1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Can active pages be deactivated as part of reclaim? */ 83 #define DEACTIVATE_ANON 1 84 #define DEACTIVATE_FILE 2 85 unsigned int may_deactivate:2; 86 unsigned int force_deactivate:1; 87 unsigned int skipped_deactivate:1; 88 89 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* 99 * Cgroups are not reclaimed below their configured memory.low, 100 * unless we threaten to OOM. If any cgroups are skipped due to 101 * memory.low and nothing was reclaimed, go back for memory.low. 102 */ 103 unsigned int memcg_low_reclaim:1; 104 unsigned int memcg_low_skipped:1; 105 106 unsigned int hibernation_mode:1; 107 108 /* One of the zones is ready for compaction */ 109 unsigned int compaction_ready:1; 110 111 /* There is easily reclaimable cold cache in the current node */ 112 unsigned int cache_trim_mode:1; 113 114 /* The file pages on the current node are dangerously low */ 115 unsigned int file_is_tiny:1; 116 117 /* Allocation order */ 118 s8 order; 119 120 /* Scan (total_size >> priority) pages at once */ 121 s8 priority; 122 123 /* The highest zone to isolate pages for reclaim from */ 124 s8 reclaim_idx; 125 126 /* This context's GFP mask */ 127 gfp_t gfp_mask; 128 129 /* Incremented by the number of inactive pages that were scanned */ 130 unsigned long nr_scanned; 131 132 /* Number of pages freed so far during a call to shrink_zones() */ 133 unsigned long nr_reclaimed; 134 135 struct { 136 unsigned int dirty; 137 unsigned int unqueued_dirty; 138 unsigned int congested; 139 unsigned int writeback; 140 unsigned int immediate; 141 unsigned int file_taken; 142 unsigned int taken; 143 } nr; 144 145 /* for recording the reclaimed slab by now */ 146 struct reclaim_state reclaim_state; 147 }; 148 149 #ifdef ARCH_HAS_PREFETCH 150 #define prefetch_prev_lru_page(_page, _base, _field) \ 151 do { \ 152 if ((_page)->lru.prev != _base) { \ 153 struct page *prev; \ 154 \ 155 prev = lru_to_page(&(_page->lru)); \ 156 prefetch(&prev->_field); \ 157 } \ 158 } while (0) 159 #else 160 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 161 #endif 162 163 #ifdef ARCH_HAS_PREFETCHW 164 #define prefetchw_prev_lru_page(_page, _base, _field) \ 165 do { \ 166 if ((_page)->lru.prev != _base) { \ 167 struct page *prev; \ 168 \ 169 prev = lru_to_page(&(_page->lru)); \ 170 prefetchw(&prev->_field); \ 171 } \ 172 } while (0) 173 #else 174 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 175 #endif 176 177 /* 178 * From 0 .. 100. Higher means more swappy. 179 */ 180 int vm_swappiness = 60; 181 /* 182 * The total number of pages which are beyond the high watermark within all 183 * zones. 184 */ 185 unsigned long vm_total_pages; 186 187 static void set_task_reclaim_state(struct task_struct *task, 188 struct reclaim_state *rs) 189 { 190 /* Check for an overwrite */ 191 WARN_ON_ONCE(rs && task->reclaim_state); 192 193 /* Check for the nulling of an already-nulled member */ 194 WARN_ON_ONCE(!rs && !task->reclaim_state); 195 196 task->reclaim_state = rs; 197 } 198 199 static LIST_HEAD(shrinker_list); 200 static DECLARE_RWSEM(shrinker_rwsem); 201 202 #ifdef CONFIG_MEMCG 203 /* 204 * We allow subsystems to populate their shrinker-related 205 * LRU lists before register_shrinker_prepared() is called 206 * for the shrinker, since we don't want to impose 207 * restrictions on their internal registration order. 208 * In this case shrink_slab_memcg() may find corresponding 209 * bit is set in the shrinkers map. 210 * 211 * This value is used by the function to detect registering 212 * shrinkers and to skip do_shrink_slab() calls for them. 213 */ 214 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 215 216 static DEFINE_IDR(shrinker_idr); 217 static int shrinker_nr_max; 218 219 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 220 { 221 int id, ret = -ENOMEM; 222 223 down_write(&shrinker_rwsem); 224 /* This may call shrinker, so it must use down_read_trylock() */ 225 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 226 if (id < 0) 227 goto unlock; 228 229 if (id >= shrinker_nr_max) { 230 if (memcg_expand_shrinker_maps(id)) { 231 idr_remove(&shrinker_idr, id); 232 goto unlock; 233 } 234 235 shrinker_nr_max = id + 1; 236 } 237 shrinker->id = id; 238 ret = 0; 239 unlock: 240 up_write(&shrinker_rwsem); 241 return ret; 242 } 243 244 static void unregister_memcg_shrinker(struct shrinker *shrinker) 245 { 246 int id = shrinker->id; 247 248 BUG_ON(id < 0); 249 250 down_write(&shrinker_rwsem); 251 idr_remove(&shrinker_idr, id); 252 up_write(&shrinker_rwsem); 253 } 254 255 static bool cgroup_reclaim(struct scan_control *sc) 256 { 257 return sc->target_mem_cgroup; 258 } 259 260 /** 261 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 262 * @sc: scan_control in question 263 * 264 * The normal page dirty throttling mechanism in balance_dirty_pages() is 265 * completely broken with the legacy memcg and direct stalling in 266 * shrink_page_list() is used for throttling instead, which lacks all the 267 * niceties such as fairness, adaptive pausing, bandwidth proportional 268 * allocation and configurability. 269 * 270 * This function tests whether the vmscan currently in progress can assume 271 * that the normal dirty throttling mechanism is operational. 272 */ 273 static bool writeback_throttling_sane(struct scan_control *sc) 274 { 275 if (!cgroup_reclaim(sc)) 276 return true; 277 #ifdef CONFIG_CGROUP_WRITEBACK 278 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 279 return true; 280 #endif 281 return false; 282 } 283 #else 284 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 285 { 286 return 0; 287 } 288 289 static void unregister_memcg_shrinker(struct shrinker *shrinker) 290 { 291 } 292 293 static bool cgroup_reclaim(struct scan_control *sc) 294 { 295 return false; 296 } 297 298 static bool writeback_throttling_sane(struct scan_control *sc) 299 { 300 return true; 301 } 302 #endif 303 304 /* 305 * This misses isolated pages which are not accounted for to save counters. 306 * As the data only determines if reclaim or compaction continues, it is 307 * not expected that isolated pages will be a dominating factor. 308 */ 309 unsigned long zone_reclaimable_pages(struct zone *zone) 310 { 311 unsigned long nr; 312 313 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 314 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 315 if (get_nr_swap_pages() > 0) 316 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 317 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 318 319 return nr; 320 } 321 322 /** 323 * lruvec_lru_size - Returns the number of pages on the given LRU list. 324 * @lruvec: lru vector 325 * @lru: lru to use 326 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 327 */ 328 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 329 { 330 unsigned long size = 0; 331 int zid; 332 333 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 334 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 335 336 if (!managed_zone(zone)) 337 continue; 338 339 if (!mem_cgroup_disabled()) 340 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 341 else 342 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 343 } 344 return size; 345 } 346 347 /* 348 * Add a shrinker callback to be called from the vm. 349 */ 350 int prealloc_shrinker(struct shrinker *shrinker) 351 { 352 unsigned int size = sizeof(*shrinker->nr_deferred); 353 354 if (shrinker->flags & SHRINKER_NUMA_AWARE) 355 size *= nr_node_ids; 356 357 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 358 if (!shrinker->nr_deferred) 359 return -ENOMEM; 360 361 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 362 if (prealloc_memcg_shrinker(shrinker)) 363 goto free_deferred; 364 } 365 366 return 0; 367 368 free_deferred: 369 kfree(shrinker->nr_deferred); 370 shrinker->nr_deferred = NULL; 371 return -ENOMEM; 372 } 373 374 void free_prealloced_shrinker(struct shrinker *shrinker) 375 { 376 if (!shrinker->nr_deferred) 377 return; 378 379 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 380 unregister_memcg_shrinker(shrinker); 381 382 kfree(shrinker->nr_deferred); 383 shrinker->nr_deferred = NULL; 384 } 385 386 void register_shrinker_prepared(struct shrinker *shrinker) 387 { 388 down_write(&shrinker_rwsem); 389 list_add_tail(&shrinker->list, &shrinker_list); 390 #ifdef CONFIG_MEMCG 391 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 392 idr_replace(&shrinker_idr, shrinker, shrinker->id); 393 #endif 394 up_write(&shrinker_rwsem); 395 } 396 397 int register_shrinker(struct shrinker *shrinker) 398 { 399 int err = prealloc_shrinker(shrinker); 400 401 if (err) 402 return err; 403 register_shrinker_prepared(shrinker); 404 return 0; 405 } 406 EXPORT_SYMBOL(register_shrinker); 407 408 /* 409 * Remove one 410 */ 411 void unregister_shrinker(struct shrinker *shrinker) 412 { 413 if (!shrinker->nr_deferred) 414 return; 415 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 416 unregister_memcg_shrinker(shrinker); 417 down_write(&shrinker_rwsem); 418 list_del(&shrinker->list); 419 up_write(&shrinker_rwsem); 420 kfree(shrinker->nr_deferred); 421 shrinker->nr_deferred = NULL; 422 } 423 EXPORT_SYMBOL(unregister_shrinker); 424 425 #define SHRINK_BATCH 128 426 427 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 428 struct shrinker *shrinker, int priority) 429 { 430 unsigned long freed = 0; 431 unsigned long long delta; 432 long total_scan; 433 long freeable; 434 long nr; 435 long new_nr; 436 int nid = shrinkctl->nid; 437 long batch_size = shrinker->batch ? shrinker->batch 438 : SHRINK_BATCH; 439 long scanned = 0, next_deferred; 440 441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 442 nid = 0; 443 444 freeable = shrinker->count_objects(shrinker, shrinkctl); 445 if (freeable == 0 || freeable == SHRINK_EMPTY) 446 return freeable; 447 448 /* 449 * copy the current shrinker scan count into a local variable 450 * and zero it so that other concurrent shrinker invocations 451 * don't also do this scanning work. 452 */ 453 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 454 455 total_scan = nr; 456 if (shrinker->seeks) { 457 delta = freeable >> priority; 458 delta *= 4; 459 do_div(delta, shrinker->seeks); 460 } else { 461 /* 462 * These objects don't require any IO to create. Trim 463 * them aggressively under memory pressure to keep 464 * them from causing refetches in the IO caches. 465 */ 466 delta = freeable / 2; 467 } 468 469 total_scan += delta; 470 if (total_scan < 0) { 471 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 472 shrinker->scan_objects, total_scan); 473 total_scan = freeable; 474 next_deferred = nr; 475 } else 476 next_deferred = total_scan; 477 478 /* 479 * We need to avoid excessive windup on filesystem shrinkers 480 * due to large numbers of GFP_NOFS allocations causing the 481 * shrinkers to return -1 all the time. This results in a large 482 * nr being built up so when a shrink that can do some work 483 * comes along it empties the entire cache due to nr >>> 484 * freeable. This is bad for sustaining a working set in 485 * memory. 486 * 487 * Hence only allow the shrinker to scan the entire cache when 488 * a large delta change is calculated directly. 489 */ 490 if (delta < freeable / 4) 491 total_scan = min(total_scan, freeable / 2); 492 493 /* 494 * Avoid risking looping forever due to too large nr value: 495 * never try to free more than twice the estimate number of 496 * freeable entries. 497 */ 498 if (total_scan > freeable * 2) 499 total_scan = freeable * 2; 500 501 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 502 freeable, delta, total_scan, priority); 503 504 /* 505 * Normally, we should not scan less than batch_size objects in one 506 * pass to avoid too frequent shrinker calls, but if the slab has less 507 * than batch_size objects in total and we are really tight on memory, 508 * we will try to reclaim all available objects, otherwise we can end 509 * up failing allocations although there are plenty of reclaimable 510 * objects spread over several slabs with usage less than the 511 * batch_size. 512 * 513 * We detect the "tight on memory" situations by looking at the total 514 * number of objects we want to scan (total_scan). If it is greater 515 * than the total number of objects on slab (freeable), we must be 516 * scanning at high prio and therefore should try to reclaim as much as 517 * possible. 518 */ 519 while (total_scan >= batch_size || 520 total_scan >= freeable) { 521 unsigned long ret; 522 unsigned long nr_to_scan = min(batch_size, total_scan); 523 524 shrinkctl->nr_to_scan = nr_to_scan; 525 shrinkctl->nr_scanned = nr_to_scan; 526 ret = shrinker->scan_objects(shrinker, shrinkctl); 527 if (ret == SHRINK_STOP) 528 break; 529 freed += ret; 530 531 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 532 total_scan -= shrinkctl->nr_scanned; 533 scanned += shrinkctl->nr_scanned; 534 535 cond_resched(); 536 } 537 538 if (next_deferred >= scanned) 539 next_deferred -= scanned; 540 else 541 next_deferred = 0; 542 /* 543 * move the unused scan count back into the shrinker in a 544 * manner that handles concurrent updates. If we exhausted the 545 * scan, there is no need to do an update. 546 */ 547 if (next_deferred > 0) 548 new_nr = atomic_long_add_return(next_deferred, 549 &shrinker->nr_deferred[nid]); 550 else 551 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 552 553 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 554 return freed; 555 } 556 557 #ifdef CONFIG_MEMCG 558 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 559 struct mem_cgroup *memcg, int priority) 560 { 561 struct memcg_shrinker_map *map; 562 unsigned long ret, freed = 0; 563 int i; 564 565 if (!mem_cgroup_online(memcg)) 566 return 0; 567 568 if (!down_read_trylock(&shrinker_rwsem)) 569 return 0; 570 571 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 572 true); 573 if (unlikely(!map)) 574 goto unlock; 575 576 for_each_set_bit(i, map->map, shrinker_nr_max) { 577 struct shrink_control sc = { 578 .gfp_mask = gfp_mask, 579 .nid = nid, 580 .memcg = memcg, 581 }; 582 struct shrinker *shrinker; 583 584 shrinker = idr_find(&shrinker_idr, i); 585 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 586 if (!shrinker) 587 clear_bit(i, map->map); 588 continue; 589 } 590 591 /* Call non-slab shrinkers even though kmem is disabled */ 592 if (!memcg_kmem_enabled() && 593 !(shrinker->flags & SHRINKER_NONSLAB)) 594 continue; 595 596 ret = do_shrink_slab(&sc, shrinker, priority); 597 if (ret == SHRINK_EMPTY) { 598 clear_bit(i, map->map); 599 /* 600 * After the shrinker reported that it had no objects to 601 * free, but before we cleared the corresponding bit in 602 * the memcg shrinker map, a new object might have been 603 * added. To make sure, we have the bit set in this 604 * case, we invoke the shrinker one more time and reset 605 * the bit if it reports that it is not empty anymore. 606 * The memory barrier here pairs with the barrier in 607 * memcg_set_shrinker_bit(): 608 * 609 * list_lru_add() shrink_slab_memcg() 610 * list_add_tail() clear_bit() 611 * <MB> <MB> 612 * set_bit() do_shrink_slab() 613 */ 614 smp_mb__after_atomic(); 615 ret = do_shrink_slab(&sc, shrinker, priority); 616 if (ret == SHRINK_EMPTY) 617 ret = 0; 618 else 619 memcg_set_shrinker_bit(memcg, nid, i); 620 } 621 freed += ret; 622 623 if (rwsem_is_contended(&shrinker_rwsem)) { 624 freed = freed ? : 1; 625 break; 626 } 627 } 628 unlock: 629 up_read(&shrinker_rwsem); 630 return freed; 631 } 632 #else /* CONFIG_MEMCG */ 633 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 634 struct mem_cgroup *memcg, int priority) 635 { 636 return 0; 637 } 638 #endif /* CONFIG_MEMCG */ 639 640 /** 641 * shrink_slab - shrink slab caches 642 * @gfp_mask: allocation context 643 * @nid: node whose slab caches to target 644 * @memcg: memory cgroup whose slab caches to target 645 * @priority: the reclaim priority 646 * 647 * Call the shrink functions to age shrinkable caches. 648 * 649 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 650 * unaware shrinkers will receive a node id of 0 instead. 651 * 652 * @memcg specifies the memory cgroup to target. Unaware shrinkers 653 * are called only if it is the root cgroup. 654 * 655 * @priority is sc->priority, we take the number of objects and >> by priority 656 * in order to get the scan target. 657 * 658 * Returns the number of reclaimed slab objects. 