1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* e.g. boosted watermark reclaim leaves slabs alone */ 92 unsigned int may_shrinkslab:1; 93 94 /* 95 * Cgroups are not reclaimed below their configured memory.low, 96 * unless we threaten to OOM. If any cgroups are skipped due to 97 * memory.low and nothing was reclaimed, go back for memory.low. 98 */ 99 unsigned int memcg_low_reclaim:1; 100 unsigned int memcg_low_skipped:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Allocation order */ 108 s8 order; 109 110 /* Scan (total_size >> priority) pages at once */ 111 s8 priority; 112 113 /* The highest zone to isolate pages for reclaim from */ 114 s8 reclaim_idx; 115 116 /* This context's GFP mask */ 117 gfp_t gfp_mask; 118 119 /* Incremented by the number of inactive pages that were scanned */ 120 unsigned long nr_scanned; 121 122 /* Number of pages freed so far during a call to shrink_zones() */ 123 unsigned long nr_reclaimed; 124 125 struct { 126 unsigned int dirty; 127 unsigned int unqueued_dirty; 128 unsigned int congested; 129 unsigned int writeback; 130 unsigned int immediate; 131 unsigned int file_taken; 132 unsigned int taken; 133 } nr; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static LIST_HEAD(shrinker_list); 175 static DECLARE_RWSEM(shrinker_rwsem); 176 177 #ifdef CONFIG_MEMCG_KMEM 178 179 /* 180 * We allow subsystems to populate their shrinker-related 181 * LRU lists before register_shrinker_prepared() is called 182 * for the shrinker, since we don't want to impose 183 * restrictions on their internal registration order. 184 * In this case shrink_slab_memcg() may find corresponding 185 * bit is set in the shrinkers map. 186 * 187 * This value is used by the function to detect registering 188 * shrinkers and to skip do_shrink_slab() calls for them. 189 */ 190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 191 192 static DEFINE_IDR(shrinker_idr); 193 static int shrinker_nr_max; 194 195 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 196 { 197 int id, ret = -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 /* This may call shrinker, so it must use down_read_trylock() */ 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 202 if (id < 0) 203 goto unlock; 204 205 if (id >= shrinker_nr_max) { 206 if (memcg_expand_shrinker_maps(id)) { 207 idr_remove(&shrinker_idr, id); 208 goto unlock; 209 } 210 211 shrinker_nr_max = id + 1; 212 } 213 shrinker->id = id; 214 ret = 0; 215 unlock: 216 up_write(&shrinker_rwsem); 217 return ret; 218 } 219 220 static void unregister_memcg_shrinker(struct shrinker *shrinker) 221 { 222 int id = shrinker->id; 223 224 BUG_ON(id < 0); 225 226 down_write(&shrinker_rwsem); 227 idr_remove(&shrinker_idr, id); 228 up_write(&shrinker_rwsem); 229 } 230 #else /* CONFIG_MEMCG_KMEM */ 231 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 232 { 233 return 0; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 } 239 #endif /* CONFIG_MEMCG_KMEM */ 240 241 #ifdef CONFIG_MEMCG 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static bool global_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static bool sane_reclaim(struct scan_control *sc) 302 { 303 return true; 304 } 305 306 static inline void set_memcg_congestion(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg, bool congested) 308 { 309 } 310 311 static inline bool memcg_congested(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313 { 314 return false; 315 316 } 317 #endif 318 319 /* 320 * This misses isolated pages which are not accounted for to save counters. 321 * As the data only determines if reclaim or compaction continues, it is 322 * not expected that isolated pages will be a dominating factor. 323 */ 324 unsigned long zone_reclaimable_pages(struct zone *zone) 325 { 326 unsigned long nr; 327 328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 330 if (get_nr_swap_pages() > 0) 331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 333 334 return nr; 335 } 336 337 /** 338 * lruvec_lru_size - Returns the number of pages on the given LRU list. 339 * @lruvec: lru vector 340 * @lru: lru to use 341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 342 */ 343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 344 { 345 unsigned long lru_size; 346 int zid; 347 348 if (!mem_cgroup_disabled()) 349 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 350 else 351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 352 353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 355 unsigned long size; 356 357 if (!managed_zone(zone)) 358 continue; 359 360 if (!mem_cgroup_disabled()) 361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 362 else 363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 364 NR_ZONE_LRU_BASE + lru); 365 lru_size -= min(size, lru_size); 366 } 367 368 return lru_size; 369 370 } 371 372 /* 373 * Add a shrinker callback to be called from the vm. 374 */ 375 int prealloc_shrinker(struct shrinker *shrinker) 376 { 377 size_t size = sizeof(*shrinker->nr_deferred); 378 379 if (shrinker->flags & SHRINKER_NUMA_AWARE) 380 size *= nr_node_ids; 381 382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 383 if (!shrinker->nr_deferred) 384 return -ENOMEM; 385 386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 387 if (prealloc_memcg_shrinker(shrinker)) 388 goto free_deferred; 389 } 390 391 return 0; 392 393 free_deferred: 394 kfree(shrinker->nr_deferred); 395 shrinker->nr_deferred = NULL; 396 return -ENOMEM; 397 } 398 399 void free_prealloced_shrinker(struct shrinker *shrinker) 400 { 401 if (!shrinker->nr_deferred) 402 return; 403 404 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 405 unregister_memcg_shrinker(shrinker); 406 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 411 void register_shrinker_prepared(struct shrinker *shrinker) 412 { 413 down_write(&shrinker_rwsem); 414 list_add_tail(&shrinker->list, &shrinker_list); 415 #ifdef CONFIG_MEMCG_KMEM 416 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 417 idr_replace(&shrinker_idr, shrinker, shrinker->id); 418 #endif 419 up_write(&shrinker_rwsem); 420 } 421 422 int register_shrinker(struct shrinker *shrinker) 423 { 424 int err = prealloc_shrinker(shrinker); 425 426 if (err) 427 return err; 428 register_shrinker_prepared(shrinker); 429 return 0; 430 } 431 EXPORT_SYMBOL(register_shrinker); 432 433 /* 434 * Remove one 435 */ 436 void unregister_shrinker(struct shrinker *shrinker) 437 { 438 if (!shrinker->nr_deferred) 439 return; 440 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 441 unregister_memcg_shrinker(shrinker); 442 down_write(&shrinker_rwsem); 443 list_del(&shrinker->list); 444 up_write(&shrinker_rwsem); 445 kfree(shrinker->nr_deferred); 446 shrinker->nr_deferred = NULL; 447 } 448 EXPORT_SYMBOL(unregister_shrinker); 449 450 #define SHRINK_BATCH 128 451 452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 453 struct shrinker *shrinker, int priority) 454 { 455 unsigned long freed = 0; 456 unsigned long long delta; 457 long total_scan; 458 long freeable; 459 long nr; 460 long new_nr; 461 int nid = shrinkctl->nid; 462 long batch_size = shrinker->batch ? shrinker->batch 463 : SHRINK_BATCH; 464 long scanned = 0, next_deferred; 465 466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 467 nid = 0; 468 469 freeable = shrinker->count_objects(shrinker, shrinkctl); 470 if (freeable == 0 || freeable == SHRINK_EMPTY) 471 return freeable; 472 473 /* 474 * copy the current shrinker scan count into a local variable 475 * and zero it so that other concurrent shrinker invocations 476 * don't also do this scanning work. 477 */ 478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 479 480 total_scan = nr; 481 if (shrinker->seeks) { 482 delta = freeable >> priority; 483 delta *= 4; 484 do_div(delta, shrinker->seeks); 485 } else { 486 /* 487 * These objects don't require any IO to create. Trim 488 * them aggressively under memory pressure to keep 489 * them from causing refetches in the IO caches. 490 */ 491 delta = freeable / 2; 492 } 493 494 /* 495 * Make sure we apply some minimal pressure on default priority 496 * even on small cgroups. Stale objects are not only consuming memory 497 * by themselves, but can also hold a reference to a dying cgroup, 498 * preventing it from being reclaimed. A dying cgroup with all 499 * corresponding structures like per-cpu stats and kmem caches 500 * can be really big, so it may lead to a significant waste of memory. 501 */ 502 delta = max_t(unsigned long long, delta, min(freeable, batch_size)); 503 504 total_scan += delta; 505 if (total_scan < 0) { 506 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 507 shrinker->scan_objects, total_scan); 508 total_scan = freeable; 509 next_deferred = nr; 510 } else 511 next_deferred = total_scan; 512 513 /* 514 * We need to avoid excessive windup on filesystem shrinkers 515 * due to large numbers of GFP_NOFS allocations causing the 516 * shrinkers to return -1 all the time. This results in a large 517 * nr being built up so when a shrink that can do some work 518 * comes along it empties the entire cache due to nr >>> 519 * freeable. This is bad for sustaining a working set in 520 * memory. 521 * 522 * Hence only allow the shrinker to scan the entire cache when 523 * a large delta change is calculated directly. 524 */ 525 if (delta < freeable / 4) 526 total_scan = min(total_scan, freeable / 2); 527 528 /* 529 * Avoid risking looping forever due to too large nr value: 530 * never try to free more than twice the estimate number of 531 * freeable entries. 532 */ 533 if (total_scan > freeable * 2) 534 total_scan = freeable * 2; 535 536 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 537 freeable, delta, total_scan, priority); 538 539 /* 540 * Normally, we should not scan less than batch_size objects in one 541 * pass to avoid too frequent shrinker calls, but if the slab has less 542 * than batch_size objects in total and we are really tight on memory, 543 * we will try to reclaim all available objects, otherwise we can end 544 * up failing allocations although there are plenty of reclaimable 545 * objects spread over several slabs with usage less than the 546 * batch_size. 547 * 548 * We detect the "tight on memory" situations by looking at the total 549 * number of objects we want to scan (total_scan). If it is greater 550 * than the total number of objects on slab (freeable), we must be 551 * scanning at high prio and therefore should try to reclaim as much as 552 * possible. 553 */ 554 while (total_scan >= batch_size || 555 total_scan >= freeable) { 556 unsigned long ret; 557 unsigned long nr_to_scan = min(batch_size, total_scan); 558 559 shrinkctl->nr_to_scan = nr_to_scan; 560 shrinkctl->nr_scanned = nr_to_scan; 561 ret = shrinker->scan_objects(shrinker, shrinkctl); 562 if (ret == SHRINK_STOP) 563 break; 564 freed += ret; 565 566 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 567 total_scan -= shrinkctl->nr_scanned; 568 scanned += shrinkctl->nr_scanned; 569 570 cond_resched(); 571 } 572 573 if (next_deferred >= scanned) 574 next_deferred -= scanned; 575 else 576 next_deferred = 0; 577 /* 578 * move the unused scan count back into the shrinker in a 579 * manner that handles concurrent updates. If we exhausted the 580 * scan, there is no need to do an update. 581 */ 582 if (next_deferred > 0) 583 new_nr = atomic_long_add_return(next_deferred, 584 &shrinker->nr_deferred[nid]); 585 else 586 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 587 588 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 589 return freed; 590 } 591 592 #ifdef CONFIG_MEMCG_KMEM 593 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 594 struct mem_cgroup *memcg, int priority) 595 { 596 struct memcg_shrinker_map *map; 597 unsigned long ret, freed = 0; 598 int i; 599 600 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 601 return 0; 602 603 if (!down_read_trylock(&shrinker_rwsem)) 604 return 0; 605 606 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 607 true); 608 if (unlikely(!map)) 609 goto unlock; 610 611 for_each_set_bit(i, map->map, shrinker_nr_max) { 612 struct shrink_control sc = { 613 .gfp_mask = gfp_mask, 614 .nid = nid, 615 .memcg = memcg, 616 }; 617 struct shrinker *shrinker; 618 619 shrinker = idr_find(&shrinker_idr, i); 620 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 621 if (!shrinker) 622 clear_bit(i, map->map); 623 continue; 624 } 625 626 ret = do_shrink_slab(&sc, shrinker, priority); 627 if (ret == SHRINK_EMPTY) { 628 clear_bit(i, map->map); 629 /* 630 * After the shrinker reported that it had no objects to 631 * free, but before we cleared the corresponding bit in 632 * the memcg shrinker map, a new object might have been 633 * added. To make sure, we have the bit set in this 634 * case, we invoke the shrinker one more time and reset 635 * the bit if it reports that it is not empty anymore. 636 * The memory barrier here pairs with the barrier in 637 * memcg_set_shrinker_bit(): 638 * 639 * list_lru_add() shrink_slab_memcg() 640 * list_add_tail() clear_bit() 641 * <MB> <MB> 642 * set_bit() do_shrink_slab() 643 */ 644 smp_mb__after_atomic(); 645 ret = do_shrink_slab(&sc, shrinker, priority); 646 if (ret == SHRINK_EMPTY) 647 ret = 0; 648 else 649 memcg_set_shrinker_bit(memcg, nid, i); 650 } 651 freed += ret; 652 653 if (rwsem_is_contended(&shrinker_rwsem)) { 654 freed = freed ? : 1; 655 break; 656 } 657 } 658 unlock: 659 up_read(&shrinker_rwsem); 660 return freed; 661 } 662 #else /* CONFIG_MEMCG_KMEM */ 663 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 664 struct mem_cgroup *memcg, int priority) 665 { 666 return 0; 667 } 668 #endif /* CONFIG_MEMCG_KMEM */ 669 670 /** 671 * shrink_slab - shrink slab caches 672 * @gfp_mask: allocation context 673 * @nid: node whose slab caches to target 674 * @memcg: memory cgroup whose slab caches to target 675 * @priority: the reclaim priority 676 * 677 * Call the shrink functions to age shrinkable caches. 678 * 679 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 680 * unaware shrinkers will receive a node id of 0 instead. 681 * 682 * @memcg specifies the memory cgroup to target. Unaware shrinkers 683 * are called only if it is the root cgroup. 684 * 685 * @priority is sc->priority, we take the number of objects and >> by priority 686 * in order to get the scan target. 687 * 688 * Returns the number of reclaimed slab objects. 689 */ 690 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 691 struct mem_cgroup *memcg, 692 int priority) 693 { 694 unsigned long ret, freed = 0; 695 struct shrinker *shrinker; 696 697 if (!mem_cgroup_is_root(memcg)) 698 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 699 700 if (!down_read_trylock(&shrinker_rwsem)) 701 goto out; 702 703 list_for_each_entry(shrinker, &shrinker_list, list) { 704 struct shrink_control sc = { 705 .gfp_mask = gfp_mask, 706 .nid = nid, 707 .memcg = memcg, 708 }; 709 710 ret = do_shrink_slab(&sc, shrinker, priority); 711 if (ret == SHRINK_EMPTY) 712 ret = 0; 713 freed += ret; 714 /* 715 * Bail out if someone want to register a new shrinker to 716 * prevent the regsitration from being stalled for long periods 717 * by parallel ongoing shrinking. 718 */ 719 if (rwsem_is_contended(&shrinker_rwsem)) { 720 freed = freed ? : 1; 721 break; 722 } 723 } 724 725 up_read(&shrinker_rwsem); 726 out: 727 cond_resched(); 728 return freed; 729 } 730 731 void drop_slab_node(int nid) 732 { 733 unsigned long freed; 734 735 do { 736 struct mem_cgroup *memcg = NULL; 737 738 freed = 0; 739 memcg = mem_cgroup_iter(NULL, NULL, NULL); 740 do { 741 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 742 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 743 } while (freed > 10); 744 } 745 746 void drop_slab(void) 747 { 748 int nid; 749 750 for_each_online_node(nid) 751 drop_slab_node(nid); 752 } 753 754 static inline int is_page_cache_freeable(struct page *page) 755 { 756 /* 757 * A freeable page cache page is referenced only by the caller 758 * that isolated the page, the page cache and optional buffer 759 * heads at page->private. 760 */ 761 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 762 HPAGE_PMD_NR : 1; 763 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 764 } 765 766 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 767 { 768 if (current->flags & PF_SWAPWRITE) 769 return 1; 770 if (!inode_write_congested(inode)) 771 return 1; 772 if (inode_to_bdi(inode) == current->backing_dev_info) 773 return 1; 774 return 0; 775 } 776 777 /* 778 * We detected a synchronous write error writing a page out. Probably 779 * -ENOSPC. We need to propagate that into the address_space for a subsequent 780 * fsync(), msync() or close(). 