xref: /openbmc/linux/mm/vmscan.c (revision ca79522c)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 struct scan_control {
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Number of pages freed so far during a call to shrink_zones() */
62 	unsigned long nr_reclaimed;
63 
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	unsigned long hibernation_mode;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can mapped pages be reclaimed? */
75 	int may_unmap;
76 
77 	/* Can pages be swapped as part of reclaim? */
78 	int may_swap;
79 
80 	int order;
81 
82 	/* Scan (total_size >> priority) pages at once */
83 	int priority;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 	 * are scanned.
94 	 */
95 	nodemask_t	*nodemask;
96 };
97 
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetch(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetchw(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
133 
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136 
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 	return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 	return true;
146 }
147 #endif
148 
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151 	if (!mem_cgroup_disabled())
152 		return mem_cgroup_get_lru_size(lruvec, lru);
153 
154 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156 
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162 	atomic_long_set(&shrinker->nr_in_batch, 0);
163 	down_write(&shrinker_rwsem);
164 	list_add_tail(&shrinker->list, &shrinker_list);
165 	up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168 
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174 	down_write(&shrinker_rwsem);
175 	list_del(&shrinker->list);
176 	up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179 
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 				     struct shrink_control *sc,
182 				     unsigned long nr_to_scan)
183 {
184 	sc->nr_to_scan = nr_to_scan;
185 	return (*shrinker->shrink)(shrinker, sc);
186 }
187 
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 			  unsigned long nr_pages_scanned,
210 			  unsigned long lru_pages)
211 {
212 	struct shrinker *shrinker;
213 	unsigned long ret = 0;
214 
215 	if (nr_pages_scanned == 0)
216 		nr_pages_scanned = SWAP_CLUSTER_MAX;
217 
218 	if (!down_read_trylock(&shrinker_rwsem)) {
219 		/* Assume we'll be able to shrink next time */
220 		ret = 1;
221 		goto out;
222 	}
223 
224 	list_for_each_entry(shrinker, &shrinker_list, list) {
225 		unsigned long long delta;
226 		long total_scan;
227 		long max_pass;
228 		int shrink_ret = 0;
229 		long nr;
230 		long new_nr;
231 		long batch_size = shrinker->batch ? shrinker->batch
232 						  : SHRINK_BATCH;
233 
234 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 		if (max_pass <= 0)
236 			continue;
237 
238 		/*
239 		 * copy the current shrinker scan count into a local variable
240 		 * and zero it so that other concurrent shrinker invocations
241 		 * don't also do this scanning work.
242 		 */
243 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 
245 		total_scan = nr;
246 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 		delta *= max_pass;
248 		do_div(delta, lru_pages + 1);
249 		total_scan += delta;
250 		if (total_scan < 0) {
251 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 			       "delete nr=%ld\n",
253 			       shrinker->shrink, total_scan);
254 			total_scan = max_pass;
255 		}
256 
257 		/*
258 		 * We need to avoid excessive windup on filesystem shrinkers
259 		 * due to large numbers of GFP_NOFS allocations causing the
260 		 * shrinkers to return -1 all the time. This results in a large
261 		 * nr being built up so when a shrink that can do some work
262 		 * comes along it empties the entire cache due to nr >>>
263 		 * max_pass.  This is bad for sustaining a working set in
264 		 * memory.
265 		 *
266 		 * Hence only allow the shrinker to scan the entire cache when
267 		 * a large delta change is calculated directly.
268 		 */
269 		if (delta < max_pass / 4)
270 			total_scan = min(total_scan, max_pass / 2);
271 
272 		/*
273 		 * Avoid risking looping forever due to too large nr value:
274 		 * never try to free more than twice the estimate number of
275 		 * freeable entries.
276 		 */
277 		if (total_scan > max_pass * 2)
278 			total_scan = max_pass * 2;
279 
280 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 					nr_pages_scanned, lru_pages,
282 					max_pass, delta, total_scan);
283 
284 		while (total_scan >= batch_size) {
285 			int nr_before;
286 
287 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 							batch_size);
290 			if (shrink_ret == -1)
291 				break;
292 			if (shrink_ret < nr_before)
293 				ret += nr_before - shrink_ret;
294 			count_vm_events(SLABS_SCANNED, batch_size);
295 			total_scan -= batch_size;
296 
297 			cond_resched();
298 		}
299 
300 		/*
301 		 * move the unused scan count back into the shrinker in a
302 		 * manner that handles concurrent updates. If we exhausted the
303 		 * scan, there is no need to do an update.
304 		 */
305 		if (total_scan > 0)
306 			new_nr = atomic_long_add_return(total_scan,
307 					&shrinker->nr_in_batch);
308 		else
309 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 
311 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 	}
313 	up_read(&shrinker_rwsem);
314 out:
315 	cond_resched();
316 	return ret;
317 }
318 
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321 	/*
322 	 * A freeable page cache page is referenced only by the caller
323 	 * that isolated the page, the page cache radix tree and
324 	 * optional buffer heads at page->private.
325 	 */
326 	return page_count(page) - page_has_private(page) == 2;
327 }
328 
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 			      struct scan_control *sc)
331 {
332 	if (current->flags & PF_SWAPWRITE)
333 		return 1;
334 	if (!bdi_write_congested(bdi))
335 		return 1;
336 	if (bdi == current->backing_dev_info)
337 		return 1;
338 	return 0;
339 }
340 
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354 				struct page *page, int error)
355 {
356 	lock_page(page);
357 	if (page_mapping(page) == mapping)
358 		mapping_set_error(mapping, error);
359 	unlock_page(page);
360 }
361 
362 /* possible outcome of pageout() */
363 typedef enum {
364 	/* failed to write page out, page is locked */
365 	PAGE_KEEP,
366 	/* move page to the active list, page is locked */
367 	PAGE_ACTIVATE,
368 	/* page has been sent to the disk successfully, page is unlocked */
369 	PAGE_SUCCESS,
370 	/* page is clean and locked */
371 	PAGE_CLEAN,
372 } pageout_t;
373 
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 			 struct scan_control *sc)
380 {
381 	/*
382 	 * If the page is dirty, only perform writeback if that write
383 	 * will be non-blocking.  To prevent this allocation from being
384 	 * stalled by pagecache activity.  But note that there may be
385 	 * stalls if we need to run get_block().  We could test
386 	 * PagePrivate for that.
387 	 *
388 	 * If this process is currently in __generic_file_aio_write() against
389 	 * this page's queue, we can perform writeback even if that
390 	 * will block.
391 	 *
392 	 * If the page is swapcache, write it back even if that would
393 	 * block, for some throttling. This happens by accident, because
394 	 * swap_backing_dev_info is bust: it doesn't reflect the
395 	 * congestion state of the swapdevs.  Easy to fix, if needed.
396 	 */
397 	if (!is_page_cache_freeable(page))
398 		return PAGE_KEEP;
399 	if (!mapping) {
400 		/*
401 		 * Some data journaling orphaned pages can have
402 		 * page->mapping == NULL while being dirty with clean buffers.
403 		 */
404 		if (page_has_private(page)) {
405 			if (try_to_free_buffers(page)) {
406 				ClearPageDirty(page);
407 				printk("%s: orphaned page\n", __func__);
408 				return PAGE_CLEAN;
409 			}
410 		}
411 		return PAGE_KEEP;
412 	}
413 	if (mapping->a_ops->writepage == NULL)
414 		return PAGE_ACTIVATE;
415 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 		return PAGE_KEEP;
417 
418 	if (clear_page_dirty_for_io(page)) {
419 		int res;
420 		struct writeback_control wbc = {
421 			.sync_mode = WB_SYNC_NONE,
422 			.nr_to_write = SWAP_CLUSTER_MAX,
423 			.range_start = 0,
424 			.range_end = LLONG_MAX,
425 			.for_reclaim = 1,
426 		};
427 
428 		SetPageReclaim(page);
429 		res = mapping->a_ops->writepage(page, &wbc);
430 		if (res < 0)
431 			handle_write_error(mapping, page, res);
432 		if (res == AOP_WRITEPAGE_ACTIVATE) {
433 			ClearPageReclaim(page);
434 			return PAGE_ACTIVATE;
435 		}
436 
437 		if (!PageWriteback(page)) {
438 			/* synchronous write or broken a_ops? */
439 			ClearPageReclaim(page);
440 		}
441 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 		return PAGE_SUCCESS;
444 	}
445 
446 	return PAGE_CLEAN;
447 }
448 
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455 	BUG_ON(!PageLocked(page));
456 	BUG_ON(mapping != page_mapping(page));
457 
458 	spin_lock_irq(&mapping->tree_lock);
459 	/*
460 	 * The non racy check for a busy page.
461 	 *
462 	 * Must be careful with the order of the tests. When someone has
463 	 * a ref to the page, it may be possible that they dirty it then
464 	 * drop the reference. So if PageDirty is tested before page_count
465 	 * here, then the following race may occur:
466 	 *
467 	 * get_user_pages(&page);
468 	 * [user mapping goes away]
469 	 * write_to(page);
470 	 *				!PageDirty(page)    [good]
471 	 * SetPageDirty(page);
472 	 * put_page(page);
473 	 *				!page_count(page)   [good, discard it]
474 	 *
475 	 * [oops, our write_to data is lost]
476 	 *
477 	 * Reversing the order of the tests ensures such a situation cannot
478 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 	 * load is not satisfied before that of page->_count.
480 	 *
481 	 * Note that if SetPageDirty is always performed via set_page_dirty,
482 	 * and thus under tree_lock, then this ordering is not required.
483 	 */
484 	if (!page_freeze_refs(page, 2))
485 		goto cannot_free;
486 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 	if (unlikely(PageDirty(page))) {
488 		page_unfreeze_refs(page, 2);
489 		goto cannot_free;
490 	}
491 
492 	if (PageSwapCache(page)) {
493 		swp_entry_t swap = { .val = page_private(page) };
494 		__delete_from_swap_cache(page);
495 		spin_unlock_irq(&mapping->tree_lock);
496 		swapcache_free(swap, page);
497 	} else {
498 		void (*freepage)(struct page *);
499 
500 		freepage = mapping->a_ops->freepage;
501 
502 		__delete_from_page_cache(page);
503 		spin_unlock_irq(&mapping->tree_lock);
504 		mem_cgroup_uncharge_cache_page(page);
505 
506 		if (freepage != NULL)
507 			freepage(page);
508 	}
509 
510 	return 1;
511 
512 cannot_free:
513 	spin_unlock_irq(&mapping->tree_lock);
514 	return 0;
515 }
516 
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525 	if (__remove_mapping(mapping, page)) {
526 		/*
527 		 * Unfreezing the refcount with 1 rather than 2 effectively
528 		 * drops the pagecache ref for us without requiring another
529 		 * atomic operation.
530 		 */
531 		page_unfreeze_refs(page, 1);
532 		return 1;
533 	}
534 	return 0;
535 }
536 
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548 	int lru;
549 	int active = !!TestClearPageActive(page);
550 	int was_unevictable = PageUnevictable(page);
551 
552 	VM_BUG_ON(PageLRU(page));
553 
554 redo:
555 	ClearPageUnevictable(page);
556 
557 	if (page_evictable(page)) {
558 		/*
559 		 * For evictable pages, we can use the cache.
560 		 * In event of a race, worst case is we end up with an
561 		 * unevictable page on [in]active list.
562 		 * We know how to handle that.
563 		 */
564 		lru = active + page_lru_base_type(page);
565 		lru_cache_add_lru(page, lru);
566 	} else {
567 		/*
568 		 * Put unevictable pages directly on zone's unevictable
569 		 * list.
570 		 */
571 		lru = LRU_UNEVICTABLE;
572 		add_page_to_unevictable_list(page);
573 		/*
574 		 * When racing with an mlock or AS_UNEVICTABLE clearing
575 		 * (page is unlocked) make sure that if the other thread
576 		 * does not observe our setting of PG_lru and fails
577 		 * isolation/check_move_unevictable_pages,
578 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 		 * the page back to the evictable list.
580 		 *
581 		 * The other side is TestClearPageMlocked() or shmem_lock().
582 		 */
583 		smp_mb();
584 	}
585 
586 	/*
587 	 * page's status can change while we move it among lru. If an evictable
588 	 * page is on unevictable list, it never be freed. To avoid that,
589 	 * check after we added it to the list, again.
590 	 */
591 	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592 		if (!isolate_lru_page(page)) {
593 			put_page(page);
594 			goto redo;
595 		}
596 		/* This means someone else dropped this page from LRU
597 		 * So, it will be freed or putback to LRU again. There is
598 		 * nothing to do here.
599 		 */
600 	}
601 
602 	if (was_unevictable && lru != LRU_UNEVICTABLE)
603 		count_vm_event(UNEVICTABLE_PGRESCUED);
604 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605 		count_vm_event(UNEVICTABLE_PGCULLED);
606 
607 	put_page(page);		/* drop ref from isolate */
608 }
609 
610 enum page_references {
611 	PAGEREF_RECLAIM,
612 	PAGEREF_RECLAIM_CLEAN,
613 	PAGEREF_KEEP,
614 	PAGEREF_ACTIVATE,
615 };
616 
617 static enum page_references page_check_references(struct page *page,
618 						  struct scan_control *sc)
619 {
620 	int referenced_ptes, referenced_page;
621 	unsigned long vm_flags;
622 
623 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 					  &vm_flags);
625 	referenced_page = TestClearPageReferenced(page);
626 
627 	/*
628 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
629 	 * move the page to the unevictable list.
