1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* 83 * Scan pressure balancing between anon and file LRUs 84 */ 85 unsigned long anon_cost; 86 unsigned long file_cost; 87 88 /* Can active pages be deactivated as part of reclaim? */ 89 #define DEACTIVATE_ANON 1 90 #define DEACTIVATE_FILE 2 91 unsigned int may_deactivate:2; 92 unsigned int force_deactivate:1; 93 unsigned int skipped_deactivate:1; 94 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 96 unsigned int may_writepage:1; 97 98 /* Can mapped pages be reclaimed? */ 99 unsigned int may_unmap:1; 100 101 /* Can pages be swapped as part of reclaim? */ 102 unsigned int may_swap:1; 103 104 /* 105 * Cgroups are not reclaimed below their configured memory.low, 106 * unless we threaten to OOM. If any cgroups are skipped due to 107 * memory.low and nothing was reclaimed, go back for memory.low. 108 */ 109 unsigned int memcg_low_reclaim:1; 110 unsigned int memcg_low_skipped:1; 111 112 unsigned int hibernation_mode:1; 113 114 /* One of the zones is ready for compaction */ 115 unsigned int compaction_ready:1; 116 117 /* There is easily reclaimable cold cache in the current node */ 118 unsigned int cache_trim_mode:1; 119 120 /* The file pages on the current node are dangerously low */ 121 unsigned int file_is_tiny:1; 122 123 /* Allocation order */ 124 s8 order; 125 126 /* Scan (total_size >> priority) pages at once */ 127 s8 priority; 128 129 /* The highest zone to isolate pages for reclaim from */ 130 s8 reclaim_idx; 131 132 /* This context's GFP mask */ 133 gfp_t gfp_mask; 134 135 /* Incremented by the number of inactive pages that were scanned */ 136 unsigned long nr_scanned; 137 138 /* Number of pages freed so far during a call to shrink_zones() */ 139 unsigned long nr_reclaimed; 140 141 struct { 142 unsigned int dirty; 143 unsigned int unqueued_dirty; 144 unsigned int congested; 145 unsigned int writeback; 146 unsigned int immediate; 147 unsigned int file_taken; 148 unsigned int taken; 149 } nr; 150 151 /* for recording the reclaimed slab by now */ 152 struct reclaim_state reclaim_state; 153 }; 154 155 #ifdef ARCH_HAS_PREFETCHW 156 #define prefetchw_prev_lru_page(_page, _base, _field) \ 157 do { \ 158 if ((_page)->lru.prev != _base) { \ 159 struct page *prev; \ 160 \ 161 prev = lru_to_page(&(_page->lru)); \ 162 prefetchw(&prev->_field); \ 163 } \ 164 } while (0) 165 #else 166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 167 #endif 168 169 /* 170 * From 0 .. 200. Higher means more swappy. 171 */ 172 int vm_swappiness = 60; 173 174 static void set_task_reclaim_state(struct task_struct *task, 175 struct reclaim_state *rs) 176 { 177 /* Check for an overwrite */ 178 WARN_ON_ONCE(rs && task->reclaim_state); 179 180 /* Check for the nulling of an already-nulled member */ 181 WARN_ON_ONCE(!rs && !task->reclaim_state); 182 183 task->reclaim_state = rs; 184 } 185 186 static LIST_HEAD(shrinker_list); 187 static DECLARE_RWSEM(shrinker_rwsem); 188 189 #ifdef CONFIG_MEMCG 190 /* 191 * We allow subsystems to populate their shrinker-related 192 * LRU lists before register_shrinker_prepared() is called 193 * for the shrinker, since we don't want to impose 194 * restrictions on their internal registration order. 195 * In this case shrink_slab_memcg() may find corresponding 196 * bit is set in the shrinkers map. 197 * 198 * This value is used by the function to detect registering 199 * shrinkers and to skip do_shrink_slab() calls for them. 200 */ 201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 202 203 static DEFINE_IDR(shrinker_idr); 204 static int shrinker_nr_max; 205 206 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 207 { 208 int id, ret = -ENOMEM; 209 210 down_write(&shrinker_rwsem); 211 /* This may call shrinker, so it must use down_read_trylock() */ 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 213 if (id < 0) 214 goto unlock; 215 216 if (id >= shrinker_nr_max) { 217 if (memcg_expand_shrinker_maps(id)) { 218 idr_remove(&shrinker_idr, id); 219 goto unlock; 220 } 221 222 shrinker_nr_max = id + 1; 223 } 224 shrinker->id = id; 225 ret = 0; 226 unlock: 227 up_write(&shrinker_rwsem); 228 return ret; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 int id = shrinker->id; 234 235 BUG_ON(id < 0); 236 237 down_write(&shrinker_rwsem); 238 idr_remove(&shrinker_idr, id); 239 up_write(&shrinker_rwsem); 240 } 241 242 static bool cgroup_reclaim(struct scan_control *sc) 243 { 244 return sc->target_mem_cgroup; 245 } 246 247 /** 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool writeback_throttling_sane(struct scan_control *sc) 261 { 262 if (!cgroup_reclaim(sc)) 263 return true; 264 #ifdef CONFIG_CGROUP_WRITEBACK 265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 266 return true; 267 #endif 268 return false; 269 } 270 #else 271 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 272 { 273 return 0; 274 } 275 276 static void unregister_memcg_shrinker(struct shrinker *shrinker) 277 { 278 } 279 280 static bool cgroup_reclaim(struct scan_control *sc) 281 { 282 return false; 283 } 284 285 static bool writeback_throttling_sane(struct scan_control *sc) 286 { 287 return true; 288 } 289 #endif 290 291 /* 292 * This misses isolated pages which are not accounted for to save counters. 293 * As the data only determines if reclaim or compaction continues, it is 294 * not expected that isolated pages will be a dominating factor. 295 */ 296 unsigned long zone_reclaimable_pages(struct zone *zone) 297 { 298 unsigned long nr; 299 300 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 301 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 302 if (get_nr_swap_pages() > 0) 303 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 304 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 305 306 return nr; 307 } 308 309 /** 310 * lruvec_lru_size - Returns the number of pages on the given LRU list. 311 * @lruvec: lru vector 312 * @lru: lru to use 313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 314 */ 315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 316 { 317 unsigned long size = 0; 318 int zid; 319 320 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 321 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 322 323 if (!managed_zone(zone)) 324 continue; 325 326 if (!mem_cgroup_disabled()) 327 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 328 else 329 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 330 } 331 return size; 332 } 333 334 /* 335 * Add a shrinker callback to be called from the vm. 336 */ 337 int prealloc_shrinker(struct shrinker *shrinker) 338 { 339 unsigned int size = sizeof(*shrinker->nr_deferred); 340 341 if (shrinker->flags & SHRINKER_NUMA_AWARE) 342 size *= nr_node_ids; 343 344 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 345 if (!shrinker->nr_deferred) 346 return -ENOMEM; 347 348 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 349 if (prealloc_memcg_shrinker(shrinker)) 350 goto free_deferred; 351 } 352 353 return 0; 354 355 free_deferred: 356 kfree(shrinker->nr_deferred); 357 shrinker->nr_deferred = NULL; 358 return -ENOMEM; 359 } 360 361 void free_prealloced_shrinker(struct shrinker *shrinker) 362 { 363 if (!shrinker->nr_deferred) 364 return; 365 366 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 367 unregister_memcg_shrinker(shrinker); 368 369 kfree(shrinker->nr_deferred); 370 shrinker->nr_deferred = NULL; 371 } 372 373 void register_shrinker_prepared(struct shrinker *shrinker) 374 { 375 down_write(&shrinker_rwsem); 376 list_add_tail(&shrinker->list, &shrinker_list); 377 #ifdef CONFIG_MEMCG 378 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 379 idr_replace(&shrinker_idr, shrinker, shrinker->id); 380 #endif 381 up_write(&shrinker_rwsem); 382 } 383 384 int register_shrinker(struct shrinker *shrinker) 385 { 386 int err = prealloc_shrinker(shrinker); 387 388 if (err) 389 return err; 390 register_shrinker_prepared(shrinker); 391 return 0; 392 } 393 EXPORT_SYMBOL(register_shrinker); 394 395 /* 396 * Remove one 397 */ 398 void unregister_shrinker(struct shrinker *shrinker) 399 { 400 if (!shrinker->nr_deferred) 401 return; 402 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 403 unregister_memcg_shrinker(shrinker); 404 down_write(&shrinker_rwsem); 405 list_del(&shrinker->list); 406 up_write(&shrinker_rwsem); 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 EXPORT_SYMBOL(unregister_shrinker); 411 412 #define SHRINK_BATCH 128 413 414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 415 struct shrinker *shrinker, int priority) 416 { 417 unsigned long freed = 0; 418 unsigned long long delta; 419 long total_scan; 420 long freeable; 421 long nr; 422 long new_nr; 423 int nid = shrinkctl->nid; 424 long batch_size = shrinker->batch ? shrinker->batch 425 : SHRINK_BATCH; 426 long scanned = 0, next_deferred; 427 428 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 429 nid = 0; 430 431 freeable = shrinker->count_objects(shrinker, shrinkctl); 432 if (freeable == 0 || freeable == SHRINK_EMPTY) 433 return freeable; 434 435 /* 436 * copy the current shrinker scan count into a local variable 437 * and zero it so that other concurrent shrinker invocations 438 * don't also do this scanning work. 439 */ 440 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 441 442 total_scan = nr; 443 if (shrinker->seeks) { 444 delta = freeable >> priority; 445 delta *= 4; 446 do_div(delta, shrinker->seeks); 447 } else { 448 /* 449 * These objects don't require any IO to create. Trim 450 * them aggressively under memory pressure to keep 451 * them from causing refetches in the IO caches. 452 */ 453 delta = freeable / 2; 454 } 455 456 total_scan += delta; 457 if (total_scan < 0) { 458 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 459 shrinker->scan_objects, total_scan); 460 total_scan = freeable; 461 next_deferred = nr; 462 } else 463 next_deferred = total_scan; 464 465 /* 466 * We need to avoid excessive windup on filesystem shrinkers 467 * due to large numbers of GFP_NOFS allocations causing the 468 * shrinkers to return -1 all the time. This results in a large 469 * nr being built up so when a shrink that can do some work 470 * comes along it empties the entire cache due to nr >>> 471 * freeable. This is bad for sustaining a working set in 472 * memory. 473 * 474 * Hence only allow the shrinker to scan the entire cache when 475 * a large delta change is calculated directly. 476 */ 477 if (delta < freeable / 4) 478 total_scan = min(total_scan, freeable / 2); 479 480 /* 481 * Avoid risking looping forever due to too large nr value: 482 * never try to free more than twice the estimate number of 483 * freeable entries. 484 */ 485 if (total_scan > freeable * 2) 486 total_scan = freeable * 2; 487 488 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 489 freeable, delta, total_scan, priority); 490 491 /* 492 * Normally, we should not scan less than batch_size objects in one 493 * pass to avoid too frequent shrinker calls, but if the slab has less 494 * than batch_size objects in total and we are really tight on memory, 495 * we will try to reclaim all available objects, otherwise we can end 496 * up failing allocations although there are plenty of reclaimable 497 * objects spread over several slabs with usage less than the 498 * batch_size. 499 * 500 * We detect the "tight on memory" situations by looking at the total 501 * number of objects we want to scan (total_scan). If it is greater 502 * than the total number of objects on slab (freeable), we must be 503 * scanning at high prio and therefore should try to reclaim as much as 504 * possible. 505 */ 506 while (total_scan >= batch_size || 507 total_scan >= freeable) { 508 unsigned long ret; 509 unsigned long nr_to_scan = min(batch_size, total_scan); 510 511 shrinkctl->nr_to_scan = nr_to_scan; 512 shrinkctl->nr_scanned = nr_to_scan; 513 ret = shrinker->scan_objects(shrinker, shrinkctl); 514 if (ret == SHRINK_STOP) 515 break; 516 freed += ret; 517 518 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 519 total_scan -= shrinkctl->nr_scanned; 520 scanned += shrinkctl->nr_scanned; 521 522 cond_resched(); 523 } 524 525 if (next_deferred >= scanned) 526 next_deferred -= scanned; 527 else 528 next_deferred = 0; 529 /* 530 * move the unused scan count back into the shrinker in a 531 * manner that handles concurrent updates. If we exhausted the 532 * scan, there is no need to do an update. 533 */ 534 if (next_deferred > 0) 535 new_nr = atomic_long_add_return(next_deferred, 536 &shrinker->nr_deferred[nid]); 537 else 538 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 539 540 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 541 return freed; 542 } 543 544 #ifdef CONFIG_MEMCG 545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 546 struct mem_cgroup *memcg, int priority) 547 { 548 struct memcg_shrinker_map *map; 549 unsigned long ret, freed = 0; 550 int i; 551 552 if (!mem_cgroup_online(memcg)) 553 return 0; 554 555 if (!down_read_trylock(&shrinker_rwsem)) 556 return 0; 557 558 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 559 true); 560 if (unlikely(!map)) 561 goto unlock; 562 563 for_each_set_bit(i, map->map, shrinker_nr_max) { 564 struct shrink_control sc = { 565 .gfp_mask = gfp_mask, 566 .nid = nid, 567 .memcg = memcg, 568 }; 569 struct shrinker *shrinker; 570 571 shrinker = idr_find(&shrinker_idr, i); 572 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 573 if (!shrinker) 574 clear_bit(i, map->map); 575 continue; 576 } 577 578 /* Call non-slab shrinkers even though kmem is disabled */ 579 if (!memcg_kmem_enabled() && 580 !(shrinker->flags & SHRINKER_NONSLAB)) 581 continue; 582 583 ret = do_shrink_slab(&sc, shrinker, priority); 584 if (ret == SHRINK_EMPTY) { 585 clear_bit(i, map->map); 586 /* 587 * After the shrinker reported that it had no objects to 588 * free, but before we cleared the corresponding bit in 589 * the memcg shrinker map, a new object might have been 590 * added. To make sure, we have the bit set in this 591 * case, we invoke the shrinker one more time and reset 592 * the bit if it reports that it is not empty anymore. 593 * The memory barrier here pairs with the barrier in 594 * memcg_set_shrinker_bit(): 595 * 596 * list_lru_add() shrink_slab_memcg() 597 * list_add_tail() clear_bit() 598 * <MB> <MB> 599 * set_bit() do_shrink_slab() 600 */ 601 smp_mb__after_atomic(); 602 ret = do_shrink_slab(&sc, shrinker, priority); 603 if (ret == SHRINK_EMPTY) 604 ret = 0; 605 else 606 memcg_set_shrinker_bit(memcg, nid, i); 607 } 608 freed += ret; 609 610 if (rwsem_is_contended(&shrinker_rwsem)) { 611 freed = freed ? : 1; 612 break; 613 } 614 } 615 unlock: 616 up_read(&shrinker_rwsem); 617 return freed; 618 } 619 #else /* CONFIG_MEMCG */ 620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 621 struct mem_cgroup *memcg, int priority) 622 { 623 return 0; 624 } 625 #endif /* CONFIG_MEMCG */ 626 627 /** 628 * shrink_slab - shrink slab caches 629 * @gfp_mask: allocation context 630 * @nid: node whose slab caches to target 631 * @memcg: memory cgroup whose slab caches to target 632 * @priority: the reclaim priority 633 * 634 * Call the shrink functions to age shrinkable caches. 635 * 636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 637 * unaware shrinkers will receive a node id of 0 instead. 638 * 639 * @memcg specifies the memory cgroup to target. Unaware shrinkers 640 * are called only if it is the root cgroup. 641 * 642 * @priority is sc->priority, we take the number of objects and >> by priority 643 * in order to get the scan target. 644 * 645 * Returns the number of reclaimed slab objects. 646 */ 647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 648 struct mem_cgroup *memcg, 649 int priority) 650 { 651 unsigned long ret, freed = 0; 652 struct shrinker *shrinker; 653 654 /* 655 * The root memcg might be allocated even though memcg is disabled 656 * via "cgroup_disable=memory" boot parameter. This could make 657 * mem_cgroup_is_root() return false, then just run memcg slab 658 * shrink, but skip global shrink. This may result in premature 659 * oom. 660 */ 661 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 662 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 663 664 if (!down_read_trylock(&shrinker_rwsem)) 665 goto out; 666 667 list_for_each_entry(shrinker, &shrinker_list, list) { 668 struct shrink_control sc = { 669 .gfp_mask = gfp_mask, 670 .nid = nid, 671 .memcg = memcg, 672 }; 673 674 ret = do_shrink_slab(&sc, shrinker, priority); 675 if (ret == SHRINK_EMPTY) 676 ret = 0; 677 freed += ret; 678 /* 679 * Bail out if someone want to register a new shrinker to 680 * prevent the registration from being stalled for long periods 681 * by parallel ongoing shrinking. 