1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 41 #include <asm/tlbflush.h> 42 #include <asm/div64.h> 43 44 #include <linux/swapops.h> 45 46 #include "internal.h" 47 48 struct scan_control { 49 /* Incremented by the number of inactive pages that were scanned */ 50 unsigned long nr_scanned; 51 52 /* This context's GFP mask */ 53 gfp_t gfp_mask; 54 55 int may_writepage; 56 57 /* Can pages be swapped as part of reclaim? */ 58 int may_swap; 59 60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 61 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 62 * In this context, it doesn't matter that we scan the 63 * whole list at once. */ 64 int swap_cluster_max; 65 66 int swappiness; 67 68 int all_unreclaimable; 69 70 int order; 71 }; 72 73 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 74 75 #ifdef ARCH_HAS_PREFETCH 76 #define prefetch_prev_lru_page(_page, _base, _field) \ 77 do { \ 78 if ((_page)->lru.prev != _base) { \ 79 struct page *prev; \ 80 \ 81 prev = lru_to_page(&(_page->lru)); \ 82 prefetch(&prev->_field); \ 83 } \ 84 } while (0) 85 #else 86 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 87 #endif 88 89 #ifdef ARCH_HAS_PREFETCHW 90 #define prefetchw_prev_lru_page(_page, _base, _field) \ 91 do { \ 92 if ((_page)->lru.prev != _base) { \ 93 struct page *prev; \ 94 \ 95 prev = lru_to_page(&(_page->lru)); \ 96 prefetchw(&prev->_field); \ 97 } \ 98 } while (0) 99 #else 100 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 101 #endif 102 103 /* 104 * From 0 .. 100. Higher means more swappy. 105 */ 106 int vm_swappiness = 60; 107 long vm_total_pages; /* The total number of pages which the VM controls */ 108 109 static LIST_HEAD(shrinker_list); 110 static DECLARE_RWSEM(shrinker_rwsem); 111 112 /* 113 * Add a shrinker callback to be called from the vm 114 */ 115 void register_shrinker(struct shrinker *shrinker) 116 { 117 shrinker->nr = 0; 118 down_write(&shrinker_rwsem); 119 list_add_tail(&shrinker->list, &shrinker_list); 120 up_write(&shrinker_rwsem); 121 } 122 EXPORT_SYMBOL(register_shrinker); 123 124 /* 125 * Remove one 126 */ 127 void unregister_shrinker(struct shrinker *shrinker) 128 { 129 down_write(&shrinker_rwsem); 130 list_del(&shrinker->list); 131 up_write(&shrinker_rwsem); 132 } 133 EXPORT_SYMBOL(unregister_shrinker); 134 135 #define SHRINK_BATCH 128 136 /* 137 * Call the shrink functions to age shrinkable caches 138 * 139 * Here we assume it costs one seek to replace a lru page and that it also 140 * takes a seek to recreate a cache object. With this in mind we age equal 141 * percentages of the lru and ageable caches. This should balance the seeks 142 * generated by these structures. 143 * 144 * If the vm encounted mapped pages on the LRU it increase the pressure on 145 * slab to avoid swapping. 146 * 147 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 148 * 149 * `lru_pages' represents the number of on-LRU pages in all the zones which 150 * are eligible for the caller's allocation attempt. It is used for balancing 151 * slab reclaim versus page reclaim. 152 * 153 * Returns the number of slab objects which we shrunk. 154 */ 155 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 156 unsigned long lru_pages) 157 { 158 struct shrinker *shrinker; 159 unsigned long ret = 0; 160 161 if (scanned == 0) 162 scanned = SWAP_CLUSTER_MAX; 163 164 if (!down_read_trylock(&shrinker_rwsem)) 165 return 1; /* Assume we'll be able to shrink next time */ 166 167 list_for_each_entry(shrinker, &shrinker_list, list) { 168 unsigned long long delta; 169 unsigned long total_scan; 170 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 171 172 delta = (4 * scanned) / shrinker->seeks; 173 delta *= max_pass; 174 do_div(delta, lru_pages + 1); 175 shrinker->nr += delta; 176 if (shrinker->nr < 0) { 177 printk(KERN_ERR "%s: nr=%ld\n", 178 __FUNCTION__, shrinker->nr); 179 shrinker->nr = max_pass; 180 } 181 182 /* 183 * Avoid risking looping forever due to too large nr value: 184 * never try to free more than twice the estimate number of 185 * freeable entries. 186 */ 187 if (shrinker->nr > max_pass * 2) 188 shrinker->nr = max_pass * 2; 189 190 total_scan = shrinker->nr; 191 shrinker->nr = 0; 192 193 while (total_scan >= SHRINK_BATCH) { 194 long this_scan = SHRINK_BATCH; 195 int shrink_ret; 196 int nr_before; 197 198 nr_before = (*shrinker->shrink)(0, gfp_mask); 199 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 200 if (shrink_ret == -1) 201 break; 202 if (shrink_ret < nr_before) 203 ret += nr_before - shrink_ret; 204 count_vm_events(SLABS_SCANNED, this_scan); 205 total_scan -= this_scan; 206 207 cond_resched(); 208 } 209 210 shrinker->nr += total_scan; 211 } 212 up_read(&shrinker_rwsem); 213 return ret; 214 } 215 216 /* Called without lock on whether page is mapped, so answer is unstable */ 217 static inline int page_mapping_inuse(struct page *page) 218 { 219 struct address_space *mapping; 220 221 /* Page is in somebody's page tables. */ 222 if (page_mapped(page)) 223 return 1; 224 225 /* Be more reluctant to reclaim swapcache than pagecache */ 226 if (PageSwapCache(page)) 227 return 1; 228 229 mapping = page_mapping(page); 230 if (!mapping) 231 return 0; 232 233 /* File is mmap'd by somebody? */ 234 return mapping_mapped(mapping); 235 } 236 237 static inline int is_page_cache_freeable(struct page *page) 238 { 239 return page_count(page) - !!PagePrivate(page) == 2; 240 } 241 242 static int may_write_to_queue(struct backing_dev_info *bdi) 243 { 244 if (current->flags & PF_SWAPWRITE) 245 return 1; 246 if (!bdi_write_congested(bdi)) 247 return 1; 248 if (bdi == current->backing_dev_info) 249 return 1; 250 return 0; 251 } 252 253 /* 254 * We detected a synchronous write error writing a page out. Probably 255 * -ENOSPC. We need to propagate that into the address_space for a subsequent 256 * fsync(), msync() or close(). 257 * 258 * The tricky part is that after writepage we cannot touch the mapping: nothing 259 * prevents it from being freed up. But we have a ref on the page and once 260 * that page is locked, the mapping is pinned. 261 * 262 * We're allowed to run sleeping lock_page() here because we know the caller has 263 * __GFP_FS. 264 */ 265 static void handle_write_error(struct address_space *mapping, 266 struct page *page, int error) 267 { 268 lock_page(page); 269 if (page_mapping(page) == mapping) 270 mapping_set_error(mapping, error); 271 unlock_page(page); 272 } 273 274 /* possible outcome of pageout() */ 275 typedef enum { 276 /* failed to write page out, page is locked */ 277 PAGE_KEEP, 278 /* move page to the active list, page is locked */ 279 PAGE_ACTIVATE, 280 /* page has been sent to the disk successfully, page is unlocked */ 281 PAGE_SUCCESS, 282 /* page is clean and locked */ 283 PAGE_CLEAN, 284 } pageout_t; 285 286 /* 287 * pageout is called by shrink_page_list() for each dirty page. 288 * Calls ->writepage(). 