781 * 782 * The tricky part is that after writepage we cannot touch the mapping: nothing 783 * prevents it from being freed up. But we have a ref on the page and once 784 * that page is locked, the mapping is pinned. 785 * 786 * We're allowed to run sleeping lock_page() here because we know the caller has 787 * __GFP_FS. 788 */ 789 static void handle_write_error(struct address_space *mapping, 790 struct page *page, int error) 791 { 792 lock_page(page); 793 if (page_mapping(page) == mapping) 794 mapping_set_error(mapping, error); 795 unlock_page(page); 796 } 797 798 /* possible outcome of pageout() */ 799 typedef enum { 800 /* failed to write page out, page is locked */ 801 PAGE_KEEP, 802 /* move page to the active list, page is locked */ 803 PAGE_ACTIVATE, 804 /* page has been sent to the disk successfully, page is unlocked */ 805 PAGE_SUCCESS, 806 /* page is clean and locked */ 807 PAGE_CLEAN, 808 } pageout_t; 809 810 /* 811 * pageout is called by shrink_page_list() for each dirty page. 812 * Calls ->writepage(). 813 */ 814 static pageout_t pageout(struct page *page, struct address_space *mapping, 815 struct scan_control *sc) 816 { 817 /* 818 * If the page is dirty, only perform writeback if that write 819 * will be non-blocking. To prevent this allocation from being 820 * stalled by pagecache activity. But note that there may be 821 * stalls if we need to run get_block(). We could test 822 * PagePrivate for that. 823 * 824 * If this process is currently in __generic_file_write_iter() against 825 * this page's queue, we can perform writeback even if that 826 * will block. 827 * 828 * If the page is swapcache, write it back even if that would 829 * block, for some throttling. This happens by accident, because 830 * swap_backing_dev_info is bust: it doesn't reflect the 831 * congestion state of the swapdevs. Easy to fix, if needed. 832 */ 833 if (!is_page_cache_freeable(page)) 834 return PAGE_KEEP; 835 if (!mapping) { 836 /* 837 * Some data journaling orphaned pages can have 838 * page->mapping == NULL while being dirty with clean buffers. 839 */ 840 if (page_has_private(page)) { 841 if (try_to_free_buffers(page)) { 842 ClearPageDirty(page); 843 pr_info("%s: orphaned page\n", __func__); 844 return PAGE_CLEAN; 845 } 846 } 847 return PAGE_KEEP; 848 } 849 if (mapping->a_ops->writepage == NULL) 850 return PAGE_ACTIVATE; 851 if (!may_write_to_inode(mapping->host, sc)) 852 return PAGE_KEEP; 853 854 if (clear_page_dirty_for_io(page)) { 855 int res; 856 struct writeback_control wbc = { 857 .sync_mode = WB_SYNC_NONE, 858 .nr_to_write = SWAP_CLUSTER_MAX, 859 .range_start = 0, 860 .range_end = LLONG_MAX, 861 .for_reclaim = 1, 862 }; 863 864 SetPageReclaim(page); 865 res = mapping->a_ops->writepage(page, &wbc); 866 if (res < 0) 867 handle_write_error(mapping, page, res); 868 if (res == AOP_WRITEPAGE_ACTIVATE) { 869 ClearPageReclaim(page); 870 return PAGE_ACTIVATE; 871 } 872 873 if (!PageWriteback(page)) { 874 /* synchronous write or broken a_ops? */ 875 ClearPageReclaim(page); 876 } 877 trace_mm_vmscan_writepage(page); 878 inc_node_page_state(page, NR_VMSCAN_WRITE); 879 return PAGE_SUCCESS; 880 } 881 882 return PAGE_CLEAN; 883 } 884 885 /* 886 * Same as remove_mapping, but if the page is removed from the mapping, it 887 * gets returned with a refcount of 0. 888 */ 889 static int __remove_mapping(struct address_space *mapping, struct page *page, 890 bool reclaimed) 891 { 892 unsigned long flags; 893 int refcount; 894 895 BUG_ON(!PageLocked(page)); 896 BUG_ON(mapping != page_mapping(page)); 897 898 xa_lock_irqsave(&mapping->i_pages, flags); 899 /* 900 * The non racy check for a busy page. 901 * 902 * Must be careful with the order of the tests. When someone has 903 * a ref to the page, it may be possible that they dirty it then 904 * drop the reference. So if PageDirty is tested before page_count 905 * here, then the following race may occur: 906 * 907 * get_user_pages(&page); 908 * [user mapping goes away] 909 * write_to(page); 910 * !PageDirty(page) [good] 911 * SetPageDirty(page); 912 * put_page(page); 913 * !page_count(page) [good, discard it] 914 * 915 * [oops, our write_to data is lost] 916 * 917 * Reversing the order of the tests ensures such a situation cannot 918 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 919 * load is not satisfied before that of page->_refcount. 920 * 921 * Note that if SetPageDirty is always performed via set_page_dirty, 922 * and thus under the i_pages lock, then this ordering is not required. 923 */ 924 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 925 refcount = 1 + HPAGE_PMD_NR; 926 else 927 refcount = 2; 928 if (!page_ref_freeze(page, refcount)) 929 goto cannot_free; 930 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 931 if (unlikely(PageDirty(page))) { 932 page_ref_unfreeze(page, refcount); 933 goto cannot_free; 934 } 935 936 if (PageSwapCache(page)) { 937 swp_entry_t swap = { .val = page_private(page) }; 938 mem_cgroup_swapout(page, swap); 939 __delete_from_swap_cache(page, swap); 940 xa_unlock_irqrestore(&mapping->i_pages, flags); 941 put_swap_page(page, swap); 942 } else { 943 void (*freepage)(struct page *); 944 void *shadow = NULL; 945 946 freepage = mapping->a_ops->freepage; 947 /* 948 * Remember a shadow entry for reclaimed file cache in 949 * order to detect refaults, thus thrashing, later on. 950 * 951 * But don't store shadows in an address space that is 952 * already exiting. This is not just an optizimation, 953 * inode reclaim needs to empty out the radix tree or 954 * the nodes are lost. Don't plant shadows behind its 955 * back. 956 * 957 * We also don't store shadows for DAX mappings because the 958 * only page cache pages found in these are zero pages 959 * covering holes, and because we don't want to mix DAX 960 * exceptional entries and shadow exceptional entries in the 961 * same address_space. 962 */ 963 if (reclaimed && page_is_file_cache(page) && 964 !mapping_exiting(mapping) && !dax_mapping(mapping)) 965 shadow = workingset_eviction(mapping, page); 966 __delete_from_page_cache(page, shadow); 967 xa_unlock_irqrestore(&mapping->i_pages, flags); 968 969 if (freepage != NULL) 970 freepage(page); 971 } 972 973 return 1; 974 975 cannot_free: 976 xa_unlock_irqrestore(&mapping->i_pages, flags); 977 return 0; 978 } 979 980 /* 981 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 982 * someone else has a ref on the page, abort and return 0. If it was 983 * successfully detached, return 1. Assumes the caller has a single ref on 984 * this page. 985 */ 986 int remove_mapping(struct address_space *mapping, struct page *page) 987 { 988 if (__remove_mapping(mapping, page, false)) { 989 /* 990 * Unfreezing the refcount with 1 rather than 2 effectively 991 * drops the pagecache ref for us without requiring another 992 * atomic operation. 993 */ 994 page_ref_unfreeze(page, 1); 995 return 1; 996 } 997 return 0; 998 } 999 1000 /** 1001 * putback_lru_page - put previously isolated page onto appropriate LRU list 1002 * @page: page to be put back to appropriate lru list 1003 * 1004 * Add previously isolated @page to appropriate LRU list. 1005 * Page may still be unevictable for other reasons. 1006 * 1007 * lru_lock must not be held, interrupts must be enabled. 1008 */ 1009 void putback_lru_page(struct page *page) 1010 { 1011 lru_cache_add(page); 1012 put_page(page); /* drop ref from isolate */ 1013 } 1014 1015 enum page_references { 1016 PAGEREF_RECLAIM, 1017 PAGEREF_RECLAIM_CLEAN, 1018 PAGEREF_KEEP, 1019 PAGEREF_ACTIVATE, 1020 }; 1021 1022 static enum page_references page_check_references(struct page *page, 1023 struct scan_control *sc) 1024 { 1025 int referenced_ptes, referenced_page; 1026 unsigned long vm_flags; 1027 1028 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1029 &vm_flags); 1030 referenced_page = TestClearPageReferenced(page); 1031 1032 /* 1033 * Mlock lost the isolation race with us. Let try_to_unmap() 1034 * move the page to the unevictable list. 1035 */ 1036 if (vm_flags & VM_LOCKED) 1037 return PAGEREF_RECLAIM; 1038 1039 if (referenced_ptes) { 1040 if (PageSwapBacked(page)) 1041 return PAGEREF_ACTIVATE; 1042 /* 1043 * All mapped pages start out with page table 1044 * references from the instantiating fault, so we need 1045 * to look twice if a mapped file page is used more 1046 * than once. 1047 * 1048 * Mark it and spare it for another trip around the 1049 * inactive list. Another page table reference will 1050 * lead to its activation. 1051 * 1052 * Note: the mark is set for activated pages as well 1053 * so that recently deactivated but used pages are 1054 * quickly recovered. 1055 */ 1056 SetPageReferenced(page); 1057 1058 if (referenced_page || referenced_ptes > 1) 1059 return PAGEREF_ACTIVATE; 1060 1061 /* 1062 * Activate file-backed executable pages after first usage. 1063 */ 1064 if (vm_flags & VM_EXEC) 1065 return PAGEREF_ACTIVATE; 1066 1067 return PAGEREF_KEEP; 1068 } 1069 1070 /* Reclaim if clean, defer dirty pages to writeback */ 1071 if (referenced_page && !PageSwapBacked(page)) 1072 return PAGEREF_RECLAIM_CLEAN; 1073 1074 return PAGEREF_RECLAIM; 1075 } 1076 1077 /* Check if a page is dirty or under writeback */ 1078 static void page_check_dirty_writeback(struct page *page, 1079 bool *dirty, bool *writeback) 1080 { 1081 struct address_space *mapping; 1082 1083 /* 1084 * Anonymous pages are not handled by flushers and must be written 1085 * from reclaim context. Do not stall reclaim based on them 1086 */ 1087 if (!page_is_file_cache(page) || 1088 (PageAnon(page) && !PageSwapBacked(page))) { 1089 *dirty = false; 1090 *writeback = false; 1091 return; 1092 } 1093 1094 /* By default assume that the page flags are accurate */ 1095 *dirty = PageDirty(page); 1096 *writeback = PageWriteback(page); 1097 1098 /* Verify dirty/writeback state if the filesystem supports it */ 1099 if (!page_has_private(page)) 1100 return; 1101 1102 mapping = page_mapping(page); 1103 if (mapping && mapping->a_ops->is_dirty_writeback) 1104 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1105 } 1106 1107 /* 1108 * shrink_page_list() returns the number of reclaimed pages 1109 */ 1110 static unsigned long shrink_page_list(struct list_head *page_list, 1111 struct pglist_data *pgdat, 1112 struct scan_control *sc, 1113 enum ttu_flags ttu_flags, 1114 struct reclaim_stat *stat, 1115 bool force_reclaim) 1116 { 1117 LIST_HEAD(ret_pages); 1118 LIST_HEAD(free_pages); 1119 int pgactivate = 0; 1120 unsigned nr_unqueued_dirty = 0; 1121 unsigned nr_dirty = 0; 1122 unsigned nr_congested = 0; 1123 unsigned nr_reclaimed = 0; 1124 unsigned nr_writeback = 0; 1125 unsigned nr_immediate = 0; 1126 unsigned nr_ref_keep = 0; 1127 unsigned nr_unmap_fail = 0; 1128 1129 cond_resched(); 1130 1131 while (!list_empty(page_list)) { 1132 struct address_space *mapping; 1133 struct page *page; 1134 int may_enter_fs; 1135 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1136 bool dirty, writeback; 1137 1138 cond_resched(); 1139 1140 page = lru_to_page(page_list); 1141 list_del(&page->lru); 1142 1143 if (!trylock_page(page)) 1144 goto keep; 1145 1146 VM_BUG_ON_PAGE(PageActive(page), page); 1147 1148 sc->nr_scanned++; 1149 1150 if (unlikely(!page_evictable(page))) 1151 goto activate_locked; 1152 1153 if (!sc->may_unmap && page_mapped(page)) 1154 goto keep_locked; 1155 1156 /* Double the slab pressure for mapped and swapcache pages */ 1157 if ((page_mapped(page) || PageSwapCache(page)) && 1158 !(PageAnon(page) && !PageSwapBacked(page))) 1159 sc->nr_scanned++; 1160 1161 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1162 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1163 1164 /* 1165 * The number of dirty pages determines if a node is marked 1166 * reclaim_congested which affects wait_iff_congested. kswapd 1167 * will stall and start writing pages if the tail of the LRU 1168 * is all dirty unqueued pages. 1169 */ 1170 page_check_dirty_writeback(page, &dirty, &writeback); 1171 if (dirty || writeback) 1172 nr_dirty++; 1173 1174 if (dirty && !writeback) 1175 nr_unqueued_dirty++; 1176 1177 /* 1178 * Treat this page as congested if the underlying BDI is or if 1179 * pages are cycling through the LRU so quickly that the 1180 * pages marked for immediate reclaim are making it to the 1181 * end of the LRU a second time. 1182 */ 1183 mapping = page_mapping(page); 1184 if (((dirty || writeback) && mapping && 1185 inode_write_congested(mapping->host)) || 1186 (writeback && PageReclaim(page))) 1187 nr_congested++; 1188 1189 /* 1190 * If a page at the tail of the LRU is under writeback, there 1191 * are three cases to consider. 1192 * 1193 * 1) If reclaim is encountering an excessive number of pages 1194 * under writeback and this page is both under writeback and 1195 * PageReclaim then it indicates that pages are being queued 1196 * for IO but are being recycled through the LRU before the 1197 * IO can complete. Waiting on the page itself risks an 1198 * indefinite stall if it is impossible to writeback the 1199 * page due to IO error or disconnected storage so instead 1200 * note that the LRU is being scanned too quickly and the 1201 * caller can stall after page list has been processed. 1202 * 1203 * 2) Global or new memcg reclaim encounters a page that is 1204 * not marked for immediate reclaim, or the caller does not 1205 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1206 * not to fs). In this case mark the page for immediate 1207 * reclaim and continue scanning. 1208 * 1209 * Require may_enter_fs because we would wait on fs, which 1210 * may not have submitted IO yet. And the loop driver might 1211 * enter reclaim, and deadlock if it waits on a page for 1212 * which it is needed to do the write (loop masks off 1213 * __GFP_IO|__GFP_FS for this reason); but more thought 1214 * would probably show more reasons. 1215 * 1216 * 3) Legacy memcg encounters a page that is already marked 1217 * PageReclaim. memcg does not have any dirty pages 1218 * throttling so we could easily OOM just because too many 1219 * pages are in writeback and there is nothing else to 1220 * reclaim. Wait for the writeback to complete. 1221 * 1222 * In cases 1) and 2) we activate the pages to get them out of 1223 * the way while we continue scanning for clean pages on the 1224 * inactive list and refilling from the active list. The 1225 * observation here is that waiting for disk writes is more 1226 * expensive than potentially causing reloads down the line. 1227 * Since they're marked for immediate reclaim, they won't put 1228 * memory pressure on the cache working set any longer than it 1229 * takes to write them to disk. 1230 */ 1231 if (PageWriteback(page)) { 1232 /* Case 1 above */ 1233 if (current_is_kswapd() && 1234 PageReclaim(page) && 1235 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1236 nr_immediate++; 1237 goto activate_locked; 1238 1239 /* Case 2 above */ 1240 } else if (sane_reclaim(sc) || 1241 !PageReclaim(page) || !may_enter_fs) { 1242 /* 1243 * This is slightly racy - end_page_writeback() 1244 * might have just cleared PageReclaim, then 1245 * setting PageReclaim here end up interpreted 1246 * as PageReadahead - but that does not matter 1247 * enough to care. What we do want is for this 1248 * page to have PageReclaim set next time memcg 1249 * reclaim reaches the tests above, so it will 1250 * then wait_on_page_writeback() to avoid OOM; 1251 * and it's also appropriate in global reclaim. 1252 */ 1253 SetPageReclaim(page); 1254 nr_writeback++; 1255 goto activate_locked; 1256 1257 /* Case 3 above */ 1258 } else { 1259 unlock_page(page); 1260 wait_on_page_writeback(page); 1261 /* then go back and try same page again */ 1262 list_add_tail(&page->lru, page_list); 1263 continue; 1264 } 1265 } 1266 1267 if (!force_reclaim) 1268 references = page_check_references(page, sc); 1269 1270 switch (references) { 1271 case PAGEREF_ACTIVATE: 1272 goto activate_locked; 1273 case PAGEREF_KEEP: 1274 nr_ref_keep++; 1275 goto keep_locked; 1276 case PAGEREF_RECLAIM: 1277 case PAGEREF_RECLAIM_CLEAN: 1278 ; /* try to reclaim the page below */ 1279 } 1280 1281 /* 1282 * Anonymous process memory has backing store? 