630 	 */
631 	if (vm_flags & VM_LOCKED)
632 		return PAGEREF_RECLAIM;
633 
634 	if (referenced_ptes) {
635 		if (PageSwapBacked(page))
636 			return PAGEREF_ACTIVATE;
637 		/*
638 		 * All mapped pages start out with page table
639 		 * references from the instantiating fault, so we need
640 		 * to look twice if a mapped file page is used more
641 		 * than once.
642 		 *
643 		 * Mark it and spare it for another trip around the
644 		 * inactive list.  Another page table reference will
645 		 * lead to its activation.
646 		 *
647 		 * Note: the mark is set for activated pages as well
648 		 * so that recently deactivated but used pages are
649 		 * quickly recovered.
650 		 */
651 		SetPageReferenced(page);
652 
653 		if (referenced_page || referenced_ptes > 1)
654 			return PAGEREF_ACTIVATE;
655 
656 		/*
657 		 * Activate file-backed executable pages after first usage.
658 		 */
659 		if (vm_flags & VM_EXEC)
660 			return PAGEREF_ACTIVATE;
661 
662 		return PAGEREF_KEEP;
663 	}
664 
665 	/* Reclaim if clean, defer dirty pages to writeback */
666 	if (referenced_page && !PageSwapBacked(page))
667 		return PAGEREF_RECLAIM_CLEAN;
668 
669 	return PAGEREF_RECLAIM;
670 }
671 
672 /*
673  * shrink_page_list() returns the number of reclaimed pages
674  */
675 static unsigned long shrink_page_list(struct list_head *page_list,
676 				      struct zone *zone,
677 				      struct scan_control *sc,
678 				      enum ttu_flags ttu_flags,
679 				      unsigned long *ret_nr_dirty,
680 				      unsigned long *ret_nr_writeback,
681 				      bool force_reclaim)
682 {
683 	LIST_HEAD(ret_pages);
684 	LIST_HEAD(free_pages);
685 	int pgactivate = 0;
686 	unsigned long nr_dirty = 0;
687 	unsigned long nr_congested = 0;
688 	unsigned long nr_reclaimed = 0;
689 	unsigned long nr_writeback = 0;
690 
691 	cond_resched();
692 
693 	mem_cgroup_uncharge_start();
694 	while (!list_empty(page_list)) {
695 		struct address_space *mapping;
696 		struct page *page;
697 		int may_enter_fs;
698 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
699 
700 		cond_resched();
701 
702 		page = lru_to_page(page_list);
703 		list_del(&page->lru);
704 
705 		if (!trylock_page(page))
706 			goto keep;
707 
708 		VM_BUG_ON(PageActive(page));
709 		VM_BUG_ON(page_zone(page) != zone);
710 
711 		sc->nr_scanned++;
712 
713 		if (unlikely(!page_evictable(page)))
714 			goto cull_mlocked;
715 
716 		if (!sc->may_unmap && page_mapped(page))
717 			goto keep_locked;
718 
719 		/* Double the slab pressure for mapped and swapcache pages */
720 		if (page_mapped(page) || PageSwapCache(page))
721 			sc->nr_scanned++;
722 
723 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
724 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
725 
726 		if (PageWriteback(page)) {
727 			/*
728 			 * memcg doesn't have any dirty pages throttling so we
729 			 * could easily OOM just because too many pages are in
730 			 * writeback and there is nothing else to reclaim.
731 			 *
732 			 * Check __GFP_IO, certainly because a loop driver
733 			 * thread might enter reclaim, and deadlock if it waits
734 			 * on a page for which it is needed to do the write
735 			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
736 			 * but more thought would probably show more reasons.
737 			 *
738 			 * Don't require __GFP_FS, since we're not going into
739 			 * the FS, just waiting on its writeback completion.
740 			 * Worryingly, ext4 gfs2 and xfs allocate pages with
741 			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
742 			 * testing may_enter_fs here is liable to OOM on them.
743 			 */
744 			if (global_reclaim(sc) ||
745 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
746 				/*
747 				 * This is slightly racy - end_page_writeback()
748 				 * might have just cleared PageReclaim, then
749 				 * setting PageReclaim here end up interpreted
750 				 * as PageReadahead - but that does not matter
751 				 * enough to care.  What we do want is for this
752 				 * page to have PageReclaim set next time memcg
753 				 * reclaim reaches the tests above, so it will
754 				 * then wait_on_page_writeback() to avoid OOM;
755 				 * and it's also appropriate in global reclaim.
756 				 */
757 				SetPageReclaim(page);
758 				nr_writeback++;
759 				goto keep_locked;
760 			}
761 			wait_on_page_writeback(page);
762 		}
763 
764 		if (!force_reclaim)
765 			references = page_check_references(page, sc);
766 
767 		switch (references) {
768 		case PAGEREF_ACTIVATE:
769 			goto activate_locked;
770 		case PAGEREF_KEEP:
771 			goto keep_locked;
772 		case PAGEREF_RECLAIM:
773 		case PAGEREF_RECLAIM_CLEAN:
774 			; /* try to reclaim the page below */
775 		}
776 
777 		/*
778 		 * Anonymous process memory has backing store?
779 		 * Try to allocate it some swap space here.
780 		 */
781 		if (PageAnon(page) && !PageSwapCache(page)) {
782 			if (!(sc->gfp_mask & __GFP_IO))
783 				goto keep_locked;
784 			if (!add_to_swap(page, page_list))
785 				goto activate_locked;
786 			may_enter_fs = 1;
787 		}
788 
789 		mapping = page_mapping(page);
790 
791 		/*
792 		 * The page is mapped into the page tables of one or more
793 		 * processes. Try to unmap it here.
794 		 */
795 		if (page_mapped(page) && mapping) {
796 			switch (try_to_unmap(page, ttu_flags)) {
797 			case SWAP_FAIL:
798 				goto activate_locked;
799 			case SWAP_AGAIN:
800 				goto keep_locked;
801 			case SWAP_MLOCK:
802 				goto cull_mlocked;
803 			case SWAP_SUCCESS:
804 				; /* try to free the page below */
805 			}
806 		}
807 
808 		if (PageDirty(page)) {
809 			nr_dirty++;
810 
811 			/*
812 			 * Only kswapd can writeback filesystem pages to
813 			 * avoid risk of stack overflow but do not writeback
814 			 * unless under significant pressure.
815 			 */
816 			if (page_is_file_cache(page) &&
817 					(!current_is_kswapd() ||
818 					 sc->priority >= DEF_PRIORITY - 2)) {
819 				/*
820 				 * Immediately reclaim when written back.
821 				 * Similar in principal to deactivate_page()
822 				 * except we already have the page isolated
823 				 * and know it's dirty
824 				 */
825 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
826 				SetPageReclaim(page);
827 
828 				goto keep_locked;
829 			}
830 
831 			if (references == PAGEREF_RECLAIM_CLEAN)
832 				goto keep_locked;
833 			if (!may_enter_fs)
834 				goto keep_locked;
835 			if (!sc->may_writepage)
836 				goto keep_locked;
837 
838 			/* Page is dirty, try to write it out here */
839 			switch (pageout(page, mapping, sc)) {
840 			case PAGE_KEEP:
841 				nr_congested++;
842 				goto keep_locked;
843 			case PAGE_ACTIVATE:
844 				goto activate_locked;
845 			case PAGE_SUCCESS:
846 				if (PageWriteback(page))
847 					goto keep;
848 				if (PageDirty(page))
849 					goto keep;
850 
851 				/*
852 				 * A synchronous write - probably a ramdisk.  Go
853 				 * ahead and try to reclaim the page.
854 				 */
855 				if (!trylock_page(page))
856 					goto keep;
857 				if (PageDirty(page) || PageWriteback(page))
858 					goto keep_locked;
859 				mapping = page_mapping(page);
860 			case PAGE_CLEAN:
861 				; /* try to free the page below */
862 			}
863 		}
864 
865 		/*
866 		 * If the page has buffers, try to free the buffer mappings
867 		 * associated with this page. If we succeed we try to free
868 		 * the page as well.
869 		 *
870 		 * We do this even if the page is PageDirty().
871 		 * try_to_release_page() does not perform I/O, but it is
872 		 * possible for a page to have PageDirty set, but it is actually
873 		 * clean (all its buffers are clean).  This happens if the
874 		 * buffers were written out directly, with submit_bh(). ext3
875 		 * will do this, as well as the blockdev mapping.
876 		 * try_to_release_page() will discover that cleanness and will
877 		 * drop the buffers and mark the page clean - it can be freed.
878 		 *
879 		 * Rarely, pages can have buffers and no ->mapping.  These are
880 		 * the pages which were not successfully invalidated in
881 		 * truncate_complete_page().  We try to drop those buffers here
882 		 * and if that worked, and the page is no longer mapped into
883 		 * process address space (page_count == 1) it can be freed.
884 		 * Otherwise, leave the page on the LRU so it is swappable.
885 		 */
886 		if (page_has_private(page)) {
887 			if (!try_to_release_page(page, sc->gfp_mask))
888 				goto activate_locked;
889 			if (!mapping && page_count(page) == 1) {
890 				unlock_page(page);
891 				if (put_page_testzero(page))
892 					goto free_it;
893 				else {
894 					/*
895 					 * rare race with speculative reference.
896 					 * the speculative reference will free
897 					 * this page shortly, so we may
898 					 * increment nr_reclaimed here (and
899 					 * leave it off the LRU).
900 					 */
901 					nr_reclaimed++;
902 					continue;
903 				}
904 			}
905 		}
906 
907 		if (!mapping || !__remove_mapping(mapping, page))
908 			goto keep_locked;
909 
910 		/*
911 		 * At this point, we have no other references and there is
912 		 * no way to pick any more up (removed from LRU, removed
913 		 * from pagecache). Can use non-atomic bitops now (and
914 		 * we obviously don't have to worry about waking up a process
915 		 * waiting on the page lock, because there are no references.
916 		 */
917 		__clear_page_locked(page);
918 free_it:
919 		nr_reclaimed++;
920 
921 		/*
922 		 * Is there need to periodically free_page_list? It would
923 		 * appear not as the counts should be low
924 		 */
925 		list_add(&page->lru, &free_pages);
926 		continue;
927 
928 cull_mlocked:
929 		if (PageSwapCache(page))
930 			try_to_free_swap(page);
931 		unlock_page(page);
932 		putback_lru_page(page);
933 		continue;
934 
935 activate_locked:
936 		/* Not a candidate for swapping, so reclaim swap space. */
937 		if (PageSwapCache(page) && vm_swap_full())
938 			try_to_free_swap(page);
939 		VM_BUG_ON(PageActive(page));
940 		SetPageActive(page);
941 		pgactivate++;
942 keep_locked:
943 		unlock_page(page);
944 keep:
945 		list_add(&page->lru, &ret_pages);
946 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947 	}
948 
949 	/*
950 	 * Tag a zone as congested if all the dirty pages encountered were
951 	 * backed by a congested BDI. In this case, reclaimers should just
952 	 * back off and wait for congestion to clear because further reclaim
953 	 * will encounter the same problem
954 	 */
955 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
956 		zone_set_flag(zone, ZONE_CONGESTED);
957 
958 	free_hot_cold_page_list(&free_pages, 1);
959 
960 	list_splice(&ret_pages, page_list);
961 	count_vm_events(PGACTIVATE, pgactivate);
962 	mem_cgroup_uncharge_end();
963 	*ret_nr_dirty += nr_dirty;
964 	*ret_nr_writeback += nr_writeback;
965 	return nr_reclaimed;
966 }
967 
968 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
969 					    struct list_head *page_list)
970 {
971 	struct scan_control sc = {
972 		.gfp_mask = GFP_KERNEL,
973 		.priority = DEF_PRIORITY,
974 		.may_unmap = 1,
975 	};
976 	unsigned long ret, dummy1, dummy2;
977 	struct page *page, *next;
978 	LIST_HEAD(clean_pages);
979 
980 	list_for_each_entry_safe(page, next, page_list, lru) {
981 		if (page_is_file_cache(page) && !PageDirty(page)) {
982 			ClearPageActive(page);
983 			list_move(&page->lru, &clean_pages);
984 		}
985 	}
986 
987 	ret = shrink_page_list(&clean_pages, zone, &sc,
988 				TTU_UNMAP|TTU_IGNORE_ACCESS,
989 				&dummy1, &dummy2, true);
990 	list_splice(&clean_pages, page_list);
991 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
992 	return ret;
993 }
994 
995 /*
996  * Attempt to remove the specified page from its LRU.  Only take this page
997  * if it is of the appropriate PageActive status.  Pages which are being
998  * freed elsewhere are also ignored.
999  *
1000  * page:	page to consider
1001  * mode:	one of the LRU isolation modes defined above
1002  *
1003  * returns 0 on success, -ve errno on failure.
1004  */
1005 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1006 {
1007 	int ret = -EINVAL;
1008 
1009 	/* Only take pages on the LRU. */
1010 	if (!PageLRU(page))
1011 		return ret;
1012 
1013 	/* Compaction should not handle unevictable pages but CMA can do so */
1014 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1015 		return ret;
1016 
1017 	ret = -EBUSY;
1018 
1019 	/*
1020 	 * To minimise LRU disruption, the caller can indicate that it only
1021 	 * wants to isolate pages it will be able to operate on without
1022 	 * blocking - clean pages for the most part.
