 0;
2154 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2155 			if (ret >= nr_pages)
2156 				goto out;
2157 
2158 			reclaim_state.reclaimed_slab = 0;
2159 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2160 					global_lru_pages());
2161 			ret += reclaim_state.reclaimed_slab;
2162 			if (ret >= nr_pages)
2163 				goto out;
2164 
2165 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2166 				congestion_wait(WRITE, HZ / 10);
2167 		}
2168 	}
2169 
2170 	/*
2171 	 * If ret = 0, we could not shrink LRUs, but there may be something
2172 	 * in slab caches
2173 	 */
2174 	if (!ret) {
2175 		do {
2176 			reclaim_state.reclaimed_slab = 0;
2177 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2178 			ret += reclaim_state.reclaimed_slab;
2179 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2180 	}
2181 
2182 out:
2183 	current->reclaim_state = NULL;
2184 
2185 	return ret;
2186 }
2187 #endif
2188 
2189 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2190    not required for correctness.  So if the last cpu in a node goes
2191    away, we get changed to run anywhere: as the first one comes back,
2192    restore their cpu bindings. */
2193 static int __devinit cpu_callback(struct notifier_block *nfb,
2194 				  unsigned long action, void *hcpu)
2195 {
2196 	int nid;
2197 
2198 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2199 		for_each_node_state(nid, N_HIGH_MEMORY) {
2200 			pg_data_t *pgdat = NODE_DATA(nid);
2201 			node_to_cpumask_ptr(mask, pgdat->node_id);
2202 
2203 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2204 				/* One of our CPUs online: restore mask */
2205 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2206 		}
2207 	}
2208 	return NOTIFY_OK;
2209 }
2210 
2211 /*
2212  * This kswapd start function will be called by init and node-hot-add.
2213  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2214  */
2215 int kswapd_run(int nid)
2216 {
2217 	pg_data_t *pgdat = NODE_DATA(nid);
2218 	int ret = 0;
2219 
2220 	if (pgdat->kswapd)
2221 		return 0;
2222 
2223 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2224 	if (IS_ERR(pgdat->kswapd)) {
2225 		/* failure at boot is fatal */
2226 		BUG_ON(system_state == SYSTEM_BOOTING);
2227 		printk("Failed to start kswapd on node %d\n",nid);
2228 		ret = -1;
2229 	}
2230 	return ret;
2231 }
2232 
2233 static int __init kswapd_init(void)
2234 {
2235 	int nid;
2236 
2237 	swap_setup();
2238 	for_each_node_state(nid, N_HIGH_MEMORY)
2239  		kswapd_run(nid);
2240 	hotcpu_notifier(cpu_callback, 0);
2241 	return 0;
2242 }
2243 
2244 module_init(kswapd_init)
2245 
2246 #ifdef CONFIG_NUMA
2247 /*
2248  * Zone reclaim mode
2249  *
2250  * If non-zero call zone_reclaim when the number of free pages falls below
2251  * the watermarks.
2252  */
2253 int zone_reclaim_mode __read_mostly;
2254 
2255 #define RECLAIM_OFF 0
2256 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2257 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2258 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2259 
2260 /*
2261  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2262  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2263  * a zone.
2264  */
2265 #define ZONE_RECLAIM_PRIORITY 4
2266 
2267 /*
2268  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2269  * occur.
2270  */
2271 int sysctl_min_unmapped_ratio = 1;
2272 
2273 /*
2274  * If the number of slab pages in a zone grows beyond this percentage then
2275  * slab reclaim needs to occur.
2276  */
2277 int sysctl_min_slab_ratio = 5;
2278 
2279 /*
2280  * Try to free up some pages from this zone through reclaim.
2281  */
2282 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2283 {
2284 	/* Minimum pages needed in order to stay on node */
2285 	const unsigned long nr_pages = 1 << order;
2286 	struct task_struct *p = current;
2287 	struct reclaim_state reclaim_state;
2288 	int priority;
2289 	struct scan_control sc = {
2290 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2291 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2292 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2293 					SWAP_CLUSTER_MAX),
2294 		.gfp_mask = gfp_mask,
2295 		.swappiness = vm_swappiness,
2296 		.isolate_pages = isolate_pages_global,
2297 	};
2298 	unsigned long slab_reclaimable;
2299 
2300 	disable_swap_token();
2301 	cond_resched();
2302 	/*
2303 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2304 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2305 	 * and RECLAIM_SWAP.
2306 	 */
2307 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2308 	reclaim_state.reclaimed_slab = 0;
2309 	p->reclaim_state = &reclaim_state;
2310 
2311 	if (zone_page_state(zone, NR_FILE_PAGES) -
2312 		zone_page_state(zone, NR_FILE_MAPPED) >
2313 		zone->min_unmapped_pages) {
2314 		/*
2315 		 * Free memory by calling shrink zone with increasing
2316 		 * priorities until we have enough memory freed.