289 */ 290 static pageout_t pageout(struct page *page, struct address_space *mapping) 291 { 292 /* 293 * If the page is dirty, only perform writeback if that write 294 * will be non-blocking. To prevent this allocation from being 295 * stalled by pagecache activity. But note that there may be 296 * stalls if we need to run get_block(). We could test 297 * PagePrivate for that. 298 * 299 * If this process is currently in generic_file_write() against 300 * this page's queue, we can perform writeback even if that 301 * will block. 302 * 303 * If the page is swapcache, write it back even if that would 304 * block, for some throttling. This happens by accident, because 305 * swap_backing_dev_info is bust: it doesn't reflect the 306 * congestion state of the swapdevs. Easy to fix, if needed. 307 * See swapfile.c:page_queue_congested(). 308 */ 309 if (!is_page_cache_freeable(page)) 310 return PAGE_KEEP; 311 if (!mapping) { 312 /* 313 * Some data journaling orphaned pages can have 314 * page->mapping == NULL while being dirty with clean buffers. 315 */ 316 if (PagePrivate(page)) { 317 if (try_to_free_buffers(page)) { 318 ClearPageDirty(page); 319 printk("%s: orphaned page\n", __FUNCTION__); 320 return PAGE_CLEAN; 321 } 322 } 323 return PAGE_KEEP; 324 } 325 if (mapping->a_ops->writepage == NULL) 326 return PAGE_ACTIVATE; 327 if (!may_write_to_queue(mapping->backing_dev_info)) 328 return PAGE_KEEP; 329 330 if (clear_page_dirty_for_io(page)) { 331 int res; 332 struct writeback_control wbc = { 333 .sync_mode = WB_SYNC_NONE, 334 .nr_to_write = SWAP_CLUSTER_MAX, 335 .range_start = 0, 336 .range_end = LLONG_MAX, 337 .nonblocking = 1, 338 .for_reclaim = 1, 339 }; 340 341 SetPageReclaim(page); 342 res = mapping->a_ops->writepage(page, &wbc); 343 if (res < 0) 344 handle_write_error(mapping, page, res); 345 if (res == AOP_WRITEPAGE_ACTIVATE) { 346 ClearPageReclaim(page); 347 return PAGE_ACTIVATE; 348 } 349 if (!PageWriteback(page)) { 350 /* synchronous write or broken a_ops? */ 351 ClearPageReclaim(page); 352 } 353 inc_zone_page_state(page, NR_VMSCAN_WRITE); 354 return PAGE_SUCCESS; 355 } 356 357 return PAGE_CLEAN; 358 } 359 360 /* 361 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 362 * someone else has a ref on the page, abort and return 0. If it was 363 * successfully detached, return 1. Assumes the caller has a single ref on 364 * this page. 365 */ 366 int remove_mapping(struct address_space *mapping, struct page *page) 367 { 368 BUG_ON(!PageLocked(page)); 369 BUG_ON(mapping != page_mapping(page)); 370 371 write_lock_irq(&mapping->tree_lock); 372 /* 373 * The non racy check for a busy page. 374 * 375 * Must be careful with the order of the tests. When someone has 376 * a ref to the page, it may be possible that they dirty it then 377 * drop the reference. So if PageDirty is tested before page_count 378 * here, then the following race may occur: 379 * 380 * get_user_pages(&page); 381 * [user mapping goes away] 382 * write_to(page); 383 * !PageDirty(page) [good] 384 * SetPageDirty(page); 385 * put_page(page); 386 * !page_count(page) [good, discard it] 387 * 388 * [oops, our write_to data is lost] 389 * 390 * Reversing the order of the tests ensures such a situation cannot 391 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 392 * load is not satisfied before that of page->_count. 393 * 394 * Note that if SetPageDirty is always performed via set_page_dirty, 395 * and thus under tree_lock, then this ordering is not required. 396 */ 397 if (unlikely(page_count(page) != 2)) 398 goto cannot_free; 399 smp_rmb(); 400 if (unlikely(PageDirty(page))) 401 goto cannot_free; 402 403 if (PageSwapCache(page)) { 404 swp_entry_t swap = { .val = page_private(page) }; 405 __delete_from_swap_cache(page); 406 write_unlock_irq(&mapping->tree_lock); 407 swap_free(swap); 408 __put_page(page); /* The pagecache ref */ 409 return 1; 410 } 411 412 __remove_from_page_cache(page); 413 write_unlock_irq(&mapping->tree_lock); 414 __put_page(page); 415 return 1; 416 417 cannot_free: 418 write_unlock_irq(&mapping->tree_lock); 419 return 0; 420 } 421 422 /* 423 * shrink_page_list() returns the number of reclaimed pages 424 */ 425 static unsigned long shrink_page_list(struct list_head *page_list, 426 struct scan_control *sc) 427 { 428 LIST_HEAD(ret_pages); 429 struct pagevec freed_pvec; 430 int pgactivate = 0; 431 unsigned long nr_reclaimed = 0; 432 433 cond_resched(); 434 435 pagevec_init(&freed_pvec, 1); 436 while (!list_empty(page_list)) { 437 struct address_space *mapping; 438 struct page *page; 439 int may_enter_fs; 440 int referenced; 441 442 cond_resched(); 443 444 page = lru_to_page(page_list); 445 list_del(&page->lru); 446 447 if (TestSetPageLocked(page)) 448 goto keep; 449 450 VM_BUG_ON(PageActive(page)); 451 452 sc->nr_scanned++; 453 454 if (!sc->may_swap && page_mapped(page)) 455 goto keep_locked; 456 457 /* Double the slab pressure for mapped and swapcache pages */ 458 if (page_mapped(page) || PageSwapCache(page)) 459 sc->nr_scanned++; 460 461 if (PageWriteback(page)) 462 goto keep_locked; 463 464 referenced = page_referenced(page, 1); 465 /* In active use or really unfreeable? Activate it. */ 466 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 467 referenced && page_mapping_inuse(page)) 468 goto activate_locked; 469 470 #ifdef CONFIG_SWAP 471 /* 472 * Anonymous process memory has backing store? 473 * Try to allocate it some swap space here. 474 */ 475 if (PageAnon(page) && !PageSwapCache(page)) 476 if (!add_to_swap(page, GFP_ATOMIC)) 477 goto activate_locked; 478 #endif /* CONFIG_SWAP */ 479 480 mapping = page_mapping(page); 481 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 482 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 483 484 /* 485 * The page is mapped into the page tables of one or more 486 * processes. Try to unmap it here. 487 */ 488 if (page_mapped(page) && mapping) { 489 switch (try_to_unmap(page, 0)) { 490 case SWAP_FAIL: 491 goto activate_locked; 492 case SWAP_AGAIN: 493 goto keep_locked; 494 case SWAP_SUCCESS: 495 ; /* try to free the page below */ 496 } 497 } 498 499 if (PageDirty(page)) { 500 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 501 goto keep_locked; 502 if (!may_enter_fs) 503 goto keep_locked; 504 if (!sc->may_writepage) 505 goto keep_locked; 506 507 /* Page is dirty, try to write it out here */ 508 switch(pageout(page, mapping)) { 509 case PAGE_KEEP: 510 goto keep_locked; 511 case PAGE_ACTIVATE: 512 goto activate_locked; 513 case PAGE_SUCCESS: 514 if (PageWriteback(page) || PageDirty(page)) 515 goto keep; 516 /* 517 * A synchronous write - probably a ramdisk. Go 518 * ahead and try to reclaim the page. 519 */ 520 if (TestSetPageLocked(page)) 521 goto keep; 522 if (PageDirty(page) || PageWriteback(page)) 523 goto keep_locked; 524 mapping = page_mapping(page); 525 case PAGE_CLEAN: 526 ; /* try to free the page below */ 527 } 528 } 529 530 /* 531 * If the page has buffers, try to free the buffer mappings 532 * associated with this page. If we succeed we try to free 533 * the page as well. 534 * 535 * We do this even if the page is PageDirty(). 