xref: /openbmc/linux/mm/vmscan.c (revision ce746d43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/*
83 	 * Scan pressure balancing between anon and file LRUs
84 	 */
85 	unsigned long	anon_cost;
86 	unsigned long	file_cost;
87 
88 	/* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 	unsigned int may_deactivate:2;
92 	unsigned int force_deactivate:1;
93 	unsigned int skipped_deactivate:1;
94 
95 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 	unsigned int may_writepage:1;
97 
98 	/* Can mapped pages be reclaimed? */
99 	unsigned int may_unmap:1;
100 
101 	/* Can pages be swapped as part of reclaim? */
102 	unsigned int may_swap:1;
103 
104 	/*
105 	 * Cgroups are not reclaimed below their configured memory.low,
106 	 * unless we threaten to OOM. If any cgroups are skipped due to
107 	 * memory.low and nothing was reclaimed, go back for memory.low.
108 	 */
109 	unsigned int memcg_low_reclaim:1;
110 	unsigned int memcg_low_skipped:1;
111 
112 	unsigned int hibernation_mode:1;
113 
114 	/* One of the zones is ready for compaction */
115 	unsigned int compaction_ready:1;
116 
117 	/* There is easily reclaimable cold cache in the current node */
118 	unsigned int cache_trim_mode:1;
119 
120 	/* The file pages on the current node are dangerously low */
121 	unsigned int file_is_tiny:1;
122 
123 	/* Allocation order */
124 	s8 order;
125 
126 	/* Scan (total_size >> priority) pages at once */
127 	s8 priority;
128 
129 	/* The highest zone to isolate pages for reclaim from */
130 	s8 reclaim_idx;
131 
132 	/* This context's GFP mask */
133 	gfp_t gfp_mask;
134 
135 	/* Incremented by the number of inactive pages that were scanned */
136 	unsigned long nr_scanned;
137 
138 	/* Number of pages freed so far during a call to shrink_zones() */
139 	unsigned long nr_reclaimed;
140 
141 	struct {
142 		unsigned int dirty;
143 		unsigned int unqueued_dirty;
144 		unsigned int congested;
145 		unsigned int writeback;
146 		unsigned int immediate;
147 		unsigned int file_taken;
148 		unsigned int taken;
149 	} nr;
150 
151 	/* for recording the reclaimed slab by now */
152 	struct reclaim_state reclaim_state;
153 };
154 
155 #ifdef ARCH_HAS_PREFETCHW
156 #define prefetchw_prev_lru_page(_page, _base, _field)			\
157 	do {								\
158 		if ((_page)->lru.prev != _base) {			\
159 			struct page *prev;				\
160 									\
161 			prev = lru_to_page(&(_page->lru));		\
162 			prefetchw(&prev->_field);			\
163 		}							\
164 	} while (0)
165 #else
166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167 #endif
168 
169 /*
170  * From 0 .. 200.  Higher means more swappy.
171  */
172 int vm_swappiness = 60;
173 
174 static void set_task_reclaim_state(struct task_struct *task,
175 				   struct reclaim_state *rs)
176 {
177 	/* Check for an overwrite */
178 	WARN_ON_ONCE(rs && task->reclaim_state);
179 
180 	/* Check for the nulling of an already-nulled member */
181 	WARN_ON_ONCE(!rs && !task->reclaim_state);
182 
183 	task->reclaim_state = rs;
184 }
185 
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
188 
189 #ifdef CONFIG_MEMCG
190 /*
191  * We allow subsystems to populate their shrinker-related
192  * LRU lists before register_shrinker_prepared() is called
193  * for the shrinker, since we don't want to impose
194  * restrictions on their internal registration order.
195  * In this case shrink_slab_memcg() may find corresponding
196  * bit is set in the shrinkers map.
197  *
198  * This value is used by the function to detect registering
199  * shrinkers and to skip do_shrink_slab() calls for them.
200  */
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202 
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
205 
206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 {
208 	int id, ret = -ENOMEM;
209 
210 	down_write(&shrinker_rwsem);
211 	/* This may call shrinker, so it must use down_read_trylock() */
212 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 	if (id < 0)
214 		goto unlock;
215 
216 	if (id >= shrinker_nr_max) {
217 		if (memcg_expand_shrinker_maps(id)) {
218 			idr_remove(&shrinker_idr, id);
219 			goto unlock;
220 		}
221 
222 		shrinker_nr_max = id + 1;
223 	}
224 	shrinker->id = id;
225 	ret = 0;
226 unlock:
227 	up_write(&shrinker_rwsem);
228 	return ret;
229 }
230 
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	int id = shrinker->id;
234 
235 	BUG_ON(id < 0);
236 
237 	down_write(&shrinker_rwsem);
238 	idr_remove(&shrinker_idr, id);
239 	up_write(&shrinker_rwsem);
240 }
241 
242 static bool cgroup_reclaim(struct scan_control *sc)
243 {
244 	return sc->target_mem_cgroup;
245 }
246 
247 /**
248  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool writeback_throttling_sane(struct scan_control *sc)
261 {
262 	if (!cgroup_reclaim(sc))
263 		return true;
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
266 		return true;
267 #endif
268 	return false;
269 }
270 #else
271 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
272 {
273 	return 0;
274 }
275 
276 static void unregister_memcg_shrinker(struct shrinker *shrinker)
277 {
278 }
279 
280 static bool cgroup_reclaim(struct scan_control *sc)
281 {
282 	return false;
283 }
284 
285 static bool writeback_throttling_sane(struct scan_control *sc)
286 {
287 	return true;
288 }
289 #endif
290 
291 /*
292  * This misses isolated pages which are not accounted for to save counters.
293  * As the data only determines if reclaim or compaction continues, it is
294  * not expected that isolated pages will be a dominating factor.
295  */
296 unsigned long zone_reclaimable_pages(struct zone *zone)
297 {
298 	unsigned long nr;
299 
300 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
301 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
302 	if (get_nr_swap_pages() > 0)
303 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
304 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
305 
306 	return nr;
307 }
308 
309 /**
310  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
311  * @lruvec: lru vector
312  * @lru: lru to use
313  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
314  */
315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
316 {
317 	unsigned long size = 0;
318 	int zid;
319 
320 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
321 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322 
323 		if (!managed_zone(zone))
324 			continue;
325 
326 		if (!mem_cgroup_disabled())
327 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328 		else
329 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
330 	}
331 	return size;
332 }
333 
334 /*
335  * Add a shrinker callback to be called from the vm.
336  */
337 int prealloc_shrinker(struct shrinker *shrinker)
338 {
339 	unsigned int size = sizeof(*shrinker->nr_deferred);
340 
341 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
342 		size *= nr_node_ids;
343 
344 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
345 	if (!shrinker->nr_deferred)
346 		return -ENOMEM;
347 
348 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
349 		if (prealloc_memcg_shrinker(shrinker))
350 			goto free_deferred;
351 	}
352 
353 	return 0;
354 
355 free_deferred:
356 	kfree(shrinker->nr_deferred);
357 	shrinker->nr_deferred = NULL;
358 	return -ENOMEM;
359 }
360 
361 void free_prealloced_shrinker(struct shrinker *shrinker)
362 {
363 	if (!shrinker->nr_deferred)
364 		return;
365 
366 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
367 		unregister_memcg_shrinker(shrinker);
368 
369 	kfree(shrinker->nr_deferred);
370 	shrinker->nr_deferred = NULL;
371 }
372 
373 void register_shrinker_prepared(struct shrinker *shrinker)
374 {
375 	down_write(&shrinker_rwsem);
376 	list_add_tail(&shrinker->list, &shrinker_list);
377 #ifdef CONFIG_MEMCG
378 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
379 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
380 #endif
381 	up_write(&shrinker_rwsem);
382 }
383 
384 int register_shrinker(struct shrinker *shrinker)
385 {
386 	int err = prealloc_shrinker(shrinker);
387 
388 	if (err)
389 		return err;
390 	register_shrinker_prepared(shrinker);
391 	return 0;
392 }
393 EXPORT_SYMBOL(register_shrinker);
394 
395 /*
396  * Remove one
397  */
398 void unregister_shrinker(struct shrinker *shrinker)
399 {
400 	if (!shrinker->nr_deferred)
401 		return;
402 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
403 		unregister_memcg_shrinker(shrinker);
404 	down_write(&shrinker_rwsem);
405 	list_del(&shrinker->list);
406 	up_write(&shrinker_rwsem);
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 EXPORT_SYMBOL(unregister_shrinker);
411 
412 #define SHRINK_BATCH 128
413 
414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
415 				    struct shrinker *shrinker, int priority)
416 {
417 	unsigned long freed = 0;
418 	unsigned long long delta;
419 	long total_scan;
420 	long freeable;
421 	long nr;
422 	long new_nr;
423 	int nid = shrinkctl->nid;
424 	long batch_size = shrinker->batch ? shrinker->batch
425 					  : SHRINK_BATCH;
426 	long scanned = 0, next_deferred;
427 
428 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
429 		nid = 0;
430 
431 	freeable = shrinker->count_objects(shrinker, shrinkctl);
432 	if (freeable == 0 || freeable == SHRINK_EMPTY)
433 		return freeable;
434 
435 	/*
436 	 * copy the current shrinker scan count into a local variable
437 	 * and zero it so that other concurrent shrinker invocations
438 	 * don't also do this scanning work.
439 	 */
440 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
441 
442 	total_scan = nr;
443 	if (shrinker->seeks) {
444 		delta = freeable >> priority;
445 		delta *= 4;
446 		do_div(delta, shrinker->seeks);
447 	} else {
448 		/*
449 		 * These objects don't require any IO to create. Trim
450 		 * them aggressively under memory pressure to keep
451 		 * them from causing refetches in the IO caches.
452 		 */
453 		delta = freeable / 2;
454 	}
455 
456 	total_scan += delta;
457 	if (total_scan < 0) {
458 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
459 		       shrinker->scan_objects, total_scan);
460 		total_scan = freeable;
461 		next_deferred = nr;
462 	} else
463 		next_deferred = total_scan;
464 
465 	/*
466 	 * We need to avoid excessive windup on filesystem shrinkers
467 	 * due to large numbers of GFP_NOFS allocations causing the
468 	 * shrinkers to return -1 all the time. This results in a large
469 	 * nr being built up so when a shrink that can do some work
470 	 * comes along it empties the entire cache due to nr >>>
471 	 * freeable. This is bad for sustaining a working set in
472 	 * memory.
473 	 *
474 	 * Hence only allow the shrinker to scan the entire cache when
475 	 * a large delta change is calculated directly.
476 	 */
477 	if (delta < freeable / 4)
478 		total_scan = min(total_scan, freeable / 2);
479 
480 	/*
481 	 * Avoid risking looping forever due to too large nr value:
482 	 * never try to free more than twice the estimate number of
483 	 * freeable entries.
484 	 */
485 	if (total_scan > freeable * 2)
486 		total_scan = freeable * 2;
487 
488 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
489 				   freeable, delta, total_scan, priority);
490 
491 	/*
492 	 * Normally, we should not scan less than batch_size objects in one
493 	 * pass to avoid too frequent shrinker calls, but if the slab has less
494 	 * than batch_size objects in total and we are really tight on memory,
495 	 * we will try to reclaim all available objects, otherwise we can end
496 	 * up failing allocations although there are plenty of reclaimable
497 	 * objects spread over several slabs with usage less than the
498 	 * batch_size.
499 	 *
500 	 * We detect the "tight on memory" situations by looking at the total
501 	 * number of objects we want to scan (total_scan). If it is greater
502 	 * than the total number of objects on slab (freeable), we must be
503 	 * scanning at high prio and therefore should try to reclaim as much as
504 	 * possible.
505 	 */
506 	while (total_scan >= batch_size ||
507 	       total_scan >= freeable) {
508 		unsigned long ret;
509 		unsigned long nr_to_scan = min(batch_size, total_scan);
510 
511 		shrinkctl->nr_to_scan = nr_to_scan;
512 		shrinkctl->nr_scanned = nr_to_scan;
513 		ret = shrinker->scan_objects(shrinker, shrinkctl);
514 		if (ret == SHRINK_STOP)
515 			break;
516 		freed += ret;
517 
518 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
519 		total_scan -= shrinkctl->nr_scanned;
520 		scanned += shrinkctl->nr_scanned;
521 
522 		cond_resched();
523 	}
524 
525 	if (next_deferred >= scanned)
526 		next_deferred -= scanned;
527 	else
528 		next_deferred = 0;
529 	/*
530 	 * move the unused scan count back into the shrinker in a
531 	 * manner that handles concurrent updates. If we exhausted the
532 	 * scan, there is no need to do an update.
533 	 */
534 	if (next_deferred > 0)
535 		new_nr = atomic_long_add_return(next_deferred,
536 						&shrinker->nr_deferred[nid]);
537 	else
538 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539 
540 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
541 	return freed;
542 }
543 
544 #ifdef CONFIG_MEMCG
545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
546 			struct mem_cgroup *memcg, int priority)
547 {
548 	struct memcg_shrinker_map *map;
549 	unsigned long ret, freed = 0;
550 	int i;
551 
552 	if (!mem_cgroup_online(memcg))
553 		return 0;
554 
555 	if (!down_read_trylock(&shrinker_rwsem))
556 		return 0;
557 
558 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
559 					true);
560 	if (unlikely(!map))
561 		goto unlock;
562 
563 	for_each_set_bit(i, map->map, shrinker_nr_max) {
564 		struct shrink_control sc = {
565 			.gfp_mask = gfp_mask,
566 			.nid = nid,
567 			.memcg = memcg,
568 		};
569 		struct shrinker *shrinker;
570 
571 		shrinker = idr_find(&shrinker_idr, i);
572 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 			if (!shrinker)
574 				clear_bit(i, map->map);
575 			continue;
576 		}
577 
578 		/* Call non-slab shrinkers even though kmem is disabled */
579 		if (!memcg_kmem_enabled() &&
580 		    !(shrinker->flags & SHRINKER_NONSLAB))
581 			continue;
582 
583 		ret = do_shrink_slab(&sc, shrinker, priority);
584 		if (ret == SHRINK_EMPTY) {
585 			clear_bit(i, map->map);
586 			/*
587 			 * After the shrinker reported that it had no objects to
588 			 * free, but before we cleared the corresponding bit in
589 			 * the memcg shrinker map, a new object might have been
590 			 * added. To make sure, we have the bit set in this
591 			 * case, we invoke the shrinker one more time and reset
592 			 * the bit if it reports that it is not empty anymore.
593 			 * The memory barrier here pairs with the barrier in
594 			 * memcg_set_shrinker_bit():
595 			 *
596 			 * list_lru_add()     shrink_slab_memcg()
597 			 *   list_add_tail()    clear_bit()
598 			 *   <MB>               <MB>
599 			 *   set_bit()          do_shrink_slab()
600 			 */
601 			smp_mb__after_atomic();
602 			ret = do_shrink_slab(&sc, shrinker, priority);
603 			if (ret == SHRINK_EMPTY)
604 				ret = 0;
605 			else
606 				memcg_set_shrinker_bit(memcg, nid, i);
607 		}
608 		freed += ret;
609 
610 		if (rwsem_is_contended(&shrinker_rwsem)) {
611 			freed = freed ? : 1;
612 			break;
613 		}
614 	}
615 unlock:
616 	up_read(&shrinker_rwsem);
617 	return freed;
618 }
619 #else /* CONFIG_MEMCG */
620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
621 			struct mem_cgroup *memcg, int priority)
622 {
623 	return 0;
624 }
625 #endif /* CONFIG_MEMCG */
626 
627 /**
628  * shrink_slab - shrink slab caches
629  * @gfp_mask: allocation context
630  * @nid: node whose slab caches to target
631  * @memcg: memory cgroup whose slab caches to target
632  * @priority: the reclaim priority
633  *
634  * Call the shrink functions to age shrinkable caches.
635  *
636  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
637  * unaware shrinkers will receive a node id of 0 instead.
638  *
639  * @memcg specifies the memory cgroup to target. Unaware shrinkers
640  * are called only if it is the root cgroup.
641  *
642  * @priority is sc->priority, we take the number of objects and >> by priority
643  * in order to get the scan target.
644  *
645  * Returns the number of reclaimed slab objects.
646  */
647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
648 				 struct mem_cgroup *memcg,
649 				 int priority)
650 {
651 	unsigned long ret, freed = 0;
652 	struct shrinker *shrinker;
653 
654 	/*
655 	 * The root memcg might be allocated even though memcg is disabled
656 	 * via "cgroup_disable=memory" boot parameter.  This could make
657 	 * mem_cgroup_is_root() return false, then just run memcg slab
658 	 * shrink, but skip global shrink.  This may result in premature
659 	 * oom.
660 	 */
661 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
662 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663 
664 	if (!down_read_trylock(&shrinker_rwsem))
665 		goto out;
666 
667 	list_for_each_entry(shrinker, &shrinker_list, list) {
668 		struct shrink_control sc = {
669 			.gfp_mask = gfp_mask,
670 			.nid = nid,
671 			.memcg = memcg,
672 		};
673 
674 		ret = do_shrink_slab(&sc, shrinker, priority);
675 		if (ret == SHRINK_EMPTY)
676 			ret = 0;
677 		freed += ret;
678 		/*
679 		 * Bail out if someone want to register a new shrinker to
680 		 * prevent the registration from being stalled for long periods
681 		 * by parallel ongoing shrinking.