1023 	 *
1024 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1025 	 * is used by reclaim when it is cannot write to backing storage
1026 	 *
1027 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1028 	 * that it is possible to migrate without blocking
1029 	 */
1030 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1031 		/* All the caller can do on PageWriteback is block */
1032 		if (PageWriteback(page))
1033 			return ret;
1034 
1035 		if (PageDirty(page)) {
1036 			struct address_space *mapping;
1037 
1038 			/* ISOLATE_CLEAN means only clean pages */
1039 			if (mode & ISOLATE_CLEAN)
1040 				return ret;
1041 
1042 			/*
1043 			 * Only pages without mappings or that have a
1044 			 * ->migratepage callback are possible to migrate
1045 			 * without blocking
1046 			 */
1047 			mapping = page_mapping(page);
1048 			if (mapping && !mapping->a_ops->migratepage)
1049 				return ret;
1050 		}
1051 	}
1052 
1053 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1054 		return ret;
1055 
1056 	if (likely(get_page_unless_zero(page))) {
1057 		/*
1058 		 * Be careful not to clear PageLRU until after we're
1059 		 * sure the page is not being freed elsewhere -- the
1060 		 * page release code relies on it.
1061 		 */
1062 		ClearPageLRU(page);
1063 		ret = 0;
1064 	}
1065 
1066 	return ret;
1067 }
1068 
1069 /*
1070  * zone->lru_lock is heavily contended.  Some of the functions that
1071  * shrink the lists perform better by taking out a batch of pages
1072  * and working on them outside the LRU lock.
1073  *
1074  * For pagecache intensive workloads, this function is the hottest
1075  * spot in the kernel (apart from copy_*_user functions).
1076  *
1077  * Appropriate locks must be held before calling this function.
1078  *
1079  * @nr_to_scan:	The number of pages to look through on the list.
1080  * @lruvec:	The LRU vector to pull pages from.
1081  * @dst:	The temp list to put pages on to.
1082  * @nr_scanned:	The number of pages that were scanned.
1083  * @sc:		The scan_control struct for this reclaim session
1084  * @mode:	One of the LRU isolation modes
1085  * @lru:	LRU list id for isolating
1086  *
1087  * returns how many pages were moved onto *@dst.
1088  */
1089 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1090 		struct lruvec *lruvec, struct list_head *dst,
1091 		unsigned long *nr_scanned, struct scan_control *sc,
1092 		isolate_mode_t mode, enum lru_list lru)
1093 {
1094 	struct list_head *src = &lruvec->lists[lru];
1095 	unsigned long nr_taken = 0;
1096 	unsigned long scan;
1097 
1098 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1099 		struct page *page;
1100 		int nr_pages;
1101 
1102 		page = lru_to_page(src);
1103 		prefetchw_prev_lru_page(page, src, flags);
1104 
1105 		VM_BUG_ON(!PageLRU(page));
1106 
1107 		switch (__isolate_lru_page(page, mode)) {
1108 		case 0:
1109 			nr_pages = hpage_nr_pages(page);
1110 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1111 			list_move(&page->lru, dst);
1112 			nr_taken += nr_pages;
1113 			break;
1114 
1115 		case -EBUSY:
1116 			/* else it is being freed elsewhere */
1117 			list_move(&page->lru, src);
1118 			continue;
1119 
1120 		default:
1121 			BUG();
1122 		}
1123 	}
1124 
1125 	*nr_scanned = scan;
1126 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1127 				    nr_taken, mode, is_file_lru(lru));
1128 	return nr_taken;
1129 }
1130 
1131 /**
1132  * isolate_lru_page - tries to isolate a page from its LRU list
1133  * @page: page to isolate from its LRU list
1134  *
1135  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1136  * vmstat statistic corresponding to whatever LRU list the page was on.
1137  *
1138  * Returns 0 if the page was removed from an LRU list.
1139  * Returns -EBUSY if the page was not on an LRU list.
1140  *
1141  * The returned page will have PageLRU() cleared.  If it was found on
1142  * the active list, it will have PageActive set.  If it was found on
1143  * the unevictable list, it will have the PageUnevictable bit set. That flag
1144  * may need to be cleared by the caller before letting the page go.
1145  *
1146  * The vmstat statistic corresponding to the list on which the page was
1147  * found will be decremented.
1148  *
1149  * Restrictions:
1150  * (1) Must be called with an elevated refcount on the page. This is a
1151  *     fundamentnal difference from isolate_lru_pages (which is called
1152  *     without a stable reference).
1153  * (2) the lru_lock must not be held.
1154  * (3) interrupts must be enabled.
1155  */
1156 int isolate_lru_page(struct page *page)
1157 {
1158 	int ret = -EBUSY;
1159 
1160 	VM_BUG_ON(!page_count(page));
1161 
1162 	if (PageLRU(page)) {
1163 		struct zone *zone = page_zone(page);
1164 		struct lruvec *lruvec;
1165 
1166 		spin_lock_irq(&zone->lru_lock);
1167 		lruvec = mem_cgroup_page_lruvec(page, zone);
1168 		if (PageLRU(page)) {
1169 			int lru = page_lru(page);
1170 			get_page(page);
1171 			ClearPageLRU(page);
1172 			del_page_from_lru_list(page, lruvec, lru);
1173 			ret = 0;
1174 		}
1175 		spin_unlock_irq(&zone->lru_lock);
1176 	}
1177 	return ret;
1178 }
1179 
1180 /*
1181  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1182  * then get resheduled. When there are massive number of tasks doing page
1183  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1184  * the LRU list will go small and be scanned faster than necessary, leading to
1185  * unnecessary swapping, thrashing and OOM.
1186  */
1187 static int too_many_isolated(struct zone *zone, int file,
1188 		struct scan_control *sc)
1189 {
1190 	unsigned long inactive, isolated;
1191 
1192 	if (current_is_kswapd())
1193 		return 0;
1194 
1195 	if (!global_reclaim(sc))
1196 		return 0;
1197 
1198 	if (file) {
1199 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1200 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1201 	} else {
1202 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1203 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1204 	}
1205 
1206 	/*
1207 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1208 	 * won't get blocked by normal direct-reclaimers, forming a circular
1209 	 * deadlock.
1210 	 */
1211 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1212 		inactive >>= 3;
1213 
1214 	return isolated > inactive;
1215 }
1216 
1217 static noinline_for_stack void
1218 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1219 {
1220 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1221 	struct zone *zone = lruvec_zone(lruvec);
1222 	LIST_HEAD(pages_to_free);
1223 
1224 	/*
1225 	 * Put back any unfreeable pages.
1226 	 */
1227 	while (!list_empty(page_list)) {
1228 		struct page *page = lru_to_page(page_list);
1229 		int lru;
1230 
1231 		VM_BUG_ON(PageLRU(page));
1232 		list_del(&page->lru);
1233 		if (unlikely(!page_evictable(page))) {
1234 			spin_unlock_irq(&zone->lru_lock);
1235 			putback_lru_page(page);
1236 			spin_lock_irq(&zone->lru_lock);
1237 			continue;
1238 		}
1239 
1240 		lruvec = mem_cgroup_page_lruvec(page, zone);
1241 
1242 		SetPageLRU(page);
1243 		lru = page_lru(page);
1244 		add_page_to_lru_list(page, lruvec, lru);
1245 
1246 		if (is_active_lru(lru)) {
1247 			int file = is_file_lru(lru);
1248 			int numpages = hpage_nr_pages(page);
1249 			reclaim_stat->recent_rotated[file] += numpages;
1250 		}
1251 		if (put_page_testzero(page)) {
1252 			__ClearPageLRU(page);
1253 			__ClearPageActive(page);
1254 			del_page_from_lru_list(page, lruvec, lru);
1255 
1256 			if (unlikely(PageCompound(page))) {
1257 				spin_unlock_irq(&zone->lru_lock);
1258 				(*get_compound_page_dtor(page))(page);
1259 				spin_lock_irq(&zone->lru_lock);
1260 			} else
1261 				list_add(&page->lru, &pages_to_free);
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * To save our caller's stack, now use input list for pages to free.
1267 	 */
1268 	list_splice(&pages_to_free, page_list);
1269 }
1270 
1271 /*
1272  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1273  * of reclaimed pages
1274  */
1275 static noinline_for_stack unsigned long
1276 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1277 		     struct scan_control *sc, enum lru_list lru)
1278 {
1279 	LIST_HEAD(page_list);
1280 	unsigned long nr_scanned;
1281 	unsigned long nr_reclaimed = 0;
1282 	unsigned long nr_taken;
1283 	unsigned long nr_dirty = 0;
1284 	unsigned long nr_writeback = 0;
1285 	isolate_mode_t isolate_mode = 0;
1286 	int file = is_file_lru(lru);
1287 	struct zone *zone = lruvec_zone(lruvec);
1288 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1289 
1290 	while (unlikely(too_many_isolated(zone, file, sc))) {
1291 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1292 
1293 		/* We are about to die and free our memory. Return now. */
1294 		if (fatal_signal_pending(current))
1295 			return SWAP_CLUSTER_MAX;
1296 	}
1297 
1298 	lru_add_drain();
1299 
1300 	if (!sc->may_unmap)
1301 		isolate_mode |= ISOLATE_UNMAPPED;
1302 	if (!sc->may_writepage)
1303 		isolate_mode |= ISOLATE_CLEAN;
1304 
1305 	spin_lock_irq(&zone->lru_lock);
1306 
1307 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1308 				     &nr_scanned, sc, isolate_mode, lru);
1309 
1310 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1311 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1312 
1313 	if (global_reclaim(sc)) {
1314 		zone->pages_scanned += nr_scanned;
1315 		if (current_is_kswapd())
1316 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1317 		else
1318 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1319 	}
1320 	spin_unlock_irq(&zone->lru_lock);
1321 
1322 	if (nr_taken == 0)
1323 		return 0;
1324 
1325 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1326 					&nr_dirty, &nr_writeback, false);
1327 
1328 	spin_lock_irq(&zone->lru_lock);
1329 
1330 	reclaim_stat->recent_scanned[file] += nr_taken;
1331 
1332 	if (global_reclaim(sc)) {
1333 		if (current_is_kswapd())
1334 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1335 					       nr_reclaimed);
1336 		else
1337 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1338 					       nr_reclaimed);
1339 	}
1340 
1341 	putback_inactive_pages(lruvec, &page_list);
1342 
1343 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1344 
1345 	spin_unlock_irq(&zone->lru_lock);
1346 
1347 	free_hot_cold_page_list(&page_list, 1);
1348 
1349 	/*
1350 	 * If reclaim is isolating dirty pages under writeback, it implies
1351 	 * that the long-lived page allocation rate is exceeding the page
1352 	 * laundering rate. Either the global limits are not being effective
1353 	 * at throttling processes due to the page distribution throughout
1354 	 * zones or there is heavy usage of a slow backing device. The
1355 	 * only option is to throttle from reclaim context which is not ideal
1356 	 * as there is no guarantee the dirtying process is throttled in the
1357 	 * same way balance_dirty_pages() manages.
1358 	 *
1359 	 * This scales the number of dirty pages that must be under writeback
1360 	 * before throttling depending on priority. It is a simple backoff
1361 	 * function that has the most effect in the range DEF_PRIORITY to
1362 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1363 	 * in trouble and reclaim is considered to be in trouble.
1364 	 *
1365 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1366 	 * DEF_PRIORITY-1  50% must be PageWriteback
1367 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1368 	 * ...
1369 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1370 	 *                     isolated page is PageWriteback
1371 	 */
1372 	if (nr_writeback && nr_writeback >=
1373 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1374 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1375 
1376 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1377 		zone_idx(zone),
1378 		nr_scanned, nr_reclaimed,
1379 		sc->priority,
1380 		trace_shrink_flags(file));
1381 	return nr_reclaimed;
1382 }
1383 
1384 /*
1385  * This moves pages from the active list to the inactive list.
1386  *
1387  * We move them the other way if the page is referenced by one or more
1388  * processes, from rmap.
1389  *
1390  * If the pages are mostly unmapped, the processing is fast and it is
1391  * appropriate to hold zone->lru_lock across the whole operation.  But if
1392  * the pages are mapped, the processing is slow (page_referenced()) so we
1393  * should drop zone->lru_lock around each page.  It's impossible to balance
1394  * this, so instead we remove the pages from the LRU while processing them.
1395  * It is safe to rely on PG_active against the non-LRU pages in here because
1396  * nobody will play with that bit on a non-LRU page.
1397  *
1398  * The downside is that we have to touch page->_count against each page.
1399  * But we had to alter page->flags anyway.