682 */ 683 if (rwsem_is_contended(&shrinker_rwsem)) { 684 freed = freed ? : 1; 685 break; 686 } 687 } 688 689 up_read(&shrinker_rwsem); 690 out: 691 cond_resched(); 692 return freed; 693 } 694 695 void drop_slab_node(int nid) 696 { 697 unsigned long freed; 698 699 do { 700 struct mem_cgroup *memcg = NULL; 701 702 freed = 0; 703 memcg = mem_cgroup_iter(NULL, NULL, NULL); 704 do { 705 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 706 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 707 } while (freed > 10); 708 } 709 710 void drop_slab(void) 711 { 712 int nid; 713 714 for_each_online_node(nid) 715 drop_slab_node(nid); 716 } 717 718 static inline int is_page_cache_freeable(struct page *page) 719 { 720 /* 721 * A freeable page cache page is referenced only by the caller 722 * that isolated the page, the page cache and optional buffer 723 * heads at page->private. 724 */ 725 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 726 HPAGE_PMD_NR : 1; 727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 728 } 729 730 static int may_write_to_inode(struct inode *inode) 731 { 732 if (current->flags & PF_SWAPWRITE) 733 return 1; 734 if (!inode_write_congested(inode)) 735 return 1; 736 if (inode_to_bdi(inode) == current->backing_dev_info) 737 return 1; 738 return 0; 739 } 740 741 /* 742 * We detected a synchronous write error writing a page out. Probably 743 * -ENOSPC. We need to propagate that into the address_space for a subsequent 744 * fsync(), msync() or close(). 745 * 746 * The tricky part is that after writepage we cannot touch the mapping: nothing 747 * prevents it from being freed up. But we have a ref on the page and once 748 * that page is locked, the mapping is pinned. 749 * 750 * We're allowed to run sleeping lock_page() here because we know the caller has 751 * __GFP_FS. 752 */ 753 static void handle_write_error(struct address_space *mapping, 754 struct page *page, int error) 755 { 756 lock_page(page); 757 if (page_mapping(page) == mapping) 758 mapping_set_error(mapping, error); 759 unlock_page(page); 760 } 761 762 /* possible outcome of pageout() */ 763 typedef enum { 764 /* failed to write page out, page is locked */ 765 PAGE_KEEP, 766 /* move page to the active list, page is locked */ 767 PAGE_ACTIVATE, 768 /* page has been sent to the disk successfully, page is unlocked */ 769 PAGE_SUCCESS, 770 /* page is clean and locked */ 771 PAGE_CLEAN, 772 } pageout_t; 773 774 /* 775 * pageout is called by shrink_page_list() for each dirty page. 776 * Calls ->writepage(). 777 */ 778 static pageout_t pageout(struct page *page, struct address_space *mapping) 779 { 780 /* 781 * If the page is dirty, only perform writeback if that write 782 * will be non-blocking. To prevent this allocation from being 783 * stalled by pagecache activity. But note that there may be 784 * stalls if we need to run get_block(). We could test 785 * PagePrivate for that. 786 * 787 * If this process is currently in __generic_file_write_iter() against 788 * this page's queue, we can perform writeback even if that 789 * will block. 790 * 791 * If the page is swapcache, write it back even if that would 792 * block, for some throttling. This happens by accident, because 793 * swap_backing_dev_info is bust: it doesn't reflect the 794 * congestion state of the swapdevs. Easy to fix, if needed. 795 */ 796 if (!is_page_cache_freeable(page)) 797 return PAGE_KEEP; 798 if (!mapping) { 799 /* 800 * Some data journaling orphaned pages can have 801 * page->mapping == NULL while being dirty with clean buffers. 802 */ 803 if (page_has_private(page)) { 804 if (try_to_free_buffers(page)) { 805 ClearPageDirty(page); 806 pr_info("%s: orphaned page\n", __func__); 807 return PAGE_CLEAN; 808 } 809 } 810 return PAGE_KEEP; 811 } 812 if (mapping->a_ops->writepage == NULL) 813 return PAGE_ACTIVATE; 814 if (!may_write_to_inode(mapping->host)) 815 return PAGE_KEEP; 816 817 if (clear_page_dirty_for_io(page)) { 818 int res; 819 struct writeback_control wbc = { 820 .sync_mode = WB_SYNC_NONE, 821 .nr_to_write = SWAP_CLUSTER_MAX, 822 .range_start = 0, 823 .range_end = LLONG_MAX, 824 .for_reclaim = 1, 825 }; 826 827 SetPageReclaim(page); 828 res = mapping->a_ops->writepage(page, &wbc); 829 if (res < 0) 830 handle_write_error(mapping, page, res); 831 if (res == AOP_WRITEPAGE_ACTIVATE) { 832 ClearPageReclaim(page); 833 return PAGE_ACTIVATE; 834 } 835 836 if (!PageWriteback(page)) { 837 /* synchronous write or broken a_ops? */ 838 ClearPageReclaim(page); 839 } 840 trace_mm_vmscan_writepage(page); 841 inc_node_page_state(page, NR_VMSCAN_WRITE); 842 return PAGE_SUCCESS; 843 } 844 845 return PAGE_CLEAN; 846 } 847 848 /* 849 * Same as remove_mapping, but if the page is removed from the mapping, it 850 * gets returned with a refcount of 0. 851 */ 852 static int __remove_mapping(struct address_space *mapping, struct page *page, 853 bool reclaimed, struct mem_cgroup *target_memcg) 854 { 855 unsigned long flags; 856 int refcount; 857 858 BUG_ON(!PageLocked(page)); 859 BUG_ON(mapping != page_mapping(page)); 860 861 xa_lock_irqsave(&mapping->i_pages, flags); 862 /* 863 * The non racy check for a busy page. 864 * 865 * Must be careful with the order of the tests. When someone has 866 * a ref to the page, it may be possible that they dirty it then 867 * drop the reference. So if PageDirty is tested before page_count 868 * here, then the following race may occur: 869 * 870 * get_user_pages(&page); 871 * [user mapping goes away] 872 * write_to(page); 873 * !PageDirty(page) [good] 874 * SetPageDirty(page); 875 * put_page(page); 876 * !page_count(page) [good, discard it] 877 * 878 * [oops, our write_to data is lost] 879 * 880 * Reversing the order of the tests ensures such a situation cannot 881 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 882 * load is not satisfied before that of page->_refcount. 883 * 884 * Note that if SetPageDirty is always performed via set_page_dirty, 885 * and thus under the i_pages lock, then this ordering is not required. 886 */ 887 refcount = 1 + compound_nr(page); 888 if (!page_ref_freeze(page, refcount)) 889 goto cannot_free; 890 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 891 if (unlikely(PageDirty(page))) { 892 page_ref_unfreeze(page, refcount); 893 goto cannot_free; 894 } 895 896 if (PageSwapCache(page)) { 897 swp_entry_t swap = { .val = page_private(page) }; 898 mem_cgroup_swapout(page, swap); 899 __delete_from_swap_cache(page, swap); 900 xa_unlock_irqrestore(&mapping->i_pages, flags); 901 put_swap_page(page, swap); 902 workingset_eviction(page, target_memcg); 903 } else { 904 void (*freepage)(struct page *); 905 void *shadow = NULL; 906 907 freepage = mapping->a_ops->freepage; 908 /* 909 * Remember a shadow entry for reclaimed file cache in 910 * order to detect refaults, thus thrashing, later on. 911 * 912 * But don't store shadows in an address space that is 913 * already exiting. This is not just an optimization, 914 * inode reclaim needs to empty out the radix tree or 915 * the nodes are lost. Don't plant shadows behind its 916 * back. 917 * 918 * We also don't store shadows for DAX mappings because the 919 * only page cache pages found in these are zero pages 920 * covering holes, and because we don't want to mix DAX 921 * exceptional entries and shadow exceptional entries in the 922 * same address_space. 923 */ 924 if (reclaimed && page_is_file_lru(page) && 925 !mapping_exiting(mapping) && !dax_mapping(mapping)) 926 shadow = workingset_eviction(page, target_memcg); 927 __delete_from_page_cache(page, shadow); 928 xa_unlock_irqrestore(&mapping->i_pages, flags); 929 930 if (freepage != NULL) 931 freepage(page); 932 } 933 934 return 1; 935 936 cannot_free: 937 xa_unlock_irqrestore(&mapping->i_pages, flags); 938 return 0; 939 } 940 941 /* 942 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 943 * someone else has a ref on the page, abort and return 0. If it was 944 * successfully detached, return 1. Assumes the caller has a single ref on 945 * this page. 946 */ 947 int remove_mapping(struct address_space *mapping, struct page *page) 948 { 949 if (__remove_mapping(mapping, page, false, NULL)) { 950 /* 951 * Unfreezing the refcount with 1 rather than 2 effectively 952 * drops the pagecache ref for us without requiring another 953 * atomic operation. 954 */ 955 page_ref_unfreeze(page, 1); 956 return 1; 957 } 958 return 0; 959 } 960 961 /** 962 * putback_lru_page - put previously isolated page onto appropriate LRU list 963 * @page: page to be put back to appropriate lru list 964 * 965 * Add previously isolated @page to appropriate LRU list. 966 * Page may still be unevictable for other reasons. 967 * 968 * lru_lock must not be held, interrupts must be enabled. 969 */ 970 void putback_lru_page(struct page *page) 971 { 972 lru_cache_add(page); 973 put_page(page); /* drop ref from isolate */ 974 } 975 976 enum page_references { 977 PAGEREF_RECLAIM, 978 PAGEREF_RECLAIM_CLEAN, 979 PAGEREF_KEEP, 980 PAGEREF_ACTIVATE, 981 }; 982 983 static enum page_references page_check_references(struct page *page, 984 struct scan_control *sc) 985 { 986 int referenced_ptes, referenced_page; 987 unsigned long vm_flags; 988 989 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 990 &vm_flags); 991 referenced_page = TestClearPageReferenced(page); 992 993 /* 994 * Mlock lost the isolation race with us. Let try_to_unmap() 995 * move the page to the unevictable list. 996 */ 997 if (vm_flags & VM_LOCKED) 998 return PAGEREF_RECLAIM; 999 1000 if (referenced_ptes) { 1001 if (PageSwapBacked(page)) 1002 return PAGEREF_ACTIVATE; 1003 /* 1004 * All mapped pages start out with page table 1005 * references from the instantiating fault, so we need 1006 * to look twice if a mapped file page is used more 1007 * than once. 1008 * 1009 * Mark it and spare it for another trip around the 1010 * inactive list. Another page table reference will 1011 * lead to its activation. 1012 * 1013 * Note: the mark is set for activated pages as well 1014 * so that recently deactivated but used pages are 1015 * quickly recovered. 1016 */ 1017 SetPageReferenced(page); 1018 1019 if (referenced_page || referenced_ptes > 1) 1020 return PAGEREF_ACTIVATE; 1021 1022 /* 1023 * Activate file-backed executable pages after first usage. 1024 */ 1025 if (vm_flags & VM_EXEC) 1026 return PAGEREF_ACTIVATE; 1027 1028 return PAGEREF_KEEP; 1029 } 1030 1031 /* Reclaim if clean, defer dirty pages to writeback */ 1032 if (referenced_page && !PageSwapBacked(page)) 1033 return PAGEREF_RECLAIM_CLEAN; 1034 1035 return PAGEREF_RECLAIM; 1036 } 1037 1038 /* Check if a page is dirty or under writeback */ 1039 static void page_check_dirty_writeback(struct page *page, 1040 bool *dirty, bool *writeback) 1041 { 1042 struct address_space *mapping; 1043 1044 /* 1045 * Anonymous pages are not handled by flushers and must be written 1046 * from reclaim context. Do not stall reclaim based on them 1047 */ 1048 if (!page_is_file_lru(page) || 1049 (PageAnon(page) && !PageSwapBacked(page))) { 1050 *dirty = false; 1051 *writeback = false; 1052 return; 1053 } 1054 1055 /* By default assume that the page flags are accurate */ 1056 *dirty = PageDirty(page); 1057 *writeback = PageWriteback(page); 1058 1059 /* Verify dirty/writeback state if the filesystem supports it */ 1060 if (!page_has_private(page)) 1061 return; 1062 1063 mapping = page_mapping(page); 1064 if (mapping && mapping->a_ops->is_dirty_writeback) 1065 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1066 } 1067 1068 /* 1069 * shrink_page_list() returns the number of reclaimed pages 1070 */ 1071 static unsigned int shrink_page_list(struct list_head *page_list, 1072 struct pglist_data *pgdat, 1073 struct scan_control *sc, 1074 enum ttu_flags ttu_flags, 1075 struct reclaim_stat *stat, 1076 bool ignore_references) 1077 { 1078 LIST_HEAD(ret_pages); 1079 LIST_HEAD(free_pages); 1080 unsigned int nr_reclaimed = 0; 1081 unsigned int pgactivate = 0; 1082 1083 memset(stat, 0, sizeof(*stat)); 1084 cond_resched(); 1085 1086 while (!list_empty(page_list)) { 1087 struct address_space *mapping; 1088 struct page *page; 1089 enum page_references references = PAGEREF_RECLAIM; 1090 bool dirty, writeback, may_enter_fs; 1091 unsigned int nr_pages; 1092 1093 cond_resched(); 1094 1095 page = lru_to_page(page_list); 1096 list_del(&page->lru); 1097 1098 if (!trylock_page(page)) 1099 goto keep; 1100 1101 VM_BUG_ON_PAGE(PageActive(page), page); 1102 1103 nr_pages = compound_nr(page); 1104 1105 /* Account the number of base pages even though THP */ 1106 sc->nr_scanned += nr_pages; 1107 1108 if (unlikely(!page_evictable(page))) 1109 goto activate_locked; 1110 1111 if (!sc->may_unmap && page_mapped(page)) 1112 goto keep_locked; 1113 1114 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1115 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1116 1117 /* 1118 * The number of dirty pages determines if a node is marked 1119 * reclaim_congested which affects wait_iff_congested. kswapd 1120 * will stall and start writing pages if the tail of the LRU 1121 * is all dirty unqueued pages. 1122 */ 1123 page_check_dirty_writeback(page, &dirty, &writeback); 1124 if (dirty || writeback) 1125 stat->nr_dirty++; 1126 1127 if (dirty && !writeback) 1128 stat->nr_unqueued_dirty++; 1129 1130 /* 1131 * Treat this page as congested if the underlying BDI is or if 1132 * pages are cycling through the LRU so quickly that the 1133 * pages marked for immediate reclaim are making it to the 1134 * end of the LRU a second time. 1135 */ 1136 mapping = page_mapping(page); 1137 if (((dirty || writeback) && mapping && 1138 inode_write_congested(mapping->host)) || 1139 (writeback && PageReclaim(page))) 1140 stat->nr_congested++; 1141 1142 /* 1143 * If a page at the tail of the LRU is under writeback, there 1144 * are three cases to consider. 1145 * 1146 * 1) If reclaim is encountering an excessive number of pages 1147 * under writeback and this page is both under writeback and 1148 * PageReclaim then it indicates that pages are being queued 1149 * for IO but are being recycled through the LRU before the 1150 * IO can complete. Waiting on the page itself risks an 1151 * indefinite stall if it is impossible to writeback the 1152 * page due to IO error or disconnected storage so instead 1153 * note that the LRU is being scanned too quickly and the 1154 * caller can stall after page list has been processed. 1155 * 1156 * 2) Global or new memcg reclaim encounters a page that is 1157 * not marked for immediate reclaim, or the caller does not 1158 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1159 * not to fs). In this case mark the page for immediate 1160 * reclaim and continue scanning. 1161 * 1162 * Require may_enter_fs because we would wait on fs, which 1163 * may not have submitted IO yet. And the loop driver might 1164 * enter reclaim, and deadlock if it waits on a page for 1165 * which it is needed to do the write (loop masks off 1166 * __GFP_IO|__GFP_FS for this reason); but more thought 1167 * would probably show more reasons. 1168 * 1169 * 3) Legacy memcg encounters a page that is already marked 1170 * PageReclaim. memcg does not have any dirty pages 1171 * throttling so we could easily OOM just because too many 1172 * pages are in writeback and there is nothing else to 1173 * reclaim. Wait for the writeback to complete. 1174 * 1175 * In cases 1) and 2) we activate the pages to get them out of 1176 * the way while we continue scanning for clean pages on the 1177 * inactive list and refilling from the active list. The 1178 * observation here is that waiting for disk writes is more 1179 * expensive than potentially causing reloads down the line. 1180 * Since they're marked for immediate reclaim, they won't put 1181 * memory pressure on the cache working set any longer than it 1182 * takes to write them to disk. 1183 */ 1184 if (PageWriteback(page)) { 1185 /* Case 1 above */ 1186 if (current_is_kswapd() && 1187 PageReclaim(page) && 1188 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1189 stat->nr_immediate++; 1190 goto activate_locked; 1191 1192 /* Case 2 above */ 1193 } else if (writeback_throttling_sane(sc) || 1194 !PageReclaim(page) || !may_enter_fs) { 1195 /* 1196 * This is slightly racy - end_page_writeback() 1197 * might have just cleared PageReclaim, then 1198 * setting PageReclaim here end up interpreted 1199 * as PageReadahead - but that does not matter 1200 * enough to care. What we do want is for this 1201 * page to have PageReclaim set next time memcg 1202 * reclaim reaches the tests above, so it will 1203 * then wait_on_page_writeback() to avoid OOM; 1204 * and it's also appropriate in global reclaim. 