659 */ 660 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 661 struct mem_cgroup *memcg, 662 int priority) 663 { 664 unsigned long ret, freed = 0; 665 struct shrinker *shrinker; 666 667 /* 668 * The root memcg might be allocated even though memcg is disabled 669 * via "cgroup_disable=memory" boot parameter. This could make 670 * mem_cgroup_is_root() return false, then just run memcg slab 671 * shrink, but skip global shrink. This may result in premature 672 * oom. 673 */ 674 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 675 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 676 677 if (!down_read_trylock(&shrinker_rwsem)) 678 goto out; 679 680 list_for_each_entry(shrinker, &shrinker_list, list) { 681 struct shrink_control sc = { 682 .gfp_mask = gfp_mask, 683 .nid = nid, 684 .memcg = memcg, 685 }; 686 687 ret = do_shrink_slab(&sc, shrinker, priority); 688 if (ret == SHRINK_EMPTY) 689 ret = 0; 690 freed += ret; 691 /* 692 * Bail out if someone want to register a new shrinker to 693 * prevent the regsitration from being stalled for long periods 694 * by parallel ongoing shrinking. 695 */ 696 if (rwsem_is_contended(&shrinker_rwsem)) { 697 freed = freed ? : 1; 698 break; 699 } 700 } 701 702 up_read(&shrinker_rwsem); 703 out: 704 cond_resched(); 705 return freed; 706 } 707 708 void drop_slab_node(int nid) 709 { 710 unsigned long freed; 711 712 do { 713 struct mem_cgroup *memcg = NULL; 714 715 freed = 0; 716 memcg = mem_cgroup_iter(NULL, NULL, NULL); 717 do { 718 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 719 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 720 } while (freed > 10); 721 } 722 723 void drop_slab(void) 724 { 725 int nid; 726 727 for_each_online_node(nid) 728 drop_slab_node(nid); 729 } 730 731 static inline int is_page_cache_freeable(struct page *page) 732 { 733 /* 734 * A freeable page cache page is referenced only by the caller 735 * that isolated the page, the page cache and optional buffer 736 * heads at page->private. 737 */ 738 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 739 HPAGE_PMD_NR : 1; 740 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 741 } 742 743 static int may_write_to_inode(struct inode *inode) 744 { 745 if (current->flags & PF_SWAPWRITE) 746 return 1; 747 if (!inode_write_congested(inode)) 748 return 1; 749 if (inode_to_bdi(inode) == current->backing_dev_info) 750 return 1; 751 return 0; 752 } 753 754 /* 755 * We detected a synchronous write error writing a page out. Probably 756 * -ENOSPC. We need to propagate that into the address_space for a subsequent 757 * fsync(), msync() or close(). 758 * 759 * The tricky part is that after writepage we cannot touch the mapping: nothing 760 * prevents it from being freed up. But we have a ref on the page and once 761 * that page is locked, the mapping is pinned. 762 * 763 * We're allowed to run sleeping lock_page() here because we know the caller has 764 * __GFP_FS. 765 */ 766 static void handle_write_error(struct address_space *mapping, 767 struct page *page, int error) 768 { 769 lock_page(page); 770 if (page_mapping(page) == mapping) 771 mapping_set_error(mapping, error); 772 unlock_page(page); 773 } 774 775 /* possible outcome of pageout() */ 776 typedef enum { 777 /* failed to write page out, page is locked */ 778 PAGE_KEEP, 779 /* move page to the active list, page is locked */ 780 PAGE_ACTIVATE, 781 /* page has been sent to the disk successfully, page is unlocked */ 782 PAGE_SUCCESS, 783 /* page is clean and locked */ 784 PAGE_CLEAN, 785 } pageout_t; 786 787 /* 788 * pageout is called by shrink_page_list() for each dirty page. 789 * Calls ->writepage(). 790 */ 791 static pageout_t pageout(struct page *page, struct address_space *mapping) 792 { 793 /* 794 * If the page is dirty, only perform writeback if that write 795 * will be non-blocking. To prevent this allocation from being 796 * stalled by pagecache activity. But note that there may be 797 * stalls if we need to run get_block(). We could test 798 * PagePrivate for that. 799 * 800 * If this process is currently in __generic_file_write_iter() against 801 * this page's queue, we can perform writeback even if that 802 * will block. 803 * 804 * If the page is swapcache, write it back even if that would 805 * block, for some throttling. This happens by accident, because 806 * swap_backing_dev_info is bust: it doesn't reflect the 807 * congestion state of the swapdevs. Easy to fix, if needed. 808 */ 809 if (!is_page_cache_freeable(page)) 810 return PAGE_KEEP; 811 if (!mapping) { 812 /* 813 * Some data journaling orphaned pages can have 814 * page->mapping == NULL while being dirty with clean buffers. 815 */ 816 if (page_has_private(page)) { 817 if (try_to_free_buffers(page)) { 818 ClearPageDirty(page); 819 pr_info("%s: orphaned page\n", __func__); 820 return PAGE_CLEAN; 821 } 822 } 823 return PAGE_KEEP; 824 } 825 if (mapping->a_ops->writepage == NULL) 826 return PAGE_ACTIVATE; 827 if (!may_write_to_inode(mapping->host)) 828 return PAGE_KEEP; 829 830 if (clear_page_dirty_for_io(page)) { 831 int res; 832 struct writeback_control wbc = { 833 .sync_mode = WB_SYNC_NONE, 834 .nr_to_write = SWAP_CLUSTER_MAX, 835 .range_start = 0, 836 .range_end = LLONG_MAX, 837 .for_reclaim = 1, 838 }; 839 840 SetPageReclaim(page); 841 res = mapping->a_ops->writepage(page, &wbc); 842 if (res < 0) 843 handle_write_error(mapping, page, res); 844 if (res == AOP_WRITEPAGE_ACTIVATE) { 845 ClearPageReclaim(page); 846 return PAGE_ACTIVATE; 847 } 848 849 if (!PageWriteback(page)) { 850 /* synchronous write or broken a_ops? */ 851 ClearPageReclaim(page); 852 } 853 trace_mm_vmscan_writepage(page); 854 inc_node_page_state(page, NR_VMSCAN_WRITE); 855 return PAGE_SUCCESS; 856 } 857 858 return PAGE_CLEAN; 859 } 860 861 /* 862 * Same as remove_mapping, but if the page is removed from the mapping, it 863 * gets returned with a refcount of 0. 864 */ 865 static int __remove_mapping(struct address_space *mapping, struct page *page, 866 bool reclaimed, struct mem_cgroup *target_memcg) 867 { 868 unsigned long flags; 869 int refcount; 870 871 BUG_ON(!PageLocked(page)); 872 BUG_ON(mapping != page_mapping(page)); 873 874 xa_lock_irqsave(&mapping->i_pages, flags); 875 /* 876 * The non racy check for a busy page. 877 * 878 * Must be careful with the order of the tests. When someone has 879 * a ref to the page, it may be possible that they dirty it then 880 * drop the reference. So if PageDirty is tested before page_count 881 * here, then the following race may occur: 882 * 883 * get_user_pages(&page); 884 * [user mapping goes away] 885 * write_to(page); 886 * !PageDirty(page) [good] 887 * SetPageDirty(page); 888 * put_page(page); 889 * !page_count(page) [good, discard it] 890 * 891 * [oops, our write_to data is lost] 892 * 893 * Reversing the order of the tests ensures such a situation cannot 894 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 895 * load is not satisfied before that of page->_refcount. 896 * 897 * Note that if SetPageDirty is always performed via set_page_dirty, 898 * and thus under the i_pages lock, then this ordering is not required. 899 */ 900 refcount = 1 + compound_nr(page); 901 if (!page_ref_freeze(page, refcount)) 902 goto cannot_free; 903 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 904 if (unlikely(PageDirty(page))) { 905 page_ref_unfreeze(page, refcount); 906 goto cannot_free; 907 } 908 909 if (PageSwapCache(page)) { 910 swp_entry_t swap = { .val = page_private(page) }; 911 mem_cgroup_swapout(page, swap); 912 __delete_from_swap_cache(page, swap); 913 xa_unlock_irqrestore(&mapping->i_pages, flags); 914 put_swap_page(page, swap); 915 } else { 916 void (*freepage)(struct page *); 917 void *shadow = NULL; 918 919 freepage = mapping->a_ops->freepage; 920 /* 921 * Remember a shadow entry for reclaimed file cache in 922 * order to detect refaults, thus thrashing, later on. 923 * 924 * But don't store shadows in an address space that is 925 * already exiting. This is not just an optizimation, 926 * inode reclaim needs to empty out the radix tree or 927 * the nodes are lost. Don't plant shadows behind its 928 * back. 929 * 930 * We also don't store shadows for DAX mappings because the 931 * only page cache pages found in these are zero pages 932 * covering holes, and because we don't want to mix DAX 933 * exceptional entries and shadow exceptional entries in the 934 * same address_space. 935 */ 936 if (reclaimed && page_is_file_cache(page) && 937 !mapping_exiting(mapping) && !dax_mapping(mapping)) 938 shadow = workingset_eviction(page, target_memcg); 939 __delete_from_page_cache(page, shadow); 940 xa_unlock_irqrestore(&mapping->i_pages, flags); 941 942 if (freepage != NULL) 943 freepage(page); 944 } 945 946 return 1; 947 948 cannot_free: 949 xa_unlock_irqrestore(&mapping->i_pages, flags); 950 return 0; 951 } 952 953 /* 954 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 955 * someone else has a ref on the page, abort and return 0. If it was 956 * successfully detached, return 1. Assumes the caller has a single ref on 957 * this page. 958 */ 959 int remove_mapping(struct address_space *mapping, struct page *page) 960 { 961 if (__remove_mapping(mapping, page, false, NULL)) { 962 /* 963 * Unfreezing the refcount with 1 rather than 2 effectively 964 * drops the pagecache ref for us without requiring another 965 * atomic operation. 966 */ 967 page_ref_unfreeze(page, 1); 968 return 1; 969 } 970 return 0; 971 } 972 973 /** 974 * putback_lru_page - put previously isolated page onto appropriate LRU list 975 * @page: page to be put back to appropriate lru list 976 * 977 * Add previously isolated @page to appropriate LRU list. 978 * Page may still be unevictable for other reasons. 979 * 980 * lru_lock must not be held, interrupts must be enabled. 981 */ 982 void putback_lru_page(struct page *page) 983 { 984 lru_cache_add(page); 985 put_page(page); /* drop ref from isolate */ 986 } 987 988 enum page_references { 989 PAGEREF_RECLAIM, 990 PAGEREF_RECLAIM_CLEAN, 991 PAGEREF_KEEP, 992 PAGEREF_ACTIVATE, 993 }; 994 995 static enum page_references page_check_references(struct page *page, 996 struct scan_control *sc) 997 { 998 int referenced_ptes, referenced_page; 999 unsigned long vm_flags; 1000 1001 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1002 &vm_flags); 1003 referenced_page = TestClearPageReferenced(page); 1004 1005 /* 1006 * Mlock lost the isolation race with us. Let try_to_unmap() 1007 * move the page to the unevictable list. 1008 */ 1009 if (vm_flags & VM_LOCKED) 1010 return PAGEREF_RECLAIM; 1011 1012 if (referenced_ptes) { 1013 if (PageSwapBacked(page)) 1014 return PAGEREF_ACTIVATE; 1015 /* 1016 * All mapped pages start out with page table 1017 * references from the instantiating fault, so we need 1018 * to look twice if a mapped file page is used more 1019 * than once. 1020 * 1021 * Mark it and spare it for another trip around the 1022 * inactive list. Another page table reference will 1023 * lead to its activation. 1024 * 1025 * Note: the mark is set for activated pages as well 1026 * so that recently deactivated but used pages are 1027 * quickly recovered. 1028 */ 1029 SetPageReferenced(page); 1030 1031 if (referenced_page || referenced_ptes > 1) 1032 return PAGEREF_ACTIVATE; 1033 1034 /* 1035 * Activate file-backed executable pages after first usage. 1036 */ 1037 if (vm_flags & VM_EXEC) 1038 return PAGEREF_ACTIVATE; 1039 1040 return PAGEREF_KEEP; 1041 } 1042 1043 /* Reclaim if clean, defer dirty pages to writeback */ 1044 if (referenced_page && !PageSwapBacked(page)) 1045 return PAGEREF_RECLAIM_CLEAN; 1046 1047 return PAGEREF_RECLAIM; 1048 } 1049 1050 /* Check if a page is dirty or under writeback */ 1051 static void page_check_dirty_writeback(struct page *page, 1052 bool *dirty, bool *writeback) 1053 { 1054 struct address_space *mapping; 1055 1056 /* 1057 * Anonymous pages are not handled by flushers and must be written 1058 * from reclaim context. Do not stall reclaim based on them 1059 */ 1060 if (!page_is_file_cache(page) || 1061 (PageAnon(page) && !PageSwapBacked(page))) { 1062 *dirty = false; 1063 *writeback = false; 1064 return; 1065 } 1066 1067 /* By default assume that the page flags are accurate */ 1068 *dirty = PageDirty(page); 1069 *writeback = PageWriteback(page); 1070 1071 /* Verify dirty/writeback state if the filesystem supports it */ 1072 if (!page_has_private(page)) 1073 return; 1074 1075 mapping = page_mapping(page); 1076 if (mapping && mapping->a_ops->is_dirty_writeback) 1077 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1078 } 1079 1080 /* 1081 * shrink_page_list() returns the number of reclaimed pages 1082 */ 1083 static unsigned long shrink_page_list(struct list_head *page_list, 1084 struct pglist_data *pgdat, 1085 struct scan_control *sc, 1086 enum ttu_flags ttu_flags, 1087 struct reclaim_stat *stat, 1088 bool ignore_references) 1089 { 1090 LIST_HEAD(ret_pages); 1091 LIST_HEAD(free_pages); 1092 unsigned nr_reclaimed = 0; 1093 unsigned pgactivate = 0; 1094 1095 memset(stat, 0, sizeof(*stat)); 1096 cond_resched(); 1097 1098 while (!list_empty(page_list)) { 1099 struct address_space *mapping; 1100 struct page *page; 1101 int may_enter_fs; 1102 enum page_references references = PAGEREF_RECLAIM; 1103 bool dirty, writeback; 1104 unsigned int nr_pages; 1105 1106 cond_resched(); 1107 1108 page = lru_to_page(page_list); 1109 list_del(&page->lru); 1110 1111 if (!trylock_page(page)) 1112 goto keep; 1113 1114 VM_BUG_ON_PAGE(PageActive(page), page); 1115 1116 nr_pages = compound_nr(page); 1117 1118 /* Account the number of base pages even though THP */ 1119 sc->nr_scanned += nr_pages; 1120 1121 if (unlikely(!page_evictable(page))) 1122 goto activate_locked; 1123 1124 if (!sc->may_unmap && page_mapped(page)) 1125 goto keep_locked; 1126 1127 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1128 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1129 1130 /* 1131 * The number of dirty pages determines if a node is marked 1132 * reclaim_congested which affects wait_iff_congested. kswapd 1133 * will stall and start writing pages if the tail of the LRU 1134 * is all dirty unqueued pages. 1135 */ 1136 page_check_dirty_writeback(page, &dirty, &writeback); 1137 if (dirty || writeback) 1138 stat->nr_dirty++; 1139 1140 if (dirty && !writeback) 1141 stat->nr_unqueued_dirty++; 1142 1143 /* 1144 * Treat this page as congested if the underlying BDI is or if 1145 * pages are cycling through the LRU so quickly that the 1146 * pages marked for immediate reclaim are making it to the 1147 * end of the LRU a second time. 1148 */ 1149 mapping = page_mapping(page); 1150 if (((dirty || writeback) && mapping && 1151 inode_write_congested(mapping->host)) || 1152 (writeback && PageReclaim(page))) 1153 stat->nr_congested++; 1154 1155 /* 1156 * If a page at the tail of the LRU is under writeback, there 1157 * are three cases to consider. 1158 * 1159 * 1) If reclaim is encountering an excessive number of pages 1160 * under writeback and this page is both under writeback and 1161 * PageReclaim then it indicates that pages are being queued 1162 * for IO but are being recycled through the LRU before the 1163 * IO can complete. Waiting on the page itself risks an 1164 * indefinite stall if it is impossible to writeback the 1165 * page due to IO error or disconnected storage so instead 1166 * note that the LRU is being scanned too quickly and the 1167 * caller can stall after page list has been processed. 1168 * 1169 * 2) Global or new memcg reclaim encounters a page that is 1170 * not marked for immediate reclaim, or the caller does not 1171 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1172 * not to fs). In this case mark the page for immediate 1173 * reclaim and continue scanning. 1174 * 1175 * Require may_enter_fs because we would wait on fs, which 1176 * may not have submitted IO yet. And the loop driver might 1177 * enter reclaim, and deadlock if it waits on a page for 1178 * which it is needed to do the write (loop masks off 1179 * __GFP_IO|__GFP_FS for this reason); but more thought 1180 * would probably show more reasons. 1181 * 1182 * 3) Legacy memcg encounters a page that is already marked 1183 * PageReclaim. memcg does not have any dirty pages 1184 * throttling so we could easily OOM just because too many 1185 * pages are in writeback and there is nothing else to 1186 * reclaim. Wait for the writeback to complete. 1187 * 1188 * In cases 1) and 2) we activate the pages to get them out of 1189 * the way while we continue scanning for clean pages on the 1190 * inactive list and refilling from the active list. The 1191 * observation here is that waiting for disk writes is more 1192 * expensive than potentially causing reloads down the line. 1193 * Since they're marked for immediate reclaim, they won't put 1194 * memory pressure on the cache working set any longer than it 1195 * takes to write them to disk. 1196 */ 1197 if (PageWriteback(page)) { 1198 /* Case 1 above */ 1199 if (current_is_kswapd() && 1200 PageReclaim(page) && 1201 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1202 stat->nr_immediate++; 1203 goto activate_locked; 1204 1205 /* Case 2 above */ 1206 } else if (writeback_throttling_sane(sc) || 1207 !PageReclaim(page) || !may_enter_fs) { 1208 /* 1209 * This is slightly racy - end_page_writeback() 1210 * might have just cleared PageReclaim, then 1211 * setting PageReclaim here end up interpreted 1212 * as PageReadahead - but that does not matter 1213 * enough to care. What we do want is for this 1214 * page to have PageReclaim set next time memcg 1215 * reclaim reaches the tests above, so it will 1216 * then wait_on_page_writeback() to avoid OOM; 1217 * and it's also appropriate in global reclaim. 