xref: /openbmc/linux/mm/vmscan.c (revision d2999e1b)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* Incremented by the number of inactive pages that were scanned */
63 	unsigned long nr_scanned;
64 
65 	/* Number of pages freed so far during a call to shrink_zones() */
66 	unsigned long nr_reclaimed;
67 
68 	/* How many pages shrink_list() should reclaim */
69 	unsigned long nr_to_reclaim;
70 
71 	unsigned long hibernation_mode;
72 
73 	/* This context's GFP mask */
74 	gfp_t gfp_mask;
75 
76 	int may_writepage;
77 
78 	/* Can mapped pages be reclaimed? */
79 	int may_unmap;
80 
81 	/* Can pages be swapped as part of reclaim? */
82 	int may_swap;
83 
84 	int order;
85 
86 	/* Scan (total_size >> priority) pages at once */
87 	int priority;
88 
89 	/* anon vs. file LRUs scanning "ratio" */
90 	int swappiness;
91 
92 	/*
93 	 * The memory cgroup that hit its limit and as a result is the
94 	 * primary target of this reclaim invocation.
95 	 */
96 	struct mem_cgroup *target_mem_cgroup;
97 
98 	/*
99 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
100 	 * are scanned.
101 	 */
102 	nodemask_t	*nodemask;
103 };
104 
105 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
106 
107 #ifdef ARCH_HAS_PREFETCH
108 #define prefetch_prev_lru_page(_page, _base, _field)			\
109 	do {								\
110 		if ((_page)->lru.prev != _base) {			\
111 			struct page *prev;				\
112 									\
113 			prev = lru_to_page(&(_page->lru));		\
114 			prefetch(&prev->_field);			\
115 		}							\
116 	} while (0)
117 #else
118 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
119 #endif
120 
121 #ifdef ARCH_HAS_PREFETCHW
122 #define prefetchw_prev_lru_page(_page, _base, _field)			\
123 	do {								\
124 		if ((_page)->lru.prev != _base) {			\
125 			struct page *prev;				\
126 									\
127 			prev = lru_to_page(&(_page->lru));		\
128 			prefetchw(&prev->_field);			\
129 		}							\
130 	} while (0)
131 #else
132 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134 
135 /*
136  * From 0 .. 100.  Higher means more swappy.
137  */
138 int vm_swappiness = 60;
139 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
140 
141 static LIST_HEAD(shrinker_list);
142 static DECLARE_RWSEM(shrinker_rwsem);
143 
144 #ifdef CONFIG_MEMCG
145 static bool global_reclaim(struct scan_control *sc)
146 {
147 	return !sc->target_mem_cgroup;
148 }
149 #else
150 static bool global_reclaim(struct scan_control *sc)
151 {
152 	return true;
153 }
154 #endif
155 
156 static unsigned long zone_reclaimable_pages(struct zone *zone)
157 {
158 	int nr;
159 
160 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
161 	     zone_page_state(zone, NR_INACTIVE_FILE);
162 
163 	if (get_nr_swap_pages() > 0)
164 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
165 		      zone_page_state(zone, NR_INACTIVE_ANON);
166 
167 	return nr;
168 }
169 
170 bool zone_reclaimable(struct zone *zone)
171 {
172 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
173 }
174 
175 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
176 {
177 	if (!mem_cgroup_disabled())
178 		return mem_cgroup_get_lru_size(lruvec, lru);
179 
180 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
181 }
182 
183 /*
184  * Add a shrinker callback to be called from the vm.
185  */
186 int register_shrinker(struct shrinker *shrinker)
187 {
188 	size_t size = sizeof(*shrinker->nr_deferred);
189 
190 	/*
191 	 * If we only have one possible node in the system anyway, save
192 	 * ourselves the trouble and disable NUMA aware behavior. This way we
193 	 * will save memory and some small loop time later.
194 	 */
195 	if (nr_node_ids == 1)
196 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
197 
198 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
199 		size *= nr_node_ids;
200 
201 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
202 	if (!shrinker->nr_deferred)
203 		return -ENOMEM;
204 
205 	down_write(&shrinker_rwsem);
206 	list_add_tail(&shrinker->list, &shrinker_list);
207 	up_write(&shrinker_rwsem);
208 	return 0;
209 }
210 EXPORT_SYMBOL(register_shrinker);
211 
212 /*
213  * Remove one
214  */
215 void unregister_shrinker(struct shrinker *shrinker)
216 {
217 	down_write(&shrinker_rwsem);
218 	list_del(&shrinker->list);
219 	up_write(&shrinker_rwsem);
220 	kfree(shrinker->nr_deferred);
221 }
222 EXPORT_SYMBOL(unregister_shrinker);
223 
224 #define SHRINK_BATCH 128
225 
226 static unsigned long
227 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
228 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
229 {
230 	unsigned long freed = 0;
231 	unsigned long long delta;
232 	long total_scan;
233 	long freeable;
234 	long nr;
235 	long new_nr;
236 	int nid = shrinkctl->nid;
237 	long batch_size = shrinker->batch ? shrinker->batch
238 					  : SHRINK_BATCH;
239 
240 	freeable = shrinker->count_objects(shrinker, shrinkctl);
241 	if (freeable == 0)
242 		return 0;
243 
244 	/*
245 	 * copy the current shrinker scan count into a local variable
246 	 * and zero it so that other concurrent shrinker invocations
247 	 * don't also do this scanning work.
248 	 */
249 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
250 
251 	total_scan = nr;
252 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
253 	delta *= freeable;
254 	do_div(delta, lru_pages + 1);
255 	total_scan += delta;
256 	if (total_scan < 0) {
257 		printk(KERN_ERR
258 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
259 		       shrinker->scan_objects, total_scan);
260 		total_scan = freeable;
261 	}
262 
263 	/*
264 	 * We need to avoid excessive windup on filesystem shrinkers
265 	 * due to large numbers of GFP_NOFS allocations causing the
266 	 * shrinkers to return -1 all the time. This results in a large
267 	 * nr being built up so when a shrink that can do some work
268 	 * comes along it empties the entire cache due to nr >>>
269 	 * freeable. This is bad for sustaining a working set in
270 	 * memory.
271 	 *
272 	 * Hence only allow the shrinker to scan the entire cache when
273 	 * a large delta change is calculated directly.
274 	 */
275 	if (delta < freeable / 4)
276 		total_scan = min(total_scan, freeable / 2);
277 
278 	/*
279 	 * Avoid risking looping forever due to too large nr value:
280 	 * never try to free more than twice the estimate number of
281 	 * freeable entries.
282 	 */
283 	if (total_scan > freeable * 2)
284 		total_scan = freeable * 2;
285 
286 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
287 				nr_pages_scanned, lru_pages,
288 				freeable, delta, total_scan);
289 
290 	/*
291 	 * Normally, we should not scan less than batch_size objects in one
292 	 * pass to avoid too frequent shrinker calls, but if the slab has less
293 	 * than batch_size objects in total and we are really tight on memory,
294 	 * we will try to reclaim all available objects, otherwise we can end
295 	 * up failing allocations although there are plenty of reclaimable
296 	 * objects spread over several slabs with usage less than the
297 	 * batch_size.
298 	 *
299 	 * We detect the "tight on memory" situations by looking at the total
300 	 * number of objects we want to scan (total_scan). If it is greater
301 	 * than the total number of objects on slab (freeable), we must be
302 	 * scanning at high prio and therefore should try to reclaim as much as
303 	 * possible.
304 	 */
305 	while (total_scan >= batch_size ||
306 	       total_scan >= freeable) {
307 		unsigned long ret;
308 		unsigned long nr_to_scan = min(batch_size, total_scan);
309 
310 		shrinkctl->nr_to_scan = nr_to_scan;
311 		ret = shrinker->scan_objects(shrinker, shrinkctl);
312 		if (ret == SHRINK_STOP)
313 			break;
314 		freed += ret;
315 
316 		count_vm_events(SLABS_SCANNED, nr_to_scan);
317 		total_scan -= nr_to_scan;
318 
319 		cond_resched();
320 	}
321 
322 	/*
323 	 * move the unused scan count back into the shrinker in a
324 	 * manner that handles concurrent updates. If we exhausted the
325 	 * scan, there is no need to do an update.
326 	 */
327 	if (total_scan > 0)
328 		new_nr = atomic_long_add_return(total_scan,
329 						&shrinker->nr_deferred[nid]);
330 	else
331 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
332 
333 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
334 	return freed;
335 }
336 
337 /*
338  * Call the shrink functions to age shrinkable caches
339  *
340  * Here we assume it costs one seek to replace a lru page and that it also
341  * takes a seek to recreate a cache object.  With this in mind we age equal
342  * percentages of the lru and ageable caches.  This should balance the seeks
343  * generated by these structures.
344  *
345  * If the vm encountered mapped pages on the LRU it increase the pressure on
346  * slab to avoid swapping.
347  *
348  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
349  *
350  * `lru_pages' represents the number of on-LRU pages in all the zones which
351  * are eligible for the caller's allocation attempt.  It is used for balancing
352  * slab reclaim versus page reclaim.
353  *
354  * Returns the number of slab objects which we shrunk.
355  */
356 unsigned long shrink_slab(struct shrink_control *shrinkctl,
357 			  unsigned long nr_pages_scanned,
358 			  unsigned long lru_pages)
359 {
360 	struct shrinker *shrinker;
361 	unsigned long freed = 0;
362 
363 	if (nr_pages_scanned == 0)
364 		nr_pages_scanned = SWAP_CLUSTER_MAX;
365 
366 	if (!down_read_trylock(&shrinker_rwsem)) {
367 		/*
368 		 * If we would return 0, our callers would understand that we
369 		 * have nothing else to shrink and give up trying. By returning
370 		 * 1 we keep it going and assume we'll be able to shrink next
371 		 * time.
372 		 */
373 		freed = 1;
374 		goto out;
375 	}
376 
377 	list_for_each_entry(shrinker, &shrinker_list, list) {
378 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
379 			shrinkctl->nid = 0;
380 			freed += shrink_slab_node(shrinkctl, shrinker,
381 					nr_pages_scanned, lru_pages);
382 			continue;
383 		}
384 
385 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
386 			if (node_online(shrinkctl->nid))
387 				freed += shrink_slab_node(shrinkctl, shrinker,
388 						nr_pages_scanned, lru_pages);
389 
390 		}
391 	}
392 	up_read(&shrinker_rwsem);
393 out:
394 	cond_resched();
395 	return freed;
396 }
397 
398 static inline int is_page_cache_freeable(struct page *page)
399 {
400 	/*
401 	 * A freeable page cache page is referenced only by the caller
402 	 * that isolated the page, the page cache radix tree and
403 	 * optional buffer heads at page->private.
404 	 */
405 	return page_count(page) - page_has_private(page) == 2;
406 }
407 
408 static int may_write_to_queue(struct backing_dev_info *bdi,
409 			      struct scan_control *sc)
410 {
411 	if (current->flags & PF_SWAPWRITE)
412 		return 1;
413 	if (!bdi_write_congested(bdi))
414 		return 1;
415 	if (bdi == current->backing_dev_info)
416 		return 1;
417 	return 0;
418 }
419 
420 /*
421  * We detected a synchronous write error writing a page out.  Probably
422  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
423  * fsync(), msync() or close().
424  *
425  * The tricky part is that after writepage we cannot touch the mapping: nothing
426  * prevents it from being freed up.  But we have a ref on the page and once
427  * that page is locked, the mapping is pinned.
428  *
429  * We're allowed to run sleeping lock_page() here because we know the caller has
430  * __GFP_FS.
431  */
432 static void handle_write_error(struct address_space *mapping,
433 				struct page *page, int error)
434 {
435 	lock_page(page);
436 	if (page_mapping(page) == mapping)
437 		mapping_set_error(mapping, error);
438 	unlock_page(page);
439 }
440 
441 /* possible outcome of pageout() */
442 typedef enum {
443 	/* failed to write page out, page is locked */
444 	PAGE_KEEP,
445 	/* move page to the active list, page is locked */
446 	PAGE_ACTIVATE,
447 	/* page has been sent to the disk successfully, page is unlocked */
448 	PAGE_SUCCESS,
449 	/* page is clean and locked */
450 	PAGE_CLEAN,
451 } pageout_t;
452 
453 /*
454  * pageout is called by shrink_page_list() for each dirty page.
455  * Calls ->writepage().
456  */
457 static pageout_t pageout(struct page *page, struct address_space *mapping,
458 			 struct scan_control *sc)
459 {
460 	/*
461 	 * If the page is dirty, only perform writeback if that write
462 	 * will be non-blocking.  To prevent this allocation from being
463 	 * stalled by pagecache activity.  But note that there may be
464 	 * stalls if we need to run get_block().  We could test
465 	 * PagePrivate for that.
466 	 *
467 	 * If this process is currently in __generic_file_write_iter() against
468 	 * this page's queue, we can perform writeback even if that
469 	 * will block.
470 	 *
471 	 * If the page is swapcache, write it back even if that would
472 	 * block, for some throttling. This happens by accident, because
473 	 * swap_backing_dev_info is bust: it doesn't reflect the
474 	 * congestion state of the swapdevs.  Easy to fix, if needed.
475 	 */
476 	if (!is_page_cache_freeable(page))
477 		return PAGE_KEEP;
478 	if (!mapping) {
479 		/*
480 		 * Some data journaling orphaned pages can have
481 		 * page->mapping == NULL while being dirty with clean buffers.
482 		 */
483 		if (page_has_private(page)) {
484 			if (try_to_free_buffers(page)) {
485 				ClearPageDirty(page);
486 				pr_info("%s: orphaned page\n", __func__);
487 				return PAGE_CLEAN;
488 			}
489 		}
490 		return PAGE_KEEP;
491 	}
492 	if (mapping->a_ops->writepage == NULL)
493 		return PAGE_ACTIVATE;
494 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
495 		return PAGE_KEEP;
496 
497 	if (clear_page_dirty_for_io(page)) {
498 		int res;
499 		struct writeback_control wbc = {
500 			.sync_mode = WB_SYNC_NONE,
501 			.nr_to_write = SWAP_CLUSTER_MAX,
502 			.range_start = 0,
503 			.range_end = LLONG_MAX,
504 			.for_reclaim = 1,
505 		};
506 
507 		SetPageReclaim(page);
508 		res = mapping->a_ops->writepage(page, &wbc);
509 		if (res < 0)
510 			handle_write_error(mapping, page, res);
511 		if (res == AOP_WRITEPAGE_ACTIVATE) {
512 			ClearPageReclaim(page);
513 			return PAGE_ACTIVATE;
514 		}
515 
516 		if (!PageWriteback(page)) {
517 			/* synchronous write or broken a_ops? */
518 			ClearPageReclaim(page);
519 		}
520 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
521 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
522 		return PAGE_SUCCESS;
523 	}
524 
525 	return PAGE_CLEAN;
526 }
527 
528 /*
529  * Same as remove_mapping, but if the page is removed from the mapping, it
530  * gets returned with a refcount of 0.
531  */
532 static int __remove_mapping(struct address_space *mapping, struct page *page,
533 			    bool reclaimed)
534 {
535 	BUG_ON(!PageLocked(page));
536 	BUG_ON(mapping != page_mapping(page));
537 
538 	spin_lock_irq(&mapping->tree_lock);
539 	/*
540 	 * The non racy check for a busy page.
