1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* Incremented by the number of inactive pages that were scanned */ 63 unsigned long nr_scanned; 64 65 /* Number of pages freed so far during a call to shrink_zones() */ 66 unsigned long nr_reclaimed; 67 68 /* How many pages shrink_list() should reclaim */ 69 unsigned long nr_to_reclaim; 70 71 unsigned long hibernation_mode; 72 73 /* This context's GFP mask */ 74 gfp_t gfp_mask; 75 76 int may_writepage; 77 78 /* Can mapped pages be reclaimed? */ 79 int may_unmap; 80 81 /* Can pages be swapped as part of reclaim? */ 82 int may_swap; 83 84 int order; 85 86 /* Scan (total_size >> priority) pages at once */ 87 int priority; 88 89 /* anon vs. file LRUs scanning "ratio" */ 90 int swappiness; 91 92 /* 93 * The memory cgroup that hit its limit and as a result is the 94 * primary target of this reclaim invocation. 95 */ 96 struct mem_cgroup *target_mem_cgroup; 97 98 /* 99 * Nodemask of nodes allowed by the caller. If NULL, all nodes 100 * are scanned. 101 */ 102 nodemask_t *nodemask; 103 }; 104 105 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 106 107 #ifdef ARCH_HAS_PREFETCH 108 #define prefetch_prev_lru_page(_page, _base, _field) \ 109 do { \ 110 if ((_page)->lru.prev != _base) { \ 111 struct page *prev; \ 112 \ 113 prev = lru_to_page(&(_page->lru)); \ 114 prefetch(&prev->_field); \ 115 } \ 116 } while (0) 117 #else 118 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 119 #endif 120 121 #ifdef ARCH_HAS_PREFETCHW 122 #define prefetchw_prev_lru_page(_page, _base, _field) \ 123 do { \ 124 if ((_page)->lru.prev != _base) { \ 125 struct page *prev; \ 126 \ 127 prev = lru_to_page(&(_page->lru)); \ 128 prefetchw(&prev->_field); \ 129 } \ 130 } while (0) 131 #else 132 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 133 #endif 134 135 /* 136 * From 0 .. 100. Higher means more swappy. 137 */ 138 int vm_swappiness = 60; 139 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 140 141 static LIST_HEAD(shrinker_list); 142 static DECLARE_RWSEM(shrinker_rwsem); 143 144 #ifdef CONFIG_MEMCG 145 static bool global_reclaim(struct scan_control *sc) 146 { 147 return !sc->target_mem_cgroup; 148 } 149 #else 150 static bool global_reclaim(struct scan_control *sc) 151 { 152 return true; 153 } 154 #endif 155 156 static unsigned long zone_reclaimable_pages(struct zone *zone) 157 { 158 int nr; 159 160 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 161 zone_page_state(zone, NR_INACTIVE_FILE); 162 163 if (get_nr_swap_pages() > 0) 164 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 165 zone_page_state(zone, NR_INACTIVE_ANON); 166 167 return nr; 168 } 169 170 bool zone_reclaimable(struct zone *zone) 171 { 172 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 173 } 174 175 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 176 { 177 if (!mem_cgroup_disabled()) 178 return mem_cgroup_get_lru_size(lruvec, lru); 179 180 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 181 } 182 183 /* 184 * Add a shrinker callback to be called from the vm. 185 */ 186 int register_shrinker(struct shrinker *shrinker) 187 { 188 size_t size = sizeof(*shrinker->nr_deferred); 189 190 /* 191 * If we only have one possible node in the system anyway, save 192 * ourselves the trouble and disable NUMA aware behavior. This way we 193 * will save memory and some small loop time later. 194 */ 195 if (nr_node_ids == 1) 196 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 197 198 if (shrinker->flags & SHRINKER_NUMA_AWARE) 199 size *= nr_node_ids; 200 201 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 202 if (!shrinker->nr_deferred) 203 return -ENOMEM; 204 205 down_write(&shrinker_rwsem); 206 list_add_tail(&shrinker->list, &shrinker_list); 207 up_write(&shrinker_rwsem); 208 return 0; 209 } 210 EXPORT_SYMBOL(register_shrinker); 211 212 /* 213 * Remove one 214 */ 215 void unregister_shrinker(struct shrinker *shrinker) 216 { 217 down_write(&shrinker_rwsem); 218 list_del(&shrinker->list); 219 up_write(&shrinker_rwsem); 220 kfree(shrinker->nr_deferred); 221 } 222 EXPORT_SYMBOL(unregister_shrinker); 223 224 #define SHRINK_BATCH 128 225 226 static unsigned long 227 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 228 unsigned long nr_pages_scanned, unsigned long lru_pages) 229 { 230 unsigned long freed = 0; 231 unsigned long long delta; 232 long total_scan; 233 long freeable; 234 long nr; 235 long new_nr; 236 int nid = shrinkctl->nid; 237 long batch_size = shrinker->batch ? shrinker->batch 238 : SHRINK_BATCH; 239 240 freeable = shrinker->count_objects(shrinker, shrinkctl); 241 if (freeable == 0) 242 return 0; 243 244 /* 245 * copy the current shrinker scan count into a local variable 246 * and zero it so that other concurrent shrinker invocations 247 * don't also do this scanning work. 248 */ 249 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 250 251 total_scan = nr; 252 delta = (4 * nr_pages_scanned) / shrinker->seeks; 253 delta *= freeable; 254 do_div(delta, lru_pages + 1); 255 total_scan += delta; 256 if (total_scan < 0) { 257 printk(KERN_ERR 258 "shrink_slab: %pF negative objects to delete nr=%ld\n", 259 shrinker->scan_objects, total_scan); 260 total_scan = freeable; 261 } 262 263 /* 264 * We need to avoid excessive windup on filesystem shrinkers 265 * due to large numbers of GFP_NOFS allocations causing the 266 * shrinkers to return -1 all the time. This results in a large 267 * nr being built up so when a shrink that can do some work 268 * comes along it empties the entire cache due to nr >>> 269 * freeable. This is bad for sustaining a working set in 270 * memory. 271 * 272 * Hence only allow the shrinker to scan the entire cache when 273 * a large delta change is calculated directly. 274 */ 275 if (delta < freeable / 4) 276 total_scan = min(total_scan, freeable / 2); 277 278 /* 279 * Avoid risking looping forever due to too large nr value: 280 * never try to free more than twice the estimate number of 281 * freeable entries. 282 */ 283 if (total_scan > freeable * 2) 284 total_scan = freeable * 2; 285 286 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 287 nr_pages_scanned, lru_pages, 288 freeable, delta, total_scan); 289 290 /* 291 * Normally, we should not scan less than batch_size objects in one 292 * pass to avoid too frequent shrinker calls, but if the slab has less 293 * than batch_size objects in total and we are really tight on memory, 294 * we will try to reclaim all available objects, otherwise we can end 295 * up failing allocations although there are plenty of reclaimable 296 * objects spread over several slabs with usage less than the 297 * batch_size. 298 * 299 * We detect the "tight on memory" situations by looking at the total 300 * number of objects we want to scan (total_scan). If it is greater 301 * than the total number of objects on slab (freeable), we must be 302 * scanning at high prio and therefore should try to reclaim as much as 303 * possible. 304 */ 305 while (total_scan >= batch_size || 306 total_scan >= freeable) { 307 unsigned long ret; 308 unsigned long nr_to_scan = min(batch_size, total_scan); 309 310 shrinkctl->nr_to_scan = nr_to_scan; 311 ret = shrinker->scan_objects(shrinker, shrinkctl); 312 if (ret == SHRINK_STOP) 313 break; 314 freed += ret; 315 316 count_vm_events(SLABS_SCANNED, nr_to_scan); 317 total_scan -= nr_to_scan; 318 319 cond_resched(); 320 } 321 322 /* 323 * move the unused scan count back into the shrinker in a 324 * manner that handles concurrent updates. If we exhausted the 325 * scan, there is no need to do an update. 326 */ 327 if (total_scan > 0) 328 new_nr = atomic_long_add_return(total_scan, 329 &shrinker->nr_deferred[nid]); 330 else 331 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 332 333 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 334 return freed; 335 } 336 337 /* 338 * Call the shrink functions to age shrinkable caches 339 * 340 * Here we assume it costs one seek to replace a lru page and that it also 341 * takes a seek to recreate a cache object. With this in mind we age equal 342 * percentages of the lru and ageable caches. This should balance the seeks 343 * generated by these structures. 344 * 345 * If the vm encountered mapped pages on the LRU it increase the pressure on 346 * slab to avoid swapping. 347 * 348 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 349 * 350 * `lru_pages' represents the number of on-LRU pages in all the zones which 351 * are eligible for the caller's allocation attempt. It is used for balancing 352 * slab reclaim versus page reclaim. 353 * 354 * Returns the number of slab objects which we shrunk. 355 */ 356 unsigned long shrink_slab(struct shrink_control *shrinkctl, 357 unsigned long nr_pages_scanned, 358 unsigned long lru_pages) 359 { 360 struct shrinker *shrinker; 361 unsigned long freed = 0; 362 363 if (nr_pages_scanned == 0) 364 nr_pages_scanned = SWAP_CLUSTER_MAX; 365 366 if (!down_read_trylock(&shrinker_rwsem)) { 367 /* 368 * If we would return 0, our callers would understand that we 369 * have nothing else to shrink and give up trying. By returning 370 * 1 we keep it going and assume we'll be able to shrink next 371 * time. 372 */ 373 freed = 1; 374 goto out; 375 } 376 377 list_for_each_entry(shrinker, &shrinker_list, list) { 378 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) { 379 shrinkctl->nid = 0; 380 freed += shrink_slab_node(shrinkctl, shrinker, 381 nr_pages_scanned, lru_pages); 382 continue; 383 } 384 385 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 386 if (node_online(shrinkctl->nid)) 387 freed += shrink_slab_node(shrinkctl, shrinker, 388 nr_pages_scanned, lru_pages); 389 390 } 391 } 392 up_read(&shrinker_rwsem); 393 out: 394 cond_resched(); 395 return freed; 396 } 397 398 static inline int is_page_cache_freeable(struct page *page) 399 { 400 /* 401 * A freeable page cache page is referenced only by the caller 402 * that isolated the page, the page cache radix tree and 403 * optional buffer heads at page->private. 404 */ 405 return page_count(page) - page_has_private(page) == 2; 406 } 407 408 static int may_write_to_queue(struct backing_dev_info *bdi, 409 struct scan_control *sc) 410 { 411 if (current->flags & PF_SWAPWRITE) 412 return 1; 413 if (!bdi_write_congested(bdi)) 414 return 1; 415 if (bdi == current->backing_dev_info) 416 return 1; 417 return 0; 418 } 419 420 /* 421 * We detected a synchronous write error writing a page out. Probably 422 * -ENOSPC. We need to propagate that into the address_space for a subsequent 423 * fsync(), msync() or close(). 424 * 425 * The tricky part is that after writepage we cannot touch the mapping: nothing 426 * prevents it from being freed up. But we have a ref on the page and once 427 * that page is locked, the mapping is pinned. 428 * 429 * We're allowed to run sleeping lock_page() here because we know the caller has 430 * __GFP_FS. 431 */ 432 static void handle_write_error(struct address_space *mapping, 433 struct page *page, int error) 434 { 435 lock_page(page); 436 if (page_mapping(page) == mapping) 437 mapping_set_error(mapping, error); 438 unlock_page(page); 439 } 440 441 /* possible outcome of pageout() */ 442 typedef enum { 443 /* failed to write page out, page is locked */ 444 PAGE_KEEP, 445 /* move page to the active list, page is locked */ 446 PAGE_ACTIVATE, 447 /* page has been sent to the disk successfully, page is unlocked */ 448 PAGE_SUCCESS, 449 /* page is clean and locked */ 450 PAGE_CLEAN, 451 } pageout_t; 452 453 /* 454 * pageout is called by shrink_page_list() for each dirty page. 455 * Calls ->writepage(). 456 */ 457 static pageout_t pageout(struct page *page, struct address_space *mapping, 458 struct scan_control *sc) 459 { 460 /* 461 * If the page is dirty, only perform writeback if that write 462 * will be non-blocking. To prevent this allocation from being 463 * stalled by pagecache activity. But note that there may be 464 * stalls if we need to run get_block(). We could test 465 * PagePrivate for that. 466 * 467 * If this process is currently in __generic_file_write_iter() against 468 * this page's queue, we can perform writeback even if that 469 * will block. 470 * 471 * If the page is swapcache, write it back even if that would 472 * block, for some throttling. This happens by accident, because 473 * swap_backing_dev_info is bust: it doesn't reflect the 474 * congestion state of the swapdevs. Easy to fix, if needed. 475 */ 476 if (!is_page_cache_freeable(page)) 477 return PAGE_KEEP; 478 if (!mapping) { 479 /* 480 * Some data journaling orphaned pages can have 481 * page->mapping == NULL while being dirty with clean buffers. 482 */ 483 if (page_has_private(page)) { 484 if (try_to_free_buffers(page)) { 485 ClearPageDirty(page); 486 pr_info("%s: orphaned page\n", __func__); 487 return PAGE_CLEAN; 488 } 489 } 490 return PAGE_KEEP; 491 } 492 if (mapping->a_ops->writepage == NULL) 493 return PAGE_ACTIVATE; 494 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 495 return PAGE_KEEP; 496 497 if (clear_page_dirty_for_io(page)) { 498 int res; 499 struct writeback_control wbc = { 500 .sync_mode = WB_SYNC_NONE, 501 .nr_to_write = SWAP_CLUSTER_MAX, 502 .range_start = 0, 503 .range_end = LLONG_MAX, 504 .for_reclaim = 1, 505 }; 506 507 SetPageReclaim(page); 508 res = mapping->a_ops->writepage(page, &wbc); 509 if (res < 0) 510 handle_write_error(mapping, page, res); 511 if (res == AOP_WRITEPAGE_ACTIVATE) { 512 ClearPageReclaim(page); 513 return PAGE_ACTIVATE; 514 } 515 516 if (!PageWriteback(page)) { 517 /* synchronous write or broken a_ops? */ 518 ClearPageReclaim(page); 519 } 520 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 521 inc_zone_page_state(page, NR_VMSCAN_WRITE); 522 return PAGE_SUCCESS; 523 } 524 525 return PAGE_CLEAN; 526 } 527 528 /* 529 * Same as remove_mapping, but if the page is removed from the mapping, it 530 * gets returned with a refcount of 0. 531 */ 532 static int __remove_mapping(struct address_space *mapping, struct page *page, 533 bool reclaimed) 534 { 535 BUG_ON(!PageLocked(page)); 536 BUG_ON(mapping != page_mapping(page)); 537 538 spin_lock_irq(&mapping->tree_lock); 539 /* 540 * The non racy check for a busy page. 541 * 542 * Must be careful with the order of the tests. When someone has 543 * a ref to the page, it may be possible that they dirty it then 544 * drop the reference. So if PageDirty is tested before page_count 545 * here, then the following race may occur: 546 * 547 * get_user_pages(&page); 548 * [user mapping goes away] 549 * write_to(page); 550 * !PageDirty(page) [good] 551 * SetPageDirty(page); 552 * put_page(page); 553 * !page_count(page) [good, discard it] 554 * 555 * [oops, our write_to data is lost] 556 * 557 * Reversing the order of the tests ensures such a situation cannot 558 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 559 * load is not satisfied before that of page->_count. 560 * 561 * Note that if SetPageDirty is always performed via set_page_dirty, 562 * and thus under tree_lock, then this ordering is not required. 