xref: /openbmc/linux/mm/vmscan.c (revision be709d48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 	return true;
304 }
305 
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 				struct mem_cgroup *memcg, bool congested)
308 {
309 }
310 
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 			struct mem_cgroup *memcg)
313 {
314 	return false;
315 
316 }
317 #endif
318 
319 /*
320  * This misses isolated pages which are not accounted for to save counters.
321  * As the data only determines if reclaim or compaction continues, it is
322  * not expected that isolated pages will be a dominating factor.
323  */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 	unsigned long nr;
327 
328 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 	if (get_nr_swap_pages() > 0)
331 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 
334 	return nr;
335 }
336 
337 /**
338  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
339  * @lruvec: lru vector
340  * @lru: lru to use
341  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342  */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 	unsigned long lru_size;
346 	int zid;
347 
348 	if (!mem_cgroup_disabled())
349 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
350 	else
351 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352 
353 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 		unsigned long size;
356 
357 		if (!managed_zone(zone))
358 			continue;
359 
360 		if (!mem_cgroup_disabled())
361 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 		else
363 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 				       NR_ZONE_LRU_BASE + lru);
365 		lru_size -= min(size, lru_size);
366 	}
367 
368 	return lru_size;
369 
370 }
371 
372 /*
373  * Add a shrinker callback to be called from the vm.
374  */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 	unsigned int size = sizeof(*shrinker->nr_deferred);
378 
379 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 		size *= nr_node_ids;
381 
382 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 	if (!shrinker->nr_deferred)
384 		return -ENOMEM;
385 
386 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 		if (prealloc_memcg_shrinker(shrinker))
388 			goto free_deferred;
389 	}
390 
391 	return 0;
392 
393 free_deferred:
394 	kfree(shrinker->nr_deferred);
395 	shrinker->nr_deferred = NULL;
396 	return -ENOMEM;
397 }
398 
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 	if (!shrinker->nr_deferred)
402 		return;
403 
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		unregister_memcg_shrinker(shrinker);
406 
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 	down_write(&shrinker_rwsem);
414 	list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 	up_write(&shrinker_rwsem);
420 }
421 
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 	int err = prealloc_shrinker(shrinker);
425 
426 	if (err)
427 		return err;
428 	register_shrinker_prepared(shrinker);
429 	return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432 
433 /*
434  * Remove one
435  */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 	if (!shrinker->nr_deferred)
439 		return;
440 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 		unregister_memcg_shrinker(shrinker);
442 	down_write(&shrinker_rwsem);
443 	list_del(&shrinker->list);
444 	up_write(&shrinker_rwsem);
445 	kfree(shrinker->nr_deferred);
446 	shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449 
450 #define SHRINK_BATCH 128
451 
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 				    struct shrinker *shrinker, int priority)
454 {
455 	unsigned long freed = 0;
456 	unsigned long long delta;
457 	long total_scan;
458 	long freeable;
459 	long nr;
460 	long new_nr;
461 	int nid = shrinkctl->nid;
462 	long batch_size = shrinker->batch ? shrinker->batch
463 					  : SHRINK_BATCH;
464 	long scanned = 0, next_deferred;
465 
466 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 		nid = 0;
468 
469 	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 	if (freeable == 0 || freeable == SHRINK_EMPTY)
471 		return freeable;
472 
473 	/*
474 	 * copy the current shrinker scan count into a local variable
475 	 * and zero it so that other concurrent shrinker invocations
476 	 * don't also do this scanning work.
477 	 */
478 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479 
480 	total_scan = nr;
481 	if (shrinker->seeks) {
482 		delta = freeable >> priority;
483 		delta *= 4;
484 		do_div(delta, shrinker->seeks);
485 	} else {
486 		/*
487 		 * These objects don't require any IO to create. Trim
488 		 * them aggressively under memory pressure to keep
489 		 * them from causing refetches in the IO caches.
490 		 */
491 		delta = freeable / 2;
492 	}
493 
494 	total_scan += delta;
495 	if (total_scan < 0) {
496 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
497 		       shrinker->scan_objects, total_scan);
498 		total_scan = freeable;
499 		next_deferred = nr;
500 	} else
501 		next_deferred = total_scan;
502 
503 	/*
504 	 * We need to avoid excessive windup on filesystem shrinkers
505 	 * due to large numbers of GFP_NOFS allocations causing the
506 	 * shrinkers to return -1 all the time. This results in a large
507 	 * nr being built up so when a shrink that can do some work
508 	 * comes along it empties the entire cache due to nr >>>
509 	 * freeable. This is bad for sustaining a working set in
510 	 * memory.
511 	 *
512 	 * Hence only allow the shrinker to scan the entire cache when
513 	 * a large delta change is calculated directly.
514 	 */
515 	if (delta < freeable / 4)
516 		total_scan = min(total_scan, freeable / 2);
517 
518 	/*
519 	 * Avoid risking looping forever due to too large nr value:
520 	 * never try to free more than twice the estimate number of
521 	 * freeable entries.
