1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 #include <linux/sched/sysctl.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* 83 * Scan pressure balancing between anon and file LRUs 84 */ 85 unsigned long anon_cost; 86 unsigned long file_cost; 87 88 /* Can active pages be deactivated as part of reclaim? */ 89 #define DEACTIVATE_ANON 1 90 #define DEACTIVATE_FILE 2 91 unsigned int may_deactivate:2; 92 unsigned int force_deactivate:1; 93 unsigned int skipped_deactivate:1; 94 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 96 unsigned int may_writepage:1; 97 98 /* Can mapped pages be reclaimed? */ 99 unsigned int may_unmap:1; 100 101 /* Can pages be swapped as part of reclaim? */ 102 unsigned int may_swap:1; 103 104 /* 105 * Cgroup memory below memory.low is protected as long as we 106 * don't threaten to OOM. If any cgroup is reclaimed at 107 * reduced force or passed over entirely due to its memory.low 108 * setting (memcg_low_skipped), and nothing is reclaimed as a 109 * result, then go back for one more cycle that reclaims the protected 110 * memory (memcg_low_reclaim) to avert OOM. 111 */ 112 unsigned int memcg_low_reclaim:1; 113 unsigned int memcg_low_skipped:1; 114 115 unsigned int hibernation_mode:1; 116 117 /* One of the zones is ready for compaction */ 118 unsigned int compaction_ready:1; 119 120 /* There is easily reclaimable cold cache in the current node */ 121 unsigned int cache_trim_mode:1; 122 123 /* The file pages on the current node are dangerously low */ 124 unsigned int file_is_tiny:1; 125 126 /* Always discard instead of demoting to lower tier memory */ 127 unsigned int no_demotion:1; 128 129 /* Allocation order */ 130 s8 order; 131 132 /* Scan (total_size >> priority) pages at once */ 133 s8 priority; 134 135 /* The highest zone to isolate pages for reclaim from */ 136 s8 reclaim_idx; 137 138 /* This context's GFP mask */ 139 gfp_t gfp_mask; 140 141 /* Incremented by the number of inactive pages that were scanned */ 142 unsigned long nr_scanned; 143 144 /* Number of pages freed so far during a call to shrink_zones() */ 145 unsigned long nr_reclaimed; 146 147 struct { 148 unsigned int dirty; 149 unsigned int unqueued_dirty; 150 unsigned int congested; 151 unsigned int writeback; 152 unsigned int immediate; 153 unsigned int file_taken; 154 unsigned int taken; 155 } nr; 156 157 /* for recording the reclaimed slab by now */ 158 struct reclaim_state reclaim_state; 159 }; 160 161 #ifdef ARCH_HAS_PREFETCHW 162 #define prefetchw_prev_lru_page(_page, _base, _field) \ 163 do { \ 164 if ((_page)->lru.prev != _base) { \ 165 struct page *prev; \ 166 \ 167 prev = lru_to_page(&(_page->lru)); \ 168 prefetchw(&prev->_field); \ 169 } \ 170 } while (0) 171 #else 172 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 173 #endif 174 175 /* 176 * From 0 .. 200. Higher means more swappy. 177 */ 178 int vm_swappiness = 60; 179 180 static void set_task_reclaim_state(struct task_struct *task, 181 struct reclaim_state *rs) 182 { 183 /* Check for an overwrite */ 184 WARN_ON_ONCE(rs && task->reclaim_state); 185 186 /* Check for the nulling of an already-nulled member */ 187 WARN_ON_ONCE(!rs && !task->reclaim_state); 188 189 task->reclaim_state = rs; 190 } 191 192 static LIST_HEAD(shrinker_list); 193 static DECLARE_RWSEM(shrinker_rwsem); 194 195 #ifdef CONFIG_MEMCG 196 static int shrinker_nr_max; 197 198 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 199 static inline int shrinker_map_size(int nr_items) 200 { 201 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 202 } 203 204 static inline int shrinker_defer_size(int nr_items) 205 { 206 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 207 } 208 209 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 210 int nid) 211 { 212 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 213 lockdep_is_held(&shrinker_rwsem)); 214 } 215 216 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 217 int map_size, int defer_size, 218 int old_map_size, int old_defer_size) 219 { 220 struct shrinker_info *new, *old; 221 struct mem_cgroup_per_node *pn; 222 int nid; 223 int size = map_size + defer_size; 224 225 for_each_node(nid) { 226 pn = memcg->nodeinfo[nid]; 227 old = shrinker_info_protected(memcg, nid); 228 /* Not yet online memcg */ 229 if (!old) 230 return 0; 231 232 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 233 if (!new) 234 return -ENOMEM; 235 236 new->nr_deferred = (atomic_long_t *)(new + 1); 237 new->map = (void *)new->nr_deferred + defer_size; 238 239 /* map: set all old bits, clear all new bits */ 240 memset(new->map, (int)0xff, old_map_size); 241 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 242 /* nr_deferred: copy old values, clear all new values */ 243 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 244 memset((void *)new->nr_deferred + old_defer_size, 0, 245 defer_size - old_defer_size); 246 247 rcu_assign_pointer(pn->shrinker_info, new); 248 kvfree_rcu(old, rcu); 249 } 250 251 return 0; 252 } 253 254 void free_shrinker_info(struct mem_cgroup *memcg) 255 { 256 struct mem_cgroup_per_node *pn; 257 struct shrinker_info *info; 258 int nid; 259 260 for_each_node(nid) { 261 pn = memcg->nodeinfo[nid]; 262 info = rcu_dereference_protected(pn->shrinker_info, true); 263 kvfree(info); 264 rcu_assign_pointer(pn->shrinker_info, NULL); 265 } 266 } 267 268 int alloc_shrinker_info(struct mem_cgroup *memcg) 269 { 270 struct shrinker_info *info; 271 int nid, size, ret = 0; 272 int map_size, defer_size = 0; 273 274 down_write(&shrinker_rwsem); 275 map_size = shrinker_map_size(shrinker_nr_max); 276 defer_size = shrinker_defer_size(shrinker_nr_max); 277 size = map_size + defer_size; 278 for_each_node(nid) { 279 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 280 if (!info) { 281 free_shrinker_info(memcg); 282 ret = -ENOMEM; 283 break; 284 } 285 info->nr_deferred = (atomic_long_t *)(info + 1); 286 info->map = (void *)info->nr_deferred + defer_size; 287 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 288 } 289 up_write(&shrinker_rwsem); 290 291 return ret; 292 } 293 294 static inline bool need_expand(int nr_max) 295 { 296 return round_up(nr_max, BITS_PER_LONG) > 297 round_up(shrinker_nr_max, BITS_PER_LONG); 298 } 299 300 static int expand_shrinker_info(int new_id) 301 { 302 int ret = 0; 303 int new_nr_max = new_id + 1; 304 int map_size, defer_size = 0; 305 int old_map_size, old_defer_size = 0; 306 struct mem_cgroup *memcg; 307 308 if (!need_expand(new_nr_max)) 309 goto out; 310 311 if (!root_mem_cgroup) 312 goto out; 313 314 lockdep_assert_held(&shrinker_rwsem); 315 316 map_size = shrinker_map_size(new_nr_max); 317 defer_size = shrinker_defer_size(new_nr_max); 318 old_map_size = shrinker_map_size(shrinker_nr_max); 319 old_defer_size = shrinker_defer_size(shrinker_nr_max); 320 321 memcg = mem_cgroup_iter(NULL, NULL, NULL); 322 do { 323 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 324 old_map_size, old_defer_size); 325 if (ret) { 326 mem_cgroup_iter_break(NULL, memcg); 327 goto out; 328 } 329 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 330 out: 331 if (!ret) 332 shrinker_nr_max = new_nr_max; 333 334 return ret; 335 } 336 337 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 338 { 339 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 340 struct shrinker_info *info; 341 342 rcu_read_lock(); 343 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 344 /* Pairs with smp mb in shrink_slab() */ 345 smp_mb__before_atomic(); 346 set_bit(shrinker_id, info->map); 347 rcu_read_unlock(); 348 } 349 } 350 351 static DEFINE_IDR(shrinker_idr); 352 353 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 354 { 355 int id, ret = -ENOMEM; 356 357 if (mem_cgroup_disabled()) 358 return -ENOSYS; 359 360 down_write(&shrinker_rwsem); 361 /* This may call shrinker, so it must use down_read_trylock() */ 362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 363 if (id < 0) 364 goto unlock; 365 366 if (id >= shrinker_nr_max) { 367 if (expand_shrinker_info(id)) { 368 idr_remove(&shrinker_idr, id); 369 goto unlock; 370 } 371 } 372 shrinker->id = id; 373 ret = 0; 374 unlock: 375 up_write(&shrinker_rwsem); 376 return ret; 377 } 378 379 static void unregister_memcg_shrinker(struct shrinker *shrinker) 380 { 381 int id = shrinker->id; 382 383 BUG_ON(id < 0); 384 385 lockdep_assert_held(&shrinker_rwsem); 386 387 idr_remove(&shrinker_idr, id); 388 } 389 390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 391 struct mem_cgroup *memcg) 392 { 393 struct shrinker_info *info; 394 395 info = shrinker_info_protected(memcg, nid); 396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 397 } 398 399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 400 struct mem_cgroup *memcg) 401 { 402 struct shrinker_info *info; 403 404 info = shrinker_info_protected(memcg, nid); 405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 406 } 407 408 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 409 { 410 int i, nid; 411 long nr; 412 struct mem_cgroup *parent; 413 struct shrinker_info *child_info, *parent_info; 414 415 parent = parent_mem_cgroup(memcg); 416 if (!parent) 417 parent = root_mem_cgroup; 418 419 /* Prevent from concurrent shrinker_info expand */ 420 down_read(&shrinker_rwsem); 421 for_each_node(nid) { 422 child_info = shrinker_info_protected(memcg, nid); 423 parent_info = shrinker_info_protected(parent, nid); 424 for (i = 0; i < shrinker_nr_max; i++) { 425 nr = atomic_long_read(&child_info->nr_deferred[i]); 426 atomic_long_add(nr, &parent_info->nr_deferred[i]); 427 } 428 } 429 up_read(&shrinker_rwsem); 430 } 431 432 static bool cgroup_reclaim(struct scan_control *sc) 433 { 434 return sc->target_mem_cgroup; 435 } 436 437 /** 438 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 439 * @sc: scan_control in question 440 * 441 * The normal page dirty throttling mechanism in balance_dirty_pages() is 442 * completely broken with the legacy memcg and direct stalling in 443 * shrink_page_list() is used for throttling instead, which lacks all the 444 * niceties such as fairness, adaptive pausing, bandwidth proportional 445 * allocation and configurability. 446 * 447 * This function tests whether the vmscan currently in progress can assume 448 * that the normal dirty throttling mechanism is operational. 449 */ 450 static bool writeback_throttling_sane(struct scan_control *sc) 451 { 452 if (!cgroup_reclaim(sc)) 453 return true; 454 #ifdef CONFIG_CGROUP_WRITEBACK 455 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 return true; 457 #endif 458 return false; 459 } 460 #else 461 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 462 { 463 return -ENOSYS; 464 } 465 466 static void unregister_memcg_shrinker(struct shrinker *shrinker) 467 { 468 } 469 470 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 471 struct mem_cgroup *memcg) 472 { 473 return 0; 474 } 475 476 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 477 struct mem_cgroup *memcg) 478 { 479 return 0; 480 } 481 482 static bool cgroup_reclaim(struct scan_control *sc) 483 { 484 return false; 485 } 486 487 static bool writeback_throttling_sane(struct scan_control *sc) 488 { 489 return true; 490 } 491 #endif 492 493 static long xchg_nr_deferred(struct shrinker *shrinker, 494 struct shrink_control *sc) 495 { 496 int nid = sc->nid; 497 498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 499 nid = 0; 500 501 if (sc->memcg && 502 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 503 return xchg_nr_deferred_memcg(nid, shrinker, 504 sc->memcg); 505 506 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 507 } 508 509 510 static long add_nr_deferred(long nr, struct shrinker *shrinker, 511 struct shrink_control *sc) 512 { 513 int nid = sc->nid; 514 515 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 516 nid = 0; 517 518 if (sc->memcg && 519 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 520 return add_nr_deferred_memcg(nr, nid, shrinker, 521 sc->memcg); 522 523 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 524 } 525 526 static bool can_demote(int nid, struct scan_control *sc) 527 { 528 if (!numa_demotion_enabled) 529 return false; 530 if (sc) { 531 if (sc->no_demotion) 532 return false; 533 /* It is pointless to do demotion in memcg reclaim */ 534 if (cgroup_reclaim(sc)) 535 return false; 536 } 537 if (next_demotion_node(nid) == NUMA_NO_NODE) 538 return false; 539 540 return true; 541 } 542 543 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 544 int nid, 545 struct scan_control *sc) 546 { 547 if (memcg == NULL) { 548 /* 549 * For non-memcg reclaim, is there 550 * space in any swap device? 551 */ 552 if (get_nr_swap_pages() > 0) 553 return true; 554 } else { 555 /* Is the memcg below its swap limit? */ 556 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 557 return true; 558 } 559 560 /* 561 * The page can not be swapped. 562 * 563 * Can it be reclaimed from this node via demotion? 564 */ 565 return can_demote(nid, sc); 566 } 567 568 /* 569 * This misses isolated pages which are not accounted for to save counters. 570 * As the data only determines if reclaim or compaction continues, it is 571 * not expected that isolated pages will be a dominating factor. 572 */ 573 unsigned long zone_reclaimable_pages(struct zone *zone) 574 { 575 unsigned long nr; 576 577 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 578 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 579 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 580 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 581 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 582 583 return nr; 584 } 585 586 /** 587 * lruvec_lru_size - Returns the number of pages on the given LRU list. 588 * @lruvec: lru vector 589 * @lru: lru to use 590 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 591 */ 592 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 593 int zone_idx) 594 { 595 unsigned long size = 0; 596 int zid; 597 598 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 599 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 600 601 if (!managed_zone(zone)) 602 continue; 603 604 if (!mem_cgroup_disabled()) 605 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 606 else 607 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 608 } 609 return size; 610 } 611 612 /* 613 * Add a shrinker callback to be called from the vm. 614 */ 615 int prealloc_shrinker(struct shrinker *shrinker) 616 { 617 unsigned int size; 618 int err; 619 620 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 621 err = prealloc_memcg_shrinker(shrinker); 622 if (err != -ENOSYS) 623 return err; 624 625 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 626 } 627 628 size = sizeof(*shrinker->nr_deferred); 629 if (shrinker->flags & SHRINKER_NUMA_AWARE) 630 size *= nr_node_ids; 631 632 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 633 if (!shrinker->nr_deferred) 634 return -ENOMEM; 635 636 return 0; 637 } 638 639 void free_prealloced_shrinker(struct shrinker *shrinker) 640 { 641 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 642 down_write(&shrinker_rwsem); 643 unregister_memcg_shrinker(shrinker); 644 up_write(&shrinker_rwsem); 645 return; 646 } 647 648 kfree(shrinker->nr_deferred); 649 shrinker->nr_deferred = NULL; 650 } 651 652 void register_shrinker_prepared(struct shrinker *shrinker) 653 { 654 down_write(&shrinker_rwsem); 655 list_add_tail(&shrinker->list, &shrinker_list); 656 shrinker->flags |= SHRINKER_REGISTERED; 657 up_write(&shrinker_rwsem); 658 } 659 660 int register_shrinker(struct shrinker *shrinker) 661 { 662 int err = prealloc_shrinker(shrinker); 663 664 if (err) 665 return err; 666 register_shrinker_prepared(shrinker); 667 return 0; 668 } 669 EXPORT_SYMBOL(register_shrinker); 670 671 /* 672 * Remove one 673 */ 674 void unregister_shrinker(struct shrinker *shrinker) 675 { 676 if (!(shrinker->flags & SHRINKER_REGISTERED)) 677 return; 678 679 down_write(&shrinker_rwsem); 680 list_del(&shrinker->list); 681 shrinker->flags &= ~SHRINKER_REGISTERED; 682 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 683 unregister_memcg_shrinker(shrinker); 684 up_write(&shrinker_rwsem); 685 686 kfree(shrinker->nr_deferred); 687 shrinker->nr_deferred = NULL; 688 } 689 EXPORT_SYMBOL(unregister_shrinker); 690 691 /** 692 * synchronize_shrinkers - Wait for all running shrinkers to complete. 693 * 694 * This is equivalent to calling unregister_shrink() and register_shrinker(), 695 * but atomically and with less overhead. This is useful to guarantee that all 696 * shrinker invocations have seen an update, before freeing memory, similar to 697 * rcu. 698 */ 699 void synchronize_shrinkers(void) 700 { 701 down_write(&shrinker_rwsem); 702 up_write(&shrinker_rwsem); 703 } 704 EXPORT_SYMBOL(synchronize_shrinkers); 705 706 #define SHRINK_BATCH 128 707 708 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 709 struct shrinker *shrinker, int priority) 710 { 711 unsigned long freed = 0; 712 unsigned long long delta; 713 long total_scan; 714 long freeable; 715 long nr; 716 long new_nr; 717 long batch_size = shrinker->batch ? shrinker->batch 718 : SHRINK_BATCH; 719 long scanned = 0, next_deferred; 720 721 freeable = shrinker->count_objects(shrinker, shrinkctl); 722 if (freeable == 0 || freeable == SHRINK_EMPTY) 723 return freeable; 724 725 /* 726 * copy the current shrinker scan count into a local variable 727 * and zero it so that other concurrent shrinker invocations 728 * don't also do this scanning work. 729 */ 730 nr = xchg_nr_deferred(shrinker, shrinkctl); 731 732 if (shrinker->seeks) { 733 delta = freeable >> priority; 734 delta *= 4; 735 do_div(delta, shrinker->seeks); 736 } else { 737 /* 738 * These objects don't require any IO to create. Trim 739 * them aggressively under memory pressure to keep 740 * them from causing refetches in the IO caches. 741 */ 742 delta = freeable / 2; 743 } 744 745 total_scan = nr >> priority; 746 total_scan += delta; 747 total_scan = min(total_scan, (2 * freeable)); 748 749 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 750 freeable, delta, total_scan, priority); 751 752 /* 753 * Normally, we should not scan less than batch_size objects in one 754 * pass to avoid too frequent shrinker calls, but if the slab has less 755 * than batch_size objects in total and we are really tight on memory, 756 * we will try to reclaim all available objects, otherwise we can end 757 * up failing allocations although there are plenty of reclaimable 758 * objects spread over several slabs with usage less than the 759 * batch_size. 760 * 761 * We detect the "tight on memory" situations by looking at the total 762 * number of objects we want to scan (total_scan). If it is greater 763 * than the total number of objects on slab (freeable), we must be 764 * scanning at high prio and therefore should try to reclaim as much as 765 * possible. 