682 		 */
683 		if (rwsem_is_contended(&shrinker_rwsem)) {
684 			freed = freed ? : 1;
685 			break;
686 		}
687 	}
688 
689 	up_read(&shrinker_rwsem);
690 out:
691 	cond_resched();
692 	return freed;
693 }
694 
695 void drop_slab_node(int nid)
696 {
697 	unsigned long freed;
698 
699 	do {
700 		struct mem_cgroup *memcg = NULL;
701 
702 		freed = 0;
703 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
704 		do {
705 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
706 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
707 	} while (freed > 10);
708 }
709 
710 void drop_slab(void)
711 {
712 	int nid;
713 
714 	for_each_online_node(nid)
715 		drop_slab_node(nid);
716 }
717 
718 static inline int is_page_cache_freeable(struct page *page)
719 {
720 	/*
721 	 * A freeable page cache page is referenced only by the caller
722 	 * that isolated the page, the page cache and optional buffer
723 	 * heads at page->private.
724 	 */
725 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
726 		HPAGE_PMD_NR : 1;
727 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
728 }
729 
730 static int may_write_to_inode(struct inode *inode)
731 {
732 	if (current->flags & PF_SWAPWRITE)
733 		return 1;
734 	if (!inode_write_congested(inode))
735 		return 1;
736 	if (inode_to_bdi(inode) == current->backing_dev_info)
737 		return 1;
738 	return 0;
739 }
740 
741 /*
742  * We detected a synchronous write error writing a page out.  Probably
743  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
744  * fsync(), msync() or close().
745  *
746  * The tricky part is that after writepage we cannot touch the mapping: nothing
747  * prevents it from being freed up.  But we have a ref on the page and once
748  * that page is locked, the mapping is pinned.
749  *
750  * We're allowed to run sleeping lock_page() here because we know the caller has
751  * __GFP_FS.
752  */
753 static void handle_write_error(struct address_space *mapping,
754 				struct page *page, int error)
755 {
756 	lock_page(page);
757 	if (page_mapping(page) == mapping)
758 		mapping_set_error(mapping, error);
759 	unlock_page(page);
760 }
761 
762 /* possible outcome of pageout() */
763 typedef enum {
764 	/* failed to write page out, page is locked */
765 	PAGE_KEEP,
766 	/* move page to the active list, page is locked */
767 	PAGE_ACTIVATE,
768 	/* page has been sent to the disk successfully, page is unlocked */
769 	PAGE_SUCCESS,
770 	/* page is clean and locked */
771 	PAGE_CLEAN,
772 } pageout_t;
773 
774 /*
775  * pageout is called by shrink_page_list() for each dirty page.
776  * Calls ->writepage().
777  */
778 static pageout_t pageout(struct page *page, struct address_space *mapping)
779 {
780 	/*
781 	 * If the page is dirty, only perform writeback if that write
782 	 * will be non-blocking.  To prevent this allocation from being
783 	 * stalled by pagecache activity.  But note that there may be
784 	 * stalls if we need to run get_block().  We could test
785 	 * PagePrivate for that.
786 	 *
787 	 * If this process is currently in __generic_file_write_iter() against
788 	 * this page's queue, we can perform writeback even if that
789 	 * will block.
790 	 *
791 	 * If the page is swapcache, write it back even if that would
792 	 * block, for some throttling. This happens by accident, because
793 	 * swap_backing_dev_info is bust: it doesn't reflect the
794 	 * congestion state of the swapdevs.  Easy to fix, if needed.
795 	 */
796 	if (!is_page_cache_freeable(page))
797 		return PAGE_KEEP;
798 	if (!mapping) {
799 		/*
800 		 * Some data journaling orphaned pages can have
801 		 * page->mapping == NULL while being dirty with clean buffers.
802 		 */
803 		if (page_has_private(page)) {
804 			if (try_to_free_buffers(page)) {
805 				ClearPageDirty(page);
806 				pr_info("%s: orphaned page\n", __func__);
807 				return PAGE_CLEAN;
808 			}
809 		}
810 		return PAGE_KEEP;
811 	}
812 	if (mapping->a_ops->writepage == NULL)
813 		return PAGE_ACTIVATE;
814 	if (!may_write_to_inode(mapping->host))
815 		return PAGE_KEEP;
816 
817 	if (clear_page_dirty_for_io(page)) {
818 		int res;
819 		struct writeback_control wbc = {
820 			.sync_mode = WB_SYNC_NONE,
821 			.nr_to_write = SWAP_CLUSTER_MAX,
822 			.range_start = 0,
823 			.range_end = LLONG_MAX,
824 			.for_reclaim = 1,
825 		};
826 
827 		SetPageReclaim(page);
828 		res = mapping->a_ops->writepage(page, &wbc);
829 		if (res < 0)
830 			handle_write_error(mapping, page, res);
831 		if (res == AOP_WRITEPAGE_ACTIVATE) {
832 			ClearPageReclaim(page);
833 			return PAGE_ACTIVATE;
834 		}
835 
836 		if (!PageWriteback(page)) {
837 			/* synchronous write or broken a_ops? */
838 			ClearPageReclaim(page);
839 		}
840 		trace_mm_vmscan_writepage(page);
841 		inc_node_page_state(page, NR_VMSCAN_WRITE);
842 		return PAGE_SUCCESS;
843 	}
844 
845 	return PAGE_CLEAN;
846 }
847 
848 /*
849  * Same as remove_mapping, but if the page is removed from the mapping, it
850  * gets returned with a refcount of 0.
851  */
852 static int __remove_mapping(struct address_space *mapping, struct page *page,
853 			    bool reclaimed, struct mem_cgroup *target_memcg)
854 {
855 	unsigned long flags;
856 	int refcount;
857 
858 	BUG_ON(!PageLocked(page));
859 	BUG_ON(mapping != page_mapping(page));
860 
861 	xa_lock_irqsave(&mapping->i_pages, flags);
862 	/*
863 	 * The non racy check for a busy page.
864 	 *
865 	 * Must be careful with the order of the tests. When someone has
866 	 * a ref to the page, it may be possible that they dirty it then
867 	 * drop the reference. So if PageDirty is tested before page_count
868 	 * here, then the following race may occur:
869 	 *
870 	 * get_user_pages(&page);
871 	 * [user mapping goes away]
872 	 * write_to(page);
873 	 *				!PageDirty(page)    [good]
874 	 * SetPageDirty(page);
875 	 * put_page(page);
876 	 *				!page_count(page)   [good, discard it]
877 	 *
878 	 * [oops, our write_to data is lost]
879 	 *
880 	 * Reversing the order of the tests ensures such a situation cannot
881 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
882 	 * load is not satisfied before that of page->_refcount.
883 	 *
884 	 * Note that if SetPageDirty is always performed via set_page_dirty,
885 	 * and thus under the i_pages lock, then this ordering is not required.
886 	 */
887 	refcount = 1 + compound_nr(page);
888 	if (!page_ref_freeze(page, refcount))
889 		goto cannot_free;
890 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
891 	if (unlikely(PageDirty(page))) {
892 		page_ref_unfreeze(page, refcount);
893 		goto cannot_free;
894 	}
895 
896 	if (PageSwapCache(page)) {
897 		swp_entry_t swap = { .val = page_private(page) };
898 		mem_cgroup_swapout(page, swap);
899 		__delete_from_swap_cache(page, swap);
900 		xa_unlock_irqrestore(&mapping->i_pages, flags);
901 		put_swap_page(page, swap);
902 		workingset_eviction(page, target_memcg);
903 	} else {
904 		void (*freepage)(struct page *);
905 		void *shadow = NULL;
906 
907 		freepage = mapping->a_ops->freepage;
908 		/*
909 		 * Remember a shadow entry for reclaimed file cache in
910 		 * order to detect refaults, thus thrashing, later on.
911 		 *
912 		 * But don't store shadows in an address space that is
913 		 * already exiting.  This is not just an optimization,
914 		 * inode reclaim needs to empty out the radix tree or
915 		 * the nodes are lost.  Don't plant shadows behind its
916 		 * back.
917 		 *
918 		 * We also don't store shadows for DAX mappings because the
919 		 * only page cache pages found in these are zero pages
920 		 * covering holes, and because we don't want to mix DAX
921 		 * exceptional entries and shadow exceptional entries in the
922 		 * same address_space.
923 		 */
924 		if (reclaimed && page_is_file_lru(page) &&
925 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
926 			shadow = workingset_eviction(page, target_memcg);
927 		__delete_from_page_cache(page, shadow);
928 		xa_unlock_irqrestore(&mapping->i_pages, flags);
929 
930 		if (freepage != NULL)
931 			freepage(page);
932 	}
933 
934 	return 1;
935 
936 cannot_free:
937 	xa_unlock_irqrestore(&mapping->i_pages, flags);
938 	return 0;
939 }
940 
941 /*
942  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
943  * someone else has a ref on the page, abort and return 0.  If it was
944  * successfully detached, return 1.  Assumes the caller has a single ref on
945  * this page.
946  */
947 int remove_mapping(struct address_space *mapping, struct page *page)
948 {
949 	if (__remove_mapping(mapping, page, false, NULL)) {
950 		/*
951 		 * Unfreezing the refcount with 1 rather than 2 effectively
952 		 * drops the pagecache ref for us without requiring another
953 		 * atomic operation.
954 		 */
955 		page_ref_unfreeze(page, 1);
956 		return 1;
957 	}
958 	return 0;
959 }
960 
961 /**
962  * putback_lru_page - put previously isolated page onto appropriate LRU list
963  * @page: page to be put back to appropriate lru list
964  *
965  * Add previously isolated @page to appropriate LRU list.
966  * Page may still be unevictable for other reasons.
967  *
968  * lru_lock must not be held, interrupts must be enabled.
969  */
970 void putback_lru_page(struct page *page)
971 {
972 	lru_cache_add(page);
973 	put_page(page);		/* drop ref from isolate */
974 }
975 
976 enum page_references {
977 	PAGEREF_RECLAIM,
978 	PAGEREF_RECLAIM_CLEAN,
979 	PAGEREF_KEEP,
980 	PAGEREF_ACTIVATE,
981 };
982 
983 static enum page_references page_check_references(struct page *page,
984 						  struct scan_control *sc)
985 {
986 	int referenced_ptes, referenced_page;
987 	unsigned long vm_flags;
988 
989 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
990 					  &vm_flags);
991 	referenced_page = TestClearPageReferenced(page);
992 
993 	/*
994 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
995 	 * move the page to the unevictable list.
996 	 */
997 	if (vm_flags & VM_LOCKED)
998 		return PAGEREF_RECLAIM;
999 
1000 	if (referenced_ptes) {
1001 		if (PageSwapBacked(page))
1002 			return PAGEREF_ACTIVATE;
1003 		/*
1004 		 * All mapped pages start out with page table
1005 		 * references from the instantiating fault, so we need
1006 		 * to look twice if a mapped file page is used more
1007 		 * than once.
1008 		 *
1009 		 * Mark it and spare it for another trip around the
1010 		 * inactive list.  Another page table reference will
1011 		 * lead to its activation.
1012 		 *
1013 		 * Note: the mark is set for activated pages as well
1014 		 * so that recently deactivated but used pages are
1015 		 * quickly recovered.
1016 		 */
1017 		SetPageReferenced(page);
1018 
1019 		if (referenced_page || referenced_ptes > 1)
1020 			return PAGEREF_ACTIVATE;
1021 
1022 		/*
1023 		 * Activate file-backed executable pages after first usage.
1024 		 */
1025 		if (vm_flags & VM_EXEC)
1026 			return PAGEREF_ACTIVATE;
1027 
1028 		return PAGEREF_KEEP;
1029 	}
1030 
1031 	/* Reclaim if clean, defer dirty pages to writeback */
1032 	if (referenced_page && !PageSwapBacked(page))
1033 		return PAGEREF_RECLAIM_CLEAN;
1034 
1035 	return PAGEREF_RECLAIM;
1036 }
1037 
1038 /* Check if a page is dirty or under writeback */
1039 static void page_check_dirty_writeback(struct page *page,
1040 				       bool *dirty, bool *writeback)
1041 {
1042 	struct address_space *mapping;
1043 
1044 	/*
1045 	 * Anonymous pages are not handled by flushers and must be written
1046 	 * from reclaim context. Do not stall reclaim based on them
1047 	 */
1048 	if (!page_is_file_lru(page) ||
1049 	    (PageAnon(page) && !PageSwapBacked(page))) {
1050 		*dirty = false;
1051 		*writeback = false;
1052 		return;
1053 	}
1054 
1055 	/* By default assume that the page flags are accurate */
1056 	*dirty = PageDirty(page);
1057 	*writeback = PageWriteback(page);
1058 
1059 	/* Verify dirty/writeback state if the filesystem supports it */
1060 	if (!page_has_private(page))
1061 		return;
1062 
1063 	mapping = page_mapping(page);
1064 	if (mapping && mapping->a_ops->is_dirty_writeback)
1065 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1066 }
1067 
1068 /*
1069  * shrink_page_list() returns the number of reclaimed pages
1070  */
1071 static unsigned int shrink_page_list(struct list_head *page_list,
1072 				     struct pglist_data *pgdat,
1073 				     struct scan_control *sc,
1074 				     enum ttu_flags ttu_flags,
1075 				     struct reclaim_stat *stat,
1076 				     bool ignore_references)
1077 {
1078 	LIST_HEAD(ret_pages);
1079 	LIST_HEAD(free_pages);
1080 	unsigned int nr_reclaimed = 0;
1081 	unsigned int pgactivate = 0;
1082 
1083 	memset(stat, 0, sizeof(*stat));
1084 	cond_resched();
1085 
1086 	while (!list_empty(page_list)) {
1087 		struct address_space *mapping;
1088 		struct page *page;
1089 		enum page_references references = PAGEREF_RECLAIM;
1090 		bool dirty, writeback, may_enter_fs;
1091 		unsigned int nr_pages;
1092 
1093 		cond_resched();
1094 
1095 		page = lru_to_page(page_list);
1096 		list_del(&page->lru);
1097 
1098 		if (!trylock_page(page))
1099 			goto keep;
1100 
1101 		VM_BUG_ON_PAGE(PageActive(page), page);
1102 
1103 		nr_pages = compound_nr(page);
1104 
1105 		/* Account the number of base pages even though THP */
1106 		sc->nr_scanned += nr_pages;
1107 
1108 		if (unlikely(!page_evictable(page)))
1109 			goto activate_locked;
1110 
1111 		if (!sc->may_unmap && page_mapped(page))
1112 			goto keep_locked;
1113 
1114 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1115 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1116 
1117 		/*
1118 		 * The number of dirty pages determines if a node is marked
1119 		 * reclaim_congested which affects wait_iff_congested. kswapd
1120 		 * will stall and start writing pages if the tail of the LRU
1121 		 * is all dirty unqueued pages.
1122 		 */
1123 		page_check_dirty_writeback(page, &dirty, &writeback);
1124 		if (dirty || writeback)
1125 			stat->nr_dirty++;
1126 
1127 		if (dirty && !writeback)
1128 			stat->nr_unqueued_dirty++;
1129 
1130 		/*
1131 		 * Treat this page as congested if the underlying BDI is or if
1132 		 * pages are cycling through the LRU so quickly that the
1133 		 * pages marked for immediate reclaim are making it to the
1134 		 * end of the LRU a second time.
1135 		 */
1136 		mapping = page_mapping(page);
1137 		if (((dirty || writeback) && mapping &&
1138 		     inode_write_congested(mapping->host)) ||
1139 		    (writeback && PageReclaim(page)))
1140 			stat->nr_congested++;
1141 
1142 		/*
1143 		 * If a page at the tail of the LRU is under writeback, there
1144 		 * are three cases to consider.
1145 		 *
1146 		 * 1) If reclaim is encountering an excessive number of pages
1147 		 *    under writeback and this page is both under writeback and
1148 		 *    PageReclaim then it indicates that pages are being queued
1149 		 *    for IO but are being recycled through the LRU before the
1150 		 *    IO can complete. Waiting on the page itself risks an
1151 		 *    indefinite stall if it is impossible to writeback the
1152 		 *    page due to IO error or disconnected storage so instead
1153 		 *    note that the LRU is being scanned too quickly and the
1154 		 *    caller can stall after page list has been processed.
1155 		 *
1156 		 * 2) Global or new memcg reclaim encounters a page that is
1157 		 *    not marked for immediate reclaim, or the caller does not
1158 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1159 		 *    not to fs). In this case mark the page for immediate
1160 		 *    reclaim and continue scanning.
1161 		 *
1162 		 *    Require may_enter_fs because we would wait on fs, which
1163 		 *    may not have submitted IO yet. And the loop driver might
1164 		 *    enter reclaim, and deadlock if it waits on a page for
1165 		 *    which it is needed to do the write (loop masks off
1166 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1167 		 *    would probably show more reasons.