1205 */ 1206 SetPageReclaim(page); 1207 stat->nr_writeback++; 1208 goto activate_locked; 1209 1210 /* Case 3 above */ 1211 } else { 1212 unlock_page(page); 1213 wait_on_page_writeback(page); 1214 /* then go back and try same page again */ 1215 list_add_tail(&page->lru, page_list); 1216 continue; 1217 } 1218 } 1219 1220 if (!ignore_references) 1221 references = page_check_references(page, sc); 1222 1223 switch (references) { 1224 case PAGEREF_ACTIVATE: 1225 goto activate_locked; 1226 case PAGEREF_KEEP: 1227 stat->nr_ref_keep += nr_pages; 1228 goto keep_locked; 1229 case PAGEREF_RECLAIM: 1230 case PAGEREF_RECLAIM_CLEAN: 1231 ; /* try to reclaim the page below */ 1232 } 1233 1234 /* 1235 * Anonymous process memory has backing store? 1236 * Try to allocate it some swap space here. 1237 * Lazyfree page could be freed directly 1238 */ 1239 if (PageAnon(page) && PageSwapBacked(page)) { 1240 if (!PageSwapCache(page)) { 1241 if (!(sc->gfp_mask & __GFP_IO)) 1242 goto keep_locked; 1243 if (PageTransHuge(page)) { 1244 /* cannot split THP, skip it */ 1245 if (!can_split_huge_page(page, NULL)) 1246 goto activate_locked; 1247 /* 1248 * Split pages without a PMD map right 1249 * away. Chances are some or all of the 1250 * tail pages can be freed without IO. 1251 */ 1252 if (!compound_mapcount(page) && 1253 split_huge_page_to_list(page, 1254 page_list)) 1255 goto activate_locked; 1256 } 1257 if (!add_to_swap(page)) { 1258 if (!PageTransHuge(page)) 1259 goto activate_locked_split; 1260 /* Fallback to swap normal pages */ 1261 if (split_huge_page_to_list(page, 1262 page_list)) 1263 goto activate_locked; 1264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1265 count_vm_event(THP_SWPOUT_FALLBACK); 1266 #endif 1267 if (!add_to_swap(page)) 1268 goto activate_locked_split; 1269 } 1270 1271 may_enter_fs = true; 1272 1273 /* Adding to swap updated mapping */ 1274 mapping = page_mapping(page); 1275 } 1276 } else if (unlikely(PageTransHuge(page))) { 1277 /* Split file THP */ 1278 if (split_huge_page_to_list(page, page_list)) 1279 goto keep_locked; 1280 } 1281 1282 /* 1283 * THP may get split above, need minus tail pages and update 1284 * nr_pages to avoid accounting tail pages twice. 1285 * 1286 * The tail pages that are added into swap cache successfully 1287 * reach here. 1288 */ 1289 if ((nr_pages > 1) && !PageTransHuge(page)) { 1290 sc->nr_scanned -= (nr_pages - 1); 1291 nr_pages = 1; 1292 } 1293 1294 /* 1295 * The page is mapped into the page tables of one or more 1296 * processes. Try to unmap it here. 1297 */ 1298 if (page_mapped(page)) { 1299 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1300 bool was_swapbacked = PageSwapBacked(page); 1301 1302 if (unlikely(PageTransHuge(page))) 1303 flags |= TTU_SPLIT_HUGE_PMD; 1304 1305 if (!try_to_unmap(page, flags)) { 1306 stat->nr_unmap_fail += nr_pages; 1307 if (!was_swapbacked && PageSwapBacked(page)) 1308 stat->nr_lazyfree_fail += nr_pages; 1309 goto activate_locked; 1310 } 1311 } 1312 1313 if (PageDirty(page)) { 1314 /* 1315 * Only kswapd can writeback filesystem pages 1316 * to avoid risk of stack overflow. But avoid 1317 * injecting inefficient single-page IO into 1318 * flusher writeback as much as possible: only 1319 * write pages when we've encountered many 1320 * dirty pages, and when we've already scanned 1321 * the rest of the LRU for clean pages and see 1322 * the same dirty pages again (PageReclaim). 1323 */ 1324 if (page_is_file_lru(page) && 1325 (!current_is_kswapd() || !PageReclaim(page) || 1326 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1327 /* 1328 * Immediately reclaim when written back. 1329 * Similar in principal to deactivate_page() 1330 * except we already have the page isolated 1331 * and know it's dirty 1332 */ 1333 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1334 SetPageReclaim(page); 1335 1336 goto activate_locked; 1337 } 1338 1339 if (references == PAGEREF_RECLAIM_CLEAN) 1340 goto keep_locked; 1341 if (!may_enter_fs) 1342 goto keep_locked; 1343 if (!sc->may_writepage) 1344 goto keep_locked; 1345 1346 /* 1347 * Page is dirty. Flush the TLB if a writable entry 1348 * potentially exists to avoid CPU writes after IO 1349 * starts and then write it out here. 1350 */ 1351 try_to_unmap_flush_dirty(); 1352 switch (pageout(page, mapping)) { 1353 case PAGE_KEEP: 1354 goto keep_locked; 1355 case PAGE_ACTIVATE: 1356 goto activate_locked; 1357 case PAGE_SUCCESS: 1358 stat->nr_pageout += hpage_nr_pages(page); 1359 1360 if (PageWriteback(page)) 1361 goto keep; 1362 if (PageDirty(page)) 1363 goto keep; 1364 1365 /* 1366 * A synchronous write - probably a ramdisk. Go 1367 * ahead and try to reclaim the page. 1368 */ 1369 if (!trylock_page(page)) 1370 goto keep; 1371 if (PageDirty(page) || PageWriteback(page)) 1372 goto keep_locked; 1373 mapping = page_mapping(page); 1374 case PAGE_CLEAN: 1375 ; /* try to free the page below */ 1376 } 1377 } 1378 1379 /* 1380 * If the page has buffers, try to free the buffer mappings 1381 * associated with this page. If we succeed we try to free 1382 * the page as well. 1383 * 1384 * We do this even if the page is PageDirty(). 1385 * try_to_release_page() does not perform I/O, but it is 1386 * possible for a page to have PageDirty set, but it is actually 1387 * clean (all its buffers are clean). This happens if the 1388 * buffers were written out directly, with submit_bh(). ext3 1389 * will do this, as well as the blockdev mapping. 1390 * try_to_release_page() will discover that cleanness and will 1391 * drop the buffers and mark the page clean - it can be freed. 1392 * 1393 * Rarely, pages can have buffers and no ->mapping. These are 1394 * the pages which were not successfully invalidated in 1395 * truncate_complete_page(). We try to drop those buffers here 1396 * and if that worked, and the page is no longer mapped into 1397 * process address space (page_count == 1) it can be freed. 1398 * Otherwise, leave the page on the LRU so it is swappable. 1399 */ 1400 if (page_has_private(page)) { 1401 if (!try_to_release_page(page, sc->gfp_mask)) 1402 goto activate_locked; 1403 if (!mapping && page_count(page) == 1) { 1404 unlock_page(page); 1405 if (put_page_testzero(page)) 1406 goto free_it; 1407 else { 1408 /* 1409 * rare race with speculative reference. 1410 * the speculative reference will free 1411 * this page shortly, so we may 1412 * increment nr_reclaimed here (and 1413 * leave it off the LRU). 1414 */ 1415 nr_reclaimed++; 1416 continue; 1417 } 1418 } 1419 } 1420 1421 if (PageAnon(page) && !PageSwapBacked(page)) { 1422 /* follow __remove_mapping for reference */ 1423 if (!page_ref_freeze(page, 1)) 1424 goto keep_locked; 1425 if (PageDirty(page)) { 1426 page_ref_unfreeze(page, 1); 1427 goto keep_locked; 1428 } 1429 1430 count_vm_event(PGLAZYFREED); 1431 count_memcg_page_event(page, PGLAZYFREED); 1432 } else if (!mapping || !__remove_mapping(mapping, page, true, 1433 sc->target_mem_cgroup)) 1434 goto keep_locked; 1435 1436 unlock_page(page); 1437 free_it: 1438 /* 1439 * THP may get swapped out in a whole, need account 1440 * all base pages. 1441 */ 1442 nr_reclaimed += nr_pages; 1443 1444 /* 1445 * Is there need to periodically free_page_list? It would 1446 * appear not as the counts should be low 1447 */ 1448 if (unlikely(PageTransHuge(page))) 1449 destroy_compound_page(page); 1450 else 1451 list_add(&page->lru, &free_pages); 1452 continue; 1453 1454 activate_locked_split: 1455 /* 1456 * The tail pages that are failed to add into swap cache 1457 * reach here. Fixup nr_scanned and nr_pages. 1458 */ 1459 if (nr_pages > 1) { 1460 sc->nr_scanned -= (nr_pages - 1); 1461 nr_pages = 1; 1462 } 1463 activate_locked: 1464 /* Not a candidate for swapping, so reclaim swap space. */ 1465 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1466 PageMlocked(page))) 1467 try_to_free_swap(page); 1468 VM_BUG_ON_PAGE(PageActive(page), page); 1469 if (!PageMlocked(page)) { 1470 int type = page_is_file_lru(page); 1471 SetPageActive(page); 1472 stat->nr_activate[type] += nr_pages; 1473 count_memcg_page_event(page, PGACTIVATE); 1474 } 1475 keep_locked: 1476 unlock_page(page); 1477 keep: 1478 list_add(&page->lru, &ret_pages); 1479 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1480 } 1481 1482 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1483 1484 mem_cgroup_uncharge_list(&free_pages); 1485 try_to_unmap_flush(); 1486 free_unref_page_list(&free_pages); 1487 1488 list_splice(&ret_pages, page_list); 1489 count_vm_events(PGACTIVATE, pgactivate); 1490 1491 return nr_reclaimed; 1492 } 1493 1494 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1495 struct list_head *page_list) 1496 { 1497 struct scan_control sc = { 1498 .gfp_mask = GFP_KERNEL, 1499 .priority = DEF_PRIORITY, 1500 .may_unmap = 1, 1501 }; 1502 struct reclaim_stat stat; 1503 unsigned int nr_reclaimed; 1504 struct page *page, *next; 1505 LIST_HEAD(clean_pages); 1506 1507 list_for_each_entry_safe(page, next, page_list, lru) { 1508 if (page_is_file_lru(page) && !PageDirty(page) && 1509 !__PageMovable(page) && !PageUnevictable(page)) { 1510 ClearPageActive(page); 1511 list_move(&page->lru, &clean_pages); 1512 } 1513 } 1514 1515 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1516 TTU_IGNORE_ACCESS, &stat, true); 1517 list_splice(&clean_pages, page_list); 1518 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed); 1519 /* 1520 * Since lazyfree pages are isolated from file LRU from the beginning, 1521 * they will rotate back to anonymous LRU in the end if it failed to 1522 * discard so isolated count will be mismatched. 1523 * Compensate the isolated count for both LRU lists. 1524 */ 1525 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1526 stat.nr_lazyfree_fail); 1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1528 -stat.nr_lazyfree_fail); 1529 return nr_reclaimed; 1530 } 1531 1532 /* 1533 * Attempt to remove the specified page from its LRU. Only take this page 1534 * if it is of the appropriate PageActive status. Pages which are being 1535 * freed elsewhere are also ignored. 1536 * 1537 * page: page to consider 1538 * mode: one of the LRU isolation modes defined above 1539 * 1540 * returns 0 on success, -ve errno on failure. 1541 */ 1542 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1543 { 1544 int ret = -EINVAL; 1545 1546 /* Only take pages on the LRU. */ 1547 if (!PageLRU(page)) 1548 return ret; 1549 1550 /* Compaction should not handle unevictable pages but CMA can do so */ 1551 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1552 return ret; 1553 1554 ret = -EBUSY; 1555 1556 /* 1557 * To minimise LRU disruption, the caller can indicate that it only 1558 * wants to isolate pages it will be able to operate on without 1559 * blocking - clean pages for the most part. 1560 * 1561 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1562 * that it is possible to migrate without blocking 1563 */ 1564 if (mode & ISOLATE_ASYNC_MIGRATE) { 1565 /* All the caller can do on PageWriteback is block */ 1566 if (PageWriteback(page)) 1567 return ret; 1568 1569 if (PageDirty(page)) { 1570 struct address_space *mapping; 1571 bool migrate_dirty; 1572 1573 /* 1574 * Only pages without mappings or that have a 1575 * ->migratepage callback are possible to migrate 1576 * without blocking. However, we can be racing with 1577 * truncation so it's necessary to lock the page 1578 * to stabilise the mapping as truncation holds 1579 * the page lock until after the page is removed 1580 * from the page cache. 1581 */ 1582 if (!trylock_page(page)) 1583 return ret; 1584 1585 mapping = page_mapping(page); 1586 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1587 unlock_page(page); 1588 if (!migrate_dirty) 1589 return ret; 1590 } 1591 } 1592 1593 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1594 return ret; 1595 1596 if (likely(get_page_unless_zero(page))) { 1597 /* 1598 * Be careful not to clear PageLRU until after we're 1599 * sure the page is not being freed elsewhere -- the 1600 * page release code relies on it. 1601 */ 1602 ClearPageLRU(page); 1603 ret = 0; 1604 } 1605 1606 return ret; 1607 } 1608 1609 1610 /* 1611 * Update LRU sizes after isolating pages. The LRU size updates must 1612 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1613 */ 1614 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1615 enum lru_list lru, unsigned long *nr_zone_taken) 1616 { 1617 int zid; 1618 1619 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1620 if (!nr_zone_taken[zid]) 1621 continue; 1622 1623 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1624 } 1625 1626 } 1627 1628 /** 1629 * pgdat->lru_lock is heavily contended. Some of the functions that 1630 * shrink the lists perform better by taking out a batch of pages 1631 * and working on them outside the LRU lock. 1632 * 1633 * For pagecache intensive workloads, this function is the hottest 1634 * spot in the kernel (apart from copy_*_user functions). 1635 * 1636 * Appropriate locks must be held before calling this function. 1637 * 1638 * @nr_to_scan: The number of eligible pages to look through on the list. 1639 * @lruvec: The LRU vector to pull pages from. 1640 * @dst: The temp list to put pages on to. 1641 * @nr_scanned: The number of pages that were scanned. 1642 * @sc: The scan_control struct for this reclaim session 1643 * @lru: LRU list id for isolating 1644 * 1645 * returns how many pages were moved onto *@dst. 1646 */ 1647 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1648 struct lruvec *lruvec, struct list_head *dst, 1649 unsigned long *nr_scanned, struct scan_control *sc, 1650 enum lru_list lru) 1651 { 1652 struct list_head *src = &lruvec->lists[lru]; 1653 unsigned long nr_taken = 0; 1654 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1655 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1656 unsigned long skipped = 0; 1657 unsigned long scan, total_scan, nr_pages; 1658 LIST_HEAD(pages_skipped); 1659 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1660 1661 total_scan = 0; 1662 scan = 0; 1663 while (scan < nr_to_scan && !list_empty(src)) { 1664 struct page *page; 1665 1666 page = lru_to_page(src); 1667 prefetchw_prev_lru_page(page, src, flags); 1668 1669 VM_BUG_ON_PAGE(!PageLRU(page), page); 1670 1671 nr_pages = compound_nr(page); 1672 total_scan += nr_pages; 1673 1674 if (page_zonenum(page) > sc->reclaim_idx) { 1675 list_move(&page->lru, &pages_skipped); 1676 nr_skipped[page_zonenum(page)] += nr_pages; 1677 continue; 1678 } 1679 1680 /* 1681 * Do not count skipped pages because that makes the function 1682 * return with no isolated pages if the LRU mostly contains 1683 * ineligible pages. This causes the VM to not reclaim any 1684 * pages, triggering a premature OOM. 1685 * 1686 * Account all tail pages of THP. This would not cause 1687 * premature OOM since __isolate_lru_page() returns -EBUSY 1688 * only when the page is being freed somewhere else. 1689 */ 1690 scan += nr_pages; 1691 switch (__isolate_lru_page(page, mode)) { 1692 case 0: 1693 nr_taken += nr_pages; 1694 nr_zone_taken[page_zonenum(page)] += nr_pages; 1695 list_move(&page->lru, dst); 1696 break; 1697 1698 case -EBUSY: 1699 /* else it is being freed elsewhere */ 1700 list_move(&page->lru, src); 1701 continue; 1702 1703 default: 1704 BUG(); 1705 } 1706 } 1707 1708 /* 1709 * Splice any skipped pages to the start of the LRU list. Note that 1710 * this disrupts the LRU order when reclaiming for lower zones but 1711 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1712 * scanning would soon rescan the same pages to skip and put the 1713 * system at risk of premature OOM. 1714 */ 1715 if (!list_empty(&pages_skipped)) { 1716 int zid; 1717 1718 list_splice(&pages_skipped, src); 1719 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1720 if (!nr_skipped[zid]) 1721 continue; 1722 1723 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1724 skipped += nr_skipped[zid]; 1725 } 1726 } 1727 *nr_scanned = total_scan; 1728 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1729 total_scan, skipped, nr_taken, mode, lru); 1730 update_lru_sizes(lruvec, lru, nr_zone_taken); 1731 return nr_taken; 1732 } 1733 1734 /** 1735 * isolate_lru_page - tries to isolate a page from its LRU list 1736 * @page: page to isolate from its LRU list 1737 * 1738 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1739 * vmstat statistic corresponding to whatever LRU list the page was on. 1740 * 1741 * Returns 0 if the page was removed from an LRU list. 1742 * Returns -EBUSY if the page was not on an LRU list. 1743 * 1744 * The returned page will have PageLRU() cleared. If it was found on 1745 * the active list, it will have PageActive set. If it was found on 1746 * the unevictable list, it will have the PageUnevictable bit set. That flag 1747 * may need to be cleared by the caller before letting the page go. 1748 * 1749 * The vmstat statistic corresponding to the list on which the page was 1750 * found will be decremented. 