766 */ 767 while (total_scan >= batch_size || 768 total_scan >= freeable) { 769 unsigned long ret; 770 unsigned long nr_to_scan = min(batch_size, total_scan); 771 772 shrinkctl->nr_to_scan = nr_to_scan; 773 shrinkctl->nr_scanned = nr_to_scan; 774 ret = shrinker->scan_objects(shrinker, shrinkctl); 775 if (ret == SHRINK_STOP) 776 break; 777 freed += ret; 778 779 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 780 total_scan -= shrinkctl->nr_scanned; 781 scanned += shrinkctl->nr_scanned; 782 783 cond_resched(); 784 } 785 786 /* 787 * The deferred work is increased by any new work (delta) that wasn't 788 * done, decreased by old deferred work that was done now. 789 * 790 * And it is capped to two times of the freeable items. 791 */ 792 next_deferred = max_t(long, (nr + delta - scanned), 0); 793 next_deferred = min(next_deferred, (2 * freeable)); 794 795 /* 796 * move the unused scan count back into the shrinker in a 797 * manner that handles concurrent updates. 798 */ 799 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 800 801 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 802 return freed; 803 } 804 805 #ifdef CONFIG_MEMCG 806 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 807 struct mem_cgroup *memcg, int priority) 808 { 809 struct shrinker_info *info; 810 unsigned long ret, freed = 0; 811 int i; 812 813 if (!mem_cgroup_online(memcg)) 814 return 0; 815 816 if (!down_read_trylock(&shrinker_rwsem)) 817 return 0; 818 819 info = shrinker_info_protected(memcg, nid); 820 if (unlikely(!info)) 821 goto unlock; 822 823 for_each_set_bit(i, info->map, shrinker_nr_max) { 824 struct shrink_control sc = { 825 .gfp_mask = gfp_mask, 826 .nid = nid, 827 .memcg = memcg, 828 }; 829 struct shrinker *shrinker; 830 831 shrinker = idr_find(&shrinker_idr, i); 832 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 833 if (!shrinker) 834 clear_bit(i, info->map); 835 continue; 836 } 837 838 /* Call non-slab shrinkers even though kmem is disabled */ 839 if (!memcg_kmem_enabled() && 840 !(shrinker->flags & SHRINKER_NONSLAB)) 841 continue; 842 843 ret = do_shrink_slab(&sc, shrinker, priority); 844 if (ret == SHRINK_EMPTY) { 845 clear_bit(i, info->map); 846 /* 847 * After the shrinker reported that it had no objects to 848 * free, but before we cleared the corresponding bit in 849 * the memcg shrinker map, a new object might have been 850 * added. To make sure, we have the bit set in this 851 * case, we invoke the shrinker one more time and reset 852 * the bit if it reports that it is not empty anymore. 853 * The memory barrier here pairs with the barrier in 854 * set_shrinker_bit(): 855 * 856 * list_lru_add() shrink_slab_memcg() 857 * list_add_tail() clear_bit() 858 * <MB> <MB> 859 * set_bit() do_shrink_slab() 860 */ 861 smp_mb__after_atomic(); 862 ret = do_shrink_slab(&sc, shrinker, priority); 863 if (ret == SHRINK_EMPTY) 864 ret = 0; 865 else 866 set_shrinker_bit(memcg, nid, i); 867 } 868 freed += ret; 869 870 if (rwsem_is_contended(&shrinker_rwsem)) { 871 freed = freed ? : 1; 872 break; 873 } 874 } 875 unlock: 876 up_read(&shrinker_rwsem); 877 return freed; 878 } 879 #else /* CONFIG_MEMCG */ 880 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 881 struct mem_cgroup *memcg, int priority) 882 { 883 return 0; 884 } 885 #endif /* CONFIG_MEMCG */ 886 887 /** 888 * shrink_slab - shrink slab caches 889 * @gfp_mask: allocation context 890 * @nid: node whose slab caches to target 891 * @memcg: memory cgroup whose slab caches to target 892 * @priority: the reclaim priority 893 * 894 * Call the shrink functions to age shrinkable caches. 895 * 896 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 897 * unaware shrinkers will receive a node id of 0 instead. 898 * 899 * @memcg specifies the memory cgroup to target. Unaware shrinkers 900 * are called only if it is the root cgroup. 901 * 902 * @priority is sc->priority, we take the number of objects and >> by priority 903 * in order to get the scan target. 904 * 905 * Returns the number of reclaimed slab objects. 906 */ 907 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 908 struct mem_cgroup *memcg, 909 int priority) 910 { 911 unsigned long ret, freed = 0; 912 struct shrinker *shrinker; 913 914 /* 915 * The root memcg might be allocated even though memcg is disabled 916 * via "cgroup_disable=memory" boot parameter. This could make 917 * mem_cgroup_is_root() return false, then just run memcg slab 918 * shrink, but skip global shrink. This may result in premature 919 * oom. 920 */ 921 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 922 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 923 924 if (!down_read_trylock(&shrinker_rwsem)) 925 goto out; 926 927 list_for_each_entry(shrinker, &shrinker_list, list) { 928 struct shrink_control sc = { 929 .gfp_mask = gfp_mask, 930 .nid = nid, 931 .memcg = memcg, 932 }; 933 934 ret = do_shrink_slab(&sc, shrinker, priority); 935 if (ret == SHRINK_EMPTY) 936 ret = 0; 937 freed += ret; 938 /* 939 * Bail out if someone want to register a new shrinker to 940 * prevent the registration from being stalled for long periods 941 * by parallel ongoing shrinking. 942 */ 943 if (rwsem_is_contended(&shrinker_rwsem)) { 944 freed = freed ? : 1; 945 break; 946 } 947 } 948 949 up_read(&shrinker_rwsem); 950 out: 951 cond_resched(); 952 return freed; 953 } 954 955 static void drop_slab_node(int nid) 956 { 957 unsigned long freed; 958 int shift = 0; 959 960 do { 961 struct mem_cgroup *memcg = NULL; 962 963 if (fatal_signal_pending(current)) 964 return; 965 966 freed = 0; 967 memcg = mem_cgroup_iter(NULL, NULL, NULL); 968 do { 969 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 970 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 971 } while ((freed >> shift++) > 1); 972 } 973 974 void drop_slab(void) 975 { 976 int nid; 977 978 for_each_online_node(nid) 979 drop_slab_node(nid); 980 } 981 982 static inline int is_page_cache_freeable(struct page *page) 983 { 984 /* 985 * A freeable page cache page is referenced only by the caller 986 * that isolated the page, the page cache and optional buffer 987 * heads at page->private. 988 */ 989 int page_cache_pins = thp_nr_pages(page); 990 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 991 } 992 993 /* 994 * We detected a synchronous write error writing a page out. Probably 995 * -ENOSPC. We need to propagate that into the address_space for a subsequent 996 * fsync(), msync() or close(). 997 * 998 * The tricky part is that after writepage we cannot touch the mapping: nothing 999 * prevents it from being freed up. But we have a ref on the page and once 1000 * that page is locked, the mapping is pinned. 1001 * 1002 * We're allowed to run sleeping lock_page() here because we know the caller has 1003 * __GFP_FS. 1004 */ 1005 static void handle_write_error(struct address_space *mapping, 1006 struct page *page, int error) 1007 { 1008 lock_page(page); 1009 if (page_mapping(page) == mapping) 1010 mapping_set_error(mapping, error); 1011 unlock_page(page); 1012 } 1013 1014 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1015 { 1016 int reclaimable = 0, write_pending = 0; 1017 int i; 1018 1019 /* 1020 * If kswapd is disabled, reschedule if necessary but do not 1021 * throttle as the system is likely near OOM. 1022 */ 1023 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1024 return true; 1025 1026 /* 1027 * If there are a lot of dirty/writeback pages then do not 1028 * throttle as throttling will occur when the pages cycle 1029 * towards the end of the LRU if still under writeback. 1030 */ 1031 for (i = 0; i < MAX_NR_ZONES; i++) { 1032 struct zone *zone = pgdat->node_zones + i; 1033 1034 if (!populated_zone(zone)) 1035 continue; 1036 1037 reclaimable += zone_reclaimable_pages(zone); 1038 write_pending += zone_page_state_snapshot(zone, 1039 NR_ZONE_WRITE_PENDING); 1040 } 1041 if (2 * write_pending <= reclaimable) 1042 return true; 1043 1044 return false; 1045 } 1046 1047 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1048 { 1049 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1050 long timeout, ret; 1051 DEFINE_WAIT(wait); 1052 1053 /* 1054 * Do not throttle IO workers, kthreads other than kswapd or 1055 * workqueues. They may be required for reclaim to make 1056 * forward progress (e.g. journalling workqueues or kthreads). 1057 */ 1058 if (!current_is_kswapd() && 1059 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1060 cond_resched(); 1061 return; 1062 } 1063 1064 /* 1065 * These figures are pulled out of thin air. 1066 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1067 * parallel reclaimers which is a short-lived event so the timeout is 1068 * short. Failing to make progress or waiting on writeback are 1069 * potentially long-lived events so use a longer timeout. This is shaky 1070 * logic as a failure to make progress could be due to anything from 1071 * writeback to a slow device to excessive references pages at the tail 1072 * of the inactive LRU. 1073 */ 1074 switch(reason) { 1075 case VMSCAN_THROTTLE_WRITEBACK: 1076 timeout = HZ/10; 1077 1078 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1079 WRITE_ONCE(pgdat->nr_reclaim_start, 1080 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1081 } 1082 1083 break; 1084 case VMSCAN_THROTTLE_CONGESTED: 1085 fallthrough; 1086 case VMSCAN_THROTTLE_NOPROGRESS: 1087 if (skip_throttle_noprogress(pgdat)) { 1088 cond_resched(); 1089 return; 1090 } 1091 1092 timeout = 1; 1093 1094 break; 1095 case VMSCAN_THROTTLE_ISOLATED: 1096 timeout = HZ/50; 1097 break; 1098 default: 1099 WARN_ON_ONCE(1); 1100 timeout = HZ; 1101 break; 1102 } 1103 1104 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1105 ret = schedule_timeout(timeout); 1106 finish_wait(wqh, &wait); 1107 1108 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1109 atomic_dec(&pgdat->nr_writeback_throttled); 1110 1111 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1112 jiffies_to_usecs(timeout - ret), 1113 reason); 1114 } 1115 1116 /* 1117 * Account for pages written if tasks are throttled waiting on dirty 1118 * pages to clean. If enough pages have been cleaned since throttling 1119 * started then wakeup the throttled tasks. 1120 */ 1121 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1122 int nr_throttled) 1123 { 1124 unsigned long nr_written; 1125 1126 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1127 1128 /* 1129 * This is an inaccurate read as the per-cpu deltas may not 1130 * be synchronised. However, given that the system is 1131 * writeback throttled, it is not worth taking the penalty 1132 * of getting an accurate count. At worst, the throttle 1133 * timeout guarantees forward progress. 1134 */ 1135 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1136 READ_ONCE(pgdat->nr_reclaim_start); 1137 1138 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1139 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1140 } 1141 1142 /* possible outcome of pageout() */ 1143 typedef enum { 1144 /* failed to write page out, page is locked */ 1145 PAGE_KEEP, 1146 /* move page to the active list, page is locked */ 1147 PAGE_ACTIVATE, 1148 /* page has been sent to the disk successfully, page is unlocked */ 1149 PAGE_SUCCESS, 1150 /* page is clean and locked */ 1151 PAGE_CLEAN, 1152 } pageout_t; 1153 1154 /* 1155 * pageout is called by shrink_page_list() for each dirty page. 1156 * Calls ->writepage(). 1157 */ 1158 static pageout_t pageout(struct page *page, struct address_space *mapping) 1159 { 1160 /* 1161 * If the page is dirty, only perform writeback if that write 1162 * will be non-blocking. To prevent this allocation from being 1163 * stalled by pagecache activity. But note that there may be 1164 * stalls if we need to run get_block(). We could test 1165 * PagePrivate for that. 1166 * 1167 * If this process is currently in __generic_file_write_iter() against 1168 * this page's queue, we can perform writeback even if that 1169 * will block. 1170 * 1171 * If the page is swapcache, write it back even if that would 1172 * block, for some throttling. This happens by accident, because 1173 * swap_backing_dev_info is bust: it doesn't reflect the 1174 * congestion state of the swapdevs. Easy to fix, if needed. 1175 */ 1176 if (!is_page_cache_freeable(page)) 1177 return PAGE_KEEP; 1178 if (!mapping) { 1179 /* 1180 * Some data journaling orphaned pages can have 1181 * page->mapping == NULL while being dirty with clean buffers. 1182 */ 1183 if (page_has_private(page)) { 1184 if (try_to_free_buffers(page)) { 1185 ClearPageDirty(page); 1186 pr_info("%s: orphaned page\n", __func__); 1187 return PAGE_CLEAN; 1188 } 1189 } 1190 return PAGE_KEEP; 1191 } 1192 if (mapping->a_ops->writepage == NULL) 1193 return PAGE_ACTIVATE; 1194 1195 if (clear_page_dirty_for_io(page)) { 1196 int res; 1197 struct writeback_control wbc = { 1198 .sync_mode = WB_SYNC_NONE, 1199 .nr_to_write = SWAP_CLUSTER_MAX, 1200 .range_start = 0, 1201 .range_end = LLONG_MAX, 1202 .for_reclaim = 1, 1203 }; 1204 1205 SetPageReclaim(page); 1206 res = mapping->a_ops->writepage(page, &wbc); 1207 if (res < 0) 1208 handle_write_error(mapping, page, res); 1209 if (res == AOP_WRITEPAGE_ACTIVATE) { 1210 ClearPageReclaim(page); 1211 return PAGE_ACTIVATE; 1212 } 1213 1214 if (!PageWriteback(page)) { 1215 /* synchronous write or broken a_ops? */ 1216 ClearPageReclaim(page); 1217 } 1218 trace_mm_vmscan_writepage(page); 1219 inc_node_page_state(page, NR_VMSCAN_WRITE); 1220 return PAGE_SUCCESS; 1221 } 1222 1223 return PAGE_CLEAN; 1224 } 1225 1226 /* 1227 * Same as remove_mapping, but if the page is removed from the mapping, it 1228 * gets returned with a refcount of 0. 1229 */ 1230 static int __remove_mapping(struct address_space *mapping, struct page *page, 1231 bool reclaimed, struct mem_cgroup *target_memcg) 1232 { 1233 int refcount; 1234 void *shadow = NULL; 1235 1236 BUG_ON(!PageLocked(page)); 1237 BUG_ON(mapping != page_mapping(page)); 1238 1239 if (!PageSwapCache(page)) 1240 spin_lock(&mapping->host->i_lock); 1241 xa_lock_irq(&mapping->i_pages); 1242 /* 1243 * The non racy check for a busy page. 1244 * 1245 * Must be careful with the order of the tests. When someone has 1246 * a ref to the page, it may be possible that they dirty it then 1247 * drop the reference. So if PageDirty is tested before page_count 1248 * here, then the following race may occur: 1249 * 1250 * get_user_pages(&page); 1251 * [user mapping goes away] 1252 * write_to(page); 1253 * !PageDirty(page) [good] 1254 * SetPageDirty(page); 1255 * put_page(page); 1256 * !page_count(page) [good, discard it] 1257 * 1258 * [oops, our write_to data is lost] 1259 * 1260 * Reversing the order of the tests ensures such a situation cannot 1261 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1262 * load is not satisfied before that of page->_refcount. 1263 * 1264 * Note that if SetPageDirty is always performed via set_page_dirty, 1265 * and thus under the i_pages lock, then this ordering is not required. 1266 */ 1267 refcount = 1 + compound_nr(page); 1268 if (!page_ref_freeze(page, refcount)) 1269 goto cannot_free; 1270 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1271 if (unlikely(PageDirty(page))) { 1272 page_ref_unfreeze(page, refcount); 1273 goto cannot_free; 1274 } 1275 1276 if (PageSwapCache(page)) { 1277 swp_entry_t swap = { .val = page_private(page) }; 1278 mem_cgroup_swapout(page, swap); 1279 if (reclaimed && !mapping_exiting(mapping)) 1280 shadow = workingset_eviction(page, target_memcg); 1281 __delete_from_swap_cache(page, swap, shadow); 1282 xa_unlock_irq(&mapping->i_pages); 1283 put_swap_page(page, swap); 1284 } else { 1285 void (*freepage)(struct page *); 1286 1287 freepage = mapping->a_ops->freepage; 1288 /* 1289 * Remember a shadow entry for reclaimed file cache in 1290 * order to detect refaults, thus thrashing, later on. 1291 * 1292 * But don't store shadows in an address space that is 1293 * already exiting. This is not just an optimization, 1294 * inode reclaim needs to empty out the radix tree or 1295 * the nodes are lost. Don't plant shadows behind its 1296 * back. 1297 * 1298 * We also don't store shadows for DAX mappings because the 1299 * only page cache pages found in these are zero pages 1300 * covering holes, and because we don't want to mix DAX 1301 * exceptional entries and shadow exceptional entries in the 1302 * same address_space. 1303 */ 1304 if (reclaimed && page_is_file_lru(page) && 1305 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1306 shadow = workingset_eviction(page, target_memcg); 1307 __delete_from_page_cache(page, shadow); 1308 xa_unlock_irq(&mapping->i_pages); 1309 if (mapping_shrinkable(mapping)) 1310 inode_add_lru(mapping->host); 1311 spin_unlock(&mapping->host->i_lock); 1312 1313 if (freepage != NULL) 1314 freepage(page); 1315 } 1316 1317 return 1; 1318 1319 cannot_free: 1320 xa_unlock_irq(&mapping->i_pages); 1321 if (!PageSwapCache(page)) 1322 spin_unlock(&mapping->host->i_lock); 1323 return 0; 1324 } 1325 1326 /* 1327 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1328 * someone else has a ref on the page, abort and return 0. If it was 1329 * successfully detached, return 1. Assumes the caller has a single ref on 1330 * this page. 1331 */ 1332 int remove_mapping(struct address_space *mapping, struct page *page) 1333 { 1334 if (__remove_mapping(mapping, page, false, NULL)) { 1335 /* 1336 * Unfreezing the refcount with 1 rather than 2 effectively 1337 * drops the pagecache ref for us without requiring another 1338 * atomic operation. 1339 */ 1340 page_ref_unfreeze(page, 1); 1341 return 1; 1342 } 1343 return 0; 1344 } 1345 1346 /** 1347 * putback_lru_page - put previously isolated page onto appropriate LRU list 1348 * @page: page to be put back to appropriate lru list 1349 * 1350 * Add previously isolated @page to appropriate LRU list. 1351 * Page may still be unevictable for other reasons. 1352 * 1353 * lru_lock must not be held, interrupts must be enabled. 