xref: /openbmc/linux/mm/vmscan.c (revision cef69974)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/*
83 	 * Scan pressure balancing between anon and file LRUs
84 	 */
85 	unsigned long	anon_cost;
86 	unsigned long	file_cost;
87 
88 	/* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 	unsigned int may_deactivate:2;
92 	unsigned int force_deactivate:1;
93 	unsigned int skipped_deactivate:1;
94 
95 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 	unsigned int may_writepage:1;
97 
98 	/* Can mapped pages be reclaimed? */
99 	unsigned int may_unmap:1;
100 
101 	/* Can pages be swapped as part of reclaim? */
102 	unsigned int may_swap:1;
103 
104 	/*
105 	 * Cgroup memory below memory.low is protected as long as we
106 	 * don't threaten to OOM. If any cgroup is reclaimed at
107 	 * reduced force or passed over entirely due to its memory.low
108 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
109 	 * result, then go back for one more cycle that reclaims the protected
110 	 * memory (memcg_low_reclaim) to avert OOM.
111 	 */
112 	unsigned int memcg_low_reclaim:1;
113 	unsigned int memcg_low_skipped:1;
114 
115 	unsigned int hibernation_mode:1;
116 
117 	/* One of the zones is ready for compaction */
118 	unsigned int compaction_ready:1;
119 
120 	/* There is easily reclaimable cold cache in the current node */
121 	unsigned int cache_trim_mode:1;
122 
123 	/* The file pages on the current node are dangerously low */
124 	unsigned int file_is_tiny:1;
125 
126 	/* Always discard instead of demoting to lower tier memory */
127 	unsigned int no_demotion:1;
128 
129 	/* Allocation order */
130 	s8 order;
131 
132 	/* Scan (total_size >> priority) pages at once */
133 	s8 priority;
134 
135 	/* The highest zone to isolate pages for reclaim from */
136 	s8 reclaim_idx;
137 
138 	/* This context's GFP mask */
139 	gfp_t gfp_mask;
140 
141 	/* Incremented by the number of inactive pages that were scanned */
142 	unsigned long nr_scanned;
143 
144 	/* Number of pages freed so far during a call to shrink_zones() */
145 	unsigned long nr_reclaimed;
146 
147 	struct {
148 		unsigned int dirty;
149 		unsigned int unqueued_dirty;
150 		unsigned int congested;
151 		unsigned int writeback;
152 		unsigned int immediate;
153 		unsigned int file_taken;
154 		unsigned int taken;
155 	} nr;
156 
157 	/* for recording the reclaimed slab by now */
158 	struct reclaim_state reclaim_state;
159 };
160 
161 #ifdef ARCH_HAS_PREFETCHW
162 #define prefetchw_prev_lru_page(_page, _base, _field)			\
163 	do {								\
164 		if ((_page)->lru.prev != _base) {			\
165 			struct page *prev;				\
166 									\
167 			prev = lru_to_page(&(_page->lru));		\
168 			prefetchw(&prev->_field);			\
169 		}							\
170 	} while (0)
171 #else
172 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
173 #endif
174 
175 /*
176  * From 0 .. 200.  Higher means more swappy.
177  */
178 int vm_swappiness = 60;
179 
180 static void set_task_reclaim_state(struct task_struct *task,
181 				   struct reclaim_state *rs)
182 {
183 	/* Check for an overwrite */
184 	WARN_ON_ONCE(rs && task->reclaim_state);
185 
186 	/* Check for the nulling of an already-nulled member */
187 	WARN_ON_ONCE(!rs && !task->reclaim_state);
188 
189 	task->reclaim_state = rs;
190 }
191 
192 static LIST_HEAD(shrinker_list);
193 static DECLARE_RWSEM(shrinker_rwsem);
194 
195 #ifdef CONFIG_MEMCG
196 static int shrinker_nr_max;
197 
198 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
199 static inline int shrinker_map_size(int nr_items)
200 {
201 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
202 }
203 
204 static inline int shrinker_defer_size(int nr_items)
205 {
206 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
207 }
208 
209 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
210 						     int nid)
211 {
212 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
213 					 lockdep_is_held(&shrinker_rwsem));
214 }
215 
216 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
217 				    int map_size, int defer_size,
218 				    int old_map_size, int old_defer_size)
219 {
220 	struct shrinker_info *new, *old;
221 	struct mem_cgroup_per_node *pn;
222 	int nid;
223 	int size = map_size + defer_size;
224 
225 	for_each_node(nid) {
226 		pn = memcg->nodeinfo[nid];
227 		old = shrinker_info_protected(memcg, nid);
228 		/* Not yet online memcg */
229 		if (!old)
230 			return 0;
231 
232 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
233 		if (!new)
234 			return -ENOMEM;
235 
236 		new->nr_deferred = (atomic_long_t *)(new + 1);
237 		new->map = (void *)new->nr_deferred + defer_size;
238 
239 		/* map: set all old bits, clear all new bits */
240 		memset(new->map, (int)0xff, old_map_size);
241 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
242 		/* nr_deferred: copy old values, clear all new values */
243 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
244 		memset((void *)new->nr_deferred + old_defer_size, 0,
245 		       defer_size - old_defer_size);
246 
247 		rcu_assign_pointer(pn->shrinker_info, new);
248 		kvfree_rcu(old, rcu);
249 	}
250 
251 	return 0;
252 }
253 
254 void free_shrinker_info(struct mem_cgroup *memcg)
255 {
256 	struct mem_cgroup_per_node *pn;
257 	struct shrinker_info *info;
258 	int nid;
259 
260 	for_each_node(nid) {
261 		pn = memcg->nodeinfo[nid];
262 		info = rcu_dereference_protected(pn->shrinker_info, true);
263 		kvfree(info);
264 		rcu_assign_pointer(pn->shrinker_info, NULL);
265 	}
266 }
267 
268 int alloc_shrinker_info(struct mem_cgroup *memcg)
269 {
270 	struct shrinker_info *info;
271 	int nid, size, ret = 0;
272 	int map_size, defer_size = 0;
273 
274 	down_write(&shrinker_rwsem);
275 	map_size = shrinker_map_size(shrinker_nr_max);
276 	defer_size = shrinker_defer_size(shrinker_nr_max);
277 	size = map_size + defer_size;
278 	for_each_node(nid) {
279 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
280 		if (!info) {
281 			free_shrinker_info(memcg);
282 			ret = -ENOMEM;
283 			break;
284 		}
285 		info->nr_deferred = (atomic_long_t *)(info + 1);
286 		info->map = (void *)info->nr_deferred + defer_size;
287 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
288 	}
289 	up_write(&shrinker_rwsem);
290 
291 	return ret;
292 }
293 
294 static inline bool need_expand(int nr_max)
295 {
296 	return round_up(nr_max, BITS_PER_LONG) >
297 	       round_up(shrinker_nr_max, BITS_PER_LONG);
298 }
299 
300 static int expand_shrinker_info(int new_id)
301 {
302 	int ret = 0;
303 	int new_nr_max = new_id + 1;
304 	int map_size, defer_size = 0;
305 	int old_map_size, old_defer_size = 0;
306 	struct mem_cgroup *memcg;
307 
308 	if (!need_expand(new_nr_max))
309 		goto out;
310 
311 	if (!root_mem_cgroup)
312 		goto out;
313 
314 	lockdep_assert_held(&shrinker_rwsem);
315 
316 	map_size = shrinker_map_size(new_nr_max);
317 	defer_size = shrinker_defer_size(new_nr_max);
318 	old_map_size = shrinker_map_size(shrinker_nr_max);
319 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
320 
321 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
322 	do {
323 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
324 					       old_map_size, old_defer_size);
325 		if (ret) {
326 			mem_cgroup_iter_break(NULL, memcg);
327 			goto out;
328 		}
329 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
330 out:
331 	if (!ret)
332 		shrinker_nr_max = new_nr_max;
333 
334 	return ret;
335 }
336 
337 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
338 {
339 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
340 		struct shrinker_info *info;
341 
342 		rcu_read_lock();
343 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
344 		/* Pairs with smp mb in shrink_slab() */
345 		smp_mb__before_atomic();
346 		set_bit(shrinker_id, info->map);
347 		rcu_read_unlock();
348 	}
349 }
350 
351 static DEFINE_IDR(shrinker_idr);
352 
353 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354 {
355 	int id, ret = -ENOMEM;
356 
357 	if (mem_cgroup_disabled())
358 		return -ENOSYS;
359 
360 	down_write(&shrinker_rwsem);
361 	/* This may call shrinker, so it must use down_read_trylock() */
362 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
363 	if (id < 0)
364 		goto unlock;
365 
366 	if (id >= shrinker_nr_max) {
367 		if (expand_shrinker_info(id)) {
368 			idr_remove(&shrinker_idr, id);
369 			goto unlock;
370 		}
371 	}
372 	shrinker->id = id;
373 	ret = 0;
374 unlock:
375 	up_write(&shrinker_rwsem);
376 	return ret;
377 }
378 
379 static void unregister_memcg_shrinker(struct shrinker *shrinker)
380 {
381 	int id = shrinker->id;
382 
383 	BUG_ON(id < 0);
384 
385 	lockdep_assert_held(&shrinker_rwsem);
386 
387 	idr_remove(&shrinker_idr, id);
388 }
389 
390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 				   struct mem_cgroup *memcg)
392 {
393 	struct shrinker_info *info;
394 
395 	info = shrinker_info_protected(memcg, nid);
396 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
397 }
398 
399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 				  struct mem_cgroup *memcg)
401 {
402 	struct shrinker_info *info;
403 
404 	info = shrinker_info_protected(memcg, nid);
405 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
406 }
407 
408 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
409 {
410 	int i, nid;
411 	long nr;
412 	struct mem_cgroup *parent;
413 	struct shrinker_info *child_info, *parent_info;
414 
415 	parent = parent_mem_cgroup(memcg);
416 	if (!parent)
417 		parent = root_mem_cgroup;
418 
419 	/* Prevent from concurrent shrinker_info expand */
420 	down_read(&shrinker_rwsem);
421 	for_each_node(nid) {
422 		child_info = shrinker_info_protected(memcg, nid);
423 		parent_info = shrinker_info_protected(parent, nid);
424 		for (i = 0; i < shrinker_nr_max; i++) {
425 			nr = atomic_long_read(&child_info->nr_deferred[i]);
426 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
427 		}
428 	}
429 	up_read(&shrinker_rwsem);
430 }
431 
432 static bool cgroup_reclaim(struct scan_control *sc)
433 {
434 	return sc->target_mem_cgroup;
435 }
436 
437 /**
438  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
439  * @sc: scan_control in question
440  *
441  * The normal page dirty throttling mechanism in balance_dirty_pages() is
442  * completely broken with the legacy memcg and direct stalling in
443  * shrink_page_list() is used for throttling instead, which lacks all the
444  * niceties such as fairness, adaptive pausing, bandwidth proportional
445  * allocation and configurability.
446  *
447  * This function tests whether the vmscan currently in progress can assume
448  * that the normal dirty throttling mechanism is operational.
449  */
450 static bool writeback_throttling_sane(struct scan_control *sc)
451 {
452 	if (!cgroup_reclaim(sc))
453 		return true;
454 #ifdef CONFIG_CGROUP_WRITEBACK
455 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		return true;
457 #endif
458 	return false;
459 }
460 #else
461 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
462 {
463 	return -ENOSYS;
464 }
465 
466 static void unregister_memcg_shrinker(struct shrinker *shrinker)
467 {
468 }
469 
470 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
471 				   struct mem_cgroup *memcg)
472 {
473 	return 0;
474 }
475 
476 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
477 				  struct mem_cgroup *memcg)
478 {
479 	return 0;
480 }
481 
482 static bool cgroup_reclaim(struct scan_control *sc)
483 {
484 	return false;
485 }
486 
487 static bool writeback_throttling_sane(struct scan_control *sc)
488 {
489 	return true;
490 }
491 #endif
492 
493 static long xchg_nr_deferred(struct shrinker *shrinker,
494 			     struct shrink_control *sc)
495 {
496 	int nid = sc->nid;
497 
498 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499 		nid = 0;
500 
501 	if (sc->memcg &&
502 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
503 		return xchg_nr_deferred_memcg(nid, shrinker,
504 					      sc->memcg);
505 
506 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
507 }
508 
509 
510 static long add_nr_deferred(long nr, struct shrinker *shrinker,
511 			    struct shrink_control *sc)
512 {
513 	int nid = sc->nid;
514 
515 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
516 		nid = 0;
517 
518 	if (sc->memcg &&
519 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
520 		return add_nr_deferred_memcg(nr, nid, shrinker,
521 					     sc->memcg);
522 
523 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
524 }
525 
526 static bool can_demote(int nid, struct scan_control *sc)
527 {
528 	if (!numa_demotion_enabled)
529 		return false;
530 	if (sc) {
531 		if (sc->no_demotion)
532 			return false;
533 		/* It is pointless to do demotion in memcg reclaim */
534 		if (cgroup_reclaim(sc))
535 			return false;
536 	}
537 	if (next_demotion_node(nid) == NUMA_NO_NODE)
538 		return false;
539 
540 	return true;
541 }
542 
543 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
544 					  int nid,
545 					  struct scan_control *sc)
546 {
547 	if (memcg == NULL) {
548 		/*
549 		 * For non-memcg reclaim, is there
550 		 * space in any swap device?
551 		 */
552 		if (get_nr_swap_pages() > 0)
553 			return true;
554 	} else {
555 		/* Is the memcg below its swap limit? */
556 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
557 			return true;
558 	}
559 
560 	/*
561 	 * The page can not be swapped.
562 	 *
563 	 * Can it be reclaimed from this node via demotion?
564 	 */
565 	return can_demote(nid, sc);
566 }
567 
568 /*
569  * This misses isolated pages which are not accounted for to save counters.
570  * As the data only determines if reclaim or compaction continues, it is
571  * not expected that isolated pages will be a dominating factor.
572  */
573 unsigned long zone_reclaimable_pages(struct zone *zone)
574 {
575 	unsigned long nr;
576 
577 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
578 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
579 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
580 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
581 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
582 
583 	return nr;
584 }
585 
586 /**
587  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
588  * @lruvec: lru vector
589  * @lru: lru to use
590  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
591  */
592 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
593 				     int zone_idx)
594 {
595 	unsigned long size = 0;
596 	int zid;
597 
598 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
599 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
600 
601 		if (!managed_zone(zone))
602 			continue;
603 
604 		if (!mem_cgroup_disabled())
605 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
606 		else
607 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
608 	}
609 	return size;
610 }
611 
612 /*
613  * Add a shrinker callback to be called from the vm.
614  */
615 int prealloc_shrinker(struct shrinker *shrinker)
616 {
617 	unsigned int size;
618 	int err;
619 
620 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
621 		err = prealloc_memcg_shrinker(shrinker);
622 		if (err != -ENOSYS)
623 			return err;
624 
625 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
626 	}
627 
628 	size = sizeof(*shrinker->nr_deferred);
629 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
630 		size *= nr_node_ids;
631 
632 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
633 	if (!shrinker->nr_deferred)
634 		return -ENOMEM;
635 
636 	return 0;
637 }
638 
639 void free_prealloced_shrinker(struct shrinker *shrinker)
640 {
641 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
642 		down_write(&shrinker_rwsem);
643 		unregister_memcg_shrinker(shrinker);
644 		up_write(&shrinker_rwsem);
645 		return;
646 	}
647 
648 	kfree(shrinker->nr_deferred);
649 	shrinker->nr_deferred = NULL;
650 }
651 
652 void register_shrinker_prepared(struct shrinker *shrinker)
653 {
654 	down_write(&shrinker_rwsem);
655 	list_add_tail(&shrinker->list, &shrinker_list);
656 	shrinker->flags |= SHRINKER_REGISTERED;
657 	up_write(&shrinker_rwsem);
658 }
659 
660 int register_shrinker(struct shrinker *shrinker)
661 {
662 	int err = prealloc_shrinker(shrinker);
663 
664 	if (err)
665 		return err;
666 	register_shrinker_prepared(shrinker);
667 	return 0;
668 }
669 EXPORT_SYMBOL(register_shrinker);
670 
671 /*
672  * Remove one
673  */
674 void unregister_shrinker(struct shrinker *shrinker)
675 {
676 	if (!(shrinker->flags & SHRINKER_REGISTERED))
677 		return;
678 
679 	down_write(&shrinker_rwsem);
680 	list_del(&shrinker->list);
681 	shrinker->flags &= ~SHRINKER_REGISTERED;
682 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
683 		unregister_memcg_shrinker(shrinker);
684 	up_write(&shrinker_rwsem);
685 
686 	kfree(shrinker->nr_deferred);
687 	shrinker->nr_deferred = NULL;
688 }
689 EXPORT_SYMBOL(unregister_shrinker);
690 
691 /**
692  * synchronize_shrinkers - Wait for all running shrinkers to complete.
693  *
694  * This is equivalent to calling unregister_shrink() and register_shrinker(),
695  * but atomically and with less overhead. This is useful to guarantee that all
696  * shrinker invocations have seen an update, before freeing memory, similar to
697  * rcu.
698  */
699 void synchronize_shrinkers(void)
700 {
701 	down_write(&shrinker_rwsem);
702 	up_write(&shrinker_rwsem);
703 }
704 EXPORT_SYMBOL(synchronize_shrinkers);
705 
706 #define SHRINK_BATCH 128
707 
708 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
709 				    struct shrinker *shrinker, int priority)
710 {
711 	unsigned long freed = 0;
712 	unsigned long long delta;
713 	long total_scan;
714 	long freeable;
715 	long nr;
716 	long new_nr;
717 	long batch_size = shrinker->batch ? shrinker->batch
718 					  : SHRINK_BATCH;
719 	long scanned = 0, next_deferred;
720 
721 	freeable = shrinker->count_objects(shrinker, shrinkctl);
722 	if (freeable == 0 || freeable == SHRINK_EMPTY)
723 		return freeable;
724 
725 	/*
726 	 * copy the current shrinker scan count into a local variable
727 	 * and zero it so that other concurrent shrinker invocations
728 	 * don't also do this scanning work.
729 	 */
730 	nr = xchg_nr_deferred(shrinker, shrinkctl);
731 
732 	if (shrinker->seeks) {
733 		delta = freeable >> priority;
734 		delta *= 4;
735 		do_div(delta, shrinker->seeks);
736 	} else {
737 		/*
738 		 * These objects don't require any IO to create. Trim
739 		 * them aggressively under memory pressure to keep
740 		 * them from causing refetches in the IO caches.
741 		 */
742 		delta = freeable / 2;
743 	}
744 
745 	total_scan = nr >> priority;
746 	total_scan += delta;
747 	total_scan = min(total_scan, (2 * freeable));
748 
749 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
750 				   freeable, delta, total_scan, priority);
751 
752 	/*
753 	 * Normally, we should not scan less than batch_size objects in one
754 	 * pass to avoid too frequent shrinker calls, but if the slab has less
755 	 * than batch_size objects in total and we are really tight on memory,
756 	 * we will try to reclaim all available objects, otherwise we can end
757 	 * up failing allocations although there are plenty of reclaimable
758 	 * objects spread over several slabs with usage less than the
759 	 * batch_size.