1283 * Try to allocate it some swap space here. 1284 * Lazyfree page could be freed directly 1285 */ 1286 if (PageAnon(page) && PageSwapBacked(page)) { 1287 if (!PageSwapCache(page)) { 1288 if (!(sc->gfp_mask & __GFP_IO)) 1289 goto keep_locked; 1290 if (PageTransHuge(page)) { 1291 /* cannot split THP, skip it */ 1292 if (!can_split_huge_page(page, NULL)) 1293 goto activate_locked; 1294 /* 1295 * Split pages without a PMD map right 1296 * away. Chances are some or all of the 1297 * tail pages can be freed without IO. 1298 */ 1299 if (!compound_mapcount(page) && 1300 split_huge_page_to_list(page, 1301 page_list)) 1302 goto activate_locked; 1303 } 1304 if (!add_to_swap(page)) { 1305 if (!PageTransHuge(page)) 1306 goto activate_locked; 1307 /* Fallback to swap normal pages */ 1308 if (split_huge_page_to_list(page, 1309 page_list)) 1310 goto activate_locked; 1311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1312 count_vm_event(THP_SWPOUT_FALLBACK); 1313 #endif 1314 if (!add_to_swap(page)) 1315 goto activate_locked; 1316 } 1317 1318 may_enter_fs = 1; 1319 1320 /* Adding to swap updated mapping */ 1321 mapping = page_mapping(page); 1322 } 1323 } else if (unlikely(PageTransHuge(page))) { 1324 /* Split file THP */ 1325 if (split_huge_page_to_list(page, page_list)) 1326 goto keep_locked; 1327 } 1328 1329 /* 1330 * The page is mapped into the page tables of one or more 1331 * processes. Try to unmap it here. 1332 */ 1333 if (page_mapped(page)) { 1334 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1335 1336 if (unlikely(PageTransHuge(page))) 1337 flags |= TTU_SPLIT_HUGE_PMD; 1338 if (!try_to_unmap(page, flags)) { 1339 nr_unmap_fail++; 1340 goto activate_locked; 1341 } 1342 } 1343 1344 if (PageDirty(page)) { 1345 /* 1346 * Only kswapd can writeback filesystem pages 1347 * to avoid risk of stack overflow. But avoid 1348 * injecting inefficient single-page IO into 1349 * flusher writeback as much as possible: only 1350 * write pages when we've encountered many 1351 * dirty pages, and when we've already scanned 1352 * the rest of the LRU for clean pages and see 1353 * the same dirty pages again (PageReclaim). 1354 */ 1355 if (page_is_file_cache(page) && 1356 (!current_is_kswapd() || !PageReclaim(page) || 1357 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1358 /* 1359 * Immediately reclaim when written back. 1360 * Similar in principal to deactivate_page() 1361 * except we already have the page isolated 1362 * and know it's dirty 1363 */ 1364 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1365 SetPageReclaim(page); 1366 1367 goto activate_locked; 1368 } 1369 1370 if (references == PAGEREF_RECLAIM_CLEAN) 1371 goto keep_locked; 1372 if (!may_enter_fs) 1373 goto keep_locked; 1374 if (!sc->may_writepage) 1375 goto keep_locked; 1376 1377 /* 1378 * Page is dirty. Flush the TLB if a writable entry 1379 * potentially exists to avoid CPU writes after IO 1380 * starts and then write it out here. 1381 */ 1382 try_to_unmap_flush_dirty(); 1383 switch (pageout(page, mapping, sc)) { 1384 case PAGE_KEEP: 1385 goto keep_locked; 1386 case PAGE_ACTIVATE: 1387 goto activate_locked; 1388 case PAGE_SUCCESS: 1389 if (PageWriteback(page)) 1390 goto keep; 1391 if (PageDirty(page)) 1392 goto keep; 1393 1394 /* 1395 * A synchronous write - probably a ramdisk. Go 1396 * ahead and try to reclaim the page. 1397 */ 1398 if (!trylock_page(page)) 1399 goto keep; 1400 if (PageDirty(page) || PageWriteback(page)) 1401 goto keep_locked; 1402 mapping = page_mapping(page); 1403 case PAGE_CLEAN: 1404 ; /* try to free the page below */ 1405 } 1406 } 1407 1408 /* 1409 * If the page has buffers, try to free the buffer mappings 1410 * associated with this page. If we succeed we try to free 1411 * the page as well. 1412 * 1413 * We do this even if the page is PageDirty(). 1414 * try_to_release_page() does not perform I/O, but it is 1415 * possible for a page to have PageDirty set, but it is actually 1416 * clean (all its buffers are clean). This happens if the 1417 * buffers were written out directly, with submit_bh(). ext3 1418 * will do this, as well as the blockdev mapping. 1419 * try_to_release_page() will discover that cleanness and will 1420 * drop the buffers and mark the page clean - it can be freed. 1421 * 1422 * Rarely, pages can have buffers and no ->mapping. These are 1423 * the pages which were not successfully invalidated in 1424 * truncate_complete_page(). We try to drop those buffers here 1425 * and if that worked, and the page is no longer mapped into 1426 * process address space (page_count == 1) it can be freed. 1427 * Otherwise, leave the page on the LRU so it is swappable. 1428 */ 1429 if (page_has_private(page)) { 1430 if (!try_to_release_page(page, sc->gfp_mask)) 1431 goto activate_locked; 1432 if (!mapping && page_count(page) == 1) { 1433 unlock_page(page); 1434 if (put_page_testzero(page)) 1435 goto free_it; 1436 else { 1437 /* 1438 * rare race with speculative reference. 1439 * the speculative reference will free 1440 * this page shortly, so we may 1441 * increment nr_reclaimed here (and 1442 * leave it off the LRU). 1443 */ 1444 nr_reclaimed++; 1445 continue; 1446 } 1447 } 1448 } 1449 1450 if (PageAnon(page) && !PageSwapBacked(page)) { 1451 /* follow __remove_mapping for reference */ 1452 if (!page_ref_freeze(page, 1)) 1453 goto keep_locked; 1454 if (PageDirty(page)) { 1455 page_ref_unfreeze(page, 1); 1456 goto keep_locked; 1457 } 1458 1459 count_vm_event(PGLAZYFREED); 1460 count_memcg_page_event(page, PGLAZYFREED); 1461 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1462 goto keep_locked; 1463 1464 unlock_page(page); 1465 free_it: 1466 nr_reclaimed++; 1467 1468 /* 1469 * Is there need to periodically free_page_list? It would 1470 * appear not as the counts should be low 1471 */ 1472 if (unlikely(PageTransHuge(page))) { 1473 mem_cgroup_uncharge(page); 1474 (*get_compound_page_dtor(page))(page); 1475 } else 1476 list_add(&page->lru, &free_pages); 1477 continue; 1478 1479 activate_locked: 1480 /* Not a candidate for swapping, so reclaim swap space. */ 1481 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1482 PageMlocked(page))) 1483 try_to_free_swap(page); 1484 VM_BUG_ON_PAGE(PageActive(page), page); 1485 if (!PageMlocked(page)) { 1486 SetPageActive(page); 1487 pgactivate++; 1488 count_memcg_page_event(page, PGACTIVATE); 1489 } 1490 keep_locked: 1491 unlock_page(page); 1492 keep: 1493 list_add(&page->lru, &ret_pages); 1494 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1495 } 1496 1497 mem_cgroup_uncharge_list(&free_pages); 1498 try_to_unmap_flush(); 1499 free_unref_page_list(&free_pages); 1500 1501 list_splice(&ret_pages, page_list); 1502 count_vm_events(PGACTIVATE, pgactivate); 1503 1504 if (stat) { 1505 stat->nr_dirty = nr_dirty; 1506 stat->nr_congested = nr_congested; 1507 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1508 stat->nr_writeback = nr_writeback; 1509 stat->nr_immediate = nr_immediate; 1510 stat->nr_activate = pgactivate; 1511 stat->nr_ref_keep = nr_ref_keep; 1512 stat->nr_unmap_fail = nr_unmap_fail; 1513 } 1514 return nr_reclaimed; 1515 } 1516 1517 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1518 struct list_head *page_list) 1519 { 1520 struct scan_control sc = { 1521 .gfp_mask = GFP_KERNEL, 1522 .priority = DEF_PRIORITY, 1523 .may_unmap = 1, 1524 }; 1525 unsigned long ret; 1526 struct page *page, *next; 1527 LIST_HEAD(clean_pages); 1528 1529 list_for_each_entry_safe(page, next, page_list, lru) { 1530 if (page_is_file_cache(page) && !PageDirty(page) && 1531 !__PageMovable(page)) { 1532 ClearPageActive(page); 1533 list_move(&page->lru, &clean_pages); 1534 } 1535 } 1536 1537 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1538 TTU_IGNORE_ACCESS, NULL, true); 1539 list_splice(&clean_pages, page_list); 1540 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1541 return ret; 1542 } 1543 1544 /* 1545 * Attempt to remove the specified page from its LRU. Only take this page 1546 * if it is of the appropriate PageActive status. Pages which are being 1547 * freed elsewhere are also ignored. 1548 * 1549 * page: page to consider 1550 * mode: one of the LRU isolation modes defined above 1551 * 1552 * returns 0 on success, -ve errno on failure. 1553 */ 1554 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1555 { 1556 int ret = -EINVAL; 1557 1558 /* Only take pages on the LRU. */ 1559 if (!PageLRU(page)) 1560 return ret; 1561 1562 /* Compaction should not handle unevictable pages but CMA can do so */ 1563 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1564 return ret; 1565 1566 ret = -EBUSY; 1567 1568 /* 1569 * To minimise LRU disruption, the caller can indicate that it only 1570 * wants to isolate pages it will be able to operate on without 1571 * blocking - clean pages for the most part. 1572 * 1573 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1574 * that it is possible to migrate without blocking 1575 */ 1576 if (mode & ISOLATE_ASYNC_MIGRATE) { 1577 /* All the caller can do on PageWriteback is block */ 1578 if (PageWriteback(page)) 1579 return ret; 1580 1581 if (PageDirty(page)) { 1582 struct address_space *mapping; 1583 bool migrate_dirty; 1584 1585 /* 1586 * Only pages without mappings or that have a 1587 * ->migratepage callback are possible to migrate 1588 * without blocking. However, we can be racing with 1589 * truncation so it's necessary to lock the page 1590 * to stabilise the mapping as truncation holds 1591 * the page lock until after the page is removed 1592 * from the page cache. 1593 */ 1594 if (!trylock_page(page)) 1595 return ret; 1596 1597 mapping = page_mapping(page); 1598 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1599 unlock_page(page); 1600 if (!migrate_dirty) 1601 return ret; 1602 } 1603 } 1604 1605 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1606 return ret; 1607 1608 if (likely(get_page_unless_zero(page))) { 1609 /* 1610 * Be careful not to clear PageLRU until after we're 1611 * sure the page is not being freed elsewhere -- the 1612 * page release code relies on it. 1613 */ 1614 ClearPageLRU(page); 1615 ret = 0; 1616 } 1617 1618 return ret; 1619 } 1620 1621 1622 /* 1623 * Update LRU sizes after isolating pages. The LRU size updates must 1624 * be complete before mem_cgroup_update_lru_size due to a santity check. 1625 */ 1626 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1627 enum lru_list lru, unsigned long *nr_zone_taken) 1628 { 1629 int zid; 1630 1631 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1632 if (!nr_zone_taken[zid]) 1633 continue; 1634 1635 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1636 #ifdef CONFIG_MEMCG 1637 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1638 #endif 1639 } 1640 1641 } 1642 1643 /* 1644 * zone_lru_lock is heavily contended. Some of the functions that 1645 * shrink the lists perform better by taking out a batch of pages 1646 * and working on them outside the LRU lock. 1647 * 1648 * For pagecache intensive workloads, this function is the hottest 1649 * spot in the kernel (apart from copy_*_user functions). 1650 * 1651 * Appropriate locks must be held before calling this function. 1652 * 1653 * @nr_to_scan: The number of eligible pages to look through on the list. 1654 * @lruvec: The LRU vector to pull pages from. 1655 * @dst: The temp list to put pages on to. 1656 * @nr_scanned: The number of pages that were scanned. 1657 * @sc: The scan_control struct for this reclaim session 1658 * @mode: One of the LRU isolation modes 1659 * @lru: LRU list id for isolating 1660 * 1661 * returns how many pages were moved onto *@dst. 1662 */ 1663 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1664 struct lruvec *lruvec, struct list_head *dst, 1665 unsigned long *nr_scanned, struct scan_control *sc, 1666 isolate_mode_t mode, enum lru_list lru) 1667 { 1668 struct list_head *src = &lruvec->lists[lru]; 1669 unsigned long nr_taken = 0; 1670 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1671 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1672 unsigned long skipped = 0; 1673 unsigned long scan, total_scan, nr_pages; 1674 LIST_HEAD(pages_skipped); 1675 1676 scan = 0; 1677 for (total_scan = 0; 1678 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1679 total_scan++) { 1680 struct page *page; 1681 1682 page = lru_to_page(src); 1683 prefetchw_prev_lru_page(page, src, flags); 1684 1685 VM_BUG_ON_PAGE(!PageLRU(page), page); 1686 1687 if (page_zonenum(page) > sc->reclaim_idx) { 1688 list_move(&page->lru, &pages_skipped); 1689 nr_skipped[page_zonenum(page)]++; 1690 continue; 1691 } 1692 1693 /* 1694 * Do not count skipped pages because that makes the function 1695 * return with no isolated pages if the LRU mostly contains 1696 * ineligible pages. This causes the VM to not reclaim any 1697 * pages, triggering a premature OOM. 1698 */ 1699 scan++; 1700 switch (__isolate_lru_page(page, mode)) { 1701 case 0: 1702 nr_pages = hpage_nr_pages(page); 1703 nr_taken += nr_pages; 1704 nr_zone_taken[page_zonenum(page)] += nr_pages; 1705 list_move(&page->lru, dst); 1706 break; 1707 1708 case -EBUSY: 1709 /* else it is being freed elsewhere */ 1710 list_move(&page->lru, src); 1711 continue; 1712 1713 default: 1714 BUG(); 1715 } 1716 } 1717 1718 /* 1719 * Splice any skipped pages to the start of the LRU list. Note that 1720 * this disrupts the LRU order when reclaiming for lower zones but 1721 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1722 * scanning would soon rescan the same pages to skip and put the 1723 * system at risk of premature OOM. 1724 */ 1725 if (!list_empty(&pages_skipped)) { 1726 int zid; 1727 1728 list_splice(&pages_skipped, src); 1729 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1730 if (!nr_skipped[zid]) 1731 continue; 1732 1733 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1734 skipped += nr_skipped[zid]; 1735 } 1736 } 1737 *nr_scanned = total_scan; 1738 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1739 total_scan, skipped, nr_taken, mode, lru); 1740 update_lru_sizes(lruvec, lru, nr_zone_taken); 1741 return nr_taken; 1742 } 1743 1744 /** 1745 * isolate_lru_page - tries to isolate a page from its LRU list 1746 * @page: page to isolate from its LRU list 1747 * 1748 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1749 * vmstat statistic corresponding to whatever LRU list the page was on. 1750 * 1751 * Returns 0 if the page was removed from an LRU list. 1752 * Returns -EBUSY if the page was not on an LRU list. 1753 * 1754 * The returned page will have PageLRU() cleared. If it was found on 1755 * the active list, it will have PageActive set. If it was found on 1756 * the unevictable list, it will have the PageUnevictable bit set. That flag 1757 * may need to be cleared by the caller before letting the page go. 1758 * 1759 * The vmstat statistic corresponding to the list on which the page was 1760 * found will be decremented. 1761 * 1762 * Restrictions: 1763 * 1764 * (1) Must be called with an elevated refcount on the page. This is a 1765 * fundamentnal difference from isolate_lru_pages (which is called 1766 * without a stable reference). 1767 * (2) the lru_lock must not be held. 1768 * (3) interrupts must be enabled. 1769 */ 1770 int isolate_lru_page(struct page *page) 1771 { 1772 int ret = -EBUSY; 1773 1774 VM_BUG_ON_PAGE(!page_count(page), page); 1775 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1776 1777 if (PageLRU(page)) { 1778 struct zone *zone = page_zone(page); 1779 struct lruvec *lruvec; 1780 1781 spin_lock_irq(zone_lru_lock(zone)); 1782 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1783 if (PageLRU(page)) { 1784 int lru = page_lru(page); 1785 get_page(page); 1786 ClearPageLRU(page); 1787 del_page_from_lru_list(page, lruvec, lru); 1788 ret = 0; 1789 } 1790 spin_unlock_irq(zone_lru_lock(zone)); 1791 } 1792 return ret; 1793 } 1794 1795 /* 1796 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1797 * then get resheduled. When there are massive number of tasks doing page 1798 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1799 * the LRU list will go small and be scanned faster than necessary, leading to 1800 * unnecessary swapping, thrashing and OOM. 1801 */ 1802 static int too_many_isolated(struct pglist_data *pgdat, int file, 1803 struct scan_control *sc) 1804 { 1805 unsigned long inactive, isolated; 1806 1807 if (current_is_kswapd()) 1808 return 0; 1809 1810 if (!sane_reclaim(sc)) 1811 return 0; 1812 1813 if (file) { 1814 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1815 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1816 } else { 1817 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1818 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1819 } 1820 1821 /* 1822 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1823 * won't get blocked by normal direct-reclaimers, forming a circular 1824 * deadlock. 