1400  */
1401 
1402 static void move_active_pages_to_lru(struct lruvec *lruvec,
1403 				     struct list_head *list,
1404 				     struct list_head *pages_to_free,
1405 				     enum lru_list lru)
1406 {
1407 	struct zone *zone = lruvec_zone(lruvec);
1408 	unsigned long pgmoved = 0;
1409 	struct page *page;
1410 	int nr_pages;
1411 
1412 	while (!list_empty(list)) {
1413 		page = lru_to_page(list);
1414 		lruvec = mem_cgroup_page_lruvec(page, zone);
1415 
1416 		VM_BUG_ON(PageLRU(page));
1417 		SetPageLRU(page);
1418 
1419 		nr_pages = hpage_nr_pages(page);
1420 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1421 		list_move(&page->lru, &lruvec->lists[lru]);
1422 		pgmoved += nr_pages;
1423 
1424 		if (put_page_testzero(page)) {
1425 			__ClearPageLRU(page);
1426 			__ClearPageActive(page);
1427 			del_page_from_lru_list(page, lruvec, lru);
1428 
1429 			if (unlikely(PageCompound(page))) {
1430 				spin_unlock_irq(&zone->lru_lock);
1431 				(*get_compound_page_dtor(page))(page);
1432 				spin_lock_irq(&zone->lru_lock);
1433 			} else
1434 				list_add(&page->lru, pages_to_free);
1435 		}
1436 	}
1437 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1438 	if (!is_active_lru(lru))
1439 		__count_vm_events(PGDEACTIVATE, pgmoved);
1440 }
1441 
1442 static void shrink_active_list(unsigned long nr_to_scan,
1443 			       struct lruvec *lruvec,
1444 			       struct scan_control *sc,
1445 			       enum lru_list lru)
1446 {
1447 	unsigned long nr_taken;
1448 	unsigned long nr_scanned;
1449 	unsigned long vm_flags;
1450 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1451 	LIST_HEAD(l_active);
1452 	LIST_HEAD(l_inactive);
1453 	struct page *page;
1454 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1455 	unsigned long nr_rotated = 0;
1456 	isolate_mode_t isolate_mode = 0;
1457 	int file = is_file_lru(lru);
1458 	struct zone *zone = lruvec_zone(lruvec);
1459 
1460 	lru_add_drain();
1461 
1462 	if (!sc->may_unmap)
1463 		isolate_mode |= ISOLATE_UNMAPPED;
1464 	if (!sc->may_writepage)
1465 		isolate_mode |= ISOLATE_CLEAN;
1466 
1467 	spin_lock_irq(&zone->lru_lock);
1468 
1469 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1470 				     &nr_scanned, sc, isolate_mode, lru);
1471 	if (global_reclaim(sc))
1472 		zone->pages_scanned += nr_scanned;
1473 
1474 	reclaim_stat->recent_scanned[file] += nr_taken;
1475 
1476 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1477 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1478 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1479 	spin_unlock_irq(&zone->lru_lock);
1480 
1481 	while (!list_empty(&l_hold)) {
1482 		cond_resched();
1483 		page = lru_to_page(&l_hold);
1484 		list_del(&page->lru);
1485 
1486 		if (unlikely(!page_evictable(page))) {
1487 			putback_lru_page(page);
1488 			continue;
1489 		}
1490 
1491 		if (unlikely(buffer_heads_over_limit)) {
1492 			if (page_has_private(page) && trylock_page(page)) {
1493 				if (page_has_private(page))
1494 					try_to_release_page(page, 0);
1495 				unlock_page(page);
1496 			}
1497 		}
1498 
1499 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1500 				    &vm_flags)) {
1501 			nr_rotated += hpage_nr_pages(page);
1502 			/*
1503 			 * Identify referenced, file-backed active pages and
1504 			 * give them one more trip around the active list. So
1505 			 * that executable code get better chances to stay in
1506 			 * memory under moderate memory pressure.  Anon pages
1507 			 * are not likely to be evicted by use-once streaming
1508 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1509 			 * so we ignore them here.
1510 			 */
1511 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1512 				list_add(&page->lru, &l_active);
1513 				continue;
1514 			}
1515 		}
1516 
1517 		ClearPageActive(page);	/* we are de-activating */
1518 		list_add(&page->lru, &l_inactive);
1519 	}
1520 
1521 	/*
1522 	 * Move pages back to the lru list.
1523 	 */
1524 	spin_lock_irq(&zone->lru_lock);
1525 	/*
1526 	 * Count referenced pages from currently used mappings as rotated,
1527 	 * even though only some of them are actually re-activated.  This
1528 	 * helps balance scan pressure between file and anonymous pages in
1529 	 * get_scan_ratio.
1530 	 */
1531 	reclaim_stat->recent_rotated[file] += nr_rotated;
1532 
1533 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1534 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1535 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1536 	spin_unlock_irq(&zone->lru_lock);
1537 
1538 	free_hot_cold_page_list(&l_hold, 1);
1539 }
1540 
1541 #ifdef CONFIG_SWAP
1542 static int inactive_anon_is_low_global(struct zone *zone)
1543 {
1544 	unsigned long active, inactive;
1545 
1546 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1547 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1548 
1549 	if (inactive * zone->inactive_ratio < active)
1550 		return 1;
1551 
1552 	return 0;
1553 }
1554 
1555 /**
1556  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1557  * @lruvec: LRU vector to check
1558  *
1559  * Returns true if the zone does not have enough inactive anon pages,
1560  * meaning some active anon pages need to be deactivated.
1561  */
1562 static int inactive_anon_is_low(struct lruvec *lruvec)
1563 {
1564 	/*
1565 	 * If we don't have swap space, anonymous page deactivation
1566 	 * is pointless.
1567 	 */
1568 	if (!total_swap_pages)
1569 		return 0;
1570 
1571 	if (!mem_cgroup_disabled())
1572 		return mem_cgroup_inactive_anon_is_low(lruvec);
1573 
1574 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1575 }
1576 #else
1577 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1578 {
1579 	return 0;
1580 }
1581 #endif
1582 
1583 /**
1584  * inactive_file_is_low - check if file pages need to be deactivated
1585  * @lruvec: LRU vector to check
1586  *
1587  * When the system is doing streaming IO, memory pressure here
1588  * ensures that active file pages get deactivated, until more
1589  * than half of the file pages are on the inactive list.
1590  *
1591  * Once we get to that situation, protect the system's working
1592  * set from being evicted by disabling active file page aging.
1593  *
1594  * This uses a different ratio than the anonymous pages, because
1595  * the page cache uses a use-once replacement algorithm.
1596  */
1597 static int inactive_file_is_low(struct lruvec *lruvec)
1598 {
1599 	unsigned long inactive;
1600 	unsigned long active;
1601 
1602 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1603 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1604 
1605 	return active > inactive;
1606 }
1607 
1608 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1609 {
1610 	if (is_file_lru(lru))
1611 		return inactive_file_is_low(lruvec);
1612 	else
1613 		return inactive_anon_is_low(lruvec);
1614 }
1615 
1616 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1617 				 struct lruvec *lruvec, struct scan_control *sc)
1618 {
1619 	if (is_active_lru(lru)) {
1620 		if (inactive_list_is_low(lruvec, lru))
1621 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1622 		return 0;
1623 	}
1624 
1625 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1626 }
1627 
1628 static int vmscan_swappiness(struct scan_control *sc)
1629 {
1630 	if (global_reclaim(sc))
1631 		return vm_swappiness;
1632 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1633 }
1634 
1635 enum scan_balance {
1636 	SCAN_EQUAL,
1637 	SCAN_FRACT,
1638 	SCAN_ANON,
1639 	SCAN_FILE,
1640 };
1641 
1642 /*
1643  * Determine how aggressively the anon and file LRU lists should be
1644  * scanned.  The relative value of each set of LRU lists is determined
1645  * by looking at the fraction of the pages scanned we did rotate back
1646  * onto the active list instead of evict.
1647  *
1648  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1649  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1650  */
1651 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1652 			   unsigned long *nr)
1653 {
1654 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1655 	u64 fraction[2];
1656 	u64 denominator = 0;	/* gcc */
1657 	struct zone *zone = lruvec_zone(lruvec);
1658 	unsigned long anon_prio, file_prio;
1659 	enum scan_balance scan_balance;
1660 	unsigned long anon, file, free;
1661 	bool force_scan = false;
1662 	unsigned long ap, fp;
1663 	enum lru_list lru;
1664 
1665 	/*
1666 	 * If the zone or memcg is small, nr[l] can be 0.  This
1667 	 * results in no scanning on this priority and a potential
1668 	 * priority drop.  Global direct reclaim can go to the next
1669 	 * zone and tends to have no problems. Global kswapd is for
1670 	 * zone balancing and it needs to scan a minimum amount. When
1671 	 * reclaiming for a memcg, a priority drop can cause high
1672 	 * latencies, so it's better to scan a minimum amount there as
1673 	 * well.
1674 	 */
1675 	if (current_is_kswapd() && zone->all_unreclaimable)
1676 		force_scan = true;
1677 	if (!global_reclaim(sc))
1678 		force_scan = true;
1679 
1680 	/* If we have no swap space, do not bother scanning anon pages. */
1681 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1682 		scan_balance = SCAN_FILE;
1683 		goto out;
1684 	}
1685 
1686 	/*
1687 	 * Global reclaim will swap to prevent OOM even with no
1688 	 * swappiness, but memcg users want to use this knob to
1689 	 * disable swapping for individual groups completely when
1690 	 * using the memory controller's swap limit feature would be
1691 	 * too expensive.
1692 	 */
1693 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1694 		scan_balance = SCAN_FILE;
1695 		goto out;
1696 	}
1697 
1698 	/*
1699 	 * Do not apply any pressure balancing cleverness when the
1700 	 * system is close to OOM, scan both anon and file equally
1701 	 * (unless the swappiness setting disagrees with swapping).
1702 	 */
1703 	if (!sc->priority && vmscan_swappiness(sc)) {
1704 		scan_balance = SCAN_EQUAL;
1705 		goto out;
1706 	}
1707 
1708 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1709 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1710 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1711 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1712 
1713 	/*
1714 	 * If it's foreseeable that reclaiming the file cache won't be
1715 	 * enough to get the zone back into a desirable shape, we have
1716 	 * to swap.  Better start now and leave the - probably heavily
1717 	 * thrashing - remaining file pages alone.
1718 	 */
1719 	if (global_reclaim(sc)) {
1720 		free = zone_page_state(zone, NR_FREE_PAGES);
1721 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1722 			scan_balance = SCAN_ANON;
1723 			goto out;
1724 		}
1725 	}
1726 
1727 	/*
1728 	 * There is enough inactive page cache, do not reclaim
1729 	 * anything from the anonymous working set right now.
1730 	 */
1731 	if (!inactive_file_is_low(lruvec)) {
1732 		scan_balance = SCAN_FILE;
1733 		goto out;
1734 	}
1735 
1736 	scan_balance = SCAN_FRACT;
1737 
1738 	/*
1739 	 * With swappiness at 100, anonymous and file have the same priority.
1740 	 * This scanning priority is essentially the inverse of IO cost.
1741 	 */
1742 	anon_prio = vmscan_swappiness(sc);
1743 	file_prio = 200 - anon_prio;
1744 
1745 	/*
1746 	 * OK, so we have swap space and a fair amount of page cache
1747 	 * pages.  We use the recently rotated / recently scanned
1748 	 * ratios to determine how valuable each cache is.
1749 	 *
1750 	 * Because workloads change over time (and to avoid overflow)
1751 	 * we keep these statistics as a floating average, which ends
1752 	 * up weighing recent references more than old ones.
1753 	 *
1754 	 * anon in [0], file in [1]
1755 	 */
1756 	spin_lock_irq(&zone->lru_lock);
1757 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1758 		reclaim_stat->recent_scanned[0] /= 2;
1759 		reclaim_stat->recent_rotated[0] /= 2;
1760 	}
1761 
1762 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1763 		reclaim_stat->recent_scanned[1] /= 2;
1764 		reclaim_stat->recent_rotated[1] /= 2;
1765 	}
1766 
1767 	/*
1768 	 * The amount of pressure on anon vs file pages is inversely
1769 	 * proportional to the fraction of recently scanned pages on
1770 	 * each list that were recently referenced and in active use.
1771 	 */
1772 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1773 	ap /= reclaim_stat->recent_rotated[0] + 1;
1774 
1775 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1776 	fp /= reclaim_stat->recent_rotated[1] + 1;
1777 	spin_unlock_irq(&zone->lru_lock);
1778 
1779 	fraction[0] = ap;
1780 	fraction[1] = fp;
1781 	denominator = ap + fp + 1;
1782 out:
1783 	for_each_evictable_lru(lru) {
1784 		int file = is_file_lru(lru);
1785 		unsigned long size;
1786 		unsigned long scan;
1787 
1788 		size = get_lru_size(lruvec, lru);
1789 		scan = size >> sc->priority;
1790 
1791 		if (!scan && force_scan)
1792 			scan = min(size, SWAP_CLUSTER_MAX);
1793 
1794 		switch (scan_balance) {
1795 		case SCAN_EQUAL:
1796 			/* Scan lists relative to size */
1797 			break;
1798 		case SCAN_FRACT:
1799 			/*
1800 			 * Scan types proportional to swappiness and
1801 			 * their relative recent reclaim efficiency.
1802 			 */
1803 			scan = div64_u64(scan * fraction[file], denominator);
1804 			break;
1805 		case SCAN_FILE:
1806 		case SCAN_ANON:
1807 			/* Scan one type exclusively */
1808 			if ((scan_balance == SCAN_FILE) != file)
1809 				scan = 0;
1810 			break;
1811 		default:
1812 			/* Look ma, no brain */
1813 			BUG();
1814 		}
1815 		nr[lru] = scan;
1816 	}
1817 }
1818 
1819 /*
1820  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1821  */
1822 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1823 {
1824 	unsigned long nr[NR_LRU_LISTS];
1825 	unsigned long nr_to_scan;
1826 	enum lru_list lru;
1827 	unsigned long nr_reclaimed = 0;
1828 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1829 	struct blk_plug plug;
1830 
1831 	get_scan_count(lruvec, sc, nr);
1832 
1833 	blk_start_plug(&plug);
1834 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1835 					nr[LRU_INACTIVE_FILE]) {
1836 		for_each_evictable_lru(lru) {
1837 			if (nr[lru]) {
1838 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1839 				nr[lru] -= nr_to_scan;
1840 
1841 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1842 							    lruvec, sc);
1843 			}
1844 		}
1845 		/*
1846 		 * On large memory systems, scan >> priority can become
1847 		 * really large. This is fine for the starting priority;
1848 		 * we want to put equal scanning pressure on each zone.
1849 		 * However, if the VM has a harder time of freeing pages,
1850 		 * with multiple processes reclaiming pages, the total
1851 		 * freeing target can get unreasonably large.