1218 */ 1219 SetPageReclaim(page); 1220 stat->nr_writeback++; 1221 goto activate_locked; 1222 1223 /* Case 3 above */ 1224 } else { 1225 unlock_page(page); 1226 wait_on_page_writeback(page); 1227 /* then go back and try same page again */ 1228 list_add_tail(&page->lru, page_list); 1229 continue; 1230 } 1231 } 1232 1233 if (!ignore_references) 1234 references = page_check_references(page, sc); 1235 1236 switch (references) { 1237 case PAGEREF_ACTIVATE: 1238 goto activate_locked; 1239 case PAGEREF_KEEP: 1240 stat->nr_ref_keep += nr_pages; 1241 goto keep_locked; 1242 case PAGEREF_RECLAIM: 1243 case PAGEREF_RECLAIM_CLEAN: 1244 ; /* try to reclaim the page below */ 1245 } 1246 1247 /* 1248 * Anonymous process memory has backing store? 1249 * Try to allocate it some swap space here. 1250 * Lazyfree page could be freed directly 1251 */ 1252 if (PageAnon(page) && PageSwapBacked(page)) { 1253 if (!PageSwapCache(page)) { 1254 if (!(sc->gfp_mask & __GFP_IO)) 1255 goto keep_locked; 1256 if (PageTransHuge(page)) { 1257 /* cannot split THP, skip it */ 1258 if (!can_split_huge_page(page, NULL)) 1259 goto activate_locked; 1260 /* 1261 * Split pages without a PMD map right 1262 * away. Chances are some or all of the 1263 * tail pages can be freed without IO. 1264 */ 1265 if (!compound_mapcount(page) && 1266 split_huge_page_to_list(page, 1267 page_list)) 1268 goto activate_locked; 1269 } 1270 if (!add_to_swap(page)) { 1271 if (!PageTransHuge(page)) 1272 goto activate_locked_split; 1273 /* Fallback to swap normal pages */ 1274 if (split_huge_page_to_list(page, 1275 page_list)) 1276 goto activate_locked; 1277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1278 count_vm_event(THP_SWPOUT_FALLBACK); 1279 #endif 1280 if (!add_to_swap(page)) 1281 goto activate_locked_split; 1282 } 1283 1284 may_enter_fs = 1; 1285 1286 /* Adding to swap updated mapping */ 1287 mapping = page_mapping(page); 1288 } 1289 } else if (unlikely(PageTransHuge(page))) { 1290 /* Split file THP */ 1291 if (split_huge_page_to_list(page, page_list)) 1292 goto keep_locked; 1293 } 1294 1295 /* 1296 * THP may get split above, need minus tail pages and update 1297 * nr_pages to avoid accounting tail pages twice. 1298 * 1299 * The tail pages that are added into swap cache successfully 1300 * reach here. 1301 */ 1302 if ((nr_pages > 1) && !PageTransHuge(page)) { 1303 sc->nr_scanned -= (nr_pages - 1); 1304 nr_pages = 1; 1305 } 1306 1307 /* 1308 * The page is mapped into the page tables of one or more 1309 * processes. Try to unmap it here. 1310 */ 1311 if (page_mapped(page)) { 1312 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1313 1314 if (unlikely(PageTransHuge(page))) 1315 flags |= TTU_SPLIT_HUGE_PMD; 1316 if (!try_to_unmap(page, flags)) { 1317 stat->nr_unmap_fail += nr_pages; 1318 goto activate_locked; 1319 } 1320 } 1321 1322 if (PageDirty(page)) { 1323 /* 1324 * Only kswapd can writeback filesystem pages 1325 * to avoid risk of stack overflow. But avoid 1326 * injecting inefficient single-page IO into 1327 * flusher writeback as much as possible: only 1328 * write pages when we've encountered many 1329 * dirty pages, and when we've already scanned 1330 * the rest of the LRU for clean pages and see 1331 * the same dirty pages again (PageReclaim). 1332 */ 1333 if (page_is_file_cache(page) && 1334 (!current_is_kswapd() || !PageReclaim(page) || 1335 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1336 /* 1337 * Immediately reclaim when written back. 1338 * Similar in principal to deactivate_page() 1339 * except we already have the page isolated 1340 * and know it's dirty 1341 */ 1342 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1343 SetPageReclaim(page); 1344 1345 goto activate_locked; 1346 } 1347 1348 if (references == PAGEREF_RECLAIM_CLEAN) 1349 goto keep_locked; 1350 if (!may_enter_fs) 1351 goto keep_locked; 1352 if (!sc->may_writepage) 1353 goto keep_locked; 1354 1355 /* 1356 * Page is dirty. Flush the TLB if a writable entry 1357 * potentially exists to avoid CPU writes after IO 1358 * starts and then write it out here. 1359 */ 1360 try_to_unmap_flush_dirty(); 1361 switch (pageout(page, mapping)) { 1362 case PAGE_KEEP: 1363 goto keep_locked; 1364 case PAGE_ACTIVATE: 1365 goto activate_locked; 1366 case PAGE_SUCCESS: 1367 if (PageWriteback(page)) 1368 goto keep; 1369 if (PageDirty(page)) 1370 goto keep; 1371 1372 /* 1373 * A synchronous write - probably a ramdisk. Go 1374 * ahead and try to reclaim the page. 1375 */ 1376 if (!trylock_page(page)) 1377 goto keep; 1378 if (PageDirty(page) || PageWriteback(page)) 1379 goto keep_locked; 1380 mapping = page_mapping(page); 1381 case PAGE_CLEAN: 1382 ; /* try to free the page below */ 1383 } 1384 } 1385 1386 /* 1387 * If the page has buffers, try to free the buffer mappings 1388 * associated with this page. If we succeed we try to free 1389 * the page as well. 1390 * 1391 * We do this even if the page is PageDirty(). 1392 * try_to_release_page() does not perform I/O, but it is 1393 * possible for a page to have PageDirty set, but it is actually 1394 * clean (all its buffers are clean). This happens if the 1395 * buffers were written out directly, with submit_bh(). ext3 1396 * will do this, as well as the blockdev mapping. 1397 * try_to_release_page() will discover that cleanness and will 1398 * drop the buffers and mark the page clean - it can be freed. 1399 * 1400 * Rarely, pages can have buffers and no ->mapping. These are 1401 * the pages which were not successfully invalidated in 1402 * truncate_complete_page(). We try to drop those buffers here 1403 * and if that worked, and the page is no longer mapped into 1404 * process address space (page_count == 1) it can be freed. 1405 * Otherwise, leave the page on the LRU so it is swappable. 1406 */ 1407 if (page_has_private(page)) { 1408 if (!try_to_release_page(page, sc->gfp_mask)) 1409 goto activate_locked; 1410 if (!mapping && page_count(page) == 1) { 1411 unlock_page(page); 1412 if (put_page_testzero(page)) 1413 goto free_it; 1414 else { 1415 /* 1416 * rare race with speculative reference. 1417 * the speculative reference will free 1418 * this page shortly, so we may 1419 * increment nr_reclaimed here (and 1420 * leave it off the LRU). 1421 */ 1422 nr_reclaimed++; 1423 continue; 1424 } 1425 } 1426 } 1427 1428 if (PageAnon(page) && !PageSwapBacked(page)) { 1429 /* follow __remove_mapping for reference */ 1430 if (!page_ref_freeze(page, 1)) 1431 goto keep_locked; 1432 if (PageDirty(page)) { 1433 page_ref_unfreeze(page, 1); 1434 goto keep_locked; 1435 } 1436 1437 count_vm_event(PGLAZYFREED); 1438 count_memcg_page_event(page, PGLAZYFREED); 1439 } else if (!mapping || !__remove_mapping(mapping, page, true, 1440 sc->target_mem_cgroup)) 1441 goto keep_locked; 1442 1443 unlock_page(page); 1444 free_it: 1445 /* 1446 * THP may get swapped out in a whole, need account 1447 * all base pages. 1448 */ 1449 nr_reclaimed += nr_pages; 1450 1451 /* 1452 * Is there need to periodically free_page_list? It would 1453 * appear not as the counts should be low 1454 */ 1455 if (unlikely(PageTransHuge(page))) 1456 (*get_compound_page_dtor(page))(page); 1457 else 1458 list_add(&page->lru, &free_pages); 1459 continue; 1460 1461 activate_locked_split: 1462 /* 1463 * The tail pages that are failed to add into swap cache 1464 * reach here. Fixup nr_scanned and nr_pages. 1465 */ 1466 if (nr_pages > 1) { 1467 sc->nr_scanned -= (nr_pages - 1); 1468 nr_pages = 1; 1469 } 1470 activate_locked: 1471 /* Not a candidate for swapping, so reclaim swap space. */ 1472 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1473 PageMlocked(page))) 1474 try_to_free_swap(page); 1475 VM_BUG_ON_PAGE(PageActive(page), page); 1476 if (!PageMlocked(page)) { 1477 int type = page_is_file_cache(page); 1478 SetPageActive(page); 1479 stat->nr_activate[type] += nr_pages; 1480 count_memcg_page_event(page, PGACTIVATE); 1481 } 1482 keep_locked: 1483 unlock_page(page); 1484 keep: 1485 list_add(&page->lru, &ret_pages); 1486 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1487 } 1488 1489 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1490 1491 mem_cgroup_uncharge_list(&free_pages); 1492 try_to_unmap_flush(); 1493 free_unref_page_list(&free_pages); 1494 1495 list_splice(&ret_pages, page_list); 1496 count_vm_events(PGACTIVATE, pgactivate); 1497 1498 return nr_reclaimed; 1499 } 1500 1501 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1502 struct list_head *page_list) 1503 { 1504 struct scan_control sc = { 1505 .gfp_mask = GFP_KERNEL, 1506 .priority = DEF_PRIORITY, 1507 .may_unmap = 1, 1508 }; 1509 struct reclaim_stat dummy_stat; 1510 unsigned long ret; 1511 struct page *page, *next; 1512 LIST_HEAD(clean_pages); 1513 1514 list_for_each_entry_safe(page, next, page_list, lru) { 1515 if (page_is_file_cache(page) && !PageDirty(page) && 1516 !__PageMovable(page) && !PageUnevictable(page)) { 1517 ClearPageActive(page); 1518 list_move(&page->lru, &clean_pages); 1519 } 1520 } 1521 1522 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1523 TTU_IGNORE_ACCESS, &dummy_stat, true); 1524 list_splice(&clean_pages, page_list); 1525 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1526 return ret; 1527 } 1528 1529 /* 1530 * Attempt to remove the specified page from its LRU. Only take this page 1531 * if it is of the appropriate PageActive status. Pages which are being 1532 * freed elsewhere are also ignored. 1533 * 1534 * page: page to consider 1535 * mode: one of the LRU isolation modes defined above 1536 * 1537 * returns 0 on success, -ve errno on failure. 1538 */ 1539 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1540 { 1541 int ret = -EINVAL; 1542 1543 /* Only take pages on the LRU. */ 1544 if (!PageLRU(page)) 1545 return ret; 1546 1547 /* Compaction should not handle unevictable pages but CMA can do so */ 1548 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1549 return ret; 1550 1551 ret = -EBUSY; 1552 1553 /* 1554 * To minimise LRU disruption, the caller can indicate that it only 1555 * wants to isolate pages it will be able to operate on without 1556 * blocking - clean pages for the most part. 1557 * 1558 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1559 * that it is possible to migrate without blocking 1560 */ 1561 if (mode & ISOLATE_ASYNC_MIGRATE) { 1562 /* All the caller can do on PageWriteback is block */ 1563 if (PageWriteback(page)) 1564 return ret; 1565 1566 if (PageDirty(page)) { 1567 struct address_space *mapping; 1568 bool migrate_dirty; 1569 1570 /* 1571 * Only pages without mappings or that have a 1572 * ->migratepage callback are possible to migrate 1573 * without blocking. However, we can be racing with 1574 * truncation so it's necessary to lock the page 1575 * to stabilise the mapping as truncation holds 1576 * the page lock until after the page is removed 1577 * from the page cache. 1578 */ 1579 if (!trylock_page(page)) 1580 return ret; 1581 1582 mapping = page_mapping(page); 1583 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1584 unlock_page(page); 1585 if (!migrate_dirty) 1586 return ret; 1587 } 1588 } 1589 1590 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1591 return ret; 1592 1593 if (likely(get_page_unless_zero(page))) { 1594 /* 1595 * Be careful not to clear PageLRU until after we're 1596 * sure the page is not being freed elsewhere -- the 1597 * page release code relies on it. 1598 */ 1599 ClearPageLRU(page); 1600 ret = 0; 1601 } 1602 1603 return ret; 1604 } 1605 1606 1607 /* 1608 * Update LRU sizes after isolating pages. The LRU size updates must 1609 * be complete before mem_cgroup_update_lru_size due to a santity check. 1610 */ 1611 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1612 enum lru_list lru, unsigned long *nr_zone_taken) 1613 { 1614 int zid; 1615 1616 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1617 if (!nr_zone_taken[zid]) 1618 continue; 1619 1620 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1621 #ifdef CONFIG_MEMCG 1622 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1623 #endif 1624 } 1625 1626 } 1627 1628 /** 1629 * pgdat->lru_lock is heavily contended. Some of the functions that 1630 * shrink the lists perform better by taking out a batch of pages 1631 * and working on them outside the LRU lock. 1632 * 1633 * For pagecache intensive workloads, this function is the hottest 1634 * spot in the kernel (apart from copy_*_user functions). 1635 * 1636 * Appropriate locks must be held before calling this function. 1637 * 1638 * @nr_to_scan: The number of eligible pages to look through on the list. 1639 * @lruvec: The LRU vector to pull pages from. 1640 * @dst: The temp list to put pages on to. 1641 * @nr_scanned: The number of pages that were scanned. 1642 * @sc: The scan_control struct for this reclaim session 1643 * @mode: One of the LRU isolation modes 1644 * @lru: LRU list id for isolating 1645 * 1646 * returns how many pages were moved onto *@dst. 1647 */ 1648 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1649 struct lruvec *lruvec, struct list_head *dst, 1650 unsigned long *nr_scanned, struct scan_control *sc, 1651 enum lru_list lru) 1652 { 1653 struct list_head *src = &lruvec->lists[lru]; 1654 unsigned long nr_taken = 0; 1655 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1656 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1657 unsigned long skipped = 0; 1658 unsigned long scan, total_scan, nr_pages; 1659 LIST_HEAD(pages_skipped); 1660 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1661 1662 total_scan = 0; 1663 scan = 0; 1664 while (scan < nr_to_scan && !list_empty(src)) { 1665 struct page *page; 1666 1667 page = lru_to_page(src); 1668 prefetchw_prev_lru_page(page, src, flags); 1669 1670 VM_BUG_ON_PAGE(!PageLRU(page), page); 1671 1672 nr_pages = compound_nr(page); 1673 total_scan += nr_pages; 1674 1675 if (page_zonenum(page) > sc->reclaim_idx) { 1676 list_move(&page->lru, &pages_skipped); 1677 nr_skipped[page_zonenum(page)] += nr_pages; 1678 continue; 1679 } 1680 1681 /* 1682 * Do not count skipped pages because that makes the function 1683 * return with no isolated pages if the LRU mostly contains 1684 * ineligible pages. This causes the VM to not reclaim any 1685 * pages, triggering a premature OOM. 1686 * 1687 * Account all tail pages of THP. This would not cause 1688 * premature OOM since __isolate_lru_page() returns -EBUSY 1689 * only when the page is being freed somewhere else. 1690 */ 1691 scan += nr_pages; 1692 switch (__isolate_lru_page(page, mode)) { 1693 case 0: 1694 nr_taken += nr_pages; 1695 nr_zone_taken[page_zonenum(page)] += nr_pages; 1696 list_move(&page->lru, dst); 1697 break; 1698 1699 case -EBUSY: 1700 /* else it is being freed elsewhere */ 1701 list_move(&page->lru, src); 1702 continue; 1703 1704 default: 1705 BUG(); 1706 } 1707 } 1708 1709 /* 1710 * Splice any skipped pages to the start of the LRU list. Note that 1711 * this disrupts the LRU order when reclaiming for lower zones but 1712 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1713 * scanning would soon rescan the same pages to skip and put the 1714 * system at risk of premature OOM. 1715 */ 1716 if (!list_empty(&pages_skipped)) { 1717 int zid; 1718 1719 list_splice(&pages_skipped, src); 1720 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1721 if (!nr_skipped[zid]) 1722 continue; 1723 1724 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1725 skipped += nr_skipped[zid]; 1726 } 1727 } 1728 *nr_scanned = total_scan; 1729 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1730 total_scan, skipped, nr_taken, mode, lru); 1731 update_lru_sizes(lruvec, lru, nr_zone_taken); 1732 return nr_taken; 1733 } 1734 1735 /** 1736 * isolate_lru_page - tries to isolate a page from its LRU list 1737 * @page: page to isolate from its LRU list 1738 * 1739 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1740 * vmstat statistic corresponding to whatever LRU list the page was on. 1741 * 1742 * Returns 0 if the page was removed from an LRU list. 1743 * Returns -EBUSY if the page was not on an LRU list. 1744 * 1745 * The returned page will have PageLRU() cleared. If it was found on 1746 * the active list, it will have PageActive set. If it was found on 1747 * the unevictable list, it will have the PageUnevictable bit set. That flag 1748 * may need to be cleared by the caller before letting the page go. 1749 * 1750 * The vmstat statistic corresponding to the list on which the page was 1751 * found will be decremented. 1752 * 1753 * Restrictions: 1754 * 1755 * (1) Must be called with an elevated refcount on the page. This is a 1756 * fundamentnal difference from isolate_lru_pages (which is called 1757 * without a stable reference). 1758 * (2) the lru_lock must not be held. 1759 * (3) interrupts must be enabled. 