1751 * 1752 * Restrictions: 1753 * 1754 * (1) Must be called with an elevated refcount on the page. This is a 1755 * fundamentnal difference from isolate_lru_pages (which is called 1756 * without a stable reference). 1757 * (2) the lru_lock must not be held. 1758 * (3) interrupts must be enabled. 1759 */ 1760 int isolate_lru_page(struct page *page) 1761 { 1762 int ret = -EBUSY; 1763 1764 VM_BUG_ON_PAGE(!page_count(page), page); 1765 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1766 1767 if (PageLRU(page)) { 1768 pg_data_t *pgdat = page_pgdat(page); 1769 struct lruvec *lruvec; 1770 1771 spin_lock_irq(&pgdat->lru_lock); 1772 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1773 if (PageLRU(page)) { 1774 int lru = page_lru(page); 1775 get_page(page); 1776 ClearPageLRU(page); 1777 del_page_from_lru_list(page, lruvec, lru); 1778 ret = 0; 1779 } 1780 spin_unlock_irq(&pgdat->lru_lock); 1781 } 1782 return ret; 1783 } 1784 1785 /* 1786 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1787 * then get rescheduled. When there are massive number of tasks doing page 1788 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1789 * the LRU list will go small and be scanned faster than necessary, leading to 1790 * unnecessary swapping, thrashing and OOM. 1791 */ 1792 static int too_many_isolated(struct pglist_data *pgdat, int file, 1793 struct scan_control *sc) 1794 { 1795 unsigned long inactive, isolated; 1796 1797 if (current_is_kswapd()) 1798 return 0; 1799 1800 if (!writeback_throttling_sane(sc)) 1801 return 0; 1802 1803 if (file) { 1804 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1805 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1806 } else { 1807 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1808 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1809 } 1810 1811 /* 1812 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1813 * won't get blocked by normal direct-reclaimers, forming a circular 1814 * deadlock. 1815 */ 1816 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1817 inactive >>= 3; 1818 1819 return isolated > inactive; 1820 } 1821 1822 /* 1823 * This moves pages from @list to corresponding LRU list. 1824 * 1825 * We move them the other way if the page is referenced by one or more 1826 * processes, from rmap. 1827 * 1828 * If the pages are mostly unmapped, the processing is fast and it is 1829 * appropriate to hold zone_lru_lock across the whole operation. But if 1830 * the pages are mapped, the processing is slow (page_referenced()) so we 1831 * should drop zone_lru_lock around each page. It's impossible to balance 1832 * this, so instead we remove the pages from the LRU while processing them. 1833 * It is safe to rely on PG_active against the non-LRU pages in here because 1834 * nobody will play with that bit on a non-LRU page. 1835 * 1836 * The downside is that we have to touch page->_refcount against each page. 1837 * But we had to alter page->flags anyway. 1838 * 1839 * Returns the number of pages moved to the given lruvec. 1840 */ 1841 1842 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1843 struct list_head *list) 1844 { 1845 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1846 int nr_pages, nr_moved = 0; 1847 LIST_HEAD(pages_to_free); 1848 struct page *page; 1849 enum lru_list lru; 1850 1851 while (!list_empty(list)) { 1852 page = lru_to_page(list); 1853 VM_BUG_ON_PAGE(PageLRU(page), page); 1854 if (unlikely(!page_evictable(page))) { 1855 list_del(&page->lru); 1856 spin_unlock_irq(&pgdat->lru_lock); 1857 putback_lru_page(page); 1858 spin_lock_irq(&pgdat->lru_lock); 1859 continue; 1860 } 1861 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1862 1863 SetPageLRU(page); 1864 lru = page_lru(page); 1865 1866 nr_pages = hpage_nr_pages(page); 1867 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1868 list_move(&page->lru, &lruvec->lists[lru]); 1869 1870 if (put_page_testzero(page)) { 1871 __ClearPageLRU(page); 1872 __ClearPageActive(page); 1873 del_page_from_lru_list(page, lruvec, lru); 1874 1875 if (unlikely(PageCompound(page))) { 1876 spin_unlock_irq(&pgdat->lru_lock); 1877 destroy_compound_page(page); 1878 spin_lock_irq(&pgdat->lru_lock); 1879 } else 1880 list_add(&page->lru, &pages_to_free); 1881 } else { 1882 nr_moved += nr_pages; 1883 if (PageActive(page)) 1884 workingset_age_nonresident(lruvec, nr_pages); 1885 } 1886 } 1887 1888 /* 1889 * To save our caller's stack, now use input list for pages to free. 1890 */ 1891 list_splice(&pages_to_free, list); 1892 1893 return nr_moved; 1894 } 1895 1896 /* 1897 * If a kernel thread (such as nfsd for loop-back mounts) services 1898 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1899 * In that case we should only throttle if the backing device it is 1900 * writing to is congested. In other cases it is safe to throttle. 1901 */ 1902 static int current_may_throttle(void) 1903 { 1904 return !(current->flags & PF_LOCAL_THROTTLE) || 1905 current->backing_dev_info == NULL || 1906 bdi_write_congested(current->backing_dev_info); 1907 } 1908 1909 /* 1910 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1911 * of reclaimed pages 1912 */ 1913 static noinline_for_stack unsigned long 1914 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1915 struct scan_control *sc, enum lru_list lru) 1916 { 1917 LIST_HEAD(page_list); 1918 unsigned long nr_scanned; 1919 unsigned int nr_reclaimed = 0; 1920 unsigned long nr_taken; 1921 struct reclaim_stat stat; 1922 bool file = is_file_lru(lru); 1923 enum vm_event_item item; 1924 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1925 bool stalled = false; 1926 1927 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1928 if (stalled) 1929 return 0; 1930 1931 /* wait a bit for the reclaimer. */ 1932 msleep(100); 1933 stalled = true; 1934 1935 /* We are about to die and free our memory. Return now. */ 1936 if (fatal_signal_pending(current)) 1937 return SWAP_CLUSTER_MAX; 1938 } 1939 1940 lru_add_drain(); 1941 1942 spin_lock_irq(&pgdat->lru_lock); 1943 1944 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1945 &nr_scanned, sc, lru); 1946 1947 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1948 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1949 if (!cgroup_reclaim(sc)) 1950 __count_vm_events(item, nr_scanned); 1951 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1952 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1953 1954 spin_unlock_irq(&pgdat->lru_lock); 1955 1956 if (nr_taken == 0) 1957 return 0; 1958 1959 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1960 &stat, false); 1961 1962 spin_lock_irq(&pgdat->lru_lock); 1963 1964 move_pages_to_lru(lruvec, &page_list); 1965 1966 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1967 lru_note_cost(lruvec, file, stat.nr_pageout); 1968 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1969 if (!cgroup_reclaim(sc)) 1970 __count_vm_events(item, nr_reclaimed); 1971 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1972 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1973 1974 spin_unlock_irq(&pgdat->lru_lock); 1975 1976 mem_cgroup_uncharge_list(&page_list); 1977 free_unref_page_list(&page_list); 1978 1979 /* 1980 * If dirty pages are scanned that are not queued for IO, it 1981 * implies that flushers are not doing their job. This can 1982 * happen when memory pressure pushes dirty pages to the end of 1983 * the LRU before the dirty limits are breached and the dirty 1984 * data has expired. It can also happen when the proportion of 1985 * dirty pages grows not through writes but through memory 1986 * pressure reclaiming all the clean cache. And in some cases, 1987 * the flushers simply cannot keep up with the allocation 1988 * rate. Nudge the flusher threads in case they are asleep. 1989 */ 1990 if (stat.nr_unqueued_dirty == nr_taken) 1991 wakeup_flusher_threads(WB_REASON_VMSCAN); 1992 1993 sc->nr.dirty += stat.nr_dirty; 1994 sc->nr.congested += stat.nr_congested; 1995 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1996 sc->nr.writeback += stat.nr_writeback; 1997 sc->nr.immediate += stat.nr_immediate; 1998 sc->nr.taken += nr_taken; 1999 if (file) 2000 sc->nr.file_taken += nr_taken; 2001 2002 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2003 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2004 return nr_reclaimed; 2005 } 2006 2007 static void shrink_active_list(unsigned long nr_to_scan, 2008 struct lruvec *lruvec, 2009 struct scan_control *sc, 2010 enum lru_list lru) 2011 { 2012 unsigned long nr_taken; 2013 unsigned long nr_scanned; 2014 unsigned long vm_flags; 2015 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2016 LIST_HEAD(l_active); 2017 LIST_HEAD(l_inactive); 2018 struct page *page; 2019 unsigned nr_deactivate, nr_activate; 2020 unsigned nr_rotated = 0; 2021 int file = is_file_lru(lru); 2022 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2023 2024 lru_add_drain(); 2025 2026 spin_lock_irq(&pgdat->lru_lock); 2027 2028 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2029 &nr_scanned, sc, lru); 2030 2031 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2032 2033 if (!cgroup_reclaim(sc)) 2034 __count_vm_events(PGREFILL, nr_scanned); 2035 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2036 2037 spin_unlock_irq(&pgdat->lru_lock); 2038 2039 while (!list_empty(&l_hold)) { 2040 cond_resched(); 2041 page = lru_to_page(&l_hold); 2042 list_del(&page->lru); 2043 2044 if (unlikely(!page_evictable(page))) { 2045 putback_lru_page(page); 2046 continue; 2047 } 2048 2049 if (unlikely(buffer_heads_over_limit)) { 2050 if (page_has_private(page) && trylock_page(page)) { 2051 if (page_has_private(page)) 2052 try_to_release_page(page, 0); 2053 unlock_page(page); 2054 } 2055 } 2056 2057 if (page_referenced(page, 0, sc->target_mem_cgroup, 2058 &vm_flags)) { 2059 /* 2060 * Identify referenced, file-backed active pages and 2061 * give them one more trip around the active list. So 2062 * that executable code get better chances to stay in 2063 * memory under moderate memory pressure. Anon pages 2064 * are not likely to be evicted by use-once streaming 2065 * IO, plus JVM can create lots of anon VM_EXEC pages, 2066 * so we ignore them here. 2067 */ 2068 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2069 nr_rotated += hpage_nr_pages(page); 2070 list_add(&page->lru, &l_active); 2071 continue; 2072 } 2073 } 2074 2075 ClearPageActive(page); /* we are de-activating */ 2076 SetPageWorkingset(page); 2077 list_add(&page->lru, &l_inactive); 2078 } 2079 2080 /* 2081 * Move pages back to the lru list. 2082 */ 2083 spin_lock_irq(&pgdat->lru_lock); 2084 2085 nr_activate = move_pages_to_lru(lruvec, &l_active); 2086 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2087 /* Keep all free pages in l_active list */ 2088 list_splice(&l_inactive, &l_active); 2089 2090 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2091 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2092 2093 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2094 spin_unlock_irq(&pgdat->lru_lock); 2095 2096 mem_cgroup_uncharge_list(&l_active); 2097 free_unref_page_list(&l_active); 2098 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2099 nr_deactivate, nr_rotated, sc->priority, file); 2100 } 2101 2102 unsigned long reclaim_pages(struct list_head *page_list) 2103 { 2104 int nid = NUMA_NO_NODE; 2105 unsigned int nr_reclaimed = 0; 2106 LIST_HEAD(node_page_list); 2107 struct reclaim_stat dummy_stat; 2108 struct page *page; 2109 struct scan_control sc = { 2110 .gfp_mask = GFP_KERNEL, 2111 .priority = DEF_PRIORITY, 2112 .may_writepage = 1, 2113 .may_unmap = 1, 2114 .may_swap = 1, 2115 }; 2116 2117 while (!list_empty(page_list)) { 2118 page = lru_to_page(page_list); 2119 if (nid == NUMA_NO_NODE) { 2120 nid = page_to_nid(page); 2121 INIT_LIST_HEAD(&node_page_list); 2122 } 2123 2124 if (nid == page_to_nid(page)) { 2125 ClearPageActive(page); 2126 list_move(&page->lru, &node_page_list); 2127 continue; 2128 } 2129 2130 nr_reclaimed += shrink_page_list(&node_page_list, 2131 NODE_DATA(nid), 2132 &sc, 0, 2133 &dummy_stat, false); 2134 while (!list_empty(&node_page_list)) { 2135 page = lru_to_page(&node_page_list); 2136 list_del(&page->lru); 2137 putback_lru_page(page); 2138 } 2139 2140 nid = NUMA_NO_NODE; 2141 } 2142 2143 if (!list_empty(&node_page_list)) { 2144 nr_reclaimed += shrink_page_list(&node_page_list, 2145 NODE_DATA(nid), 2146 &sc, 0, 2147 &dummy_stat, false); 2148 while (!list_empty(&node_page_list)) { 2149 page = lru_to_page(&node_page_list); 2150 list_del(&page->lru); 2151 putback_lru_page(page); 2152 } 2153 } 2154 2155 return nr_reclaimed; 2156 } 2157 2158 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2159 struct lruvec *lruvec, struct scan_control *sc) 2160 { 2161 if (is_active_lru(lru)) { 2162 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2163 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2164 else 2165 sc->skipped_deactivate = 1; 2166 return 0; 2167 } 2168 2169 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2170 } 2171 2172 /* 2173 * The inactive anon list should be small enough that the VM never has 2174 * to do too much work. 2175 * 2176 * The inactive file list should be small enough to leave most memory 2177 * to the established workingset on the scan-resistant active list, 2178 * but large enough to avoid thrashing the aggregate readahead window. 2179 * 2180 * Both inactive lists should also be large enough that each inactive 2181 * page has a chance to be referenced again before it is reclaimed. 2182 * 2183 * If that fails and refaulting is observed, the inactive list grows. 2184 * 2185 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2186 * on this LRU, maintained by the pageout code. An inactive_ratio 2187 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2188 * 2189 * total target max 2190 * memory ratio inactive 2191 * ------------------------------------- 2192 * 10MB 1 5MB 2193 * 100MB 1 50MB 2194 * 1GB 3 250MB 2195 * 10GB 10 0.9GB 2196 * 100GB 31 3GB 2197 * 1TB 101 10GB 2198 * 10TB 320 32GB 2199 */ 2200 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2201 { 2202 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2203 unsigned long inactive, active; 2204 unsigned long inactive_ratio; 2205 unsigned long gb; 2206 2207 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2208 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2209 2210 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2211 if (gb) 2212 inactive_ratio = int_sqrt(10 * gb); 2213 else 2214 inactive_ratio = 1; 2215 2216 return inactive * inactive_ratio < active; 2217 } 2218 2219 enum scan_balance { 2220 SCAN_EQUAL, 2221 SCAN_FRACT, 2222 SCAN_ANON, 2223 SCAN_FILE, 2224 }; 2225 2226 /* 2227 * Determine how aggressively the anon and file LRU lists should be 2228 * scanned. The relative value of each set of LRU lists is determined 2229 * by looking at the fraction of the pages scanned we did rotate back 2230 * onto the active list instead of evict. 2231 * 2232 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2233 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2234 */ 2235 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2236 unsigned long *nr) 2237 { 2238 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2239 unsigned long anon_cost, file_cost, total_cost; 2240 int swappiness = mem_cgroup_swappiness(memcg); 2241 u64 fraction[2]; 2242 u64 denominator = 0; /* gcc */ 2243 enum scan_balance scan_balance; 2244 unsigned long ap, fp; 2245 enum lru_list lru; 2246 2247 /* If we have no swap space, do not bother scanning anon pages. */ 2248 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2249 scan_balance = SCAN_FILE; 2250 goto out; 2251 } 2252 2253 /* 2254 * Global reclaim will swap to prevent OOM even with no 2255 * swappiness, but memcg users want to use this knob to 2256 * disable swapping for individual groups completely when 2257 * using the memory controller's swap limit feature would be 2258 * too expensive. 