1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/mutex.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 #include <linux/srcu.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 65 #include <linux/swapops.h> 66 #include <linux/balloon_compaction.h> 67 #include <linux/sched/sysctl.h> 68 69 #include "internal.h" 70 #include "swap.h" 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/vmscan.h> 74 75 struct scan_control { 76 /* How many pages shrink_list() should reclaim */ 77 unsigned long nr_to_reclaim; 78 79 /* 80 * Nodemask of nodes allowed by the caller. If NULL, all nodes 81 * are scanned. 82 */ 83 nodemask_t *nodemask; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Scan pressure balancing between anon and file LRUs 93 */ 94 unsigned long anon_cost; 95 unsigned long file_cost; 96 97 /* Can active folios be deactivated as part of reclaim? */ 98 #define DEACTIVATE_ANON 1 99 #define DEACTIVATE_FILE 2 100 unsigned int may_deactivate:2; 101 unsigned int force_deactivate:1; 102 unsigned int skipped_deactivate:1; 103 104 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 105 unsigned int may_writepage:1; 106 107 /* Can mapped folios be reclaimed? */ 108 unsigned int may_unmap:1; 109 110 /* Can folios be swapped as part of reclaim? */ 111 unsigned int may_swap:1; 112 113 /* Proactive reclaim invoked by userspace through memory.reclaim */ 114 unsigned int proactive:1; 115 116 /* 117 * Cgroup memory below memory.low is protected as long as we 118 * don't threaten to OOM. If any cgroup is reclaimed at 119 * reduced force or passed over entirely due to its memory.low 120 * setting (memcg_low_skipped), and nothing is reclaimed as a 121 * result, then go back for one more cycle that reclaims the protected 122 * memory (memcg_low_reclaim) to avert OOM. 123 */ 124 unsigned int memcg_low_reclaim:1; 125 unsigned int memcg_low_skipped:1; 126 127 unsigned int hibernation_mode:1; 128 129 /* One of the zones is ready for compaction */ 130 unsigned int compaction_ready:1; 131 132 /* There is easily reclaimable cold cache in the current node */ 133 unsigned int cache_trim_mode:1; 134 135 /* The file folios on the current node are dangerously low */ 136 unsigned int file_is_tiny:1; 137 138 /* Always discard instead of demoting to lower tier memory */ 139 unsigned int no_demotion:1; 140 141 /* Allocation order */ 142 s8 order; 143 144 /* Scan (total_size >> priority) pages at once */ 145 s8 priority; 146 147 /* The highest zone to isolate folios for reclaim from */ 148 s8 reclaim_idx; 149 150 /* This context's GFP mask */ 151 gfp_t gfp_mask; 152 153 /* Incremented by the number of inactive pages that were scanned */ 154 unsigned long nr_scanned; 155 156 /* Number of pages freed so far during a call to shrink_zones() */ 157 unsigned long nr_reclaimed; 158 159 struct { 160 unsigned int dirty; 161 unsigned int unqueued_dirty; 162 unsigned int congested; 163 unsigned int writeback; 164 unsigned int immediate; 165 unsigned int file_taken; 166 unsigned int taken; 167 } nr; 168 169 /* for recording the reclaimed slab by now */ 170 struct reclaim_state reclaim_state; 171 }; 172 173 #ifdef ARCH_HAS_PREFETCHW 174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 175 do { \ 176 if ((_folio)->lru.prev != _base) { \ 177 struct folio *prev; \ 178 \ 179 prev = lru_to_folio(&(_folio->lru)); \ 180 prefetchw(&prev->_field); \ 181 } \ 182 } while (0) 183 #else 184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 185 #endif 186 187 /* 188 * From 0 .. 200. Higher means more swappy. 189 */ 190 int vm_swappiness = 60; 191 192 LIST_HEAD(shrinker_list); 193 DEFINE_MUTEX(shrinker_mutex); 194 DEFINE_SRCU(shrinker_srcu); 195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0); 196 197 #ifdef CONFIG_MEMCG 198 static int shrinker_nr_max; 199 200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 201 static inline int shrinker_map_size(int nr_items) 202 { 203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 204 } 205 206 static inline int shrinker_defer_size(int nr_items) 207 { 208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 209 } 210 211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 212 int nid) 213 { 214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info, 215 &shrinker_srcu, 216 lockdep_is_held(&shrinker_mutex)); 217 } 218 219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg, 220 int nid) 221 { 222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info, 223 &shrinker_srcu); 224 } 225 226 static void free_shrinker_info_rcu(struct rcu_head *head) 227 { 228 kvfree(container_of(head, struct shrinker_info, rcu)); 229 } 230 231 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 232 int map_size, int defer_size, 233 int old_map_size, int old_defer_size, 234 int new_nr_max) 235 { 236 struct shrinker_info *new, *old; 237 struct mem_cgroup_per_node *pn; 238 int nid; 239 int size = map_size + defer_size; 240 241 for_each_node(nid) { 242 pn = memcg->nodeinfo[nid]; 243 old = shrinker_info_protected(memcg, nid); 244 /* Not yet online memcg */ 245 if (!old) 246 return 0; 247 248 /* Already expanded this shrinker_info */ 249 if (new_nr_max <= old->map_nr_max) 250 continue; 251 252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 253 if (!new) 254 return -ENOMEM; 255 256 new->nr_deferred = (atomic_long_t *)(new + 1); 257 new->map = (void *)new->nr_deferred + defer_size; 258 new->map_nr_max = new_nr_max; 259 260 /* map: set all old bits, clear all new bits */ 261 memset(new->map, (int)0xff, old_map_size); 262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 263 /* nr_deferred: copy old values, clear all new values */ 264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 265 memset((void *)new->nr_deferred + old_defer_size, 0, 266 defer_size - old_defer_size); 267 268 rcu_assign_pointer(pn->shrinker_info, new); 269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu); 270 } 271 272 return 0; 273 } 274 275 void free_shrinker_info(struct mem_cgroup *memcg) 276 { 277 struct mem_cgroup_per_node *pn; 278 struct shrinker_info *info; 279 int nid; 280 281 for_each_node(nid) { 282 pn = memcg->nodeinfo[nid]; 283 info = rcu_dereference_protected(pn->shrinker_info, true); 284 kvfree(info); 285 rcu_assign_pointer(pn->shrinker_info, NULL); 286 } 287 } 288 289 int alloc_shrinker_info(struct mem_cgroup *memcg) 290 { 291 struct shrinker_info *info; 292 int nid, size, ret = 0; 293 int map_size, defer_size = 0; 294 295 mutex_lock(&shrinker_mutex); 296 map_size = shrinker_map_size(shrinker_nr_max); 297 defer_size = shrinker_defer_size(shrinker_nr_max); 298 size = map_size + defer_size; 299 for_each_node(nid) { 300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 301 if (!info) { 302 free_shrinker_info(memcg); 303 ret = -ENOMEM; 304 break; 305 } 306 info->nr_deferred = (atomic_long_t *)(info + 1); 307 info->map = (void *)info->nr_deferred + defer_size; 308 info->map_nr_max = shrinker_nr_max; 309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 310 } 311 mutex_unlock(&shrinker_mutex); 312 313 return ret; 314 } 315 316 static int expand_shrinker_info(int new_id) 317 { 318 int ret = 0; 319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG); 320 int map_size, defer_size = 0; 321 int old_map_size, old_defer_size = 0; 322 struct mem_cgroup *memcg; 323 324 if (!root_mem_cgroup) 325 goto out; 326 327 lockdep_assert_held(&shrinker_mutex); 328 329 map_size = shrinker_map_size(new_nr_max); 330 defer_size = shrinker_defer_size(new_nr_max); 331 old_map_size = shrinker_map_size(shrinker_nr_max); 332 old_defer_size = shrinker_defer_size(shrinker_nr_max); 333 334 memcg = mem_cgroup_iter(NULL, NULL, NULL); 335 do { 336 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 337 old_map_size, old_defer_size, 338 new_nr_max); 339 if (ret) { 340 mem_cgroup_iter_break(NULL, memcg); 341 goto out; 342 } 343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 344 out: 345 if (!ret) 346 shrinker_nr_max = new_nr_max; 347 348 return ret; 349 } 350 351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 352 { 353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 354 struct shrinker_info *info; 355 int srcu_idx; 356 357 srcu_idx = srcu_read_lock(&shrinker_srcu); 358 info = shrinker_info_srcu(memcg, nid); 359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { 360 /* Pairs with smp mb in shrink_slab() */ 361 smp_mb__before_atomic(); 362 set_bit(shrinker_id, info->map); 363 } 364 srcu_read_unlock(&shrinker_srcu, srcu_idx); 365 } 366 } 367 368 static DEFINE_IDR(shrinker_idr); 369 370 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 371 { 372 int id, ret = -ENOMEM; 373 374 if (mem_cgroup_disabled()) 375 return -ENOSYS; 376 377 mutex_lock(&shrinker_mutex); 378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 379 if (id < 0) 380 goto unlock; 381 382 if (id >= shrinker_nr_max) { 383 if (expand_shrinker_info(id)) { 384 idr_remove(&shrinker_idr, id); 385 goto unlock; 386 } 387 } 388 shrinker->id = id; 389 ret = 0; 390 unlock: 391 mutex_unlock(&shrinker_mutex); 392 return ret; 393 } 394 395 static void unregister_memcg_shrinker(struct shrinker *shrinker) 396 { 397 int id = shrinker->id; 398 399 BUG_ON(id < 0); 400 401 lockdep_assert_held(&shrinker_mutex); 402 403 idr_remove(&shrinker_idr, id); 404 } 405 406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 407 struct mem_cgroup *memcg) 408 { 409 struct shrinker_info *info; 410 411 info = shrinker_info_srcu(memcg, nid); 412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 413 } 414 415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 416 struct mem_cgroup *memcg) 417 { 418 struct shrinker_info *info; 419 420 info = shrinker_info_srcu(memcg, nid); 421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 422 } 423 424 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 425 { 426 int i, nid; 427 long nr; 428 struct mem_cgroup *parent; 429 struct shrinker_info *child_info, *parent_info; 430 431 parent = parent_mem_cgroup(memcg); 432 if (!parent) 433 parent = root_mem_cgroup; 434 435 /* Prevent from concurrent shrinker_info expand */ 436 mutex_lock(&shrinker_mutex); 437 for_each_node(nid) { 438 child_info = shrinker_info_protected(memcg, nid); 439 parent_info = shrinker_info_protected(parent, nid); 440 for (i = 0; i < child_info->map_nr_max; i++) { 441 nr = atomic_long_read(&child_info->nr_deferred[i]); 442 atomic_long_add(nr, &parent_info->nr_deferred[i]); 443 } 444 } 445 mutex_unlock(&shrinker_mutex); 446 } 447 448 static bool cgroup_reclaim(struct scan_control *sc) 449 { 450 return sc->target_mem_cgroup; 451 } 452 453 static bool global_reclaim(struct scan_control *sc) 454 { 455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 456 } 457 458 /** 459 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 460 * @sc: scan_control in question 461 * 462 * The normal page dirty throttling mechanism in balance_dirty_pages() is 463 * completely broken with the legacy memcg and direct stalling in 464 * shrink_folio_list() is used for throttling instead, which lacks all the 465 * niceties such as fairness, adaptive pausing, bandwidth proportional 466 * allocation and configurability. 467 * 468 * This function tests whether the vmscan currently in progress can assume 469 * that the normal dirty throttling mechanism is operational. 470 */ 471 static bool writeback_throttling_sane(struct scan_control *sc) 472 { 473 if (!cgroup_reclaim(sc)) 474 return true; 475 #ifdef CONFIG_CGROUP_WRITEBACK 476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 477 return true; 478 #endif 479 return false; 480 } 481 #else 482 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 483 { 484 return -ENOSYS; 485 } 486 487 static void unregister_memcg_shrinker(struct shrinker *shrinker) 488 { 489 } 490 491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 492 struct mem_cgroup *memcg) 493 { 494 return 0; 495 } 496 497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 498 struct mem_cgroup *memcg) 499 { 500 return 0; 501 } 502 503 static bool cgroup_reclaim(struct scan_control *sc) 504 { 505 return false; 506 } 507 508 static bool global_reclaim(struct scan_control *sc) 509 { 510 return true; 511 } 512 513 static bool writeback_throttling_sane(struct scan_control *sc) 514 { 515 return true; 516 } 517 #endif 518 519 static void set_task_reclaim_state(struct task_struct *task, 520 struct reclaim_state *rs) 521 { 522 /* Check for an overwrite */ 523 WARN_ON_ONCE(rs && task->reclaim_state); 524 525 /* Check for the nulling of an already-nulled member */ 526 WARN_ON_ONCE(!rs && !task->reclaim_state); 527 528 task->reclaim_state = rs; 529 } 530 531 /* 532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 533 * scan_control->nr_reclaimed. 534 */ 535 static void flush_reclaim_state(struct scan_control *sc) 536 { 537 /* 538 * Currently, reclaim_state->reclaimed includes three types of pages 539 * freed outside of vmscan: 540 * (1) Slab pages. 541 * (2) Clean file pages from pruned inodes (on highmem systems). 542 * (3) XFS freed buffer pages. 543 * 544 * For all of these cases, we cannot universally link the pages to a 545 * single memcg. For example, a memcg-aware shrinker can free one object 546 * charged to the target memcg, causing an entire page to be freed. 547 * If we count the entire page as reclaimed from the memcg, we end up 548 * overestimating the reclaimed amount (potentially under-reclaiming). 549 * 550 * Only count such pages for global reclaim to prevent under-reclaiming 551 * from the target memcg; preventing unnecessary retries during memcg 552 * charging and false positives from proactive reclaim. 553 * 554 * For uncommon cases where the freed pages were actually mostly 555 * charged to the target memcg, we end up underestimating the reclaimed 556 * amount. This should be fine. The freed pages will be uncharged 557 * anyway, even if they are not counted here properly, and we will be 558 * able to make forward progress in charging (which is usually in a 559 * retry loop). 560 * 561 * We can go one step further, and report the uncharged objcg pages in 562 * memcg reclaim, to make reporting more accurate and reduce 563 * underestimation, but it's probably not worth the complexity for now. 564 */ 565 if (current->reclaim_state && global_reclaim(sc)) { 566 sc->nr_reclaimed += current->reclaim_state->reclaimed; 567 current->reclaim_state->reclaimed = 0; 568 } 569 } 570 571 static long xchg_nr_deferred(struct shrinker *shrinker, 572 struct shrink_control *sc) 573 { 574 int nid = sc->nid; 575 576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 577 nid = 0; 578 579 if (sc->memcg && 580 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 581 return xchg_nr_deferred_memcg(nid, shrinker, 582 sc->memcg); 583 584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 585 } 586 587 588 static long add_nr_deferred(long nr, struct shrinker *shrinker, 589 struct shrink_control *sc) 590 { 591 int nid = sc->nid; 592 593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 594 nid = 0; 595 596 if (sc->memcg && 597 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 598 return add_nr_deferred_memcg(nr, nid, shrinker, 599 sc->memcg); 600 601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 602 } 603 604 static bool can_demote(int nid, struct scan_control *sc) 605 { 606 if (!numa_demotion_enabled) 607 return false; 608 if (sc && sc->no_demotion) 609 return false; 610 if (next_demotion_node(nid) == NUMA_NO_NODE) 611 return false; 612 613 return true; 614 } 615 616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 617 int nid, 618 struct scan_control *sc) 619 { 620 if (memcg == NULL) { 621 /* 622 * For non-memcg reclaim, is there 623 * space in any swap device? 624 */ 625 if (get_nr_swap_pages() > 0) 626 return true; 627 } else { 628 /* Is the memcg below its swap limit? */ 629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 630 return true; 631 } 632 633 /* 634 * The page can not be swapped. 635 * 636 * Can it be reclaimed from this node via demotion? 637 */ 638 return can_demote(nid, sc); 639 } 640 641 /* 642 * This misses isolated folios which are not accounted for to save counters. 643 * As the data only determines if reclaim or compaction continues, it is 644 * not expected that isolated folios will be a dominating factor. 645 */ 646 unsigned long zone_reclaimable_pages(struct zone *zone) 647 { 648 unsigned long nr; 649 650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 655 656 return nr; 657 } 658 659 /** 660 * lruvec_lru_size - Returns the number of pages on the given LRU list. 661 * @lruvec: lru vector 662 * @lru: lru to use 663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 664 */ 665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 666 int zone_idx) 667 { 668 unsigned long size = 0; 669 int zid; 670 671 for (zid = 0; zid <= zone_idx; zid++) { 672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 673 674 if (!managed_zone(zone)) 675 continue; 676 677 if (!mem_cgroup_disabled()) 678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 679 else 680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 681 } 682 return size; 683 } 684 685 /* 686 * Add a shrinker callback to be called from the vm. 687 */ 688 static int __prealloc_shrinker(struct shrinker *shrinker) 689 { 690 unsigned int size; 691 int err; 692 693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 694 err = prealloc_memcg_shrinker(shrinker); 695 if (err != -ENOSYS) 696 return err; 697 698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 699 } 700 701 size = sizeof(*shrinker->nr_deferred); 702 if (shrinker->flags & SHRINKER_NUMA_AWARE) 703 size *= nr_node_ids; 704 705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 706 if (!shrinker->nr_deferred) 707 return -ENOMEM; 708 709 return 0; 710 } 711 712 #ifdef CONFIG_SHRINKER_DEBUG 713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 714 { 715 va_list ap; 716 int err; 717 718 va_start(ap, fmt); 719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 720 va_end(ap); 721 if (!shrinker->name) 722 return -ENOMEM; 723 724 err = __prealloc_shrinker(shrinker); 725 if (err) { 726 kfree_const(shrinker->name); 727 shrinker->name = NULL; 728 } 729 730 return err; 731 } 732 #else 733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 734 { 735 return __prealloc_shrinker(shrinker); 736 } 737 #endif 738 739 void free_prealloced_shrinker(struct shrinker *shrinker) 740 { 741 #ifdef CONFIG_SHRINKER_DEBUG 742 kfree_const(shrinker->name); 743 shrinker->name = NULL; 744 #endif 745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 746 mutex_lock(&shrinker_mutex); 747 unregister_memcg_shrinker(shrinker); 748 mutex_unlock(&shrinker_mutex); 749 return; 750 } 751 752 kfree(shrinker->nr_deferred); 753 shrinker->nr_deferred = NULL; 754 } 755 756 void register_shrinker_prepared(struct shrinker *shrinker) 757 { 758 mutex_lock(&shrinker_mutex); 759 list_add_tail_rcu(&shrinker->list, &shrinker_list); 760 shrinker->flags |= SHRINKER_REGISTERED; 761 shrinker_debugfs_add(shrinker); 762 mutex_unlock(&shrinker_mutex); 763 } 764 765 static int __register_shrinker(struct shrinker *shrinker) 766 { 767 int err = __prealloc_shrinker(shrinker); 768 769 if (err) 770 return err; 771 register_shrinker_prepared(shrinker); 772 return 0; 773 } 774 775 #ifdef CONFIG_SHRINKER_DEBUG 776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 777 { 778 va_list ap; 779 int err; 780 781 va_start(ap, fmt); 782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 783 va_end(ap); 784 if (!shrinker->name) 785 return -ENOMEM; 786 787 err = __register_shrinker(shrinker); 788 if (err) { 789 kfree_const(shrinker->name); 790 shrinker->name = NULL; 791 } 792 return err; 793 } 794 #else 795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 796 { 797 return __register_shrinker(shrinker); 798 } 799 #endif 800 EXPORT_SYMBOL(register_shrinker); 801 802 /* 803 * Remove one 804 */ 805 void unregister_shrinker(struct shrinker *shrinker) 806 { 807 struct dentry *debugfs_entry; 808 809 if (!(shrinker->flags & SHRINKER_REGISTERED)) 810 return; 811 812 mutex_lock(&shrinker_mutex); 813 list_del_rcu(&shrinker->list); 814 shrinker->flags &= ~SHRINKER_REGISTERED; 815 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 816 unregister_memcg_shrinker(shrinker); 817 debugfs_entry = shrinker_debugfs_remove(shrinker); 818 mutex_unlock(&shrinker_mutex); 819 820 atomic_inc(&shrinker_srcu_generation); 821 synchronize_srcu(&shrinker_srcu); 822 823 debugfs_remove_recursive(debugfs_entry); 824 825 kfree(shrinker->nr_deferred); 826 shrinker->nr_deferred = NULL; 827 } 828 EXPORT_SYMBOL(unregister_shrinker); 829 830 /** 831 * synchronize_shrinkers - Wait for all running shrinkers to complete. 832 * 833 * This is useful to guarantee that all shrinker invocations have seen an 834 * update, before freeing memory. 835 */ 836 void synchronize_shrinkers(void) 837 { 838 atomic_inc(&shrinker_srcu_generation); 839 synchronize_srcu(&shrinker_srcu); 840 } 841 EXPORT_SYMBOL(synchronize_shrinkers); 842 843 #define SHRINK_BATCH 128 844 845 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 846 struct shrinker *shrinker, int priority) 847 { 848 unsigned long freed = 0; 849 unsigned long long delta; 850 long total_scan; 851 long freeable; 852 long nr; 853 long new_nr; 854 long batch_size = shrinker->batch ? shrinker->batch 855 : SHRINK_BATCH; 856 long scanned = 0, next_deferred; 857 858 freeable = shrinker->count_objects(shrinker, shrinkctl); 859 if (freeable == 0 || freeable == SHRINK_EMPTY) 860 return freeable; 861 862 /* 863 * copy the current shrinker scan count into a local variable 864 * and zero it so that other concurrent shrinker invocations 865 * don't also do this scanning work. 866 */ 867 nr = xchg_nr_deferred(shrinker, shrinkctl); 868 869 if (shrinker->seeks) { 870 delta = freeable >> priority; 871 delta *= 4; 872 do_div(delta, shrinker->seeks); 873 } else { 874 /* 875 * These objects don't require any IO to create. Trim 876 * them aggressively under memory pressure to keep 877 * them from causing refetches in the IO caches. 878 */ 879 delta = freeable / 2; 880 } 881 882 total_scan = nr >> priority; 883 total_scan += delta; 884 total_scan = min(total_scan, (2 * freeable)); 885 886 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 887 freeable, delta, total_scan, priority); 888 889 /* 890 * Normally, we should not scan less than batch_size objects in one 891 * pass to avoid too frequent shrinker calls, but if the slab has less 892 * than batch_size objects in total and we are really tight on memory, 893 * we will try to reclaim all available objects, otherwise we can end 894 * up failing allocations although there are plenty of reclaimable 895 * objects spread over several slabs with usage less than the 896 * batch_size. 897 * 898 * We detect the "tight on memory" situations by looking at the total 899 * number of objects we want to scan (total_scan). If it is greater 900 * than the total number of objects on slab (freeable), we must be 901 * scanning at high prio and therefore should try to reclaim as much as 902 * possible. 903 */ 904 while (total_scan >= batch_size || 905 total_scan >= freeable) { 906 unsigned long ret; 907 unsigned long nr_to_scan = min(batch_size, total_scan); 908 909 shrinkctl->nr_to_scan = nr_to_scan; 910 shrinkctl->nr_scanned = nr_to_scan; 911 ret = shrinker->scan_objects(shrinker, shrinkctl); 912 if (ret == SHRINK_STOP) 913 break; 914 freed += ret; 915 916 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 917 total_scan -= shrinkctl->nr_scanned; 918 scanned += shrinkctl->nr_scanned; 919 920 cond_resched(); 921 } 922 923 /* 924 * The deferred work is increased by any new work (delta) that wasn't 925 * done, decreased by old deferred work that was done now. 926 * 927 * And it is capped to two times of the freeable items. 928 */ 929 next_deferred = max_t(long, (nr + delta - scanned), 0); 930 next_deferred = min(next_deferred, (2 * freeable)); 931 932 /* 933 * move the unused scan count back into the shrinker in a 934 * manner that handles concurrent updates. 935 */ 936 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 937 938 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 939 return freed; 940 } 941 942 #ifdef CONFIG_MEMCG 943 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 944 struct mem_cgroup *memcg, int priority) 945 { 946 struct shrinker_info *info; 947 unsigned long ret, freed = 0; 948 int srcu_idx, generation; 949 int i = 0; 950 951 if (!mem_cgroup_online(memcg)) 952 return 0; 953 954 again: 955 srcu_idx = srcu_read_lock(&shrinker_srcu); 956 info = shrinker_info_srcu(memcg, nid); 957 if (unlikely(!info)) 958 goto unlock; 959 960 generation = atomic_read(&shrinker_srcu_generation); 961 for_each_set_bit_from(i, info->map, info->map_nr_max) { 962 struct shrink_control sc = { 963 .gfp_mask = gfp_mask, 964 .nid = nid, 965 .memcg = memcg, 966 }; 967 struct shrinker *shrinker; 968 969 shrinker = idr_find(&shrinker_idr, i); 970 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 971 if (!shrinker) 972 clear_bit(i, info->map); 973 continue; 974 } 975 976 /* Call non-slab shrinkers even though kmem is disabled */ 977 if (!memcg_kmem_online() && 978 !(shrinker->flags & SHRINKER_NONSLAB)) 979 continue; 980 981 ret = do_shrink_slab(&sc, shrinker, priority); 982 if (ret == SHRINK_EMPTY) { 983 clear_bit(i, info->map); 984 /* 985 * After the shrinker reported that it had no objects to 986 * free, but before we cleared the corresponding bit in 987 * the memcg shrinker map, a new object might have been 988 * added. To make sure, we have the bit set in this 989 * case, we invoke the shrinker one more time and reset 990 * the bit if it reports that it is not empty anymore. 991 * The memory barrier here pairs with the barrier in 992 * set_shrinker_bit(): 993 * 994 * list_lru_add() shrink_slab_memcg() 995 * list_add_tail() clear_bit() 996 * <MB> <MB> 997 * set_bit() do_shrink_slab() 998 */ 999 smp_mb__after_atomic(); 1000 ret = do_shrink_slab(&sc, shrinker, priority); 1001 if (ret == SHRINK_EMPTY) 1002 ret = 0; 1003 else 1004 set_shrinker_bit(memcg, nid, i); 1005 } 1006 freed += ret; 1007 if (atomic_read(&shrinker_srcu_generation) != generation) { 1008 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1009 i++; 1010 goto again; 1011 } 1012 } 1013 unlock: 1014 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1015 return freed; 1016 } 1017 #else /* CONFIG_MEMCG */ 1018 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 1019 struct mem_cgroup *memcg, int priority) 1020 { 1021 return 0; 1022 } 1023 #endif /* CONFIG_MEMCG */ 1024 1025 /** 1026 * shrink_slab - shrink slab caches 1027 * @gfp_mask: allocation context 1028 * @nid: node whose slab caches to target 1029 * @memcg: memory cgroup whose slab caches to target 1030 * @priority: the reclaim priority 1031 * 1032 * Call the shrink functions to age shrinkable caches. 1033 * 1034 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 1035 * unaware shrinkers will receive a node id of 0 instead. 1036 * 1037 * @memcg specifies the memory cgroup to target. Unaware shrinkers 1038 * are called only if it is the root cgroup. 1039 * 1040 * @priority is sc->priority, we take the number of objects and >> by priority 1041 * in order to get the scan target. 1042 * 1043 * Returns the number of reclaimed slab objects. 1044 */ 1045 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 1046 struct mem_cgroup *memcg, 1047 int priority) 1048 { 1049 unsigned long ret, freed = 0; 1050 struct shrinker *shrinker; 1051 int srcu_idx, generation; 1052 1053 /* 1054 * The root memcg might be allocated even though memcg is disabled 1055 * via "cgroup_disable=memory" boot parameter. This could make 1056 * mem_cgroup_is_root() return false, then just run memcg slab 1057 * shrink, but skip global shrink. This may result in premature 1058 * oom. 1059 */ 1060 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1061 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1062 1063 srcu_idx = srcu_read_lock(&shrinker_srcu); 1064 1065 generation = atomic_read(&shrinker_srcu_generation); 1066 list_for_each_entry_srcu(shrinker, &shrinker_list, list, 1067 srcu_read_lock_held(&shrinker_srcu)) { 1068 struct shrink_control sc = { 1069 .gfp_mask = gfp_mask, 1070 .nid = nid, 1071 .memcg = memcg, 1072 }; 1073 1074 ret = do_shrink_slab(&sc, shrinker, priority); 1075 if (ret == SHRINK_EMPTY) 1076 ret = 0; 1077 freed += ret; 1078 1079 if (atomic_read(&shrinker_srcu_generation) != generation) { 1080 freed = freed ? : 1; 1081 break; 1082 } 1083 } 1084 1085 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1086 cond_resched(); 1087 return freed; 1088 } 1089 1090 static unsigned long drop_slab_node(int nid) 1091 { 1092 unsigned long freed = 0; 1093 struct mem_cgroup *memcg = NULL; 1094 1095 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1096 do { 1097 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1098 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1099 1100 return freed; 1101 } 1102 1103 void drop_slab(void) 1104 { 1105 int nid; 1106 int shift = 0; 1107 unsigned long freed; 1108 1109 do { 1110 freed = 0; 1111 for_each_online_node(nid) { 1112 if (fatal_signal_pending(current)) 1113 return; 1114 1115 freed += drop_slab_node(nid); 1116 } 1117 } while ((freed >> shift++) > 1); 1118 } 1119 1120 static int reclaimer_offset(void) 1121 { 1122 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1123 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1124 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1125 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1126 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1127 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1128 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1129 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1130 1131 if (current_is_kswapd()) 1132 return 0; 1133 if (current_is_khugepaged()) 1134 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1135 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1136 } 1137 1138 static inline int is_page_cache_freeable(struct folio *folio) 1139 { 1140 /* 1141 * A freeable page cache folio is referenced only by the caller 1142 * that isolated the folio, the page cache and optional filesystem 1143 * private data at folio->private. 1144 */ 1145 return folio_ref_count(folio) - folio_test_private(folio) == 1146 1 + folio_nr_pages(folio); 1147 } 1148 1149 /* 1150 * We detected a synchronous write error writing a folio out. Probably 1151 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1152 * fsync(), msync() or close(). 