1825 */ 1826 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1827 inactive >>= 3; 1828 1829 return isolated > inactive; 1830 } 1831 1832 static noinline_for_stack void 1833 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1834 { 1835 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1836 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1837 LIST_HEAD(pages_to_free); 1838 1839 /* 1840 * Put back any unfreeable pages. 1841 */ 1842 while (!list_empty(page_list)) { 1843 struct page *page = lru_to_page(page_list); 1844 int lru; 1845 1846 VM_BUG_ON_PAGE(PageLRU(page), page); 1847 list_del(&page->lru); 1848 if (unlikely(!page_evictable(page))) { 1849 spin_unlock_irq(&pgdat->lru_lock); 1850 putback_lru_page(page); 1851 spin_lock_irq(&pgdat->lru_lock); 1852 continue; 1853 } 1854 1855 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1856 1857 SetPageLRU(page); 1858 lru = page_lru(page); 1859 add_page_to_lru_list(page, lruvec, lru); 1860 1861 if (is_active_lru(lru)) { 1862 int file = is_file_lru(lru); 1863 int numpages = hpage_nr_pages(page); 1864 reclaim_stat->recent_rotated[file] += numpages; 1865 } 1866 if (put_page_testzero(page)) { 1867 __ClearPageLRU(page); 1868 __ClearPageActive(page); 1869 del_page_from_lru_list(page, lruvec, lru); 1870 1871 if (unlikely(PageCompound(page))) { 1872 spin_unlock_irq(&pgdat->lru_lock); 1873 mem_cgroup_uncharge(page); 1874 (*get_compound_page_dtor(page))(page); 1875 spin_lock_irq(&pgdat->lru_lock); 1876 } else 1877 list_add(&page->lru, &pages_to_free); 1878 } 1879 } 1880 1881 /* 1882 * To save our caller's stack, now use input list for pages to free. 1883 */ 1884 list_splice(&pages_to_free, page_list); 1885 } 1886 1887 /* 1888 * If a kernel thread (such as nfsd for loop-back mounts) services 1889 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1890 * In that case we should only throttle if the backing device it is 1891 * writing to is congested. In other cases it is safe to throttle. 1892 */ 1893 static int current_may_throttle(void) 1894 { 1895 return !(current->flags & PF_LESS_THROTTLE) || 1896 current->backing_dev_info == NULL || 1897 bdi_write_congested(current->backing_dev_info); 1898 } 1899 1900 /* 1901 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1902 * of reclaimed pages 1903 */ 1904 static noinline_for_stack unsigned long 1905 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1906 struct scan_control *sc, enum lru_list lru) 1907 { 1908 LIST_HEAD(page_list); 1909 unsigned long nr_scanned; 1910 unsigned long nr_reclaimed = 0; 1911 unsigned long nr_taken; 1912 struct reclaim_stat stat = {}; 1913 isolate_mode_t isolate_mode = 0; 1914 int file = is_file_lru(lru); 1915 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1916 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1917 bool stalled = false; 1918 1919 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1920 if (stalled) 1921 return 0; 1922 1923 /* wait a bit for the reclaimer. */ 1924 msleep(100); 1925 stalled = true; 1926 1927 /* We are about to die and free our memory. Return now. */ 1928 if (fatal_signal_pending(current)) 1929 return SWAP_CLUSTER_MAX; 1930 } 1931 1932 lru_add_drain(); 1933 1934 if (!sc->may_unmap) 1935 isolate_mode |= ISOLATE_UNMAPPED; 1936 1937 spin_lock_irq(&pgdat->lru_lock); 1938 1939 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1940 &nr_scanned, sc, isolate_mode, lru); 1941 1942 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1943 reclaim_stat->recent_scanned[file] += nr_taken; 1944 1945 if (current_is_kswapd()) { 1946 if (global_reclaim(sc)) 1947 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1948 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1949 nr_scanned); 1950 } else { 1951 if (global_reclaim(sc)) 1952 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1953 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1954 nr_scanned); 1955 } 1956 spin_unlock_irq(&pgdat->lru_lock); 1957 1958 if (nr_taken == 0) 1959 return 0; 1960 1961 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1962 &stat, false); 1963 1964 spin_lock_irq(&pgdat->lru_lock); 1965 1966 if (current_is_kswapd()) { 1967 if (global_reclaim(sc)) 1968 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1969 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1970 nr_reclaimed); 1971 } else { 1972 if (global_reclaim(sc)) 1973 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1974 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1975 nr_reclaimed); 1976 } 1977 1978 putback_inactive_pages(lruvec, &page_list); 1979 1980 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1981 1982 spin_unlock_irq(&pgdat->lru_lock); 1983 1984 mem_cgroup_uncharge_list(&page_list); 1985 free_unref_page_list(&page_list); 1986 1987 /* 1988 * If dirty pages are scanned that are not queued for IO, it 1989 * implies that flushers are not doing their job. This can 1990 * happen when memory pressure pushes dirty pages to the end of 1991 * the LRU before the dirty limits are breached and the dirty 1992 * data has expired. It can also happen when the proportion of 1993 * dirty pages grows not through writes but through memory 1994 * pressure reclaiming all the clean cache. And in some cases, 1995 * the flushers simply cannot keep up with the allocation 1996 * rate. Nudge the flusher threads in case they are asleep. 1997 */ 1998 if (stat.nr_unqueued_dirty == nr_taken) 1999 wakeup_flusher_threads(WB_REASON_VMSCAN); 2000 2001 sc->nr.dirty += stat.nr_dirty; 2002 sc->nr.congested += stat.nr_congested; 2003 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2004 sc->nr.writeback += stat.nr_writeback; 2005 sc->nr.immediate += stat.nr_immediate; 2006 sc->nr.taken += nr_taken; 2007 if (file) 2008 sc->nr.file_taken += nr_taken; 2009 2010 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2011 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2012 return nr_reclaimed; 2013 } 2014 2015 /* 2016 * This moves pages from the active list to the inactive list. 2017 * 2018 * We move them the other way if the page is referenced by one or more 2019 * processes, from rmap. 2020 * 2021 * If the pages are mostly unmapped, the processing is fast and it is 2022 * appropriate to hold zone_lru_lock across the whole operation. But if 2023 * the pages are mapped, the processing is slow (page_referenced()) so we 2024 * should drop zone_lru_lock around each page. It's impossible to balance 2025 * this, so instead we remove the pages from the LRU while processing them. 2026 * It is safe to rely on PG_active against the non-LRU pages in here because 2027 * nobody will play with that bit on a non-LRU page. 2028 * 2029 * The downside is that we have to touch page->_refcount against each page. 2030 * But we had to alter page->flags anyway. 2031 * 2032 * Returns the number of pages moved to the given lru. 2033 */ 2034 2035 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 2036 struct list_head *list, 2037 struct list_head *pages_to_free, 2038 enum lru_list lru) 2039 { 2040 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2041 struct page *page; 2042 int nr_pages; 2043 int nr_moved = 0; 2044 2045 while (!list_empty(list)) { 2046 page = lru_to_page(list); 2047 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2048 2049 VM_BUG_ON_PAGE(PageLRU(page), page); 2050 SetPageLRU(page); 2051 2052 nr_pages = hpage_nr_pages(page); 2053 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 2054 list_move(&page->lru, &lruvec->lists[lru]); 2055 2056 if (put_page_testzero(page)) { 2057 __ClearPageLRU(page); 2058 __ClearPageActive(page); 2059 del_page_from_lru_list(page, lruvec, lru); 2060 2061 if (unlikely(PageCompound(page))) { 2062 spin_unlock_irq(&pgdat->lru_lock); 2063 mem_cgroup_uncharge(page); 2064 (*get_compound_page_dtor(page))(page); 2065 spin_lock_irq(&pgdat->lru_lock); 2066 } else 2067 list_add(&page->lru, pages_to_free); 2068 } else { 2069 nr_moved += nr_pages; 2070 } 2071 } 2072 2073 if (!is_active_lru(lru)) { 2074 __count_vm_events(PGDEACTIVATE, nr_moved); 2075 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 2076 nr_moved); 2077 } 2078 2079 return nr_moved; 2080 } 2081 2082 static void shrink_active_list(unsigned long nr_to_scan, 2083 struct lruvec *lruvec, 2084 struct scan_control *sc, 2085 enum lru_list lru) 2086 { 2087 unsigned long nr_taken; 2088 unsigned long nr_scanned; 2089 unsigned long vm_flags; 2090 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2091 LIST_HEAD(l_active); 2092 LIST_HEAD(l_inactive); 2093 struct page *page; 2094 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2095 unsigned nr_deactivate, nr_activate; 2096 unsigned nr_rotated = 0; 2097 isolate_mode_t isolate_mode = 0; 2098 int file = is_file_lru(lru); 2099 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2100 2101 lru_add_drain(); 2102 2103 if (!sc->may_unmap) 2104 isolate_mode |= ISOLATE_UNMAPPED; 2105 2106 spin_lock_irq(&pgdat->lru_lock); 2107 2108 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2109 &nr_scanned, sc, isolate_mode, lru); 2110 2111 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2112 reclaim_stat->recent_scanned[file] += nr_taken; 2113 2114 __count_vm_events(PGREFILL, nr_scanned); 2115 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2116 2117 spin_unlock_irq(&pgdat->lru_lock); 2118 2119 while (!list_empty(&l_hold)) { 2120 cond_resched(); 2121 page = lru_to_page(&l_hold); 2122 list_del(&page->lru); 2123 2124 if (unlikely(!page_evictable(page))) { 2125 putback_lru_page(page); 2126 continue; 2127 } 2128 2129 if (unlikely(buffer_heads_over_limit)) { 2130 if (page_has_private(page) && trylock_page(page)) { 2131 if (page_has_private(page)) 2132 try_to_release_page(page, 0); 2133 unlock_page(page); 2134 } 2135 } 2136 2137 if (page_referenced(page, 0, sc->target_mem_cgroup, 2138 &vm_flags)) { 2139 nr_rotated += hpage_nr_pages(page); 2140 /* 2141 * Identify referenced, file-backed active pages and 2142 * give them one more trip around the active list. So 2143 * that executable code get better chances to stay in 2144 * memory under moderate memory pressure. Anon pages 2145 * are not likely to be evicted by use-once streaming 2146 * IO, plus JVM can create lots of anon VM_EXEC pages, 2147 * so we ignore them here. 2148 */ 2149 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2150 list_add(&page->lru, &l_active); 2151 continue; 2152 } 2153 } 2154 2155 ClearPageActive(page); /* we are de-activating */ 2156 SetPageWorkingset(page); 2157 list_add(&page->lru, &l_inactive); 2158 } 2159 2160 /* 2161 * Move pages back to the lru list. 2162 */ 2163 spin_lock_irq(&pgdat->lru_lock); 2164 /* 2165 * Count referenced pages from currently used mappings as rotated, 2166 * even though only some of them are actually re-activated. This 2167 * helps balance scan pressure between file and anonymous pages in 2168 * get_scan_count. 2169 */ 2170 reclaim_stat->recent_rotated[file] += nr_rotated; 2171 2172 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2173 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2174 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2175 spin_unlock_irq(&pgdat->lru_lock); 2176 2177 mem_cgroup_uncharge_list(&l_hold); 2178 free_unref_page_list(&l_hold); 2179 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2180 nr_deactivate, nr_rotated, sc->priority, file); 2181 } 2182 2183 /* 2184 * The inactive anon list should be small enough that the VM never has 2185 * to do too much work. 2186 * 2187 * The inactive file list should be small enough to leave most memory 2188 * to the established workingset on the scan-resistant active list, 2189 * but large enough to avoid thrashing the aggregate readahead window. 2190 * 2191 * Both inactive lists should also be large enough that each inactive 2192 * page has a chance to be referenced again before it is reclaimed. 2193 * 2194 * If that fails and refaulting is observed, the inactive list grows. 2195 * 2196 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2197 * on this LRU, maintained by the pageout code. An inactive_ratio 2198 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2199 * 2200 * total target max 2201 * memory ratio inactive 2202 * ------------------------------------- 2203 * 10MB 1 5MB 2204 * 100MB 1 50MB 2205 * 1GB 3 250MB 2206 * 10GB 10 0.9GB 2207 * 100GB 31 3GB 2208 * 1TB 101 10GB 2209 * 10TB 320 32GB 2210 */ 2211 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2212 struct mem_cgroup *memcg, 2213 struct scan_control *sc, bool actual_reclaim) 2214 { 2215 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2216 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2217 enum lru_list inactive_lru = file * LRU_FILE; 2218 unsigned long inactive, active; 2219 unsigned long inactive_ratio; 2220 unsigned long refaults; 2221 unsigned long gb; 2222 2223 /* 2224 * If we don't have swap space, anonymous page deactivation 2225 * is pointless. 2226 */ 2227 if (!file && !total_swap_pages) 2228 return false; 2229 2230 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2231 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2232 2233 if (memcg) 2234 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2235 else 2236 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2237 2238 /* 2239 * When refaults are being observed, it means a new workingset 2240 * is being established. Disable active list protection to get 2241 * rid of the stale workingset quickly. 2242 */ 2243 if (file && actual_reclaim && lruvec->refaults != refaults) { 2244 inactive_ratio = 0; 2245 } else { 2246 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2247 if (gb) 2248 inactive_ratio = int_sqrt(10 * gb); 2249 else 2250 inactive_ratio = 1; 2251 } 2252 2253 if (actual_reclaim) 2254 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2255 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2256 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2257 inactive_ratio, file); 2258 2259 return inactive * inactive_ratio < active; 2260 } 2261 2262 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2263 struct lruvec *lruvec, struct mem_cgroup *memcg, 2264 struct scan_control *sc) 2265 { 2266 if (is_active_lru(lru)) { 2267 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2268 memcg, sc, true)) 2269 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2270 return 0; 2271 } 2272 2273 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2274 } 2275 2276 enum scan_balance { 2277 SCAN_EQUAL, 2278 SCAN_FRACT, 2279 SCAN_ANON, 2280 SCAN_FILE, 2281 }; 2282 2283 /* 2284 * Determine how aggressively the anon and file LRU lists should be 2285 * scanned. The relative value of each set of LRU lists is determined 2286 * by looking at the fraction of the pages scanned we did rotate back 2287 * onto the active list instead of evict. 2288 * 2289 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2290 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2291 */ 2292 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2293 struct scan_control *sc, unsigned long *nr, 2294 unsigned long *lru_pages) 2295 { 2296 int swappiness = mem_cgroup_swappiness(memcg); 2297 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2298 u64 fraction[2]; 2299 u64 denominator = 0; /* gcc */ 2300 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2301 unsigned long anon_prio, file_prio; 2302 enum scan_balance scan_balance; 2303 unsigned long anon, file; 2304 unsigned long ap, fp; 2305 enum lru_list lru; 2306 2307 /* If we have no swap space, do not bother scanning anon pages. */ 2308 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2309 scan_balance = SCAN_FILE; 2310 goto out; 2311 } 2312 2313 /* 2314 * Global reclaim will swap to prevent OOM even with no 2315 * swappiness, but memcg users want to use this knob to 2316 * disable swapping for individual groups completely when 2317 * using the memory controller's swap limit feature would be 2318 * too expensive. 2319 */ 2320 if (!global_reclaim(sc) && !swappiness) { 2321 scan_balance = SCAN_FILE; 2322 goto out; 2323 } 2324 2325 /* 2326 * Do not apply any pressure balancing cleverness when the 2327 * system is close to OOM, scan both anon and file equally 2328 * (unless the swappiness setting disagrees with swapping). 