1760 */ 1761 int isolate_lru_page(struct page *page) 1762 { 1763 int ret = -EBUSY; 1764 1765 VM_BUG_ON_PAGE(!page_count(page), page); 1766 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1767 1768 if (PageLRU(page)) { 1769 pg_data_t *pgdat = page_pgdat(page); 1770 struct lruvec *lruvec; 1771 1772 spin_lock_irq(&pgdat->lru_lock); 1773 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1774 if (PageLRU(page)) { 1775 int lru = page_lru(page); 1776 get_page(page); 1777 ClearPageLRU(page); 1778 del_page_from_lru_list(page, lruvec, lru); 1779 ret = 0; 1780 } 1781 spin_unlock_irq(&pgdat->lru_lock); 1782 } 1783 return ret; 1784 } 1785 1786 /* 1787 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1788 * then get rescheduled. When there are massive number of tasks doing page 1789 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1790 * the LRU list will go small and be scanned faster than necessary, leading to 1791 * unnecessary swapping, thrashing and OOM. 1792 */ 1793 static int too_many_isolated(struct pglist_data *pgdat, int file, 1794 struct scan_control *sc) 1795 { 1796 unsigned long inactive, isolated; 1797 1798 if (current_is_kswapd()) 1799 return 0; 1800 1801 if (!writeback_throttling_sane(sc)) 1802 return 0; 1803 1804 if (file) { 1805 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1806 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1807 } else { 1808 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1809 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1810 } 1811 1812 /* 1813 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1814 * won't get blocked by normal direct-reclaimers, forming a circular 1815 * deadlock. 1816 */ 1817 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1818 inactive >>= 3; 1819 1820 return isolated > inactive; 1821 } 1822 1823 /* 1824 * This moves pages from @list to corresponding LRU list. 1825 * 1826 * We move them the other way if the page is referenced by one or more 1827 * processes, from rmap. 1828 * 1829 * If the pages are mostly unmapped, the processing is fast and it is 1830 * appropriate to hold zone_lru_lock across the whole operation. But if 1831 * the pages are mapped, the processing is slow (page_referenced()) so we 1832 * should drop zone_lru_lock around each page. It's impossible to balance 1833 * this, so instead we remove the pages from the LRU while processing them. 1834 * It is safe to rely on PG_active against the non-LRU pages in here because 1835 * nobody will play with that bit on a non-LRU page. 1836 * 1837 * The downside is that we have to touch page->_refcount against each page. 1838 * But we had to alter page->flags anyway. 1839 * 1840 * Returns the number of pages moved to the given lruvec. 1841 */ 1842 1843 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1844 struct list_head *list) 1845 { 1846 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1847 int nr_pages, nr_moved = 0; 1848 LIST_HEAD(pages_to_free); 1849 struct page *page; 1850 enum lru_list lru; 1851 1852 while (!list_empty(list)) { 1853 page = lru_to_page(list); 1854 VM_BUG_ON_PAGE(PageLRU(page), page); 1855 if (unlikely(!page_evictable(page))) { 1856 list_del(&page->lru); 1857 spin_unlock_irq(&pgdat->lru_lock); 1858 putback_lru_page(page); 1859 spin_lock_irq(&pgdat->lru_lock); 1860 continue; 1861 } 1862 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1863 1864 SetPageLRU(page); 1865 lru = page_lru(page); 1866 1867 nr_pages = hpage_nr_pages(page); 1868 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1869 list_move(&page->lru, &lruvec->lists[lru]); 1870 1871 if (put_page_testzero(page)) { 1872 __ClearPageLRU(page); 1873 __ClearPageActive(page); 1874 del_page_from_lru_list(page, lruvec, lru); 1875 1876 if (unlikely(PageCompound(page))) { 1877 spin_unlock_irq(&pgdat->lru_lock); 1878 (*get_compound_page_dtor(page))(page); 1879 spin_lock_irq(&pgdat->lru_lock); 1880 } else 1881 list_add(&page->lru, &pages_to_free); 1882 } else { 1883 nr_moved += nr_pages; 1884 } 1885 } 1886 1887 /* 1888 * To save our caller's stack, now use input list for pages to free. 1889 */ 1890 list_splice(&pages_to_free, list); 1891 1892 return nr_moved; 1893 } 1894 1895 /* 1896 * If a kernel thread (such as nfsd for loop-back mounts) services 1897 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1898 * In that case we should only throttle if the backing device it is 1899 * writing to is congested. In other cases it is safe to throttle. 1900 */ 1901 static int current_may_throttle(void) 1902 { 1903 return !(current->flags & PF_LESS_THROTTLE) || 1904 current->backing_dev_info == NULL || 1905 bdi_write_congested(current->backing_dev_info); 1906 } 1907 1908 /* 1909 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1910 * of reclaimed pages 1911 */ 1912 static noinline_for_stack unsigned long 1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1914 struct scan_control *sc, enum lru_list lru) 1915 { 1916 LIST_HEAD(page_list); 1917 unsigned long nr_scanned; 1918 unsigned long nr_reclaimed = 0; 1919 unsigned long nr_taken; 1920 struct reclaim_stat stat; 1921 int file = is_file_lru(lru); 1922 enum vm_event_item item; 1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1924 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1925 bool stalled = false; 1926 1927 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1928 if (stalled) 1929 return 0; 1930 1931 /* wait a bit for the reclaimer. */ 1932 msleep(100); 1933 stalled = true; 1934 1935 /* We are about to die and free our memory. Return now. */ 1936 if (fatal_signal_pending(current)) 1937 return SWAP_CLUSTER_MAX; 1938 } 1939 1940 lru_add_drain(); 1941 1942 spin_lock_irq(&pgdat->lru_lock); 1943 1944 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1945 &nr_scanned, sc, lru); 1946 1947 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1948 reclaim_stat->recent_scanned[file] += nr_taken; 1949 1950 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1951 if (!cgroup_reclaim(sc)) 1952 __count_vm_events(item, nr_scanned); 1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1954 spin_unlock_irq(&pgdat->lru_lock); 1955 1956 if (nr_taken == 0) 1957 return 0; 1958 1959 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1960 &stat, false); 1961 1962 spin_lock_irq(&pgdat->lru_lock); 1963 1964 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1965 if (!cgroup_reclaim(sc)) 1966 __count_vm_events(item, nr_reclaimed); 1967 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1968 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 1969 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 1970 1971 move_pages_to_lru(lruvec, &page_list); 1972 1973 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1974 1975 spin_unlock_irq(&pgdat->lru_lock); 1976 1977 mem_cgroup_uncharge_list(&page_list); 1978 free_unref_page_list(&page_list); 1979 1980 /* 1981 * If dirty pages are scanned that are not queued for IO, it 1982 * implies that flushers are not doing their job. This can 1983 * happen when memory pressure pushes dirty pages to the end of 1984 * the LRU before the dirty limits are breached and the dirty 1985 * data has expired. It can also happen when the proportion of 1986 * dirty pages grows not through writes but through memory 1987 * pressure reclaiming all the clean cache. And in some cases, 1988 * the flushers simply cannot keep up with the allocation 1989 * rate. Nudge the flusher threads in case they are asleep. 1990 */ 1991 if (stat.nr_unqueued_dirty == nr_taken) 1992 wakeup_flusher_threads(WB_REASON_VMSCAN); 1993 1994 sc->nr.dirty += stat.nr_dirty; 1995 sc->nr.congested += stat.nr_congested; 1996 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1997 sc->nr.writeback += stat.nr_writeback; 1998 sc->nr.immediate += stat.nr_immediate; 1999 sc->nr.taken += nr_taken; 2000 if (file) 2001 sc->nr.file_taken += nr_taken; 2002 2003 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2004 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2005 return nr_reclaimed; 2006 } 2007 2008 static void shrink_active_list(unsigned long nr_to_scan, 2009 struct lruvec *lruvec, 2010 struct scan_control *sc, 2011 enum lru_list lru) 2012 { 2013 unsigned long nr_taken; 2014 unsigned long nr_scanned; 2015 unsigned long vm_flags; 2016 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2017 LIST_HEAD(l_active); 2018 LIST_HEAD(l_inactive); 2019 struct page *page; 2020 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2021 unsigned nr_deactivate, nr_activate; 2022 unsigned nr_rotated = 0; 2023 int file = is_file_lru(lru); 2024 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2025 2026 lru_add_drain(); 2027 2028 spin_lock_irq(&pgdat->lru_lock); 2029 2030 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2031 &nr_scanned, sc, lru); 2032 2033 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2034 reclaim_stat->recent_scanned[file] += nr_taken; 2035 2036 __count_vm_events(PGREFILL, nr_scanned); 2037 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2038 2039 spin_unlock_irq(&pgdat->lru_lock); 2040 2041 while (!list_empty(&l_hold)) { 2042 cond_resched(); 2043 page = lru_to_page(&l_hold); 2044 list_del(&page->lru); 2045 2046 if (unlikely(!page_evictable(page))) { 2047 putback_lru_page(page); 2048 continue; 2049 } 2050 2051 if (unlikely(buffer_heads_over_limit)) { 2052 if (page_has_private(page) && trylock_page(page)) { 2053 if (page_has_private(page)) 2054 try_to_release_page(page, 0); 2055 unlock_page(page); 2056 } 2057 } 2058 2059 if (page_referenced(page, 0, sc->target_mem_cgroup, 2060 &vm_flags)) { 2061 nr_rotated += hpage_nr_pages(page); 2062 /* 2063 * Identify referenced, file-backed active pages and 2064 * give them one more trip around the active list. So 2065 * that executable code get better chances to stay in 2066 * memory under moderate memory pressure. Anon pages 2067 * are not likely to be evicted by use-once streaming 2068 * IO, plus JVM can create lots of anon VM_EXEC pages, 2069 * so we ignore them here. 2070 */ 2071 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2072 list_add(&page->lru, &l_active); 2073 continue; 2074 } 2075 } 2076 2077 ClearPageActive(page); /* we are de-activating */ 2078 SetPageWorkingset(page); 2079 list_add(&page->lru, &l_inactive); 2080 } 2081 2082 /* 2083 * Move pages back to the lru list. 2084 */ 2085 spin_lock_irq(&pgdat->lru_lock); 2086 /* 2087 * Count referenced pages from currently used mappings as rotated, 2088 * even though only some of them are actually re-activated. This 2089 * helps balance scan pressure between file and anonymous pages in 2090 * get_scan_count. 2091 */ 2092 reclaim_stat->recent_rotated[file] += nr_rotated; 2093 2094 nr_activate = move_pages_to_lru(lruvec, &l_active); 2095 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2096 /* Keep all free pages in l_active list */ 2097 list_splice(&l_inactive, &l_active); 2098 2099 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2100 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2101 2102 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2103 spin_unlock_irq(&pgdat->lru_lock); 2104 2105 mem_cgroup_uncharge_list(&l_active); 2106 free_unref_page_list(&l_active); 2107 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2108 nr_deactivate, nr_rotated, sc->priority, file); 2109 } 2110 2111 unsigned long reclaim_pages(struct list_head *page_list) 2112 { 2113 int nid = -1; 2114 unsigned long nr_reclaimed = 0; 2115 LIST_HEAD(node_page_list); 2116 struct reclaim_stat dummy_stat; 2117 struct page *page; 2118 struct scan_control sc = { 2119 .gfp_mask = GFP_KERNEL, 2120 .priority = DEF_PRIORITY, 2121 .may_writepage = 1, 2122 .may_unmap = 1, 2123 .may_swap = 1, 2124 }; 2125 2126 while (!list_empty(page_list)) { 2127 page = lru_to_page(page_list); 2128 if (nid == -1) { 2129 nid = page_to_nid(page); 2130 INIT_LIST_HEAD(&node_page_list); 2131 } 2132 2133 if (nid == page_to_nid(page)) { 2134 ClearPageActive(page); 2135 list_move(&page->lru, &node_page_list); 2136 continue; 2137 } 2138 2139 nr_reclaimed += shrink_page_list(&node_page_list, 2140 NODE_DATA(nid), 2141 &sc, 0, 2142 &dummy_stat, false); 2143 while (!list_empty(&node_page_list)) { 2144 page = lru_to_page(&node_page_list); 2145 list_del(&page->lru); 2146 putback_lru_page(page); 2147 } 2148 2149 nid = -1; 2150 } 2151 2152 if (!list_empty(&node_page_list)) { 2153 nr_reclaimed += shrink_page_list(&node_page_list, 2154 NODE_DATA(nid), 2155 &sc, 0, 2156 &dummy_stat, false); 2157 while (!list_empty(&node_page_list)) { 2158 page = lru_to_page(&node_page_list); 2159 list_del(&page->lru); 2160 putback_lru_page(page); 2161 } 2162 } 2163 2164 return nr_reclaimed; 2165 } 2166 2167 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2168 struct lruvec *lruvec, struct scan_control *sc) 2169 { 2170 if (is_active_lru(lru)) { 2171 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2172 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2173 else 2174 sc->skipped_deactivate = 1; 2175 return 0; 2176 } 2177 2178 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2179 } 2180 2181 /* 2182 * The inactive anon list should be small enough that the VM never has 2183 * to do too much work. 2184 * 2185 * The inactive file list should be small enough to leave most memory 2186 * to the established workingset on the scan-resistant active list, 2187 * but large enough to avoid thrashing the aggregate readahead window. 2188 * 2189 * Both inactive lists should also be large enough that each inactive 2190 * page has a chance to be referenced again before it is reclaimed. 2191 * 2192 * If that fails and refaulting is observed, the inactive list grows. 2193 * 2194 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2195 * on this LRU, maintained by the pageout code. An inactive_ratio 2196 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2197 * 2198 * total target max 2199 * memory ratio inactive 2200 * ------------------------------------- 2201 * 10MB 1 5MB 2202 * 100MB 1 50MB 2203 * 1GB 3 250MB 2204 * 10GB 10 0.9GB 2205 * 100GB 31 3GB 2206 * 1TB 101 10GB 2207 * 10TB 320 32GB 2208 */ 2209 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2210 { 2211 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2212 unsigned long inactive, active; 2213 unsigned long inactive_ratio; 2214 unsigned long gb; 2215 2216 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2217 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2218 2219 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2220 if (gb) 2221 inactive_ratio = int_sqrt(10 * gb); 2222 else 2223 inactive_ratio = 1; 2224 2225 return inactive * inactive_ratio < active; 2226 } 2227 2228 enum scan_balance { 2229 SCAN_EQUAL, 2230 SCAN_FRACT, 2231 SCAN_ANON, 2232 SCAN_FILE, 2233 }; 2234 2235 /* 2236 * Determine how aggressively the anon and file LRU lists should be 2237 * scanned. The relative value of each set of LRU lists is determined 2238 * by looking at the fraction of the pages scanned we did rotate back 2239 * onto the active list instead of evict. 2240 * 2241 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2242 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2243 */ 2244 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2245 unsigned long *nr) 2246 { 2247 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2248 int swappiness = mem_cgroup_swappiness(memcg); 2249 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2250 u64 fraction[2]; 2251 u64 denominator = 0; /* gcc */ 2252 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2253 unsigned long anon_prio, file_prio; 2254 enum scan_balance scan_balance; 2255 unsigned long anon, file; 2256 unsigned long ap, fp; 2257 enum lru_list lru; 2258 2259 /* If we have no swap space, do not bother scanning anon pages. */ 2260 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2261 scan_balance = SCAN_FILE; 2262 goto out; 2263 } 2264 2265 /* 2266 * Global reclaim will swap to prevent OOM even with no 2267 * swappiness, but memcg users want to use this knob to 2268 * disable swapping for individual groups completely when 2269 * using the memory controller's swap limit feature would be 2270 * too expensive. 2271 */ 2272 if (cgroup_reclaim(sc) && !swappiness) { 2273 scan_balance = SCAN_FILE; 2274 goto out; 2275 } 2276 2277 /* 2278 * Do not apply any pressure balancing cleverness when the 2279 * system is close to OOM, scan both anon and file equally 2280 * (unless the swappiness setting disagrees with swapping). 2281 */ 2282 if (!sc->priority && swappiness) { 2283 scan_balance = SCAN_EQUAL; 2284 goto out; 2285 } 2286 2287 /* 2288 * If the system is almost out of file pages, force-scan anon. 2289 */ 2290 if (sc->file_is_tiny) { 2291 scan_balance = SCAN_ANON; 2292 goto out; 2293 } 2294 2295 /* 2296 * If there is enough inactive page cache, we do not reclaim 2297 * anything from the anonymous working right now. 2298 */ 2299 if (sc->cache_trim_mode) { 2300 scan_balance = SCAN_FILE; 2301 goto out; 2302 } 2303 2304 scan_balance = SCAN_FRACT; 2305 2306 /* 2307 * With swappiness at 100, anonymous and file have the same priority. 