1153 * 1154 * The tricky part is that after writepage we cannot touch the mapping: nothing 1155 * prevents it from being freed up. But we have a ref on the folio and once 1156 * that folio is locked, the mapping is pinned. 1157 * 1158 * We're allowed to run sleeping folio_lock() here because we know the caller has 1159 * __GFP_FS. 1160 */ 1161 static void handle_write_error(struct address_space *mapping, 1162 struct folio *folio, int error) 1163 { 1164 folio_lock(folio); 1165 if (folio_mapping(folio) == mapping) 1166 mapping_set_error(mapping, error); 1167 folio_unlock(folio); 1168 } 1169 1170 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1171 { 1172 int reclaimable = 0, write_pending = 0; 1173 int i; 1174 1175 /* 1176 * If kswapd is disabled, reschedule if necessary but do not 1177 * throttle as the system is likely near OOM. 1178 */ 1179 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1180 return true; 1181 1182 /* 1183 * If there are a lot of dirty/writeback folios then do not 1184 * throttle as throttling will occur when the folios cycle 1185 * towards the end of the LRU if still under writeback. 1186 */ 1187 for (i = 0; i < MAX_NR_ZONES; i++) { 1188 struct zone *zone = pgdat->node_zones + i; 1189 1190 if (!managed_zone(zone)) 1191 continue; 1192 1193 reclaimable += zone_reclaimable_pages(zone); 1194 write_pending += zone_page_state_snapshot(zone, 1195 NR_ZONE_WRITE_PENDING); 1196 } 1197 if (2 * write_pending <= reclaimable) 1198 return true; 1199 1200 return false; 1201 } 1202 1203 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1204 { 1205 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1206 long timeout, ret; 1207 DEFINE_WAIT(wait); 1208 1209 /* 1210 * Do not throttle user workers, kthreads other than kswapd or 1211 * workqueues. They may be required for reclaim to make 1212 * forward progress (e.g. journalling workqueues or kthreads). 1213 */ 1214 if (!current_is_kswapd() && 1215 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 1216 cond_resched(); 1217 return; 1218 } 1219 1220 /* 1221 * These figures are pulled out of thin air. 1222 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1223 * parallel reclaimers which is a short-lived event so the timeout is 1224 * short. Failing to make progress or waiting on writeback are 1225 * potentially long-lived events so use a longer timeout. This is shaky 1226 * logic as a failure to make progress could be due to anything from 1227 * writeback to a slow device to excessive referenced folios at the tail 1228 * of the inactive LRU. 1229 */ 1230 switch(reason) { 1231 case VMSCAN_THROTTLE_WRITEBACK: 1232 timeout = HZ/10; 1233 1234 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1235 WRITE_ONCE(pgdat->nr_reclaim_start, 1236 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1237 } 1238 1239 break; 1240 case VMSCAN_THROTTLE_CONGESTED: 1241 fallthrough; 1242 case VMSCAN_THROTTLE_NOPROGRESS: 1243 if (skip_throttle_noprogress(pgdat)) { 1244 cond_resched(); 1245 return; 1246 } 1247 1248 timeout = 1; 1249 1250 break; 1251 case VMSCAN_THROTTLE_ISOLATED: 1252 timeout = HZ/50; 1253 break; 1254 default: 1255 WARN_ON_ONCE(1); 1256 timeout = HZ; 1257 break; 1258 } 1259 1260 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1261 ret = schedule_timeout(timeout); 1262 finish_wait(wqh, &wait); 1263 1264 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1265 atomic_dec(&pgdat->nr_writeback_throttled); 1266 1267 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1268 jiffies_to_usecs(timeout - ret), 1269 reason); 1270 } 1271 1272 /* 1273 * Account for folios written if tasks are throttled waiting on dirty 1274 * folios to clean. If enough folios have been cleaned since throttling 1275 * started then wakeup the throttled tasks. 1276 */ 1277 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1278 int nr_throttled) 1279 { 1280 unsigned long nr_written; 1281 1282 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1283 1284 /* 1285 * This is an inaccurate read as the per-cpu deltas may not 1286 * be synchronised. However, given that the system is 1287 * writeback throttled, it is not worth taking the penalty 1288 * of getting an accurate count. At worst, the throttle 1289 * timeout guarantees forward progress. 1290 */ 1291 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1292 READ_ONCE(pgdat->nr_reclaim_start); 1293 1294 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1295 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1296 } 1297 1298 /* possible outcome of pageout() */ 1299 typedef enum { 1300 /* failed to write folio out, folio is locked */ 1301 PAGE_KEEP, 1302 /* move folio to the active list, folio is locked */ 1303 PAGE_ACTIVATE, 1304 /* folio has been sent to the disk successfully, folio is unlocked */ 1305 PAGE_SUCCESS, 1306 /* folio is clean and locked */ 1307 PAGE_CLEAN, 1308 } pageout_t; 1309 1310 /* 1311 * pageout is called by shrink_folio_list() for each dirty folio. 1312 * Calls ->writepage(). 1313 */ 1314 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1315 struct swap_iocb **plug) 1316 { 1317 /* 1318 * If the folio is dirty, only perform writeback if that write 1319 * will be non-blocking. To prevent this allocation from being 1320 * stalled by pagecache activity. But note that there may be 1321 * stalls if we need to run get_block(). We could test 1322 * PagePrivate for that. 1323 * 1324 * If this process is currently in __generic_file_write_iter() against 1325 * this folio's queue, we can perform writeback even if that 1326 * will block. 1327 * 1328 * If the folio is swapcache, write it back even if that would 1329 * block, for some throttling. This happens by accident, because 1330 * swap_backing_dev_info is bust: it doesn't reflect the 1331 * congestion state of the swapdevs. Easy to fix, if needed. 1332 */ 1333 if (!is_page_cache_freeable(folio)) 1334 return PAGE_KEEP; 1335 if (!mapping) { 1336 /* 1337 * Some data journaling orphaned folios can have 1338 * folio->mapping == NULL while being dirty with clean buffers. 1339 */ 1340 if (folio_test_private(folio)) { 1341 if (try_to_free_buffers(folio)) { 1342 folio_clear_dirty(folio); 1343 pr_info("%s: orphaned folio\n", __func__); 1344 return PAGE_CLEAN; 1345 } 1346 } 1347 return PAGE_KEEP; 1348 } 1349 if (mapping->a_ops->writepage == NULL) 1350 return PAGE_ACTIVATE; 1351 1352 if (folio_clear_dirty_for_io(folio)) { 1353 int res; 1354 struct writeback_control wbc = { 1355 .sync_mode = WB_SYNC_NONE, 1356 .nr_to_write = SWAP_CLUSTER_MAX, 1357 .range_start = 0, 1358 .range_end = LLONG_MAX, 1359 .for_reclaim = 1, 1360 .swap_plug = plug, 1361 }; 1362 1363 folio_set_reclaim(folio); 1364 res = mapping->a_ops->writepage(&folio->page, &wbc); 1365 if (res < 0) 1366 handle_write_error(mapping, folio, res); 1367 if (res == AOP_WRITEPAGE_ACTIVATE) { 1368 folio_clear_reclaim(folio); 1369 return PAGE_ACTIVATE; 1370 } 1371 1372 if (!folio_test_writeback(folio)) { 1373 /* synchronous write or broken a_ops? */ 1374 folio_clear_reclaim(folio); 1375 } 1376 trace_mm_vmscan_write_folio(folio); 1377 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1378 return PAGE_SUCCESS; 1379 } 1380 1381 return PAGE_CLEAN; 1382 } 1383 1384 /* 1385 * Same as remove_mapping, but if the folio is removed from the mapping, it 1386 * gets returned with a refcount of 0. 1387 */ 1388 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1389 bool reclaimed, struct mem_cgroup *target_memcg) 1390 { 1391 int refcount; 1392 void *shadow = NULL; 1393 1394 BUG_ON(!folio_test_locked(folio)); 1395 BUG_ON(mapping != folio_mapping(folio)); 1396 1397 if (!folio_test_swapcache(folio)) 1398 spin_lock(&mapping->host->i_lock); 1399 xa_lock_irq(&mapping->i_pages); 1400 /* 1401 * The non racy check for a busy folio. 1402 * 1403 * Must be careful with the order of the tests. When someone has 1404 * a ref to the folio, it may be possible that they dirty it then 1405 * drop the reference. So if the dirty flag is tested before the 1406 * refcount here, then the following race may occur: 1407 * 1408 * get_user_pages(&page); 1409 * [user mapping goes away] 1410 * write_to(page); 1411 * !folio_test_dirty(folio) [good] 1412 * folio_set_dirty(folio); 1413 * folio_put(folio); 1414 * !refcount(folio) [good, discard it] 1415 * 1416 * [oops, our write_to data is lost] 1417 * 1418 * Reversing the order of the tests ensures such a situation cannot 1419 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1420 * load is not satisfied before that of folio->_refcount. 1421 * 1422 * Note that if the dirty flag is always set via folio_mark_dirty, 1423 * and thus under the i_pages lock, then this ordering is not required. 1424 */ 1425 refcount = 1 + folio_nr_pages(folio); 1426 if (!folio_ref_freeze(folio, refcount)) 1427 goto cannot_free; 1428 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1429 if (unlikely(folio_test_dirty(folio))) { 1430 folio_ref_unfreeze(folio, refcount); 1431 goto cannot_free; 1432 } 1433 1434 if (folio_test_swapcache(folio)) { 1435 swp_entry_t swap = folio_swap_entry(folio); 1436 1437 if (reclaimed && !mapping_exiting(mapping)) 1438 shadow = workingset_eviction(folio, target_memcg); 1439 __delete_from_swap_cache(folio, swap, shadow); 1440 mem_cgroup_swapout(folio, swap); 1441 xa_unlock_irq(&mapping->i_pages); 1442 put_swap_folio(folio, swap); 1443 } else { 1444 void (*free_folio)(struct folio *); 1445 1446 free_folio = mapping->a_ops->free_folio; 1447 /* 1448 * Remember a shadow entry for reclaimed file cache in 1449 * order to detect refaults, thus thrashing, later on. 1450 * 1451 * But don't store shadows in an address space that is 1452 * already exiting. This is not just an optimization, 1453 * inode reclaim needs to empty out the radix tree or 1454 * the nodes are lost. Don't plant shadows behind its 1455 * back. 1456 * 1457 * We also don't store shadows for DAX mappings because the 1458 * only page cache folios found in these are zero pages 1459 * covering holes, and because we don't want to mix DAX 1460 * exceptional entries and shadow exceptional entries in the 1461 * same address_space. 1462 */ 1463 if (reclaimed && folio_is_file_lru(folio) && 1464 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1465 shadow = workingset_eviction(folio, target_memcg); 1466 __filemap_remove_folio(folio, shadow); 1467 xa_unlock_irq(&mapping->i_pages); 1468 if (mapping_shrinkable(mapping)) 1469 inode_add_lru(mapping->host); 1470 spin_unlock(&mapping->host->i_lock); 1471 1472 if (free_folio) 1473 free_folio(folio); 1474 } 1475 1476 return 1; 1477 1478 cannot_free: 1479 xa_unlock_irq(&mapping->i_pages); 1480 if (!folio_test_swapcache(folio)) 1481 spin_unlock(&mapping->host->i_lock); 1482 return 0; 1483 } 1484 1485 /** 1486 * remove_mapping() - Attempt to remove a folio from its mapping. 1487 * @mapping: The address space. 1488 * @folio: The folio to remove. 1489 * 1490 * If the folio is dirty, under writeback or if someone else has a ref 1491 * on it, removal will fail. 1492 * Return: The number of pages removed from the mapping. 0 if the folio 1493 * could not be removed. 1494 * Context: The caller should have a single refcount on the folio and 1495 * hold its lock. 1496 */ 1497 long remove_mapping(struct address_space *mapping, struct folio *folio) 1498 { 1499 if (__remove_mapping(mapping, folio, false, NULL)) { 1500 /* 1501 * Unfreezing the refcount with 1 effectively 1502 * drops the pagecache ref for us without requiring another 1503 * atomic operation. 1504 */ 1505 folio_ref_unfreeze(folio, 1); 1506 return folio_nr_pages(folio); 1507 } 1508 return 0; 1509 } 1510 1511 /** 1512 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1513 * @folio: Folio to be returned to an LRU list. 1514 * 1515 * Add previously isolated @folio to appropriate LRU list. 1516 * The folio may still be unevictable for other reasons. 1517 * 1518 * Context: lru_lock must not be held, interrupts must be enabled. 1519 */ 1520 void folio_putback_lru(struct folio *folio) 1521 { 1522 folio_add_lru(folio); 1523 folio_put(folio); /* drop ref from isolate */ 1524 } 1525 1526 enum folio_references { 1527 FOLIOREF_RECLAIM, 1528 FOLIOREF_RECLAIM_CLEAN, 1529 FOLIOREF_KEEP, 1530 FOLIOREF_ACTIVATE, 1531 }; 1532 1533 static enum folio_references folio_check_references(struct folio *folio, 1534 struct scan_control *sc) 1535 { 1536 int referenced_ptes, referenced_folio; 1537 unsigned long vm_flags; 1538 1539 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1540 &vm_flags); 1541 referenced_folio = folio_test_clear_referenced(folio); 1542 1543 /* 1544 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1545 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1546 */ 1547 if (vm_flags & VM_LOCKED) 1548 return FOLIOREF_ACTIVATE; 1549 1550 /* rmap lock contention: rotate */ 1551 if (referenced_ptes == -1) 1552 return FOLIOREF_KEEP; 1553 1554 if (referenced_ptes) { 1555 /* 1556 * All mapped folios start out with page table 1557 * references from the instantiating fault, so we need 1558 * to look twice if a mapped file/anon folio is used more 1559 * than once. 1560 * 1561 * Mark it and spare it for another trip around the 1562 * inactive list. Another page table reference will 1563 * lead to its activation. 1564 * 1565 * Note: the mark is set for activated folios as well 1566 * so that recently deactivated but used folios are 1567 * quickly recovered. 1568 */ 1569 folio_set_referenced(folio); 1570 1571 if (referenced_folio || referenced_ptes > 1) 1572 return FOLIOREF_ACTIVATE; 1573 1574 /* 1575 * Activate file-backed executable folios after first usage. 1576 */ 1577 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1578 return FOLIOREF_ACTIVATE; 1579 1580 return FOLIOREF_KEEP; 1581 } 1582 1583 /* Reclaim if clean, defer dirty folios to writeback */ 1584 if (referenced_folio && folio_is_file_lru(folio)) 1585 return FOLIOREF_RECLAIM_CLEAN; 1586 1587 return FOLIOREF_RECLAIM; 1588 } 1589 1590 /* Check if a folio is dirty or under writeback */ 1591 static void folio_check_dirty_writeback(struct folio *folio, 1592 bool *dirty, bool *writeback) 1593 { 1594 struct address_space *mapping; 1595 1596 /* 1597 * Anonymous folios are not handled by flushers and must be written 1598 * from reclaim context. Do not stall reclaim based on them. 1599 * MADV_FREE anonymous folios are put into inactive file list too. 1600 * They could be mistakenly treated as file lru. So further anon 1601 * test is needed. 1602 */ 1603 if (!folio_is_file_lru(folio) || 1604 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1605 *dirty = false; 1606 *writeback = false; 1607 return; 1608 } 1609 1610 /* By default assume that the folio flags are accurate */ 1611 *dirty = folio_test_dirty(folio); 1612 *writeback = folio_test_writeback(folio); 1613 1614 /* Verify dirty/writeback state if the filesystem supports it */ 1615 if (!folio_test_private(folio)) 1616 return; 1617 1618 mapping = folio_mapping(folio); 1619 if (mapping && mapping->a_ops->is_dirty_writeback) 1620 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1621 } 1622 1623 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1624 { 1625 struct page *target_page; 1626 nodemask_t *allowed_mask; 1627 struct migration_target_control *mtc; 1628 1629 mtc = (struct migration_target_control *)private; 1630 1631 allowed_mask = mtc->nmask; 1632 /* 1633 * make sure we allocate from the target node first also trying to 1634 * demote or reclaim pages from the target node via kswapd if we are 1635 * low on free memory on target node. If we don't do this and if 1636 * we have free memory on the slower(lower) memtier, we would start 1637 * allocating pages from slower(lower) memory tiers without even forcing 1638 * a demotion of cold pages from the target memtier. This can result 1639 * in the kernel placing hot pages in slower(lower) memory tiers. 1640 */ 1641 mtc->nmask = NULL; 1642 mtc->gfp_mask |= __GFP_THISNODE; 1643 target_page = alloc_migration_target(page, (unsigned long)mtc); 1644 if (target_page) 1645 return target_page; 1646 1647 mtc->gfp_mask &= ~__GFP_THISNODE; 1648 mtc->nmask = allowed_mask; 1649 1650 return alloc_migration_target(page, (unsigned long)mtc); 1651 } 1652 1653 /* 1654 * Take folios on @demote_folios and attempt to demote them to another node. 1655 * Folios which are not demoted are left on @demote_folios. 1656 */ 1657 static unsigned int demote_folio_list(struct list_head *demote_folios, 1658 struct pglist_data *pgdat) 1659 { 1660 int target_nid = next_demotion_node(pgdat->node_id); 1661 unsigned int nr_succeeded; 1662 nodemask_t allowed_mask; 1663 1664 struct migration_target_control mtc = { 1665 /* 1666 * Allocate from 'node', or fail quickly and quietly. 1667 * When this happens, 'page' will likely just be discarded 1668 * instead of migrated. 1669 */ 1670 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1671 __GFP_NOMEMALLOC | GFP_NOWAIT, 1672 .nid = target_nid, 1673 .nmask = &allowed_mask 1674 }; 1675 1676 if (list_empty(demote_folios)) 1677 return 0; 1678 1679 if (target_nid == NUMA_NO_NODE) 1680 return 0; 1681 1682 node_get_allowed_targets(pgdat, &allowed_mask); 1683 1684 /* Demotion ignores all cpuset and mempolicy settings */ 1685 migrate_pages(demote_folios, alloc_demote_page, NULL, 1686 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1687 &nr_succeeded); 1688 1689 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1690 1691 return nr_succeeded; 1692 } 1693 1694 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1695 { 1696 if (gfp_mask & __GFP_FS) 1697 return true; 1698 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1699 return false; 1700 /* 1701 * We can "enter_fs" for swap-cache with only __GFP_IO 1702 * providing this isn't SWP_FS_OPS. 1703 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1704 * but that will never affect SWP_FS_OPS, so the data_race 1705 * is safe. 1706 */ 1707 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1708 } 1709 1710 /* 1711 * shrink_folio_list() returns the number of reclaimed pages 1712 */ 1713 static unsigned int shrink_folio_list(struct list_head *folio_list, 1714 struct pglist_data *pgdat, struct scan_control *sc, 1715 struct reclaim_stat *stat, bool ignore_references) 1716 { 1717 LIST_HEAD(ret_folios); 1718 LIST_HEAD(free_folios); 1719 LIST_HEAD(demote_folios); 1720 unsigned int nr_reclaimed = 0; 1721 unsigned int pgactivate = 0; 1722 bool do_demote_pass; 1723 struct swap_iocb *plug = NULL; 1724 1725 memset(stat, 0, sizeof(*stat)); 1726 cond_resched(); 1727 do_demote_pass = can_demote(pgdat->node_id, sc); 1728 1729 retry: 1730 while (!list_empty(folio_list)) { 1731 struct address_space *mapping; 1732 struct folio *folio; 1733 enum folio_references references = FOLIOREF_RECLAIM; 1734 bool dirty, writeback; 1735 unsigned int nr_pages; 1736 1737 cond_resched(); 1738 1739 folio = lru_to_folio(folio_list); 1740 list_del(&folio->lru); 1741 1742 if (!folio_trylock(folio)) 1743 goto keep; 1744 1745 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1746 1747 nr_pages = folio_nr_pages(folio); 1748 1749 /* Account the number of base pages */ 1750 sc->nr_scanned += nr_pages; 1751 1752 if (unlikely(!folio_evictable(folio))) 1753 goto activate_locked; 1754 1755 if (!sc->may_unmap && folio_mapped(folio)) 1756 goto keep_locked; 1757 1758 /* folio_update_gen() tried to promote this page? */ 1759 if (lru_gen_enabled() && !ignore_references && 1760 folio_mapped(folio) && folio_test_referenced(folio)) 1761 goto keep_locked; 1762 1763 /* 1764 * The number of dirty pages determines if a node is marked 1765 * reclaim_congested. kswapd will stall and start writing 1766 * folios if the tail of the LRU is all dirty unqueued folios. 1767 */ 1768 folio_check_dirty_writeback(folio, &dirty, &writeback); 1769 if (dirty || writeback) 1770 stat->nr_dirty += nr_pages; 1771 1772 if (dirty && !writeback) 1773 stat->nr_unqueued_dirty += nr_pages; 1774 1775 /* 1776 * Treat this folio as congested if folios are cycling 1777 * through the LRU so quickly that the folios marked 1778 * for immediate reclaim are making it to the end of 1779 * the LRU a second time. 1780 */ 1781 if (writeback && folio_test_reclaim(folio)) 1782 stat->nr_congested += nr_pages; 1783 1784 /* 1785 * If a folio at the tail of the LRU is under writeback, there 1786 * are three cases to consider. 1787 * 1788 * 1) If reclaim is encountering an excessive number 1789 * of folios under writeback and this folio has both 1790 * the writeback and reclaim flags set, then it 1791 * indicates that folios are being queued for I/O but 1792 * are being recycled through the LRU before the I/O 1793 * can complete. Waiting on the folio itself risks an 1794 * indefinite stall if it is impossible to writeback 1795 * the folio due to I/O error or disconnected storage 1796 * so instead note that the LRU is being scanned too 1797 * quickly and the caller can stall after the folio 1798 * list has been processed. 1799 * 1800 * 2) Global or new memcg reclaim encounters a folio that is 1801 * not marked for immediate reclaim, or the caller does not 1802 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1803 * not to fs). In this case mark the folio for immediate 1804 * reclaim and continue scanning. 1805 * 1806 * Require may_enter_fs() because we would wait on fs, which 1807 * may not have submitted I/O yet. And the loop driver might 1808 * enter reclaim, and deadlock if it waits on a folio for 1809 * which it is needed to do the write (loop masks off 1810 * __GFP_IO|__GFP_FS for this reason); but more thought 1811 * would probably show more reasons. 1812 * 1813 * 3) Legacy memcg encounters a folio that already has the 1814 * reclaim flag set. memcg does not have any dirty folio 1815 * throttling so we could easily OOM just because too many 1816 * folios are in writeback and there is nothing else to 1817 * reclaim. Wait for the writeback to complete. 1818 * 1819 * In cases 1) and 2) we activate the folios to get them out of 1820 * the way while we continue scanning for clean folios on the 1821 * inactive list and refilling from the active list. The 1822 * observation here is that waiting for disk writes is more 1823 * expensive than potentially causing reloads down the line. 1824 * Since they're marked for immediate reclaim, they won't put 1825 * memory pressure on the cache working set any longer than it 1826 * takes to write them to disk. 1827 */ 1828 if (folio_test_writeback(folio)) { 1829 /* Case 1 above */ 1830 if (current_is_kswapd() && 1831 folio_test_reclaim(folio) && 1832 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1833 stat->nr_immediate += nr_pages; 1834 goto activate_locked; 1835 1836 /* Case 2 above */ 1837 } else if (writeback_throttling_sane(sc) || 1838 !folio_test_reclaim(folio) || 1839 !may_enter_fs(folio, sc->gfp_mask)) { 1840 /* 1841 * This is slightly racy - 1842 * folio_end_writeback() might have 1843 * just cleared the reclaim flag, then 1844 * setting the reclaim flag here ends up 1845 * interpreted as the readahead flag - but 1846 * that does not matter enough to care. 1847 * What we do want is for this folio to 1848 * have the reclaim flag set next time 1849 * memcg reclaim reaches the tests above, 1850 * so it will then wait for writeback to 1851 * avoid OOM; and it's also appropriate 1852 * in global reclaim. 1853 */ 1854 folio_set_reclaim(folio); 1855 stat->nr_writeback += nr_pages; 1856 goto activate_locked; 1857 1858 /* Case 3 above */ 1859 } else { 1860 folio_unlock(folio); 1861 folio_wait_writeback(folio); 1862 /* then go back and try same folio again */ 1863 list_add_tail(&folio->lru, folio_list); 1864 continue; 1865 } 1866 } 1867 1868 if (!ignore_references) 1869 references = folio_check_references(folio, sc); 1870 1871 switch (references) { 1872 case FOLIOREF_ACTIVATE: 1873 goto activate_locked; 1874 case FOLIOREF_KEEP: 1875 stat->nr_ref_keep += nr_pages; 1876 goto keep_locked; 1877 case FOLIOREF_RECLAIM: 1878 case FOLIOREF_RECLAIM_CLEAN: 1879 ; /* try to reclaim the folio below */ 1880 } 1881 1882 /* 1883 * Before reclaiming the folio, try to relocate 1884 * its contents to another node. 1885 */ 1886 if (do_demote_pass && 1887 (thp_migration_supported() || !folio_test_large(folio))) { 1888 list_add(&folio->lru, &demote_folios); 1889 folio_unlock(folio); 1890 continue; 1891 } 1892 1893 /* 1894 * Anonymous process memory has backing store? 1895 * Try to allocate it some swap space here. 1896 * Lazyfree folio could be freed directly 1897 */ 1898 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1899 if (!folio_test_swapcache(folio)) { 1900 if (!(sc->gfp_mask & __GFP_IO)) 1901 goto keep_locked; 1902 if (folio_maybe_dma_pinned(folio)) 1903 goto keep_locked; 1904 if (folio_test_large(folio)) { 1905 /* cannot split folio, skip it */ 1906 if (!can_split_folio(folio, NULL)) 1907 goto activate_locked; 1908 /* 1909 * Split folios without a PMD map right 1910 * away. Chances are some or all of the 1911 * tail pages can be freed without IO. 1912 */ 1913 if (!folio_entire_mapcount(folio) && 1914 split_folio_to_list(folio, 1915 folio_list)) 1916 goto activate_locked; 1917 } 1918 if (!add_to_swap(folio)) { 1919 if (!folio_test_large(folio)) 1920 goto activate_locked_split; 1921 /* Fallback to swap normal pages */ 1922 if (split_folio_to_list(folio, 1923 folio_list)) 1924 goto activate_locked; 1925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1926 count_vm_event(THP_SWPOUT_FALLBACK); 1927 #endif 1928 if (!add_to_swap(folio)) 1929 goto activate_locked_split; 1930 } 1931 } 1932 } else if (folio_test_swapbacked(folio) && 1933 folio_test_large(folio)) { 1934 /* Split shmem folio */ 1935 if (split_folio_to_list(folio, folio_list)) 1936 goto keep_locked; 1937 } 1938 1939 /* 1940 * If the folio was split above, the tail pages will make 1941 * their own pass through this function and be accounted 1942 * then. 1943 */ 1944 if ((nr_pages > 1) && !folio_test_large(folio)) { 1945 sc->nr_scanned -= (nr_pages - 1); 1946 nr_pages = 1; 1947 } 1948 1949 /* 1950 * The folio is mapped into the page tables of one or more 1951 * processes. Try to unmap it here. 1952 */ 1953 if (folio_mapped(folio)) { 1954 enum ttu_flags flags = TTU_BATCH_FLUSH; 1955 bool was_swapbacked = folio_test_swapbacked(folio); 1956 1957 if (folio_test_pmd_mappable(folio)) 1958 flags |= TTU_SPLIT_HUGE_PMD; 1959 1960 try_to_unmap(folio, flags); 1961 if (folio_mapped(folio)) { 1962 stat->nr_unmap_fail += nr_pages; 1963 if (!was_swapbacked && 1964 folio_test_swapbacked(folio)) 1965 stat->nr_lazyfree_fail += nr_pages; 1966 goto activate_locked; 1967 } 1968 } 1969 1970 /* 1971 * Folio is unmapped now so it cannot be newly pinned anymore. 1972 * No point in trying to reclaim folio if it is pinned. 1973 * Furthermore we don't want to reclaim underlying fs metadata 1974 * if the folio is pinned and thus potentially modified by the 1975 * pinning process as that may upset the filesystem. 1976 */ 1977 if (folio_maybe_dma_pinned(folio)) 1978 goto activate_locked; 1979 1980 mapping = folio_mapping(folio); 1981 if (folio_test_dirty(folio)) { 1982 /* 1983 * Only kswapd can writeback filesystem folios 1984 * to avoid risk of stack overflow. But avoid 1985 * injecting inefficient single-folio I/O into 1986 * flusher writeback as much as possible: only 1987 * write folios when we've encountered many 1988 * dirty folios, and when we've already scanned 1989 * the rest of the LRU for clean folios and see 1990 * the same dirty folios again (with the reclaim 1991 * flag set). 1992 */ 1993 if (folio_is_file_lru(folio) && 1994 (!current_is_kswapd() || 1995 !folio_test_reclaim(folio) || 1996 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1997 /* 1998 * Immediately reclaim when written back. 1999 * Similar in principle to folio_deactivate() 2000 * except we already have the folio isolated 2001 * and know it's dirty 2002 */ 2003 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 2004 nr_pages); 2005 folio_set_reclaim(folio); 2006 2007 goto activate_locked; 2008 } 2009 2010 if (references == FOLIOREF_RECLAIM_CLEAN) 2011 goto keep_locked; 2012 if (!may_enter_fs(folio, sc->gfp_mask)) 2013 goto keep_locked; 2014 if (!sc->may_writepage) 2015 goto keep_locked; 2016 2017 /* 2018 * Folio is dirty. Flush the TLB if a writable entry 2019 * potentially exists to avoid CPU writes after I/O 2020 * starts and then write it out here. 2021 */ 2022 try_to_unmap_flush_dirty(); 2023 switch (pageout(folio, mapping, &plug)) { 2024 case PAGE_KEEP: 2025 goto keep_locked; 2026 case PAGE_ACTIVATE: 2027 goto activate_locked; 2028 case PAGE_SUCCESS: 2029 stat->nr_pageout += nr_pages; 2030 2031 if (folio_test_writeback(folio)) 2032 goto keep; 2033 if (folio_test_dirty(folio)) 2034 goto keep; 2035 2036 /* 2037 * A synchronous write - probably a ramdisk. Go 2038 * ahead and try to reclaim the folio. 2039 */ 2040 if (!folio_trylock(folio)) 2041 goto keep; 2042 if (folio_test_dirty(folio) || 2043 folio_test_writeback(folio)) 2044 goto keep_locked; 2045 mapping = folio_mapping(folio); 2046 fallthrough; 2047 case PAGE_CLEAN: 2048 ; /* try to free the folio below */ 2049 } 2050 } 2051 2052 /* 2053 * If the folio has buffers, try to free the buffer 2054 * mappings associated with this folio. If we succeed 2055 * we try to free the folio as well. 2056 * 2057 * We do this even if the folio is dirty. 2058 * filemap_release_folio() does not perform I/O, but it 2059 * is possible for a folio to have the dirty flag set, 2060 * but it is actually clean (all its buffers are clean). 2061 * This happens if the buffers were written out directly, 2062 * with submit_bh(). ext3 will do this, as well as 2063 * the blockdev mapping. filemap_release_folio() will 2064 * discover that cleanness and will drop the buffers 2065 * and mark the folio clean - it can be freed. 2066 * 2067 * Rarely, folios can have buffers and no ->mapping. 2068 * These are the folios which were not successfully 2069 * invalidated in truncate_cleanup_folio(). We try to 2070 * drop those buffers here and if that worked, and the 2071 * folio is no longer mapped into process address space 2072 * (refcount == 1) it can be freed. Otherwise, leave 2073 * the folio on the LRU so it is swappable. 2074 */ 2075 if (folio_has_private(folio)) { 2076 if (!filemap_release_folio(folio, sc->gfp_mask)) 2077 goto activate_locked; 2078 if (!mapping && folio_ref_count(folio) == 1) { 2079 folio_unlock(folio); 2080 if (folio_put_testzero(folio)) 2081 goto free_it; 2082 else { 2083 /* 2084 * rare race with speculative reference. 