563 */ 564 if (!page_freeze_refs(page, 2)) 565 goto cannot_free; 566 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 567 if (unlikely(PageDirty(page))) { 568 page_unfreeze_refs(page, 2); 569 goto cannot_free; 570 } 571 572 if (PageSwapCache(page)) { 573 swp_entry_t swap = { .val = page_private(page) }; 574 __delete_from_swap_cache(page); 575 spin_unlock_irq(&mapping->tree_lock); 576 swapcache_free(swap, page); 577 } else { 578 void (*freepage)(struct page *); 579 void *shadow = NULL; 580 581 freepage = mapping->a_ops->freepage; 582 /* 583 * Remember a shadow entry for reclaimed file cache in 584 * order to detect refaults, thus thrashing, later on. 585 * 586 * But don't store shadows in an address space that is 587 * already exiting. This is not just an optizimation, 588 * inode reclaim needs to empty out the radix tree or 589 * the nodes are lost. Don't plant shadows behind its 590 * back. 591 */ 592 if (reclaimed && page_is_file_cache(page) && 593 !mapping_exiting(mapping)) 594 shadow = workingset_eviction(mapping, page); 595 __delete_from_page_cache(page, shadow); 596 spin_unlock_irq(&mapping->tree_lock); 597 mem_cgroup_uncharge_cache_page(page); 598 599 if (freepage != NULL) 600 freepage(page); 601 } 602 603 return 1; 604 605 cannot_free: 606 spin_unlock_irq(&mapping->tree_lock); 607 return 0; 608 } 609 610 /* 611 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 612 * someone else has a ref on the page, abort and return 0. If it was 613 * successfully detached, return 1. Assumes the caller has a single ref on 614 * this page. 615 */ 616 int remove_mapping(struct address_space *mapping, struct page *page) 617 { 618 if (__remove_mapping(mapping, page, false)) { 619 /* 620 * Unfreezing the refcount with 1 rather than 2 effectively 621 * drops the pagecache ref for us without requiring another 622 * atomic operation. 623 */ 624 page_unfreeze_refs(page, 1); 625 return 1; 626 } 627 return 0; 628 } 629 630 /** 631 * putback_lru_page - put previously isolated page onto appropriate LRU list 632 * @page: page to be put back to appropriate lru list 633 * 634 * Add previously isolated @page to appropriate LRU list. 635 * Page may still be unevictable for other reasons. 636 * 637 * lru_lock must not be held, interrupts must be enabled. 638 */ 639 void putback_lru_page(struct page *page) 640 { 641 bool is_unevictable; 642 int was_unevictable = PageUnevictable(page); 643 644 VM_BUG_ON_PAGE(PageLRU(page), page); 645 646 redo: 647 ClearPageUnevictable(page); 648 649 if (page_evictable(page)) { 650 /* 651 * For evictable pages, we can use the cache. 652 * In event of a race, worst case is we end up with an 653 * unevictable page on [in]active list. 654 * We know how to handle that. 655 */ 656 is_unevictable = false; 657 lru_cache_add(page); 658 } else { 659 /* 660 * Put unevictable pages directly on zone's unevictable 661 * list. 662 */ 663 is_unevictable = true; 664 add_page_to_unevictable_list(page); 665 /* 666 * When racing with an mlock or AS_UNEVICTABLE clearing 667 * (page is unlocked) make sure that if the other thread 668 * does not observe our setting of PG_lru and fails 669 * isolation/check_move_unevictable_pages, 670 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 671 * the page back to the evictable list. 672 * 673 * The other side is TestClearPageMlocked() or shmem_lock(). 674 */ 675 smp_mb(); 676 } 677 678 /* 679 * page's status can change while we move it among lru. If an evictable 680 * page is on unevictable list, it never be freed. To avoid that, 681 * check after we added it to the list, again. 682 */ 683 if (is_unevictable && page_evictable(page)) { 684 if (!isolate_lru_page(page)) { 685 put_page(page); 686 goto redo; 687 } 688 /* This means someone else dropped this page from LRU 689 * So, it will be freed or putback to LRU again. There is 690 * nothing to do here. 691 */ 692 } 693 694 if (was_unevictable && !is_unevictable) 695 count_vm_event(UNEVICTABLE_PGRESCUED); 696 else if (!was_unevictable && is_unevictable) 697 count_vm_event(UNEVICTABLE_PGCULLED); 698 699 put_page(page); /* drop ref from isolate */ 700 } 701 702 enum page_references { 703 PAGEREF_RECLAIM, 704 PAGEREF_RECLAIM_CLEAN, 705 PAGEREF_KEEP, 706 PAGEREF_ACTIVATE, 707 }; 708 709 static enum page_references page_check_references(struct page *page, 710 struct scan_control *sc) 711 { 712 int referenced_ptes, referenced_page; 713 unsigned long vm_flags; 714 715 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 716 &vm_flags); 717 referenced_page = TestClearPageReferenced(page); 718 719 /* 720 * Mlock lost the isolation race with us. Let try_to_unmap() 721 * move the page to the unevictable list. 722 */ 723 if (vm_flags & VM_LOCKED) 724 return PAGEREF_RECLAIM; 725 726 if (referenced_ptes) { 727 if (PageSwapBacked(page)) 728 return PAGEREF_ACTIVATE; 729 /* 730 * All mapped pages start out with page table 731 * references from the instantiating fault, so we need 732 * to look twice if a mapped file page is used more 733 * than once. 734 * 735 * Mark it and spare it for another trip around the 736 * inactive list. Another page table reference will 737 * lead to its activation. 738 * 739 * Note: the mark is set for activated pages as well 740 * so that recently deactivated but used pages are 741 * quickly recovered. 742 */ 743 SetPageReferenced(page); 744 745 if (referenced_page || referenced_ptes > 1) 746 return PAGEREF_ACTIVATE; 747 748 /* 749 * Activate file-backed executable pages after first usage. 750 */ 751 if (vm_flags & VM_EXEC) 752 return PAGEREF_ACTIVATE; 753 754 return PAGEREF_KEEP; 755 } 756 757 /* Reclaim if clean, defer dirty pages to writeback */ 758 if (referenced_page && !PageSwapBacked(page)) 759 return PAGEREF_RECLAIM_CLEAN; 760 761 return PAGEREF_RECLAIM; 762 } 763 764 /* Check if a page is dirty or under writeback */ 765 static void page_check_dirty_writeback(struct page *page, 766 bool *dirty, bool *writeback) 767 { 768 struct address_space *mapping; 769 770 /* 771 * Anonymous pages are not handled by flushers and must be written 772 * from reclaim context. Do not stall reclaim based on them 773 */ 774 if (!page_is_file_cache(page)) { 775 *dirty = false; 776 *writeback = false; 777 return; 778 } 779 780 /* By default assume that the page flags are accurate */ 781 *dirty = PageDirty(page); 782 *writeback = PageWriteback(page); 783 784 /* Verify dirty/writeback state if the filesystem supports it */ 785 if (!page_has_private(page)) 786 return; 787 788 mapping = page_mapping(page); 789 if (mapping && mapping->a_ops->is_dirty_writeback) 790 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 791 } 792 793 /* 794 * shrink_page_list() returns the number of reclaimed pages 795 */ 796 static unsigned long shrink_page_list(struct list_head *page_list, 797 struct zone *zone, 798 struct scan_control *sc, 799 enum ttu_flags ttu_flags, 800 unsigned long *ret_nr_dirty, 801 unsigned long *ret_nr_unqueued_dirty, 802 unsigned long *ret_nr_congested, 803 unsigned long *ret_nr_writeback, 804 unsigned long *ret_nr_immediate, 805 bool force_reclaim) 806 { 807 LIST_HEAD(ret_pages); 808 LIST_HEAD(free_pages); 809 int pgactivate = 0; 810 unsigned long nr_unqueued_dirty = 0; 811 unsigned long nr_dirty = 0; 812 unsigned long nr_congested = 0; 813 unsigned long nr_reclaimed = 0; 814 unsigned long nr_writeback = 0; 815 unsigned long nr_immediate = 0; 816 817 cond_resched(); 818 819 mem_cgroup_uncharge_start(); 820 while (!list_empty(page_list)) { 821 struct address_space *mapping; 822 struct page *page; 823 int may_enter_fs; 824 enum page_references references = PAGEREF_RECLAIM_CLEAN; 825 bool dirty, writeback; 826 827 cond_resched(); 828 829 page = lru_to_page(page_list); 830 list_del(&page->lru); 831 832 if (!trylock_page(page)) 833 goto keep; 834 835 VM_BUG_ON_PAGE(PageActive(page), page); 836 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 837 838 sc->nr_scanned++; 839 840 if (unlikely(!page_evictable(page))) 841 goto cull_mlocked; 842 843 if (!sc->may_unmap && page_mapped(page)) 844 goto keep_locked; 845 846 /* Double the slab pressure for mapped and swapcache pages */ 847 if (page_mapped(page) || PageSwapCache(page)) 848 sc->nr_scanned++; 849 850 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 851 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 852 853 /* 854 * The number of dirty pages determines if a zone is marked 855 * reclaim_congested which affects wait_iff_congested. kswapd 856 * will stall and start writing pages if the tail of the LRU 857 * is all dirty unqueued pages. 858 */ 859 page_check_dirty_writeback(page, &dirty, &writeback); 860 if (dirty || writeback) 861 nr_dirty++; 862 863 if (dirty && !writeback) 864 nr_unqueued_dirty++; 865 866 /* 867 * Treat this page as congested if the underlying BDI is or if 868 * pages are cycling through the LRU so quickly that the 869 * pages marked for immediate reclaim are making it to the 870 * end of the LRU a second time. 871 */ 872 mapping = page_mapping(page); 873 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 874 (writeback && PageReclaim(page))) 875 nr_congested++; 876 877 /* 878 * If a page at the tail of the LRU is under writeback, there 879 * are three cases to consider. 880 * 881 * 1) If reclaim is encountering an excessive number of pages 882 * under writeback and this page is both under writeback and 883 * PageReclaim then it indicates that pages are being queued 884 * for IO but are being recycled through the LRU before the 885 * IO can complete. Waiting on the page itself risks an 886 * indefinite stall if it is impossible to writeback the 887 * page due to IO error or disconnected storage so instead 888 * note that the LRU is being scanned too quickly and the 889 * caller can stall after page list has been processed. 890 * 891 * 2) Global reclaim encounters a page, memcg encounters a 892 * page that is not marked for immediate reclaim or 893 * the caller does not have __GFP_IO. In this case mark 894 * the page for immediate reclaim and continue scanning. 895 * 896 * __GFP_IO is checked because a loop driver thread might 897 * enter reclaim, and deadlock if it waits on a page for 898 * which it is needed to do the write (loop masks off 899 * __GFP_IO|__GFP_FS for this reason); but more thought 900 * would probably show more reasons. 901 * 902 * Don't require __GFP_FS, since we're not going into the 903 * FS, just waiting on its writeback completion. Worryingly, 904 * ext4 gfs2 and xfs allocate pages with 905 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 906 * may_enter_fs here is liable to OOM on them. 907 * 908 * 3) memcg encounters a page that is not already marked 909 * PageReclaim. memcg does not have any dirty pages 910 * throttling so we could easily OOM just because too many 911 * pages are in writeback and there is nothing else to 912 * reclaim. Wait for the writeback to complete. 913 */ 914 if (PageWriteback(page)) { 915 /* Case 1 above */ 916 if (current_is_kswapd() && 917 PageReclaim(page) && 918 zone_is_reclaim_writeback(zone)) { 919 nr_immediate++; 920 goto keep_locked; 921 922 /* Case 2 above */ 923 } else if (global_reclaim(sc) || 924 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 925 /* 926 * This is slightly racy - end_page_writeback() 927 * might have just cleared PageReclaim, then 928 * setting PageReclaim here end up interpreted 929 * as PageReadahead - but that does not matter 930 * enough to care. What we do want is for this 931 * page to have PageReclaim set next time memcg 932 * reclaim reaches the tests above, so it will 933 * then wait_on_page_writeback() to avoid OOM; 934 * and it's also appropriate in global reclaim. 935 */ 936 SetPageReclaim(page); 937 nr_writeback++; 938 939 goto keep_locked; 940 941 /* Case 3 above */ 942 } else { 943 wait_on_page_writeback(page); 944 } 945 } 946 947 if (!force_reclaim) 948 references = page_check_references(page, sc); 949 950 switch (references) { 951 case PAGEREF_ACTIVATE: 952 goto activate_locked; 953 case PAGEREF_KEEP: 954 goto keep_locked; 955 case PAGEREF_RECLAIM: 956 case PAGEREF_RECLAIM_CLEAN: 957 ; /* try to reclaim the page below */ 958 } 959 960 /* 961 * Anonymous process memory has backing store? 962 * Try to allocate it some swap space here. 963 */ 964 if (PageAnon(page) && !PageSwapCache(page)) { 965 if (!(sc->gfp_mask & __GFP_IO)) 966 goto keep_locked; 967 if (!add_to_swap(page, page_list)) 968 goto activate_locked; 969 may_enter_fs = 1; 970 971 /* Adding to swap updated mapping */ 972 mapping = page_mapping(page); 973 } 974 975 /* 976 * The page is mapped into the page tables of one or more 977 * processes. Try to unmap it here. 978 */ 979 if (page_mapped(page) && mapping) { 980 switch (try_to_unmap(page, ttu_flags)) { 981 case SWAP_FAIL: 982 goto activate_locked; 983 case SWAP_AGAIN: 984 goto keep_locked; 985 case SWAP_MLOCK: 986 goto cull_mlocked; 987 case SWAP_SUCCESS: 988 ; /* try to free the page below */ 989 } 990 } 991 992 if (PageDirty(page)) { 993 /* 994 * Only kswapd can writeback filesystem pages to 995 * avoid risk of stack overflow but only writeback 996 * if many dirty pages have been encountered. 997 */ 998 if (page_is_file_cache(page) && 999 (!current_is_kswapd() || 1000 !zone_is_reclaim_dirty(zone))) { 1001 /* 1002 * Immediately reclaim when written back. 1003 * Similar in principal to deactivate_page() 1004 * except we already have the page isolated 1005 * and know it's dirty 1006 */ 1007 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1008 SetPageReclaim(page); 1009 1010 goto keep_locked; 1011 } 1012 1013 if (references == PAGEREF_RECLAIM_CLEAN) 1014 goto keep_locked; 1015 if (!may_enter_fs) 1016 goto keep_locked; 1017 if (!sc->may_writepage) 1018 goto keep_locked; 1019 1020 /* Page is dirty, try to write it out here */ 1021 switch (pageout(page, mapping, sc)) { 1022 case PAGE_KEEP: 1023 goto keep_locked; 1024 case PAGE_ACTIVATE: 1025 goto activate_locked; 1026 case PAGE_SUCCESS: 1027 if (PageWriteback(page)) 1028 goto keep; 1029 if (PageDirty(page)) 1030 goto keep; 1031 1032 /* 1033 * A synchronous write - probably a ramdisk. Go 1034 * ahead and try to reclaim the page. 1035 */ 1036 if (!trylock_page(page)) 1037 goto keep; 1038 if (PageDirty(page) || PageWriteback(page)) 1039 goto keep_locked; 1040 mapping = page_mapping(page); 1041 case PAGE_CLEAN: 1042 ; /* try to free the page below */ 1043 } 1044 } 1045 1046 /* 1047 * If the page has buffers, try to free the buffer mappings 1048 * associated with this page. If we succeed we try to free 1049 * the page as well. 1050 * 1051 * We do this even if the page is PageDirty(). 1052 * try_to_release_page() does not perform I/O, but it is 1053 * possible for a page to have PageDirty set, but it is actually 1054 * clean (all its buffers are clean). This happens if the 1055 * buffers were written out directly, with submit_bh(). ext3 1056 * will do this, as well as the blockdev mapping. 1057 * try_to_release_page() will discover that cleanness and will 1058 * drop the buffers and mark the page clean - it can be freed. 