536 * try_to_release_page() does not perform I/O, but it is 537 * possible for a page to have PageDirty set, but it is actually 538 * clean (all its buffers are clean). This happens if the 539 * buffers were written out directly, with submit_bh(). ext3 540 * will do this, as well as the blockdev mapping. 541 * try_to_release_page() will discover that cleanness and will 542 * drop the buffers and mark the page clean - it can be freed. 543 * 544 * Rarely, pages can have buffers and no ->mapping. These are 545 * the pages which were not successfully invalidated in 546 * truncate_complete_page(). We try to drop those buffers here 547 * and if that worked, and the page is no longer mapped into 548 * process address space (page_count == 1) it can be freed. 549 * Otherwise, leave the page on the LRU so it is swappable. 550 */ 551 if (PagePrivate(page)) { 552 if (!try_to_release_page(page, sc->gfp_mask)) 553 goto activate_locked; 554 if (!mapping && page_count(page) == 1) 555 goto free_it; 556 } 557 558 if (!mapping || !remove_mapping(mapping, page)) 559 goto keep_locked; 560 561 free_it: 562 unlock_page(page); 563 nr_reclaimed++; 564 if (!pagevec_add(&freed_pvec, page)) 565 __pagevec_release_nonlru(&freed_pvec); 566 continue; 567 568 activate_locked: 569 SetPageActive(page); 570 pgactivate++; 571 keep_locked: 572 unlock_page(page); 573 keep: 574 list_add(&page->lru, &ret_pages); 575 VM_BUG_ON(PageLRU(page)); 576 } 577 list_splice(&ret_pages, page_list); 578 if (pagevec_count(&freed_pvec)) 579 __pagevec_release_nonlru(&freed_pvec); 580 count_vm_events(PGACTIVATE, pgactivate); 581 return nr_reclaimed; 582 } 583 584 /* LRU Isolation modes. */ 585 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 586 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 587 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 588 589 /* 590 * Attempt to remove the specified page from its LRU. Only take this page 591 * if it is of the appropriate PageActive status. Pages which are being 592 * freed elsewhere are also ignored. 593 * 594 * page: page to consider 595 * mode: one of the LRU isolation modes defined above 596 * 597 * returns 0 on success, -ve errno on failure. 598 */ 599 static int __isolate_lru_page(struct page *page, int mode) 600 { 601 int ret = -EINVAL; 602 603 /* Only take pages on the LRU. */ 604 if (!PageLRU(page)) 605 return ret; 606 607 /* 608 * When checking the active state, we need to be sure we are 609 * dealing with comparible boolean values. Take the logical not 610 * of each. 611 */ 612 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 613 return ret; 614 615 ret = -EBUSY; 616 if (likely(get_page_unless_zero(page))) { 617 /* 618 * Be careful not to clear PageLRU until after we're 619 * sure the page is not being freed elsewhere -- the 620 * page release code relies on it. 621 */ 622 ClearPageLRU(page); 623 ret = 0; 624 } 625 626 return ret; 627 } 628 629 /* 630 * zone->lru_lock is heavily contended. Some of the functions that 631 * shrink the lists perform better by taking out a batch of pages 632 * and working on them outside the LRU lock. 633 * 634 * For pagecache intensive workloads, this function is the hottest 635 * spot in the kernel (apart from copy_*_user functions). 636 * 637 * Appropriate locks must be held before calling this function. 638 * 639 * @nr_to_scan: The number of pages to look through on the list. 640 * @src: The LRU list to pull pages off. 641 * @dst: The temp list to put pages on to. 642 * @scanned: The number of pages that were scanned. 643 * @order: The caller's attempted allocation order 644 * @mode: One of the LRU isolation modes 645 * 646 * returns how many pages were moved onto *@dst. 647 */ 648 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 649 struct list_head *src, struct list_head *dst, 650 unsigned long *scanned, int order, int mode) 651 { 652 unsigned long nr_taken = 0; 653 unsigned long scan; 654 655 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 656 struct page *page; 657 unsigned long pfn; 658 unsigned long end_pfn; 659 unsigned long page_pfn; 660 int zone_id; 661 662 page = lru_to_page(src); 663 prefetchw_prev_lru_page(page, src, flags); 664 665 VM_BUG_ON(!PageLRU(page)); 666 667 switch (__isolate_lru_page(page, mode)) { 668 case 0: 669 list_move(&page->lru, dst); 670 nr_taken++; 671 break; 672 673 case -EBUSY: 674 /* else it is being freed elsewhere */ 675 list_move(&page->lru, src); 676 continue; 677 678 default: 679 BUG(); 680 } 681 682 if (!order) 683 continue; 684 685 /* 686 * Attempt to take all pages in the order aligned region 687 * surrounding the tag page. Only take those pages of 688 * the same active state as that tag page. We may safely 689 * round the target page pfn down to the requested order 690 * as the mem_map is guarenteed valid out to MAX_ORDER, 691 * where that page is in a different zone we will detect 692 * it from its zone id and abort this block scan. 693 */ 694 zone_id = page_zone_id(page); 695 page_pfn = page_to_pfn(page); 696 pfn = page_pfn & ~((1 << order) - 1); 697 end_pfn = pfn + (1 << order); 698 for (; pfn < end_pfn; pfn++) { 699 struct page *cursor_page; 700 701 /* The target page is in the block, ignore it. */ 702 if (unlikely(pfn == page_pfn)) 703 continue; 704 705 /* Avoid holes within the zone. */ 706 if (unlikely(!pfn_valid_within(pfn))) 707 break; 708 709 cursor_page = pfn_to_page(pfn); 710 /* Check that we have not crossed a zone boundary. */ 711 if (unlikely(page_zone_id(cursor_page) != zone_id)) 712 continue; 713 switch (__isolate_lru_page(cursor_page, mode)) { 714 case 0: 715 list_move(&cursor_page->lru, dst); 716 nr_taken++; 717 scan++; 718 break; 719 720 case -EBUSY: 721 /* else it is being freed elsewhere */ 722 list_move(&cursor_page->lru, src); 723 default: 724 break; 725 } 726 } 727 } 728 729 *scanned = scan; 730 return nr_taken; 731 } 732 733 /* 734 * clear_active_flags() is a helper for shrink_active_list(), clearing 735 * any active bits from the pages in the list. 736 */ 737 static unsigned long clear_active_flags(struct list_head *page_list) 738 { 739 int nr_active = 0; 740 struct page *page; 741 742 list_for_each_entry(page, page_list, lru) 743 if (PageActive(page)) { 744 ClearPageActive(page); 745 nr_active++; 746 } 747 748 return nr_active; 749 } 750 751 /* 752 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 753 * of reclaimed pages 754 */ 755 static unsigned long shrink_inactive_list(unsigned long max_scan, 756 struct zone *zone, struct scan_control *sc) 757 { 758 LIST_HEAD(page_list); 759 struct pagevec pvec; 760 unsigned long nr_scanned = 0; 761 unsigned long nr_reclaimed = 0; 762 763 pagevec_init(&pvec, 1); 764 765 lru_add_drain(); 766 spin_lock_irq(&zone->lru_lock); 767 do { 768 struct page *page; 769 unsigned long nr_taken; 770 unsigned long nr_scan; 771 unsigned long nr_freed; 772 unsigned long nr_active; 773 774 nr_taken = isolate_lru_pages(sc->swap_cluster_max, 775 &zone->inactive_list, 776 &page_list, &nr_scan, sc->order, 777 (sc->order > PAGE_ALLOC_COSTLY_ORDER)? 