541 	 *
542 	 * Must be careful with the order of the tests. When someone has
543 	 * a ref to the page, it may be possible that they dirty it then
544 	 * drop the reference. So if PageDirty is tested before page_count
545 	 * here, then the following race may occur:
546 	 *
547 	 * get_user_pages(&page);
548 	 * [user mapping goes away]
549 	 * write_to(page);
550 	 *				!PageDirty(page)    [good]
551 	 * SetPageDirty(page);
552 	 * put_page(page);
553 	 *				!page_count(page)   [good, discard it]
554 	 *
555 	 * [oops, our write_to data is lost]
556 	 *
557 	 * Reversing the order of the tests ensures such a situation cannot
558 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
559 	 * load is not satisfied before that of page->_count.
560 	 *
561 	 * Note that if SetPageDirty is always performed via set_page_dirty,
562 	 * and thus under tree_lock, then this ordering is not required.
563 	 */
564 	if (!page_freeze_refs(page, 2))
565 		goto cannot_free;
566 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
567 	if (unlikely(PageDirty(page))) {
568 		page_unfreeze_refs(page, 2);
569 		goto cannot_free;
570 	}
571 
572 	if (PageSwapCache(page)) {
573 		swp_entry_t swap = { .val = page_private(page) };
574 		__delete_from_swap_cache(page);
575 		spin_unlock_irq(&mapping->tree_lock);
576 		swapcache_free(swap, page);
577 	} else {
578 		void (*freepage)(struct page *);
579 		void *shadow = NULL;
580 
581 		freepage = mapping->a_ops->freepage;
582 		/*
583 		 * Remember a shadow entry for reclaimed file cache in
584 		 * order to detect refaults, thus thrashing, later on.
585 		 *
586 		 * But don't store shadows in an address space that is
587 		 * already exiting.  This is not just an optizimation,
588 		 * inode reclaim needs to empty out the radix tree or
589 		 * the nodes are lost.  Don't plant shadows behind its
590 		 * back.
591 		 */
592 		if (reclaimed && page_is_file_cache(page) &&
593 		    !mapping_exiting(mapping))
594 			shadow = workingset_eviction(mapping, page);
595 		__delete_from_page_cache(page, shadow);
596 		spin_unlock_irq(&mapping->tree_lock);
597 		mem_cgroup_uncharge_cache_page(page);
598 
599 		if (freepage != NULL)
600 			freepage(page);
601 	}
602 
603 	return 1;
604 
605 cannot_free:
606 	spin_unlock_irq(&mapping->tree_lock);
607 	return 0;
608 }
609 
610 /*
611  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
612  * someone else has a ref on the page, abort and return 0.  If it was
613  * successfully detached, return 1.  Assumes the caller has a single ref on
614  * this page.
615  */
616 int remove_mapping(struct address_space *mapping, struct page *page)
617 {
618 	if (__remove_mapping(mapping, page, false)) {
619 		/*
620 		 * Unfreezing the refcount with 1 rather than 2 effectively
621 		 * drops the pagecache ref for us without requiring another
622 		 * atomic operation.
623 		 */
624 		page_unfreeze_refs(page, 1);
625 		return 1;
626 	}
627 	return 0;
628 }
629 
630 /**
631  * putback_lru_page - put previously isolated page onto appropriate LRU list
632  * @page: page to be put back to appropriate lru list
633  *
634  * Add previously isolated @page to appropriate LRU list.
635  * Page may still be unevictable for other reasons.
636  *
637  * lru_lock must not be held, interrupts must be enabled.
638  */
639 void putback_lru_page(struct page *page)
640 {
641 	bool is_unevictable;
642 	int was_unevictable = PageUnevictable(page);
643 
644 	VM_BUG_ON_PAGE(PageLRU(page), page);
645 
646 redo:
647 	ClearPageUnevictable(page);
648 
649 	if (page_evictable(page)) {
650 		/*
651 		 * For evictable pages, we can use the cache.
652 		 * In event of a race, worst case is we end up with an
653 		 * unevictable page on [in]active list.
654 		 * We know how to handle that.
655 		 */
656 		is_unevictable = false;
657 		lru_cache_add(page);
658 	} else {
659 		/*
660 		 * Put unevictable pages directly on zone's unevictable
661 		 * list.
662 		 */
663 		is_unevictable = true;
664 		add_page_to_unevictable_list(page);
665 		/*
666 		 * When racing with an mlock or AS_UNEVICTABLE clearing
667 		 * (page is unlocked) make sure that if the other thread
668 		 * does not observe our setting of PG_lru and fails
669 		 * isolation/check_move_unevictable_pages,
670 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
671 		 * the page back to the evictable list.
672 		 *
673 		 * The other side is TestClearPageMlocked() or shmem_lock().
674 		 */
675 		smp_mb();
676 	}
677 
678 	/*
679 	 * page's status can change while we move it among lru. If an evictable
680 	 * page is on unevictable list, it never be freed. To avoid that,
681 	 * check after we added it to the list, again.
682 	 */
683 	if (is_unevictable && page_evictable(page)) {
684 		if (!isolate_lru_page(page)) {
685 			put_page(page);
686 			goto redo;
687 		}
688 		/* This means someone else dropped this page from LRU
689 		 * So, it will be freed or putback to LRU again. There is
690 		 * nothing to do here.
691 		 */
692 	}
693 
694 	if (was_unevictable && !is_unevictable)
695 		count_vm_event(UNEVICTABLE_PGRESCUED);
696 	else if (!was_unevictable && is_unevictable)
697 		count_vm_event(UNEVICTABLE_PGCULLED);
698 
699 	put_page(page);		/* drop ref from isolate */
700 }
701 
702 enum page_references {
703 	PAGEREF_RECLAIM,
704 	PAGEREF_RECLAIM_CLEAN,
705 	PAGEREF_KEEP,
706 	PAGEREF_ACTIVATE,
707 };
708 
709 static enum page_references page_check_references(struct page *page,
710 						  struct scan_control *sc)
711 {
712 	int referenced_ptes, referenced_page;
713 	unsigned long vm_flags;
714 
715 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
716 					  &vm_flags);
717 	referenced_page = TestClearPageReferenced(page);
718 
719 	/*
720 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
721 	 * move the page to the unevictable list.
722 	 */
723 	if (vm_flags & VM_LOCKED)
724 		return PAGEREF_RECLAIM;
725 
726 	if (referenced_ptes) {
727 		if (PageSwapBacked(page))
728 			return PAGEREF_ACTIVATE;
729 		/*
730 		 * All mapped pages start out with page table
731 		 * references from the instantiating fault, so we need
732 		 * to look twice if a mapped file page is used more
733 		 * than once.
734 		 *
735 		 * Mark it and spare it for another trip around the
736 		 * inactive list.  Another page table reference will
737 		 * lead to its activation.
738 		 *
739 		 * Note: the mark is set for activated pages as well
740 		 * so that recently deactivated but used pages are
741 		 * quickly recovered.
742 		 */
743 		SetPageReferenced(page);
744 
745 		if (referenced_page || referenced_ptes > 1)
746 			return PAGEREF_ACTIVATE;
747 
748 		/*
749 		 * Activate file-backed executable pages after first usage.
750 		 */
751 		if (vm_flags & VM_EXEC)
752 			return PAGEREF_ACTIVATE;
753 
754 		return PAGEREF_KEEP;
755 	}
756 
757 	/* Reclaim if clean, defer dirty pages to writeback */
758 	if (referenced_page && !PageSwapBacked(page))
759 		return PAGEREF_RECLAIM_CLEAN;
760 
761 	return PAGEREF_RECLAIM;
762 }
763 
764 /* Check if a page is dirty or under writeback */
765 static void page_check_dirty_writeback(struct page *page,
766 				       bool *dirty, bool *writeback)
767 {
768 	struct address_space *mapping;
769 
770 	/*
771 	 * Anonymous pages are not handled by flushers and must be written
772 	 * from reclaim context. Do not stall reclaim based on them
773 	 */
774 	if (!page_is_file_cache(page)) {
775 		*dirty = false;
776 		*writeback = false;
777 		return;
778 	}
779 
780 	/* By default assume that the page flags are accurate */
781 	*dirty = PageDirty(page);
782 	*writeback = PageWriteback(page);
783 
784 	/* Verify dirty/writeback state if the filesystem supports it */
785 	if (!page_has_private(page))
786 		return;
787 
788 	mapping = page_mapping(page);
789 	if (mapping && mapping->a_ops->is_dirty_writeback)
790 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
791 }
792 
793 /*
794  * shrink_page_list() returns the number of reclaimed pages
795  */
796 static unsigned long shrink_page_list(struct list_head *page_list,
797 				      struct zone *zone,
798 				      struct scan_control *sc,
799 				      enum ttu_flags ttu_flags,
800 				      unsigned long *ret_nr_dirty,
801 				      unsigned long *ret_nr_unqueued_dirty,
802 				      unsigned long *ret_nr_congested,
803 				      unsigned long *ret_nr_writeback,
804 				      unsigned long *ret_nr_immediate,
805 				      bool force_reclaim)
806 {
807 	LIST_HEAD(ret_pages);
808 	LIST_HEAD(free_pages);
809 	int pgactivate = 0;
810 	unsigned long nr_unqueued_dirty = 0;
811 	unsigned long nr_dirty = 0;
812 	unsigned long nr_congested = 0;
813 	unsigned long nr_reclaimed = 0;
814 	unsigned long nr_writeback = 0;
815 	unsigned long nr_immediate = 0;
816 
817 	cond_resched();
818 
819 	mem_cgroup_uncharge_start();
820 	while (!list_empty(page_list)) {
821 		struct address_space *mapping;
822 		struct page *page;
823 		int may_enter_fs;
824 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
825 		bool dirty, writeback;
826 
827 		cond_resched();
828 
829 		page = lru_to_page(page_list);
830 		list_del(&page->lru);
831 
832 		if (!trylock_page(page))
833 			goto keep;
834 
835 		VM_BUG_ON_PAGE(PageActive(page), page);
836 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
837 
838 		sc->nr_scanned++;
839 
840 		if (unlikely(!page_evictable(page)))
841 			goto cull_mlocked;
842 
843 		if (!sc->may_unmap && page_mapped(page))
844 			goto keep_locked;
845 
846 		/* Double the slab pressure for mapped and swapcache pages */
847 		if (page_mapped(page) || PageSwapCache(page))
848 			sc->nr_scanned++;
849 
850 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
851 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
852 
853 		/*
854 		 * The number of dirty pages determines if a zone is marked
855 		 * reclaim_congested which affects wait_iff_congested. kswapd
856 		 * will stall and start writing pages if the tail of the LRU
857 		 * is all dirty unqueued pages.
858 		 */
859 		page_check_dirty_writeback(page, &dirty, &writeback);
860 		if (dirty || writeback)
861 			nr_dirty++;
862 
863 		if (dirty && !writeback)
864 			nr_unqueued_dirty++;
865 
866 		/*
867 		 * Treat this page as congested if the underlying BDI is or if
868 		 * pages are cycling through the LRU so quickly that the
869 		 * pages marked for immediate reclaim are making it to the
870 		 * end of the LRU a second time.
871 		 */
872 		mapping = page_mapping(page);
873 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
874 		    (writeback && PageReclaim(page)))
875 			nr_congested++;
876 
877 		/*
878 		 * If a page at the tail of the LRU is under writeback, there
879 		 * are three cases to consider.
880 		 *
881 		 * 1) If reclaim is encountering an excessive number of pages
882 		 *    under writeback and this page is both under writeback and
883 		 *    PageReclaim then it indicates that pages are being queued
884 		 *    for IO but are being recycled through the LRU before the
885 		 *    IO can complete. Waiting on the page itself risks an
886 		 *    indefinite stall if it is impossible to writeback the
887 		 *    page due to IO error or disconnected storage so instead
888 		 *    note that the LRU is being scanned too quickly and the
889 		 *    caller can stall after page list has been processed.
890 		 *
891 		 * 2) Global reclaim encounters a page, memcg encounters a
892 		 *    page that is not marked for immediate reclaim or
893 		 *    the caller does not have __GFP_IO. In this case mark
894 		 *    the page for immediate reclaim and continue scanning.
895 		 *
896 		 *    __GFP_IO is checked  because a loop driver thread might
897 		 *    enter reclaim, and deadlock if it waits on a page for
898 		 *    which it is needed to do the write (loop masks off
899 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
900 		 *    would probably show more reasons.
901 		 *
902 		 *    Don't require __GFP_FS, since we're not going into the
903 		 *    FS, just waiting on its writeback completion. Worryingly,
904 		 *    ext4 gfs2 and xfs allocate pages with
905 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
906 		 *    may_enter_fs here is liable to OOM on them.
907 		 *
908 		 * 3) memcg encounters a page that is not already marked
909 		 *    PageReclaim. memcg does not have any dirty pages
910 		 *    throttling so we could easily OOM just because too many
911 		 *    pages are in writeback and there is nothing else to
912 		 *    reclaim. Wait for the writeback to complete.
913 		 */
914 		if (PageWriteback(page)) {
915 			/* Case 1 above */
916 			if (current_is_kswapd() &&
917 			    PageReclaim(page) &&
918 			    zone_is_reclaim_writeback(zone)) {
919 				nr_immediate++;
920 				goto keep_locked;
921 
922 			/* Case 2 above */
923 			} else if (global_reclaim(sc) ||
924 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
925 				/*
926 				 * This is slightly racy - end_page_writeback()
927 				 * might have just cleared PageReclaim, then
928 				 * setting PageReclaim here end up interpreted
929 				 * as PageReadahead - but that does not matter
930 				 * enough to care.  What we do want is for this
931 				 * page to have PageReclaim set next time memcg
932 				 * reclaim reaches the tests above, so it will
933 				 * then wait_on_page_writeback() to avoid OOM;
934 				 * and it's also appropriate in global reclaim.
935 				 */
936 				SetPageReclaim(page);
937 				nr_writeback++;
938 
939 				goto keep_locked;
940 
941 			/* Case 3 above */
942 			} else {
943 				wait_on_page_writeback(page);
944 			}
945 		}
946 
947 		if (!force_reclaim)
948 			references = page_check_references(page, sc);
949 
950 		switch (references) {
951 		case PAGEREF_ACTIVATE:
952 			goto activate_locked;
953 		case PAGEREF_KEEP:
954 			goto keep_locked;
955 		case PAGEREF_RECLAIM:
956 		case PAGEREF_RECLAIM_CLEAN:
957 			; /* try to reclaim the page below */
958 		}
959 
960 		/*
961 		 * Anonymous process memory has backing store?
962 		 * Try to allocate it some swap space here.
963 		 */
964 		if (PageAnon(page) && !PageSwapCache(page)) {
965 			if (!(sc->gfp_mask & __GFP_IO))
966 				goto keep_locked;
967 			if (!add_to_swap(page, page_list))
968 				goto activate_locked;
969 			may_enter_fs = 1;
970 
971 			/* Adding to swap updated mapping */
972 			mapping = page_mapping(page);
973 		}
974 
975 		/*
976 		 * The page is mapped into the page tables of one or more
977 		 * processes. Try to unmap it here.
978 		 */
979 		if (page_mapped(page) && mapping) {
980 			switch (try_to_unmap(page, ttu_flags)) {
981 			case SWAP_FAIL:
982 				goto activate_locked;
983 			case SWAP_AGAIN:
984 				goto keep_locked;
985 			case SWAP_MLOCK:
986 				goto cull_mlocked;
987 			case SWAP_SUCCESS:
988 				; /* try to free the page below */
989 			}
990 		}
991 
992 		if (PageDirty(page)) {
993 			/*
994 			 * Only kswapd can writeback filesystem pages to
995 			 * avoid risk of stack overflow but only writeback
996 			 * if many dirty pages have been encountered.