1059 * 1060 * Rarely, pages can have buffers and no ->mapping. These are 1061 * the pages which were not successfully invalidated in 1062 * truncate_complete_page(). We try to drop those buffers here 1063 * and if that worked, and the page is no longer mapped into 1064 * process address space (page_count == 1) it can be freed. 1065 * Otherwise, leave the page on the LRU so it is swappable. 1066 */ 1067 if (page_has_private(page)) { 1068 if (!try_to_release_page(page, sc->gfp_mask)) 1069 goto activate_locked; 1070 if (!mapping && page_count(page) == 1) { 1071 unlock_page(page); 1072 if (put_page_testzero(page)) 1073 goto free_it; 1074 else { 1075 /* 1076 * rare race with speculative reference. 1077 * the speculative reference will free 1078 * this page shortly, so we may 1079 * increment nr_reclaimed here (and 1080 * leave it off the LRU). 1081 */ 1082 nr_reclaimed++; 1083 continue; 1084 } 1085 } 1086 } 1087 1088 if (!mapping || !__remove_mapping(mapping, page, true)) 1089 goto keep_locked; 1090 1091 /* 1092 * At this point, we have no other references and there is 1093 * no way to pick any more up (removed from LRU, removed 1094 * from pagecache). Can use non-atomic bitops now (and 1095 * we obviously don't have to worry about waking up a process 1096 * waiting on the page lock, because there are no references. 1097 */ 1098 __clear_page_locked(page); 1099 free_it: 1100 nr_reclaimed++; 1101 1102 /* 1103 * Is there need to periodically free_page_list? It would 1104 * appear not as the counts should be low 1105 */ 1106 list_add(&page->lru, &free_pages); 1107 continue; 1108 1109 cull_mlocked: 1110 if (PageSwapCache(page)) 1111 try_to_free_swap(page); 1112 unlock_page(page); 1113 putback_lru_page(page); 1114 continue; 1115 1116 activate_locked: 1117 /* Not a candidate for swapping, so reclaim swap space. */ 1118 if (PageSwapCache(page) && vm_swap_full()) 1119 try_to_free_swap(page); 1120 VM_BUG_ON_PAGE(PageActive(page), page); 1121 SetPageActive(page); 1122 pgactivate++; 1123 keep_locked: 1124 unlock_page(page); 1125 keep: 1126 list_add(&page->lru, &ret_pages); 1127 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1128 } 1129 1130 free_hot_cold_page_list(&free_pages, true); 1131 1132 list_splice(&ret_pages, page_list); 1133 count_vm_events(PGACTIVATE, pgactivate); 1134 mem_cgroup_uncharge_end(); 1135 *ret_nr_dirty += nr_dirty; 1136 *ret_nr_congested += nr_congested; 1137 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1138 *ret_nr_writeback += nr_writeback; 1139 *ret_nr_immediate += nr_immediate; 1140 return nr_reclaimed; 1141 } 1142 1143 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1144 struct list_head *page_list) 1145 { 1146 struct scan_control sc = { 1147 .gfp_mask = GFP_KERNEL, 1148 .priority = DEF_PRIORITY, 1149 .may_unmap = 1, 1150 }; 1151 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1152 struct page *page, *next; 1153 LIST_HEAD(clean_pages); 1154 1155 list_for_each_entry_safe(page, next, page_list, lru) { 1156 if (page_is_file_cache(page) && !PageDirty(page) && 1157 !isolated_balloon_page(page)) { 1158 ClearPageActive(page); 1159 list_move(&page->lru, &clean_pages); 1160 } 1161 } 1162 1163 ret = shrink_page_list(&clean_pages, zone, &sc, 1164 TTU_UNMAP|TTU_IGNORE_ACCESS, 1165 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1166 list_splice(&clean_pages, page_list); 1167 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1168 return ret; 1169 } 1170 1171 /* 1172 * Attempt to remove the specified page from its LRU. Only take this page 1173 * if it is of the appropriate PageActive status. Pages which are being 1174 * freed elsewhere are also ignored. 1175 * 1176 * page: page to consider 1177 * mode: one of the LRU isolation modes defined above 1178 * 1179 * returns 0 on success, -ve errno on failure. 1180 */ 1181 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1182 { 1183 int ret = -EINVAL; 1184 1185 /* Only take pages on the LRU. */ 1186 if (!PageLRU(page)) 1187 return ret; 1188 1189 /* Compaction should not handle unevictable pages but CMA can do so */ 1190 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1191 return ret; 1192 1193 ret = -EBUSY; 1194 1195 /* 1196 * To minimise LRU disruption, the caller can indicate that it only 1197 * wants to isolate pages it will be able to operate on without 1198 * blocking - clean pages for the most part. 1199 * 1200 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1201 * is used by reclaim when it is cannot write to backing storage 1202 * 1203 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1204 * that it is possible to migrate without blocking 1205 */ 1206 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1207 /* All the caller can do on PageWriteback is block */ 1208 if (PageWriteback(page)) 1209 return ret; 1210 1211 if (PageDirty(page)) { 1212 struct address_space *mapping; 1213 1214 /* ISOLATE_CLEAN means only clean pages */ 1215 if (mode & ISOLATE_CLEAN) 1216 return ret; 1217 1218 /* 1219 * Only pages without mappings or that have a 1220 * ->migratepage callback are possible to migrate 1221 * without blocking 1222 */ 1223 mapping = page_mapping(page); 1224 if (mapping && !mapping->a_ops->migratepage) 1225 return ret; 1226 } 1227 } 1228 1229 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1230 return ret; 1231 1232 if (likely(get_page_unless_zero(page))) { 1233 /* 1234 * Be careful not to clear PageLRU until after we're 1235 * sure the page is not being freed elsewhere -- the 1236 * page release code relies on it. 1237 */ 1238 ClearPageLRU(page); 1239 ret = 0; 1240 } 1241 1242 return ret; 1243 } 1244 1245 /* 1246 * zone->lru_lock is heavily contended. Some of the functions that 1247 * shrink the lists perform better by taking out a batch of pages 1248 * and working on them outside the LRU lock. 1249 * 1250 * For pagecache intensive workloads, this function is the hottest 1251 * spot in the kernel (apart from copy_*_user functions). 1252 * 1253 * Appropriate locks must be held before calling this function. 1254 * 1255 * @nr_to_scan: The number of pages to look through on the list. 1256 * @lruvec: The LRU vector to pull pages from. 1257 * @dst: The temp list to put pages on to. 1258 * @nr_scanned: The number of pages that were scanned. 1259 * @sc: The scan_control struct for this reclaim session 1260 * @mode: One of the LRU isolation modes 1261 * @lru: LRU list id for isolating 1262 * 1263 * returns how many pages were moved onto *@dst. 1264 */ 1265 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1266 struct lruvec *lruvec, struct list_head *dst, 1267 unsigned long *nr_scanned, struct scan_control *sc, 1268 isolate_mode_t mode, enum lru_list lru) 1269 { 1270 struct list_head *src = &lruvec->lists[lru]; 1271 unsigned long nr_taken = 0; 1272 unsigned long scan; 1273 1274 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1275 struct page *page; 1276 int nr_pages; 1277 1278 page = lru_to_page(src); 1279 prefetchw_prev_lru_page(page, src, flags); 1280 1281 VM_BUG_ON_PAGE(!PageLRU(page), page); 1282 1283 switch (__isolate_lru_page(page, mode)) { 1284 case 0: 1285 nr_pages = hpage_nr_pages(page); 1286 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1287 list_move(&page->lru, dst); 1288 nr_taken += nr_pages; 1289 break; 1290 1291 case -EBUSY: 1292 /* else it is being freed elsewhere */ 1293 list_move(&page->lru, src); 1294 continue; 1295 1296 default: 1297 BUG(); 1298 } 1299 } 1300 1301 *nr_scanned = scan; 1302 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1303 nr_taken, mode, is_file_lru(lru)); 1304 return nr_taken; 1305 } 1306 1307 /** 1308 * isolate_lru_page - tries to isolate a page from its LRU list 1309 * @page: page to isolate from its LRU list 1310 * 1311 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1312 * vmstat statistic corresponding to whatever LRU list the page was on. 1313 * 1314 * Returns 0 if the page was removed from an LRU list. 1315 * Returns -EBUSY if the page was not on an LRU list. 1316 * 1317 * The returned page will have PageLRU() cleared. If it was found on 1318 * the active list, it will have PageActive set. If it was found on 1319 * the unevictable list, it will have the PageUnevictable bit set. That flag 1320 * may need to be cleared by the caller before letting the page go. 1321 * 1322 * The vmstat statistic corresponding to the list on which the page was 1323 * found will be decremented. 1324 * 1325 * Restrictions: 1326 * (1) Must be called with an elevated refcount on the page. This is a 1327 * fundamentnal difference from isolate_lru_pages (which is called 1328 * without a stable reference). 1329 * (2) the lru_lock must not be held. 1330 * (3) interrupts must be enabled. 1331 */ 1332 int isolate_lru_page(struct page *page) 1333 { 1334 int ret = -EBUSY; 1335 1336 VM_BUG_ON_PAGE(!page_count(page), page); 1337 1338 if (PageLRU(page)) { 1339 struct zone *zone = page_zone(page); 1340 struct lruvec *lruvec; 1341 1342 spin_lock_irq(&zone->lru_lock); 1343 lruvec = mem_cgroup_page_lruvec(page, zone); 1344 if (PageLRU(page)) { 1345 int lru = page_lru(page); 1346 get_page(page); 1347 ClearPageLRU(page); 1348 del_page_from_lru_list(page, lruvec, lru); 1349 ret = 0; 1350 } 1351 spin_unlock_irq(&zone->lru_lock); 1352 } 1353 return ret; 1354 } 1355 1356 /* 1357 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1358 * then get resheduled. When there are massive number of tasks doing page 1359 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1360 * the LRU list will go small and be scanned faster than necessary, leading to 1361 * unnecessary swapping, thrashing and OOM. 1362 */ 1363 static int too_many_isolated(struct zone *zone, int file, 1364 struct scan_control *sc) 1365 { 1366 unsigned long inactive, isolated; 1367 1368 if (current_is_kswapd()) 1369 return 0; 1370 1371 if (!global_reclaim(sc)) 1372 return 0; 1373 1374 if (file) { 1375 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1376 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1377 } else { 1378 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1379 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1380 } 1381 1382 /* 1383 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1384 * won't get blocked by normal direct-reclaimers, forming a circular 1385 * deadlock. 1386 */ 1387 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1388 inactive >>= 3; 1389 1390 return isolated > inactive; 1391 } 1392 1393 static noinline_for_stack void 1394 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1395 { 1396 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1397 struct zone *zone = lruvec_zone(lruvec); 1398 LIST_HEAD(pages_to_free); 1399 1400 /* 1401 * Put back any unfreeable pages. 1402 */ 1403 while (!list_empty(page_list)) { 1404 struct page *page = lru_to_page(page_list); 1405 int lru; 1406 1407 VM_BUG_ON_PAGE(PageLRU(page), page); 1408 list_del(&page->lru); 1409 if (unlikely(!page_evictable(page))) { 1410 spin_unlock_irq(&zone->lru_lock); 1411 putback_lru_page(page); 1412 spin_lock_irq(&zone->lru_lock); 1413 continue; 1414 } 1415 1416 lruvec = mem_cgroup_page_lruvec(page, zone); 1417 1418 SetPageLRU(page); 1419 lru = page_lru(page); 1420 add_page_to_lru_list(page, lruvec, lru); 1421 1422 if (is_active_lru(lru)) { 1423 int file = is_file_lru(lru); 1424 int numpages = hpage_nr_pages(page); 1425 reclaim_stat->recent_rotated[file] += numpages; 1426 } 1427 if (put_page_testzero(page)) { 1428 __ClearPageLRU(page); 1429 __ClearPageActive(page); 1430 del_page_from_lru_list(page, lruvec, lru); 1431 1432 if (unlikely(PageCompound(page))) { 1433 spin_unlock_irq(&zone->lru_lock); 1434 (*get_compound_page_dtor(page))(page); 1435 spin_lock_irq(&zone->lru_lock); 1436 } else 1437 list_add(&page->lru, &pages_to_free); 1438 } 1439 } 1440 1441 /* 1442 * To save our caller's stack, now use input list for pages to free. 1443 */ 1444 list_splice(&pages_to_free, page_list); 1445 } 1446 1447 /* 1448 * If a kernel thread (such as nfsd for loop-back mounts) services 1449 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1450 * In that case we should only throttle if the backing device it is 1451 * writing to is congested. In other cases it is safe to throttle. 1452 */ 1453 static int current_may_throttle(void) 1454 { 1455 return !(current->flags & PF_LESS_THROTTLE) || 1456 current->backing_dev_info == NULL || 1457 bdi_write_congested(current->backing_dev_info); 1458 } 1459 1460 /* 1461 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1462 * of reclaimed pages 1463 */ 1464 static noinline_for_stack unsigned long 1465 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1466 struct scan_control *sc, enum lru_list lru) 1467 { 1468 LIST_HEAD(page_list); 1469 unsigned long nr_scanned; 1470 unsigned long nr_reclaimed = 0; 1471 unsigned long nr_taken; 1472 unsigned long nr_dirty = 0; 1473 unsigned long nr_congested = 0; 1474 unsigned long nr_unqueued_dirty = 0; 1475 unsigned long nr_writeback = 0; 1476 unsigned long nr_immediate = 0; 1477 isolate_mode_t isolate_mode = 0; 1478 int file = is_file_lru(lru); 1479 struct zone *zone = lruvec_zone(lruvec); 1480 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1481 1482 while (unlikely(too_many_isolated(zone, file, sc))) { 1483 congestion_wait(BLK_RW_ASYNC, HZ/10); 1484 1485 /* We are about to die and free our memory. Return now. */ 1486 if (fatal_signal_pending(current)) 1487 return SWAP_CLUSTER_MAX; 1488 } 1489 1490 lru_add_drain(); 1491 1492 if (!sc->may_unmap) 1493 isolate_mode |= ISOLATE_UNMAPPED; 1494 if (!sc->may_writepage) 1495 isolate_mode |= ISOLATE_CLEAN; 1496 1497 spin_lock_irq(&zone->lru_lock); 1498 1499 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1500 &nr_scanned, sc, isolate_mode, lru); 1501 1502 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1503 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1504 1505 if (global_reclaim(sc)) { 1506 zone->pages_scanned += nr_scanned; 1507 if (current_is_kswapd()) 1508 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1509 else 1510 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1511 } 1512 spin_unlock_irq(&zone->lru_lock); 1513 1514 if (nr_taken == 0) 1515 return 0; 1516 1517 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1518 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1519 &nr_writeback, &nr_immediate, 1520 false); 1521 1522 spin_lock_irq(&zone->lru_lock); 1523 1524 reclaim_stat->recent_scanned[file] += nr_taken; 1525 1526 if (global_reclaim(sc)) { 1527 if (current_is_kswapd()) 1528 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1529 nr_reclaimed); 1530 else 1531 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1532 nr_reclaimed); 1533 } 1534 1535 putback_inactive_pages(lruvec, &page_list); 1536 1537 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1538 1539 spin_unlock_irq(&zone->lru_lock); 1540 1541 free_hot_cold_page_list(&page_list, true); 1542 1543 /* 1544 * If reclaim is isolating dirty pages under writeback, it implies 1545 * that the long-lived page allocation rate is exceeding the page 1546 * laundering rate. Either the global limits are not being effective 1547 * at throttling processes due to the page distribution throughout 1548 * zones or there is heavy usage of a slow backing device. The 1549 * only option is to throttle from reclaim context which is not ideal 1550 * as there is no guarantee the dirtying process is throttled in the 1551 * same way balance_dirty_pages() manages. 