1852 		 */
1853 		if (nr_reclaimed >= nr_to_reclaim &&
1854 		    sc->priority < DEF_PRIORITY)
1855 			break;
1856 	}
1857 	blk_finish_plug(&plug);
1858 	sc->nr_reclaimed += nr_reclaimed;
1859 
1860 	/*
1861 	 * Even if we did not try to evict anon pages at all, we want to
1862 	 * rebalance the anon lru active/inactive ratio.
1863 	 */
1864 	if (inactive_anon_is_low(lruvec))
1865 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1866 				   sc, LRU_ACTIVE_ANON);
1867 
1868 	throttle_vm_writeout(sc->gfp_mask);
1869 }
1870 
1871 /* Use reclaim/compaction for costly allocs or under memory pressure */
1872 static bool in_reclaim_compaction(struct scan_control *sc)
1873 {
1874 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1875 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1876 			 sc->priority < DEF_PRIORITY - 2))
1877 		return true;
1878 
1879 	return false;
1880 }
1881 
1882 /*
1883  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1884  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1885  * true if more pages should be reclaimed such that when the page allocator
1886  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1887  * It will give up earlier than that if there is difficulty reclaiming pages.
1888  */
1889 static inline bool should_continue_reclaim(struct zone *zone,
1890 					unsigned long nr_reclaimed,
1891 					unsigned long nr_scanned,
1892 					struct scan_control *sc)
1893 {
1894 	unsigned long pages_for_compaction;
1895 	unsigned long inactive_lru_pages;
1896 
1897 	/* If not in reclaim/compaction mode, stop */
1898 	if (!in_reclaim_compaction(sc))
1899 		return false;
1900 
1901 	/* Consider stopping depending on scan and reclaim activity */
1902 	if (sc->gfp_mask & __GFP_REPEAT) {
1903 		/*
1904 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1905 		 * full LRU list has been scanned and we are still failing
1906 		 * to reclaim pages. This full LRU scan is potentially
1907 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1908 		 */
1909 		if (!nr_reclaimed && !nr_scanned)
1910 			return false;
1911 	} else {
1912 		/*
1913 		 * For non-__GFP_REPEAT allocations which can presumably
1914 		 * fail without consequence, stop if we failed to reclaim
1915 		 * any pages from the last SWAP_CLUSTER_MAX number of
1916 		 * pages that were scanned. This will return to the
1917 		 * caller faster at the risk reclaim/compaction and
1918 		 * the resulting allocation attempt fails
1919 		 */
1920 		if (!nr_reclaimed)
1921 			return false;
1922 	}
1923 
1924 	/*
1925 	 * If we have not reclaimed enough pages for compaction and the
1926 	 * inactive lists are large enough, continue reclaiming
1927 	 */
1928 	pages_for_compaction = (2UL << sc->order);
1929 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1930 	if (get_nr_swap_pages() > 0)
1931 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1932 	if (sc->nr_reclaimed < pages_for_compaction &&
1933 			inactive_lru_pages > pages_for_compaction)
1934 		return true;
1935 
1936 	/* If compaction would go ahead or the allocation would succeed, stop */
1937 	switch (compaction_suitable(zone, sc->order)) {
1938 	case COMPACT_PARTIAL:
1939 	case COMPACT_CONTINUE:
1940 		return false;
1941 	default:
1942 		return true;
1943 	}
1944 }
1945 
1946 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1947 {
1948 	unsigned long nr_reclaimed, nr_scanned;
1949 
1950 	do {
1951 		struct mem_cgroup *root = sc->target_mem_cgroup;
1952 		struct mem_cgroup_reclaim_cookie reclaim = {
1953 			.zone = zone,
1954 			.priority = sc->priority,
1955 		};
1956 		struct mem_cgroup *memcg;
1957 
1958 		nr_reclaimed = sc->nr_reclaimed;
1959 		nr_scanned = sc->nr_scanned;
1960 
1961 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
1962 		do {
1963 			struct lruvec *lruvec;
1964 
1965 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1966 
1967 			shrink_lruvec(lruvec, sc);
1968 
1969 			/*
1970 			 * Direct reclaim and kswapd have to scan all memory
1971 			 * cgroups to fulfill the overall scan target for the
1972 			 * zone.
1973 			 *
1974 			 * Limit reclaim, on the other hand, only cares about
1975 			 * nr_to_reclaim pages to be reclaimed and it will
1976 			 * retry with decreasing priority if one round over the
1977 			 * whole hierarchy is not sufficient.
1978 			 */
1979 			if (!global_reclaim(sc) &&
1980 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
1981 				mem_cgroup_iter_break(root, memcg);
1982 				break;
1983 			}
1984 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
1985 		} while (memcg);
1986 
1987 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
1988 			   sc->nr_scanned - nr_scanned,
1989 			   sc->nr_reclaimed - nr_reclaimed);
1990 
1991 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
1992 					 sc->nr_scanned - nr_scanned, sc));
1993 }
1994 
1995 /* Returns true if compaction should go ahead for a high-order request */
1996 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1997 {
1998 	unsigned long balance_gap, watermark;
1999 	bool watermark_ok;
2000 
2001 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2002 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2003 		return false;
2004 
2005 	/*
2006 	 * Compaction takes time to run and there are potentially other
2007 	 * callers using the pages just freed. Continue reclaiming until
2008 	 * there is a buffer of free pages available to give compaction
2009 	 * a reasonable chance of completing and allocating the page
2010 	 */
2011 	balance_gap = min(low_wmark_pages(zone),
2012 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2013 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2014 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2015 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2016 
2017 	/*
2018 	 * If compaction is deferred, reclaim up to a point where
2019 	 * compaction will have a chance of success when re-enabled
2020 	 */
2021 	if (compaction_deferred(zone, sc->order))
2022 		return watermark_ok;
2023 
2024 	/* If compaction is not ready to start, keep reclaiming */
2025 	if (!compaction_suitable(zone, sc->order))
2026 		return false;
2027 
2028 	return watermark_ok;
2029 }
2030 
2031 /*
2032  * This is the direct reclaim path, for page-allocating processes.  We only
2033  * try to reclaim pages from zones which will satisfy the caller's allocation
2034  * request.
2035  *
2036  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2037  * Because:
2038  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2039  *    allocation or
2040  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2041  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2042  *    zone defense algorithm.
2043  *
2044  * If a zone is deemed to be full of pinned pages then just give it a light
2045  * scan then give up on it.
2046  *
2047  * This function returns true if a zone is being reclaimed for a costly
2048  * high-order allocation and compaction is ready to begin. This indicates to
2049  * the caller that it should consider retrying the allocation instead of
2050  * further reclaim.
2051  */
2052 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2053 {
2054 	struct zoneref *z;
2055 	struct zone *zone;
2056 	unsigned long nr_soft_reclaimed;
2057 	unsigned long nr_soft_scanned;
2058 	bool aborted_reclaim = false;
2059 
2060 	/*
2061 	 * If the number of buffer_heads in the machine exceeds the maximum
2062 	 * allowed level, force direct reclaim to scan the highmem zone as
2063 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2064 	 */
2065 	if (buffer_heads_over_limit)
2066 		sc->gfp_mask |= __GFP_HIGHMEM;
2067 
2068 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2069 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2070 		if (!populated_zone(zone))
2071 			continue;
2072 		/*
2073 		 * Take care memory controller reclaiming has small influence
2074 		 * to global LRU.
2075 		 */
2076 		if (global_reclaim(sc)) {
2077 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2078 				continue;
2079 			if (zone->all_unreclaimable &&
2080 					sc->priority != DEF_PRIORITY)
2081 				continue;	/* Let kswapd poll it */
2082 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2083 				/*
2084 				 * If we already have plenty of memory free for
2085 				 * compaction in this zone, don't free any more.
2086 				 * Even though compaction is invoked for any
2087 				 * non-zero order, only frequent costly order
2088 				 * reclamation is disruptive enough to become a
2089 				 * noticeable problem, like transparent huge
2090 				 * page allocations.
2091 				 */
2092 				if (compaction_ready(zone, sc)) {
2093 					aborted_reclaim = true;
2094 					continue;
2095 				}
2096 			}
2097 			/*
2098 			 * This steals pages from memory cgroups over softlimit
2099 			 * and returns the number of reclaimed pages and
2100 			 * scanned pages. This works for global memory pressure
2101 			 * and balancing, not for a memcg's limit.
2102 			 */
2103 			nr_soft_scanned = 0;
2104 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2105 						sc->order, sc->gfp_mask,
2106 						&nr_soft_scanned);
2107 			sc->nr_reclaimed += nr_soft_reclaimed;
2108 			sc->nr_scanned += nr_soft_scanned;
2109 			/* need some check for avoid more shrink_zone() */
2110 		}
2111 
2112 		shrink_zone(zone, sc);
2113 	}
2114 
2115 	return aborted_reclaim;
2116 }
2117 
2118 static bool zone_reclaimable(struct zone *zone)
2119 {
2120 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2121 }
2122 
2123 /* All zones in zonelist are unreclaimable? */
2124 static bool all_unreclaimable(struct zonelist *zonelist,
2125 		struct scan_control *sc)
2126 {
2127 	struct zoneref *z;
2128 	struct zone *zone;
2129 
2130 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2131 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2132 		if (!populated_zone(zone))
2133 			continue;
2134 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2135 			continue;
2136 		if (!zone->all_unreclaimable)
2137 			return false;
2138 	}
2139 
2140 	return true;
2141 }
2142 
2143 /*
2144  * This is the main entry point to direct page reclaim.
2145  *
2146  * If a full scan of the inactive list fails to free enough memory then we
2147  * are "out of memory" and something needs to be killed.
2148  *
2149  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2150  * high - the zone may be full of dirty or under-writeback pages, which this
2151  * caller can't do much about.  We kick the writeback threads and take explicit
2152  * naps in the hope that some of these pages can be written.  But if the
2153  * allocating task holds filesystem locks which prevent writeout this might not
2154  * work, and the allocation attempt will fail.
2155  *
2156  * returns:	0, if no pages reclaimed
2157  * 		else, the number of pages reclaimed
2158  */
2159 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2160 					struct scan_control *sc,
2161 					struct shrink_control *shrink)
2162 {
2163 	unsigned long total_scanned = 0;
2164 	struct reclaim_state *reclaim_state = current->reclaim_state;
2165 	struct zoneref *z;
2166 	struct zone *zone;
2167 	unsigned long writeback_threshold;
2168 	bool aborted_reclaim;
2169 
2170 	delayacct_freepages_start();
2171 
2172 	if (global_reclaim(sc))
2173 		count_vm_event(ALLOCSTALL);
2174 
2175 	do {
2176 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2177 				sc->priority);
2178 		sc->nr_scanned = 0;
2179 		aborted_reclaim = shrink_zones(zonelist, sc);
2180 
2181 		/*
2182 		 * Don't shrink slabs when reclaiming memory from
2183 		 * over limit cgroups
2184 		 */
2185 		if (global_reclaim(sc)) {
2186 			unsigned long lru_pages = 0;
2187 			for_each_zone_zonelist(zone, z, zonelist,
2188 					gfp_zone(sc->gfp_mask)) {
2189 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2190 					continue;
2191 
2192 				lru_pages += zone_reclaimable_pages(zone);
2193 			}
2194 
2195 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2196 			if (reclaim_state) {
2197 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2198 				reclaim_state->reclaimed_slab = 0;
2199 			}
2200 		}
2201 		total_scanned += sc->nr_scanned;
2202 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2203 			goto out;
2204 
2205 		/*
2206 		 * If we're getting trouble reclaiming, start doing
2207 		 * writepage even in laptop mode.
2208 		 */
2209 		if (sc->priority < DEF_PRIORITY - 2)
2210 			sc->may_writepage = 1;
2211 
2212 		/*
2213 		 * Try to write back as many pages as we just scanned.  This
2214 		 * tends to cause slow streaming writers to write data to the
2215 		 * disk smoothly, at the dirtying rate, which is nice.   But
2216 		 * that's undesirable in laptop mode, where we *want* lumpy
2217 		 * writeout.  So in laptop mode, write out the whole world.
2218 		 */
2219 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2220 		if (total_scanned > writeback_threshold) {
2221 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2222 						WB_REASON_TRY_TO_FREE_PAGES);
2223 			sc->may_writepage = 1;
2224 		}
2225 
2226 		/* Take a nap, wait for some writeback to complete */
2227 		if (!sc->hibernation_mode && sc->nr_scanned &&
2228 		    sc->priority < DEF_PRIORITY - 2) {
2229 			struct zone *preferred_zone;
2230 
2231 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2232 						&cpuset_current_mems_allowed,
2233 						&preferred_zone);
2234 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2235 		}
2236 	} while (--sc->priority >= 0);
2237 
2238 out:
2239 	delayacct_freepages_end();
2240 
2241 	if (sc->nr_reclaimed)
2242 		return sc->nr_reclaimed;
2243 
2244 	/*
2245 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2246 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2247 	 * check.
2248 	 */
2249 	if (oom_killer_disabled)
2250 		return 0;
2251 
2252 	/* Aborted reclaim to try compaction? don't OOM, then */
2253 	if (aborted_reclaim)
2254 		return 1;
2255 
2256 	/* top priority shrink_zones still had more to do? don't OOM, then */
2257 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2258 		return 1;
2259 
2260 	return 0;
2261 }
2262 
2263 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2264 {
2265 	struct zone *zone;
2266 	unsigned long pfmemalloc_reserve = 0;
2267 	unsigned long free_pages = 0;
2268 	int i;
2269 	bool wmark_ok;
2270 
2271 	for (i = 0; i <= ZONE_NORMAL; i++) {
2272 		zone = &pgdat->node_zones[i];
2273 		pfmemalloc_reserve += min_wmark_pages(zone);
2274 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2275 	}
2276 
2277 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2278 
2279 	/* kswapd must be awake if processes are being throttled */
2280 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2281 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2282 						(enum zone_type)ZONE_NORMAL);
2283 		wake_up_interruptible(&pgdat->kswapd_wait);
2284 	}
2285 
2286 	return wmark_ok;
2287 }
2288 
2289 /*
2290  * Throttle direct reclaimers if backing storage is backed by the network
2291  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2292  * depleted. kswapd will continue to make progress and wake the processes
2293  * when the low watermark is reached.
