xref: /openbmc/linux/mm/vmscan.c (revision c21b37f6)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 
44 #include <linux/swapops.h>
45 
46 #include "internal.h"
47 
48 struct scan_control {
49 	/* Incremented by the number of inactive pages that were scanned */
50 	unsigned long nr_scanned;
51 
52 	/* This context's GFP mask */
53 	gfp_t gfp_mask;
54 
55 	int may_writepage;
56 
57 	/* Can pages be swapped as part of reclaim? */
58 	int may_swap;
59 
60 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 	 * In this context, it doesn't matter that we scan the
63 	 * whole list at once. */
64 	int swap_cluster_max;
65 
66 	int swappiness;
67 
68 	int all_unreclaimable;
69 
70 	int order;
71 };
72 
73 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
74 
75 #ifdef ARCH_HAS_PREFETCH
76 #define prefetch_prev_lru_page(_page, _base, _field)			\
77 	do {								\
78 		if ((_page)->lru.prev != _base) {			\
79 			struct page *prev;				\
80 									\
81 			prev = lru_to_page(&(_page->lru));		\
82 			prefetch(&prev->_field);			\
83 		}							\
84 	} while (0)
85 #else
86 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
87 #endif
88 
89 #ifdef ARCH_HAS_PREFETCHW
90 #define prefetchw_prev_lru_page(_page, _base, _field)			\
91 	do {								\
92 		if ((_page)->lru.prev != _base) {			\
93 			struct page *prev;				\
94 									\
95 			prev = lru_to_page(&(_page->lru));		\
96 			prefetchw(&prev->_field);			\
97 		}							\
98 	} while (0)
99 #else
100 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
101 #endif
102 
103 /*
104  * From 0 .. 100.  Higher means more swappy.
105  */
106 int vm_swappiness = 60;
107 long vm_total_pages;	/* The total number of pages which the VM controls */
108 
109 static LIST_HEAD(shrinker_list);
110 static DECLARE_RWSEM(shrinker_rwsem);
111 
112 /*
113  * Add a shrinker callback to be called from the vm
114  */
115 void register_shrinker(struct shrinker *shrinker)
116 {
117 	shrinker->nr = 0;
118 	down_write(&shrinker_rwsem);
119 	list_add_tail(&shrinker->list, &shrinker_list);
120 	up_write(&shrinker_rwsem);
121 }
122 EXPORT_SYMBOL(register_shrinker);
123 
124 /*
125  * Remove one
126  */
127 void unregister_shrinker(struct shrinker *shrinker)
128 {
129 	down_write(&shrinker_rwsem);
130 	list_del(&shrinker->list);
131 	up_write(&shrinker_rwsem);
132 }
133 EXPORT_SYMBOL(unregister_shrinker);
134 
135 #define SHRINK_BATCH 128
136 /*
137  * Call the shrink functions to age shrinkable caches
138  *
139  * Here we assume it costs one seek to replace a lru page and that it also
140  * takes a seek to recreate a cache object.  With this in mind we age equal
141  * percentages of the lru and ageable caches.  This should balance the seeks
142  * generated by these structures.
143  *
144  * If the vm encounted mapped pages on the LRU it increase the pressure on
145  * slab to avoid swapping.
146  *
147  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
148  *
149  * `lru_pages' represents the number of on-LRU pages in all the zones which
150  * are eligible for the caller's allocation attempt.  It is used for balancing
151  * slab reclaim versus page reclaim.
152  *
153  * Returns the number of slab objects which we shrunk.
154  */
155 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
156 			unsigned long lru_pages)
157 {
158 	struct shrinker *shrinker;
159 	unsigned long ret = 0;
160 
161 	if (scanned == 0)
162 		scanned = SWAP_CLUSTER_MAX;
163 
164 	if (!down_read_trylock(&shrinker_rwsem))
165 		return 1;	/* Assume we'll be able to shrink next time */
166 
167 	list_for_each_entry(shrinker, &shrinker_list, list) {
168 		unsigned long long delta;
169 		unsigned long total_scan;
170 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
171 
172 		delta = (4 * scanned) / shrinker->seeks;
173 		delta *= max_pass;
174 		do_div(delta, lru_pages + 1);
175 		shrinker->nr += delta;
176 		if (shrinker->nr < 0) {
177 			printk(KERN_ERR "%s: nr=%ld\n",
178 					__FUNCTION__, shrinker->nr);
179 			shrinker->nr = max_pass;
180 		}
181 
182 		/*
183 		 * Avoid risking looping forever due to too large nr value:
184 		 * never try to free more than twice the estimate number of
185 		 * freeable entries.
186 		 */
187 		if (shrinker->nr > max_pass * 2)
188 			shrinker->nr = max_pass * 2;
189 
190 		total_scan = shrinker->nr;
191 		shrinker->nr = 0;
192 
193 		while (total_scan >= SHRINK_BATCH) {
194 			long this_scan = SHRINK_BATCH;
195 			int shrink_ret;
196 			int nr_before;
197 
198 			nr_before = (*shrinker->shrink)(0, gfp_mask);
199 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
200 			if (shrink_ret == -1)
201 				break;
202 			if (shrink_ret < nr_before)
203 				ret += nr_before - shrink_ret;
204 			count_vm_events(SLABS_SCANNED, this_scan);
205 			total_scan -= this_scan;
206 
207 			cond_resched();
208 		}
209 
210 		shrinker->nr += total_scan;
211 	}
212 	up_read(&shrinker_rwsem);
213 	return ret;
214 }
215 
216 /* Called without lock on whether page is mapped, so answer is unstable */
217 static inline int page_mapping_inuse(struct page *page)
218 {
219 	struct address_space *mapping;
220 
221 	/* Page is in somebody's page tables. */
222 	if (page_mapped(page))
223 		return 1;
224 
225 	/* Be more reluctant to reclaim swapcache than pagecache */
226 	if (PageSwapCache(page))
227 		return 1;
228 
229 	mapping = page_mapping(page);
230 	if (!mapping)
231 		return 0;
232 
233 	/* File is mmap'd by somebody? */
234 	return mapping_mapped(mapping);
235 }
236 
237 static inline int is_page_cache_freeable(struct page *page)
238 {
239 	return page_count(page) - !!PagePrivate(page) == 2;
240 }
241 
242 static int may_write_to_queue(struct backing_dev_info *bdi)
243 {
244 	if (current->flags & PF_SWAPWRITE)
245 		return 1;
246 	if (!bdi_write_congested(bdi))
247 		return 1;
248 	if (bdi == current->backing_dev_info)
249 		return 1;
250 	return 0;
251 }
252 
253 /*
254  * We detected a synchronous write error writing a page out.  Probably
255  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
256  * fsync(), msync() or close().
257  *
258  * The tricky part is that after writepage we cannot touch the mapping: nothing
259  * prevents it from being freed up.  But we have a ref on the page and once
260  * that page is locked, the mapping is pinned.
261  *
262  * We're allowed to run sleeping lock_page() here because we know the caller has
263  * __GFP_FS.
264  */
265 static void handle_write_error(struct address_space *mapping,
266 				struct page *page, int error)
267 {
268 	lock_page(page);
269 	if (page_mapping(page) == mapping)
270 		mapping_set_error(mapping, error);
271 	unlock_page(page);
272 }
273 
274 /* possible outcome of pageout() */
275 typedef enum {
276 	/* failed to write page out, page is locked */
277 	PAGE_KEEP,
278 	/* move page to the active list, page is locked */
279 	PAGE_ACTIVATE,
280 	/* page has been sent to the disk successfully, page is unlocked */
281 	PAGE_SUCCESS,
282 	/* page is clean and locked */
283 	PAGE_CLEAN,
284 } pageout_t;
285 
286 /*
287  * pageout is called by shrink_page_list() for each dirty page.