760 	 *
761 	 * We detect the "tight on memory" situations by looking at the total
762 	 * number of objects we want to scan (total_scan). If it is greater
763 	 * than the total number of objects on slab (freeable), we must be
764 	 * scanning at high prio and therefore should try to reclaim as much as
765 	 * possible.
766 	 */
767 	while (total_scan >= batch_size ||
768 	       total_scan >= freeable) {
769 		unsigned long ret;
770 		unsigned long nr_to_scan = min(batch_size, total_scan);
771 
772 		shrinkctl->nr_to_scan = nr_to_scan;
773 		shrinkctl->nr_scanned = nr_to_scan;
774 		ret = shrinker->scan_objects(shrinker, shrinkctl);
775 		if (ret == SHRINK_STOP)
776 			break;
777 		freed += ret;
778 
779 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
780 		total_scan -= shrinkctl->nr_scanned;
781 		scanned += shrinkctl->nr_scanned;
782 
783 		cond_resched();
784 	}
785 
786 	/*
787 	 * The deferred work is increased by any new work (delta) that wasn't
788 	 * done, decreased by old deferred work that was done now.
789 	 *
790 	 * And it is capped to two times of the freeable items.
791 	 */
792 	next_deferred = max_t(long, (nr + delta - scanned), 0);
793 	next_deferred = min(next_deferred, (2 * freeable));
794 
795 	/*
796 	 * move the unused scan count back into the shrinker in a
797 	 * manner that handles concurrent updates.
798 	 */
799 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
800 
801 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
802 	return freed;
803 }
804 
805 #ifdef CONFIG_MEMCG
806 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
807 			struct mem_cgroup *memcg, int priority)
808 {
809 	struct shrinker_info *info;
810 	unsigned long ret, freed = 0;
811 	int i;
812 
813 	if (!mem_cgroup_online(memcg))
814 		return 0;
815 
816 	if (!down_read_trylock(&shrinker_rwsem))
817 		return 0;
818 
819 	info = shrinker_info_protected(memcg, nid);
820 	if (unlikely(!info))
821 		goto unlock;
822 
823 	for_each_set_bit(i, info->map, shrinker_nr_max) {
824 		struct shrink_control sc = {
825 			.gfp_mask = gfp_mask,
826 			.nid = nid,
827 			.memcg = memcg,
828 		};
829 		struct shrinker *shrinker;
830 
831 		shrinker = idr_find(&shrinker_idr, i);
832 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
833 			if (!shrinker)
834 				clear_bit(i, info->map);
835 			continue;
836 		}
837 
838 		/* Call non-slab shrinkers even though kmem is disabled */
839 		if (!memcg_kmem_enabled() &&
840 		    !(shrinker->flags & SHRINKER_NONSLAB))
841 			continue;
842 
843 		ret = do_shrink_slab(&sc, shrinker, priority);
844 		if (ret == SHRINK_EMPTY) {
845 			clear_bit(i, info->map);
846 			/*
847 			 * After the shrinker reported that it had no objects to
848 			 * free, but before we cleared the corresponding bit in
849 			 * the memcg shrinker map, a new object might have been
850 			 * added. To make sure, we have the bit set in this
851 			 * case, we invoke the shrinker one more time and reset
852 			 * the bit if it reports that it is not empty anymore.
853 			 * The memory barrier here pairs with the barrier in
854 			 * set_shrinker_bit():
855 			 *
856 			 * list_lru_add()     shrink_slab_memcg()
857 			 *   list_add_tail()    clear_bit()
858 			 *   <MB>               <MB>
859 			 *   set_bit()          do_shrink_slab()
860 			 */
861 			smp_mb__after_atomic();
862 			ret = do_shrink_slab(&sc, shrinker, priority);
863 			if (ret == SHRINK_EMPTY)
864 				ret = 0;
865 			else
866 				set_shrinker_bit(memcg, nid, i);
867 		}
868 		freed += ret;
869 
870 		if (rwsem_is_contended(&shrinker_rwsem)) {
871 			freed = freed ? : 1;
872 			break;
873 		}
874 	}
875 unlock:
876 	up_read(&shrinker_rwsem);
877 	return freed;
878 }
879 #else /* CONFIG_MEMCG */
880 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
881 			struct mem_cgroup *memcg, int priority)
882 {
883 	return 0;
884 }
885 #endif /* CONFIG_MEMCG */
886 
887 /**
888  * shrink_slab - shrink slab caches
889  * @gfp_mask: allocation context
890  * @nid: node whose slab caches to target
891  * @memcg: memory cgroup whose slab caches to target
892  * @priority: the reclaim priority
893  *
894  * Call the shrink functions to age shrinkable caches.
895  *
896  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
897  * unaware shrinkers will receive a node id of 0 instead.
898  *
899  * @memcg specifies the memory cgroup to target. Unaware shrinkers
900  * are called only if it is the root cgroup.
901  *
902  * @priority is sc->priority, we take the number of objects and >> by priority
903  * in order to get the scan target.
904  *
905  * Returns the number of reclaimed slab objects.
906  */
907 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
908 				 struct mem_cgroup *memcg,
909 				 int priority)
910 {
911 	unsigned long ret, freed = 0;
912 	struct shrinker *shrinker;
913 
914 	/*
915 	 * The root memcg might be allocated even though memcg is disabled
916 	 * via "cgroup_disable=memory" boot parameter.  This could make
917 	 * mem_cgroup_is_root() return false, then just run memcg slab
918 	 * shrink, but skip global shrink.  This may result in premature
919 	 * oom.
920 	 */
921 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
922 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
923 
924 	if (!down_read_trylock(&shrinker_rwsem))
925 		goto out;
926 
927 	list_for_each_entry(shrinker, &shrinker_list, list) {
928 		struct shrink_control sc = {
929 			.gfp_mask = gfp_mask,
930 			.nid = nid,
931 			.memcg = memcg,
932 		};
933 
934 		ret = do_shrink_slab(&sc, shrinker, priority);
935 		if (ret == SHRINK_EMPTY)
936 			ret = 0;
937 		freed += ret;
938 		/*
939 		 * Bail out if someone want to register a new shrinker to
940 		 * prevent the registration from being stalled for long periods
941 		 * by parallel ongoing shrinking.
942 		 */
943 		if (rwsem_is_contended(&shrinker_rwsem)) {
944 			freed = freed ? : 1;
945 			break;
946 		}
947 	}
948 
949 	up_read(&shrinker_rwsem);
950 out:
951 	cond_resched();
952 	return freed;
953 }
954 
955 static void drop_slab_node(int nid)
956 {
957 	unsigned long freed;
958 	int shift = 0;
959 
960 	do {
961 		struct mem_cgroup *memcg = NULL;
962 
963 		if (fatal_signal_pending(current))
964 			return;
965 
966 		freed = 0;
967 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
968 		do {
969 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
970 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
971 	} while ((freed >> shift++) > 1);
972 }
973 
974 void drop_slab(void)
975 {
976 	int nid;
977 
978 	for_each_online_node(nid)
979 		drop_slab_node(nid);
980 }
981 
982 static inline int is_page_cache_freeable(struct folio *folio)
983 {
984 	/*
985 	 * A freeable page cache page is referenced only by the caller
986 	 * that isolated the page, the page cache and optional buffer
987 	 * heads at page->private.
988 	 */
989 	return folio_ref_count(folio) - folio_test_private(folio) ==
990 		1 + folio_nr_pages(folio);
991 }
992 
993 /*
994  * We detected a synchronous write error writing a folio out.  Probably
995  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
996  * fsync(), msync() or close().
997  *
998  * The tricky part is that after writepage we cannot touch the mapping: nothing
999  * prevents it from being freed up.  But we have a ref on the folio and once
1000  * that folio is locked, the mapping is pinned.
1001  *
1002  * We're allowed to run sleeping folio_lock() here because we know the caller has
1003  * __GFP_FS.
1004  */
1005 static void handle_write_error(struct address_space *mapping,
1006 				struct folio *folio, int error)
1007 {
1008 	folio_lock(folio);
1009 	if (folio_mapping(folio) == mapping)
1010 		mapping_set_error(mapping, error);
1011 	folio_unlock(folio);
1012 }
1013 
1014 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1015 {
1016 	int reclaimable = 0, write_pending = 0;
1017 	int i;
1018 
1019 	/*
1020 	 * If kswapd is disabled, reschedule if necessary but do not
1021 	 * throttle as the system is likely near OOM.
1022 	 */
1023 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1024 		return true;
1025 
1026 	/*
1027 	 * If there are a lot of dirty/writeback pages then do not
1028 	 * throttle as throttling will occur when the pages cycle
1029 	 * towards the end of the LRU if still under writeback.
1030 	 */
1031 	for (i = 0; i < MAX_NR_ZONES; i++) {
1032 		struct zone *zone = pgdat->node_zones + i;
1033 
1034 		if (!populated_zone(zone))
1035 			continue;
1036 
1037 		reclaimable += zone_reclaimable_pages(zone);
1038 		write_pending += zone_page_state_snapshot(zone,
1039 						  NR_ZONE_WRITE_PENDING);
1040 	}
1041 	if (2 * write_pending <= reclaimable)
1042 		return true;
1043 
1044 	return false;
1045 }
1046 
1047 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1048 {
1049 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1050 	long timeout, ret;
1051 	DEFINE_WAIT(wait);
1052 
1053 	/*
1054 	 * Do not throttle IO workers, kthreads other than kswapd or
1055 	 * workqueues. They may be required for reclaim to make
1056 	 * forward progress (e.g. journalling workqueues or kthreads).
1057 	 */
1058 	if (!current_is_kswapd() &&
1059 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1060 		cond_resched();
1061 		return;
1062 	}
1063 
1064 	/*
1065 	 * These figures are pulled out of thin air.
1066 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1067 	 * parallel reclaimers which is a short-lived event so the timeout is
1068 	 * short. Failing to make progress or waiting on writeback are
1069 	 * potentially long-lived events so use a longer timeout. This is shaky
1070 	 * logic as a failure to make progress could be due to anything from
1071 	 * writeback to a slow device to excessive references pages at the tail
1072 	 * of the inactive LRU.
1073 	 */
1074 	switch(reason) {
1075 	case VMSCAN_THROTTLE_WRITEBACK:
1076 		timeout = HZ/10;
1077 
1078 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1079 			WRITE_ONCE(pgdat->nr_reclaim_start,
1080 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1081 		}
1082 
1083 		break;
1084 	case VMSCAN_THROTTLE_CONGESTED:
1085 		fallthrough;
1086 	case VMSCAN_THROTTLE_NOPROGRESS:
1087 		if (skip_throttle_noprogress(pgdat)) {
1088 			cond_resched();
1089 			return;
1090 		}
1091 
1092 		timeout = 1;
1093 
1094 		break;
1095 	case VMSCAN_THROTTLE_ISOLATED:
1096 		timeout = HZ/50;
1097 		break;
1098 	default:
1099 		WARN_ON_ONCE(1);
1100 		timeout = HZ;
1101 		break;
1102 	}
1103 
1104 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1105 	ret = schedule_timeout(timeout);
1106 	finish_wait(wqh, &wait);
1107 
1108 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1109 		atomic_dec(&pgdat->nr_writeback_throttled);
1110 
1111 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1112 				jiffies_to_usecs(timeout - ret),
1113 				reason);
1114 }
1115 
1116 /*
1117  * Account for pages written if tasks are throttled waiting on dirty
1118  * pages to clean. If enough pages have been cleaned since throttling
1119  * started then wakeup the throttled tasks.
1120  */
1121 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1122 							int nr_throttled)
1123 {
1124 	unsigned long nr_written;
1125 
1126 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1127 
1128 	/*
1129 	 * This is an inaccurate read as the per-cpu deltas may not
1130 	 * be synchronised. However, given that the system is
1131 	 * writeback throttled, it is not worth taking the penalty
1132 	 * of getting an accurate count. At worst, the throttle
1133 	 * timeout guarantees forward progress.
1134 	 */
1135 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1136 		READ_ONCE(pgdat->nr_reclaim_start);
1137 
1138 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1139 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1140 }
1141 
1142 /* possible outcome of pageout() */
1143 typedef enum {
1144 	/* failed to write page out, page is locked */
1145 	PAGE_KEEP,
1146 	/* move page to the active list, page is locked */
1147 	PAGE_ACTIVATE,
1148 	/* page has been sent to the disk successfully, page is unlocked */
1149 	PAGE_SUCCESS,
1150 	/* page is clean and locked */
1151 	PAGE_CLEAN,
1152 } pageout_t;
1153 
1154 /*
1155  * pageout is called by shrink_page_list() for each dirty page.
1156  * Calls ->writepage().
1157  */
1158 static pageout_t pageout(struct folio *folio, struct address_space *mapping)
1159 {
1160 	/*
1161 	 * If the folio is dirty, only perform writeback if that write
1162 	 * will be non-blocking.  To prevent this allocation from being
1163 	 * stalled by pagecache activity.  But note that there may be
1164 	 * stalls if we need to run get_block().  We could test
1165 	 * PagePrivate for that.
1166 	 *
1167 	 * If this process is currently in __generic_file_write_iter() against
1168 	 * this folio's queue, we can perform writeback even if that
1169 	 * will block.
1170 	 *
1171 	 * If the folio is swapcache, write it back even if that would
1172 	 * block, for some throttling. This happens by accident, because
1173 	 * swap_backing_dev_info is bust: it doesn't reflect the
1174 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1175 	 */
1176 	if (!is_page_cache_freeable(folio))
1177 		return PAGE_KEEP;
1178 	if (!mapping) {
1179 		/*
1180 		 * Some data journaling orphaned folios can have
1181 		 * folio->mapping == NULL while being dirty with clean buffers.
1182 		 */
1183 		if (folio_test_private(folio)) {
1184 			if (try_to_free_buffers(&folio->page)) {
1185 				folio_clear_dirty(folio);
1186 				pr_info("%s: orphaned folio\n", __func__);
1187 				return PAGE_CLEAN;
1188 			}
1189 		}
1190 		return PAGE_KEEP;
1191 	}
1192 	if (mapping->a_ops->writepage == NULL)
1193 		return PAGE_ACTIVATE;
1194 
1195 	if (folio_clear_dirty_for_io(folio)) {
1196 		int res;
1197 		struct writeback_control wbc = {
1198 			.sync_mode = WB_SYNC_NONE,
1199 			.nr_to_write = SWAP_CLUSTER_MAX,
1200 			.range_start = 0,
1201 			.range_end = LLONG_MAX,
1202 			.for_reclaim = 1,
1203 		};
1204 
1205 		folio_set_reclaim(folio);
1206 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1207 		if (res < 0)
1208 			handle_write_error(mapping, folio, res);
1209 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1210 			folio_clear_reclaim(folio);
1211 			return PAGE_ACTIVATE;
1212 		}
1213 
1214 		if (!folio_test_writeback(folio)) {
1215 			/* synchronous write or broken a_ops? */
1216 			folio_clear_reclaim(folio);
1217 		}
1218 		trace_mm_vmscan_write_folio(folio);
1219 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1220 		return PAGE_SUCCESS;
1221 	}
1222 
1223 	return PAGE_CLEAN;
1224 }
1225 
1226 /*
1227  * Same as remove_mapping, but if the page is removed from the mapping, it
1228  * gets returned with a refcount of 0.
1229  */
1230 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1231 			    bool reclaimed, struct mem_cgroup *target_memcg)
1232 {
1233 	int refcount;
1234 	void *shadow = NULL;
1235 
1236 	BUG_ON(!folio_test_locked(folio));
1237 	BUG_ON(mapping != folio_mapping(folio));
1238 
1239 	if (!folio_test_swapcache(folio))
1240 		spin_lock(&mapping->host->i_lock);
1241 	xa_lock_irq(&mapping->i_pages);
1242 	/*
1243 	 * The non racy check for a busy page.
1244 	 *
1245 	 * Must be careful with the order of the tests. When someone has
1246 	 * a ref to the page, it may be possible that they dirty it then
1247 	 * drop the reference. So if PageDirty is tested before page_count
1248 	 * here, then the following race may occur:
1249 	 *
1250 	 * get_user_pages(&page);
1251 	 * [user mapping goes away]
1252 	 * write_to(page);
1253 	 *				!PageDirty(page)    [good]
1254 	 * SetPageDirty(page);
1255 	 * put_page(page);
1256 	 *				!page_count(page)   [good, discard it]
1257 	 *
1258 	 * [oops, our write_to data is lost]
1259 	 *
1260 	 * Reversing the order of the tests ensures such a situation cannot
1261 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1262 	 * load is not satisfied before that of page->_refcount.
1263 	 *
1264 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1265 	 * and thus under the i_pages lock, then this ordering is not required.
1266 	 */
1267 	refcount = 1 + folio_nr_pages(folio);
1268 	if (!folio_ref_freeze(folio, refcount))
1269 		goto cannot_free;
1270 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1271 	if (unlikely(folio_test_dirty(folio))) {
1272 		folio_ref_unfreeze(folio, refcount);
1273 		goto cannot_free;
1274 	}
1275 
1276 	if (folio_test_swapcache(folio)) {
1277 		swp_entry_t swap = folio_swap_entry(folio);
1278 		mem_cgroup_swapout(folio, swap);
1279 		if (reclaimed && !mapping_exiting(mapping))
1280 			shadow = workingset_eviction(folio, target_memcg);
1281 		__delete_from_swap_cache(&folio->page, swap, shadow);
1282 		xa_unlock_irq(&mapping->i_pages);
1283 		put_swap_page(&folio->page, swap);
1284 	} else {
1285 		void (*freepage)(struct page *);
1286 
1287 		freepage = mapping->a_ops->freepage;
1288 		/*
1289 		 * Remember a shadow entry for reclaimed file cache in
1290 		 * order to detect refaults, thus thrashing, later on.
1291 		 *
1292 		 * But don't store shadows in an address space that is
1293 		 * already exiting.  This is not just an optimization,
1294 		 * inode reclaim needs to empty out the radix tree or
1295 		 * the nodes are lost.  Don't plant shadows behind its
1296 		 * back.
1297 		 *
1298 		 * We also don't store shadows for DAX mappings because the
1299 		 * only page cache pages found in these are zero pages
1300 		 * covering holes, and because we don't want to mix DAX
1301 		 * exceptional entries and shadow exceptional entries in the
1302 		 * same address_space.
1303 		 */
1304 		if (reclaimed && folio_is_file_lru(folio) &&
1305 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1306 			shadow = workingset_eviction(folio, target_memcg);
1307 		__filemap_remove_folio(folio, shadow);
1308 		xa_unlock_irq(&mapping->i_pages);
1309 		if (mapping_shrinkable(mapping))
1310 			inode_add_lru(mapping->host);
1311 		spin_unlock(&mapping->host->i_lock);
1312 
1313 		if (freepage != NULL)
1314 			freepage(&folio->page);
1315 	}
1316 
1317 	return 1;
1318 
1319 cannot_free:
1320 	xa_unlock_irq(&mapping->i_pages);
1321 	if (!folio_test_swapcache(folio))
1322 		spin_unlock(&mapping->host->i_lock);
1323 	return 0;
1324 }
1325 
1326 /**
1327  * remove_mapping() - Attempt to remove a folio from its mapping.