2308 * This scanning priority is essentially the inverse of IO cost. 2309 */ 2310 anon_prio = swappiness; 2311 file_prio = 200 - anon_prio; 2312 2313 /* 2314 * OK, so we have swap space and a fair amount of page cache 2315 * pages. We use the recently rotated / recently scanned 2316 * ratios to determine how valuable each cache is. 2317 * 2318 * Because workloads change over time (and to avoid overflow) 2319 * we keep these statistics as a floating average, which ends 2320 * up weighing recent references more than old ones. 2321 * 2322 * anon in [0], file in [1] 2323 */ 2324 2325 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2326 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2327 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2328 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2329 2330 spin_lock_irq(&pgdat->lru_lock); 2331 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2332 reclaim_stat->recent_scanned[0] /= 2; 2333 reclaim_stat->recent_rotated[0] /= 2; 2334 } 2335 2336 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2337 reclaim_stat->recent_scanned[1] /= 2; 2338 reclaim_stat->recent_rotated[1] /= 2; 2339 } 2340 2341 /* 2342 * The amount of pressure on anon vs file pages is inversely 2343 * proportional to the fraction of recently scanned pages on 2344 * each list that were recently referenced and in active use. 2345 */ 2346 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2347 ap /= reclaim_stat->recent_rotated[0] + 1; 2348 2349 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2350 fp /= reclaim_stat->recent_rotated[1] + 1; 2351 spin_unlock_irq(&pgdat->lru_lock); 2352 2353 fraction[0] = ap; 2354 fraction[1] = fp; 2355 denominator = ap + fp + 1; 2356 out: 2357 for_each_evictable_lru(lru) { 2358 int file = is_file_lru(lru); 2359 unsigned long lruvec_size; 2360 unsigned long scan; 2361 unsigned long protection; 2362 2363 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2364 protection = mem_cgroup_protection(memcg, 2365 sc->memcg_low_reclaim); 2366 2367 if (protection) { 2368 /* 2369 * Scale a cgroup's reclaim pressure by proportioning 2370 * its current usage to its memory.low or memory.min 2371 * setting. 2372 * 2373 * This is important, as otherwise scanning aggression 2374 * becomes extremely binary -- from nothing as we 2375 * approach the memory protection threshold, to totally 2376 * nominal as we exceed it. This results in requiring 2377 * setting extremely liberal protection thresholds. It 2378 * also means we simply get no protection at all if we 2379 * set it too low, which is not ideal. 2380 * 2381 * If there is any protection in place, we reduce scan 2382 * pressure by how much of the total memory used is 2383 * within protection thresholds. 2384 * 2385 * There is one special case: in the first reclaim pass, 2386 * we skip over all groups that are within their low 2387 * protection. If that fails to reclaim enough pages to 2388 * satisfy the reclaim goal, we come back and override 2389 * the best-effort low protection. However, we still 2390 * ideally want to honor how well-behaved groups are in 2391 * that case instead of simply punishing them all 2392 * equally. As such, we reclaim them based on how much 2393 * memory they are using, reducing the scan pressure 2394 * again by how much of the total memory used is under 2395 * hard protection. 2396 */ 2397 unsigned long cgroup_size = mem_cgroup_size(memcg); 2398 2399 /* Avoid TOCTOU with earlier protection check */ 2400 cgroup_size = max(cgroup_size, protection); 2401 2402 scan = lruvec_size - lruvec_size * protection / 2403 cgroup_size; 2404 2405 /* 2406 * Minimally target SWAP_CLUSTER_MAX pages to keep 2407 * reclaim moving forwards, avoiding decremeting 2408 * sc->priority further than desirable. 2409 */ 2410 scan = max(scan, SWAP_CLUSTER_MAX); 2411 } else { 2412 scan = lruvec_size; 2413 } 2414 2415 scan >>= sc->priority; 2416 2417 /* 2418 * If the cgroup's already been deleted, make sure to 2419 * scrape out the remaining cache. 2420 */ 2421 if (!scan && !mem_cgroup_online(memcg)) 2422 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2423 2424 switch (scan_balance) { 2425 case SCAN_EQUAL: 2426 /* Scan lists relative to size */ 2427 break; 2428 case SCAN_FRACT: 2429 /* 2430 * Scan types proportional to swappiness and 2431 * their relative recent reclaim efficiency. 2432 * Make sure we don't miss the last page 2433 * because of a round-off error. 2434 */ 2435 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2436 denominator); 2437 break; 2438 case SCAN_FILE: 2439 case SCAN_ANON: 2440 /* Scan one type exclusively */ 2441 if ((scan_balance == SCAN_FILE) != file) { 2442 lruvec_size = 0; 2443 scan = 0; 2444 } 2445 break; 2446 default: 2447 /* Look ma, no brain */ 2448 BUG(); 2449 } 2450 2451 nr[lru] = scan; 2452 } 2453 } 2454 2455 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2456 { 2457 unsigned long nr[NR_LRU_LISTS]; 2458 unsigned long targets[NR_LRU_LISTS]; 2459 unsigned long nr_to_scan; 2460 enum lru_list lru; 2461 unsigned long nr_reclaimed = 0; 2462 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2463 struct blk_plug plug; 2464 bool scan_adjusted; 2465 2466 get_scan_count(lruvec, sc, nr); 2467 2468 /* Record the original scan target for proportional adjustments later */ 2469 memcpy(targets, nr, sizeof(nr)); 2470 2471 /* 2472 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2473 * event that can occur when there is little memory pressure e.g. 2474 * multiple streaming readers/writers. Hence, we do not abort scanning 2475 * when the requested number of pages are reclaimed when scanning at 2476 * DEF_PRIORITY on the assumption that the fact we are direct 2477 * reclaiming implies that kswapd is not keeping up and it is best to 2478 * do a batch of work at once. For memcg reclaim one check is made to 2479 * abort proportional reclaim if either the file or anon lru has already 2480 * dropped to zero at the first pass. 2481 */ 2482 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2483 sc->priority == DEF_PRIORITY); 2484 2485 blk_start_plug(&plug); 2486 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2487 nr[LRU_INACTIVE_FILE]) { 2488 unsigned long nr_anon, nr_file, percentage; 2489 unsigned long nr_scanned; 2490 2491 for_each_evictable_lru(lru) { 2492 if (nr[lru]) { 2493 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2494 nr[lru] -= nr_to_scan; 2495 2496 nr_reclaimed += shrink_list(lru, nr_to_scan, 2497 lruvec, sc); 2498 } 2499 } 2500 2501 cond_resched(); 2502 2503 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2504 continue; 2505 2506 /* 2507 * For kswapd and memcg, reclaim at least the number of pages 2508 * requested. Ensure that the anon and file LRUs are scanned 2509 * proportionally what was requested by get_scan_count(). We 2510 * stop reclaiming one LRU and reduce the amount scanning 2511 * proportional to the original scan target. 2512 */ 2513 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2514 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2515 2516 /* 2517 * It's just vindictive to attack the larger once the smaller 2518 * has gone to zero. And given the way we stop scanning the 2519 * smaller below, this makes sure that we only make one nudge 2520 * towards proportionality once we've got nr_to_reclaim. 2521 */ 2522 if (!nr_file || !nr_anon) 2523 break; 2524 2525 if (nr_file > nr_anon) { 2526 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2527 targets[LRU_ACTIVE_ANON] + 1; 2528 lru = LRU_BASE; 2529 percentage = nr_anon * 100 / scan_target; 2530 } else { 2531 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2532 targets[LRU_ACTIVE_FILE] + 1; 2533 lru = LRU_FILE; 2534 percentage = nr_file * 100 / scan_target; 2535 } 2536 2537 /* Stop scanning the smaller of the LRU */ 2538 nr[lru] = 0; 2539 nr[lru + LRU_ACTIVE] = 0; 2540 2541 /* 2542 * Recalculate the other LRU scan count based on its original 2543 * scan target and the percentage scanning already complete 2544 */ 2545 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2546 nr_scanned = targets[lru] - nr[lru]; 2547 nr[lru] = targets[lru] * (100 - percentage) / 100; 2548 nr[lru] -= min(nr[lru], nr_scanned); 2549 2550 lru += LRU_ACTIVE; 2551 nr_scanned = targets[lru] - nr[lru]; 2552 nr[lru] = targets[lru] * (100 - percentage) / 100; 2553 nr[lru] -= min(nr[lru], nr_scanned); 2554 2555 scan_adjusted = true; 2556 } 2557 blk_finish_plug(&plug); 2558 sc->nr_reclaimed += nr_reclaimed; 2559 2560 /* 2561 * Even if we did not try to evict anon pages at all, we want to 2562 * rebalance the anon lru active/inactive ratio. 2563 */ 2564 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2565 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2566 sc, LRU_ACTIVE_ANON); 2567 } 2568 2569 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2570 static bool in_reclaim_compaction(struct scan_control *sc) 2571 { 2572 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2573 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2574 sc->priority < DEF_PRIORITY - 2)) 2575 return true; 2576 2577 return false; 2578 } 2579 2580 /* 2581 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2582 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2583 * true if more pages should be reclaimed such that when the page allocator 2584 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2585 * It will give up earlier than that if there is difficulty reclaiming pages. 2586 */ 2587 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2588 unsigned long nr_reclaimed, 2589 struct scan_control *sc) 2590 { 2591 unsigned long pages_for_compaction; 2592 unsigned long inactive_lru_pages; 2593 int z; 2594 2595 /* If not in reclaim/compaction mode, stop */ 2596 if (!in_reclaim_compaction(sc)) 2597 return false; 2598 2599 /* 2600 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2601 * number of pages that were scanned. This will return to the caller 2602 * with the risk reclaim/compaction and the resulting allocation attempt 2603 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2604 * allocations through requiring that the full LRU list has been scanned 2605 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2606 * scan, but that approximation was wrong, and there were corner cases 2607 * where always a non-zero amount of pages were scanned. 2608 */ 2609 if (!nr_reclaimed) 2610 return false; 2611 2612 /* If compaction would go ahead or the allocation would succeed, stop */ 2613 for (z = 0; z <= sc->reclaim_idx; z++) { 2614 struct zone *zone = &pgdat->node_zones[z]; 2615 if (!managed_zone(zone)) 2616 continue; 2617 2618 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2619 case COMPACT_SUCCESS: 2620 case COMPACT_CONTINUE: 2621 return false; 2622 default: 2623 /* check next zone */ 2624 ; 2625 } 2626 } 2627 2628 /* 2629 * If we have not reclaimed enough pages for compaction and the 2630 * inactive lists are large enough, continue reclaiming 2631 */ 2632 pages_for_compaction = compact_gap(sc->order); 2633 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2634 if (get_nr_swap_pages() > 0) 2635 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2636 2637 return inactive_lru_pages > pages_for_compaction; 2638 } 2639 2640 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2641 { 2642 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2643 struct mem_cgroup *memcg; 2644 2645 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2646 do { 2647 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2648 unsigned long reclaimed; 2649 unsigned long scanned; 2650 2651 switch (mem_cgroup_protected(target_memcg, memcg)) { 2652 case MEMCG_PROT_MIN: 2653 /* 2654 * Hard protection. 2655 * If there is no reclaimable memory, OOM. 2656 */ 2657 continue; 2658 case MEMCG_PROT_LOW: 2659 /* 2660 * Soft protection. 2661 * Respect the protection only as long as 2662 * there is an unprotected supply 2663 * of reclaimable memory from other cgroups. 2664 */ 2665 if (!sc->memcg_low_reclaim) { 2666 sc->memcg_low_skipped = 1; 2667 continue; 2668 } 2669 memcg_memory_event(memcg, MEMCG_LOW); 2670 break; 2671 case MEMCG_PROT_NONE: 2672 /* 2673 * All protection thresholds breached. We may 2674 * still choose to vary the scan pressure 2675 * applied based on by how much the cgroup in 2676 * question has exceeded its protection 2677 * thresholds (see get_scan_count). 2678 */ 2679 break; 2680 } 2681 2682 reclaimed = sc->nr_reclaimed; 2683 scanned = sc->nr_scanned; 2684 2685 shrink_lruvec(lruvec, sc); 2686 2687 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2688 sc->priority); 2689 2690 /* Record the group's reclaim efficiency */ 2691 vmpressure(sc->gfp_mask, memcg, false, 2692 sc->nr_scanned - scanned, 2693 sc->nr_reclaimed - reclaimed); 2694 2695 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2696 } 2697 2698 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2699 { 2700 struct reclaim_state *reclaim_state = current->reclaim_state; 2701 unsigned long nr_reclaimed, nr_scanned; 2702 struct lruvec *target_lruvec; 2703 bool reclaimable = false; 2704 unsigned long file; 2705 2706 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2707 2708 again: 2709 memset(&sc->nr, 0, sizeof(sc->nr)); 2710 2711 nr_reclaimed = sc->nr_reclaimed; 2712 nr_scanned = sc->nr_scanned; 2713 2714 /* 2715 * Target desirable inactive:active list ratios for the anon 2716 * and file LRU lists. 2717 */ 2718 if (!sc->force_deactivate) { 2719 unsigned long refaults; 2720 2721 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2722 sc->may_deactivate |= DEACTIVATE_ANON; 2723 else 2724 sc->may_deactivate &= ~DEACTIVATE_ANON; 2725 2726 /* 2727 * When refaults are being observed, it means a new 2728 * workingset is being established. Deactivate to get 2729 * rid of any stale active pages quickly. 2730 */ 2731 refaults = lruvec_page_state(target_lruvec, 2732 WORKINGSET_ACTIVATE); 2733 if (refaults != target_lruvec->refaults || 2734 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2735 sc->may_deactivate |= DEACTIVATE_FILE; 2736 else 2737 sc->may_deactivate &= ~DEACTIVATE_FILE; 2738 } else 2739 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2740 2741 /* 2742 * If we have plenty of inactive file pages that aren't 2743 * thrashing, try to reclaim those first before touching 2744 * anonymous pages. 2745 */ 2746 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2747 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2748 sc->cache_trim_mode = 1; 2749 else 2750 sc->cache_trim_mode = 0; 2751 2752 /* 2753 * Prevent the reclaimer from falling into the cache trap: as 2754 * cache pages start out inactive, every cache fault will tip 2755 * the scan balance towards the file LRU. And as the file LRU 2756 * shrinks, so does the window for rotation from references. 2757 * This means we have a runaway feedback loop where a tiny 2758 * thrashing file LRU becomes infinitely more attractive than 2759 * anon pages. Try to detect this based on file LRU size. 2760 */ 2761 if (!cgroup_reclaim(sc)) { 2762 unsigned long total_high_wmark = 0; 2763 unsigned long free, anon; 2764 int z; 2765 2766 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2767 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2768 node_page_state(pgdat, NR_INACTIVE_FILE); 2769 2770 for (z = 0; z < MAX_NR_ZONES; z++) { 2771 struct zone *zone = &pgdat->node_zones[z]; 2772 if (!managed_zone(zone)) 2773 continue; 2774 2775 total_high_wmark += high_wmark_pages(zone); 2776 } 2777 2778 /* 2779 * Consider anon: if that's low too, this isn't a 2780 * runaway file reclaim problem, but rather just 2781 * extreme pressure. Reclaim as per usual then. 2782 */ 2783 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2784 2785 sc->file_is_tiny = 2786 file + free <= total_high_wmark && 2787 !(sc->may_deactivate & DEACTIVATE_ANON) && 2788 anon >> sc->priority; 2789 } 2790 2791 shrink_node_memcgs(pgdat, sc); 2792 2793 if (reclaim_state) { 2794 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2795 reclaim_state->reclaimed_slab = 0; 2796 } 2797 2798 /* Record the subtree's reclaim efficiency */ 2799 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2800 sc->nr_scanned - nr_scanned, 2801 sc->nr_reclaimed - nr_reclaimed); 2802 2803 if (sc->nr_reclaimed - nr_reclaimed) 2804 reclaimable = true; 2805 2806 if (current_is_kswapd()) { 2807 /* 2808 * If reclaim is isolating dirty pages under writeback, 2809 * it implies that the long-lived page allocation rate 2810 * is exceeding the page laundering rate. Either the 2811 * global limits are not being effective at throttling 2812 * processes due to the page distribution throughout 2813 * zones or there is heavy usage of a slow backing 2814 * device. The only option is to throttle from reclaim 2815 * context which is not ideal as there is no guarantee 2816 * the dirtying process is throttled in the same way 2817 * balance_dirty_pages() manages. 