1354 */ 1355 void putback_lru_page(struct page *page) 1356 { 1357 lru_cache_add(page); 1358 put_page(page); /* drop ref from isolate */ 1359 } 1360 1361 enum page_references { 1362 PAGEREF_RECLAIM, 1363 PAGEREF_RECLAIM_CLEAN, 1364 PAGEREF_KEEP, 1365 PAGEREF_ACTIVATE, 1366 }; 1367 1368 static enum page_references page_check_references(struct page *page, 1369 struct scan_control *sc) 1370 { 1371 int referenced_ptes, referenced_page; 1372 unsigned long vm_flags; 1373 1374 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1375 &vm_flags); 1376 referenced_page = TestClearPageReferenced(page); 1377 1378 /* 1379 * Mlock lost the isolation race with us. Let try_to_unmap() 1380 * move the page to the unevictable list. 1381 */ 1382 if (vm_flags & VM_LOCKED) 1383 return PAGEREF_RECLAIM; 1384 1385 if (referenced_ptes) { 1386 /* 1387 * All mapped pages start out with page table 1388 * references from the instantiating fault, so we need 1389 * to look twice if a mapped file/anon page is used more 1390 * than once. 1391 * 1392 * Mark it and spare it for another trip around the 1393 * inactive list. Another page table reference will 1394 * lead to its activation. 1395 * 1396 * Note: the mark is set for activated pages as well 1397 * so that recently deactivated but used pages are 1398 * quickly recovered. 1399 */ 1400 SetPageReferenced(page); 1401 1402 if (referenced_page || referenced_ptes > 1) 1403 return PAGEREF_ACTIVATE; 1404 1405 /* 1406 * Activate file-backed executable pages after first usage. 1407 */ 1408 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1409 return PAGEREF_ACTIVATE; 1410 1411 return PAGEREF_KEEP; 1412 } 1413 1414 /* Reclaim if clean, defer dirty pages to writeback */ 1415 if (referenced_page && !PageSwapBacked(page)) 1416 return PAGEREF_RECLAIM_CLEAN; 1417 1418 return PAGEREF_RECLAIM; 1419 } 1420 1421 /* Check if a page is dirty or under writeback */ 1422 static void page_check_dirty_writeback(struct page *page, 1423 bool *dirty, bool *writeback) 1424 { 1425 struct address_space *mapping; 1426 1427 /* 1428 * Anonymous pages are not handled by flushers and must be written 1429 * from reclaim context. Do not stall reclaim based on them 1430 */ 1431 if (!page_is_file_lru(page) || 1432 (PageAnon(page) && !PageSwapBacked(page))) { 1433 *dirty = false; 1434 *writeback = false; 1435 return; 1436 } 1437 1438 /* By default assume that the page flags are accurate */ 1439 *dirty = PageDirty(page); 1440 *writeback = PageWriteback(page); 1441 1442 /* Verify dirty/writeback state if the filesystem supports it */ 1443 if (!page_has_private(page)) 1444 return; 1445 1446 mapping = page_mapping(page); 1447 if (mapping && mapping->a_ops->is_dirty_writeback) 1448 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1449 } 1450 1451 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1452 { 1453 struct migration_target_control mtc = { 1454 /* 1455 * Allocate from 'node', or fail quickly and quietly. 1456 * When this happens, 'page' will likely just be discarded 1457 * instead of migrated. 1458 */ 1459 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1460 __GFP_THISNODE | __GFP_NOWARN | 1461 __GFP_NOMEMALLOC | GFP_NOWAIT, 1462 .nid = node 1463 }; 1464 1465 return alloc_migration_target(page, (unsigned long)&mtc); 1466 } 1467 1468 /* 1469 * Take pages on @demote_list and attempt to demote them to 1470 * another node. Pages which are not demoted are left on 1471 * @demote_pages. 1472 */ 1473 static unsigned int demote_page_list(struct list_head *demote_pages, 1474 struct pglist_data *pgdat) 1475 { 1476 int target_nid = next_demotion_node(pgdat->node_id); 1477 unsigned int nr_succeeded; 1478 1479 if (list_empty(demote_pages)) 1480 return 0; 1481 1482 if (target_nid == NUMA_NO_NODE) 1483 return 0; 1484 1485 /* Demotion ignores all cpuset and mempolicy settings */ 1486 migrate_pages(demote_pages, alloc_demote_page, NULL, 1487 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1488 &nr_succeeded); 1489 1490 if (current_is_kswapd()) 1491 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1492 else 1493 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1494 1495 return nr_succeeded; 1496 } 1497 1498 /* 1499 * shrink_page_list() returns the number of reclaimed pages 1500 */ 1501 static unsigned int shrink_page_list(struct list_head *page_list, 1502 struct pglist_data *pgdat, 1503 struct scan_control *sc, 1504 struct reclaim_stat *stat, 1505 bool ignore_references) 1506 { 1507 LIST_HEAD(ret_pages); 1508 LIST_HEAD(free_pages); 1509 LIST_HEAD(demote_pages); 1510 unsigned int nr_reclaimed = 0; 1511 unsigned int pgactivate = 0; 1512 bool do_demote_pass; 1513 1514 memset(stat, 0, sizeof(*stat)); 1515 cond_resched(); 1516 do_demote_pass = can_demote(pgdat->node_id, sc); 1517 1518 retry: 1519 while (!list_empty(page_list)) { 1520 struct address_space *mapping; 1521 struct page *page; 1522 enum page_references references = PAGEREF_RECLAIM; 1523 bool dirty, writeback, may_enter_fs; 1524 unsigned int nr_pages; 1525 1526 cond_resched(); 1527 1528 page = lru_to_page(page_list); 1529 list_del(&page->lru); 1530 1531 if (!trylock_page(page)) 1532 goto keep; 1533 1534 VM_BUG_ON_PAGE(PageActive(page), page); 1535 1536 nr_pages = compound_nr(page); 1537 1538 /* Account the number of base pages even though THP */ 1539 sc->nr_scanned += nr_pages; 1540 1541 if (unlikely(!page_evictable(page))) 1542 goto activate_locked; 1543 1544 if (!sc->may_unmap && page_mapped(page)) 1545 goto keep_locked; 1546 1547 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1548 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1549 1550 /* 1551 * The number of dirty pages determines if a node is marked 1552 * reclaim_congested. kswapd will stall and start writing 1553 * pages if the tail of the LRU is all dirty unqueued pages. 1554 */ 1555 page_check_dirty_writeback(page, &dirty, &writeback); 1556 if (dirty || writeback) 1557 stat->nr_dirty++; 1558 1559 if (dirty && !writeback) 1560 stat->nr_unqueued_dirty++; 1561 1562 /* 1563 * Treat this page as congested if the underlying BDI is or if 1564 * pages are cycling through the LRU so quickly that the 1565 * pages marked for immediate reclaim are making it to the 1566 * end of the LRU a second time. 1567 */ 1568 mapping = page_mapping(page); 1569 if (writeback && PageReclaim(page)) 1570 stat->nr_congested++; 1571 1572 /* 1573 * If a page at the tail of the LRU is under writeback, there 1574 * are three cases to consider. 1575 * 1576 * 1) If reclaim is encountering an excessive number of pages 1577 * under writeback and this page is both under writeback and 1578 * PageReclaim then it indicates that pages are being queued 1579 * for IO but are being recycled through the LRU before the 1580 * IO can complete. Waiting on the page itself risks an 1581 * indefinite stall if it is impossible to writeback the 1582 * page due to IO error or disconnected storage so instead 1583 * note that the LRU is being scanned too quickly and the 1584 * caller can stall after page list has been processed. 1585 * 1586 * 2) Global or new memcg reclaim encounters a page that is 1587 * not marked for immediate reclaim, or the caller does not 1588 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1589 * not to fs). In this case mark the page for immediate 1590 * reclaim and continue scanning. 1591 * 1592 * Require may_enter_fs because we would wait on fs, which 1593 * may not have submitted IO yet. And the loop driver might 1594 * enter reclaim, and deadlock if it waits on a page for 1595 * which it is needed to do the write (loop masks off 1596 * __GFP_IO|__GFP_FS for this reason); but more thought 1597 * would probably show more reasons. 1598 * 1599 * 3) Legacy memcg encounters a page that is already marked 1600 * PageReclaim. memcg does not have any dirty pages 1601 * throttling so we could easily OOM just because too many 1602 * pages are in writeback and there is nothing else to 1603 * reclaim. Wait for the writeback to complete. 1604 * 1605 * In cases 1) and 2) we activate the pages to get them out of 1606 * the way while we continue scanning for clean pages on the 1607 * inactive list and refilling from the active list. The 1608 * observation here is that waiting for disk writes is more 1609 * expensive than potentially causing reloads down the line. 1610 * Since they're marked for immediate reclaim, they won't put 1611 * memory pressure on the cache working set any longer than it 1612 * takes to write them to disk. 1613 */ 1614 if (PageWriteback(page)) { 1615 /* Case 1 above */ 1616 if (current_is_kswapd() && 1617 PageReclaim(page) && 1618 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1619 stat->nr_immediate++; 1620 goto activate_locked; 1621 1622 /* Case 2 above */ 1623 } else if (writeback_throttling_sane(sc) || 1624 !PageReclaim(page) || !may_enter_fs) { 1625 /* 1626 * This is slightly racy - end_page_writeback() 1627 * might have just cleared PageReclaim, then 1628 * setting PageReclaim here end up interpreted 1629 * as PageReadahead - but that does not matter 1630 * enough to care. What we do want is for this 1631 * page to have PageReclaim set next time memcg 1632 * reclaim reaches the tests above, so it will 1633 * then wait_on_page_writeback() to avoid OOM; 1634 * and it's also appropriate in global reclaim. 1635 */ 1636 SetPageReclaim(page); 1637 stat->nr_writeback++; 1638 goto activate_locked; 1639 1640 /* Case 3 above */ 1641 } else { 1642 unlock_page(page); 1643 wait_on_page_writeback(page); 1644 /* then go back and try same page again */ 1645 list_add_tail(&page->lru, page_list); 1646 continue; 1647 } 1648 } 1649 1650 if (!ignore_references) 1651 references = page_check_references(page, sc); 1652 1653 switch (references) { 1654 case PAGEREF_ACTIVATE: 1655 goto activate_locked; 1656 case PAGEREF_KEEP: 1657 stat->nr_ref_keep += nr_pages; 1658 goto keep_locked; 1659 case PAGEREF_RECLAIM: 1660 case PAGEREF_RECLAIM_CLEAN: 1661 ; /* try to reclaim the page below */ 1662 } 1663 1664 /* 1665 * Before reclaiming the page, try to relocate 1666 * its contents to another node. 1667 */ 1668 if (do_demote_pass && 1669 (thp_migration_supported() || !PageTransHuge(page))) { 1670 list_add(&page->lru, &demote_pages); 1671 unlock_page(page); 1672 continue; 1673 } 1674 1675 /* 1676 * Anonymous process memory has backing store? 1677 * Try to allocate it some swap space here. 1678 * Lazyfree page could be freed directly 1679 */ 1680 if (PageAnon(page) && PageSwapBacked(page)) { 1681 if (!PageSwapCache(page)) { 1682 if (!(sc->gfp_mask & __GFP_IO)) 1683 goto keep_locked; 1684 if (page_maybe_dma_pinned(page)) 1685 goto keep_locked; 1686 if (PageTransHuge(page)) { 1687 /* cannot split THP, skip it */ 1688 if (!can_split_huge_page(page, NULL)) 1689 goto activate_locked; 1690 /* 1691 * Split pages without a PMD map right 1692 * away. Chances are some or all of the 1693 * tail pages can be freed without IO. 1694 */ 1695 if (!compound_mapcount(page) && 1696 split_huge_page_to_list(page, 1697 page_list)) 1698 goto activate_locked; 1699 } 1700 if (!add_to_swap(page)) { 1701 if (!PageTransHuge(page)) 1702 goto activate_locked_split; 1703 /* Fallback to swap normal pages */ 1704 if (split_huge_page_to_list(page, 1705 page_list)) 1706 goto activate_locked; 1707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1708 count_vm_event(THP_SWPOUT_FALLBACK); 1709 #endif 1710 if (!add_to_swap(page)) 1711 goto activate_locked_split; 1712 } 1713 1714 may_enter_fs = true; 1715 1716 /* Adding to swap updated mapping */ 1717 mapping = page_mapping(page); 1718 } 1719 } else if (unlikely(PageTransHuge(page))) { 1720 /* Split file THP */ 1721 if (split_huge_page_to_list(page, page_list)) 1722 goto keep_locked; 1723 } 1724 1725 /* 1726 * THP may get split above, need minus tail pages and update 1727 * nr_pages to avoid accounting tail pages twice. 1728 * 1729 * The tail pages that are added into swap cache successfully 1730 * reach here. 1731 */ 1732 if ((nr_pages > 1) && !PageTransHuge(page)) { 1733 sc->nr_scanned -= (nr_pages - 1); 1734 nr_pages = 1; 1735 } 1736 1737 /* 1738 * The page is mapped into the page tables of one or more 1739 * processes. Try to unmap it here. 1740 */ 1741 if (page_mapped(page)) { 1742 enum ttu_flags flags = TTU_BATCH_FLUSH; 1743 bool was_swapbacked = PageSwapBacked(page); 1744 1745 if (unlikely(PageTransHuge(page))) 1746 flags |= TTU_SPLIT_HUGE_PMD; 1747 1748 try_to_unmap(page, flags); 1749 if (page_mapped(page)) { 1750 stat->nr_unmap_fail += nr_pages; 1751 if (!was_swapbacked && PageSwapBacked(page)) 1752 stat->nr_lazyfree_fail += nr_pages; 1753 goto activate_locked; 1754 } 1755 } 1756 1757 if (PageDirty(page)) { 1758 /* 1759 * Only kswapd can writeback filesystem pages 1760 * to avoid risk of stack overflow. But avoid 1761 * injecting inefficient single-page IO into 1762 * flusher writeback as much as possible: only 1763 * write pages when we've encountered many 1764 * dirty pages, and when we've already scanned 1765 * the rest of the LRU for clean pages and see 1766 * the same dirty pages again (PageReclaim). 1767 */ 1768 if (page_is_file_lru(page) && 1769 (!current_is_kswapd() || !PageReclaim(page) || 1770 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1771 /* 1772 * Immediately reclaim when written back. 1773 * Similar in principal to deactivate_page() 1774 * except we already have the page isolated 1775 * and know it's dirty 1776 */ 1777 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1778 SetPageReclaim(page); 1779 1780 goto activate_locked; 1781 } 1782 1783 if (references == PAGEREF_RECLAIM_CLEAN) 1784 goto keep_locked; 1785 if (!may_enter_fs) 1786 goto keep_locked; 1787 if (!sc->may_writepage) 1788 goto keep_locked; 1789 1790 /* 1791 * Page is dirty. Flush the TLB if a writable entry 1792 * potentially exists to avoid CPU writes after IO 1793 * starts and then write it out here. 1794 */ 1795 try_to_unmap_flush_dirty(); 1796 switch (pageout(page, mapping)) { 1797 case PAGE_KEEP: 1798 goto keep_locked; 1799 case PAGE_ACTIVATE: 1800 goto activate_locked; 1801 case PAGE_SUCCESS: 1802 stat->nr_pageout += thp_nr_pages(page); 1803 1804 if (PageWriteback(page)) 1805 goto keep; 1806 if (PageDirty(page)) 1807 goto keep; 1808 1809 /* 1810 * A synchronous write - probably a ramdisk. Go 1811 * ahead and try to reclaim the page. 1812 */ 1813 if (!trylock_page(page)) 1814 goto keep; 1815 if (PageDirty(page) || PageWriteback(page)) 1816 goto keep_locked; 1817 mapping = page_mapping(page); 1818 fallthrough; 1819 case PAGE_CLEAN: 1820 ; /* try to free the page below */ 1821 } 1822 } 1823 1824 /* 1825 * If the page has buffers, try to free the buffer mappings 1826 * associated with this page. If we succeed we try to free 1827 * the page as well. 1828 * 1829 * We do this even if the page is PageDirty(). 1830 * try_to_release_page() does not perform I/O, but it is 1831 * possible for a page to have PageDirty set, but it is actually 1832 * clean (all its buffers are clean). This happens if the 1833 * buffers were written out directly, with submit_bh(). ext3 1834 * will do this, as well as the blockdev mapping. 1835 * try_to_release_page() will discover that cleanness and will 1836 * drop the buffers and mark the page clean - it can be freed. 1837 * 1838 * Rarely, pages can have buffers and no ->mapping. These are 1839 * the pages which were not successfully invalidated in 1840 * truncate_cleanup_page(). We try to drop those buffers here 1841 * and if that worked, and the page is no longer mapped into 1842 * process address space (page_count == 1) it can be freed. 1843 * Otherwise, leave the page on the LRU so it is swappable. 1844 */ 1845 if (page_has_private(page)) { 1846 if (!try_to_release_page(page, sc->gfp_mask)) 1847 goto activate_locked; 1848 if (!mapping && page_count(page) == 1) { 1849 unlock_page(page); 1850 if (put_page_testzero(page)) 1851 goto free_it; 1852 else { 1853 /* 1854 * rare race with speculative reference. 1855 * the speculative reference will free 1856 * this page shortly, so we may 1857 * increment nr_reclaimed here (and 1858 * leave it off the LRU). 1859 */ 1860 nr_reclaimed++; 1861 continue; 1862 } 1863 } 1864 } 1865 1866 if (PageAnon(page) && !PageSwapBacked(page)) { 1867 /* follow __remove_mapping for reference */ 1868 if (!page_ref_freeze(page, 1)) 1869 goto keep_locked; 1870 /* 1871 * The page has only one reference left, which is 1872 * from the isolation. After the caller puts the 1873 * page back on lru and drops the reference, the 1874 * page will be freed anyway. It doesn't matter 1875 * which lru it goes. So we don't bother checking 1876 * PageDirty here. 1877 */ 1878 count_vm_event(PGLAZYFREED); 1879 count_memcg_page_event(page, PGLAZYFREED); 1880 } else if (!mapping || !__remove_mapping(mapping, page, true, 1881 sc->target_mem_cgroup)) 1882 goto keep_locked; 1883 1884 unlock_page(page); 1885 free_it: 1886 /* 1887 * THP may get swapped out in a whole, need account 1888 * all base pages. 1889 */ 1890 nr_reclaimed += nr_pages; 1891 1892 /* 1893 * Is there need to periodically free_page_list? It would 1894 * appear not as the counts should be low 1895 */ 1896 if (unlikely(PageTransHuge(page))) 1897 destroy_compound_page(page); 1898 else 1899 list_add(&page->lru, &free_pages); 1900 continue; 1901 1902 activate_locked_split: 1903 /* 1904 * The tail pages that are failed to add into swap cache 1905 * reach here. Fixup nr_scanned and nr_pages. 1906 */ 1907 if (nr_pages > 1) { 1908 sc->nr_scanned -= (nr_pages - 1); 1909 nr_pages = 1; 1910 } 1911 activate_locked: 1912 /* Not a candidate for swapping, so reclaim swap space. */ 1913 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1914 PageMlocked(page))) 1915 try_to_free_swap(page); 1916 VM_BUG_ON_PAGE(PageActive(page), page); 1917 if (!PageMlocked(page)) { 1918 int type = page_is_file_lru(page); 1919 SetPageActive(page); 1920 stat->nr_activate[type] += nr_pages; 1921 count_memcg_page_event(page, PGACTIVATE); 1922 } 1923 keep_locked: 1924 unlock_page(page); 1925 keep: 1926 list_add(&page->lru, &ret_pages); 1927 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1928 } 1929 /* 'page_list' is always empty here */ 1930 1931 /* Migrate pages selected for demotion */ 1932 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1933 /* Pages that could not be demoted are still in @demote_pages */ 1934 if (!list_empty(&demote_pages)) { 1935 /* Pages which failed to demoted go back on @page_list for retry: */ 1936 list_splice_init(&demote_pages, page_list); 1937 do_demote_pass = false; 1938 goto retry; 1939 } 1940 1941 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1942 1943 mem_cgroup_uncharge_list(&free_pages); 1944 try_to_unmap_flush(); 1945 free_unref_page_list(&free_pages); 1946 1947 list_splice(&ret_pages, page_list); 1948 count_vm_events(PGACTIVATE, pgactivate); 1949 1950 return nr_reclaimed; 1951 } 1952 1953 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1954 struct list_head *page_list) 1955 { 1956 struct scan_control sc = { 1957 .gfp_mask = GFP_KERNEL, 1958 .may_unmap = 1, 1959 }; 1960 struct reclaim_stat stat; 1961 unsigned int nr_reclaimed; 1962 struct page *page, *next; 1963 LIST_HEAD(clean_pages); 1964 unsigned int noreclaim_flag; 1965 1966 list_for_each_entry_safe(page, next, page_list, lru) { 1967 if (!PageHuge(page) && page_is_file_lru(page) && 1968 !PageDirty(page) && !