778 ISOLATE_BOTH : ISOLATE_INACTIVE); 779 nr_active = clear_active_flags(&page_list); 780 781 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active); 782 __mod_zone_page_state(zone, NR_INACTIVE, 783 -(nr_taken - nr_active)); 784 zone->pages_scanned += nr_scan; 785 spin_unlock_irq(&zone->lru_lock); 786 787 nr_scanned += nr_scan; 788 nr_freed = shrink_page_list(&page_list, sc); 789 nr_reclaimed += nr_freed; 790 local_irq_disable(); 791 if (current_is_kswapd()) { 792 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 793 __count_vm_events(KSWAPD_STEAL, nr_freed); 794 } else 795 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 796 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 797 798 if (nr_taken == 0) 799 goto done; 800 801 spin_lock(&zone->lru_lock); 802 /* 803 * Put back any unfreeable pages. 804 */ 805 while (!list_empty(&page_list)) { 806 page = lru_to_page(&page_list); 807 VM_BUG_ON(PageLRU(page)); 808 SetPageLRU(page); 809 list_del(&page->lru); 810 if (PageActive(page)) 811 add_page_to_active_list(zone, page); 812 else 813 add_page_to_inactive_list(zone, page); 814 if (!pagevec_add(&pvec, page)) { 815 spin_unlock_irq(&zone->lru_lock); 816 __pagevec_release(&pvec); 817 spin_lock_irq(&zone->lru_lock); 818 } 819 } 820 } while (nr_scanned < max_scan); 821 spin_unlock(&zone->lru_lock); 822 done: 823 local_irq_enable(); 824 pagevec_release(&pvec); 825 return nr_reclaimed; 826 } 827 828 /* 829 * We are about to scan this zone at a certain priority level. If that priority 830 * level is smaller (ie: more urgent) than the previous priority, then note 831 * that priority level within the zone. This is done so that when the next 832 * process comes in to scan this zone, it will immediately start out at this 833 * priority level rather than having to build up its own scanning priority. 834 * Here, this priority affects only the reclaim-mapped threshold. 835 */ 836 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 837 { 838 if (priority < zone->prev_priority) 839 zone->prev_priority = priority; 840 } 841 842 static inline int zone_is_near_oom(struct zone *zone) 843 { 844 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE) 845 + zone_page_state(zone, NR_INACTIVE))*3; 846 } 847 848 /* 849 * This moves pages from the active list to the inactive list. 850 * 851 * We move them the other way if the page is referenced by one or more 852 * processes, from rmap. 853 * 854 * If the pages are mostly unmapped, the processing is fast and it is 855 * appropriate to hold zone->lru_lock across the whole operation. But if 856 * the pages are mapped, the processing is slow (page_referenced()) so we 857 * should drop zone->lru_lock around each page. It's impossible to balance 858 * this, so instead we remove the pages from the LRU while processing them. 859 * It is safe to rely on PG_active against the non-LRU pages in here because 860 * nobody will play with that bit on a non-LRU page. 861 * 862 * The downside is that we have to touch page->_count against each page. 863 * But we had to alter page->flags anyway. 864 */ 865 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 866 struct scan_control *sc, int priority) 867 { 868 unsigned long pgmoved; 869 int pgdeactivate = 0; 870 unsigned long pgscanned; 871 LIST_HEAD(l_hold); /* The pages which were snipped off */ 872 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ 873 LIST_HEAD(l_active); /* Pages to go onto the active_list */ 874 struct page *page; 875 struct pagevec pvec; 876 int reclaim_mapped = 0; 877 878 if (sc->may_swap) { 879 long mapped_ratio; 880 long distress; 881 long swap_tendency; 882 883 if (zone_is_near_oom(zone)) 884 goto force_reclaim_mapped; 885 886 /* 887 * `distress' is a measure of how much trouble we're having 888 * reclaiming pages. 0 -> no problems. 100 -> great trouble. 889 */ 890 distress = 100 >> min(zone->prev_priority, priority); 891 892 /* 893 * The point of this algorithm is to decide when to start 894 * reclaiming mapped memory instead of just pagecache. Work out 895 * how much memory 896 * is mapped. 897 */ 898 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + 899 global_page_state(NR_ANON_PAGES)) * 100) / 900 vm_total_pages; 901 902 /* 903 * Now decide how much we really want to unmap some pages. The 904 * mapped ratio is downgraded - just because there's a lot of 905 * mapped memory doesn't necessarily mean that page reclaim 906 * isn't succeeding. 907 * 908 * The distress ratio is important - we don't want to start 909 * going oom. 910 * 911 * A 100% value of vm_swappiness overrides this algorithm 912 * altogether. 913 */ 914 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; 915 916 /* 917 * Now use this metric to decide whether to start moving mapped 918 * memory onto the inactive list. 919 */ 920 if (swap_tendency >= 100) 921 force_reclaim_mapped: 922 reclaim_mapped = 1; 923 } 924 925 lru_add_drain(); 926 spin_lock_irq(&zone->lru_lock); 927 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list, 928 &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE); 929 zone->pages_scanned += pgscanned; 930 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved); 931 spin_unlock_irq(&zone->lru_lock); 932 933 while (!list_empty(&l_hold)) { 934 cond_resched(); 935 page = lru_to_page(&l_hold); 936 list_del(&page->lru); 937 if (page_mapped(page)) { 938 if (!reclaim_mapped || 939 (total_swap_pages == 0 && PageAnon(page)) || 940 page_referenced(page, 0)) { 941 list_add(&page->lru, &l_active); 942 continue; 943 } 944 } 945 list_add(&page->lru, &l_inactive); 946 } 947 948 pagevec_init(&pvec, 1); 949 pgmoved = 0; 950 spin_lock_irq(&zone->lru_lock); 951 while (!list_empty(&l_inactive)) { 952 page = lru_to_page(&l_inactive); 953 prefetchw_prev_lru_page(page, &l_inactive, flags); 954 VM_BUG_ON(PageLRU(page)); 955 SetPageLRU(page); 956 VM_BUG_ON(!PageActive(page)); 957 ClearPageActive(page); 958 959 list_move(&page->lru, &zone->inactive_list); 960 pgmoved++; 961 if (!pagevec_add(&pvec, page)) { 962 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 963 spin_unlock_irq(&zone->lru_lock); 964 pgdeactivate += pgmoved; 965 pgmoved = 0; 966 if (buffer_heads_over_limit) 967 pagevec_strip(&pvec); 968 __pagevec_release(&pvec); 969 spin_lock_irq(&zone->lru_lock); 970 } 971 } 972 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 973 pgdeactivate += pgmoved; 974 if (buffer_heads_over_limit) { 975 spin_unlock_irq(&zone->lru_lock); 976 pagevec_strip(&pvec); 977 spin_lock_irq(&zone->lru_lock); 978 } 979 980 pgmoved = 0; 981 while (!list_empty(&l_active)) { 982 page = lru_to_page(&l_active); 983 prefetchw_prev_lru_page(page, &l_active, flags); 984 VM_BUG_ON(PageLRU(page)); 985 SetPageLRU(page); 986 VM_BUG_ON(!PageActive(page)); 987 list_move(&page->lru, &zone->active_list); 988 pgmoved++; 989 if (!pagevec_add(&pvec, page)) { 990 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 991 pgmoved = 0; 992 spin_unlock_irq(&zone->lru_lock); 993 __pagevec_release(&pvec); 994 spin_lock_irq(&zone->lru_lock); 995 } 996 } 997 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 998 999 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1000 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1001 spin_unlock_irq(&zone->lru_lock); 1002 1003 pagevec_release(&pvec); 1004 } 1005 1006 /* 1007 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1008 */ 1009 static unsigned long shrink_zone(int priority, struct zone *zone, 1010 struct scan_control *sc) 1011 { 1012 unsigned long nr_active; 1013 unsigned long nr_inactive; 1014 unsigned long nr_to_scan; 1015 unsigned long nr_reclaimed = 0; 1016 1017 atomic_inc(&zone->reclaim_in_progress); 1018 1019 /* 1020 * Add one to `nr_to_scan' just to make sure that the kernel will 1021 * slowly sift through the active list. 1022 */ 1023 zone->nr_scan_active += 1024 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1; 1025 nr_active = zone->nr_scan_active; 1026 if (nr_active >= sc->swap_cluster_max) 1027 zone->nr_scan_active = 0; 1028 else 1029 nr_active = 0; 1030 1031 zone->nr_scan_inactive += 1032 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1; 1033 nr_inactive = zone->nr_scan_inactive; 1034 if (nr_inactive >= sc->swap_cluster_max) 1035 zone->nr_scan_inactive = 0; 1036 else 1037 nr_inactive = 0; 1038 1039 while (nr_active || nr_inactive) { 1040 if (nr_active) { 1041 nr_to_scan = min(nr_active, 1042 (unsigned long)sc->swap_cluster_max); 1043 nr_active -= nr_to_scan; 1044 shrink_active_list(nr_to_scan, zone, sc, priority); 1045 } 1046 1047 if (nr_inactive) { 1048 nr_to_scan = min(nr_inactive, 1049 (unsigned long)sc->swap_cluster_max); 1050 nr_inactive -= nr_to_scan; 1051 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, 1052 sc); 1053 } 1054 } 1055 1056 throttle_vm_writeout(sc->gfp_mask); 1057 1058 atomic_dec(&zone->reclaim_in_progress); 1059 return nr_reclaimed; 1060 } 1061 1062 /* 1063 * This is the direct reclaim path, for page-allocating processes. We only 1064 * try to reclaim pages from zones which will satisfy the caller's allocation 1065 * request. 1066 * 1067 * We reclaim from a zone even if that zone is over pages_high. Because: 1068 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1069 * allocation or 1070 * b) The zones may be over pages_high but they must go *over* pages_high to 1071 * satisfy the `incremental min' zone defense algorithm. 1072 * 1073 * Returns the number of reclaimed pages. 1074 * 1075 * If a zone is deemed to be full of pinned pages then just give it a light 1076 * scan then give up on it. 1077 */ 1078 static unsigned long shrink_zones(int priority, struct zone **zones, 1079 struct scan_control *sc) 1080 { 1081 unsigned long nr_reclaimed = 0; 1082 int i; 1083 1084 sc->all_unreclaimable = 1; 1085 for (i = 0; zones[i] != NULL; i++) { 1086 struct zone *zone = zones[i]; 1087 1088 if (!populated_zone(zone)) 1089 continue; 1090 1091 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1092 continue; 1093 1094 note_zone_scanning_priority(zone, priority); 1095 1096 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1097 continue; /* Let kswapd poll it */ 1098 1099 sc->all_unreclaimable = 0; 1100 1101 nr_reclaimed += shrink_zone(priority, zone, sc); 1102 } 1103 return nr_reclaimed; 1104 } 1105 1106 /* 1107 * This is the main entry point to direct page reclaim. 1108 * 1109 * If a full scan of the inactive list fails to free enough memory then we 1110 * are "out of memory" and something needs to be killed. 1111 * 1112 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1113 * high - the zone may be full of dirty or under-writeback pages, which this 1114 * caller can't do much about. We kick pdflush and take explicit naps in the 1115 * hope that some of these pages can be written. But if the allocating task 1116 * holds filesystem locks which prevent writeout this might not work, and the 1117 * allocation attempt will fail. 1118 */ 1119 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask) 1120 { 1121 int priority; 1122 int ret = 0; 1123 unsigned long total_scanned = 0; 1124 unsigned long nr_reclaimed = 0; 1125 struct reclaim_state *reclaim_state = current->reclaim_state; 1126 unsigned long lru_pages = 0; 1127 int i; 1128 struct scan_control sc = { 1129 .gfp_mask = gfp_mask, 1130 .may_writepage = !laptop_mode, 1131 .swap_cluster_max = SWAP_CLUSTER_MAX, 1132 .may_swap = 1, 1133 .swappiness = vm_swappiness, 1134 .order = order, 1135 }; 1136 1137 count_vm_event(ALLOCSTALL); 1138 1139 for (i = 0; zones[i] != NULL; i++) { 1140 struct zone *zone = zones[i]; 1141 1142 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1143 continue; 1144 1145 lru_pages += zone_page_state(zone, NR_ACTIVE) 1146 + zone_page_state(zone, NR_INACTIVE); 1147 } 1148 1149 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1150 sc.nr_scanned = 0; 1151 if (!priority) 1152 disable_swap_token(); 1153 nr_reclaimed += shrink_zones(priority, zones, &sc); 1154 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages); 1155 if (reclaim_state) { 1156 nr_reclaimed += reclaim_state->reclaimed_slab; 1157 reclaim_state->reclaimed_slab = 0; 1158 } 1159 total_scanned += sc.nr_scanned; 1160 if (nr_reclaimed >= sc.swap_cluster_max) { 1161 ret = 1; 1162 goto out; 1163 } 1164 1165 /* 1166 * Try to write back as many pages as we just scanned. This 1167 * tends to cause slow streaming writers to write data to the 1168 * disk smoothly, at the dirtying rate, which is nice. But 1169 * that's undesirable in laptop mode, where we *want* lumpy 1170 * writeout. So in laptop mode, write out the whole world. 