997 			 */
998 			if (page_is_file_cache(page) &&
999 					(!current_is_kswapd() ||
1000 					 !zone_is_reclaim_dirty(zone))) {
1001 				/*
1002 				 * Immediately reclaim when written back.
1003 				 * Similar in principal to deactivate_page()
1004 				 * except we already have the page isolated
1005 				 * and know it's dirty
1006 				 */
1007 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1008 				SetPageReclaim(page);
1009 
1010 				goto keep_locked;
1011 			}
1012 
1013 			if (references == PAGEREF_RECLAIM_CLEAN)
1014 				goto keep_locked;
1015 			if (!may_enter_fs)
1016 				goto keep_locked;
1017 			if (!sc->may_writepage)
1018 				goto keep_locked;
1019 
1020 			/* Page is dirty, try to write it out here */
1021 			switch (pageout(page, mapping, sc)) {
1022 			case PAGE_KEEP:
1023 				goto keep_locked;
1024 			case PAGE_ACTIVATE:
1025 				goto activate_locked;
1026 			case PAGE_SUCCESS:
1027 				if (PageWriteback(page))
1028 					goto keep;
1029 				if (PageDirty(page))
1030 					goto keep;
1031 
1032 				/*
1033 				 * A synchronous write - probably a ramdisk.  Go
1034 				 * ahead and try to reclaim the page.
1035 				 */
1036 				if (!trylock_page(page))
1037 					goto keep;
1038 				if (PageDirty(page) || PageWriteback(page))
1039 					goto keep_locked;
1040 				mapping = page_mapping(page);
1041 			case PAGE_CLEAN:
1042 				; /* try to free the page below */
1043 			}
1044 		}
1045 
1046 		/*
1047 		 * If the page has buffers, try to free the buffer mappings
1048 		 * associated with this page. If we succeed we try to free
1049 		 * the page as well.
1050 		 *
1051 		 * We do this even if the page is PageDirty().
1052 		 * try_to_release_page() does not perform I/O, but it is
1053 		 * possible for a page to have PageDirty set, but it is actually
1054 		 * clean (all its buffers are clean).  This happens if the
1055 		 * buffers were written out directly, with submit_bh(). ext3
1056 		 * will do this, as well as the blockdev mapping.
1057 		 * try_to_release_page() will discover that cleanness and will
1058 		 * drop the buffers and mark the page clean - it can be freed.
1059 		 *
1060 		 * Rarely, pages can have buffers and no ->mapping.  These are
1061 		 * the pages which were not successfully invalidated in
1062 		 * truncate_complete_page().  We try to drop those buffers here
1063 		 * and if that worked, and the page is no longer mapped into
1064 		 * process address space (page_count == 1) it can be freed.
1065 		 * Otherwise, leave the page on the LRU so it is swappable.
1066 		 */
1067 		if (page_has_private(page)) {
1068 			if (!try_to_release_page(page, sc->gfp_mask))
1069 				goto activate_locked;
1070 			if (!mapping && page_count(page) == 1) {
1071 				unlock_page(page);
1072 				if (put_page_testzero(page))
1073 					goto free_it;
1074 				else {
1075 					/*
1076 					 * rare race with speculative reference.
1077 					 * the speculative reference will free
1078 					 * this page shortly, so we may
1079 					 * increment nr_reclaimed here (and
1080 					 * leave it off the LRU).
1081 					 */
1082 					nr_reclaimed++;
1083 					continue;
1084 				}
1085 			}
1086 		}
1087 
1088 		if (!mapping || !__remove_mapping(mapping, page, true))
1089 			goto keep_locked;
1090 
1091 		/*
1092 		 * At this point, we have no other references and there is
1093 		 * no way to pick any more up (removed from LRU, removed
1094 		 * from pagecache). Can use non-atomic bitops now (and
1095 		 * we obviously don't have to worry about waking up a process
1096 		 * waiting on the page lock, because there are no references.
1097 		 */
1098 		__clear_page_locked(page);
1099 free_it:
1100 		nr_reclaimed++;
1101 
1102 		/*
1103 		 * Is there need to periodically free_page_list? It would
1104 		 * appear not as the counts should be low
1105 		 */
1106 		list_add(&page->lru, &free_pages);
1107 		continue;
1108 
1109 cull_mlocked:
1110 		if (PageSwapCache(page))
1111 			try_to_free_swap(page);
1112 		unlock_page(page);
1113 		putback_lru_page(page);
1114 		continue;
1115 
1116 activate_locked:
1117 		/* Not a candidate for swapping, so reclaim swap space. */
1118 		if (PageSwapCache(page) && vm_swap_full())
1119 			try_to_free_swap(page);
1120 		VM_BUG_ON_PAGE(PageActive(page), page);
1121 		SetPageActive(page);
1122 		pgactivate++;
1123 keep_locked:
1124 		unlock_page(page);
1125 keep:
1126 		list_add(&page->lru, &ret_pages);
1127 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1128 	}
1129 
1130 	free_hot_cold_page_list(&free_pages, true);
1131 
1132 	list_splice(&ret_pages, page_list);
1133 	count_vm_events(PGACTIVATE, pgactivate);
1134 	mem_cgroup_uncharge_end();
1135 	*ret_nr_dirty += nr_dirty;
1136 	*ret_nr_congested += nr_congested;
1137 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1138 	*ret_nr_writeback += nr_writeback;
1139 	*ret_nr_immediate += nr_immediate;
1140 	return nr_reclaimed;
1141 }
1142 
1143 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1144 					    struct list_head *page_list)
1145 {
1146 	struct scan_control sc = {
1147 		.gfp_mask = GFP_KERNEL,
1148 		.priority = DEF_PRIORITY,
1149 		.may_unmap = 1,
1150 	};
1151 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1152 	struct page *page, *next;
1153 	LIST_HEAD(clean_pages);
1154 
1155 	list_for_each_entry_safe(page, next, page_list, lru) {
1156 		if (page_is_file_cache(page) && !PageDirty(page) &&
1157 		    !isolated_balloon_page(page)) {
1158 			ClearPageActive(page);
1159 			list_move(&page->lru, &clean_pages);
1160 		}
1161 	}
1162 
1163 	ret = shrink_page_list(&clean_pages, zone, &sc,
1164 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1165 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1166 	list_splice(&clean_pages, page_list);
1167 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1168 	return ret;
1169 }
1170 
1171 /*
1172  * Attempt to remove the specified page from its LRU.  Only take this page
1173  * if it is of the appropriate PageActive status.  Pages which are being
1174  * freed elsewhere are also ignored.
1175  *
1176  * page:	page to consider
1177  * mode:	one of the LRU isolation modes defined above
1178  *
1179  * returns 0 on success, -ve errno on failure.
1180  */
1181 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1182 {
1183 	int ret = -EINVAL;
1184 
1185 	/* Only take pages on the LRU. */
1186 	if (!PageLRU(page))
1187 		return ret;
1188 
1189 	/* Compaction should not handle unevictable pages but CMA can do so */
1190 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1191 		return ret;
1192 
1193 	ret = -EBUSY;
1194 
1195 	/*
1196 	 * To minimise LRU disruption, the caller can indicate that it only
1197 	 * wants to isolate pages it will be able to operate on without
1198 	 * blocking - clean pages for the most part.
1199 	 *
1200 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1201 	 * is used by reclaim when it is cannot write to backing storage
1202 	 *
1203 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1204 	 * that it is possible to migrate without blocking
1205 	 */
1206 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1207 		/* All the caller can do on PageWriteback is block */
1208 		if (PageWriteback(page))
1209 			return ret;
1210 
1211 		if (PageDirty(page)) {
1212 			struct address_space *mapping;
1213 
1214 			/* ISOLATE_CLEAN means only clean pages */
1215 			if (mode & ISOLATE_CLEAN)
1216 				return ret;
1217 
1218 			/*
1219 			 * Only pages without mappings or that have a
1220 			 * ->migratepage callback are possible to migrate
1221 			 * without blocking
1222 			 */
1223 			mapping = page_mapping(page);
1224 			if (mapping && !mapping->a_ops->migratepage)
1225 				return ret;
1226 		}
1227 	}
1228 
1229 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1230 		return ret;
1231 
1232 	if (likely(get_page_unless_zero(page))) {
1233 		/*
1234 		 * Be careful not to clear PageLRU until after we're
1235 		 * sure the page is not being freed elsewhere -- the
1236 		 * page release code relies on it.
1237 		 */
1238 		ClearPageLRU(page);
1239 		ret = 0;
1240 	}
1241 
1242 	return ret;
1243 }
1244 
1245 /*
1246  * zone->lru_lock is heavily contended.  Some of the functions that
1247  * shrink the lists perform better by taking out a batch of pages
1248  * and working on them outside the LRU lock.
1249  *
1250  * For pagecache intensive workloads, this function is the hottest
1251  * spot in the kernel (apart from copy_*_user functions).
1252  *
1253  * Appropriate locks must be held before calling this function.
1254  *
1255  * @nr_to_scan:	The number of pages to look through on the list.
1256  * @lruvec:	The LRU vector to pull pages from.
1257  * @dst:	The temp list to put pages on to.
1258  * @nr_scanned:	The number of pages that were scanned.
1259  * @sc:		The scan_control struct for this reclaim session
1260  * @mode:	One of the LRU isolation modes
1261  * @lru:	LRU list id for isolating
1262  *
1263  * returns how many pages were moved onto *@dst.
1264  */
1265 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1266 		struct lruvec *lruvec, struct list_head *dst,
1267 		unsigned long *nr_scanned, struct scan_control *sc,
1268 		isolate_mode_t mode, enum lru_list lru)
1269 {
1270 	struct list_head *src = &lruvec->lists[lru];
1271 	unsigned long nr_taken = 0;
1272 	unsigned long scan;
1273 
1274 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1275 		struct page *page;
1276 		int nr_pages;
1277 
1278 		page = lru_to_page(src);
1279 		prefetchw_prev_lru_page(page, src, flags);
1280 
1281 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1282 
1283 		switch (__isolate_lru_page(page, mode)) {
1284 		case 0:
1285 			nr_pages = hpage_nr_pages(page);
1286 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1287 			list_move(&page->lru, dst);
1288 			nr_taken += nr_pages;
1289 			break;
1290 
1291 		case -EBUSY:
1292 			/* else it is being freed elsewhere */
1293 			list_move(&page->lru, src);
1294 			continue;
1295 
1296 		default:
1297 			BUG();
1298 		}
1299 	}
1300 
1301 	*nr_scanned = scan;
1302 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1303 				    nr_taken, mode, is_file_lru(lru));
1304 	return nr_taken;
1305 }
1306 
1307 /**
1308  * isolate_lru_page - tries to isolate a page from its LRU list
1309  * @page: page to isolate from its LRU list
1310  *
1311  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1312  * vmstat statistic corresponding to whatever LRU list the page was on.
1313  *
1314  * Returns 0 if the page was removed from an LRU list.
1315  * Returns -EBUSY if the page was not on an LRU list.
1316  *
1317  * The returned page will have PageLRU() cleared.  If it was found on
1318  * the active list, it will have PageActive set.  If it was found on
1319  * the unevictable list, it will have the PageUnevictable bit set. That flag
1320  * may need to be cleared by the caller before letting the page go.
1321  *
1322  * The vmstat statistic corresponding to the list on which the page was
1323  * found will be decremented.
1324  *
1325  * Restrictions:
1326  * (1) Must be called with an elevated refcount on the page. This is a
1327  *     fundamentnal difference from isolate_lru_pages (which is called
1328  *     without a stable reference).
1329  * (2) the lru_lock must not be held.
1330  * (3) interrupts must be enabled.
1331  */
1332 int isolate_lru_page(struct page *page)
1333 {
1334 	int ret = -EBUSY;
1335 
1336 	VM_BUG_ON_PAGE(!page_count(page), page);
1337 
1338 	if (PageLRU(page)) {
1339 		struct zone *zone = page_zone(page);
1340 		struct lruvec *lruvec;
1341 
1342 		spin_lock_irq(&zone->lru_lock);
1343 		lruvec = mem_cgroup_page_lruvec(page, zone);
1344 		if (PageLRU(page)) {
1345 			int lru = page_lru(page);
1346 			get_page(page);
1347 			ClearPageLRU(page);
1348 			del_page_from_lru_list(page, lruvec, lru);
1349 			ret = 0;
1350 		}
1351 		spin_unlock_irq(&zone->lru_lock);
1352 	}
1353 	return ret;
1354 }
1355 
1356 /*
1357  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1358  * then get resheduled. When there are massive number of tasks doing page
1359  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1360  * the LRU list will go small and be scanned faster than necessary, leading to
1361  * unnecessary swapping, thrashing and OOM.
1362  */
1363 static int too_many_isolated(struct zone *zone, int file,
1364 		struct scan_control *sc)
1365 {
1366 	unsigned long inactive, isolated;
1367 
1368 	if (current_is_kswapd())
1369 		return 0;
1370 
1371 	if (!global_reclaim(sc))
1372 		return 0;
1373 
1374 	if (file) {
1375 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1376 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1377 	} else {
1378 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1379 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1380 	}
1381 
1382 	/*
1383 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1384 	 * won't get blocked by normal direct-reclaimers, forming a circular
1385 	 * deadlock.
1386 	 */
1387 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1388 		inactive >>= 3;
1389 
1390 	return isolated > inactive;
1391 }
1392 
1393 static noinline_for_stack void
1394 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1395 {
1396 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1397 	struct zone *zone = lruvec_zone(lruvec);
1398 	LIST_HEAD(pages_to_free);
1399 
1400 	/*
1401 	 * Put back any unfreeable pages.
1402 	 */
1403 	while (!list_empty(page_list)) {
1404 		struct page *page = lru_to_page(page_list);
1405 		int lru;
1406 
1407 		VM_BUG_ON_PAGE(PageLRU(page), page);
1408 		list_del(&page->lru);
1409 		if (unlikely(!page_evictable(page))) {
1410 			spin_unlock_irq(&zone->lru_lock);
1411 			putback_lru_page(page);
1412 			spin_lock_irq(&zone->lru_lock);
1413 			continue;
1414 		}
1415 
1416 		lruvec = mem_cgroup_page_lruvec(page, zone);
1417 
1418 		SetPageLRU(page);
1419 		lru = page_lru(page);
1420 		add_page_to_lru_list(page, lruvec, lru);
1421 
1422 		if (is_active_lru(lru)) {
1423 			int file = is_file_lru(lru);
1424 			int numpages = hpage_nr_pages(page);
1425 			reclaim_stat->recent_rotated[file] += numpages;
1426 		}
1427 		if (put_page_testzero(page)) {
1428 			__ClearPageLRU(page);
1429 			__ClearPageActive(page);
1430 			del_page_from_lru_list(page, lruvec, lru);
1431 
1432 			if (unlikely(PageCompound(page))) {
1433 				spin_unlock_irq(&zone->lru_lock);
1434 				(*get_compound_page_dtor(page))(page);
1435 				spin_lock_irq(&zone->lru_lock);
1436 			} else
1437 				list_add(&page->lru, &pages_to_free);
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * To save our caller's stack, now use input list for pages to free.
1443 	 */
1444 	list_splice(&pages_to_free, page_list);
1445 }
1446 
1447 /*
1448  * If a kernel thread (such as nfsd for loop-back mounts) services
1449  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1450  * In that case we should only throttle if the backing device it is
1451  * writing to is congested.  In other cases it is safe to throttle.