1552 * 1553 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1554 * of pages under pages flagged for immediate reclaim and stall if any 1555 * are encountered in the nr_immediate check below. 1556 */ 1557 if (nr_writeback && nr_writeback == nr_taken) 1558 zone_set_flag(zone, ZONE_WRITEBACK); 1559 1560 /* 1561 * memcg will stall in page writeback so only consider forcibly 1562 * stalling for global reclaim 1563 */ 1564 if (global_reclaim(sc)) { 1565 /* 1566 * Tag a zone as congested if all the dirty pages scanned were 1567 * backed by a congested BDI and wait_iff_congested will stall. 1568 */ 1569 if (nr_dirty && nr_dirty == nr_congested) 1570 zone_set_flag(zone, ZONE_CONGESTED); 1571 1572 /* 1573 * If dirty pages are scanned that are not queued for IO, it 1574 * implies that flushers are not keeping up. In this case, flag 1575 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1576 * pages from reclaim context. 1577 */ 1578 if (nr_unqueued_dirty == nr_taken) 1579 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1580 1581 /* 1582 * If kswapd scans pages marked marked for immediate 1583 * reclaim and under writeback (nr_immediate), it implies 1584 * that pages are cycling through the LRU faster than 1585 * they are written so also forcibly stall. 1586 */ 1587 if (nr_immediate && current_may_throttle()) 1588 congestion_wait(BLK_RW_ASYNC, HZ/10); 1589 } 1590 1591 /* 1592 * Stall direct reclaim for IO completions if underlying BDIs or zone 1593 * is congested. Allow kswapd to continue until it starts encountering 1594 * unqueued dirty pages or cycling through the LRU too quickly. 1595 */ 1596 if (!sc->hibernation_mode && !current_is_kswapd() && 1597 current_may_throttle()) 1598 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1599 1600 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1601 zone_idx(zone), 1602 nr_scanned, nr_reclaimed, 1603 sc->priority, 1604 trace_shrink_flags(file)); 1605 return nr_reclaimed; 1606 } 1607 1608 /* 1609 * This moves pages from the active list to the inactive list. 1610 * 1611 * We move them the other way if the page is referenced by one or more 1612 * processes, from rmap. 1613 * 1614 * If the pages are mostly unmapped, the processing is fast and it is 1615 * appropriate to hold zone->lru_lock across the whole operation. But if 1616 * the pages are mapped, the processing is slow (page_referenced()) so we 1617 * should drop zone->lru_lock around each page. It's impossible to balance 1618 * this, so instead we remove the pages from the LRU while processing them. 1619 * It is safe to rely on PG_active against the non-LRU pages in here because 1620 * nobody will play with that bit on a non-LRU page. 1621 * 1622 * The downside is that we have to touch page->_count against each page. 1623 * But we had to alter page->flags anyway. 1624 */ 1625 1626 static void move_active_pages_to_lru(struct lruvec *lruvec, 1627 struct list_head *list, 1628 struct list_head *pages_to_free, 1629 enum lru_list lru) 1630 { 1631 struct zone *zone = lruvec_zone(lruvec); 1632 unsigned long pgmoved = 0; 1633 struct page *page; 1634 int nr_pages; 1635 1636 while (!list_empty(list)) { 1637 page = lru_to_page(list); 1638 lruvec = mem_cgroup_page_lruvec(page, zone); 1639 1640 VM_BUG_ON_PAGE(PageLRU(page), page); 1641 SetPageLRU(page); 1642 1643 nr_pages = hpage_nr_pages(page); 1644 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1645 list_move(&page->lru, &lruvec->lists[lru]); 1646 pgmoved += nr_pages; 1647 1648 if (put_page_testzero(page)) { 1649 __ClearPageLRU(page); 1650 __ClearPageActive(page); 1651 del_page_from_lru_list(page, lruvec, lru); 1652 1653 if (unlikely(PageCompound(page))) { 1654 spin_unlock_irq(&zone->lru_lock); 1655 (*get_compound_page_dtor(page))(page); 1656 spin_lock_irq(&zone->lru_lock); 1657 } else 1658 list_add(&page->lru, pages_to_free); 1659 } 1660 } 1661 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1662 if (!is_active_lru(lru)) 1663 __count_vm_events(PGDEACTIVATE, pgmoved); 1664 } 1665 1666 static void shrink_active_list(unsigned long nr_to_scan, 1667 struct lruvec *lruvec, 1668 struct scan_control *sc, 1669 enum lru_list lru) 1670 { 1671 unsigned long nr_taken; 1672 unsigned long nr_scanned; 1673 unsigned long vm_flags; 1674 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1675 LIST_HEAD(l_active); 1676 LIST_HEAD(l_inactive); 1677 struct page *page; 1678 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1679 unsigned long nr_rotated = 0; 1680 isolate_mode_t isolate_mode = 0; 1681 int file = is_file_lru(lru); 1682 struct zone *zone = lruvec_zone(lruvec); 1683 1684 lru_add_drain(); 1685 1686 if (!sc->may_unmap) 1687 isolate_mode |= ISOLATE_UNMAPPED; 1688 if (!sc->may_writepage) 1689 isolate_mode |= ISOLATE_CLEAN; 1690 1691 spin_lock_irq(&zone->lru_lock); 1692 1693 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1694 &nr_scanned, sc, isolate_mode, lru); 1695 if (global_reclaim(sc)) 1696 zone->pages_scanned += nr_scanned; 1697 1698 reclaim_stat->recent_scanned[file] += nr_taken; 1699 1700 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1701 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1702 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1703 spin_unlock_irq(&zone->lru_lock); 1704 1705 while (!list_empty(&l_hold)) { 1706 cond_resched(); 1707 page = lru_to_page(&l_hold); 1708 list_del(&page->lru); 1709 1710 if (unlikely(!page_evictable(page))) { 1711 putback_lru_page(page); 1712 continue; 1713 } 1714 1715 if (unlikely(buffer_heads_over_limit)) { 1716 if (page_has_private(page) && trylock_page(page)) { 1717 if (page_has_private(page)) 1718 try_to_release_page(page, 0); 1719 unlock_page(page); 1720 } 1721 } 1722 1723 if (page_referenced(page, 0, sc->target_mem_cgroup, 1724 &vm_flags)) { 1725 nr_rotated += hpage_nr_pages(page); 1726 /* 1727 * Identify referenced, file-backed active pages and 1728 * give them one more trip around the active list. So 1729 * that executable code get better chances to stay in 1730 * memory under moderate memory pressure. Anon pages 1731 * are not likely to be evicted by use-once streaming 1732 * IO, plus JVM can create lots of anon VM_EXEC pages, 1733 * so we ignore them here. 1734 */ 1735 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1736 list_add(&page->lru, &l_active); 1737 continue; 1738 } 1739 } 1740 1741 ClearPageActive(page); /* we are de-activating */ 1742 list_add(&page->lru, &l_inactive); 1743 } 1744 1745 /* 1746 * Move pages back to the lru list. 1747 */ 1748 spin_lock_irq(&zone->lru_lock); 1749 /* 1750 * Count referenced pages from currently used mappings as rotated, 1751 * even though only some of them are actually re-activated. This 1752 * helps balance scan pressure between file and anonymous pages in 1753 * get_scan_ratio. 1754 */ 1755 reclaim_stat->recent_rotated[file] += nr_rotated; 1756 1757 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1758 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1759 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1760 spin_unlock_irq(&zone->lru_lock); 1761 1762 free_hot_cold_page_list(&l_hold, true); 1763 } 1764 1765 #ifdef CONFIG_SWAP 1766 static int inactive_anon_is_low_global(struct zone *zone) 1767 { 1768 unsigned long active, inactive; 1769 1770 active = zone_page_state(zone, NR_ACTIVE_ANON); 1771 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1772 1773 if (inactive * zone->inactive_ratio < active) 1774 return 1; 1775 1776 return 0; 1777 } 1778 1779 /** 1780 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1781 * @lruvec: LRU vector to check 1782 * 1783 * Returns true if the zone does not have enough inactive anon pages, 1784 * meaning some active anon pages need to be deactivated. 1785 */ 1786 static int inactive_anon_is_low(struct lruvec *lruvec) 1787 { 1788 /* 1789 * If we don't have swap space, anonymous page deactivation 1790 * is pointless. 1791 */ 1792 if (!total_swap_pages) 1793 return 0; 1794 1795 if (!mem_cgroup_disabled()) 1796 return mem_cgroup_inactive_anon_is_low(lruvec); 1797 1798 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1799 } 1800 #else 1801 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1802 { 1803 return 0; 1804 } 1805 #endif 1806 1807 /** 1808 * inactive_file_is_low - check if file pages need to be deactivated 1809 * @lruvec: LRU vector to check 1810 * 1811 * When the system is doing streaming IO, memory pressure here 1812 * ensures that active file pages get deactivated, until more 1813 * than half of the file pages are on the inactive list. 1814 * 1815 * Once we get to that situation, protect the system's working 1816 * set from being evicted by disabling active file page aging. 1817 * 1818 * This uses a different ratio than the anonymous pages, because 1819 * the page cache uses a use-once replacement algorithm. 1820 */ 1821 static int inactive_file_is_low(struct lruvec *lruvec) 1822 { 1823 unsigned long inactive; 1824 unsigned long active; 1825 1826 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1827 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1828 1829 return active > inactive; 1830 } 1831 1832 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1833 { 1834 if (is_file_lru(lru)) 1835 return inactive_file_is_low(lruvec); 1836 else 1837 return inactive_anon_is_low(lruvec); 1838 } 1839 1840 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1841 struct lruvec *lruvec, struct scan_control *sc) 1842 { 1843 if (is_active_lru(lru)) { 1844 if (inactive_list_is_low(lruvec, lru)) 1845 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1846 return 0; 1847 } 1848 1849 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1850 } 1851 1852 enum scan_balance { 1853 SCAN_EQUAL, 1854 SCAN_FRACT, 1855 SCAN_ANON, 1856 SCAN_FILE, 1857 }; 1858 1859 /* 1860 * Determine how aggressively the anon and file LRU lists should be 1861 * scanned. The relative value of each set of LRU lists is determined 1862 * by looking at the fraction of the pages scanned we did rotate back 1863 * onto the active list instead of evict. 1864 * 1865 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1866 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1867 */ 1868 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1869 unsigned long *nr) 1870 { 1871 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1872 u64 fraction[2]; 1873 u64 denominator = 0; /* gcc */ 1874 struct zone *zone = lruvec_zone(lruvec); 1875 unsigned long anon_prio, file_prio; 1876 enum scan_balance scan_balance; 1877 unsigned long anon, file; 1878 bool force_scan = false; 1879 unsigned long ap, fp; 1880 enum lru_list lru; 1881 bool some_scanned; 1882 int pass; 1883 1884 /* 1885 * If the zone or memcg is small, nr[l] can be 0. This 1886 * results in no scanning on this priority and a potential 1887 * priority drop. Global direct reclaim can go to the next 1888 * zone and tends to have no problems. Global kswapd is for 1889 * zone balancing and it needs to scan a minimum amount. When 1890 * reclaiming for a memcg, a priority drop can cause high 1891 * latencies, so it's better to scan a minimum amount there as 1892 * well. 1893 */ 1894 if (current_is_kswapd() && !zone_reclaimable(zone)) 1895 force_scan = true; 1896 if (!global_reclaim(sc)) 1897 force_scan = true; 1898 1899 /* If we have no swap space, do not bother scanning anon pages. */ 1900 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1901 scan_balance = SCAN_FILE; 1902 goto out; 1903 } 1904 1905 /* 1906 * Global reclaim will swap to prevent OOM even with no 1907 * swappiness, but memcg users want to use this knob to 1908 * disable swapping for individual groups completely when 1909 * using the memory controller's swap limit feature would be 1910 * too expensive. 1911 */ 1912 if (!global_reclaim(sc) && !sc->swappiness) { 1913 scan_balance = SCAN_FILE; 1914 goto out; 1915 } 1916 1917 /* 1918 * Do not apply any pressure balancing cleverness when the 1919 * system is close to OOM, scan both anon and file equally 1920 * (unless the swappiness setting disagrees with swapping). 1921 */ 1922 if (!sc->priority && sc->swappiness) { 1923 scan_balance = SCAN_EQUAL; 1924 goto out; 1925 } 1926 1927 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1928 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1929 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1930 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1931 1932 /* 1933 * Prevent the reclaimer from falling into the cache trap: as 1934 * cache pages start out inactive, every cache fault will tip 1935 * the scan balance towards the file LRU. And as the file LRU 1936 * shrinks, so does the window for rotation from references. 1937 * This means we have a runaway feedback loop where a tiny 1938 * thrashing file LRU becomes infinitely more attractive than 1939 * anon pages. Try to detect this based on file LRU size. 1940 */ 1941 if (global_reclaim(sc)) { 1942 unsigned long free = zone_page_state(zone, NR_FREE_PAGES); 1943 1944 if (unlikely(file + free <= high_wmark_pages(zone))) { 1945 scan_balance = SCAN_ANON; 1946 goto out; 1947 } 1948 } 1949 1950 /* 1951 * There is enough inactive page cache, do not reclaim 1952 * anything from the anonymous working set right now. 1953 */ 1954 if (!inactive_file_is_low(lruvec)) { 1955 scan_balance = SCAN_FILE; 1956 goto out; 1957 } 1958 1959 scan_balance = SCAN_FRACT; 1960 1961 /* 1962 * With swappiness at 100, anonymous and file have the same priority. 1963 * This scanning priority is essentially the inverse of IO cost. 1964 */ 1965 anon_prio = sc->swappiness; 1966 file_prio = 200 - anon_prio; 1967 1968 /* 1969 * OK, so we have swap space and a fair amount of page cache 1970 * pages. We use the recently rotated / recently scanned 1971 * ratios to determine how valuable each cache is. 1972 * 1973 * Because workloads change over time (and to avoid overflow) 1974 * we keep these statistics as a floating average, which ends 1975 * up weighing recent references more than old ones. 1976 * 1977 * anon in [0], file in [1] 1978 */ 1979 spin_lock_irq(&zone->lru_lock); 1980 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1981 reclaim_stat->recent_scanned[0] /= 2; 1982 reclaim_stat->recent_rotated[0] /= 2; 1983 } 1984 1985 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1986 reclaim_stat->recent_scanned[1] /= 2; 1987 reclaim_stat->recent_rotated[1] /= 2; 1988 } 1989 1990 /* 1991 * The amount of pressure on anon vs file pages is inversely 1992 * proportional to the fraction of recently scanned pages on 1993 * each list that were recently referenced and in active use. 1994 */ 1995 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1996 ap /= reclaim_stat->recent_rotated[0] + 1; 1997 1998 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1999 fp /= reclaim_stat->recent_rotated[1] + 1; 2000 spin_unlock_irq(&zone->lru_lock); 2001 2002 fraction[0] = ap; 2003 fraction[1] = fp; 2004 denominator = ap + fp + 1; 2005 out: 2006 some_scanned = false; 2007 /* Only use force_scan on second pass. */ 2008 for (pass = 0; !some_scanned && pass < 2; pass++) { 2009 for_each_evictable_lru(lru) { 2010 int file = is_file_lru(lru); 2011 unsigned long size; 2012 unsigned long scan; 2013 2014 size = get_lru_size(lruvec, lru); 2015 scan = size >> sc->priority; 2016 2017 if (!scan && pass && force_scan) 2018 scan = min(size, SWAP_CLUSTER_MAX); 2019 2020 switch (scan_balance) { 2021 case SCAN_EQUAL: 2022 /* Scan lists relative to size */ 2023 break; 2024 case SCAN_FRACT: 2025 /* 2026 * Scan types proportional to swappiness and 2027 * their relative recent reclaim efficiency. 