1168 		 *
1169 		 * 3) Legacy memcg encounters a page that is already marked
1170 		 *    PageReclaim. memcg does not have any dirty pages
1171 		 *    throttling so we could easily OOM just because too many
1172 		 *    pages are in writeback and there is nothing else to
1173 		 *    reclaim. Wait for the writeback to complete.
1174 		 *
1175 		 * In cases 1) and 2) we activate the pages to get them out of
1176 		 * the way while we continue scanning for clean pages on the
1177 		 * inactive list and refilling from the active list. The
1178 		 * observation here is that waiting for disk writes is more
1179 		 * expensive than potentially causing reloads down the line.
1180 		 * Since they're marked for immediate reclaim, they won't put
1181 		 * memory pressure on the cache working set any longer than it
1182 		 * takes to write them to disk.
1183 		 */
1184 		if (PageWriteback(page)) {
1185 			/* Case 1 above */
1186 			if (current_is_kswapd() &&
1187 			    PageReclaim(page) &&
1188 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1189 				stat->nr_immediate++;
1190 				goto activate_locked;
1191 
1192 			/* Case 2 above */
1193 			} else if (writeback_throttling_sane(sc) ||
1194 			    !PageReclaim(page) || !may_enter_fs) {
1195 				/*
1196 				 * This is slightly racy - end_page_writeback()
1197 				 * might have just cleared PageReclaim, then
1198 				 * setting PageReclaim here end up interpreted
1199 				 * as PageReadahead - but that does not matter
1200 				 * enough to care.  What we do want is for this
1201 				 * page to have PageReclaim set next time memcg
1202 				 * reclaim reaches the tests above, so it will
1203 				 * then wait_on_page_writeback() to avoid OOM;
1204 				 * and it's also appropriate in global reclaim.
1205 				 */
1206 				SetPageReclaim(page);
1207 				stat->nr_writeback++;
1208 				goto activate_locked;
1209 
1210 			/* Case 3 above */
1211 			} else {
1212 				unlock_page(page);
1213 				wait_on_page_writeback(page);
1214 				/* then go back and try same page again */
1215 				list_add_tail(&page->lru, page_list);
1216 				continue;
1217 			}
1218 		}
1219 
1220 		if (!ignore_references)
1221 			references = page_check_references(page, sc);
1222 
1223 		switch (references) {
1224 		case PAGEREF_ACTIVATE:
1225 			goto activate_locked;
1226 		case PAGEREF_KEEP:
1227 			stat->nr_ref_keep += nr_pages;
1228 			goto keep_locked;
1229 		case PAGEREF_RECLAIM:
1230 		case PAGEREF_RECLAIM_CLEAN:
1231 			; /* try to reclaim the page below */
1232 		}
1233 
1234 		/*
1235 		 * Anonymous process memory has backing store?
1236 		 * Try to allocate it some swap space here.
1237 		 * Lazyfree page could be freed directly
1238 		 */
1239 		if (PageAnon(page) && PageSwapBacked(page)) {
1240 			if (!PageSwapCache(page)) {
1241 				if (!(sc->gfp_mask & __GFP_IO))
1242 					goto keep_locked;
1243 				if (PageTransHuge(page)) {
1244 					/* cannot split THP, skip it */
1245 					if (!can_split_huge_page(page, NULL))
1246 						goto activate_locked;
1247 					/*
1248 					 * Split pages without a PMD map right
1249 					 * away. Chances are some or all of the
1250 					 * tail pages can be freed without IO.
1251 					 */
1252 					if (!compound_mapcount(page) &&
1253 					    split_huge_page_to_list(page,
1254 								    page_list))
1255 						goto activate_locked;
1256 				}
1257 				if (!add_to_swap(page)) {
1258 					if (!PageTransHuge(page))
1259 						goto activate_locked_split;
1260 					/* Fallback to swap normal pages */
1261 					if (split_huge_page_to_list(page,
1262 								    page_list))
1263 						goto activate_locked;
1264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1265 					count_vm_event(THP_SWPOUT_FALLBACK);
1266 #endif
1267 					if (!add_to_swap(page))
1268 						goto activate_locked_split;
1269 				}
1270 
1271 				may_enter_fs = true;
1272 
1273 				/* Adding to swap updated mapping */
1274 				mapping = page_mapping(page);
1275 			}
1276 		} else if (unlikely(PageTransHuge(page))) {
1277 			/* Split file THP */
1278 			if (split_huge_page_to_list(page, page_list))
1279 				goto keep_locked;
1280 		}
1281 
1282 		/*
1283 		 * THP may get split above, need minus tail pages and update
1284 		 * nr_pages to avoid accounting tail pages twice.
1285 		 *
1286 		 * The tail pages that are added into swap cache successfully
1287 		 * reach here.
1288 		 */
1289 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1290 			sc->nr_scanned -= (nr_pages - 1);
1291 			nr_pages = 1;
1292 		}
1293 
1294 		/*
1295 		 * The page is mapped into the page tables of one or more
1296 		 * processes. Try to unmap it here.
1297 		 */
1298 		if (page_mapped(page)) {
1299 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1300 			bool was_swapbacked = PageSwapBacked(page);
1301 
1302 			if (unlikely(PageTransHuge(page)))
1303 				flags |= TTU_SPLIT_HUGE_PMD;
1304 
1305 			if (!try_to_unmap(page, flags)) {
1306 				stat->nr_unmap_fail += nr_pages;
1307 				if (!was_swapbacked && PageSwapBacked(page))
1308 					stat->nr_lazyfree_fail += nr_pages;
1309 				goto activate_locked;
1310 			}
1311 		}
1312 
1313 		if (PageDirty(page)) {
1314 			/*
1315 			 * Only kswapd can writeback filesystem pages
1316 			 * to avoid risk of stack overflow. But avoid
1317 			 * injecting inefficient single-page IO into
1318 			 * flusher writeback as much as possible: only
1319 			 * write pages when we've encountered many
1320 			 * dirty pages, and when we've already scanned
1321 			 * the rest of the LRU for clean pages and see
1322 			 * the same dirty pages again (PageReclaim).
1323 			 */
1324 			if (page_is_file_lru(page) &&
1325 			    (!current_is_kswapd() || !PageReclaim(page) ||
1326 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1327 				/*
1328 				 * Immediately reclaim when written back.
1329 				 * Similar in principal to deactivate_page()
1330 				 * except we already have the page isolated
1331 				 * and know it's dirty
1332 				 */
1333 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1334 				SetPageReclaim(page);
1335 
1336 				goto activate_locked;
1337 			}
1338 
1339 			if (references == PAGEREF_RECLAIM_CLEAN)
1340 				goto keep_locked;
1341 			if (!may_enter_fs)
1342 				goto keep_locked;
1343 			if (!sc->may_writepage)
1344 				goto keep_locked;
1345 
1346 			/*
1347 			 * Page is dirty. Flush the TLB if a writable entry
1348 			 * potentially exists to avoid CPU writes after IO
1349 			 * starts and then write it out here.
1350 			 */
1351 			try_to_unmap_flush_dirty();
1352 			switch (pageout(page, mapping)) {
1353 			case PAGE_KEEP:
1354 				goto keep_locked;
1355 			case PAGE_ACTIVATE:
1356 				goto activate_locked;
1357 			case PAGE_SUCCESS:
1358 				stat->nr_pageout += hpage_nr_pages(page);
1359 
1360 				if (PageWriteback(page))
1361 					goto keep;
1362 				if (PageDirty(page))
1363 					goto keep;
1364 
1365 				/*
1366 				 * A synchronous write - probably a ramdisk.  Go
1367 				 * ahead and try to reclaim the page.
1368 				 */
1369 				if (!trylock_page(page))
1370 					goto keep;
1371 				if (PageDirty(page) || PageWriteback(page))
1372 					goto keep_locked;
1373 				mapping = page_mapping(page);
1374 			case PAGE_CLEAN:
1375 				; /* try to free the page below */
1376 			}
1377 		}
1378 
1379 		/*
1380 		 * If the page has buffers, try to free the buffer mappings
1381 		 * associated with this page. If we succeed we try to free
1382 		 * the page as well.
1383 		 *
1384 		 * We do this even if the page is PageDirty().
1385 		 * try_to_release_page() does not perform I/O, but it is
1386 		 * possible for a page to have PageDirty set, but it is actually
1387 		 * clean (all its buffers are clean).  This happens if the
1388 		 * buffers were written out directly, with submit_bh(). ext3
1389 		 * will do this, as well as the blockdev mapping.
1390 		 * try_to_release_page() will discover that cleanness and will
1391 		 * drop the buffers and mark the page clean - it can be freed.
1392 		 *
1393 		 * Rarely, pages can have buffers and no ->mapping.  These are
1394 		 * the pages which were not successfully invalidated in
1395 		 * truncate_complete_page().  We try to drop those buffers here
1396 		 * and if that worked, and the page is no longer mapped into
1397 		 * process address space (page_count == 1) it can be freed.
1398 		 * Otherwise, leave the page on the LRU so it is swappable.
1399 		 */
1400 		if (page_has_private(page)) {
1401 			if (!try_to_release_page(page, sc->gfp_mask))
1402 				goto activate_locked;
1403 			if (!mapping && page_count(page) == 1) {
1404 				unlock_page(page);
1405 				if (put_page_testzero(page))
1406 					goto free_it;
1407 				else {
1408 					/*
1409 					 * rare race with speculative reference.
1410 					 * the speculative reference will free
1411 					 * this page shortly, so we may
1412 					 * increment nr_reclaimed here (and
1413 					 * leave it off the LRU).
1414 					 */
1415 					nr_reclaimed++;
1416 					continue;
1417 				}
1418 			}
1419 		}
1420 
1421 		if (PageAnon(page) && !PageSwapBacked(page)) {
1422 			/* follow __remove_mapping for reference */
1423 			if (!page_ref_freeze(page, 1))
1424 				goto keep_locked;
1425 			if (PageDirty(page)) {
1426 				page_ref_unfreeze(page, 1);
1427 				goto keep_locked;
1428 			}
1429 
1430 			count_vm_event(PGLAZYFREED);
1431 			count_memcg_page_event(page, PGLAZYFREED);
1432 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1433 							 sc->target_mem_cgroup))
1434 			goto keep_locked;
1435 
1436 		unlock_page(page);
1437 free_it:
1438 		/*
1439 		 * THP may get swapped out in a whole, need account
1440 		 * all base pages.
1441 		 */
1442 		nr_reclaimed += nr_pages;
1443 
1444 		/*
1445 		 * Is there need to periodically free_page_list? It would
1446 		 * appear not as the counts should be low
1447 		 */
1448 		if (unlikely(PageTransHuge(page)))
1449 			destroy_compound_page(page);
1450 		else
1451 			list_add(&page->lru, &free_pages);
1452 		continue;
1453 
1454 activate_locked_split:
1455 		/*
1456 		 * The tail pages that are failed to add into swap cache
1457 		 * reach here.  Fixup nr_scanned and nr_pages.
1458 		 */
1459 		if (nr_pages > 1) {
1460 			sc->nr_scanned -= (nr_pages - 1);
1461 			nr_pages = 1;
1462 		}
1463 activate_locked:
1464 		/* Not a candidate for swapping, so reclaim swap space. */
1465 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1466 						PageMlocked(page)))
1467 			try_to_free_swap(page);
1468 		VM_BUG_ON_PAGE(PageActive(page), page);
1469 		if (!PageMlocked(page)) {
1470 			int type = page_is_file_lru(page);
1471 			SetPageActive(page);
1472 			stat->nr_activate[type] += nr_pages;
1473 			count_memcg_page_event(page, PGACTIVATE);
1474 		}
1475 keep_locked:
1476 		unlock_page(page);
1477 keep:
1478 		list_add(&page->lru, &ret_pages);
1479 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1480 	}
1481 
1482 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1483 
1484 	mem_cgroup_uncharge_list(&free_pages);
1485 	try_to_unmap_flush();
1486 	free_unref_page_list(&free_pages);
1487 
1488 	list_splice(&ret_pages, page_list);
1489 	count_vm_events(PGACTIVATE, pgactivate);
1490 
1491 	return nr_reclaimed;
1492 }
1493 
1494 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1495 					    struct list_head *page_list)
1496 {
1497 	struct scan_control sc = {
1498 		.gfp_mask = GFP_KERNEL,
1499 		.priority = DEF_PRIORITY,
1500 		.may_unmap = 1,
1501 	};
1502 	struct reclaim_stat stat;
1503 	unsigned int nr_reclaimed;
1504 	struct page *page, *next;
1505 	LIST_HEAD(clean_pages);
1506 
1507 	list_for_each_entry_safe(page, next, page_list, lru) {
1508 		if (page_is_file_lru(page) && !PageDirty(page) &&
1509 		    !__PageMovable(page) && !PageUnevictable(page)) {
1510 			ClearPageActive(page);
1511 			list_move(&page->lru, &clean_pages);
1512 		}
1513 	}
1514 
1515 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1516 			TTU_IGNORE_ACCESS, &stat, true);
1517 	list_splice(&clean_pages, page_list);
1518 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1519 	/*
1520 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1521 	 * they will rotate back to anonymous LRU in the end if it failed to
1522 	 * discard so isolated count will be mismatched.
1523 	 * Compensate the isolated count for both LRU lists.
1524 	 */
1525 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1526 			    stat.nr_lazyfree_fail);
1527 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1528 			    -stat.nr_lazyfree_fail);
1529 	return nr_reclaimed;
1530 }
1531 
1532 /*
1533  * Attempt to remove the specified page from its LRU.  Only take this page
1534  * if it is of the appropriate PageActive status.  Pages which are being
1535  * freed elsewhere are also ignored.
1536  *
1537  * page:	page to consider
1538  * mode:	one of the LRU isolation modes defined above
1539  *
1540  * returns 0 on success, -ve errno on failure.
1541  */
1542 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1543 {
1544 	int ret = -EINVAL;
1545 
1546 	/* Only take pages on the LRU. */
1547 	if (!PageLRU(page))
1548 		return ret;
1549 
1550 	/* Compaction should not handle unevictable pages but CMA can do so */
1551 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1552 		return ret;
1553 
1554 	ret = -EBUSY;
1555 
1556 	/*
1557 	 * To minimise LRU disruption, the caller can indicate that it only
1558 	 * wants to isolate pages it will be able to operate on without
1559 	 * blocking - clean pages for the most part.
1560 	 *
1561 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1562 	 * that it is possible to migrate without blocking
1563 	 */
1564 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1565 		/* All the caller can do on PageWriteback is block */
1566 		if (PageWriteback(page))
1567 			return ret;
1568 
1569 		if (PageDirty(page)) {
1570 			struct address_space *mapping;
1571 			bool migrate_dirty;
1572 
1573 			/*
1574 			 * Only pages without mappings or that have a
1575 			 * ->migratepage callback are possible to migrate
1576 			 * without blocking. However, we can be racing with
1577 			 * truncation so it's necessary to lock the page
1578 			 * to stabilise the mapping as truncation holds
1579 			 * the page lock until after the page is removed
1580 			 * from the page cache.
1581 			 */
1582 			if (!trylock_page(page))
1583 				return ret;
1584 
1585 			mapping = page_mapping(page);
1586 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1587 			unlock_page(page);
1588 			if (!migrate_dirty)
1589 				return ret;
1590 		}
1591 	}
1592 
1593 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1594 		return ret;
1595 
1596 	if (likely(get_page_unless_zero(page))) {
1597 		/*
1598 		 * Be careful not to clear PageLRU until after we're
1599 		 * sure the page is not being freed elsewhere -- the
1600 		 * page release code relies on it.
1601 		 */
1602 		ClearPageLRU(page);
1603 		ret = 0;
1604 	}
1605 
1606 	return ret;
1607 }
1608 
1609 
1610 /*
1611  * Update LRU sizes after isolating pages. The LRU size updates must
1612  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1613  */
1614 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1615 			enum lru_list lru, unsigned long *nr_zone_taken)
1616 {
1617 	int zid;
1618 
1619 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1620 		if (!nr_zone_taken[zid])
1621 			continue;
1622 
1623 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1624 	}
1625 
1626 }
1627 
1628 /**
1629  * pgdat->lru_lock is heavily contended.  Some of the functions that
1630  * shrink the lists perform better by taking out a batch of pages
1631  * and working on them outside the LRU lock.
1632  *
1633  * For pagecache intensive workloads, this function is the hottest
1634  * spot in the kernel (apart from copy_*_user functions).
1635  *
1636  * Appropriate locks must be held before calling this function.
1637  *
1638  * @nr_to_scan:	The number of eligible pages to look through on the list.
1639  * @lruvec:	The LRU vector to pull pages from.
1640  * @dst:	The temp list to put pages on to.
1641  * @nr_scanned:	The number of pages that were scanned.
1642  * @sc:		The scan_control struct for this reclaim session
1643  * @lru:	LRU list id for isolating
1644  *
1645  * returns how many pages were moved onto *@dst.