2818 * 2819 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2820 * count the number of pages under pages flagged for 2821 * immediate reclaim and stall if any are encountered 2822 * in the nr_immediate check below. 2823 */ 2824 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2825 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2826 2827 /* Allow kswapd to start writing pages during reclaim.*/ 2828 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2829 set_bit(PGDAT_DIRTY, &pgdat->flags); 2830 2831 /* 2832 * If kswapd scans pages marked marked for immediate 2833 * reclaim and under writeback (nr_immediate), it 2834 * implies that pages are cycling through the LRU 2835 * faster than they are written so also forcibly stall. 2836 */ 2837 if (sc->nr.immediate) 2838 congestion_wait(BLK_RW_ASYNC, HZ/10); 2839 } 2840 2841 /* 2842 * Tag a node/memcg as congested if all the dirty pages 2843 * scanned were backed by a congested BDI and 2844 * wait_iff_congested will stall. 2845 * 2846 * Legacy memcg will stall in page writeback so avoid forcibly 2847 * stalling in wait_iff_congested(). 2848 */ 2849 if ((current_is_kswapd() || 2850 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2851 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2852 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2853 2854 /* 2855 * Stall direct reclaim for IO completions if underlying BDIs 2856 * and node is congested. Allow kswapd to continue until it 2857 * starts encountering unqueued dirty pages or cycling through 2858 * the LRU too quickly. 2859 */ 2860 if (!current_is_kswapd() && current_may_throttle() && 2861 !sc->hibernation_mode && 2862 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2863 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2864 2865 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2866 sc)) 2867 goto again; 2868 2869 /* 2870 * Kswapd gives up on balancing particular nodes after too 2871 * many failures to reclaim anything from them and goes to 2872 * sleep. On reclaim progress, reset the failure counter. A 2873 * successful direct reclaim run will revive a dormant kswapd. 2874 */ 2875 if (reclaimable) 2876 pgdat->kswapd_failures = 0; 2877 2878 return reclaimable; 2879 } 2880 2881 /* 2882 * Returns true if compaction should go ahead for a costly-order request, or 2883 * the allocation would already succeed without compaction. Return false if we 2884 * should reclaim first. 2885 */ 2886 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2887 { 2888 unsigned long watermark; 2889 enum compact_result suitable; 2890 2891 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2892 if (suitable == COMPACT_SUCCESS) 2893 /* Allocation should succeed already. Don't reclaim. */ 2894 return true; 2895 if (suitable == COMPACT_SKIPPED) 2896 /* Compaction cannot yet proceed. Do reclaim. */ 2897 return false; 2898 2899 /* 2900 * Compaction is already possible, but it takes time to run and there 2901 * are potentially other callers using the pages just freed. So proceed 2902 * with reclaim to make a buffer of free pages available to give 2903 * compaction a reasonable chance of completing and allocating the page. 2904 * Note that we won't actually reclaim the whole buffer in one attempt 2905 * as the target watermark in should_continue_reclaim() is lower. But if 2906 * we are already above the high+gap watermark, don't reclaim at all. 2907 */ 2908 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2909 2910 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2911 } 2912 2913 /* 2914 * This is the direct reclaim path, for page-allocating processes. We only 2915 * try to reclaim pages from zones which will satisfy the caller's allocation 2916 * request. 2917 * 2918 * If a zone is deemed to be full of pinned pages then just give it a light 2919 * scan then give up on it. 2920 */ 2921 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2922 { 2923 struct zoneref *z; 2924 struct zone *zone; 2925 unsigned long nr_soft_reclaimed; 2926 unsigned long nr_soft_scanned; 2927 gfp_t orig_mask; 2928 pg_data_t *last_pgdat = NULL; 2929 2930 /* 2931 * If the number of buffer_heads in the machine exceeds the maximum 2932 * allowed level, force direct reclaim to scan the highmem zone as 2933 * highmem pages could be pinning lowmem pages storing buffer_heads 2934 */ 2935 orig_mask = sc->gfp_mask; 2936 if (buffer_heads_over_limit) { 2937 sc->gfp_mask |= __GFP_HIGHMEM; 2938 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2939 } 2940 2941 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2942 sc->reclaim_idx, sc->nodemask) { 2943 /* 2944 * Take care memory controller reclaiming has small influence 2945 * to global LRU. 2946 */ 2947 if (!cgroup_reclaim(sc)) { 2948 if (!cpuset_zone_allowed(zone, 2949 GFP_KERNEL | __GFP_HARDWALL)) 2950 continue; 2951 2952 /* 2953 * If we already have plenty of memory free for 2954 * compaction in this zone, don't free any more. 2955 * Even though compaction is invoked for any 2956 * non-zero order, only frequent costly order 2957 * reclamation is disruptive enough to become a 2958 * noticeable problem, like transparent huge 2959 * page allocations. 2960 */ 2961 if (IS_ENABLED(CONFIG_COMPACTION) && 2962 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2963 compaction_ready(zone, sc)) { 2964 sc->compaction_ready = true; 2965 continue; 2966 } 2967 2968 /* 2969 * Shrink each node in the zonelist once. If the 2970 * zonelist is ordered by zone (not the default) then a 2971 * node may be shrunk multiple times but in that case 2972 * the user prefers lower zones being preserved. 2973 */ 2974 if (zone->zone_pgdat == last_pgdat) 2975 continue; 2976 2977 /* 2978 * This steals pages from memory cgroups over softlimit 2979 * and returns the number of reclaimed pages and 2980 * scanned pages. This works for global memory pressure 2981 * and balancing, not for a memcg's limit. 2982 */ 2983 nr_soft_scanned = 0; 2984 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2985 sc->order, sc->gfp_mask, 2986 &nr_soft_scanned); 2987 sc->nr_reclaimed += nr_soft_reclaimed; 2988 sc->nr_scanned += nr_soft_scanned; 2989 /* need some check for avoid more shrink_zone() */ 2990 } 2991 2992 /* See comment about same check for global reclaim above */ 2993 if (zone->zone_pgdat == last_pgdat) 2994 continue; 2995 last_pgdat = zone->zone_pgdat; 2996 shrink_node(zone->zone_pgdat, sc); 2997 } 2998 2999 /* 3000 * Restore to original mask to avoid the impact on the caller if we 3001 * promoted it to __GFP_HIGHMEM. 3002 */ 3003 sc->gfp_mask = orig_mask; 3004 } 3005 3006 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3007 { 3008 struct lruvec *target_lruvec; 3009 unsigned long refaults; 3010 3011 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3012 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE); 3013 target_lruvec->refaults = refaults; 3014 } 3015 3016 /* 3017 * This is the main entry point to direct page reclaim. 3018 * 3019 * If a full scan of the inactive list fails to free enough memory then we 3020 * are "out of memory" and something needs to be killed. 3021 * 3022 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3023 * high - the zone may be full of dirty or under-writeback pages, which this 3024 * caller can't do much about. We kick the writeback threads and take explicit 3025 * naps in the hope that some of these pages can be written. But if the 3026 * allocating task holds filesystem locks which prevent writeout this might not 3027 * work, and the allocation attempt will fail. 3028 * 3029 * returns: 0, if no pages reclaimed 3030 * else, the number of pages reclaimed 3031 */ 3032 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3033 struct scan_control *sc) 3034 { 3035 int initial_priority = sc->priority; 3036 pg_data_t *last_pgdat; 3037 struct zoneref *z; 3038 struct zone *zone; 3039 retry: 3040 delayacct_freepages_start(); 3041 3042 if (!cgroup_reclaim(sc)) 3043 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3044 3045 do { 3046 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3047 sc->priority); 3048 sc->nr_scanned = 0; 3049 shrink_zones(zonelist, sc); 3050 3051 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3052 break; 3053 3054 if (sc->compaction_ready) 3055 break; 3056 3057 /* 3058 * If we're getting trouble reclaiming, start doing 3059 * writepage even in laptop mode. 3060 */ 3061 if (sc->priority < DEF_PRIORITY - 2) 3062 sc->may_writepage = 1; 3063 } while (--sc->priority >= 0); 3064 3065 last_pgdat = NULL; 3066 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3067 sc->nodemask) { 3068 if (zone->zone_pgdat == last_pgdat) 3069 continue; 3070 last_pgdat = zone->zone_pgdat; 3071 3072 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3073 3074 if (cgroup_reclaim(sc)) { 3075 struct lruvec *lruvec; 3076 3077 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3078 zone->zone_pgdat); 3079 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3080 } 3081 } 3082 3083 delayacct_freepages_end(); 3084 3085 if (sc->nr_reclaimed) 3086 return sc->nr_reclaimed; 3087 3088 /* Aborted reclaim to try compaction? don't OOM, then */ 3089 if (sc->compaction_ready) 3090 return 1; 3091 3092 /* 3093 * We make inactive:active ratio decisions based on the node's 3094 * composition of memory, but a restrictive reclaim_idx or a 3095 * memory.low cgroup setting can exempt large amounts of 3096 * memory from reclaim. Neither of which are very common, so 3097 * instead of doing costly eligibility calculations of the 3098 * entire cgroup subtree up front, we assume the estimates are 3099 * good, and retry with forcible deactivation if that fails. 3100 */ 3101 if (sc->skipped_deactivate) { 3102 sc->priority = initial_priority; 3103 sc->force_deactivate = 1; 3104 sc->skipped_deactivate = 0; 3105 goto retry; 3106 } 3107 3108 /* Untapped cgroup reserves? Don't OOM, retry. */ 3109 if (sc->memcg_low_skipped) { 3110 sc->priority = initial_priority; 3111 sc->force_deactivate = 0; 3112 sc->skipped_deactivate = 0; 3113 sc->memcg_low_reclaim = 1; 3114 sc->memcg_low_skipped = 0; 3115 goto retry; 3116 } 3117 3118 return 0; 3119 } 3120 3121 static bool allow_direct_reclaim(pg_data_t *pgdat) 3122 { 3123 struct zone *zone; 3124 unsigned long pfmemalloc_reserve = 0; 3125 unsigned long free_pages = 0; 3126 int i; 3127 bool wmark_ok; 3128 3129 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3130 return true; 3131 3132 for (i = 0; i <= ZONE_NORMAL; i++) { 3133 zone = &pgdat->node_zones[i]; 3134 if (!managed_zone(zone)) 3135 continue; 3136 3137 if (!zone_reclaimable_pages(zone)) 3138 continue; 3139 3140 pfmemalloc_reserve += min_wmark_pages(zone); 3141 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3142 } 3143 3144 /* If there are no reserves (unexpected config) then do not throttle */ 3145 if (!pfmemalloc_reserve) 3146 return true; 3147 3148 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3149 3150 /* kswapd must be awake if processes are being throttled */ 3151 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3152 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3153 (enum zone_type)ZONE_NORMAL); 3154 wake_up_interruptible(&pgdat->kswapd_wait); 3155 } 3156 3157 return wmark_ok; 3158 } 3159 3160 /* 3161 * Throttle direct reclaimers if backing storage is backed by the network 3162 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3163 * depleted. kswapd will continue to make progress and wake the processes 3164 * when the low watermark is reached. 3165 * 3166 * Returns true if a fatal signal was delivered during throttling. If this 3167 * happens, the page allocator should not consider triggering the OOM killer. 3168 */ 3169 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3170 nodemask_t *nodemask) 3171 { 3172 struct zoneref *z; 3173 struct zone *zone; 3174 pg_data_t *pgdat = NULL; 3175 3176 /* 3177 * Kernel threads should not be throttled as they may be indirectly 3178 * responsible for cleaning pages necessary for reclaim to make forward 3179 * progress. kjournald for example may enter direct reclaim while 3180 * committing a transaction where throttling it could forcing other 3181 * processes to block on log_wait_commit(). 3182 */ 3183 if (current->flags & PF_KTHREAD) 3184 goto out; 3185 3186 /* 3187 * If a fatal signal is pending, this process should not throttle. 3188 * It should return quickly so it can exit and free its memory 3189 */ 3190 if (fatal_signal_pending(current)) 3191 goto out; 3192 3193 /* 3194 * Check if the pfmemalloc reserves are ok by finding the first node 3195 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3196 * GFP_KERNEL will be required for allocating network buffers when 3197 * swapping over the network so ZONE_HIGHMEM is unusable. 3198 * 3199 * Throttling is based on the first usable node and throttled processes 3200 * wait on a queue until kswapd makes progress and wakes them. There 3201 * is an affinity then between processes waking up and where reclaim 3202 * progress has been made assuming the process wakes on the same node. 3203 * More importantly, processes running on remote nodes will not compete 3204 * for remote pfmemalloc reserves and processes on different nodes 3205 * should make reasonable progress. 3206 */ 3207 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3208 gfp_zone(gfp_mask), nodemask) { 3209 if (zone_idx(zone) > ZONE_NORMAL) 3210 continue; 3211 3212 /* Throttle based on the first usable node */ 3213 pgdat = zone->zone_pgdat; 3214 if (allow_direct_reclaim(pgdat)) 3215 goto out; 3216 break; 3217 } 3218 3219 /* If no zone was usable by the allocation flags then do not throttle */ 3220 if (!pgdat) 3221 goto out; 3222 3223 /* Account for the throttling */ 3224 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3225 3226 /* 3227 * If the caller cannot enter the filesystem, it's possible that it 3228 * is due to the caller holding an FS lock or performing a journal 3229 * transaction in the case of a filesystem like ext[3|4]. In this case, 3230 * it is not safe to block on pfmemalloc_wait as kswapd could be 3231 * blocked waiting on the same lock. Instead, throttle for up to a 3232 * second before continuing. 3233 */ 3234 if (!(gfp_mask & __GFP_FS)) { 3235 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3236 allow_direct_reclaim(pgdat), HZ); 3237 3238 goto check_pending; 3239 } 3240 3241 /* Throttle until kswapd wakes the process */ 3242 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3243 allow_direct_reclaim(pgdat)); 3244 3245 check_pending: 3246 if (fatal_signal_pending(current)) 3247 return true; 3248 3249 out: 3250 return false; 3251 } 3252 3253 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3254 gfp_t gfp_mask, nodemask_t *nodemask) 3255 { 3256 unsigned long nr_reclaimed; 3257 struct scan_control sc = { 3258 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3259 .gfp_mask = current_gfp_context(gfp_mask), 3260 .reclaim_idx = gfp_zone(gfp_mask), 3261 .order = order, 3262 .nodemask = nodemask, 3263 .priority = DEF_PRIORITY, 3264 .may_writepage = !laptop_mode, 3265 .may_unmap = 1, 3266 .may_swap = 1, 3267 }; 3268 3269 /* 3270 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3271 * Confirm they are large enough for max values. 3272 */ 3273 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3274 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3275 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3276 3277 /* 3278 * Do not enter reclaim if fatal signal was delivered while throttled. 3279 * 1 is returned so that the page allocator does not OOM kill at this 3280 * point. 