2085 * the speculative reference will free 2086 * this folio shortly, so we may 2087 * increment nr_reclaimed here (and 2088 * leave it off the LRU). 2089 */ 2090 nr_reclaimed += nr_pages; 2091 continue; 2092 } 2093 } 2094 } 2095 2096 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2097 /* follow __remove_mapping for reference */ 2098 if (!folio_ref_freeze(folio, 1)) 2099 goto keep_locked; 2100 /* 2101 * The folio has only one reference left, which is 2102 * from the isolation. After the caller puts the 2103 * folio back on the lru and drops the reference, the 2104 * folio will be freed anyway. It doesn't matter 2105 * which lru it goes on. So we don't bother checking 2106 * the dirty flag here. 2107 */ 2108 count_vm_events(PGLAZYFREED, nr_pages); 2109 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2110 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2111 sc->target_mem_cgroup)) 2112 goto keep_locked; 2113 2114 folio_unlock(folio); 2115 free_it: 2116 /* 2117 * Folio may get swapped out as a whole, need to account 2118 * all pages in it. 2119 */ 2120 nr_reclaimed += nr_pages; 2121 2122 /* 2123 * Is there need to periodically free_folio_list? It would 2124 * appear not as the counts should be low 2125 */ 2126 if (unlikely(folio_test_large(folio))) 2127 destroy_large_folio(folio); 2128 else 2129 list_add(&folio->lru, &free_folios); 2130 continue; 2131 2132 activate_locked_split: 2133 /* 2134 * The tail pages that are failed to add into swap cache 2135 * reach here. Fixup nr_scanned and nr_pages. 2136 */ 2137 if (nr_pages > 1) { 2138 sc->nr_scanned -= (nr_pages - 1); 2139 nr_pages = 1; 2140 } 2141 activate_locked: 2142 /* Not a candidate for swapping, so reclaim swap space. */ 2143 if (folio_test_swapcache(folio) && 2144 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2145 folio_free_swap(folio); 2146 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2147 if (!folio_test_mlocked(folio)) { 2148 int type = folio_is_file_lru(folio); 2149 folio_set_active(folio); 2150 stat->nr_activate[type] += nr_pages; 2151 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2152 } 2153 keep_locked: 2154 folio_unlock(folio); 2155 keep: 2156 list_add(&folio->lru, &ret_folios); 2157 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2158 folio_test_unevictable(folio), folio); 2159 } 2160 /* 'folio_list' is always empty here */ 2161 2162 /* Migrate folios selected for demotion */ 2163 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2164 /* Folios that could not be demoted are still in @demote_folios */ 2165 if (!list_empty(&demote_folios)) { 2166 /* Folios which weren't demoted go back on @folio_list */ 2167 list_splice_init(&demote_folios, folio_list); 2168 2169 /* 2170 * goto retry to reclaim the undemoted folios in folio_list if 2171 * desired. 2172 * 2173 * Reclaiming directly from top tier nodes is not often desired 2174 * due to it breaking the LRU ordering: in general memory 2175 * should be reclaimed from lower tier nodes and demoted from 2176 * top tier nodes. 2177 * 2178 * However, disabling reclaim from top tier nodes entirely 2179 * would cause ooms in edge scenarios where lower tier memory 2180 * is unreclaimable for whatever reason, eg memory being 2181 * mlocked or too hot to reclaim. We can disable reclaim 2182 * from top tier nodes in proactive reclaim though as that is 2183 * not real memory pressure. 2184 */ 2185 if (!sc->proactive) { 2186 do_demote_pass = false; 2187 goto retry; 2188 } 2189 } 2190 2191 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2192 2193 mem_cgroup_uncharge_list(&free_folios); 2194 try_to_unmap_flush(); 2195 free_unref_page_list(&free_folios); 2196 2197 list_splice(&ret_folios, folio_list); 2198 count_vm_events(PGACTIVATE, pgactivate); 2199 2200 if (plug) 2201 swap_write_unplug(plug); 2202 return nr_reclaimed; 2203 } 2204 2205 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2206 struct list_head *folio_list) 2207 { 2208 struct scan_control sc = { 2209 .gfp_mask = GFP_KERNEL, 2210 .may_unmap = 1, 2211 }; 2212 struct reclaim_stat stat; 2213 unsigned int nr_reclaimed; 2214 struct folio *folio, *next; 2215 LIST_HEAD(clean_folios); 2216 unsigned int noreclaim_flag; 2217 2218 list_for_each_entry_safe(folio, next, folio_list, lru) { 2219 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2220 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2221 !folio_test_unevictable(folio)) { 2222 folio_clear_active(folio); 2223 list_move(&folio->lru, &clean_folios); 2224 } 2225 } 2226 2227 /* 2228 * We should be safe here since we are only dealing with file pages and 2229 * we are not kswapd and therefore cannot write dirty file pages. But 2230 * call memalloc_noreclaim_save() anyway, just in case these conditions 2231 * change in the future. 2232 */ 2233 noreclaim_flag = memalloc_noreclaim_save(); 2234 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2235 &stat, true); 2236 memalloc_noreclaim_restore(noreclaim_flag); 2237 2238 list_splice(&clean_folios, folio_list); 2239 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2240 -(long)nr_reclaimed); 2241 /* 2242 * Since lazyfree pages are isolated from file LRU from the beginning, 2243 * they will rotate back to anonymous LRU in the end if it failed to 2244 * discard so isolated count will be mismatched. 2245 * Compensate the isolated count for both LRU lists. 2246 */ 2247 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2248 stat.nr_lazyfree_fail); 2249 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2250 -(long)stat.nr_lazyfree_fail); 2251 return nr_reclaimed; 2252 } 2253 2254 /* 2255 * Update LRU sizes after isolating pages. The LRU size updates must 2256 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2257 */ 2258 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2259 enum lru_list lru, unsigned long *nr_zone_taken) 2260 { 2261 int zid; 2262 2263 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2264 if (!nr_zone_taken[zid]) 2265 continue; 2266 2267 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2268 } 2269 2270 } 2271 2272 /* 2273 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2274 * 2275 * lruvec->lru_lock is heavily contended. Some of the functions that 2276 * shrink the lists perform better by taking out a batch of pages 2277 * and working on them outside the LRU lock. 2278 * 2279 * For pagecache intensive workloads, this function is the hottest 2280 * spot in the kernel (apart from copy_*_user functions). 2281 * 2282 * Lru_lock must be held before calling this function. 2283 * 2284 * @nr_to_scan: The number of eligible pages to look through on the list. 2285 * @lruvec: The LRU vector to pull pages from. 2286 * @dst: The temp list to put pages on to. 2287 * @nr_scanned: The number of pages that were scanned. 2288 * @sc: The scan_control struct for this reclaim session 2289 * @lru: LRU list id for isolating 2290 * 2291 * returns how many pages were moved onto *@dst. 2292 */ 2293 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2294 struct lruvec *lruvec, struct list_head *dst, 2295 unsigned long *nr_scanned, struct scan_control *sc, 2296 enum lru_list lru) 2297 { 2298 struct list_head *src = &lruvec->lists[lru]; 2299 unsigned long nr_taken = 0; 2300 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2301 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2302 unsigned long skipped = 0; 2303 unsigned long scan, total_scan, nr_pages; 2304 LIST_HEAD(folios_skipped); 2305 2306 total_scan = 0; 2307 scan = 0; 2308 while (scan < nr_to_scan && !list_empty(src)) { 2309 struct list_head *move_to = src; 2310 struct folio *folio; 2311 2312 folio = lru_to_folio(src); 2313 prefetchw_prev_lru_folio(folio, src, flags); 2314 2315 nr_pages = folio_nr_pages(folio); 2316 total_scan += nr_pages; 2317 2318 if (folio_zonenum(folio) > sc->reclaim_idx) { 2319 nr_skipped[folio_zonenum(folio)] += nr_pages; 2320 move_to = &folios_skipped; 2321 goto move; 2322 } 2323 2324 /* 2325 * Do not count skipped folios because that makes the function 2326 * return with no isolated folios if the LRU mostly contains 2327 * ineligible folios. This causes the VM to not reclaim any 2328 * folios, triggering a premature OOM. 2329 * Account all pages in a folio. 2330 */ 2331 scan += nr_pages; 2332 2333 if (!folio_test_lru(folio)) 2334 goto move; 2335 if (!sc->may_unmap && folio_mapped(folio)) 2336 goto move; 2337 2338 /* 2339 * Be careful not to clear the lru flag until after we're 2340 * sure the folio is not being freed elsewhere -- the 2341 * folio release code relies on it. 2342 */ 2343 if (unlikely(!folio_try_get(folio))) 2344 goto move; 2345 2346 if (!folio_test_clear_lru(folio)) { 2347 /* Another thread is already isolating this folio */ 2348 folio_put(folio); 2349 goto move; 2350 } 2351 2352 nr_taken += nr_pages; 2353 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2354 move_to = dst; 2355 move: 2356 list_move(&folio->lru, move_to); 2357 } 2358 2359 /* 2360 * Splice any skipped folios to the start of the LRU list. Note that 2361 * this disrupts the LRU order when reclaiming for lower zones but 2362 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2363 * scanning would soon rescan the same folios to skip and waste lots 2364 * of cpu cycles. 2365 */ 2366 if (!list_empty(&folios_skipped)) { 2367 int zid; 2368 2369 list_splice(&folios_skipped, src); 2370 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2371 if (!nr_skipped[zid]) 2372 continue; 2373 2374 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2375 skipped += nr_skipped[zid]; 2376 } 2377 } 2378 *nr_scanned = total_scan; 2379 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2380 total_scan, skipped, nr_taken, 2381 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2382 update_lru_sizes(lruvec, lru, nr_zone_taken); 2383 return nr_taken; 2384 } 2385 2386 /** 2387 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2388 * @folio: Folio to isolate from its LRU list. 2389 * 2390 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2391 * corresponding to whatever LRU list the folio was on. 2392 * 2393 * The folio will have its LRU flag cleared. If it was found on the 2394 * active list, it will have the Active flag set. If it was found on the 2395 * unevictable list, it will have the Unevictable flag set. These flags 2396 * may need to be cleared by the caller before letting the page go. 2397 * 2398 * Context: 2399 * 2400 * (1) Must be called with an elevated refcount on the folio. This is a 2401 * fundamental difference from isolate_lru_folios() (which is called 2402 * without a stable reference). 2403 * (2) The lru_lock must not be held. 2404 * (3) Interrupts must be enabled. 2405 * 2406 * Return: true if the folio was removed from an LRU list. 2407 * false if the folio was not on an LRU list. 2408 */ 2409 bool folio_isolate_lru(struct folio *folio) 2410 { 2411 bool ret = false; 2412 2413 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2414 2415 if (folio_test_clear_lru(folio)) { 2416 struct lruvec *lruvec; 2417 2418 folio_get(folio); 2419 lruvec = folio_lruvec_lock_irq(folio); 2420 lruvec_del_folio(lruvec, folio); 2421 unlock_page_lruvec_irq(lruvec); 2422 ret = true; 2423 } 2424 2425 return ret; 2426 } 2427 2428 /* 2429 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2430 * then get rescheduled. When there are massive number of tasks doing page 2431 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2432 * the LRU list will go small and be scanned faster than necessary, leading to 2433 * unnecessary swapping, thrashing and OOM. 2434 */ 2435 static int too_many_isolated(struct pglist_data *pgdat, int file, 2436 struct scan_control *sc) 2437 { 2438 unsigned long inactive, isolated; 2439 bool too_many; 2440 2441 if (current_is_kswapd()) 2442 return 0; 2443 2444 if (!writeback_throttling_sane(sc)) 2445 return 0; 2446 2447 if (file) { 2448 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2449 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2450 } else { 2451 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2452 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2453 } 2454 2455 /* 2456 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2457 * won't get blocked by normal direct-reclaimers, forming a circular 2458 * deadlock. 2459 */ 2460 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2461 inactive >>= 3; 2462 2463 too_many = isolated > inactive; 2464 2465 /* Wake up tasks throttled due to too_many_isolated. */ 2466 if (!too_many) 2467 wake_throttle_isolated(pgdat); 2468 2469 return too_many; 2470 } 2471 2472 /* 2473 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2474 * On return, @list is reused as a list of folios to be freed by the caller. 2475 * 2476 * Returns the number of pages moved to the given lruvec. 2477 */ 2478 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2479 struct list_head *list) 2480 { 2481 int nr_pages, nr_moved = 0; 2482 LIST_HEAD(folios_to_free); 2483 2484 while (!list_empty(list)) { 2485 struct folio *folio = lru_to_folio(list); 2486 2487 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2488 list_del(&folio->lru); 2489 if (unlikely(!folio_evictable(folio))) { 2490 spin_unlock_irq(&lruvec->lru_lock); 2491 folio_putback_lru(folio); 2492 spin_lock_irq(&lruvec->lru_lock); 2493 continue; 2494 } 2495 2496 /* 2497 * The folio_set_lru needs to be kept here for list integrity. 2498 * Otherwise: 2499 * #0 move_folios_to_lru #1 release_pages 2500 * if (!folio_put_testzero()) 2501 * if (folio_put_testzero()) 2502 * !lru //skip lru_lock 2503 * folio_set_lru() 2504 * list_add(&folio->lru,) 2505 * list_add(&folio->lru,) 2506 */ 2507 folio_set_lru(folio); 2508 2509 if (unlikely(folio_put_testzero(folio))) { 2510 __folio_clear_lru_flags(folio); 2511 2512 if (unlikely(folio_test_large(folio))) { 2513 spin_unlock_irq(&lruvec->lru_lock); 2514 destroy_large_folio(folio); 2515 spin_lock_irq(&lruvec->lru_lock); 2516 } else 2517 list_add(&folio->lru, &folios_to_free); 2518 2519 continue; 2520 } 2521 2522 /* 2523 * All pages were isolated from the same lruvec (and isolation 2524 * inhibits memcg migration). 2525 */ 2526 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2527 lruvec_add_folio(lruvec, folio); 2528 nr_pages = folio_nr_pages(folio); 2529 nr_moved += nr_pages; 2530 if (folio_test_active(folio)) 2531 workingset_age_nonresident(lruvec, nr_pages); 2532 } 2533 2534 /* 2535 * To save our caller's stack, now use input list for pages to free. 2536 */ 2537 list_splice(&folios_to_free, list); 2538 2539 return nr_moved; 2540 } 2541 2542 /* 2543 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2544 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2545 * we should not throttle. Otherwise it is safe to do so. 2546 */ 2547 static int current_may_throttle(void) 2548 { 2549 return !(current->flags & PF_LOCAL_THROTTLE); 2550 } 2551 2552 /* 2553 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2554 * of reclaimed pages 2555 */ 2556 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2557 struct lruvec *lruvec, struct scan_control *sc, 2558 enum lru_list lru) 2559 { 2560 LIST_HEAD(folio_list); 2561 unsigned long nr_scanned; 2562 unsigned int nr_reclaimed = 0; 2563 unsigned long nr_taken; 2564 struct reclaim_stat stat; 2565 bool file = is_file_lru(lru); 2566 enum vm_event_item item; 2567 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2568 bool stalled = false; 2569 2570 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2571 if (stalled) 2572 return 0; 2573 2574 /* wait a bit for the reclaimer. */ 2575 stalled = true; 2576 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2577 2578 /* We are about to die and free our memory. Return now. */ 2579 if (fatal_signal_pending(current)) 2580 return SWAP_CLUSTER_MAX; 2581 } 2582 2583 lru_add_drain(); 2584 2585 spin_lock_irq(&lruvec->lru_lock); 2586 2587 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2588 &nr_scanned, sc, lru); 2589 2590 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2591 item = PGSCAN_KSWAPD + reclaimer_offset(); 2592 if (!cgroup_reclaim(sc)) 2593 __count_vm_events(item, nr_scanned); 2594 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2595 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2596 2597 spin_unlock_irq(&lruvec->lru_lock); 2598 2599 if (nr_taken == 0) 2600 return 0; 2601 2602 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2603 2604 spin_lock_irq(&lruvec->lru_lock); 2605 move_folios_to_lru(lruvec, &folio_list); 2606 2607 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2608 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2609 if (!cgroup_reclaim(sc)) 2610 __count_vm_events(item, nr_reclaimed); 2611 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2612 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2613 spin_unlock_irq(&lruvec->lru_lock); 2614 2615 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2616 mem_cgroup_uncharge_list(&folio_list); 2617 free_unref_page_list(&folio_list); 2618 2619 /* 2620 * If dirty folios are scanned that are not queued for IO, it 2621 * implies that flushers are not doing their job. This can 2622 * happen when memory pressure pushes dirty folios to the end of 2623 * the LRU before the dirty limits are breached and the dirty 2624 * data has expired. It can also happen when the proportion of 2625 * dirty folios grows not through writes but through memory 2626 * pressure reclaiming all the clean cache. And in some cases, 2627 * the flushers simply cannot keep up with the allocation 2628 * rate. Nudge the flusher threads in case they are asleep. 2629 */ 2630 if (stat.nr_unqueued_dirty == nr_taken) { 2631 wakeup_flusher_threads(WB_REASON_VMSCAN); 2632 /* 2633 * For cgroupv1 dirty throttling is achieved by waking up 2634 * the kernel flusher here and later waiting on folios 2635 * which are in writeback to finish (see shrink_folio_list()). 2636 * 2637 * Flusher may not be able to issue writeback quickly 2638 * enough for cgroupv1 writeback throttling to work 2639 * on a large system. 2640 */ 2641 if (!writeback_throttling_sane(sc)) 2642 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2643 } 2644 2645 sc->nr.dirty += stat.nr_dirty; 2646 sc->nr.congested += stat.nr_congested; 2647 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2648 sc->nr.writeback += stat.nr_writeback; 2649 sc->nr.immediate += stat.nr_immediate; 2650 sc->nr.taken += nr_taken; 2651 if (file) 2652 sc->nr.file_taken += nr_taken; 2653 2654 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2655 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2656 return nr_reclaimed; 2657 } 2658 2659 /* 2660 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2661 * 2662 * We move them the other way if the folio is referenced by one or more 2663 * processes. 2664 * 2665 * If the folios are mostly unmapped, the processing is fast and it is 2666 * appropriate to hold lru_lock across the whole operation. But if 2667 * the folios are mapped, the processing is slow (folio_referenced()), so 2668 * we should drop lru_lock around each folio. It's impossible to balance 2669 * this, so instead we remove the folios from the LRU while processing them. 2670 * It is safe to rely on the active flag against the non-LRU folios in here 2671 * because nobody will play with that bit on a non-LRU folio. 2672 * 2673 * The downside is that we have to touch folio->_refcount against each folio. 2674 * But we had to alter folio->flags anyway. 2675 */ 2676 static void shrink_active_list(unsigned long nr_to_scan, 2677 struct lruvec *lruvec, 2678 struct scan_control *sc, 2679 enum lru_list lru) 2680 { 2681 unsigned long nr_taken; 2682 unsigned long nr_scanned; 2683 unsigned long vm_flags; 2684 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2685 LIST_HEAD(l_active); 2686 LIST_HEAD(l_inactive); 2687 unsigned nr_deactivate, nr_activate; 2688 unsigned nr_rotated = 0; 2689 int file = is_file_lru(lru); 2690 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2691 2692 lru_add_drain(); 2693 2694 spin_lock_irq(&lruvec->lru_lock); 2695 2696 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2697 &nr_scanned, sc, lru); 2698 2699 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2700 2701 if (!cgroup_reclaim(sc)) 2702 __count_vm_events(PGREFILL, nr_scanned); 2703 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2704 2705 spin_unlock_irq(&lruvec->lru_lock); 2706 2707 while (!list_empty(&l_hold)) { 2708 struct folio *folio; 2709 2710 cond_resched(); 2711 folio = lru_to_folio(&l_hold); 2712 list_del(&folio->lru); 2713 2714 if (unlikely(!folio_evictable(folio))) { 2715 folio_putback_lru(folio); 2716 continue; 2717 } 2718 2719 if (unlikely(buffer_heads_over_limit)) { 2720 if (folio_test_private(folio) && folio_trylock(folio)) { 2721 if (folio_test_private(folio)) 2722 filemap_release_folio(folio, 0); 2723 folio_unlock(folio); 2724 } 2725 } 2726 2727 /* Referenced or rmap lock contention: rotate */ 2728 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2729 &vm_flags) != 0) { 2730 /* 2731 * Identify referenced, file-backed active folios and 2732 * give them one more trip around the active list. So 2733 * that executable code get better chances to stay in 2734 * memory under moderate memory pressure. Anon folios 2735 * are not likely to be evicted by use-once streaming 2736 * IO, plus JVM can create lots of anon VM_EXEC folios, 2737 * so we ignore them here. 2738 */ 2739 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2740 nr_rotated += folio_nr_pages(folio); 2741 list_add(&folio->lru, &l_active); 2742 continue; 2743 } 2744 } 2745 2746 folio_clear_active(folio); /* we are de-activating */ 2747 folio_set_workingset(folio); 2748 list_add(&folio->lru, &l_inactive); 2749 } 2750 2751 /* 2752 * Move folios back to the lru list. 2753 */ 2754 spin_lock_irq(&lruvec->lru_lock); 2755 2756 nr_activate = move_folios_to_lru(lruvec, &l_active); 2757 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2758 /* Keep all free folios in l_active list */ 2759 list_splice(&l_inactive, &l_active); 2760 2761 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2762 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2763 2764 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2765 spin_unlock_irq(&lruvec->lru_lock); 2766 2767 if (nr_rotated) 2768 lru_note_cost(lruvec, file, 0, nr_rotated); 2769 mem_cgroup_uncharge_list(&l_active); 2770 free_unref_page_list(&l_active); 2771 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2772 nr_deactivate, nr_rotated, sc->priority, file); 2773 } 2774 2775 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2776 struct pglist_data *pgdat) 2777 { 2778 struct reclaim_stat dummy_stat; 2779 unsigned int nr_reclaimed; 2780 struct folio *folio; 2781 struct scan_control sc = { 2782 .gfp_mask = GFP_KERNEL, 2783 .may_writepage = 1, 2784 .may_unmap = 1, 2785 .may_swap = 1, 2786 .no_demotion = 1, 2787 }; 2788 2789 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2790 while (!list_empty(folio_list)) { 2791 folio = lru_to_folio(folio_list); 2792 list_del(&folio->lru); 2793 folio_putback_lru(folio); 2794 } 2795 2796 return nr_reclaimed; 2797 } 2798 2799 unsigned long reclaim_pages(struct list_head *folio_list) 2800 { 2801 int nid; 2802 unsigned int nr_reclaimed = 0; 2803 LIST_HEAD(node_folio_list); 2804 unsigned int noreclaim_flag; 2805 2806 if (list_empty(folio_list)) 2807 return nr_reclaimed; 2808 2809 noreclaim_flag = memalloc_noreclaim_save(); 2810 2811 nid = folio_nid(lru_to_folio(folio_list)); 2812 do { 2813 struct folio *folio = lru_to_folio(folio_list); 2814 2815 if (nid == folio_nid(folio)) { 2816 folio_clear_active(folio); 2817 list_move(&folio->lru, &node_folio_list); 2818 continue; 2819 } 2820 2821 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2822 nid = folio_nid(lru_to_folio(folio_list)); 2823 } while (!list_empty(folio_list)); 2824 2825 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2826 2827 memalloc_noreclaim_restore(noreclaim_flag); 2828 2829 return nr_reclaimed; 2830 } 2831 2832 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2833 struct lruvec *lruvec, struct scan_control *sc) 2834 { 2835 if (is_active_lru(lru)) { 2836 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2837 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2838 else 2839 sc->skipped_deactivate = 1; 2840 return 0; 2841 } 2842 2843 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2844 } 2845 2846 /* 2847 * The inactive anon list should be small enough that the VM never has 2848 * to do too much work. 2849 * 2850 * The inactive file list should be small enough to leave most memory 2851 * to the established workingset on the scan-resistant active list, 2852 * but large enough to avoid thrashing the aggregate readahead window. 2853 * 2854 * Both inactive lists should also be large enough that each inactive 2855 * folio has a chance to be referenced again before it is reclaimed. 2856 * 2857 * If that fails and refaulting is observed, the inactive list grows. 2858 * 2859 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2860 * on this LRU, maintained by the pageout code. An inactive_ratio 2861 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2862 * 2863 * total target max 2864 * memory ratio inactive 2865 * ------------------------------------- 2866 * 10MB 1 5MB 2867 * 100MB 1 50MB 2868 * 1GB 3 250MB 2869 * 10GB 10 0.9GB 2870 * 100GB 31 3GB 2871 * 1TB 101 10GB 2872 * 10TB 320 32GB 2873 */ 2874 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2875 { 2876 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2877 unsigned long inactive, active; 2878 unsigned long inactive_ratio; 2879 unsigned long gb; 2880 2881 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2882 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2883 2884 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2885 if (gb) 2886 inactive_ratio = int_sqrt(10 * gb); 2887 else 2888 inactive_ratio = 1; 2889 2890 return inactive * inactive_ratio < active; 2891 } 2892 2893 enum scan_balance { 2894 SCAN_EQUAL, 2895 SCAN_FRACT, 2896 SCAN_ANON, 2897 SCAN_FILE, 2898 }; 2899 2900 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2901 { 2902 unsigned long file; 2903 struct lruvec *target_lruvec; 2904 2905 if (lru_gen_enabled()) 2906 return; 2907 2908 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2909 2910 /* 2911 * Flush the memory cgroup stats, so that we read accurate per-memcg 2912 * lruvec stats for heuristics. 2913 */ 2914 mem_cgroup_flush_stats(); 2915 2916 /* 2917 * Determine the scan balance between anon and file LRUs. 2918 */ 2919 spin_lock_irq(&target_lruvec->lru_lock); 2920 sc->anon_cost = target_lruvec->anon_cost; 2921 sc->file_cost = target_lruvec->file_cost; 2922 spin_unlock_irq(&target_lruvec->lru_lock); 2923 2924 /* 2925 * Target desirable inactive:active list ratios for the anon 2926 * and file LRU lists. 2927 */ 2928 if (!sc->force_deactivate) { 2929 unsigned long refaults; 2930 2931 /* 2932 * When refaults are being observed, it means a new 2933 * workingset is being established. Deactivate to get 2934 * rid of any stale active pages quickly. 2935 */ 2936 refaults = lruvec_page_state(target_lruvec, 2937 WORKINGSET_ACTIVATE_ANON); 2938 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2939 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2940 sc->may_deactivate |= DEACTIVATE_ANON; 2941 else 2942 sc->may_deactivate &= ~DEACTIVATE_ANON; 2943 2944 refaults = lruvec_page_state(target_lruvec, 2945 WORKINGSET_ACTIVATE_FILE); 2946 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2947 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2948 sc->may_deactivate |= DEACTIVATE_FILE; 2949 else 2950 sc->may_deactivate &= ~DEACTIVATE_FILE; 2951 } else 2952 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2953 2954 /* 2955 * If we have plenty of inactive file pages that aren't 2956 * thrashing, try to reclaim those first before touching 2957 * anonymous pages. 2958 */ 2959 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2960 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2961 sc->cache_trim_mode = 1; 2962 else 2963 sc->cache_trim_mode = 0; 2964 2965 /* 2966 * Prevent the reclaimer from falling into the cache trap: as 2967 * cache pages start out inactive, every cache fault will tip 2968 * the scan balance towards the file LRU. And as the file LRU 2969 * shrinks, so does the window for rotation from references. 2970 * This means we have a runaway feedback loop where a tiny 2971 * thrashing file LRU becomes infinitely more attractive than 2972 * anon pages. Try to detect this based on file LRU size. 2973 */ 2974 if (!cgroup_reclaim(sc)) { 2975 unsigned long total_high_wmark = 0; 2976 unsigned long free, anon; 2977 int z; 2978 2979 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2980 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2981 node_page_state(pgdat, NR_INACTIVE_FILE); 2982 2983 for (z = 0; z < MAX_NR_ZONES; z++) { 2984 struct zone *zone = &pgdat->node_zones[z]; 2985 2986 if (!managed_zone(zone)) 2987 continue; 2988 2989 total_high_wmark += high_wmark_pages(zone); 2990 } 2991 2992 /* 2993 * Consider anon: if that's low too, this isn't a 2994 * runaway file reclaim problem, but rather just 2995 * extreme pressure. Reclaim as per usual then. 2996 */ 2997 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2998 2999 sc->file_is_tiny = 3000 file + free <= total_high_wmark && 3001 !(sc->may_deactivate & DEACTIVATE_ANON) && 3002 anon >> sc->priority; 3003 } 3004 } 3005 3006 /* 3007 * Determine how aggressively the anon and file LRU lists should be 3008 * scanned. 3009 * 3010 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 3011 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 3012 */ 3013 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 3014 unsigned long *nr) 3015 { 3016 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3017 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3018 unsigned long anon_cost, file_cost, total_cost; 3019 int swappiness = mem_cgroup_swappiness(memcg); 3020 u64 fraction[ANON_AND_FILE]; 3021 u64 denominator = 0; /* gcc */ 3022 enum scan_balance scan_balance; 3023 unsigned long ap, fp; 3024 enum lru_list lru; 3025 3026 /* If we have no swap space, do not bother scanning anon folios. */ 3027 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 3028 scan_balance = SCAN_FILE; 3029 goto out; 3030 } 3031 3032 /* 3033 * Global reclaim will swap to prevent OOM even with no 3034 * swappiness, but memcg users want to use this knob to 3035 * disable swapping for individual groups completely when 3036 * using the memory controller's swap limit feature would be 3037 * too expensive. 