1328  * @mapping: The address space.
1329  * @folio: The folio to remove.
1330  *
1331  * If the folio is dirty, under writeback or if someone else has a ref
1332  * on it, removal will fail.
1333  * Return: The number of pages removed from the mapping.  0 if the folio
1334  * could not be removed.
1335  * Context: The caller should have a single refcount on the folio and
1336  * hold its lock.
1337  */
1338 long remove_mapping(struct address_space *mapping, struct folio *folio)
1339 {
1340 	if (__remove_mapping(mapping, folio, false, NULL)) {
1341 		/*
1342 		 * Unfreezing the refcount with 1 effectively
1343 		 * drops the pagecache ref for us without requiring another
1344 		 * atomic operation.
1345 		 */
1346 		folio_ref_unfreeze(folio, 1);
1347 		return folio_nr_pages(folio);
1348 	}
1349 	return 0;
1350 }
1351 
1352 /**
1353  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1354  * @folio: Folio to be returned to an LRU list.
1355  *
1356  * Add previously isolated @folio to appropriate LRU list.
1357  * The folio may still be unevictable for other reasons.
1358  *
1359  * Context: lru_lock must not be held, interrupts must be enabled.
1360  */
1361 void folio_putback_lru(struct folio *folio)
1362 {
1363 	folio_add_lru(folio);
1364 	folio_put(folio);		/* drop ref from isolate */
1365 }
1366 
1367 enum page_references {
1368 	PAGEREF_RECLAIM,
1369 	PAGEREF_RECLAIM_CLEAN,
1370 	PAGEREF_KEEP,
1371 	PAGEREF_ACTIVATE,
1372 };
1373 
1374 static enum page_references folio_check_references(struct folio *folio,
1375 						  struct scan_control *sc)
1376 {
1377 	int referenced_ptes, referenced_folio;
1378 	unsigned long vm_flags;
1379 
1380 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1381 					   &vm_flags);
1382 	referenced_folio = folio_test_clear_referenced(folio);
1383 
1384 	/*
1385 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1386 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1387 	 */
1388 	if (vm_flags & VM_LOCKED)
1389 		return PAGEREF_ACTIVATE;
1390 
1391 	if (referenced_ptes) {
1392 		/*
1393 		 * All mapped folios start out with page table
1394 		 * references from the instantiating fault, so we need
1395 		 * to look twice if a mapped file/anon folio is used more
1396 		 * than once.
1397 		 *
1398 		 * Mark it and spare it for another trip around the
1399 		 * inactive list.  Another page table reference will
1400 		 * lead to its activation.
1401 		 *
1402 		 * Note: the mark is set for activated folios as well
1403 		 * so that recently deactivated but used folios are
1404 		 * quickly recovered.
1405 		 */
1406 		folio_set_referenced(folio);
1407 
1408 		if (referenced_folio || referenced_ptes > 1)
1409 			return PAGEREF_ACTIVATE;
1410 
1411 		/*
1412 		 * Activate file-backed executable folios after first usage.
1413 		 */
1414 		if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
1415 			return PAGEREF_ACTIVATE;
1416 
1417 		return PAGEREF_KEEP;
1418 	}
1419 
1420 	/* Reclaim if clean, defer dirty folios to writeback */
1421 	if (referenced_folio && !folio_test_swapbacked(folio))
1422 		return PAGEREF_RECLAIM_CLEAN;
1423 
1424 	return PAGEREF_RECLAIM;
1425 }
1426 
1427 /* Check if a page is dirty or under writeback */
1428 static void folio_check_dirty_writeback(struct folio *folio,
1429 				       bool *dirty, bool *writeback)
1430 {
1431 	struct address_space *mapping;
1432 
1433 	/*
1434 	 * Anonymous pages are not handled by flushers and must be written
1435 	 * from reclaim context. Do not stall reclaim based on them
1436 	 */
1437 	if (!folio_is_file_lru(folio) ||
1438 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1439 		*dirty = false;
1440 		*writeback = false;
1441 		return;
1442 	}
1443 
1444 	/* By default assume that the folio flags are accurate */
1445 	*dirty = folio_test_dirty(folio);
1446 	*writeback = folio_test_writeback(folio);
1447 
1448 	/* Verify dirty/writeback state if the filesystem supports it */
1449 	if (!folio_test_private(folio))
1450 		return;
1451 
1452 	mapping = folio_mapping(folio);
1453 	if (mapping && mapping->a_ops->is_dirty_writeback)
1454 		mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
1455 }
1456 
1457 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1458 {
1459 	struct migration_target_control mtc = {
1460 		/*
1461 		 * Allocate from 'node', or fail quickly and quietly.
1462 		 * When this happens, 'page' will likely just be discarded
1463 		 * instead of migrated.
1464 		 */
1465 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1466 			    __GFP_THISNODE  | __GFP_NOWARN |
1467 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1468 		.nid = node
1469 	};
1470 
1471 	return alloc_migration_target(page, (unsigned long)&mtc);
1472 }
1473 
1474 /*
1475  * Take pages on @demote_list and attempt to demote them to
1476  * another node.  Pages which are not demoted are left on
1477  * @demote_pages.
1478  */
1479 static unsigned int demote_page_list(struct list_head *demote_pages,
1480 				     struct pglist_data *pgdat)
1481 {
1482 	int target_nid = next_demotion_node(pgdat->node_id);
1483 	unsigned int nr_succeeded;
1484 
1485 	if (list_empty(demote_pages))
1486 		return 0;
1487 
1488 	if (target_nid == NUMA_NO_NODE)
1489 		return 0;
1490 
1491 	/* Demotion ignores all cpuset and mempolicy settings */
1492 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1493 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1494 			    &nr_succeeded);
1495 
1496 	if (current_is_kswapd())
1497 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1498 	else
1499 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1500 
1501 	return nr_succeeded;
1502 }
1503 
1504 /*
1505  * shrink_page_list() returns the number of reclaimed pages
1506  */
1507 static unsigned int shrink_page_list(struct list_head *page_list,
1508 				     struct pglist_data *pgdat,
1509 				     struct scan_control *sc,
1510 				     struct reclaim_stat *stat,
1511 				     bool ignore_references)
1512 {
1513 	LIST_HEAD(ret_pages);
1514 	LIST_HEAD(free_pages);
1515 	LIST_HEAD(demote_pages);
1516 	unsigned int nr_reclaimed = 0;
1517 	unsigned int pgactivate = 0;
1518 	bool do_demote_pass;
1519 
1520 	memset(stat, 0, sizeof(*stat));
1521 	cond_resched();
1522 	do_demote_pass = can_demote(pgdat->node_id, sc);
1523 
1524 retry:
1525 	while (!list_empty(page_list)) {
1526 		struct address_space *mapping;
1527 		struct page *page;
1528 		struct folio *folio;
1529 		enum page_references references = PAGEREF_RECLAIM;
1530 		bool dirty, writeback, may_enter_fs;
1531 		unsigned int nr_pages;
1532 
1533 		cond_resched();
1534 
1535 		folio = lru_to_folio(page_list);
1536 		list_del(&folio->lru);
1537 		page = &folio->page;
1538 
1539 		if (!trylock_page(page))
1540 			goto keep;
1541 
1542 		VM_BUG_ON_PAGE(PageActive(page), page);
1543 
1544 		nr_pages = compound_nr(page);
1545 
1546 		/* Account the number of base pages even though THP */
1547 		sc->nr_scanned += nr_pages;
1548 
1549 		if (unlikely(!page_evictable(page)))
1550 			goto activate_locked;
1551 
1552 		if (!sc->may_unmap && page_mapped(page))
1553 			goto keep_locked;
1554 
1555 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1556 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1557 
1558 		/*
1559 		 * The number of dirty pages determines if a node is marked
1560 		 * reclaim_congested. kswapd will stall and start writing
1561 		 * pages if the tail of the LRU is all dirty unqueued pages.
1562 		 */
1563 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1564 		if (dirty || writeback)
1565 			stat->nr_dirty += nr_pages;
1566 
1567 		if (dirty && !writeback)
1568 			stat->nr_unqueued_dirty += nr_pages;
1569 
1570 		/*
1571 		 * Treat this page as congested if the underlying BDI is or if
1572 		 * pages are cycling through the LRU so quickly that the
1573 		 * pages marked for immediate reclaim are making it to the
1574 		 * end of the LRU a second time.
1575 		 */
1576 		mapping = page_mapping(page);
1577 		if (writeback && PageReclaim(page))
1578 			stat->nr_congested += nr_pages;
1579 
1580 		/*
1581 		 * If a page at the tail of the LRU is under writeback, there
1582 		 * are three cases to consider.
1583 		 *
1584 		 * 1) If reclaim is encountering an excessive number of pages
1585 		 *    under writeback and this page is both under writeback and
1586 		 *    PageReclaim then it indicates that pages are being queued
1587 		 *    for IO but are being recycled through the LRU before the
1588 		 *    IO can complete. Waiting on the page itself risks an
1589 		 *    indefinite stall if it is impossible to writeback the
1590 		 *    page due to IO error or disconnected storage so instead
1591 		 *    note that the LRU is being scanned too quickly and the
1592 		 *    caller can stall after page list has been processed.
1593 		 *
1594 		 * 2) Global or new memcg reclaim encounters a page that is
1595 		 *    not marked for immediate reclaim, or the caller does not
1596 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1597 		 *    not to fs). In this case mark the page for immediate
1598 		 *    reclaim and continue scanning.
1599 		 *
1600 		 *    Require may_enter_fs because we would wait on fs, which
1601 		 *    may not have submitted IO yet. And the loop driver might
1602 		 *    enter reclaim, and deadlock if it waits on a page for
1603 		 *    which it is needed to do the write (loop masks off
1604 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1605 		 *    would probably show more reasons.
1606 		 *
1607 		 * 3) Legacy memcg encounters a page that is already marked
1608 		 *    PageReclaim. memcg does not have any dirty pages
1609 		 *    throttling so we could easily OOM just because too many
1610 		 *    pages are in writeback and there is nothing else to
1611 		 *    reclaim. Wait for the writeback to complete.
1612 		 *
1613 		 * In cases 1) and 2) we activate the pages to get them out of
1614 		 * the way while we continue scanning for clean pages on the
1615 		 * inactive list and refilling from the active list. The
1616 		 * observation here is that waiting for disk writes is more
1617 		 * expensive than potentially causing reloads down the line.
1618 		 * Since they're marked for immediate reclaim, they won't put
1619 		 * memory pressure on the cache working set any longer than it
1620 		 * takes to write them to disk.
1621 		 */
1622 		if (PageWriteback(page)) {
1623 			/* Case 1 above */
1624 			if (current_is_kswapd() &&
1625 			    PageReclaim(page) &&
1626 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1627 				stat->nr_immediate += nr_pages;
1628 				goto activate_locked;
1629 
1630 			/* Case 2 above */
1631 			} else if (writeback_throttling_sane(sc) ||
1632 			    !PageReclaim(page) || !may_enter_fs) {
1633 				/*
1634 				 * This is slightly racy - end_page_writeback()
1635 				 * might have just cleared PageReclaim, then
1636 				 * setting PageReclaim here end up interpreted
1637 				 * as PageReadahead - but that does not matter
1638 				 * enough to care.  What we do want is for this
1639 				 * page to have PageReclaim set next time memcg
1640 				 * reclaim reaches the tests above, so it will
1641 				 * then wait_on_page_writeback() to avoid OOM;
1642 				 * and it's also appropriate in global reclaim.
1643 				 */
1644 				SetPageReclaim(page);
1645 				stat->nr_writeback += nr_pages;
1646 				goto activate_locked;
1647 
1648 			/* Case 3 above */
1649 			} else {
1650 				unlock_page(page);
1651 				wait_on_page_writeback(page);
1652 				/* then go back and try same page again */
1653 				list_add_tail(&page->lru, page_list);
1654 				continue;
1655 			}
1656 		}
1657 
1658 		if (!ignore_references)
1659 			references = folio_check_references(folio, sc);
1660 
1661 		switch (references) {
1662 		case PAGEREF_ACTIVATE:
1663 			goto activate_locked;
1664 		case PAGEREF_KEEP:
1665 			stat->nr_ref_keep += nr_pages;
1666 			goto keep_locked;
1667 		case PAGEREF_RECLAIM:
1668 		case PAGEREF_RECLAIM_CLEAN:
1669 			; /* try to reclaim the page below */
1670 		}
1671 
1672 		/*
1673 		 * Before reclaiming the page, try to relocate
1674 		 * its contents to another node.
1675 		 */
1676 		if (do_demote_pass &&
1677 		    (thp_migration_supported() || !PageTransHuge(page))) {
1678 			list_add(&page->lru, &demote_pages);
1679 			unlock_page(page);
1680 			continue;
1681 		}
1682 
1683 		/*
1684 		 * Anonymous process memory has backing store?
1685 		 * Try to allocate it some swap space here.
1686 		 * Lazyfree page could be freed directly
1687 		 */
1688 		if (PageAnon(page) && PageSwapBacked(page)) {
1689 			if (!PageSwapCache(page)) {
1690 				if (!(sc->gfp_mask & __GFP_IO))
1691 					goto keep_locked;
1692 				if (folio_maybe_dma_pinned(folio))
1693 					goto keep_locked;
1694 				if (PageTransHuge(page)) {
1695 					/* cannot split THP, skip it */
1696 					if (!can_split_folio(folio, NULL))
1697 						goto activate_locked;
1698 					/*
1699 					 * Split pages without a PMD map right
1700 					 * away. Chances are some or all of the
1701 					 * tail pages can be freed without IO.
1702 					 */
1703 					if (!folio_entire_mapcount(folio) &&
1704 					    split_folio_to_list(folio,
1705 								page_list))
1706 						goto activate_locked;
1707 				}
1708 				if (!add_to_swap(page)) {
1709 					if (!PageTransHuge(page))
1710 						goto activate_locked_split;
1711 					/* Fallback to swap normal pages */
1712 					if (split_folio_to_list(folio,
1713 								page_list))
1714 						goto activate_locked;
1715 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1716 					count_vm_event(THP_SWPOUT_FALLBACK);
1717 #endif
1718 					if (!add_to_swap(page))
1719 						goto activate_locked_split;
1720 				}
1721 
1722 				may_enter_fs = true;
1723 
1724 				/* Adding to swap updated mapping */
1725 				mapping = page_mapping(page);
1726 			}
1727 		} else if (PageSwapBacked(page) && PageTransHuge(page)) {
1728 			/* Split shmem THP */
1729 			if (split_folio_to_list(folio, page_list))
1730 				goto keep_locked;
1731 		}
1732 
1733 		/*
1734 		 * THP may get split above, need minus tail pages and update
1735 		 * nr_pages to avoid accounting tail pages twice.
1736 		 *
1737 		 * The tail pages that are added into swap cache successfully
1738 		 * reach here.
1739 		 */
1740 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1741 			sc->nr_scanned -= (nr_pages - 1);
1742 			nr_pages = 1;
1743 		}
1744 
1745 		/*
1746 		 * The page is mapped into the page tables of one or more
1747 		 * processes. Try to unmap it here.
1748 		 */
1749 		if (page_mapped(page)) {
1750 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1751 			bool was_swapbacked = PageSwapBacked(page);
1752 
1753 			if (PageTransHuge(page) &&
1754 					thp_order(page) >= HPAGE_PMD_ORDER)
1755 				flags |= TTU_SPLIT_HUGE_PMD;
1756 
1757 			try_to_unmap(folio, flags);
1758 			if (page_mapped(page)) {
1759 				stat->nr_unmap_fail += nr_pages;
1760 				if (!was_swapbacked && PageSwapBacked(page))
1761 					stat->nr_lazyfree_fail += nr_pages;
1762 				goto activate_locked;
1763 			}
1764 		}
1765 
1766 		if (PageDirty(page)) {
1767 			/*
1768 			 * Only kswapd can writeback filesystem pages
1769 			 * to avoid risk of stack overflow. But avoid
1770 			 * injecting inefficient single-page IO into
1771 			 * flusher writeback as much as possible: only
1772 			 * write pages when we've encountered many
1773 			 * dirty pages, and when we've already scanned
1774 			 * the rest of the LRU for clean pages and see
1775 			 * the same dirty pages again (PageReclaim).
1776 			 */
1777 			if (page_is_file_lru(page) &&
1778 			    (!current_is_kswapd() || !PageReclaim(page) ||
1779 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1780 				/*
1781 				 * Immediately reclaim when written back.
1782 				 * Similar in principal to deactivate_page()
1783 				 * except we already have the page isolated
1784 				 * and know it's dirty
1785 				 */
1786 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1787 				SetPageReclaim(page);
1788 
1789 				goto activate_locked;
1790 			}
1791 
1792 			if (references == PAGEREF_RECLAIM_CLEAN)
1793 				goto keep_locked;
1794 			if (!may_enter_fs)
1795 				goto keep_locked;
1796 			if (!sc->may_writepage)
1797 				goto keep_locked;
1798 
1799 			/*
1800 			 * Page is dirty. Flush the TLB if a writable entry
1801 			 * potentially exists to avoid CPU writes after IO
1802 			 * starts and then write it out here.
1803 			 */
1804 			try_to_unmap_flush_dirty();
1805 			switch (pageout(folio, mapping)) {
1806 			case PAGE_KEEP:
1807 				goto keep_locked;
1808 			case PAGE_ACTIVATE:
1809 				goto activate_locked;
1810 			case PAGE_SUCCESS:
1811 				stat->nr_pageout += nr_pages;
1812 
1813 				if (PageWriteback(page))
1814 					goto keep;
1815 				if (PageDirty(page))
1816 					goto keep;
1817 
1818 				/*
1819 				 * A synchronous write - probably a ramdisk.  Go
1820 				 * ahead and try to reclaim the page.
1821 				 */
1822 				if (!trylock_page(page))
1823 					goto keep;
1824 				if (PageDirty(page) || PageWriteback(page))
1825 					goto keep_locked;
1826 				mapping = page_mapping(page);
1827 				fallthrough;
1828 			case PAGE_CLEAN:
1829 				; /* try to free the page below */
1830 			}
1831 		}
1832 
1833 		/*
1834 		 * If the page has buffers, try to free the buffer mappings
1835 		 * associated with this page. If we succeed we try to free
1836 		 * the page as well.
1837 		 *
1838 		 * We do this even if the page is PageDirty().
1839 		 * try_to_release_page() does not perform I/O, but it is
1840 		 * possible for a page to have PageDirty set, but it is actually
1841 		 * clean (all its buffers are clean).  This happens if the
1842 		 * buffers were written out directly, with submit_bh(). ext3
1843 		 * will do this, as well as the blockdev mapping.
1844 		 * try_to_release_page() will discover that cleanness and will
1845 		 * drop the buffers and mark the page clean - it can be freed.
1846 		 *
1847 		 * Rarely, pages can have buffers and no ->mapping.  These are
1848 		 * the pages which were not successfully invalidated in
1849 		 * truncate_cleanup_page().  We try to drop those buffers here
1850 		 * and if that worked, and the page is no longer mapped into
1851 		 * process address space (page_count == 1) it can be freed.
1852 		 * Otherwise, leave the page on the LRU so it is swappable.