1452  */
1453 static int current_may_throttle(void)
1454 {
1455 	return !(current->flags & PF_LESS_THROTTLE) ||
1456 		current->backing_dev_info == NULL ||
1457 		bdi_write_congested(current->backing_dev_info);
1458 }
1459 
1460 /*
1461  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1462  * of reclaimed pages
1463  */
1464 static noinline_for_stack unsigned long
1465 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1466 		     struct scan_control *sc, enum lru_list lru)
1467 {
1468 	LIST_HEAD(page_list);
1469 	unsigned long nr_scanned;
1470 	unsigned long nr_reclaimed = 0;
1471 	unsigned long nr_taken;
1472 	unsigned long nr_dirty = 0;
1473 	unsigned long nr_congested = 0;
1474 	unsigned long nr_unqueued_dirty = 0;
1475 	unsigned long nr_writeback = 0;
1476 	unsigned long nr_immediate = 0;
1477 	isolate_mode_t isolate_mode = 0;
1478 	int file = is_file_lru(lru);
1479 	struct zone *zone = lruvec_zone(lruvec);
1480 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1481 
1482 	while (unlikely(too_many_isolated(zone, file, sc))) {
1483 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1484 
1485 		/* We are about to die and free our memory. Return now. */
1486 		if (fatal_signal_pending(current))
1487 			return SWAP_CLUSTER_MAX;
1488 	}
1489 
1490 	lru_add_drain();
1491 
1492 	if (!sc->may_unmap)
1493 		isolate_mode |= ISOLATE_UNMAPPED;
1494 	if (!sc->may_writepage)
1495 		isolate_mode |= ISOLATE_CLEAN;
1496 
1497 	spin_lock_irq(&zone->lru_lock);
1498 
1499 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1500 				     &nr_scanned, sc, isolate_mode, lru);
1501 
1502 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1503 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1504 
1505 	if (global_reclaim(sc)) {
1506 		zone->pages_scanned += nr_scanned;
1507 		if (current_is_kswapd())
1508 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1509 		else
1510 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1511 	}
1512 	spin_unlock_irq(&zone->lru_lock);
1513 
1514 	if (nr_taken == 0)
1515 		return 0;
1516 
1517 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1518 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1519 				&nr_writeback, &nr_immediate,
1520 				false);
1521 
1522 	spin_lock_irq(&zone->lru_lock);
1523 
1524 	reclaim_stat->recent_scanned[file] += nr_taken;
1525 
1526 	if (global_reclaim(sc)) {
1527 		if (current_is_kswapd())
1528 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1529 					       nr_reclaimed);
1530 		else
1531 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1532 					       nr_reclaimed);
1533 	}
1534 
1535 	putback_inactive_pages(lruvec, &page_list);
1536 
1537 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1538 
1539 	spin_unlock_irq(&zone->lru_lock);
1540 
1541 	free_hot_cold_page_list(&page_list, true);
1542 
1543 	/*
1544 	 * If reclaim is isolating dirty pages under writeback, it implies
1545 	 * that the long-lived page allocation rate is exceeding the page
1546 	 * laundering rate. Either the global limits are not being effective
1547 	 * at throttling processes due to the page distribution throughout
1548 	 * zones or there is heavy usage of a slow backing device. The
1549 	 * only option is to throttle from reclaim context which is not ideal
1550 	 * as there is no guarantee the dirtying process is throttled in the
1551 	 * same way balance_dirty_pages() manages.
1552 	 *
1553 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1554 	 * of pages under pages flagged for immediate reclaim and stall if any
1555 	 * are encountered in the nr_immediate check below.
1556 	 */
1557 	if (nr_writeback && nr_writeback == nr_taken)
1558 		zone_set_flag(zone, ZONE_WRITEBACK);
1559 
1560 	/*
1561 	 * memcg will stall in page writeback so only consider forcibly
1562 	 * stalling for global reclaim
1563 	 */
1564 	if (global_reclaim(sc)) {
1565 		/*
1566 		 * Tag a zone as congested if all the dirty pages scanned were
1567 		 * backed by a congested BDI and wait_iff_congested will stall.
1568 		 */
1569 		if (nr_dirty && nr_dirty == nr_congested)
1570 			zone_set_flag(zone, ZONE_CONGESTED);
1571 
1572 		/*
1573 		 * If dirty pages are scanned that are not queued for IO, it
1574 		 * implies that flushers are not keeping up. In this case, flag
1575 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1576 		 * pages from reclaim context.
1577 		 */
1578 		if (nr_unqueued_dirty == nr_taken)
1579 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1580 
1581 		/*
1582 		 * If kswapd scans pages marked marked for immediate
1583 		 * reclaim and under writeback (nr_immediate), it implies
1584 		 * that pages are cycling through the LRU faster than
1585 		 * they are written so also forcibly stall.
1586 		 */
1587 		if (nr_immediate && current_may_throttle())
1588 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1589 	}
1590 
1591 	/*
1592 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1593 	 * is congested. Allow kswapd to continue until it starts encountering
1594 	 * unqueued dirty pages or cycling through the LRU too quickly.
1595 	 */
1596 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1597 	    current_may_throttle())
1598 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1599 
1600 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1601 		zone_idx(zone),
1602 		nr_scanned, nr_reclaimed,
1603 		sc->priority,
1604 		trace_shrink_flags(file));
1605 	return nr_reclaimed;
1606 }
1607 
1608 /*
1609  * This moves pages from the active list to the inactive list.
1610  *
1611  * We move them the other way if the page is referenced by one or more
1612  * processes, from rmap.
1613  *
1614  * If the pages are mostly unmapped, the processing is fast and it is
1615  * appropriate to hold zone->lru_lock across the whole operation.  But if
1616  * the pages are mapped, the processing is slow (page_referenced()) so we
1617  * should drop zone->lru_lock around each page.  It's impossible to balance
1618  * this, so instead we remove the pages from the LRU while processing them.
1619  * It is safe to rely on PG_active against the non-LRU pages in here because
1620  * nobody will play with that bit on a non-LRU page.
1621  *
1622  * The downside is that we have to touch page->_count against each page.
1623  * But we had to alter page->flags anyway.
1624  */
1625 
1626 static void move_active_pages_to_lru(struct lruvec *lruvec,
1627 				     struct list_head *list,
1628 				     struct list_head *pages_to_free,
1629 				     enum lru_list lru)
1630 {
1631 	struct zone *zone = lruvec_zone(lruvec);
1632 	unsigned long pgmoved = 0;
1633 	struct page *page;
1634 	int nr_pages;
1635 
1636 	while (!list_empty(list)) {
1637 		page = lru_to_page(list);
1638 		lruvec = mem_cgroup_page_lruvec(page, zone);
1639 
1640 		VM_BUG_ON_PAGE(PageLRU(page), page);
1641 		SetPageLRU(page);
1642 
1643 		nr_pages = hpage_nr_pages(page);
1644 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1645 		list_move(&page->lru, &lruvec->lists[lru]);
1646 		pgmoved += nr_pages;
1647 
1648 		if (put_page_testzero(page)) {
1649 			__ClearPageLRU(page);
1650 			__ClearPageActive(page);
1651 			del_page_from_lru_list(page, lruvec, lru);
1652 
1653 			if (unlikely(PageCompound(page))) {
1654 				spin_unlock_irq(&zone->lru_lock);
1655 				(*get_compound_page_dtor(page))(page);
1656 				spin_lock_irq(&zone->lru_lock);
1657 			} else
1658 				list_add(&page->lru, pages_to_free);
1659 		}
1660 	}
1661 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1662 	if (!is_active_lru(lru))
1663 		__count_vm_events(PGDEACTIVATE, pgmoved);
1664 }
1665 
1666 static void shrink_active_list(unsigned long nr_to_scan,
1667 			       struct lruvec *lruvec,
1668 			       struct scan_control *sc,
1669 			       enum lru_list lru)
1670 {
1671 	unsigned long nr_taken;
1672 	unsigned long nr_scanned;
1673 	unsigned long vm_flags;
1674 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1675 	LIST_HEAD(l_active);
1676 	LIST_HEAD(l_inactive);
1677 	struct page *page;
1678 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1679 	unsigned long nr_rotated = 0;
1680 	isolate_mode_t isolate_mode = 0;
1681 	int file = is_file_lru(lru);
1682 	struct zone *zone = lruvec_zone(lruvec);
1683 
1684 	lru_add_drain();
1685 
1686 	if (!sc->may_unmap)
1687 		isolate_mode |= ISOLATE_UNMAPPED;
1688 	if (!sc->may_writepage)
1689 		isolate_mode |= ISOLATE_CLEAN;
1690 
1691 	spin_lock_irq(&zone->lru_lock);
1692 
1693 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1694 				     &nr_scanned, sc, isolate_mode, lru);
1695 	if (global_reclaim(sc))
1696 		zone->pages_scanned += nr_scanned;
1697 
1698 	reclaim_stat->recent_scanned[file] += nr_taken;
1699 
1700 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1701 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1702 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1703 	spin_unlock_irq(&zone->lru_lock);
1704 
1705 	while (!list_empty(&l_hold)) {
1706 		cond_resched();
1707 		page = lru_to_page(&l_hold);
1708 		list_del(&page->lru);
1709 
1710 		if (unlikely(!page_evictable(page))) {
1711 			putback_lru_page(page);
1712 			continue;
1713 		}
1714 
1715 		if (unlikely(buffer_heads_over_limit)) {
1716 			if (page_has_private(page) && trylock_page(page)) {
1717 				if (page_has_private(page))
1718 					try_to_release_page(page, 0);
1719 				unlock_page(page);
1720 			}
1721 		}
1722 
1723 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1724 				    &vm_flags)) {
1725 			nr_rotated += hpage_nr_pages(page);
1726 			/*
1727 			 * Identify referenced, file-backed active pages and
1728 			 * give them one more trip around the active list. So
1729 			 * that executable code get better chances to stay in
1730 			 * memory under moderate memory pressure.  Anon pages
1731 			 * are not likely to be evicted by use-once streaming
1732 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1733 			 * so we ignore them here.
1734 			 */
1735 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1736 				list_add(&page->lru, &l_active);
1737 				continue;
1738 			}
1739 		}
1740 
1741 		ClearPageActive(page);	/* we are de-activating */
1742 		list_add(&page->lru, &l_inactive);
1743 	}
1744 
1745 	/*
1746 	 * Move pages back to the lru list.
1747 	 */
1748 	spin_lock_irq(&zone->lru_lock);
1749 	/*
1750 	 * Count referenced pages from currently used mappings as rotated,
1751 	 * even though only some of them are actually re-activated.  This
1752 	 * helps balance scan pressure between file and anonymous pages in
1753 	 * get_scan_ratio.
1754 	 */
1755 	reclaim_stat->recent_rotated[file] += nr_rotated;
1756 
1757 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1758 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1759 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1760 	spin_unlock_irq(&zone->lru_lock);
1761 
1762 	free_hot_cold_page_list(&l_hold, true);
1763 }
1764 
1765 #ifdef CONFIG_SWAP
1766 static int inactive_anon_is_low_global(struct zone *zone)
1767 {
1768 	unsigned long active, inactive;
1769 
1770 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1771 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1772 
1773 	if (inactive * zone->inactive_ratio < active)
1774 		return 1;
1775 
1776 	return 0;
1777 }
1778 
1779 /**
1780  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1781  * @lruvec: LRU vector to check
1782  *
1783  * Returns true if the zone does not have enough inactive anon pages,
1784  * meaning some active anon pages need to be deactivated.
1785  */
1786 static int inactive_anon_is_low(struct lruvec *lruvec)
1787 {
1788 	/*
1789 	 * If we don't have swap space, anonymous page deactivation
1790 	 * is pointless.
1791 	 */
1792 	if (!total_swap_pages)
1793 		return 0;
1794 
1795 	if (!mem_cgroup_disabled())
1796 		return mem_cgroup_inactive_anon_is_low(lruvec);
1797 
1798 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1799 }
1800 #else
1801 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1802 {
1803 	return 0;
1804 }
1805 #endif
1806 
1807 /**
1808  * inactive_file_is_low - check if file pages need to be deactivated
1809  * @lruvec: LRU vector to check
1810  *
1811  * When the system is doing streaming IO, memory pressure here
1812  * ensures that active file pages get deactivated, until more
1813  * than half of the file pages are on the inactive list.
1814  *
1815  * Once we get to that situation, protect the system's working
1816  * set from being evicted by disabling active file page aging.
1817  *
1818  * This uses a different ratio than the anonymous pages, because
1819  * the page cache uses a use-once replacement algorithm.
1820  */
1821 static int inactive_file_is_low(struct lruvec *lruvec)
1822 {
1823 	unsigned long inactive;
1824 	unsigned long active;
1825 
1826 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1827 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1828 
1829 	return active > inactive;
1830 }
1831 
1832 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1833 {
1834 	if (is_file_lru(lru))
1835 		return inactive_file_is_low(lruvec);
1836 	else
1837 		return inactive_anon_is_low(lruvec);
1838 }
1839 
1840 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1841 				 struct lruvec *lruvec, struct scan_control *sc)
1842 {
1843 	if (is_active_lru(lru)) {
1844 		if (inactive_list_is_low(lruvec, lru))
1845 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1846 		return 0;
1847 	}
1848 
1849 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1850 }
1851 
1852 enum scan_balance {
1853 	SCAN_EQUAL,
1854 	SCAN_FRACT,
1855 	SCAN_ANON,
1856 	SCAN_FILE,
1857 };
1858 
1859 /*
1860  * Determine how aggressively the anon and file LRU lists should be
1861  * scanned.  The relative value of each set of LRU lists is determined
1862  * by looking at the fraction of the pages scanned we did rotate back
1863  * onto the active list instead of evict.
1864  *
1865  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1866  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1867  */
1868 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1869 			   unsigned long *nr)
1870 {
1871 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1872 	u64 fraction[2];
1873 	u64 denominator = 0;	/* gcc */
1874 	struct zone *zone = lruvec_zone(lruvec);
1875 	unsigned long anon_prio, file_prio;
1876 	enum scan_balance scan_balance;
1877 	unsigned long anon, file;
1878 	bool force_scan = false;
1879 	unsigned long ap, fp;
1880 	enum lru_list lru;
1881 	bool some_scanned;
1882 	int pass;
1883 
1884 	/*
1885 	 * If the zone or memcg is small, nr[l] can be 0.  This
1886 	 * results in no scanning on this priority and a potential
1887 	 * priority drop.  Global direct reclaim can go to the next
1888 	 * zone and tends to have no problems. Global kswapd is for
1889 	 * zone balancing and it needs to scan a minimum amount. When
1890 	 * reclaiming for a memcg, a priority drop can cause high
1891 	 * latencies, so it's better to scan a minimum amount there as
1892 	 * well.
1893 	 */
1894 	if (current_is_kswapd() && !zone_reclaimable(zone))
1895 		force_scan = true;
1896 	if (!global_reclaim(sc))
1897 		force_scan = true;
1898 
1899 	/* If we have no swap space, do not bother scanning anon pages. */
1900 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1901 		scan_balance = SCAN_FILE;
1902 		goto out;
1903 	}
1904 
1905 	/*
1906 	 * Global reclaim will swap to prevent OOM even with no
1907 	 * swappiness, but memcg users want to use this knob to
1908 	 * disable swapping for individual groups completely when
1909 	 * using the memory controller's swap limit feature would be
1910 	 * too expensive.