3038 */ 3039 if (cgroup_reclaim(sc) && !swappiness) { 3040 scan_balance = SCAN_FILE; 3041 goto out; 3042 } 3043 3044 /* 3045 * Do not apply any pressure balancing cleverness when the 3046 * system is close to OOM, scan both anon and file equally 3047 * (unless the swappiness setting disagrees with swapping). 3048 */ 3049 if (!sc->priority && swappiness) { 3050 scan_balance = SCAN_EQUAL; 3051 goto out; 3052 } 3053 3054 /* 3055 * If the system is almost out of file pages, force-scan anon. 3056 */ 3057 if (sc->file_is_tiny) { 3058 scan_balance = SCAN_ANON; 3059 goto out; 3060 } 3061 3062 /* 3063 * If there is enough inactive page cache, we do not reclaim 3064 * anything from the anonymous working right now. 3065 */ 3066 if (sc->cache_trim_mode) { 3067 scan_balance = SCAN_FILE; 3068 goto out; 3069 } 3070 3071 scan_balance = SCAN_FRACT; 3072 /* 3073 * Calculate the pressure balance between anon and file pages. 3074 * 3075 * The amount of pressure we put on each LRU is inversely 3076 * proportional to the cost of reclaiming each list, as 3077 * determined by the share of pages that are refaulting, times 3078 * the relative IO cost of bringing back a swapped out 3079 * anonymous page vs reloading a filesystem page (swappiness). 3080 * 3081 * Although we limit that influence to ensure no list gets 3082 * left behind completely: at least a third of the pressure is 3083 * applied, before swappiness. 3084 * 3085 * With swappiness at 100, anon and file have equal IO cost. 3086 */ 3087 total_cost = sc->anon_cost + sc->file_cost; 3088 anon_cost = total_cost + sc->anon_cost; 3089 file_cost = total_cost + sc->file_cost; 3090 total_cost = anon_cost + file_cost; 3091 3092 ap = swappiness * (total_cost + 1); 3093 ap /= anon_cost + 1; 3094 3095 fp = (200 - swappiness) * (total_cost + 1); 3096 fp /= file_cost + 1; 3097 3098 fraction[0] = ap; 3099 fraction[1] = fp; 3100 denominator = ap + fp; 3101 out: 3102 for_each_evictable_lru(lru) { 3103 int file = is_file_lru(lru); 3104 unsigned long lruvec_size; 3105 unsigned long low, min; 3106 unsigned long scan; 3107 3108 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3109 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3110 &min, &low); 3111 3112 if (min || low) { 3113 /* 3114 * Scale a cgroup's reclaim pressure by proportioning 3115 * its current usage to its memory.low or memory.min 3116 * setting. 3117 * 3118 * This is important, as otherwise scanning aggression 3119 * becomes extremely binary -- from nothing as we 3120 * approach the memory protection threshold, to totally 3121 * nominal as we exceed it. This results in requiring 3122 * setting extremely liberal protection thresholds. It 3123 * also means we simply get no protection at all if we 3124 * set it too low, which is not ideal. 3125 * 3126 * If there is any protection in place, we reduce scan 3127 * pressure by how much of the total memory used is 3128 * within protection thresholds. 3129 * 3130 * There is one special case: in the first reclaim pass, 3131 * we skip over all groups that are within their low 3132 * protection. If that fails to reclaim enough pages to 3133 * satisfy the reclaim goal, we come back and override 3134 * the best-effort low protection. However, we still 3135 * ideally want to honor how well-behaved groups are in 3136 * that case instead of simply punishing them all 3137 * equally. As such, we reclaim them based on how much 3138 * memory they are using, reducing the scan pressure 3139 * again by how much of the total memory used is under 3140 * hard protection. 3141 */ 3142 unsigned long cgroup_size = mem_cgroup_size(memcg); 3143 unsigned long protection; 3144 3145 /* memory.low scaling, make sure we retry before OOM */ 3146 if (!sc->memcg_low_reclaim && low > min) { 3147 protection = low; 3148 sc->memcg_low_skipped = 1; 3149 } else { 3150 protection = min; 3151 } 3152 3153 /* Avoid TOCTOU with earlier protection check */ 3154 cgroup_size = max(cgroup_size, protection); 3155 3156 scan = lruvec_size - lruvec_size * protection / 3157 (cgroup_size + 1); 3158 3159 /* 3160 * Minimally target SWAP_CLUSTER_MAX pages to keep 3161 * reclaim moving forwards, avoiding decrementing 3162 * sc->priority further than desirable. 3163 */ 3164 scan = max(scan, SWAP_CLUSTER_MAX); 3165 } else { 3166 scan = lruvec_size; 3167 } 3168 3169 scan >>= sc->priority; 3170 3171 /* 3172 * If the cgroup's already been deleted, make sure to 3173 * scrape out the remaining cache. 3174 */ 3175 if (!scan && !mem_cgroup_online(memcg)) 3176 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3177 3178 switch (scan_balance) { 3179 case SCAN_EQUAL: 3180 /* Scan lists relative to size */ 3181 break; 3182 case SCAN_FRACT: 3183 /* 3184 * Scan types proportional to swappiness and 3185 * their relative recent reclaim efficiency. 3186 * Make sure we don't miss the last page on 3187 * the offlined memory cgroups because of a 3188 * round-off error. 3189 */ 3190 scan = mem_cgroup_online(memcg) ? 3191 div64_u64(scan * fraction[file], denominator) : 3192 DIV64_U64_ROUND_UP(scan * fraction[file], 3193 denominator); 3194 break; 3195 case SCAN_FILE: 3196 case SCAN_ANON: 3197 /* Scan one type exclusively */ 3198 if ((scan_balance == SCAN_FILE) != file) 3199 scan = 0; 3200 break; 3201 default: 3202 /* Look ma, no brain */ 3203 BUG(); 3204 } 3205 3206 nr[lru] = scan; 3207 } 3208 } 3209 3210 /* 3211 * Anonymous LRU management is a waste if there is 3212 * ultimately no way to reclaim the memory. 3213 */ 3214 static bool can_age_anon_pages(struct pglist_data *pgdat, 3215 struct scan_control *sc) 3216 { 3217 /* Aging the anon LRU is valuable if swap is present: */ 3218 if (total_swap_pages > 0) 3219 return true; 3220 3221 /* Also valuable if anon pages can be demoted: */ 3222 return can_demote(pgdat->node_id, sc); 3223 } 3224 3225 #ifdef CONFIG_LRU_GEN 3226 3227 #ifdef CONFIG_LRU_GEN_ENABLED 3228 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3229 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3230 #else 3231 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3232 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3233 #endif 3234 3235 /****************************************************************************** 3236 * shorthand helpers 3237 ******************************************************************************/ 3238 3239 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3240 3241 #define DEFINE_MAX_SEQ(lruvec) \ 3242 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3243 3244 #define DEFINE_MIN_SEQ(lruvec) \ 3245 unsigned long min_seq[ANON_AND_FILE] = { \ 3246 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3247 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3248 } 3249 3250 #define for_each_gen_type_zone(gen, type, zone) \ 3251 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3252 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3253 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3254 3255 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3256 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3257 3258 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3259 { 3260 struct pglist_data *pgdat = NODE_DATA(nid); 3261 3262 #ifdef CONFIG_MEMCG 3263 if (memcg) { 3264 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3265 3266 /* see the comment in mem_cgroup_lruvec() */ 3267 if (!lruvec->pgdat) 3268 lruvec->pgdat = pgdat; 3269 3270 return lruvec; 3271 } 3272 #endif 3273 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3274 3275 return &pgdat->__lruvec; 3276 } 3277 3278 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3279 { 3280 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3281 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3282 3283 if (!sc->may_swap) 3284 return 0; 3285 3286 if (!can_demote(pgdat->node_id, sc) && 3287 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3288 return 0; 3289 3290 return mem_cgroup_swappiness(memcg); 3291 } 3292 3293 static int get_nr_gens(struct lruvec *lruvec, int type) 3294 { 3295 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3296 } 3297 3298 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3299 { 3300 /* see the comment on lru_gen_folio */ 3301 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3302 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3303 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3304 } 3305 3306 /****************************************************************************** 3307 * Bloom filters 3308 ******************************************************************************/ 3309 3310 /* 3311 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3312 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3313 * bits in a bitmap, k is the number of hash functions and n is the number of 3314 * inserted items. 3315 * 3316 * Page table walkers use one of the two filters to reduce their search space. 3317 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3318 * aging uses the double-buffering technique to flip to the other filter each 3319 * time it produces a new generation. For non-leaf entries that have enough 3320 * leaf entries, the aging carries them over to the next generation in 3321 * walk_pmd_range(); the eviction also report them when walking the rmap 3322 * in lru_gen_look_around(). 3323 * 3324 * For future optimizations: 3325 * 1. It's not necessary to keep both filters all the time. The spare one can be 3326 * freed after the RCU grace period and reallocated if needed again. 3327 * 2. And when reallocating, it's worth scaling its size according to the number 3328 * of inserted entries in the other filter, to reduce the memory overhead on 3329 * small systems and false positives on large systems. 3330 * 3. Jenkins' hash function is an alternative to Knuth's. 3331 */ 3332 #define BLOOM_FILTER_SHIFT 15 3333 3334 static inline int filter_gen_from_seq(unsigned long seq) 3335 { 3336 return seq % NR_BLOOM_FILTERS; 3337 } 3338 3339 static void get_item_key(void *item, int *key) 3340 { 3341 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3342 3343 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3344 3345 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3346 key[1] = hash >> BLOOM_FILTER_SHIFT; 3347 } 3348 3349 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3350 { 3351 int key[2]; 3352 unsigned long *filter; 3353 int gen = filter_gen_from_seq(seq); 3354 3355 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3356 if (!filter) 3357 return true; 3358 3359 get_item_key(item, key); 3360 3361 return test_bit(key[0], filter) && test_bit(key[1], filter); 3362 } 3363 3364 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3365 { 3366 int key[2]; 3367 unsigned long *filter; 3368 int gen = filter_gen_from_seq(seq); 3369 3370 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3371 if (!filter) 3372 return; 3373 3374 get_item_key(item, key); 3375 3376 if (!test_bit(key[0], filter)) 3377 set_bit(key[0], filter); 3378 if (!test_bit(key[1], filter)) 3379 set_bit(key[1], filter); 3380 } 3381 3382 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3383 { 3384 unsigned long *filter; 3385 int gen = filter_gen_from_seq(seq); 3386 3387 filter = lruvec->mm_state.filters[gen]; 3388 if (filter) { 3389 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3390 return; 3391 } 3392 3393 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3394 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3395 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3396 } 3397 3398 /****************************************************************************** 3399 * mm_struct list 3400 ******************************************************************************/ 3401 3402 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3403 { 3404 static struct lru_gen_mm_list mm_list = { 3405 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3406 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3407 }; 3408 3409 #ifdef CONFIG_MEMCG 3410 if (memcg) 3411 return &memcg->mm_list; 3412 #endif 3413 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3414 3415 return &mm_list; 3416 } 3417 3418 void lru_gen_add_mm(struct mm_struct *mm) 3419 { 3420 int nid; 3421 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3422 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3423 3424 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3425 #ifdef CONFIG_MEMCG 3426 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3427 mm->lru_gen.memcg = memcg; 3428 #endif 3429 spin_lock(&mm_list->lock); 3430 3431 for_each_node_state(nid, N_MEMORY) { 3432 struct lruvec *lruvec = get_lruvec(memcg, nid); 3433 3434 /* the first addition since the last iteration */ 3435 if (lruvec->mm_state.tail == &mm_list->fifo) 3436 lruvec->mm_state.tail = &mm->lru_gen.list; 3437 } 3438 3439 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3440 3441 spin_unlock(&mm_list->lock); 3442 } 3443 3444 void lru_gen_del_mm(struct mm_struct *mm) 3445 { 3446 int nid; 3447 struct lru_gen_mm_list *mm_list; 3448 struct mem_cgroup *memcg = NULL; 3449 3450 if (list_empty(&mm->lru_gen.list)) 3451 return; 3452 3453 #ifdef CONFIG_MEMCG 3454 memcg = mm->lru_gen.memcg; 3455 #endif 3456 mm_list = get_mm_list(memcg); 3457 3458 spin_lock(&mm_list->lock); 3459 3460 for_each_node(nid) { 3461 struct lruvec *lruvec = get_lruvec(memcg, nid); 3462 3463 /* where the current iteration continues after */ 3464 if (lruvec->mm_state.head == &mm->lru_gen.list) 3465 lruvec->mm_state.head = lruvec->mm_state.head->prev; 3466 3467 /* where the last iteration ended before */ 3468 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3469 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3470 } 3471 3472 list_del_init(&mm->lru_gen.list); 3473 3474 spin_unlock(&mm_list->lock); 3475 3476 #ifdef CONFIG_MEMCG 3477 mem_cgroup_put(mm->lru_gen.memcg); 3478 mm->lru_gen.memcg = NULL; 3479 #endif 3480 } 3481 3482 #ifdef CONFIG_MEMCG 3483 void lru_gen_migrate_mm(struct mm_struct *mm) 3484 { 3485 struct mem_cgroup *memcg; 3486 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3487 3488 VM_WARN_ON_ONCE(task->mm != mm); 3489 lockdep_assert_held(&task->alloc_lock); 3490 3491 /* for mm_update_next_owner() */ 3492 if (mem_cgroup_disabled()) 3493 return; 3494 3495 /* migration can happen before addition */ 3496 if (!mm->lru_gen.memcg) 3497 return; 3498 3499 rcu_read_lock(); 3500 memcg = mem_cgroup_from_task(task); 3501 rcu_read_unlock(); 3502 if (memcg == mm->lru_gen.memcg) 3503 return; 3504 3505 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3506 3507 lru_gen_del_mm(mm); 3508 lru_gen_add_mm(mm); 3509 } 3510 #endif 3511 3512 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3513 { 3514 int i; 3515 int hist; 3516 3517 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3518 3519 if (walk) { 3520 hist = lru_hist_from_seq(walk->max_seq); 3521 3522 for (i = 0; i < NR_MM_STATS; i++) { 3523 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3524 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3525 walk->mm_stats[i] = 0; 3526 } 3527 } 3528 3529 if (NR_HIST_GENS > 1 && last) { 3530 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3531 3532 for (i = 0; i < NR_MM_STATS; i++) 3533 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3534 } 3535 } 3536 3537 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3538 { 3539 int type; 3540 unsigned long size = 0; 3541 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3542 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3543 3544 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3545 return true; 3546 3547 clear_bit(key, &mm->lru_gen.bitmap); 3548 3549 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3550 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3551 get_mm_counter(mm, MM_ANONPAGES) + 3552 get_mm_counter(mm, MM_SHMEMPAGES); 3553 } 3554 3555 if (size < MIN_LRU_BATCH) 3556 return true; 3557 3558 return !mmget_not_zero(mm); 3559 } 3560 3561 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3562 struct mm_struct **iter) 3563 { 3564 bool first = false; 3565 bool last = false; 3566 struct mm_struct *mm = NULL; 3567 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3568 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3569 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3570 3571 /* 3572 * mm_state->seq is incremented after each iteration of mm_list. There 3573 * are three interesting cases for this page table walker: 3574 * 1. It tries to start a new iteration with a stale max_seq: there is 3575 * nothing left to do. 3576 * 2. It started the next iteration: it needs to reset the Bloom filter 3577 * so that a fresh set of PTE tables can be recorded. 3578 * 3. It ended the current iteration: it needs to reset the mm stats 3579 * counters and tell its caller to increment max_seq. 3580 */ 3581 spin_lock(&mm_list->lock); 3582 3583 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3584 3585 if (walk->max_seq <= mm_state->seq) 3586 goto done; 3587 3588 if (!mm_state->head) 3589 mm_state->head = &mm_list->fifo; 3590 3591 if (mm_state->head == &mm_list->fifo) 3592 first = true; 3593 3594 do { 3595 mm_state->head = mm_state->head->next; 3596 if (mm_state->head == &mm_list->fifo) { 3597 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3598 last = true; 3599 break; 3600 } 3601 3602 /* force scan for those added after the last iteration */ 3603 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3604 mm_state->tail = mm_state->head->next; 3605 walk->force_scan = true; 3606 } 3607 3608 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3609 if (should_skip_mm(mm, walk)) 3610 mm = NULL; 3611 } while (!mm); 3612 done: 3613 if (*iter || last) 3614 reset_mm_stats(lruvec, walk, last); 3615 3616 spin_unlock(&mm_list->lock); 3617 3618 if (mm && first) 3619 reset_bloom_filter(lruvec, walk->max_seq + 1); 3620 3621 if (*iter) 3622 mmput_async(*iter); 3623 3624 *iter = mm; 3625 3626 return last; 3627 } 3628 3629 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3630 { 3631 bool success = false; 3632 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3633 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3634 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3635 3636 spin_lock(&mm_list->lock); 3637 3638 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3639 3640 if (max_seq > mm_state->seq) { 3641 mm_state->head = NULL; 3642 mm_state->tail = NULL; 3643 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3644 reset_mm_stats(lruvec, NULL, true); 3645 success = true; 3646 } 3647 3648 spin_unlock(&mm_list->lock); 3649 3650 return success; 3651 } 3652 3653 /****************************************************************************** 3654 * PID controller 3655 ******************************************************************************/ 3656 3657 /* 3658 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3659 * 3660 * The P term is refaulted/(evicted+protected) from a tier in the generation 3661 * currently being evicted; the I term is the exponential moving average of the 3662 * P term over the generations previously evicted, using the smoothing factor 3663 * 1/2; the D term isn't supported. 3664 * 3665 * The setpoint (SP) is always the first tier of one type; the process variable 3666 * (PV) is either any tier of the other type or any other tier of the same 3667 * type. 3668 * 3669 * The error is the difference between the SP and the PV; the correction is to 3670 * turn off protection when SP>PV or turn on protection when SP<PV. 3671 * 3672 * For future optimizations: 3673 * 1. The D term may discount the other two terms over time so that long-lived 3674 * generations can resist stale information. 3675 */ 3676 struct ctrl_pos { 3677 unsigned long refaulted; 3678 unsigned long total; 3679 int gain; 3680 }; 3681 3682 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3683 struct ctrl_pos *pos) 3684 { 3685 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3686 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3687 3688 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3689 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3690 pos->total = lrugen->avg_total[type][tier] + 3691 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3692 if (tier) 3693 pos->total += lrugen->protected[hist][type][tier - 1]; 3694 pos->gain = gain; 3695 } 3696 3697 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3698 { 3699 int hist, tier; 3700 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3701 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3702 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3703 3704 lockdep_assert_held(&lruvec->lru_lock); 3705 3706 if (!carryover && !clear) 3707 return; 3708 3709 hist = lru_hist_from_seq(seq); 3710 3711 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3712 if (carryover) { 3713 unsigned long sum; 3714 3715 sum = lrugen->avg_refaulted[type][tier] + 3716 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3717 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3718 3719 sum = lrugen->avg_total[type][tier] + 3720 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3721 if (tier) 3722 sum += lrugen->protected[hist][type][tier - 1]; 3723 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3724 } 3725 3726 if (clear) { 3727 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3728 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3729 if (tier) 3730 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3731 } 3732 } 3733 } 3734 3735 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3736 { 3737 /* 3738 * Return true if the PV has a limited number of refaults or a lower 3739 * refaulted/total than the SP. 3740 */ 3741 return pv->refaulted < MIN_LRU_BATCH || 3742 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3743 (sp->refaulted + 1) * pv->total * pv->gain; 3744 } 3745 3746 /****************************************************************************** 3747 * the aging 3748 ******************************************************************************/ 3749 3750 /* promote pages accessed through page tables */ 3751 static int folio_update_gen(struct folio *folio, int gen) 3752 { 3753 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3754 3755 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3756 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3757 3758 do { 3759 /* lru_gen_del_folio() has isolated this page? */ 3760 if (!(old_flags & LRU_GEN_MASK)) { 3761 /* for shrink_folio_list() */ 3762 new_flags = old_flags | BIT(PG_referenced); 3763 continue; 3764 } 3765 3766 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3767 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3768 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3769 3770 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3771 } 3772 3773 /* protect pages accessed multiple times through file descriptors */ 3774 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3775 { 3776 int type = folio_is_file_lru(folio); 3777 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3778 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3779 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3780 3781 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3782 3783 do { 3784 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3785 /* folio_update_gen() has promoted this page? */ 3786 if (new_gen >= 0 && new_gen != old_gen) 3787 return new_gen; 3788 3789 new_gen = (old_gen + 1) % MAX_NR_GENS; 3790 3791 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3792 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3793 /* for folio_end_writeback() */ 3794 if (reclaiming) 3795 new_flags |= BIT(PG_reclaim); 3796 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3797 3798 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3799 3800 return new_gen; 3801 } 3802 3803 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3804 int old_gen, int new_gen) 3805 { 3806 int type = folio_is_file_lru(folio); 3807 int zone = folio_zonenum(folio); 3808 int delta = folio_nr_pages(folio); 3809 3810 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3811 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3812 3813 walk->batched++; 3814 3815 walk->nr_pages[old_gen][type][zone] -= delta; 3816 walk->nr_pages[new_gen][type][zone] += delta; 3817 } 3818 3819 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3820 { 3821 int gen, type, zone; 3822 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3823 3824 walk->batched = 0; 3825 3826 for_each_gen_type_zone(gen, type, zone) { 3827 enum lru_list lru = type * LRU_INACTIVE_FILE; 3828 int delta = walk->nr_pages[gen][type][zone]; 3829 3830 if (!delta) 3831 continue; 3832 3833 walk->nr_pages[gen][type][zone] = 0; 3834 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3835 lrugen->nr_pages[gen][type][zone] + delta); 3836 3837 if (lru_gen_is_active(lruvec, gen)) 3838 lru += LRU_ACTIVE; 3839 __update_lru_size(lruvec, lru, zone, delta); 3840 } 3841 } 3842 3843 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3844 { 3845 struct address_space *mapping; 3846 struct vm_area_struct *vma = args->vma; 3847 struct lru_gen_mm_walk *walk = args->private; 3848 3849 if (!vma_is_accessible(vma)) 3850 return true; 3851 3852 if (is_vm_hugetlb_page(vma)) 3853 return true; 3854 3855 if (!vma_has_recency(vma)) 3856 return true; 3857 3858 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3859 return true; 3860 3861 if (vma == get_gate_vma(vma->vm_mm)) 3862 return true; 3863 3864 if (vma_is_anonymous(vma)) 3865 return !walk->can_swap; 3866 3867 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3868 return true; 3869 3870 mapping = vma->vm_file->f_mapping; 3871 if (mapping_unevictable(mapping)) 3872 return true; 3873 3874 if (shmem_mapping(mapping)) 3875 return !walk->can_swap; 3876 3877 /* to exclude special mappings like dax, etc. */ 3878 return !mapping->a_ops->read_folio; 3879 } 3880 3881 /* 3882 * Some userspace memory allocators map many single-page VMAs. Instead of 3883 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3884 * table to reduce zigzags and improve cache performance. 3885 */ 3886 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3887 unsigned long *vm_start, unsigned long *vm_end) 3888 { 3889 unsigned long start = round_up(*vm_end, size); 3890 unsigned long end = (start | ~mask) + 1; 3891 VMA_ITERATOR(vmi, args->mm, start); 3892 3893 VM_WARN_ON_ONCE(mask & size); 3894 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3895 3896 for_each_vma(vmi, args->vma) { 3897 if (end && end <= args->vma->vm_start) 3898 return false; 3899 3900 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3901 continue; 3902 3903 *vm_start = max(start, args->vma->vm_start); 3904 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3905 3906 return true; 3907 } 3908 3909 return false; 3910 } 3911 3912 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3913 { 3914 unsigned long pfn = pte_pfn(pte); 3915 3916 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3917 3918 if (!pte_present(pte) || is_zero_pfn(pfn)) 3919 return -1; 3920 3921 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3922 return -1; 3923 3924 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3925 return -1; 3926 3927 return pfn; 3928 } 3929 3930 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3931 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3932 { 3933 unsigned long pfn = pmd_pfn(pmd); 3934 3935 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3936 3937 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3938 return -1; 3939 3940 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3941 return -1; 3942 3943 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3944 return -1; 3945 3946 return pfn; 3947 } 3948 #endif 3949 3950 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3951 struct pglist_data *pgdat, bool can_swap) 3952 { 3953 struct folio *folio; 3954 3955 /* try to avoid unnecessary memory loads */ 3956 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3957 return NULL; 3958 3959 folio = pfn_folio(pfn); 3960 if (folio_nid(folio) != pgdat->node_id) 3961 return NULL; 3962 3963 if (folio_memcg_rcu(folio) != memcg) 3964 return NULL; 3965 3966 /* file VMAs can contain anon pages from COW */ 3967 if (!folio_is_file_lru(folio) && !can_swap) 3968 return NULL; 3969 3970 return folio; 3971 } 3972 3973 static bool suitable_to_scan(int total, int young) 3974 { 3975 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3976 3977 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3978 return young * n >= total; 3979 } 3980 3981 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3982 struct mm_walk *args) 3983 { 3984 int i; 3985 pte_t *pte; 3986 spinlock_t *ptl; 3987 unsigned long addr; 3988 int total = 0; 3989 int young = 0; 3990 struct lru_gen_mm_walk *walk = args->private; 3991 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3992 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3993 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3994 3995 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3996 3997 ptl = pte_lockptr(args->mm, pmd); 3998 if (!spin_trylock(ptl)) 3999 return false; 4000 4001 arch_enter_lazy_mmu_mode(); 4002 4003 pte = pte_offset_map(pmd, start & PMD_MASK); 4004 restart: 4005 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 4006 unsigned long pfn; 4007 struct folio *folio; 4008 4009 total++; 4010 walk->mm_stats[MM_LEAF_TOTAL]++; 4011 4012 pfn = get_pte_pfn(pte[i], args->vma, addr); 4013 if (pfn == -1) 4014 continue; 4015 4016 if (!pte_young(pte[i])) { 4017 walk->mm_stats[MM_LEAF_OLD]++; 4018 continue; 4019 } 4020 4021 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4022 if (!folio) 4023 continue; 4024 4025 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 4026 VM_WARN_ON_ONCE(true); 4027 4028 young++; 4029 walk->mm_stats[MM_LEAF_YOUNG]++; 4030 4031 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4032 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4033 !folio_test_swapcache(folio))) 4034 folio_mark_dirty(folio); 4035 4036 old_gen = folio_update_gen(folio, new_gen); 4037 if (old_gen >= 0 && old_gen != new_gen) 4038 update_batch_size(walk, folio, old_gen, new_gen); 4039 } 4040 4041 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 4042 goto restart; 4043 4044 pte_unmap(pte); 4045 4046 arch_leave_lazy_mmu_mode(); 4047 spin_unlock(ptl); 4048 4049 return suitable_to_scan(total, young); 4050 } 4051 4052 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 4053 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4054 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4055 { 4056 int i; 4057 pmd_t *pmd; 4058 spinlock_t *ptl; 4059 struct lru_gen_mm_walk *walk = args->private; 4060 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4061 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4062 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4063 4064 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4065 4066 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4067 if (*first == -1) { 4068 *first = addr; 4069 bitmap_zero(bitmap, MIN_LRU_BATCH); 4070 return; 4071 } 4072 4073 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 4074 if (i && i <= MIN_LRU_BATCH) { 4075 __set_bit(i - 1, bitmap); 4076 return; 4077 } 4078 4079 pmd = pmd_offset(pud, *first); 4080 4081 ptl = pmd_lockptr(args->mm, pmd); 4082 if (!spin_trylock(ptl)) 4083 goto done; 4084 4085 arch_enter_lazy_mmu_mode(); 4086 4087 do { 4088 unsigned long pfn; 4089 struct folio *folio; 4090 4091 /* don't round down the first address */ 4092 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 4093 4094 pfn = get_pmd_pfn(pmd[i], vma, addr); 4095 if (pfn == -1) 4096 goto next; 4097 4098 if (!pmd_trans_huge(pmd[i])) { 4099 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 4100 pmdp_test_and_clear_young(vma, addr, pmd + i); 4101 goto next; 4102 } 4103 4104 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4105 if (!folio) 4106 goto next; 4107 4108 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4109 goto next; 4110 4111 walk->mm_stats[MM_LEAF_YOUNG]++; 4112 4113 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4114 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4115 !folio_test_swapcache(folio))) 4116 folio_mark_dirty(folio); 4117 4118 old_gen = folio_update_gen(folio, new_gen); 4119 if (old_gen >= 0 && old_gen != new_gen) 4120 update_batch_size(walk, folio, old_gen, new_gen); 4121 next: 4122 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4123 } while (i <= MIN_LRU_BATCH); 4124 4125 arch_leave_lazy_mmu_mode(); 4126 spin_unlock(ptl); 4127 done: 4128 *first = -1; 4129 } 4130 #else 4131 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4132 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4133 { 4134 } 4135 #endif 4136 4137 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4138 struct mm_walk *args) 4139 { 4140 int i; 4141 pmd_t *pmd; 4142 unsigned long next; 4143 unsigned long addr; 4144 struct vm_area_struct *vma; 4145 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)]; 4146 unsigned long first = -1; 4147 struct lru_gen_mm_walk *walk = args->private; 4148 4149 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4150 4151 /* 4152 * Finish an entire PMD in two passes: the first only reaches to PTE 4153 * tables to avoid taking the PMD lock; the second, if necessary, takes 4154 * the PMD lock to clear the accessed bit in PMD entries. 