1853 		 */
1854 		if (page_has_private(page)) {
1855 			if (!try_to_release_page(page, sc->gfp_mask))
1856 				goto activate_locked;
1857 			if (!mapping && page_count(page) == 1) {
1858 				unlock_page(page);
1859 				if (put_page_testzero(page))
1860 					goto free_it;
1861 				else {
1862 					/*
1863 					 * rare race with speculative reference.
1864 					 * the speculative reference will free
1865 					 * this page shortly, so we may
1866 					 * increment nr_reclaimed here (and
1867 					 * leave it off the LRU).
1868 					 */
1869 					nr_reclaimed++;
1870 					continue;
1871 				}
1872 			}
1873 		}
1874 
1875 		if (PageAnon(page) && !PageSwapBacked(page)) {
1876 			/* follow __remove_mapping for reference */
1877 			if (!page_ref_freeze(page, 1))
1878 				goto keep_locked;
1879 			/*
1880 			 * The page has only one reference left, which is
1881 			 * from the isolation. After the caller puts the
1882 			 * page back on lru and drops the reference, the
1883 			 * page will be freed anyway. It doesn't matter
1884 			 * which lru it goes. So we don't bother checking
1885 			 * PageDirty here.
1886 			 */
1887 			count_vm_event(PGLAZYFREED);
1888 			count_memcg_page_event(page, PGLAZYFREED);
1889 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1890 							 sc->target_mem_cgroup))
1891 			goto keep_locked;
1892 
1893 		unlock_page(page);
1894 free_it:
1895 		/*
1896 		 * THP may get swapped out in a whole, need account
1897 		 * all base pages.
1898 		 */
1899 		nr_reclaimed += nr_pages;
1900 
1901 		/*
1902 		 * Is there need to periodically free_page_list? It would
1903 		 * appear not as the counts should be low
1904 		 */
1905 		if (unlikely(PageTransHuge(page)))
1906 			destroy_compound_page(page);
1907 		else
1908 			list_add(&page->lru, &free_pages);
1909 		continue;
1910 
1911 activate_locked_split:
1912 		/*
1913 		 * The tail pages that are failed to add into swap cache
1914 		 * reach here.  Fixup nr_scanned and nr_pages.
1915 		 */
1916 		if (nr_pages > 1) {
1917 			sc->nr_scanned -= (nr_pages - 1);
1918 			nr_pages = 1;
1919 		}
1920 activate_locked:
1921 		/* Not a candidate for swapping, so reclaim swap space. */
1922 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1923 						PageMlocked(page)))
1924 			try_to_free_swap(page);
1925 		VM_BUG_ON_PAGE(PageActive(page), page);
1926 		if (!PageMlocked(page)) {
1927 			int type = page_is_file_lru(page);
1928 			SetPageActive(page);
1929 			stat->nr_activate[type] += nr_pages;
1930 			count_memcg_page_event(page, PGACTIVATE);
1931 		}
1932 keep_locked:
1933 		unlock_page(page);
1934 keep:
1935 		list_add(&page->lru, &ret_pages);
1936 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1937 	}
1938 	/* 'page_list' is always empty here */
1939 
1940 	/* Migrate pages selected for demotion */
1941 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1942 	/* Pages that could not be demoted are still in @demote_pages */
1943 	if (!list_empty(&demote_pages)) {
1944 		/* Pages which failed to demoted go back on @page_list for retry: */
1945 		list_splice_init(&demote_pages, page_list);
1946 		do_demote_pass = false;
1947 		goto retry;
1948 	}
1949 
1950 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1951 
1952 	mem_cgroup_uncharge_list(&free_pages);
1953 	try_to_unmap_flush();
1954 	free_unref_page_list(&free_pages);
1955 
1956 	list_splice(&ret_pages, page_list);
1957 	count_vm_events(PGACTIVATE, pgactivate);
1958 
1959 	return nr_reclaimed;
1960 }
1961 
1962 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1963 					    struct list_head *page_list)
1964 {
1965 	struct scan_control sc = {
1966 		.gfp_mask = GFP_KERNEL,
1967 		.may_unmap = 1,
1968 	};
1969 	struct reclaim_stat stat;
1970 	unsigned int nr_reclaimed;
1971 	struct page *page, *next;
1972 	LIST_HEAD(clean_pages);
1973 	unsigned int noreclaim_flag;
1974 
1975 	list_for_each_entry_safe(page, next, page_list, lru) {
1976 		if (!PageHuge(page) && page_is_file_lru(page) &&
1977 		    !PageDirty(page) && !__PageMovable(page) &&
1978 		    !PageUnevictable(page)) {
1979 			ClearPageActive(page);
1980 			list_move(&page->lru, &clean_pages);
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * We should be safe here since we are only dealing with file pages and
1986 	 * we are not kswapd and therefore cannot write dirty file pages. But
1987 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1988 	 * change in the future.
1989 	 */
1990 	noreclaim_flag = memalloc_noreclaim_save();
1991 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1992 					&stat, true);
1993 	memalloc_noreclaim_restore(noreclaim_flag);
1994 
1995 	list_splice(&clean_pages, page_list);
1996 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1997 			    -(long)nr_reclaimed);
1998 	/*
1999 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2000 	 * they will rotate back to anonymous LRU in the end if it failed to
2001 	 * discard so isolated count will be mismatched.
2002 	 * Compensate the isolated count for both LRU lists.
2003 	 */
2004 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2005 			    stat.nr_lazyfree_fail);
2006 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2007 			    -(long)stat.nr_lazyfree_fail);
2008 	return nr_reclaimed;
2009 }
2010 
2011 /*
2012  * Update LRU sizes after isolating pages. The LRU size updates must
2013  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2014  */
2015 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2016 			enum lru_list lru, unsigned long *nr_zone_taken)
2017 {
2018 	int zid;
2019 
2020 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2021 		if (!nr_zone_taken[zid])
2022 			continue;
2023 
2024 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2025 	}
2026 
2027 }
2028 
2029 /*
2030  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2031  *
2032  * lruvec->lru_lock is heavily contended.  Some of the functions that
2033  * shrink the lists perform better by taking out a batch of pages
2034  * and working on them outside the LRU lock.
2035  *
2036  * For pagecache intensive workloads, this function is the hottest
2037  * spot in the kernel (apart from copy_*_user functions).
2038  *
2039  * Lru_lock must be held before calling this function.
2040  *
2041  * @nr_to_scan:	The number of eligible pages to look through on the list.
2042  * @lruvec:	The LRU vector to pull pages from.
2043  * @dst:	The temp list to put pages on to.
2044  * @nr_scanned:	The number of pages that were scanned.
2045  * @sc:		The scan_control struct for this reclaim session
2046  * @lru:	LRU list id for isolating
2047  *
2048  * returns how many pages were moved onto *@dst.
2049  */
2050 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2051 		struct lruvec *lruvec, struct list_head *dst,
2052 		unsigned long *nr_scanned, struct scan_control *sc,
2053 		enum lru_list lru)
2054 {
2055 	struct list_head *src = &lruvec->lists[lru];
2056 	unsigned long nr_taken = 0;
2057 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2058 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2059 	unsigned long skipped = 0;
2060 	unsigned long scan, total_scan, nr_pages;
2061 	LIST_HEAD(pages_skipped);
2062 
2063 	total_scan = 0;
2064 	scan = 0;
2065 	while (scan < nr_to_scan && !list_empty(src)) {
2066 		struct list_head *move_to = src;
2067 		struct page *page;
2068 
2069 		page = lru_to_page(src);
2070 		prefetchw_prev_lru_page(page, src, flags);
2071 
2072 		nr_pages = compound_nr(page);
2073 		total_scan += nr_pages;
2074 
2075 		if (page_zonenum(page) > sc->reclaim_idx) {
2076 			nr_skipped[page_zonenum(page)] += nr_pages;
2077 			move_to = &pages_skipped;
2078 			goto move;
2079 		}
2080 
2081 		/*
2082 		 * Do not count skipped pages because that makes the function
2083 		 * return with no isolated pages if the LRU mostly contains
2084 		 * ineligible pages.  This causes the VM to not reclaim any
2085 		 * pages, triggering a premature OOM.
2086 		 * Account all tail pages of THP.
2087 		 */
2088 		scan += nr_pages;
2089 
2090 		if (!PageLRU(page))
2091 			goto move;
2092 		if (!sc->may_unmap && page_mapped(page))
2093 			goto move;
2094 
2095 		/*
2096 		 * Be careful not to clear PageLRU until after we're
2097 		 * sure the page is not being freed elsewhere -- the
2098 		 * page release code relies on it.
2099 		 */
2100 		if (unlikely(!get_page_unless_zero(page)))
2101 			goto move;
2102 
2103 		if (!TestClearPageLRU(page)) {
2104 			/* Another thread is already isolating this page */
2105 			put_page(page);
2106 			goto move;
2107 		}
2108 
2109 		nr_taken += nr_pages;
2110 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2111 		move_to = dst;
2112 move:
2113 		list_move(&page->lru, move_to);
2114 	}
2115 
2116 	/*
2117 	 * Splice any skipped pages to the start of the LRU list. Note that
2118 	 * this disrupts the LRU order when reclaiming for lower zones but
2119 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2120 	 * scanning would soon rescan the same pages to skip and put the
2121 	 * system at risk of premature OOM.
2122 	 */
2123 	if (!list_empty(&pages_skipped)) {
2124 		int zid;
2125 
2126 		list_splice(&pages_skipped, src);
2127 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2128 			if (!nr_skipped[zid])
2129 				continue;
2130 
2131 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2132 			skipped += nr_skipped[zid];
2133 		}
2134 	}
2135 	*nr_scanned = total_scan;
2136 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2137 				    total_scan, skipped, nr_taken,
2138 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2139 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2140 	return nr_taken;
2141 }
2142 
2143 /**
2144  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2145  * @folio: Folio to isolate from its LRU list.
2146  *
2147  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2148  * corresponding to whatever LRU list the folio was on.
2149  *
2150  * The folio will have its LRU flag cleared.  If it was found on the
2151  * active list, it will have the Active flag set.  If it was found on the
2152  * unevictable list, it will have the Unevictable flag set.  These flags
2153  * may need to be cleared by the caller before letting the page go.
2154  *
2155  * Context:
2156  *
2157  * (1) Must be called with an elevated refcount on the page. This is a
2158  *     fundamental difference from isolate_lru_pages() (which is called
2159  *     without a stable reference).
2160  * (2) The lru_lock must not be held.
2161  * (3) Interrupts must be enabled.
2162  *
2163  * Return: 0 if the folio was removed from an LRU list.
2164  * -EBUSY if the folio was not on an LRU list.
2165  */
2166 int folio_isolate_lru(struct folio *folio)
2167 {
2168 	int ret = -EBUSY;
2169 
2170 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2171 
2172 	if (folio_test_clear_lru(folio)) {
2173 		struct lruvec *lruvec;
2174 
2175 		folio_get(folio);
2176 		lruvec = folio_lruvec_lock_irq(folio);
2177 		lruvec_del_folio(lruvec, folio);
2178 		unlock_page_lruvec_irq(lruvec);
2179 		ret = 0;
2180 	}
2181 
2182 	return ret;
2183 }
2184 
2185 /*
2186  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2187  * then get rescheduled. When there are massive number of tasks doing page
2188  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2189  * the LRU list will go small and be scanned faster than necessary, leading to
2190  * unnecessary swapping, thrashing and OOM.
2191  */
2192 static int too_many_isolated(struct pglist_data *pgdat, int file,
2193 		struct scan_control *sc)
2194 {
2195 	unsigned long inactive, isolated;
2196 	bool too_many;
2197 
2198 	if (current_is_kswapd())
2199 		return 0;
2200 
2201 	if (!writeback_throttling_sane(sc))
2202 		return 0;
2203 
2204 	if (file) {
2205 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2206 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2207 	} else {
2208 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2209 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2210 	}
2211 
2212 	/*
2213 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2214 	 * won't get blocked by normal direct-reclaimers, forming a circular
2215 	 * deadlock.
2216 	 */
2217 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2218 		inactive >>= 3;
2219 
2220 	too_many = isolated > inactive;
2221 
2222 	/* Wake up tasks throttled due to too_many_isolated. */
2223 	if (!too_many)
2224 		wake_throttle_isolated(pgdat);
2225 
2226 	return too_many;
2227 }
2228 
2229 /*
2230  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2231  * On return, @list is reused as a list of pages to be freed by the caller.
2232  *
2233  * Returns the number of pages moved to the given lruvec.
2234  */
2235 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2236 				      struct list_head *list)
2237 {
2238 	int nr_pages, nr_moved = 0;
2239 	LIST_HEAD(pages_to_free);
2240 	struct page *page;
2241 
2242 	while (!list_empty(list)) {
2243 		page = lru_to_page(list);
2244 		VM_BUG_ON_PAGE(PageLRU(page), page);
2245 		list_del(&page->lru);
2246 		if (unlikely(!page_evictable(page))) {
2247 			spin_unlock_irq(&lruvec->lru_lock);
2248 			putback_lru_page(page);
2249 			spin_lock_irq(&lruvec->lru_lock);
2250 			continue;
2251 		}
2252 
2253 		/*
2254 		 * The SetPageLRU needs to be kept here for list integrity.
2255 		 * Otherwise:
2256 		 *   #0 move_pages_to_lru             #1 release_pages
2257 		 *   if !put_page_testzero
2258 		 *				      if (put_page_testzero())
2259 		 *				        !PageLRU //skip lru_lock
2260 		 *     SetPageLRU()
2261 		 *     list_add(&page->lru,)
2262 		 *                                        list_add(&page->lru,)
2263 		 */
2264 		SetPageLRU(page);
2265 
2266 		if (unlikely(put_page_testzero(page))) {
2267 			__clear_page_lru_flags(page);
2268 
2269 			if (unlikely(PageCompound(page))) {
2270 				spin_unlock_irq(&lruvec->lru_lock);
2271 				destroy_compound_page(page);
2272 				spin_lock_irq(&lruvec->lru_lock);
2273 			} else
2274 				list_add(&page->lru, &pages_to_free);
2275 
2276 			continue;
2277 		}
2278 
2279 		/*
2280 		 * All pages were isolated from the same lruvec (and isolation
2281 		 * inhibits memcg migration).
2282 		 */
2283 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2284 		add_page_to_lru_list(page, lruvec);
2285 		nr_pages = thp_nr_pages(page);
2286 		nr_moved += nr_pages;
2287 		if (PageActive(page))
2288 			workingset_age_nonresident(lruvec, nr_pages);
2289 	}
2290 
2291 	/*
2292 	 * To save our caller's stack, now use input list for pages to free.
2293 	 */
2294 	list_splice(&pages_to_free, list);
2295 
2296 	return nr_moved;
2297 }
2298 
2299 /*
2300  * If a kernel thread (such as nfsd for loop-back mounts) services
2301  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2302  * In that case we should only throttle if the backing device it is
2303  * writing to is congested.  In other cases it is safe to throttle.
2304  */
2305 static int current_may_throttle(void)
2306 {
2307 	return !(current->flags & PF_LOCAL_THROTTLE);
2308 }
2309 
2310 /*
2311  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2312  * of reclaimed pages
2313  */
2314 static unsigned long
2315 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2316 		     struct scan_control *sc, enum lru_list lru)
2317 {
2318 	LIST_HEAD(page_list);
2319 	unsigned long nr_scanned;
2320 	unsigned int nr_reclaimed = 0;
2321 	unsigned long nr_taken;
2322 	struct reclaim_stat stat;
2323 	bool file = is_file_lru(lru);
2324 	enum vm_event_item item;
2325 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2326 	bool stalled = false;
2327 
2328 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2329 		if (stalled)
2330 			return 0;
2331 
2332 		/* wait a bit for the reclaimer. */
2333 		stalled = true;
2334 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2335 
2336 		/* We are about to die and free our memory. Return now. */
2337 		if (fatal_signal_pending(current))
2338 			return SWAP_CLUSTER_MAX;
2339 	}
2340 
2341 	lru_add_drain();
2342 
2343 	spin_lock_irq(&lruvec->lru_lock);
2344 
2345 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2346 				     &nr_scanned, sc, lru);
2347 
2348 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2349 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2350 	if (!cgroup_reclaim(sc))
2351 		__count_vm_events(item, nr_scanned);
2352 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2353 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2354 
2355 	spin_unlock_irq(&lruvec->lru_lock);
2356 
2357 	if (nr_taken == 0)
2358 		return 0;
2359 
2360 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2361 
2362 	spin_lock_irq(&lruvec->lru_lock);
2363 	move_pages_to_lru(lruvec, &page_list);
2364 
2365 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2366 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2367 	if (!cgroup_reclaim(sc))
2368 		__count_vm_events(item, nr_reclaimed);
2369 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2370 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2371 	spin_unlock_irq(&lruvec->lru_lock);
2372 
2373 	lru_note_cost(lruvec, file, stat.nr_pageout);
2374 	mem_cgroup_uncharge_list(&page_list);
2375 	free_unref_page_list(&page_list);
2376 
2377 	/*
2378 	 * If dirty pages are scanned that are not queued for IO, it
2379 	 * implies that flushers are not doing their job. This can
2380 	 * happen when memory pressure pushes dirty pages to the end of
2381 	 * the LRU before the dirty limits are breached and the dirty
2382 	 * data has expired. It can also happen when the proportion of
2383 	 * dirty pages grows not through writes but through memory
2384 	 * pressure reclaiming all the clean cache. And in some cases,
2385 	 * the flushers simply cannot keep up with the allocation
2386 	 * rate. Nudge the flusher threads in case they are asleep.
2387 	 */
2388 	if (stat.nr_unqueued_dirty == nr_taken)
2389 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2390 
2391 	sc->nr.dirty += stat.nr_dirty;
2392 	sc->nr.congested += stat.nr_congested;
2393 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2394 	sc->nr.writeback += stat.nr_writeback;
2395 	sc->nr.immediate += stat.nr_immediate;
2396 	sc->nr.taken += nr_taken;
2397 	if (file)
2398 		sc->nr.file_taken += nr_taken;
2399 
2400 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2401 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2402 	return nr_reclaimed;
2403 }
2404 
2405 /*
2406  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2407  *
2408  * We move them the other way if the page is referenced by one or more
2409  * processes.
2410  *
2411  * If the pages are mostly unmapped, the processing is fast and it is
2412  * appropriate to hold lru_lock across the whole operation.  But if
2413  * the pages are mapped, the processing is slow (folio_referenced()), so
2414  * we should drop lru_lock around each page.  It's impossible to balance
2415  * this, so instead we remove the pages from the LRU while processing them.
2416  * It is safe to rely on PG_active against the non-LRU pages in here because
2417  * nobody will play with that bit on a non-LRU page.
2418  *
2419  * The downside is that we have to touch page->_refcount against each page.
2420  * But we had to alter page->flags anyway.