1171 */ 1172 if (total_scanned > sc.swap_cluster_max + 1173 sc.swap_cluster_max / 2) { 1174 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1175 sc.may_writepage = 1; 1176 } 1177 1178 /* Take a nap, wait for some writeback to complete */ 1179 if (sc.nr_scanned && priority < DEF_PRIORITY - 2) 1180 congestion_wait(WRITE, HZ/10); 1181 } 1182 /* top priority shrink_caches still had more to do? don't OOM, then */ 1183 if (!sc.all_unreclaimable) 1184 ret = 1; 1185 out: 1186 /* 1187 * Now that we've scanned all the zones at this priority level, note 1188 * that level within the zone so that the next thread which performs 1189 * scanning of this zone will immediately start out at this priority 1190 * level. This affects only the decision whether or not to bring 1191 * mapped pages onto the inactive list. 1192 */ 1193 if (priority < 0) 1194 priority = 0; 1195 for (i = 0; zones[i] != 0; i++) { 1196 struct zone *zone = zones[i]; 1197 1198 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1199 continue; 1200 1201 zone->prev_priority = priority; 1202 } 1203 return ret; 1204 } 1205 1206 /* 1207 * For kswapd, balance_pgdat() will work across all this node's zones until 1208 * they are all at pages_high. 1209 * 1210 * Returns the number of pages which were actually freed. 1211 * 1212 * There is special handling here for zones which are full of pinned pages. 1213 * This can happen if the pages are all mlocked, or if they are all used by 1214 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1215 * What we do is to detect the case where all pages in the zone have been 1216 * scanned twice and there has been zero successful reclaim. Mark the zone as 1217 * dead and from now on, only perform a short scan. Basically we're polling 1218 * the zone for when the problem goes away. 1219 * 1220 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1221 * zones which have free_pages > pages_high, but once a zone is found to have 1222 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1223 * of the number of free pages in the lower zones. This interoperates with 1224 * the page allocator fallback scheme to ensure that aging of pages is balanced 1225 * across the zones. 1226 */ 1227 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1228 { 1229 int all_zones_ok; 1230 int priority; 1231 int i; 1232 unsigned long total_scanned; 1233 unsigned long nr_reclaimed; 1234 struct reclaim_state *reclaim_state = current->reclaim_state; 1235 struct scan_control sc = { 1236 .gfp_mask = GFP_KERNEL, 1237 .may_swap = 1, 1238 .swap_cluster_max = SWAP_CLUSTER_MAX, 1239 .swappiness = vm_swappiness, 1240 .order = order, 1241 }; 1242 /* 1243 * temp_priority is used to remember the scanning priority at which 1244 * this zone was successfully refilled to free_pages == pages_high. 1245 */ 1246 int temp_priority[MAX_NR_ZONES]; 1247 1248 loop_again: 1249 total_scanned = 0; 1250 nr_reclaimed = 0; 1251 sc.may_writepage = !laptop_mode; 1252 count_vm_event(PAGEOUTRUN); 1253 1254 for (i = 0; i < pgdat->nr_zones; i++) 1255 temp_priority[i] = DEF_PRIORITY; 1256 1257 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1258 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1259 unsigned long lru_pages = 0; 1260 1261 /* The swap token gets in the way of swapout... */ 1262 if (!priority) 1263 disable_swap_token(); 1264 1265 all_zones_ok = 1; 1266 1267 /* 1268 * Scan in the highmem->dma direction for the highest 1269 * zone which needs scanning 1270 */ 1271 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1272 struct zone *zone = pgdat->node_zones + i; 1273 1274 if (!populated_zone(zone)) 1275 continue; 1276 1277 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1278 continue; 1279 1280 if (!zone_watermark_ok(zone, order, zone->pages_high, 1281 0, 0)) { 1282 end_zone = i; 1283 break; 1284 } 1285 } 1286 if (i < 0) 1287 goto out; 1288 1289 for (i = 0; i <= end_zone; i++) { 1290 struct zone *zone = pgdat->node_zones + i; 1291 1292 lru_pages += zone_page_state(zone, NR_ACTIVE) 1293 + zone_page_state(zone, NR_INACTIVE); 1294 } 1295 1296 /* 1297 * Now scan the zone in the dma->highmem direction, stopping 1298 * at the last zone which needs scanning. 1299 * 1300 * We do this because the page allocator works in the opposite 1301 * direction. This prevents the page allocator from allocating 1302 * pages behind kswapd's direction of progress, which would 1303 * cause too much scanning of the lower zones. 1304 */ 1305 for (i = 0; i <= end_zone; i++) { 1306 struct zone *zone = pgdat->node_zones + i; 1307 int nr_slab; 1308 1309 if (!populated_zone(zone)) 1310 continue; 1311 1312 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1313 continue; 1314 1315 if (!zone_watermark_ok(zone, order, zone->pages_high, 1316 end_zone, 0)) 1317 all_zones_ok = 0; 1318 temp_priority[i] = priority; 1319 sc.nr_scanned = 0; 1320 note_zone_scanning_priority(zone, priority); 1321 nr_reclaimed += shrink_zone(priority, zone, &sc); 1322 reclaim_state->reclaimed_slab = 0; 1323 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1324 lru_pages); 1325 nr_reclaimed += reclaim_state->reclaimed_slab; 1326 total_scanned += sc.nr_scanned; 1327 if (zone->all_unreclaimable) 1328 continue; 1329 if (nr_slab == 0 && zone->pages_scanned >= 1330 (zone_page_state(zone, NR_ACTIVE) 1331 + zone_page_state(zone, NR_INACTIVE)) * 6) 1332 zone->all_unreclaimable = 1; 1333 /* 1334 * If we've done a decent amount of scanning and 1335 * the reclaim ratio is low, start doing writepage 1336 * even in laptop mode 1337 */ 1338 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1339 total_scanned > nr_reclaimed + nr_reclaimed / 2) 1340 sc.may_writepage = 1; 1341 } 1342 if (all_zones_ok) 1343 break; /* kswapd: all done */ 1344 /* 1345 * OK, kswapd is getting into trouble. Take a nap, then take 1346 * another pass across the zones. 1347 */ 1348 if (total_scanned && priority < DEF_PRIORITY - 2) 1349 congestion_wait(WRITE, HZ/10); 1350 1351 /* 1352 * We do this so kswapd doesn't build up large priorities for 1353 * example when it is freeing in parallel with allocators. It 1354 * matches the direct reclaim path behaviour in terms of impact 1355 * on zone->*_priority. 1356 */ 1357 if (nr_reclaimed >= SWAP_CLUSTER_MAX) 1358 break; 1359 } 1360 out: 1361 /* 1362 * Note within each zone the priority level at which this zone was 1363 * brought into a happy state. So that the next thread which scans this 1364 * zone will start out at that priority level. 1365 */ 1366 for (i = 0; i < pgdat->nr_zones; i++) { 1367 struct zone *zone = pgdat->node_zones + i; 1368 1369 zone->prev_priority = temp_priority[i]; 1370 } 1371 if (!all_zones_ok) { 1372 cond_resched(); 1373 1374 try_to_freeze(); 1375 1376 goto loop_again; 1377 } 1378 1379 return nr_reclaimed; 1380 } 1381 1382 /* 1383 * The background pageout daemon, started as a kernel thread 1384 * from the init process. 1385 * 1386 * This basically trickles out pages so that we have _some_ 1387 * free memory available even if there is no other activity 1388 * that frees anything up. This is needed for things like routing 1389 * etc, where we otherwise might have all activity going on in 1390 * asynchronous contexts that cannot page things out. 1391 * 1392 * If there are applications that are active memory-allocators 1393 * (most normal use), this basically shouldn't matter. 