4155 */ 4156 pmd = pmd_offset(pud, start & PUD_MASK); 4157 restart: 4158 /* walk_pte_range() may call get_next_vma() */ 4159 vma = args->vma; 4160 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4161 pmd_t val = pmdp_get_lockless(pmd + i); 4162 4163 next = pmd_addr_end(addr, end); 4164 4165 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4166 walk->mm_stats[MM_LEAF_TOTAL]++; 4167 continue; 4168 } 4169 4170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4171 if (pmd_trans_huge(val)) { 4172 unsigned long pfn = pmd_pfn(val); 4173 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4174 4175 walk->mm_stats[MM_LEAF_TOTAL]++; 4176 4177 if (!pmd_young(val)) { 4178 walk->mm_stats[MM_LEAF_OLD]++; 4179 continue; 4180 } 4181 4182 /* try to avoid unnecessary memory loads */ 4183 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4184 continue; 4185 4186 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4187 continue; 4188 } 4189 #endif 4190 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4191 4192 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4193 if (!pmd_young(val)) 4194 continue; 4195 4196 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4197 } 4198 4199 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4200 continue; 4201 4202 walk->mm_stats[MM_NONLEAF_FOUND]++; 4203 4204 if (!walk_pte_range(&val, addr, next, args)) 4205 continue; 4206 4207 walk->mm_stats[MM_NONLEAF_ADDED]++; 4208 4209 /* carry over to the next generation */ 4210 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4211 } 4212 4213 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 4214 4215 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4216 goto restart; 4217 } 4218 4219 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4220 struct mm_walk *args) 4221 { 4222 int i; 4223 pud_t *pud; 4224 unsigned long addr; 4225 unsigned long next; 4226 struct lru_gen_mm_walk *walk = args->private; 4227 4228 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4229 4230 pud = pud_offset(p4d, start & P4D_MASK); 4231 restart: 4232 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4233 pud_t val = READ_ONCE(pud[i]); 4234 4235 next = pud_addr_end(addr, end); 4236 4237 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4238 continue; 4239 4240 walk_pmd_range(&val, addr, next, args); 4241 4242 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4243 end = (addr | ~PUD_MASK) + 1; 4244 goto done; 4245 } 4246 } 4247 4248 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4249 goto restart; 4250 4251 end = round_up(end, P4D_SIZE); 4252 done: 4253 if (!end || !args->vma) 4254 return 1; 4255 4256 walk->next_addr = max(end, args->vma->vm_start); 4257 4258 return -EAGAIN; 4259 } 4260 4261 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4262 { 4263 static const struct mm_walk_ops mm_walk_ops = { 4264 .test_walk = should_skip_vma, 4265 .p4d_entry = walk_pud_range, 4266 }; 4267 4268 int err; 4269 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4270 4271 walk->next_addr = FIRST_USER_ADDRESS; 4272 4273 do { 4274 DEFINE_MAX_SEQ(lruvec); 4275 4276 err = -EBUSY; 4277 4278 /* another thread might have called inc_max_seq() */ 4279 if (walk->max_seq != max_seq) 4280 break; 4281 4282 /* folio_update_gen() requires stable folio_memcg() */ 4283 if (!mem_cgroup_trylock_pages(memcg)) 4284 break; 4285 4286 /* the caller might be holding the lock for write */ 4287 if (mmap_read_trylock(mm)) { 4288 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4289 4290 mmap_read_unlock(mm); 4291 } 4292 4293 mem_cgroup_unlock_pages(); 4294 4295 if (walk->batched) { 4296 spin_lock_irq(&lruvec->lru_lock); 4297 reset_batch_size(lruvec, walk); 4298 spin_unlock_irq(&lruvec->lru_lock); 4299 } 4300 4301 cond_resched(); 4302 } while (err == -EAGAIN); 4303 } 4304 4305 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4306 { 4307 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4308 4309 if (pgdat && current_is_kswapd()) { 4310 VM_WARN_ON_ONCE(walk); 4311 4312 walk = &pgdat->mm_walk; 4313 } else if (!walk && force_alloc) { 4314 VM_WARN_ON_ONCE(current_is_kswapd()); 4315 4316 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4317 } 4318 4319 current->reclaim_state->mm_walk = walk; 4320 4321 return walk; 4322 } 4323 4324 static void clear_mm_walk(void) 4325 { 4326 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4327 4328 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4329 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4330 4331 current->reclaim_state->mm_walk = NULL; 4332 4333 if (!current_is_kswapd()) 4334 kfree(walk); 4335 } 4336 4337 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4338 { 4339 int zone; 4340 int remaining = MAX_LRU_BATCH; 4341 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4342 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4343 4344 if (type == LRU_GEN_ANON && !can_swap) 4345 goto done; 4346 4347 /* prevent cold/hot inversion if force_scan is true */ 4348 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4349 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4350 4351 while (!list_empty(head)) { 4352 struct folio *folio = lru_to_folio(head); 4353 4354 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4355 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4356 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4357 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4358 4359 new_gen = folio_inc_gen(lruvec, folio, false); 4360 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4361 4362 if (!--remaining) 4363 return false; 4364 } 4365 } 4366 done: 4367 reset_ctrl_pos(lruvec, type, true); 4368 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4369 4370 return true; 4371 } 4372 4373 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4374 { 4375 int gen, type, zone; 4376 bool success = false; 4377 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4378 DEFINE_MIN_SEQ(lruvec); 4379 4380 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4381 4382 /* find the oldest populated generation */ 4383 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4384 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4385 gen = lru_gen_from_seq(min_seq[type]); 4386 4387 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4388 if (!list_empty(&lrugen->folios[gen][type][zone])) 4389 goto next; 4390 } 4391 4392 min_seq[type]++; 4393 } 4394 next: 4395 ; 4396 } 4397 4398 /* see the comment on lru_gen_folio */ 4399 if (can_swap) { 4400 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4401 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4402 } 4403 4404 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4405 if (min_seq[type] == lrugen->min_seq[type]) 4406 continue; 4407 4408 reset_ctrl_pos(lruvec, type, true); 4409 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4410 success = true; 4411 } 4412 4413 return success; 4414 } 4415 4416 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4417 { 4418 int prev, next; 4419 int type, zone; 4420 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4421 4422 spin_lock_irq(&lruvec->lru_lock); 4423 4424 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4425 4426 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4427 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4428 continue; 4429 4430 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4431 4432 while (!inc_min_seq(lruvec, type, can_swap)) { 4433 spin_unlock_irq(&lruvec->lru_lock); 4434 cond_resched(); 4435 spin_lock_irq(&lruvec->lru_lock); 4436 } 4437 } 4438 4439 /* 4440 * Update the active/inactive LRU sizes for compatibility. Both sides of 4441 * the current max_seq need to be covered, since max_seq+1 can overlap 4442 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4443 * overlap, cold/hot inversion happens. 4444 */ 4445 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4446 next = lru_gen_from_seq(lrugen->max_seq + 1); 4447 4448 for (type = 0; type < ANON_AND_FILE; type++) { 4449 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4450 enum lru_list lru = type * LRU_INACTIVE_FILE; 4451 long delta = lrugen->nr_pages[prev][type][zone] - 4452 lrugen->nr_pages[next][type][zone]; 4453 4454 if (!delta) 4455 continue; 4456 4457 __update_lru_size(lruvec, lru, zone, delta); 4458 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4459 } 4460 } 4461 4462 for (type = 0; type < ANON_AND_FILE; type++) 4463 reset_ctrl_pos(lruvec, type, false); 4464 4465 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4466 /* make sure preceding modifications appear */ 4467 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4468 4469 spin_unlock_irq(&lruvec->lru_lock); 4470 } 4471 4472 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4473 struct scan_control *sc, bool can_swap, bool force_scan) 4474 { 4475 bool success; 4476 struct lru_gen_mm_walk *walk; 4477 struct mm_struct *mm = NULL; 4478 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4479 4480 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4481 4482 /* see the comment in iterate_mm_list() */ 4483 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4484 success = false; 4485 goto done; 4486 } 4487 4488 /* 4489 * If the hardware doesn't automatically set the accessed bit, fallback 4490 * to lru_gen_look_around(), which only clears the accessed bit in a 4491 * handful of PTEs. Spreading the work out over a period of time usually 4492 * is less efficient, but it avoids bursty page faults. 4493 */ 4494 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) { 4495 success = iterate_mm_list_nowalk(lruvec, max_seq); 4496 goto done; 4497 } 4498 4499 walk = set_mm_walk(NULL, true); 4500 if (!walk) { 4501 success = iterate_mm_list_nowalk(lruvec, max_seq); 4502 goto done; 4503 } 4504 4505 walk->lruvec = lruvec; 4506 walk->max_seq = max_seq; 4507 walk->can_swap = can_swap; 4508 walk->force_scan = force_scan; 4509 4510 do { 4511 success = iterate_mm_list(lruvec, walk, &mm); 4512 if (mm) 4513 walk_mm(lruvec, mm, walk); 4514 } while (mm); 4515 done: 4516 if (success) 4517 inc_max_seq(lruvec, can_swap, force_scan); 4518 4519 return success; 4520 } 4521 4522 /****************************************************************************** 4523 * working set protection 4524 ******************************************************************************/ 4525 4526 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4527 { 4528 int gen, type, zone; 4529 unsigned long total = 0; 4530 bool can_swap = get_swappiness(lruvec, sc); 4531 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4532 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4533 DEFINE_MAX_SEQ(lruvec); 4534 DEFINE_MIN_SEQ(lruvec); 4535 4536 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4537 unsigned long seq; 4538 4539 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4540 gen = lru_gen_from_seq(seq); 4541 4542 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4543 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4544 } 4545 } 4546 4547 /* whether the size is big enough to be helpful */ 4548 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4549 } 4550 4551 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4552 unsigned long min_ttl) 4553 { 4554 int gen; 4555 unsigned long birth; 4556 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4557 DEFINE_MIN_SEQ(lruvec); 4558 4559 /* see the comment on lru_gen_folio */ 4560 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4561 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4562 4563 if (time_is_after_jiffies(birth + min_ttl)) 4564 return false; 4565 4566 if (!lruvec_is_sizable(lruvec, sc)) 4567 return false; 4568 4569 mem_cgroup_calculate_protection(NULL, memcg); 4570 4571 return !mem_cgroup_below_min(NULL, memcg); 4572 } 4573 4574 /* to protect the working set of the last N jiffies */ 4575 static unsigned long lru_gen_min_ttl __read_mostly; 4576 4577 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4578 { 4579 struct mem_cgroup *memcg; 4580 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4581 4582 VM_WARN_ON_ONCE(!current_is_kswapd()); 4583 4584 /* check the order to exclude compaction-induced reclaim */ 4585 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4586 return; 4587 4588 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4589 do { 4590 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4591 4592 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4593 mem_cgroup_iter_break(NULL, memcg); 4594 return; 4595 } 4596 4597 cond_resched(); 4598 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4599 4600 /* 4601 * The main goal is to OOM kill if every generation from all memcgs is 4602 * younger than min_ttl. However, another possibility is all memcgs are 4603 * either too small or below min. 4604 */ 4605 if (mutex_trylock(&oom_lock)) { 4606 struct oom_control oc = { 4607 .gfp_mask = sc->gfp_mask, 4608 }; 4609 4610 out_of_memory(&oc); 4611 4612 mutex_unlock(&oom_lock); 4613 } 4614 } 4615 4616 /****************************************************************************** 4617 * rmap/PT walk feedback 4618 ******************************************************************************/ 4619 4620 /* 4621 * This function exploits spatial locality when shrink_folio_list() walks the 4622 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4623 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4624 * the PTE table to the Bloom filter. This forms a feedback loop between the 4625 * eviction and the aging. 4626 */ 4627 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4628 { 4629 int i; 4630 unsigned long start; 4631 unsigned long end; 4632 struct lru_gen_mm_walk *walk; 4633 int young = 0; 4634 pte_t *pte = pvmw->pte; 4635 unsigned long addr = pvmw->address; 4636 struct folio *folio = pfn_folio(pvmw->pfn); 4637 struct mem_cgroup *memcg = folio_memcg(folio); 4638 struct pglist_data *pgdat = folio_pgdat(folio); 4639 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4640 DEFINE_MAX_SEQ(lruvec); 4641 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4642 4643 lockdep_assert_held(pvmw->ptl); 4644 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4645 4646 if (spin_is_contended(pvmw->ptl)) 4647 return; 4648 4649 /* avoid taking the LRU lock under the PTL when possible */ 4650 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4651 4652 start = max(addr & PMD_MASK, pvmw->vma->vm_start); 4653 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4654 4655 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4656 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4657 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4658 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4659 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4660 else { 4661 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4662 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4663 } 4664 } 4665 4666 /* folio_update_gen() requires stable folio_memcg() */ 4667 if (!mem_cgroup_trylock_pages(memcg)) 4668 return; 4669 4670 arch_enter_lazy_mmu_mode(); 4671 4672 pte -= (addr - start) / PAGE_SIZE; 4673 4674 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4675 unsigned long pfn; 4676 4677 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4678 if (pfn == -1) 4679 continue; 4680 4681 if (!pte_young(pte[i])) 4682 continue; 4683 4684 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4685 if (!folio) 4686 continue; 4687 4688 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4689 VM_WARN_ON_ONCE(true); 4690 4691 young++; 4692 4693 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4694 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4695 !folio_test_swapcache(folio))) 4696 folio_mark_dirty(folio); 4697 4698 if (walk) { 4699 old_gen = folio_update_gen(folio, new_gen); 4700 if (old_gen >= 0 && old_gen != new_gen) 4701 update_batch_size(walk, folio, old_gen, new_gen); 4702 4703 continue; 4704 } 4705 4706 old_gen = folio_lru_gen(folio); 4707 if (old_gen < 0) 4708 folio_set_referenced(folio); 4709 else if (old_gen != new_gen) 4710 folio_activate(folio); 4711 } 4712 4713 arch_leave_lazy_mmu_mode(); 4714 mem_cgroup_unlock_pages(); 4715 4716 /* feedback from rmap walkers to page table walkers */ 4717 if (suitable_to_scan(i, young)) 4718 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4719 } 4720 4721 /****************************************************************************** 4722 * memcg LRU 4723 ******************************************************************************/ 4724 4725 /* see the comment on MEMCG_NR_GENS */ 4726 enum { 4727 MEMCG_LRU_NOP, 4728 MEMCG_LRU_HEAD, 4729 MEMCG_LRU_TAIL, 4730 MEMCG_LRU_OLD, 4731 MEMCG_LRU_YOUNG, 4732 }; 4733 4734 #ifdef CONFIG_MEMCG 4735 4736 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4737 { 4738 return READ_ONCE(lruvec->lrugen.seg); 4739 } 4740 4741 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4742 { 4743 int seg; 4744 int old, new; 4745 int bin = get_random_u32_below(MEMCG_NR_BINS); 4746 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4747 4748 spin_lock(&pgdat->memcg_lru.lock); 4749 4750 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4751 4752 seg = 0; 4753 new = old = lruvec->lrugen.gen; 4754 4755 /* see the comment on MEMCG_NR_GENS */ 4756 if (op == MEMCG_LRU_HEAD) 4757 seg = MEMCG_LRU_HEAD; 4758 else if (op == MEMCG_LRU_TAIL) 4759 seg = MEMCG_LRU_TAIL; 4760 else if (op == MEMCG_LRU_OLD) 4761 new = get_memcg_gen(pgdat->memcg_lru.seq); 4762 else if (op == MEMCG_LRU_YOUNG) 4763 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4764 else 4765 VM_WARN_ON_ONCE(true); 4766 4767 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4768 4769 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4770 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4771 else 4772 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4773 4774 pgdat->memcg_lru.nr_memcgs[old]--; 4775 pgdat->memcg_lru.nr_memcgs[new]++; 4776 4777 lruvec->lrugen.gen = new; 4778 WRITE_ONCE(lruvec->lrugen.seg, seg); 4779 4780 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4781 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4782 4783 spin_unlock(&pgdat->memcg_lru.lock); 4784 } 4785 4786 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4787 { 4788 int gen; 4789 int nid; 4790 int bin = get_random_u32_below(MEMCG_NR_BINS); 4791 4792 for_each_node(nid) { 4793 struct pglist_data *pgdat = NODE_DATA(nid); 4794 struct lruvec *lruvec = get_lruvec(memcg, nid); 4795 4796 spin_lock(&pgdat->memcg_lru.lock); 4797 4798 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4799 4800 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4801 4802 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4803 pgdat->memcg_lru.nr_memcgs[gen]++; 4804 4805 lruvec->lrugen.gen = gen; 4806 4807 spin_unlock(&pgdat->memcg_lru.lock); 4808 } 4809 } 4810 4811 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4812 { 4813 int nid; 4814 4815 for_each_node(nid) { 4816 struct lruvec *lruvec = get_lruvec(memcg, nid); 4817 4818 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4819 } 4820 } 4821 4822 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4823 { 4824 int gen; 4825 int nid; 4826 4827 for_each_node(nid) { 4828 struct pglist_data *pgdat = NODE_DATA(nid); 4829 struct lruvec *lruvec = get_lruvec(memcg, nid); 4830 4831 spin_lock(&pgdat->memcg_lru.lock); 4832 4833 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4834 4835 gen = lruvec->lrugen.gen; 4836 4837 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4838 pgdat->memcg_lru.nr_memcgs[gen]--; 4839 4840 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4841 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4842 4843 spin_unlock(&pgdat->memcg_lru.lock); 4844 } 4845 } 4846 4847 void lru_gen_soft_reclaim(struct lruvec *lruvec) 4848 { 4849 /* see the comment on MEMCG_NR_GENS */ 4850 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4851 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4852 } 4853 4854 #else /* !CONFIG_MEMCG */ 4855 4856 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4857 { 4858 return 0; 4859 } 4860 4861 #endif 4862 4863 /****************************************************************************** 4864 * the eviction 4865 ******************************************************************************/ 4866 4867 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4868 { 4869 bool success; 4870 int gen = folio_lru_gen(folio); 4871 int type = folio_is_file_lru(folio); 4872 int zone = folio_zonenum(folio); 4873 int delta = folio_nr_pages(folio); 4874 int refs = folio_lru_refs(folio); 4875 int tier = lru_tier_from_refs(refs); 4876 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4877 4878 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4879 4880 /* unevictable */ 4881 if (!folio_evictable(folio)) { 4882 success = lru_gen_del_folio(lruvec, folio, true); 4883 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4884 folio_set_unevictable(folio); 4885 lruvec_add_folio(lruvec, folio); 4886 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4887 return true; 4888 } 4889 4890 /* dirty lazyfree */ 4891 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4892 success = lru_gen_del_folio(lruvec, folio, true); 4893 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4894 folio_set_swapbacked(folio); 4895 lruvec_add_folio_tail(lruvec, folio); 4896 return true; 4897 } 4898 4899 /* promoted */ 4900 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4901 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4902 return true; 4903 } 4904 4905 /* protected */ 4906 if (tier > tier_idx) { 4907 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4908 4909 gen = folio_inc_gen(lruvec, folio, false); 4910 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4911 4912 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4913 lrugen->protected[hist][type][tier - 1] + delta); 4914 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4915 return true; 4916 } 4917 4918 /* waiting for writeback */ 4919 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4920 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4921 gen = folio_inc_gen(lruvec, folio, true); 4922 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4923 return true; 4924 } 4925 4926 return false; 4927 } 4928 4929 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4930 { 4931 bool success; 4932 4933 /* swapping inhibited */ 4934 if (!(sc->gfp_mask & __GFP_IO) && 4935 (folio_test_dirty(folio) || 4936 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4937 return false; 4938 4939 /* raced with release_pages() */ 4940 if (!folio_try_get(folio)) 4941 return false; 4942 4943 /* raced with another isolation */ 4944 if (!folio_test_clear_lru(folio)) { 4945 folio_put(folio); 4946 return false; 4947 } 4948 4949 /* see the comment on MAX_NR_TIERS */ 4950 if (!folio_test_referenced(folio)) 4951 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4952 4953 /* for shrink_folio_list() */ 4954 folio_clear_reclaim(folio); 4955 folio_clear_referenced(folio); 4956 4957 success = lru_gen_del_folio(lruvec, folio, true); 4958 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4959 4960 return true; 4961 } 4962 4963 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4964 int type, int tier, struct list_head *list) 4965 { 4966 int gen, zone; 4967 enum vm_event_item item; 4968 int sorted = 0; 4969 int scanned = 0; 4970 int isolated = 0; 4971 int remaining = MAX_LRU_BATCH; 4972 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4973 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4974 4975 VM_WARN_ON_ONCE(!list_empty(list)); 4976 4977 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4978 return 0; 4979 4980 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4981 4982 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4983 LIST_HEAD(moved); 4984 int skipped = 0; 4985 struct list_head *head = &lrugen->folios[gen][type][zone]; 4986 4987 while (!list_empty(head)) { 4988 struct folio *folio = lru_to_folio(head); 4989 int delta = folio_nr_pages(folio); 4990 4991 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4992 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4993 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4994 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4995 4996 scanned += delta; 4997 4998 if (sort_folio(lruvec, folio, tier)) 4999 sorted += delta; 5000 else if (isolate_folio(lruvec, folio, sc)) { 5001 list_add(&folio->lru, list); 5002 isolated += delta; 5003 } else { 5004 list_move(&folio->lru, &moved); 5005 skipped += delta; 5006 } 5007 5008 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 5009 break; 5010 } 5011 5012 if (skipped) { 5013 list_splice(&moved, head); 5014 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 5015 } 5016 5017 if (!remaining || isolated >= MIN_LRU_BATCH) 5018 break; 5019 } 5020 5021 item = PGSCAN_KSWAPD + reclaimer_offset(); 5022 if (!cgroup_reclaim(sc)) { 5023 __count_vm_events(item, isolated); 5024 __count_vm_events(PGREFILL, sorted); 5025 } 5026 __count_memcg_events(memcg, item, isolated); 5027 __count_memcg_events(memcg, PGREFILL, sorted); 5028 __count_vm_events(PGSCAN_ANON + type, isolated); 5029 5030 /* 5031 * There might not be eligible folios due to reclaim_idx. Check the 5032 * remaining to prevent livelock if it's not making progress. 5033 */ 5034 return isolated || !remaining ? scanned : 0; 5035 } 5036 5037 static int get_tier_idx(struct lruvec *lruvec, int type) 5038 { 5039 int tier; 5040 struct ctrl_pos sp, pv; 5041 5042 /* 5043 * To leave a margin for fluctuations, use a larger gain factor (1:2). 5044 * This value is chosen because any other tier would have at least twice 5045 * as many refaults as the first tier. 5046 */ 5047 read_ctrl_pos(lruvec, type, 0, 1, &sp); 5048 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5049 read_ctrl_pos(lruvec, type, tier, 2, &pv); 5050 if (!positive_ctrl_err(&sp, &pv)) 5051 break; 5052 } 5053 5054 return tier - 1; 5055 } 5056 5057 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 5058 { 5059 int type, tier; 5060 struct ctrl_pos sp, pv; 5061 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 5062 5063 /* 5064 * Compare the first tier of anon with that of file to determine which 5065 * type to scan. Also need to compare other tiers of the selected type 5066 * with the first tier of the other type to determine the last tier (of 5067 * the selected type) to evict. 5068 */ 5069 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 5070 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 5071 type = positive_ctrl_err(&sp, &pv); 5072 5073 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 5074 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5075 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 5076 if (!positive_ctrl_err(&sp, &pv)) 5077 break; 5078 } 5079 5080 *tier_idx = tier - 1; 5081 5082 return type; 5083 } 5084 5085 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5086 int *type_scanned, struct list_head *list) 5087 { 5088 int i; 5089 int type; 5090 int scanned; 5091 int tier = -1; 5092 DEFINE_MIN_SEQ(lruvec); 5093 5094 /* 5095 * Try to make the obvious choice first. When anon and file are both 5096 * available from the same generation, interpret swappiness 1 as file 5097 * first and 200 as anon first. 