2294  *
2295  * Returns true if a fatal signal was delivered during throttling. If this
2296  * happens, the page allocator should not consider triggering the OOM killer.
2297  */
2298 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2299 					nodemask_t *nodemask)
2300 {
2301 	struct zone *zone;
2302 	int high_zoneidx = gfp_zone(gfp_mask);
2303 	pg_data_t *pgdat;
2304 
2305 	/*
2306 	 * Kernel threads should not be throttled as they may be indirectly
2307 	 * responsible for cleaning pages necessary for reclaim to make forward
2308 	 * progress. kjournald for example may enter direct reclaim while
2309 	 * committing a transaction where throttling it could forcing other
2310 	 * processes to block on log_wait_commit().
2311 	 */
2312 	if (current->flags & PF_KTHREAD)
2313 		goto out;
2314 
2315 	/*
2316 	 * If a fatal signal is pending, this process should not throttle.
2317 	 * It should return quickly so it can exit and free its memory
2318 	 */
2319 	if (fatal_signal_pending(current))
2320 		goto out;
2321 
2322 	/* Check if the pfmemalloc reserves are ok */
2323 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2324 	pgdat = zone->zone_pgdat;
2325 	if (pfmemalloc_watermark_ok(pgdat))
2326 		goto out;
2327 
2328 	/* Account for the throttling */
2329 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2330 
2331 	/*
2332 	 * If the caller cannot enter the filesystem, it's possible that it
2333 	 * is due to the caller holding an FS lock or performing a journal
2334 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2335 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2336 	 * blocked waiting on the same lock. Instead, throttle for up to a
2337 	 * second before continuing.
2338 	 */
2339 	if (!(gfp_mask & __GFP_FS)) {
2340 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2341 			pfmemalloc_watermark_ok(pgdat), HZ);
2342 
2343 		goto check_pending;
2344 	}
2345 
2346 	/* Throttle until kswapd wakes the process */
2347 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2348 		pfmemalloc_watermark_ok(pgdat));
2349 
2350 check_pending:
2351 	if (fatal_signal_pending(current))
2352 		return true;
2353 
2354 out:
2355 	return false;
2356 }
2357 
2358 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2359 				gfp_t gfp_mask, nodemask_t *nodemask)
2360 {
2361 	unsigned long nr_reclaimed;
2362 	struct scan_control sc = {
2363 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2364 		.may_writepage = !laptop_mode,
2365 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2366 		.may_unmap = 1,
2367 		.may_swap = 1,
2368 		.order = order,
2369 		.priority = DEF_PRIORITY,
2370 		.target_mem_cgroup = NULL,
2371 		.nodemask = nodemask,
2372 	};
2373 	struct shrink_control shrink = {
2374 		.gfp_mask = sc.gfp_mask,
2375 	};
2376 
2377 	/*
2378 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2379 	 * 1 is returned so that the page allocator does not OOM kill at this
2380 	 * point.
2381 	 */
2382 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2383 		return 1;
2384 
2385 	trace_mm_vmscan_direct_reclaim_begin(order,
2386 				sc.may_writepage,
2387 				gfp_mask);
2388 
2389 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2390 
2391 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2392 
2393 	return nr_reclaimed;
2394 }
2395 
2396 #ifdef CONFIG_MEMCG
2397 
2398 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2399 						gfp_t gfp_mask, bool noswap,
2400 						struct zone *zone,
2401 						unsigned long *nr_scanned)
2402 {
2403 	struct scan_control sc = {
2404 		.nr_scanned = 0,
2405 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2406 		.may_writepage = !laptop_mode,
2407 		.may_unmap = 1,
2408 		.may_swap = !noswap,
2409 		.order = 0,
2410 		.priority = 0,
2411 		.target_mem_cgroup = memcg,
2412 	};
2413 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2414 
2415 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2416 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2417 
2418 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2419 						      sc.may_writepage,
2420 						      sc.gfp_mask);
2421 
2422 	/*
2423 	 * NOTE: Although we can get the priority field, using it
2424 	 * here is not a good idea, since it limits the pages we can scan.
2425 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2426 	 * will pick up pages from other mem cgroup's as well. We hack
2427 	 * the priority and make it zero.
2428 	 */
2429 	shrink_lruvec(lruvec, &sc);
2430 
2431 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2432 
2433 	*nr_scanned = sc.nr_scanned;
2434 	return sc.nr_reclaimed;
2435 }
2436 
2437 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2438 					   gfp_t gfp_mask,
2439 					   bool noswap)
2440 {
2441 	struct zonelist *zonelist;
2442 	unsigned long nr_reclaimed;
2443 	int nid;
2444 	struct scan_control sc = {
2445 		.may_writepage = !laptop_mode,
2446 		.may_unmap = 1,
2447 		.may_swap = !noswap,
2448 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2449 		.order = 0,
2450 		.priority = DEF_PRIORITY,
2451 		.target_mem_cgroup = memcg,
2452 		.nodemask = NULL, /* we don't care the placement */
2453 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2454 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2455 	};
2456 	struct shrink_control shrink = {
2457 		.gfp_mask = sc.gfp_mask,
2458 	};
2459 
2460 	/*
2461 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2462 	 * take care of from where we get pages. So the node where we start the
2463 	 * scan does not need to be the current node.
2464 	 */
2465 	nid = mem_cgroup_select_victim_node(memcg);
2466 
2467 	zonelist = NODE_DATA(nid)->node_zonelists;
2468 
2469 	trace_mm_vmscan_memcg_reclaim_begin(0,
2470 					    sc.may_writepage,
2471 					    sc.gfp_mask);
2472 
2473 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2474 
2475 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2476 
2477 	return nr_reclaimed;
2478 }
2479 #endif
2480 
2481 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2482 {
2483 	struct mem_cgroup *memcg;
2484 
2485 	if (!total_swap_pages)
2486 		return;
2487 
2488 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2489 	do {
2490 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2491 
2492 		if (inactive_anon_is_low(lruvec))
2493 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2494 					   sc, LRU_ACTIVE_ANON);
2495 
2496 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2497 	} while (memcg);
2498 }
2499 
2500 static bool zone_balanced(struct zone *zone, int order,
2501 			  unsigned long balance_gap, int classzone_idx)
2502 {
2503 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2504 				    balance_gap, classzone_idx, 0))
2505 		return false;
2506 
2507 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2508 	    !compaction_suitable(zone, order))
2509 		return false;
2510 
2511 	return true;
2512 }
2513 
2514 /*
2515  * pgdat_balanced() is used when checking if a node is balanced.
2516  *
2517  * For order-0, all zones must be balanced!
2518  *
2519  * For high-order allocations only zones that meet watermarks and are in a
2520  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2521  * total of balanced pages must be at least 25% of the zones allowed by
2522  * classzone_idx for the node to be considered balanced. Forcing all zones to
2523  * be balanced for high orders can cause excessive reclaim when there are
2524  * imbalanced zones.
2525  * The choice of 25% is due to
2526  *   o a 16M DMA zone that is balanced will not balance a zone on any
2527  *     reasonable sized machine
2528  *   o On all other machines, the top zone must be at least a reasonable
2529  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2530  *     would need to be at least 256M for it to be balance a whole node.
2531  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2532  *     to balance a node on its own. These seemed like reasonable ratios.
2533  */
2534 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2535 {
2536 	unsigned long managed_pages = 0;
2537 	unsigned long balanced_pages = 0;
2538 	int i;
2539 
2540 	/* Check the watermark levels */
2541 	for (i = 0; i <= classzone_idx; i++) {
2542 		struct zone *zone = pgdat->node_zones + i;
2543 
2544 		if (!populated_zone(zone))
2545 			continue;
2546 
2547 		managed_pages += zone->managed_pages;
2548 
2549 		/*
2550 		 * A special case here:
2551 		 *
2552 		 * balance_pgdat() skips over all_unreclaimable after
2553 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2554 		 * they must be considered balanced here as well!
2555 		 */
2556 		if (zone->all_unreclaimable) {
2557 			balanced_pages += zone->managed_pages;
2558 			continue;
2559 		}
2560 
2561 		if (zone_balanced(zone, order, 0, i))
2562 			balanced_pages += zone->managed_pages;
2563 		else if (!order)
2564 			return false;
2565 	}
2566 
2567 	if (order)
2568 		return balanced_pages >= (managed_pages >> 2);
2569 	else
2570 		return true;
2571 }
2572 
2573 /*
2574  * Prepare kswapd for sleeping. This verifies that there are no processes
2575  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2576  *
2577  * Returns true if kswapd is ready to sleep
2578  */
2579 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2580 					int classzone_idx)
2581 {
2582 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2583 	if (remaining)
2584 		return false;
2585 
2586 	/*
2587 	 * There is a potential race between when kswapd checks its watermarks
2588 	 * and a process gets throttled. There is also a potential race if
2589 	 * processes get throttled, kswapd wakes, a large process exits therby
2590 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2591 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2592 	 * so wake them now if necessary. If necessary, processes will wake
2593 	 * kswapd and get throttled again
2594 	 */
2595 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2596 		wake_up(&pgdat->pfmemalloc_wait);
2597 		return false;
2598 	}
2599 
2600 	return pgdat_balanced(pgdat, order, classzone_idx);
2601 }
2602 
2603 /*
2604  * For kswapd, balance_pgdat() will work across all this node's zones until
2605  * they are all at high_wmark_pages(zone).
2606  *
2607  * Returns the final order kswapd was reclaiming at
2608  *
2609  * There is special handling here for zones which are full of pinned pages.
2610  * This can happen if the pages are all mlocked, or if they are all used by
2611  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2612  * What we do is to detect the case where all pages in the zone have been
2613  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2614  * dead and from now on, only perform a short scan.  Basically we're polling
2615  * the zone for when the problem goes away.
2616  *
2617  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2618  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2619  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2620  * lower zones regardless of the number of free pages in the lower zones. This
2621  * interoperates with the page allocator fallback scheme to ensure that aging
2622  * of pages is balanced across the zones.
2623  */
2624 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2625 							int *classzone_idx)
2626 {
2627 	bool pgdat_is_balanced = false;
2628 	int i;
2629 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2630 	struct reclaim_state *reclaim_state = current->reclaim_state;
2631 	unsigned long nr_soft_reclaimed;
2632 	unsigned long nr_soft_scanned;
2633 	struct scan_control sc = {
2634 		.gfp_mask = GFP_KERNEL,
2635 		.may_unmap = 1,
2636 		.may_swap = 1,
2637 		/*
2638 		 * kswapd doesn't want to be bailed out while reclaim. because
2639 		 * we want to put equal scanning pressure on each zone.
2640 		 */
2641 		.nr_to_reclaim = ULONG_MAX,
2642 		.order = order,
2643 		.target_mem_cgroup = NULL,
2644 	};
2645 	struct shrink_control shrink = {
2646 		.gfp_mask = sc.gfp_mask,
2647 	};
2648 loop_again:
2649 	sc.priority = DEF_PRIORITY;
2650 	sc.nr_reclaimed = 0;
2651 	sc.may_writepage = !laptop_mode;
2652 	count_vm_event(PAGEOUTRUN);
2653 
2654 	do {
2655 		unsigned long lru_pages = 0;
2656 
2657 		/*
2658 		 * Scan in the highmem->dma direction for the highest
2659 		 * zone which needs scanning
2660 		 */
2661 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2662 			struct zone *zone = pgdat->node_zones + i;
2663 
2664 			if (!populated_zone(zone))
2665 				continue;
2666 
2667 			if (zone->all_unreclaimable &&
2668 			    sc.priority != DEF_PRIORITY)
2669 				continue;
2670 
2671 			/*
2672 			 * Do some background aging of the anon list, to give
2673 			 * pages a chance to be referenced before reclaiming.
2674 			 */
2675 			age_active_anon(zone, &sc);
2676 
2677 			/*
2678 			 * If the number of buffer_heads in the machine
2679 			 * exceeds the maximum allowed level and this node
2680 			 * has a highmem zone, force kswapd to reclaim from
2681 			 * it to relieve lowmem pressure.
2682 			 */
2683 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2684 				end_zone = i;
2685 				break;
2686 			}
2687 
2688 			if (!zone_balanced(zone, order, 0, 0)) {
2689 				end_zone = i;
2690 				break;
2691 			} else {
2692 				/* If balanced, clear the congested flag */
2693 				zone_clear_flag(zone, ZONE_CONGESTED);
2694 			}
2695 		}
2696 
2697 		if (i < 0) {
2698 			pgdat_is_balanced = true;
2699 			goto out;
2700 		}
2701 
2702 		for (i = 0; i <= end_zone; i++) {
2703 			struct zone *zone = pgdat->node_zones + i;
2704 
2705 			lru_pages += zone_reclaimable_pages(zone);
2706 		}
2707 
2708 		/*
2709 		 * Now scan the zone in the dma->highmem direction, stopping
2710 		 * at the last zone which needs scanning.
2711 		 *
2712 		 * We do this because the page allocator works in the opposite
2713 		 * direction.  This prevents the page allocator from allocating
2714 		 * pages behind kswapd's direction of progress, which would
2715 		 * cause too much scanning of the lower zones.