288  * Calls ->writepage().
289  */
290 static pageout_t pageout(struct page *page, struct address_space *mapping)
291 {
292 	/*
293 	 * If the page is dirty, only perform writeback if that write
294 	 * will be non-blocking.  To prevent this allocation from being
295 	 * stalled by pagecache activity.  But note that there may be
296 	 * stalls if we need to run get_block().  We could test
297 	 * PagePrivate for that.
298 	 *
299 	 * If this process is currently in generic_file_write() against
300 	 * this page's queue, we can perform writeback even if that
301 	 * will block.
302 	 *
303 	 * If the page is swapcache, write it back even if that would
304 	 * block, for some throttling. This happens by accident, because
305 	 * swap_backing_dev_info is bust: it doesn't reflect the
306 	 * congestion state of the swapdevs.  Easy to fix, if needed.
307 	 * See swapfile.c:page_queue_congested().
308 	 */
309 	if (!is_page_cache_freeable(page))
310 		return PAGE_KEEP;
311 	if (!mapping) {
312 		/*
313 		 * Some data journaling orphaned pages can have
314 		 * page->mapping == NULL while being dirty with clean buffers.
315 		 */
316 		if (PagePrivate(page)) {
317 			if (try_to_free_buffers(page)) {
318 				ClearPageDirty(page);
319 				printk("%s: orphaned page\n", __FUNCTION__);
320 				return PAGE_CLEAN;
321 			}
322 		}
323 		return PAGE_KEEP;
324 	}
325 	if (mapping->a_ops->writepage == NULL)
326 		return PAGE_ACTIVATE;
327 	if (!may_write_to_queue(mapping->backing_dev_info))
328 		return PAGE_KEEP;
329 
330 	if (clear_page_dirty_for_io(page)) {
331 		int res;
332 		struct writeback_control wbc = {
333 			.sync_mode = WB_SYNC_NONE,
334 			.nr_to_write = SWAP_CLUSTER_MAX,
335 			.range_start = 0,
336 			.range_end = LLONG_MAX,
337 			.nonblocking = 1,
338 			.for_reclaim = 1,
339 		};
340 
341 		SetPageReclaim(page);
342 		res = mapping->a_ops->writepage(page, &wbc);
343 		if (res < 0)
344 			handle_write_error(mapping, page, res);
345 		if (res == AOP_WRITEPAGE_ACTIVATE) {
346 			ClearPageReclaim(page);
347 			return PAGE_ACTIVATE;
348 		}
349 		if (!PageWriteback(page)) {
350 			/* synchronous write or broken a_ops? */
351 			ClearPageReclaim(page);
352 		}
353 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
354 		return PAGE_SUCCESS;
355 	}
356 
357 	return PAGE_CLEAN;
358 }
359 
360 /*
361  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
362  * someone else has a ref on the page, abort and return 0.  If it was
363  * successfully detached, return 1.  Assumes the caller has a single ref on
364  * this page.
365  */
366 int remove_mapping(struct address_space *mapping, struct page *page)
367 {
368 	BUG_ON(!PageLocked(page));
369 	BUG_ON(mapping != page_mapping(page));
370 
371 	write_lock_irq(&mapping->tree_lock);
372 	/*
373 	 * The non racy check for a busy page.
374 	 *
375 	 * Must be careful with the order of the tests. When someone has
376 	 * a ref to the page, it may be possible that they dirty it then
377 	 * drop the reference. So if PageDirty is tested before page_count
378 	 * here, then the following race may occur:
379 	 *
380 	 * get_user_pages(&page);
381 	 * [user mapping goes away]
382 	 * write_to(page);
383 	 *				!PageDirty(page)    [good]
384 	 * SetPageDirty(page);
385 	 * put_page(page);
386 	 *				!page_count(page)   [good, discard it]
387 	 *
388 	 * [oops, our write_to data is lost]
389 	 *
390 	 * Reversing the order of the tests ensures such a situation cannot
391 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
392 	 * load is not satisfied before that of page->_count.
393 	 *
394 	 * Note that if SetPageDirty is always performed via set_page_dirty,
395 	 * and thus under tree_lock, then this ordering is not required.
396 	 */
397 	if (unlikely(page_count(page) != 2))
398 		goto cannot_free;
399 	smp_rmb();
400 	if (unlikely(PageDirty(page)))
401 		goto cannot_free;
402 
403 	if (PageSwapCache(page)) {
404 		swp_entry_t swap = { .val = page_private(page) };
405 		__delete_from_swap_cache(page);
406 		write_unlock_irq(&mapping->tree_lock);
407 		swap_free(swap);
408 		__put_page(page);	/* The pagecache ref */
409 		return 1;
410 	}
411 
412 	__remove_from_page_cache(page);
413 	write_unlock_irq(&mapping->tree_lock);
414 	__put_page(page);
415 	return 1;
416 
417 cannot_free:
418 	write_unlock_irq(&mapping->tree_lock);
419 	return 0;
420 }
421 
422 /*
423  * shrink_page_list() returns the number of reclaimed pages
424  */
425 static unsigned long shrink_page_list(struct list_head *page_list,
426 					struct scan_control *sc)
427 {
428 	LIST_HEAD(ret_pages);
429 	struct pagevec freed_pvec;
430 	int pgactivate = 0;
431 	unsigned long nr_reclaimed = 0;
432 
433 	cond_resched();
434 
435 	pagevec_init(&freed_pvec, 1);
436 	while (!list_empty(page_list)) {
437 		struct address_space *mapping;
438 		struct page *page;
439 		int may_enter_fs;
440 		int referenced;
441 
442 		cond_resched();
443 
444 		page = lru_to_page(page_list);
445 		list_del(&page->lru);
446 
447 		if (TestSetPageLocked(page))
448 			goto keep;
449 
450 		VM_BUG_ON(PageActive(page));
451 
452 		sc->nr_scanned++;
453 
454 		if (!sc->may_swap && page_mapped(page))
455 			goto keep_locked;
456 
457 		/* Double the slab pressure for mapped and swapcache pages */
458 		if (page_mapped(page) || PageSwapCache(page))
459 			sc->nr_scanned++;
460 
461 		if (PageWriteback(page))
462 			goto keep_locked;
463 
464 		referenced = page_referenced(page, 1);
465 		/* In active use or really unfreeable?  Activate it. */
466 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
467 					referenced && page_mapping_inuse(page))
468 			goto activate_locked;
469 
470 #ifdef CONFIG_SWAP
471 		/*
472 		 * Anonymous process memory has backing store?
473 		 * Try to allocate it some swap space here.
474 		 */
475 		if (PageAnon(page) && !PageSwapCache(page))
476 			if (!add_to_swap(page, GFP_ATOMIC))
477 				goto activate_locked;
478 #endif /* CONFIG_SWAP */
479 
480 		mapping = page_mapping(page);
481 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
482 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
483 
484 		/*
485 		 * The page is mapped into the page tables of one or more
486 		 * processes. Try to unmap it here.