1646  */
1647 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1648 		struct lruvec *lruvec, struct list_head *dst,
1649 		unsigned long *nr_scanned, struct scan_control *sc,
1650 		enum lru_list lru)
1651 {
1652 	struct list_head *src = &lruvec->lists[lru];
1653 	unsigned long nr_taken = 0;
1654 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1655 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1656 	unsigned long skipped = 0;
1657 	unsigned long scan, total_scan, nr_pages;
1658 	LIST_HEAD(pages_skipped);
1659 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1660 
1661 	total_scan = 0;
1662 	scan = 0;
1663 	while (scan < nr_to_scan && !list_empty(src)) {
1664 		struct page *page;
1665 
1666 		page = lru_to_page(src);
1667 		prefetchw_prev_lru_page(page, src, flags);
1668 
1669 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1670 
1671 		nr_pages = compound_nr(page);
1672 		total_scan += nr_pages;
1673 
1674 		if (page_zonenum(page) > sc->reclaim_idx) {
1675 			list_move(&page->lru, &pages_skipped);
1676 			nr_skipped[page_zonenum(page)] += nr_pages;
1677 			continue;
1678 		}
1679 
1680 		/*
1681 		 * Do not count skipped pages because that makes the function
1682 		 * return with no isolated pages if the LRU mostly contains
1683 		 * ineligible pages.  This causes the VM to not reclaim any
1684 		 * pages, triggering a premature OOM.
1685 		 *
1686 		 * Account all tail pages of THP.  This would not cause
1687 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1688 		 * only when the page is being freed somewhere else.
1689 		 */
1690 		scan += nr_pages;
1691 		switch (__isolate_lru_page(page, mode)) {
1692 		case 0:
1693 			nr_taken += nr_pages;
1694 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1695 			list_move(&page->lru, dst);
1696 			break;
1697 
1698 		case -EBUSY:
1699 			/* else it is being freed elsewhere */
1700 			list_move(&page->lru, src);
1701 			continue;
1702 
1703 		default:
1704 			BUG();
1705 		}
1706 	}
1707 
1708 	/*
1709 	 * Splice any skipped pages to the start of the LRU list. Note that
1710 	 * this disrupts the LRU order when reclaiming for lower zones but
1711 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1712 	 * scanning would soon rescan the same pages to skip and put the
1713 	 * system at risk of premature OOM.
1714 	 */
1715 	if (!list_empty(&pages_skipped)) {
1716 		int zid;
1717 
1718 		list_splice(&pages_skipped, src);
1719 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1720 			if (!nr_skipped[zid])
1721 				continue;
1722 
1723 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1724 			skipped += nr_skipped[zid];
1725 		}
1726 	}
1727 	*nr_scanned = total_scan;
1728 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1729 				    total_scan, skipped, nr_taken, mode, lru);
1730 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1731 	return nr_taken;
1732 }
1733 
1734 /**
1735  * isolate_lru_page - tries to isolate a page from its LRU list
1736  * @page: page to isolate from its LRU list
1737  *
1738  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1739  * vmstat statistic corresponding to whatever LRU list the page was on.
1740  *
1741  * Returns 0 if the page was removed from an LRU list.
1742  * Returns -EBUSY if the page was not on an LRU list.
1743  *
1744  * The returned page will have PageLRU() cleared.  If it was found on
1745  * the active list, it will have PageActive set.  If it was found on
1746  * the unevictable list, it will have the PageUnevictable bit set. That flag
1747  * may need to be cleared by the caller before letting the page go.
1748  *
1749  * The vmstat statistic corresponding to the list on which the page was
1750  * found will be decremented.
1751  *
1752  * Restrictions:
1753  *
1754  * (1) Must be called with an elevated refcount on the page. This is a
1755  *     fundamentnal difference from isolate_lru_pages (which is called
1756  *     without a stable reference).
1757  * (2) the lru_lock must not be held.
1758  * (3) interrupts must be enabled.
1759  */
1760 int isolate_lru_page(struct page *page)
1761 {
1762 	int ret = -EBUSY;
1763 
1764 	VM_BUG_ON_PAGE(!page_count(page), page);
1765 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1766 
1767 	if (PageLRU(page)) {
1768 		pg_data_t *pgdat = page_pgdat(page);
1769 		struct lruvec *lruvec;
1770 
1771 		spin_lock_irq(&pgdat->lru_lock);
1772 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1773 		if (PageLRU(page)) {
1774 			int lru = page_lru(page);
1775 			get_page(page);
1776 			ClearPageLRU(page);
1777 			del_page_from_lru_list(page, lruvec, lru);
1778 			ret = 0;
1779 		}
1780 		spin_unlock_irq(&pgdat->lru_lock);
1781 	}
1782 	return ret;
1783 }
1784 
1785 /*
1786  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1787  * then get rescheduled. When there are massive number of tasks doing page
1788  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1789  * the LRU list will go small and be scanned faster than necessary, leading to
1790  * unnecessary swapping, thrashing and OOM.
1791  */
1792 static int too_many_isolated(struct pglist_data *pgdat, int file,
1793 		struct scan_control *sc)
1794 {
1795 	unsigned long inactive, isolated;
1796 
1797 	if (current_is_kswapd())
1798 		return 0;
1799 
1800 	if (!writeback_throttling_sane(sc))
1801 		return 0;
1802 
1803 	if (file) {
1804 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1805 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1806 	} else {
1807 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1808 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1809 	}
1810 
1811 	/*
1812 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1813 	 * won't get blocked by normal direct-reclaimers, forming a circular
1814 	 * deadlock.
1815 	 */
1816 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1817 		inactive >>= 3;
1818 
1819 	return isolated > inactive;
1820 }
1821 
1822 /*
1823  * This moves pages from @list to corresponding LRU list.
1824  *
1825  * We move them the other way if the page is referenced by one or more
1826  * processes, from rmap.
1827  *
1828  * If the pages are mostly unmapped, the processing is fast and it is
1829  * appropriate to hold zone_lru_lock across the whole operation.  But if
1830  * the pages are mapped, the processing is slow (page_referenced()) so we
1831  * should drop zone_lru_lock around each page.  It's impossible to balance
1832  * this, so instead we remove the pages from the LRU while processing them.
1833  * It is safe to rely on PG_active against the non-LRU pages in here because
1834  * nobody will play with that bit on a non-LRU page.
1835  *
1836  * The downside is that we have to touch page->_refcount against each page.
1837  * But we had to alter page->flags anyway.
1838  *
1839  * Returns the number of pages moved to the given lruvec.
1840  */
1841 
1842 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1843 						     struct list_head *list)
1844 {
1845 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1846 	int nr_pages, nr_moved = 0;
1847 	LIST_HEAD(pages_to_free);
1848 	struct page *page;
1849 	enum lru_list lru;
1850 
1851 	while (!list_empty(list)) {
1852 		page = lru_to_page(list);
1853 		VM_BUG_ON_PAGE(PageLRU(page), page);
1854 		if (unlikely(!page_evictable(page))) {
1855 			list_del(&page->lru);
1856 			spin_unlock_irq(&pgdat->lru_lock);
1857 			putback_lru_page(page);
1858 			spin_lock_irq(&pgdat->lru_lock);
1859 			continue;
1860 		}
1861 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1862 
1863 		SetPageLRU(page);
1864 		lru = page_lru(page);
1865 
1866 		nr_pages = hpage_nr_pages(page);
1867 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1868 		list_move(&page->lru, &lruvec->lists[lru]);
1869 
1870 		if (put_page_testzero(page)) {
1871 			__ClearPageLRU(page);
1872 			__ClearPageActive(page);
1873 			del_page_from_lru_list(page, lruvec, lru);
1874 
1875 			if (unlikely(PageCompound(page))) {
1876 				spin_unlock_irq(&pgdat->lru_lock);
1877 				destroy_compound_page(page);
1878 				spin_lock_irq(&pgdat->lru_lock);
1879 			} else
1880 				list_add(&page->lru, &pages_to_free);
1881 		} else {
1882 			nr_moved += nr_pages;
1883 			if (PageActive(page))
1884 				workingset_age_nonresident(lruvec, nr_pages);
1885 		}
1886 	}
1887 
1888 	/*
1889 	 * To save our caller's stack, now use input list for pages to free.
1890 	 */
1891 	list_splice(&pages_to_free, list);
1892 
1893 	return nr_moved;
1894 }
1895 
1896 /*
1897  * If a kernel thread (such as nfsd for loop-back mounts) services
1898  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1899  * In that case we should only throttle if the backing device it is
1900  * writing to is congested.  In other cases it is safe to throttle.
1901  */
1902 static int current_may_throttle(void)
1903 {
1904 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1905 		current->backing_dev_info == NULL ||
1906 		bdi_write_congested(current->backing_dev_info);
1907 }
1908 
1909 /*
1910  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1911  * of reclaimed pages
1912  */
1913 static noinline_for_stack unsigned long
1914 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1915 		     struct scan_control *sc, enum lru_list lru)
1916 {
1917 	LIST_HEAD(page_list);
1918 	unsigned long nr_scanned;
1919 	unsigned int nr_reclaimed = 0;
1920 	unsigned long nr_taken;
1921 	struct reclaim_stat stat;
1922 	bool file = is_file_lru(lru);
1923 	enum vm_event_item item;
1924 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1925 	bool stalled = false;
1926 
1927 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1928 		if (stalled)
1929 			return 0;
1930 
1931 		/* wait a bit for the reclaimer. */
1932 		msleep(100);
1933 		stalled = true;
1934 
1935 		/* We are about to die and free our memory. Return now. */
1936 		if (fatal_signal_pending(current))
1937 			return SWAP_CLUSTER_MAX;
1938 	}
1939 
1940 	lru_add_drain();
1941 
1942 	spin_lock_irq(&pgdat->lru_lock);
1943 
1944 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1945 				     &nr_scanned, sc, lru);
1946 
1947 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1948 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1949 	if (!cgroup_reclaim(sc))
1950 		__count_vm_events(item, nr_scanned);
1951 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1952 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1953 
1954 	spin_unlock_irq(&pgdat->lru_lock);
1955 
1956 	if (nr_taken == 0)
1957 		return 0;
1958 
1959 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1960 				&stat, false);
1961 
1962 	spin_lock_irq(&pgdat->lru_lock);
1963 
1964 	move_pages_to_lru(lruvec, &page_list);
1965 
1966 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1967 	lru_note_cost(lruvec, file, stat.nr_pageout);
1968 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1969 	if (!cgroup_reclaim(sc))
1970 		__count_vm_events(item, nr_reclaimed);
1971 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1972 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1973 
1974 	spin_unlock_irq(&pgdat->lru_lock);
1975 
1976 	mem_cgroup_uncharge_list(&page_list);
1977 	free_unref_page_list(&page_list);
1978 
1979 	/*
1980 	 * If dirty pages are scanned that are not queued for IO, it
1981 	 * implies that flushers are not doing their job. This can
1982 	 * happen when memory pressure pushes dirty pages to the end of
1983 	 * the LRU before the dirty limits are breached and the dirty
1984 	 * data has expired. It can also happen when the proportion of
1985 	 * dirty pages grows not through writes but through memory
1986 	 * pressure reclaiming all the clean cache. And in some cases,
1987 	 * the flushers simply cannot keep up with the allocation
1988 	 * rate. Nudge the flusher threads in case they are asleep.
1989 	 */
1990 	if (stat.nr_unqueued_dirty == nr_taken)
1991 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1992 
1993 	sc->nr.dirty += stat.nr_dirty;
1994 	sc->nr.congested += stat.nr_congested;
1995 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1996 	sc->nr.writeback += stat.nr_writeback;
1997 	sc->nr.immediate += stat.nr_immediate;
1998 	sc->nr.taken += nr_taken;
1999 	if (file)
2000 		sc->nr.file_taken += nr_taken;
2001 
2002 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2003 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2004 	return nr_reclaimed;
2005 }
2006 
2007 static void shrink_active_list(unsigned long nr_to_scan,
2008 			       struct lruvec *lruvec,
2009 			       struct scan_control *sc,
2010 			       enum lru_list lru)
2011 {
2012 	unsigned long nr_taken;
2013 	unsigned long nr_scanned;
2014 	unsigned long vm_flags;
2015 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2016 	LIST_HEAD(l_active);
2017 	LIST_HEAD(l_inactive);
2018 	struct page *page;
2019 	unsigned nr_deactivate, nr_activate;
2020 	unsigned nr_rotated = 0;
2021 	int file = is_file_lru(lru);
2022 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2023 
2024 	lru_add_drain();
2025 
2026 	spin_lock_irq(&pgdat->lru_lock);
2027 
2028 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2029 				     &nr_scanned, sc, lru);
2030 
2031 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2032 
2033 	if (!cgroup_reclaim(sc))
2034 		__count_vm_events(PGREFILL, nr_scanned);
2035 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2036 
2037 	spin_unlock_irq(&pgdat->lru_lock);
2038 
2039 	while (!list_empty(&l_hold)) {
2040 		cond_resched();
2041 		page = lru_to_page(&l_hold);
2042 		list_del(&page->lru);
2043 
2044 		if (unlikely(!page_evictable(page))) {
2045 			putback_lru_page(page);
2046 			continue;
2047 		}
2048 
2049 		if (unlikely(buffer_heads_over_limit)) {
2050 			if (page_has_private(page) && trylock_page(page)) {
2051 				if (page_has_private(page))
2052 					try_to_release_page(page, 0);
2053 				unlock_page(page);
2054 			}
2055 		}
2056 
2057 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2058 				    &vm_flags)) {
2059 			/*
2060 			 * Identify referenced, file-backed active pages and
2061 			 * give them one more trip around the active list. So
2062 			 * that executable code get better chances to stay in
2063 			 * memory under moderate memory pressure.  Anon pages
2064 			 * are not likely to be evicted by use-once streaming
2065 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2066 			 * so we ignore them here.
2067 			 */
2068 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2069 				nr_rotated += hpage_nr_pages(page);
2070 				list_add(&page->lru, &l_active);
2071 				continue;
2072 			}
2073 		}
2074 
2075 		ClearPageActive(page);	/* we are de-activating */
2076 		SetPageWorkingset(page);
2077 		list_add(&page->lru, &l_inactive);
2078 	}
2079 
2080 	/*
2081 	 * Move pages back to the lru list.
2082 	 */
2083 	spin_lock_irq(&pgdat->lru_lock);
2084 
2085 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2086 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2087 	/* Keep all free pages in l_active list */
2088 	list_splice(&l_inactive, &l_active);
2089 
2090 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2091 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2092 
2093 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2094 	spin_unlock_irq(&pgdat->lru_lock);
2095 
2096 	mem_cgroup_uncharge_list(&l_active);
2097 	free_unref_page_list(&l_active);
2098 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2099 			nr_deactivate, nr_rotated, sc->priority, file);
2100 }
2101 
2102 unsigned long reclaim_pages(struct list_head *page_list)
2103 {
2104 	int nid = NUMA_NO_NODE;
2105 	unsigned int nr_reclaimed = 0;
2106 	LIST_HEAD(node_page_list);
2107 	struct reclaim_stat dummy_stat;
2108 	struct page *page;
2109 	struct scan_control sc = {
2110 		.gfp_mask = GFP_KERNEL,
2111 		.priority = DEF_PRIORITY,
2112 		.may_writepage = 1,
2113 		.may_unmap = 1,
2114 		.may_swap = 1,
2115 	};
2116 
2117 	while (!list_empty(page_list)) {
2118 		page = lru_to_page(page_list);
2119 		if (nid == NUMA_NO_NODE) {
2120 			nid = page_to_nid(page);
2121 			INIT_LIST_HEAD(&node_page_list);
2122 		}
2123 
2124 		if (nid == page_to_nid(page)) {
2125 			ClearPageActive(page);
2126 			list_move(&page->lru, &node_page_list);
2127 			continue;
2128 		}
2129 
2130 		nr_reclaimed += shrink_page_list(&node_page_list,
2131 						NODE_DATA(nid),
2132 						&sc, 0,
2133 						&dummy_stat, false);
2134 		while (!list_empty(&node_page_list)) {
2135 			page = lru_to_page(&node_page_list);
2136 			list_del(&page->lru);
2137 			putback_lru_page(page);
2138 		}
2139 
2140 		nid = NUMA_NO_NODE;
2141 	}
2142 
2143 	if (!list_empty(&node_page_list)) {
2144 		nr_reclaimed += shrink_page_list(&node_page_list,
2145 						NODE_DATA(nid),
2146 						&sc, 0,
2147 						&dummy_stat, false);
2148 		while (!list_empty(&node_page_list)) {
2149 			page = lru_to_page(&node_page_list);
2150 			list_del(&page->lru);
2151 			putback_lru_page(page);
2152 		}
2153 	}
2154 
2155 	return nr_reclaimed;
2156 }
2157 
2158 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2159 				 struct lruvec *lruvec, struct scan_control *sc)
2160 {
2161 	if (is_active_lru(lru)) {
2162 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2163 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2164 		else
2165 			sc->skipped_deactivate = 1;
2166 		return 0;
2167 	}
2168 
2169 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2170 }
2171 
2172 /*
2173  * The inactive anon list should be small enough that the VM never has
2174  * to do too much work.