__PageMovable(page) && 1969 !PageUnevictable(page)) { 1970 ClearPageActive(page); 1971 list_move(&page->lru, &clean_pages); 1972 } 1973 } 1974 1975 /* 1976 * We should be safe here since we are only dealing with file pages and 1977 * we are not kswapd and therefore cannot write dirty file pages. But 1978 * call memalloc_noreclaim_save() anyway, just in case these conditions 1979 * change in the future. 1980 */ 1981 noreclaim_flag = memalloc_noreclaim_save(); 1982 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1983 &stat, true); 1984 memalloc_noreclaim_restore(noreclaim_flag); 1985 1986 list_splice(&clean_pages, page_list); 1987 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1988 -(long)nr_reclaimed); 1989 /* 1990 * Since lazyfree pages are isolated from file LRU from the beginning, 1991 * they will rotate back to anonymous LRU in the end if it failed to 1992 * discard so isolated count will be mismatched. 1993 * Compensate the isolated count for both LRU lists. 1994 */ 1995 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1996 stat.nr_lazyfree_fail); 1997 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1998 -(long)stat.nr_lazyfree_fail); 1999 return nr_reclaimed; 2000 } 2001 2002 /* 2003 * Update LRU sizes after isolating pages. The LRU size updates must 2004 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2005 */ 2006 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2007 enum lru_list lru, unsigned long *nr_zone_taken) 2008 { 2009 int zid; 2010 2011 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2012 if (!nr_zone_taken[zid]) 2013 continue; 2014 2015 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2016 } 2017 2018 } 2019 2020 /* 2021 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2022 * 2023 * lruvec->lru_lock is heavily contended. Some of the functions that 2024 * shrink the lists perform better by taking out a batch of pages 2025 * and working on them outside the LRU lock. 2026 * 2027 * For pagecache intensive workloads, this function is the hottest 2028 * spot in the kernel (apart from copy_*_user functions). 2029 * 2030 * Lru_lock must be held before calling this function. 2031 * 2032 * @nr_to_scan: The number of eligible pages to look through on the list. 2033 * @lruvec: The LRU vector to pull pages from. 2034 * @dst: The temp list to put pages on to. 2035 * @nr_scanned: The number of pages that were scanned. 2036 * @sc: The scan_control struct for this reclaim session 2037 * @lru: LRU list id for isolating 2038 * 2039 * returns how many pages were moved onto *@dst. 2040 */ 2041 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2042 struct lruvec *lruvec, struct list_head *dst, 2043 unsigned long *nr_scanned, struct scan_control *sc, 2044 enum lru_list lru) 2045 { 2046 struct list_head *src = &lruvec->lists[lru]; 2047 unsigned long nr_taken = 0; 2048 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2049 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2050 unsigned long skipped = 0; 2051 unsigned long scan, total_scan, nr_pages; 2052 LIST_HEAD(pages_skipped); 2053 2054 total_scan = 0; 2055 scan = 0; 2056 while (scan < nr_to_scan && !list_empty(src)) { 2057 struct list_head *move_to = src; 2058 struct page *page; 2059 2060 page = lru_to_page(src); 2061 prefetchw_prev_lru_page(page, src, flags); 2062 2063 nr_pages = compound_nr(page); 2064 total_scan += nr_pages; 2065 2066 if (page_zonenum(page) > sc->reclaim_idx) { 2067 nr_skipped[page_zonenum(page)] += nr_pages; 2068 move_to = &pages_skipped; 2069 goto move; 2070 } 2071 2072 /* 2073 * Do not count skipped pages because that makes the function 2074 * return with no isolated pages if the LRU mostly contains 2075 * ineligible pages. This causes the VM to not reclaim any 2076 * pages, triggering a premature OOM. 2077 * Account all tail pages of THP. 2078 */ 2079 scan += nr_pages; 2080 2081 if (!PageLRU(page)) 2082 goto move; 2083 if (!sc->may_unmap && page_mapped(page)) 2084 goto move; 2085 2086 /* 2087 * Be careful not to clear PageLRU until after we're 2088 * sure the page is not being freed elsewhere -- the 2089 * page release code relies on it. 2090 */ 2091 if (unlikely(!get_page_unless_zero(page))) 2092 goto move; 2093 2094 if (!TestClearPageLRU(page)) { 2095 /* Another thread is already isolating this page */ 2096 put_page(page); 2097 goto move; 2098 } 2099 2100 nr_taken += nr_pages; 2101 nr_zone_taken[page_zonenum(page)] += nr_pages; 2102 move_to = dst; 2103 move: 2104 list_move(&page->lru, move_to); 2105 } 2106 2107 /* 2108 * Splice any skipped pages to the start of the LRU list. Note that 2109 * this disrupts the LRU order when reclaiming for lower zones but 2110 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2111 * scanning would soon rescan the same pages to skip and put the 2112 * system at risk of premature OOM. 2113 */ 2114 if (!list_empty(&pages_skipped)) { 2115 int zid; 2116 2117 list_splice(&pages_skipped, src); 2118 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2119 if (!nr_skipped[zid]) 2120 continue; 2121 2122 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2123 skipped += nr_skipped[zid]; 2124 } 2125 } 2126 *nr_scanned = total_scan; 2127 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2128 total_scan, skipped, nr_taken, 2129 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2130 update_lru_sizes(lruvec, lru, nr_zone_taken); 2131 return nr_taken; 2132 } 2133 2134 /** 2135 * isolate_lru_page - tries to isolate a page from its LRU list 2136 * @page: page to isolate from its LRU list 2137 * 2138 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2139 * vmstat statistic corresponding to whatever LRU list the page was on. 2140 * 2141 * Returns 0 if the page was removed from an LRU list. 2142 * Returns -EBUSY if the page was not on an LRU list. 2143 * 2144 * The returned page will have PageLRU() cleared. If it was found on 2145 * the active list, it will have PageActive set. If it was found on 2146 * the unevictable list, it will have the PageUnevictable bit set. That flag 2147 * may need to be cleared by the caller before letting the page go. 2148 * 2149 * The vmstat statistic corresponding to the list on which the page was 2150 * found will be decremented. 2151 * 2152 * Restrictions: 2153 * 2154 * (1) Must be called with an elevated refcount on the page. This is a 2155 * fundamental difference from isolate_lru_pages (which is called 2156 * without a stable reference). 2157 * (2) the lru_lock must not be held. 2158 * (3) interrupts must be enabled. 2159 */ 2160 int isolate_lru_page(struct page *page) 2161 { 2162 struct folio *folio = page_folio(page); 2163 int ret = -EBUSY; 2164 2165 VM_BUG_ON_PAGE(!page_count(page), page); 2166 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2167 2168 if (TestClearPageLRU(page)) { 2169 struct lruvec *lruvec; 2170 2171 get_page(page); 2172 lruvec = folio_lruvec_lock_irq(folio); 2173 del_page_from_lru_list(page, lruvec); 2174 unlock_page_lruvec_irq(lruvec); 2175 ret = 0; 2176 } 2177 2178 return ret; 2179 } 2180 2181 /* 2182 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2183 * then get rescheduled. When there are massive number of tasks doing page 2184 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2185 * the LRU list will go small and be scanned faster than necessary, leading to 2186 * unnecessary swapping, thrashing and OOM. 2187 */ 2188 static int too_many_isolated(struct pglist_data *pgdat, int file, 2189 struct scan_control *sc) 2190 { 2191 unsigned long inactive, isolated; 2192 bool too_many; 2193 2194 if (current_is_kswapd()) 2195 return 0; 2196 2197 if (!writeback_throttling_sane(sc)) 2198 return 0; 2199 2200 if (file) { 2201 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2202 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2203 } else { 2204 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2205 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2206 } 2207 2208 /* 2209 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2210 * won't get blocked by normal direct-reclaimers, forming a circular 2211 * deadlock. 2212 */ 2213 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2214 inactive >>= 3; 2215 2216 too_many = isolated > inactive; 2217 2218 /* Wake up tasks throttled due to too_many_isolated. */ 2219 if (!too_many) 2220 wake_throttle_isolated(pgdat); 2221 2222 return too_many; 2223 } 2224 2225 /* 2226 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2227 * On return, @list is reused as a list of pages to be freed by the caller. 2228 * 2229 * Returns the number of pages moved to the given lruvec. 2230 */ 2231 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2232 struct list_head *list) 2233 { 2234 int nr_pages, nr_moved = 0; 2235 LIST_HEAD(pages_to_free); 2236 struct page *page; 2237 2238 while (!list_empty(list)) { 2239 page = lru_to_page(list); 2240 VM_BUG_ON_PAGE(PageLRU(page), page); 2241 list_del(&page->lru); 2242 if (unlikely(!page_evictable(page))) { 2243 spin_unlock_irq(&lruvec->lru_lock); 2244 putback_lru_page(page); 2245 spin_lock_irq(&lruvec->lru_lock); 2246 continue; 2247 } 2248 2249 /* 2250 * The SetPageLRU needs to be kept here for list integrity. 2251 * Otherwise: 2252 * #0 move_pages_to_lru #1 release_pages 2253 * if !put_page_testzero 2254 * if (put_page_testzero()) 2255 * !PageLRU //skip lru_lock 2256 * SetPageLRU() 2257 * list_add(&page->lru,) 2258 * list_add(&page->lru,) 2259 */ 2260 SetPageLRU(page); 2261 2262 if (unlikely(put_page_testzero(page))) { 2263 __clear_page_lru_flags(page); 2264 2265 if (unlikely(PageCompound(page))) { 2266 spin_unlock_irq(&lruvec->lru_lock); 2267 destroy_compound_page(page); 2268 spin_lock_irq(&lruvec->lru_lock); 2269 } else 2270 list_add(&page->lru, &pages_to_free); 2271 2272 continue; 2273 } 2274 2275 /* 2276 * All pages were isolated from the same lruvec (and isolation 2277 * inhibits memcg migration). 2278 */ 2279 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2280 add_page_to_lru_list(page, lruvec); 2281 nr_pages = thp_nr_pages(page); 2282 nr_moved += nr_pages; 2283 if (PageActive(page)) 2284 workingset_age_nonresident(lruvec, nr_pages); 2285 } 2286 2287 /* 2288 * To save our caller's stack, now use input list for pages to free. 2289 */ 2290 list_splice(&pages_to_free, list); 2291 2292 return nr_moved; 2293 } 2294 2295 /* 2296 * If a kernel thread (such as nfsd for loop-back mounts) services 2297 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2298 * In that case we should only throttle if the backing device it is 2299 * writing to is congested. In other cases it is safe to throttle. 2300 */ 2301 static int current_may_throttle(void) 2302 { 2303 return !(current->flags & PF_LOCAL_THROTTLE); 2304 } 2305 2306 /* 2307 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2308 * of reclaimed pages 2309 */ 2310 static unsigned long 2311 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2312 struct scan_control *sc, enum lru_list lru) 2313 { 2314 LIST_HEAD(page_list); 2315 unsigned long nr_scanned; 2316 unsigned int nr_reclaimed = 0; 2317 unsigned long nr_taken; 2318 struct reclaim_stat stat; 2319 bool file = is_file_lru(lru); 2320 enum vm_event_item item; 2321 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2322 bool stalled = false; 2323 2324 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2325 if (stalled) 2326 return 0; 2327 2328 /* wait a bit for the reclaimer. */ 2329 stalled = true; 2330 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2331 2332 /* We are about to die and free our memory. Return now. */ 2333 if (fatal_signal_pending(current)) 2334 return SWAP_CLUSTER_MAX; 2335 } 2336 2337 lru_add_drain(); 2338 2339 spin_lock_irq(&lruvec->lru_lock); 2340 2341 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2342 &nr_scanned, sc, lru); 2343 2344 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2345 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2346 if (!cgroup_reclaim(sc)) 2347 __count_vm_events(item, nr_scanned); 2348 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2349 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2350 2351 spin_unlock_irq(&lruvec->lru_lock); 2352 2353 if (nr_taken == 0) 2354 return 0; 2355 2356 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2357 2358 spin_lock_irq(&lruvec->lru_lock); 2359 move_pages_to_lru(lruvec, &page_list); 2360 2361 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2362 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2363 if (!cgroup_reclaim(sc)) 2364 __count_vm_events(item, nr_reclaimed); 2365 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2366 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2367 spin_unlock_irq(&lruvec->lru_lock); 2368 2369 lru_note_cost(lruvec, file, stat.nr_pageout); 2370 mem_cgroup_uncharge_list(&page_list); 2371 free_unref_page_list(&page_list); 2372 2373 /* 2374 * If dirty pages are scanned that are not queued for IO, it 2375 * implies that flushers are not doing their job. This can 2376 * happen when memory pressure pushes dirty pages to the end of 2377 * the LRU before the dirty limits are breached and the dirty 2378 * data has expired. It can also happen when the proportion of 2379 * dirty pages grows not through writes but through memory 2380 * pressure reclaiming all the clean cache. And in some cases, 2381 * the flushers simply cannot keep up with the allocation 2382 * rate. Nudge the flusher threads in case they are asleep. 2383 */ 2384 if (stat.nr_unqueued_dirty == nr_taken) 2385 wakeup_flusher_threads(WB_REASON_VMSCAN); 2386 2387 sc->nr.dirty += stat.nr_dirty; 2388 sc->nr.congested += stat.nr_congested; 2389 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2390 sc->nr.writeback += stat.nr_writeback; 2391 sc->nr.immediate += stat.nr_immediate; 2392 sc->nr.taken += nr_taken; 2393 if (file) 2394 sc->nr.file_taken += nr_taken; 2395 2396 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2397 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2398 return nr_reclaimed; 2399 } 2400 2401 /* 2402 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2403 * 2404 * We move them the other way if the page is referenced by one or more 2405 * processes. 2406 * 2407 * If the pages are mostly unmapped, the processing is fast and it is 2408 * appropriate to hold lru_lock across the whole operation. But if 2409 * the pages are mapped, the processing is slow (page_referenced()), so 2410 * we should drop lru_lock around each page. It's impossible to balance 2411 * this, so instead we remove the pages from the LRU while processing them. 2412 * It is safe to rely on PG_active against the non-LRU pages in here because 2413 * nobody will play with that bit on a non-LRU page. 2414 * 2415 * The downside is that we have to touch page->_refcount against each page. 2416 * But we had to alter page->flags anyway. 2417 */ 2418 static void shrink_active_list(unsigned long nr_to_scan, 2419 struct lruvec *lruvec, 2420 struct scan_control *sc, 2421 enum lru_list lru) 2422 { 2423 unsigned long nr_taken; 2424 unsigned long nr_scanned; 2425 unsigned long vm_flags; 2426 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2427 LIST_HEAD(l_active); 2428 LIST_HEAD(l_inactive); 2429 struct page *page; 2430 unsigned nr_deactivate, nr_activate; 2431 unsigned nr_rotated = 0; 2432 int file = is_file_lru(lru); 2433 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2434 2435 lru_add_drain(); 2436 2437 spin_lock_irq(&lruvec->lru_lock); 2438 2439 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2440 &nr_scanned, sc, lru); 2441 2442 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2443 2444 if (!cgroup_reclaim(sc)) 2445 __count_vm_events(PGREFILL, nr_scanned); 2446 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2447 2448 spin_unlock_irq(&lruvec->lru_lock); 2449 2450 while (!list_empty(&l_hold)) { 2451 cond_resched(); 2452 page = lru_to_page(&l_hold); 2453 list_del(&page->lru); 2454 2455 if (unlikely(!page_evictable(page))) { 2456 putback_lru_page(page); 2457 continue; 2458 } 2459 2460 if (unlikely(buffer_heads_over_limit)) { 2461 if (page_has_private(page) && trylock_page(page)) { 2462 if (page_has_private(page)) 2463 try_to_release_page(page, 0); 2464 unlock_page(page); 2465 } 2466 } 2467 2468 if (page_referenced(page, 0, sc->target_mem_cgroup, 2469 &vm_flags)) { 2470 /* 2471 * Identify referenced, file-backed active pages and 2472 * give them one more trip around the active list. So 2473 * that executable code get better chances to stay in 2474 * memory under moderate memory pressure. Anon pages 2475 * are not likely to be evicted by use-once streaming 2476 * IO, plus JVM can create lots of anon VM_EXEC pages, 2477 * so we ignore them here. 2478 */ 2479 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2480 nr_rotated += thp_nr_pages(page); 2481 list_add(&page->lru, &l_active); 2482 continue; 2483 } 2484 } 2485 2486 ClearPageActive(page); /* we are de-activating */ 2487 SetPageWorkingset(page); 2488 list_add(&page->lru, &l_inactive); 2489 } 2490 2491 /* 2492 * Move pages back to the lru list. 2493 */ 2494 spin_lock_irq(&lruvec->lru_lock); 2495 2496 nr_activate = move_pages_to_lru(lruvec, &l_active); 2497 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2498 /* Keep all free pages in l_active list */ 2499 list_splice(&l_inactive, &l_active); 2500 2501 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2502 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2503 2504 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2505 spin_unlock_irq(&lruvec->lru_lock); 2506 2507 mem_cgroup_uncharge_list(&l_active); 2508 free_unref_page_list(&l_active); 2509 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2510 nr_deactivate, nr_rotated, sc->priority, file); 2511 } 2512 2513 unsigned long reclaim_pages(struct list_head *page_list) 2514 { 2515 int nid = NUMA_NO_NODE; 2516 unsigned int nr_reclaimed = 0; 2517 LIST_HEAD(node_page_list); 2518 struct reclaim_stat dummy_stat; 2519 struct page *page; 2520 unsigned int noreclaim_flag; 2521 struct scan_control sc = { 2522 .gfp_mask = GFP_KERNEL, 2523 .may_writepage = 1, 2524 .may_unmap = 1, 2525 .may_swap = 1, 2526 .no_demotion = 1, 2527 }; 2528 2529 noreclaim_flag = memalloc_noreclaim_save(); 2530 2531 while (!list_empty(page_list)) { 2532 page = lru_to_page(page_list); 2533 if (nid == NUMA_NO_NODE) { 2534 nid = page_to_nid(page); 2535 INIT_LIST_HEAD(&node_page_list); 2536 } 2537 2538 if (nid == page_to_nid(page)) { 2539 ClearPageActive(page); 2540 list_move(&page->lru, &node_page_list); 2541 continue; 2542 } 2543 2544 nr_reclaimed += shrink_page_list(&node_page_list, 2545 NODE_DATA(nid), 2546 &sc, &dummy_stat, false); 2547 while (!list_empty(&node_page_list)) { 2548 page = lru_to_page(&node_page_list); 2549 list_del(&page->lru); 2550 putback_lru_page(page); 2551 } 2552 2553 nid = NUMA_NO_NODE; 2554 } 2555 2556 if (!list_empty(&node_page_list)) { 2557 nr_reclaimed += shrink_page_list(&node_page_list, 2558 NODE_DATA(nid), 2559 &sc, &dummy_stat, false); 2560 while (!list_empty(&node_page_list)) { 2561 page = lru_to_page(&node_page_list); 2562 list_del(&page->lru); 2563 putback_lru_page(page); 2564 } 2565 } 2566 2567 memalloc_noreclaim_restore(noreclaim_flag); 2568 2569 return nr_reclaimed; 2570 } 2571 2572 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2573 struct lruvec *lruvec, struct scan_control *sc) 2574 { 2575 if (is_active_lru(lru)) { 2576 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2577 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2578 else 2579 sc->skipped_deactivate = 1; 2580 return 0; 2581 } 2582 2583 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2584 } 2585 2586 /* 2587 * The inactive anon list should be small enough that the VM never has 2588 * to do too much work. 2589 * 2590 * The inactive file list should be small enough to leave most memory 2591 * to the established workingset on the scan-resistant active list, 2592 * but large enough to avoid thrashing the aggregate readahead window. 