487 		 */
488 		if (page_mapped(page) && mapping) {
489 			switch (try_to_unmap(page, 0)) {
490 			case SWAP_FAIL:
491 				goto activate_locked;
492 			case SWAP_AGAIN:
493 				goto keep_locked;
494 			case SWAP_SUCCESS:
495 				; /* try to free the page below */
496 			}
497 		}
498 
499 		if (PageDirty(page)) {
500 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
501 				goto keep_locked;
502 			if (!may_enter_fs)
503 				goto keep_locked;
504 			if (!sc->may_writepage)
505 				goto keep_locked;
506 
507 			/* Page is dirty, try to write it out here */
508 			switch(pageout(page, mapping)) {
509 			case PAGE_KEEP:
510 				goto keep_locked;
511 			case PAGE_ACTIVATE:
512 				goto activate_locked;
513 			case PAGE_SUCCESS:
514 				if (PageWriteback(page) || PageDirty(page))
515 					goto keep;
516 				/*
517 				 * A synchronous write - probably a ramdisk.  Go
518 				 * ahead and try to reclaim the page.
519 				 */
520 				if (TestSetPageLocked(page))
521 					goto keep;
522 				if (PageDirty(page) || PageWriteback(page))
523 					goto keep_locked;
524 				mapping = page_mapping(page);
525 			case PAGE_CLEAN:
526 				; /* try to free the page below */
527 			}
528 		}
529 
530 		/*
531 		 * If the page has buffers, try to free the buffer mappings
532 		 * associated with this page. If we succeed we try to free
533 		 * the page as well.
534 		 *
535 		 * We do this even if the page is PageDirty().
536 		 * try_to_release_page() does not perform I/O, but it is
537 		 * possible for a page to have PageDirty set, but it is actually
538 		 * clean (all its buffers are clean).  This happens if the
539 		 * buffers were written out directly, with submit_bh(). ext3
540 		 * will do this, as well as the blockdev mapping.
541 		 * try_to_release_page() will discover that cleanness and will
542 		 * drop the buffers and mark the page clean - it can be freed.
543 		 *
544 		 * Rarely, pages can have buffers and no ->mapping.  These are
545 		 * the pages which were not successfully invalidated in
546 		 * truncate_complete_page().  We try to drop those buffers here
547 		 * and if that worked, and the page is no longer mapped into
548 		 * process address space (page_count == 1) it can be freed.
549 		 * Otherwise, leave the page on the LRU so it is swappable.
550 		 */
551 		if (PagePrivate(page)) {
552 			if (!try_to_release_page(page, sc->gfp_mask))
553 				goto activate_locked;
554 			if (!mapping && page_count(page) == 1)
555 				goto free_it;
556 		}
557 
558 		if (!mapping || !remove_mapping(mapping, page))
559 			goto keep_locked;
560 
561 free_it:
562 		unlock_page(page);
563 		nr_reclaimed++;
564 		if (!pagevec_add(&freed_pvec, page))
565 			__pagevec_release_nonlru(&freed_pvec);
566 		continue;
567 
568 activate_locked:
569 		SetPageActive(page);
570 		pgactivate++;
571 keep_locked:
572 		unlock_page(page);
573 keep:
574 		list_add(&page->lru, &ret_pages);
575 		VM_BUG_ON(PageLRU(page));
576 	}
577 	list_splice(&ret_pages, page_list);
578 	if (pagevec_count(&freed_pvec))
579 		__pagevec_release_nonlru(&freed_pvec);
580 	count_vm_events(PGACTIVATE, pgactivate);
581 	return nr_reclaimed;
582 }
583 
584 /* LRU Isolation modes. */
585 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
586 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
587 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
588 
589 /*
590  * Attempt to remove the specified page from its LRU.  Only take this page
591  * if it is of the appropriate PageActive status.  Pages which are being
592  * freed elsewhere are also ignored.
593  *
594  * page:	page to consider
595  * mode:	one of the LRU isolation modes defined above
596  *
597  * returns 0 on success, -ve errno on failure.
598  */
599 static int __isolate_lru_page(struct page *page, int mode)
600 {
601 	int ret = -EINVAL;
602 
603 	/* Only take pages on the LRU. */
604 	if (!PageLRU(page))
605 		return ret;
606 
607 	/*
608 	 * When checking the active state, we need to be sure we are
609 	 * dealing with comparible boolean values.  Take the logical not
610 	 * of each.
611 	 */
612 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
613 		return ret;
614 
615 	ret = -EBUSY;
616 	if (likely(get_page_unless_zero(page))) {
617 		/*
618 		 * Be careful not to clear PageLRU until after we're
619 		 * sure the page is not being freed elsewhere -- the
620 		 * page release code relies on it.
621 		 */
622 		ClearPageLRU(page);
623 		ret = 0;
624 	}
625 
626 	return ret;
627 }
628 
629 /*
630  * zone->lru_lock is heavily contended.  Some of the functions that
631  * shrink the lists perform better by taking out a batch of pages
632  * and working on them outside the LRU lock.
633  *
634  * For pagecache intensive workloads, this function is the hottest
635  * spot in the kernel (apart from copy_*_user functions).
636  *
637  * Appropriate locks must be held before calling this function.
638  *
639  * @nr_to_scan:	The number of pages to look through on the list.
640  * @src:	The LRU list to pull pages off.
641  * @dst:	The temp list to put pages on to.
642  * @scanned:	The number of pages that were scanned.
643  * @order:	The caller's attempted allocation order
644  * @mode:	One of the LRU isolation modes
645  *
646  * returns how many pages were moved onto *@dst.
647  */
648 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
649 		struct list_head *src, struct list_head *dst,
650 		unsigned long *scanned, int order, int mode)
651 {
652 	unsigned long nr_taken = 0;
653 	unsigned long scan;
654 
655 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
656 		struct page *page;
657 		unsigned long pfn;
658 		unsigned long end_pfn;
659 		unsigned long page_pfn;
660 		int zone_id;
661 
662 		page = lru_to_page(src);
663 		prefetchw_prev_lru_page(page, src, flags);
664 
665 		VM_BUG_ON(!PageLRU(page));
666 
667 		switch (__isolate_lru_page(page, mode)) {
668 		case 0:
669 			list_move(&page->lru, dst);
670 			nr_taken++;
671 			break;
672 
673 		case -EBUSY:
674 			/* else it is being freed elsewhere */
675 			list_move(&page->lru, src);
676 			continue;
677 
678 		default:
679 			BUG();
680 		}
681 
682 		if (!order)
683 			continue;
684 
685 		/*
686 		 * Attempt to take all pages in the order aligned region
687 		 * surrounding the tag page.  Only take those pages of
688 		 * the same active state as that tag page.  We may safely
689 		 * round the target page pfn down to the requested order
690 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
691 		 * where that page is in a different zone we will detect
692 		 * it from its zone id and abort this block scan.
693 		 */
694 		zone_id = page_zone_id(page);
695 		page_pfn = page_to_pfn(page);
696 		pfn = page_pfn & ~((1 << order) - 1);
697 		end_pfn = pfn + (1 << order);
698 		for (; pfn < end_pfn; pfn++) {
699 			struct page *cursor_page;
700 
701 			/* The target page is in the block, ignore it. */
702 			if (unlikely(pfn == page_pfn))
703 				continue;
704 
705 			/* Avoid holes within the zone. */
706 			if (unlikely(!pfn_valid_within(pfn)))
707 				break;
708 
709 			cursor_page = pfn_to_page(pfn);
710 			/* Check that we have not crossed a zone boundary. */
711 			if (unlikely(page_zone_id(cursor_page) != zone_id))
712 				continue;
713 			switch (__isolate_lru_page(cursor_page, mode)) {
714 			case 0:
715 				list_move(&cursor_page->lru, dst);
716 				nr_taken++;
717 				scan++;
718 				break;
719 
720 			case -EBUSY:
721 				/* else it is being freed elsewhere */
722 				list_move(&cursor_page->lru, src);
723 			default:
724 				break;
725 			}
726 		}
727 	}
728 
729 	*scanned = scan;
730 	return nr_taken;
731 }
732 
733 /*
734  * clear_active_flags() is a helper for shrink_active_list(), clearing
735  * any active bits from the pages in the list.