2716 		 */
2717 		for (i = 0; i <= end_zone; i++) {
2718 			struct zone *zone = pgdat->node_zones + i;
2719 			int nr_slab, testorder;
2720 			unsigned long balance_gap;
2721 
2722 			if (!populated_zone(zone))
2723 				continue;
2724 
2725 			if (zone->all_unreclaimable &&
2726 			    sc.priority != DEF_PRIORITY)
2727 				continue;
2728 
2729 			sc.nr_scanned = 0;
2730 
2731 			nr_soft_scanned = 0;
2732 			/*
2733 			 * Call soft limit reclaim before calling shrink_zone.
2734 			 */
2735 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2736 							order, sc.gfp_mask,
2737 							&nr_soft_scanned);
2738 			sc.nr_reclaimed += nr_soft_reclaimed;
2739 
2740 			/*
2741 			 * We put equal pressure on every zone, unless
2742 			 * one zone has way too many pages free
2743 			 * already. The "too many pages" is defined
2744 			 * as the high wmark plus a "gap" where the
2745 			 * gap is either the low watermark or 1%
2746 			 * of the zone, whichever is smaller.
2747 			 */
2748 			balance_gap = min(low_wmark_pages(zone),
2749 				(zone->managed_pages +
2750 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2751 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2752 			/*
2753 			 * Kswapd reclaims only single pages with compaction
2754 			 * enabled. Trying too hard to reclaim until contiguous
2755 			 * free pages have become available can hurt performance
2756 			 * by evicting too much useful data from memory.
2757 			 * Do not reclaim more than needed for compaction.
2758 			 */
2759 			testorder = order;
2760 			if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2761 					compaction_suitable(zone, order) !=
2762 						COMPACT_SKIPPED)
2763 				testorder = 0;
2764 
2765 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2766 			    !zone_balanced(zone, testorder,
2767 					   balance_gap, end_zone)) {
2768 				shrink_zone(zone, &sc);
2769 
2770 				reclaim_state->reclaimed_slab = 0;
2771 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2772 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2773 
2774 				if (nr_slab == 0 && !zone_reclaimable(zone))
2775 					zone->all_unreclaimable = 1;
2776 			}
2777 
2778 			/*
2779 			 * If we're getting trouble reclaiming, start doing
2780 			 * writepage even in laptop mode.
2781 			 */
2782 			if (sc.priority < DEF_PRIORITY - 2)
2783 				sc.may_writepage = 1;
2784 
2785 			if (zone->all_unreclaimable) {
2786 				if (end_zone && end_zone == i)
2787 					end_zone--;
2788 				continue;
2789 			}
2790 
2791 			if (zone_balanced(zone, testorder, 0, end_zone))
2792 				/*
2793 				 * If a zone reaches its high watermark,
2794 				 * consider it to be no longer congested. It's
2795 				 * possible there are dirty pages backed by
2796 				 * congested BDIs but as pressure is relieved,
2797 				 * speculatively avoid congestion waits
2798 				 */
2799 				zone_clear_flag(zone, ZONE_CONGESTED);
2800 		}
2801 
2802 		/*
2803 		 * If the low watermark is met there is no need for processes
2804 		 * to be throttled on pfmemalloc_wait as they should not be
2805 		 * able to safely make forward progress. Wake them
2806 		 */
2807 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2808 				pfmemalloc_watermark_ok(pgdat))
2809 			wake_up(&pgdat->pfmemalloc_wait);
2810 
2811 		if (pgdat_balanced(pgdat, order, *classzone_idx)) {
2812 			pgdat_is_balanced = true;
2813 			break;		/* kswapd: all done */
2814 		}
2815 
2816 		/*
2817 		 * We do this so kswapd doesn't build up large priorities for
2818 		 * example when it is freeing in parallel with allocators. It
2819 		 * matches the direct reclaim path behaviour in terms of impact
2820 		 * on zone->*_priority.
2821 		 */
2822 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2823 			break;
2824 	} while (--sc.priority >= 0);
2825 
2826 out:
2827 	if (!pgdat_is_balanced) {
2828 		cond_resched();
2829 
2830 		try_to_freeze();
2831 
2832 		/*
2833 		 * Fragmentation may mean that the system cannot be
2834 		 * rebalanced for high-order allocations in all zones.
2835 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2836 		 * it means the zones have been fully scanned and are still
2837 		 * not balanced. For high-order allocations, there is
2838 		 * little point trying all over again as kswapd may
2839 		 * infinite loop.
2840 		 *
2841 		 * Instead, recheck all watermarks at order-0 as they
2842 		 * are the most important. If watermarks are ok, kswapd will go
2843 		 * back to sleep. High-order users can still perform direct
2844 		 * reclaim if they wish.
2845 		 */
2846 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2847 			order = sc.order = 0;
2848 
2849 		goto loop_again;
2850 	}
2851 
2852 	/*
2853 	 * If kswapd was reclaiming at a higher order, it has the option of
2854 	 * sleeping without all zones being balanced. Before it does, it must
2855 	 * ensure that the watermarks for order-0 on *all* zones are met and
2856 	 * that the congestion flags are cleared. The congestion flag must
2857 	 * be cleared as kswapd is the only mechanism that clears the flag
2858 	 * and it is potentially going to sleep here.
2859 	 */
2860 	if (order) {
2861 		int zones_need_compaction = 1;
2862 
2863 		for (i = 0; i <= end_zone; i++) {
2864 			struct zone *zone = pgdat->node_zones + i;
2865 
2866 			if (!populated_zone(zone))
2867 				continue;
2868 
2869 			/* Check if the memory needs to be defragmented. */
2870 			if (zone_watermark_ok(zone, order,
2871 				    low_wmark_pages(zone), *classzone_idx, 0))
2872 				zones_need_compaction = 0;
2873 		}
2874 
2875 		if (zones_need_compaction)
2876 			compact_pgdat(pgdat, order);
2877 	}
2878 
2879 	/*
2880 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2881 	 * makes a decision on the order we were last reclaiming at. However,
2882 	 * if another caller entered the allocator slow path while kswapd
2883 	 * was awake, order will remain at the higher level
2884 	 */
2885 	*classzone_idx = end_zone;
2886 	return order;
2887 }
2888 
2889 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2890 {
2891 	long remaining = 0;
2892 	DEFINE_WAIT(wait);
2893 
2894 	if (freezing(current) || kthread_should_stop())
2895 		return;
2896 
2897 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2898 
2899 	/* Try to sleep for a short interval */
2900 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2901 		remaining = schedule_timeout(HZ/10);
2902 		finish_wait(&pgdat->kswapd_wait, &wait);
2903 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2904 	}
2905 
2906 	/*
2907 	 * After a short sleep, check if it was a premature sleep. If not, then
2908 	 * go fully to sleep until explicitly woken up.
2909 	 */
2910 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2911 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2912 
2913 		/*
2914 		 * vmstat counters are not perfectly accurate and the estimated
2915 		 * value for counters such as NR_FREE_PAGES can deviate from the
2916 		 * true value by nr_online_cpus * threshold. To avoid the zone
2917 		 * watermarks being breached while under pressure, we reduce the
2918 		 * per-cpu vmstat threshold while kswapd is awake and restore
2919 		 * them before going back to sleep.
2920 		 */
2921 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2922 
2923 		/*
2924 		 * Compaction records what page blocks it recently failed to
2925 		 * isolate pages from and skips them in the future scanning.
2926 		 * When kswapd is going to sleep, it is reasonable to assume
2927 		 * that pages and compaction may succeed so reset the cache.
2928 		 */
2929 		reset_isolation_suitable(pgdat);
2930 
2931 		if (!kthread_should_stop())
2932 			schedule();
2933 
2934 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2935 	} else {
2936 		if (remaining)
2937 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2938 		else
2939 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2940 	}
2941 	finish_wait(&pgdat->kswapd_wait, &wait);
2942 }
2943 
2944 /*
2945  * The background pageout daemon, started as a kernel thread
2946  * from the init process.
2947  *
2948  * This basically trickles out pages so that we have _some_
2949  * free memory available even if there is no other activity
2950  * that frees anything up. This is needed for things like routing
2951  * etc, where we otherwise might have all activity going on in
2952  * asynchronous contexts that cannot page things out.
2953  *
2954  * If there are applications that are active memory-allocators
2955  * (most normal use), this basically shouldn't matter.
2956  */
2957 static int kswapd(void *p)
2958 {
2959 	unsigned long order, new_order;
2960 	unsigned balanced_order;
2961 	int classzone_idx, new_classzone_idx;
2962 	int balanced_classzone_idx;
2963 	pg_data_t *pgdat = (pg_data_t*)p;
2964 	struct task_struct *tsk = current;
2965 
2966 	struct reclaim_state reclaim_state = {
2967 		.reclaimed_slab = 0,
2968 	};
2969 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2970 
2971 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2972 
2973 	if (!cpumask_empty(cpumask))
2974 		set_cpus_allowed_ptr(tsk, cpumask);
2975 	current->reclaim_state = &reclaim_state;
2976 
2977 	/*
2978 	 * Tell the memory management that we're a "memory allocator",
2979 	 * and that if we need more memory we should get access to it
2980 	 * regardless (see "__alloc_pages()"). "kswapd" should
2981 	 * never get caught in the normal page freeing logic.
2982 	 *
2983 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2984 	 * you need a small amount of memory in order to be able to
2985 	 * page out something else, and this flag essentially protects
2986 	 * us from recursively trying to free more memory as we're
2987 	 * trying to free the first piece of memory in the first place).
2988 	 */
2989 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2990 	set_freezable();
2991 
2992 	order = new_order = 0;
2993 	balanced_order = 0;
2994 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2995 	balanced_classzone_idx = classzone_idx;
2996 	for ( ; ; ) {
2997 		bool ret;
2998 
2999 		/*
3000 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3001 		 * new request of a similar or harder type will succeed soon
3002 		 * so consider going to sleep on the basis we reclaimed at
3003 		 */
3004 		if (balanced_classzone_idx >= new_classzone_idx &&
3005 					balanced_order == new_order) {
3006 			new_order = pgdat->kswapd_max_order;
3007 			new_classzone_idx = pgdat->classzone_idx;
3008 			pgdat->kswapd_max_order =  0;
3009 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3010 		}
3011 
3012 		if (order < new_order || classzone_idx > new_classzone_idx) {
3013 			/*
3014 			 * Don't sleep if someone wants a larger 'order'
3015 			 * allocation or has tigher zone constraints
3016 			 */
3017 			order = new_order;
3018 			classzone_idx = new_classzone_idx;
3019 		} else {
3020 			kswapd_try_to_sleep(pgdat, balanced_order,
3021 						balanced_classzone_idx);
3022 			order = pgdat->kswapd_max_order;
3023 			classzone_idx = pgdat->classzone_idx;
3024 			new_order = order;
3025 			new_classzone_idx = classzone_idx;
3026 			pgdat->kswapd_max_order = 0;
3027 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3028 		}
3029 
3030 		ret = try_to_freeze();
3031 		if (kthread_should_stop())
3032 			break;
3033 
3034 		/*
3035 		 * We can speed up thawing tasks if we don't call balance_pgdat
3036 		 * after returning from the refrigerator
3037 		 */
3038 		if (!ret) {
3039 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3040 			balanced_classzone_idx = classzone_idx;
3041 			balanced_order = balance_pgdat(pgdat, order,
3042 						&balanced_classzone_idx);
3043 		}
3044 	}
3045 
3046 	current->reclaim_state = NULL;
3047 	return 0;
3048 }
3049 
3050 /*
3051  * A zone is low on free memory, so wake its kswapd task to service it.
3052  */
3053 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3054 {
3055 	pg_data_t *pgdat;
3056 
3057 	if (!populated_zone(zone))
3058 		return;
3059 
3060 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3061 		return;
3062 	pgdat = zone->zone_pgdat;
3063 	if (pgdat->kswapd_max_order < order) {
3064 		pgdat->kswapd_max_order = order;
3065 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3066 	}
3067 	if (!waitqueue_active(&pgdat->kswapd_wait))
3068 		return;
3069 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3070 		return;
3071 
3072 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3073 	wake_up_interruptible(&pgdat->kswapd_wait);
3074 }
3075 
3076 /*
3077  * The reclaimable count would be mostly accurate.
3078  * The less reclaimable pages may be
3079  * - mlocked pages, which will be moved to unevictable list when encountered
3080  * - mapped pages, which may require several travels to be reclaimed
3081  * - dirty pages, which is not "instantly" reclaimable
3082  */
3083 unsigned long global_reclaimable_pages(void)
3084 {
3085 	int nr;
3086 
3087 	nr = global_page_state(NR_ACTIVE_FILE) +
3088 	     global_page_state(NR_INACTIVE_FILE);
3089 
3090 	if (get_nr_swap_pages() > 0)
3091 		nr += global_page_state(NR_ACTIVE_ANON) +
3092 		      global_page_state(NR_INACTIVE_ANON);
3093 
3094 	return nr;
3095 }
3096 
3097 unsigned long zone_reclaimable_pages(struct zone *zone)
3098 {
3099 	int nr;
3100 
3101 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3102 	     zone_page_state(zone, NR_INACTIVE_FILE);
3103 
3104 	if (get_nr_swap_pages() > 0)
3105 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3106 		      zone_page_state(zone, NR_INACTIVE_ANON);
3107 
3108 	return nr;
3109 }
3110 
3111 #ifdef CONFIG_HIBERNATION
3112 /*
3113  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3114  * freed pages.