2329 */ 2330 if (!sc->priority && swappiness) { 2331 scan_balance = SCAN_EQUAL; 2332 goto out; 2333 } 2334 2335 /* 2336 * Prevent the reclaimer from falling into the cache trap: as 2337 * cache pages start out inactive, every cache fault will tip 2338 * the scan balance towards the file LRU. And as the file LRU 2339 * shrinks, so does the window for rotation from references. 2340 * This means we have a runaway feedback loop where a tiny 2341 * thrashing file LRU becomes infinitely more attractive than 2342 * anon pages. Try to detect this based on file LRU size. 2343 */ 2344 if (global_reclaim(sc)) { 2345 unsigned long pgdatfile; 2346 unsigned long pgdatfree; 2347 int z; 2348 unsigned long total_high_wmark = 0; 2349 2350 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2351 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2352 node_page_state(pgdat, NR_INACTIVE_FILE); 2353 2354 for (z = 0; z < MAX_NR_ZONES; z++) { 2355 struct zone *zone = &pgdat->node_zones[z]; 2356 if (!managed_zone(zone)) 2357 continue; 2358 2359 total_high_wmark += high_wmark_pages(zone); 2360 } 2361 2362 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2363 /* 2364 * Force SCAN_ANON if there are enough inactive 2365 * anonymous pages on the LRU in eligible zones. 2366 * Otherwise, the small LRU gets thrashed. 2367 */ 2368 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2369 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2370 >> sc->priority) { 2371 scan_balance = SCAN_ANON; 2372 goto out; 2373 } 2374 } 2375 } 2376 2377 /* 2378 * If there is enough inactive page cache, i.e. if the size of the 2379 * inactive list is greater than that of the active list *and* the 2380 * inactive list actually has some pages to scan on this priority, we 2381 * do not reclaim anything from the anonymous working set right now. 2382 * Without the second condition we could end up never scanning an 2383 * lruvec even if it has plenty of old anonymous pages unless the 2384 * system is under heavy pressure. 2385 */ 2386 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2387 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2388 scan_balance = SCAN_FILE; 2389 goto out; 2390 } 2391 2392 scan_balance = SCAN_FRACT; 2393 2394 /* 2395 * With swappiness at 100, anonymous and file have the same priority. 2396 * This scanning priority is essentially the inverse of IO cost. 2397 */ 2398 anon_prio = swappiness; 2399 file_prio = 200 - anon_prio; 2400 2401 /* 2402 * OK, so we have swap space and a fair amount of page cache 2403 * pages. We use the recently rotated / recently scanned 2404 * ratios to determine how valuable each cache is. 2405 * 2406 * Because workloads change over time (and to avoid overflow) 2407 * we keep these statistics as a floating average, which ends 2408 * up weighing recent references more than old ones. 2409 * 2410 * anon in [0], file in [1] 2411 */ 2412 2413 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2414 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2415 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2416 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2417 2418 spin_lock_irq(&pgdat->lru_lock); 2419 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2420 reclaim_stat->recent_scanned[0] /= 2; 2421 reclaim_stat->recent_rotated[0] /= 2; 2422 } 2423 2424 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2425 reclaim_stat->recent_scanned[1] /= 2; 2426 reclaim_stat->recent_rotated[1] /= 2; 2427 } 2428 2429 /* 2430 * The amount of pressure on anon vs file pages is inversely 2431 * proportional to the fraction of recently scanned pages on 2432 * each list that were recently referenced and in active use. 2433 */ 2434 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2435 ap /= reclaim_stat->recent_rotated[0] + 1; 2436 2437 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2438 fp /= reclaim_stat->recent_rotated[1] + 1; 2439 spin_unlock_irq(&pgdat->lru_lock); 2440 2441 fraction[0] = ap; 2442 fraction[1] = fp; 2443 denominator = ap + fp + 1; 2444 out: 2445 *lru_pages = 0; 2446 for_each_evictable_lru(lru) { 2447 int file = is_file_lru(lru); 2448 unsigned long size; 2449 unsigned long scan; 2450 2451 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2452 scan = size >> sc->priority; 2453 /* 2454 * If the cgroup's already been deleted, make sure to 2455 * scrape out the remaining cache. 2456 */ 2457 if (!scan && !mem_cgroup_online(memcg)) 2458 scan = min(size, SWAP_CLUSTER_MAX); 2459 2460 switch (scan_balance) { 2461 case SCAN_EQUAL: 2462 /* Scan lists relative to size */ 2463 break; 2464 case SCAN_FRACT: 2465 /* 2466 * Scan types proportional to swappiness and 2467 * their relative recent reclaim efficiency. 2468 * Make sure we don't miss the last page 2469 * because of a round-off error. 2470 */ 2471 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2472 denominator); 2473 break; 2474 case SCAN_FILE: 2475 case SCAN_ANON: 2476 /* Scan one type exclusively */ 2477 if ((scan_balance == SCAN_FILE) != file) { 2478 size = 0; 2479 scan = 0; 2480 } 2481 break; 2482 default: 2483 /* Look ma, no brain */ 2484 BUG(); 2485 } 2486 2487 *lru_pages += size; 2488 nr[lru] = scan; 2489 } 2490 } 2491 2492 /* 2493 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2494 */ 2495 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2496 struct scan_control *sc, unsigned long *lru_pages) 2497 { 2498 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2499 unsigned long nr[NR_LRU_LISTS]; 2500 unsigned long targets[NR_LRU_LISTS]; 2501 unsigned long nr_to_scan; 2502 enum lru_list lru; 2503 unsigned long nr_reclaimed = 0; 2504 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2505 struct blk_plug plug; 2506 bool scan_adjusted; 2507 2508 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2509 2510 /* Record the original scan target for proportional adjustments later */ 2511 memcpy(targets, nr, sizeof(nr)); 2512 2513 /* 2514 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2515 * event that can occur when there is little memory pressure e.g. 2516 * multiple streaming readers/writers. Hence, we do not abort scanning 2517 * when the requested number of pages are reclaimed when scanning at 2518 * DEF_PRIORITY on the assumption that the fact we are direct 2519 * reclaiming implies that kswapd is not keeping up and it is best to 2520 * do a batch of work at once. For memcg reclaim one check is made to 2521 * abort proportional reclaim if either the file or anon lru has already 2522 * dropped to zero at the first pass. 2523 */ 2524 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2525 sc->priority == DEF_PRIORITY); 2526 2527 blk_start_plug(&plug); 2528 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2529 nr[LRU_INACTIVE_FILE]) { 2530 unsigned long nr_anon, nr_file, percentage; 2531 unsigned long nr_scanned; 2532 2533 for_each_evictable_lru(lru) { 2534 if (nr[lru]) { 2535 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2536 nr[lru] -= nr_to_scan; 2537 2538 nr_reclaimed += shrink_list(lru, nr_to_scan, 2539 lruvec, memcg, sc); 2540 } 2541 } 2542 2543 cond_resched(); 2544 2545 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2546 continue; 2547 2548 /* 2549 * For kswapd and memcg, reclaim at least the number of pages 2550 * requested. Ensure that the anon and file LRUs are scanned 2551 * proportionally what was requested by get_scan_count(). We 2552 * stop reclaiming one LRU and reduce the amount scanning 2553 * proportional to the original scan target. 2554 */ 2555 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2556 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2557 2558 /* 2559 * It's just vindictive to attack the larger once the smaller 2560 * has gone to zero. And given the way we stop scanning the 2561 * smaller below, this makes sure that we only make one nudge 2562 * towards proportionality once we've got nr_to_reclaim. 2563 */ 2564 if (!nr_file || !nr_anon) 2565 break; 2566 2567 if (nr_file > nr_anon) { 2568 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2569 targets[LRU_ACTIVE_ANON] + 1; 2570 lru = LRU_BASE; 2571 percentage = nr_anon * 100 / scan_target; 2572 } else { 2573 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2574 targets[LRU_ACTIVE_FILE] + 1; 2575 lru = LRU_FILE; 2576 percentage = nr_file * 100 / scan_target; 2577 } 2578 2579 /* Stop scanning the smaller of the LRU */ 2580 nr[lru] = 0; 2581 nr[lru + LRU_ACTIVE] = 0; 2582 2583 /* 2584 * Recalculate the other LRU scan count based on its original 2585 * scan target and the percentage scanning already complete 2586 */ 2587 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2588 nr_scanned = targets[lru] - nr[lru]; 2589 nr[lru] = targets[lru] * (100 - percentage) / 100; 2590 nr[lru] -= min(nr[lru], nr_scanned); 2591 2592 lru += LRU_ACTIVE; 2593 nr_scanned = targets[lru] - nr[lru]; 2594 nr[lru] = targets[lru] * (100 - percentage) / 100; 2595 nr[lru] -= min(nr[lru], nr_scanned); 2596 2597 scan_adjusted = true; 2598 } 2599 blk_finish_plug(&plug); 2600 sc->nr_reclaimed += nr_reclaimed; 2601 2602 /* 2603 * Even if we did not try to evict anon pages at all, we want to 2604 * rebalance the anon lru active/inactive ratio. 2605 */ 2606 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2607 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2608 sc, LRU_ACTIVE_ANON); 2609 } 2610 2611 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2612 static bool in_reclaim_compaction(struct scan_control *sc) 2613 { 2614 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2615 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2616 sc->priority < DEF_PRIORITY - 2)) 2617 return true; 2618 2619 return false; 2620 } 2621 2622 /* 2623 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2624 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2625 * true if more pages should be reclaimed such that when the page allocator 2626 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2627 * It will give up earlier than that if there is difficulty reclaiming pages. 2628 */ 2629 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2630 unsigned long nr_reclaimed, 2631 unsigned long nr_scanned, 2632 struct scan_control *sc) 2633 { 2634 unsigned long pages_for_compaction; 2635 unsigned long inactive_lru_pages; 2636 int z; 2637 2638 /* If not in reclaim/compaction mode, stop */ 2639 if (!in_reclaim_compaction(sc)) 2640 return false; 2641 2642 /* Consider stopping depending on scan and reclaim activity */ 2643 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2644 /* 2645 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2646 * full LRU list has been scanned and we are still failing 2647 * to reclaim pages. This full LRU scan is potentially 2648 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2649 */ 2650 if (!nr_reclaimed && !nr_scanned) 2651 return false; 2652 } else { 2653 /* 2654 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2655 * fail without consequence, stop if we failed to reclaim 2656 * any pages from the last SWAP_CLUSTER_MAX number of 2657 * pages that were scanned. This will return to the 2658 * caller faster at the risk reclaim/compaction and 2659 * the resulting allocation attempt fails 2660 */ 2661 if (!nr_reclaimed) 2662 return false; 2663 } 2664 2665 /* 2666 * If we have not reclaimed enough pages for compaction and the 2667 * inactive lists are large enough, continue reclaiming 2668 */ 2669 pages_for_compaction = compact_gap(sc->order); 2670 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2671 if (get_nr_swap_pages() > 0) 2672 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2673 if (sc->nr_reclaimed < pages_for_compaction && 2674 inactive_lru_pages > pages_for_compaction) 2675 return true; 2676 2677 /* If compaction would go ahead or the allocation would succeed, stop */ 2678 for (z = 0; z <= sc->reclaim_idx; z++) { 2679 struct zone *zone = &pgdat->node_zones[z]; 2680 if (!managed_zone(zone)) 2681 continue; 2682 2683 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2684 case COMPACT_SUCCESS: 2685 case COMPACT_CONTINUE: 2686 return false; 2687 default: 2688 /* check next zone */ 2689 ; 2690 } 2691 } 2692 return true; 2693 } 2694 2695 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2696 { 2697 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2698 (memcg && memcg_congested(pgdat, memcg)); 2699 } 2700 2701 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2702 { 2703 struct reclaim_state *reclaim_state = current->reclaim_state; 2704 unsigned long nr_reclaimed, nr_scanned; 2705 bool reclaimable = false; 2706 2707 do { 2708 struct mem_cgroup *root = sc->target_mem_cgroup; 2709 struct mem_cgroup_reclaim_cookie reclaim = { 2710 .pgdat = pgdat, 2711 .priority = sc->priority, 2712 }; 2713 unsigned long node_lru_pages = 0; 2714 struct mem_cgroup *memcg; 2715 2716 memset(&sc->nr, 0, sizeof(sc->nr)); 2717 2718 nr_reclaimed = sc->nr_reclaimed; 2719 nr_scanned = sc->nr_scanned; 2720 2721 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2722 do { 2723 unsigned long lru_pages; 2724 unsigned long reclaimed; 2725 unsigned long scanned; 2726 2727 switch (mem_cgroup_protected(root, memcg)) { 2728 case MEMCG_PROT_MIN: 2729 /* 2730 * Hard protection. 2731 * If there is no reclaimable memory, OOM. 2732 */ 2733 continue; 2734 case MEMCG_PROT_LOW: 2735 /* 2736 * Soft protection. 2737 * Respect the protection only as long as 2738 * there is an unprotected supply 2739 * of reclaimable memory from other cgroups. 2740 */ 2741 if (!sc->memcg_low_reclaim) { 2742 sc->memcg_low_skipped = 1; 2743 continue; 2744 } 2745 memcg_memory_event(memcg, MEMCG_LOW); 2746 break; 2747 case MEMCG_PROT_NONE: 2748 break; 2749 } 2750 2751 reclaimed = sc->nr_reclaimed; 2752 scanned = sc->nr_scanned; 2753 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2754 node_lru_pages += lru_pages; 2755 2756 if (sc->may_shrinkslab) { 2757 shrink_slab(sc->gfp_mask, pgdat->node_id, 2758 memcg, sc->priority); 2759 } 2760 2761 /* Record the group's reclaim efficiency */ 2762 vmpressure(sc->gfp_mask, memcg, false, 2763 sc->nr_scanned - scanned, 2764 sc->nr_reclaimed - reclaimed); 2765 2766 /* 2767 * Direct reclaim and kswapd have to scan all memory 2768 * cgroups to fulfill the overall scan target for the 2769 * node. 2770 * 2771 * Limit reclaim, on the other hand, only cares about 2772 * nr_to_reclaim pages to be reclaimed and it will 2773 * retry with decreasing priority if one round over the 2774 * whole hierarchy is not sufficient. 2775 */ 2776 if (!global_reclaim(sc) && 2777 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2778 mem_cgroup_iter_break(root, memcg); 2779 break; 2780 } 2781 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2782 2783 if (reclaim_state) { 2784 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2785 reclaim_state->reclaimed_slab = 0; 2786 } 2787 2788 /* Record the subtree's reclaim efficiency */ 2789 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2790 sc->nr_scanned - nr_scanned, 2791 sc->nr_reclaimed - nr_reclaimed); 2792 2793 if (sc->nr_reclaimed - nr_reclaimed) 2794 reclaimable = true; 2795 2796 if (current_is_kswapd()) { 2797 /* 2798 * If reclaim is isolating dirty pages under writeback, 2799 * it implies that the long-lived page allocation rate 2800 * is exceeding the page laundering rate. Either the 2801 * global limits are not being effective at throttling 2802 * processes due to the page distribution throughout 2803 * zones or there is heavy usage of a slow backing 2804 * device. The only option is to throttle from reclaim 2805 * context which is not ideal as there is no guarantee 2806 * the dirtying process is throttled in the same way 2807 * balance_dirty_pages() manages. 2808 * 2809 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2810 * count the number of pages under pages flagged for 2811 * immediate reclaim and stall if any are encountered 2812 * in the nr_immediate check below. 2813 */ 2814 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2815 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2816 2817 /* 2818 * Tag a node as congested if all the dirty pages 2819 * scanned were backed by a congested BDI and 2820 * wait_iff_congested will stall. 2821 */ 2822 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2823 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2824 2825 /* Allow kswapd to start writing pages during reclaim.