2175  *
2176  * The inactive file list should be small enough to leave most memory
2177  * to the established workingset on the scan-resistant active list,
2178  * but large enough to avoid thrashing the aggregate readahead window.
2179  *
2180  * Both inactive lists should also be large enough that each inactive
2181  * page has a chance to be referenced again before it is reclaimed.
2182  *
2183  * If that fails and refaulting is observed, the inactive list grows.
2184  *
2185  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2186  * on this LRU, maintained by the pageout code. An inactive_ratio
2187  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2188  *
2189  * total     target    max
2190  * memory    ratio     inactive
2191  * -------------------------------------
2192  *   10MB       1         5MB
2193  *  100MB       1        50MB
2194  *    1GB       3       250MB
2195  *   10GB      10       0.9GB
2196  *  100GB      31         3GB
2197  *    1TB     101        10GB
2198  *   10TB     320        32GB
2199  */
2200 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2201 {
2202 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2203 	unsigned long inactive, active;
2204 	unsigned long inactive_ratio;
2205 	unsigned long gb;
2206 
2207 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2208 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2209 
2210 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2211 	if (gb)
2212 		inactive_ratio = int_sqrt(10 * gb);
2213 	else
2214 		inactive_ratio = 1;
2215 
2216 	return inactive * inactive_ratio < active;
2217 }
2218 
2219 enum scan_balance {
2220 	SCAN_EQUAL,
2221 	SCAN_FRACT,
2222 	SCAN_ANON,
2223 	SCAN_FILE,
2224 };
2225 
2226 /*
2227  * Determine how aggressively the anon and file LRU lists should be
2228  * scanned.  The relative value of each set of LRU lists is determined
2229  * by looking at the fraction of the pages scanned we did rotate back
2230  * onto the active list instead of evict.
2231  *
2232  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2233  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2234  */
2235 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2236 			   unsigned long *nr)
2237 {
2238 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2239 	unsigned long anon_cost, file_cost, total_cost;
2240 	int swappiness = mem_cgroup_swappiness(memcg);
2241 	u64 fraction[2];
2242 	u64 denominator = 0;	/* gcc */
2243 	enum scan_balance scan_balance;
2244 	unsigned long ap, fp;
2245 	enum lru_list lru;
2246 
2247 	/* If we have no swap space, do not bother scanning anon pages. */
2248 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2249 		scan_balance = SCAN_FILE;
2250 		goto out;
2251 	}
2252 
2253 	/*
2254 	 * Global reclaim will swap to prevent OOM even with no
2255 	 * swappiness, but memcg users want to use this knob to
2256 	 * disable swapping for individual groups completely when
2257 	 * using the memory controller's swap limit feature would be
2258 	 * too expensive.
2259 	 */
2260 	if (cgroup_reclaim(sc) && !swappiness) {
2261 		scan_balance = SCAN_FILE;
2262 		goto out;
2263 	}
2264 
2265 	/*
2266 	 * Do not apply any pressure balancing cleverness when the
2267 	 * system is close to OOM, scan both anon and file equally
2268 	 * (unless the swappiness setting disagrees with swapping).
2269 	 */
2270 	if (!sc->priority && swappiness) {
2271 		scan_balance = SCAN_EQUAL;
2272 		goto out;
2273 	}
2274 
2275 	/*
2276 	 * If the system is almost out of file pages, force-scan anon.
2277 	 */
2278 	if (sc->file_is_tiny) {
2279 		scan_balance = SCAN_ANON;
2280 		goto out;
2281 	}
2282 
2283 	/*
2284 	 * If there is enough inactive page cache, we do not reclaim
2285 	 * anything from the anonymous working right now.
2286 	 */
2287 	if (sc->cache_trim_mode) {
2288 		scan_balance = SCAN_FILE;
2289 		goto out;
2290 	}
2291 
2292 	scan_balance = SCAN_FRACT;
2293 	/*
2294 	 * Calculate the pressure balance between anon and file pages.
2295 	 *
2296 	 * The amount of pressure we put on each LRU is inversely
2297 	 * proportional to the cost of reclaiming each list, as
2298 	 * determined by the share of pages that are refaulting, times
2299 	 * the relative IO cost of bringing back a swapped out
2300 	 * anonymous page vs reloading a filesystem page (swappiness).
2301 	 *
2302 	 * Although we limit that influence to ensure no list gets
2303 	 * left behind completely: at least a third of the pressure is
2304 	 * applied, before swappiness.
2305 	 *
2306 	 * With swappiness at 100, anon and file have equal IO cost.
2307 	 */
2308 	total_cost = sc->anon_cost + sc->file_cost;
2309 	anon_cost = total_cost + sc->anon_cost;
2310 	file_cost = total_cost + sc->file_cost;
2311 	total_cost = anon_cost + file_cost;
2312 
2313 	ap = swappiness * (total_cost + 1);
2314 	ap /= anon_cost + 1;
2315 
2316 	fp = (200 - swappiness) * (total_cost + 1);
2317 	fp /= file_cost + 1;
2318 
2319 	fraction[0] = ap;
2320 	fraction[1] = fp;
2321 	denominator = ap + fp;
2322 out:
2323 	for_each_evictable_lru(lru) {
2324 		int file = is_file_lru(lru);
2325 		unsigned long lruvec_size;
2326 		unsigned long scan;
2327 		unsigned long protection;
2328 
2329 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2330 		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2331 						   memcg,
2332 						   sc->memcg_low_reclaim);
2333 
2334 		if (protection) {
2335 			/*
2336 			 * Scale a cgroup's reclaim pressure by proportioning
2337 			 * its current usage to its memory.low or memory.min
2338 			 * setting.
2339 			 *
2340 			 * This is important, as otherwise scanning aggression
2341 			 * becomes extremely binary -- from nothing as we
2342 			 * approach the memory protection threshold, to totally
2343 			 * nominal as we exceed it.  This results in requiring
2344 			 * setting extremely liberal protection thresholds. It
2345 			 * also means we simply get no protection at all if we
2346 			 * set it too low, which is not ideal.
2347 			 *
2348 			 * If there is any protection in place, we reduce scan
2349 			 * pressure by how much of the total memory used is
2350 			 * within protection thresholds.
2351 			 *
2352 			 * There is one special case: in the first reclaim pass,
2353 			 * we skip over all groups that are within their low
2354 			 * protection. If that fails to reclaim enough pages to
2355 			 * satisfy the reclaim goal, we come back and override
2356 			 * the best-effort low protection. However, we still
2357 			 * ideally want to honor how well-behaved groups are in
2358 			 * that case instead of simply punishing them all
2359 			 * equally. As such, we reclaim them based on how much
2360 			 * memory they are using, reducing the scan pressure
2361 			 * again by how much of the total memory used is under
2362 			 * hard protection.
2363 			 */
2364 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2365 
2366 			/* Avoid TOCTOU with earlier protection check */
2367 			cgroup_size = max(cgroup_size, protection);
2368 
2369 			scan = lruvec_size - lruvec_size * protection /
2370 				cgroup_size;
2371 
2372 			/*
2373 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2374 			 * reclaim moving forwards, avoiding decrementing
2375 			 * sc->priority further than desirable.
2376 			 */
2377 			scan = max(scan, SWAP_CLUSTER_MAX);
2378 		} else {
2379 			scan = lruvec_size;
2380 		}
2381 
2382 		scan >>= sc->priority;
2383 
2384 		/*
2385 		 * If the cgroup's already been deleted, make sure to
2386 		 * scrape out the remaining cache.
2387 		 */
2388 		if (!scan && !mem_cgroup_online(memcg))
2389 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2390 
2391 		switch (scan_balance) {
2392 		case SCAN_EQUAL:
2393 			/* Scan lists relative to size */
2394 			break;
2395 		case SCAN_FRACT:
2396 			/*
2397 			 * Scan types proportional to swappiness and
2398 			 * their relative recent reclaim efficiency.
2399 			 * Make sure we don't miss the last page on
2400 			 * the offlined memory cgroups because of a
2401 			 * round-off error.
2402 			 */
2403 			scan = mem_cgroup_online(memcg) ?
2404 			       div64_u64(scan * fraction[file], denominator) :
2405 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2406 						  denominator);
2407 			break;
2408 		case SCAN_FILE:
2409 		case SCAN_ANON:
2410 			/* Scan one type exclusively */
2411 			if ((scan_balance == SCAN_FILE) != file)
2412 				scan = 0;
2413 			break;
2414 		default:
2415 			/* Look ma, no brain */
2416 			BUG();
2417 		}
2418 
2419 		nr[lru] = scan;
2420 	}
2421 }
2422 
2423 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2424 {
2425 	unsigned long nr[NR_LRU_LISTS];
2426 	unsigned long targets[NR_LRU_LISTS];
2427 	unsigned long nr_to_scan;
2428 	enum lru_list lru;
2429 	unsigned long nr_reclaimed = 0;
2430 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2431 	struct blk_plug plug;
2432 	bool scan_adjusted;
2433 
2434 	get_scan_count(lruvec, sc, nr);
2435 
2436 	/* Record the original scan target for proportional adjustments later */
2437 	memcpy(targets, nr, sizeof(nr));
2438 
2439 	/*
2440 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2441 	 * event that can occur when there is little memory pressure e.g.
2442 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2443 	 * when the requested number of pages are reclaimed when scanning at
2444 	 * DEF_PRIORITY on the assumption that the fact we are direct
2445 	 * reclaiming implies that kswapd is not keeping up and it is best to
2446 	 * do a batch of work at once. For memcg reclaim one check is made to
2447 	 * abort proportional reclaim if either the file or anon lru has already
2448 	 * dropped to zero at the first pass.
2449 	 */
2450 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2451 			 sc->priority == DEF_PRIORITY);
2452 
2453 	blk_start_plug(&plug);
2454 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2455 					nr[LRU_INACTIVE_FILE]) {
2456 		unsigned long nr_anon, nr_file, percentage;
2457 		unsigned long nr_scanned;
2458 
2459 		for_each_evictable_lru(lru) {
2460 			if (nr[lru]) {
2461 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2462 				nr[lru] -= nr_to_scan;
2463 
2464 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2465 							    lruvec, sc);
2466 			}
2467 		}
2468 
2469 		cond_resched();
2470 
2471 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2472 			continue;
2473 
2474 		/*
2475 		 * For kswapd and memcg, reclaim at least the number of pages
2476 		 * requested. Ensure that the anon and file LRUs are scanned
2477 		 * proportionally what was requested by get_scan_count(). We
2478 		 * stop reclaiming one LRU and reduce the amount scanning
2479 		 * proportional to the original scan target.
2480 		 */
2481 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2482 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2483 
2484 		/*
2485 		 * It's just vindictive to attack the larger once the smaller
2486 		 * has gone to zero.  And given the way we stop scanning the
2487 		 * smaller below, this makes sure that we only make one nudge
2488 		 * towards proportionality once we've got nr_to_reclaim.
2489 		 */
2490 		if (!nr_file || !nr_anon)
2491 			break;
2492 
2493 		if (nr_file > nr_anon) {
2494 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2495 						targets[LRU_ACTIVE_ANON] + 1;
2496 			lru = LRU_BASE;
2497 			percentage = nr_anon * 100 / scan_target;
2498 		} else {
2499 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2500 						targets[LRU_ACTIVE_FILE] + 1;
2501 			lru = LRU_FILE;
2502 			percentage = nr_file * 100 / scan_target;
2503 		}
2504 
2505 		/* Stop scanning the smaller of the LRU */
2506 		nr[lru] = 0;
2507 		nr[lru + LRU_ACTIVE] = 0;
2508 
2509 		/*
2510 		 * Recalculate the other LRU scan count based on its original
2511 		 * scan target and the percentage scanning already complete
2512 		 */
2513 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2514 		nr_scanned = targets[lru] - nr[lru];
2515 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2516 		nr[lru] -= min(nr[lru], nr_scanned);
2517 
2518 		lru += LRU_ACTIVE;
2519 		nr_scanned = targets[lru] - nr[lru];
2520 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2521 		nr[lru] -= min(nr[lru], nr_scanned);
2522 
2523 		scan_adjusted = true;
2524 	}
2525 	blk_finish_plug(&plug);
2526 	sc->nr_reclaimed += nr_reclaimed;
2527 
2528 	/*
2529 	 * Even if we did not try to evict anon pages at all, we want to
2530 	 * rebalance the anon lru active/inactive ratio.
2531 	 */
2532 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2533 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2534 				   sc, LRU_ACTIVE_ANON);
2535 }
2536 
2537 /* Use reclaim/compaction for costly allocs or under memory pressure */
2538 static bool in_reclaim_compaction(struct scan_control *sc)
2539 {
2540 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2541 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2542 			 sc->priority < DEF_PRIORITY - 2))
2543 		return true;
2544 
2545 	return false;
2546 }
2547 
2548 /*
2549  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2550  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2551  * true if more pages should be reclaimed such that when the page allocator
2552  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2553  * It will give up earlier than that if there is difficulty reclaiming pages.
2554  */
2555 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2556 					unsigned long nr_reclaimed,
2557 					struct scan_control *sc)
2558 {
2559 	unsigned long pages_for_compaction;
2560 	unsigned long inactive_lru_pages;
2561 	int z;
2562 
2563 	/* If not in reclaim/compaction mode, stop */
2564 	if (!in_reclaim_compaction(sc))
2565 		return false;
2566 
2567 	/*
2568 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2569 	 * number of pages that were scanned. This will return to the caller
2570 	 * with the risk reclaim/compaction and the resulting allocation attempt
2571 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2572 	 * allocations through requiring that the full LRU list has been scanned
2573 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2574 	 * scan, but that approximation was wrong, and there were corner cases
2575 	 * where always a non-zero amount of pages were scanned.
2576 	 */
2577 	if (!nr_reclaimed)
2578 		return false;
2579 
2580 	/* If compaction would go ahead or the allocation would succeed, stop */
2581 	for (z = 0; z <= sc->reclaim_idx; z++) {
2582 		struct zone *zone = &pgdat->node_zones[z];
2583 		if (!managed_zone(zone))
2584 			continue;
2585 
2586 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2587 		case COMPACT_SUCCESS:
2588 		case COMPACT_CONTINUE:
2589 			return false;
2590 		default:
2591 			/* check next zone */
2592 			;
2593 		}
2594 	}
2595 
2596 	/*
2597 	 * If we have not reclaimed enough pages for compaction and the
2598 	 * inactive lists are large enough, continue reclaiming
2599 	 */
2600 	pages_for_compaction = compact_gap(sc->order);
2601 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2602 	if (get_nr_swap_pages() > 0)
2603 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2604 
2605 	return inactive_lru_pages > pages_for_compaction;
2606 }
2607 
2608 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2609 {
2610 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2611 	struct mem_cgroup *memcg;
2612 
2613 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2614 	do {
2615 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2616 		unsigned long reclaimed;
2617 		unsigned long scanned;
2618 
2619 		mem_cgroup_calculate_protection(target_memcg, memcg);
2620 
2621 		if (mem_cgroup_below_min(memcg)) {
2622 			/*
2623 			 * Hard protection.
2624 			 * If there is no reclaimable memory, OOM.
2625 			 */
2626 			continue;
2627 		} else if (mem_cgroup_below_low(memcg)) {
2628 			/*
2629 			 * Soft protection.
2630 			 * Respect the protection only as long as
2631 			 * there is an unprotected supply
2632 			 * of reclaimable memory from other cgroups.
2633 			 */
2634 			if (!sc->memcg_low_reclaim) {
2635 				sc->memcg_low_skipped = 1;
2636 				continue;
2637 			}
2638 			memcg_memory_event(memcg, MEMCG_LOW);
2639 		}
2640 
2641 		reclaimed = sc->nr_reclaimed;
2642 		scanned = sc->nr_scanned;
2643 
2644 		shrink_lruvec(lruvec, sc);
2645 
2646 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2647 			    sc->priority);
2648 
2649 		/* Record the group's reclaim efficiency */
2650 		vmpressure(sc->gfp_mask, memcg, false,
2651 			   sc->nr_scanned - scanned,
2652 			   sc->nr_reclaimed - reclaimed);
2653 
2654 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2655 }
2656 
2657 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2658 {
2659 	struct reclaim_state *reclaim_state = current->reclaim_state;
2660 	unsigned long nr_reclaimed, nr_scanned;
2661 	struct lruvec *target_lruvec;
2662 	bool reclaimable = false;
2663 	unsigned long file;
2664 
2665 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2666 
2667 again:
2668 	memset(&sc->nr, 0, sizeof(sc->nr));
2669 
2670 	nr_reclaimed = sc->nr_reclaimed;
2671 	nr_scanned = sc->nr_scanned;
2672 
2673 	/*
2674 	 * Determine the scan balance between anon and file LRUs.
2675 	 */
2676 	spin_lock_irq(&pgdat->lru_lock);
2677 	sc->anon_cost = target_lruvec->anon_cost;
2678 	sc->file_cost = target_lruvec->file_cost;
2679 	spin_unlock_irq(&pgdat->lru_lock);
2680 
2681 	/*
2682 	 * Target desirable inactive:active list ratios for the anon
2683 	 * and file LRU lists.