736  */
737 static unsigned long clear_active_flags(struct list_head *page_list)
738 {
739 	int nr_active = 0;
740 	struct page *page;
741 
742 	list_for_each_entry(page, page_list, lru)
743 		if (PageActive(page)) {
744 			ClearPageActive(page);
745 			nr_active++;
746 		}
747 
748 	return nr_active;
749 }
750 
751 /*
752  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
753  * of reclaimed pages
754  */
755 static unsigned long shrink_inactive_list(unsigned long max_scan,
756 				struct zone *zone, struct scan_control *sc)
757 {
758 	LIST_HEAD(page_list);
759 	struct pagevec pvec;
760 	unsigned long nr_scanned = 0;
761 	unsigned long nr_reclaimed = 0;
762 
763 	pagevec_init(&pvec, 1);
764 
765 	lru_add_drain();
766 	spin_lock_irq(&zone->lru_lock);
767 	do {
768 		struct page *page;
769 		unsigned long nr_taken;
770 		unsigned long nr_scan;
771 		unsigned long nr_freed;
772 		unsigned long nr_active;
773 
774 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
775 			     &zone->inactive_list,
776 			     &page_list, &nr_scan, sc->order,
777 			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
778 					     ISOLATE_BOTH : ISOLATE_INACTIVE);
779 		nr_active = clear_active_flags(&page_list);
780 
781 		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
782 		__mod_zone_page_state(zone, NR_INACTIVE,
783 						-(nr_taken - nr_active));
784 		zone->pages_scanned += nr_scan;
785 		spin_unlock_irq(&zone->lru_lock);
786 
787 		nr_scanned += nr_scan;
788 		nr_freed = shrink_page_list(&page_list, sc);
789 		nr_reclaimed += nr_freed;
790 		local_irq_disable();
791 		if (current_is_kswapd()) {
792 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
793 			__count_vm_events(KSWAPD_STEAL, nr_freed);
794 		} else
795 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
796 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
797 
798 		if (nr_taken == 0)
799 			goto done;
800 
801 		spin_lock(&zone->lru_lock);
802 		/*
803 		 * Put back any unfreeable pages.
804 		 */
805 		while (!list_empty(&page_list)) {
806 			page = lru_to_page(&page_list);
807 			VM_BUG_ON(PageLRU(page));
808 			SetPageLRU(page);
809 			list_del(&page->lru);
810 			if (PageActive(page))
811 				add_page_to_active_list(zone, page);
812 			else
813 				add_page_to_inactive_list(zone, page);
814 			if (!pagevec_add(&pvec, page)) {
815 				spin_unlock_irq(&zone->lru_lock);
816 				__pagevec_release(&pvec);
817 				spin_lock_irq(&zone->lru_lock);
818 			}
819 		}
820   	} while (nr_scanned < max_scan);
821 	spin_unlock(&zone->lru_lock);
822 done:
823 	local_irq_enable();
824 	pagevec_release(&pvec);
825 	return nr_reclaimed;
826 }
827 
828 /*
829  * We are about to scan this zone at a certain priority level.  If that priority
830  * level is smaller (ie: more urgent) than the previous priority, then note
831  * that priority level within the zone.  This is done so that when the next
832  * process comes in to scan this zone, it will immediately start out at this
833  * priority level rather than having to build up its own scanning priority.
834  * Here, this priority affects only the reclaim-mapped threshold.
835  */
836 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
837 {
838 	if (priority < zone->prev_priority)
839 		zone->prev_priority = priority;
840 }
841 
842 static inline int zone_is_near_oom(struct zone *zone)
843 {
844 	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
845 				+ zone_page_state(zone, NR_INACTIVE))*3;
846 }
847 
848 /*
849  * This moves pages from the active list to the inactive list.
850  *
851  * We move them the other way if the page is referenced by one or more
852  * processes, from rmap.
853  *
854  * If the pages are mostly unmapped, the processing is fast and it is
855  * appropriate to hold zone->lru_lock across the whole operation.  But if
856  * the pages are mapped, the processing is slow (page_referenced()) so we
857  * should drop zone->lru_lock around each page.  It's impossible to balance
858  * this, so instead we remove the pages from the LRU while processing them.
859  * It is safe to rely on PG_active against the non-LRU pages in here because
860  * nobody will play with that bit on a non-LRU page.
861  *
862  * The downside is that we have to touch page->_count against each page.
863  * But we had to alter page->flags anyway.
864  */
865 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
866 				struct scan_control *sc, int priority)
867 {
868 	unsigned long pgmoved;
869 	int pgdeactivate = 0;
870 	unsigned long pgscanned;
871 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
872 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
873 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
874 	struct page *page;
875 	struct pagevec pvec;
876 	int reclaim_mapped = 0;
877 
878 	if (sc->may_swap) {
879 		long mapped_ratio;
880 		long distress;
881 		long swap_tendency;
882 
883 		if (zone_is_near_oom(zone))
884 			goto force_reclaim_mapped;
885 
886 		/*
887 		 * `distress' is a measure of how much trouble we're having
888 		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
889 		 */
890 		distress = 100 >> min(zone->prev_priority, priority);
891 
892 		/*
893 		 * The point of this algorithm is to decide when to start
894 		 * reclaiming mapped memory instead of just pagecache.  Work out
895 		 * how much memory
896 		 * is mapped.
897 		 */
898 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
899 				global_page_state(NR_ANON_PAGES)) * 100) /
900 					vm_total_pages;
901 
902 		/*
903 		 * Now decide how much we really want to unmap some pages.  The
904 		 * mapped ratio is downgraded - just because there's a lot of
905 		 * mapped memory doesn't necessarily mean that page reclaim
906 		 * isn't succeeding.
907 		 *
908 		 * The distress ratio is important - we don't want to start
909 		 * going oom.
910 		 *
911 		 * A 100% value of vm_swappiness overrides this algorithm
912 		 * altogether.
913 		 */
914 		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
915 
916 		/*
917 		 * Now use this metric to decide whether to start moving mapped
918 		 * memory onto the inactive list.