2421  */
2422 static void shrink_active_list(unsigned long nr_to_scan,
2423 			       struct lruvec *lruvec,
2424 			       struct scan_control *sc,
2425 			       enum lru_list lru)
2426 {
2427 	unsigned long nr_taken;
2428 	unsigned long nr_scanned;
2429 	unsigned long vm_flags;
2430 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2431 	LIST_HEAD(l_active);
2432 	LIST_HEAD(l_inactive);
2433 	unsigned nr_deactivate, nr_activate;
2434 	unsigned nr_rotated = 0;
2435 	int file = is_file_lru(lru);
2436 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2437 
2438 	lru_add_drain();
2439 
2440 	spin_lock_irq(&lruvec->lru_lock);
2441 
2442 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2443 				     &nr_scanned, sc, lru);
2444 
2445 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2446 
2447 	if (!cgroup_reclaim(sc))
2448 		__count_vm_events(PGREFILL, nr_scanned);
2449 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2450 
2451 	spin_unlock_irq(&lruvec->lru_lock);
2452 
2453 	while (!list_empty(&l_hold)) {
2454 		struct folio *folio;
2455 		struct page *page;
2456 
2457 		cond_resched();
2458 		folio = lru_to_folio(&l_hold);
2459 		list_del(&folio->lru);
2460 		page = &folio->page;
2461 
2462 		if (unlikely(!page_evictable(page))) {
2463 			putback_lru_page(page);
2464 			continue;
2465 		}
2466 
2467 		if (unlikely(buffer_heads_over_limit)) {
2468 			if (page_has_private(page) && trylock_page(page)) {
2469 				if (page_has_private(page))
2470 					try_to_release_page(page, 0);
2471 				unlock_page(page);
2472 			}
2473 		}
2474 
2475 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2476 				     &vm_flags)) {
2477 			/*
2478 			 * Identify referenced, file-backed active pages and
2479 			 * give them one more trip around the active list. So
2480 			 * that executable code get better chances to stay in
2481 			 * memory under moderate memory pressure.  Anon pages
2482 			 * are not likely to be evicted by use-once streaming
2483 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2484 			 * so we ignore them here.
2485 			 */
2486 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2487 				nr_rotated += thp_nr_pages(page);
2488 				list_add(&page->lru, &l_active);
2489 				continue;
2490 			}
2491 		}
2492 
2493 		ClearPageActive(page);	/* we are de-activating */
2494 		SetPageWorkingset(page);
2495 		list_add(&page->lru, &l_inactive);
2496 	}
2497 
2498 	/*
2499 	 * Move pages back to the lru list.
2500 	 */
2501 	spin_lock_irq(&lruvec->lru_lock);
2502 
2503 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2504 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2505 	/* Keep all free pages in l_active list */
2506 	list_splice(&l_inactive, &l_active);
2507 
2508 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2509 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2510 
2511 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2512 	spin_unlock_irq(&lruvec->lru_lock);
2513 
2514 	mem_cgroup_uncharge_list(&l_active);
2515 	free_unref_page_list(&l_active);
2516 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2517 			nr_deactivate, nr_rotated, sc->priority, file);
2518 }
2519 
2520 unsigned long reclaim_pages(struct list_head *page_list)
2521 {
2522 	int nid = NUMA_NO_NODE;
2523 	unsigned int nr_reclaimed = 0;
2524 	LIST_HEAD(node_page_list);
2525 	struct reclaim_stat dummy_stat;
2526 	struct page *page;
2527 	unsigned int noreclaim_flag;
2528 	struct scan_control sc = {
2529 		.gfp_mask = GFP_KERNEL,
2530 		.may_writepage = 1,
2531 		.may_unmap = 1,
2532 		.may_swap = 1,
2533 		.no_demotion = 1,
2534 	};
2535 
2536 	noreclaim_flag = memalloc_noreclaim_save();
2537 
2538 	while (!list_empty(page_list)) {
2539 		page = lru_to_page(page_list);
2540 		if (nid == NUMA_NO_NODE) {
2541 			nid = page_to_nid(page);
2542 			INIT_LIST_HEAD(&node_page_list);
2543 		}
2544 
2545 		if (nid == page_to_nid(page)) {
2546 			ClearPageActive(page);
2547 			list_move(&page->lru, &node_page_list);
2548 			continue;
2549 		}
2550 
2551 		nr_reclaimed += shrink_page_list(&node_page_list,
2552 						NODE_DATA(nid),
2553 						&sc, &dummy_stat, false);
2554 		while (!list_empty(&node_page_list)) {
2555 			page = lru_to_page(&node_page_list);
2556 			list_del(&page->lru);
2557 			putback_lru_page(page);
2558 		}
2559 
2560 		nid = NUMA_NO_NODE;
2561 	}
2562 
2563 	if (!list_empty(&node_page_list)) {
2564 		nr_reclaimed += shrink_page_list(&node_page_list,
2565 						NODE_DATA(nid),
2566 						&sc, &dummy_stat, false);
2567 		while (!list_empty(&node_page_list)) {
2568 			page = lru_to_page(&node_page_list);
2569 			list_del(&page->lru);
2570 			putback_lru_page(page);
2571 		}
2572 	}
2573 
2574 	memalloc_noreclaim_restore(noreclaim_flag);
2575 
2576 	return nr_reclaimed;
2577 }
2578 
2579 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2580 				 struct lruvec *lruvec, struct scan_control *sc)
2581 {
2582 	if (is_active_lru(lru)) {
2583 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2584 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2585 		else
2586 			sc->skipped_deactivate = 1;
2587 		return 0;
2588 	}
2589 
2590 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2591 }
2592 
2593 /*
2594  * The inactive anon list should be small enough that the VM never has
2595  * to do too much work.
2596  *
2597  * The inactive file list should be small enough to leave most memory
2598  * to the established workingset on the scan-resistant active list,
2599  * but large enough to avoid thrashing the aggregate readahead window.
2600  *
2601  * Both inactive lists should also be large enough that each inactive
2602  * page has a chance to be referenced again before it is reclaimed.
2603  *
2604  * If that fails and refaulting is observed, the inactive list grows.
2605  *
2606  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2607  * on this LRU, maintained by the pageout code. An inactive_ratio
2608  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2609  *
2610  * total     target    max
2611  * memory    ratio     inactive
2612  * -------------------------------------
2613  *   10MB       1         5MB
2614  *  100MB       1        50MB
2615  *    1GB       3       250MB
2616  *   10GB      10       0.9GB
2617  *  100GB      31         3GB
2618  *    1TB     101        10GB
2619  *   10TB     320        32GB
2620  */
2621 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2622 {
2623 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2624 	unsigned long inactive, active;
2625 	unsigned long inactive_ratio;
2626 	unsigned long gb;
2627 
2628 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2629 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2630 
2631 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2632 	if (gb)
2633 		inactive_ratio = int_sqrt(10 * gb);
2634 	else
2635 		inactive_ratio = 1;
2636 
2637 	return inactive * inactive_ratio < active;
2638 }
2639 
2640 enum scan_balance {
2641 	SCAN_EQUAL,
2642 	SCAN_FRACT,
2643 	SCAN_ANON,
2644 	SCAN_FILE,
2645 };
2646 
2647 /*
2648  * Determine how aggressively the anon and file LRU lists should be
2649  * scanned.  The relative value of each set of LRU lists is determined
2650  * by looking at the fraction of the pages scanned we did rotate back
2651  * onto the active list instead of evict.
2652  *
2653  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2654  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2655  */
2656 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2657 			   unsigned long *nr)
2658 {
2659 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2660 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2661 	unsigned long anon_cost, file_cost, total_cost;
2662 	int swappiness = mem_cgroup_swappiness(memcg);
2663 	u64 fraction[ANON_AND_FILE];
2664 	u64 denominator = 0;	/* gcc */
2665 	enum scan_balance scan_balance;
2666 	unsigned long ap, fp;
2667 	enum lru_list lru;
2668 
2669 	/* If we have no swap space, do not bother scanning anon pages. */
2670 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2671 		scan_balance = SCAN_FILE;
2672 		goto out;
2673 	}
2674 
2675 	/*
2676 	 * Global reclaim will swap to prevent OOM even with no
2677 	 * swappiness, but memcg users want to use this knob to
2678 	 * disable swapping for individual groups completely when
2679 	 * using the memory controller's swap limit feature would be
2680 	 * too expensive.
2681 	 */
2682 	if (cgroup_reclaim(sc) && !swappiness) {
2683 		scan_balance = SCAN_FILE;
2684 		goto out;
2685 	}
2686 
2687 	/*
2688 	 * Do not apply any pressure balancing cleverness when the
2689 	 * system is close to OOM, scan both anon and file equally
2690 	 * (unless the swappiness setting disagrees with swapping).
2691 	 */
2692 	if (!sc->priority && swappiness) {
2693 		scan_balance = SCAN_EQUAL;
2694 		goto out;
2695 	}
2696 
2697 	/*
2698 	 * If the system is almost out of file pages, force-scan anon.
2699 	 */
2700 	if (sc->file_is_tiny) {
2701 		scan_balance = SCAN_ANON;
2702 		goto out;
2703 	}
2704 
2705 	/*
2706 	 * If there is enough inactive page cache, we do not reclaim
2707 	 * anything from the anonymous working right now.
2708 	 */
2709 	if (sc->cache_trim_mode) {
2710 		scan_balance = SCAN_FILE;
2711 		goto out;
2712 	}
2713 
2714 	scan_balance = SCAN_FRACT;
2715 	/*
2716 	 * Calculate the pressure balance between anon and file pages.
2717 	 *
2718 	 * The amount of pressure we put on each LRU is inversely
2719 	 * proportional to the cost of reclaiming each list, as
2720 	 * determined by the share of pages that are refaulting, times
2721 	 * the relative IO cost of bringing back a swapped out
2722 	 * anonymous page vs reloading a filesystem page (swappiness).
2723 	 *
2724 	 * Although we limit that influence to ensure no list gets
2725 	 * left behind completely: at least a third of the pressure is
2726 	 * applied, before swappiness.
2727 	 *
2728 	 * With swappiness at 100, anon and file have equal IO cost.
2729 	 */
2730 	total_cost = sc->anon_cost + sc->file_cost;
2731 	anon_cost = total_cost + sc->anon_cost;
2732 	file_cost = total_cost + sc->file_cost;
2733 	total_cost = anon_cost + file_cost;
2734 
2735 	ap = swappiness * (total_cost + 1);
2736 	ap /= anon_cost + 1;
2737 
2738 	fp = (200 - swappiness) * (total_cost + 1);
2739 	fp /= file_cost + 1;
2740 
2741 	fraction[0] = ap;
2742 	fraction[1] = fp;
2743 	denominator = ap + fp;
2744 out:
2745 	for_each_evictable_lru(lru) {
2746 		int file = is_file_lru(lru);
2747 		unsigned long lruvec_size;
2748 		unsigned long low, min;
2749 		unsigned long scan;
2750 
2751 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2752 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2753 				      &min, &low);
2754 
2755 		if (min || low) {
2756 			/*
2757 			 * Scale a cgroup's reclaim pressure by proportioning
2758 			 * its current usage to its memory.low or memory.min
2759 			 * setting.
2760 			 *
2761 			 * This is important, as otherwise scanning aggression
2762 			 * becomes extremely binary -- from nothing as we
2763 			 * approach the memory protection threshold, to totally
2764 			 * nominal as we exceed it.  This results in requiring
2765 			 * setting extremely liberal protection thresholds. It
2766 			 * also means we simply get no protection at all if we
2767 			 * set it too low, which is not ideal.
2768 			 *
2769 			 * If there is any protection in place, we reduce scan
2770 			 * pressure by how much of the total memory used is
2771 			 * within protection thresholds.
2772 			 *
2773 			 * There is one special case: in the first reclaim pass,
2774 			 * we skip over all groups that are within their low
2775 			 * protection. If that fails to reclaim enough pages to
2776 			 * satisfy the reclaim goal, we come back and override
2777 			 * the best-effort low protection. However, we still
2778 			 * ideally want to honor how well-behaved groups are in
2779 			 * that case instead of simply punishing them all
2780 			 * equally. As such, we reclaim them based on how much
2781 			 * memory they are using, reducing the scan pressure
2782 			 * again by how much of the total memory used is under
2783 			 * hard protection.
2784 			 */
2785 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2786 			unsigned long protection;
2787 
2788 			/* memory.low scaling, make sure we retry before OOM */
2789 			if (!sc->memcg_low_reclaim && low > min) {
2790 				protection = low;
2791 				sc->memcg_low_skipped = 1;
2792 			} else {
2793 				protection = min;
2794 			}
2795 
2796 			/* Avoid TOCTOU with earlier protection check */
2797 			cgroup_size = max(cgroup_size, protection);
2798 
2799 			scan = lruvec_size - lruvec_size * protection /
2800 				(cgroup_size + 1);
2801 
2802 			/*
2803 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2804 			 * reclaim moving forwards, avoiding decrementing
2805 			 * sc->priority further than desirable.
2806 			 */
2807 			scan = max(scan, SWAP_CLUSTER_MAX);
2808 		} else {
2809 			scan = lruvec_size;
2810 		}
2811 
2812 		scan >>= sc->priority;
2813 
2814 		/*
2815 		 * If the cgroup's already been deleted, make sure to
2816 		 * scrape out the remaining cache.
2817 		 */
2818 		if (!scan && !mem_cgroup_online(memcg))
2819 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2820 
2821 		switch (scan_balance) {
2822 		case SCAN_EQUAL:
2823 			/* Scan lists relative to size */
2824 			break;
2825 		case SCAN_FRACT:
2826 			/*
2827 			 * Scan types proportional to swappiness and
2828 			 * their relative recent reclaim efficiency.
2829 			 * Make sure we don't miss the last page on
2830 			 * the offlined memory cgroups because of a
2831 			 * round-off error.
2832 			 */
2833 			scan = mem_cgroup_online(memcg) ?
2834 			       div64_u64(scan * fraction[file], denominator) :
2835 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2836 						  denominator);
2837 			break;
2838 		case SCAN_FILE:
2839 		case SCAN_ANON:
2840 			/* Scan one type exclusively */
2841 			if ((scan_balance == SCAN_FILE) != file)
2842 				scan = 0;
2843 			break;
2844 		default:
2845 			/* Look ma, no brain */
2846 			BUG();
2847 		}
2848 
2849 		nr[lru] = scan;
2850 	}
2851 }
2852 
2853 /*
2854  * Anonymous LRU management is a waste if there is
2855  * ultimately no way to reclaim the memory.
2856  */
2857 static bool can_age_anon_pages(struct pglist_data *pgdat,
2858 			       struct scan_control *sc)
2859 {
2860 	/* Aging the anon LRU is valuable if swap is present: */
2861 	if (total_swap_pages > 0)
2862 		return true;
2863 
2864 	/* Also valuable if anon pages can be demoted: */
2865 	return can_demote(pgdat->node_id, sc);
2866 }
2867 
2868 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2869 {
2870 	unsigned long nr[NR_LRU_LISTS];
2871 	unsigned long targets[NR_LRU_LISTS];
2872 	unsigned long nr_to_scan;
2873 	enum lru_list lru;
2874 	unsigned long nr_reclaimed = 0;
2875 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2876 	struct blk_plug plug;
2877 	bool scan_adjusted;
2878 
2879 	get_scan_count(lruvec, sc, nr);
2880 
2881 	/* Record the original scan target for proportional adjustments later */
2882 	memcpy(targets, nr, sizeof(nr));
2883 
2884 	/*
2885 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2886 	 * event that can occur when there is little memory pressure e.g.
2887 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2888 	 * when the requested number of pages are reclaimed when scanning at
2889 	 * DEF_PRIORITY on the assumption that the fact we are direct
2890 	 * reclaiming implies that kswapd is not keeping up and it is best to
2891 	 * do a batch of work at once. For memcg reclaim one check is made to
2892 	 * abort proportional reclaim if either the file or anon lru has already
2893 	 * dropped to zero at the first pass.
2894 	 */
2895 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2896 			 sc->priority == DEF_PRIORITY);
2897 
2898 	blk_start_plug(&plug);
2899 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2900 					nr[LRU_INACTIVE_FILE]) {
2901 		unsigned long nr_anon, nr_file, percentage;
2902 		unsigned long nr_scanned;
2903 
2904 		for_each_evictable_lru(lru) {
2905 			if (nr[lru]) {
2906 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2907 				nr[lru] -= nr_to_scan;
2908 
2909 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2910 							    lruvec, sc);
2911 			}
2912 		}
2913 
2914 		cond_resched();
2915 
2916 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2917 			continue;
2918 
2919 		/*
2920 		 * For kswapd and memcg, reclaim at least the number of pages
2921 		 * requested. Ensure that the anon and file LRUs are scanned
2922 		 * proportionally what was requested by get_scan_count(). We
2923 		 * stop reclaiming one LRU and reduce the amount scanning
2924 		 * proportional to the original scan target.
2925 		 */
2926 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2927 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2928 
2929 		/*
2930 		 * It's just vindictive to attack the larger once the smaller
2931 		 * has gone to zero.  And given the way we stop scanning the
2932 		 * smaller below, this makes sure that we only make one nudge
2933 		 * towards proportionality once we've got nr_to_reclaim.
2934 		 */
2935 		if (!nr_file || !nr_anon)
2936 			break;
2937 
2938 		if (nr_file > nr_anon) {
2939 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2940 						targets[LRU_ACTIVE_ANON] + 1;
2941 			lru = LRU_BASE;
2942 			percentage = nr_anon * 100 / scan_target;
2943 		} else {
2944 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2945 						targets[LRU_ACTIVE_FILE] + 1;
2946 			lru = LRU_FILE;
2947 			percentage = nr_file * 100 / scan_target;
2948 		}
2949 
2950 		/* Stop scanning the smaller of the LRU */
2951 		nr[lru] = 0;
2952 		nr[lru + LRU_ACTIVE] = 0;
2953 
2954 		/*
2955 		 * Recalculate the other LRU scan count based on its original
2956 		 * scan target and the percentage scanning already complete
2957 		 */
2958 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2959 		nr_scanned = targets[lru] - nr[lru];
2960 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2961 		nr[lru] -= min(nr[lru], nr_scanned);
2962 
2963 		lru += LRU_ACTIVE;
2964 		nr_scanned = targets[lru] - nr[lru];
2965 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2966 		nr[lru] -= min(nr[lru], nr_scanned);
2967 
2968 		scan_adjusted = true;
2969 	}
2970 	blk_finish_plug(&plug);
2971 	sc->nr_reclaimed += nr_reclaimed;
2972 
2973 	/*
2974 	 * Even if we did not try to evict anon pages at all, we want to
2975 	 * rebalance the anon lru active/inactive ratio.
2976 	 */
2977 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2978 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2979 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2980 				   sc, LRU_ACTIVE_ANON);
2981 }
2982 
2983 /* Use reclaim/compaction for costly allocs or under memory pressure */
2984 static bool in_reclaim_compaction(struct scan_control *sc)
2985 {
2986 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2987 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2988 			 sc->priority < DEF_PRIORITY - 2))
2989 		return true;
2990 
2991 	return false;
2992 }
2993 
2994 /*
2995  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2996  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2997  * true if more pages should be reclaimed such that when the page allocator
2998  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2999  * It will give up earlier than that if there is difficulty reclaiming pages.