2684 	 */
2685 	if (!sc->force_deactivate) {
2686 		unsigned long refaults;
2687 
2688 		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2689 			sc->may_deactivate |= DEACTIVATE_ANON;
2690 		else
2691 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2692 
2693 		/*
2694 		 * When refaults are being observed, it means a new
2695 		 * workingset is being established. Deactivate to get
2696 		 * rid of any stale active pages quickly.
2697 		 */
2698 		refaults = lruvec_page_state(target_lruvec,
2699 					     WORKINGSET_ACTIVATE);
2700 		if (refaults != target_lruvec->refaults ||
2701 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2702 			sc->may_deactivate |= DEACTIVATE_FILE;
2703 		else
2704 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2705 	} else
2706 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2707 
2708 	/*
2709 	 * If we have plenty of inactive file pages that aren't
2710 	 * thrashing, try to reclaim those first before touching
2711 	 * anonymous pages.
2712 	 */
2713 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2714 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2715 		sc->cache_trim_mode = 1;
2716 	else
2717 		sc->cache_trim_mode = 0;
2718 
2719 	/*
2720 	 * Prevent the reclaimer from falling into the cache trap: as
2721 	 * cache pages start out inactive, every cache fault will tip
2722 	 * the scan balance towards the file LRU.  And as the file LRU
2723 	 * shrinks, so does the window for rotation from references.
2724 	 * This means we have a runaway feedback loop where a tiny
2725 	 * thrashing file LRU becomes infinitely more attractive than
2726 	 * anon pages.  Try to detect this based on file LRU size.
2727 	 */
2728 	if (!cgroup_reclaim(sc)) {
2729 		unsigned long total_high_wmark = 0;
2730 		unsigned long free, anon;
2731 		int z;
2732 
2733 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2734 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2735 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2736 
2737 		for (z = 0; z < MAX_NR_ZONES; z++) {
2738 			struct zone *zone = &pgdat->node_zones[z];
2739 			if (!managed_zone(zone))
2740 				continue;
2741 
2742 			total_high_wmark += high_wmark_pages(zone);
2743 		}
2744 
2745 		/*
2746 		 * Consider anon: if that's low too, this isn't a
2747 		 * runaway file reclaim problem, but rather just
2748 		 * extreme pressure. Reclaim as per usual then.
2749 		 */
2750 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2751 
2752 		sc->file_is_tiny =
2753 			file + free <= total_high_wmark &&
2754 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2755 			anon >> sc->priority;
2756 	}
2757 
2758 	shrink_node_memcgs(pgdat, sc);
2759 
2760 	if (reclaim_state) {
2761 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2762 		reclaim_state->reclaimed_slab = 0;
2763 	}
2764 
2765 	/* Record the subtree's reclaim efficiency */
2766 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2767 		   sc->nr_scanned - nr_scanned,
2768 		   sc->nr_reclaimed - nr_reclaimed);
2769 
2770 	if (sc->nr_reclaimed - nr_reclaimed)
2771 		reclaimable = true;
2772 
2773 	if (current_is_kswapd()) {
2774 		/*
2775 		 * If reclaim is isolating dirty pages under writeback,
2776 		 * it implies that the long-lived page allocation rate
2777 		 * is exceeding the page laundering rate. Either the
2778 		 * global limits are not being effective at throttling
2779 		 * processes due to the page distribution throughout
2780 		 * zones or there is heavy usage of a slow backing
2781 		 * device. The only option is to throttle from reclaim
2782 		 * context which is not ideal as there is no guarantee
2783 		 * the dirtying process is throttled in the same way
2784 		 * balance_dirty_pages() manages.
2785 		 *
2786 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2787 		 * count the number of pages under pages flagged for
2788 		 * immediate reclaim and stall if any are encountered
2789 		 * in the nr_immediate check below.
2790 		 */
2791 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2792 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2793 
2794 		/* Allow kswapd to start writing pages during reclaim.*/
2795 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2796 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2797 
2798 		/*
2799 		 * If kswapd scans pages marked marked for immediate
2800 		 * reclaim and under writeback (nr_immediate), it
2801 		 * implies that pages are cycling through the LRU
2802 		 * faster than they are written so also forcibly stall.
2803 		 */
2804 		if (sc->nr.immediate)
2805 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2806 	}
2807 
2808 	/*
2809 	 * Tag a node/memcg as congested if all the dirty pages
2810 	 * scanned were backed by a congested BDI and
2811 	 * wait_iff_congested will stall.
2812 	 *
2813 	 * Legacy memcg will stall in page writeback so avoid forcibly
2814 	 * stalling in wait_iff_congested().
2815 	 */
2816 	if ((current_is_kswapd() ||
2817 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2818 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2819 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2820 
2821 	/*
2822 	 * Stall direct reclaim for IO completions if underlying BDIs
2823 	 * and node is congested. Allow kswapd to continue until it
2824 	 * starts encountering unqueued dirty pages or cycling through
2825 	 * the LRU too quickly.
2826 	 */
2827 	if (!current_is_kswapd() && current_may_throttle() &&
2828 	    !sc->hibernation_mode &&
2829 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2830 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2831 
2832 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2833 				    sc))
2834 		goto again;
2835 
2836 	/*
2837 	 * Kswapd gives up on balancing particular nodes after too
2838 	 * many failures to reclaim anything from them and goes to
2839 	 * sleep. On reclaim progress, reset the failure counter. A
2840 	 * successful direct reclaim run will revive a dormant kswapd.
2841 	 */
2842 	if (reclaimable)
2843 		pgdat->kswapd_failures = 0;
2844 }
2845 
2846 /*
2847  * Returns true if compaction should go ahead for a costly-order request, or
2848  * the allocation would already succeed without compaction. Return false if we
2849  * should reclaim first.
2850  */
2851 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2852 {
2853 	unsigned long watermark;
2854 	enum compact_result suitable;
2855 
2856 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2857 	if (suitable == COMPACT_SUCCESS)
2858 		/* Allocation should succeed already. Don't reclaim. */
2859 		return true;
2860 	if (suitable == COMPACT_SKIPPED)
2861 		/* Compaction cannot yet proceed. Do reclaim. */
2862 		return false;
2863 
2864 	/*
2865 	 * Compaction is already possible, but it takes time to run and there
2866 	 * are potentially other callers using the pages just freed. So proceed
2867 	 * with reclaim to make a buffer of free pages available to give
2868 	 * compaction a reasonable chance of completing and allocating the page.
2869 	 * Note that we won't actually reclaim the whole buffer in one attempt
2870 	 * as the target watermark in should_continue_reclaim() is lower. But if
2871 	 * we are already above the high+gap watermark, don't reclaim at all.
2872 	 */
2873 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2874 
2875 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2876 }
2877 
2878 /*
2879  * This is the direct reclaim path, for page-allocating processes.  We only
2880  * try to reclaim pages from zones which will satisfy the caller's allocation
2881  * request.
2882  *
2883  * If a zone is deemed to be full of pinned pages then just give it a light
2884  * scan then give up on it.
2885  */
2886 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2887 {
2888 	struct zoneref *z;
2889 	struct zone *zone;
2890 	unsigned long nr_soft_reclaimed;
2891 	unsigned long nr_soft_scanned;
2892 	gfp_t orig_mask;
2893 	pg_data_t *last_pgdat = NULL;
2894 
2895 	/*
2896 	 * If the number of buffer_heads in the machine exceeds the maximum
2897 	 * allowed level, force direct reclaim to scan the highmem zone as
2898 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2899 	 */
2900 	orig_mask = sc->gfp_mask;
2901 	if (buffer_heads_over_limit) {
2902 		sc->gfp_mask |= __GFP_HIGHMEM;
2903 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2904 	}
2905 
2906 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2907 					sc->reclaim_idx, sc->nodemask) {
2908 		/*
2909 		 * Take care memory controller reclaiming has small influence
2910 		 * to global LRU.
2911 		 */
2912 		if (!cgroup_reclaim(sc)) {
2913 			if (!cpuset_zone_allowed(zone,
2914 						 GFP_KERNEL | __GFP_HARDWALL))
2915 				continue;
2916 
2917 			/*
2918 			 * If we already have plenty of memory free for
2919 			 * compaction in this zone, don't free any more.
2920 			 * Even though compaction is invoked for any
2921 			 * non-zero order, only frequent costly order
2922 			 * reclamation is disruptive enough to become a
2923 			 * noticeable problem, like transparent huge
2924 			 * page allocations.
2925 			 */
2926 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2927 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2928 			    compaction_ready(zone, sc)) {
2929 				sc->compaction_ready = true;
2930 				continue;
2931 			}
2932 
2933 			/*
2934 			 * Shrink each node in the zonelist once. If the
2935 			 * zonelist is ordered by zone (not the default) then a
2936 			 * node may be shrunk multiple times but in that case
2937 			 * the user prefers lower zones being preserved.
2938 			 */
2939 			if (zone->zone_pgdat == last_pgdat)
2940 				continue;
2941 
2942 			/*
2943 			 * This steals pages from memory cgroups over softlimit
2944 			 * and returns the number of reclaimed pages and
2945 			 * scanned pages. This works for global memory pressure
2946 			 * and balancing, not for a memcg's limit.
2947 			 */
2948 			nr_soft_scanned = 0;
2949 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2950 						sc->order, sc->gfp_mask,
2951 						&nr_soft_scanned);
2952 			sc->nr_reclaimed += nr_soft_reclaimed;
2953 			sc->nr_scanned += nr_soft_scanned;
2954 			/* need some check for avoid more shrink_zone() */
2955 		}
2956 
2957 		/* See comment about same check for global reclaim above */
2958 		if (zone->zone_pgdat == last_pgdat)
2959 			continue;
2960 		last_pgdat = zone->zone_pgdat;
2961 		shrink_node(zone->zone_pgdat, sc);
2962 	}
2963 
2964 	/*
2965 	 * Restore to original mask to avoid the impact on the caller if we
2966 	 * promoted it to __GFP_HIGHMEM.
2967 	 */
2968 	sc->gfp_mask = orig_mask;
2969 }
2970 
2971 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2972 {
2973 	struct lruvec *target_lruvec;
2974 	unsigned long refaults;
2975 
2976 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2977 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
2978 	target_lruvec->refaults = refaults;
2979 }
2980 
2981 /*
2982  * This is the main entry point to direct page reclaim.
2983  *
2984  * If a full scan of the inactive list fails to free enough memory then we
2985  * are "out of memory" and something needs to be killed.
2986  *
2987  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2988  * high - the zone may be full of dirty or under-writeback pages, which this
2989  * caller can't do much about.  We kick the writeback threads and take explicit
2990  * naps in the hope that some of these pages can be written.  But if the
2991  * allocating task holds filesystem locks which prevent writeout this might not
2992  * work, and the allocation attempt will fail.
2993  *
2994  * returns:	0, if no pages reclaimed
2995  * 		else, the number of pages reclaimed
2996  */
2997 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2998 					  struct scan_control *sc)
2999 {
3000 	int initial_priority = sc->priority;
3001 	pg_data_t *last_pgdat;
3002 	struct zoneref *z;
3003 	struct zone *zone;
3004 retry:
3005 	delayacct_freepages_start();
3006 
3007 	if (!cgroup_reclaim(sc))
3008 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3009 
3010 	do {
3011 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3012 				sc->priority);
3013 		sc->nr_scanned = 0;
3014 		shrink_zones(zonelist, sc);
3015 
3016 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3017 			break;
3018 
3019 		if (sc->compaction_ready)
3020 			break;
3021 
3022 		/*
3023 		 * If we're getting trouble reclaiming, start doing
3024 		 * writepage even in laptop mode.
3025 		 */
3026 		if (sc->priority < DEF_PRIORITY - 2)
3027 			sc->may_writepage = 1;
3028 	} while (--sc->priority >= 0);
3029 
3030 	last_pgdat = NULL;
3031 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3032 					sc->nodemask) {
3033 		if (zone->zone_pgdat == last_pgdat)
3034 			continue;
3035 		last_pgdat = zone->zone_pgdat;
3036 
3037 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3038 
3039 		if (cgroup_reclaim(sc)) {
3040 			struct lruvec *lruvec;
3041 
3042 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3043 						   zone->zone_pgdat);
3044 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3045 		}
3046 	}
3047 
3048 	delayacct_freepages_end();
3049 
3050 	if (sc->nr_reclaimed)
3051 		return sc->nr_reclaimed;
3052 
3053 	/* Aborted reclaim to try compaction? don't OOM, then */
3054 	if (sc->compaction_ready)
3055 		return 1;
3056 
3057 	/*
3058 	 * We make inactive:active ratio decisions based on the node's
3059 	 * composition of memory, but a restrictive reclaim_idx or a
3060 	 * memory.low cgroup setting can exempt large amounts of
3061 	 * memory from reclaim. Neither of which are very common, so
3062 	 * instead of doing costly eligibility calculations of the
3063 	 * entire cgroup subtree up front, we assume the estimates are
3064 	 * good, and retry with forcible deactivation if that fails.
3065 	 */
3066 	if (sc->skipped_deactivate) {
3067 		sc->priority = initial_priority;
3068 		sc->force_deactivate = 1;
3069 		sc->skipped_deactivate = 0;
3070 		goto retry;
3071 	}
3072 
3073 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3074 	if (sc->memcg_low_skipped) {
3075 		sc->priority = initial_priority;
3076 		sc->force_deactivate = 0;
3077 		sc->memcg_low_reclaim = 1;
3078 		sc->memcg_low_skipped = 0;
3079 		goto retry;
3080 	}
3081 
3082 	return 0;
3083 }
3084 
3085 static bool allow_direct_reclaim(pg_data_t *pgdat)
3086 {
3087 	struct zone *zone;
3088 	unsigned long pfmemalloc_reserve = 0;
3089 	unsigned long free_pages = 0;
3090 	int i;
3091 	bool wmark_ok;
3092 
3093 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3094 		return true;
3095 
3096 	for (i = 0; i <= ZONE_NORMAL; i++) {
3097 		zone = &pgdat->node_zones[i];
3098 		if (!managed_zone(zone))
3099 			continue;
3100 
3101 		if (!zone_reclaimable_pages(zone))
3102 			continue;
3103 
3104 		pfmemalloc_reserve += min_wmark_pages(zone);
3105 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3106 	}
3107 
3108 	/* If there are no reserves (unexpected config) then do not throttle */
3109 	if (!pfmemalloc_reserve)
3110 		return true;
3111 
3112 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3113 
3114 	/* kswapd must be awake if processes are being throttled */
3115 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3116 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3117 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3118 
3119 		wake_up_interruptible(&pgdat->kswapd_wait);
3120 	}
3121 
3122 	return wmark_ok;
3123 }
3124 
3125 /*
3126  * Throttle direct reclaimers if backing storage is backed by the network
3127  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3128  * depleted. kswapd will continue to make progress and wake the processes
3129  * when the low watermark is reached.
3130  *
3131  * Returns true if a fatal signal was delivered during throttling. If this
3132  * happens, the page allocator should not consider triggering the OOM killer.
3133  */
3134 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3135 					nodemask_t *nodemask)
3136 {
3137 	struct zoneref *z;
3138 	struct zone *zone;
3139 	pg_data_t *pgdat = NULL;
3140 
3141 	/*
3142 	 * Kernel threads should not be throttled as they may be indirectly
3143 	 * responsible for cleaning pages necessary for reclaim to make forward
3144 	 * progress. kjournald for example may enter direct reclaim while
3145 	 * committing a transaction where throttling it could forcing other
3146 	 * processes to block on log_wait_commit().
3147 	 */
3148 	if (current->flags & PF_KTHREAD)
3149 		goto out;
3150 
3151 	/*
3152 	 * If a fatal signal is pending, this process should not throttle.
3153 	 * It should return quickly so it can exit and free its memory
3154 	 */
3155 	if (fatal_signal_pending(current))
3156 		goto out;
3157 
3158 	/*
3159 	 * Check if the pfmemalloc reserves are ok by finding the first node
3160 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3161 	 * GFP_KERNEL will be required for allocating network buffers when
3162 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3163 	 *
3164 	 * Throttling is based on the first usable node and throttled processes
3165 	 * wait on a queue until kswapd makes progress and wakes them. There
3166 	 * is an affinity then between processes waking up and where reclaim
3167 	 * progress has been made assuming the process wakes on the same node.
3168 	 * More importantly, processes running on remote nodes will not compete
3169 	 * for remote pfmemalloc reserves and processes on different nodes
3170 	 * should make reasonable progress.
3171 	 */
3172 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3173 					gfp_zone(gfp_mask), nodemask) {
3174 		if (zone_idx(zone) > ZONE_NORMAL)
3175 			continue;
3176 
3177 		/* Throttle based on the first usable node */
3178 		pgdat = zone->zone_pgdat;
3179 		if (allow_direct_reclaim(pgdat))
3180 			goto out;
3181 		break;
3182 	}
3183 
3184 	/* If no zone was usable by the allocation flags then do not throttle */
3185 	if (!pgdat)
3186 		goto out;
3187 
3188 	/* Account for the throttling */
3189 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3190 
3191 	/*
3192 	 * If the caller cannot enter the filesystem, it's possible that it
3193 	 * is due to the caller holding an FS lock or performing a journal
3194 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3195 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3196 	 * blocked waiting on the same lock. Instead, throttle for up to a
3197 	 * second before continuing.