2028 */ 2029 scan = div64_u64(scan * fraction[file], 2030 denominator); 2031 break; 2032 case SCAN_FILE: 2033 case SCAN_ANON: 2034 /* Scan one type exclusively */ 2035 if ((scan_balance == SCAN_FILE) != file) 2036 scan = 0; 2037 break; 2038 default: 2039 /* Look ma, no brain */ 2040 BUG(); 2041 } 2042 nr[lru] = scan; 2043 /* 2044 * Skip the second pass and don't force_scan, 2045 * if we found something to scan. 2046 */ 2047 some_scanned |= !!scan; 2048 } 2049 } 2050 } 2051 2052 /* 2053 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2054 */ 2055 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2056 { 2057 unsigned long nr[NR_LRU_LISTS]; 2058 unsigned long targets[NR_LRU_LISTS]; 2059 unsigned long nr_to_scan; 2060 enum lru_list lru; 2061 unsigned long nr_reclaimed = 0; 2062 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2063 struct blk_plug plug; 2064 bool scan_adjusted; 2065 2066 get_scan_count(lruvec, sc, nr); 2067 2068 /* Record the original scan target for proportional adjustments later */ 2069 memcpy(targets, nr, sizeof(nr)); 2070 2071 /* 2072 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2073 * event that can occur when there is little memory pressure e.g. 2074 * multiple streaming readers/writers. Hence, we do not abort scanning 2075 * when the requested number of pages are reclaimed when scanning at 2076 * DEF_PRIORITY on the assumption that the fact we are direct 2077 * reclaiming implies that kswapd is not keeping up and it is best to 2078 * do a batch of work at once. For memcg reclaim one check is made to 2079 * abort proportional reclaim if either the file or anon lru has already 2080 * dropped to zero at the first pass. 2081 */ 2082 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2083 sc->priority == DEF_PRIORITY); 2084 2085 blk_start_plug(&plug); 2086 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2087 nr[LRU_INACTIVE_FILE]) { 2088 unsigned long nr_anon, nr_file, percentage; 2089 unsigned long nr_scanned; 2090 2091 for_each_evictable_lru(lru) { 2092 if (nr[lru]) { 2093 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2094 nr[lru] -= nr_to_scan; 2095 2096 nr_reclaimed += shrink_list(lru, nr_to_scan, 2097 lruvec, sc); 2098 } 2099 } 2100 2101 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2102 continue; 2103 2104 /* 2105 * For kswapd and memcg, reclaim at least the number of pages 2106 * requested. Ensure that the anon and file LRUs are scanned 2107 * proportionally what was requested by get_scan_count(). We 2108 * stop reclaiming one LRU and reduce the amount scanning 2109 * proportional to the original scan target. 2110 */ 2111 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2112 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2113 2114 /* 2115 * It's just vindictive to attack the larger once the smaller 2116 * has gone to zero. And given the way we stop scanning the 2117 * smaller below, this makes sure that we only make one nudge 2118 * towards proportionality once we've got nr_to_reclaim. 2119 */ 2120 if (!nr_file || !nr_anon) 2121 break; 2122 2123 if (nr_file > nr_anon) { 2124 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2125 targets[LRU_ACTIVE_ANON] + 1; 2126 lru = LRU_BASE; 2127 percentage = nr_anon * 100 / scan_target; 2128 } else { 2129 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2130 targets[LRU_ACTIVE_FILE] + 1; 2131 lru = LRU_FILE; 2132 percentage = nr_file * 100 / scan_target; 2133 } 2134 2135 /* Stop scanning the smaller of the LRU */ 2136 nr[lru] = 0; 2137 nr[lru + LRU_ACTIVE] = 0; 2138 2139 /* 2140 * Recalculate the other LRU scan count based on its original 2141 * scan target and the percentage scanning already complete 2142 */ 2143 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2144 nr_scanned = targets[lru] - nr[lru]; 2145 nr[lru] = targets[lru] * (100 - percentage) / 100; 2146 nr[lru] -= min(nr[lru], nr_scanned); 2147 2148 lru += LRU_ACTIVE; 2149 nr_scanned = targets[lru] - nr[lru]; 2150 nr[lru] = targets[lru] * (100 - percentage) / 100; 2151 nr[lru] -= min(nr[lru], nr_scanned); 2152 2153 scan_adjusted = true; 2154 } 2155 blk_finish_plug(&plug); 2156 sc->nr_reclaimed += nr_reclaimed; 2157 2158 /* 2159 * Even if we did not try to evict anon pages at all, we want to 2160 * rebalance the anon lru active/inactive ratio. 2161 */ 2162 if (inactive_anon_is_low(lruvec)) 2163 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2164 sc, LRU_ACTIVE_ANON); 2165 2166 throttle_vm_writeout(sc->gfp_mask); 2167 } 2168 2169 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2170 static bool in_reclaim_compaction(struct scan_control *sc) 2171 { 2172 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2173 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2174 sc->priority < DEF_PRIORITY - 2)) 2175 return true; 2176 2177 return false; 2178 } 2179 2180 /* 2181 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2182 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2183 * true if more pages should be reclaimed such that when the page allocator 2184 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2185 * It will give up earlier than that if there is difficulty reclaiming pages. 2186 */ 2187 static inline bool should_continue_reclaim(struct zone *zone, 2188 unsigned long nr_reclaimed, 2189 unsigned long nr_scanned, 2190 struct scan_control *sc) 2191 { 2192 unsigned long pages_for_compaction; 2193 unsigned long inactive_lru_pages; 2194 2195 /* If not in reclaim/compaction mode, stop */ 2196 if (!in_reclaim_compaction(sc)) 2197 return false; 2198 2199 /* Consider stopping depending on scan and reclaim activity */ 2200 if (sc->gfp_mask & __GFP_REPEAT) { 2201 /* 2202 * For __GFP_REPEAT allocations, stop reclaiming if the 2203 * full LRU list has been scanned and we are still failing 2204 * to reclaim pages. This full LRU scan is potentially 2205 * expensive but a __GFP_REPEAT caller really wants to succeed 2206 */ 2207 if (!nr_reclaimed && !nr_scanned) 2208 return false; 2209 } else { 2210 /* 2211 * For non-__GFP_REPEAT allocations which can presumably 2212 * fail without consequence, stop if we failed to reclaim 2213 * any pages from the last SWAP_CLUSTER_MAX number of 2214 * pages that were scanned. This will return to the 2215 * caller faster at the risk reclaim/compaction and 2216 * the resulting allocation attempt fails 2217 */ 2218 if (!nr_reclaimed) 2219 return false; 2220 } 2221 2222 /* 2223 * If we have not reclaimed enough pages for compaction and the 2224 * inactive lists are large enough, continue reclaiming 2225 */ 2226 pages_for_compaction = (2UL << sc->order); 2227 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2228 if (get_nr_swap_pages() > 0) 2229 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2230 if (sc->nr_reclaimed < pages_for_compaction && 2231 inactive_lru_pages > pages_for_compaction) 2232 return true; 2233 2234 /* If compaction would go ahead or the allocation would succeed, stop */ 2235 switch (compaction_suitable(zone, sc->order)) { 2236 case COMPACT_PARTIAL: 2237 case COMPACT_CONTINUE: 2238 return false; 2239 default: 2240 return true; 2241 } 2242 } 2243 2244 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2245 { 2246 unsigned long nr_reclaimed, nr_scanned; 2247 2248 do { 2249 struct mem_cgroup *root = sc->target_mem_cgroup; 2250 struct mem_cgroup_reclaim_cookie reclaim = { 2251 .zone = zone, 2252 .priority = sc->priority, 2253 }; 2254 struct mem_cgroup *memcg; 2255 2256 nr_reclaimed = sc->nr_reclaimed; 2257 nr_scanned = sc->nr_scanned; 2258 2259 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2260 do { 2261 struct lruvec *lruvec; 2262 2263 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2264 2265 sc->swappiness = mem_cgroup_swappiness(memcg); 2266 shrink_lruvec(lruvec, sc); 2267 2268 /* 2269 * Direct reclaim and kswapd have to scan all memory 2270 * cgroups to fulfill the overall scan target for the 2271 * zone. 2272 * 2273 * Limit reclaim, on the other hand, only cares about 2274 * nr_to_reclaim pages to be reclaimed and it will 2275 * retry with decreasing priority if one round over the 2276 * whole hierarchy is not sufficient. 2277 */ 2278 if (!global_reclaim(sc) && 2279 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2280 mem_cgroup_iter_break(root, memcg); 2281 break; 2282 } 2283 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2284 } while (memcg); 2285 2286 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2287 sc->nr_scanned - nr_scanned, 2288 sc->nr_reclaimed - nr_reclaimed); 2289 2290 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2291 sc->nr_scanned - nr_scanned, sc)); 2292 } 2293 2294 /* Returns true if compaction should go ahead for a high-order request */ 2295 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2296 { 2297 unsigned long balance_gap, watermark; 2298 bool watermark_ok; 2299 2300 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2301 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2302 return false; 2303 2304 /* 2305 * Compaction takes time to run and there are potentially other 2306 * callers using the pages just freed. Continue reclaiming until 2307 * there is a buffer of free pages available to give compaction 2308 * a reasonable chance of completing and allocating the page 2309 */ 2310 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2311 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2312 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2313 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2314 2315 /* 2316 * If compaction is deferred, reclaim up to a point where 2317 * compaction will have a chance of success when re-enabled 2318 */ 2319 if (compaction_deferred(zone, sc->order)) 2320 return watermark_ok; 2321 2322 /* If compaction is not ready to start, keep reclaiming */ 2323 if (!compaction_suitable(zone, sc->order)) 2324 return false; 2325 2326 return watermark_ok; 2327 } 2328 2329 /* 2330 * This is the direct reclaim path, for page-allocating processes. We only 2331 * try to reclaim pages from zones which will satisfy the caller's allocation 2332 * request. 2333 * 2334 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2335 * Because: 2336 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2337 * allocation or 2338 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2339 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2340 * zone defense algorithm. 2341 * 2342 * If a zone is deemed to be full of pinned pages then just give it a light 2343 * scan then give up on it. 2344 * 2345 * This function returns true if a zone is being reclaimed for a costly 2346 * high-order allocation and compaction is ready to begin. This indicates to 2347 * the caller that it should consider retrying the allocation instead of 2348 * further reclaim. 2349 */ 2350 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2351 { 2352 struct zoneref *z; 2353 struct zone *zone; 2354 unsigned long nr_soft_reclaimed; 2355 unsigned long nr_soft_scanned; 2356 unsigned long lru_pages = 0; 2357 bool aborted_reclaim = false; 2358 struct reclaim_state *reclaim_state = current->reclaim_state; 2359 gfp_t orig_mask; 2360 struct shrink_control shrink = { 2361 .gfp_mask = sc->gfp_mask, 2362 }; 2363 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2364 2365 /* 2366 * If the number of buffer_heads in the machine exceeds the maximum 2367 * allowed level, force direct reclaim to scan the highmem zone as 2368 * highmem pages could be pinning lowmem pages storing buffer_heads 2369 */ 2370 orig_mask = sc->gfp_mask; 2371 if (buffer_heads_over_limit) 2372 sc->gfp_mask |= __GFP_HIGHMEM; 2373 2374 nodes_clear(shrink.nodes_to_scan); 2375 2376 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2377 gfp_zone(sc->gfp_mask), sc->nodemask) { 2378 if (!populated_zone(zone)) 2379 continue; 2380 /* 2381 * Take care memory controller reclaiming has small influence 2382 * to global LRU. 2383 */ 2384 if (global_reclaim(sc)) { 2385 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2386 continue; 2387 2388 lru_pages += zone_reclaimable_pages(zone); 2389 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2390 2391 if (sc->priority != DEF_PRIORITY && 2392 !zone_reclaimable(zone)) 2393 continue; /* Let kswapd poll it */ 2394 if (IS_ENABLED(CONFIG_COMPACTION)) { 2395 /* 2396 * If we already have plenty of memory free for 2397 * compaction in this zone, don't free any more. 2398 * Even though compaction is invoked for any 2399 * non-zero order, only frequent costly order 2400 * reclamation is disruptive enough to become a 2401 * noticeable problem, like transparent huge 2402 * page allocations. 2403 */ 2404 if ((zonelist_zone_idx(z) <= requested_highidx) 2405 && compaction_ready(zone, sc)) { 2406 aborted_reclaim = true; 2407 continue; 2408 } 2409 } 2410 /* 2411 * This steals pages from memory cgroups over softlimit 2412 * and returns the number of reclaimed pages and 2413 * scanned pages. This works for global memory pressure 2414 * and balancing, not for a memcg's limit. 2415 */ 2416 nr_soft_scanned = 0; 2417 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2418 sc->order, sc->gfp_mask, 2419 &nr_soft_scanned); 2420 sc->nr_reclaimed += nr_soft_reclaimed; 2421 sc->nr_scanned += nr_soft_scanned; 2422 /* need some check for avoid more shrink_zone() */ 2423 } 2424 2425 shrink_zone(zone, sc); 2426 } 2427 2428 /* 2429 * Don't shrink slabs when reclaiming memory from over limit cgroups 2430 * but do shrink slab at least once when aborting reclaim for 2431 * compaction to avoid unevenly scanning file/anon LRU pages over slab 2432 * pages. 2433 */ 2434 if (global_reclaim(sc)) { 2435 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2436 if (reclaim_state) { 2437 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2438 reclaim_state->reclaimed_slab = 0; 2439 } 2440 } 2441 2442 /* 2443 * Restore to original mask to avoid the impact on the caller if we 2444 * promoted it to __GFP_HIGHMEM. 