1911 	 */
1912 	if (!global_reclaim(sc) && !sc->swappiness) {
1913 		scan_balance = SCAN_FILE;
1914 		goto out;
1915 	}
1916 
1917 	/*
1918 	 * Do not apply any pressure balancing cleverness when the
1919 	 * system is close to OOM, scan both anon and file equally
1920 	 * (unless the swappiness setting disagrees with swapping).
1921 	 */
1922 	if (!sc->priority && sc->swappiness) {
1923 		scan_balance = SCAN_EQUAL;
1924 		goto out;
1925 	}
1926 
1927 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1928 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1929 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1930 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1931 
1932 	/*
1933 	 * Prevent the reclaimer from falling into the cache trap: as
1934 	 * cache pages start out inactive, every cache fault will tip
1935 	 * the scan balance towards the file LRU.  And as the file LRU
1936 	 * shrinks, so does the window for rotation from references.
1937 	 * This means we have a runaway feedback loop where a tiny
1938 	 * thrashing file LRU becomes infinitely more attractive than
1939 	 * anon pages.  Try to detect this based on file LRU size.
1940 	 */
1941 	if (global_reclaim(sc)) {
1942 		unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1943 
1944 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1945 			scan_balance = SCAN_ANON;
1946 			goto out;
1947 		}
1948 	}
1949 
1950 	/*
1951 	 * There is enough inactive page cache, do not reclaim
1952 	 * anything from the anonymous working set right now.
1953 	 */
1954 	if (!inactive_file_is_low(lruvec)) {
1955 		scan_balance = SCAN_FILE;
1956 		goto out;
1957 	}
1958 
1959 	scan_balance = SCAN_FRACT;
1960 
1961 	/*
1962 	 * With swappiness at 100, anonymous and file have the same priority.
1963 	 * This scanning priority is essentially the inverse of IO cost.
1964 	 */
1965 	anon_prio = sc->swappiness;
1966 	file_prio = 200 - anon_prio;
1967 
1968 	/*
1969 	 * OK, so we have swap space and a fair amount of page cache
1970 	 * pages.  We use the recently rotated / recently scanned
1971 	 * ratios to determine how valuable each cache is.
1972 	 *
1973 	 * Because workloads change over time (and to avoid overflow)
1974 	 * we keep these statistics as a floating average, which ends
1975 	 * up weighing recent references more than old ones.
1976 	 *
1977 	 * anon in [0], file in [1]
1978 	 */
1979 	spin_lock_irq(&zone->lru_lock);
1980 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1981 		reclaim_stat->recent_scanned[0] /= 2;
1982 		reclaim_stat->recent_rotated[0] /= 2;
1983 	}
1984 
1985 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1986 		reclaim_stat->recent_scanned[1] /= 2;
1987 		reclaim_stat->recent_rotated[1] /= 2;
1988 	}
1989 
1990 	/*
1991 	 * The amount of pressure on anon vs file pages is inversely
1992 	 * proportional to the fraction of recently scanned pages on
1993 	 * each list that were recently referenced and in active use.
1994 	 */
1995 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1996 	ap /= reclaim_stat->recent_rotated[0] + 1;
1997 
1998 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1999 	fp /= reclaim_stat->recent_rotated[1] + 1;
2000 	spin_unlock_irq(&zone->lru_lock);
2001 
2002 	fraction[0] = ap;
2003 	fraction[1] = fp;
2004 	denominator = ap + fp + 1;
2005 out:
2006 	some_scanned = false;
2007 	/* Only use force_scan on second pass. */
2008 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2009 		for_each_evictable_lru(lru) {
2010 			int file = is_file_lru(lru);
2011 			unsigned long size;
2012 			unsigned long scan;
2013 
2014 			size = get_lru_size(lruvec, lru);
2015 			scan = size >> sc->priority;
2016 
2017 			if (!scan && pass && force_scan)
2018 				scan = min(size, SWAP_CLUSTER_MAX);
2019 
2020 			switch (scan_balance) {
2021 			case SCAN_EQUAL:
2022 				/* Scan lists relative to size */
2023 				break;
2024 			case SCAN_FRACT:
2025 				/*
2026 				 * Scan types proportional to swappiness and
2027 				 * their relative recent reclaim efficiency.
2028 				 */
2029 				scan = div64_u64(scan * fraction[file],
2030 							denominator);
2031 				break;
2032 			case SCAN_FILE:
2033 			case SCAN_ANON:
2034 				/* Scan one type exclusively */
2035 				if ((scan_balance == SCAN_FILE) != file)
2036 					scan = 0;
2037 				break;
2038 			default:
2039 				/* Look ma, no brain */
2040 				BUG();
2041 			}
2042 			nr[lru] = scan;
2043 			/*
2044 			 * Skip the second pass and don't force_scan,
2045 			 * if we found something to scan.
2046 			 */
2047 			some_scanned |= !!scan;
2048 		}
2049 	}
2050 }
2051 
2052 /*
2053  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2054  */
2055 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2056 {
2057 	unsigned long nr[NR_LRU_LISTS];
2058 	unsigned long targets[NR_LRU_LISTS];
2059 	unsigned long nr_to_scan;
2060 	enum lru_list lru;
2061 	unsigned long nr_reclaimed = 0;
2062 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2063 	struct blk_plug plug;
2064 	bool scan_adjusted;
2065 
2066 	get_scan_count(lruvec, sc, nr);
2067 
2068 	/* Record the original scan target for proportional adjustments later */
2069 	memcpy(targets, nr, sizeof(nr));
2070 
2071 	/*
2072 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2073 	 * event that can occur when there is little memory pressure e.g.
2074 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2075 	 * when the requested number of pages are reclaimed when scanning at
2076 	 * DEF_PRIORITY on the assumption that the fact we are direct
2077 	 * reclaiming implies that kswapd is not keeping up and it is best to
2078 	 * do a batch of work at once. For memcg reclaim one check is made to
2079 	 * abort proportional reclaim if either the file or anon lru has already
2080 	 * dropped to zero at the first pass.
2081 	 */
2082 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2083 			 sc->priority == DEF_PRIORITY);
2084 
2085 	blk_start_plug(&plug);
2086 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2087 					nr[LRU_INACTIVE_FILE]) {
2088 		unsigned long nr_anon, nr_file, percentage;
2089 		unsigned long nr_scanned;
2090 
2091 		for_each_evictable_lru(lru) {
2092 			if (nr[lru]) {
2093 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2094 				nr[lru] -= nr_to_scan;
2095 
2096 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2097 							    lruvec, sc);
2098 			}
2099 		}
2100 
2101 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2102 			continue;
2103 
2104 		/*
2105 		 * For kswapd and memcg, reclaim at least the number of pages
2106 		 * requested. Ensure that the anon and file LRUs are scanned
2107 		 * proportionally what was requested by get_scan_count(). We
2108 		 * stop reclaiming one LRU and reduce the amount scanning
2109 		 * proportional to the original scan target.
2110 		 */
2111 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2112 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2113 
2114 		/*
2115 		 * It's just vindictive to attack the larger once the smaller
2116 		 * has gone to zero.  And given the way we stop scanning the
2117 		 * smaller below, this makes sure that we only make one nudge
2118 		 * towards proportionality once we've got nr_to_reclaim.
2119 		 */
2120 		if (!nr_file || !nr_anon)
2121 			break;
2122 
2123 		if (nr_file > nr_anon) {
2124 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2125 						targets[LRU_ACTIVE_ANON] + 1;
2126 			lru = LRU_BASE;
2127 			percentage = nr_anon * 100 / scan_target;
2128 		} else {
2129 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2130 						targets[LRU_ACTIVE_FILE] + 1;
2131 			lru = LRU_FILE;
2132 			percentage = nr_file * 100 / scan_target;
2133 		}
2134 
2135 		/* Stop scanning the smaller of the LRU */
2136 		nr[lru] = 0;
2137 		nr[lru + LRU_ACTIVE] = 0;
2138 
2139 		/*
2140 		 * Recalculate the other LRU scan count based on its original
2141 		 * scan target and the percentage scanning already complete
2142 		 */
2143 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2144 		nr_scanned = targets[lru] - nr[lru];
2145 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2146 		nr[lru] -= min(nr[lru], nr_scanned);
2147 
2148 		lru += LRU_ACTIVE;
2149 		nr_scanned = targets[lru] - nr[lru];
2150 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2151 		nr[lru] -= min(nr[lru], nr_scanned);
2152 
2153 		scan_adjusted = true;
2154 	}
2155 	blk_finish_plug(&plug);
2156 	sc->nr_reclaimed += nr_reclaimed;
2157 
2158 	/*
2159 	 * Even if we did not try to evict anon pages at all, we want to
2160 	 * rebalance the anon lru active/inactive ratio.
2161 	 */
2162 	if (inactive_anon_is_low(lruvec))
2163 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2164 				   sc, LRU_ACTIVE_ANON);
2165 
2166 	throttle_vm_writeout(sc->gfp_mask);
2167 }
2168 
2169 /* Use reclaim/compaction for costly allocs or under memory pressure */
2170 static bool in_reclaim_compaction(struct scan_control *sc)
2171 {
2172 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2173 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2174 			 sc->priority < DEF_PRIORITY - 2))
2175 		return true;
2176 
2177 	return false;
2178 }
2179 
2180 /*
2181  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2182  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2183  * true if more pages should be reclaimed such that when the page allocator
2184  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2185  * It will give up earlier than that if there is difficulty reclaiming pages.
2186  */
2187 static inline bool should_continue_reclaim(struct zone *zone,
2188 					unsigned long nr_reclaimed,
2189 					unsigned long nr_scanned,
2190 					struct scan_control *sc)
2191 {
2192 	unsigned long pages_for_compaction;
2193 	unsigned long inactive_lru_pages;
2194 
2195 	/* If not in reclaim/compaction mode, stop */
2196 	if (!in_reclaim_compaction(sc))
2197 		return false;
2198 
2199 	/* Consider stopping depending on scan and reclaim activity */
2200 	if (sc->gfp_mask & __GFP_REPEAT) {
2201 		/*
2202 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2203 		 * full LRU list has been scanned and we are still failing
2204 		 * to reclaim pages. This full LRU scan is potentially
2205 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2206 		 */
2207 		if (!nr_reclaimed && !nr_scanned)
2208 			return false;
2209 	} else {
2210 		/*
2211 		 * For non-__GFP_REPEAT allocations which can presumably
2212 		 * fail without consequence, stop if we failed to reclaim
2213 		 * any pages from the last SWAP_CLUSTER_MAX number of
2214 		 * pages that were scanned. This will return to the
2215 		 * caller faster at the risk reclaim/compaction and
2216 		 * the resulting allocation attempt fails
2217 		 */
2218 		if (!nr_reclaimed)
2219 			return false;
2220 	}
2221 
2222 	/*
2223 	 * If we have not reclaimed enough pages for compaction and the
2224 	 * inactive lists are large enough, continue reclaiming
2225 	 */
2226 	pages_for_compaction = (2UL << sc->order);
2227 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2228 	if (get_nr_swap_pages() > 0)
2229 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2230 	if (sc->nr_reclaimed < pages_for_compaction &&
2231 			inactive_lru_pages > pages_for_compaction)
2232 		return true;
2233 
2234 	/* If compaction would go ahead or the allocation would succeed, stop */
2235 	switch (compaction_suitable(zone, sc->order)) {
2236 	case COMPACT_PARTIAL:
2237 	case COMPACT_CONTINUE:
2238 		return false;
2239 	default:
2240 		return true;
2241 	}
2242 }
2243 
2244 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2245 {
2246 	unsigned long nr_reclaimed, nr_scanned;
2247 
2248 	do {
2249 		struct mem_cgroup *root = sc->target_mem_cgroup;
2250 		struct mem_cgroup_reclaim_cookie reclaim = {
2251 			.zone = zone,
2252 			.priority = sc->priority,
2253 		};
2254 		struct mem_cgroup *memcg;
2255 
2256 		nr_reclaimed = sc->nr_reclaimed;
2257 		nr_scanned = sc->nr_scanned;
2258 
2259 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2260 		do {
2261 			struct lruvec *lruvec;
2262 
2263 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2264 
2265 			sc->swappiness = mem_cgroup_swappiness(memcg);
2266 			shrink_lruvec(lruvec, sc);
2267 
2268 			/*
2269 			 * Direct reclaim and kswapd have to scan all memory
2270 			 * cgroups to fulfill the overall scan target for the
2271 			 * zone.
2272 			 *
2273 			 * Limit reclaim, on the other hand, only cares about
2274 			 * nr_to_reclaim pages to be reclaimed and it will
2275 			 * retry with decreasing priority if one round over the
2276 			 * whole hierarchy is not sufficient.
2277 			 */
2278 			if (!global_reclaim(sc) &&
2279 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2280 				mem_cgroup_iter_break(root, memcg);
2281 				break;
2282 			}
2283 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2284 		} while (memcg);
2285 
2286 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2287 			   sc->nr_scanned - nr_scanned,
2288 			   sc->nr_reclaimed - nr_reclaimed);
2289 
2290 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2291 					 sc->nr_scanned - nr_scanned, sc));
2292 }
2293 
2294 /* Returns true if compaction should go ahead for a high-order request */
2295 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2296 {
2297 	unsigned long balance_gap, watermark;
2298 	bool watermark_ok;
2299 
2300 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2301 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2302 		return false;
2303 
2304 	/*
2305 	 * Compaction takes time to run and there are potentially other
2306 	 * callers using the pages just freed. Continue reclaiming until
2307 	 * there is a buffer of free pages available to give compaction
2308 	 * a reasonable chance of completing and allocating the page
2309 	 */
2310 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2311 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2312 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2313 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2314 
2315 	/*
2316 	 * If compaction is deferred, reclaim up to a point where
2317 	 * compaction will have a chance of success when re-enabled
2318 	 */
2319 	if (compaction_deferred(zone, sc->order))
2320 		return watermark_ok;
2321 
2322 	/* If compaction is not ready to start, keep reclaiming */
2323 	if (!compaction_suitable(zone, sc->order))
2324 		return false;
2325 
2326 	return watermark_ok;
2327 }
2328 
2329 /*
2330  * This is the direct reclaim path, for page-allocating processes.  We only
2331  * try to reclaim pages from zones which will satisfy the caller's allocation
2332  * request.
2333  *
2334  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2335  * Because:
2336  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2337  *    allocation or
2338  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2339  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2340  *    zone defense algorithm.
2341  *
2342  * If a zone is deemed to be full of pinned pages then just give it a light
2343  * scan then give up on it.
2344  *
2345  * This function returns true if a zone is being reclaimed for a costly
2346  * high-order allocation and compaction is ready to begin. This indicates to
2347  * the caller that it should consider retrying the allocation instead of
2348  * further reclaim.
2349  */
2350 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2351 {
2352 	struct zoneref *z;
2353 	struct zone *zone;
2354 	unsigned long nr_soft_reclaimed;
2355 	unsigned long nr_soft_scanned;
2356 	unsigned long lru_pages = 0;
2357 	bool aborted_reclaim = false;
2358 	struct reclaim_state *reclaim_state = current->reclaim_state;
2359 	gfp_t orig_mask;
2360 	struct shrink_control shrink = {
2361 		.gfp_mask = sc->gfp_mask,
2362 	};
2363 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2364 
2365 	/*
2366 	 * If the number of buffer_heads in the machine exceeds the maximum
2367 	 * allowed level, force direct reclaim to scan the highmem zone as
2368 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2369 	 */
2370 	orig_mask = sc->gfp_mask;
2371 	if (buffer_heads_over_limit)
2372 		sc->gfp_mask |= __GFP_HIGHMEM;
2373 
2374 	nodes_clear(shrink.nodes_to_scan);
2375 
2376 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2377 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2378 		if (!populated_zone(zone))
2379 			continue;
2380 		/*
2381 		 * Take care memory controller reclaiming has small influence
2382 		 * to global LRU.