3198 	 */
3199 	if (!(gfp_mask & __GFP_FS)) {
3200 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3201 			allow_direct_reclaim(pgdat), HZ);
3202 
3203 		goto check_pending;
3204 	}
3205 
3206 	/* Throttle until kswapd wakes the process */
3207 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3208 		allow_direct_reclaim(pgdat));
3209 
3210 check_pending:
3211 	if (fatal_signal_pending(current))
3212 		return true;
3213 
3214 out:
3215 	return false;
3216 }
3217 
3218 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3219 				gfp_t gfp_mask, nodemask_t *nodemask)
3220 {
3221 	unsigned long nr_reclaimed;
3222 	struct scan_control sc = {
3223 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3224 		.gfp_mask = current_gfp_context(gfp_mask),
3225 		.reclaim_idx = gfp_zone(gfp_mask),
3226 		.order = order,
3227 		.nodemask = nodemask,
3228 		.priority = DEF_PRIORITY,
3229 		.may_writepage = !laptop_mode,
3230 		.may_unmap = 1,
3231 		.may_swap = 1,
3232 	};
3233 
3234 	/*
3235 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3236 	 * Confirm they are large enough for max values.
3237 	 */
3238 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3239 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3240 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3241 
3242 	/*
3243 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3244 	 * 1 is returned so that the page allocator does not OOM kill at this
3245 	 * point.
3246 	 */
3247 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3248 		return 1;
3249 
3250 	set_task_reclaim_state(current, &sc.reclaim_state);
3251 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3252 
3253 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3254 
3255 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3256 	set_task_reclaim_state(current, NULL);
3257 
3258 	return nr_reclaimed;
3259 }
3260 
3261 #ifdef CONFIG_MEMCG
3262 
3263 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3264 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3265 						gfp_t gfp_mask, bool noswap,
3266 						pg_data_t *pgdat,
3267 						unsigned long *nr_scanned)
3268 {
3269 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3270 	struct scan_control sc = {
3271 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3272 		.target_mem_cgroup = memcg,
3273 		.may_writepage = !laptop_mode,
3274 		.may_unmap = 1,
3275 		.reclaim_idx = MAX_NR_ZONES - 1,
3276 		.may_swap = !noswap,
3277 	};
3278 
3279 	WARN_ON_ONCE(!current->reclaim_state);
3280 
3281 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3282 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3283 
3284 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3285 						      sc.gfp_mask);
3286 
3287 	/*
3288 	 * NOTE: Although we can get the priority field, using it
3289 	 * here is not a good idea, since it limits the pages we can scan.
3290 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3291 	 * will pick up pages from other mem cgroup's as well. We hack
3292 	 * the priority and make it zero.
3293 	 */
3294 	shrink_lruvec(lruvec, &sc);
3295 
3296 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3297 
3298 	*nr_scanned = sc.nr_scanned;
3299 
3300 	return sc.nr_reclaimed;
3301 }
3302 
3303 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3304 					   unsigned long nr_pages,
3305 					   gfp_t gfp_mask,
3306 					   bool may_swap)
3307 {
3308 	unsigned long nr_reclaimed;
3309 	unsigned int noreclaim_flag;
3310 	struct scan_control sc = {
3311 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3312 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3313 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3314 		.reclaim_idx = MAX_NR_ZONES - 1,
3315 		.target_mem_cgroup = memcg,
3316 		.priority = DEF_PRIORITY,
3317 		.may_writepage = !laptop_mode,
3318 		.may_unmap = 1,
3319 		.may_swap = may_swap,
3320 	};
3321 	/*
3322 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3323 	 * equal pressure on all the nodes. This is based on the assumption that
3324 	 * the reclaim does not bail out early.
3325 	 */
3326 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3327 
3328 	set_task_reclaim_state(current, &sc.reclaim_state);
3329 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3330 	noreclaim_flag = memalloc_noreclaim_save();
3331 
3332 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3333 
3334 	memalloc_noreclaim_restore(noreclaim_flag);
3335 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3336 	set_task_reclaim_state(current, NULL);
3337 
3338 	return nr_reclaimed;
3339 }
3340 #endif
3341 
3342 static void age_active_anon(struct pglist_data *pgdat,
3343 				struct scan_control *sc)
3344 {
3345 	struct mem_cgroup *memcg;
3346 	struct lruvec *lruvec;
3347 
3348 	if (!total_swap_pages)
3349 		return;
3350 
3351 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3352 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3353 		return;
3354 
3355 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3356 	do {
3357 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3358 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3359 				   sc, LRU_ACTIVE_ANON);
3360 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3361 	} while (memcg);
3362 }
3363 
3364 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3365 {
3366 	int i;
3367 	struct zone *zone;
3368 
3369 	/*
3370 	 * Check for watermark boosts top-down as the higher zones
3371 	 * are more likely to be boosted. Both watermarks and boosts
3372 	 * should not be checked at the time time as reclaim would
3373 	 * start prematurely when there is no boosting and a lower
3374 	 * zone is balanced.
3375 	 */
3376 	for (i = highest_zoneidx; i >= 0; i--) {
3377 		zone = pgdat->node_zones + i;
3378 		if (!managed_zone(zone))
3379 			continue;
3380 
3381 		if (zone->watermark_boost)
3382 			return true;
3383 	}
3384 
3385 	return false;
3386 }
3387 
3388 /*
3389  * Returns true if there is an eligible zone balanced for the request order
3390  * and highest_zoneidx
3391  */
3392 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3393 {
3394 	int i;
3395 	unsigned long mark = -1;
3396 	struct zone *zone;
3397 
3398 	/*
3399 	 * Check watermarks bottom-up as lower zones are more likely to
3400 	 * meet watermarks.
3401 	 */
3402 	for (i = 0; i <= highest_zoneidx; i++) {
3403 		zone = pgdat->node_zones + i;
3404 
3405 		if (!managed_zone(zone))
3406 			continue;
3407 
3408 		mark = high_wmark_pages(zone);
3409 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3410 			return true;
3411 	}
3412 
3413 	/*
3414 	 * If a node has no populated zone within highest_zoneidx, it does not
3415 	 * need balancing by definition. This can happen if a zone-restricted
3416 	 * allocation tries to wake a remote kswapd.
3417 	 */
3418 	if (mark == -1)
3419 		return true;
3420 
3421 	return false;
3422 }
3423 
3424 /* Clear pgdat state for congested, dirty or under writeback. */
3425 static void clear_pgdat_congested(pg_data_t *pgdat)
3426 {
3427 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3428 
3429 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3430 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3431 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3432 }
3433 
3434 /*
3435  * Prepare kswapd for sleeping. This verifies that there are no processes
3436  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3437  *
3438  * Returns true if kswapd is ready to sleep
3439  */
3440 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3441 				int highest_zoneidx)
3442 {
3443 	/*
3444 	 * The throttled processes are normally woken up in balance_pgdat() as
3445 	 * soon as allow_direct_reclaim() is true. But there is a potential
3446 	 * race between when kswapd checks the watermarks and a process gets
3447 	 * throttled. There is also a potential race if processes get
3448 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3449 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3450 	 * the wake up checks. If kswapd is going to sleep, no process should
3451 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3452 	 * the wake up is premature, processes will wake kswapd and get
3453 	 * throttled again. The difference from wake ups in balance_pgdat() is
3454 	 * that here we are under prepare_to_wait().
3455 	 */
3456 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3457 		wake_up_all(&pgdat->pfmemalloc_wait);
3458 
3459 	/* Hopeless node, leave it to direct reclaim */
3460 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3461 		return true;
3462 
3463 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3464 		clear_pgdat_congested(pgdat);
3465 		return true;
3466 	}
3467 
3468 	return false;
3469 }
3470 
3471 /*
3472  * kswapd shrinks a node of pages that are at or below the highest usable
3473  * zone that is currently unbalanced.
3474  *
3475  * Returns true if kswapd scanned at least the requested number of pages to
3476  * reclaim or if the lack of progress was due to pages under writeback.
3477  * This is used to determine if the scanning priority needs to be raised.
3478  */
3479 static bool kswapd_shrink_node(pg_data_t *pgdat,
3480 			       struct scan_control *sc)
3481 {
3482 	struct zone *zone;
3483 	int z;
3484 
3485 	/* Reclaim a number of pages proportional to the number of zones */
3486 	sc->nr_to_reclaim = 0;
3487 	for (z = 0; z <= sc->reclaim_idx; z++) {
3488 		zone = pgdat->node_zones + z;
3489 		if (!managed_zone(zone))
3490 			continue;
3491 
3492 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3493 	}
3494 
3495 	/*
3496 	 * Historically care was taken to put equal pressure on all zones but
3497 	 * now pressure is applied based on node LRU order.
3498 	 */
3499 	shrink_node(pgdat, sc);
3500 
3501 	/*
3502 	 * Fragmentation may mean that the system cannot be rebalanced for
3503 	 * high-order allocations. If twice the allocation size has been
3504 	 * reclaimed then recheck watermarks only at order-0 to prevent
3505 	 * excessive reclaim. Assume that a process requested a high-order
3506 	 * can direct reclaim/compact.
3507 	 */
3508 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3509 		sc->order = 0;
3510 
3511 	return sc->nr_scanned >= sc->nr_to_reclaim;
3512 }
3513 
3514 /*
3515  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3516  * that are eligible for use by the caller until at least one zone is
3517  * balanced.
3518  *
3519  * Returns the order kswapd finished reclaiming at.
3520  *
3521  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3522  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3523  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3524  * or lower is eligible for reclaim until at least one usable zone is
3525  * balanced.
3526  */
3527 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3528 {
3529 	int i;
3530 	unsigned long nr_soft_reclaimed;
3531 	unsigned long nr_soft_scanned;
3532 	unsigned long pflags;
3533 	unsigned long nr_boost_reclaim;
3534 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3535 	bool boosted;
3536 	struct zone *zone;
3537 	struct scan_control sc = {
3538 		.gfp_mask = GFP_KERNEL,
3539 		.order = order,
3540 		.may_unmap = 1,
3541 	};
3542 
3543 	set_task_reclaim_state(current, &sc.reclaim_state);
3544 	psi_memstall_enter(&pflags);
3545 	__fs_reclaim_acquire();
3546 
3547 	count_vm_event(PAGEOUTRUN);
3548 
3549 	/*
3550 	 * Account for the reclaim boost. Note that the zone boost is left in
3551 	 * place so that parallel allocations that are near the watermark will
3552 	 * stall or direct reclaim until kswapd is finished.
3553 	 */
3554 	nr_boost_reclaim = 0;
3555 	for (i = 0; i <= highest_zoneidx; i++) {
3556 		zone = pgdat->node_zones + i;
3557 		if (!managed_zone(zone))
3558 			continue;
3559 
3560 		nr_boost_reclaim += zone->watermark_boost;
3561 		zone_boosts[i] = zone->watermark_boost;
3562 	}
3563 	boosted = nr_boost_reclaim;
3564 
3565 restart:
3566 	sc.priority = DEF_PRIORITY;
3567 	do {
3568 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3569 		bool raise_priority = true;
3570 		bool balanced;
3571 		bool ret;
3572 
3573 		sc.reclaim_idx = highest_zoneidx;
3574 
3575 		/*
3576 		 * If the number of buffer_heads exceeds the maximum allowed
3577 		 * then consider reclaiming from all zones. This has a dual
3578 		 * purpose -- on 64-bit systems it is expected that
3579 		 * buffer_heads are stripped during active rotation. On 32-bit
3580 		 * systems, highmem pages can pin lowmem memory and shrinking
3581 		 * buffers can relieve lowmem pressure. Reclaim may still not
3582 		 * go ahead if all eligible zones for the original allocation
3583 		 * request are balanced to avoid excessive reclaim from kswapd.
3584 		 */
3585 		if (buffer_heads_over_limit) {
3586 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3587 				zone = pgdat->node_zones + i;
3588 				if (!managed_zone(zone))
3589 					continue;
3590 
3591 				sc.reclaim_idx = i;
3592 				break;
3593 			}
3594 		}
3595 
3596 		/*
3597 		 * If the pgdat is imbalanced then ignore boosting and preserve
3598 		 * the watermarks for a later time and restart. Note that the
3599 		 * zone watermarks will be still reset at the end of balancing
3600 		 * on the grounds that the normal reclaim should be enough to
3601 		 * re-evaluate if boosting is required when kswapd next wakes.
3602 		 */
3603 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3604 		if (!balanced && nr_boost_reclaim) {
3605 			nr_boost_reclaim = 0;
3606 			goto restart;
3607 		}
3608 
3609 		/*
3610 		 * If boosting is not active then only reclaim if there are no
3611 		 * eligible zones. Note that sc.reclaim_idx is not used as
3612 		 * buffer_heads_over_limit may have adjusted it.
3613 		 */
3614 		if (!nr_boost_reclaim && balanced)
3615 			goto out;
3616 
3617 		/* Limit the priority of boosting to avoid reclaim writeback */
3618 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3619 			raise_priority = false;
3620 
3621 		/*
3622 		 * Do not writeback or swap pages for boosted reclaim. The
3623 		 * intent is to relieve pressure not issue sub-optimal IO
3624 		 * from reclaim context. If no pages are reclaimed, the
3625 		 * reclaim will be aborted.
3626 		 */
3627 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3628 		sc.may_swap = !nr_boost_reclaim;
3629 
3630 		/*
3631 		 * Do some background aging of the anon list, to give
3632 		 * pages a chance to be referenced before reclaiming. All
3633 		 * pages are rotated regardless of classzone as this is
3634 		 * about consistent aging.
3635 		 */
3636 		age_active_anon(pgdat, &sc);
3637 
3638 		/*
3639 		 * If we're getting trouble reclaiming, start doing writepage
3640 		 * even in laptop mode.
3641 		 */
3642 		if (sc.priority < DEF_PRIORITY - 2)
3643 			sc.may_writepage = 1;
3644 
3645 		/* Call soft limit reclaim before calling shrink_node. */
3646 		sc.nr_scanned = 0;
3647 		nr_soft_scanned = 0;
3648 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3649 						sc.gfp_mask, &nr_soft_scanned);
3650 		sc.nr_reclaimed += nr_soft_reclaimed;
3651 
3652 		/*
3653 		 * There should be no need to raise the scanning priority if
3654 		 * enough pages are already being scanned that that high
3655 		 * watermark would be met at 100% efficiency.
3656 		 */
3657 		if (kswapd_shrink_node(pgdat, &sc))
3658 			raise_priority = false;
3659 
3660 		/*
3661 		 * If the low watermark is met there is no need for processes
3662 		 * to be throttled on pfmemalloc_wait as they should not be
3663 		 * able to safely make forward progress. Wake them
3664 		 */
3665 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3666 				allow_direct_reclaim(pgdat))
3667 			wake_up_all(&pgdat->pfmemalloc_wait);
3668 
3669 		/* Check if kswapd should be suspending */
3670 		__fs_reclaim_release();
3671 		ret = try_to_freeze();
3672 		__fs_reclaim_acquire();
3673 		if (ret || kthread_should_stop())
3674 			break;
3675 
3676 		/*
3677 		 * Raise priority if scanning rate is too low or there was no
3678 		 * progress in reclaiming pages
3679 		 */
3680 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3681 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3682 
3683 		/*
3684 		 * If reclaim made no progress for a boost, stop reclaim as
3685 		 * IO cannot be queued and it could be an infinite loop in
3686 		 * extreme circumstances.
3687 		 */
3688 		if (nr_boost_reclaim && !nr_reclaimed)
3689 			break;
3690 
3691 		if (raise_priority || !nr_reclaimed)
3692 			sc.priority--;
3693 	} while (sc.priority >= 1);
3694 
3695 	if (!sc.nr_reclaimed)
3696 		pgdat->kswapd_failures++;
3697 
3698 out:
3699 	/* If reclaim was boosted, account for the reclaim done in this pass */
3700 	if (boosted) {
3701 		unsigned long flags;
3702 
3703 		for (i = 0; i <= highest_zoneidx; i++) {
3704 			if (!zone_boosts[i])
3705 				continue;
3706 
3707 			/* Increments are under the zone lock */
3708 			zone = pgdat->node_zones + i;
3709 			spin_lock_irqsave(&zone->lock, flags);
3710 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3711 			spin_unlock_irqrestore(&zone->lock, flags);
3712 		}
3713 
3714 		/*
3715 		 * As there is now likely space, wakeup kcompact to defragment
3716 		 * pageblocks.
3717 		 */
3718 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3719 	}
3720 
3721 	snapshot_refaults(NULL, pgdat);
3722 	__fs_reclaim_release();
3723 	psi_memstall_leave(&pflags);
3724 	set_task_reclaim_state(current, NULL);
3725 
3726 	/*
3727 	 * Return the order kswapd stopped reclaiming at as
3728 	 * prepare_kswapd_sleep() takes it into account. If another caller
3729 	 * entered the allocator slow path while kswapd was awake, order will
3730 	 * remain at the higher level.