2445 */ 2446 sc->gfp_mask = orig_mask; 2447 2448 return aborted_reclaim; 2449 } 2450 2451 /* All zones in zonelist are unreclaimable? */ 2452 static bool all_unreclaimable(struct zonelist *zonelist, 2453 struct scan_control *sc) 2454 { 2455 struct zoneref *z; 2456 struct zone *zone; 2457 2458 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2459 gfp_zone(sc->gfp_mask), sc->nodemask) { 2460 if (!populated_zone(zone)) 2461 continue; 2462 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2463 continue; 2464 if (zone_reclaimable(zone)) 2465 return false; 2466 } 2467 2468 return true; 2469 } 2470 2471 /* 2472 * This is the main entry point to direct page reclaim. 2473 * 2474 * If a full scan of the inactive list fails to free enough memory then we 2475 * are "out of memory" and something needs to be killed. 2476 * 2477 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2478 * high - the zone may be full of dirty or under-writeback pages, which this 2479 * caller can't do much about. We kick the writeback threads and take explicit 2480 * naps in the hope that some of these pages can be written. But if the 2481 * allocating task holds filesystem locks which prevent writeout this might not 2482 * work, and the allocation attempt will fail. 2483 * 2484 * returns: 0, if no pages reclaimed 2485 * else, the number of pages reclaimed 2486 */ 2487 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2488 struct scan_control *sc) 2489 { 2490 unsigned long total_scanned = 0; 2491 unsigned long writeback_threshold; 2492 bool aborted_reclaim; 2493 2494 delayacct_freepages_start(); 2495 2496 if (global_reclaim(sc)) 2497 count_vm_event(ALLOCSTALL); 2498 2499 do { 2500 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2501 sc->priority); 2502 sc->nr_scanned = 0; 2503 aborted_reclaim = shrink_zones(zonelist, sc); 2504 2505 total_scanned += sc->nr_scanned; 2506 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2507 goto out; 2508 2509 /* 2510 * If we're getting trouble reclaiming, start doing 2511 * writepage even in laptop mode. 2512 */ 2513 if (sc->priority < DEF_PRIORITY - 2) 2514 sc->may_writepage = 1; 2515 2516 /* 2517 * Try to write back as many pages as we just scanned. This 2518 * tends to cause slow streaming writers to write data to the 2519 * disk smoothly, at the dirtying rate, which is nice. But 2520 * that's undesirable in laptop mode, where we *want* lumpy 2521 * writeout. So in laptop mode, write out the whole world. 2522 */ 2523 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2524 if (total_scanned > writeback_threshold) { 2525 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2526 WB_REASON_TRY_TO_FREE_PAGES); 2527 sc->may_writepage = 1; 2528 } 2529 } while (--sc->priority >= 0 && !aborted_reclaim); 2530 2531 out: 2532 delayacct_freepages_end(); 2533 2534 if (sc->nr_reclaimed) 2535 return sc->nr_reclaimed; 2536 2537 /* 2538 * As hibernation is going on, kswapd is freezed so that it can't mark 2539 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2540 * check. 2541 */ 2542 if (oom_killer_disabled) 2543 return 0; 2544 2545 /* Aborted reclaim to try compaction? don't OOM, then */ 2546 if (aborted_reclaim) 2547 return 1; 2548 2549 /* top priority shrink_zones still had more to do? don't OOM, then */ 2550 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2551 return 1; 2552 2553 return 0; 2554 } 2555 2556 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2557 { 2558 struct zone *zone; 2559 unsigned long pfmemalloc_reserve = 0; 2560 unsigned long free_pages = 0; 2561 int i; 2562 bool wmark_ok; 2563 2564 for (i = 0; i <= ZONE_NORMAL; i++) { 2565 zone = &pgdat->node_zones[i]; 2566 if (!populated_zone(zone)) 2567 continue; 2568 2569 pfmemalloc_reserve += min_wmark_pages(zone); 2570 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2571 } 2572 2573 /* If there are no reserves (unexpected config) then do not throttle */ 2574 if (!pfmemalloc_reserve) 2575 return true; 2576 2577 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2578 2579 /* kswapd must be awake if processes are being throttled */ 2580 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2581 pgdat->classzone_idx = min(pgdat->classzone_idx, 2582 (enum zone_type)ZONE_NORMAL); 2583 wake_up_interruptible(&pgdat->kswapd_wait); 2584 } 2585 2586 return wmark_ok; 2587 } 2588 2589 /* 2590 * Throttle direct reclaimers if backing storage is backed by the network 2591 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2592 * depleted. kswapd will continue to make progress and wake the processes 2593 * when the low watermark is reached. 2594 * 2595 * Returns true if a fatal signal was delivered during throttling. If this 2596 * happens, the page allocator should not consider triggering the OOM killer. 2597 */ 2598 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2599 nodemask_t *nodemask) 2600 { 2601 struct zoneref *z; 2602 struct zone *zone; 2603 pg_data_t *pgdat = NULL; 2604 2605 /* 2606 * Kernel threads should not be throttled as they may be indirectly 2607 * responsible for cleaning pages necessary for reclaim to make forward 2608 * progress. kjournald for example may enter direct reclaim while 2609 * committing a transaction where throttling it could forcing other 2610 * processes to block on log_wait_commit(). 2611 */ 2612 if (current->flags & PF_KTHREAD) 2613 goto out; 2614 2615 /* 2616 * If a fatal signal is pending, this process should not throttle. 2617 * It should return quickly so it can exit and free its memory 2618 */ 2619 if (fatal_signal_pending(current)) 2620 goto out; 2621 2622 /* 2623 * Check if the pfmemalloc reserves are ok by finding the first node 2624 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2625 * GFP_KERNEL will be required for allocating network buffers when 2626 * swapping over the network so ZONE_HIGHMEM is unusable. 2627 * 2628 * Throttling is based on the first usable node and throttled processes 2629 * wait on a queue until kswapd makes progress and wakes them. There 2630 * is an affinity then between processes waking up and where reclaim 2631 * progress has been made assuming the process wakes on the same node. 2632 * More importantly, processes running on remote nodes will not compete 2633 * for remote pfmemalloc reserves and processes on different nodes 2634 * should make reasonable progress. 2635 */ 2636 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2637 gfp_mask, nodemask) { 2638 if (zone_idx(zone) > ZONE_NORMAL) 2639 continue; 2640 2641 /* Throttle based on the first usable node */ 2642 pgdat = zone->zone_pgdat; 2643 if (pfmemalloc_watermark_ok(pgdat)) 2644 goto out; 2645 break; 2646 } 2647 2648 /* If no zone was usable by the allocation flags then do not throttle */ 2649 if (!pgdat) 2650 goto out; 2651 2652 /* Account for the throttling */ 2653 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2654 2655 /* 2656 * If the caller cannot enter the filesystem, it's possible that it 2657 * is due to the caller holding an FS lock or performing a journal 2658 * transaction in the case of a filesystem like ext[3|4]. In this case, 2659 * it is not safe to block on pfmemalloc_wait as kswapd could be 2660 * blocked waiting on the same lock. Instead, throttle for up to a 2661 * second before continuing. 2662 */ 2663 if (!(gfp_mask & __GFP_FS)) { 2664 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2665 pfmemalloc_watermark_ok(pgdat), HZ); 2666 2667 goto check_pending; 2668 } 2669 2670 /* Throttle until kswapd wakes the process */ 2671 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2672 pfmemalloc_watermark_ok(pgdat)); 2673 2674 check_pending: 2675 if (fatal_signal_pending(current)) 2676 return true; 2677 2678 out: 2679 return false; 2680 } 2681 2682 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2683 gfp_t gfp_mask, nodemask_t *nodemask) 2684 { 2685 unsigned long nr_reclaimed; 2686 struct scan_control sc = { 2687 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2688 .may_writepage = !laptop_mode, 2689 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2690 .may_unmap = 1, 2691 .may_swap = 1, 2692 .order = order, 2693 .priority = DEF_PRIORITY, 2694 .target_mem_cgroup = NULL, 2695 .nodemask = nodemask, 2696 }; 2697 2698 /* 2699 * Do not enter reclaim if fatal signal was delivered while throttled. 2700 * 1 is returned so that the page allocator does not OOM kill at this 2701 * point. 2702 */ 2703 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2704 return 1; 2705 2706 trace_mm_vmscan_direct_reclaim_begin(order, 2707 sc.may_writepage, 2708 gfp_mask); 2709 2710 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2711 2712 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2713 2714 return nr_reclaimed; 2715 } 2716 2717 #ifdef CONFIG_MEMCG 2718 2719 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2720 gfp_t gfp_mask, bool noswap, 2721 struct zone *zone, 2722 unsigned long *nr_scanned) 2723 { 2724 struct scan_control sc = { 2725 .nr_scanned = 0, 2726 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2727 .may_writepage = !laptop_mode, 2728 .may_unmap = 1, 2729 .may_swap = !noswap, 2730 .order = 0, 2731 .priority = 0, 2732 .swappiness = mem_cgroup_swappiness(memcg), 2733 .target_mem_cgroup = memcg, 2734 }; 2735 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2736 2737 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2738 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2739 2740 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2741 sc.may_writepage, 2742 sc.gfp_mask); 2743 2744 /* 2745 * NOTE: Although we can get the priority field, using it 2746 * here is not a good idea, since it limits the pages we can scan. 2747 * if we don't reclaim here, the shrink_zone from balance_pgdat 2748 * will pick up pages from other mem cgroup's as well. We hack 2749 * the priority and make it zero. 2750 */ 2751 shrink_lruvec(lruvec, &sc); 2752 2753 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2754 2755 *nr_scanned = sc.nr_scanned; 2756 return sc.nr_reclaimed; 2757 } 2758 2759 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2760 gfp_t gfp_mask, 2761 bool noswap) 2762 { 2763 struct zonelist *zonelist; 2764 unsigned long nr_reclaimed; 2765 int nid; 2766 struct scan_control sc = { 2767 .may_writepage = !laptop_mode, 2768 .may_unmap = 1, 2769 .may_swap = !noswap, 2770 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2771 .order = 0, 2772 .priority = DEF_PRIORITY, 2773 .target_mem_cgroup = memcg, 2774 .nodemask = NULL, /* we don't care the placement */ 2775 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2776 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2777 }; 2778 2779 /* 2780 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2781 * take care of from where we get pages. So the node where we start the 2782 * scan does not need to be the current node. 2783 */ 2784 nid = mem_cgroup_select_victim_node(memcg); 2785 2786 zonelist = NODE_DATA(nid)->node_zonelists; 2787 2788 trace_mm_vmscan_memcg_reclaim_begin(0, 2789 sc.may_writepage, 2790 sc.gfp_mask); 2791 2792 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2793 2794 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2795 2796 return nr_reclaimed; 2797 } 2798 #endif 2799 2800 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2801 { 2802 struct mem_cgroup *memcg; 2803 2804 if (!total_swap_pages) 2805 return; 2806 2807 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2808 do { 2809 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2810 2811 if (inactive_anon_is_low(lruvec)) 2812 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2813 sc, LRU_ACTIVE_ANON); 2814 2815 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2816 } while (memcg); 2817 } 2818 2819 static bool zone_balanced(struct zone *zone, int order, 2820 unsigned long balance_gap, int classzone_idx) 2821 { 2822 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2823 balance_gap, classzone_idx, 0)) 2824 return false; 2825 2826 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2827 !compaction_suitable(zone, order)) 2828 return false; 2829 2830 return true; 2831 } 2832 2833 /* 2834 * pgdat_balanced() is used when checking if a node is balanced. 2835 * 2836 * For order-0, all zones must be balanced! 2837 * 2838 * For high-order allocations only zones that meet watermarks and are in a 2839 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2840 * total of balanced pages must be at least 25% of the zones allowed by 2841 * classzone_idx for the node to be considered balanced. Forcing all zones to 2842 * be balanced for high orders can cause excessive reclaim when there are 2843 * imbalanced zones. 2844 * The choice of 25% is due to 2845 * o a 16M DMA zone that is balanced will not balance a zone on any 2846 * reasonable sized machine 2847 * o On all other machines, the top zone must be at least a reasonable 2848 * percentage of the middle zones. For example, on 32-bit x86, highmem 2849 * would need to be at least 256M for it to be balance a whole node. 2850 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2851 * to balance a node on its own. These seemed like reasonable ratios. 2852 */ 2853 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2854 { 2855 unsigned long managed_pages = 0; 2856 unsigned long balanced_pages = 0; 2857 int i; 2858 2859 /* Check the watermark levels */ 2860 for (i = 0; i <= classzone_idx; i++) { 2861 struct zone *zone = pgdat->node_zones + i; 2862 2863 if (!populated_zone(zone)) 2864 continue; 2865 2866 managed_pages += zone->managed_pages; 2867 2868 /* 2869 * A special case here: 2870 * 2871 * balance_pgdat() skips over all_unreclaimable after 2872 * DEF_PRIORITY. Effectively, it considers them balanced so 2873 * they must be considered balanced here as well! 2874 */ 2875 if (!zone_reclaimable(zone)) { 2876 balanced_pages += zone->managed_pages; 2877 continue; 2878 } 2879 2880 if (zone_balanced(zone, order, 0, i)) 2881 balanced_pages += zone->managed_pages; 2882 else if (!order) 2883 return false; 2884 } 2885 2886 if (order) 2887 return balanced_pages >= (managed_pages >> 2); 2888 else 2889 return true; 2890 } 2891 2892 /* 2893 * Prepare kswapd for sleeping. This verifies that there are no processes 2894 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2895 * 2896 * Returns true if kswapd is ready to sleep 2897 */ 2898 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2899 int classzone_idx) 2900 { 2901 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2902 if (remaining) 2903 return false; 2904 2905 /* 2906 * There is a potential race between when kswapd checks its watermarks 2907 * and a process gets throttled. There is also a potential race if 2908 * processes get throttled, kswapd wakes, a large process exits therby 2909 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2910 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2911 * so wake them now if necessary. If necessary, processes will wake 2912 * kswapd and get throttled again 2913 */ 2914 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2915 wake_up(&pgdat->pfmemalloc_wait); 2916 return false; 2917 } 2918 2919 return pgdat_balanced(pgdat, order, classzone_idx); 2920 } 2921 2922 /* 2923 * kswapd shrinks the zone by the number of pages required to reach 2924 * the high watermark. 