*/ 2826 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2827 set_bit(PGDAT_DIRTY, &pgdat->flags); 2828 2829 /* 2830 * If kswapd scans pages marked marked for immediate 2831 * reclaim and under writeback (nr_immediate), it 2832 * implies that pages are cycling through the LRU 2833 * faster than they are written so also forcibly stall. 2834 */ 2835 if (sc->nr.immediate) 2836 congestion_wait(BLK_RW_ASYNC, HZ/10); 2837 } 2838 2839 /* 2840 * Legacy memcg will stall in page writeback so avoid forcibly 2841 * stalling in wait_iff_congested(). 2842 */ 2843 if (!global_reclaim(sc) && sane_reclaim(sc) && 2844 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2845 set_memcg_congestion(pgdat, root, true); 2846 2847 /* 2848 * Stall direct reclaim for IO completions if underlying BDIs 2849 * and node is congested. Allow kswapd to continue until it 2850 * starts encountering unqueued dirty pages or cycling through 2851 * the LRU too quickly. 2852 */ 2853 if (!sc->hibernation_mode && !current_is_kswapd() && 2854 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2855 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2856 2857 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2858 sc->nr_scanned - nr_scanned, sc)); 2859 2860 /* 2861 * Kswapd gives up on balancing particular nodes after too 2862 * many failures to reclaim anything from them and goes to 2863 * sleep. On reclaim progress, reset the failure counter. A 2864 * successful direct reclaim run will revive a dormant kswapd. 2865 */ 2866 if (reclaimable) 2867 pgdat->kswapd_failures = 0; 2868 2869 return reclaimable; 2870 } 2871 2872 /* 2873 * Returns true if compaction should go ahead for a costly-order request, or 2874 * the allocation would already succeed without compaction. Return false if we 2875 * should reclaim first. 2876 */ 2877 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2878 { 2879 unsigned long watermark; 2880 enum compact_result suitable; 2881 2882 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2883 if (suitable == COMPACT_SUCCESS) 2884 /* Allocation should succeed already. Don't reclaim. */ 2885 return true; 2886 if (suitable == COMPACT_SKIPPED) 2887 /* Compaction cannot yet proceed. Do reclaim. */ 2888 return false; 2889 2890 /* 2891 * Compaction is already possible, but it takes time to run and there 2892 * are potentially other callers using the pages just freed. So proceed 2893 * with reclaim to make a buffer of free pages available to give 2894 * compaction a reasonable chance of completing and allocating the page. 2895 * Note that we won't actually reclaim the whole buffer in one attempt 2896 * as the target watermark in should_continue_reclaim() is lower. But if 2897 * we are already above the high+gap watermark, don't reclaim at all. 2898 */ 2899 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2900 2901 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2902 } 2903 2904 /* 2905 * This is the direct reclaim path, for page-allocating processes. We only 2906 * try to reclaim pages from zones which will satisfy the caller's allocation 2907 * request. 2908 * 2909 * If a zone is deemed to be full of pinned pages then just give it a light 2910 * scan then give up on it. 2911 */ 2912 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2913 { 2914 struct zoneref *z; 2915 struct zone *zone; 2916 unsigned long nr_soft_reclaimed; 2917 unsigned long nr_soft_scanned; 2918 gfp_t orig_mask; 2919 pg_data_t *last_pgdat = NULL; 2920 2921 /* 2922 * If the number of buffer_heads in the machine exceeds the maximum 2923 * allowed level, force direct reclaim to scan the highmem zone as 2924 * highmem pages could be pinning lowmem pages storing buffer_heads 2925 */ 2926 orig_mask = sc->gfp_mask; 2927 if (buffer_heads_over_limit) { 2928 sc->gfp_mask |= __GFP_HIGHMEM; 2929 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2930 } 2931 2932 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2933 sc->reclaim_idx, sc->nodemask) { 2934 /* 2935 * Take care memory controller reclaiming has small influence 2936 * to global LRU. 2937 */ 2938 if (global_reclaim(sc)) { 2939 if (!cpuset_zone_allowed(zone, 2940 GFP_KERNEL | __GFP_HARDWALL)) 2941 continue; 2942 2943 /* 2944 * If we already have plenty of memory free for 2945 * compaction in this zone, don't free any more. 2946 * Even though compaction is invoked for any 2947 * non-zero order, only frequent costly order 2948 * reclamation is disruptive enough to become a 2949 * noticeable problem, like transparent huge 2950 * page allocations. 2951 */ 2952 if (IS_ENABLED(CONFIG_COMPACTION) && 2953 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2954 compaction_ready(zone, sc)) { 2955 sc->compaction_ready = true; 2956 continue; 2957 } 2958 2959 /* 2960 * Shrink each node in the zonelist once. If the 2961 * zonelist is ordered by zone (not the default) then a 2962 * node may be shrunk multiple times but in that case 2963 * the user prefers lower zones being preserved. 2964 */ 2965 if (zone->zone_pgdat == last_pgdat) 2966 continue; 2967 2968 /* 2969 * This steals pages from memory cgroups over softlimit 2970 * and returns the number of reclaimed pages and 2971 * scanned pages. This works for global memory pressure 2972 * and balancing, not for a memcg's limit. 2973 */ 2974 nr_soft_scanned = 0; 2975 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2976 sc->order, sc->gfp_mask, 2977 &nr_soft_scanned); 2978 sc->nr_reclaimed += nr_soft_reclaimed; 2979 sc->nr_scanned += nr_soft_scanned; 2980 /* need some check for avoid more shrink_zone() */ 2981 } 2982 2983 /* See comment about same check for global reclaim above */ 2984 if (zone->zone_pgdat == last_pgdat) 2985 continue; 2986 last_pgdat = zone->zone_pgdat; 2987 shrink_node(zone->zone_pgdat, sc); 2988 } 2989 2990 /* 2991 * Restore to original mask to avoid the impact on the caller if we 2992 * promoted it to __GFP_HIGHMEM. 2993 */ 2994 sc->gfp_mask = orig_mask; 2995 } 2996 2997 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2998 { 2999 struct mem_cgroup *memcg; 3000 3001 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 3002 do { 3003 unsigned long refaults; 3004 struct lruvec *lruvec; 3005 3006 if (memcg) 3007 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 3008 else 3009 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 3010 3011 lruvec = mem_cgroup_lruvec(pgdat, memcg); 3012 lruvec->refaults = refaults; 3013 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 3014 } 3015 3016 /* 3017 * This is the main entry point to direct page reclaim. 3018 * 3019 * If a full scan of the inactive list fails to free enough memory then we 3020 * are "out of memory" and something needs to be killed. 3021 * 3022 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3023 * high - the zone may be full of dirty or under-writeback pages, which this 3024 * caller can't do much about. We kick the writeback threads and take explicit 3025 * naps in the hope that some of these pages can be written. But if the 3026 * allocating task holds filesystem locks which prevent writeout this might not 3027 * work, and the allocation attempt will fail. 3028 * 3029 * returns: 0, if no pages reclaimed 3030 * else, the number of pages reclaimed 3031 */ 3032 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3033 struct scan_control *sc) 3034 { 3035 int initial_priority = sc->priority; 3036 pg_data_t *last_pgdat; 3037 struct zoneref *z; 3038 struct zone *zone; 3039 retry: 3040 delayacct_freepages_start(); 3041 3042 if (global_reclaim(sc)) 3043 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3044 3045 do { 3046 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3047 sc->priority); 3048 sc->nr_scanned = 0; 3049 shrink_zones(zonelist, sc); 3050 3051 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3052 break; 3053 3054 if (sc->compaction_ready) 3055 break; 3056 3057 /* 3058 * If we're getting trouble reclaiming, start doing 3059 * writepage even in laptop mode. 3060 */ 3061 if (sc->priority < DEF_PRIORITY - 2) 3062 sc->may_writepage = 1; 3063 } while (--sc->priority >= 0); 3064 3065 last_pgdat = NULL; 3066 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3067 sc->nodemask) { 3068 if (zone->zone_pgdat == last_pgdat) 3069 continue; 3070 last_pgdat = zone->zone_pgdat; 3071 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3072 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3073 } 3074 3075 delayacct_freepages_end(); 3076 3077 if (sc->nr_reclaimed) 3078 return sc->nr_reclaimed; 3079 3080 /* Aborted reclaim to try compaction? don't OOM, then */ 3081 if (sc->compaction_ready) 3082 return 1; 3083 3084 /* Untapped cgroup reserves? Don't OOM, retry. */ 3085 if (sc->memcg_low_skipped) { 3086 sc->priority = initial_priority; 3087 sc->memcg_low_reclaim = 1; 3088 sc->memcg_low_skipped = 0; 3089 goto retry; 3090 } 3091 3092 return 0; 3093 } 3094 3095 static bool allow_direct_reclaim(pg_data_t *pgdat) 3096 { 3097 struct zone *zone; 3098 unsigned long pfmemalloc_reserve = 0; 3099 unsigned long free_pages = 0; 3100 int i; 3101 bool wmark_ok; 3102 3103 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3104 return true; 3105 3106 for (i = 0; i <= ZONE_NORMAL; i++) { 3107 zone = &pgdat->node_zones[i]; 3108 if (!managed_zone(zone)) 3109 continue; 3110 3111 if (!zone_reclaimable_pages(zone)) 3112 continue; 3113 3114 pfmemalloc_reserve += min_wmark_pages(zone); 3115 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3116 } 3117 3118 /* If there are no reserves (unexpected config) then do not throttle */ 3119 if (!pfmemalloc_reserve) 3120 return true; 3121 3122 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3123 3124 /* kswapd must be awake if processes are being throttled */ 3125 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3126 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3127 (enum zone_type)ZONE_NORMAL); 3128 wake_up_interruptible(&pgdat->kswapd_wait); 3129 } 3130 3131 return wmark_ok; 3132 } 3133 3134 /* 3135 * Throttle direct reclaimers if backing storage is backed by the network 3136 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3137 * depleted. kswapd will continue to make progress and wake the processes 3138 * when the low watermark is reached. 3139 * 3140 * Returns true if a fatal signal was delivered during throttling. If this 3141 * happens, the page allocator should not consider triggering the OOM killer. 3142 */ 3143 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3144 nodemask_t *nodemask) 3145 { 3146 struct zoneref *z; 3147 struct zone *zone; 3148 pg_data_t *pgdat = NULL; 3149 3150 /* 3151 * Kernel threads should not be throttled as they may be indirectly 3152 * responsible for cleaning pages necessary for reclaim to make forward 3153 * progress. kjournald for example may enter direct reclaim while 3154 * committing a transaction where throttling it could forcing other 3155 * processes to block on log_wait_commit(). 3156 */ 3157 if (current->flags & PF_KTHREAD) 3158 goto out; 3159 3160 /* 3161 * If a fatal signal is pending, this process should not throttle. 3162 * It should return quickly so it can exit and free its memory 3163 */ 3164 if (fatal_signal_pending(current)) 3165 goto out; 3166 3167 /* 3168 * Check if the pfmemalloc reserves are ok by finding the first node 3169 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3170 * GFP_KERNEL will be required for allocating network buffers when 3171 * swapping over the network so ZONE_HIGHMEM is unusable. 3172 * 3173 * Throttling is based on the first usable node and throttled processes 3174 * wait on a queue until kswapd makes progress and wakes them. There 3175 * is an affinity then between processes waking up and where reclaim 3176 * progress has been made assuming the process wakes on the same node. 3177 * More importantly, processes running on remote nodes will not compete 3178 * for remote pfmemalloc reserves and processes on different nodes 3179 * should make reasonable progress. 3180 */ 3181 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3182 gfp_zone(gfp_mask), nodemask) { 3183 if (zone_idx(zone) > ZONE_NORMAL) 3184 continue; 3185 3186 /* Throttle based on the first usable node */ 3187 pgdat = zone->zone_pgdat; 3188 if (allow_direct_reclaim(pgdat)) 3189 goto out; 3190 break; 3191 } 3192 3193 /* If no zone was usable by the allocation flags then do not throttle */ 3194 if (!pgdat) 3195 goto out; 3196 3197 /* Account for the throttling */ 3198 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3199 3200 /* 3201 * If the caller cannot enter the filesystem, it's possible that it 3202 * is due to the caller holding an FS lock or performing a journal 3203 * transaction in the case of a filesystem like ext[3|4]. In this case, 3204 * it is not safe to block on pfmemalloc_wait as kswapd could be 3205 * blocked waiting on the same lock. Instead, throttle for up to a 3206 * second before continuing. 3207 */ 3208 if (!(gfp_mask & __GFP_FS)) { 3209 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3210 allow_direct_reclaim(pgdat), HZ); 3211 3212 goto check_pending; 3213 } 3214 3215 /* Throttle until kswapd wakes the process */ 3216 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3217 allow_direct_reclaim(pgdat)); 3218 3219 check_pending: 3220 if (fatal_signal_pending(current)) 3221 return true; 3222 3223 out: 3224 return false; 3225 } 3226 3227 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3228 gfp_t gfp_mask, nodemask_t *nodemask) 3229 { 3230 unsigned long nr_reclaimed; 3231 struct scan_control sc = { 3232 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3233 .gfp_mask = current_gfp_context(gfp_mask), 3234 .reclaim_idx = gfp_zone(gfp_mask), 3235 .order = order, 3236 .nodemask = nodemask, 3237 .priority = DEF_PRIORITY, 3238 .may_writepage = !laptop_mode, 3239 .may_unmap = 1, 3240 .may_swap = 1, 3241 .may_shrinkslab = 1, 3242 }; 3243 3244 /* 3245 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3246 * Confirm they are large enough for max values. 3247 */ 3248 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3249 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3250 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3251 3252 /* 3253 * Do not enter reclaim if fatal signal was delivered while throttled. 3254 * 1 is returned so that the page allocator does not OOM kill at this 3255 * point. 