3281 */ 3282 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3283 return 1; 3284 3285 set_task_reclaim_state(current, &sc.reclaim_state); 3286 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3287 3288 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3289 3290 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3291 set_task_reclaim_state(current, NULL); 3292 3293 return nr_reclaimed; 3294 } 3295 3296 #ifdef CONFIG_MEMCG 3297 3298 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3299 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3300 gfp_t gfp_mask, bool noswap, 3301 pg_data_t *pgdat, 3302 unsigned long *nr_scanned) 3303 { 3304 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3305 struct scan_control sc = { 3306 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3307 .target_mem_cgroup = memcg, 3308 .may_writepage = !laptop_mode, 3309 .may_unmap = 1, 3310 .reclaim_idx = MAX_NR_ZONES - 1, 3311 .may_swap = !noswap, 3312 }; 3313 3314 WARN_ON_ONCE(!current->reclaim_state); 3315 3316 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3317 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3318 3319 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3320 sc.gfp_mask); 3321 3322 /* 3323 * NOTE: Although we can get the priority field, using it 3324 * here is not a good idea, since it limits the pages we can scan. 3325 * if we don't reclaim here, the shrink_node from balance_pgdat 3326 * will pick up pages from other mem cgroup's as well. We hack 3327 * the priority and make it zero. 3328 */ 3329 shrink_lruvec(lruvec, &sc); 3330 3331 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3332 3333 *nr_scanned = sc.nr_scanned; 3334 3335 return sc.nr_reclaimed; 3336 } 3337 3338 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3339 unsigned long nr_pages, 3340 gfp_t gfp_mask, 3341 bool may_swap) 3342 { 3343 unsigned long nr_reclaimed; 3344 unsigned long pflags; 3345 unsigned int noreclaim_flag; 3346 struct scan_control sc = { 3347 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3348 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3349 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3350 .reclaim_idx = MAX_NR_ZONES - 1, 3351 .target_mem_cgroup = memcg, 3352 .priority = DEF_PRIORITY, 3353 .may_writepage = !laptop_mode, 3354 .may_unmap = 1, 3355 .may_swap = may_swap, 3356 }; 3357 /* 3358 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3359 * equal pressure on all the nodes. This is based on the assumption that 3360 * the reclaim does not bail out early. 3361 */ 3362 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3363 3364 set_task_reclaim_state(current, &sc.reclaim_state); 3365 3366 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3367 3368 psi_memstall_enter(&pflags); 3369 noreclaim_flag = memalloc_noreclaim_save(); 3370 3371 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3372 3373 memalloc_noreclaim_restore(noreclaim_flag); 3374 psi_memstall_leave(&pflags); 3375 3376 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3377 set_task_reclaim_state(current, NULL); 3378 3379 return nr_reclaimed; 3380 } 3381 #endif 3382 3383 static void age_active_anon(struct pglist_data *pgdat, 3384 struct scan_control *sc) 3385 { 3386 struct mem_cgroup *memcg; 3387 struct lruvec *lruvec; 3388 3389 if (!total_swap_pages) 3390 return; 3391 3392 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3393 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3394 return; 3395 3396 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3397 do { 3398 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3399 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3400 sc, LRU_ACTIVE_ANON); 3401 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3402 } while (memcg); 3403 } 3404 3405 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3406 { 3407 int i; 3408 struct zone *zone; 3409 3410 /* 3411 * Check for watermark boosts top-down as the higher zones 3412 * are more likely to be boosted. Both watermarks and boosts 3413 * should not be checked at the time time as reclaim would 3414 * start prematurely when there is no boosting and a lower 3415 * zone is balanced. 3416 */ 3417 for (i = classzone_idx; i >= 0; i--) { 3418 zone = pgdat->node_zones + i; 3419 if (!managed_zone(zone)) 3420 continue; 3421 3422 if (zone->watermark_boost) 3423 return true; 3424 } 3425 3426 return false; 3427 } 3428 3429 /* 3430 * Returns true if there is an eligible zone balanced for the request order 3431 * and classzone_idx 3432 */ 3433 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3434 { 3435 int i; 3436 unsigned long mark = -1; 3437 struct zone *zone; 3438 3439 /* 3440 * Check watermarks bottom-up as lower zones are more likely to 3441 * meet watermarks. 3442 */ 3443 for (i = 0; i <= classzone_idx; i++) { 3444 zone = pgdat->node_zones + i; 3445 3446 if (!managed_zone(zone)) 3447 continue; 3448 3449 mark = high_wmark_pages(zone); 3450 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3451 return true; 3452 } 3453 3454 /* 3455 * If a node has no populated zone within classzone_idx, it does not 3456 * need balancing by definition. This can happen if a zone-restricted 3457 * allocation tries to wake a remote kswapd. 3458 */ 3459 if (mark == -1) 3460 return true; 3461 3462 return false; 3463 } 3464 3465 /* Clear pgdat state for congested, dirty or under writeback. */ 3466 static void clear_pgdat_congested(pg_data_t *pgdat) 3467 { 3468 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3469 3470 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3471 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3472 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3473 } 3474 3475 /* 3476 * Prepare kswapd for sleeping. This verifies that there are no processes 3477 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3478 * 3479 * Returns true if kswapd is ready to sleep 3480 */ 3481 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3482 { 3483 /* 3484 * The throttled processes are normally woken up in balance_pgdat() as 3485 * soon as allow_direct_reclaim() is true. But there is a potential 3486 * race between when kswapd checks the watermarks and a process gets 3487 * throttled. There is also a potential race if processes get 3488 * throttled, kswapd wakes, a large process exits thereby balancing the 3489 * zones, which causes kswapd to exit balance_pgdat() before reaching 3490 * the wake up checks. If kswapd is going to sleep, no process should 3491 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3492 * the wake up is premature, processes will wake kswapd and get 3493 * throttled again. The difference from wake ups in balance_pgdat() is 3494 * that here we are under prepare_to_wait(). 3495 */ 3496 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3497 wake_up_all(&pgdat->pfmemalloc_wait); 3498 3499 /* Hopeless node, leave it to direct reclaim */ 3500 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3501 return true; 3502 3503 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3504 clear_pgdat_congested(pgdat); 3505 return true; 3506 } 3507 3508 return false; 3509 } 3510 3511 /* 3512 * kswapd shrinks a node of pages that are at or below the highest usable 3513 * zone that is currently unbalanced. 3514 * 3515 * Returns true if kswapd scanned at least the requested number of pages to 3516 * reclaim or if the lack of progress was due to pages under writeback. 3517 * This is used to determine if the scanning priority needs to be raised. 3518 */ 3519 static bool kswapd_shrink_node(pg_data_t *pgdat, 3520 struct scan_control *sc) 3521 { 3522 struct zone *zone; 3523 int z; 3524 3525 /* Reclaim a number of pages proportional to the number of zones */ 3526 sc->nr_to_reclaim = 0; 3527 for (z = 0; z <= sc->reclaim_idx; z++) { 3528 zone = pgdat->node_zones + z; 3529 if (!managed_zone(zone)) 3530 continue; 3531 3532 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3533 } 3534 3535 /* 3536 * Historically care was taken to put equal pressure on all zones but 3537 * now pressure is applied based on node LRU order. 3538 */ 3539 shrink_node(pgdat, sc); 3540 3541 /* 3542 * Fragmentation may mean that the system cannot be rebalanced for 3543 * high-order allocations. If twice the allocation size has been 3544 * reclaimed then recheck watermarks only at order-0 to prevent 3545 * excessive reclaim. Assume that a process requested a high-order 3546 * can direct reclaim/compact. 3547 */ 3548 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3549 sc->order = 0; 3550 3551 return sc->nr_scanned >= sc->nr_to_reclaim; 3552 } 3553 3554 /* 3555 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3556 * that are eligible for use by the caller until at least one zone is 3557 * balanced. 3558 * 3559 * Returns the order kswapd finished reclaiming at. 3560 * 3561 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3562 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3563 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3564 * or lower is eligible for reclaim until at least one usable zone is 3565 * balanced. 3566 */ 3567 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3568 { 3569 int i; 3570 unsigned long nr_soft_reclaimed; 3571 unsigned long nr_soft_scanned; 3572 unsigned long pflags; 3573 unsigned long nr_boost_reclaim; 3574 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3575 bool boosted; 3576 struct zone *zone; 3577 struct scan_control sc = { 3578 .gfp_mask = GFP_KERNEL, 3579 .order = order, 3580 .may_unmap = 1, 3581 }; 3582 3583 set_task_reclaim_state(current, &sc.reclaim_state); 3584 psi_memstall_enter(&pflags); 3585 __fs_reclaim_acquire(); 3586 3587 count_vm_event(PAGEOUTRUN); 3588 3589 /* 3590 * Account for the reclaim boost. Note that the zone boost is left in 3591 * place so that parallel allocations that are near the watermark will 3592 * stall or direct reclaim until kswapd is finished. 3593 */ 3594 nr_boost_reclaim = 0; 3595 for (i = 0; i <= classzone_idx; i++) { 3596 zone = pgdat->node_zones + i; 3597 if (!managed_zone(zone)) 3598 continue; 3599 3600 nr_boost_reclaim += zone->watermark_boost; 3601 zone_boosts[i] = zone->watermark_boost; 3602 } 3603 boosted = nr_boost_reclaim; 3604 3605 restart: 3606 sc.priority = DEF_PRIORITY; 3607 do { 3608 unsigned long nr_reclaimed = sc.nr_reclaimed; 3609 bool raise_priority = true; 3610 bool balanced; 3611 bool ret; 3612 3613 sc.reclaim_idx = classzone_idx; 3614 3615 /* 3616 * If the number of buffer_heads exceeds the maximum allowed 3617 * then consider reclaiming from all zones. This has a dual 3618 * purpose -- on 64-bit systems it is expected that 3619 * buffer_heads are stripped during active rotation. On 32-bit 3620 * systems, highmem pages can pin lowmem memory and shrinking 3621 * buffers can relieve lowmem pressure. Reclaim may still not 3622 * go ahead if all eligible zones for the original allocation 3623 * request are balanced to avoid excessive reclaim from kswapd. 3624 */ 3625 if (buffer_heads_over_limit) { 3626 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3627 zone = pgdat->node_zones + i; 3628 if (!managed_zone(zone)) 3629 continue; 3630 3631 sc.reclaim_idx = i; 3632 break; 3633 } 3634 } 3635 3636 /* 3637 * If the pgdat is imbalanced then ignore boosting and preserve 3638 * the watermarks for a later time and restart. Note that the 3639 * zone watermarks will be still reset at the end of balancing 3640 * on the grounds that the normal reclaim should be enough to 3641 * re-evaluate if boosting is required when kswapd next wakes. 3642 */ 3643 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3644 if (!balanced && nr_boost_reclaim) { 3645 nr_boost_reclaim = 0; 3646 goto restart; 3647 } 3648 3649 /* 3650 * If boosting is not active then only reclaim if there are no 3651 * eligible zones. Note that sc.reclaim_idx is not used as 3652 * buffer_heads_over_limit may have adjusted it. 3653 */ 3654 if (!nr_boost_reclaim && balanced) 3655 goto out; 3656 3657 /* Limit the priority of boosting to avoid reclaim writeback */ 3658 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3659 raise_priority = false; 3660 3661 /* 3662 * Do not writeback or swap pages for boosted reclaim. The 3663 * intent is to relieve pressure not issue sub-optimal IO 3664 * from reclaim context. If no pages are reclaimed, the 3665 * reclaim will be aborted. 3666 */ 3667 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3668 sc.may_swap = !nr_boost_reclaim; 3669 3670 /* 3671 * Do some background aging of the anon list, to give 3672 * pages a chance to be referenced before reclaiming. All 3673 * pages are rotated regardless of classzone as this is 3674 * about consistent aging. 3675 */ 3676 age_active_anon(pgdat, &sc); 3677 3678 /* 3679 * If we're getting trouble reclaiming, start doing writepage 3680 * even in laptop mode. 3681 */ 3682 if (sc.priority < DEF_PRIORITY - 2) 3683 sc.may_writepage = 1; 3684 3685 /* Call soft limit reclaim before calling shrink_node. */ 3686 sc.nr_scanned = 0; 3687 nr_soft_scanned = 0; 3688 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3689 sc.gfp_mask, &nr_soft_scanned); 3690 sc.nr_reclaimed += nr_soft_reclaimed; 3691 3692 /* 3693 * There should be no need to raise the scanning priority if 3694 * enough pages are already being scanned that that high 3695 * watermark would be met at 100% efficiency. 3696 */ 3697 if (kswapd_shrink_node(pgdat, &sc)) 3698 raise_priority = false; 3699 3700 /* 3701 * If the low watermark is met there is no need for processes 3702 * to be throttled on pfmemalloc_wait as they should not be 3703 * able to safely make forward progress. Wake them 3704 */ 3705 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3706 allow_direct_reclaim(pgdat)) 3707 wake_up_all(&pgdat->pfmemalloc_wait); 3708 3709 /* Check if kswapd should be suspending */ 3710 __fs_reclaim_release(); 3711 ret = try_to_freeze(); 3712 __fs_reclaim_acquire(); 3713 if (ret || kthread_should_stop()) 3714 break; 3715 3716 /* 3717 * Raise priority if scanning rate is too low or there was no 3718 * progress in reclaiming pages 3719 */ 3720 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3721 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3722 3723 /* 3724 * If reclaim made no progress for a boost, stop reclaim as 3725 * IO cannot be queued and it could be an infinite loop in 3726 * extreme circumstances. 3727 */ 3728 if (nr_boost_reclaim && !nr_reclaimed) 3729 break; 3730 3731 if (raise_priority || !nr_reclaimed) 3732 sc.priority--; 3733 } while (sc.priority >= 1); 3734 3735 if (!sc.nr_reclaimed) 3736 pgdat->kswapd_failures++; 3737 3738 out: 3739 /* If reclaim was boosted, account for the reclaim done in this pass */ 3740 if (boosted) { 3741 unsigned long flags; 3742 3743 for (i = 0; i <= classzone_idx; i++) { 3744 if (!zone_boosts[i]) 3745 continue; 3746 3747 /* Increments are under the zone lock */ 3748 zone = pgdat->node_zones + i; 3749 spin_lock_irqsave(&zone->lock, flags); 3750 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3751 spin_unlock_irqrestore(&zone->lock, flags); 3752 } 3753 3754 /* 3755 * As there is now likely space, wakeup kcompact to defragment 3756 * pageblocks. 3757 */ 3758 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3759 } 3760 3761 snapshot_refaults(NULL, pgdat); 3762 __fs_reclaim_release(); 3763 psi_memstall_leave(&pflags); 3764 set_task_reclaim_state(current, NULL); 3765 3766 /* 3767 * Return the order kswapd stopped reclaiming at as 3768 * prepare_kswapd_sleep() takes it into account. If another caller 3769 * entered the allocator slow path while kswapd was awake, order will 3770 * remain at the higher level. 3771 */ 3772 return sc.order; 3773 } 3774 3775 /* 3776 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3777 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3778 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3779 * after previous reclaim attempt (node is still unbalanced). In that case 3780 * return the zone index of the previous kswapd reclaim cycle. 3781 */ 3782 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3783 enum zone_type prev_classzone_idx) 3784 { 3785 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3786 return prev_classzone_idx; 3787 return pgdat->kswapd_classzone_idx; 3788 } 3789 3790 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3791 unsigned int classzone_idx) 3792 { 3793 long remaining = 0; 3794 DEFINE_WAIT(wait); 3795 3796 if (freezing(current) || kthread_should_stop()) 3797 return; 3798 3799 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3800 3801 /* 3802 * Try to sleep for a short interval. Note that kcompactd will only be 3803 * woken if it is possible to sleep for a short interval. This is 3804 * deliberate on the assumption that if reclaim cannot keep an 3805 * eligible zone balanced that it's also unlikely that compaction will 3806 * succeed. 3807 */ 3808 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3809 /* 3810 * Compaction records what page blocks it recently failed to 3811 * isolate pages from and skips them in the future scanning. 3812 * When kswapd is going to sleep, it is reasonable to assume 3813 * that pages and compaction may succeed so reset the cache. 3814 */ 3815 reset_isolation_suitable(pgdat); 3816 3817 /* 3818 * We have freed the memory, now we should compact it to make 3819 * allocation of the requested order possible. 3820 */ 3821 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3822 3823 remaining = schedule_timeout(HZ/10); 3824 3825 /* 3826 * If woken prematurely then reset kswapd_classzone_idx and 3827 * order. The values will either be from a wakeup request or 3828 * the previous request that slept prematurely. 