2925 * 2926 * Returns true if kswapd scanned at least the requested number of pages to 2927 * reclaim or if the lack of progress was due to pages under writeback. 2928 * This is used to determine if the scanning priority needs to be raised. 2929 */ 2930 static bool kswapd_shrink_zone(struct zone *zone, 2931 int classzone_idx, 2932 struct scan_control *sc, 2933 unsigned long lru_pages, 2934 unsigned long *nr_attempted) 2935 { 2936 int testorder = sc->order; 2937 unsigned long balance_gap; 2938 struct reclaim_state *reclaim_state = current->reclaim_state; 2939 struct shrink_control shrink = { 2940 .gfp_mask = sc->gfp_mask, 2941 }; 2942 bool lowmem_pressure; 2943 2944 /* Reclaim above the high watermark. */ 2945 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2946 2947 /* 2948 * Kswapd reclaims only single pages with compaction enabled. Trying 2949 * too hard to reclaim until contiguous free pages have become 2950 * available can hurt performance by evicting too much useful data 2951 * from memory. Do not reclaim more than needed for compaction. 2952 */ 2953 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2954 compaction_suitable(zone, sc->order) != 2955 COMPACT_SKIPPED) 2956 testorder = 0; 2957 2958 /* 2959 * We put equal pressure on every zone, unless one zone has way too 2960 * many pages free already. The "too many pages" is defined as the 2961 * high wmark plus a "gap" where the gap is either the low 2962 * watermark or 1% of the zone, whichever is smaller. 2963 */ 2964 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2965 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2966 2967 /* 2968 * If there is no low memory pressure or the zone is balanced then no 2969 * reclaim is necessary 2970 */ 2971 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2972 if (!lowmem_pressure && zone_balanced(zone, testorder, 2973 balance_gap, classzone_idx)) 2974 return true; 2975 2976 shrink_zone(zone, sc); 2977 nodes_clear(shrink.nodes_to_scan); 2978 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2979 2980 reclaim_state->reclaimed_slab = 0; 2981 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2982 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2983 2984 /* Account for the number of pages attempted to reclaim */ 2985 *nr_attempted += sc->nr_to_reclaim; 2986 2987 zone_clear_flag(zone, ZONE_WRITEBACK); 2988 2989 /* 2990 * If a zone reaches its high watermark, consider it to be no longer 2991 * congested. It's possible there are dirty pages backed by congested 2992 * BDIs but as pressure is relieved, speculatively avoid congestion 2993 * waits. 2994 */ 2995 if (zone_reclaimable(zone) && 2996 zone_balanced(zone, testorder, 0, classzone_idx)) { 2997 zone_clear_flag(zone, ZONE_CONGESTED); 2998 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2999 } 3000 3001 return sc->nr_scanned >= sc->nr_to_reclaim; 3002 } 3003 3004 /* 3005 * For kswapd, balance_pgdat() will work across all this node's zones until 3006 * they are all at high_wmark_pages(zone). 3007 * 3008 * Returns the final order kswapd was reclaiming at 3009 * 3010 * There is special handling here for zones which are full of pinned pages. 3011 * This can happen if the pages are all mlocked, or if they are all used by 3012 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3013 * What we do is to detect the case where all pages in the zone have been 3014 * scanned twice and there has been zero successful reclaim. Mark the zone as 3015 * dead and from now on, only perform a short scan. Basically we're polling 3016 * the zone for when the problem goes away. 3017 * 3018 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3019 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3020 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3021 * lower zones regardless of the number of free pages in the lower zones. This 3022 * interoperates with the page allocator fallback scheme to ensure that aging 3023 * of pages is balanced across the zones. 3024 */ 3025 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3026 int *classzone_idx) 3027 { 3028 int i; 3029 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3030 unsigned long nr_soft_reclaimed; 3031 unsigned long nr_soft_scanned; 3032 struct scan_control sc = { 3033 .gfp_mask = GFP_KERNEL, 3034 .priority = DEF_PRIORITY, 3035 .may_unmap = 1, 3036 .may_swap = 1, 3037 .may_writepage = !laptop_mode, 3038 .order = order, 3039 .target_mem_cgroup = NULL, 3040 }; 3041 count_vm_event(PAGEOUTRUN); 3042 3043 do { 3044 unsigned long lru_pages = 0; 3045 unsigned long nr_attempted = 0; 3046 bool raise_priority = true; 3047 bool pgdat_needs_compaction = (order > 0); 3048 3049 sc.nr_reclaimed = 0; 3050 3051 /* 3052 * Scan in the highmem->dma direction for the highest 3053 * zone which needs scanning 3054 */ 3055 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3056 struct zone *zone = pgdat->node_zones + i; 3057 3058 if (!populated_zone(zone)) 3059 continue; 3060 3061 if (sc.priority != DEF_PRIORITY && 3062 !zone_reclaimable(zone)) 3063 continue; 3064 3065 /* 3066 * Do some background aging of the anon list, to give 3067 * pages a chance to be referenced before reclaiming. 3068 */ 3069 age_active_anon(zone, &sc); 3070 3071 /* 3072 * If the number of buffer_heads in the machine 3073 * exceeds the maximum allowed level and this node 3074 * has a highmem zone, force kswapd to reclaim from 3075 * it to relieve lowmem pressure. 3076 */ 3077 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3078 end_zone = i; 3079 break; 3080 } 3081 3082 if (!zone_balanced(zone, order, 0, 0)) { 3083 end_zone = i; 3084 break; 3085 } else { 3086 /* 3087 * If balanced, clear the dirty and congested 3088 * flags 3089 */ 3090 zone_clear_flag(zone, ZONE_CONGESTED); 3091 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 3092 } 3093 } 3094 3095 if (i < 0) 3096 goto out; 3097 3098 for (i = 0; i <= end_zone; i++) { 3099 struct zone *zone = pgdat->node_zones + i; 3100 3101 if (!populated_zone(zone)) 3102 continue; 3103 3104 lru_pages += zone_reclaimable_pages(zone); 3105 3106 /* 3107 * If any zone is currently balanced then kswapd will 3108 * not call compaction as it is expected that the 3109 * necessary pages are already available. 3110 */ 3111 if (pgdat_needs_compaction && 3112 zone_watermark_ok(zone, order, 3113 low_wmark_pages(zone), 3114 *classzone_idx, 0)) 3115 pgdat_needs_compaction = false; 3116 } 3117 3118 /* 3119 * If we're getting trouble reclaiming, start doing writepage 3120 * even in laptop mode. 3121 */ 3122 if (sc.priority < DEF_PRIORITY - 2) 3123 sc.may_writepage = 1; 3124 3125 /* 3126 * Now scan the zone in the dma->highmem direction, stopping 3127 * at the last zone which needs scanning. 3128 * 3129 * We do this because the page allocator works in the opposite 3130 * direction. This prevents the page allocator from allocating 3131 * pages behind kswapd's direction of progress, which would 3132 * cause too much scanning of the lower zones. 3133 */ 3134 for (i = 0; i <= end_zone; i++) { 3135 struct zone *zone = pgdat->node_zones + i; 3136 3137 if (!populated_zone(zone)) 3138 continue; 3139 3140 if (sc.priority != DEF_PRIORITY && 3141 !zone_reclaimable(zone)) 3142 continue; 3143 3144 sc.nr_scanned = 0; 3145 3146 nr_soft_scanned = 0; 3147 /* 3148 * Call soft limit reclaim before calling shrink_zone. 3149 */ 3150 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3151 order, sc.gfp_mask, 3152 &nr_soft_scanned); 3153 sc.nr_reclaimed += nr_soft_reclaimed; 3154 3155 /* 3156 * There should be no need to raise the scanning 3157 * priority if enough pages are already being scanned 3158 * that that high watermark would be met at 100% 3159 * efficiency. 3160 */ 3161 if (kswapd_shrink_zone(zone, end_zone, &sc, 3162 lru_pages, &nr_attempted)) 3163 raise_priority = false; 3164 } 3165 3166 /* 3167 * If the low watermark is met there is no need for processes 3168 * to be throttled on pfmemalloc_wait as they should not be 3169 * able to safely make forward progress. Wake them 3170 */ 3171 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3172 pfmemalloc_watermark_ok(pgdat)) 3173 wake_up(&pgdat->pfmemalloc_wait); 3174 3175 /* 3176 * Fragmentation may mean that the system cannot be rebalanced 3177 * for high-order allocations in all zones. If twice the 3178 * allocation size has been reclaimed and the zones are still 3179 * not balanced then recheck the watermarks at order-0 to 3180 * prevent kswapd reclaiming excessively. Assume that a 3181 * process requested a high-order can direct reclaim/compact. 3182 */ 3183 if (order && sc.nr_reclaimed >= 2UL << order) 3184 order = sc.order = 0; 3185 3186 /* Check if kswapd should be suspending */ 3187 if (try_to_freeze() || kthread_should_stop()) 3188 break; 3189 3190 /* 3191 * Compact if necessary and kswapd is reclaiming at least the 3192 * high watermark number of pages as requsted 3193 */ 3194 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3195 compact_pgdat(pgdat, order); 3196 3197 /* 3198 * Raise priority if scanning rate is too low or there was no 3199 * progress in reclaiming pages 3200 */ 3201 if (raise_priority || !sc.nr_reclaimed) 3202 sc.priority--; 3203 } while (sc.priority >= 1 && 3204 !pgdat_balanced(pgdat, order, *classzone_idx)); 3205 3206 out: 3207 /* 3208 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3209 * makes a decision on the order we were last reclaiming at. However, 3210 * if another caller entered the allocator slow path while kswapd 3211 * was awake, order will remain at the higher level 3212 */ 3213 *classzone_idx = end_zone; 3214 return order; 3215 } 3216 3217 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3218 { 3219 long remaining = 0; 3220 DEFINE_WAIT(wait); 3221 3222 if (freezing(current) || kthread_should_stop()) 3223 return; 3224 3225 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3226 3227 /* Try to sleep for a short interval */ 3228 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3229 remaining = schedule_timeout(HZ/10); 3230 finish_wait(&pgdat->kswapd_wait, &wait); 3231 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3232 } 3233 3234 /* 3235 * After a short sleep, check if it was a premature sleep. If not, then 3236 * go fully to sleep until explicitly woken up. 3237 */ 3238 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3239 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3240 3241 /* 3242 * vmstat counters are not perfectly accurate and the estimated 3243 * value for counters such as NR_FREE_PAGES can deviate from the 3244 * true value by nr_online_cpus * threshold. To avoid the zone 3245 * watermarks being breached while under pressure, we reduce the 3246 * per-cpu vmstat threshold while kswapd is awake and restore 3247 * them before going back to sleep. 3248 */ 3249 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3250 3251 /* 3252 * Compaction records what page blocks it recently failed to 3253 * isolate pages from and skips them in the future scanning. 3254 * When kswapd is going to sleep, it is reasonable to assume 3255 * that pages and compaction may succeed so reset the cache. 3256 */ 3257 reset_isolation_suitable(pgdat); 3258 3259 if (!kthread_should_stop()) 3260 schedule(); 3261 3262 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3263 } else { 3264 if (remaining) 3265 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3266 else 3267 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3268 } 3269 finish_wait(&pgdat->kswapd_wait, &wait); 3270 } 3271 3272 /* 3273 * The background pageout daemon, started as a kernel thread 3274 * from the init process. 3275 * 3276 * This basically trickles out pages so that we have _some_ 3277 * free memory available even if there is no other activity 3278 * that frees anything up. This is needed for things like routing 3279 * etc, where we otherwise might have all activity going on in 3280 * asynchronous contexts that cannot page things out. 3281 * 3282 * If there are applications that are active memory-allocators 3283 * (most normal use), this basically shouldn't matter. 3284 */ 3285 static int kswapd(void *p) 3286 { 3287 unsigned long order, new_order; 3288 unsigned balanced_order; 3289 int classzone_idx, new_classzone_idx; 3290 int balanced_classzone_idx; 3291 pg_data_t *pgdat = (pg_data_t*)p; 3292 struct task_struct *tsk = current; 3293 3294 struct reclaim_state reclaim_state = { 3295 .reclaimed_slab = 0, 3296 }; 3297 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3298 3299 lockdep_set_current_reclaim_state(GFP_KERNEL); 3300 3301 if (!cpumask_empty(cpumask)) 3302 set_cpus_allowed_ptr(tsk, cpumask); 3303 current->reclaim_state = &reclaim_state; 3304 3305 /* 3306 * Tell the memory management that we're a "memory allocator", 3307 * and that if we need more memory we should get access to it 3308 * regardless (see "__alloc_pages()"). "kswapd" should 3309 * never get caught in the normal page freeing logic. 3310 * 3311 * (Kswapd normally doesn't need memory anyway, but sometimes 3312 * you need a small amount of memory in order to be able to 3313 * page out something else, and this flag essentially protects 3314 * us from recursively trying to free more memory as we're 3315 * trying to free the first piece of memory in the first place). 3316 */ 3317 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3318 set_freezable(); 3319 3320 order = new_order = 0; 3321 balanced_order = 0; 3322 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3323 balanced_classzone_idx = classzone_idx; 3324 for ( ; ; ) { 3325 bool ret; 3326 3327 /* 3328 * If the last balance_pgdat was unsuccessful it's unlikely a 3329 * new request of a similar or harder type will succeed soon 3330 * so consider going to sleep on the basis we reclaimed at 3331 */ 3332 if (balanced_classzone_idx >= new_classzone_idx && 3333 balanced_order == new_order) { 3334 new_order = pgdat->kswapd_max_order; 3335 new_classzone_idx = pgdat->classzone_idx; 3336 pgdat->kswapd_max_order = 0; 3337 pgdat->classzone_idx = pgdat->nr_zones - 1; 3338 } 3339 3340 if (order < new_order || classzone_idx > new_classzone_idx) { 3341 /* 3342 * Don't sleep if someone wants a larger 'order' 3343 * allocation or has tigher zone constraints 3344 */ 3345 order = new_order; 3346 classzone_idx = new_classzone_idx; 3347 } else { 3348 kswapd_try_to_sleep(pgdat, balanced_order, 3349 balanced_classzone_idx); 3350 order = pgdat->kswapd_max_order; 3351 classzone_idx = pgdat->classzone_idx; 3352 new_order = order; 3353 new_classzone_idx = classzone_idx; 3354 pgdat->kswapd_max_order = 0; 3355 pgdat->classzone_idx = pgdat->nr_zones - 1; 3356 } 3357 3358 ret = try_to_freeze(); 3359 if (kthread_should_stop()) 3360 break; 3361 3362 /* 3363 * We can speed up thawing tasks if we don't call balance_pgdat 3364 * after returning from the refrigerator 3365 */ 3366 if (!ret) { 3367 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3368 balanced_classzone_idx = classzone_idx; 3369 balanced_order = balance_pgdat(pgdat, order, 3370 &balanced_classzone_idx); 3371 } 3372 } 3373 3374 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3375 current->reclaim_state = NULL; 3376 lockdep_clear_current_reclaim_state(); 3377 3378 return 0; 3379 } 3380 3381 /* 3382 * A zone is low on free memory, so wake its kswapd task to service it. 3383 */ 3384 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3385 { 3386 pg_data_t *pgdat; 3387 3388 if (!populated_zone(zone)) 3389 return; 3390 3391 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3392 return; 3393 pgdat = zone->zone_pgdat; 3394 if (pgdat->kswapd_max_order < order) { 3395 pgdat->kswapd_max_order = order; 3396 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3397 } 3398 if (!waitqueue_active(&pgdat->kswapd_wait)) 3399 return; 3400 if (zone_balanced(zone, order, 0, 0)) 3401 return; 3402 3403 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3404 wake_up_interruptible(&pgdat->kswapd_wait); 3405 } 3406 3407 #ifdef CONFIG_HIBERNATION 3408 /* 3409 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3410 * freed pages. 