3115  *
3116  * Rather than trying to age LRUs the aim is to preserve the overall
3117  * LRU order by reclaiming preferentially
3118  * inactive > active > active referenced > active mapped
3119  */
3120 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3121 {
3122 	struct reclaim_state reclaim_state;
3123 	struct scan_control sc = {
3124 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3125 		.may_swap = 1,
3126 		.may_unmap = 1,
3127 		.may_writepage = 1,
3128 		.nr_to_reclaim = nr_to_reclaim,
3129 		.hibernation_mode = 1,
3130 		.order = 0,
3131 		.priority = DEF_PRIORITY,
3132 	};
3133 	struct shrink_control shrink = {
3134 		.gfp_mask = sc.gfp_mask,
3135 	};
3136 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3137 	struct task_struct *p = current;
3138 	unsigned long nr_reclaimed;
3139 
3140 	p->flags |= PF_MEMALLOC;
3141 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3142 	reclaim_state.reclaimed_slab = 0;
3143 	p->reclaim_state = &reclaim_state;
3144 
3145 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3146 
3147 	p->reclaim_state = NULL;
3148 	lockdep_clear_current_reclaim_state();
3149 	p->flags &= ~PF_MEMALLOC;
3150 
3151 	return nr_reclaimed;
3152 }
3153 #endif /* CONFIG_HIBERNATION */
3154 
3155 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3156    not required for correctness.  So if the last cpu in a node goes
3157    away, we get changed to run anywhere: as the first one comes back,
3158    restore their cpu bindings. */
3159 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3160 			void *hcpu)
3161 {
3162 	int nid;
3163 
3164 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3165 		for_each_node_state(nid, N_MEMORY) {
3166 			pg_data_t *pgdat = NODE_DATA(nid);
3167 			const struct cpumask *mask;
3168 
3169 			mask = cpumask_of_node(pgdat->node_id);
3170 
3171 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3172 				/* One of our CPUs online: restore mask */
3173 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3174 		}
3175 	}
3176 	return NOTIFY_OK;
3177 }
3178 
3179 /*
3180  * This kswapd start function will be called by init and node-hot-add.
3181  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3182  */
3183 int kswapd_run(int nid)
3184 {
3185 	pg_data_t *pgdat = NODE_DATA(nid);
3186 	int ret = 0;
3187 
3188 	if (pgdat->kswapd)
3189 		return 0;
3190 
3191 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3192 	if (IS_ERR(pgdat->kswapd)) {
3193 		/* failure at boot is fatal */
3194 		BUG_ON(system_state == SYSTEM_BOOTING);
3195 		pr_err("Failed to start kswapd on node %d\n", nid);
3196 		ret = PTR_ERR(pgdat->kswapd);
3197 		pgdat->kswapd = NULL;
3198 	}
3199 	return ret;
3200 }
3201 
3202 /*
3203  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3204  * hold lock_memory_hotplug().
3205  */
3206 void kswapd_stop(int nid)
3207 {
3208 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3209 
3210 	if (kswapd) {
3211 		kthread_stop(kswapd);
3212 		NODE_DATA(nid)->kswapd = NULL;
3213 	}
3214 }
3215 
3216 static int __init kswapd_init(void)
3217 {
3218 	int nid;
3219 
3220 	swap_setup();
3221 	for_each_node_state(nid, N_MEMORY)
3222  		kswapd_run(nid);
3223 	hotcpu_notifier(cpu_callback, 0);
3224 	return 0;
3225 }
3226 
3227 module_init(kswapd_init)
3228 
3229 #ifdef CONFIG_NUMA
3230 /*
3231  * Zone reclaim mode
3232  *
3233  * If non-zero call zone_reclaim when the number of free pages falls below
3234  * the watermarks.
3235  */
3236 int zone_reclaim_mode __read_mostly;
3237 
3238 #define RECLAIM_OFF 0
3239 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3240 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3241 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3242 
3243 /*
3244  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3245  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3246  * a zone.
3247  */
3248 #define ZONE_RECLAIM_PRIORITY 4
3249 
3250 /*
3251  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3252  * occur.
3253  */
3254 int sysctl_min_unmapped_ratio = 1;
3255 
3256 /*
3257  * If the number of slab pages in a zone grows beyond this percentage then
3258  * slab reclaim needs to occur.
3259  */
3260 int sysctl_min_slab_ratio = 5;
3261 
3262 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3263 {
3264 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3265 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3266 		zone_page_state(zone, NR_ACTIVE_FILE);
3267 
3268 	/*
3269 	 * It's possible for there to be more file mapped pages than
3270 	 * accounted for by the pages on the file LRU lists because
3271 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3272 	 */
3273 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3274 }
3275 
3276 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3277 static long zone_pagecache_reclaimable(struct zone *zone)
3278 {
3279 	long nr_pagecache_reclaimable;
3280 	long delta = 0;
3281 
3282 	/*
3283 	 * If RECLAIM_SWAP is set, then all file pages are considered
3284 	 * potentially reclaimable. Otherwise, we have to worry about
3285 	 * pages like swapcache and zone_unmapped_file_pages() provides
3286 	 * a better estimate
3287 	 */
3288 	if (zone_reclaim_mode & RECLAIM_SWAP)
3289 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3290 	else
3291 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3292 
3293 	/* If we can't clean pages, remove dirty pages from consideration */
3294 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3295 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3296 
3297 	/* Watch for any possible underflows due to delta */
3298 	if (unlikely(delta > nr_pagecache_reclaimable))
3299 		delta = nr_pagecache_reclaimable;
3300 
3301 	return nr_pagecache_reclaimable - delta;
3302 }
3303 
3304 /*
3305  * Try to free up some pages from this zone through reclaim.
3306  */
3307 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3308 {
3309 	/* Minimum pages needed in order to stay on node */
3310 	const unsigned long nr_pages = 1 << order;
3311 	struct task_struct *p = current;
3312 	struct reclaim_state reclaim_state;
3313 	struct scan_control sc = {
3314 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3315 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3316 		.may_swap = 1,
3317 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3318 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3319 		.order = order,
3320 		.priority = ZONE_RECLAIM_PRIORITY,
3321 	};
3322 	struct shrink_control shrink = {
3323 		.gfp_mask = sc.gfp_mask,
3324 	};
3325 	unsigned long nr_slab_pages0, nr_slab_pages1;
3326 
3327 	cond_resched();
3328 	/*
3329 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3330 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3331 	 * and RECLAIM_SWAP.
3332 	 */
3333 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3334 	lockdep_set_current_reclaim_state(gfp_mask);
3335 	reclaim_state.reclaimed_slab = 0;
3336 	p->reclaim_state = &reclaim_state;
3337 
3338 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3339 		/*
3340 		 * Free memory by calling shrink zone with increasing
3341 		 * priorities until we have enough memory freed.
3342 		 */
3343 		do {
3344 			shrink_zone(zone, &sc);
3345 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3346 	}
3347 
3348 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3349 	if (nr_slab_pages0 > zone->min_slab_pages) {
3350 		/*
3351 		 * shrink_slab() does not currently allow us to determine how
3352 		 * many pages were freed in this zone. So we take the current
3353 		 * number of slab pages and shake the slab until it is reduced
3354 		 * by the same nr_pages that we used for reclaiming unmapped
3355 		 * pages.
3356 		 *
3357 		 * Note that shrink_slab will free memory on all zones and may
3358 		 * take a long time.
3359 		 */
3360 		for (;;) {
3361 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3362 
3363 			/* No reclaimable slab or very low memory pressure */
3364 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3365 				break;
3366 
3367 			/* Freed enough memory */
3368 			nr_slab_pages1 = zone_page_state(zone,
3369 							NR_SLAB_RECLAIMABLE);
3370 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3371 				break;
3372 		}
3373 
3374 		/*
3375 		 * Update nr_reclaimed by the number of slab pages we
3376 		 * reclaimed from this zone.
3377 		 */
3378 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3379 		if (nr_slab_pages1 < nr_slab_pages0)
3380 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3381 	}
3382 
3383 	p->reclaim_state = NULL;
3384 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3385 	lockdep_clear_current_reclaim_state();
3386 	return sc.nr_reclaimed >= nr_pages;
3387 }
3388 
3389 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3390 {
3391 	int node_id;
3392 	int ret;
3393 
3394 	/*
3395 	 * Zone reclaim reclaims unmapped file backed pages and
3396 	 * slab pages if we are over the defined limits.
3397 	 *
3398 	 * A small portion of unmapped file backed pages is needed for
3399 	 * file I/O otherwise pages read by file I/O will be immediately
3400 	 * thrown out if the zone is overallocated. So we do not reclaim
3401 	 * if less than a specified percentage of the zone is used by
3402 	 * unmapped file backed pages.
3403 	 */
3404 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3405 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3406 		return ZONE_RECLAIM_FULL;
3407 
3408 	if (zone->all_unreclaimable)
3409 		return ZONE_RECLAIM_FULL;
3410 
3411 	/*
3412 	 * Do not scan if the allocation should not be delayed.
3413 	 */
3414 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3415 		return ZONE_RECLAIM_NOSCAN;
3416 
3417 	/*
3418 	 * Only run zone reclaim on the local zone or on zones that do not
3419 	 * have associated processors. This will favor the local processor
3420 	 * over remote processors and spread off node memory allocations
3421 	 * as wide as possible.
3422 	 */
3423 	node_id = zone_to_nid(zone);
3424 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3425 		return ZONE_RECLAIM_NOSCAN;
3426 
3427 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3428 		return ZONE_RECLAIM_NOSCAN;
3429 
3430 	ret = __zone_reclaim(zone, gfp_mask, order);
3431 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3432 
3433 	if (!ret)
3434 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3435 
3436 	return ret;
3437 }
3438 #endif
3439 
3440 /*
3441  * page_evictable - test whether a page is evictable
3442  * @page: the page to test
3443  *
3444  * Test whether page is evictable--i.e., should be placed on active/inactive
3445  * lists vs unevictable list.
3446  *
3447  * Reasons page might not be evictable:
3448  * (1) page's mapping marked unevictable
3449  * (2) page is part of an mlocked VMA
3450  *
3451  */
3452 int page_evictable(struct page *page)
3453 {
3454 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3455 }
3456 
3457 #ifdef CONFIG_SHMEM
3458 /**
3459  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3460  * @pages:	array of pages to check
3461  * @nr_pages:	number of pages to check
3462  *
3463  * Checks pages for evictability and moves them to the appropriate lru list.
3464  *
3465  * This function is only used for SysV IPC SHM_UNLOCK.
3466  */
3467 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3468 {
3469 	struct lruvec *lruvec;
3470 	struct zone *zone = NULL;
3471 	int pgscanned = 0;
3472 	int pgrescued = 0;
3473 	int i;
3474 
3475 	for (i = 0; i < nr_pages; i++) {
3476 		struct page *page = pages[i];
3477 		struct zone *pagezone;
3478 
3479 		pgscanned++;
3480 		pagezone = page_zone(page);
3481 		if (pagezone != zone) {
3482 			if (zone)
3483 				spin_unlock_irq(&zone->lru_lock);
3484 			zone = pagezone;
3485 			spin_lock_irq(&zone->lru_lock);
3486 		}
3487 		lruvec = mem_cgroup_page_lruvec(page, zone);
3488 
3489 		if (!PageLRU(page) || !PageUnevictable(page))
3490 			continue;
3491 
3492 		if (page_evictable(page)) {
3493 			enum lru_list lru = page_lru_base_type(page);
3494 
3495 			VM_BUG_ON(PageActive(page));
3496 			ClearPageUnevictable(page);
3497 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3498 			add_page_to_lru_list(page, lruvec, lru);
3499 			pgrescued++;
3500 		}
3501 	}
3502 
3503 	if (zone) {
3504 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3505 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3506 		spin_unlock_irq(&zone->lru_lock);
3507 	}
3508 }
3509 #endif /* CONFIG_SHMEM */
3510 
3511 static void warn_scan_unevictable_pages(void)
3512 {
3513 	printk_once(KERN_WARNING
3514 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3515 		    "disabled for lack of a legitimate use case.  If you have "
3516 		    "one, please send an email to linux-mm@kvack.org.\n",
3517 		    current->comm);
3518 }
3519 
3520 /*
3521  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3522  * all nodes' unevictable lists for evictable pages
3523  */
3524 unsigned long scan_unevictable_pages;
3525 
3526 int scan_unevictable_handler(struct ctl_table *table, int write,
3527 			   void __user *buffer,
3528 			   size_t *length, loff_t *ppos)
3529 {
3530 	warn_scan_unevictable_pages();
3531 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3532 	scan_unevictable_pages = 0;
3533 	return 0;
3534 }
3535 
3536 #ifdef CONFIG_NUMA
3537 /*
3538  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3539  * a specified node's per zone unevictable lists for evictable pages.
3540  */
3541 
3542 static ssize_t read_scan_unevictable_node(struct device *dev,
3543 					  struct device_attribute *attr,
3544 					  char *buf)
3545 {
3546 	warn_scan_unevictable_pages();
3547 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3548 }
3549 
3550 static ssize_t write_scan_unevictable_node(struct device *dev,
3551 					   struct device_attribute *attr,
3552 					const char *buf, size_t count)
3553 {
3554 	warn_scan_unevictable_pages();
3555 	return 1;
3556 }
3557 
3558 
3559 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3560 			read_scan_unevictable_node,
3561 			write_scan_unevictable_node);
3562 
3563 int scan_unevictable_register_node(struct node *node)
3564 {
3565 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3566 }
3567 
3568 void scan_unevictable_unregister_node(struct node *node)
3569 {
3570 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3571 }
3572 #endif
3573