2259 */ 2260 if (cgroup_reclaim(sc) && !swappiness) { 2261 scan_balance = SCAN_FILE; 2262 goto out; 2263 } 2264 2265 /* 2266 * Do not apply any pressure balancing cleverness when the 2267 * system is close to OOM, scan both anon and file equally 2268 * (unless the swappiness setting disagrees with swapping). 2269 */ 2270 if (!sc->priority && swappiness) { 2271 scan_balance = SCAN_EQUAL; 2272 goto out; 2273 } 2274 2275 /* 2276 * If the system is almost out of file pages, force-scan anon. 2277 */ 2278 if (sc->file_is_tiny) { 2279 scan_balance = SCAN_ANON; 2280 goto out; 2281 } 2282 2283 /* 2284 * If there is enough inactive page cache, we do not reclaim 2285 * anything from the anonymous working right now. 2286 */ 2287 if (sc->cache_trim_mode) { 2288 scan_balance = SCAN_FILE; 2289 goto out; 2290 } 2291 2292 scan_balance = SCAN_FRACT; 2293 /* 2294 * Calculate the pressure balance between anon and file pages. 2295 * 2296 * The amount of pressure we put on each LRU is inversely 2297 * proportional to the cost of reclaiming each list, as 2298 * determined by the share of pages that are refaulting, times 2299 * the relative IO cost of bringing back a swapped out 2300 * anonymous page vs reloading a filesystem page (swappiness). 2301 * 2302 * Although we limit that influence to ensure no list gets 2303 * left behind completely: at least a third of the pressure is 2304 * applied, before swappiness. 2305 * 2306 * With swappiness at 100, anon and file have equal IO cost. 2307 */ 2308 total_cost = sc->anon_cost + sc->file_cost; 2309 anon_cost = total_cost + sc->anon_cost; 2310 file_cost = total_cost + sc->file_cost; 2311 total_cost = anon_cost + file_cost; 2312 2313 ap = swappiness * (total_cost + 1); 2314 ap /= anon_cost + 1; 2315 2316 fp = (200 - swappiness) * (total_cost + 1); 2317 fp /= file_cost + 1; 2318 2319 fraction[0] = ap; 2320 fraction[1] = fp; 2321 denominator = ap + fp; 2322 out: 2323 for_each_evictable_lru(lru) { 2324 int file = is_file_lru(lru); 2325 unsigned long lruvec_size; 2326 unsigned long scan; 2327 unsigned long protection; 2328 2329 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2330 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2331 memcg, 2332 sc->memcg_low_reclaim); 2333 2334 if (protection) { 2335 /* 2336 * Scale a cgroup's reclaim pressure by proportioning 2337 * its current usage to its memory.low or memory.min 2338 * setting. 2339 * 2340 * This is important, as otherwise scanning aggression 2341 * becomes extremely binary -- from nothing as we 2342 * approach the memory protection threshold, to totally 2343 * nominal as we exceed it. This results in requiring 2344 * setting extremely liberal protection thresholds. It 2345 * also means we simply get no protection at all if we 2346 * set it too low, which is not ideal. 2347 * 2348 * If there is any protection in place, we reduce scan 2349 * pressure by how much of the total memory used is 2350 * within protection thresholds. 2351 * 2352 * There is one special case: in the first reclaim pass, 2353 * we skip over all groups that are within their low 2354 * protection. If that fails to reclaim enough pages to 2355 * satisfy the reclaim goal, we come back and override 2356 * the best-effort low protection. However, we still 2357 * ideally want to honor how well-behaved groups are in 2358 * that case instead of simply punishing them all 2359 * equally. As such, we reclaim them based on how much 2360 * memory they are using, reducing the scan pressure 2361 * again by how much of the total memory used is under 2362 * hard protection. 2363 */ 2364 unsigned long cgroup_size = mem_cgroup_size(memcg); 2365 2366 /* Avoid TOCTOU with earlier protection check */ 2367 cgroup_size = max(cgroup_size, protection); 2368 2369 scan = lruvec_size - lruvec_size * protection / 2370 cgroup_size; 2371 2372 /* 2373 * Minimally target SWAP_CLUSTER_MAX pages to keep 2374 * reclaim moving forwards, avoiding decrementing 2375 * sc->priority further than desirable. 2376 */ 2377 scan = max(scan, SWAP_CLUSTER_MAX); 2378 } else { 2379 scan = lruvec_size; 2380 } 2381 2382 scan >>= sc->priority; 2383 2384 /* 2385 * If the cgroup's already been deleted, make sure to 2386 * scrape out the remaining cache. 2387 */ 2388 if (!scan && !mem_cgroup_online(memcg)) 2389 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2390 2391 switch (scan_balance) { 2392 case SCAN_EQUAL: 2393 /* Scan lists relative to size */ 2394 break; 2395 case SCAN_FRACT: 2396 /* 2397 * Scan types proportional to swappiness and 2398 * their relative recent reclaim efficiency. 2399 * Make sure we don't miss the last page on 2400 * the offlined memory cgroups because of a 2401 * round-off error. 2402 */ 2403 scan = mem_cgroup_online(memcg) ? 2404 div64_u64(scan * fraction[file], denominator) : 2405 DIV64_U64_ROUND_UP(scan * fraction[file], 2406 denominator); 2407 break; 2408 case SCAN_FILE: 2409 case SCAN_ANON: 2410 /* Scan one type exclusively */ 2411 if ((scan_balance == SCAN_FILE) != file) 2412 scan = 0; 2413 break; 2414 default: 2415 /* Look ma, no brain */ 2416 BUG(); 2417 } 2418 2419 nr[lru] = scan; 2420 } 2421 } 2422 2423 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2424 { 2425 unsigned long nr[NR_LRU_LISTS]; 2426 unsigned long targets[NR_LRU_LISTS]; 2427 unsigned long nr_to_scan; 2428 enum lru_list lru; 2429 unsigned long nr_reclaimed = 0; 2430 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2431 struct blk_plug plug; 2432 bool scan_adjusted; 2433 2434 get_scan_count(lruvec, sc, nr); 2435 2436 /* Record the original scan target for proportional adjustments later */ 2437 memcpy(targets, nr, sizeof(nr)); 2438 2439 /* 2440 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2441 * event that can occur when there is little memory pressure e.g. 2442 * multiple streaming readers/writers. Hence, we do not abort scanning 2443 * when the requested number of pages are reclaimed when scanning at 2444 * DEF_PRIORITY on the assumption that the fact we are direct 2445 * reclaiming implies that kswapd is not keeping up and it is best to 2446 * do a batch of work at once. For memcg reclaim one check is made to 2447 * abort proportional reclaim if either the file or anon lru has already 2448 * dropped to zero at the first pass. 2449 */ 2450 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2451 sc->priority == DEF_PRIORITY); 2452 2453 blk_start_plug(&plug); 2454 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2455 nr[LRU_INACTIVE_FILE]) { 2456 unsigned long nr_anon, nr_file, percentage; 2457 unsigned long nr_scanned; 2458 2459 for_each_evictable_lru(lru) { 2460 if (nr[lru]) { 2461 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2462 nr[lru] -= nr_to_scan; 2463 2464 nr_reclaimed += shrink_list(lru, nr_to_scan, 2465 lruvec, sc); 2466 } 2467 } 2468 2469 cond_resched(); 2470 2471 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2472 continue; 2473 2474 /* 2475 * For kswapd and memcg, reclaim at least the number of pages 2476 * requested. Ensure that the anon and file LRUs are scanned 2477 * proportionally what was requested by get_scan_count(). We 2478 * stop reclaiming one LRU and reduce the amount scanning 2479 * proportional to the original scan target. 2480 */ 2481 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2482 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2483 2484 /* 2485 * It's just vindictive to attack the larger once the smaller 2486 * has gone to zero. And given the way we stop scanning the 2487 * smaller below, this makes sure that we only make one nudge 2488 * towards proportionality once we've got nr_to_reclaim. 2489 */ 2490 if (!nr_file || !nr_anon) 2491 break; 2492 2493 if (nr_file > nr_anon) { 2494 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2495 targets[LRU_ACTIVE_ANON] + 1; 2496 lru = LRU_BASE; 2497 percentage = nr_anon * 100 / scan_target; 2498 } else { 2499 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2500 targets[LRU_ACTIVE_FILE] + 1; 2501 lru = LRU_FILE; 2502 percentage = nr_file * 100 / scan_target; 2503 } 2504 2505 /* Stop scanning the smaller of the LRU */ 2506 nr[lru] = 0; 2507 nr[lru + LRU_ACTIVE] = 0; 2508 2509 /* 2510 * Recalculate the other LRU scan count based on its original 2511 * scan target and the percentage scanning already complete 2512 */ 2513 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2514 nr_scanned = targets[lru] - nr[lru]; 2515 nr[lru] = targets[lru] * (100 - percentage) / 100; 2516 nr[lru] -= min(nr[lru], nr_scanned); 2517 2518 lru += LRU_ACTIVE; 2519 nr_scanned = targets[lru] - nr[lru]; 2520 nr[lru] = targets[lru] * (100 - percentage) / 100; 2521 nr[lru] -= min(nr[lru], nr_scanned); 2522 2523 scan_adjusted = true; 2524 } 2525 blk_finish_plug(&plug); 2526 sc->nr_reclaimed += nr_reclaimed; 2527 2528 /* 2529 * Even if we did not try to evict anon pages at all, we want to 2530 * rebalance the anon lru active/inactive ratio. 2531 */ 2532 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2533 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2534 sc, LRU_ACTIVE_ANON); 2535 } 2536 2537 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2538 static bool in_reclaim_compaction(struct scan_control *sc) 2539 { 2540 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2541 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2542 sc->priority < DEF_PRIORITY - 2)) 2543 return true; 2544 2545 return false; 2546 } 2547 2548 /* 2549 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2550 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2551 * true if more pages should be reclaimed such that when the page allocator 2552 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2553 * It will give up earlier than that if there is difficulty reclaiming pages. 2554 */ 2555 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2556 unsigned long nr_reclaimed, 2557 struct scan_control *sc) 2558 { 2559 unsigned long pages_for_compaction; 2560 unsigned long inactive_lru_pages; 2561 int z; 2562 2563 /* If not in reclaim/compaction mode, stop */ 2564 if (!in_reclaim_compaction(sc)) 2565 return false; 2566 2567 /* 2568 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2569 * number of pages that were scanned. This will return to the caller 2570 * with the risk reclaim/compaction and the resulting allocation attempt 2571 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2572 * allocations through requiring that the full LRU list has been scanned 2573 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2574 * scan, but that approximation was wrong, and there were corner cases 2575 * where always a non-zero amount of pages were scanned. 2576 */ 2577 if (!nr_reclaimed) 2578 return false; 2579 2580 /* If compaction would go ahead or the allocation would succeed, stop */ 2581 for (z = 0; z <= sc->reclaim_idx; z++) { 2582 struct zone *zone = &pgdat->node_zones[z]; 2583 if (!managed_zone(zone)) 2584 continue; 2585 2586 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2587 case COMPACT_SUCCESS: 2588 case COMPACT_CONTINUE: 2589 return false; 2590 default: 2591 /* check next zone */ 2592 ; 2593 } 2594 } 2595 2596 /* 2597 * If we have not reclaimed enough pages for compaction and the 2598 * inactive lists are large enough, continue reclaiming 2599 */ 2600 pages_for_compaction = compact_gap(sc->order); 2601 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2602 if (get_nr_swap_pages() > 0) 2603 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2604 2605 return inactive_lru_pages > pages_for_compaction; 2606 } 2607 2608 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2609 { 2610 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2611 struct mem_cgroup *memcg; 2612 2613 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2614 do { 2615 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2616 unsigned long reclaimed; 2617 unsigned long scanned; 2618 2619 mem_cgroup_calculate_protection(target_memcg, memcg); 2620 2621 if (mem_cgroup_below_min(memcg)) { 2622 /* 2623 * Hard protection. 2624 * If there is no reclaimable memory, OOM. 2625 */ 2626 continue; 2627 } else if (mem_cgroup_below_low(memcg)) { 2628 /* 2629 * Soft protection. 2630 * Respect the protection only as long as 2631 * there is an unprotected supply 2632 * of reclaimable memory from other cgroups. 2633 */ 2634 if (!sc->memcg_low_reclaim) { 2635 sc->memcg_low_skipped = 1; 2636 continue; 2637 } 2638 memcg_memory_event(memcg, MEMCG_LOW); 2639 } 2640 2641 reclaimed = sc->nr_reclaimed; 2642 scanned = sc->nr_scanned; 2643 2644 shrink_lruvec(lruvec, sc); 2645 2646 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2647 sc->priority); 2648 2649 /* Record the group's reclaim efficiency */ 2650 vmpressure(sc->gfp_mask, memcg, false, 2651 sc->nr_scanned - scanned, 2652 sc->nr_reclaimed - reclaimed); 2653 2654 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2655 } 2656 2657 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2658 { 2659 struct reclaim_state *reclaim_state = current->reclaim_state; 2660 unsigned long nr_reclaimed, nr_scanned; 2661 struct lruvec *target_lruvec; 2662 bool reclaimable = false; 2663 unsigned long file; 2664 2665 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2666 2667 again: 2668 memset(&sc->nr, 0, sizeof(sc->nr)); 2669 2670 nr_reclaimed = sc->nr_reclaimed; 2671 nr_scanned = sc->nr_scanned; 2672 2673 /* 2674 * Determine the scan balance between anon and file LRUs. 2675 */ 2676 spin_lock_irq(&pgdat->lru_lock); 2677 sc->anon_cost = target_lruvec->anon_cost; 2678 sc->file_cost = target_lruvec->file_cost; 2679 spin_unlock_irq(&pgdat->lru_lock); 2680 2681 /* 2682 * Target desirable inactive:active list ratios for the anon 2683 * and file LRU lists. 2684 */ 2685 if (!sc->force_deactivate) { 2686 unsigned long refaults; 2687 2688 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2689 sc->may_deactivate |= DEACTIVATE_ANON; 2690 else 2691 sc->may_deactivate &= ~DEACTIVATE_ANON; 2692 2693 /* 2694 * When refaults are being observed, it means a new 2695 * workingset is being established. Deactivate to get 2696 * rid of any stale active pages quickly. 2697 */ 2698 refaults = lruvec_page_state(target_lruvec, 2699 WORKINGSET_ACTIVATE); 2700 if (refaults != target_lruvec->refaults || 2701 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2702 sc->may_deactivate |= DEACTIVATE_FILE; 2703 else 2704 sc->may_deactivate &= ~DEACTIVATE_FILE; 2705 } else 2706 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2707 2708 /* 2709 * If we have plenty of inactive file pages that aren't 2710 * thrashing, try to reclaim those first before touching 2711 * anonymous pages. 2712 */ 2713 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2714 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2715 sc->cache_trim_mode = 1; 2716 else 2717 sc->cache_trim_mode = 0; 2718 2719 /* 2720 * Prevent the reclaimer from falling into the cache trap: as 2721 * cache pages start out inactive, every cache fault will tip 2722 * the scan balance towards the file LRU. And as the file LRU 2723 * shrinks, so does the window for rotation from references. 2724 * This means we have a runaway feedback loop where a tiny 2725 * thrashing file LRU becomes infinitely more attractive than 2726 * anon pages. Try to detect this based on file LRU size. 2727 */ 2728 if (!cgroup_reclaim(sc)) { 2729 unsigned long total_high_wmark = 0; 2730 unsigned long free, anon; 2731 int z; 2732 2733 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2734 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2735 node_page_state(pgdat, NR_INACTIVE_FILE); 2736 2737 for (z = 0; z < MAX_NR_ZONES; z++) { 2738 struct zone *zone = &pgdat->node_zones[z]; 2739 if (!managed_zone(zone)) 2740 continue; 2741 2742 total_high_wmark += high_wmark_pages(zone); 2743 } 2744 2745 /* 2746 * Consider anon: if that's low too, this isn't a 2747 * runaway file reclaim problem, but rather just 2748 * extreme pressure. Reclaim as per usual then. 2749 */ 2750 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2751 2752 sc->file_is_tiny = 2753 file + free <= total_high_wmark && 2754 !(sc->may_deactivate & DEACTIVATE_ANON) && 2755 anon >> sc->priority; 2756 } 2757 2758 shrink_node_memcgs(pgdat, sc); 2759 2760 if (reclaim_state) { 2761 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2762 reclaim_state->reclaimed_slab = 0; 2763 } 2764 2765 /* Record the subtree's reclaim efficiency */ 2766 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2767 sc->nr_scanned - nr_scanned, 2768 sc->nr_reclaimed - nr_reclaimed); 2769 2770 if (sc->nr_reclaimed - nr_reclaimed) 2771 reclaimable = true; 2772 2773 if (current_is_kswapd()) { 2774 /* 2775 * If reclaim is isolating dirty pages under writeback, 2776 * it implies that the long-lived page allocation rate 2777 * is exceeding the page laundering rate. Either the 2778 * global limits are not being effective at throttling 2779 * processes due to the page distribution throughout 2780 * zones or there is heavy usage of a slow backing 2781 * device. The only option is to throttle from reclaim 2782 * context which is not ideal as there is no guarantee 2783 * the dirtying process is throttled in the same way 2784 * balance_dirty_pages() manages. 