3411 * 3412 * Rather than trying to age LRUs the aim is to preserve the overall 3413 * LRU order by reclaiming preferentially 3414 * inactive > active > active referenced > active mapped 3415 */ 3416 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3417 { 3418 struct reclaim_state reclaim_state; 3419 struct scan_control sc = { 3420 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3421 .may_swap = 1, 3422 .may_unmap = 1, 3423 .may_writepage = 1, 3424 .nr_to_reclaim = nr_to_reclaim, 3425 .hibernation_mode = 1, 3426 .order = 0, 3427 .priority = DEF_PRIORITY, 3428 }; 3429 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3430 struct task_struct *p = current; 3431 unsigned long nr_reclaimed; 3432 3433 p->flags |= PF_MEMALLOC; 3434 lockdep_set_current_reclaim_state(sc.gfp_mask); 3435 reclaim_state.reclaimed_slab = 0; 3436 p->reclaim_state = &reclaim_state; 3437 3438 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3439 3440 p->reclaim_state = NULL; 3441 lockdep_clear_current_reclaim_state(); 3442 p->flags &= ~PF_MEMALLOC; 3443 3444 return nr_reclaimed; 3445 } 3446 #endif /* CONFIG_HIBERNATION */ 3447 3448 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3449 not required for correctness. So if the last cpu in a node goes 3450 away, we get changed to run anywhere: as the first one comes back, 3451 restore their cpu bindings. */ 3452 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3453 void *hcpu) 3454 { 3455 int nid; 3456 3457 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3458 for_each_node_state(nid, N_MEMORY) { 3459 pg_data_t *pgdat = NODE_DATA(nid); 3460 const struct cpumask *mask; 3461 3462 mask = cpumask_of_node(pgdat->node_id); 3463 3464 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3465 /* One of our CPUs online: restore mask */ 3466 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3467 } 3468 } 3469 return NOTIFY_OK; 3470 } 3471 3472 /* 3473 * This kswapd start function will be called by init and node-hot-add. 3474 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3475 */ 3476 int kswapd_run(int nid) 3477 { 3478 pg_data_t *pgdat = NODE_DATA(nid); 3479 int ret = 0; 3480 3481 if (pgdat->kswapd) 3482 return 0; 3483 3484 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3485 if (IS_ERR(pgdat->kswapd)) { 3486 /* failure at boot is fatal */ 3487 BUG_ON(system_state == SYSTEM_BOOTING); 3488 pr_err("Failed to start kswapd on node %d\n", nid); 3489 ret = PTR_ERR(pgdat->kswapd); 3490 pgdat->kswapd = NULL; 3491 } 3492 return ret; 3493 } 3494 3495 /* 3496 * Called by memory hotplug when all memory in a node is offlined. Caller must 3497 * hold mem_hotplug_begin/end(). 3498 */ 3499 void kswapd_stop(int nid) 3500 { 3501 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3502 3503 if (kswapd) { 3504 kthread_stop(kswapd); 3505 NODE_DATA(nid)->kswapd = NULL; 3506 } 3507 } 3508 3509 static int __init kswapd_init(void) 3510 { 3511 int nid; 3512 3513 swap_setup(); 3514 for_each_node_state(nid, N_MEMORY) 3515 kswapd_run(nid); 3516 hotcpu_notifier(cpu_callback, 0); 3517 return 0; 3518 } 3519 3520 module_init(kswapd_init) 3521 3522 #ifdef CONFIG_NUMA 3523 /* 3524 * Zone reclaim mode 3525 * 3526 * If non-zero call zone_reclaim when the number of free pages falls below 3527 * the watermarks. 3528 */ 3529 int zone_reclaim_mode __read_mostly; 3530 3531 #define RECLAIM_OFF 0 3532 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3533 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3534 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3535 3536 /* 3537 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3538 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3539 * a zone. 3540 */ 3541 #define ZONE_RECLAIM_PRIORITY 4 3542 3543 /* 3544 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3545 * occur. 3546 */ 3547 int sysctl_min_unmapped_ratio = 1; 3548 3549 /* 3550 * If the number of slab pages in a zone grows beyond this percentage then 3551 * slab reclaim needs to occur. 3552 */ 3553 int sysctl_min_slab_ratio = 5; 3554 3555 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3556 { 3557 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3558 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3559 zone_page_state(zone, NR_ACTIVE_FILE); 3560 3561 /* 3562 * It's possible for there to be more file mapped pages than 3563 * accounted for by the pages on the file LRU lists because 3564 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3565 */ 3566 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3567 } 3568 3569 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3570 static long zone_pagecache_reclaimable(struct zone *zone) 3571 { 3572 long nr_pagecache_reclaimable; 3573 long delta = 0; 3574 3575 /* 3576 * If RECLAIM_SWAP is set, then all file pages are considered 3577 * potentially reclaimable. Otherwise, we have to worry about 3578 * pages like swapcache and zone_unmapped_file_pages() provides 3579 * a better estimate 3580 */ 3581 if (zone_reclaim_mode & RECLAIM_SWAP) 3582 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3583 else 3584 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3585 3586 /* If we can't clean pages, remove dirty pages from consideration */ 3587 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3588 delta += zone_page_state(zone, NR_FILE_DIRTY); 3589 3590 /* Watch for any possible underflows due to delta */ 3591 if (unlikely(delta > nr_pagecache_reclaimable)) 3592 delta = nr_pagecache_reclaimable; 3593 3594 return nr_pagecache_reclaimable - delta; 3595 } 3596 3597 /* 3598 * Try to free up some pages from this zone through reclaim. 3599 */ 3600 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3601 { 3602 /* Minimum pages needed in order to stay on node */ 3603 const unsigned long nr_pages = 1 << order; 3604 struct task_struct *p = current; 3605 struct reclaim_state reclaim_state; 3606 struct scan_control sc = { 3607 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3608 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3609 .may_swap = 1, 3610 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3611 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3612 .order = order, 3613 .priority = ZONE_RECLAIM_PRIORITY, 3614 }; 3615 struct shrink_control shrink = { 3616 .gfp_mask = sc.gfp_mask, 3617 }; 3618 unsigned long nr_slab_pages0, nr_slab_pages1; 3619 3620 cond_resched(); 3621 /* 3622 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3623 * and we also need to be able to write out pages for RECLAIM_WRITE 3624 * and RECLAIM_SWAP. 3625 */ 3626 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3627 lockdep_set_current_reclaim_state(gfp_mask); 3628 reclaim_state.reclaimed_slab = 0; 3629 p->reclaim_state = &reclaim_state; 3630 3631 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3632 /* 3633 * Free memory by calling shrink zone with increasing 3634 * priorities until we have enough memory freed. 3635 */ 3636 do { 3637 shrink_zone(zone, &sc); 3638 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3639 } 3640 3641 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3642 if (nr_slab_pages0 > zone->min_slab_pages) { 3643 /* 3644 * shrink_slab() does not currently allow us to determine how 3645 * many pages were freed in this zone. So we take the current 3646 * number of slab pages and shake the slab until it is reduced 3647 * by the same nr_pages that we used for reclaiming unmapped 3648 * pages. 3649 */ 3650 nodes_clear(shrink.nodes_to_scan); 3651 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3652 for (;;) { 3653 unsigned long lru_pages = zone_reclaimable_pages(zone); 3654 3655 /* No reclaimable slab or very low memory pressure */ 3656 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3657 break; 3658 3659 /* Freed enough memory */ 3660 nr_slab_pages1 = zone_page_state(zone, 3661 NR_SLAB_RECLAIMABLE); 3662 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3663 break; 3664 } 3665 3666 /* 3667 * Update nr_reclaimed by the number of slab pages we 3668 * reclaimed from this zone. 3669 */ 3670 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3671 if (nr_slab_pages1 < nr_slab_pages0) 3672 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3673 } 3674 3675 p->reclaim_state = NULL; 3676 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3677 lockdep_clear_current_reclaim_state(); 3678 return sc.nr_reclaimed >= nr_pages; 3679 } 3680 3681 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3682 { 3683 int node_id; 3684 int ret; 3685 3686 /* 3687 * Zone reclaim reclaims unmapped file backed pages and 3688 * slab pages if we are over the defined limits. 3689 * 3690 * A small portion of unmapped file backed pages is needed for 3691 * file I/O otherwise pages read by file I/O will be immediately 3692 * thrown out if the zone is overallocated. So we do not reclaim 3693 * if less than a specified percentage of the zone is used by 3694 * unmapped file backed pages. 3695 */ 3696 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3697 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3698 return ZONE_RECLAIM_FULL; 3699 3700 if (!zone_reclaimable(zone)) 3701 return ZONE_RECLAIM_FULL; 3702 3703 /* 3704 * Do not scan if the allocation should not be delayed. 3705 */ 3706 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3707 return ZONE_RECLAIM_NOSCAN; 3708 3709 /* 3710 * Only run zone reclaim on the local zone or on zones that do not 3711 * have associated processors. This will favor the local processor 3712 * over remote processors and spread off node memory allocations 3713 * as wide as possible. 3714 */ 3715 node_id = zone_to_nid(zone); 3716 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3717 return ZONE_RECLAIM_NOSCAN; 3718 3719 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3720 return ZONE_RECLAIM_NOSCAN; 3721 3722 ret = __zone_reclaim(zone, gfp_mask, order); 3723 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3724 3725 if (!ret) 3726 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3727 3728 return ret; 3729 } 3730 #endif 3731 3732 /* 3733 * page_evictable - test whether a page is evictable 3734 * @page: the page to test 3735 * 3736 * Test whether page is evictable--i.e., should be placed on active/inactive 3737 * lists vs unevictable list. 3738 * 3739 * Reasons page might not be evictable: 3740 * (1) page's mapping marked unevictable 3741 * (2) page is part of an mlocked VMA 3742 * 3743 */ 3744 int page_evictable(struct page *page) 3745 { 3746 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3747 } 3748 3749 #ifdef CONFIG_SHMEM 3750 /** 3751 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3752 * @pages: array of pages to check 3753 * @nr_pages: number of pages to check 3754 * 3755 * Checks pages for evictability and moves them to the appropriate lru list. 3756 * 3757 * This function is only used for SysV IPC SHM_UNLOCK. 3758 */ 3759 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3760 { 3761 struct lruvec *lruvec; 3762 struct zone *zone = NULL; 3763 int pgscanned = 0; 3764 int pgrescued = 0; 3765 int i; 3766 3767 for (i = 0; i < nr_pages; i++) { 3768 struct page *page = pages[i]; 3769 struct zone *pagezone; 3770 3771 pgscanned++; 3772 pagezone = page_zone(page); 3773 if (pagezone != zone) { 3774 if (zone) 3775 spin_unlock_irq(&zone->lru_lock); 3776 zone = pagezone; 3777 spin_lock_irq(&zone->lru_lock); 3778 } 3779 lruvec = mem_cgroup_page_lruvec(page, zone); 3780 3781 if (!PageLRU(page) || !PageUnevictable(page)) 3782 continue; 3783 3784 if (page_evictable(page)) { 3785 enum lru_list lru = page_lru_base_type(page); 3786 3787 VM_BUG_ON_PAGE(PageActive(page), page); 3788 ClearPageUnevictable(page); 3789 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3790 add_page_to_lru_list(page, lruvec, lru); 3791 pgrescued++; 3792 } 3793 } 3794 3795 if (zone) { 3796 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3797 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3798 spin_unlock_irq(&zone->lru_lock); 3799 } 3800 } 3801 #endif /* CONFIG_SHMEM */ 3802 3803 static void warn_scan_unevictable_pages(void) 3804 { 3805 printk_once(KERN_WARNING 3806 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3807 "disabled for lack of a legitimate use case. If you have " 3808 "one, please send an email to linux-mm@kvack.org.\n", 3809 current->comm); 3810 } 3811 3812 /* 3813 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3814 * all nodes' unevictable lists for evictable pages 3815 */ 3816 unsigned long scan_unevictable_pages; 3817 3818 int scan_unevictable_handler(struct ctl_table *table, int write, 3819 void __user *buffer, 3820 size_t *length, loff_t *ppos) 3821 { 3822 warn_scan_unevictable_pages(); 3823 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3824 scan_unevictable_pages = 0; 3825 return 0; 3826 } 3827 3828 #ifdef CONFIG_NUMA 3829 /* 3830 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3831 * a specified node's per zone unevictable lists for evictable pages. 3832 */ 3833 3834 static ssize_t read_scan_unevictable_node(struct device *dev, 3835 struct device_attribute *attr, 3836 char *buf) 3837 { 3838 warn_scan_unevictable_pages(); 3839 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3840 } 3841 3842 static ssize_t write_scan_unevictable_node(struct device *dev, 3843 struct device_attribute *attr, 3844 const char *buf, size_t count) 3845 { 3846 warn_scan_unevictable_pages(); 3847 return 1; 3848 } 3849 3850 3851 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3852 read_scan_unevictable_node, 3853 write_scan_unevictable_node); 3854 3855 int scan_unevictable_register_node(struct node *node) 3856 { 3857 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3858 } 3859 3860 void scan_unevictable_unregister_node(struct node *node) 3861 { 3862 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3863 } 3864 #endif 3865