919 		 */
920 		if (swap_tendency >= 100)
921 force_reclaim_mapped:
922 			reclaim_mapped = 1;
923 	}
924 
925 	lru_add_drain();
926 	spin_lock_irq(&zone->lru_lock);
927 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
928 			    &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE);
929 	zone->pages_scanned += pgscanned;
930 	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
931 	spin_unlock_irq(&zone->lru_lock);
932 
933 	while (!list_empty(&l_hold)) {
934 		cond_resched();
935 		page = lru_to_page(&l_hold);
936 		list_del(&page->lru);
937 		if (page_mapped(page)) {
938 			if (!reclaim_mapped ||
939 			    (total_swap_pages == 0 && PageAnon(page)) ||
940 			    page_referenced(page, 0)) {
941 				list_add(&page->lru, &l_active);
942 				continue;
943 			}
944 		}
945 		list_add(&page->lru, &l_inactive);
946 	}
947 
948 	pagevec_init(&pvec, 1);
949 	pgmoved = 0;
950 	spin_lock_irq(&zone->lru_lock);
951 	while (!list_empty(&l_inactive)) {
952 		page = lru_to_page(&l_inactive);
953 		prefetchw_prev_lru_page(page, &l_inactive, flags);
954 		VM_BUG_ON(PageLRU(page));
955 		SetPageLRU(page);
956 		VM_BUG_ON(!PageActive(page));
957 		ClearPageActive(page);
958 
959 		list_move(&page->lru, &zone->inactive_list);
960 		pgmoved++;
961 		if (!pagevec_add(&pvec, page)) {
962 			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
963 			spin_unlock_irq(&zone->lru_lock);
964 			pgdeactivate += pgmoved;
965 			pgmoved = 0;
966 			if (buffer_heads_over_limit)
967 				pagevec_strip(&pvec);
968 			__pagevec_release(&pvec);
969 			spin_lock_irq(&zone->lru_lock);
970 		}
971 	}
972 	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
973 	pgdeactivate += pgmoved;
974 	if (buffer_heads_over_limit) {
975 		spin_unlock_irq(&zone->lru_lock);
976 		pagevec_strip(&pvec);
977 		spin_lock_irq(&zone->lru_lock);
978 	}
979 
980 	pgmoved = 0;
981 	while (!list_empty(&l_active)) {
982 		page = lru_to_page(&l_active);
983 		prefetchw_prev_lru_page(page, &l_active, flags);
984 		VM_BUG_ON(PageLRU(page));
985 		SetPageLRU(page);
986 		VM_BUG_ON(!PageActive(page));
987 		list_move(&page->lru, &zone->active_list);
988 		pgmoved++;
989 		if (!pagevec_add(&pvec, page)) {
990 			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
991 			pgmoved = 0;
992 			spin_unlock_irq(&zone->lru_lock);
993 			__pagevec_release(&pvec);
994 			spin_lock_irq(&zone->lru_lock);
995 		}
996 	}
997 	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
998 
999 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1000 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1001 	spin_unlock_irq(&zone->lru_lock);
1002 
1003 	pagevec_release(&pvec);
1004 }
1005 
1006 /*
1007  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1008  */
1009 static unsigned long shrink_zone(int priority, struct zone *zone,
1010 				struct scan_control *sc)
1011 {
1012 	unsigned long nr_active;
1013 	unsigned long nr_inactive;
1014 	unsigned long nr_to_scan;
1015 	unsigned long nr_reclaimed = 0;
1016 
1017 	atomic_inc(&zone->reclaim_in_progress);
1018 
1019 	/*
1020 	 * Add one to `nr_to_scan' just to make sure that the kernel will
1021 	 * slowly sift through the active list.
1022 	 */
1023 	zone->nr_scan_active +=
1024 		(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1025 	nr_active = zone->nr_scan_active;
1026 	if (nr_active >= sc->swap_cluster_max)
1027 		zone->nr_scan_active = 0;
1028 	else
1029 		nr_active = 0;
1030 
1031 	zone->nr_scan_inactive +=
1032 		(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1033 	nr_inactive = zone->nr_scan_inactive;
1034 	if (nr_inactive >= sc->swap_cluster_max)
1035 		zone->nr_scan_inactive = 0;
1036 	else
1037 		nr_inactive = 0;
1038 
1039 	while (nr_active || nr_inactive) {
1040 		if (nr_active) {
1041 			nr_to_scan = min(nr_active,
1042 					(unsigned long)sc->swap_cluster_max);
1043 			nr_active -= nr_to_scan;
1044 			shrink_active_list(nr_to_scan, zone, sc, priority);
1045 		}
1046 
1047 		if (nr_inactive) {
1048 			nr_to_scan = min(nr_inactive,
1049 					(unsigned long)sc->swap_cluster_max);
1050 			nr_inactive -= nr_to_scan;
1051 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1052 								sc);
1053 		}
1054 	}
1055 
1056 	throttle_vm_writeout(sc->gfp_mask);
1057 
1058 	atomic_dec(&zone->reclaim_in_progress);
1059 	return nr_reclaimed;
1060 }
1061 
1062 /*
1063  * This is the direct reclaim path, for page-allocating processes.  We only
1064  * try to reclaim pages from zones which will satisfy the caller's allocation
1065  * request.
1066  *
1067  * We reclaim from a zone even if that zone is over pages_high.  Because:
1068  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1069  *    allocation or
1070  * b) The zones may be over pages_high but they must go *over* pages_high to
1071  *    satisfy the `incremental min' zone defense algorithm.
1072  *
1073  * Returns the number of reclaimed pages.
1074  *
1075  * If a zone is deemed to be full of pinned pages then just give it a light
1076  * scan then give up on it.
1077  */
1078 static unsigned long shrink_zones(int priority, struct zone **zones,
1079 					struct scan_control *sc)
1080 {
1081 	unsigned long nr_reclaimed = 0;
1082 	int i;
1083 
1084 	sc->all_unreclaimable = 1;
1085 	for (i = 0; zones[i] != NULL; i++) {
1086 		struct zone *zone = zones[i];
1087 
1088 		if (!populated_zone(zone))
1089 			continue;
1090 
1091 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1092 			continue;
1093 
1094 		note_zone_scanning_priority(zone, priority);
1095 
1096 		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1097 			continue;	/* Let kswapd poll it */
1098 
1099 		sc->all_unreclaimable = 0;
1100 
1101 		nr_reclaimed += shrink_zone(priority, zone, sc);
1102 	}
1103 	return nr_reclaimed;
1104 }
1105 
1106 /*
1107  * This is the main entry point to direct page reclaim.
1108  *
1109  * If a full scan of the inactive list fails to free enough memory then we
1110  * are "out of memory" and something needs to be killed.
1111  *
1112  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1113  * high - the zone may be full of dirty or under-writeback pages, which this
1114  * caller can't do much about.  We kick pdflush and take explicit naps in the
1115  * hope that some of these pages can be written.  But if the allocating task
1116  * holds filesystem locks which prevent writeout this might not work, and the
1117  * allocation attempt will fail.
1118  */
1119 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1120 {
1121 	int priority;
1122 	int ret = 0;
1123 	unsigned long total_scanned = 0;
1124 	unsigned long nr_reclaimed = 0;
1125 	struct reclaim_state *reclaim_state = current->reclaim_state;
1126 	unsigned long lru_pages = 0;
1127 	int i;
1128 	struct scan_control sc = {
1129 		.gfp_mask = gfp_mask,
1130 		.may_writepage = !laptop_mode,
1131 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1132 		.may_swap = 1,
1133 		.swappiness = vm_swappiness,
1134 		.order = order,
1135 	};
1136 
1137 	count_vm_event(ALLOCSTALL);
1138 
1139 	for (i = 0; zones[i] != NULL; i++) {
1140 		struct zone *zone = zones[i];
1141 
1142 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1143 			continue;
1144 
1145 		lru_pages += zone_page_state(zone, NR_ACTIVE)
1146 				+ zone_page_state(zone, NR_INACTIVE);
1147 	}
1148 
1149 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1150 		sc.nr_scanned = 0;
1151 		if (!priority)
1152 			disable_swap_token();
1153 		nr_reclaimed += shrink_zones(priority, zones, &sc);
1154 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1155 		if (reclaim_state) {
1156 			nr_reclaimed += reclaim_state->reclaimed_slab;
1157 			reclaim_state->reclaimed_slab = 0;
1158 		}
1159 		total_scanned += sc.nr_scanned;
1160 		if (nr_reclaimed >= sc.swap_cluster_max) {
1161 			ret = 1;
1162 			goto out;
1163 		}
1164 
1165 		/*
1166 		 * Try to write back as many pages as we just scanned.  This
1167 		 * tends to cause slow streaming writers to write data to the
1168 		 * disk smoothly, at the dirtying rate, which is nice.   But
1169 		 * that's undesirable in laptop mode, where we *want* lumpy
1170 		 * writeout.  So in laptop mode, write out the whole world.