2383 		 */
2384 		if (global_reclaim(sc)) {
2385 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2386 				continue;
2387 
2388 			lru_pages += zone_reclaimable_pages(zone);
2389 			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2390 
2391 			if (sc->priority != DEF_PRIORITY &&
2392 			    !zone_reclaimable(zone))
2393 				continue;	/* Let kswapd poll it */
2394 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2395 				/*
2396 				 * If we already have plenty of memory free for
2397 				 * compaction in this zone, don't free any more.
2398 				 * Even though compaction is invoked for any
2399 				 * non-zero order, only frequent costly order
2400 				 * reclamation is disruptive enough to become a
2401 				 * noticeable problem, like transparent huge
2402 				 * page allocations.
2403 				 */
2404 				if ((zonelist_zone_idx(z) <= requested_highidx)
2405 				    && compaction_ready(zone, sc)) {
2406 					aborted_reclaim = true;
2407 					continue;
2408 				}
2409 			}
2410 			/*
2411 			 * This steals pages from memory cgroups over softlimit
2412 			 * and returns the number of reclaimed pages and
2413 			 * scanned pages. This works for global memory pressure
2414 			 * and balancing, not for a memcg's limit.
2415 			 */
2416 			nr_soft_scanned = 0;
2417 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2418 						sc->order, sc->gfp_mask,
2419 						&nr_soft_scanned);
2420 			sc->nr_reclaimed += nr_soft_reclaimed;
2421 			sc->nr_scanned += nr_soft_scanned;
2422 			/* need some check for avoid more shrink_zone() */
2423 		}
2424 
2425 		shrink_zone(zone, sc);
2426 	}
2427 
2428 	/*
2429 	 * Don't shrink slabs when reclaiming memory from over limit cgroups
2430 	 * but do shrink slab at least once when aborting reclaim for
2431 	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2432 	 * pages.
2433 	 */
2434 	if (global_reclaim(sc)) {
2435 		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2436 		if (reclaim_state) {
2437 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2438 			reclaim_state->reclaimed_slab = 0;
2439 		}
2440 	}
2441 
2442 	/*
2443 	 * Restore to original mask to avoid the impact on the caller if we
2444 	 * promoted it to __GFP_HIGHMEM.
2445 	 */
2446 	sc->gfp_mask = orig_mask;
2447 
2448 	return aborted_reclaim;
2449 }
2450 
2451 /* All zones in zonelist are unreclaimable? */
2452 static bool all_unreclaimable(struct zonelist *zonelist,
2453 		struct scan_control *sc)
2454 {
2455 	struct zoneref *z;
2456 	struct zone *zone;
2457 
2458 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2459 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2460 		if (!populated_zone(zone))
2461 			continue;
2462 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2463 			continue;
2464 		if (zone_reclaimable(zone))
2465 			return false;
2466 	}
2467 
2468 	return true;
2469 }
2470 
2471 /*
2472  * This is the main entry point to direct page reclaim.
2473  *
2474  * If a full scan of the inactive list fails to free enough memory then we
2475  * are "out of memory" and something needs to be killed.
2476  *
2477  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2478  * high - the zone may be full of dirty or under-writeback pages, which this
2479  * caller can't do much about.  We kick the writeback threads and take explicit
2480  * naps in the hope that some of these pages can be written.  But if the
2481  * allocating task holds filesystem locks which prevent writeout this might not
2482  * work, and the allocation attempt will fail.
2483  *
2484  * returns:	0, if no pages reclaimed
2485  * 		else, the number of pages reclaimed
2486  */
2487 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2488 					  struct scan_control *sc)
2489 {
2490 	unsigned long total_scanned = 0;
2491 	unsigned long writeback_threshold;
2492 	bool aborted_reclaim;
2493 
2494 	delayacct_freepages_start();
2495 
2496 	if (global_reclaim(sc))
2497 		count_vm_event(ALLOCSTALL);
2498 
2499 	do {
2500 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2501 				sc->priority);
2502 		sc->nr_scanned = 0;
2503 		aborted_reclaim = shrink_zones(zonelist, sc);
2504 
2505 		total_scanned += sc->nr_scanned;
2506 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2507 			goto out;
2508 
2509 		/*
2510 		 * If we're getting trouble reclaiming, start doing
2511 		 * writepage even in laptop mode.
2512 		 */
2513 		if (sc->priority < DEF_PRIORITY - 2)
2514 			sc->may_writepage = 1;
2515 
2516 		/*
2517 		 * Try to write back as many pages as we just scanned.  This
2518 		 * tends to cause slow streaming writers to write data to the
2519 		 * disk smoothly, at the dirtying rate, which is nice.   But
2520 		 * that's undesirable in laptop mode, where we *want* lumpy
2521 		 * writeout.  So in laptop mode, write out the whole world.
2522 		 */
2523 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2524 		if (total_scanned > writeback_threshold) {
2525 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2526 						WB_REASON_TRY_TO_FREE_PAGES);
2527 			sc->may_writepage = 1;
2528 		}
2529 	} while (--sc->priority >= 0 && !aborted_reclaim);
2530 
2531 out:
2532 	delayacct_freepages_end();
2533 
2534 	if (sc->nr_reclaimed)
2535 		return sc->nr_reclaimed;
2536 
2537 	/*
2538 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2539 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2540 	 * check.
2541 	 */
2542 	if (oom_killer_disabled)
2543 		return 0;
2544 
2545 	/* Aborted reclaim to try compaction? don't OOM, then */
2546 	if (aborted_reclaim)
2547 		return 1;
2548 
2549 	/* top priority shrink_zones still had more to do? don't OOM, then */
2550 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2551 		return 1;
2552 
2553 	return 0;
2554 }
2555 
2556 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2557 {
2558 	struct zone *zone;
2559 	unsigned long pfmemalloc_reserve = 0;
2560 	unsigned long free_pages = 0;
2561 	int i;
2562 	bool wmark_ok;
2563 
2564 	for (i = 0; i <= ZONE_NORMAL; i++) {
2565 		zone = &pgdat->node_zones[i];
2566 		if (!populated_zone(zone))
2567 			continue;
2568 
2569 		pfmemalloc_reserve += min_wmark_pages(zone);
2570 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2571 	}
2572 
2573 	/* If there are no reserves (unexpected config) then do not throttle */
2574 	if (!pfmemalloc_reserve)
2575 		return true;
2576 
2577 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2578 
2579 	/* kswapd must be awake if processes are being throttled */
2580 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2581 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2582 						(enum zone_type)ZONE_NORMAL);
2583 		wake_up_interruptible(&pgdat->kswapd_wait);
2584 	}
2585 
2586 	return wmark_ok;
2587 }
2588 
2589 /*
2590  * Throttle direct reclaimers if backing storage is backed by the network
2591  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2592  * depleted. kswapd will continue to make progress and wake the processes
2593  * when the low watermark is reached.
2594  *
2595  * Returns true if a fatal signal was delivered during throttling. If this
2596  * happens, the page allocator should not consider triggering the OOM killer.
2597  */
2598 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2599 					nodemask_t *nodemask)
2600 {
2601 	struct zoneref *z;
2602 	struct zone *zone;
2603 	pg_data_t *pgdat = NULL;
2604 
2605 	/*
2606 	 * Kernel threads should not be throttled as they may be indirectly
2607 	 * responsible for cleaning pages necessary for reclaim to make forward
2608 	 * progress. kjournald for example may enter direct reclaim while
2609 	 * committing a transaction where throttling it could forcing other
2610 	 * processes to block on log_wait_commit().
2611 	 */
2612 	if (current->flags & PF_KTHREAD)
2613 		goto out;
2614 
2615 	/*
2616 	 * If a fatal signal is pending, this process should not throttle.
2617 	 * It should return quickly so it can exit and free its memory
2618 	 */
2619 	if (fatal_signal_pending(current))
2620 		goto out;
2621 
2622 	/*
2623 	 * Check if the pfmemalloc reserves are ok by finding the first node
2624 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2625 	 * GFP_KERNEL will be required for allocating network buffers when
2626 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2627 	 *
2628 	 * Throttling is based on the first usable node and throttled processes
2629 	 * wait on a queue until kswapd makes progress and wakes them. There
2630 	 * is an affinity then between processes waking up and where reclaim
2631 	 * progress has been made assuming the process wakes on the same node.
2632 	 * More importantly, processes running on remote nodes will not compete
2633 	 * for remote pfmemalloc reserves and processes on different nodes
2634 	 * should make reasonable progress.
2635 	 */
2636 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2637 					gfp_mask, nodemask) {
2638 		if (zone_idx(zone) > ZONE_NORMAL)
2639 			continue;
2640 
2641 		/* Throttle based on the first usable node */
2642 		pgdat = zone->zone_pgdat;
2643 		if (pfmemalloc_watermark_ok(pgdat))
2644 			goto out;
2645 		break;
2646 	}
2647 
2648 	/* If no zone was usable by the allocation flags then do not throttle */
2649 	if (!pgdat)
2650 		goto out;
2651 
2652 	/* Account for the throttling */
2653 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2654 
2655 	/*
2656 	 * If the caller cannot enter the filesystem, it's possible that it
2657 	 * is due to the caller holding an FS lock or performing a journal
2658 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2659 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2660 	 * blocked waiting on the same lock. Instead, throttle for up to a
2661 	 * second before continuing.
2662 	 */
2663 	if (!(gfp_mask & __GFP_FS)) {
2664 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2665 			pfmemalloc_watermark_ok(pgdat), HZ);
2666 
2667 		goto check_pending;
2668 	}
2669 
2670 	/* Throttle until kswapd wakes the process */
2671 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2672 		pfmemalloc_watermark_ok(pgdat));
2673 
2674 check_pending:
2675 	if (fatal_signal_pending(current))
2676 		return true;
2677 
2678 out:
2679 	return false;
2680 }
2681 
2682 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2683 				gfp_t gfp_mask, nodemask_t *nodemask)
2684 {
2685 	unsigned long nr_reclaimed;
2686 	struct scan_control sc = {
2687 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2688 		.may_writepage = !laptop_mode,
2689 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2690 		.may_unmap = 1,
2691 		.may_swap = 1,
2692 		.order = order,
2693 		.priority = DEF_PRIORITY,
2694 		.target_mem_cgroup = NULL,
2695 		.nodemask = nodemask,
2696 	};
2697 
2698 	/*
2699 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2700 	 * 1 is returned so that the page allocator does not OOM kill at this
2701 	 * point.
2702 	 */
2703 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2704 		return 1;
2705 
2706 	trace_mm_vmscan_direct_reclaim_begin(order,
2707 				sc.may_writepage,
2708 				gfp_mask);
2709 
2710 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2711 
2712 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2713 
2714 	return nr_reclaimed;
2715 }
2716 
2717 #ifdef CONFIG_MEMCG
2718 
2719 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2720 						gfp_t gfp_mask, bool noswap,
2721 						struct zone *zone,
2722 						unsigned long *nr_scanned)
2723 {
2724 	struct scan_control sc = {
2725 		.nr_scanned = 0,
2726 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2727 		.may_writepage = !laptop_mode,
2728 		.may_unmap = 1,
2729 		.may_swap = !noswap,
2730 		.order = 0,
2731 		.priority = 0,
2732 		.swappiness = mem_cgroup_swappiness(memcg),
2733 		.target_mem_cgroup = memcg,
2734 	};
2735 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2736 
2737 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2738 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2739 
2740 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2741 						      sc.may_writepage,
2742 						      sc.gfp_mask);
2743 
2744 	/*
2745 	 * NOTE: Although we can get the priority field, using it
2746 	 * here is not a good idea, since it limits the pages we can scan.
2747 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2748 	 * will pick up pages from other mem cgroup's as well. We hack
2749 	 * the priority and make it zero.
2750 	 */
2751 	shrink_lruvec(lruvec, &sc);
2752 
2753 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2754 
2755 	*nr_scanned = sc.nr_scanned;
2756 	return sc.nr_reclaimed;
2757 }
2758 
2759 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2760 					   gfp_t gfp_mask,
2761 					   bool noswap)
2762 {
2763 	struct zonelist *zonelist;
2764 	unsigned long nr_reclaimed;
2765 	int nid;
2766 	struct scan_control sc = {
2767 		.may_writepage = !laptop_mode,
2768 		.may_unmap = 1,
2769 		.may_swap = !noswap,
2770 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2771 		.order = 0,
2772 		.priority = DEF_PRIORITY,
2773 		.target_mem_cgroup = memcg,
2774 		.nodemask = NULL, /* we don't care the placement */
2775 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2776 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2777 	};
2778 
2779 	/*
2780 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2781 	 * take care of from where we get pages. So the node where we start the
2782 	 * scan does not need to be the current node.
2783 	 */
2784 	nid = mem_cgroup_select_victim_node(memcg);
2785 
2786 	zonelist = NODE_DATA(nid)->node_zonelists;
2787 
2788 	trace_mm_vmscan_memcg_reclaim_begin(0,
2789 					    sc.may_writepage,
2790 					    sc.gfp_mask);
2791 
2792 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2793 
2794 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2795 
2796 	return nr_reclaimed;
2797 }
2798 #endif
2799 
2800 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2801 {
2802 	struct mem_cgroup *memcg;
2803 
2804 	if (!total_swap_pages)
2805 		return;
2806 
2807 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2808 	do {
2809 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2810 
2811 		if (inactive_anon_is_low(lruvec))
2812 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2813 					   sc, LRU_ACTIVE_ANON);
2814 
2815 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2816 	} while (memcg);
2817 }
2818 
2819 static bool zone_balanced(struct zone *zone, int order,
2820 			  unsigned long balance_gap, int classzone_idx)
2821 {
2822 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2823 				    balance_gap, classzone_idx, 0))
2824 		return false;
2825 
2826 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2827 	    !compaction_suitable(zone, order))
2828 		return false;
2829 
2830 	return true;
2831 }
2832 
2833 /*
2834  * pgdat_balanced() is used when checking if a node is balanced.
2835  *
2836  * For order-0, all zones must be balanced!
2837  *
2838  * For high-order allocations only zones that meet watermarks and are in a
2839  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2840  * total of balanced pages must be at least 25% of the zones allowed by
2841  * classzone_idx for the node to be considered balanced. Forcing all zones to
2842  * be balanced for high orders can cause excessive reclaim when there are
2843  * imbalanced zones.
2844  * The choice of 25% is due to
2845  *   o a 16M DMA zone that is balanced will not balance a zone on any
2846  *     reasonable sized machine
2847  *   o On all other machines, the top zone must be at least a reasonable
2848  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2849  *     would need to be at least 256M for it to be balance a whole node.
2850  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2851  *     to balance a node on its own. These seemed like reasonable ratios.
2852  */
2853 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2854 {
2855 	unsigned long managed_pages = 0;
2856 	unsigned long balanced_pages = 0;
2857 	int i;
2858 
2859 	/* Check the watermark levels */
2860 	for (i = 0; i <= classzone_idx; i++) {
2861 		struct zone *zone = pgdat->node_zones + i;
2862 
2863 		if (!populated_zone(zone))
2864 			continue;
2865 
2866 		managed_pages += zone->managed_pages;
2867 
2868 		/*
2869 		 * A special case here:
2870 		 *
2871 		 * balance_pgdat() skips over all_unreclaimable after
2872 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2873 		 * they must be considered balanced here as well!