2317 		 */
2318 		priority = ZONE_RECLAIM_PRIORITY;
2319 		do {
2320 			note_zone_scanning_priority(zone, priority);
2321 			shrink_zone(priority, zone, &sc);
2322 			priority--;
2323 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2324 	}
2325 
2326 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2327 	if (slab_reclaimable > zone->min_slab_pages) {
2328 		/*
2329 		 * shrink_slab() does not currently allow us to determine how
2330 		 * many pages were freed in this zone. So we take the current
2331 		 * number of slab pages and shake the slab until it is reduced
2332 		 * by the same nr_pages that we used for reclaiming unmapped
2333 		 * pages.
2334 		 *
2335 		 * Note that shrink_slab will free memory on all zones and may
2336 		 * take a long time.
2337 		 */
2338 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2339 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2340 				slab_reclaimable - nr_pages)
2341 			;
2342 
2343 		/*
2344 		 * Update nr_reclaimed by the number of slab pages we
2345 		 * reclaimed from this zone.
2346 		 */
2347 		sc.nr_reclaimed += slab_reclaimable -
2348 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2349 	}
2350 
2351 	p->reclaim_state = NULL;
2352 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2353 	return sc.nr_reclaimed >= nr_pages;
2354 }
2355 
2356 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2357 {
2358 	int node_id;
2359 	int ret;
2360 
2361 	/*
2362 	 * Zone reclaim reclaims unmapped file backed pages and
2363 	 * slab pages if we are over the defined limits.
2364 	 *
2365 	 * A small portion of unmapped file backed pages is needed for
2366 	 * file I/O otherwise pages read by file I/O will be immediately
2367 	 * thrown out if the zone is overallocated. So we do not reclaim
2368 	 * if less than a specified percentage of the zone is used by
2369 	 * unmapped file backed pages.
2370 	 */
2371 	if (zone_page_state(zone, NR_FILE_PAGES) -
2372 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2373 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2374 			<= zone->min_slab_pages)
2375 		return 0;
2376 
2377 	if (zone_is_all_unreclaimable(zone))
2378 		return 0;
2379 
2380 	/*
2381 	 * Do not scan if the allocation should not be delayed.
2382 	 */
2383 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2384 			return 0;
2385 
2386 	/*
2387 	 * Only run zone reclaim on the local zone or on zones that do not
2388 	 * have associated processors. This will favor the local processor
2389 	 * over remote processors and spread off node memory allocations
2390 	 * as wide as possible.
2391 	 */
2392 	node_id = zone_to_nid(zone);
2393 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2394 		return 0;
2395 
2396 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2397 		return 0;
2398 	ret = __zone_reclaim(zone, gfp_mask, order);
2399 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2400 
2401 	return ret;
2402 }
2403 #endif
2404 
2405 #ifdef CONFIG_UNEVICTABLE_LRU
2406 /*
2407  * page_evictable - test whether a page is evictable
2408  * @page: the page to test
2409  * @vma: the VMA in which the page is or will be mapped, may be NULL
2410  *
2411  * Test whether page is evictable--i.e., should be placed on active/inactive
2412  * lists vs unevictable list.  The vma argument is !NULL when called from the
2413  * fault path to determine how to instantate a new page.
2414  *
2415  * Reasons page might not be evictable:
2416  * (1) page's mapping marked unevictable
2417  * (2) page is part of an mlocked VMA
2418  *
2419  */
2420 int page_evictable(struct page *page, struct vm_area_struct *vma)
2421 {
2422 
2423 	if (mapping_unevictable(page_mapping(page)))
2424 		return 0;
2425 
2426 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2427 		return 0;
2428 
2429 	return 1;
2430 }
2431 
2432 /**
2433  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2434  * @page: page to check evictability and move to appropriate lru list
2435  * @zone: zone page is in
2436  *
2437  * Checks a page for evictability and moves the page to the appropriate
2438  * zone lru list.
2439  *
2440  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2441  * have PageUnevictable set.
2442  */
2443 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2444 {
2445 	VM_BUG_ON(PageActive(page));
2446 
2447 retry:
2448 	ClearPageUnevictable(page);
2449 	if (page_evictable(page, NULL)) {
2450 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2451 
2452 		__dec_zone_state(zone, NR_UNEVICTABLE);
2453 		list_move(&page->lru, &zone->lru[l].list);
2454 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2455 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2456 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2457 	} else {
2458 		/*
2459 		 * rotate unevictable list
2460 		 */
2461 		SetPageUnevictable(page);
2462 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2463 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2464 		if (page_evictable(page, NULL))
2465 			goto retry;
2466 	}
2467 }
2468 
2469 /**
2470  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2471  * @mapping: struct address_space to scan for evictable pages
2472  *
2473  * Scan all pages in mapping.  Check unevictable pages for
2474  * evictability and move them to the appropriate zone lru list.