1171 		 */
1172 		if (total_scanned > sc.swap_cluster_max +
1173 					sc.swap_cluster_max / 2) {
1174 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1175 			sc.may_writepage = 1;
1176 		}
1177 
1178 		/* Take a nap, wait for some writeback to complete */
1179 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1180 			congestion_wait(WRITE, HZ/10);
1181 	}
1182 	/* top priority shrink_caches still had more to do? don't OOM, then */
1183 	if (!sc.all_unreclaimable)
1184 		ret = 1;
1185 out:
1186 	/*
1187 	 * Now that we've scanned all the zones at this priority level, note
1188 	 * that level within the zone so that the next thread which performs
1189 	 * scanning of this zone will immediately start out at this priority
1190 	 * level.  This affects only the decision whether or not to bring
1191 	 * mapped pages onto the inactive list.
1192 	 */
1193 	if (priority < 0)
1194 		priority = 0;
1195 	for (i = 0; zones[i] != 0; i++) {
1196 		struct zone *zone = zones[i];
1197 
1198 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1199 			continue;
1200 
1201 		zone->prev_priority = priority;
1202 	}
1203 	return ret;
1204 }
1205 
1206 /*
1207  * For kswapd, balance_pgdat() will work across all this node's zones until
1208  * they are all at pages_high.
1209  *
1210  * Returns the number of pages which were actually freed.
1211  *
1212  * There is special handling here for zones which are full of pinned pages.
1213  * This can happen if the pages are all mlocked, or if they are all used by
1214  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1215  * What we do is to detect the case where all pages in the zone have been
1216  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1217  * dead and from now on, only perform a short scan.  Basically we're polling
1218  * the zone for when the problem goes away.
1219  *
1220  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1221  * zones which have free_pages > pages_high, but once a zone is found to have
1222  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1223  * of the number of free pages in the lower zones.  This interoperates with
1224  * the page allocator fallback scheme to ensure that aging of pages is balanced
1225  * across the zones.
1226  */
1227 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1228 {
1229 	int all_zones_ok;
1230 	int priority;
1231 	int i;
1232 	unsigned long total_scanned;
1233 	unsigned long nr_reclaimed;
1234 	struct reclaim_state *reclaim_state = current->reclaim_state;
1235 	struct scan_control sc = {
1236 		.gfp_mask = GFP_KERNEL,
1237 		.may_swap = 1,
1238 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1239 		.swappiness = vm_swappiness,
1240 		.order = order,
1241 	};
1242 	/*
1243 	 * temp_priority is used to remember the scanning priority at which
1244 	 * this zone was successfully refilled to free_pages == pages_high.
1245 	 */
1246 	int temp_priority[MAX_NR_ZONES];
1247 
1248 loop_again:
1249 	total_scanned = 0;
1250 	nr_reclaimed = 0;
1251 	sc.may_writepage = !laptop_mode;
1252 	count_vm_event(PAGEOUTRUN);
1253 
1254 	for (i = 0; i < pgdat->nr_zones; i++)
1255 		temp_priority[i] = DEF_PRIORITY;
1256 
1257 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1258 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1259 		unsigned long lru_pages = 0;
1260 
1261 		/* The swap token gets in the way of swapout... */
1262 		if (!priority)
1263 			disable_swap_token();
1264 
1265 		all_zones_ok = 1;
1266 
1267 		/*
1268 		 * Scan in the highmem->dma direction for the highest
1269 		 * zone which needs scanning
1270 		 */
1271 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1272 			struct zone *zone = pgdat->node_zones + i;
1273 
1274 			if (!populated_zone(zone))
1275 				continue;
1276 
1277 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1278 				continue;
1279 
1280 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1281 					       0, 0)) {
1282 				end_zone = i;
1283 				break;
1284 			}
1285 		}
1286 		if (i < 0)
1287 			goto out;
1288 
1289 		for (i = 0; i <= end_zone; i++) {
1290 			struct zone *zone = pgdat->node_zones + i;
1291 
1292 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1293 					+ zone_page_state(zone, NR_INACTIVE);
1294 		}
1295 
1296 		/*
1297 		 * Now scan the zone in the dma->highmem direction, stopping
1298 		 * at the last zone which needs scanning.
1299 		 *
1300 		 * We do this because the page allocator works in the opposite
1301 		 * direction.  This prevents the page allocator from allocating
1302 		 * pages behind kswapd's direction of progress, which would
1303 		 * cause too much scanning of the lower zones.
1304 		 */
1305 		for (i = 0; i <= end_zone; i++) {
1306 			struct zone *zone = pgdat->node_zones + i;
1307 			int nr_slab;
1308 
1309 			if (!populated_zone(zone))
1310 				continue;
1311 
1312 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1313 				continue;
1314 
1315 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1316 					       end_zone, 0))
1317 				all_zones_ok = 0;
1318 			temp_priority[i] = priority;
1319 			sc.nr_scanned = 0;
1320 			note_zone_scanning_priority(zone, priority);
1321 			nr_reclaimed += shrink_zone(priority, zone, &sc);
1322 			reclaim_state->reclaimed_slab = 0;
1323 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1324 						lru_pages);
1325 			nr_reclaimed += reclaim_state->reclaimed_slab;
1326 			total_scanned += sc.nr_scanned;
1327 			if (zone->all_unreclaimable)
1328 				continue;
1329 			if (nr_slab == 0 && zone->pages_scanned >=
1330 				(zone_page_state(zone, NR_ACTIVE)
1331 				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1332 					zone->all_unreclaimable = 1;
1333 			/*
1334 			 * If we've done a decent amount of scanning and
1335 			 * the reclaim ratio is low, start doing writepage
1336 			 * even in laptop mode
1337 			 */
1338 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1339 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1340 				sc.may_writepage = 1;
1341 		}
1342 		if (all_zones_ok)
1343 			break;		/* kswapd: all done */
1344 		/*
1345 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1346 		 * another pass across the zones.
1347 		 */
1348 		if (total_scanned && priority < DEF_PRIORITY - 2)
1349 			congestion_wait(WRITE, HZ/10);
1350 
1351 		/*
1352 		 * We do this so kswapd doesn't build up large priorities for
1353 		 * example when it is freeing in parallel with allocators. It
1354 		 * matches the direct reclaim path behaviour in terms of impact
1355 		 * on zone->*_priority.
1356 		 */
1357 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1358 			break;
1359 	}
1360 out:
1361 	/*
1362 	 * Note within each zone the priority level at which this zone was
1363 	 * brought into a happy state.  So that the next thread which scans this
1364 	 * zone will start out at that priority level.
1365 	 */
1366 	for (i = 0; i < pgdat->nr_zones; i++) {
1367 		struct zone *zone = pgdat->node_zones + i;
1368 
1369 		zone->prev_priority = temp_priority[i];
1370 	}
1371 	if (!all_zones_ok) {
1372 		cond_resched();
1373 
1374 		try_to_freeze();
1375 
1376 		goto loop_again;
1377 	}
1378 
1379 	return nr_reclaimed;
1380 }
1381 
1382 /*
1383  * The background pageout daemon, started as a kernel thread
1384  * from the init process.