3829 */ 3830 if (remaining) { 3831 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3832 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3833 } 3834 3835 finish_wait(&pgdat->kswapd_wait, &wait); 3836 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3837 } 3838 3839 /* 3840 * After a short sleep, check if it was a premature sleep. If not, then 3841 * go fully to sleep until explicitly woken up. 3842 */ 3843 if (!remaining && 3844 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3845 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3846 3847 /* 3848 * vmstat counters are not perfectly accurate and the estimated 3849 * value for counters such as NR_FREE_PAGES can deviate from the 3850 * true value by nr_online_cpus * threshold. To avoid the zone 3851 * watermarks being breached while under pressure, we reduce the 3852 * per-cpu vmstat threshold while kswapd is awake and restore 3853 * them before going back to sleep. 3854 */ 3855 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3856 3857 if (!kthread_should_stop()) 3858 schedule(); 3859 3860 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3861 } else { 3862 if (remaining) 3863 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3864 else 3865 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3866 } 3867 finish_wait(&pgdat->kswapd_wait, &wait); 3868 } 3869 3870 /* 3871 * The background pageout daemon, started as a kernel thread 3872 * from the init process. 3873 * 3874 * This basically trickles out pages so that we have _some_ 3875 * free memory available even if there is no other activity 3876 * that frees anything up. This is needed for things like routing 3877 * etc, where we otherwise might have all activity going on in 3878 * asynchronous contexts that cannot page things out. 3879 * 3880 * If there are applications that are active memory-allocators 3881 * (most normal use), this basically shouldn't matter. 3882 */ 3883 static int kswapd(void *p) 3884 { 3885 unsigned int alloc_order, reclaim_order; 3886 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3887 pg_data_t *pgdat = (pg_data_t*)p; 3888 struct task_struct *tsk = current; 3889 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3890 3891 if (!cpumask_empty(cpumask)) 3892 set_cpus_allowed_ptr(tsk, cpumask); 3893 3894 /* 3895 * Tell the memory management that we're a "memory allocator", 3896 * and that if we need more memory we should get access to it 3897 * regardless (see "__alloc_pages()"). "kswapd" should 3898 * never get caught in the normal page freeing logic. 3899 * 3900 * (Kswapd normally doesn't need memory anyway, but sometimes 3901 * you need a small amount of memory in order to be able to 3902 * page out something else, and this flag essentially protects 3903 * us from recursively trying to free more memory as we're 3904 * trying to free the first piece of memory in the first place). 3905 */ 3906 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3907 set_freezable(); 3908 3909 pgdat->kswapd_order = 0; 3910 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3911 for ( ; ; ) { 3912 bool ret; 3913 3914 alloc_order = reclaim_order = pgdat->kswapd_order; 3915 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3916 3917 kswapd_try_sleep: 3918 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3919 classzone_idx); 3920 3921 /* Read the new order and classzone_idx */ 3922 alloc_order = reclaim_order = pgdat->kswapd_order; 3923 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3924 pgdat->kswapd_order = 0; 3925 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3926 3927 ret = try_to_freeze(); 3928 if (kthread_should_stop()) 3929 break; 3930 3931 /* 3932 * We can speed up thawing tasks if we don't call balance_pgdat 3933 * after returning from the refrigerator 3934 */ 3935 if (ret) 3936 continue; 3937 3938 /* 3939 * Reclaim begins at the requested order but if a high-order 3940 * reclaim fails then kswapd falls back to reclaiming for 3941 * order-0. If that happens, kswapd will consider sleeping 3942 * for the order it finished reclaiming at (reclaim_order) 3943 * but kcompactd is woken to compact for the original 3944 * request (alloc_order). 3945 */ 3946 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3947 alloc_order); 3948 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3949 if (reclaim_order < alloc_order) 3950 goto kswapd_try_sleep; 3951 } 3952 3953 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3954 3955 return 0; 3956 } 3957 3958 /* 3959 * A zone is low on free memory or too fragmented for high-order memory. If 3960 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3961 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3962 * has failed or is not needed, still wake up kcompactd if only compaction is 3963 * needed. 3964 */ 3965 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3966 enum zone_type classzone_idx) 3967 { 3968 pg_data_t *pgdat; 3969 3970 if (!managed_zone(zone)) 3971 return; 3972 3973 if (!cpuset_zone_allowed(zone, gfp_flags)) 3974 return; 3975 pgdat = zone->zone_pgdat; 3976 3977 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3978 pgdat->kswapd_classzone_idx = classzone_idx; 3979 else 3980 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3981 classzone_idx); 3982 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3983 if (!waitqueue_active(&pgdat->kswapd_wait)) 3984 return; 3985 3986 /* Hopeless node, leave it to direct reclaim if possible */ 3987 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3988 (pgdat_balanced(pgdat, order, classzone_idx) && 3989 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3990 /* 3991 * There may be plenty of free memory available, but it's too 3992 * fragmented for high-order allocations. Wake up kcompactd 3993 * and rely on compaction_suitable() to determine if it's 3994 * needed. If it fails, it will defer subsequent attempts to 3995 * ratelimit its work. 3996 */ 3997 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3998 wakeup_kcompactd(pgdat, order, classzone_idx); 3999 return; 4000 } 4001 4002 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 4003 gfp_flags); 4004 wake_up_interruptible(&pgdat->kswapd_wait); 4005 } 4006 4007 #ifdef CONFIG_HIBERNATION 4008 /* 4009 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4010 * freed pages. 4011 * 4012 * Rather than trying to age LRUs the aim is to preserve the overall 4013 * LRU order by reclaiming preferentially 4014 * inactive > active > active referenced > active mapped 4015 */ 4016 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4017 { 4018 struct scan_control sc = { 4019 .nr_to_reclaim = nr_to_reclaim, 4020 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4021 .reclaim_idx = MAX_NR_ZONES - 1, 4022 .priority = DEF_PRIORITY, 4023 .may_writepage = 1, 4024 .may_unmap = 1, 4025 .may_swap = 1, 4026 .hibernation_mode = 1, 4027 }; 4028 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4029 unsigned long nr_reclaimed; 4030 unsigned int noreclaim_flag; 4031 4032 fs_reclaim_acquire(sc.gfp_mask); 4033 noreclaim_flag = memalloc_noreclaim_save(); 4034 set_task_reclaim_state(current, &sc.reclaim_state); 4035 4036 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4037 4038 set_task_reclaim_state(current, NULL); 4039 memalloc_noreclaim_restore(noreclaim_flag); 4040 fs_reclaim_release(sc.gfp_mask); 4041 4042 return nr_reclaimed; 4043 } 4044 #endif /* CONFIG_HIBERNATION */ 4045 4046 /* It's optimal to keep kswapds on the same CPUs as their memory, but 4047 not required for correctness. So if the last cpu in a node goes 4048 away, we get changed to run anywhere: as the first one comes back, 4049 restore their cpu bindings. */ 4050 static int kswapd_cpu_online(unsigned int cpu) 4051 { 4052 int nid; 4053 4054 for_each_node_state(nid, N_MEMORY) { 4055 pg_data_t *pgdat = NODE_DATA(nid); 4056 const struct cpumask *mask; 4057 4058 mask = cpumask_of_node(pgdat->node_id); 4059 4060 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 4061 /* One of our CPUs online: restore mask */ 4062 set_cpus_allowed_ptr(pgdat->kswapd, mask); 4063 } 4064 return 0; 4065 } 4066 4067 /* 4068 * This kswapd start function will be called by init and node-hot-add. 4069 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4070 */ 4071 int kswapd_run(int nid) 4072 { 4073 pg_data_t *pgdat = NODE_DATA(nid); 4074 int ret = 0; 4075 4076 if (pgdat->kswapd) 4077 return 0; 4078 4079 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4080 if (IS_ERR(pgdat->kswapd)) { 4081 /* failure at boot is fatal */ 4082 BUG_ON(system_state < SYSTEM_RUNNING); 4083 pr_err("Failed to start kswapd on node %d\n", nid); 4084 ret = PTR_ERR(pgdat->kswapd); 4085 pgdat->kswapd = NULL; 4086 } 4087 return ret; 4088 } 4089 4090 /* 4091 * Called by memory hotplug when all memory in a node is offlined. Caller must 4092 * hold mem_hotplug_begin/end(). 4093 */ 4094 void kswapd_stop(int nid) 4095 { 4096 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4097 4098 if (kswapd) { 4099 kthread_stop(kswapd); 4100 NODE_DATA(nid)->kswapd = NULL; 4101 } 4102 } 4103 4104 static int __init kswapd_init(void) 4105 { 4106 int nid, ret; 4107 4108 swap_setup(); 4109 for_each_node_state(nid, N_MEMORY) 4110 kswapd_run(nid); 4111 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4112 "mm/vmscan:online", kswapd_cpu_online, 4113 NULL); 4114 WARN_ON(ret < 0); 4115 return 0; 4116 } 4117 4118 module_init(kswapd_init) 4119 4120 #ifdef CONFIG_NUMA 4121 /* 4122 * Node reclaim mode 4123 * 4124 * If non-zero call node_reclaim when the number of free pages falls below 4125 * the watermarks. 4126 */ 4127 int node_reclaim_mode __read_mostly; 4128 4129 #define RECLAIM_OFF 0 4130 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4131 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4132 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4133 4134 /* 4135 * Priority for NODE_RECLAIM. This determines the fraction of pages 4136 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4137 * a zone. 4138 */ 4139 #define NODE_RECLAIM_PRIORITY 4 4140 4141 /* 4142 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4143 * occur. 4144 */ 4145 int sysctl_min_unmapped_ratio = 1; 4146 4147 /* 4148 * If the number of slab pages in a zone grows beyond this percentage then 4149 * slab reclaim needs to occur. 4150 */ 4151 int sysctl_min_slab_ratio = 5; 4152 4153 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4154 { 4155 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4156 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4157 node_page_state(pgdat, NR_ACTIVE_FILE); 4158 4159 /* 4160 * It's possible for there to be more file mapped pages than 4161 * accounted for by the pages on the file LRU lists because 4162 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4163 */ 4164 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4165 } 4166 4167 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4168 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4169 { 4170 unsigned long nr_pagecache_reclaimable; 4171 unsigned long delta = 0; 4172 4173 /* 4174 * If RECLAIM_UNMAP is set, then all file pages are considered 4175 * potentially reclaimable. Otherwise, we have to worry about 4176 * pages like swapcache and node_unmapped_file_pages() provides 4177 * a better estimate 4178 */ 4179 if (node_reclaim_mode & RECLAIM_UNMAP) 4180 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4181 else 4182 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4183 4184 /* If we can't clean pages, remove dirty pages from consideration */ 4185 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4186 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4187 4188 /* Watch for any possible underflows due to delta */ 4189 if (unlikely(delta > nr_pagecache_reclaimable)) 4190 delta = nr_pagecache_reclaimable; 4191 4192 return nr_pagecache_reclaimable - delta; 4193 } 4194 4195 /* 4196 * Try to free up some pages from this node through reclaim. 4197 */ 4198 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4199 { 4200 /* Minimum pages needed in order to stay on node */ 4201 const unsigned long nr_pages = 1 << order; 4202 struct task_struct *p = current; 4203 unsigned int noreclaim_flag; 4204 struct scan_control sc = { 4205 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4206 .gfp_mask = current_gfp_context(gfp_mask), 4207 .order = order, 4208 .priority = NODE_RECLAIM_PRIORITY, 4209 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4210 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4211 .may_swap = 1, 4212 .reclaim_idx = gfp_zone(gfp_mask), 4213 }; 4214 4215 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4216 sc.gfp_mask); 4217 4218 cond_resched(); 4219 fs_reclaim_acquire(sc.gfp_mask); 4220 /* 4221 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4222 * and we also need to be able to write out pages for RECLAIM_WRITE 4223 * and RECLAIM_UNMAP. 4224 */ 4225 noreclaim_flag = memalloc_noreclaim_save(); 4226 p->flags |= PF_SWAPWRITE; 4227 set_task_reclaim_state(p, &sc.reclaim_state); 4228 4229 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4230 /* 4231 * Free memory by calling shrink node with increasing 4232 * priorities until we have enough memory freed. 4233 */ 4234 do { 4235 shrink_node(pgdat, &sc); 4236 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4237 } 4238 4239 set_task_reclaim_state(p, NULL); 4240 current->flags &= ~PF_SWAPWRITE; 4241 memalloc_noreclaim_restore(noreclaim_flag); 4242 fs_reclaim_release(sc.gfp_mask); 4243 4244 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4245 4246 return sc.nr_reclaimed >= nr_pages; 4247 } 4248 4249 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4250 { 4251 int ret; 4252 4253 /* 4254 * Node reclaim reclaims unmapped file backed pages and 4255 * slab pages if we are over the defined limits. 4256 * 4257 * A small portion of unmapped file backed pages is needed for 4258 * file I/O otherwise pages read by file I/O will be immediately 4259 * thrown out if the node is overallocated. So we do not reclaim 4260 * if less than a specified percentage of the node is used by 4261 * unmapped file backed pages. 4262 */ 4263 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4264 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4265 return NODE_RECLAIM_FULL; 4266 4267 /* 4268 * Do not scan if the allocation should not be delayed. 4269 */ 4270 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4271 return NODE_RECLAIM_NOSCAN; 4272 4273 /* 4274 * Only run node reclaim on the local node or on nodes that do not 4275 * have associated processors. This will favor the local processor 4276 * over remote processors and spread off node memory allocations 4277 * as wide as possible. 4278 */ 4279 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4280 return NODE_RECLAIM_NOSCAN; 4281 4282 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4283 return NODE_RECLAIM_NOSCAN; 4284 4285 ret = __node_reclaim(pgdat, gfp_mask, order); 4286 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4287 4288 if (!ret) 4289 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4290 4291 return ret; 4292 } 4293 #endif 4294 4295 /* 4296 * page_evictable - test whether a page is evictable 4297 * @page: the page to test 4298 * 4299 * Test whether page is evictable--i.e., should be placed on active/inactive 4300 * lists vs unevictable list. 4301 * 4302 * Reasons page might not be evictable: 4303 * (1) page's mapping marked unevictable 4304 * (2) page is part of an mlocked VMA 4305 * 4306 */ 4307 int page_evictable(struct page *page) 4308 { 4309 int ret; 4310 4311 /* Prevent address_space of inode and swap cache from being freed */ 4312 rcu_read_lock(); 4313 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4314 rcu_read_unlock(); 4315 return ret; 4316 } 4317 4318 /** 4319 * check_move_unevictable_pages - check pages for evictability and move to 4320 * appropriate zone lru list 4321 * @pvec: pagevec with lru pages to check 4322 * 4323 * Checks pages for evictability, if an evictable page is in the unevictable 4324 * lru list, moves it to the appropriate evictable lru list. This function 4325 * should be only used for lru pages. 4326 */ 4327 void check_move_unevictable_pages(struct pagevec *pvec) 4328 { 4329 struct lruvec *lruvec; 4330 struct pglist_data *pgdat = NULL; 4331 int pgscanned = 0; 4332 int pgrescued = 0; 4333 int i; 4334 4335 for (i = 0; i < pvec->nr; i++) { 4336 struct page *page = pvec->pages[i]; 4337 struct pglist_data *pagepgdat = page_pgdat(page); 4338 4339 pgscanned++; 4340 if (pagepgdat != pgdat) { 4341 if (pgdat) 4342 spin_unlock_irq(&pgdat->lru_lock); 4343 pgdat = pagepgdat; 4344 spin_lock_irq(&pgdat->lru_lock); 4345 } 4346 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4347 4348 if (!PageLRU(page) || !PageUnevictable(page)) 4349 continue; 4350 4351 if (page_evictable(page)) { 4352 enum lru_list lru = page_lru_base_type(page); 4353 4354 VM_BUG_ON_PAGE(PageActive(page), page); 4355 ClearPageUnevictable(page); 4356 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4357 add_page_to_lru_list(page, lruvec, lru); 4358 pgrescued++; 4359 } 4360 } 4361 4362 if (pgdat) { 4363 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4364 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4365 spin_unlock_irq(&pgdat->lru_lock); 4366 } 4367 } 4368 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4369