3000  */
3001 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3002 					unsigned long nr_reclaimed,
3003 					struct scan_control *sc)
3004 {
3005 	unsigned long pages_for_compaction;
3006 	unsigned long inactive_lru_pages;
3007 	int z;
3008 
3009 	/* If not in reclaim/compaction mode, stop */
3010 	if (!in_reclaim_compaction(sc))
3011 		return false;
3012 
3013 	/*
3014 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3015 	 * number of pages that were scanned. This will return to the caller
3016 	 * with the risk reclaim/compaction and the resulting allocation attempt
3017 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3018 	 * allocations through requiring that the full LRU list has been scanned
3019 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3020 	 * scan, but that approximation was wrong, and there were corner cases
3021 	 * where always a non-zero amount of pages were scanned.
3022 	 */
3023 	if (!nr_reclaimed)
3024 		return false;
3025 
3026 	/* If compaction would go ahead or the allocation would succeed, stop */
3027 	for (z = 0; z <= sc->reclaim_idx; z++) {
3028 		struct zone *zone = &pgdat->node_zones[z];
3029 		if (!managed_zone(zone))
3030 			continue;
3031 
3032 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3033 		case COMPACT_SUCCESS:
3034 		case COMPACT_CONTINUE:
3035 			return false;
3036 		default:
3037 			/* check next zone */
3038 			;
3039 		}
3040 	}
3041 
3042 	/*
3043 	 * If we have not reclaimed enough pages for compaction and the
3044 	 * inactive lists are large enough, continue reclaiming
3045 	 */
3046 	pages_for_compaction = compact_gap(sc->order);
3047 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3048 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3049 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3050 
3051 	return inactive_lru_pages > pages_for_compaction;
3052 }
3053 
3054 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3055 {
3056 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3057 	struct mem_cgroup *memcg;
3058 
3059 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3060 	do {
3061 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3062 		unsigned long reclaimed;
3063 		unsigned long scanned;
3064 
3065 		/*
3066 		 * This loop can become CPU-bound when target memcgs
3067 		 * aren't eligible for reclaim - either because they
3068 		 * don't have any reclaimable pages, or because their
3069 		 * memory is explicitly protected. Avoid soft lockups.
3070 		 */
3071 		cond_resched();
3072 
3073 		mem_cgroup_calculate_protection(target_memcg, memcg);
3074 
3075 		if (mem_cgroup_below_min(memcg)) {
3076 			/*
3077 			 * Hard protection.
3078 			 * If there is no reclaimable memory, OOM.
3079 			 */
3080 			continue;
3081 		} else if (mem_cgroup_below_low(memcg)) {
3082 			/*
3083 			 * Soft protection.
3084 			 * Respect the protection only as long as
3085 			 * there is an unprotected supply
3086 			 * of reclaimable memory from other cgroups.
3087 			 */
3088 			if (!sc->memcg_low_reclaim) {
3089 				sc->memcg_low_skipped = 1;
3090 				continue;
3091 			}
3092 			memcg_memory_event(memcg, MEMCG_LOW);
3093 		}
3094 
3095 		reclaimed = sc->nr_reclaimed;
3096 		scanned = sc->nr_scanned;
3097 
3098 		shrink_lruvec(lruvec, sc);
3099 
3100 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3101 			    sc->priority);
3102 
3103 		/* Record the group's reclaim efficiency */
3104 		vmpressure(sc->gfp_mask, memcg, false,
3105 			   sc->nr_scanned - scanned,
3106 			   sc->nr_reclaimed - reclaimed);
3107 
3108 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3109 }
3110 
3111 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3112 {
3113 	struct reclaim_state *reclaim_state = current->reclaim_state;
3114 	unsigned long nr_reclaimed, nr_scanned;
3115 	struct lruvec *target_lruvec;
3116 	bool reclaimable = false;
3117 	unsigned long file;
3118 
3119 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3120 
3121 again:
3122 	/*
3123 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3124 	 * lruvec stats for heuristics.
3125 	 */
3126 	mem_cgroup_flush_stats();
3127 
3128 	memset(&sc->nr, 0, sizeof(sc->nr));
3129 
3130 	nr_reclaimed = sc->nr_reclaimed;
3131 	nr_scanned = sc->nr_scanned;
3132 
3133 	/*
3134 	 * Determine the scan balance between anon and file LRUs.
3135 	 */
3136 	spin_lock_irq(&target_lruvec->lru_lock);
3137 	sc->anon_cost = target_lruvec->anon_cost;
3138 	sc->file_cost = target_lruvec->file_cost;
3139 	spin_unlock_irq(&target_lruvec->lru_lock);
3140 
3141 	/*
3142 	 * Target desirable inactive:active list ratios for the anon
3143 	 * and file LRU lists.
3144 	 */
3145 	if (!sc->force_deactivate) {
3146 		unsigned long refaults;
3147 
3148 		refaults = lruvec_page_state(target_lruvec,
3149 				WORKINGSET_ACTIVATE_ANON);
3150 		if (refaults != target_lruvec->refaults[0] ||
3151 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3152 			sc->may_deactivate |= DEACTIVATE_ANON;
3153 		else
3154 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3155 
3156 		/*
3157 		 * When refaults are being observed, it means a new
3158 		 * workingset is being established. Deactivate to get
3159 		 * rid of any stale active pages quickly.
3160 		 */
3161 		refaults = lruvec_page_state(target_lruvec,
3162 				WORKINGSET_ACTIVATE_FILE);
3163 		if (refaults != target_lruvec->refaults[1] ||
3164 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3165 			sc->may_deactivate |= DEACTIVATE_FILE;
3166 		else
3167 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3168 	} else
3169 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3170 
3171 	/*
3172 	 * If we have plenty of inactive file pages that aren't
3173 	 * thrashing, try to reclaim those first before touching
3174 	 * anonymous pages.
3175 	 */
3176 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3177 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3178 		sc->cache_trim_mode = 1;
3179 	else
3180 		sc->cache_trim_mode = 0;
3181 
3182 	/*
3183 	 * Prevent the reclaimer from falling into the cache trap: as
3184 	 * cache pages start out inactive, every cache fault will tip
3185 	 * the scan balance towards the file LRU.  And as the file LRU
3186 	 * shrinks, so does the window for rotation from references.
3187 	 * This means we have a runaway feedback loop where a tiny
3188 	 * thrashing file LRU becomes infinitely more attractive than
3189 	 * anon pages.  Try to detect this based on file LRU size.
3190 	 */
3191 	if (!cgroup_reclaim(sc)) {
3192 		unsigned long total_high_wmark = 0;
3193 		unsigned long free, anon;
3194 		int z;
3195 
3196 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3197 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3198 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3199 
3200 		for (z = 0; z < MAX_NR_ZONES; z++) {
3201 			struct zone *zone = &pgdat->node_zones[z];
3202 			if (!managed_zone(zone))
3203 				continue;
3204 
3205 			total_high_wmark += high_wmark_pages(zone);
3206 		}
3207 
3208 		/*
3209 		 * Consider anon: if that's low too, this isn't a
3210 		 * runaway file reclaim problem, but rather just
3211 		 * extreme pressure. Reclaim as per usual then.
3212 		 */
3213 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3214 
3215 		sc->file_is_tiny =
3216 			file + free <= total_high_wmark &&
3217 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3218 			anon >> sc->priority;
3219 	}
3220 
3221 	shrink_node_memcgs(pgdat, sc);
3222 
3223 	if (reclaim_state) {
3224 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3225 		reclaim_state->reclaimed_slab = 0;
3226 	}
3227 
3228 	/* Record the subtree's reclaim efficiency */
3229 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3230 		   sc->nr_scanned - nr_scanned,
3231 		   sc->nr_reclaimed - nr_reclaimed);
3232 
3233 	if (sc->nr_reclaimed - nr_reclaimed)
3234 		reclaimable = true;
3235 
3236 	if (current_is_kswapd()) {
3237 		/*
3238 		 * If reclaim is isolating dirty pages under writeback,
3239 		 * it implies that the long-lived page allocation rate
3240 		 * is exceeding the page laundering rate. Either the
3241 		 * global limits are not being effective at throttling
3242 		 * processes due to the page distribution throughout
3243 		 * zones or there is heavy usage of a slow backing
3244 		 * device. The only option is to throttle from reclaim
3245 		 * context which is not ideal as there is no guarantee
3246 		 * the dirtying process is throttled in the same way
3247 		 * balance_dirty_pages() manages.
3248 		 *
3249 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3250 		 * count the number of pages under pages flagged for
3251 		 * immediate reclaim and stall if any are encountered
3252 		 * in the nr_immediate check below.
3253 		 */
3254 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3255 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3256 
3257 		/* Allow kswapd to start writing pages during reclaim.*/
3258 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3259 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3260 
3261 		/*
3262 		 * If kswapd scans pages marked for immediate
3263 		 * reclaim and under writeback (nr_immediate), it
3264 		 * implies that pages are cycling through the LRU
3265 		 * faster than they are written so forcibly stall
3266 		 * until some pages complete writeback.
3267 		 */
3268 		if (sc->nr.immediate)
3269 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3270 	}
3271 
3272 	/*
3273 	 * Tag a node/memcg as congested if all the dirty pages were marked
3274 	 * for writeback and immediate reclaim (counted in nr.congested).
3275 	 *
3276 	 * Legacy memcg will stall in page writeback so avoid forcibly
3277 	 * stalling in reclaim_throttle().
3278 	 */
3279 	if ((current_is_kswapd() ||
3280 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3281 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3282 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3283 
3284 	/*
3285 	 * Stall direct reclaim for IO completions if the lruvec is
3286 	 * node is congested. Allow kswapd to continue until it
3287 	 * starts encountering unqueued dirty pages or cycling through
3288 	 * the LRU too quickly.
3289 	 */
3290 	if (!current_is_kswapd() && current_may_throttle() &&
3291 	    !sc->hibernation_mode &&
3292 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3293 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3294 
3295 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3296 				    sc))
3297 		goto again;
3298 
3299 	/*
3300 	 * Kswapd gives up on balancing particular nodes after too
3301 	 * many failures to reclaim anything from them and goes to
3302 	 * sleep. On reclaim progress, reset the failure counter. A
3303 	 * successful direct reclaim run will revive a dormant kswapd.
3304 	 */
3305 	if (reclaimable)
3306 		pgdat->kswapd_failures = 0;
3307 }
3308 
3309 /*
3310  * Returns true if compaction should go ahead for a costly-order request, or
3311  * the allocation would already succeed without compaction. Return false if we
3312  * should reclaim first.
3313  */
3314 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3315 {
3316 	unsigned long watermark;
3317 	enum compact_result suitable;
3318 
3319 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3320 	if (suitable == COMPACT_SUCCESS)
3321 		/* Allocation should succeed already. Don't reclaim. */
3322 		return true;
3323 	if (suitable == COMPACT_SKIPPED)
3324 		/* Compaction cannot yet proceed. Do reclaim. */
3325 		return false;
3326 
3327 	/*
3328 	 * Compaction is already possible, but it takes time to run and there
3329 	 * are potentially other callers using the pages just freed. So proceed
3330 	 * with reclaim to make a buffer of free pages available to give
3331 	 * compaction a reasonable chance of completing and allocating the page.
3332 	 * Note that we won't actually reclaim the whole buffer in one attempt
3333 	 * as the target watermark in should_continue_reclaim() is lower. But if
3334 	 * we are already above the high+gap watermark, don't reclaim at all.
3335 	 */
3336 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3337 
3338 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3339 }
3340 
3341 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3342 {
3343 	/*
3344 	 * If reclaim is making progress greater than 12% efficiency then
3345 	 * wake all the NOPROGRESS throttled tasks.
3346 	 */
3347 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3348 		wait_queue_head_t *wqh;
3349 
3350 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3351 		if (waitqueue_active(wqh))
3352 			wake_up(wqh);
3353 
3354 		return;
3355 	}
3356 
3357 	/*
3358 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3359 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3360 	 * under writeback and marked for immediate reclaim at the tail of the
3361 	 * LRU.
3362 	 */
3363 	if (current_is_kswapd() || cgroup_reclaim(sc))
3364 		return;
3365 
3366 	/* Throttle if making no progress at high prioities. */
3367 	if (sc->priority == 1 && !sc->nr_reclaimed)
3368 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3369 }
3370 
3371 /*
3372  * This is the direct reclaim path, for page-allocating processes.  We only
3373  * try to reclaim pages from zones which will satisfy the caller's allocation
3374  * request.
3375  *
3376  * If a zone is deemed to be full of pinned pages then just give it a light
3377  * scan then give up on it.
3378  */
3379 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3380 {
3381 	struct zoneref *z;
3382 	struct zone *zone;
3383 	unsigned long nr_soft_reclaimed;
3384 	unsigned long nr_soft_scanned;
3385 	gfp_t orig_mask;
3386 	pg_data_t *last_pgdat = NULL;
3387 	pg_data_t *first_pgdat = NULL;
3388 
3389 	/*
3390 	 * If the number of buffer_heads in the machine exceeds the maximum
3391 	 * allowed level, force direct reclaim to scan the highmem zone as
3392 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3393 	 */
3394 	orig_mask = sc->gfp_mask;
3395 	if (buffer_heads_over_limit) {
3396 		sc->gfp_mask |= __GFP_HIGHMEM;
3397 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3398 	}
3399 
3400 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3401 					sc->reclaim_idx, sc->nodemask) {
3402 		/*
3403 		 * Take care memory controller reclaiming has small influence
3404 		 * to global LRU.
3405 		 */
3406 		if (!cgroup_reclaim(sc)) {
3407 			if (!cpuset_zone_allowed(zone,
3408 						 GFP_KERNEL | __GFP_HARDWALL))
3409 				continue;
3410 
3411 			/*
3412 			 * If we already have plenty of memory free for
3413 			 * compaction in this zone, don't free any more.
3414 			 * Even though compaction is invoked for any
3415 			 * non-zero order, only frequent costly order
3416 			 * reclamation is disruptive enough to become a
3417 			 * noticeable problem, like transparent huge
3418 			 * page allocations.
3419 			 */
3420 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3421 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3422 			    compaction_ready(zone, sc)) {
3423 				sc->compaction_ready = true;
3424 				continue;
3425 			}
3426 
3427 			/*
3428 			 * Shrink each node in the zonelist once. If the
3429 			 * zonelist is ordered by zone (not the default) then a
3430 			 * node may be shrunk multiple times but in that case
3431 			 * the user prefers lower zones being preserved.
3432 			 */
3433 			if (zone->zone_pgdat == last_pgdat)
3434 				continue;
3435 
3436 			/*
3437 			 * This steals pages from memory cgroups over softlimit
3438 			 * and returns the number of reclaimed pages and
3439 			 * scanned pages. This works for global memory pressure
3440 			 * and balancing, not for a memcg's limit.
3441 			 */
3442 			nr_soft_scanned = 0;
3443 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3444 						sc->order, sc->gfp_mask,
3445 						&nr_soft_scanned);
3446 			sc->nr_reclaimed += nr_soft_reclaimed;
3447 			sc->nr_scanned += nr_soft_scanned;
3448 			/* need some check for avoid more shrink_zone() */
3449 		}
3450 
3451 		if (!first_pgdat)
3452 			first_pgdat = zone->zone_pgdat;
3453 
3454 		/* See comment about same check for global reclaim above */
3455 		if (zone->zone_pgdat == last_pgdat)
3456 			continue;
3457 		last_pgdat = zone->zone_pgdat;
3458 		shrink_node(zone->zone_pgdat, sc);
3459 	}
3460 
3461 	if (first_pgdat)
3462 		consider_reclaim_throttle(first_pgdat, sc);
3463 
3464 	/*
3465 	 * Restore to original mask to avoid the impact on the caller if we
3466 	 * promoted it to __GFP_HIGHMEM.
3467 	 */
3468 	sc->gfp_mask = orig_mask;
3469 }
3470 
3471 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3472 {
3473 	struct lruvec *target_lruvec;
3474 	unsigned long refaults;
3475 
3476 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3477 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3478 	target_lruvec->refaults[0] = refaults;
3479 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3480 	target_lruvec->refaults[1] = refaults;
3481 }
3482 
3483 /*
3484  * This is the main entry point to direct page reclaim.
3485  *
3486  * If a full scan of the inactive list fails to free enough memory then we
3487  * are "out of memory" and something needs to be killed.
3488  *
3489  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3490  * high - the zone may be full of dirty or under-writeback pages, which this
3491  * caller can't do much about.  We kick the writeback threads and take explicit
3492  * naps in the hope that some of these pages can be written.  But if the
3493  * allocating task holds filesystem locks which prevent writeout this might not
3494  * work, and the allocation attempt will fail.
3495  *
3496  * returns:	0, if no pages reclaimed
3497  * 		else, the number of pages reclaimed
3498  */
3499 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3500 					  struct scan_control *sc)
3501 {
3502 	int initial_priority = sc->priority;
3503 	pg_data_t *last_pgdat;
3504 	struct zoneref *z;
3505 	struct zone *zone;
3506 retry:
3507 	delayacct_freepages_start();
3508 
3509 	if (!cgroup_reclaim(sc))
3510 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3511 
3512 	do {
3513 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3514 				sc->priority);
3515 		sc->nr_scanned = 0;
3516 		shrink_zones(zonelist, sc);
3517 
3518 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3519 			break;
3520 
3521 		if (sc->compaction_ready)
3522 			break;
3523 
3524 		/*
3525 		 * If we're getting trouble reclaiming, start doing
3526 		 * writepage even in laptop mode.
3527 		 */
3528 		if (sc->priority < DEF_PRIORITY - 2)
3529 			sc->may_writepage = 1;
3530 	} while (--sc->priority >= 0);
3531 
3532 	last_pgdat = NULL;
3533 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3534 					sc->nodemask) {
3535 		if (zone->zone_pgdat == last_pgdat)
3536 			continue;
3537 		last_pgdat = zone->zone_pgdat;
3538 
3539 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3540 
3541 		if (cgroup_reclaim(sc)) {
3542 			struct lruvec *lruvec;
3543 
3544 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3545 						   zone->zone_pgdat);
3546 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3547 		}
3548 	}
3549 
3550 	delayacct_freepages_end();
3551 
3552 	if (sc->nr_reclaimed)
3553 		return sc->nr_reclaimed;
3554 
3555 	/* Aborted reclaim to try compaction? don't OOM, then */
3556 	if (sc->compaction_ready)
3557 		return 1;
3558 
3559 	/*
3560 	 * We make inactive:active ratio decisions based on the node's
3561 	 * composition of memory, but a restrictive reclaim_idx or a
3562 	 * memory.low cgroup setting can exempt large amounts of
3563 	 * memory from reclaim. Neither of which are very common, so
3564 	 * instead of doing costly eligibility calculations of the
3565 	 * entire cgroup subtree up front, we assume the estimates are
3566 	 * good, and retry with forcible deactivation if that fails.