1385  *
1386  * This basically trickles out pages so that we have _some_
1387  * free memory available even if there is no other activity
1388  * that frees anything up. This is needed for things like routing
1389  * etc, where we otherwise might have all activity going on in
1390  * asynchronous contexts that cannot page things out.
1391  *
1392  * If there are applications that are active memory-allocators
1393  * (most normal use), this basically shouldn't matter.
1394  */
1395 static int kswapd(void *p)
1396 {
1397 	unsigned long order;
1398 	pg_data_t *pgdat = (pg_data_t*)p;
1399 	struct task_struct *tsk = current;
1400 	DEFINE_WAIT(wait);
1401 	struct reclaim_state reclaim_state = {
1402 		.reclaimed_slab = 0,
1403 	};
1404 	cpumask_t cpumask;
1405 
1406 	cpumask = node_to_cpumask(pgdat->node_id);
1407 	if (!cpus_empty(cpumask))
1408 		set_cpus_allowed(tsk, cpumask);
1409 	current->reclaim_state = &reclaim_state;
1410 
1411 	/*
1412 	 * Tell the memory management that we're a "memory allocator",
1413 	 * and that if we need more memory we should get access to it
1414 	 * regardless (see "__alloc_pages()"). "kswapd" should
1415 	 * never get caught in the normal page freeing logic.
1416 	 *
1417 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1418 	 * you need a small amount of memory in order to be able to
1419 	 * page out something else, and this flag essentially protects
1420 	 * us from recursively trying to free more memory as we're
1421 	 * trying to free the first piece of memory in the first place).
1422 	 */
1423 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1424 	set_freezable();
1425 
1426 	order = 0;
1427 	for ( ; ; ) {
1428 		unsigned long new_order;
1429 
1430 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1431 		new_order = pgdat->kswapd_max_order;
1432 		pgdat->kswapd_max_order = 0;
1433 		if (order < new_order) {
1434 			/*
1435 			 * Don't sleep if someone wants a larger 'order'
1436 			 * allocation
1437 			 */
1438 			order = new_order;
1439 		} else {
1440 			if (!freezing(current))
1441 				schedule();
1442 
1443 			order = pgdat->kswapd_max_order;
1444 		}
1445 		finish_wait(&pgdat->kswapd_wait, &wait);
1446 
1447 		if (!try_to_freeze()) {
1448 			/* We can speed up thawing tasks if we don't call
1449 			 * balance_pgdat after returning from the refrigerator
1450 			 */
1451 			balance_pgdat(pgdat, order);
1452 		}
1453 	}
1454 	return 0;
1455 }
1456 
1457 /*
1458  * A zone is low on free memory, so wake its kswapd task to service it.
1459  */
1460 void wakeup_kswapd(struct zone *zone, int order)
1461 {
1462 	pg_data_t *pgdat;
1463 
1464 	if (!populated_zone(zone))
1465 		return;
1466 
1467 	pgdat = zone->zone_pgdat;
1468 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1469 		return;
1470 	if (pgdat->kswapd_max_order < order)
1471 		pgdat->kswapd_max_order = order;
1472 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1473 		return;
1474 	if (!waitqueue_active(&pgdat->kswapd_wait))
1475 		return;
1476 	wake_up_interruptible(&pgdat->kswapd_wait);
1477 }
1478 
1479 #ifdef CONFIG_PM
1480 /*
1481  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1482  * from LRU lists system-wide, for given pass and priority, and returns the
1483  * number of reclaimed pages
1484  *
1485  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1486  */
1487 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1488 				      int pass, struct scan_control *sc)
1489 {
1490 	struct zone *zone;
1491 	unsigned long nr_to_scan, ret = 0;
1492 
1493 	for_each_zone(zone) {
1494 
1495 		if (!populated_zone(zone))
1496 			continue;
1497 
1498 		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1499 			continue;
1500 
1501 		/* For pass = 0 we don't shrink the active list */
1502 		if (pass > 0) {
1503 			zone->nr_scan_active +=
1504 				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1505 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1506 				zone->nr_scan_active = 0;
1507 				nr_to_scan = min(nr_pages,
1508 					zone_page_state(zone, NR_ACTIVE));
1509 				shrink_active_list(nr_to_scan, zone, sc, prio);
1510 			}
1511 		}
1512 
1513 		zone->nr_scan_inactive +=
1514 			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1515 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1516 			zone->nr_scan_inactive = 0;
1517 			nr_to_scan = min(nr_pages,
1518 				zone_page_state(zone, NR_INACTIVE));
1519 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1520 			if (ret >= nr_pages)
1521 				return ret;
1522 		}
1523 	}
1524 
1525 	return ret;
1526 }
1527 
1528 static unsigned long count_lru_pages(void)
1529 {
1530 	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1531 }
1532 
1533 /*
1534  * Try to free `nr_pages' of memory, system-wide, and return the number of
1535  * freed pages.
1536  *
1537  * Rather than trying to age LRUs the aim is to preserve the overall
1538  * LRU order by reclaiming preferentially
1539  * inactive > active > active referenced > active mapped
1540  */
1541 unsigned long shrink_all_memory(unsigned long nr_pages)
1542 {
1543 	unsigned long lru_pages, nr_slab;
1544 	unsigned long ret = 0;
1545 	int pass;
1546 	struct reclaim_state reclaim_state;
1547 	struct scan_control sc = {
1548 		.gfp_mask = GFP_KERNEL,
1549 		.may_swap = 0,
1550 		.swap_cluster_max = nr_pages,
1551 		.may_writepage = 1,
1552 		.swappiness = vm_swappiness,
1553 	};
1554 
1555 	current->reclaim_state = &reclaim_state;
1556 
1557 	lru_pages = count_lru_pages();
1558 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1559 	/* If slab caches are huge, it's better to hit them first */
1560 	while (nr_slab >= lru_pages) {
1561 		reclaim_state.reclaimed_slab = 0;
1562 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1563 		if (!reclaim_state.reclaimed_slab)
1564 			break;
1565 
1566 		ret += reclaim_state.reclaimed_slab;
1567 		if (ret >= nr_pages)
1568 			goto out;
1569 
1570 		nr_slab -= reclaim_state.reclaimed_slab;
1571 	}
1572 
1573 	/*
1574 	 * We try to shrink LRUs in 5 passes:
1575 	 * 0 = Reclaim from inactive_list only
1576 	 * 1 = Reclaim from active list but don't reclaim mapped
1577 	 * 2 = 2nd pass of type 1
1578 	 * 3 = Reclaim mapped (normal reclaim)
1579 	 * 4 = 2nd pass of type 3
1580 	 */
1581 	for (pass = 0; pass < 5; pass++) {
1582 		int prio;
1583 
1584 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1585 		if (pass > 2) {
1586 			sc.may_swap = 1;
1587 			sc.swappiness = 100;
1588 		}
1589 
1590 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1591 			unsigned long nr_to_scan = nr_pages - ret;
1592 
1593 			sc.nr_scanned = 0;
1594 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1595 			if (ret >= nr_pages)
1596 				goto out;
1597 
1598 			reclaim_state.reclaimed_slab = 0;
1599 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1600 					count_lru_pages());
1601 			ret += reclaim_state.reclaimed_slab;
1602 			if (ret >= nr_pages)
1603 				goto out;
1604 
1605 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1606 				congestion_wait(WRITE, HZ / 10);
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * If ret = 0, we could not shrink LRUs, but there may be something
1612 	 * in slab caches
1613 	 */
1614 	if (!ret) {
1615 		do {
1616 			reclaim_state.reclaimed_slab = 0;
1617 			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1618 			ret += reclaim_state.reclaimed_slab;
1619 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1620 	}
1621 
1622 out:
1623 	current->reclaim_state = NULL;
1624 
1625 	return ret;
1626 }
1627 #endif
1628 
1629 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1630    not required for correctness.  So if the last cpu in a node goes
1631    away, we get changed to run anywhere: as the first one comes back,
1632    restore their cpu bindings. */
1633 static int __devinit cpu_callback(struct notifier_block *nfb,
1634 				  unsigned long action, void *hcpu)
1635 {
1636 	pg_data_t *pgdat;
1637 	cpumask_t mask;
1638 
1639 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1640 		for_each_online_pgdat(pgdat) {
1641 			mask = node_to_cpumask(pgdat->node_id);
1642 			if (any_online_cpu(mask) != NR_CPUS)
1643 				/* One of our CPUs online: restore mask */
1644 				set_cpus_allowed(pgdat->kswapd, mask);
1645 		}
1646 	}
1647 	return NOTIFY_OK;
1648 }
1649 
1650 /*
1651  * This kswapd start function will be called by init and node-hot-add.