2475  */
2476 void scan_mapping_unevictable_pages(struct address_space *mapping)
2477 {
2478 	pgoff_t next = 0;
2479 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2480 			 PAGE_CACHE_SHIFT;
2481 	struct zone *zone;
2482 	struct pagevec pvec;
2483 
2484 	if (mapping->nrpages == 0)
2485 		return;
2486 
2487 	pagevec_init(&pvec, 0);
2488 	while (next < end &&
2489 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2490 		int i;
2491 		int pg_scanned = 0;
2492 
2493 		zone = NULL;
2494 
2495 		for (i = 0; i < pagevec_count(&pvec); i++) {
2496 			struct page *page = pvec.pages[i];
2497 			pgoff_t page_index = page->index;
2498 			struct zone *pagezone = page_zone(page);
2499 
2500 			pg_scanned++;
2501 			if (page_index > next)
2502 				next = page_index;
2503 			next++;
2504 
2505 			if (pagezone != zone) {
2506 				if (zone)
2507 					spin_unlock_irq(&zone->lru_lock);
2508 				zone = pagezone;
2509 				spin_lock_irq(&zone->lru_lock);
2510 			}
2511 
2512 			if (PageLRU(page) && PageUnevictable(page))
2513 				check_move_unevictable_page(page, zone);
2514 		}
2515 		if (zone)
2516 			spin_unlock_irq(&zone->lru_lock);
2517 		pagevec_release(&pvec);
2518 
2519 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2520 	}
2521 
2522 }
2523 
2524 /**
2525  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2526  * @zone - zone of which to scan the unevictable list
2527  *
2528  * Scan @zone's unevictable LRU lists to check for pages that have become
2529  * evictable.  Move those that have to @zone's inactive list where they
2530  * become candidates for reclaim, unless shrink_inactive_zone() decides
2531  * to reactivate them.  Pages that are still unevictable are rotated
2532  * back onto @zone's unevictable list.
2533  */
2534 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2535 static void scan_zone_unevictable_pages(struct zone *zone)
2536 {
2537 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2538 	unsigned long scan;
2539 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2540 
2541 	while (nr_to_scan > 0) {
2542 		unsigned long batch_size = min(nr_to_scan,
2543 						SCAN_UNEVICTABLE_BATCH_SIZE);
2544 
2545 		spin_lock_irq(&zone->lru_lock);
2546 		for (scan = 0;  scan < batch_size; scan++) {
2547 			struct page *page = lru_to_page(l_unevictable);
2548 
2549 			if (!trylock_page(page))
2550 				continue;
2551 
2552 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2553 
2554 			if (likely(PageLRU(page) && PageUnevictable(page)))
2555 				check_move_unevictable_page(page, zone);
2556 
2557 			unlock_page(page);
2558 		}
2559 		spin_unlock_irq(&zone->lru_lock);
2560 
2561 		nr_to_scan -= batch_size;
2562 	}
2563 }
2564 
2565 
2566 /**
2567  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2568  *
2569  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2570  * pages that have become evictable.  Move those back to the zones'
2571  * inactive list where they become candidates for reclaim.
2572  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2573  * and we add swap to the system.  As such, it runs in the context of a task
2574  * that has possibly/probably made some previously unevictable pages
2575  * evictable.
2576  */
2577 static void scan_all_zones_unevictable_pages(void)
2578 {
2579 	struct zone *zone;
2580 
2581 	for_each_zone(zone) {
2582 		scan_zone_unevictable_pages(zone);
2583 	}
2584 }
2585 
2586 /*
2587  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2588  * all nodes' unevictable lists for evictable pages
2589  */
2590 unsigned long scan_unevictable_pages;
2591 
2592 int scan_unevictable_handler(struct ctl_table *table, int write,
2593 			   struct file *file, void __user *buffer,
2594 			   size_t *length, loff_t *ppos)
2595 {
2596 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2597 
2598 	if (write && *(unsigned long *)table->data)
2599 		scan_all_zones_unevictable_pages();
2600 
2601 	scan_unevictable_pages = 0;
2602 	return 0;
2603 }
2604 
2605 /*
2606  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2607  * a specified node's per zone unevictable lists for evictable pages.
2608  */
2609 
2610 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2611 					  struct sysdev_attribute *attr,
2612 					  char *buf)
2613 {
2614 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2615 }
2616 
2617 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2618 					   struct sysdev_attribute *attr,
2619 					const char *buf, size_t count)
2620 {
2621 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2622 	struct zone *zone;
2623 	unsigned long res;
2624 	unsigned long req = strict_strtoul(buf, 10, &res);
2625 
2626 	if (!req)
2627 		return 1;	/* zero is no-op */
2628 
2629 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2630 		if (!populated_zone(zone))
2631 			continue;
2632 		scan_zone_unevictable_pages(zone);
2633 	}
2634 	return 1;
2635 }
2636 
2637 
2638 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2639 			read_scan_unevictable_node,
2640 			write_scan_unevictable_node);
2641 
2642 int scan_unevictable_register_node(struct node *node)
2643 {
2644 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2645 }
2646 
2647 void scan_unevictable_unregister_node(struct node *node)
2648 {
2649 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2650 }
2651 
2652 #endif
2653