5098 */ 5099 if (!swappiness) 5100 type = LRU_GEN_FILE; 5101 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 5102 type = LRU_GEN_ANON; 5103 else if (swappiness == 1) 5104 type = LRU_GEN_FILE; 5105 else if (swappiness == 200) 5106 type = LRU_GEN_ANON; 5107 else 5108 type = get_type_to_scan(lruvec, swappiness, &tier); 5109 5110 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5111 if (tier < 0) 5112 tier = get_tier_idx(lruvec, type); 5113 5114 scanned = scan_folios(lruvec, sc, type, tier, list); 5115 if (scanned) 5116 break; 5117 5118 type = !type; 5119 tier = -1; 5120 } 5121 5122 *type_scanned = type; 5123 5124 return scanned; 5125 } 5126 5127 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5128 { 5129 int type; 5130 int scanned; 5131 int reclaimed; 5132 LIST_HEAD(list); 5133 LIST_HEAD(clean); 5134 struct folio *folio; 5135 struct folio *next; 5136 enum vm_event_item item; 5137 struct reclaim_stat stat; 5138 struct lru_gen_mm_walk *walk; 5139 bool skip_retry = false; 5140 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5141 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5142 5143 spin_lock_irq(&lruvec->lru_lock); 5144 5145 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5146 5147 scanned += try_to_inc_min_seq(lruvec, swappiness); 5148 5149 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5150 scanned = 0; 5151 5152 spin_unlock_irq(&lruvec->lru_lock); 5153 5154 if (list_empty(&list)) 5155 return scanned; 5156 retry: 5157 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5158 sc->nr_reclaimed += reclaimed; 5159 5160 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5161 if (!folio_evictable(folio)) { 5162 list_del(&folio->lru); 5163 folio_putback_lru(folio); 5164 continue; 5165 } 5166 5167 if (folio_test_reclaim(folio) && 5168 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5169 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5170 if (folio_test_workingset(folio)) 5171 folio_set_referenced(folio); 5172 continue; 5173 } 5174 5175 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5176 folio_mapped(folio) || folio_test_locked(folio) || 5177 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5178 /* don't add rejected folios to the oldest generation */ 5179 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5180 BIT(PG_active)); 5181 continue; 5182 } 5183 5184 /* retry folios that may have missed folio_rotate_reclaimable() */ 5185 list_move(&folio->lru, &clean); 5186 sc->nr_scanned -= folio_nr_pages(folio); 5187 } 5188 5189 spin_lock_irq(&lruvec->lru_lock); 5190 5191 move_folios_to_lru(lruvec, &list); 5192 5193 walk = current->reclaim_state->mm_walk; 5194 if (walk && walk->batched) 5195 reset_batch_size(lruvec, walk); 5196 5197 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5198 if (!cgroup_reclaim(sc)) 5199 __count_vm_events(item, reclaimed); 5200 __count_memcg_events(memcg, item, reclaimed); 5201 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5202 5203 spin_unlock_irq(&lruvec->lru_lock); 5204 5205 mem_cgroup_uncharge_list(&list); 5206 free_unref_page_list(&list); 5207 5208 INIT_LIST_HEAD(&list); 5209 list_splice_init(&clean, &list); 5210 5211 if (!list_empty(&list)) { 5212 skip_retry = true; 5213 goto retry; 5214 } 5215 5216 return scanned; 5217 } 5218 5219 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5220 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5221 { 5222 int gen, type, zone; 5223 unsigned long old = 0; 5224 unsigned long young = 0; 5225 unsigned long total = 0; 5226 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5227 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5228 DEFINE_MIN_SEQ(lruvec); 5229 5230 /* whether this lruvec is completely out of cold folios */ 5231 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5232 *nr_to_scan = 0; 5233 return true; 5234 } 5235 5236 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5237 unsigned long seq; 5238 5239 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5240 unsigned long size = 0; 5241 5242 gen = lru_gen_from_seq(seq); 5243 5244 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5245 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5246 5247 total += size; 5248 if (seq == max_seq) 5249 young += size; 5250 else if (seq + MIN_NR_GENS == max_seq) 5251 old += size; 5252 } 5253 } 5254 5255 /* try to scrape all its memory if this memcg was deleted */ 5256 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 5257 5258 /* 5259 * The aging tries to be lazy to reduce the overhead, while the eviction 5260 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5261 * ideal number of generations is MIN_NR_GENS+1. 5262 */ 5263 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5264 return false; 5265 5266 /* 5267 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5268 * of the total number of pages for each generation. A reasonable range 5269 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5270 * aging cares about the upper bound of hot pages, while the eviction 5271 * cares about the lower bound of cold pages. 5272 */ 5273 if (young * MIN_NR_GENS > total) 5274 return true; 5275 if (old * (MIN_NR_GENS + 2) < total) 5276 return true; 5277 5278 return false; 5279 } 5280 5281 /* 5282 * For future optimizations: 5283 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5284 * reclaim. 5285 */ 5286 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5287 { 5288 unsigned long nr_to_scan; 5289 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5290 DEFINE_MAX_SEQ(lruvec); 5291 5292 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5293 return 0; 5294 5295 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5296 return nr_to_scan; 5297 5298 /* skip the aging path at the default priority */ 5299 if (sc->priority == DEF_PRIORITY) 5300 return nr_to_scan; 5301 5302 /* skip this lruvec as it's low on cold folios */ 5303 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5304 } 5305 5306 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5307 { 5308 /* don't abort memcg reclaim to ensure fairness */ 5309 if (!global_reclaim(sc)) 5310 return -1; 5311 5312 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5313 } 5314 5315 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5316 { 5317 long nr_to_scan; 5318 unsigned long scanned = 0; 5319 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5320 int swappiness = get_swappiness(lruvec, sc); 5321 5322 /* clean file folios are more likely to exist */ 5323 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5324 swappiness = 1; 5325 5326 while (true) { 5327 int delta; 5328 5329 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5330 if (nr_to_scan <= 0) 5331 break; 5332 5333 delta = evict_folios(lruvec, sc, swappiness); 5334 if (!delta) 5335 break; 5336 5337 scanned += delta; 5338 if (scanned >= nr_to_scan) 5339 break; 5340 5341 if (sc->nr_reclaimed >= nr_to_reclaim) 5342 break; 5343 5344 cond_resched(); 5345 } 5346 5347 /* whether try_to_inc_max_seq() was successful */ 5348 return nr_to_scan < 0; 5349 } 5350 5351 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5352 { 5353 bool success; 5354 unsigned long scanned = sc->nr_scanned; 5355 unsigned long reclaimed = sc->nr_reclaimed; 5356 int seg = lru_gen_memcg_seg(lruvec); 5357 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5358 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5359 5360 /* see the comment on MEMCG_NR_GENS */ 5361 if (!lruvec_is_sizable(lruvec, sc)) 5362 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5363 5364 mem_cgroup_calculate_protection(NULL, memcg); 5365 5366 if (mem_cgroup_below_min(NULL, memcg)) 5367 return MEMCG_LRU_YOUNG; 5368 5369 if (mem_cgroup_below_low(NULL, memcg)) { 5370 /* see the comment on MEMCG_NR_GENS */ 5371 if (seg != MEMCG_LRU_TAIL) 5372 return MEMCG_LRU_TAIL; 5373 5374 memcg_memory_event(memcg, MEMCG_LOW); 5375 } 5376 5377 success = try_to_shrink_lruvec(lruvec, sc); 5378 5379 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5380 5381 if (!sc->proactive) 5382 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5383 sc->nr_reclaimed - reclaimed); 5384 5385 flush_reclaim_state(sc); 5386 5387 return success ? MEMCG_LRU_YOUNG : 0; 5388 } 5389 5390 #ifdef CONFIG_MEMCG 5391 5392 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5393 { 5394 int op; 5395 int gen; 5396 int bin; 5397 int first_bin; 5398 struct lruvec *lruvec; 5399 struct lru_gen_folio *lrugen; 5400 struct mem_cgroup *memcg; 5401 const struct hlist_nulls_node *pos; 5402 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5403 5404 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5405 restart: 5406 op = 0; 5407 memcg = NULL; 5408 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5409 5410 rcu_read_lock(); 5411 5412 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5413 if (op) 5414 lru_gen_rotate_memcg(lruvec, op); 5415 5416 mem_cgroup_put(memcg); 5417 5418 lruvec = container_of(lrugen, struct lruvec, lrugen); 5419 memcg = lruvec_memcg(lruvec); 5420 5421 if (!mem_cgroup_tryget(memcg)) { 5422 op = 0; 5423 memcg = NULL; 5424 continue; 5425 } 5426 5427 rcu_read_unlock(); 5428 5429 op = shrink_one(lruvec, sc); 5430 5431 rcu_read_lock(); 5432 5433 if (sc->nr_reclaimed >= nr_to_reclaim) 5434 break; 5435 } 5436 5437 rcu_read_unlock(); 5438 5439 if (op) 5440 lru_gen_rotate_memcg(lruvec, op); 5441 5442 mem_cgroup_put(memcg); 5443 5444 if (sc->nr_reclaimed >= nr_to_reclaim) 5445 return; 5446 5447 /* restart if raced with lru_gen_rotate_memcg() */ 5448 if (gen != get_nulls_value(pos)) 5449 goto restart; 5450 5451 /* try the rest of the bins of the current generation */ 5452 bin = get_memcg_bin(bin + 1); 5453 if (bin != first_bin) 5454 goto restart; 5455 } 5456 5457 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5458 { 5459 struct blk_plug plug; 5460 5461 VM_WARN_ON_ONCE(global_reclaim(sc)); 5462 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5463 5464 lru_add_drain(); 5465 5466 blk_start_plug(&plug); 5467 5468 set_mm_walk(NULL, sc->proactive); 5469 5470 if (try_to_shrink_lruvec(lruvec, sc)) 5471 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5472 5473 clear_mm_walk(); 5474 5475 blk_finish_plug(&plug); 5476 } 5477 5478 #else /* !CONFIG_MEMCG */ 5479 5480 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5481 { 5482 BUILD_BUG(); 5483 } 5484 5485 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5486 { 5487 BUILD_BUG(); 5488 } 5489 5490 #endif 5491 5492 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 5493 { 5494 int priority; 5495 unsigned long reclaimable; 5496 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 5497 5498 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 5499 return; 5500 /* 5501 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> 5502 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the 5503 * estimated reclaimed_to_scanned_ratio = inactive / total. 5504 */ 5505 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 5506 if (get_swappiness(lruvec, sc)) 5507 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 5508 5509 reclaimable /= MEMCG_NR_GENS; 5510 5511 /* round down reclaimable and round up sc->nr_to_reclaim */ 5512 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 5513 5514 sc->priority = clamp(priority, 0, DEF_PRIORITY); 5515 } 5516 5517 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5518 { 5519 struct blk_plug plug; 5520 unsigned long reclaimed = sc->nr_reclaimed; 5521 5522 VM_WARN_ON_ONCE(!global_reclaim(sc)); 5523 5524 /* 5525 * Unmapped clean folios are already prioritized. Scanning for more of 5526 * them is likely futile and can cause high reclaim latency when there 5527 * is a large number of memcgs. 5528 */ 5529 if (!sc->may_writepage || !sc->may_unmap) 5530 goto done; 5531 5532 lru_add_drain(); 5533 5534 blk_start_plug(&plug); 5535 5536 set_mm_walk(pgdat, sc->proactive); 5537 5538 set_initial_priority(pgdat, sc); 5539 5540 if (current_is_kswapd()) 5541 sc->nr_reclaimed = 0; 5542 5543 if (mem_cgroup_disabled()) 5544 shrink_one(&pgdat->__lruvec, sc); 5545 else 5546 shrink_many(pgdat, sc); 5547 5548 if (current_is_kswapd()) 5549 sc->nr_reclaimed += reclaimed; 5550 5551 clear_mm_walk(); 5552 5553 blk_finish_plug(&plug); 5554 done: 5555 /* kswapd should never fail */ 5556 pgdat->kswapd_failures = 0; 5557 } 5558 5559 /****************************************************************************** 5560 * state change 5561 ******************************************************************************/ 5562 5563 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5564 { 5565 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5566 5567 if (lrugen->enabled) { 5568 enum lru_list lru; 5569 5570 for_each_evictable_lru(lru) { 5571 if (!list_empty(&lruvec->lists[lru])) 5572 return false; 5573 } 5574 } else { 5575 int gen, type, zone; 5576 5577 for_each_gen_type_zone(gen, type, zone) { 5578 if (!list_empty(&lrugen->folios[gen][type][zone])) 5579 return false; 5580 } 5581 } 5582 5583 return true; 5584 } 5585 5586 static bool fill_evictable(struct lruvec *lruvec) 5587 { 5588 enum lru_list lru; 5589 int remaining = MAX_LRU_BATCH; 5590 5591 for_each_evictable_lru(lru) { 5592 int type = is_file_lru(lru); 5593 bool active = is_active_lru(lru); 5594 struct list_head *head = &lruvec->lists[lru]; 5595 5596 while (!list_empty(head)) { 5597 bool success; 5598 struct folio *folio = lru_to_folio(head); 5599 5600 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5601 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5602 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5603 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5604 5605 lruvec_del_folio(lruvec, folio); 5606 success = lru_gen_add_folio(lruvec, folio, false); 5607 VM_WARN_ON_ONCE(!success); 5608 5609 if (!--remaining) 5610 return false; 5611 } 5612 } 5613 5614 return true; 5615 } 5616 5617 static bool drain_evictable(struct lruvec *lruvec) 5618 { 5619 int gen, type, zone; 5620 int remaining = MAX_LRU_BATCH; 5621 5622 for_each_gen_type_zone(gen, type, zone) { 5623 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5624 5625 while (!list_empty(head)) { 5626 bool success; 5627 struct folio *folio = lru_to_folio(head); 5628 5629 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5630 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5631 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5632 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5633 5634 success = lru_gen_del_folio(lruvec, folio, false); 5635 VM_WARN_ON_ONCE(!success); 5636 lruvec_add_folio(lruvec, folio); 5637 5638 if (!--remaining) 5639 return false; 5640 } 5641 } 5642 5643 return true; 5644 } 5645 5646 static void lru_gen_change_state(bool enabled) 5647 { 5648 static DEFINE_MUTEX(state_mutex); 5649 5650 struct mem_cgroup *memcg; 5651 5652 cgroup_lock(); 5653 cpus_read_lock(); 5654 get_online_mems(); 5655 mutex_lock(&state_mutex); 5656 5657 if (enabled == lru_gen_enabled()) 5658 goto unlock; 5659 5660 if (enabled) 5661 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5662 else 5663 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5664 5665 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5666 do { 5667 int nid; 5668 5669 for_each_node(nid) { 5670 struct lruvec *lruvec = get_lruvec(memcg, nid); 5671 5672 spin_lock_irq(&lruvec->lru_lock); 5673 5674 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5675 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5676 5677 lruvec->lrugen.enabled = enabled; 5678 5679 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5680 spin_unlock_irq(&lruvec->lru_lock); 5681 cond_resched(); 5682 spin_lock_irq(&lruvec->lru_lock); 5683 } 5684 5685 spin_unlock_irq(&lruvec->lru_lock); 5686 } 5687 5688 cond_resched(); 5689 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5690 unlock: 5691 mutex_unlock(&state_mutex); 5692 put_online_mems(); 5693 cpus_read_unlock(); 5694 cgroup_unlock(); 5695 } 5696 5697 /****************************************************************************** 5698 * sysfs interface 5699 ******************************************************************************/ 5700 5701 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5702 { 5703 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5704 } 5705 5706 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5707 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5708 const char *buf, size_t len) 5709 { 5710 unsigned int msecs; 5711 5712 if (kstrtouint(buf, 0, &msecs)) 5713 return -EINVAL; 5714 5715 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5716 5717 return len; 5718 } 5719 5720 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5721 5722 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5723 { 5724 unsigned int caps = 0; 5725 5726 if (get_cap(LRU_GEN_CORE)) 5727 caps |= BIT(LRU_GEN_CORE); 5728 5729 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5730 caps |= BIT(LRU_GEN_MM_WALK); 5731 5732 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5733 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5734 5735 return sysfs_emit(buf, "0x%04x\n", caps); 5736 } 5737 5738 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5739 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5740 const char *buf, size_t len) 5741 { 5742 int i; 5743 unsigned int caps; 5744 5745 if (tolower(*buf) == 'n') 5746 caps = 0; 5747 else if (tolower(*buf) == 'y') 5748 caps = -1; 5749 else if (kstrtouint(buf, 0, &caps)) 5750 return -EINVAL; 5751 5752 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5753 bool enabled = caps & BIT(i); 5754 5755 if (i == LRU_GEN_CORE) 5756 lru_gen_change_state(enabled); 5757 else if (enabled) 5758 static_branch_enable(&lru_gen_caps[i]); 5759 else 5760 static_branch_disable(&lru_gen_caps[i]); 5761 } 5762 5763 return len; 5764 } 5765 5766 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5767 5768 static struct attribute *lru_gen_attrs[] = { 5769 &lru_gen_min_ttl_attr.attr, 5770 &lru_gen_enabled_attr.attr, 5771 NULL 5772 }; 5773 5774 static const struct attribute_group lru_gen_attr_group = { 5775 .name = "lru_gen", 5776 .attrs = lru_gen_attrs, 5777 }; 5778 5779 /****************************************************************************** 5780 * debugfs interface 5781 ******************************************************************************/ 5782 5783 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5784 { 5785 struct mem_cgroup *memcg; 5786 loff_t nr_to_skip = *pos; 5787 5788 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5789 if (!m->private) 5790 return ERR_PTR(-ENOMEM); 5791 5792 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5793 do { 5794 int nid; 5795 5796 for_each_node_state(nid, N_MEMORY) { 5797 if (!nr_to_skip--) 5798 return get_lruvec(memcg, nid); 5799 } 5800 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5801 5802 return NULL; 5803 } 5804 5805 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5806 { 5807 if (!IS_ERR_OR_NULL(v)) 5808 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5809 5810 kvfree(m->private); 5811 m->private = NULL; 5812 } 5813 5814 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5815 { 5816 int nid = lruvec_pgdat(v)->node_id; 5817 struct mem_cgroup *memcg = lruvec_memcg(v); 5818 5819 ++*pos; 5820 5821 nid = next_memory_node(nid); 5822 if (nid == MAX_NUMNODES) { 5823 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5824 if (!memcg) 5825 return NULL; 5826 5827 nid = first_memory_node; 5828 } 5829 5830 return get_lruvec(memcg, nid); 5831 } 5832 5833 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5834 unsigned long max_seq, unsigned long *min_seq, 5835 unsigned long seq) 5836 { 5837 int i; 5838 int type, tier; 5839 int hist = lru_hist_from_seq(seq); 5840 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5841 5842 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5843 seq_printf(m, " %10d", tier); 5844 for (type = 0; type < ANON_AND_FILE; type++) { 5845 const char *s = " "; 5846 unsigned long n[3] = {}; 5847 5848 if (seq == max_seq) { 5849 s = "RT "; 5850 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5851 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5852 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5853 s = "rep"; 5854 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5855 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5856 if (tier) 5857 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5858 } 5859 5860 for (i = 0; i < 3; i++) 5861 seq_printf(m, " %10lu%c", n[i], s[i]); 5862 } 5863 seq_putc(m, '\n'); 5864 } 5865 5866 seq_puts(m, " "); 5867 for (i = 0; i < NR_MM_STATS; i++) { 5868 const char *s = " "; 5869 unsigned long n = 0; 5870 5871 if (seq == max_seq && NR_HIST_GENS == 1) { 5872 s = "LOYNFA"; 5873 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5874 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5875 s = "loynfa"; 5876 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5877 } 5878 5879 seq_printf(m, " %10lu%c", n, s[i]); 5880 } 5881 seq_putc(m, '\n'); 5882 } 5883 5884 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5885 static int lru_gen_seq_show(struct seq_file *m, void *v) 5886 { 5887 unsigned long seq; 5888 bool full = !debugfs_real_fops(m->file)->write; 5889 struct lruvec *lruvec = v; 5890 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5891 int nid = lruvec_pgdat(lruvec)->node_id; 5892 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5893 DEFINE_MAX_SEQ(lruvec); 5894 DEFINE_MIN_SEQ(lruvec); 5895 5896 if (nid == first_memory_node) { 5897 const char *path = memcg ? m->private : ""; 5898 5899 #ifdef CONFIG_MEMCG 5900 if (memcg) 5901 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5902 #endif 5903 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5904 } 5905 5906 seq_printf(m, " node %5d\n", nid); 5907 5908 if (!full) 5909 seq = min_seq[LRU_GEN_ANON]; 5910 else if (max_seq >= MAX_NR_GENS) 5911 seq = max_seq - MAX_NR_GENS + 1; 5912 else 5913 seq = 0; 5914 5915 for (; seq <= max_seq; seq++) { 5916 int type, zone; 5917 int gen = lru_gen_from_seq(seq); 5918 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5919 5920 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5921 5922 for (type = 0; type < ANON_AND_FILE; type++) { 5923 unsigned long size = 0; 5924 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5925 5926 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5927 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5928 5929 seq_printf(m, " %10lu%c", size, mark); 5930 } 5931 5932 seq_putc(m, '\n'); 5933 5934 if (full) 5935 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5936 } 5937 5938 return 0; 5939 } 5940 5941 static const struct seq_operations lru_gen_seq_ops = { 5942 .start = lru_gen_seq_start, 5943 .stop = lru_gen_seq_stop, 5944 .next = lru_gen_seq_next, 5945 .show = lru_gen_seq_show, 5946 }; 5947 5948 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5949 bool can_swap, bool force_scan) 5950 { 5951 DEFINE_MAX_SEQ(lruvec); 5952 DEFINE_MIN_SEQ(lruvec); 5953 5954 if (seq < max_seq) 5955 return 0; 5956 5957 if (seq > max_seq) 5958 return -EINVAL; 5959 5960 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5961 return -ERANGE; 5962 5963 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5964 5965 return 0; 5966 } 5967 5968 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5969 int swappiness, unsigned long nr_to_reclaim) 5970 { 5971 DEFINE_MAX_SEQ(lruvec); 5972 5973 if (seq + MIN_NR_GENS > max_seq) 5974 return -EINVAL; 5975 5976 sc->nr_reclaimed = 0; 5977 5978 while (!signal_pending(current)) { 5979 DEFINE_MIN_SEQ(lruvec); 5980 5981 if (seq < min_seq[!swappiness]) 5982 return 0; 5983 5984 if (sc->nr_reclaimed >= nr_to_reclaim) 5985 return 0; 5986 5987 if (!evict_folios(lruvec, sc, swappiness)) 5988 return 0; 5989 5990 cond_resched(); 5991 } 5992 5993 return -EINTR; 5994 } 5995 5996 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5997 struct scan_control *sc, int swappiness, unsigned long opt) 5998 { 5999 struct lruvec *lruvec; 6000 int err = -EINVAL; 6001 struct mem_cgroup *memcg = NULL; 6002 6003 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 6004 return -EINVAL; 6005 6006 if (!mem_cgroup_disabled()) { 6007 rcu_read_lock(); 6008 6009 memcg = mem_cgroup_from_id(memcg_id); 6010 if (!mem_cgroup_tryget(memcg)) 6011 memcg = NULL; 6012 6013 rcu_read_unlock(); 6014 6015 if (!memcg) 6016 return -EINVAL; 6017 } 6018 6019 if (memcg_id != mem_cgroup_id(memcg)) 6020 goto done; 6021 6022 lruvec = get_lruvec(memcg, nid); 6023 6024 if (swappiness < 0) 6025 swappiness = get_swappiness(lruvec, sc); 6026 else if (swappiness > 200) 6027 goto done; 6028 6029 switch (cmd) { 6030 case '+': 6031 err = run_aging(lruvec, seq, sc, swappiness, opt); 6032 break; 6033 case '-': 6034 err = run_eviction(lruvec, seq, sc, swappiness, opt); 6035 break; 6036 } 6037 done: 6038 mem_cgroup_put(memcg); 6039 6040 return err; 6041 } 6042 6043 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 6044 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 6045 size_t len, loff_t *pos) 6046 { 6047 void *buf; 6048 char *cur, *next; 6049 unsigned int flags; 6050 struct blk_plug plug; 6051 int err = -EINVAL; 6052 struct scan_control sc = { 6053 .may_writepage = true, 6054 .may_unmap = true, 6055 .may_swap = true, 6056 .reclaim_idx = MAX_NR_ZONES - 1, 6057 .gfp_mask = GFP_KERNEL, 6058 }; 6059 6060 buf = kvmalloc(len + 1, GFP_KERNEL); 6061 if (!buf) 6062 return -ENOMEM; 6063 6064 if (copy_from_user(buf, src, len)) { 6065 kvfree(buf); 6066 return -EFAULT; 6067 } 6068 6069 set_task_reclaim_state(current, &sc.reclaim_state); 6070 flags = memalloc_noreclaim_save(); 6071 blk_start_plug(&plug); 6072 if (!set_mm_walk(NULL, true)) { 6073 err = -ENOMEM; 6074 goto done; 6075 } 6076 6077 next = buf; 6078 next[len] = '\0'; 6079 6080 while ((cur = strsep(&next, ",;\n"))) { 6081 int n; 6082 int end; 6083 char cmd; 6084 unsigned int memcg_id; 6085 unsigned int nid; 6086 unsigned long seq; 6087 unsigned int swappiness = -1; 6088 unsigned long opt = -1; 6089 6090 cur = skip_spaces(cur); 6091 if (!*cur) 6092 continue; 6093 6094 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 6095 &seq, &end, &swappiness, &end, &opt, &end); 6096 if (n < 4 || cur[end]) { 6097 err = -EINVAL; 6098 break; 6099 } 6100 6101 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 6102 if (err) 6103 break; 6104 } 6105 done: 6106 clear_mm_walk(); 6107 blk_finish_plug(&plug); 6108 memalloc_noreclaim_restore(flags); 6109 set_task_reclaim_state(current, NULL); 6110 6111 kvfree(buf); 6112 6113 return err ? : len; 6114 } 6115 6116 static int lru_gen_seq_open(struct inode *inode, struct file *file) 6117 { 6118 return seq_open(file, &lru_gen_seq_ops); 6119 } 6120 6121 static const struct file_operations lru_gen_rw_fops = { 6122 .open = lru_gen_seq_open, 6123 .read = seq_read, 6124 .write = lru_gen_seq_write, 6125 .llseek = seq_lseek, 6126 .release = seq_release, 6127 }; 6128 6129 static const struct file_operations lru_gen_ro_fops = { 6130 .open = lru_gen_seq_open, 6131 .read = seq_read, 6132 .llseek = seq_lseek, 6133 .release = seq_release, 6134 }; 6135 6136 /****************************************************************************** 6137 * initialization 6138 ******************************************************************************/ 6139 6140 void lru_gen_init_lruvec(struct lruvec *lruvec) 6141 { 6142 int i; 6143 int gen, type, zone; 6144 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6145 6146 lrugen->max_seq = MIN_NR_GENS + 1; 6147 lrugen->enabled = lru_gen_enabled(); 6148 6149 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6150 lrugen->timestamps[i] = jiffies; 6151 6152 for_each_gen_type_zone(gen, type, zone) 6153 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6154 6155 lruvec->mm_state.seq = MIN_NR_GENS; 6156 } 6157 6158 #ifdef CONFIG_MEMCG 6159 6160 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6161 { 6162 int i, j; 6163 6164 spin_lock_init(&pgdat->memcg_lru.lock); 6165 6166 for (i = 0; i < MEMCG_NR_GENS; i++) { 6167 for (j = 0; j < MEMCG_NR_BINS; j++) 6168 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6169 } 6170 } 6171 6172 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6173 { 6174 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6175 spin_lock_init(&memcg->mm_list.lock); 6176 } 6177 6178 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6179 { 6180 int i; 6181 int nid; 6182 6183 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 6184 6185 for_each_node(nid) { 6186 struct lruvec *lruvec = get_lruvec(memcg, nid); 6187 6188 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6189 sizeof(lruvec->lrugen.nr_pages))); 6190 6191 lruvec->lrugen.list.next = LIST_POISON1; 6192 6193 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6194 bitmap_free(lruvec->mm_state.filters[i]); 6195 lruvec->mm_state.filters[i] = NULL; 6196 } 6197 } 6198 } 6199 6200 #endif /* CONFIG_MEMCG */ 6201 6202 static int __init init_lru_gen(void) 6203 { 6204 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6205 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6206 6207 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6208 pr_err("lru_gen: failed to create sysfs group\n"); 6209 6210 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6211 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6212 6213 return 0; 6214 }; 6215 late_initcall(init_lru_gen); 6216 6217 #else /* !CONFIG_LRU_GEN */ 6218 6219 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6220 { 6221 } 6222 6223 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6224 { 6225 } 6226 6227 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6228 { 6229 } 6230 6231 #endif /* CONFIG_LRU_GEN */ 6232 6233 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6234 { 6235 unsigned long nr[NR_LRU_LISTS]; 6236 unsigned long targets[NR_LRU_LISTS]; 6237 unsigned long nr_to_scan; 6238 enum lru_list lru; 6239 unsigned long nr_reclaimed = 0; 6240 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6241 bool proportional_reclaim; 6242 struct blk_plug plug; 6243 6244 if (lru_gen_enabled() && !global_reclaim(sc)) { 6245 lru_gen_shrink_lruvec(lruvec, sc); 6246 return; 6247 } 6248 6249 get_scan_count(lruvec, sc, nr); 6250 6251 /* Record the original scan target for proportional adjustments later */ 6252 memcpy(targets, nr, sizeof(nr)); 6253 6254 /* 6255 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6256 * event that can occur when there is little memory pressure e.g. 6257 * multiple streaming readers/writers. Hence, we do not abort scanning 6258 * when the requested number of pages are reclaimed when scanning at 6259 * DEF_PRIORITY on the assumption that the fact we are direct 6260 * reclaiming implies that kswapd is not keeping up and it is best to 6261 * do a batch of work at once. For memcg reclaim one check is made to 6262 * abort proportional reclaim if either the file or anon lru has already 6263 * dropped to zero at the first pass. 6264 */ 6265 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6266 sc->priority == DEF_PRIORITY); 6267 6268 blk_start_plug(&plug); 6269 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6270 nr[LRU_INACTIVE_FILE]) { 6271 unsigned long nr_anon, nr_file, percentage; 6272 unsigned long nr_scanned; 6273 6274 for_each_evictable_lru(lru) { 6275 if (nr[lru]) { 6276 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6277 nr[lru] -= nr_to_scan; 6278 6279 nr_reclaimed += shrink_list(lru, nr_to_scan, 6280 lruvec, sc); 6281 } 6282 } 6283 6284 cond_resched(); 6285 6286 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6287 continue; 6288 6289 /* 6290 * For kswapd and memcg, reclaim at least the number of pages 6291 * requested. Ensure that the anon and file LRUs are scanned 6292 * proportionally what was requested by get_scan_count(). We 6293 * stop reclaiming one LRU and reduce the amount scanning 6294 * proportional to the original scan target. 