2874 		 */
2875 		if (!zone_reclaimable(zone)) {
2876 			balanced_pages += zone->managed_pages;
2877 			continue;
2878 		}
2879 
2880 		if (zone_balanced(zone, order, 0, i))
2881 			balanced_pages += zone->managed_pages;
2882 		else if (!order)
2883 			return false;
2884 	}
2885 
2886 	if (order)
2887 		return balanced_pages >= (managed_pages >> 2);
2888 	else
2889 		return true;
2890 }
2891 
2892 /*
2893  * Prepare kswapd for sleeping. This verifies that there are no processes
2894  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2895  *
2896  * Returns true if kswapd is ready to sleep
2897  */
2898 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2899 					int classzone_idx)
2900 {
2901 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2902 	if (remaining)
2903 		return false;
2904 
2905 	/*
2906 	 * There is a potential race between when kswapd checks its watermarks
2907 	 * and a process gets throttled. There is also a potential race if
2908 	 * processes get throttled, kswapd wakes, a large process exits therby
2909 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2910 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2911 	 * so wake them now if necessary. If necessary, processes will wake
2912 	 * kswapd and get throttled again
2913 	 */
2914 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2915 		wake_up(&pgdat->pfmemalloc_wait);
2916 		return false;
2917 	}
2918 
2919 	return pgdat_balanced(pgdat, order, classzone_idx);
2920 }
2921 
2922 /*
2923  * kswapd shrinks the zone by the number of pages required to reach
2924  * the high watermark.
2925  *
2926  * Returns true if kswapd scanned at least the requested number of pages to
2927  * reclaim or if the lack of progress was due to pages under writeback.
2928  * This is used to determine if the scanning priority needs to be raised.
2929  */
2930 static bool kswapd_shrink_zone(struct zone *zone,
2931 			       int classzone_idx,
2932 			       struct scan_control *sc,
2933 			       unsigned long lru_pages,
2934 			       unsigned long *nr_attempted)
2935 {
2936 	int testorder = sc->order;
2937 	unsigned long balance_gap;
2938 	struct reclaim_state *reclaim_state = current->reclaim_state;
2939 	struct shrink_control shrink = {
2940 		.gfp_mask = sc->gfp_mask,
2941 	};
2942 	bool lowmem_pressure;
2943 
2944 	/* Reclaim above the high watermark. */
2945 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2946 
2947 	/*
2948 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2949 	 * too hard to reclaim until contiguous free pages have become
2950 	 * available can hurt performance by evicting too much useful data
2951 	 * from memory. Do not reclaim more than needed for compaction.
2952 	 */
2953 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2954 			compaction_suitable(zone, sc->order) !=
2955 				COMPACT_SKIPPED)
2956 		testorder = 0;
2957 
2958 	/*
2959 	 * We put equal pressure on every zone, unless one zone has way too
2960 	 * many pages free already. The "too many pages" is defined as the
2961 	 * high wmark plus a "gap" where the gap is either the low
2962 	 * watermark or 1% of the zone, whichever is smaller.
2963 	 */
2964 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2965 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2966 
2967 	/*
2968 	 * If there is no low memory pressure or the zone is balanced then no
2969 	 * reclaim is necessary
2970 	 */
2971 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2972 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2973 						balance_gap, classzone_idx))
2974 		return true;
2975 
2976 	shrink_zone(zone, sc);
2977 	nodes_clear(shrink.nodes_to_scan);
2978 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2979 
2980 	reclaim_state->reclaimed_slab = 0;
2981 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2982 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2983 
2984 	/* Account for the number of pages attempted to reclaim */
2985 	*nr_attempted += sc->nr_to_reclaim;
2986 
2987 	zone_clear_flag(zone, ZONE_WRITEBACK);
2988 
2989 	/*
2990 	 * If a zone reaches its high watermark, consider it to be no longer
2991 	 * congested. It's possible there are dirty pages backed by congested
2992 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2993 	 * waits.
2994 	 */
2995 	if (zone_reclaimable(zone) &&
2996 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2997 		zone_clear_flag(zone, ZONE_CONGESTED);
2998 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2999 	}
3000 
3001 	return sc->nr_scanned >= sc->nr_to_reclaim;
3002 }
3003 
3004 /*
3005  * For kswapd, balance_pgdat() will work across all this node's zones until
3006  * they are all at high_wmark_pages(zone).
3007  *
3008  * Returns the final order kswapd was reclaiming at
3009  *
3010  * There is special handling here for zones which are full of pinned pages.
3011  * This can happen if the pages are all mlocked, or if they are all used by
3012  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3013  * What we do is to detect the case where all pages in the zone have been
3014  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3015  * dead and from now on, only perform a short scan.  Basically we're polling
3016  * the zone for when the problem goes away.
3017  *
3018  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3019  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3020  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3021  * lower zones regardless of the number of free pages in the lower zones. This
3022  * interoperates with the page allocator fallback scheme to ensure that aging
3023  * of pages is balanced across the zones.
3024  */
3025 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3026 							int *classzone_idx)
3027 {
3028 	int i;
3029 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3030 	unsigned long nr_soft_reclaimed;
3031 	unsigned long nr_soft_scanned;
3032 	struct scan_control sc = {
3033 		.gfp_mask = GFP_KERNEL,
3034 		.priority = DEF_PRIORITY,
3035 		.may_unmap = 1,
3036 		.may_swap = 1,
3037 		.may_writepage = !laptop_mode,
3038 		.order = order,
3039 		.target_mem_cgroup = NULL,
3040 	};
3041 	count_vm_event(PAGEOUTRUN);
3042 
3043 	do {
3044 		unsigned long lru_pages = 0;
3045 		unsigned long nr_attempted = 0;
3046 		bool raise_priority = true;
3047 		bool pgdat_needs_compaction = (order > 0);
3048 
3049 		sc.nr_reclaimed = 0;
3050 
3051 		/*
3052 		 * Scan in the highmem->dma direction for the highest
3053 		 * zone which needs scanning
3054 		 */
3055 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3056 			struct zone *zone = pgdat->node_zones + i;
3057 
3058 			if (!populated_zone(zone))
3059 				continue;
3060 
3061 			if (sc.priority != DEF_PRIORITY &&
3062 			    !zone_reclaimable(zone))
3063 				continue;
3064 
3065 			/*
3066 			 * Do some background aging of the anon list, to give
3067 			 * pages a chance to be referenced before reclaiming.
3068 			 */
3069 			age_active_anon(zone, &sc);
3070 
3071 			/*
3072 			 * If the number of buffer_heads in the machine
3073 			 * exceeds the maximum allowed level and this node
3074 			 * has a highmem zone, force kswapd to reclaim from
3075 			 * it to relieve lowmem pressure.
3076 			 */
3077 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3078 				end_zone = i;
3079 				break;
3080 			}
3081 
3082 			if (!zone_balanced(zone, order, 0, 0)) {
3083 				end_zone = i;
3084 				break;
3085 			} else {
3086 				/*
3087 				 * If balanced, clear the dirty and congested
3088 				 * flags
3089 				 */
3090 				zone_clear_flag(zone, ZONE_CONGESTED);
3091 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3092 			}
3093 		}
3094 
3095 		if (i < 0)
3096 			goto out;
3097 
3098 		for (i = 0; i <= end_zone; i++) {
3099 			struct zone *zone = pgdat->node_zones + i;
3100 
3101 			if (!populated_zone(zone))
3102 				continue;
3103 
3104 			lru_pages += zone_reclaimable_pages(zone);
3105 
3106 			/*
3107 			 * If any zone is currently balanced then kswapd will
3108 			 * not call compaction as it is expected that the
3109 			 * necessary pages are already available.
3110 			 */
3111 			if (pgdat_needs_compaction &&
3112 					zone_watermark_ok(zone, order,
3113 						low_wmark_pages(zone),
3114 						*classzone_idx, 0))
3115 				pgdat_needs_compaction = false;
3116 		}
3117 
3118 		/*
3119 		 * If we're getting trouble reclaiming, start doing writepage
3120 		 * even in laptop mode.
3121 		 */
3122 		if (sc.priority < DEF_PRIORITY - 2)
3123 			sc.may_writepage = 1;
3124 
3125 		/*
3126 		 * Now scan the zone in the dma->highmem direction, stopping
3127 		 * at the last zone which needs scanning.
3128 		 *
3129 		 * We do this because the page allocator works in the opposite
3130 		 * direction.  This prevents the page allocator from allocating
3131 		 * pages behind kswapd's direction of progress, which would
3132 		 * cause too much scanning of the lower zones.
3133 		 */
3134 		for (i = 0; i <= end_zone; i++) {
3135 			struct zone *zone = pgdat->node_zones + i;
3136 
3137 			if (!populated_zone(zone))
3138 				continue;
3139 
3140 			if (sc.priority != DEF_PRIORITY &&
3141 			    !zone_reclaimable(zone))
3142 				continue;
3143 
3144 			sc.nr_scanned = 0;
3145 
3146 			nr_soft_scanned = 0;
3147 			/*
3148 			 * Call soft limit reclaim before calling shrink_zone.
3149 			 */
3150 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3151 							order, sc.gfp_mask,
3152 							&nr_soft_scanned);
3153 			sc.nr_reclaimed += nr_soft_reclaimed;
3154 
3155 			/*
3156 			 * There should be no need to raise the scanning
3157 			 * priority if enough pages are already being scanned
3158 			 * that that high watermark would be met at 100%
3159 			 * efficiency.
3160 			 */
3161 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3162 					lru_pages, &nr_attempted))
3163 				raise_priority = false;
3164 		}
3165 
3166 		/*
3167 		 * If the low watermark is met there is no need for processes
3168 		 * to be throttled on pfmemalloc_wait as they should not be
3169 		 * able to safely make forward progress. Wake them
3170 		 */
3171 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3172 				pfmemalloc_watermark_ok(pgdat))
3173 			wake_up(&pgdat->pfmemalloc_wait);
3174 
3175 		/*
3176 		 * Fragmentation may mean that the system cannot be rebalanced
3177 		 * for high-order allocations in all zones. If twice the
3178 		 * allocation size has been reclaimed and the zones are still
3179 		 * not balanced then recheck the watermarks at order-0 to
3180 		 * prevent kswapd reclaiming excessively. Assume that a
3181 		 * process requested a high-order can direct reclaim/compact.
3182 		 */
3183 		if (order && sc.nr_reclaimed >= 2UL << order)
3184 			order = sc.order = 0;
3185 
3186 		/* Check if kswapd should be suspending */
3187 		if (try_to_freeze() || kthread_should_stop())
3188 			break;
3189 
3190 		/*
3191 		 * Compact if necessary and kswapd is reclaiming at least the
3192 		 * high watermark number of pages as requsted
3193 		 */
3194 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3195 			compact_pgdat(pgdat, order);
3196 
3197 		/*
3198 		 * Raise priority if scanning rate is too low or there was no
3199 		 * progress in reclaiming pages
3200 		 */
3201 		if (raise_priority || !sc.nr_reclaimed)
3202 			sc.priority--;
3203 	} while (sc.priority >= 1 &&
3204 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3205 
3206 out:
3207 	/*
3208 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3209 	 * makes a decision on the order we were last reclaiming at. However,
3210 	 * if another caller entered the allocator slow path while kswapd
3211 	 * was awake, order will remain at the higher level
3212 	 */
3213 	*classzone_idx = end_zone;
3214 	return order;
3215 }
3216 
3217 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3218 {
3219 	long remaining = 0;
3220 	DEFINE_WAIT(wait);
3221 
3222 	if (freezing(current) || kthread_should_stop())
3223 		return;
3224 
3225 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3226 
3227 	/* Try to sleep for a short interval */
3228 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3229 		remaining = schedule_timeout(HZ/10);
3230 		finish_wait(&pgdat->kswapd_wait, &wait);
3231 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3232 	}
3233 
3234 	/*
3235 	 * After a short sleep, check if it was a premature sleep. If not, then
3236 	 * go fully to sleep until explicitly woken up.
3237 	 */
3238 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3239 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3240 
3241 		/*
3242 		 * vmstat counters are not perfectly accurate and the estimated
3243 		 * value for counters such as NR_FREE_PAGES can deviate from the
3244 		 * true value by nr_online_cpus * threshold. To avoid the zone
3245 		 * watermarks being breached while under pressure, we reduce the
3246 		 * per-cpu vmstat threshold while kswapd is awake and restore
3247 		 * them before going back to sleep.
3248 		 */
3249 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3250 
3251 		/*
3252 		 * Compaction records what page blocks it recently failed to
3253 		 * isolate pages from and skips them in the future scanning.
3254 		 * When kswapd is going to sleep, it is reasonable to assume
3255 		 * that pages and compaction may succeed so reset the cache.
3256 		 */
3257 		reset_isolation_suitable(pgdat);
3258 
3259 		if (!kthread_should_stop())
3260 			schedule();
3261 
3262 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3263 	} else {
3264 		if (remaining)
3265 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3266 		else
3267 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3268 	}
3269 	finish_wait(&pgdat->kswapd_wait, &wait);
3270 }
3271 
3272 /*
3273  * The background pageout daemon, started as a kernel thread
3274  * from the init process.
3275  *
3276  * This basically trickles out pages so that we have _some_
3277  * free memory available even if there is no other activity
3278  * that frees anything up. This is needed for things like routing
3279  * etc, where we otherwise might have all activity going on in
3280  * asynchronous contexts that cannot page things out.
3281  *
3282  * If there are applications that are active memory-allocators
3283  * (most normal use), this basically shouldn't matter.
3284  */
3285 static int kswapd(void *p)
3286 {
3287 	unsigned long order, new_order;
3288 	unsigned balanced_order;
3289 	int classzone_idx, new_classzone_idx;
3290 	int balanced_classzone_idx;
3291 	pg_data_t *pgdat = (pg_data_t*)p;
3292 	struct task_struct *tsk = current;
3293 
3294 	struct reclaim_state reclaim_state = {
3295 		.reclaimed_slab = 0,
3296 	};
3297 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3298 
3299 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3300 
3301 	if (!cpumask_empty(cpumask))
3302 		set_cpus_allowed_ptr(tsk, cpumask);
3303 	current->reclaim_state = &reclaim_state;
3304 
3305 	/*
3306 	 * Tell the memory management that we're a "memory allocator",
3307 	 * and that if we need more memory we should get access to it
3308 	 * regardless (see "__alloc_pages()"). "kswapd" should
3309 	 * never get caught in the normal page freeing logic.
3310 	 *
3311 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3312 	 * you need a small amount of memory in order to be able to
3313 	 * page out something else, and this flag essentially protects
3314 	 * us from recursively trying to free more memory as we're
3315 	 * trying to free the first piece of memory in the first place).