1394 */ 1395 static int kswapd(void *p) 1396 { 1397 unsigned long order; 1398 pg_data_t *pgdat = (pg_data_t*)p; 1399 struct task_struct *tsk = current; 1400 DEFINE_WAIT(wait); 1401 struct reclaim_state reclaim_state = { 1402 .reclaimed_slab = 0, 1403 }; 1404 cpumask_t cpumask; 1405 1406 cpumask = node_to_cpumask(pgdat->node_id); 1407 if (!cpus_empty(cpumask)) 1408 set_cpus_allowed(tsk, cpumask); 1409 current->reclaim_state = &reclaim_state; 1410 1411 /* 1412 * Tell the memory management that we're a "memory allocator", 1413 * and that if we need more memory we should get access to it 1414 * regardless (see "__alloc_pages()"). "kswapd" should 1415 * never get caught in the normal page freeing logic. 1416 * 1417 * (Kswapd normally doesn't need memory anyway, but sometimes 1418 * you need a small amount of memory in order to be able to 1419 * page out something else, and this flag essentially protects 1420 * us from recursively trying to free more memory as we're 1421 * trying to free the first piece of memory in the first place). 1422 */ 1423 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1424 set_freezable(); 1425 1426 order = 0; 1427 for ( ; ; ) { 1428 unsigned long new_order; 1429 1430 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1431 new_order = pgdat->kswapd_max_order; 1432 pgdat->kswapd_max_order = 0; 1433 if (order < new_order) { 1434 /* 1435 * Don't sleep if someone wants a larger 'order' 1436 * allocation 1437 */ 1438 order = new_order; 1439 } else { 1440 if (!freezing(current)) 1441 schedule(); 1442 1443 order = pgdat->kswapd_max_order; 1444 } 1445 finish_wait(&pgdat->kswapd_wait, &wait); 1446 1447 if (!try_to_freeze()) { 1448 /* We can speed up thawing tasks if we don't call 1449 * balance_pgdat after returning from the refrigerator 1450 */ 1451 balance_pgdat(pgdat, order); 1452 } 1453 } 1454 return 0; 1455 } 1456 1457 /* 1458 * A zone is low on free memory, so wake its kswapd task to service it. 1459 */ 1460 void wakeup_kswapd(struct zone *zone, int order) 1461 { 1462 pg_data_t *pgdat; 1463 1464 if (!populated_zone(zone)) 1465 return; 1466 1467 pgdat = zone->zone_pgdat; 1468 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1469 return; 1470 if (pgdat->kswapd_max_order < order) 1471 pgdat->kswapd_max_order = order; 1472 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1473 return; 1474 if (!waitqueue_active(&pgdat->kswapd_wait)) 1475 return; 1476 wake_up_interruptible(&pgdat->kswapd_wait); 1477 } 1478 1479 #ifdef CONFIG_PM 1480 /* 1481 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 1482 * from LRU lists system-wide, for given pass and priority, and returns the 1483 * number of reclaimed pages 1484 * 1485 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 1486 */ 1487 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, 1488 int pass, struct scan_control *sc) 1489 { 1490 struct zone *zone; 1491 unsigned long nr_to_scan, ret = 0; 1492 1493 for_each_zone(zone) { 1494 1495 if (!populated_zone(zone)) 1496 continue; 1497 1498 if (zone->all_unreclaimable && prio != DEF_PRIORITY) 1499 continue; 1500 1501 /* For pass = 0 we don't shrink the active list */ 1502 if (pass > 0) { 1503 zone->nr_scan_active += 1504 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1; 1505 if (zone->nr_scan_active >= nr_pages || pass > 3) { 1506 zone->nr_scan_active = 0; 1507 nr_to_scan = min(nr_pages, 1508 zone_page_state(zone, NR_ACTIVE)); 1509 shrink_active_list(nr_to_scan, zone, sc, prio); 1510 } 1511 } 1512 1513 zone->nr_scan_inactive += 1514 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1; 1515 if (zone->nr_scan_inactive >= nr_pages || pass > 3) { 1516 zone->nr_scan_inactive = 0; 1517 nr_to_scan = min(nr_pages, 1518 zone_page_state(zone, NR_INACTIVE)); 1519 ret += shrink_inactive_list(nr_to_scan, zone, sc); 1520 if (ret >= nr_pages) 1521 return ret; 1522 } 1523 } 1524 1525 return ret; 1526 } 1527 1528 static unsigned long count_lru_pages(void) 1529 { 1530 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE); 1531 } 1532 1533 /* 1534 * Try to free `nr_pages' of memory, system-wide, and return the number of 1535 * freed pages. 1536 * 1537 * Rather than trying to age LRUs the aim is to preserve the overall 1538 * LRU order by reclaiming preferentially 1539 * inactive > active > active referenced > active mapped 1540 */ 1541 unsigned long shrink_all_memory(unsigned long nr_pages) 1542 { 1543 unsigned long lru_pages, nr_slab; 1544 unsigned long ret = 0; 1545 int pass; 1546 struct reclaim_state reclaim_state; 1547 struct scan_control sc = { 1548 .gfp_mask = GFP_KERNEL, 1549 .may_swap = 0, 1550 .swap_cluster_max = nr_pages, 1551 .may_writepage = 1, 1552 .swappiness = vm_swappiness, 1553 }; 1554 1555 current->reclaim_state = &reclaim_state; 1556 1557 lru_pages = count_lru_pages(); 1558 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 1559 /* If slab caches are huge, it's better to hit them first */ 1560 while (nr_slab >= lru_pages) { 1561 reclaim_state.reclaimed_slab = 0; 1562 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 1563 if (!reclaim_state.reclaimed_slab) 1564 break; 1565 1566 ret += reclaim_state.reclaimed_slab; 1567 if (ret >= nr_pages) 1568 goto out; 1569 1570 nr_slab -= reclaim_state.reclaimed_slab; 1571 } 1572 1573 /* 1574 * We try to shrink LRUs in 5 passes: 1575 * 0 = Reclaim from inactive_list only 1576 * 1 = Reclaim from active list but don't reclaim mapped 1577 * 2 = 2nd pass of type 1 1578 * 3 = Reclaim mapped (normal reclaim) 1579 * 4 = 2nd pass of type 3 1580 */ 1581 for (pass = 0; pass < 5; pass++) { 1582 int prio; 1583 1584 /* Force reclaiming mapped pages in the passes #3 and #4 */ 1585 if (pass > 2) { 1586 sc.may_swap = 1; 1587 sc.swappiness = 100; 1588 } 1589 1590 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 1591 unsigned long nr_to_scan = nr_pages - ret; 1592 1593 sc.nr_scanned = 0; 1594 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); 1595 if (ret >= nr_pages) 1596 goto out; 1597 1598 reclaim_state.reclaimed_slab = 0; 1599 shrink_slab(sc.nr_scanned, sc.gfp_mask, 1600 count_lru_pages()); 1601 ret += reclaim_state.reclaimed_slab; 1602 if (ret >= nr_pages) 1603 goto out; 1604 1605 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 1606 congestion_wait(WRITE, HZ / 10); 1607 } 1608 } 1609 1610 /* 1611 * If ret = 0, we could not shrink LRUs, but there may be something 1612 * in slab caches 1613 */ 1614 if (!ret) { 1615 do { 1616 reclaim_state.reclaimed_slab = 0; 1617 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages()); 1618 ret += reclaim_state.reclaimed_slab; 1619 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); 1620 } 1621 1622 out: 1623 