3567 	 */
3568 	if (sc->skipped_deactivate) {
3569 		sc->priority = initial_priority;
3570 		sc->force_deactivate = 1;
3571 		sc->skipped_deactivate = 0;
3572 		goto retry;
3573 	}
3574 
3575 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3576 	if (sc->memcg_low_skipped) {
3577 		sc->priority = initial_priority;
3578 		sc->force_deactivate = 0;
3579 		sc->memcg_low_reclaim = 1;
3580 		sc->memcg_low_skipped = 0;
3581 		goto retry;
3582 	}
3583 
3584 	return 0;
3585 }
3586 
3587 static bool allow_direct_reclaim(pg_data_t *pgdat)
3588 {
3589 	struct zone *zone;
3590 	unsigned long pfmemalloc_reserve = 0;
3591 	unsigned long free_pages = 0;
3592 	int i;
3593 	bool wmark_ok;
3594 
3595 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3596 		return true;
3597 
3598 	for (i = 0; i <= ZONE_NORMAL; i++) {
3599 		zone = &pgdat->node_zones[i];
3600 		if (!managed_zone(zone))
3601 			continue;
3602 
3603 		if (!zone_reclaimable_pages(zone))
3604 			continue;
3605 
3606 		pfmemalloc_reserve += min_wmark_pages(zone);
3607 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3608 	}
3609 
3610 	/* If there are no reserves (unexpected config) then do not throttle */
3611 	if (!pfmemalloc_reserve)
3612 		return true;
3613 
3614 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3615 
3616 	/* kswapd must be awake if processes are being throttled */
3617 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3618 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3619 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3620 
3621 		wake_up_interruptible(&pgdat->kswapd_wait);
3622 	}
3623 
3624 	return wmark_ok;
3625 }
3626 
3627 /*
3628  * Throttle direct reclaimers if backing storage is backed by the network
3629  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3630  * depleted. kswapd will continue to make progress and wake the processes
3631  * when the low watermark is reached.
3632  *
3633  * Returns true if a fatal signal was delivered during throttling. If this
3634  * happens, the page allocator should not consider triggering the OOM killer.
3635  */
3636 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3637 					nodemask_t *nodemask)
3638 {
3639 	struct zoneref *z;
3640 	struct zone *zone;
3641 	pg_data_t *pgdat = NULL;
3642 
3643 	/*
3644 	 * Kernel threads should not be throttled as they may be indirectly
3645 	 * responsible for cleaning pages necessary for reclaim to make forward
3646 	 * progress. kjournald for example may enter direct reclaim while
3647 	 * committing a transaction where throttling it could forcing other
3648 	 * processes to block on log_wait_commit().
3649 	 */
3650 	if (current->flags & PF_KTHREAD)
3651 		goto out;
3652 
3653 	/*
3654 	 * If a fatal signal is pending, this process should not throttle.
3655 	 * It should return quickly so it can exit and free its memory
3656 	 */
3657 	if (fatal_signal_pending(current))
3658 		goto out;
3659 
3660 	/*
3661 	 * Check if the pfmemalloc reserves are ok by finding the first node
3662 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3663 	 * GFP_KERNEL will be required for allocating network buffers when
3664 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3665 	 *
3666 	 * Throttling is based on the first usable node and throttled processes
3667 	 * wait on a queue until kswapd makes progress and wakes them. There
3668 	 * is an affinity then between processes waking up and where reclaim
3669 	 * progress has been made assuming the process wakes on the same node.
3670 	 * More importantly, processes running on remote nodes will not compete
3671 	 * for remote pfmemalloc reserves and processes on different nodes
3672 	 * should make reasonable progress.
3673 	 */
3674 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3675 					gfp_zone(gfp_mask), nodemask) {
3676 		if (zone_idx(zone) > ZONE_NORMAL)
3677 			continue;
3678 
3679 		/* Throttle based on the first usable node */
3680 		pgdat = zone->zone_pgdat;
3681 		if (allow_direct_reclaim(pgdat))
3682 			goto out;
3683 		break;
3684 	}
3685 
3686 	/* If no zone was usable by the allocation flags then do not throttle */
3687 	if (!pgdat)
3688 		goto out;
3689 
3690 	/* Account for the throttling */
3691 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3692 
3693 	/*
3694 	 * If the caller cannot enter the filesystem, it's possible that it
3695 	 * is due to the caller holding an FS lock or performing a journal
3696 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3697 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3698 	 * blocked waiting on the same lock. Instead, throttle for up to a
3699 	 * second before continuing.
3700 	 */
3701 	if (!(gfp_mask & __GFP_FS))
3702 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3703 			allow_direct_reclaim(pgdat), HZ);
3704 	else
3705 		/* Throttle until kswapd wakes the process */
3706 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3707 			allow_direct_reclaim(pgdat));
3708 
3709 	if (fatal_signal_pending(current))
3710 		return true;
3711 
3712 out:
3713 	return false;
3714 }
3715 
3716 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3717 				gfp_t gfp_mask, nodemask_t *nodemask)
3718 {
3719 	unsigned long nr_reclaimed;
3720 	struct scan_control sc = {
3721 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3722 		.gfp_mask = current_gfp_context(gfp_mask),
3723 		.reclaim_idx = gfp_zone(gfp_mask),
3724 		.order = order,
3725 		.nodemask = nodemask,
3726 		.priority = DEF_PRIORITY,
3727 		.may_writepage = !laptop_mode,
3728 		.may_unmap = 1,
3729 		.may_swap = 1,
3730 	};
3731 
3732 	/*
3733 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3734 	 * Confirm they are large enough for max values.
3735 	 */
3736 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3737 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3738 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3739 
3740 	/*
3741 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3742 	 * 1 is returned so that the page allocator does not OOM kill at this
3743 	 * point.
3744 	 */
3745 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3746 		return 1;
3747 
3748 	set_task_reclaim_state(current, &sc.reclaim_state);
3749 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3750 
3751 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3752 
3753 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3754 	set_task_reclaim_state(current, NULL);
3755 
3756 	return nr_reclaimed;
3757 }
3758 
3759 #ifdef CONFIG_MEMCG
3760 
3761 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3762 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3763 						gfp_t gfp_mask, bool noswap,
3764 						pg_data_t *pgdat,
3765 						unsigned long *nr_scanned)
3766 {
3767 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3768 	struct scan_control sc = {
3769 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3770 		.target_mem_cgroup = memcg,
3771 		.may_writepage = !laptop_mode,
3772 		.may_unmap = 1,
3773 		.reclaim_idx = MAX_NR_ZONES - 1,
3774 		.may_swap = !noswap,
3775 	};
3776 
3777 	WARN_ON_ONCE(!current->reclaim_state);
3778 
3779 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3780 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3781 
3782 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3783 						      sc.gfp_mask);
3784 
3785 	/*
3786 	 * NOTE: Although we can get the priority field, using it
3787 	 * here is not a good idea, since it limits the pages we can scan.
3788 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3789 	 * will pick up pages from other mem cgroup's as well. We hack
3790 	 * the priority and make it zero.
3791 	 */
3792 	shrink_lruvec(lruvec, &sc);
3793 
3794 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3795 
3796 	*nr_scanned = sc.nr_scanned;
3797 
3798 	return sc.nr_reclaimed;
3799 }
3800 
3801 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3802 					   unsigned long nr_pages,
3803 					   gfp_t gfp_mask,
3804 					   bool may_swap)
3805 {
3806 	unsigned long nr_reclaimed;
3807 	unsigned int noreclaim_flag;
3808 	struct scan_control sc = {
3809 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3810 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3811 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3812 		.reclaim_idx = MAX_NR_ZONES - 1,
3813 		.target_mem_cgroup = memcg,
3814 		.priority = DEF_PRIORITY,
3815 		.may_writepage = !laptop_mode,
3816 		.may_unmap = 1,
3817 		.may_swap = may_swap,
3818 	};
3819 	/*
3820 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3821 	 * equal pressure on all the nodes. This is based on the assumption that
3822 	 * the reclaim does not bail out early.
3823 	 */
3824 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3825 
3826 	set_task_reclaim_state(current, &sc.reclaim_state);
3827 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3828 	noreclaim_flag = memalloc_noreclaim_save();
3829 
3830 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3831 
3832 	memalloc_noreclaim_restore(noreclaim_flag);
3833 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3834 	set_task_reclaim_state(current, NULL);
3835 
3836 	return nr_reclaimed;
3837 }
3838 #endif
3839 
3840 static void age_active_anon(struct pglist_data *pgdat,
3841 				struct scan_control *sc)
3842 {
3843 	struct mem_cgroup *memcg;
3844 	struct lruvec *lruvec;
3845 
3846 	if (!can_age_anon_pages(pgdat, sc))
3847 		return;
3848 
3849 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3850 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3851 		return;
3852 
3853 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3854 	do {
3855 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3856 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3857 				   sc, LRU_ACTIVE_ANON);
3858 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3859 	} while (memcg);
3860 }
3861 
3862 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3863 {
3864 	int i;
3865 	struct zone *zone;
3866 
3867 	/*
3868 	 * Check for watermark boosts top-down as the higher zones
3869 	 * are more likely to be boosted. Both watermarks and boosts
3870 	 * should not be checked at the same time as reclaim would
3871 	 * start prematurely when there is no boosting and a lower
3872 	 * zone is balanced.
3873 	 */
3874 	for (i = highest_zoneidx; i >= 0; i--) {
3875 		zone = pgdat->node_zones + i;
3876 		if (!managed_zone(zone))
3877 			continue;
3878 
3879 		if (zone->watermark_boost)
3880 			return true;
3881 	}
3882 
3883 	return false;
3884 }
3885 
3886 /*
3887  * Returns true if there is an eligible zone balanced for the request order
3888  * and highest_zoneidx
3889  */
3890 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3891 {
3892 	int i;
3893 	unsigned long mark = -1;
3894 	struct zone *zone;
3895 
3896 	/*
3897 	 * Check watermarks bottom-up as lower zones are more likely to
3898 	 * meet watermarks.
3899 	 */
3900 	for (i = 0; i <= highest_zoneidx; i++) {
3901 		zone = pgdat->node_zones + i;
3902 
3903 		if (!managed_zone(zone))
3904 			continue;
3905 
3906 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3907 			mark = wmark_pages(zone, WMARK_PROMO);
3908 		else
3909 			mark = high_wmark_pages(zone);
3910 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3911 			return true;
3912 	}
3913 
3914 	/*
3915 	 * If a node has no populated zone within highest_zoneidx, it does not
3916 	 * need balancing by definition. This can happen if a zone-restricted
3917 	 * allocation tries to wake a remote kswapd.
3918 	 */
3919 	if (mark == -1)
3920 		return true;
3921 
3922 	return false;
3923 }
3924 
3925 /* Clear pgdat state for congested, dirty or under writeback. */
3926 static void clear_pgdat_congested(pg_data_t *pgdat)
3927 {
3928 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3929 
3930 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3931 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3932 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3933 }
3934 
3935 /*
3936  * Prepare kswapd for sleeping. This verifies that there are no processes
3937  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3938  *
3939  * Returns true if kswapd is ready to sleep
3940  */
3941 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3942 				int highest_zoneidx)
3943 {
3944 	/*
3945 	 * The throttled processes are normally woken up in balance_pgdat() as
3946 	 * soon as allow_direct_reclaim() is true. But there is a potential
3947 	 * race between when kswapd checks the watermarks and a process gets
3948 	 * throttled. There is also a potential race if processes get
3949 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3950 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3951 	 * the wake up checks. If kswapd is going to sleep, no process should
3952 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3953 	 * the wake up is premature, processes will wake kswapd and get
3954 	 * throttled again. The difference from wake ups in balance_pgdat() is
3955 	 * that here we are under prepare_to_wait().
3956 	 */
3957 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3958 		wake_up_all(&pgdat->pfmemalloc_wait);
3959 
3960 	/* Hopeless node, leave it to direct reclaim */
3961 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3962 		return true;
3963 
3964 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3965 		clear_pgdat_congested(pgdat);
3966 		return true;
3967 	}
3968 
3969 	return false;
3970 }
3971 
3972 /*
3973  * kswapd shrinks a node of pages that are at or below the highest usable
3974  * zone that is currently unbalanced.
3975  *
3976  * Returns true if kswapd scanned at least the requested number of pages to
3977  * reclaim or if the lack of progress was due to pages under writeback.
3978  * This is used to determine if the scanning priority needs to be raised.
3979  */
3980 static bool kswapd_shrink_node(pg_data_t *pgdat,
3981 			       struct scan_control *sc)
3982 {
3983 	struct zone *zone;
3984 	int z;
3985 
3986 	/* Reclaim a number of pages proportional to the number of zones */
3987 	sc->nr_to_reclaim = 0;
3988 	for (z = 0; z <= sc->reclaim_idx; z++) {
3989 		zone = pgdat->node_zones + z;
3990 		if (!managed_zone(zone))
3991 			continue;
3992 
3993 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3994 	}
3995 
3996 	/*
3997 	 * Historically care was taken to put equal pressure on all zones but
3998 	 * now pressure is applied based on node LRU order.
3999 	 */
4000 	shrink_node(pgdat, sc);
4001 
4002 	/*
4003 	 * Fragmentation may mean that the system cannot be rebalanced for
4004 	 * high-order allocations. If twice the allocation size has been
4005 	 * reclaimed then recheck watermarks only at order-0 to prevent
4006 	 * excessive reclaim. Assume that a process requested a high-order
4007 	 * can direct reclaim/compact.
4008 	 */
4009 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4010 		sc->order = 0;
4011 
4012 	return sc->nr_scanned >= sc->nr_to_reclaim;
4013 }
4014 
4015 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4016 static inline void
4017 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4018 {
4019 	int i;
4020 	struct zone *zone;
4021 
4022 	for (i = 0; i <= highest_zoneidx; i++) {
4023 		zone = pgdat->node_zones + i;
4024 
4025 		if (!managed_zone(zone))
4026 			continue;
4027 
4028 		if (active)
4029 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4030 		else
4031 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4032 	}
4033 }
4034 
4035 static inline void
4036 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4037 {
4038 	update_reclaim_active(pgdat, highest_zoneidx, true);
4039 }
4040 
4041 static inline void
4042 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4043 {
4044 	update_reclaim_active(pgdat, highest_zoneidx, false);
4045 }
4046 
4047 /*
4048  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4049  * that are eligible for use by the caller until at least one zone is
4050  * balanced.
4051  *
4052  * Returns the order kswapd finished reclaiming at.
4053  *
4054  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4055  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4056  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4057  * or lower is eligible for reclaim until at least one usable zone is
4058  * balanced.
4059  */
4060 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4061 {
4062 	int i;
4063 	unsigned long nr_soft_reclaimed;
4064 	unsigned long nr_soft_scanned;
4065 	unsigned long pflags;
4066 	unsigned long nr_boost_reclaim;
4067 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4068 	bool boosted;
4069 	struct zone *zone;
4070 	struct scan_control sc = {
4071 		.gfp_mask = GFP_KERNEL,
4072 		.order = order,
4073 		.may_unmap = 1,
4074 	};
4075 
4076 	set_task_reclaim_state(current, &sc.reclaim_state);
4077 	psi_memstall_enter(&pflags);
4078 	__fs_reclaim_acquire(_THIS_IP_);
4079 
4080 	count_vm_event(PAGEOUTRUN);
4081 
4082 	/*
4083 	 * Account for the reclaim boost. Note that the zone boost is left in
4084 	 * place so that parallel allocations that are near the watermark will
4085 	 * stall or direct reclaim until kswapd is finished.
4086 	 */
4087 	nr_boost_reclaim = 0;
4088 	for (i = 0; i <= highest_zoneidx; i++) {
4089 		zone = pgdat->node_zones + i;
4090 		if (!managed_zone(zone))
4091 			continue;
4092 
4093 		nr_boost_reclaim += zone->watermark_boost;
4094 		zone_boosts[i] = zone->watermark_boost;
4095 	}
4096 	boosted = nr_boost_reclaim;
4097 
4098 restart:
4099 	set_reclaim_active(pgdat, highest_zoneidx);
4100 	sc.priority = DEF_PRIORITY;
4101 	do {
4102 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4103 		bool raise_priority = true;
4104 		bool balanced;
4105 		bool ret;
4106 
4107 		sc.reclaim_idx = highest_zoneidx;
4108 
4109 		/*
4110 		 * If the number of buffer_heads exceeds the maximum allowed
4111 		 * then consider reclaiming from all zones. This has a dual
4112 		 * purpose -- on 64-bit systems it is expected that
4113 		 * buffer_heads are stripped during active rotation. On 32-bit
4114 		 * systems, highmem pages can pin lowmem memory and shrinking
4115 		 * buffers can relieve lowmem pressure. Reclaim may still not
4116 		 * go ahead if all eligible zones for the original allocation
4117 		 * request are balanced to avoid excessive reclaim from kswapd.
4118 		 */
4119 		if (buffer_heads_over_limit) {
4120 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4121 				zone = pgdat->node_zones + i;
4122 				if (!managed_zone(zone))
4123 					continue;
4124 
4125 				sc.reclaim_idx = i;
4126 				break;
4127 			}
4128 		}
4129 
4130 		/*
4131 		 * If the pgdat is imbalanced then ignore boosting and preserve
4132 		 * the watermarks for a later time and restart. Note that the
4133 		 * zone watermarks will be still reset at the end of balancing
4134 		 * on the grounds that the normal reclaim should be enough to
4135 		 * re-evaluate if boosting is required when kswapd next wakes.
4136 		 */
4137 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4138 		if (!balanced && nr_boost_reclaim) {
4139 			nr_boost_reclaim = 0;
4140 			goto restart;
4141 		}
4142 
4143 		/*
4144 		 * If boosting is not active then only reclaim if there are no
4145 		 * eligible zones. Note that sc.reclaim_idx is not used as
4146 		 * buffer_heads_over_limit may have adjusted it.
4147 		 */
4148 		if (!nr_boost_reclaim && balanced)
4149 			goto out;
4150 
4151 		/* Limit the priority of boosting to avoid reclaim writeback */
4152 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4153 			raise_priority = false;
4154 
4155 		/*
4156 		 * Do not writeback or swap pages for boosted reclaim. The
4157 		 * intent is to relieve pressure not issue sub-optimal IO
4158 		 * from reclaim context. If no pages are reclaimed, the
4159 		 * reclaim will be aborted.
4160 		 */
4161 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4162 		sc.may_swap = !nr_boost_reclaim;
4163 
4164 		/*
4165 		 * Do some background aging of the anon list, to give
4166 		 * pages a chance to be referenced before reclaiming. All
4167 		 * pages are rotated regardless of classzone as this is
4168 		 * about consistent aging.
4169 		 */
4170 		age_active_anon(pgdat, &sc);
4171 
4172 		/*
4173 		 * If we're getting trouble reclaiming, start doing writepage
4174 		 * even in laptop mode.
4175 		 */
4176 		if (sc.priority < DEF_PRIORITY - 2)
4177 			sc.may_writepage = 1;
4178 
4179 		/* Call soft limit reclaim before calling shrink_node. */
4180 		sc.nr_scanned = 0;
4181 		nr_soft_scanned = 0;
4182 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4183 						sc.gfp_mask, &nr_soft_scanned);
4184 		sc.nr_reclaimed += nr_soft_reclaimed;
4185 
4186 		/*
4187 		 * There should be no need to raise the scanning priority if
4188 		 * enough pages are already being scanned that that high
4189 		 * watermark would be met at 100% efficiency.