2593 * 2594 * Both inactive lists should also be large enough that each inactive 2595 * page has a chance to be referenced again before it is reclaimed. 2596 * 2597 * If that fails and refaulting is observed, the inactive list grows. 2598 * 2599 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2600 * on this LRU, maintained by the pageout code. An inactive_ratio 2601 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2602 * 2603 * total target max 2604 * memory ratio inactive 2605 * ------------------------------------- 2606 * 10MB 1 5MB 2607 * 100MB 1 50MB 2608 * 1GB 3 250MB 2609 * 10GB 10 0.9GB 2610 * 100GB 31 3GB 2611 * 1TB 101 10GB 2612 * 10TB 320 32GB 2613 */ 2614 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2615 { 2616 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2617 unsigned long inactive, active; 2618 unsigned long inactive_ratio; 2619 unsigned long gb; 2620 2621 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2622 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2623 2624 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2625 if (gb) 2626 inactive_ratio = int_sqrt(10 * gb); 2627 else 2628 inactive_ratio = 1; 2629 2630 return inactive * inactive_ratio < active; 2631 } 2632 2633 enum scan_balance { 2634 SCAN_EQUAL, 2635 SCAN_FRACT, 2636 SCAN_ANON, 2637 SCAN_FILE, 2638 }; 2639 2640 /* 2641 * Determine how aggressively the anon and file LRU lists should be 2642 * scanned. The relative value of each set of LRU lists is determined 2643 * by looking at the fraction of the pages scanned we did rotate back 2644 * onto the active list instead of evict. 2645 * 2646 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2647 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2648 */ 2649 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2650 unsigned long *nr) 2651 { 2652 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2653 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2654 unsigned long anon_cost, file_cost, total_cost; 2655 int swappiness = mem_cgroup_swappiness(memcg); 2656 u64 fraction[ANON_AND_FILE]; 2657 u64 denominator = 0; /* gcc */ 2658 enum scan_balance scan_balance; 2659 unsigned long ap, fp; 2660 enum lru_list lru; 2661 2662 /* If we have no swap space, do not bother scanning anon pages. */ 2663 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2664 scan_balance = SCAN_FILE; 2665 goto out; 2666 } 2667 2668 /* 2669 * Global reclaim will swap to prevent OOM even with no 2670 * swappiness, but memcg users want to use this knob to 2671 * disable swapping for individual groups completely when 2672 * using the memory controller's swap limit feature would be 2673 * too expensive. 2674 */ 2675 if (cgroup_reclaim(sc) && !swappiness) { 2676 scan_balance = SCAN_FILE; 2677 goto out; 2678 } 2679 2680 /* 2681 * Do not apply any pressure balancing cleverness when the 2682 * system is close to OOM, scan both anon and file equally 2683 * (unless the swappiness setting disagrees with swapping). 2684 */ 2685 if (!sc->priority && swappiness) { 2686 scan_balance = SCAN_EQUAL; 2687 goto out; 2688 } 2689 2690 /* 2691 * If the system is almost out of file pages, force-scan anon. 2692 */ 2693 if (sc->file_is_tiny) { 2694 scan_balance = SCAN_ANON; 2695 goto out; 2696 } 2697 2698 /* 2699 * If there is enough inactive page cache, we do not reclaim 2700 * anything from the anonymous working right now. 2701 */ 2702 if (sc->cache_trim_mode) { 2703 scan_balance = SCAN_FILE; 2704 goto out; 2705 } 2706 2707 scan_balance = SCAN_FRACT; 2708 /* 2709 * Calculate the pressure balance between anon and file pages. 2710 * 2711 * The amount of pressure we put on each LRU is inversely 2712 * proportional to the cost of reclaiming each list, as 2713 * determined by the share of pages that are refaulting, times 2714 * the relative IO cost of bringing back a swapped out 2715 * anonymous page vs reloading a filesystem page (swappiness). 2716 * 2717 * Although we limit that influence to ensure no list gets 2718 * left behind completely: at least a third of the pressure is 2719 * applied, before swappiness. 2720 * 2721 * With swappiness at 100, anon and file have equal IO cost. 2722 */ 2723 total_cost = sc->anon_cost + sc->file_cost; 2724 anon_cost = total_cost + sc->anon_cost; 2725 file_cost = total_cost + sc->file_cost; 2726 total_cost = anon_cost + file_cost; 2727 2728 ap = swappiness * (total_cost + 1); 2729 ap /= anon_cost + 1; 2730 2731 fp = (200 - swappiness) * (total_cost + 1); 2732 fp /= file_cost + 1; 2733 2734 fraction[0] = ap; 2735 fraction[1] = fp; 2736 denominator = ap + fp; 2737 out: 2738 for_each_evictable_lru(lru) { 2739 int file = is_file_lru(lru); 2740 unsigned long lruvec_size; 2741 unsigned long low, min; 2742 unsigned long scan; 2743 2744 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2745 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2746 &min, &low); 2747 2748 if (min || low) { 2749 /* 2750 * Scale a cgroup's reclaim pressure by proportioning 2751 * its current usage to its memory.low or memory.min 2752 * setting. 2753 * 2754 * This is important, as otherwise scanning aggression 2755 * becomes extremely binary -- from nothing as we 2756 * approach the memory protection threshold, to totally 2757 * nominal as we exceed it. This results in requiring 2758 * setting extremely liberal protection thresholds. It 2759 * also means we simply get no protection at all if we 2760 * set it too low, which is not ideal. 2761 * 2762 * If there is any protection in place, we reduce scan 2763 * pressure by how much of the total memory used is 2764 * within protection thresholds. 2765 * 2766 * There is one special case: in the first reclaim pass, 2767 * we skip over all groups that are within their low 2768 * protection. If that fails to reclaim enough pages to 2769 * satisfy the reclaim goal, we come back and override 2770 * the best-effort low protection. However, we still 2771 * ideally want to honor how well-behaved groups are in 2772 * that case instead of simply punishing them all 2773 * equally. As such, we reclaim them based on how much 2774 * memory they are using, reducing the scan pressure 2775 * again by how much of the total memory used is under 2776 * hard protection. 2777 */ 2778 unsigned long cgroup_size = mem_cgroup_size(memcg); 2779 unsigned long protection; 2780 2781 /* memory.low scaling, make sure we retry before OOM */ 2782 if (!sc->memcg_low_reclaim && low > min) { 2783 protection = low; 2784 sc->memcg_low_skipped = 1; 2785 } else { 2786 protection = min; 2787 } 2788 2789 /* Avoid TOCTOU with earlier protection check */ 2790 cgroup_size = max(cgroup_size, protection); 2791 2792 scan = lruvec_size - lruvec_size * protection / 2793 (cgroup_size + 1); 2794 2795 /* 2796 * Minimally target SWAP_CLUSTER_MAX pages to keep 2797 * reclaim moving forwards, avoiding decrementing 2798 * sc->priority further than desirable. 2799 */ 2800 scan = max(scan, SWAP_CLUSTER_MAX); 2801 } else { 2802 scan = lruvec_size; 2803 } 2804 2805 scan >>= sc->priority; 2806 2807 /* 2808 * If the cgroup's already been deleted, make sure to 2809 * scrape out the remaining cache. 2810 */ 2811 if (!scan && !mem_cgroup_online(memcg)) 2812 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2813 2814 switch (scan_balance) { 2815 case SCAN_EQUAL: 2816 /* Scan lists relative to size */ 2817 break; 2818 case SCAN_FRACT: 2819 /* 2820 * Scan types proportional to swappiness and 2821 * their relative recent reclaim efficiency. 2822 * Make sure we don't miss the last page on 2823 * the offlined memory cgroups because of a 2824 * round-off error. 2825 */ 2826 scan = mem_cgroup_online(memcg) ? 2827 div64_u64(scan * fraction[file], denominator) : 2828 DIV64_U64_ROUND_UP(scan * fraction[file], 2829 denominator); 2830 break; 2831 case SCAN_FILE: 2832 case SCAN_ANON: 2833 /* Scan one type exclusively */ 2834 if ((scan_balance == SCAN_FILE) != file) 2835 scan = 0; 2836 break; 2837 default: 2838 /* Look ma, no brain */ 2839 BUG(); 2840 } 2841 2842 nr[lru] = scan; 2843 } 2844 } 2845 2846 /* 2847 * Anonymous LRU management is a waste if there is 2848 * ultimately no way to reclaim the memory. 2849 */ 2850 static bool can_age_anon_pages(struct pglist_data *pgdat, 2851 struct scan_control *sc) 2852 { 2853 /* Aging the anon LRU is valuable if swap is present: */ 2854 if (total_swap_pages > 0) 2855 return true; 2856 2857 /* Also valuable if anon pages can be demoted: */ 2858 return can_demote(pgdat->node_id, sc); 2859 } 2860 2861 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2862 { 2863 unsigned long nr[NR_LRU_LISTS]; 2864 unsigned long targets[NR_LRU_LISTS]; 2865 unsigned long nr_to_scan; 2866 enum lru_list lru; 2867 unsigned long nr_reclaimed = 0; 2868 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2869 struct blk_plug plug; 2870 bool scan_adjusted; 2871 2872 get_scan_count(lruvec, sc, nr); 2873 2874 /* Record the original scan target for proportional adjustments later */ 2875 memcpy(targets, nr, sizeof(nr)); 2876 2877 /* 2878 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2879 * event that can occur when there is little memory pressure e.g. 2880 * multiple streaming readers/writers. Hence, we do not abort scanning 2881 * when the requested number of pages are reclaimed when scanning at 2882 * DEF_PRIORITY on the assumption that the fact we are direct 2883 * reclaiming implies that kswapd is not keeping up and it is best to 2884 * do a batch of work at once. For memcg reclaim one check is made to 2885 * abort proportional reclaim if either the file or anon lru has already 2886 * dropped to zero at the first pass. 2887 */ 2888 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2889 sc->priority == DEF_PRIORITY); 2890 2891 blk_start_plug(&plug); 2892 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2893 nr[LRU_INACTIVE_FILE]) { 2894 unsigned long nr_anon, nr_file, percentage; 2895 unsigned long nr_scanned; 2896 2897 for_each_evictable_lru(lru) { 2898 if (nr[lru]) { 2899 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2900 nr[lru] -= nr_to_scan; 2901 2902 nr_reclaimed += shrink_list(lru, nr_to_scan, 2903 lruvec, sc); 2904 } 2905 } 2906 2907 cond_resched(); 2908 2909 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2910 continue; 2911 2912 /* 2913 * For kswapd and memcg, reclaim at least the number of pages 2914 * requested. Ensure that the anon and file LRUs are scanned 2915 * proportionally what was requested by get_scan_count(). We 2916 * stop reclaiming one LRU and reduce the amount scanning 2917 * proportional to the original scan target. 2918 */ 2919 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2920 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2921 2922 /* 2923 * It's just vindictive to attack the larger once the smaller 2924 * has gone to zero. And given the way we stop scanning the 2925 * smaller below, this makes sure that we only make one nudge 2926 * towards proportionality once we've got nr_to_reclaim. 2927 */ 2928 if (!nr_file || !nr_anon) 2929 break; 2930 2931 if (nr_file > nr_anon) { 2932 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2933 targets[LRU_ACTIVE_ANON] + 1; 2934 lru = LRU_BASE; 2935 percentage = nr_anon * 100 / scan_target; 2936 } else { 2937 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2938 targets[LRU_ACTIVE_FILE] + 1; 2939 lru = LRU_FILE; 2940 percentage = nr_file * 100 / scan_target; 2941 } 2942 2943 /* Stop scanning the smaller of the LRU */ 2944 nr[lru] = 0; 2945 nr[lru + LRU_ACTIVE] = 0; 2946 2947 /* 2948 * Recalculate the other LRU scan count based on its original 2949 * scan target and the percentage scanning already complete 2950 */ 2951 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2952 nr_scanned = targets[lru] - nr[lru]; 2953 nr[lru] = targets[lru] * (100 - percentage) / 100; 2954 nr[lru] -= min(nr[lru], nr_scanned); 2955 2956 lru += LRU_ACTIVE; 2957 nr_scanned = targets[lru] - nr[lru]; 2958 nr[lru] = targets[lru] * (100 - percentage) / 100; 2959 nr[lru] -= min(nr[lru], nr_scanned); 2960 2961 scan_adjusted = true; 2962 } 2963 blk_finish_plug(&plug); 2964 sc->nr_reclaimed += nr_reclaimed; 2965 2966 /* 2967 * Even if we did not try to evict anon pages at all, we want to 2968 * rebalance the anon lru active/inactive ratio. 2969 */ 2970 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 2971 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2972 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2973 sc, LRU_ACTIVE_ANON); 2974 } 2975 2976 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2977 static bool in_reclaim_compaction(struct scan_control *sc) 2978 { 2979 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2980 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2981 sc->priority < DEF_PRIORITY - 2)) 2982 return true; 2983 2984 return false; 2985 } 2986 2987 /* 2988 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2989 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2990 * true if more pages should be reclaimed such that when the page allocator 2991 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2992 * It will give up earlier than that if there is difficulty reclaiming pages. 2993 */ 2994 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2995 unsigned long nr_reclaimed, 2996 struct scan_control *sc) 2997 { 2998 unsigned long pages_for_compaction; 2999 unsigned long inactive_lru_pages; 3000 int z; 3001 3002 /* If not in reclaim/compaction mode, stop */ 3003 if (!in_reclaim_compaction(sc)) 3004 return false; 3005 3006 /* 3007 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3008 * number of pages that were scanned. This will return to the caller 3009 * with the risk reclaim/compaction and the resulting allocation attempt 3010 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3011 * allocations through requiring that the full LRU list has been scanned 3012 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3013 * scan, but that approximation was wrong, and there were corner cases 3014 * where always a non-zero amount of pages were scanned. 3015 */ 3016 if (!nr_reclaimed) 3017 return false; 3018 3019 /* If compaction would go ahead or the allocation would succeed, stop */ 3020 for (z = 0; z <= sc->reclaim_idx; z++) { 3021 struct zone *zone = &pgdat->node_zones[z]; 3022 if (!managed_zone(zone)) 3023 continue; 3024 3025 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3026 case COMPACT_SUCCESS: 3027 case COMPACT_CONTINUE: 3028 return false; 3029 default: 3030 /* check next zone */ 3031 ; 3032 } 3033 } 3034 3035 /* 3036 * If we have not reclaimed enough pages for compaction and the 3037 * inactive lists are large enough, continue reclaiming 3038 */ 3039 pages_for_compaction = compact_gap(sc->order); 3040 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3041 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3042 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3043 3044 return inactive_lru_pages > pages_for_compaction; 3045 } 3046 3047 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3048 { 3049 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3050 struct mem_cgroup *memcg; 3051 3052 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3053 do { 3054 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3055 unsigned long reclaimed; 3056 unsigned long scanned; 3057 3058 /* 3059 * This loop can become CPU-bound when target memcgs 3060 * aren't eligible for reclaim - either because they 3061 * don't have any reclaimable pages, or because their 3062 * memory is explicitly protected. Avoid soft lockups. 3063 */ 3064 cond_resched(); 3065 3066 mem_cgroup_calculate_protection(target_memcg, memcg); 3067 3068 if (mem_cgroup_below_min(memcg)) { 3069 /* 3070 * Hard protection. 3071 * If there is no reclaimable memory, OOM. 3072 */ 3073 continue; 3074 } else if (mem_cgroup_below_low(memcg)) { 3075 /* 3076 * Soft protection. 3077 * Respect the protection only as long as 3078 * there is an unprotected supply 3079 * of reclaimable memory from other cgroups. 3080 */ 3081 if (!sc->memcg_low_reclaim) { 3082 sc->memcg_low_skipped = 1; 3083 continue; 3084 } 3085 memcg_memory_event(memcg, MEMCG_LOW); 3086 } 3087 3088 reclaimed = sc->nr_reclaimed; 3089 scanned = sc->nr_scanned; 3090 3091 shrink_lruvec(lruvec, sc); 3092 3093 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3094 sc->priority); 3095 3096 /* Record the group's reclaim efficiency */ 3097 vmpressure(sc->gfp_mask, memcg, false, 3098 sc->nr_scanned - scanned, 3099 sc->nr_reclaimed - reclaimed); 3100 3101 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3102 } 3103 3104 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3105 { 3106 struct reclaim_state *reclaim_state = current->reclaim_state; 3107 unsigned long nr_reclaimed, nr_scanned; 3108 struct lruvec *target_lruvec; 3109 bool reclaimable = false; 3110 unsigned long file; 3111 3112 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3113 3114 again: 3115 /* 3116 * Flush the memory cgroup stats, so that we read accurate per-memcg 3117 * lruvec stats for heuristics. 