2785 * 2786 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2787 * count the number of pages under pages flagged for 2788 * immediate reclaim and stall if any are encountered 2789 * in the nr_immediate check below. 2790 */ 2791 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2792 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2793 2794 /* Allow kswapd to start writing pages during reclaim.*/ 2795 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2796 set_bit(PGDAT_DIRTY, &pgdat->flags); 2797 2798 /* 2799 * If kswapd scans pages marked marked for immediate 2800 * reclaim and under writeback (nr_immediate), it 2801 * implies that pages are cycling through the LRU 2802 * faster than they are written so also forcibly stall. 2803 */ 2804 if (sc->nr.immediate) 2805 congestion_wait(BLK_RW_ASYNC, HZ/10); 2806 } 2807 2808 /* 2809 * Tag a node/memcg as congested if all the dirty pages 2810 * scanned were backed by a congested BDI and 2811 * wait_iff_congested will stall. 2812 * 2813 * Legacy memcg will stall in page writeback so avoid forcibly 2814 * stalling in wait_iff_congested(). 2815 */ 2816 if ((current_is_kswapd() || 2817 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2818 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2819 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2820 2821 /* 2822 * Stall direct reclaim for IO completions if underlying BDIs 2823 * and node is congested. Allow kswapd to continue until it 2824 * starts encountering unqueued dirty pages or cycling through 2825 * the LRU too quickly. 2826 */ 2827 if (!current_is_kswapd() && current_may_throttle() && 2828 !sc->hibernation_mode && 2829 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2830 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2831 2832 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2833 sc)) 2834 goto again; 2835 2836 /* 2837 * Kswapd gives up on balancing particular nodes after too 2838 * many failures to reclaim anything from them and goes to 2839 * sleep. On reclaim progress, reset the failure counter. A 2840 * successful direct reclaim run will revive a dormant kswapd. 2841 */ 2842 if (reclaimable) 2843 pgdat->kswapd_failures = 0; 2844 } 2845 2846 /* 2847 * Returns true if compaction should go ahead for a costly-order request, or 2848 * the allocation would already succeed without compaction. Return false if we 2849 * should reclaim first. 2850 */ 2851 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2852 { 2853 unsigned long watermark; 2854 enum compact_result suitable; 2855 2856 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2857 if (suitable == COMPACT_SUCCESS) 2858 /* Allocation should succeed already. Don't reclaim. */ 2859 return true; 2860 if (suitable == COMPACT_SKIPPED) 2861 /* Compaction cannot yet proceed. Do reclaim. */ 2862 return false; 2863 2864 /* 2865 * Compaction is already possible, but it takes time to run and there 2866 * are potentially other callers using the pages just freed. So proceed 2867 * with reclaim to make a buffer of free pages available to give 2868 * compaction a reasonable chance of completing and allocating the page. 2869 * Note that we won't actually reclaim the whole buffer in one attempt 2870 * as the target watermark in should_continue_reclaim() is lower. But if 2871 * we are already above the high+gap watermark, don't reclaim at all. 2872 */ 2873 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2874 2875 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2876 } 2877 2878 /* 2879 * This is the direct reclaim path, for page-allocating processes. We only 2880 * try to reclaim pages from zones which will satisfy the caller's allocation 2881 * request. 2882 * 2883 * If a zone is deemed to be full of pinned pages then just give it a light 2884 * scan then give up on it. 2885 */ 2886 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2887 { 2888 struct zoneref *z; 2889 struct zone *zone; 2890 unsigned long nr_soft_reclaimed; 2891 unsigned long nr_soft_scanned; 2892 gfp_t orig_mask; 2893 pg_data_t *last_pgdat = NULL; 2894 2895 /* 2896 * If the number of buffer_heads in the machine exceeds the maximum 2897 * allowed level, force direct reclaim to scan the highmem zone as 2898 * highmem pages could be pinning lowmem pages storing buffer_heads 2899 */ 2900 orig_mask = sc->gfp_mask; 2901 if (buffer_heads_over_limit) { 2902 sc->gfp_mask |= __GFP_HIGHMEM; 2903 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2904 } 2905 2906 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2907 sc->reclaim_idx, sc->nodemask) { 2908 /* 2909 * Take care memory controller reclaiming has small influence 2910 * to global LRU. 2911 */ 2912 if (!cgroup_reclaim(sc)) { 2913 if (!cpuset_zone_allowed(zone, 2914 GFP_KERNEL | __GFP_HARDWALL)) 2915 continue; 2916 2917 /* 2918 * If we already have plenty of memory free for 2919 * compaction in this zone, don't free any more. 2920 * Even though compaction is invoked for any 2921 * non-zero order, only frequent costly order 2922 * reclamation is disruptive enough to become a 2923 * noticeable problem, like transparent huge 2924 * page allocations. 2925 */ 2926 if (IS_ENABLED(CONFIG_COMPACTION) && 2927 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2928 compaction_ready(zone, sc)) { 2929 sc->compaction_ready = true; 2930 continue; 2931 } 2932 2933 /* 2934 * Shrink each node in the zonelist once. If the 2935 * zonelist is ordered by zone (not the default) then a 2936 * node may be shrunk multiple times but in that case 2937 * the user prefers lower zones being preserved. 2938 */ 2939 if (zone->zone_pgdat == last_pgdat) 2940 continue; 2941 2942 /* 2943 * This steals pages from memory cgroups over softlimit 2944 * and returns the number of reclaimed pages and 2945 * scanned pages. This works for global memory pressure 2946 * and balancing, not for a memcg's limit. 2947 */ 2948 nr_soft_scanned = 0; 2949 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2950 sc->order, sc->gfp_mask, 2951 &nr_soft_scanned); 2952 sc->nr_reclaimed += nr_soft_reclaimed; 2953 sc->nr_scanned += nr_soft_scanned; 2954 /* need some check for avoid more shrink_zone() */ 2955 } 2956 2957 /* See comment about same check for global reclaim above */ 2958 if (zone->zone_pgdat == last_pgdat) 2959 continue; 2960 last_pgdat = zone->zone_pgdat; 2961 shrink_node(zone->zone_pgdat, sc); 2962 } 2963 2964 /* 2965 * Restore to original mask to avoid the impact on the caller if we 2966 * promoted it to __GFP_HIGHMEM. 2967 */ 2968 sc->gfp_mask = orig_mask; 2969 } 2970 2971 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2972 { 2973 struct lruvec *target_lruvec; 2974 unsigned long refaults; 2975 2976 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2977 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE); 2978 target_lruvec->refaults = refaults; 2979 } 2980 2981 /* 2982 * This is the main entry point to direct page reclaim. 2983 * 2984 * If a full scan of the inactive list fails to free enough memory then we 2985 * are "out of memory" and something needs to be killed. 2986 * 2987 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2988 * high - the zone may be full of dirty or under-writeback pages, which this 2989 * caller can't do much about. We kick the writeback threads and take explicit 2990 * naps in the hope that some of these pages can be written. But if the 2991 * allocating task holds filesystem locks which prevent writeout this might not 2992 * work, and the allocation attempt will fail. 2993 * 2994 * returns: 0, if no pages reclaimed 2995 * else, the number of pages reclaimed 2996 */ 2997 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2998 struct scan_control *sc) 2999 { 3000 int initial_priority = sc->priority; 3001 pg_data_t *last_pgdat; 3002 struct zoneref *z; 3003 struct zone *zone; 3004 retry: 3005 delayacct_freepages_start(); 3006 3007 if (!cgroup_reclaim(sc)) 3008 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3009 3010 do { 3011 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3012 sc->priority); 3013 sc->nr_scanned = 0; 3014 shrink_zones(zonelist, sc); 3015 3016 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3017 break; 3018 3019 if (sc->compaction_ready) 3020 break; 3021 3022 /* 3023 * If we're getting trouble reclaiming, start doing 3024 * writepage even in laptop mode. 3025 */ 3026 if (sc->priority < DEF_PRIORITY - 2) 3027 sc->may_writepage = 1; 3028 } while (--sc->priority >= 0); 3029 3030 last_pgdat = NULL; 3031 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3032 sc->nodemask) { 3033 if (zone->zone_pgdat == last_pgdat) 3034 continue; 3035 last_pgdat = zone->zone_pgdat; 3036 3037 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3038 3039 if (cgroup_reclaim(sc)) { 3040 struct lruvec *lruvec; 3041 3042 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3043 zone->zone_pgdat); 3044 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3045 } 3046 } 3047 3048 delayacct_freepages_end(); 3049 3050 if (sc->nr_reclaimed) 3051 return sc->nr_reclaimed; 3052 3053 /* Aborted reclaim to try compaction? don't OOM, then */ 3054 if (sc->compaction_ready) 3055 return 1; 3056 3057 /* 3058 * We make inactive:active ratio decisions based on the node's 3059 * composition of memory, but a restrictive reclaim_idx or a 3060 * memory.low cgroup setting can exempt large amounts of 3061 * memory from reclaim. Neither of which are very common, so 3062 * instead of doing costly eligibility calculations of the 3063 * entire cgroup subtree up front, we assume the estimates are 3064 * good, and retry with forcible deactivation if that fails. 3065 */ 3066 if (sc->skipped_deactivate) { 3067 sc->priority = initial_priority; 3068 sc->force_deactivate = 1; 3069 sc->skipped_deactivate = 0; 3070 goto retry; 3071 } 3072 3073 /* Untapped cgroup reserves? Don't OOM, retry. */ 3074 if (sc->memcg_low_skipped) { 3075 sc->priority = initial_priority; 3076 sc->force_deactivate = 0; 3077 sc->memcg_low_reclaim = 1; 3078 sc->memcg_low_skipped = 0; 3079 goto retry; 3080 } 3081 3082 return 0; 3083 } 3084 3085 static bool allow_direct_reclaim(pg_data_t *pgdat) 3086 { 3087 struct zone *zone; 3088 unsigned long pfmemalloc_reserve = 0; 3089 unsigned long free_pages = 0; 3090 int i; 3091 bool wmark_ok; 3092 3093 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3094 return true; 3095 3096 for (i = 0; i <= ZONE_NORMAL; i++) { 3097 zone = &pgdat->node_zones[i]; 3098 if (!managed_zone(zone)) 3099 continue; 3100 3101 if (!zone_reclaimable_pages(zone)) 3102 continue; 3103 3104 pfmemalloc_reserve += min_wmark_pages(zone); 3105 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3106 } 3107 3108 /* If there are no reserves (unexpected config) then do not throttle */ 3109 if (!pfmemalloc_reserve) 3110 return true; 3111 3112 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3113 3114 /* kswapd must be awake if processes are being throttled */ 3115 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3116 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3117 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3118 3119 wake_up_interruptible(&pgdat->kswapd_wait); 3120 } 3121 3122 return wmark_ok; 3123 } 3124 3125 /* 3126 * Throttle direct reclaimers if backing storage is backed by the network 3127 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3128 * depleted. kswapd will continue to make progress and wake the processes 3129 * when the low watermark is reached. 3130 * 3131 * Returns true if a fatal signal was delivered during throttling. If this 3132 * happens, the page allocator should not consider triggering the OOM killer. 3133 */ 3134 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3135 nodemask_t *nodemask) 3136 { 3137 struct zoneref *z; 3138 struct zone *zone; 3139 pg_data_t *pgdat = NULL; 3140 3141 /* 3142 * Kernel threads should not be throttled as they may be indirectly 3143 * responsible for cleaning pages necessary for reclaim to make forward 3144 * progress. kjournald for example may enter direct reclaim while 3145 * committing a transaction where throttling it could forcing other 3146 * processes to block on log_wait_commit(). 3147 */ 3148 if (current->flags & PF_KTHREAD) 3149 goto out; 3150 3151 /* 3152 * If a fatal signal is pending, this process should not throttle. 3153 * It should return quickly so it can exit and free its memory 3154 */ 3155 if (fatal_signal_pending(current)) 3156 goto out; 3157 3158 /* 3159 * Check if the pfmemalloc reserves are ok by finding the first node 3160 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3161 * GFP_KERNEL will be required for allocating network buffers when 3162 * swapping over the network so ZONE_HIGHMEM is unusable. 3163 * 3164 * Throttling is based on the first usable node and throttled processes 3165 * wait on a queue until kswapd makes progress and wakes them. There 3166 * is an affinity then between processes waking up and where reclaim 3167 * progress has been made assuming the process wakes on the same node. 3168 * More importantly, processes running on remote nodes will not compete 3169 * for remote pfmemalloc reserves and processes on different nodes 3170 * should make reasonable progress. 3171 */ 3172 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3173 gfp_zone(gfp_mask), nodemask) { 3174 if (zone_idx(zone) > ZONE_NORMAL) 3175 continue; 3176 3177 /* Throttle based on the first usable node */ 3178 pgdat = zone->zone_pgdat; 3179 if (allow_direct_reclaim(pgdat)) 3180 goto out; 3181 break; 3182 } 3183 3184 /* If no zone was usable by the allocation flags then do not throttle */ 3185 if (!pgdat) 3186 goto out; 3187 3188 /* Account for the throttling */ 3189 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3190 3191 /* 3192 * If the caller cannot enter the filesystem, it's possible that it 3193 * is due to the caller holding an FS lock or performing a journal 3194 * transaction in the case of a filesystem like ext[3|4]. In this case, 3195 * it is not safe to block on pfmemalloc_wait as kswapd could be 3196 * blocked waiting on the same lock. Instead, throttle for up to a 3197 * second before continuing. 3198 */ 3199 if (!(gfp_mask & __GFP_FS)) { 3200 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3201 allow_direct_reclaim(pgdat), HZ); 3202 3203 goto check_pending; 3204 } 3205 3206 /* Throttle until kswapd wakes the process */ 3207 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3208 allow_direct_reclaim(pgdat)); 3209 3210 check_pending: 3211 if (fatal_signal_pending(current)) 3212 return true; 3213 3214 out: 3215 return false; 3216 } 3217 3218 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3219 gfp_t gfp_mask, nodemask_t *nodemask) 3220 { 3221 unsigned long nr_reclaimed; 3222 struct scan_control sc = { 3223 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3224 .gfp_mask = current_gfp_context(gfp_mask), 3225 .reclaim_idx = gfp_zone(gfp_mask), 3226 .order = order, 3227 .nodemask = nodemask, 3228 .priority = DEF_PRIORITY, 3229 .may_writepage = !laptop_mode, 3230 .may_unmap = 1, 3231 .may_swap = 1, 3232 }; 3233 3234 /* 3235 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3236 * Confirm they are large enough for max values. 3237 */ 3238 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3239 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3240 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3241 3242 /* 3243 * Do not enter reclaim if fatal signal was delivered while throttled. 3244 * 1 is returned so that the page allocator does not OOM kill at this 3245 * point. 