4190 		 */
4191 		if (kswapd_shrink_node(pgdat, &sc))
4192 			raise_priority = false;
4193 
4194 		/*
4195 		 * If the low watermark is met there is no need for processes
4196 		 * to be throttled on pfmemalloc_wait as they should not be
4197 		 * able to safely make forward progress. Wake them
4198 		 */
4199 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4200 				allow_direct_reclaim(pgdat))
4201 			wake_up_all(&pgdat->pfmemalloc_wait);
4202 
4203 		/* Check if kswapd should be suspending */
4204 		__fs_reclaim_release(_THIS_IP_);
4205 		ret = try_to_freeze();
4206 		__fs_reclaim_acquire(_THIS_IP_);
4207 		if (ret || kthread_should_stop())
4208 			break;
4209 
4210 		/*
4211 		 * Raise priority if scanning rate is too low or there was no
4212 		 * progress in reclaiming pages
4213 		 */
4214 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4215 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4216 
4217 		/*
4218 		 * If reclaim made no progress for a boost, stop reclaim as
4219 		 * IO cannot be queued and it could be an infinite loop in
4220 		 * extreme circumstances.
4221 		 */
4222 		if (nr_boost_reclaim && !nr_reclaimed)
4223 			break;
4224 
4225 		if (raise_priority || !nr_reclaimed)
4226 			sc.priority--;
4227 	} while (sc.priority >= 1);
4228 
4229 	if (!sc.nr_reclaimed)
4230 		pgdat->kswapd_failures++;
4231 
4232 out:
4233 	clear_reclaim_active(pgdat, highest_zoneidx);
4234 
4235 	/* If reclaim was boosted, account for the reclaim done in this pass */
4236 	if (boosted) {
4237 		unsigned long flags;
4238 
4239 		for (i = 0; i <= highest_zoneidx; i++) {
4240 			if (!zone_boosts[i])
4241 				continue;
4242 
4243 			/* Increments are under the zone lock */
4244 			zone = pgdat->node_zones + i;
4245 			spin_lock_irqsave(&zone->lock, flags);
4246 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4247 			spin_unlock_irqrestore(&zone->lock, flags);
4248 		}
4249 
4250 		/*
4251 		 * As there is now likely space, wakeup kcompact to defragment
4252 		 * pageblocks.
4253 		 */
4254 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4255 	}
4256 
4257 	snapshot_refaults(NULL, pgdat);
4258 	__fs_reclaim_release(_THIS_IP_);
4259 	psi_memstall_leave(&pflags);
4260 	set_task_reclaim_state(current, NULL);
4261 
4262 	/*
4263 	 * Return the order kswapd stopped reclaiming at as
4264 	 * prepare_kswapd_sleep() takes it into account. If another caller
4265 	 * entered the allocator slow path while kswapd was awake, order will
4266 	 * remain at the higher level.
4267 	 */
4268 	return sc.order;
4269 }
4270 
4271 /*
4272  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4273  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4274  * not a valid index then either kswapd runs for first time or kswapd couldn't
4275  * sleep after previous reclaim attempt (node is still unbalanced). In that
4276  * case return the zone index of the previous kswapd reclaim cycle.
4277  */
4278 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4279 					   enum zone_type prev_highest_zoneidx)
4280 {
4281 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4282 
4283 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4284 }
4285 
4286 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4287 				unsigned int highest_zoneidx)
4288 {
4289 	long remaining = 0;
4290 	DEFINE_WAIT(wait);
4291 
4292 	if (freezing(current) || kthread_should_stop())
4293 		return;
4294 
4295 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4296 
4297 	/*
4298 	 * Try to sleep for a short interval. Note that kcompactd will only be
4299 	 * woken if it is possible to sleep for a short interval. This is
4300 	 * deliberate on the assumption that if reclaim cannot keep an
4301 	 * eligible zone balanced that it's also unlikely that compaction will
4302 	 * succeed.
4303 	 */
4304 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4305 		/*
4306 		 * Compaction records what page blocks it recently failed to
4307 		 * isolate pages from and skips them in the future scanning.
4308 		 * When kswapd is going to sleep, it is reasonable to assume
4309 		 * that pages and compaction may succeed so reset the cache.
4310 		 */
4311 		reset_isolation_suitable(pgdat);
4312 
4313 		/*
4314 		 * We have freed the memory, now we should compact it to make
4315 		 * allocation of the requested order possible.
4316 		 */
4317 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4318 
4319 		remaining = schedule_timeout(HZ/10);
4320 
4321 		/*
4322 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4323 		 * order. The values will either be from a wakeup request or
4324 		 * the previous request that slept prematurely.
4325 		 */
4326 		if (remaining) {
4327 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4328 					kswapd_highest_zoneidx(pgdat,
4329 							highest_zoneidx));
4330 
4331 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4332 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4333 		}
4334 
4335 		finish_wait(&pgdat->kswapd_wait, &wait);
4336 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4337 	}
4338 
4339 	/*
4340 	 * After a short sleep, check if it was a premature sleep. If not, then
4341 	 * go fully to sleep until explicitly woken up.
4342 	 */
4343 	if (!remaining &&
4344 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4345 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4346 
4347 		/*
4348 		 * vmstat counters are not perfectly accurate and the estimated
4349 		 * value for counters such as NR_FREE_PAGES can deviate from the
4350 		 * true value by nr_online_cpus * threshold. To avoid the zone
4351 		 * watermarks being breached while under pressure, we reduce the
4352 		 * per-cpu vmstat threshold while kswapd is awake and restore
4353 		 * them before going back to sleep.
4354 		 */
4355 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4356 
4357 		if (!kthread_should_stop())
4358 			schedule();
4359 
4360 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4361 	} else {
4362 		if (remaining)
4363 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4364 		else
4365 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4366 	}
4367 	finish_wait(&pgdat->kswapd_wait, &wait);
4368 }
4369 
4370 /*
4371  * The background pageout daemon, started as a kernel thread
4372  * from the init process.
4373  *
4374  * This basically trickles out pages so that we have _some_
4375  * free memory available even if there is no other activity
4376  * that frees anything up. This is needed for things like routing
4377  * etc, where we otherwise might have all activity going on in
4378  * asynchronous contexts that cannot page things out.
4379  *
4380  * If there are applications that are active memory-allocators
4381  * (most normal use), this basically shouldn't matter.
4382  */
4383 static int kswapd(void *p)
4384 {
4385 	unsigned int alloc_order, reclaim_order;
4386 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4387 	pg_data_t *pgdat = (pg_data_t *)p;
4388 	struct task_struct *tsk = current;
4389 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4390 
4391 	if (!cpumask_empty(cpumask))
4392 		set_cpus_allowed_ptr(tsk, cpumask);
4393 
4394 	/*
4395 	 * Tell the memory management that we're a "memory allocator",
4396 	 * and that if we need more memory we should get access to it
4397 	 * regardless (see "__alloc_pages()"). "kswapd" should
4398 	 * never get caught in the normal page freeing logic.
4399 	 *
4400 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4401 	 * you need a small amount of memory in order to be able to
4402 	 * page out something else, and this flag essentially protects
4403 	 * us from recursively trying to free more memory as we're
4404 	 * trying to free the first piece of memory in the first place).
4405 	 */
4406 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4407 	set_freezable();
4408 
4409 	WRITE_ONCE(pgdat->kswapd_order, 0);
4410 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4411 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4412 	for ( ; ; ) {
4413 		bool ret;
4414 
4415 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4416 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4417 							highest_zoneidx);
4418 
4419 kswapd_try_sleep:
4420 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4421 					highest_zoneidx);
4422 
4423 		/* Read the new order and highest_zoneidx */
4424 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4425 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4426 							highest_zoneidx);
4427 		WRITE_ONCE(pgdat->kswapd_order, 0);
4428 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4429 
4430 		ret = try_to_freeze();
4431 		if (kthread_should_stop())
4432 			break;
4433 
4434 		/*
4435 		 * We can speed up thawing tasks if we don't call balance_pgdat
4436 		 * after returning from the refrigerator
4437 		 */
4438 		if (ret)
4439 			continue;
4440 
4441 		/*
4442 		 * Reclaim begins at the requested order but if a high-order
4443 		 * reclaim fails then kswapd falls back to reclaiming for
4444 		 * order-0. If that happens, kswapd will consider sleeping
4445 		 * for the order it finished reclaiming at (reclaim_order)
4446 		 * but kcompactd is woken to compact for the original
4447 		 * request (alloc_order).
4448 		 */
4449 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4450 						alloc_order);
4451 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4452 						highest_zoneidx);
4453 		if (reclaim_order < alloc_order)
4454 			goto kswapd_try_sleep;
4455 	}
4456 
4457 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4458 
4459 	return 0;
4460 }
4461 
4462 /*
4463  * A zone is low on free memory or too fragmented for high-order memory.  If
4464  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4465  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4466  * has failed or is not needed, still wake up kcompactd if only compaction is
4467  * needed.
4468  */
4469 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4470 		   enum zone_type highest_zoneidx)
4471 {
4472 	pg_data_t *pgdat;
4473 	enum zone_type curr_idx;
4474 
4475 	if (!managed_zone(zone))
4476 		return;
4477 
4478 	if (!cpuset_zone_allowed(zone, gfp_flags))
4479 		return;
4480 
4481 	pgdat = zone->zone_pgdat;
4482 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4483 
4484 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4485 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4486 
4487 	if (READ_ONCE(pgdat->kswapd_order) < order)
4488 		WRITE_ONCE(pgdat->kswapd_order, order);
4489 
4490 	if (!waitqueue_active(&pgdat->kswapd_wait))
4491 		return;
4492 
4493 	/* Hopeless node, leave it to direct reclaim if possible */
4494 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4495 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4496 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4497 		/*
4498 		 * There may be plenty of free memory available, but it's too
4499 		 * fragmented for high-order allocations.  Wake up kcompactd
4500 		 * and rely on compaction_suitable() to determine if it's
4501 		 * needed.  If it fails, it will defer subsequent attempts to
4502 		 * ratelimit its work.
4503 		 */
4504 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4505 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4506 		return;
4507 	}
4508 
4509 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4510 				      gfp_flags);
4511 	wake_up_interruptible(&pgdat->kswapd_wait);
4512 }
4513 
4514 #ifdef CONFIG_HIBERNATION
4515 /*
4516  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4517  * freed pages.
4518  *
4519  * Rather than trying to age LRUs the aim is to preserve the overall
4520  * LRU order by reclaiming preferentially
4521  * inactive > active > active referenced > active mapped
4522  */
4523 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4524 {
4525 	struct scan_control sc = {
4526 		.nr_to_reclaim = nr_to_reclaim,
4527 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4528 		.reclaim_idx = MAX_NR_ZONES - 1,
4529 		.priority = DEF_PRIORITY,
4530 		.may_writepage = 1,
4531 		.may_unmap = 1,
4532 		.may_swap = 1,
4533 		.hibernation_mode = 1,
4534 	};
4535 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4536 	unsigned long nr_reclaimed;
4537 	unsigned int noreclaim_flag;
4538 
4539 	fs_reclaim_acquire(sc.gfp_mask);
4540 	noreclaim_flag = memalloc_noreclaim_save();
4541 	set_task_reclaim_state(current, &sc.reclaim_state);
4542 
4543 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4544 
4545 	set_task_reclaim_state(current, NULL);
4546 	memalloc_noreclaim_restore(noreclaim_flag);
4547 	fs_reclaim_release(sc.gfp_mask);
4548 
4549 	return nr_reclaimed;
4550 }
4551 #endif /* CONFIG_HIBERNATION */
4552 
4553 /*
4554  * This kswapd start function will be called by init and node-hot-add.
4555  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4556  */
4557 void kswapd_run(int nid)
4558 {
4559 	pg_data_t *pgdat = NODE_DATA(nid);
4560 
4561 	if (pgdat->kswapd)
4562 		return;
4563 
4564 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4565 	if (IS_ERR(pgdat->kswapd)) {
4566 		/* failure at boot is fatal */
4567 		BUG_ON(system_state < SYSTEM_RUNNING);
4568 		pr_err("Failed to start kswapd on node %d\n", nid);
4569 		pgdat->kswapd = NULL;
4570 	}
4571 }
4572 
4573 /*
4574  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4575  * hold mem_hotplug_begin/end().
4576  */
4577 void kswapd_stop(int nid)
4578 {
4579 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4580 
4581 	if (kswapd) {
4582 		kthread_stop(kswapd);
4583 		NODE_DATA(nid)->kswapd = NULL;
4584 	}
4585 }
4586 
4587 static int __init kswapd_init(void)
4588 {
4589 	int nid;
4590 
4591 	swap_setup();
4592 	for_each_node_state(nid, N_MEMORY)
4593  		kswapd_run(nid);
4594 	return 0;
4595 }
4596 
4597 module_init(kswapd_init)
4598 
4599 #ifdef CONFIG_NUMA
4600 /*
4601  * Node reclaim mode
4602  *
4603  * If non-zero call node_reclaim when the number of free pages falls below
4604  * the watermarks.
4605  */
4606 int node_reclaim_mode __read_mostly;
4607 
4608 /*
4609  * Priority for NODE_RECLAIM. This determines the fraction of pages
4610  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4611  * a zone.
4612  */
4613 #define NODE_RECLAIM_PRIORITY 4
4614 
4615 /*
4616  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4617  * occur.
4618  */
4619 int sysctl_min_unmapped_ratio = 1;
4620 
4621 /*
4622  * If the number of slab pages in a zone grows beyond this percentage then
4623  * slab reclaim needs to occur.
4624  */
4625 int sysctl_min_slab_ratio = 5;
4626 
4627 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4628 {
4629 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4630 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4631 		node_page_state(pgdat, NR_ACTIVE_FILE);
4632 
4633 	/*
4634 	 * It's possible for there to be more file mapped pages than
4635 	 * accounted for by the pages on the file LRU lists because
4636 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4637 	 */
4638 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4639 }
4640 
4641 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4642 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4643 {
4644 	unsigned long nr_pagecache_reclaimable;
4645 	unsigned long delta = 0;
4646 
4647 	/*
4648 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4649 	 * potentially reclaimable. Otherwise, we have to worry about
4650 	 * pages like swapcache and node_unmapped_file_pages() provides
4651 	 * a better estimate
4652 	 */
4653 	if (node_reclaim_mode & RECLAIM_UNMAP)
4654 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4655 	else
4656 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4657 
4658 	/* If we can't clean pages, remove dirty pages from consideration */
4659 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4660 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4661 
4662 	/* Watch for any possible underflows due to delta */
4663 	if (unlikely(delta > nr_pagecache_reclaimable))
4664 		delta = nr_pagecache_reclaimable;
4665 
4666 	return nr_pagecache_reclaimable - delta;
4667 }
4668 
4669 /*
4670  * Try to free up some pages from this node through reclaim.
4671  */
4672 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4673 {
4674 	/* Minimum pages needed in order to stay on node */
4675 	const unsigned long nr_pages = 1 << order;
4676 	struct task_struct *p = current;
4677 	unsigned int noreclaim_flag;
4678 	struct scan_control sc = {
4679 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4680 		.gfp_mask = current_gfp_context(gfp_mask),
4681 		.order = order,
4682 		.priority = NODE_RECLAIM_PRIORITY,
4683 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4684 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4685 		.may_swap = 1,
4686 		.reclaim_idx = gfp_zone(gfp_mask),
4687 	};
4688 	unsigned long pflags;
4689 
4690 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4691 					   sc.gfp_mask);
4692 
4693 	cond_resched();
4694 	psi_memstall_enter(&pflags);
4695 	fs_reclaim_acquire(sc.gfp_mask);
4696 	/*
4697 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4698 	 */
4699 	noreclaim_flag = memalloc_noreclaim_save();
4700 	set_task_reclaim_state(p, &sc.reclaim_state);
4701 
4702 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4703 		/*
4704 		 * Free memory by calling shrink node with increasing
4705 		 * priorities until we have enough memory freed.
4706 		 */
4707 		do {
4708 			shrink_node(pgdat, &sc);
4709 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4710 	}
4711 
4712 	set_task_reclaim_state(p, NULL);
4713 	memalloc_noreclaim_restore(noreclaim_flag);
4714 	fs_reclaim_release(sc.gfp_mask);
4715 	psi_memstall_leave(&pflags);
4716 
4717 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4718 
4719 	return sc.nr_reclaimed >= nr_pages;
4720 }
4721 
4722 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4723 {
4724 	int ret;
4725 
4726 	/*
4727 	 * Node reclaim reclaims unmapped file backed pages and
4728 	 * slab pages if we are over the defined limits.
4729 	 *
4730 	 * A small portion of unmapped file backed pages is needed for
4731 	 * file I/O otherwise pages read by file I/O will be immediately
4732 	 * thrown out if the node is overallocated. So we do not reclaim
4733 	 * if less than a specified percentage of the node is used by
4734 	 * unmapped file backed pages.
4735 	 */
4736 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4737 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4738 	    pgdat->min_slab_pages)
4739 		return NODE_RECLAIM_FULL;
4740 
4741 	/*
4742 	 * Do not scan if the allocation should not be delayed.
4743 	 */
4744 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4745 		return NODE_RECLAIM_NOSCAN;
4746 
4747 	/*
4748 	 * Only run node reclaim on the local node or on nodes that do not
4749 	 * have associated processors. This will favor the local processor
4750 	 * over remote processors and spread off node memory allocations
4751 	 * as wide as possible.
4752 	 */
4753 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4754 		return NODE_RECLAIM_NOSCAN;
4755 
4756 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4757 		return NODE_RECLAIM_NOSCAN;
4758 
4759 	ret = __node_reclaim(pgdat, gfp_mask, order);
4760 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4761 
4762 	if (!ret)
4763 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4764 
4765 	return ret;
4766 }
4767 #endif
4768 
4769 /**
4770  * check_move_unevictable_pages - check pages for evictability and move to
4771  * appropriate zone lru list
4772  * @pvec: pagevec with lru pages to check
4773  *
4774  * Checks pages for evictability, if an evictable page is in the unevictable
4775  * lru list, moves it to the appropriate evictable lru list. This function
4776  * should be only used for lru pages.
4777  */
4778 void check_move_unevictable_pages(struct pagevec *pvec)
4779 {
4780 	struct lruvec *lruvec = NULL;
4781 	int pgscanned = 0;
4782 	int pgrescued = 0;
4783 	int i;
4784 
4785 	for (i = 0; i < pvec->nr; i++) {
4786 		struct page *page = pvec->pages[i];
4787 		struct folio *folio = page_folio(page);
4788 		int nr_pages;
4789 
4790 		if (PageTransTail(page))
4791 			continue;
4792 
4793 		nr_pages = thp_nr_pages(page);
4794 		pgscanned += nr_pages;
4795 
4796 		/* block memcg migration during page moving between lru */
4797 		if (!TestClearPageLRU(page))
4798 			continue;
4799 
4800 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4801 		if (page_evictable(page) && PageUnevictable(page)) {
4802 			del_page_from_lru_list(page, lruvec);
4803 			ClearPageUnevictable(page);
4804 			add_page_to_lru_list(page, lruvec);
4805 			pgrescued += nr_pages;
4806 		}
4807 		SetPageLRU(page);
4808 	}
4809 
4810 	if (lruvec) {
4811 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4812 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4813 		unlock_page_lruvec_irq(lruvec);
4814 	} else if (pgscanned) {
4815 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4816 	}
4817 }
4818 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4819