3118 */ 3119 mem_cgroup_flush_stats(); 3120 3121 memset(&sc->nr, 0, sizeof(sc->nr)); 3122 3123 nr_reclaimed = sc->nr_reclaimed; 3124 nr_scanned = sc->nr_scanned; 3125 3126 /* 3127 * Determine the scan balance between anon and file LRUs. 3128 */ 3129 spin_lock_irq(&target_lruvec->lru_lock); 3130 sc->anon_cost = target_lruvec->anon_cost; 3131 sc->file_cost = target_lruvec->file_cost; 3132 spin_unlock_irq(&target_lruvec->lru_lock); 3133 3134 /* 3135 * Target desirable inactive:active list ratios for the anon 3136 * and file LRU lists. 3137 */ 3138 if (!sc->force_deactivate) { 3139 unsigned long refaults; 3140 3141 refaults = lruvec_page_state(target_lruvec, 3142 WORKINGSET_ACTIVATE_ANON); 3143 if (refaults != target_lruvec->refaults[0] || 3144 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3145 sc->may_deactivate |= DEACTIVATE_ANON; 3146 else 3147 sc->may_deactivate &= ~DEACTIVATE_ANON; 3148 3149 /* 3150 * When refaults are being observed, it means a new 3151 * workingset is being established. Deactivate to get 3152 * rid of any stale active pages quickly. 3153 */ 3154 refaults = lruvec_page_state(target_lruvec, 3155 WORKINGSET_ACTIVATE_FILE); 3156 if (refaults != target_lruvec->refaults[1] || 3157 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3158 sc->may_deactivate |= DEACTIVATE_FILE; 3159 else 3160 sc->may_deactivate &= ~DEACTIVATE_FILE; 3161 } else 3162 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3163 3164 /* 3165 * If we have plenty of inactive file pages that aren't 3166 * thrashing, try to reclaim those first before touching 3167 * anonymous pages. 3168 */ 3169 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3170 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3171 sc->cache_trim_mode = 1; 3172 else 3173 sc->cache_trim_mode = 0; 3174 3175 /* 3176 * Prevent the reclaimer from falling into the cache trap: as 3177 * cache pages start out inactive, every cache fault will tip 3178 * the scan balance towards the file LRU. And as the file LRU 3179 * shrinks, so does the window for rotation from references. 3180 * This means we have a runaway feedback loop where a tiny 3181 * thrashing file LRU becomes infinitely more attractive than 3182 * anon pages. Try to detect this based on file LRU size. 3183 */ 3184 if (!cgroup_reclaim(sc)) { 3185 unsigned long total_high_wmark = 0; 3186 unsigned long free, anon; 3187 int z; 3188 3189 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3190 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3191 node_page_state(pgdat, NR_INACTIVE_FILE); 3192 3193 for (z = 0; z < MAX_NR_ZONES; z++) { 3194 struct zone *zone = &pgdat->node_zones[z]; 3195 if (!managed_zone(zone)) 3196 continue; 3197 3198 total_high_wmark += high_wmark_pages(zone); 3199 } 3200 3201 /* 3202 * Consider anon: if that's low too, this isn't a 3203 * runaway file reclaim problem, but rather just 3204 * extreme pressure. Reclaim as per usual then. 3205 */ 3206 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3207 3208 sc->file_is_tiny = 3209 file + free <= total_high_wmark && 3210 !(sc->may_deactivate & DEACTIVATE_ANON) && 3211 anon >> sc->priority; 3212 } 3213 3214 shrink_node_memcgs(pgdat, sc); 3215 3216 if (reclaim_state) { 3217 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3218 reclaim_state->reclaimed_slab = 0; 3219 } 3220 3221 /* Record the subtree's reclaim efficiency */ 3222 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3223 sc->nr_scanned - nr_scanned, 3224 sc->nr_reclaimed - nr_reclaimed); 3225 3226 if (sc->nr_reclaimed - nr_reclaimed) 3227 reclaimable = true; 3228 3229 if (current_is_kswapd()) { 3230 /* 3231 * If reclaim is isolating dirty pages under writeback, 3232 * it implies that the long-lived page allocation rate 3233 * is exceeding the page laundering rate. Either the 3234 * global limits are not being effective at throttling 3235 * processes due to the page distribution throughout 3236 * zones or there is heavy usage of a slow backing 3237 * device. The only option is to throttle from reclaim 3238 * context which is not ideal as there is no guarantee 3239 * the dirtying process is throttled in the same way 3240 * balance_dirty_pages() manages. 3241 * 3242 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3243 * count the number of pages under pages flagged for 3244 * immediate reclaim and stall if any are encountered 3245 * in the nr_immediate check below. 3246 */ 3247 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3248 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3249 3250 /* Allow kswapd to start writing pages during reclaim.*/ 3251 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3252 set_bit(PGDAT_DIRTY, &pgdat->flags); 3253 3254 /* 3255 * If kswapd scans pages marked for immediate 3256 * reclaim and under writeback (nr_immediate), it 3257 * implies that pages are cycling through the LRU 3258 * faster than they are written so forcibly stall 3259 * until some pages complete writeback. 3260 */ 3261 if (sc->nr.immediate) 3262 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3263 } 3264 3265 /* 3266 * Tag a node/memcg as congested if all the dirty pages were marked 3267 * for writeback and immediate reclaim (counted in nr.congested). 3268 * 3269 * Legacy memcg will stall in page writeback so avoid forcibly 3270 * stalling in reclaim_throttle(). 3271 */ 3272 if ((current_is_kswapd() || 3273 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3274 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3275 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3276 3277 /* 3278 * Stall direct reclaim for IO completions if the lruvec is 3279 * node is congested. Allow kswapd to continue until it 3280 * starts encountering unqueued dirty pages or cycling through 3281 * the LRU too quickly. 3282 */ 3283 if (!current_is_kswapd() && current_may_throttle() && 3284 !sc->hibernation_mode && 3285 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3286 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 3287 3288 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3289 sc)) 3290 goto again; 3291 3292 /* 3293 * Kswapd gives up on balancing particular nodes after too 3294 * many failures to reclaim anything from them and goes to 3295 * sleep. On reclaim progress, reset the failure counter. A 3296 * successful direct reclaim run will revive a dormant kswapd. 3297 */ 3298 if (reclaimable) 3299 pgdat->kswapd_failures = 0; 3300 } 3301 3302 /* 3303 * Returns true if compaction should go ahead for a costly-order request, or 3304 * the allocation would already succeed without compaction. Return false if we 3305 * should reclaim first. 3306 */ 3307 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3308 { 3309 unsigned long watermark; 3310 enum compact_result suitable; 3311 3312 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3313 if (suitable == COMPACT_SUCCESS) 3314 /* Allocation should succeed already. Don't reclaim. */ 3315 return true; 3316 if (suitable == COMPACT_SKIPPED) 3317 /* Compaction cannot yet proceed. Do reclaim. */ 3318 return false; 3319 3320 /* 3321 * Compaction is already possible, but it takes time to run and there 3322 * are potentially other callers using the pages just freed. So proceed 3323 * with reclaim to make a buffer of free pages available to give 3324 * compaction a reasonable chance of completing and allocating the page. 3325 * Note that we won't actually reclaim the whole buffer in one attempt 3326 * as the target watermark in should_continue_reclaim() is lower. But if 3327 * we are already above the high+gap watermark, don't reclaim at all. 3328 */ 3329 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3330 3331 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3332 } 3333 3334 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3335 { 3336 /* 3337 * If reclaim is making progress greater than 12% efficiency then 3338 * wake all the NOPROGRESS throttled tasks. 3339 */ 3340 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3341 wait_queue_head_t *wqh; 3342 3343 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3344 if (waitqueue_active(wqh)) 3345 wake_up(wqh); 3346 3347 return; 3348 } 3349 3350 /* 3351 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 3352 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 3353 * under writeback and marked for immediate reclaim at the tail of the 3354 * LRU. 3355 */ 3356 if (current_is_kswapd() || cgroup_reclaim(sc)) 3357 return; 3358 3359 /* Throttle if making no progress at high prioities. */ 3360 if (sc->priority == 1 && !sc->nr_reclaimed) 3361 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3362 } 3363 3364 /* 3365 * This is the direct reclaim path, for page-allocating processes. We only 3366 * try to reclaim pages from zones which will satisfy the caller's allocation 3367 * request. 3368 * 3369 * If a zone is deemed to be full of pinned pages then just give it a light 3370 * scan then give up on it. 3371 */ 3372 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3373 { 3374 struct zoneref *z; 3375 struct zone *zone; 3376 unsigned long nr_soft_reclaimed; 3377 unsigned long nr_soft_scanned; 3378 gfp_t orig_mask; 3379 pg_data_t *last_pgdat = NULL; 3380 pg_data_t *first_pgdat = NULL; 3381 3382 /* 3383 * If the number of buffer_heads in the machine exceeds the maximum 3384 * allowed level, force direct reclaim to scan the highmem zone as 3385 * highmem pages could be pinning lowmem pages storing buffer_heads 3386 */ 3387 orig_mask = sc->gfp_mask; 3388 if (buffer_heads_over_limit) { 3389 sc->gfp_mask |= __GFP_HIGHMEM; 3390 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3391 } 3392 3393 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3394 sc->reclaim_idx, sc->nodemask) { 3395 /* 3396 * Take care memory controller reclaiming has small influence 3397 * to global LRU. 3398 */ 3399 if (!cgroup_reclaim(sc)) { 3400 if (!cpuset_zone_allowed(zone, 3401 GFP_KERNEL | __GFP_HARDWALL)) 3402 continue; 3403 3404 /* 3405 * If we already have plenty of memory free for 3406 * compaction in this zone, don't free any more. 3407 * Even though compaction is invoked for any 3408 * non-zero order, only frequent costly order 3409 * reclamation is disruptive enough to become a 3410 * noticeable problem, like transparent huge 3411 * page allocations. 3412 */ 3413 if (IS_ENABLED(CONFIG_COMPACTION) && 3414 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3415 compaction_ready(zone, sc)) { 3416 sc->compaction_ready = true; 3417 continue; 3418 } 3419 3420 /* 3421 * Shrink each node in the zonelist once. If the 3422 * zonelist is ordered by zone (not the default) then a 3423 * node may be shrunk multiple times but in that case 3424 * the user prefers lower zones being preserved. 3425 */ 3426 if (zone->zone_pgdat == last_pgdat) 3427 continue; 3428 3429 /* 3430 * This steals pages from memory cgroups over softlimit 3431 * and returns the number of reclaimed pages and 3432 * scanned pages. This works for global memory pressure 3433 * and balancing, not for a memcg's limit. 3434 */ 3435 nr_soft_scanned = 0; 3436 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3437 sc->order, sc->gfp_mask, 3438 &nr_soft_scanned); 3439 sc->nr_reclaimed += nr_soft_reclaimed; 3440 sc->nr_scanned += nr_soft_scanned; 3441 /* need some check for avoid more shrink_zone() */ 3442 } 3443 3444 if (!first_pgdat) 3445 first_pgdat = zone->zone_pgdat; 3446 3447 /* See comment about same check for global reclaim above */ 3448 if (zone->zone_pgdat == last_pgdat) 3449 continue; 3450 last_pgdat = zone->zone_pgdat; 3451 shrink_node(zone->zone_pgdat, sc); 3452 } 3453 3454 if (first_pgdat) 3455 consider_reclaim_throttle(first_pgdat, sc); 3456 3457 /* 3458 * Restore to original mask to avoid the impact on the caller if we 3459 * promoted it to __GFP_HIGHMEM. 3460 */ 3461 sc->gfp_mask = orig_mask; 3462 } 3463 3464 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3465 { 3466 struct lruvec *target_lruvec; 3467 unsigned long refaults; 3468 3469 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3470 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3471 target_lruvec->refaults[0] = refaults; 3472 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3473 target_lruvec->refaults[1] = refaults; 3474 } 3475 3476 /* 3477 * This is the main entry point to direct page reclaim. 3478 * 3479 * If a full scan of the inactive list fails to free enough memory then we 3480 * are "out of memory" and something needs to be killed. 3481 * 3482 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3483 * high - the zone may be full of dirty or under-writeback pages, which this 3484 * caller can't do much about. We kick the writeback threads and take explicit 3485 * naps in the hope that some of these pages can be written. But if the 3486 * allocating task holds filesystem locks which prevent writeout this might not 3487 * work, and the allocation attempt will fail. 3488 * 3489 * returns: 0, if no pages reclaimed 3490 * else, the number of pages reclaimed 3491 */ 3492 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3493 struct scan_control *sc) 3494 { 3495 int initial_priority = sc->priority; 3496 pg_data_t *last_pgdat; 3497 struct zoneref *z; 3498 struct zone *zone; 3499 retry: 3500 delayacct_freepages_start(); 3501 3502 if (!cgroup_reclaim(sc)) 3503 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3504 3505 do { 3506 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3507 sc->priority); 3508 sc->nr_scanned = 0; 3509 shrink_zones(zonelist, sc); 3510 3511 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3512 break; 3513 3514 if (sc->compaction_ready) 3515 break; 3516 3517 /* 3518 * If we're getting trouble reclaiming, start doing 3519 * writepage even in laptop mode. 3520 */ 3521 if (sc->priority < DEF_PRIORITY - 2) 3522 sc->may_writepage = 1; 3523 } while (--sc->priority >= 0); 3524 3525 last_pgdat = NULL; 3526 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3527 sc->nodemask) { 3528 if (zone->zone_pgdat == last_pgdat) 3529 continue; 3530 last_pgdat = zone->zone_pgdat; 3531 3532 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3533 3534 if (cgroup_reclaim(sc)) { 3535 struct lruvec *lruvec; 3536 3537 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3538 zone->zone_pgdat); 3539 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3540 } 3541 } 3542 3543 delayacct_freepages_end(); 3544 3545 if (sc->nr_reclaimed) 3546 return sc->nr_reclaimed; 3547 3548 /* Aborted reclaim to try compaction? don't OOM, then */ 3549 if (sc->compaction_ready) 3550 return 1; 3551 3552 /* 3553 * We make inactive:active ratio decisions based on the node's 3554 * composition of memory, but a restrictive reclaim_idx or a 3555 * memory.low cgroup setting can exempt large amounts of 3556 * memory from reclaim. Neither of which are very common, so 3557 * instead of doing costly eligibility calculations of the 3558 * entire cgroup subtree up front, we assume the estimates are 3559 * good, and retry with forcible deactivation if that fails. 3560 */ 3561 if (sc->skipped_deactivate) { 3562 sc->priority = initial_priority; 3563 sc->force_deactivate = 1; 3564 sc->skipped_deactivate = 0; 3565 goto retry; 3566 } 3567 3568 /* Untapped cgroup reserves? Don't OOM, retry. */ 3569 if (sc->memcg_low_skipped) { 3570 sc->priority = initial_priority; 3571 sc->force_deactivate = 0; 3572 sc->memcg_low_reclaim = 1; 3573 sc->memcg_low_skipped = 0; 3574 goto retry; 3575 } 3576 3577 return 0; 3578 } 3579 3580 static bool allow_direct_reclaim(pg_data_t *pgdat) 3581 { 3582 struct zone *zone; 3583 unsigned long pfmemalloc_reserve = 0; 3584 unsigned long free_pages = 0; 3585 int i; 3586 bool wmark_ok; 3587 3588 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3589 return true; 3590 3591 for (i = 0; i <= ZONE_NORMAL; i++) { 3592 zone = &pgdat->node_zones[i]; 3593 if (!managed_zone(zone)) 3594 continue; 3595 3596 if (!zone_reclaimable_pages(zone)) 3597 continue; 3598 3599 pfmemalloc_reserve += min_wmark_pages(zone); 3600 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3601 } 3602 3603 /* If there are no reserves (unexpected config) then do not throttle */ 3604 if (!pfmemalloc_reserve) 3605 return true; 3606 3607 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3608 3609 /* kswapd must be awake if processes are being throttled */ 3610 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3611 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3612 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3613 3614 wake_up_interruptible(&pgdat->kswapd_wait); 3615 } 3616 3617 return wmark_ok; 3618 } 3619 3620 /* 3621 * Throttle direct reclaimers if backing storage is backed by the network 3622 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3623 * depleted. kswapd will continue to make progress and wake the processes 3624 * when the low watermark is reached. 3625 * 3626 * Returns true if a fatal signal was delivered during throttling. If this 3627 * happens, the page allocator should not consider triggering the OOM killer. 3628 */ 3629 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3630 nodemask_t *nodemask) 3631 { 3632 struct zoneref *z; 3633 struct zone *zone; 3634 pg_data_t *pgdat = NULL; 3635 3636 /* 3637 * Kernel threads should not be throttled as they may be indirectly 3638 * responsible for cleaning pages necessary for reclaim to make forward 3639 * progress. kjournald for example may enter direct reclaim while 3640 * committing a transaction where throttling it could forcing other 3641 * processes to block on log_wait_commit(). 3642 */ 3643 if (current->flags & PF_KTHREAD) 3644 goto out; 3645 3646 /* 3647 * If a fatal signal is pending, this process should not throttle. 3648 * It should return quickly so it can exit and free its memory 3649 */ 3650 if (fatal_signal_pending(current)) 3651 goto out; 3652 3653 /* 3654 * Check if the pfmemalloc reserves are ok by finding the first node 3655 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3656 * GFP_KERNEL will be required for allocating network buffers when 3657 * swapping over the network so ZONE_HIGHMEM is unusable. 3658 * 3659 * Throttling is based on the first usable node and throttled processes 3660 * wait on a queue until kswapd makes progress and wakes them. There 3661 * is an affinity then between processes waking up and where reclaim 3662 * progress has been made assuming the process wakes on the same node. 3663 * More importantly, processes running on remote nodes will not compete 3664 * for remote pfmemalloc reserves and processes on different nodes 3665 * should make reasonable progress. 