3256 */ 3257 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3258 return 1; 3259 3260 trace_mm_vmscan_direct_reclaim_begin(order, 3261 sc.may_writepage, 3262 sc.gfp_mask, 3263 sc.reclaim_idx); 3264 3265 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3266 3267 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3268 3269 return nr_reclaimed; 3270 } 3271 3272 #ifdef CONFIG_MEMCG 3273 3274 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3275 gfp_t gfp_mask, bool noswap, 3276 pg_data_t *pgdat, 3277 unsigned long *nr_scanned) 3278 { 3279 struct scan_control sc = { 3280 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3281 .target_mem_cgroup = memcg, 3282 .may_writepage = !laptop_mode, 3283 .may_unmap = 1, 3284 .reclaim_idx = MAX_NR_ZONES - 1, 3285 .may_swap = !noswap, 3286 .may_shrinkslab = 1, 3287 }; 3288 unsigned long lru_pages; 3289 3290 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3291 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3292 3293 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3294 sc.may_writepage, 3295 sc.gfp_mask, 3296 sc.reclaim_idx); 3297 3298 /* 3299 * NOTE: Although we can get the priority field, using it 3300 * here is not a good idea, since it limits the pages we can scan. 3301 * if we don't reclaim here, the shrink_node from balance_pgdat 3302 * will pick up pages from other mem cgroup's as well. We hack 3303 * the priority and make it zero. 3304 */ 3305 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3306 3307 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3308 3309 *nr_scanned = sc.nr_scanned; 3310 return sc.nr_reclaimed; 3311 } 3312 3313 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3314 unsigned long nr_pages, 3315 gfp_t gfp_mask, 3316 bool may_swap) 3317 { 3318 struct zonelist *zonelist; 3319 unsigned long nr_reclaimed; 3320 unsigned long pflags; 3321 int nid; 3322 unsigned int noreclaim_flag; 3323 struct scan_control sc = { 3324 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3325 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3326 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3327 .reclaim_idx = MAX_NR_ZONES - 1, 3328 .target_mem_cgroup = memcg, 3329 .priority = DEF_PRIORITY, 3330 .may_writepage = !laptop_mode, 3331 .may_unmap = 1, 3332 .may_swap = may_swap, 3333 .may_shrinkslab = 1, 3334 }; 3335 3336 /* 3337 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3338 * take care of from where we get pages. So the node where we start the 3339 * scan does not need to be the current node. 3340 */ 3341 nid = mem_cgroup_select_victim_node(memcg); 3342 3343 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3344 3345 trace_mm_vmscan_memcg_reclaim_begin(0, 3346 sc.may_writepage, 3347 sc.gfp_mask, 3348 sc.reclaim_idx); 3349 3350 psi_memstall_enter(&pflags); 3351 noreclaim_flag = memalloc_noreclaim_save(); 3352 3353 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3354 3355 memalloc_noreclaim_restore(noreclaim_flag); 3356 psi_memstall_leave(&pflags); 3357 3358 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3359 3360 return nr_reclaimed; 3361 } 3362 #endif 3363 3364 static void age_active_anon(struct pglist_data *pgdat, 3365 struct scan_control *sc) 3366 { 3367 struct mem_cgroup *memcg; 3368 3369 if (!total_swap_pages) 3370 return; 3371 3372 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3373 do { 3374 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3375 3376 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3377 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3378 sc, LRU_ACTIVE_ANON); 3379 3380 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3381 } while (memcg); 3382 } 3383 3384 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3385 { 3386 int i; 3387 struct zone *zone; 3388 3389 /* 3390 * Check for watermark boosts top-down as the higher zones 3391 * are more likely to be boosted. Both watermarks and boosts 3392 * should not be checked at the time time as reclaim would 3393 * start prematurely when there is no boosting and a lower 3394 * zone is balanced. 3395 */ 3396 for (i = classzone_idx; i >= 0; i--) { 3397 zone = pgdat->node_zones + i; 3398 if (!managed_zone(zone)) 3399 continue; 3400 3401 if (zone->watermark_boost) 3402 return true; 3403 } 3404 3405 return false; 3406 } 3407 3408 /* 3409 * Returns true if there is an eligible zone balanced for the request order 3410 * and classzone_idx 3411 */ 3412 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3413 { 3414 int i; 3415 unsigned long mark = -1; 3416 struct zone *zone; 3417 3418 /* 3419 * Check watermarks bottom-up as lower zones are more likely to 3420 * meet watermarks. 3421 */ 3422 for (i = 0; i <= classzone_idx; i++) { 3423 zone = pgdat->node_zones + i; 3424 3425 if (!managed_zone(zone)) 3426 continue; 3427 3428 mark = high_wmark_pages(zone); 3429 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3430 return true; 3431 } 3432 3433 /* 3434 * If a node has no populated zone within classzone_idx, it does not 3435 * need balancing by definition. This can happen if a zone-restricted 3436 * allocation tries to wake a remote kswapd. 3437 */ 3438 if (mark == -1) 3439 return true; 3440 3441 return false; 3442 } 3443 3444 /* Clear pgdat state for congested, dirty or under writeback. */ 3445 static void clear_pgdat_congested(pg_data_t *pgdat) 3446 { 3447 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3448 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3449 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3450 } 3451 3452 /* 3453 * Prepare kswapd for sleeping. This verifies that there are no processes 3454 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3455 * 3456 * Returns true if kswapd is ready to sleep 3457 */ 3458 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3459 { 3460 /* 3461 * The throttled processes are normally woken up in balance_pgdat() as 3462 * soon as allow_direct_reclaim() is true. But there is a potential 3463 * race between when kswapd checks the watermarks and a process gets 3464 * throttled. There is also a potential race if processes get 3465 * throttled, kswapd wakes, a large process exits thereby balancing the 3466 * zones, which causes kswapd to exit balance_pgdat() before reaching 3467 * the wake up checks. If kswapd is going to sleep, no process should 3468 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3469 * the wake up is premature, processes will wake kswapd and get 3470 * throttled again. The difference from wake ups in balance_pgdat() is 3471 * that here we are under prepare_to_wait(). 3472 */ 3473 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3474 wake_up_all(&pgdat->pfmemalloc_wait); 3475 3476 /* Hopeless node, leave it to direct reclaim */ 3477 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3478 return true; 3479 3480 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3481 clear_pgdat_congested(pgdat); 3482 return true; 3483 } 3484 3485 return false; 3486 } 3487 3488 /* 3489 * kswapd shrinks a node of pages that are at or below the highest usable 3490 * zone that is currently unbalanced. 3491 * 3492 * Returns true if kswapd scanned at least the requested number of pages to 3493 * reclaim or if the lack of progress was due to pages under writeback. 3494 * This is used to determine if the scanning priority needs to be raised. 3495 */ 3496 static bool kswapd_shrink_node(pg_data_t *pgdat, 3497 struct scan_control *sc) 3498 { 3499 struct zone *zone; 3500 int z; 3501 3502 /* Reclaim a number of pages proportional to the number of zones */ 3503 sc->nr_to_reclaim = 0; 3504 for (z = 0; z <= sc->reclaim_idx; z++) { 3505 zone = pgdat->node_zones + z; 3506 if (!managed_zone(zone)) 3507 continue; 3508 3509 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3510 } 3511 3512 /* 3513 * Historically care was taken to put equal pressure on all zones but 3514 * now pressure is applied based on node LRU order. 3515 */ 3516 shrink_node(pgdat, sc); 3517 3518 /* 3519 * Fragmentation may mean that the system cannot be rebalanced for 3520 * high-order allocations. If twice the allocation size has been 3521 * reclaimed then recheck watermarks only at order-0 to prevent 3522 * excessive reclaim. Assume that a process requested a high-order 3523 * can direct reclaim/compact. 3524 */ 3525 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3526 sc->order = 0; 3527 3528 return sc->nr_scanned >= sc->nr_to_reclaim; 3529 } 3530 3531 /* 3532 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3533 * that are eligible for use by the caller until at least one zone is 3534 * balanced. 3535 * 3536 * Returns the order kswapd finished reclaiming at. 3537 * 3538 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3539 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3540 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3541 * or lower is eligible for reclaim until at least one usable zone is 3542 * balanced. 3543 */ 3544 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3545 { 3546 int i; 3547 unsigned long nr_soft_reclaimed; 3548 unsigned long nr_soft_scanned; 3549 unsigned long pflags; 3550 unsigned long nr_boost_reclaim; 3551 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3552 bool boosted; 3553 struct zone *zone; 3554 struct scan_control sc = { 3555 .gfp_mask = GFP_KERNEL, 3556 .order = order, 3557 .may_unmap = 1, 3558 }; 3559 3560 psi_memstall_enter(&pflags); 3561 __fs_reclaim_acquire(); 3562 3563 count_vm_event(PAGEOUTRUN); 3564 3565 /* 3566 * Account for the reclaim boost. Note that the zone boost is left in 3567 * place so that parallel allocations that are near the watermark will 3568 * stall or direct reclaim until kswapd is finished. 3569 */ 3570 nr_boost_reclaim = 0; 3571 for (i = 0; i <= classzone_idx; i++) { 3572 zone = pgdat->node_zones + i; 3573 if (!managed_zone(zone)) 3574 continue; 3575 3576 nr_boost_reclaim += zone->watermark_boost; 3577 zone_boosts[i] = zone->watermark_boost; 3578 } 3579 boosted = nr_boost_reclaim; 3580 3581 restart: 3582 sc.priority = DEF_PRIORITY; 3583 do { 3584 unsigned long nr_reclaimed = sc.nr_reclaimed; 3585 bool raise_priority = true; 3586 bool balanced; 3587 bool ret; 3588 3589 sc.reclaim_idx = classzone_idx; 3590 3591 /* 3592 * If the number of buffer_heads exceeds the maximum allowed 3593 * then consider reclaiming from all zones. This has a dual 3594 * purpose -- on 64-bit systems it is expected that 3595 * buffer_heads are stripped during active rotation. On 32-bit 3596 * systems, highmem pages can pin lowmem memory and shrinking 3597 * buffers can relieve lowmem pressure. Reclaim may still not 3598 * go ahead if all eligible zones for the original allocation 3599 * request are balanced to avoid excessive reclaim from kswapd. 3600 */ 3601 if (buffer_heads_over_limit) { 3602 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3603 zone = pgdat->node_zones + i; 3604 if (!managed_zone(zone)) 3605 continue; 3606 3607 sc.reclaim_idx = i; 3608 break; 3609 } 3610 } 3611 3612 /* 3613 * If the pgdat is imbalanced then ignore boosting and preserve 3614 * the watermarks for a later time and restart. Note that the 3615 * zone watermarks will be still reset at the end of balancing 3616 * on the grounds that the normal reclaim should be enough to 3617 * re-evaluate if boosting is required when kswapd next wakes. 3618 */ 3619 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3620 if (!balanced && nr_boost_reclaim) { 3621 nr_boost_reclaim = 0; 3622 goto restart; 3623 } 3624 3625 /* 3626 * If boosting is not active then only reclaim if there are no 3627 * eligible zones. Note that sc.reclaim_idx is not used as 3628 * buffer_heads_over_limit may have adjusted it. 3629 */ 3630 if (!nr_boost_reclaim && balanced) 3631 goto out; 3632 3633 /* Limit the priority of boosting to avoid reclaim writeback */ 3634 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3635 raise_priority = false; 3636 3637 /* 3638 * Do not writeback or swap pages for boosted reclaim. The 3639 * intent is to relieve pressure not issue sub-optimal IO 3640 * from reclaim context. If no pages are reclaimed, the 3641 * reclaim will be aborted. 3642 */ 3643 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3644 sc.may_swap = !nr_boost_reclaim; 3645 sc.may_shrinkslab = !nr_boost_reclaim; 3646 3647 /* 3648 * Do some background aging of the anon list, to give 3649 * pages a chance to be referenced before reclaiming. All 3650 * pages are rotated regardless of classzone as this is 3651 * about consistent aging. 3652 */ 3653 age_active_anon(pgdat, &sc); 3654 3655 /* 3656 * If we're getting trouble reclaiming, start doing writepage 3657 * even in laptop mode. 3658 */ 3659 if (sc.priority < DEF_PRIORITY - 2) 3660 sc.may_writepage = 1; 3661 3662 /* Call soft limit reclaim before calling shrink_node. */ 3663 sc.nr_scanned = 0; 3664 nr_soft_scanned = 0; 3665 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3666 sc.gfp_mask, &nr_soft_scanned); 3667 sc.nr_reclaimed += nr_soft_reclaimed; 3668 3669 /* 3670 * There should be no need to raise the scanning priority if 3671 * enough pages are already being scanned that that high 3672 * watermark would be met at 100% efficiency. 3673 */ 3674 if (kswapd_shrink_node(pgdat, &sc)) 3675 raise_priority = false; 3676 3677 /* 3678 * If the low watermark is met there is no need for processes 3679 * to be throttled on pfmemalloc_wait as they should not be 3680 * able to safely make forward progress. Wake them 3681 */ 3682 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3683 allow_direct_reclaim(pgdat)) 3684 wake_up_all(&pgdat->pfmemalloc_wait); 3685 3686 /* Check if kswapd should be suspending */ 3687 __fs_reclaim_release(); 3688 ret = try_to_freeze(); 3689 __fs_reclaim_acquire(); 3690 if (ret || kthread_should_stop()) 3691 break; 3692 3693 /* 3694 * Raise priority if scanning rate is too low or there was no 3695 * progress in reclaiming pages 3696 */ 3697 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3698 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3699 3700 /* 3701 * If reclaim made no progress for a boost, stop reclaim as 3702 * IO cannot be queued and it could be an infinite loop in 3703 * extreme circumstances. 3704 */ 3705 if (nr_boost_reclaim && !nr_reclaimed) 3706 break; 3707 3708 if (raise_priority || !nr_reclaimed) 3709 sc.priority--; 3710 } while (sc.priority >= 1); 3711 3712 if (!sc.nr_reclaimed) 3713 pgdat->kswapd_failures++; 3714 3715 out: 3716 /* If reclaim was boosted, account for the reclaim done in this pass */ 3717 if (boosted) { 3718 unsigned long flags; 3719 3720 for (i = 0; i <= classzone_idx; i++) { 3721 if (!zone_boosts[i]) 3722 continue; 3723 3724 /* Increments are under the zone lock */ 3725 zone = pgdat->node_zones + i; 3726 spin_lock_irqsave(&zone->lock, flags); 3727 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3728 spin_unlock_irqrestore(&zone->lock, flags); 3729 } 3730 3731 /* 3732 * As there is now likely space, wakeup kcompact to defragment 3733 * pageblocks. 3734 */ 3735 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3736 } 3737 3738 snapshot_refaults(NULL, pgdat); 3739 __fs_reclaim_release(); 3740 psi_memstall_leave(&pflags); 3741 /* 3742 * Return the order kswapd stopped reclaiming at as 3743 * prepare_kswapd_sleep() takes it into account. If another caller 3744 * entered the allocator slow path while kswapd was awake, order will 3745 * remain at the higher level. 3746 */ 3747 return sc.order; 3748 } 3749 3750 /* 3751 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3752 * allocation request woke kswapd for. When kswapd has not woken recently, 3753 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3754 * given classzone and returns it or the highest classzone index kswapd 3755 * was recently woke for. 3756 */ 3757 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3758 enum zone_type classzone_idx) 3759 { 3760 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3761 return classzone_idx; 3762 3763 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3764 } 3765 3766 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3767 unsigned int classzone_idx) 3768 { 3769 long remaining = 0; 3770 DEFINE_WAIT(wait); 3771 3772 if (freezing(current) || kthread_should_stop()) 3773 return; 3774 3775 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3776 3777 /* 3778 * Try to sleep for a short interval. Note that kcompactd will only be 3779 * woken if it is possible to sleep for a short interval. This is 3780 * deliberate on the assumption that if reclaim cannot keep an 3781 * eligible zone balanced that it's also unlikely that compaction will 3782 * succeed. 3783 */ 3784 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3785 /* 3786 * Compaction records what page blocks it recently failed to 3787 * isolate pages from and skips them in the future scanning. 3788 * When kswapd is going to sleep, it is reasonable to assume 3789 * that pages and compaction may succeed so reset the cache. 3790 */ 3791 reset_isolation_suitable(pgdat); 3792 3793 /* 3794 * We have freed the memory, now we should compact it to make 3795 * allocation of the requested order possible. 3796 */ 3797 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3798 3799 remaining = schedule_timeout(HZ/10); 3800 3801 /* 3802 * If woken prematurely then reset kswapd_classzone_idx and 3803 * order. The values will either be from a wakeup request or 3804 * the previous request that slept prematurely. 3805 */ 3806 if (remaining) { 3807 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3808 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3809 } 3810 3811 finish_wait(&pgdat->kswapd_wait, &wait); 3812 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3813 } 3814 3815 /* 3816 * After a short sleep, check if it was a premature sleep. If not, then 3817 * go fully to sleep until explicitly woken up. 3818 */ 3819 if (!remaining && 3820 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3821 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3822 3823 /* 3824 * vmstat counters are not perfectly accurate and the estimated 3825 * value for counters such as NR_FREE_PAGES can deviate from the 3826 * true value by nr_online_cpus * threshold. To avoid the zone 3827 * watermarks being breached while under pressure, we reduce the 3828 * per-cpu vmstat threshold while kswapd is awake and restore 3829 * them before going back to sleep. 