3246 */ 3247 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3248 return 1; 3249 3250 set_task_reclaim_state(current, &sc.reclaim_state); 3251 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3252 3253 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3254 3255 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3256 set_task_reclaim_state(current, NULL); 3257 3258 return nr_reclaimed; 3259 } 3260 3261 #ifdef CONFIG_MEMCG 3262 3263 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3264 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3265 gfp_t gfp_mask, bool noswap, 3266 pg_data_t *pgdat, 3267 unsigned long *nr_scanned) 3268 { 3269 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3270 struct scan_control sc = { 3271 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3272 .target_mem_cgroup = memcg, 3273 .may_writepage = !laptop_mode, 3274 .may_unmap = 1, 3275 .reclaim_idx = MAX_NR_ZONES - 1, 3276 .may_swap = !noswap, 3277 }; 3278 3279 WARN_ON_ONCE(!current->reclaim_state); 3280 3281 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3282 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3283 3284 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3285 sc.gfp_mask); 3286 3287 /* 3288 * NOTE: Although we can get the priority field, using it 3289 * here is not a good idea, since it limits the pages we can scan. 3290 * if we don't reclaim here, the shrink_node from balance_pgdat 3291 * will pick up pages from other mem cgroup's as well. We hack 3292 * the priority and make it zero. 3293 */ 3294 shrink_lruvec(lruvec, &sc); 3295 3296 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3297 3298 *nr_scanned = sc.nr_scanned; 3299 3300 return sc.nr_reclaimed; 3301 } 3302 3303 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3304 unsigned long nr_pages, 3305 gfp_t gfp_mask, 3306 bool may_swap) 3307 { 3308 unsigned long nr_reclaimed; 3309 unsigned int noreclaim_flag; 3310 struct scan_control sc = { 3311 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3312 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3313 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3314 .reclaim_idx = MAX_NR_ZONES - 1, 3315 .target_mem_cgroup = memcg, 3316 .priority = DEF_PRIORITY, 3317 .may_writepage = !laptop_mode, 3318 .may_unmap = 1, 3319 .may_swap = may_swap, 3320 }; 3321 /* 3322 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3323 * equal pressure on all the nodes. This is based on the assumption that 3324 * the reclaim does not bail out early. 3325 */ 3326 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3327 3328 set_task_reclaim_state(current, &sc.reclaim_state); 3329 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3330 noreclaim_flag = memalloc_noreclaim_save(); 3331 3332 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3333 3334 memalloc_noreclaim_restore(noreclaim_flag); 3335 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3336 set_task_reclaim_state(current, NULL); 3337 3338 return nr_reclaimed; 3339 } 3340 #endif 3341 3342 static void age_active_anon(struct pglist_data *pgdat, 3343 struct scan_control *sc) 3344 { 3345 struct mem_cgroup *memcg; 3346 struct lruvec *lruvec; 3347 3348 if (!total_swap_pages) 3349 return; 3350 3351 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3352 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3353 return; 3354 3355 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3356 do { 3357 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3358 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3359 sc, LRU_ACTIVE_ANON); 3360 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3361 } while (memcg); 3362 } 3363 3364 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3365 { 3366 int i; 3367 struct zone *zone; 3368 3369 /* 3370 * Check for watermark boosts top-down as the higher zones 3371 * are more likely to be boosted. Both watermarks and boosts 3372 * should not be checked at the time time as reclaim would 3373 * start prematurely when there is no boosting and a lower 3374 * zone is balanced. 3375 */ 3376 for (i = highest_zoneidx; i >= 0; i--) { 3377 zone = pgdat->node_zones + i; 3378 if (!managed_zone(zone)) 3379 continue; 3380 3381 if (zone->watermark_boost) 3382 return true; 3383 } 3384 3385 return false; 3386 } 3387 3388 /* 3389 * Returns true if there is an eligible zone balanced for the request order 3390 * and highest_zoneidx 3391 */ 3392 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3393 { 3394 int i; 3395 unsigned long mark = -1; 3396 struct zone *zone; 3397 3398 /* 3399 * Check watermarks bottom-up as lower zones are more likely to 3400 * meet watermarks. 3401 */ 3402 for (i = 0; i <= highest_zoneidx; i++) { 3403 zone = pgdat->node_zones + i; 3404 3405 if (!managed_zone(zone)) 3406 continue; 3407 3408 mark = high_wmark_pages(zone); 3409 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3410 return true; 3411 } 3412 3413 /* 3414 * If a node has no populated zone within highest_zoneidx, it does not 3415 * need balancing by definition. This can happen if a zone-restricted 3416 * allocation tries to wake a remote kswapd. 3417 */ 3418 if (mark == -1) 3419 return true; 3420 3421 return false; 3422 } 3423 3424 /* Clear pgdat state for congested, dirty or under writeback. */ 3425 static void clear_pgdat_congested(pg_data_t *pgdat) 3426 { 3427 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3428 3429 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3430 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3431 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3432 } 3433 3434 /* 3435 * Prepare kswapd for sleeping. This verifies that there are no processes 3436 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3437 * 3438 * Returns true if kswapd is ready to sleep 3439 */ 3440 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3441 int highest_zoneidx) 3442 { 3443 /* 3444 * The throttled processes are normally woken up in balance_pgdat() as 3445 * soon as allow_direct_reclaim() is true. But there is a potential 3446 * race between when kswapd checks the watermarks and a process gets 3447 * throttled. There is also a potential race if processes get 3448 * throttled, kswapd wakes, a large process exits thereby balancing the 3449 * zones, which causes kswapd to exit balance_pgdat() before reaching 3450 * the wake up checks. If kswapd is going to sleep, no process should 3451 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3452 * the wake up is premature, processes will wake kswapd and get 3453 * throttled again. The difference from wake ups in balance_pgdat() is 3454 * that here we are under prepare_to_wait(). 3455 */ 3456 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3457 wake_up_all(&pgdat->pfmemalloc_wait); 3458 3459 /* Hopeless node, leave it to direct reclaim */ 3460 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3461 return true; 3462 3463 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3464 clear_pgdat_congested(pgdat); 3465 return true; 3466 } 3467 3468 return false; 3469 } 3470 3471 /* 3472 * kswapd shrinks a node of pages that are at or below the highest usable 3473 * zone that is currently unbalanced. 3474 * 3475 * Returns true if kswapd scanned at least the requested number of pages to 3476 * reclaim or if the lack of progress was due to pages under writeback. 3477 * This is used to determine if the scanning priority needs to be raised. 3478 */ 3479 static bool kswapd_shrink_node(pg_data_t *pgdat, 3480 struct scan_control *sc) 3481 { 3482 struct zone *zone; 3483 int z; 3484 3485 /* Reclaim a number of pages proportional to the number of zones */ 3486 sc->nr_to_reclaim = 0; 3487 for (z = 0; z <= sc->reclaim_idx; z++) { 3488 zone = pgdat->node_zones + z; 3489 if (!managed_zone(zone)) 3490 continue; 3491 3492 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3493 } 3494 3495 /* 3496 * Historically care was taken to put equal pressure on all zones but 3497 * now pressure is applied based on node LRU order. 3498 */ 3499 shrink_node(pgdat, sc); 3500 3501 /* 3502 * Fragmentation may mean that the system cannot be rebalanced for 3503 * high-order allocations. If twice the allocation size has been 3504 * reclaimed then recheck watermarks only at order-0 to prevent 3505 * excessive reclaim. Assume that a process requested a high-order 3506 * can direct reclaim/compact. 3507 */ 3508 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3509 sc->order = 0; 3510 3511 return sc->nr_scanned >= sc->nr_to_reclaim; 3512 } 3513 3514 /* 3515 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3516 * that are eligible for use by the caller until at least one zone is 3517 * balanced. 3518 * 3519 * Returns the order kswapd finished reclaiming at. 3520 * 3521 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3522 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3523 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3524 * or lower is eligible for reclaim until at least one usable zone is 3525 * balanced. 3526 */ 3527 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3528 { 3529 int i; 3530 unsigned long nr_soft_reclaimed; 3531 unsigned long nr_soft_scanned; 3532 unsigned long pflags; 3533 unsigned long nr_boost_reclaim; 3534 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3535 bool boosted; 3536 struct zone *zone; 3537 struct scan_control sc = { 3538 .gfp_mask = GFP_KERNEL, 3539 .order = order, 3540 .may_unmap = 1, 3541 }; 3542 3543 set_task_reclaim_state(current, &sc.reclaim_state); 3544 psi_memstall_enter(&pflags); 3545 __fs_reclaim_acquire(); 3546 3547 count_vm_event(PAGEOUTRUN); 3548 3549 /* 3550 * Account for the reclaim boost. Note that the zone boost is left in 3551 * place so that parallel allocations that are near the watermark will 3552 * stall or direct reclaim until kswapd is finished. 3553 */ 3554 nr_boost_reclaim = 0; 3555 for (i = 0; i <= highest_zoneidx; i++) { 3556 zone = pgdat->node_zones + i; 3557 if (!managed_zone(zone)) 3558 continue; 3559 3560 nr_boost_reclaim += zone->watermark_boost; 3561 zone_boosts[i] = zone->watermark_boost; 3562 } 3563 boosted = nr_boost_reclaim; 3564 3565 restart: 3566 sc.priority = DEF_PRIORITY; 3567 do { 3568 unsigned long nr_reclaimed = sc.nr_reclaimed; 3569 bool raise_priority = true; 3570 bool balanced; 3571 bool ret; 3572 3573 sc.reclaim_idx = highest_zoneidx; 3574 3575 /* 3576 * If the number of buffer_heads exceeds the maximum allowed 3577 * then consider reclaiming from all zones. This has a dual 3578 * purpose -- on 64-bit systems it is expected that 3579 * buffer_heads are stripped during active rotation. On 32-bit 3580 * systems, highmem pages can pin lowmem memory and shrinking 3581 * buffers can relieve lowmem pressure. Reclaim may still not 3582 * go ahead if all eligible zones for the original allocation 3583 * request are balanced to avoid excessive reclaim from kswapd. 3584 */ 3585 if (buffer_heads_over_limit) { 3586 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3587 zone = pgdat->node_zones + i; 3588 if (!managed_zone(zone)) 3589 continue; 3590 3591 sc.reclaim_idx = i; 3592 break; 3593 } 3594 } 3595 3596 /* 3597 * If the pgdat is imbalanced then ignore boosting and preserve 3598 * the watermarks for a later time and restart. Note that the 3599 * zone watermarks will be still reset at the end of balancing 3600 * on the grounds that the normal reclaim should be enough to 3601 * re-evaluate if boosting is required when kswapd next wakes. 3602 */ 3603 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3604 if (!balanced && nr_boost_reclaim) { 3605 nr_boost_reclaim = 0; 3606 goto restart; 3607 } 3608 3609 /* 3610 * If boosting is not active then only reclaim if there are no 3611 * eligible zones. Note that sc.reclaim_idx is not used as 3612 * buffer_heads_over_limit may have adjusted it. 3613 */ 3614 if (!nr_boost_reclaim && balanced) 3615 goto out; 3616 3617 /* Limit the priority of boosting to avoid reclaim writeback */ 3618 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3619 raise_priority = false; 3620 3621 /* 3622 * Do not writeback or swap pages for boosted reclaim. The 3623 * intent is to relieve pressure not issue sub-optimal IO 3624 * from reclaim context. If no pages are reclaimed, the 3625 * reclaim will be aborted. 3626 */ 3627 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3628 sc.may_swap = !nr_boost_reclaim; 3629 3630 /* 3631 * Do some background aging of the anon list, to give 3632 * pages a chance to be referenced before reclaiming. All 3633 * pages are rotated regardless of classzone as this is 3634 * about consistent aging. 3635 */ 3636 age_active_anon(pgdat, &sc); 3637 3638 /* 3639 * If we're getting trouble reclaiming, start doing writepage 3640 * even in laptop mode. 3641 */ 3642 if (sc.priority < DEF_PRIORITY - 2) 3643 sc.may_writepage = 1; 3644 3645 /* Call soft limit reclaim before calling shrink_node. */ 3646 sc.nr_scanned = 0; 3647 nr_soft_scanned = 0; 3648 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3649 sc.gfp_mask, &nr_soft_scanned); 3650 sc.nr_reclaimed += nr_soft_reclaimed; 3651 3652 /* 3653 * There should be no need to raise the scanning priority if 3654 * enough pages are already being scanned that that high 3655 * watermark would be met at 100% efficiency. 3656 */ 3657 if (kswapd_shrink_node(pgdat, &sc)) 3658 raise_priority = false; 3659 3660 /* 3661 * If the low watermark is met there is no need for processes 3662 * to be throttled on pfmemalloc_wait as they should not be 3663 * able to safely make forward progress. Wake them 3664 */ 3665 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3666 allow_direct_reclaim(pgdat)) 3667 wake_up_all(&pgdat->pfmemalloc_wait); 3668 3669 /* Check if kswapd should be suspending */ 3670 __fs_reclaim_release(); 3671 ret = try_to_freeze(); 3672 __fs_reclaim_acquire(); 3673 if (ret || kthread_should_stop()) 3674 break; 3675 3676 /* 3677 * Raise priority if scanning rate is too low or there was no 3678 * progress in reclaiming pages 3679 */ 3680 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3681 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3682 3683 /* 3684 * If reclaim made no progress for a boost, stop reclaim as 3685 * IO cannot be queued and it could be an infinite loop in 3686 * extreme circumstances. 3687 */ 3688 if (nr_boost_reclaim && !nr_reclaimed) 3689 break; 3690 3691 if (raise_priority || !nr_reclaimed) 3692 sc.priority--; 3693 } while (sc.priority >= 1); 3694 3695 if (!sc.nr_reclaimed) 3696 pgdat->kswapd_failures++; 3697 3698 out: 3699 /* If reclaim was boosted, account for the reclaim done in this pass */ 3700 if (boosted) { 3701 unsigned long flags; 3702 3703 for (i = 0; i <= highest_zoneidx; i++) { 3704 if (!zone_boosts[i]) 3705 continue; 3706 3707 /* Increments are under the zone lock */ 3708 zone = pgdat->node_zones + i; 3709 spin_lock_irqsave(&zone->lock, flags); 3710 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3711 spin_unlock_irqrestore(&zone->lock, flags); 3712 } 3713 3714 /* 3715 * As there is now likely space, wakeup kcompact to defragment 3716 * pageblocks. 3717 */ 3718 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3719 } 3720 3721 snapshot_refaults(NULL, pgdat); 3722 __fs_reclaim_release(); 3723 psi_memstall_leave(&pflags); 3724 set_task_reclaim_state(current, NULL); 3725 3726 /* 3727 * Return the order kswapd stopped reclaiming at as 3728 * prepare_kswapd_sleep() takes it into account. If another caller 3729 * entered the allocator slow path while kswapd was awake, order will 3730 * remain at the higher level. 3731 */ 3732 return sc.order; 3733 } 3734 3735 /* 3736 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3737 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3738 * not a valid index then either kswapd runs for first time or kswapd couldn't 3739 * sleep after previous reclaim attempt (node is still unbalanced). In that 3740 * case return the zone index of the previous kswapd reclaim cycle. 3741 */ 3742 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3743 enum zone_type prev_highest_zoneidx) 3744 { 3745 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3746 3747 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3748 } 3749 3750 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3751 unsigned int highest_zoneidx) 3752 { 3753 long remaining = 0; 3754 DEFINE_WAIT(wait); 3755 3756 if (freezing(current) || kthread_should_stop()) 3757 return; 3758 3759 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3760 3761 /* 3762 * Try to sleep for a short interval. Note that kcompactd will only be 3763 * woken if it is possible to sleep for a short interval. This is 3764 * deliberate on the assumption that if reclaim cannot keep an 3765 * eligible zone balanced that it's also unlikely that compaction will 3766 * succeed. 3767 */ 3768 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3769 /* 3770 * Compaction records what page blocks it recently failed to 3771 * isolate pages from and skips them in the future scanning. 3772 * When kswapd is going to sleep, it is reasonable to assume 3773 * that pages and compaction may succeed so reset the cache. 