3316 	 */
3317 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3318 	set_freezable();
3319 
3320 	order = new_order = 0;
3321 	balanced_order = 0;
3322 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3323 	balanced_classzone_idx = classzone_idx;
3324 	for ( ; ; ) {
3325 		bool ret;
3326 
3327 		/*
3328 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3329 		 * new request of a similar or harder type will succeed soon
3330 		 * so consider going to sleep on the basis we reclaimed at
3331 		 */
3332 		if (balanced_classzone_idx >= new_classzone_idx &&
3333 					balanced_order == new_order) {
3334 			new_order = pgdat->kswapd_max_order;
3335 			new_classzone_idx = pgdat->classzone_idx;
3336 			pgdat->kswapd_max_order =  0;
3337 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3338 		}
3339 
3340 		if (order < new_order || classzone_idx > new_classzone_idx) {
3341 			/*
3342 			 * Don't sleep if someone wants a larger 'order'
3343 			 * allocation or has tigher zone constraints
3344 			 */
3345 			order = new_order;
3346 			classzone_idx = new_classzone_idx;
3347 		} else {
3348 			kswapd_try_to_sleep(pgdat, balanced_order,
3349 						balanced_classzone_idx);
3350 			order = pgdat->kswapd_max_order;
3351 			classzone_idx = pgdat->classzone_idx;
3352 			new_order = order;
3353 			new_classzone_idx = classzone_idx;
3354 			pgdat->kswapd_max_order = 0;
3355 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3356 		}
3357 
3358 		ret = try_to_freeze();
3359 		if (kthread_should_stop())
3360 			break;
3361 
3362 		/*
3363 		 * We can speed up thawing tasks if we don't call balance_pgdat
3364 		 * after returning from the refrigerator
3365 		 */
3366 		if (!ret) {
3367 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3368 			balanced_classzone_idx = classzone_idx;
3369 			balanced_order = balance_pgdat(pgdat, order,
3370 						&balanced_classzone_idx);
3371 		}
3372 	}
3373 
3374 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3375 	current->reclaim_state = NULL;
3376 	lockdep_clear_current_reclaim_state();
3377 
3378 	return 0;
3379 }
3380 
3381 /*
3382  * A zone is low on free memory, so wake its kswapd task to service it.
3383  */
3384 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3385 {
3386 	pg_data_t *pgdat;
3387 
3388 	if (!populated_zone(zone))
3389 		return;
3390 
3391 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3392 		return;
3393 	pgdat = zone->zone_pgdat;
3394 	if (pgdat->kswapd_max_order < order) {
3395 		pgdat->kswapd_max_order = order;
3396 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3397 	}
3398 	if (!waitqueue_active(&pgdat->kswapd_wait))
3399 		return;
3400 	if (zone_balanced(zone, order, 0, 0))
3401 		return;
3402 
3403 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3404 	wake_up_interruptible(&pgdat->kswapd_wait);
3405 }
3406 
3407 #ifdef CONFIG_HIBERNATION
3408 /*
3409  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3410  * freed pages.
3411  *
3412  * Rather than trying to age LRUs the aim is to preserve the overall
3413  * LRU order by reclaiming preferentially
3414  * inactive > active > active referenced > active mapped
3415  */
3416 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3417 {
3418 	struct reclaim_state reclaim_state;
3419 	struct scan_control sc = {
3420 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3421 		.may_swap = 1,
3422 		.may_unmap = 1,
3423 		.may_writepage = 1,
3424 		.nr_to_reclaim = nr_to_reclaim,
3425 		.hibernation_mode = 1,
3426 		.order = 0,
3427 		.priority = DEF_PRIORITY,
3428 	};
3429 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3430 	struct task_struct *p = current;
3431 	unsigned long nr_reclaimed;
3432 
3433 	p->flags |= PF_MEMALLOC;
3434 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3435 	reclaim_state.reclaimed_slab = 0;
3436 	p->reclaim_state = &reclaim_state;
3437 
3438 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3439 
3440 	p->reclaim_state = NULL;
3441 	lockdep_clear_current_reclaim_state();
3442 	p->flags &= ~PF_MEMALLOC;
3443 
3444 	return nr_reclaimed;
3445 }
3446 #endif /* CONFIG_HIBERNATION */
3447 
3448 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3449    not required for correctness.  So if the last cpu in a node goes
3450    away, we get changed to run anywhere: as the first one comes back,
3451    restore their cpu bindings. */
3452 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3453 			void *hcpu)
3454 {
3455 	int nid;
3456 
3457 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3458 		for_each_node_state(nid, N_MEMORY) {
3459 			pg_data_t *pgdat = NODE_DATA(nid);
3460 			const struct cpumask *mask;
3461 
3462 			mask = cpumask_of_node(pgdat->node_id);
3463 
3464 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3465 				/* One of our CPUs online: restore mask */
3466 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3467 		}
3468 	}
3469 	return NOTIFY_OK;
3470 }
3471 
3472 /*
3473  * This kswapd start function will be called by init and node-hot-add.
3474  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3475  */
3476 int kswapd_run(int nid)
3477 {
3478 	pg_data_t *pgdat = NODE_DATA(nid);
3479 	int ret = 0;
3480 
3481 	if (pgdat->kswapd)
3482 		return 0;
3483 
3484 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3485 	if (IS_ERR(pgdat->kswapd)) {
3486 		/* failure at boot is fatal */
3487 		BUG_ON(system_state == SYSTEM_BOOTING);
3488 		pr_err("Failed to start kswapd on node %d\n", nid);
3489 		ret = PTR_ERR(pgdat->kswapd);
3490 		pgdat->kswapd = NULL;
3491 	}
3492 	return ret;
3493 }
3494 
3495 /*
3496  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3497  * hold mem_hotplug_begin/end().
3498  */
3499 void kswapd_stop(int nid)
3500 {
3501 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3502 
3503 	if (kswapd) {
3504 		kthread_stop(kswapd);
3505 		NODE_DATA(nid)->kswapd = NULL;
3506 	}
3507 }
3508 
3509 static int __init kswapd_init(void)
3510 {
3511 	int nid;
3512 
3513 	swap_setup();
3514 	for_each_node_state(nid, N_MEMORY)
3515  		kswapd_run(nid);
3516 	hotcpu_notifier(cpu_callback, 0);
3517 	return 0;
3518 }
3519 
3520 module_init(kswapd_init)
3521 
3522 #ifdef CONFIG_NUMA
3523 /*
3524  * Zone reclaim mode
3525  *
3526  * If non-zero call zone_reclaim when the number of free pages falls below
3527  * the watermarks.
3528  */
3529 int zone_reclaim_mode __read_mostly;
3530 
3531 #define RECLAIM_OFF 0
3532 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3533 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3534 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3535 
3536 /*
3537  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3538  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3539  * a zone.
3540  */
3541 #define ZONE_RECLAIM_PRIORITY 4
3542 
3543 /*
3544  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3545  * occur.
3546  */
3547 int sysctl_min_unmapped_ratio = 1;
3548 
3549 /*
3550  * If the number of slab pages in a zone grows beyond this percentage then
3551  * slab reclaim needs to occur.
3552  */
3553 int sysctl_min_slab_ratio = 5;
3554 
3555 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3556 {
3557 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3558 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3559 		zone_page_state(zone, NR_ACTIVE_FILE);
3560 
3561 	/*
3562 	 * It's possible for there to be more file mapped pages than
3563 	 * accounted for by the pages on the file LRU lists because
3564 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3565 	 */
3566 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3567 }
3568 
3569 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3570 static long zone_pagecache_reclaimable(struct zone *zone)
3571 {
3572 	long nr_pagecache_reclaimable;
3573 	long delta = 0;
3574 
3575 	/*
3576 	 * If RECLAIM_SWAP is set, then all file pages are considered
3577 	 * potentially reclaimable. Otherwise, we have to worry about
3578 	 * pages like swapcache and zone_unmapped_file_pages() provides
3579 	 * a better estimate
3580 	 */
3581 	if (zone_reclaim_mode & RECLAIM_SWAP)
3582 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3583 	else
3584 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3585 
3586 	/* If we can't clean pages, remove dirty pages from consideration */
3587 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3588 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3589 
3590 	/* Watch for any possible underflows due to delta */
3591 	if (unlikely(delta > nr_pagecache_reclaimable))
3592 		delta = nr_pagecache_reclaimable;
3593 
3594 	return nr_pagecache_reclaimable - delta;
3595 }
3596 
3597 /*
3598  * Try to free up some pages from this zone through reclaim.
3599  */
3600 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3601 {
3602 	/* Minimum pages needed in order to stay on node */
3603 	const unsigned long nr_pages = 1 << order;
3604 	struct task_struct *p = current;
3605 	struct reclaim_state reclaim_state;
3606 	struct scan_control sc = {
3607 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3608 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3609 		.may_swap = 1,
3610 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3611 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3612 		.order = order,
3613 		.priority = ZONE_RECLAIM_PRIORITY,
3614 	};
3615 	struct shrink_control shrink = {
3616 		.gfp_mask = sc.gfp_mask,
3617 	};
3618 	unsigned long nr_slab_pages0, nr_slab_pages1;
3619 
3620 	cond_resched();
3621 	/*
3622 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3623 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3624 	 * and RECLAIM_SWAP.
3625 	 */
3626 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3627 	lockdep_set_current_reclaim_state(gfp_mask);
3628 	reclaim_state.reclaimed_slab = 0;
3629 	p->reclaim_state = &reclaim_state;
3630 
3631 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3632 		/*
3633 		 * Free memory by calling shrink zone with increasing
3634 		 * priorities until we have enough memory freed.
3635 		 */
3636 		do {
3637 			shrink_zone(zone, &sc);
3638 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3639 	}
3640 
3641 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3642 	if (nr_slab_pages0 > zone->min_slab_pages) {
3643 		/*
3644 		 * shrink_slab() does not currently allow us to determine how
3645 		 * many pages were freed in this zone. So we take the current
3646 		 * number of slab pages and shake the slab until it is reduced
3647 		 * by the same nr_pages that we used for reclaiming unmapped
3648 		 * pages.
3649 		 */
3650 		nodes_clear(shrink.nodes_to_scan);
3651 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3652 		for (;;) {
3653 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3654 
3655 			/* No reclaimable slab or very low memory pressure */
3656 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3657 				break;
3658 
3659 			/* Freed enough memory */
3660 			nr_slab_pages1 = zone_page_state(zone,
3661 							NR_SLAB_RECLAIMABLE);
3662 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3663 				break;
3664 		}
3665 
3666 		/*
3667 		 * Update nr_reclaimed by the number of slab pages we
3668 		 * reclaimed from this zone.
3669 		 */
3670 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3671 		if (nr_slab_pages1 < nr_slab_pages0)
3672 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3673 	}
3674 
3675 	p->reclaim_state = NULL;
3676 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3677 	lockdep_clear_current_reclaim_state();
3678 	return sc.nr_reclaimed >= nr_pages;
3679 }
3680 
3681 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3682 {
3683 	int node_id;
3684 	int ret;
3685 
3686 	/*
3687 	 * Zone reclaim reclaims unmapped file backed pages and
3688 	 * slab pages if we are over the defined limits.
3689 	 *
3690 	 * A small portion of unmapped file backed pages is needed for
3691 	 * file I/O otherwise pages read by file I/O will be immediately
3692 	 * thrown out if the zone is overallocated. So we do not reclaim
3693 	 * if less than a specified percentage of the zone is used by
3694 	 * unmapped file backed pages.
3695 	 */
3696 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3697 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3698 		return ZONE_RECLAIM_FULL;
3699 
3700 	if (!zone_reclaimable(zone))
3701 		return ZONE_RECLAIM_FULL;
3702 
3703 	/*
3704 	 * Do not scan if the allocation should not be delayed.
3705 	 */
3706 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3707 		return ZONE_RECLAIM_NOSCAN;
3708 
3709 	/*
3710 	 * Only run zone reclaim on the local zone or on zones that do not
3711 	 * have associated processors. This will favor the local processor
3712 	 * over remote processors and spread off node memory allocations
3713 	 * as wide as possible.
3714 	 */
3715 	node_id = zone_to_nid(zone);
3716 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3717 		return ZONE_RECLAIM_NOSCAN;
3718 
3719 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3720 		return ZONE_RECLAIM_NOSCAN;
3721 
3722 	ret = __zone_reclaim(zone, gfp_mask, order);
3723 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3724 
3725 	if (!ret)
3726 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3727 
3728 	return ret;
3729 }
3730 #endif
3731 
3732 /*
3733  * page_evictable - test whether a page is evictable
3734  * @page: the page to test
3735  *
3736  * Test whether page is evictable--i.e., should be placed on active/inactive
3737  * lists vs unevictable list.
3738  *
3739  * Reasons page might not be evictable:
3740  * (1) page's mapping marked unevictable
3741  * (2) page is part of an mlocked VMA
3742  *
3743  */
3744 int page_evictable(struct page *page)
3745 {
3746 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3747 }
3748 
3749 #ifdef CONFIG_SHMEM
3750 /**
3751  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3752  * @pages:	array of pages to check
3753  * @nr_pages:	number of pages to check
3754  *
3755  * Checks pages for evictability and moves them to the appropriate lru list.
3756  *
3757  * This function is only used for SysV IPC SHM_UNLOCK.
3758  */
3759 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3760 {
3761 	struct lruvec *lruvec;
3762 	struct zone *zone = NULL;
3763 	int pgscanned = 0;
3764 	int pgrescued = 0;
3765 	int i;
3766 
3767 	for (i = 0; i < nr_pages; i++) {
3768 		struct page *page = pages[i];
3769 		struct zone *pagezone;
3770 
3771 		pgscanned++;
3772 		pagezone = page_zone(page);
3773 		if (pagezone != zone) {
3774 			if (zone)
3775 				spin_unlock_irq(&zone->lru_lock);
3776 			zone = pagezone;
3777 			spin_lock_irq(&zone->lru_lock);
3778 		}
3779 		lruvec = mem_cgroup_page_lruvec(page, zone);
3780 
3781 		if (!PageLRU(page) || !PageUnevictable(page))
3782 			continue;
3783 
3784 		if (page_evictable(page)) {
3785 			enum lru_list lru = page_lru_base_type(page);
3786 
3787 			VM_BUG_ON_PAGE(PageActive(page), page);
3788 			ClearPageUnevictable(page);
3789 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3790 			add_page_to_lru_list(page, lruvec, lru);
3791 			pgrescued++;
3792 		}
3793 	}
3794 
3795 	if (zone) {
3796 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3797 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3798 		spin_unlock_irq(&zone->lru_lock);
3799 	}
3800 }
3801 #endif /* CONFIG_SHMEM */
3802 
3803 static void warn_scan_unevictable_pages(void)
3804 {
3805 	printk_once(KERN_WARNING
3806 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3807 		    "disabled for lack of a legitimate use case.  If you have "
3808 		    "one, please send an email to linux-mm@kvack.org.\n",
3809 		    current->comm);
3810 }
3811 
3812 /*
3813  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3814  * all nodes' unevictable lists for evictable pages
3815  */
3816 unsigned long scan_unevictable_pages;
3817 
3818 int scan_unevictable_handler(struct ctl_table *table, int write,
3819 			   void __user *buffer,
3820 			   size_t *length, loff_t *ppos)
3821 {
3822 	warn_scan_unevictable_pages();
3823 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3824 	scan_unevictable_pages = 0;
3825 	return 0;
3826 }
3827 
3828 #ifdef CONFIG_NUMA
3829 /*
3830  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3831  * a specified node's per zone unevictable lists for evictable pages.
3832  */
3833 
3834 static ssize_t read_scan_unevictable_node(struct device *dev,
3835 					  struct device_attribute *attr,
3836 					  char *buf)
3837 {
3838 	warn_scan_unevictable_pages();
3839 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3840 }
3841 
3842 static ssize_t write_scan_unevictable_node(struct device *dev,
3843 					   struct device_attribute *attr,
3844 					const char *buf, size_t count)
3845 {
3846 	warn_scan_unevictable_pages();
3847 	return 1;
3848 }
3849 
3850 
3851 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3852 			read_scan_unevictable_node,
3853 			write_scan_unevictable_node);
3854 
3855 int scan_unevictable_register_node(struct node *node)
3856 {
3857 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3858 }
3859 
3860 void scan_unevictable_unregister_node(struct node *node)
3861 {
3862 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3863 }
3864 #endif
3865