1652  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1653  */
1654 int kswapd_run(int nid)
1655 {
1656 	pg_data_t *pgdat = NODE_DATA(nid);
1657 	int ret = 0;
1658 
1659 	if (pgdat->kswapd)
1660 		return 0;
1661 
1662 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1663 	if (IS_ERR(pgdat->kswapd)) {
1664 		/* failure at boot is fatal */
1665 		BUG_ON(system_state == SYSTEM_BOOTING);
1666 		printk("Failed to start kswapd on node %d\n",nid);
1667 		ret = -1;
1668 	}
1669 	return ret;
1670 }
1671 
1672 static int __init kswapd_init(void)
1673 {
1674 	int nid;
1675 
1676 	swap_setup();
1677 	for_each_online_node(nid)
1678  		kswapd_run(nid);
1679 	hotcpu_notifier(cpu_callback, 0);
1680 	return 0;
1681 }
1682 
1683 module_init(kswapd_init)
1684 
1685 #ifdef CONFIG_NUMA
1686 /*
1687  * Zone reclaim mode
1688  *
1689  * If non-zero call zone_reclaim when the number of free pages falls below
1690  * the watermarks.
1691  */
1692 int zone_reclaim_mode __read_mostly;
1693 
1694 #define RECLAIM_OFF 0
1695 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1696 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1697 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1698 
1699 /*
1700  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1701  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1702  * a zone.
1703  */
1704 #define ZONE_RECLAIM_PRIORITY 4
1705 
1706 /*
1707  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1708  * occur.
1709  */
1710 int sysctl_min_unmapped_ratio = 1;
1711 
1712 /*
1713  * If the number of slab pages in a zone grows beyond this percentage then
1714  * slab reclaim needs to occur.
1715  */
1716 int sysctl_min_slab_ratio = 5;
1717 
1718 /*
1719  * Try to free up some pages from this zone through reclaim.
1720  */
1721 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1722 {
1723 	/* Minimum pages needed in order to stay on node */
1724 	const unsigned long nr_pages = 1 << order;
1725 	struct task_struct *p = current;
1726 	struct reclaim_state reclaim_state;
1727 	int priority;
1728 	unsigned long nr_reclaimed = 0;
1729 	struct scan_control sc = {
1730 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1731 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1732 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1733 					SWAP_CLUSTER_MAX),
1734 		.gfp_mask = gfp_mask,
1735 		.swappiness = vm_swappiness,
1736 	};
1737 	unsigned long slab_reclaimable;
1738 
1739 	disable_swap_token();
1740 	cond_resched();
1741 	/*
1742 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1743 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1744 	 * and RECLAIM_SWAP.
1745 	 */
1746 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1747 	reclaim_state.reclaimed_slab = 0;
1748 	p->reclaim_state = &reclaim_state;
1749 
1750 	if (zone_page_state(zone, NR_FILE_PAGES) -
1751 		zone_page_state(zone, NR_FILE_MAPPED) >
1752 		zone->min_unmapped_pages) {
1753 		/*
1754 		 * Free memory by calling shrink zone with increasing
1755 		 * priorities until we have enough memory freed.
1756 		 */
1757 		priority = ZONE_RECLAIM_PRIORITY;
1758 		do {
1759 			note_zone_scanning_priority(zone, priority);
1760 			nr_reclaimed += shrink_zone(priority, zone, &sc);
1761 			priority--;
1762 		} while (priority >= 0 && nr_reclaimed < nr_pages);
1763 	}
1764 
1765 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1766 	if (slab_reclaimable > zone->min_slab_pages) {
1767 		/*
1768 		 * shrink_slab() does not currently allow us to determine how
1769 		 * many pages were freed in this zone. So we take the current
1770 		 * number of slab pages and shake the slab until it is reduced
1771 		 * by the same nr_pages that we used for reclaiming unmapped
1772 		 * pages.
1773 		 *
1774 		 * Note that shrink_slab will free memory on all zones and may
1775 		 * take a long time.
1776 		 */
1777 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1778 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1779 				slab_reclaimable - nr_pages)
1780 			;
1781 
1782 		/*
1783 		 * Update nr_reclaimed by the number of slab pages we
1784 		 * reclaimed from this zone.
1785 		 */
1786 		nr_reclaimed += slab_reclaimable -
1787 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1788 	}
1789 
1790 	p->reclaim_state = NULL;
1791 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1792 	return nr_reclaimed >= nr_pages;
1793 }
1794 
1795 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1796 {
1797 	cpumask_t mask;
1798 	int node_id;
1799 
1800 	/*
1801 	 * Zone reclaim reclaims unmapped file backed pages and
1802 	 * slab pages if we are over the defined limits.
1803 	 *
1804 	 * A small portion of unmapped file backed pages is needed for
1805 	 * file I/O otherwise pages read by file I/O will be immediately
1806 	 * thrown out if the zone is overallocated. So we do not reclaim
1807 	 * if less than a specified percentage of the zone is used by
1808 	 * unmapped file backed pages.
1809 	 */
1810 	if (zone_page_state(zone, NR_FILE_PAGES) -
1811 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1812 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1813 			<= zone->min_slab_pages)
1814 		return 0;
1815 
1816 	/*
1817 	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1818 	 * not have reclaimable pages and if we should not delay the allocation
1819 	 * then do not scan.
1820 	 */
1821 	if (!(gfp_mask & __GFP_WAIT) ||
1822 		zone->all_unreclaimable ||
1823 		atomic_read(&zone->reclaim_in_progress) > 0 ||
1824 		(current->flags & PF_MEMALLOC))
1825 			return 0;
1826 
1827 	/*
1828 	 * Only run zone reclaim on the local zone or on zones that do not
1829 	 * have associated processors. This will favor the local processor
1830 	 * over remote processors and spread off node memory allocations
1831 	 * as wide as possible.
1832 	 */
1833 	node_id = zone_to_nid(zone);
1834 	mask = node_to_cpumask(node_id);
1835 	if (!cpus_empty(mask) && node_id != numa_node_id())
1836 		return 0;
1837 	return __zone_reclaim(zone, gfp_mask, order);
1838 }
1839 #endif
1840