3774 */ 3775 reset_isolation_suitable(pgdat); 3776 3777 /* 3778 * We have freed the memory, now we should compact it to make 3779 * allocation of the requested order possible. 3780 */ 3781 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3782 3783 remaining = schedule_timeout(HZ/10); 3784 3785 /* 3786 * If woken prematurely then reset kswapd_highest_zoneidx and 3787 * order. The values will either be from a wakeup request or 3788 * the previous request that slept prematurely. 3789 */ 3790 if (remaining) { 3791 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3792 kswapd_highest_zoneidx(pgdat, 3793 highest_zoneidx)); 3794 3795 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3796 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3797 } 3798 3799 finish_wait(&pgdat->kswapd_wait, &wait); 3800 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3801 } 3802 3803 /* 3804 * After a short sleep, check if it was a premature sleep. If not, then 3805 * go fully to sleep until explicitly woken up. 3806 */ 3807 if (!remaining && 3808 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3809 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3810 3811 /* 3812 * vmstat counters are not perfectly accurate and the estimated 3813 * value for counters such as NR_FREE_PAGES can deviate from the 3814 * true value by nr_online_cpus * threshold. To avoid the zone 3815 * watermarks being breached while under pressure, we reduce the 3816 * per-cpu vmstat threshold while kswapd is awake and restore 3817 * them before going back to sleep. 3818 */ 3819 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3820 3821 if (!kthread_should_stop()) 3822 schedule(); 3823 3824 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3825 } else { 3826 if (remaining) 3827 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3828 else 3829 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3830 } 3831 finish_wait(&pgdat->kswapd_wait, &wait); 3832 } 3833 3834 /* 3835 * The background pageout daemon, started as a kernel thread 3836 * from the init process. 3837 * 3838 * This basically trickles out pages so that we have _some_ 3839 * free memory available even if there is no other activity 3840 * that frees anything up. This is needed for things like routing 3841 * etc, where we otherwise might have all activity going on in 3842 * asynchronous contexts that cannot page things out. 3843 * 3844 * If there are applications that are active memory-allocators 3845 * (most normal use), this basically shouldn't matter. 3846 */ 3847 static int kswapd(void *p) 3848 { 3849 unsigned int alloc_order, reclaim_order; 3850 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3851 pg_data_t *pgdat = (pg_data_t*)p; 3852 struct task_struct *tsk = current; 3853 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3854 3855 if (!cpumask_empty(cpumask)) 3856 set_cpus_allowed_ptr(tsk, cpumask); 3857 3858 /* 3859 * Tell the memory management that we're a "memory allocator", 3860 * and that if we need more memory we should get access to it 3861 * regardless (see "__alloc_pages()"). "kswapd" should 3862 * never get caught in the normal page freeing logic. 3863 * 3864 * (Kswapd normally doesn't need memory anyway, but sometimes 3865 * you need a small amount of memory in order to be able to 3866 * page out something else, and this flag essentially protects 3867 * us from recursively trying to free more memory as we're 3868 * trying to free the first piece of memory in the first place). 3869 */ 3870 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3871 set_freezable(); 3872 3873 WRITE_ONCE(pgdat->kswapd_order, 0); 3874 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3875 for ( ; ; ) { 3876 bool ret; 3877 3878 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3879 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3880 highest_zoneidx); 3881 3882 kswapd_try_sleep: 3883 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3884 highest_zoneidx); 3885 3886 /* Read the new order and highest_zoneidx */ 3887 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3888 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3889 highest_zoneidx); 3890 WRITE_ONCE(pgdat->kswapd_order, 0); 3891 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3892 3893 ret = try_to_freeze(); 3894 if (kthread_should_stop()) 3895 break; 3896 3897 /* 3898 * We can speed up thawing tasks if we don't call balance_pgdat 3899 * after returning from the refrigerator 3900 */ 3901 if (ret) 3902 continue; 3903 3904 /* 3905 * Reclaim begins at the requested order but if a high-order 3906 * reclaim fails then kswapd falls back to reclaiming for 3907 * order-0. If that happens, kswapd will consider sleeping 3908 * for the order it finished reclaiming at (reclaim_order) 3909 * but kcompactd is woken to compact for the original 3910 * request (alloc_order). 3911 */ 3912 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3913 alloc_order); 3914 reclaim_order = balance_pgdat(pgdat, alloc_order, 3915 highest_zoneidx); 3916 if (reclaim_order < alloc_order) 3917 goto kswapd_try_sleep; 3918 } 3919 3920 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3921 3922 return 0; 3923 } 3924 3925 /* 3926 * A zone is low on free memory or too fragmented for high-order memory. If 3927 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3928 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3929 * has failed or is not needed, still wake up kcompactd if only compaction is 3930 * needed. 3931 */ 3932 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3933 enum zone_type highest_zoneidx) 3934 { 3935 pg_data_t *pgdat; 3936 enum zone_type curr_idx; 3937 3938 if (!managed_zone(zone)) 3939 return; 3940 3941 if (!cpuset_zone_allowed(zone, gfp_flags)) 3942 return; 3943 3944 pgdat = zone->zone_pgdat; 3945 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3946 3947 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3948 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3949 3950 if (READ_ONCE(pgdat->kswapd_order) < order) 3951 WRITE_ONCE(pgdat->kswapd_order, order); 3952 3953 if (!waitqueue_active(&pgdat->kswapd_wait)) 3954 return; 3955 3956 /* Hopeless node, leave it to direct reclaim if possible */ 3957 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3958 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3959 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3960 /* 3961 * There may be plenty of free memory available, but it's too 3962 * fragmented for high-order allocations. Wake up kcompactd 3963 * and rely on compaction_suitable() to determine if it's 3964 * needed. If it fails, it will defer subsequent attempts to 3965 * ratelimit its work. 3966 */ 3967 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3968 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3969 return; 3970 } 3971 3972 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3973 gfp_flags); 3974 wake_up_interruptible(&pgdat->kswapd_wait); 3975 } 3976 3977 #ifdef CONFIG_HIBERNATION 3978 /* 3979 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3980 * freed pages. 3981 * 3982 * Rather than trying to age LRUs the aim is to preserve the overall 3983 * LRU order by reclaiming preferentially 3984 * inactive > active > active referenced > active mapped 3985 */ 3986 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3987 { 3988 struct scan_control sc = { 3989 .nr_to_reclaim = nr_to_reclaim, 3990 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3991 .reclaim_idx = MAX_NR_ZONES - 1, 3992 .priority = DEF_PRIORITY, 3993 .may_writepage = 1, 3994 .may_unmap = 1, 3995 .may_swap = 1, 3996 .hibernation_mode = 1, 3997 }; 3998 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3999 unsigned long nr_reclaimed; 4000 unsigned int noreclaim_flag; 4001 4002 fs_reclaim_acquire(sc.gfp_mask); 4003 noreclaim_flag = memalloc_noreclaim_save(); 4004 set_task_reclaim_state(current, &sc.reclaim_state); 4005 4006 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4007 4008 set_task_reclaim_state(current, NULL); 4009 memalloc_noreclaim_restore(noreclaim_flag); 4010 fs_reclaim_release(sc.gfp_mask); 4011 4012 return nr_reclaimed; 4013 } 4014 #endif /* CONFIG_HIBERNATION */ 4015 4016 /* 4017 * This kswapd start function will be called by init and node-hot-add. 4018 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4019 */ 4020 int kswapd_run(int nid) 4021 { 4022 pg_data_t *pgdat = NODE_DATA(nid); 4023 int ret = 0; 4024 4025 if (pgdat->kswapd) 4026 return 0; 4027 4028 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4029 if (IS_ERR(pgdat->kswapd)) { 4030 /* failure at boot is fatal */ 4031 BUG_ON(system_state < SYSTEM_RUNNING); 4032 pr_err("Failed to start kswapd on node %d\n", nid); 4033 ret = PTR_ERR(pgdat->kswapd); 4034 pgdat->kswapd = NULL; 4035 } 4036 return ret; 4037 } 4038 4039 /* 4040 * Called by memory hotplug when all memory in a node is offlined. Caller must 4041 * hold mem_hotplug_begin/end(). 4042 */ 4043 void kswapd_stop(int nid) 4044 { 4045 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4046 4047 if (kswapd) { 4048 kthread_stop(kswapd); 4049 NODE_DATA(nid)->kswapd = NULL; 4050 } 4051 } 4052 4053 static int __init kswapd_init(void) 4054 { 4055 int nid; 4056 4057 swap_setup(); 4058 for_each_node_state(nid, N_MEMORY) 4059 kswapd_run(nid); 4060 return 0; 4061 } 4062 4063 module_init(kswapd_init) 4064 4065 #ifdef CONFIG_NUMA 4066 /* 4067 * Node reclaim mode 4068 * 4069 * If non-zero call node_reclaim when the number of free pages falls below 4070 * the watermarks. 4071 */ 4072 int node_reclaim_mode __read_mostly; 4073 4074 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4075 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4076 4077 /* 4078 * Priority for NODE_RECLAIM. This determines the fraction of pages 4079 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4080 * a zone. 4081 */ 4082 #define NODE_RECLAIM_PRIORITY 4 4083 4084 /* 4085 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4086 * occur. 4087 */ 4088 int sysctl_min_unmapped_ratio = 1; 4089 4090 /* 4091 * If the number of slab pages in a zone grows beyond this percentage then 4092 * slab reclaim needs to occur. 4093 */ 4094 int sysctl_min_slab_ratio = 5; 4095 4096 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4097 { 4098 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4099 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4100 node_page_state(pgdat, NR_ACTIVE_FILE); 4101 4102 /* 4103 * It's possible for there to be more file mapped pages than 4104 * accounted for by the pages on the file LRU lists because 4105 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4106 */ 4107 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4108 } 4109 4110 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4111 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4112 { 4113 unsigned long nr_pagecache_reclaimable; 4114 unsigned long delta = 0; 4115 4116 /* 4117 * If RECLAIM_UNMAP is set, then all file pages are considered 4118 * potentially reclaimable. Otherwise, we have to worry about 4119 * pages like swapcache and node_unmapped_file_pages() provides 4120 * a better estimate 4121 */ 4122 if (node_reclaim_mode & RECLAIM_UNMAP) 4123 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4124 else 4125 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4126 4127 /* If we can't clean pages, remove dirty pages from consideration */ 4128 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4129 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4130 4131 /* Watch for any possible underflows due to delta */ 4132 if (unlikely(delta > nr_pagecache_reclaimable)) 4133 delta = nr_pagecache_reclaimable; 4134 4135 return nr_pagecache_reclaimable - delta; 4136 } 4137 4138 /* 4139 * Try to free up some pages from this node through reclaim. 4140 */ 4141 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4142 { 4143 /* Minimum pages needed in order to stay on node */ 4144 const unsigned long nr_pages = 1 << order; 4145 struct task_struct *p = current; 4146 unsigned int noreclaim_flag; 4147 struct scan_control sc = { 4148 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4149 .gfp_mask = current_gfp_context(gfp_mask), 4150 .order = order, 4151 .priority = NODE_RECLAIM_PRIORITY, 4152 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4153 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4154 .may_swap = 1, 4155 .reclaim_idx = gfp_zone(gfp_mask), 4156 }; 4157 4158 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4159 sc.gfp_mask); 4160 4161 cond_resched(); 4162 fs_reclaim_acquire(sc.gfp_mask); 4163 /* 4164 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4165 * and we also need to be able to write out pages for RECLAIM_WRITE 4166 * and RECLAIM_UNMAP. 4167 */ 4168 noreclaim_flag = memalloc_noreclaim_save(); 4169 p->flags |= PF_SWAPWRITE; 4170 set_task_reclaim_state(p, &sc.reclaim_state); 4171 4172 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4173 /* 4174 * Free memory by calling shrink node with increasing 4175 * priorities until we have enough memory freed. 4176 */ 4177 do { 4178 shrink_node(pgdat, &sc); 4179 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4180 } 4181 4182 set_task_reclaim_state(p, NULL); 4183 current->flags &= ~PF_SWAPWRITE; 4184 memalloc_noreclaim_restore(noreclaim_flag); 4185 fs_reclaim_release(sc.gfp_mask); 4186 4187 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4188 4189 return sc.nr_reclaimed >= nr_pages; 4190 } 4191 4192 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4193 { 4194 int ret; 4195 4196 /* 4197 * Node reclaim reclaims unmapped file backed pages and 4198 * slab pages if we are over the defined limits. 4199 * 4200 * A small portion of unmapped file backed pages is needed for 4201 * file I/O otherwise pages read by file I/O will be immediately 4202 * thrown out if the node is overallocated. So we do not reclaim 4203 * if less than a specified percentage of the node is used by 4204 * unmapped file backed pages. 4205 */ 4206 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4207 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4208 pgdat->min_slab_pages) 4209 return NODE_RECLAIM_FULL; 4210 4211 /* 4212 * Do not scan if the allocation should not be delayed. 4213 */ 4214 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4215 return NODE_RECLAIM_NOSCAN; 4216 4217 /* 4218 * Only run node reclaim on the local node or on nodes that do not 4219 * have associated processors. This will favor the local processor 4220 * over remote processors and spread off node memory allocations 4221 * as wide as possible. 4222 */ 4223 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4224 return NODE_RECLAIM_NOSCAN; 4225 4226 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4227 return NODE_RECLAIM_NOSCAN; 4228 4229 ret = __node_reclaim(pgdat, gfp_mask, order); 4230 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4231 4232 if (!ret) 4233 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4234 4235 return ret; 4236 } 4237 #endif 4238 4239 /** 4240 * check_move_unevictable_pages - check pages for evictability and move to 4241 * appropriate zone lru list 4242 * @pvec: pagevec with lru pages to check 4243 * 4244 * Checks pages for evictability, if an evictable page is in the unevictable 4245 * lru list, moves it to the appropriate evictable lru list. This function 4246 * should be only used for lru pages. 4247 */ 4248 void check_move_unevictable_pages(struct pagevec *pvec) 4249 { 4250 struct lruvec *lruvec; 4251 struct pglist_data *pgdat = NULL; 4252 int pgscanned = 0; 4253 int pgrescued = 0; 4254 int i; 4255 4256 for (i = 0; i < pvec->nr; i++) { 4257 struct page *page = pvec->pages[i]; 4258 struct pglist_data *pagepgdat = page_pgdat(page); 4259 4260 pgscanned++; 4261 if (pagepgdat != pgdat) { 4262 if (pgdat) 4263 spin_unlock_irq(&pgdat->lru_lock); 4264 pgdat = pagepgdat; 4265 spin_lock_irq(&pgdat->lru_lock); 4266 } 4267 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4268 4269 if (!PageLRU(page) || !PageUnevictable(page)) 4270 continue; 4271 4272 if (page_evictable(page)) { 4273 enum lru_list lru = page_lru_base_type(page); 4274 4275 VM_BUG_ON_PAGE(PageActive(page), page); 4276 ClearPageUnevictable(page); 4277 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4278 add_page_to_lru_list(page, lruvec, lru); 4279 pgrescued++; 4280 } 4281 } 4282 4283 if (pgdat) { 4284 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4285 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4286 spin_unlock_irq(&pgdat->lru_lock); 4287 } 4288 } 4289 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4290