3830 */ 3831 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3832 3833 if (!kthread_should_stop()) 3834 schedule(); 3835 3836 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3837 } else { 3838 if (remaining) 3839 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3840 else 3841 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3842 } 3843 finish_wait(&pgdat->kswapd_wait, &wait); 3844 } 3845 3846 /* 3847 * The background pageout daemon, started as a kernel thread 3848 * from the init process. 3849 * 3850 * This basically trickles out pages so that we have _some_ 3851 * free memory available even if there is no other activity 3852 * that frees anything up. This is needed for things like routing 3853 * etc, where we otherwise might have all activity going on in 3854 * asynchronous contexts that cannot page things out. 3855 * 3856 * If there are applications that are active memory-allocators 3857 * (most normal use), this basically shouldn't matter. 3858 */ 3859 static int kswapd(void *p) 3860 { 3861 unsigned int alloc_order, reclaim_order; 3862 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3863 pg_data_t *pgdat = (pg_data_t*)p; 3864 struct task_struct *tsk = current; 3865 3866 struct reclaim_state reclaim_state = { 3867 .reclaimed_slab = 0, 3868 }; 3869 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3870 3871 if (!cpumask_empty(cpumask)) 3872 set_cpus_allowed_ptr(tsk, cpumask); 3873 current->reclaim_state = &reclaim_state; 3874 3875 /* 3876 * Tell the memory management that we're a "memory allocator", 3877 * and that if we need more memory we should get access to it 3878 * regardless (see "__alloc_pages()"). "kswapd" should 3879 * never get caught in the normal page freeing logic. 3880 * 3881 * (Kswapd normally doesn't need memory anyway, but sometimes 3882 * you need a small amount of memory in order to be able to 3883 * page out something else, and this flag essentially protects 3884 * us from recursively trying to free more memory as we're 3885 * trying to free the first piece of memory in the first place). 3886 */ 3887 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3888 set_freezable(); 3889 3890 pgdat->kswapd_order = 0; 3891 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3892 for ( ; ; ) { 3893 bool ret; 3894 3895 alloc_order = reclaim_order = pgdat->kswapd_order; 3896 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3897 3898 kswapd_try_sleep: 3899 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3900 classzone_idx); 3901 3902 /* Read the new order and classzone_idx */ 3903 alloc_order = reclaim_order = pgdat->kswapd_order; 3904 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3905 pgdat->kswapd_order = 0; 3906 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3907 3908 ret = try_to_freeze(); 3909 if (kthread_should_stop()) 3910 break; 3911 3912 /* 3913 * We can speed up thawing tasks if we don't call balance_pgdat 3914 * after returning from the refrigerator 3915 */ 3916 if (ret) 3917 continue; 3918 3919 /* 3920 * Reclaim begins at the requested order but if a high-order 3921 * reclaim fails then kswapd falls back to reclaiming for 3922 * order-0. If that happens, kswapd will consider sleeping 3923 * for the order it finished reclaiming at (reclaim_order) 3924 * but kcompactd is woken to compact for the original 3925 * request (alloc_order). 3926 */ 3927 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3928 alloc_order); 3929 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3930 if (reclaim_order < alloc_order) 3931 goto kswapd_try_sleep; 3932 } 3933 3934 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3935 current->reclaim_state = NULL; 3936 3937 return 0; 3938 } 3939 3940 /* 3941 * A zone is low on free memory or too fragmented for high-order memory. If 3942 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3943 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3944 * has failed or is not needed, still wake up kcompactd if only compaction is 3945 * needed. 3946 */ 3947 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3948 enum zone_type classzone_idx) 3949 { 3950 pg_data_t *pgdat; 3951 3952 if (!managed_zone(zone)) 3953 return; 3954 3955 if (!cpuset_zone_allowed(zone, gfp_flags)) 3956 return; 3957 pgdat = zone->zone_pgdat; 3958 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3959 classzone_idx); 3960 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3961 if (!waitqueue_active(&pgdat->kswapd_wait)) 3962 return; 3963 3964 /* Hopeless node, leave it to direct reclaim if possible */ 3965 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3966 (pgdat_balanced(pgdat, order, classzone_idx) && 3967 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3968 /* 3969 * There may be plenty of free memory available, but it's too 3970 * fragmented for high-order allocations. Wake up kcompactd 3971 * and rely on compaction_suitable() to determine if it's 3972 * needed. If it fails, it will defer subsequent attempts to 3973 * ratelimit its work. 3974 */ 3975 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3976 wakeup_kcompactd(pgdat, order, classzone_idx); 3977 return; 3978 } 3979 3980 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3981 gfp_flags); 3982 wake_up_interruptible(&pgdat->kswapd_wait); 3983 } 3984 3985 #ifdef CONFIG_HIBERNATION 3986 /* 3987 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3988 * freed pages. 3989 * 3990 * Rather than trying to age LRUs the aim is to preserve the overall 3991 * LRU order by reclaiming preferentially 3992 * inactive > active > active referenced > active mapped 3993 */ 3994 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3995 { 3996 struct reclaim_state reclaim_state; 3997 struct scan_control sc = { 3998 .nr_to_reclaim = nr_to_reclaim, 3999 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4000 .reclaim_idx = MAX_NR_ZONES - 1, 4001 .priority = DEF_PRIORITY, 4002 .may_writepage = 1, 4003 .may_unmap = 1, 4004 .may_swap = 1, 4005 .hibernation_mode = 1, 4006 }; 4007 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4008 struct task_struct *p = current; 4009 unsigned long nr_reclaimed; 4010 unsigned int noreclaim_flag; 4011 4012 fs_reclaim_acquire(sc.gfp_mask); 4013 noreclaim_flag = memalloc_noreclaim_save(); 4014 reclaim_state.reclaimed_slab = 0; 4015 p->reclaim_state = &reclaim_state; 4016 4017 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4018 4019 p->reclaim_state = NULL; 4020 memalloc_noreclaim_restore(noreclaim_flag); 4021 fs_reclaim_release(sc.gfp_mask); 4022 4023 return nr_reclaimed; 4024 } 4025 #endif /* CONFIG_HIBERNATION */ 4026 4027 /* It's optimal to keep kswapds on the same CPUs as their memory, but 4028 not required for correctness. So if the last cpu in a node goes 4029 away, we get changed to run anywhere: as the first one comes back, 4030 restore their cpu bindings. */ 4031 static int kswapd_cpu_online(unsigned int cpu) 4032 { 4033 int nid; 4034 4035 for_each_node_state(nid, N_MEMORY) { 4036 pg_data_t *pgdat = NODE_DATA(nid); 4037 const struct cpumask *mask; 4038 4039 mask = cpumask_of_node(pgdat->node_id); 4040 4041 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 4042 /* One of our CPUs online: restore mask */ 4043 set_cpus_allowed_ptr(pgdat->kswapd, mask); 4044 } 4045 return 0; 4046 } 4047 4048 /* 4049 * This kswapd start function will be called by init and node-hot-add. 4050 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4051 */ 4052 int kswapd_run(int nid) 4053 { 4054 pg_data_t *pgdat = NODE_DATA(nid); 4055 int ret = 0; 4056 4057 if (pgdat->kswapd) 4058 return 0; 4059 4060 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4061 if (IS_ERR(pgdat->kswapd)) { 4062 /* failure at boot is fatal */ 4063 BUG_ON(system_state < SYSTEM_RUNNING); 4064 pr_err("Failed to start kswapd on node %d\n", nid); 4065 ret = PTR_ERR(pgdat->kswapd); 4066 pgdat->kswapd = NULL; 4067 } 4068 return ret; 4069 } 4070 4071 /* 4072 * Called by memory hotplug when all memory in a node is offlined. Caller must 4073 * hold mem_hotplug_begin/end(). 4074 */ 4075 void kswapd_stop(int nid) 4076 { 4077 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4078 4079 if (kswapd) { 4080 kthread_stop(kswapd); 4081 NODE_DATA(nid)->kswapd = NULL; 4082 } 4083 } 4084 4085 static int __init kswapd_init(void) 4086 { 4087 int nid, ret; 4088 4089 swap_setup(); 4090 for_each_node_state(nid, N_MEMORY) 4091 kswapd_run(nid); 4092 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4093 "mm/vmscan:online", kswapd_cpu_online, 4094 NULL); 4095 WARN_ON(ret < 0); 4096 return 0; 4097 } 4098 4099 module_init(kswapd_init) 4100 4101 #ifdef CONFIG_NUMA 4102 /* 4103 * Node reclaim mode 4104 * 4105 * If non-zero call node_reclaim when the number of free pages falls below 4106 * the watermarks. 4107 */ 4108 int node_reclaim_mode __read_mostly; 4109 4110 #define RECLAIM_OFF 0 4111 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4112 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4113 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4114 4115 /* 4116 * Priority for NODE_RECLAIM. This determines the fraction of pages 4117 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4118 * a zone. 4119 */ 4120 #define NODE_RECLAIM_PRIORITY 4 4121 4122 /* 4123 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4124 * occur. 4125 */ 4126 int sysctl_min_unmapped_ratio = 1; 4127 4128 /* 4129 * If the number of slab pages in a zone grows beyond this percentage then 4130 * slab reclaim needs to occur. 4131 */ 4132 int sysctl_min_slab_ratio = 5; 4133 4134 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4135 { 4136 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4137 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4138 node_page_state(pgdat, NR_ACTIVE_FILE); 4139 4140 /* 4141 * It's possible for there to be more file mapped pages than 4142 * accounted for by the pages on the file LRU lists because 4143 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4144 */ 4145 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4146 } 4147 4148 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4149 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4150 { 4151 unsigned long nr_pagecache_reclaimable; 4152 unsigned long delta = 0; 4153 4154 /* 4155 * If RECLAIM_UNMAP is set, then all file pages are considered 4156 * potentially reclaimable. Otherwise, we have to worry about 4157 * pages like swapcache and node_unmapped_file_pages() provides 4158 * a better estimate 4159 */ 4160 if (node_reclaim_mode & RECLAIM_UNMAP) 4161 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4162 else 4163 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4164 4165 /* If we can't clean pages, remove dirty pages from consideration */ 4166 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4167 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4168 4169 /* Watch for any possible underflows due to delta */ 4170 if (unlikely(delta > nr_pagecache_reclaimable)) 4171 delta = nr_pagecache_reclaimable; 4172 4173 return nr_pagecache_reclaimable - delta; 4174 } 4175 4176 /* 4177 * Try to free up some pages from this node through reclaim. 4178 */ 4179 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4180 { 4181 /* Minimum pages needed in order to stay on node */ 4182 const unsigned long nr_pages = 1 << order; 4183 struct task_struct *p = current; 4184 struct reclaim_state reclaim_state; 4185 unsigned int noreclaim_flag; 4186 struct scan_control sc = { 4187 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4188 .gfp_mask = current_gfp_context(gfp_mask), 4189 .order = order, 4190 .priority = NODE_RECLAIM_PRIORITY, 4191 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4192 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4193 .may_swap = 1, 4194 .reclaim_idx = gfp_zone(gfp_mask), 4195 }; 4196 4197 cond_resched(); 4198 fs_reclaim_acquire(sc.gfp_mask); 4199 /* 4200 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4201 * and we also need to be able to write out pages for RECLAIM_WRITE 4202 * and RECLAIM_UNMAP. 4203 */ 4204 noreclaim_flag = memalloc_noreclaim_save(); 4205 p->flags |= PF_SWAPWRITE; 4206 reclaim_state.reclaimed_slab = 0; 4207 p->reclaim_state = &reclaim_state; 4208 4209 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4210 /* 4211 * Free memory by calling shrink node with increasing 4212 * priorities until we have enough memory freed. 4213 */ 4214 do { 4215 shrink_node(pgdat, &sc); 4216 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4217 } 4218 4219 p->reclaim_state = NULL; 4220 current->flags &= ~PF_SWAPWRITE; 4221 memalloc_noreclaim_restore(noreclaim_flag); 4222 fs_reclaim_release(sc.gfp_mask); 4223 return sc.nr_reclaimed >= nr_pages; 4224 } 4225 4226 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4227 { 4228 int ret; 4229 4230 /* 4231 * Node reclaim reclaims unmapped file backed pages and 4232 * slab pages if we are over the defined limits. 4233 * 4234 * A small portion of unmapped file backed pages is needed for 4235 * file I/O otherwise pages read by file I/O will be immediately 4236 * thrown out if the node is overallocated. So we do not reclaim 4237 * if less than a specified percentage of the node is used by 4238 * unmapped file backed pages. 4239 */ 4240 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4241 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4242 return NODE_RECLAIM_FULL; 4243 4244 /* 4245 * Do not scan if the allocation should not be delayed. 4246 */ 4247 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4248 return NODE_RECLAIM_NOSCAN; 4249 4250 /* 4251 * Only run node reclaim on the local node or on nodes that do not 4252 * have associated processors. This will favor the local processor 4253 * over remote processors and spread off node memory allocations 4254 * as wide as possible. 4255 */ 4256 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4257 return NODE_RECLAIM_NOSCAN; 4258 4259 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4260 return NODE_RECLAIM_NOSCAN; 4261 4262 ret = __node_reclaim(pgdat, gfp_mask, order); 4263 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4264 4265 if (!ret) 4266 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4267 4268 return ret; 4269 } 4270 #endif 4271 4272 /* 4273 * page_evictable - test whether a page is evictable 4274 * @page: the page to test 4275 * 4276 * Test whether page is evictable--i.e., should be placed on active/inactive 4277 * lists vs unevictable list. 4278 * 4279 * Reasons page might not be evictable: 4280 * (1) page's mapping marked unevictable 4281 * (2) page is part of an mlocked VMA 4282 * 4283 */ 4284 int page_evictable(struct page *page) 4285 { 4286 int ret; 4287 4288 /* Prevent address_space of inode and swap cache from being freed */ 4289 rcu_read_lock(); 4290 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4291 rcu_read_unlock(); 4292 return ret; 4293 } 4294 4295 /** 4296 * check_move_unevictable_pages - check pages for evictability and move to 4297 * appropriate zone lru list 4298 * @pvec: pagevec with lru pages to check 4299 * 4300 * Checks pages for evictability, if an evictable page is in the unevictable 4301 * lru list, moves it to the appropriate evictable lru list. This function 4302 * should be only used for lru pages. 4303 */ 4304 void check_move_unevictable_pages(struct pagevec *pvec) 4305 { 4306 struct lruvec *lruvec; 4307 struct pglist_data *pgdat = NULL; 4308 int pgscanned = 0; 4309 int pgrescued = 0; 4310 int i; 4311 4312 for (i = 0; i < pvec->nr; i++) { 4313 struct page *page = pvec->pages[i]; 4314 struct pglist_data *pagepgdat = page_pgdat(page); 4315 4316 pgscanned++; 4317 if (pagepgdat != pgdat) { 4318 if (pgdat) 4319 spin_unlock_irq(&pgdat->lru_lock); 4320 pgdat = pagepgdat; 4321 spin_lock_irq(&pgdat->lru_lock); 4322 } 4323 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4324 4325 if (!PageLRU(page) || !PageUnevictable(page)) 4326 continue; 4327 4328 if (page_evictable(page)) { 4329 enum lru_list lru = page_lru_base_type(page); 4330 4331 VM_BUG_ON_PAGE(PageActive(page), page); 4332 ClearPageUnevictable(page); 4333 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4334 add_page_to_lru_list(page, lruvec, lru); 4335 pgrescued++; 4336 } 4337 } 4338 4339 if (pgdat) { 4340 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4341 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4342 spin_unlock_irq(&pgdat->lru_lock); 4343 } 4344 } 4345 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4346