6295 */ 6296 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6297 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6298 6299 /* 6300 * It's just vindictive to attack the larger once the smaller 6301 * has gone to zero. And given the way we stop scanning the 6302 * smaller below, this makes sure that we only make one nudge 6303 * towards proportionality once we've got nr_to_reclaim. 6304 */ 6305 if (!nr_file || !nr_anon) 6306 break; 6307 6308 if (nr_file > nr_anon) { 6309 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6310 targets[LRU_ACTIVE_ANON] + 1; 6311 lru = LRU_BASE; 6312 percentage = nr_anon * 100 / scan_target; 6313 } else { 6314 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6315 targets[LRU_ACTIVE_FILE] + 1; 6316 lru = LRU_FILE; 6317 percentage = nr_file * 100 / scan_target; 6318 } 6319 6320 /* Stop scanning the smaller of the LRU */ 6321 nr[lru] = 0; 6322 nr[lru + LRU_ACTIVE] = 0; 6323 6324 /* 6325 * Recalculate the other LRU scan count based on its original 6326 * scan target and the percentage scanning already complete 6327 */ 6328 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6329 nr_scanned = targets[lru] - nr[lru]; 6330 nr[lru] = targets[lru] * (100 - percentage) / 100; 6331 nr[lru] -= min(nr[lru], nr_scanned); 6332 6333 lru += LRU_ACTIVE; 6334 nr_scanned = targets[lru] - nr[lru]; 6335 nr[lru] = targets[lru] * (100 - percentage) / 100; 6336 nr[lru] -= min(nr[lru], nr_scanned); 6337 } 6338 blk_finish_plug(&plug); 6339 sc->nr_reclaimed += nr_reclaimed; 6340 6341 /* 6342 * Even if we did not try to evict anon pages at all, we want to 6343 * rebalance the anon lru active/inactive ratio. 6344 */ 6345 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6346 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6347 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6348 sc, LRU_ACTIVE_ANON); 6349 } 6350 6351 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6352 static bool in_reclaim_compaction(struct scan_control *sc) 6353 { 6354 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6355 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6356 sc->priority < DEF_PRIORITY - 2)) 6357 return true; 6358 6359 return false; 6360 } 6361 6362 /* 6363 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6364 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6365 * true if more pages should be reclaimed such that when the page allocator 6366 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6367 * It will give up earlier than that if there is difficulty reclaiming pages. 6368 */ 6369 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6370 unsigned long nr_reclaimed, 6371 struct scan_control *sc) 6372 { 6373 unsigned long pages_for_compaction; 6374 unsigned long inactive_lru_pages; 6375 int z; 6376 6377 /* If not in reclaim/compaction mode, stop */ 6378 if (!in_reclaim_compaction(sc)) 6379 return false; 6380 6381 /* 6382 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6383 * number of pages that were scanned. This will return to the caller 6384 * with the risk reclaim/compaction and the resulting allocation attempt 6385 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6386 * allocations through requiring that the full LRU list has been scanned 6387 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6388 * scan, but that approximation was wrong, and there were corner cases 6389 * where always a non-zero amount of pages were scanned. 6390 */ 6391 if (!nr_reclaimed) 6392 return false; 6393 6394 /* If compaction would go ahead or the allocation would succeed, stop */ 6395 for (z = 0; z <= sc->reclaim_idx; z++) { 6396 struct zone *zone = &pgdat->node_zones[z]; 6397 if (!managed_zone(zone)) 6398 continue; 6399 6400 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6401 case COMPACT_SUCCESS: 6402 case COMPACT_CONTINUE: 6403 return false; 6404 default: 6405 /* check next zone */ 6406 ; 6407 } 6408 } 6409 6410 /* 6411 * If we have not reclaimed enough pages for compaction and the 6412 * inactive lists are large enough, continue reclaiming 6413 */ 6414 pages_for_compaction = compact_gap(sc->order); 6415 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6416 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6417 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6418 6419 return inactive_lru_pages > pages_for_compaction; 6420 } 6421 6422 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6423 { 6424 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6425 struct mem_cgroup *memcg; 6426 6427 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6428 do { 6429 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6430 unsigned long reclaimed; 6431 unsigned long scanned; 6432 6433 /* 6434 * This loop can become CPU-bound when target memcgs 6435 * aren't eligible for reclaim - either because they 6436 * don't have any reclaimable pages, or because their 6437 * memory is explicitly protected. Avoid soft lockups. 6438 */ 6439 cond_resched(); 6440 6441 mem_cgroup_calculate_protection(target_memcg, memcg); 6442 6443 if (mem_cgroup_below_min(target_memcg, memcg)) { 6444 /* 6445 * Hard protection. 6446 * If there is no reclaimable memory, OOM. 6447 */ 6448 continue; 6449 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6450 /* 6451 * Soft protection. 6452 * Respect the protection only as long as 6453 * there is an unprotected supply 6454 * of reclaimable memory from other cgroups. 6455 */ 6456 if (!sc->memcg_low_reclaim) { 6457 sc->memcg_low_skipped = 1; 6458 continue; 6459 } 6460 memcg_memory_event(memcg, MEMCG_LOW); 6461 } 6462 6463 reclaimed = sc->nr_reclaimed; 6464 scanned = sc->nr_scanned; 6465 6466 shrink_lruvec(lruvec, sc); 6467 6468 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6469 sc->priority); 6470 6471 /* Record the group's reclaim efficiency */ 6472 if (!sc->proactive) 6473 vmpressure(sc->gfp_mask, memcg, false, 6474 sc->nr_scanned - scanned, 6475 sc->nr_reclaimed - reclaimed); 6476 6477 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6478 } 6479 6480 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6481 { 6482 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6483 struct lruvec *target_lruvec; 6484 bool reclaimable = false; 6485 6486 if (lru_gen_enabled() && global_reclaim(sc)) { 6487 lru_gen_shrink_node(pgdat, sc); 6488 return; 6489 } 6490 6491 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6492 6493 again: 6494 memset(&sc->nr, 0, sizeof(sc->nr)); 6495 6496 nr_reclaimed = sc->nr_reclaimed; 6497 nr_scanned = sc->nr_scanned; 6498 6499 prepare_scan_count(pgdat, sc); 6500 6501 shrink_node_memcgs(pgdat, sc); 6502 6503 flush_reclaim_state(sc); 6504 6505 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6506 6507 /* Record the subtree's reclaim efficiency */ 6508 if (!sc->proactive) 6509 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6510 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6511 6512 if (nr_node_reclaimed) 6513 reclaimable = true; 6514 6515 if (current_is_kswapd()) { 6516 /* 6517 * If reclaim is isolating dirty pages under writeback, 6518 * it implies that the long-lived page allocation rate 6519 * is exceeding the page laundering rate. Either the 6520 * global limits are not being effective at throttling 6521 * processes due to the page distribution throughout 6522 * zones or there is heavy usage of a slow backing 6523 * device. The only option is to throttle from reclaim 6524 * context which is not ideal as there is no guarantee 6525 * the dirtying process is throttled in the same way 6526 * balance_dirty_pages() manages. 6527 * 6528 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6529 * count the number of pages under pages flagged for 6530 * immediate reclaim and stall if any are encountered 6531 * in the nr_immediate check below. 6532 */ 6533 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6534 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6535 6536 /* Allow kswapd to start writing pages during reclaim.*/ 6537 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6538 set_bit(PGDAT_DIRTY, &pgdat->flags); 6539 6540 /* 6541 * If kswapd scans pages marked for immediate 6542 * reclaim and under writeback (nr_immediate), it 6543 * implies that pages are cycling through the LRU 6544 * faster than they are written so forcibly stall 6545 * until some pages complete writeback. 6546 */ 6547 if (sc->nr.immediate) 6548 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6549 } 6550 6551 /* 6552 * Tag a node/memcg as congested if all the dirty pages were marked 6553 * for writeback and immediate reclaim (counted in nr.congested). 6554 * 6555 * Legacy memcg will stall in page writeback so avoid forcibly 6556 * stalling in reclaim_throttle(). 6557 */ 6558 if ((current_is_kswapd() || 6559 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6560 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6561 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6562 6563 /* 6564 * Stall direct reclaim for IO completions if the lruvec is 6565 * node is congested. Allow kswapd to continue until it 6566 * starts encountering unqueued dirty pages or cycling through 6567 * the LRU too quickly. 6568 */ 6569 if (!current_is_kswapd() && current_may_throttle() && 6570 !sc->hibernation_mode && 6571 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6572 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6573 6574 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6575 goto again; 6576 6577 /* 6578 * Kswapd gives up on balancing particular nodes after too 6579 * many failures to reclaim anything from them and goes to 6580 * sleep. On reclaim progress, reset the failure counter. A 6581 * successful direct reclaim run will revive a dormant kswapd. 6582 */ 6583 if (reclaimable) 6584 pgdat->kswapd_failures = 0; 6585 } 6586 6587 /* 6588 * Returns true if compaction should go ahead for a costly-order request, or 6589 * the allocation would already succeed without compaction. Return false if we 6590 * should reclaim first. 6591 */ 6592 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6593 { 6594 unsigned long watermark; 6595 enum compact_result suitable; 6596 6597 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6598 if (suitable == COMPACT_SUCCESS) 6599 /* Allocation should succeed already. Don't reclaim. */ 6600 return true; 6601 if (suitable == COMPACT_SKIPPED) 6602 /* Compaction cannot yet proceed. Do reclaim. */ 6603 return false; 6604 6605 /* 6606 * Compaction is already possible, but it takes time to run and there 6607 * are potentially other callers using the pages just freed. So proceed 6608 * with reclaim to make a buffer of free pages available to give 6609 * compaction a reasonable chance of completing and allocating the page. 6610 * Note that we won't actually reclaim the whole buffer in one attempt 6611 * as the target watermark in should_continue_reclaim() is lower. But if 6612 * we are already above the high+gap watermark, don't reclaim at all. 6613 */ 6614 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6615 6616 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6617 } 6618 6619 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6620 { 6621 /* 6622 * If reclaim is making progress greater than 12% efficiency then 6623 * wake all the NOPROGRESS throttled tasks. 6624 */ 6625 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6626 wait_queue_head_t *wqh; 6627 6628 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6629 if (waitqueue_active(wqh)) 6630 wake_up(wqh); 6631 6632 return; 6633 } 6634 6635 /* 6636 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6637 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6638 * under writeback and marked for immediate reclaim at the tail of the 6639 * LRU. 6640 */ 6641 if (current_is_kswapd() || cgroup_reclaim(sc)) 6642 return; 6643 6644 /* Throttle if making no progress at high prioities. */ 6645 if (sc->priority == 1 && !sc->nr_reclaimed) 6646 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6647 } 6648 6649 /* 6650 * This is the direct reclaim path, for page-allocating processes. We only 6651 * try to reclaim pages from zones which will satisfy the caller's allocation 6652 * request. 6653 * 6654 * If a zone is deemed to be full of pinned pages then just give it a light 6655 * scan then give up on it. 6656 */ 6657 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6658 { 6659 struct zoneref *z; 6660 struct zone *zone; 6661 unsigned long nr_soft_reclaimed; 6662 unsigned long nr_soft_scanned; 6663 gfp_t orig_mask; 6664 pg_data_t *last_pgdat = NULL; 6665 pg_data_t *first_pgdat = NULL; 6666 6667 /* 6668 * If the number of buffer_heads in the machine exceeds the maximum 6669 * allowed level, force direct reclaim to scan the highmem zone as 6670 * highmem pages could be pinning lowmem pages storing buffer_heads 6671 */ 6672 orig_mask = sc->gfp_mask; 6673 if (buffer_heads_over_limit) { 6674 sc->gfp_mask |= __GFP_HIGHMEM; 6675 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6676 } 6677 6678 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6679 sc->reclaim_idx, sc->nodemask) { 6680 /* 6681 * Take care memory controller reclaiming has small influence 6682 * to global LRU. 6683 */ 6684 if (!cgroup_reclaim(sc)) { 6685 if (!cpuset_zone_allowed(zone, 6686 GFP_KERNEL | __GFP_HARDWALL)) 6687 continue; 6688 6689 /* 6690 * If we already have plenty of memory free for 6691 * compaction in this zone, don't free any more. 6692 * Even though compaction is invoked for any 6693 * non-zero order, only frequent costly order 6694 * reclamation is disruptive enough to become a 6695 * noticeable problem, like transparent huge 6696 * page allocations. 6697 */ 6698 if (IS_ENABLED(CONFIG_COMPACTION) && 6699 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6700 compaction_ready(zone, sc)) { 6701 sc->compaction_ready = true; 6702 continue; 6703 } 6704 6705 /* 6706 * Shrink each node in the zonelist once. If the 6707 * zonelist is ordered by zone (not the default) then a 6708 * node may be shrunk multiple times but in that case 6709 * the user prefers lower zones being preserved. 6710 */ 6711 if (zone->zone_pgdat == last_pgdat) 6712 continue; 6713 6714 /* 6715 * This steals pages from memory cgroups over softlimit 6716 * and returns the number of reclaimed pages and 6717 * scanned pages. This works for global memory pressure 6718 * and balancing, not for a memcg's limit. 6719 */ 6720 nr_soft_scanned = 0; 6721 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6722 sc->order, sc->gfp_mask, 6723 &nr_soft_scanned); 6724 sc->nr_reclaimed += nr_soft_reclaimed; 6725 sc->nr_scanned += nr_soft_scanned; 6726 /* need some check for avoid more shrink_zone() */ 6727 } 6728 6729 if (!first_pgdat) 6730 first_pgdat = zone->zone_pgdat; 6731 6732 /* See comment about same check for global reclaim above */ 6733 if (zone->zone_pgdat == last_pgdat) 6734 continue; 6735 last_pgdat = zone->zone_pgdat; 6736 shrink_node(zone->zone_pgdat, sc); 6737 } 6738 6739 if (first_pgdat) 6740 consider_reclaim_throttle(first_pgdat, sc); 6741 6742 /* 6743 * Restore to original mask to avoid the impact on the caller if we 6744 * promoted it to __GFP_HIGHMEM. 6745 */ 6746 sc->gfp_mask = orig_mask; 6747 } 6748 6749 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6750 { 6751 struct lruvec *target_lruvec; 6752 unsigned long refaults; 6753 6754 if (lru_gen_enabled()) 6755 return; 6756 6757 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6758 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6759 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6760 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6761 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6762 } 6763 6764 /* 6765 * This is the main entry point to direct page reclaim. 6766 * 6767 * If a full scan of the inactive list fails to free enough memory then we 6768 * are "out of memory" and something needs to be killed. 6769 * 6770 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6771 * high - the zone may be full of dirty or under-writeback pages, which this 6772 * caller can't do much about. We kick the writeback threads and take explicit 6773 * naps in the hope that some of these pages can be written. But if the 6774 * allocating task holds filesystem locks which prevent writeout this might not 6775 * work, and the allocation attempt will fail. 6776 * 6777 * returns: 0, if no pages reclaimed 6778 * else, the number of pages reclaimed 6779 */ 6780 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6781 struct scan_control *sc) 6782 { 6783 int initial_priority = sc->priority; 6784 pg_data_t *last_pgdat; 6785 struct zoneref *z; 6786 struct zone *zone; 6787 retry: 6788 delayacct_freepages_start(); 6789 6790 if (!cgroup_reclaim(sc)) 6791 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6792 6793 do { 6794 if (!sc->proactive) 6795 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6796 sc->priority); 6797 sc->nr_scanned = 0; 6798 shrink_zones(zonelist, sc); 6799 6800 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6801 break; 6802 6803 if (sc->compaction_ready) 6804 break; 6805 6806 /* 6807 * If we're getting trouble reclaiming, start doing 6808 * writepage even in laptop mode. 6809 */ 6810 if (sc->priority < DEF_PRIORITY - 2) 6811 sc->may_writepage = 1; 6812 } while (--sc->priority >= 0); 6813 6814 last_pgdat = NULL; 6815 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6816 sc->nodemask) { 6817 if (zone->zone_pgdat == last_pgdat) 6818 continue; 6819 last_pgdat = zone->zone_pgdat; 6820 6821 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6822 6823 if (cgroup_reclaim(sc)) { 6824 struct lruvec *lruvec; 6825 6826 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6827 zone->zone_pgdat); 6828 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6829 } 6830 } 6831 6832 delayacct_freepages_end(); 6833 6834 if (sc->nr_reclaimed) 6835 return sc->nr_reclaimed; 6836 6837 /* Aborted reclaim to try compaction? don't OOM, then */ 6838 if (sc->compaction_ready) 6839 return 1; 6840 6841 /* 6842 * We make inactive:active ratio decisions based on the node's 6843 * composition of memory, but a restrictive reclaim_idx or a 6844 * memory.low cgroup setting can exempt large amounts of 6845 * memory from reclaim. Neither of which are very common, so 6846 * instead of doing costly eligibility calculations of the 6847 * entire cgroup subtree up front, we assume the estimates are 6848 * good, and retry with forcible deactivation if that fails. 6849 */ 6850 if (sc->skipped_deactivate) { 6851 sc->priority = initial_priority; 6852 sc->force_deactivate = 1; 6853 sc->skipped_deactivate = 0; 6854 goto retry; 6855 } 6856 6857 /* Untapped cgroup reserves? Don't OOM, retry. */ 6858 if (sc->memcg_low_skipped) { 6859 sc->priority = initial_priority; 6860 sc->force_deactivate = 0; 6861 sc->memcg_low_reclaim = 1; 6862 sc->memcg_low_skipped = 0; 6863 goto retry; 6864 } 6865 6866 return 0; 6867 } 6868 6869 static bool allow_direct_reclaim(pg_data_t *pgdat) 6870 { 6871 struct zone *zone; 6872 unsigned long pfmemalloc_reserve = 0; 6873 unsigned long free_pages = 0; 6874 int i; 6875 bool wmark_ok; 6876 6877 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6878 return true; 6879 6880 for (i = 0; i <= ZONE_NORMAL; i++) { 6881 zone = &pgdat->node_zones[i]; 6882 if (!managed_zone(zone)) 6883 continue; 6884 6885 if (!zone_reclaimable_pages(zone)) 6886 continue; 6887 6888 pfmemalloc_reserve += min_wmark_pages(zone); 6889 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6890 } 6891 6892 /* If there are no reserves (unexpected config) then do not throttle */ 6893 if (!pfmemalloc_reserve) 6894 return true; 6895 6896 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6897 6898 /* kswapd must be awake if processes are being throttled */ 6899 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6900 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6901 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6902 6903 wake_up_interruptible(&pgdat->kswapd_wait); 6904 } 6905 6906 return wmark_ok; 6907 } 6908 6909 /* 6910 * Throttle direct reclaimers if backing storage is backed by the network 6911 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6912 * depleted. kswapd will continue to make progress and wake the processes 6913 * when the low watermark is reached. 6914 * 6915 * Returns true if a fatal signal was delivered during throttling. If this 6916 * happens, the page allocator should not consider triggering the OOM killer. 6917 */ 6918 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6919 nodemask_t *nodemask) 6920 { 6921 struct zoneref *z; 6922 struct zone *zone; 6923 pg_data_t *pgdat = NULL; 6924 6925 /* 6926 * Kernel threads should not be throttled as they may be indirectly 6927 * responsible for cleaning pages necessary for reclaim to make forward 6928 * progress. kjournald for example may enter direct reclaim while 6929 * committing a transaction where throttling it could forcing other 6930 * processes to block on log_wait_commit(). 6931 */ 6932 if (current->flags & PF_KTHREAD) 6933 goto out; 6934 6935 /* 6936 * If a fatal signal is pending, this process should not throttle. 6937 * It should return quickly so it can exit and free its memory 6938 */ 6939 if (fatal_signal_pending(current)) 6940 goto out; 6941 6942 /* 6943 * Check if the pfmemalloc reserves are ok by finding the first node 6944 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6945 * GFP_KERNEL will be required for allocating network buffers when 6946 * swapping over the network so ZONE_HIGHMEM is unusable. 6947 * 6948 * Throttling is based on the first usable node and throttled processes 6949 * wait on a queue until kswapd makes progress and wakes them. There 6950 * is an affinity then between processes waking up and where reclaim 6951 * progress has been made assuming the process wakes on the same node. 6952 * More importantly, processes running on remote nodes will not compete 6953 * for remote pfmemalloc reserves and processes on different nodes 6954 * should make reasonable progress. 6955 */ 6956 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6957 gfp_zone(gfp_mask), nodemask) { 6958 if (zone_idx(zone) > ZONE_NORMAL) 6959 continue; 6960 6961 /* Throttle based on the first usable node */ 6962 pgdat = zone->zone_pgdat; 6963 if (allow_direct_reclaim(pgdat)) 6964 goto out; 6965 break; 6966 } 6967 6968 /* If no zone was usable by the allocation flags then do not throttle */ 6969 if (!pgdat) 6970 goto out; 6971 6972 /* Account for the throttling */ 6973 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6974 6975 /* 6976 * If the caller cannot enter the filesystem, it's possible that it 6977 * is due to the caller holding an FS lock or performing a journal 6978 * transaction in the case of a filesystem like ext[3|4]. In this case, 6979 * it is not safe to block on pfmemalloc_wait as kswapd could be 6980 * blocked waiting on the same lock. Instead, throttle for up to a 6981 * second before continuing. 6982 */ 6983 if (!(gfp_mask & __GFP_FS)) 6984 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6985 allow_direct_reclaim(pgdat), HZ); 6986 else 6987 /* Throttle until kswapd wakes the process */ 6988 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6989 allow_direct_reclaim(pgdat)); 6990 6991 if (fatal_signal_pending(current)) 6992 return true; 6993 6994 out: 6995 return false; 6996 } 6997 6998 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6999 gfp_t gfp_mask, nodemask_t *nodemask) 7000 { 7001 unsigned long nr_reclaimed; 7002 struct scan_control sc = { 7003 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7004 .gfp_mask = current_gfp_context(gfp_mask), 7005 .reclaim_idx = gfp_zone(gfp_mask), 7006 .order = order, 7007 .nodemask = nodemask, 7008 .priority = DEF_PRIORITY, 7009 .may_writepage = !laptop_mode, 7010 .may_unmap = 1, 7011 .may_swap = 1, 7012 }; 7013 7014 /* 7015 * scan_control uses s8 fields for order, priority, and reclaim_idx. 7016 * Confirm they are large enough for max values. 7017 */ 7018 BUILD_BUG_ON(MAX_ORDER >= S8_MAX); 7019 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 7020 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 7021 7022 /* 7023 * Do not enter reclaim if fatal signal was delivered while throttled. 7024 * 1 is returned so that the page allocator does not OOM kill at this 7025 * point. 7026 */ 7027 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 7028 return 1; 7029 7030 set_task_reclaim_state(current, &sc.reclaim_state); 7031 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 7032 7033 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7034 7035 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 7036 set_task_reclaim_state(current, NULL); 7037 7038 return nr_reclaimed; 7039 } 7040 7041 #ifdef CONFIG_MEMCG 7042 7043 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 7044 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 7045 gfp_t gfp_mask, bool noswap, 7046 pg_data_t *pgdat, 7047 unsigned long *nr_scanned) 7048 { 7049 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 7050 struct scan_control sc = { 7051 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7052 .target_mem_cgroup = memcg, 7053 .may_writepage = !laptop_mode, 7054 .may_unmap = 1, 7055 .reclaim_idx = MAX_NR_ZONES - 1, 7056 .may_swap = !noswap, 7057 }; 7058 7059 WARN_ON_ONCE(!current->reclaim_state); 7060 7061 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 7062 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 7063 7064 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7065 sc.gfp_mask); 7066 7067 /* 7068 * NOTE: Although we can get the priority field, using it 7069 * here is not a good idea, since it limits the pages we can scan. 7070 * if we don't reclaim here, the shrink_node from balance_pgdat 7071 * will pick up pages from other mem cgroup's as well. We hack 7072 * the priority and make it zero. 7073 */ 7074 shrink_lruvec(lruvec, &sc); 7075 7076 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7077 7078 *nr_scanned = sc.nr_scanned; 7079 7080 return sc.nr_reclaimed; 7081 } 7082 7083 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7084 unsigned long nr_pages, 7085 gfp_t gfp_mask, 7086 unsigned int reclaim_options) 7087 { 7088 unsigned long nr_reclaimed; 7089 unsigned int noreclaim_flag; 7090 struct scan_control sc = { 7091 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7092 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7093 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7094 .reclaim_idx = MAX_NR_ZONES - 1, 7095 .target_mem_cgroup = memcg, 7096 .priority = DEF_PRIORITY, 7097 .may_writepage = !laptop_mode, 7098 .may_unmap = 1, 7099 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7100 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7101 }; 7102 /* 7103 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7104 * equal pressure on all the nodes. This is based on the assumption that 7105 * the reclaim does not bail out early. 7106 */ 7107 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7108 7109 set_task_reclaim_state(current, &sc.reclaim_state); 7110 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7111 noreclaim_flag = memalloc_noreclaim_save(); 7112 7113 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7114 7115 memalloc_noreclaim_restore(noreclaim_flag); 7116 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7117 set_task_reclaim_state(current, NULL); 7118 7119 return nr_reclaimed; 7120 } 7121 #endif 7122 7123 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7124 { 7125 struct mem_cgroup *memcg; 7126 struct lruvec *lruvec; 7127 7128 if (lru_gen_enabled()) { 7129 lru_gen_age_node(pgdat, sc); 7130 return; 7131 } 7132 7133 if (!can_age_anon_pages(pgdat, sc)) 7134 return; 7135 7136 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7137 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7138 return; 7139 7140 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7141 do { 7142 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7143 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7144 sc, LRU_ACTIVE_ANON); 7145 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7146 } while (memcg); 7147 } 7148 7149 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7150 { 7151 int i; 7152 struct zone *zone; 7153 7154 /* 7155 * Check for watermark boosts top-down as the higher zones 7156 * are more likely to be boosted. Both watermarks and boosts 7157 * should not be checked at the same time as reclaim would 7158 * start prematurely when there is no boosting and a lower 7159 * zone is balanced. 7160 */ 7161 for (i = highest_zoneidx; i >= 0; i--) { 7162 zone = pgdat->node_zones + i; 7163 if (!managed_zone(zone)) 7164 continue; 7165 7166 if (zone->watermark_boost) 7167 return true; 7168 } 7169 7170 return false; 7171 } 7172 7173 /* 7174 * Returns true if there is an eligible zone balanced for the request order 7175 * and highest_zoneidx 7176 */ 7177 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7178 { 7179 int i; 7180 unsigned long mark = -1; 7181 struct zone *zone; 7182 7183 /* 7184 * Check watermarks bottom-up as lower zones are more likely to 7185 * meet watermarks. 