3666 */ 3667 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3668 gfp_zone(gfp_mask), nodemask) { 3669 if (zone_idx(zone) > ZONE_NORMAL) 3670 continue; 3671 3672 /* Throttle based on the first usable node */ 3673 pgdat = zone->zone_pgdat; 3674 if (allow_direct_reclaim(pgdat)) 3675 goto out; 3676 break; 3677 } 3678 3679 /* If no zone was usable by the allocation flags then do not throttle */ 3680 if (!pgdat) 3681 goto out; 3682 3683 /* Account for the throttling */ 3684 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3685 3686 /* 3687 * If the caller cannot enter the filesystem, it's possible that it 3688 * is due to the caller holding an FS lock or performing a journal 3689 * transaction in the case of a filesystem like ext[3|4]. In this case, 3690 * it is not safe to block on pfmemalloc_wait as kswapd could be 3691 * blocked waiting on the same lock. Instead, throttle for up to a 3692 * second before continuing. 3693 */ 3694 if (!(gfp_mask & __GFP_FS)) 3695 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3696 allow_direct_reclaim(pgdat), HZ); 3697 else 3698 /* Throttle until kswapd wakes the process */ 3699 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3700 allow_direct_reclaim(pgdat)); 3701 3702 if (fatal_signal_pending(current)) 3703 return true; 3704 3705 out: 3706 return false; 3707 } 3708 3709 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3710 gfp_t gfp_mask, nodemask_t *nodemask) 3711 { 3712 unsigned long nr_reclaimed; 3713 struct scan_control sc = { 3714 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3715 .gfp_mask = current_gfp_context(gfp_mask), 3716 .reclaim_idx = gfp_zone(gfp_mask), 3717 .order = order, 3718 .nodemask = nodemask, 3719 .priority = DEF_PRIORITY, 3720 .may_writepage = !laptop_mode, 3721 .may_unmap = 1, 3722 .may_swap = 1, 3723 }; 3724 3725 /* 3726 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3727 * Confirm they are large enough for max values. 3728 */ 3729 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3730 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3731 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3732 3733 /* 3734 * Do not enter reclaim if fatal signal was delivered while throttled. 3735 * 1 is returned so that the page allocator does not OOM kill at this 3736 * point. 3737 */ 3738 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3739 return 1; 3740 3741 set_task_reclaim_state(current, &sc.reclaim_state); 3742 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3743 3744 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3745 3746 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3747 set_task_reclaim_state(current, NULL); 3748 3749 return nr_reclaimed; 3750 } 3751 3752 #ifdef CONFIG_MEMCG 3753 3754 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3755 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3756 gfp_t gfp_mask, bool noswap, 3757 pg_data_t *pgdat, 3758 unsigned long *nr_scanned) 3759 { 3760 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3761 struct scan_control sc = { 3762 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3763 .target_mem_cgroup = memcg, 3764 .may_writepage = !laptop_mode, 3765 .may_unmap = 1, 3766 .reclaim_idx = MAX_NR_ZONES - 1, 3767 .may_swap = !noswap, 3768 }; 3769 3770 WARN_ON_ONCE(!current->reclaim_state); 3771 3772 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3773 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3774 3775 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3776 sc.gfp_mask); 3777 3778 /* 3779 * NOTE: Although we can get the priority field, using it 3780 * here is not a good idea, since it limits the pages we can scan. 3781 * if we don't reclaim here, the shrink_node from balance_pgdat 3782 * will pick up pages from other mem cgroup's as well. We hack 3783 * the priority and make it zero. 3784 */ 3785 shrink_lruvec(lruvec, &sc); 3786 3787 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3788 3789 *nr_scanned = sc.nr_scanned; 3790 3791 return sc.nr_reclaimed; 3792 } 3793 3794 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3795 unsigned long nr_pages, 3796 gfp_t gfp_mask, 3797 bool may_swap) 3798 { 3799 unsigned long nr_reclaimed; 3800 unsigned int noreclaim_flag; 3801 struct scan_control sc = { 3802 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3803 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3804 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3805 .reclaim_idx = MAX_NR_ZONES - 1, 3806 .target_mem_cgroup = memcg, 3807 .priority = DEF_PRIORITY, 3808 .may_writepage = !laptop_mode, 3809 .may_unmap = 1, 3810 .may_swap = may_swap, 3811 }; 3812 /* 3813 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3814 * equal pressure on all the nodes. This is based on the assumption that 3815 * the reclaim does not bail out early. 3816 */ 3817 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3818 3819 set_task_reclaim_state(current, &sc.reclaim_state); 3820 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3821 noreclaim_flag = memalloc_noreclaim_save(); 3822 3823 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3824 3825 memalloc_noreclaim_restore(noreclaim_flag); 3826 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3827 set_task_reclaim_state(current, NULL); 3828 3829 return nr_reclaimed; 3830 } 3831 #endif 3832 3833 static void age_active_anon(struct pglist_data *pgdat, 3834 struct scan_control *sc) 3835 { 3836 struct mem_cgroup *memcg; 3837 struct lruvec *lruvec; 3838 3839 if (!can_age_anon_pages(pgdat, sc)) 3840 return; 3841 3842 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3843 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3844 return; 3845 3846 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3847 do { 3848 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3849 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3850 sc, LRU_ACTIVE_ANON); 3851 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3852 } while (memcg); 3853 } 3854 3855 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3856 { 3857 int i; 3858 struct zone *zone; 3859 3860 /* 3861 * Check for watermark boosts top-down as the higher zones 3862 * are more likely to be boosted. Both watermarks and boosts 3863 * should not be checked at the same time as reclaim would 3864 * start prematurely when there is no boosting and a lower 3865 * zone is balanced. 3866 */ 3867 for (i = highest_zoneidx; i >= 0; i--) { 3868 zone = pgdat->node_zones + i; 3869 if (!managed_zone(zone)) 3870 continue; 3871 3872 if (zone->watermark_boost) 3873 return true; 3874 } 3875 3876 return false; 3877 } 3878 3879 /* 3880 * Returns true if there is an eligible zone balanced for the request order 3881 * and highest_zoneidx 3882 */ 3883 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3884 { 3885 int i; 3886 unsigned long mark = -1; 3887 struct zone *zone; 3888 3889 /* 3890 * Check watermarks bottom-up as lower zones are more likely to 3891 * meet watermarks. 3892 */ 3893 for (i = 0; i <= highest_zoneidx; i++) { 3894 zone = pgdat->node_zones + i; 3895 3896 if (!managed_zone(zone)) 3897 continue; 3898 3899 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 3900 mark = wmark_pages(zone, WMARK_PROMO); 3901 else 3902 mark = high_wmark_pages(zone); 3903 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3904 return true; 3905 } 3906 3907 /* 3908 * If a node has no populated zone within highest_zoneidx, it does not 3909 * need balancing by definition. This can happen if a zone-restricted 3910 * allocation tries to wake a remote kswapd. 3911 */ 3912 if (mark == -1) 3913 return true; 3914 3915 return false; 3916 } 3917 3918 /* Clear pgdat state for congested, dirty or under writeback. */ 3919 static void clear_pgdat_congested(pg_data_t *pgdat) 3920 { 3921 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3922 3923 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3924 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3925 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3926 } 3927 3928 /* 3929 * Prepare kswapd for sleeping. This verifies that there are no processes 3930 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3931 * 3932 * Returns true if kswapd is ready to sleep 3933 */ 3934 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3935 int highest_zoneidx) 3936 { 3937 /* 3938 * The throttled processes are normally woken up in balance_pgdat() as 3939 * soon as allow_direct_reclaim() is true. But there is a potential 3940 * race between when kswapd checks the watermarks and a process gets 3941 * throttled. There is also a potential race if processes get 3942 * throttled, kswapd wakes, a large process exits thereby balancing the 3943 * zones, which causes kswapd to exit balance_pgdat() before reaching 3944 * the wake up checks. If kswapd is going to sleep, no process should 3945 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3946 * the wake up is premature, processes will wake kswapd and get 3947 * throttled again. The difference from wake ups in balance_pgdat() is 3948 * that here we are under prepare_to_wait(). 3949 */ 3950 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3951 wake_up_all(&pgdat->pfmemalloc_wait); 3952 3953 /* Hopeless node, leave it to direct reclaim */ 3954 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3955 return true; 3956 3957 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3958 clear_pgdat_congested(pgdat); 3959 return true; 3960 } 3961 3962 return false; 3963 } 3964 3965 /* 3966 * kswapd shrinks a node of pages that are at or below the highest usable 3967 * zone that is currently unbalanced. 3968 * 3969 * Returns true if kswapd scanned at least the requested number of pages to 3970 * reclaim or if the lack of progress was due to pages under writeback. 3971 * This is used to determine if the scanning priority needs to be raised. 3972 */ 3973 static bool kswapd_shrink_node(pg_data_t *pgdat, 3974 struct scan_control *sc) 3975 { 3976 struct zone *zone; 3977 int z; 3978 3979 /* Reclaim a number of pages proportional to the number of zones */ 3980 sc->nr_to_reclaim = 0; 3981 for (z = 0; z <= sc->reclaim_idx; z++) { 3982 zone = pgdat->node_zones + z; 3983 if (!managed_zone(zone)) 3984 continue; 3985 3986 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3987 } 3988 3989 /* 3990 * Historically care was taken to put equal pressure on all zones but 3991 * now pressure is applied based on node LRU order. 3992 */ 3993 shrink_node(pgdat, sc); 3994 3995 /* 3996 * Fragmentation may mean that the system cannot be rebalanced for 3997 * high-order allocations. If twice the allocation size has been 3998 * reclaimed then recheck watermarks only at order-0 to prevent 3999 * excessive reclaim. Assume that a process requested a high-order 4000 * can direct reclaim/compact. 4001 */ 4002 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4003 sc->order = 0; 4004 4005 return sc->nr_scanned >= sc->nr_to_reclaim; 4006 } 4007 4008 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4009 static inline void 4010 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4011 { 4012 int i; 4013 struct zone *zone; 4014 4015 for (i = 0; i <= highest_zoneidx; i++) { 4016 zone = pgdat->node_zones + i; 4017 4018 if (!managed_zone(zone)) 4019 continue; 4020 4021 if (active) 4022 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4023 else 4024 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4025 } 4026 } 4027 4028 static inline void 4029 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4030 { 4031 update_reclaim_active(pgdat, highest_zoneidx, true); 4032 } 4033 4034 static inline void 4035 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4036 { 4037 update_reclaim_active(pgdat, highest_zoneidx, false); 4038 } 4039 4040 /* 4041 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4042 * that are eligible for use by the caller until at least one zone is 4043 * balanced. 4044 * 4045 * Returns the order kswapd finished reclaiming at. 4046 * 4047 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4048 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4049 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4050 * or lower is eligible for reclaim until at least one usable zone is 4051 * balanced. 4052 */ 4053 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4054 { 4055 int i; 4056 unsigned long nr_soft_reclaimed; 4057 unsigned long nr_soft_scanned; 4058 unsigned long pflags; 4059 unsigned long nr_boost_reclaim; 4060 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4061 bool boosted; 4062 struct zone *zone; 4063 struct scan_control sc = { 4064 .gfp_mask = GFP_KERNEL, 4065 .order = order, 4066 .may_unmap = 1, 4067 }; 4068 4069 set_task_reclaim_state(current, &sc.reclaim_state); 4070 psi_memstall_enter(&pflags); 4071 __fs_reclaim_acquire(_THIS_IP_); 4072 4073 count_vm_event(PAGEOUTRUN); 4074 4075 /* 4076 * Account for the reclaim boost. Note that the zone boost is left in 4077 * place so that parallel allocations that are near the watermark will 4078 * stall or direct reclaim until kswapd is finished. 4079 */ 4080 nr_boost_reclaim = 0; 4081 for (i = 0; i <= highest_zoneidx; i++) { 4082 zone = pgdat->node_zones + i; 4083 if (!managed_zone(zone)) 4084 continue; 4085 4086 nr_boost_reclaim += zone->watermark_boost; 4087 zone_boosts[i] = zone->watermark_boost; 4088 } 4089 boosted = nr_boost_reclaim; 4090 4091 restart: 4092 set_reclaim_active(pgdat, highest_zoneidx); 4093 sc.priority = DEF_PRIORITY; 4094 do { 4095 unsigned long nr_reclaimed = sc.nr_reclaimed; 4096 bool raise_priority = true; 4097 bool balanced; 4098 bool ret; 4099 4100 sc.reclaim_idx = highest_zoneidx; 4101 4102 /* 4103 * If the number of buffer_heads exceeds the maximum allowed 4104 * then consider reclaiming from all zones. This has a dual 4105 * purpose -- on 64-bit systems it is expected that 4106 * buffer_heads are stripped during active rotation. On 32-bit 4107 * systems, highmem pages can pin lowmem memory and shrinking 4108 * buffers can relieve lowmem pressure. Reclaim may still not 4109 * go ahead if all eligible zones for the original allocation 4110 * request are balanced to avoid excessive reclaim from kswapd. 4111 */ 4112 if (buffer_heads_over_limit) { 4113 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4114 zone = pgdat->node_zones + i; 4115 if (!managed_zone(zone)) 4116 continue; 4117 4118 sc.reclaim_idx = i; 4119 break; 4120 } 4121 } 4122 4123 /* 4124 * If the pgdat is imbalanced then ignore boosting and preserve 4125 * the watermarks for a later time and restart. Note that the 4126 * zone watermarks will be still reset at the end of balancing 4127 * on the grounds that the normal reclaim should be enough to 4128 * re-evaluate if boosting is required when kswapd next wakes. 4129 */ 4130 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4131 if (!balanced && nr_boost_reclaim) { 4132 nr_boost_reclaim = 0; 4133 goto restart; 4134 } 4135 4136 /* 4137 * If boosting is not active then only reclaim if there are no 4138 * eligible zones. Note that sc.reclaim_idx is not used as 4139 * buffer_heads_over_limit may have adjusted it. 4140 */ 4141 if (!nr_boost_reclaim && balanced) 4142 goto out; 4143 4144 /* Limit the priority of boosting to avoid reclaim writeback */ 4145 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4146 raise_priority = false; 4147 4148 /* 4149 * Do not writeback or swap pages for boosted reclaim. The 4150 * intent is to relieve pressure not issue sub-optimal IO 4151 * from reclaim context. If no pages are reclaimed, the 4152 * reclaim will be aborted. 4153 */ 4154 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4155 sc.may_swap = !nr_boost_reclaim; 4156 4157 /* 4158 * Do some background aging of the anon list, to give 4159 * pages a chance to be referenced before reclaiming. All 4160 * pages are rotated regardless of classzone as this is 4161 * about consistent aging. 4162 */ 4163 age_active_anon(pgdat, &sc); 4164 4165 /* 4166 * If we're getting trouble reclaiming, start doing writepage 4167 * even in laptop mode. 4168 */ 4169 if (sc.priority < DEF_PRIORITY - 2) 4170 sc.may_writepage = 1; 4171 4172 /* Call soft limit reclaim before calling shrink_node. */ 4173 sc.nr_scanned = 0; 4174 nr_soft_scanned = 0; 4175 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4176 sc.gfp_mask, &nr_soft_scanned); 4177 sc.nr_reclaimed += nr_soft_reclaimed; 4178 4179 /* 4180 * There should be no need to raise the scanning priority if 4181 * enough pages are already being scanned that that high 4182 * watermark would be met at 100% efficiency. 4183 */ 4184 if (kswapd_shrink_node(pgdat, &sc)) 4185 raise_priority = false; 4186 4187 /* 4188 * If the low watermark is met there is no need for processes 4189 * to be throttled on pfmemalloc_wait as they should not be 4190 * able to safely make forward progress. Wake them 4191 */ 4192 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4193 allow_direct_reclaim(pgdat)) 4194 wake_up_all(&pgdat->pfmemalloc_wait); 4195 4196 /* Check if kswapd should be suspending */ 4197 __fs_reclaim_release(_THIS_IP_); 4198 ret = try_to_freeze(); 4199 __fs_reclaim_acquire(_THIS_IP_); 4200 if (ret || kthread_should_stop()) 4201 break; 4202 4203 /* 4204 * Raise priority if scanning rate is too low or there was no 4205 * progress in reclaiming pages 4206 */ 4207 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4208 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4209 4210 /* 4211 * If reclaim made no progress for a boost, stop reclaim as 4212 * IO cannot be queued and it could be an infinite loop in 4213 * extreme circumstances. 4214 */ 4215 if (nr_boost_reclaim && !nr_reclaimed) 4216 break; 4217 4218 if (raise_priority || !nr_reclaimed) 4219 sc.priority--; 4220 } while (sc.priority >= 1); 4221 4222 if (!sc.nr_reclaimed) 4223 pgdat->kswapd_failures++; 4224 4225 out: 4226 clear_reclaim_active(pgdat, highest_zoneidx); 4227 4228 /* If reclaim was boosted, account for the reclaim done in this pass */ 4229 if (boosted) { 4230 unsigned long flags; 4231 4232 for (i = 0; i <= highest_zoneidx; i++) { 4233 if (!zone_boosts[i]) 4234 continue; 4235 4236 /* Increments are under the zone lock */ 4237 zone = pgdat->node_zones + i; 4238 spin_lock_irqsave(&zone->lock, flags); 4239 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4240 spin_unlock_irqrestore(&zone->lock, flags); 4241 } 4242 4243 /* 4244 * As there is now likely space, wakeup kcompact to defragment 4245 * pageblocks. 