current->reclaim_state = NULL; 1624 1625 return ret; 1626 } 1627 #endif 1628 1629 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1630 not required for correctness. So if the last cpu in a node goes 1631 away, we get changed to run anywhere: as the first one comes back, 1632 restore their cpu bindings. */ 1633 static int __devinit cpu_callback(struct notifier_block *nfb, 1634 unsigned long action, void *hcpu) 1635 { 1636 pg_data_t *pgdat; 1637 cpumask_t mask; 1638 1639 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 1640 for_each_online_pgdat(pgdat) { 1641 mask = node_to_cpumask(pgdat->node_id); 1642 if (any_online_cpu(mask) != NR_CPUS) 1643 /* One of our CPUs online: restore mask */ 1644 set_cpus_allowed(pgdat->kswapd, mask); 1645 } 1646 } 1647 return NOTIFY_OK; 1648 } 1649 1650 /* 1651 * This kswapd start function will be called by init and node-hot-add. 1652 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 1653 */ 1654 int kswapd_run(int nid) 1655 { 1656 pg_data_t *pgdat = NODE_DATA(nid); 1657 int ret = 0; 1658 1659 if (pgdat->kswapd) 1660 return 0; 1661 1662 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 1663 if (IS_ERR(pgdat->kswapd)) { 1664 /* failure at boot is fatal */ 1665 BUG_ON(system_state == SYSTEM_BOOTING); 1666 printk("Failed to start kswapd on node %d\n",nid); 1667 ret = -1; 1668 } 1669 return ret; 1670 } 1671 1672 static int __init kswapd_init(void) 1673 { 1674 int nid; 1675 1676 swap_setup(); 1677 for_each_online_node(nid) 1678 kswapd_run(nid); 1679 hotcpu_notifier(cpu_callback, 0); 1680 return 0; 1681 } 1682 1683 module_init(kswapd_init) 1684 1685 #ifdef CONFIG_NUMA 1686 /* 1687 * Zone reclaim mode 1688 * 1689 * If non-zero call zone_reclaim when the number of free pages falls below 1690 * the watermarks. 1691 */ 1692 int zone_reclaim_mode __read_mostly; 1693 1694 #define RECLAIM_OFF 0 1695 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ 1696 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 1697 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 1698 1699 /* 1700 * Priority for ZONE_RECLAIM. This determines the fraction of pages 1701 * of a node considered for each zone_reclaim. 4 scans 1/16th of 1702 * a zone. 1703 */ 1704 #define ZONE_RECLAIM_PRIORITY 4 1705 1706 /* 1707 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 1708 * occur. 1709 */ 1710 int sysctl_min_unmapped_ratio = 1; 1711 1712 /* 1713 * If the number of slab pages in a zone grows beyond this percentage then 1714 * slab reclaim needs to occur. 1715 */ 1716 int sysctl_min_slab_ratio = 5; 1717 1718 /* 1719 * Try to free up some pages from this zone through reclaim. 1720 */ 1721 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 1722 { 1723 /* Minimum pages needed in order to stay on node */ 1724 const unsigned long nr_pages = 1 << order; 1725 struct task_struct *p = current; 1726 struct reclaim_state reclaim_state; 1727 int priority; 1728 unsigned long nr_reclaimed = 0; 1729 struct scan_control sc = { 1730 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 1731 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), 1732 .swap_cluster_max = max_t(unsigned long, nr_pages, 1733 SWAP_CLUSTER_MAX), 1734 .gfp_mask = gfp_mask, 1735 .swappiness = vm_swappiness, 1736 }; 1737 unsigned long slab_reclaimable; 1738 1739 disable_swap_token(); 1740 cond_resched(); 1741 /* 1742 * We need to be able to allocate from the reserves for RECLAIM_SWAP 1743 * and we also need to be able to write out pages for RECLAIM_WRITE 1744 * and RECLAIM_SWAP. 1745 */ 1746 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 1747 reclaim_state.reclaimed_slab = 0; 1748 p->reclaim_state = &reclaim_state; 1749 1750 if (zone_page_state(zone, NR_FILE_PAGES) - 1751 zone_page_state(zone, NR_FILE_MAPPED) > 1752 zone->min_unmapped_pages) { 1753 /* 1754 * Free memory by calling shrink zone with increasing 1755 * priorities until we have enough memory freed. 1756 */ 1757 priority = ZONE_RECLAIM_PRIORITY; 1758 do { 1759 note_zone_scanning_priority(zone, priority); 1760 nr_reclaimed += shrink_zone(priority, zone, &sc); 1761 priority--; 1762 } while (priority >= 0 && nr_reclaimed < nr_pages); 1763 } 1764 1765 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 1766 if (slab_reclaimable > zone->min_slab_pages) { 1767 /* 1768 * shrink_slab() does not currently allow us to determine how 1769 * many pages were freed in this zone. So we take the current 1770 * number of slab pages and shake the slab until it is reduced 1771 * by the same nr_pages that we used for reclaiming unmapped 1772 * pages. 1773 * 1774 * Note that shrink_slab will free memory on all zones and may 1775 * take a long time. 1776 */ 1777 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 1778 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 1779 slab_reclaimable - nr_pages) 1780 ; 1781 1782 /* 1783 * Update nr_reclaimed by the number of slab pages we 1784 * reclaimed from this zone. 1785 */ 1786 nr_reclaimed += slab_reclaimable - 1787 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 1788 } 1789 1790 p->reclaim_state = NULL; 1791 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 1792 return nr_reclaimed >= nr_pages; 1793 } 1794 1795 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 1796 { 1797 cpumask_t mask; 1798 int node_id; 1799 1800 /* 1801 * Zone reclaim reclaims unmapped file backed pages and 1802 * slab pages if we are over the defined limits. 1803 * 1804 * A small portion of unmapped file backed pages is needed for 1805 * file I/O otherwise pages read by file I/O will be immediately 1806 * thrown out if the zone is overallocated. So we do not reclaim 1807 * if less than a specified percentage of the zone is used by 1808 * unmapped file backed pages. 1809 */ 1810 if (zone_page_state(zone, NR_FILE_PAGES) - 1811 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 1812 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 1813 <= zone->min_slab_pages) 1814 return 0; 1815 1816 /* 1817 * Avoid concurrent zone reclaims, do not reclaim in a zone that does 1818 * not have reclaimable pages and if we should not delay the allocation 1819 * then do not scan. 1820 */ 1821 if (!(gfp_mask & __GFP_WAIT) || 1822 zone->all_unreclaimable || 1823 atomic_read(&zone->reclaim_in_progress) > 0 || 1824 (current->flags & PF_MEMALLOC)) 1825 return 0; 1826 1827 /* 1828 * Only run zone reclaim on the local zone or on zones that do not 1829 * have associated processors. This will favor the local processor 1830 * over remote processors and spread off node memory allocations 1831 * as wide as possible. 1832 */ 1833 node_id = zone_to_nid(zone); 1834 mask = node_to_cpumask(node_id); 1835 if (!cpus_empty(mask) && node_id != numa_node_id()) 1836 return 0; 1837 return __zone_reclaim(zone, gfp_mask, order); 1838 } 1839 #endif 1840