7186 */ 7187 for (i = 0; i <= highest_zoneidx; i++) { 7188 zone = pgdat->node_zones + i; 7189 7190 if (!managed_zone(zone)) 7191 continue; 7192 7193 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7194 mark = wmark_pages(zone, WMARK_PROMO); 7195 else 7196 mark = high_wmark_pages(zone); 7197 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7198 return true; 7199 } 7200 7201 /* 7202 * If a node has no managed zone within highest_zoneidx, it does not 7203 * need balancing by definition. This can happen if a zone-restricted 7204 * allocation tries to wake a remote kswapd. 7205 */ 7206 if (mark == -1) 7207 return true; 7208 7209 return false; 7210 } 7211 7212 /* Clear pgdat state for congested, dirty or under writeback. */ 7213 static void clear_pgdat_congested(pg_data_t *pgdat) 7214 { 7215 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7216 7217 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 7218 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7219 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7220 } 7221 7222 /* 7223 * Prepare kswapd for sleeping. This verifies that there are no processes 7224 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7225 * 7226 * Returns true if kswapd is ready to sleep 7227 */ 7228 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7229 int highest_zoneidx) 7230 { 7231 /* 7232 * The throttled processes are normally woken up in balance_pgdat() as 7233 * soon as allow_direct_reclaim() is true. But there is a potential 7234 * race between when kswapd checks the watermarks and a process gets 7235 * throttled. There is also a potential race if processes get 7236 * throttled, kswapd wakes, a large process exits thereby balancing the 7237 * zones, which causes kswapd to exit balance_pgdat() before reaching 7238 * the wake up checks. If kswapd is going to sleep, no process should 7239 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7240 * the wake up is premature, processes will wake kswapd and get 7241 * throttled again. The difference from wake ups in balance_pgdat() is 7242 * that here we are under prepare_to_wait(). 7243 */ 7244 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7245 wake_up_all(&pgdat->pfmemalloc_wait); 7246 7247 /* Hopeless node, leave it to direct reclaim */ 7248 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7249 return true; 7250 7251 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7252 clear_pgdat_congested(pgdat); 7253 return true; 7254 } 7255 7256 return false; 7257 } 7258 7259 /* 7260 * kswapd shrinks a node of pages that are at or below the highest usable 7261 * zone that is currently unbalanced. 7262 * 7263 * Returns true if kswapd scanned at least the requested number of pages to 7264 * reclaim or if the lack of progress was due to pages under writeback. 7265 * This is used to determine if the scanning priority needs to be raised. 7266 */ 7267 static bool kswapd_shrink_node(pg_data_t *pgdat, 7268 struct scan_control *sc) 7269 { 7270 struct zone *zone; 7271 int z; 7272 7273 /* Reclaim a number of pages proportional to the number of zones */ 7274 sc->nr_to_reclaim = 0; 7275 for (z = 0; z <= sc->reclaim_idx; z++) { 7276 zone = pgdat->node_zones + z; 7277 if (!managed_zone(zone)) 7278 continue; 7279 7280 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7281 } 7282 7283 /* 7284 * Historically care was taken to put equal pressure on all zones but 7285 * now pressure is applied based on node LRU order. 7286 */ 7287 shrink_node(pgdat, sc); 7288 7289 /* 7290 * Fragmentation may mean that the system cannot be rebalanced for 7291 * high-order allocations. If twice the allocation size has been 7292 * reclaimed then recheck watermarks only at order-0 to prevent 7293 * excessive reclaim. Assume that a process requested a high-order 7294 * can direct reclaim/compact. 7295 */ 7296 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7297 sc->order = 0; 7298 7299 return sc->nr_scanned >= sc->nr_to_reclaim; 7300 } 7301 7302 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7303 static inline void 7304 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7305 { 7306 int i; 7307 struct zone *zone; 7308 7309 for (i = 0; i <= highest_zoneidx; i++) { 7310 zone = pgdat->node_zones + i; 7311 7312 if (!managed_zone(zone)) 7313 continue; 7314 7315 if (active) 7316 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7317 else 7318 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7319 } 7320 } 7321 7322 static inline void 7323 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7324 { 7325 update_reclaim_active(pgdat, highest_zoneidx, true); 7326 } 7327 7328 static inline void 7329 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7330 { 7331 update_reclaim_active(pgdat, highest_zoneidx, false); 7332 } 7333 7334 /* 7335 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7336 * that are eligible for use by the caller until at least one zone is 7337 * balanced. 7338 * 7339 * Returns the order kswapd finished reclaiming at. 7340 * 7341 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7342 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7343 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7344 * or lower is eligible for reclaim until at least one usable zone is 7345 * balanced. 7346 */ 7347 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7348 { 7349 int i; 7350 unsigned long nr_soft_reclaimed; 7351 unsigned long nr_soft_scanned; 7352 unsigned long pflags; 7353 unsigned long nr_boost_reclaim; 7354 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7355 bool boosted; 7356 struct zone *zone; 7357 struct scan_control sc = { 7358 .gfp_mask = GFP_KERNEL, 7359 .order = order, 7360 .may_unmap = 1, 7361 }; 7362 7363 set_task_reclaim_state(current, &sc.reclaim_state); 7364 psi_memstall_enter(&pflags); 7365 __fs_reclaim_acquire(_THIS_IP_); 7366 7367 count_vm_event(PAGEOUTRUN); 7368 7369 /* 7370 * Account for the reclaim boost. Note that the zone boost is left in 7371 * place so that parallel allocations that are near the watermark will 7372 * stall or direct reclaim until kswapd is finished. 7373 */ 7374 nr_boost_reclaim = 0; 7375 for (i = 0; i <= highest_zoneidx; i++) { 7376 zone = pgdat->node_zones + i; 7377 if (!managed_zone(zone)) 7378 continue; 7379 7380 nr_boost_reclaim += zone->watermark_boost; 7381 zone_boosts[i] = zone->watermark_boost; 7382 } 7383 boosted = nr_boost_reclaim; 7384 7385 restart: 7386 set_reclaim_active(pgdat, highest_zoneidx); 7387 sc.priority = DEF_PRIORITY; 7388 do { 7389 unsigned long nr_reclaimed = sc.nr_reclaimed; 7390 bool raise_priority = true; 7391 bool balanced; 7392 bool ret; 7393 7394 sc.reclaim_idx = highest_zoneidx; 7395 7396 /* 7397 * If the number of buffer_heads exceeds the maximum allowed 7398 * then consider reclaiming from all zones. This has a dual 7399 * purpose -- on 64-bit systems it is expected that 7400 * buffer_heads are stripped during active rotation. On 32-bit 7401 * systems, highmem pages can pin lowmem memory and shrinking 7402 * buffers can relieve lowmem pressure. Reclaim may still not 7403 * go ahead if all eligible zones for the original allocation 7404 * request are balanced to avoid excessive reclaim from kswapd. 7405 */ 7406 if (buffer_heads_over_limit) { 7407 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7408 zone = pgdat->node_zones + i; 7409 if (!managed_zone(zone)) 7410 continue; 7411 7412 sc.reclaim_idx = i; 7413 break; 7414 } 7415 } 7416 7417 /* 7418 * If the pgdat is imbalanced then ignore boosting and preserve 7419 * the watermarks for a later time and restart. Note that the 7420 * zone watermarks will be still reset at the end of balancing 7421 * on the grounds that the normal reclaim should be enough to 7422 * re-evaluate if boosting is required when kswapd next wakes. 7423 */ 7424 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7425 if (!balanced && nr_boost_reclaim) { 7426 nr_boost_reclaim = 0; 7427 goto restart; 7428 } 7429 7430 /* 7431 * If boosting is not active then only reclaim if there are no 7432 * eligible zones. Note that sc.reclaim_idx is not used as 7433 * buffer_heads_over_limit may have adjusted it. 7434 */ 7435 if (!nr_boost_reclaim && balanced) 7436 goto out; 7437 7438 /* Limit the priority of boosting to avoid reclaim writeback */ 7439 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7440 raise_priority = false; 7441 7442 /* 7443 * Do not writeback or swap pages for boosted reclaim. The 7444 * intent is to relieve pressure not issue sub-optimal IO 7445 * from reclaim context. If no pages are reclaimed, the 7446 * reclaim will be aborted. 7447 */ 7448 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7449 sc.may_swap = !nr_boost_reclaim; 7450 7451 /* 7452 * Do some background aging, to give pages a chance to be 7453 * referenced before reclaiming. All pages are rotated 7454 * regardless of classzone as this is about consistent aging. 7455 */ 7456 kswapd_age_node(pgdat, &sc); 7457 7458 /* 7459 * If we're getting trouble reclaiming, start doing writepage 7460 * even in laptop mode. 7461 */ 7462 if (sc.priority < DEF_PRIORITY - 2) 7463 sc.may_writepage = 1; 7464 7465 /* Call soft limit reclaim before calling shrink_node. */ 7466 sc.nr_scanned = 0; 7467 nr_soft_scanned = 0; 7468 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7469 sc.gfp_mask, &nr_soft_scanned); 7470 sc.nr_reclaimed += nr_soft_reclaimed; 7471 7472 /* 7473 * There should be no need to raise the scanning priority if 7474 * enough pages are already being scanned that that high 7475 * watermark would be met at 100% efficiency. 7476 */ 7477 if (kswapd_shrink_node(pgdat, &sc)) 7478 raise_priority = false; 7479 7480 /* 7481 * If the low watermark is met there is no need for processes 7482 * to be throttled on pfmemalloc_wait as they should not be 7483 * able to safely make forward progress. Wake them 7484 */ 7485 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7486 allow_direct_reclaim(pgdat)) 7487 wake_up_all(&pgdat->pfmemalloc_wait); 7488 7489 /* Check if kswapd should be suspending */ 7490 __fs_reclaim_release(_THIS_IP_); 7491 ret = try_to_freeze(); 7492 __fs_reclaim_acquire(_THIS_IP_); 7493 if (ret || kthread_should_stop()) 7494 break; 7495 7496 /* 7497 * Raise priority if scanning rate is too low or there was no 7498 * progress in reclaiming pages 7499 */ 7500 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7501 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7502 7503 /* 7504 * If reclaim made no progress for a boost, stop reclaim as 7505 * IO cannot be queued and it could be an infinite loop in 7506 * extreme circumstances. 7507 */ 7508 if (nr_boost_reclaim && !nr_reclaimed) 7509 break; 7510 7511 if (raise_priority || !nr_reclaimed) 7512 sc.priority--; 7513 } while (sc.priority >= 1); 7514 7515 if (!sc.nr_reclaimed) 7516 pgdat->kswapd_failures++; 7517 7518 out: 7519 clear_reclaim_active(pgdat, highest_zoneidx); 7520 7521 /* If reclaim was boosted, account for the reclaim done in this pass */ 7522 if (boosted) { 7523 unsigned long flags; 7524 7525 for (i = 0; i <= highest_zoneidx; i++) { 7526 if (!zone_boosts[i]) 7527 continue; 7528 7529 /* Increments are under the zone lock */ 7530 zone = pgdat->node_zones + i; 7531 spin_lock_irqsave(&zone->lock, flags); 7532 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7533 spin_unlock_irqrestore(&zone->lock, flags); 7534 } 7535 7536 /* 7537 * As there is now likely space, wakeup kcompact to defragment 7538 * pageblocks. 7539 */ 7540 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7541 } 7542 7543 snapshot_refaults(NULL, pgdat); 7544 __fs_reclaim_release(_THIS_IP_); 7545 psi_memstall_leave(&pflags); 7546 set_task_reclaim_state(current, NULL); 7547 7548 /* 7549 * Return the order kswapd stopped reclaiming at as 7550 * prepare_kswapd_sleep() takes it into account. If another caller 7551 * entered the allocator slow path while kswapd was awake, order will 7552 * remain at the higher level. 7553 */ 7554 return sc.order; 7555 } 7556 7557 /* 7558 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7559 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7560 * not a valid index then either kswapd runs for first time or kswapd couldn't 7561 * sleep after previous reclaim attempt (node is still unbalanced). In that 7562 * case return the zone index of the previous kswapd reclaim cycle. 7563 */ 7564 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7565 enum zone_type prev_highest_zoneidx) 7566 { 7567 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7568 7569 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7570 } 7571 7572 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7573 unsigned int highest_zoneidx) 7574 { 7575 long remaining = 0; 7576 DEFINE_WAIT(wait); 7577 7578 if (freezing(current) || kthread_should_stop()) 7579 return; 7580 7581 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7582 7583 /* 7584 * Try to sleep for a short interval. Note that kcompactd will only be 7585 * woken if it is possible to sleep for a short interval. This is 7586 * deliberate on the assumption that if reclaim cannot keep an 7587 * eligible zone balanced that it's also unlikely that compaction will 7588 * succeed. 7589 */ 7590 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7591 /* 7592 * Compaction records what page blocks it recently failed to 7593 * isolate pages from and skips them in the future scanning. 7594 * When kswapd is going to sleep, it is reasonable to assume 7595 * that pages and compaction may succeed so reset the cache. 7596 */ 7597 reset_isolation_suitable(pgdat); 7598 7599 /* 7600 * We have freed the memory, now we should compact it to make 7601 * allocation of the requested order possible. 7602 */ 7603 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7604 7605 remaining = schedule_timeout(HZ/10); 7606 7607 /* 7608 * If woken prematurely then reset kswapd_highest_zoneidx and 7609 * order. The values will either be from a wakeup request or 7610 * the previous request that slept prematurely. 7611 */ 7612 if (remaining) { 7613 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7614 kswapd_highest_zoneidx(pgdat, 7615 highest_zoneidx)); 7616 7617 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7618 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7619 } 7620 7621 finish_wait(&pgdat->kswapd_wait, &wait); 7622 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7623 } 7624 7625 /* 7626 * After a short sleep, check if it was a premature sleep. If not, then 7627 * go fully to sleep until explicitly woken up. 7628 */ 7629 if (!remaining && 7630 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7631 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7632 7633 /* 7634 * vmstat counters are not perfectly accurate and the estimated 7635 * value for counters such as NR_FREE_PAGES can deviate from the 7636 * true value by nr_online_cpus * threshold. To avoid the zone 7637 * watermarks being breached while under pressure, we reduce the 7638 * per-cpu vmstat threshold while kswapd is awake and restore 7639 * them before going back to sleep. 7640 */ 7641 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7642 7643 if (!kthread_should_stop()) 7644 schedule(); 7645 7646 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7647 } else { 7648 if (remaining) 7649 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7650 else 7651 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7652 } 7653 finish_wait(&pgdat->kswapd_wait, &wait); 7654 } 7655 7656 /* 7657 * The background pageout daemon, started as a kernel thread 7658 * from the init process. 7659 * 7660 * This basically trickles out pages so that we have _some_ 7661 * free memory available even if there is no other activity 7662 * that frees anything up. This is needed for things like routing 7663 * etc, where we otherwise might have all activity going on in 7664 * asynchronous contexts that cannot page things out. 7665 * 7666 * If there are applications that are active memory-allocators 7667 * (most normal use), this basically shouldn't matter. 7668 */ 7669 static int kswapd(void *p) 7670 { 7671 unsigned int alloc_order, reclaim_order; 7672 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7673 pg_data_t *pgdat = (pg_data_t *)p; 7674 struct task_struct *tsk = current; 7675 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7676 7677 if (!cpumask_empty(cpumask)) 7678 set_cpus_allowed_ptr(tsk, cpumask); 7679 7680 /* 7681 * Tell the memory management that we're a "memory allocator", 7682 * and that if we need more memory we should get access to it 7683 * regardless (see "__alloc_pages()"). "kswapd" should 7684 * never get caught in the normal page freeing logic. 7685 * 7686 * (Kswapd normally doesn't need memory anyway, but sometimes 7687 * you need a small amount of memory in order to be able to 7688 * page out something else, and this flag essentially protects 7689 * us from recursively trying to free more memory as we're 7690 * trying to free the first piece of memory in the first place). 7691 */ 7692 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7693 set_freezable(); 7694 7695 WRITE_ONCE(pgdat->kswapd_order, 0); 7696 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7697 atomic_set(&pgdat->nr_writeback_throttled, 0); 7698 for ( ; ; ) { 7699 bool ret; 7700 7701 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7702 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7703 highest_zoneidx); 7704 7705 kswapd_try_sleep: 7706 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7707 highest_zoneidx); 7708 7709 /* Read the new order and highest_zoneidx */ 7710 alloc_order = READ_ONCE(pgdat->kswapd_order); 7711 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7712 highest_zoneidx); 7713 WRITE_ONCE(pgdat->kswapd_order, 0); 7714 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7715 7716 ret = try_to_freeze(); 7717 if (kthread_should_stop()) 7718 break; 7719 7720 /* 7721 * We can speed up thawing tasks if we don't call balance_pgdat 7722 * after returning from the refrigerator 7723 */ 7724 if (ret) 7725 continue; 7726 7727 /* 7728 * Reclaim begins at the requested order but if a high-order 7729 * reclaim fails then kswapd falls back to reclaiming for 7730 * order-0. If that happens, kswapd will consider sleeping 7731 * for the order it finished reclaiming at (reclaim_order) 7732 * but kcompactd is woken to compact for the original 7733 * request (alloc_order). 7734 */ 7735 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7736 alloc_order); 7737 reclaim_order = balance_pgdat(pgdat, alloc_order, 7738 highest_zoneidx); 7739 if (reclaim_order < alloc_order) 7740 goto kswapd_try_sleep; 7741 } 7742 7743 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7744 7745 return 0; 7746 } 7747 7748 /* 7749 * A zone is low on free memory or too fragmented for high-order memory. If 7750 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7751 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7752 * has failed or is not needed, still wake up kcompactd if only compaction is 7753 * needed. 7754 */ 7755 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7756 enum zone_type highest_zoneidx) 7757 { 7758 pg_data_t *pgdat; 7759 enum zone_type curr_idx; 7760 7761 if (!managed_zone(zone)) 7762 return; 7763 7764 if (!cpuset_zone_allowed(zone, gfp_flags)) 7765 return; 7766 7767 pgdat = zone->zone_pgdat; 7768 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7769 7770 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7771 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7772 7773 if (READ_ONCE(pgdat->kswapd_order) < order) 7774 WRITE_ONCE(pgdat->kswapd_order, order); 7775 7776 if (!waitqueue_active(&pgdat->kswapd_wait)) 7777 return; 7778 7779 /* Hopeless node, leave it to direct reclaim if possible */ 7780 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7781 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7782 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7783 /* 7784 * There may be plenty of free memory available, but it's too 7785 * fragmented for high-order allocations. Wake up kcompactd 7786 * and rely on compaction_suitable() to determine if it's 7787 * needed. If it fails, it will defer subsequent attempts to 7788 * ratelimit its work. 7789 */ 7790 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7791 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7792 return; 7793 } 7794 7795 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7796 gfp_flags); 7797 wake_up_interruptible(&pgdat->kswapd_wait); 7798 } 7799 7800 #ifdef CONFIG_HIBERNATION 7801 /* 7802 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7803 * freed pages. 7804 * 7805 * Rather than trying to age LRUs the aim is to preserve the overall 7806 * LRU order by reclaiming preferentially 7807 * inactive > active > active referenced > active mapped 7808 */ 7809 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7810 { 7811 struct scan_control sc = { 7812 .nr_to_reclaim = nr_to_reclaim, 7813 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7814 .reclaim_idx = MAX_NR_ZONES - 1, 7815 .priority = DEF_PRIORITY, 7816 .may_writepage = 1, 7817 .may_unmap = 1, 7818 .may_swap = 1, 7819 .hibernation_mode = 1, 7820 }; 7821 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7822 unsigned long nr_reclaimed; 7823 unsigned int noreclaim_flag; 7824 7825 fs_reclaim_acquire(sc.gfp_mask); 7826 noreclaim_flag = memalloc_noreclaim_save(); 7827 set_task_reclaim_state(current, &sc.reclaim_state); 7828 7829 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7830 7831 set_task_reclaim_state(current, NULL); 7832 memalloc_noreclaim_restore(noreclaim_flag); 7833 fs_reclaim_release(sc.gfp_mask); 7834 7835 return nr_reclaimed; 7836 } 7837 #endif /* CONFIG_HIBERNATION */ 7838 7839 /* 7840 * This kswapd start function will be called by init and node-hot-add. 7841 */ 7842 void kswapd_run(int nid) 7843 { 7844 pg_data_t *pgdat = NODE_DATA(nid); 7845 7846 pgdat_kswapd_lock(pgdat); 7847 if (!pgdat->kswapd) { 7848 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7849 if (IS_ERR(pgdat->kswapd)) { 7850 /* failure at boot is fatal */ 7851 BUG_ON(system_state < SYSTEM_RUNNING); 7852 pr_err("Failed to start kswapd on node %d\n", nid); 7853 pgdat->kswapd = NULL; 7854 } 7855 } 7856 pgdat_kswapd_unlock(pgdat); 7857 } 7858 7859 /* 7860 * Called by memory hotplug when all memory in a node is offlined. Caller must 7861 * be holding mem_hotplug_begin/done(). 7862 */ 7863 void kswapd_stop(int nid) 7864 { 7865 pg_data_t *pgdat = NODE_DATA(nid); 7866 struct task_struct *kswapd; 7867 7868 pgdat_kswapd_lock(pgdat); 7869 kswapd = pgdat->kswapd; 7870 if (kswapd) { 7871 kthread_stop(kswapd); 7872 pgdat->kswapd = NULL; 7873 } 7874 pgdat_kswapd_unlock(pgdat); 7875 } 7876 7877 static int __init kswapd_init(void) 7878 { 7879 int nid; 7880 7881 swap_setup(); 7882 for_each_node_state(nid, N_MEMORY) 7883 kswapd_run(nid); 7884 return 0; 7885 } 7886 7887 module_init(kswapd_init) 7888 7889 #ifdef CONFIG_NUMA 7890 /* 7891 * Node reclaim mode 7892 * 7893 * If non-zero call node_reclaim when the number of free pages falls below 7894 * the watermarks. 7895 */ 7896 int node_reclaim_mode __read_mostly; 7897 7898 /* 7899 * Priority for NODE_RECLAIM. This determines the fraction of pages 7900 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7901 * a zone. 7902 */ 7903 #define NODE_RECLAIM_PRIORITY 4 7904 7905 /* 7906 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7907 * occur. 7908 */ 7909 int sysctl_min_unmapped_ratio = 1; 7910 7911 /* 7912 * If the number of slab pages in a zone grows beyond this percentage then 7913 * slab reclaim needs to occur. 7914 */ 7915 int sysctl_min_slab_ratio = 5; 7916 7917 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7918 { 7919 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7920 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7921 node_page_state(pgdat, NR_ACTIVE_FILE); 7922 7923 /* 7924 * It's possible for there to be more file mapped pages than 7925 * accounted for by the pages on the file LRU lists because 7926 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7927 */ 7928 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7929 } 7930 7931 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7932 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7933 { 7934 unsigned long nr_pagecache_reclaimable; 7935 unsigned long delta = 0; 7936 7937 /* 7938 * If RECLAIM_UNMAP is set, then all file pages are considered 7939 * potentially reclaimable. Otherwise, we have to worry about 7940 * pages like swapcache and node_unmapped_file_pages() provides 7941 * a better estimate 7942 */ 7943 if (node_reclaim_mode & RECLAIM_UNMAP) 7944 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7945 else 7946 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7947 7948 /* If we can't clean pages, remove dirty pages from consideration */ 7949 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7950 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7951 7952 /* Watch for any possible underflows due to delta */ 7953 if (unlikely(delta > nr_pagecache_reclaimable)) 7954 delta = nr_pagecache_reclaimable; 7955 7956 return nr_pagecache_reclaimable - delta; 7957 } 7958 7959 /* 7960 * Try to free up some pages from this node through reclaim. 7961 */ 7962 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7963 { 7964 /* Minimum pages needed in order to stay on node */ 7965 const unsigned long nr_pages = 1 << order; 7966 struct task_struct *p = current; 7967 unsigned int noreclaim_flag; 7968 struct scan_control sc = { 7969 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7970 .gfp_mask = current_gfp_context(gfp_mask), 7971 .order = order, 7972 .priority = NODE_RECLAIM_PRIORITY, 7973 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7974 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7975 .may_swap = 1, 7976 .reclaim_idx = gfp_zone(gfp_mask), 7977 }; 7978 unsigned long pflags; 7979 7980 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7981 sc.gfp_mask); 7982 7983 cond_resched(); 7984 psi_memstall_enter(&pflags); 7985 fs_reclaim_acquire(sc.gfp_mask); 7986 /* 7987 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7988 */ 7989 noreclaim_flag = memalloc_noreclaim_save(); 7990 set_task_reclaim_state(p, &sc.reclaim_state); 7991 7992 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7993 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7994 /* 7995 * Free memory by calling shrink node with increasing 7996 * priorities until we have enough memory freed. 7997 */ 7998 do { 7999 shrink_node(pgdat, &sc); 8000 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 8001 } 8002 8003 set_task_reclaim_state(p, NULL); 8004 memalloc_noreclaim_restore(noreclaim_flag); 8005 fs_reclaim_release(sc.gfp_mask); 8006 psi_memstall_leave(&pflags); 8007 8008 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 8009 8010 return sc.nr_reclaimed >= nr_pages; 8011 } 8012 8013 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 8014 { 8015 int ret; 8016 8017 /* 8018 * Node reclaim reclaims unmapped file backed pages and 8019 * slab pages if we are over the defined limits. 8020 * 8021 * A small portion of unmapped file backed pages is needed for 8022 * file I/O otherwise pages read by file I/O will be immediately 8023 * thrown out if the node is overallocated. So we do not reclaim 8024 * if less than a specified percentage of the node is used by 8025 * unmapped file backed pages. 8026 */ 8027 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 8028 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 8029 pgdat->min_slab_pages) 8030 return NODE_RECLAIM_FULL; 8031 8032 /* 8033 * Do not scan if the allocation should not be delayed. 8034 */ 8035 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 8036 return NODE_RECLAIM_NOSCAN; 8037 8038 /* 8039 * Only run node reclaim on the local node or on nodes that do not 8040 * have associated processors. This will favor the local processor 8041 * over remote processors and spread off node memory allocations 8042 * as wide as possible. 8043 */ 8044 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 8045 return NODE_RECLAIM_NOSCAN; 8046 8047 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 8048 return NODE_RECLAIM_NOSCAN; 8049 8050 ret = __node_reclaim(pgdat, gfp_mask, order); 8051 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 8052 8053 if (!ret) 8054 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 8055 8056 return ret; 8057 } 8058 #endif 8059 8060 void check_move_unevictable_pages(struct pagevec *pvec) 8061 { 8062 struct folio_batch fbatch; 8063 unsigned i; 8064 8065 folio_batch_init(&fbatch); 8066 for (i = 0; i < pvec->nr; i++) { 8067 struct page *page = pvec->pages[i]; 8068 8069 if (PageTransTail(page)) 8070 continue; 8071 folio_batch_add(&fbatch, page_folio(page)); 8072 } 8073 check_move_unevictable_folios(&fbatch); 8074 } 8075 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 8076 8077 /** 8078 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8079 * lru list 8080 * @fbatch: Batch of lru folios to check. 8081 * 8082 * Checks folios for evictability, if an evictable folio is in the unevictable 8083 * lru list, moves it to the appropriate evictable lru list. This function 8084 * should be only used for lru folios. 8085 */ 8086 void check_move_unevictable_folios(struct folio_batch *fbatch) 8087 { 8088 struct lruvec *lruvec = NULL; 8089 int pgscanned = 0; 8090 int pgrescued = 0; 8091 int i; 8092 8093 for (i = 0; i < fbatch->nr; i++) { 8094 struct folio *folio = fbatch->folios[i]; 8095 int nr_pages = folio_nr_pages(folio); 8096 8097 pgscanned += nr_pages; 8098 8099 /* block memcg migration while the folio moves between lrus */ 8100 if (!folio_test_clear_lru(folio)) 8101 continue; 8102 8103 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8104 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8105 lruvec_del_folio(lruvec, folio); 8106 folio_clear_unevictable(folio); 8107 lruvec_add_folio(lruvec, folio); 8108 pgrescued += nr_pages; 8109 } 8110 folio_set_lru(folio); 8111 } 8112 8113 if (lruvec) { 8114 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8115 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8116 unlock_page_lruvec_irq(lruvec); 8117 } else if (pgscanned) { 8118 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8119 } 8120 } 8121 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8122