4246 */ 4247 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4248 } 4249 4250 snapshot_refaults(NULL, pgdat); 4251 __fs_reclaim_release(_THIS_IP_); 4252 psi_memstall_leave(&pflags); 4253 set_task_reclaim_state(current, NULL); 4254 4255 /* 4256 * Return the order kswapd stopped reclaiming at as 4257 * prepare_kswapd_sleep() takes it into account. If another caller 4258 * entered the allocator slow path while kswapd was awake, order will 4259 * remain at the higher level. 4260 */ 4261 return sc.order; 4262 } 4263 4264 /* 4265 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4266 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4267 * not a valid index then either kswapd runs for first time or kswapd couldn't 4268 * sleep after previous reclaim attempt (node is still unbalanced). In that 4269 * case return the zone index of the previous kswapd reclaim cycle. 4270 */ 4271 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4272 enum zone_type prev_highest_zoneidx) 4273 { 4274 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4275 4276 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4277 } 4278 4279 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4280 unsigned int highest_zoneidx) 4281 { 4282 long remaining = 0; 4283 DEFINE_WAIT(wait); 4284 4285 if (freezing(current) || kthread_should_stop()) 4286 return; 4287 4288 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4289 4290 /* 4291 * Try to sleep for a short interval. Note that kcompactd will only be 4292 * woken if it is possible to sleep for a short interval. This is 4293 * deliberate on the assumption that if reclaim cannot keep an 4294 * eligible zone balanced that it's also unlikely that compaction will 4295 * succeed. 4296 */ 4297 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4298 /* 4299 * Compaction records what page blocks it recently failed to 4300 * isolate pages from and skips them in the future scanning. 4301 * When kswapd is going to sleep, it is reasonable to assume 4302 * that pages and compaction may succeed so reset the cache. 4303 */ 4304 reset_isolation_suitable(pgdat); 4305 4306 /* 4307 * We have freed the memory, now we should compact it to make 4308 * allocation of the requested order possible. 4309 */ 4310 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4311 4312 remaining = schedule_timeout(HZ/10); 4313 4314 /* 4315 * If woken prematurely then reset kswapd_highest_zoneidx and 4316 * order. The values will either be from a wakeup request or 4317 * the previous request that slept prematurely. 4318 */ 4319 if (remaining) { 4320 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4321 kswapd_highest_zoneidx(pgdat, 4322 highest_zoneidx)); 4323 4324 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4325 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4326 } 4327 4328 finish_wait(&pgdat->kswapd_wait, &wait); 4329 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4330 } 4331 4332 /* 4333 * After a short sleep, check if it was a premature sleep. If not, then 4334 * go fully to sleep until explicitly woken up. 4335 */ 4336 if (!remaining && 4337 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4338 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4339 4340 /* 4341 * vmstat counters are not perfectly accurate and the estimated 4342 * value for counters such as NR_FREE_PAGES can deviate from the 4343 * true value by nr_online_cpus * threshold. To avoid the zone 4344 * watermarks being breached while under pressure, we reduce the 4345 * per-cpu vmstat threshold while kswapd is awake and restore 4346 * them before going back to sleep. 4347 */ 4348 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4349 4350 if (!kthread_should_stop()) 4351 schedule(); 4352 4353 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4354 } else { 4355 if (remaining) 4356 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4357 else 4358 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4359 } 4360 finish_wait(&pgdat->kswapd_wait, &wait); 4361 } 4362 4363 /* 4364 * The background pageout daemon, started as a kernel thread 4365 * from the init process. 4366 * 4367 * This basically trickles out pages so that we have _some_ 4368 * free memory available even if there is no other activity 4369 * that frees anything up. This is needed for things like routing 4370 * etc, where we otherwise might have all activity going on in 4371 * asynchronous contexts that cannot page things out. 4372 * 4373 * If there are applications that are active memory-allocators 4374 * (most normal use), this basically shouldn't matter. 4375 */ 4376 static int kswapd(void *p) 4377 { 4378 unsigned int alloc_order, reclaim_order; 4379 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4380 pg_data_t *pgdat = (pg_data_t *)p; 4381 struct task_struct *tsk = current; 4382 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4383 4384 if (!cpumask_empty(cpumask)) 4385 set_cpus_allowed_ptr(tsk, cpumask); 4386 4387 /* 4388 * Tell the memory management that we're a "memory allocator", 4389 * and that if we need more memory we should get access to it 4390 * regardless (see "__alloc_pages()"). "kswapd" should 4391 * never get caught in the normal page freeing logic. 4392 * 4393 * (Kswapd normally doesn't need memory anyway, but sometimes 4394 * you need a small amount of memory in order to be able to 4395 * page out something else, and this flag essentially protects 4396 * us from recursively trying to free more memory as we're 4397 * trying to free the first piece of memory in the first place). 4398 */ 4399 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 4400 set_freezable(); 4401 4402 WRITE_ONCE(pgdat->kswapd_order, 0); 4403 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4404 atomic_set(&pgdat->nr_writeback_throttled, 0); 4405 for ( ; ; ) { 4406 bool ret; 4407 4408 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4409 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4410 highest_zoneidx); 4411 4412 kswapd_try_sleep: 4413 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4414 highest_zoneidx); 4415 4416 /* Read the new order and highest_zoneidx */ 4417 alloc_order = READ_ONCE(pgdat->kswapd_order); 4418 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4419 highest_zoneidx); 4420 WRITE_ONCE(pgdat->kswapd_order, 0); 4421 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4422 4423 ret = try_to_freeze(); 4424 if (kthread_should_stop()) 4425 break; 4426 4427 /* 4428 * We can speed up thawing tasks if we don't call balance_pgdat 4429 * after returning from the refrigerator 4430 */ 4431 if (ret) 4432 continue; 4433 4434 /* 4435 * Reclaim begins at the requested order but if a high-order 4436 * reclaim fails then kswapd falls back to reclaiming for 4437 * order-0. If that happens, kswapd will consider sleeping 4438 * for the order it finished reclaiming at (reclaim_order) 4439 * but kcompactd is woken to compact for the original 4440 * request (alloc_order). 4441 */ 4442 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4443 alloc_order); 4444 reclaim_order = balance_pgdat(pgdat, alloc_order, 4445 highest_zoneidx); 4446 if (reclaim_order < alloc_order) 4447 goto kswapd_try_sleep; 4448 } 4449 4450 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 4451 4452 return 0; 4453 } 4454 4455 /* 4456 * A zone is low on free memory or too fragmented for high-order memory. If 4457 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4458 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4459 * has failed or is not needed, still wake up kcompactd if only compaction is 4460 * needed. 4461 */ 4462 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4463 enum zone_type highest_zoneidx) 4464 { 4465 pg_data_t *pgdat; 4466 enum zone_type curr_idx; 4467 4468 if (!managed_zone(zone)) 4469 return; 4470 4471 if (!cpuset_zone_allowed(zone, gfp_flags)) 4472 return; 4473 4474 pgdat = zone->zone_pgdat; 4475 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4476 4477 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4478 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4479 4480 if (READ_ONCE(pgdat->kswapd_order) < order) 4481 WRITE_ONCE(pgdat->kswapd_order, order); 4482 4483 if (!waitqueue_active(&pgdat->kswapd_wait)) 4484 return; 4485 4486 /* Hopeless node, leave it to direct reclaim if possible */ 4487 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4488 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4489 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4490 /* 4491 * There may be plenty of free memory available, but it's too 4492 * fragmented for high-order allocations. Wake up kcompactd 4493 * and rely on compaction_suitable() to determine if it's 4494 * needed. If it fails, it will defer subsequent attempts to 4495 * ratelimit its work. 4496 */ 4497 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4498 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4499 return; 4500 } 4501 4502 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4503 gfp_flags); 4504 wake_up_interruptible(&pgdat->kswapd_wait); 4505 } 4506 4507 #ifdef CONFIG_HIBERNATION 4508 /* 4509 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4510 * freed pages. 4511 * 4512 * Rather than trying to age LRUs the aim is to preserve the overall 4513 * LRU order by reclaiming preferentially 4514 * inactive > active > active referenced > active mapped 4515 */ 4516 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4517 { 4518 struct scan_control sc = { 4519 .nr_to_reclaim = nr_to_reclaim, 4520 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4521 .reclaim_idx = MAX_NR_ZONES - 1, 4522 .priority = DEF_PRIORITY, 4523 .may_writepage = 1, 4524 .may_unmap = 1, 4525 .may_swap = 1, 4526 .hibernation_mode = 1, 4527 }; 4528 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4529 unsigned long nr_reclaimed; 4530 unsigned int noreclaim_flag; 4531 4532 fs_reclaim_acquire(sc.gfp_mask); 4533 noreclaim_flag = memalloc_noreclaim_save(); 4534 set_task_reclaim_state(current, &sc.reclaim_state); 4535 4536 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4537 4538 set_task_reclaim_state(current, NULL); 4539 memalloc_noreclaim_restore(noreclaim_flag); 4540 fs_reclaim_release(sc.gfp_mask); 4541 4542 return nr_reclaimed; 4543 } 4544 #endif /* CONFIG_HIBERNATION */ 4545 4546 /* 4547 * This kswapd start function will be called by init and node-hot-add. 4548 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4549 */ 4550 void kswapd_run(int nid) 4551 { 4552 pg_data_t *pgdat = NODE_DATA(nid); 4553 4554 if (pgdat->kswapd) 4555 return; 4556 4557 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4558 if (IS_ERR(pgdat->kswapd)) { 4559 /* failure at boot is fatal */ 4560 BUG_ON(system_state < SYSTEM_RUNNING); 4561 pr_err("Failed to start kswapd on node %d\n", nid); 4562 pgdat->kswapd = NULL; 4563 } 4564 } 4565 4566 /* 4567 * Called by memory hotplug when all memory in a node is offlined. Caller must 4568 * hold mem_hotplug_begin/end(). 4569 */ 4570 void kswapd_stop(int nid) 4571 { 4572 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4573 4574 if (kswapd) { 4575 kthread_stop(kswapd); 4576 NODE_DATA(nid)->kswapd = NULL; 4577 } 4578 } 4579 4580 static int __init kswapd_init(void) 4581 { 4582 int nid; 4583 4584 swap_setup(); 4585 for_each_node_state(nid, N_MEMORY) 4586 kswapd_run(nid); 4587 return 0; 4588 } 4589 4590 module_init(kswapd_init) 4591 4592 #ifdef CONFIG_NUMA 4593 /* 4594 * Node reclaim mode 4595 * 4596 * If non-zero call node_reclaim when the number of free pages falls below 4597 * the watermarks. 4598 */ 4599 int node_reclaim_mode __read_mostly; 4600 4601 /* 4602 * Priority for NODE_RECLAIM. This determines the fraction of pages 4603 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4604 * a zone. 4605 */ 4606 #define NODE_RECLAIM_PRIORITY 4 4607 4608 /* 4609 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4610 * occur. 4611 */ 4612 int sysctl_min_unmapped_ratio = 1; 4613 4614 /* 4615 * If the number of slab pages in a zone grows beyond this percentage then 4616 * slab reclaim needs to occur. 4617 */ 4618 int sysctl_min_slab_ratio = 5; 4619 4620 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4621 { 4622 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4623 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4624 node_page_state(pgdat, NR_ACTIVE_FILE); 4625 4626 /* 4627 * It's possible for there to be more file mapped pages than 4628 * accounted for by the pages on the file LRU lists because 4629 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4630 */ 4631 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4632 } 4633 4634 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4635 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4636 { 4637 unsigned long nr_pagecache_reclaimable; 4638 unsigned long delta = 0; 4639 4640 /* 4641 * If RECLAIM_UNMAP is set, then all file pages are considered 4642 * potentially reclaimable. Otherwise, we have to worry about 4643 * pages like swapcache and node_unmapped_file_pages() provides 4644 * a better estimate 4645 */ 4646 if (node_reclaim_mode & RECLAIM_UNMAP) 4647 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4648 else 4649 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4650 4651 /* If we can't clean pages, remove dirty pages from consideration */ 4652 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4653 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4654 4655 /* Watch for any possible underflows due to delta */ 4656 if (unlikely(delta > nr_pagecache_reclaimable)) 4657 delta = nr_pagecache_reclaimable; 4658 4659 return nr_pagecache_reclaimable - delta; 4660 } 4661 4662 /* 4663 * Try to free up some pages from this node through reclaim. 4664 */ 4665 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4666 { 4667 /* Minimum pages needed in order to stay on node */ 4668 const unsigned long nr_pages = 1 << order; 4669 struct task_struct *p = current; 4670 unsigned int noreclaim_flag; 4671 struct scan_control sc = { 4672 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4673 .gfp_mask = current_gfp_context(gfp_mask), 4674 .order = order, 4675 .priority = NODE_RECLAIM_PRIORITY, 4676 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4677 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4678 .may_swap = 1, 4679 .reclaim_idx = gfp_zone(gfp_mask), 4680 }; 4681 unsigned long pflags; 4682 4683 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4684 sc.gfp_mask); 4685 4686 cond_resched(); 4687 psi_memstall_enter(&pflags); 4688 fs_reclaim_acquire(sc.gfp_mask); 4689 /* 4690 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4691 */ 4692 noreclaim_flag = memalloc_noreclaim_save(); 4693 set_task_reclaim_state(p, &sc.reclaim_state); 4694 4695 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4696 /* 4697 * Free memory by calling shrink node with increasing 4698 * priorities until we have enough memory freed. 4699 */ 4700 do { 4701 shrink_node(pgdat, &sc); 4702 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4703 } 4704 4705 set_task_reclaim_state(p, NULL); 4706 memalloc_noreclaim_restore(noreclaim_flag); 4707 fs_reclaim_release(sc.gfp_mask); 4708 psi_memstall_leave(&pflags); 4709 4710 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4711 4712 return sc.nr_reclaimed >= nr_pages; 4713 } 4714 4715 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4716 { 4717 int ret; 4718 4719 /* 4720 * Node reclaim reclaims unmapped file backed pages and 4721 * slab pages if we are over the defined limits. 4722 * 4723 * A small portion of unmapped file backed pages is needed for 4724 * file I/O otherwise pages read by file I/O will be immediately 4725 * thrown out if the node is overallocated. So we do not reclaim 4726 * if less than a specified percentage of the node is used by 4727 * unmapped file backed pages. 4728 */ 4729 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4730 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4731 pgdat->min_slab_pages) 4732 return NODE_RECLAIM_FULL; 4733 4734 /* 4735 * Do not scan if the allocation should not be delayed. 4736 */ 4737 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4738 return NODE_RECLAIM_NOSCAN; 4739 4740 /* 4741 * Only run node reclaim on the local node or on nodes that do not 4742 * have associated processors. This will favor the local processor 4743 * over remote processors and spread off node memory allocations 4744 * as wide as possible. 4745 */ 4746 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4747 return NODE_RECLAIM_NOSCAN; 4748 4749 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4750 return NODE_RECLAIM_NOSCAN; 4751 4752 ret = __node_reclaim(pgdat, gfp_mask, order); 4753 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4754 4755 if (!ret) 4756 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4757 4758 return ret; 4759 } 4760 #endif 4761 4762 /** 4763 * check_move_unevictable_pages - check pages for evictability and move to 4764 * appropriate zone lru list 4765 * @pvec: pagevec with lru pages to check 4766 * 4767 * Checks pages for evictability, if an evictable page is in the unevictable 4768 * lru list, moves it to the appropriate evictable lru list. This function 4769 * should be only used for lru pages. 4770 */ 4771 void check_move_unevictable_pages(struct pagevec *pvec) 4772 { 4773 struct lruvec *lruvec = NULL; 4774 int pgscanned = 0; 4775 int pgrescued = 0; 4776 int i; 4777 4778 for (i = 0; i < pvec->nr; i++) { 4779 struct page *page = pvec->pages[i]; 4780 struct folio *folio = page_folio(page); 4781 int nr_pages; 4782 4783 if (PageTransTail(page)) 4784 continue; 4785 4786 nr_pages = thp_nr_pages(page); 4787 pgscanned += nr_pages; 4788 4789 /* block memcg migration during page moving between lru */ 4790 if (!TestClearPageLRU(page)) 4791 continue; 4792 4793 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4794 if (page_evictable(page) && PageUnevictable(page)) { 4795 del_page_from_lru_list(page, lruvec); 4796 ClearPageUnevictable(page); 4797 add_page_to_lru_list(page, lruvec); 4798 pgrescued += nr_pages; 4799 } 4800 SetPageLRU(page); 4801 } 4802 4803 if (lruvec) { 4804 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4805 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4806 unlock_page_lruvec_irq(lruvec); 4807 } else if (pgscanned) { 4808 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4809 } 4810 } 4811 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4812