3731 	 */
3732 	return sc.order;
3733 }
3734 
3735 /*
3736  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3737  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3738  * not a valid index then either kswapd runs for first time or kswapd couldn't
3739  * sleep after previous reclaim attempt (node is still unbalanced). In that
3740  * case return the zone index of the previous kswapd reclaim cycle.
3741  */
3742 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3743 					   enum zone_type prev_highest_zoneidx)
3744 {
3745 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3746 
3747 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3748 }
3749 
3750 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3751 				unsigned int highest_zoneidx)
3752 {
3753 	long remaining = 0;
3754 	DEFINE_WAIT(wait);
3755 
3756 	if (freezing(current) || kthread_should_stop())
3757 		return;
3758 
3759 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3760 
3761 	/*
3762 	 * Try to sleep for a short interval. Note that kcompactd will only be
3763 	 * woken if it is possible to sleep for a short interval. This is
3764 	 * deliberate on the assumption that if reclaim cannot keep an
3765 	 * eligible zone balanced that it's also unlikely that compaction will
3766 	 * succeed.
3767 	 */
3768 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3769 		/*
3770 		 * Compaction records what page blocks it recently failed to
3771 		 * isolate pages from and skips them in the future scanning.
3772 		 * When kswapd is going to sleep, it is reasonable to assume
3773 		 * that pages and compaction may succeed so reset the cache.
3774 		 */
3775 		reset_isolation_suitable(pgdat);
3776 
3777 		/*
3778 		 * We have freed the memory, now we should compact it to make
3779 		 * allocation of the requested order possible.
3780 		 */
3781 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3782 
3783 		remaining = schedule_timeout(HZ/10);
3784 
3785 		/*
3786 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3787 		 * order. The values will either be from a wakeup request or
3788 		 * the previous request that slept prematurely.
3789 		 */
3790 		if (remaining) {
3791 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3792 					kswapd_highest_zoneidx(pgdat,
3793 							highest_zoneidx));
3794 
3795 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3796 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3797 		}
3798 
3799 		finish_wait(&pgdat->kswapd_wait, &wait);
3800 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3801 	}
3802 
3803 	/*
3804 	 * After a short sleep, check if it was a premature sleep. If not, then
3805 	 * go fully to sleep until explicitly woken up.
3806 	 */
3807 	if (!remaining &&
3808 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3809 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3810 
3811 		/*
3812 		 * vmstat counters are not perfectly accurate and the estimated
3813 		 * value for counters such as NR_FREE_PAGES can deviate from the
3814 		 * true value by nr_online_cpus * threshold. To avoid the zone
3815 		 * watermarks being breached while under pressure, we reduce the
3816 		 * per-cpu vmstat threshold while kswapd is awake and restore
3817 		 * them before going back to sleep.
3818 		 */
3819 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3820 
3821 		if (!kthread_should_stop())
3822 			schedule();
3823 
3824 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3825 	} else {
3826 		if (remaining)
3827 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3828 		else
3829 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3830 	}
3831 	finish_wait(&pgdat->kswapd_wait, &wait);
3832 }
3833 
3834 /*
3835  * The background pageout daemon, started as a kernel thread
3836  * from the init process.
3837  *
3838  * This basically trickles out pages so that we have _some_
3839  * free memory available even if there is no other activity
3840  * that frees anything up. This is needed for things like routing
3841  * etc, where we otherwise might have all activity going on in
3842  * asynchronous contexts that cannot page things out.
3843  *
3844  * If there are applications that are active memory-allocators
3845  * (most normal use), this basically shouldn't matter.
3846  */
3847 static int kswapd(void *p)
3848 {
3849 	unsigned int alloc_order, reclaim_order;
3850 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3851 	pg_data_t *pgdat = (pg_data_t*)p;
3852 	struct task_struct *tsk = current;
3853 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3854 
3855 	if (!cpumask_empty(cpumask))
3856 		set_cpus_allowed_ptr(tsk, cpumask);
3857 
3858 	/*
3859 	 * Tell the memory management that we're a "memory allocator",
3860 	 * and that if we need more memory we should get access to it
3861 	 * regardless (see "__alloc_pages()"). "kswapd" should
3862 	 * never get caught in the normal page freeing logic.
3863 	 *
3864 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3865 	 * you need a small amount of memory in order to be able to
3866 	 * page out something else, and this flag essentially protects
3867 	 * us from recursively trying to free more memory as we're
3868 	 * trying to free the first piece of memory in the first place).
3869 	 */
3870 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3871 	set_freezable();
3872 
3873 	WRITE_ONCE(pgdat->kswapd_order, 0);
3874 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3875 	for ( ; ; ) {
3876 		bool ret;
3877 
3878 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3879 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3880 							highest_zoneidx);
3881 
3882 kswapd_try_sleep:
3883 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3884 					highest_zoneidx);
3885 
3886 		/* Read the new order and highest_zoneidx */
3887 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3888 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3889 							highest_zoneidx);
3890 		WRITE_ONCE(pgdat->kswapd_order, 0);
3891 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3892 
3893 		ret = try_to_freeze();
3894 		if (kthread_should_stop())
3895 			break;
3896 
3897 		/*
3898 		 * We can speed up thawing tasks if we don't call balance_pgdat
3899 		 * after returning from the refrigerator
3900 		 */
3901 		if (ret)
3902 			continue;
3903 
3904 		/*
3905 		 * Reclaim begins at the requested order but if a high-order
3906 		 * reclaim fails then kswapd falls back to reclaiming for
3907 		 * order-0. If that happens, kswapd will consider sleeping
3908 		 * for the order it finished reclaiming at (reclaim_order)
3909 		 * but kcompactd is woken to compact for the original
3910 		 * request (alloc_order).
3911 		 */
3912 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3913 						alloc_order);
3914 		reclaim_order = balance_pgdat(pgdat, alloc_order,
3915 						highest_zoneidx);
3916 		if (reclaim_order < alloc_order)
3917 			goto kswapd_try_sleep;
3918 	}
3919 
3920 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3921 
3922 	return 0;
3923 }
3924 
3925 /*
3926  * A zone is low on free memory or too fragmented for high-order memory.  If
3927  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3928  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3929  * has failed or is not needed, still wake up kcompactd if only compaction is
3930  * needed.
3931  */
3932 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3933 		   enum zone_type highest_zoneidx)
3934 {
3935 	pg_data_t *pgdat;
3936 	enum zone_type curr_idx;
3937 
3938 	if (!managed_zone(zone))
3939 		return;
3940 
3941 	if (!cpuset_zone_allowed(zone, gfp_flags))
3942 		return;
3943 
3944 	pgdat = zone->zone_pgdat;
3945 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3946 
3947 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3948 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3949 
3950 	if (READ_ONCE(pgdat->kswapd_order) < order)
3951 		WRITE_ONCE(pgdat->kswapd_order, order);
3952 
3953 	if (!waitqueue_active(&pgdat->kswapd_wait))
3954 		return;
3955 
3956 	/* Hopeless node, leave it to direct reclaim if possible */
3957 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3958 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3959 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3960 		/*
3961 		 * There may be plenty of free memory available, but it's too
3962 		 * fragmented for high-order allocations.  Wake up kcompactd
3963 		 * and rely on compaction_suitable() to determine if it's
3964 		 * needed.  If it fails, it will defer subsequent attempts to
3965 		 * ratelimit its work.
3966 		 */
3967 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3968 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3969 		return;
3970 	}
3971 
3972 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3973 				      gfp_flags);
3974 	wake_up_interruptible(&pgdat->kswapd_wait);
3975 }
3976 
3977 #ifdef CONFIG_HIBERNATION
3978 /*
3979  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3980  * freed pages.
3981  *
3982  * Rather than trying to age LRUs the aim is to preserve the overall
3983  * LRU order by reclaiming preferentially
3984  * inactive > active > active referenced > active mapped
3985  */
3986 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3987 {
3988 	struct scan_control sc = {
3989 		.nr_to_reclaim = nr_to_reclaim,
3990 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3991 		.reclaim_idx = MAX_NR_ZONES - 1,
3992 		.priority = DEF_PRIORITY,
3993 		.may_writepage = 1,
3994 		.may_unmap = 1,
3995 		.may_swap = 1,
3996 		.hibernation_mode = 1,
3997 	};
3998 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3999 	unsigned long nr_reclaimed;
4000 	unsigned int noreclaim_flag;
4001 
4002 	fs_reclaim_acquire(sc.gfp_mask);
4003 	noreclaim_flag = memalloc_noreclaim_save();
4004 	set_task_reclaim_state(current, &sc.reclaim_state);
4005 
4006 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4007 
4008 	set_task_reclaim_state(current, NULL);
4009 	memalloc_noreclaim_restore(noreclaim_flag);
4010 	fs_reclaim_release(sc.gfp_mask);
4011 
4012 	return nr_reclaimed;
4013 }
4014 #endif /* CONFIG_HIBERNATION */
4015 
4016 /*
4017  * This kswapd start function will be called by init and node-hot-add.
4018  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4019  */
4020 int kswapd_run(int nid)
4021 {
4022 	pg_data_t *pgdat = NODE_DATA(nid);
4023 	int ret = 0;
4024 
4025 	if (pgdat->kswapd)
4026 		return 0;
4027 
4028 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4029 	if (IS_ERR(pgdat->kswapd)) {
4030 		/* failure at boot is fatal */
4031 		BUG_ON(system_state < SYSTEM_RUNNING);
4032 		pr_err("Failed to start kswapd on node %d\n", nid);
4033 		ret = PTR_ERR(pgdat->kswapd);
4034 		pgdat->kswapd = NULL;
4035 	}
4036 	return ret;
4037 }
4038 
4039 /*
4040  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4041  * hold mem_hotplug_begin/end().
4042  */
4043 void kswapd_stop(int nid)
4044 {
4045 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4046 
4047 	if (kswapd) {
4048 		kthread_stop(kswapd);
4049 		NODE_DATA(nid)->kswapd = NULL;
4050 	}
4051 }
4052 
4053 static int __init kswapd_init(void)
4054 {
4055 	int nid;
4056 
4057 	swap_setup();
4058 	for_each_node_state(nid, N_MEMORY)
4059  		kswapd_run(nid);
4060 	return 0;
4061 }
4062 
4063 module_init(kswapd_init)
4064 
4065 #ifdef CONFIG_NUMA
4066 /*
4067  * Node reclaim mode
4068  *
4069  * If non-zero call node_reclaim when the number of free pages falls below
4070  * the watermarks.
4071  */
4072 int node_reclaim_mode __read_mostly;
4073 
4074 #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4075 #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4076 
4077 /*
4078  * Priority for NODE_RECLAIM. This determines the fraction of pages
4079  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4080  * a zone.
4081  */
4082 #define NODE_RECLAIM_PRIORITY 4
4083 
4084 /*
4085  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4086  * occur.
4087  */
4088 int sysctl_min_unmapped_ratio = 1;
4089 
4090 /*
4091  * If the number of slab pages in a zone grows beyond this percentage then
4092  * slab reclaim needs to occur.
4093  */
4094 int sysctl_min_slab_ratio = 5;
4095 
4096 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4097 {
4098 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4099 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4100 		node_page_state(pgdat, NR_ACTIVE_FILE);
4101 
4102 	/*
4103 	 * It's possible for there to be more file mapped pages than
4104 	 * accounted for by the pages on the file LRU lists because
4105 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4106 	 */
4107 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4108 }
4109 
4110 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4111 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4112 {
4113 	unsigned long nr_pagecache_reclaimable;
4114 	unsigned long delta = 0;
4115 
4116 	/*
4117 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4118 	 * potentially reclaimable. Otherwise, we have to worry about
4119 	 * pages like swapcache and node_unmapped_file_pages() provides
4120 	 * a better estimate
4121 	 */
4122 	if (node_reclaim_mode & RECLAIM_UNMAP)
4123 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4124 	else
4125 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4126 
4127 	/* If we can't clean pages, remove dirty pages from consideration */
4128 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4129 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4130 
4131 	/* Watch for any possible underflows due to delta */
4132 	if (unlikely(delta > nr_pagecache_reclaimable))
4133 		delta = nr_pagecache_reclaimable;
4134 
4135 	return nr_pagecache_reclaimable - delta;
4136 }
4137 
4138 /*
4139  * Try to free up some pages from this node through reclaim.
4140  */
4141 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4142 {
4143 	/* Minimum pages needed in order to stay on node */
4144 	const unsigned long nr_pages = 1 << order;
4145 	struct task_struct *p = current;
4146 	unsigned int noreclaim_flag;
4147 	struct scan_control sc = {
4148 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4149 		.gfp_mask = current_gfp_context(gfp_mask),
4150 		.order = order,
4151 		.priority = NODE_RECLAIM_PRIORITY,
4152 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4153 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4154 		.may_swap = 1,
4155 		.reclaim_idx = gfp_zone(gfp_mask),
4156 	};
4157 
4158 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4159 					   sc.gfp_mask);
4160 
4161 	cond_resched();
4162 	fs_reclaim_acquire(sc.gfp_mask);
4163 	/*
4164 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4165 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4166 	 * and RECLAIM_UNMAP.
4167 	 */
4168 	noreclaim_flag = memalloc_noreclaim_save();
4169 	p->flags |= PF_SWAPWRITE;
4170 	set_task_reclaim_state(p, &sc.reclaim_state);
4171 
4172 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4173 		/*
4174 		 * Free memory by calling shrink node with increasing
4175 		 * priorities until we have enough memory freed.
4176 		 */
4177 		do {
4178 			shrink_node(pgdat, &sc);
4179 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4180 	}
4181 
4182 	set_task_reclaim_state(p, NULL);
4183 	current->flags &= ~PF_SWAPWRITE;
4184 	memalloc_noreclaim_restore(noreclaim_flag);
4185 	fs_reclaim_release(sc.gfp_mask);
4186 
4187 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4188 
4189 	return sc.nr_reclaimed >= nr_pages;
4190 }
4191 
4192 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4193 {
4194 	int ret;
4195 
4196 	/*
4197 	 * Node reclaim reclaims unmapped file backed pages and
4198 	 * slab pages if we are over the defined limits.
4199 	 *
4200 	 * A small portion of unmapped file backed pages is needed for
4201 	 * file I/O otherwise pages read by file I/O will be immediately
4202 	 * thrown out if the node is overallocated. So we do not reclaim
4203 	 * if less than a specified percentage of the node is used by
4204 	 * unmapped file backed pages.
4205 	 */
4206 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4207 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4208 	    pgdat->min_slab_pages)
4209 		return NODE_RECLAIM_FULL;
4210 
4211 	/*
4212 	 * Do not scan if the allocation should not be delayed.
4213 	 */
4214 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4215 		return NODE_RECLAIM_NOSCAN;
4216 
4217 	/*
4218 	 * Only run node reclaim on the local node or on nodes that do not
4219 	 * have associated processors. This will favor the local processor
4220 	 * over remote processors and spread off node memory allocations
4221 	 * as wide as possible.
4222 	 */
4223 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4224 		return NODE_RECLAIM_NOSCAN;
4225 
4226 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4227 		return NODE_RECLAIM_NOSCAN;
4228 
4229 	ret = __node_reclaim(pgdat, gfp_mask, order);
4230 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4231 
4232 	if (!ret)
4233 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4234 
4235 	return ret;
4236 }
4237 #endif
4238 
4239 /**
4240  * check_move_unevictable_pages - check pages for evictability and move to
4241  * appropriate zone lru list
4242  * @pvec: pagevec with lru pages to check
4243  *
4244  * Checks pages for evictability, if an evictable page is in the unevictable
4245  * lru list, moves it to the appropriate evictable lru list. This function
4246  * should be only used for lru pages.
4247  */
4248 void check_move_unevictable_pages(struct pagevec *pvec)
4249 {
4250 	struct lruvec *lruvec;
4251 	struct pglist_data *pgdat = NULL;
4252 	int pgscanned = 0;
4253 	int pgrescued = 0;
4254 	int i;
4255 
4256 	for (i = 0; i < pvec->nr; i++) {
4257 		struct page *page = pvec->pages[i];
4258 		struct pglist_data *pagepgdat = page_pgdat(page);
4259 
4260 		pgscanned++;
4261 		if (pagepgdat != pgdat) {
4262 			if (pgdat)
4263 				spin_unlock_irq(&pgdat->lru_lock);
4264 			pgdat = pagepgdat;
4265 			spin_lock_irq(&pgdat->lru_lock);
4266 		}
4267 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4268 
4269 		if (!PageLRU(page) || !PageUnevictable(page))
4270 			continue;
4271 
4272 		if (page_evictable(page)) {
4273 			enum lru_list lru = page_lru_base_type(page);
4274 
4275 			VM_BUG_ON_PAGE(PageActive(page), page);
4276 			ClearPageUnevictable(page);
4277 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4278 			add_page_to_lru_list(page, lruvec, lru);
4279 			pgrescued++;
4280 		}
4281 	}
4282 
4283 	if (pgdat) {
4284 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4285 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4286 		spin_unlock_irq(&pgdat->lru_lock);
4287 	}
4288 }
4289 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4290