522 	 */
523 	if (total_scan > freeable * 2)
524 		total_scan = freeable * 2;
525 
526 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 				   freeable, delta, total_scan, priority);
528 
529 	/*
530 	 * Normally, we should not scan less than batch_size objects in one
531 	 * pass to avoid too frequent shrinker calls, but if the slab has less
532 	 * than batch_size objects in total and we are really tight on memory,
533 	 * we will try to reclaim all available objects, otherwise we can end
534 	 * up failing allocations although there are plenty of reclaimable
535 	 * objects spread over several slabs with usage less than the
536 	 * batch_size.
537 	 *
538 	 * We detect the "tight on memory" situations by looking at the total
539 	 * number of objects we want to scan (total_scan). If it is greater
540 	 * than the total number of objects on slab (freeable), we must be
541 	 * scanning at high prio and therefore should try to reclaim as much as
542 	 * possible.
543 	 */
544 	while (total_scan >= batch_size ||
545 	       total_scan >= freeable) {
546 		unsigned long ret;
547 		unsigned long nr_to_scan = min(batch_size, total_scan);
548 
549 		shrinkctl->nr_to_scan = nr_to_scan;
550 		shrinkctl->nr_scanned = nr_to_scan;
551 		ret = shrinker->scan_objects(shrinker, shrinkctl);
552 		if (ret == SHRINK_STOP)
553 			break;
554 		freed += ret;
555 
556 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 		total_scan -= shrinkctl->nr_scanned;
558 		scanned += shrinkctl->nr_scanned;
559 
560 		cond_resched();
561 	}
562 
563 	if (next_deferred >= scanned)
564 		next_deferred -= scanned;
565 	else
566 		next_deferred = 0;
567 	/*
568 	 * move the unused scan count back into the shrinker in a
569 	 * manner that handles concurrent updates. If we exhausted the
570 	 * scan, there is no need to do an update.
571 	 */
572 	if (next_deferred > 0)
573 		new_nr = atomic_long_add_return(next_deferred,
574 						&shrinker->nr_deferred[nid]);
575 	else
576 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577 
578 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 	return freed;
580 }
581 
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 			struct mem_cgroup *memcg, int priority)
585 {
586 	struct memcg_shrinker_map *map;
587 	unsigned long ret, freed = 0;
588 	int i;
589 
590 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 		return 0;
592 
593 	if (!down_read_trylock(&shrinker_rwsem))
594 		return 0;
595 
596 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 					true);
598 	if (unlikely(!map))
599 		goto unlock;
600 
601 	for_each_set_bit(i, map->map, shrinker_nr_max) {
602 		struct shrink_control sc = {
603 			.gfp_mask = gfp_mask,
604 			.nid = nid,
605 			.memcg = memcg,
606 		};
607 		struct shrinker *shrinker;
608 
609 		shrinker = idr_find(&shrinker_idr, i);
610 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 			if (!shrinker)
612 				clear_bit(i, map->map);
613 			continue;
614 		}
615 
616 		ret = do_shrink_slab(&sc, shrinker, priority);
617 		if (ret == SHRINK_EMPTY) {
618 			clear_bit(i, map->map);
619 			/*
620 			 * After the shrinker reported that it had no objects to
621 			 * free, but before we cleared the corresponding bit in
622 			 * the memcg shrinker map, a new object might have been
623 			 * added. To make sure, we have the bit set in this
624 			 * case, we invoke the shrinker one more time and reset
625 			 * the bit if it reports that it is not empty anymore.
626 			 * The memory barrier here pairs with the barrier in
627 			 * memcg_set_shrinker_bit():
628 			 *
629 			 * list_lru_add()     shrink_slab_memcg()
630 			 *   list_add_tail()    clear_bit()
631 			 *   <MB>               <MB>
632 			 *   set_bit()          do_shrink_slab()
633 			 */
634 			smp_mb__after_atomic();
635 			ret = do_shrink_slab(&sc, shrinker, priority);
636 			if (ret == SHRINK_EMPTY)
637 				ret = 0;
638 			else
639 				memcg_set_shrinker_bit(memcg, nid, i);
640 		}
641 		freed += ret;
642 
643 		if (rwsem_is_contended(&shrinker_rwsem)) {
644 			freed = freed ? : 1;
645 			break;
646 		}
647 	}
648 unlock:
649 	up_read(&shrinker_rwsem);
650 	return freed;
651 }
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 			struct mem_cgroup *memcg, int priority)
655 {
656 	return 0;
657 }
658 #endif /* CONFIG_MEMCG_KMEM */
659 
660 /**
661  * shrink_slab - shrink slab caches
662  * @gfp_mask: allocation context
663  * @nid: node whose slab caches to target
664  * @memcg: memory cgroup whose slab caches to target
665  * @priority: the reclaim priority
666  *
667  * Call the shrink functions to age shrinkable caches.
668  *
669  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670  * unaware shrinkers will receive a node id of 0 instead.
671  *
672  * @memcg specifies the memory cgroup to target. Unaware shrinkers
673  * are called only if it is the root cgroup.
674  *
675  * @priority is sc->priority, we take the number of objects and >> by priority
676  * in order to get the scan target.
677  *
678  * Returns the number of reclaimed slab objects.
679  */
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 				 struct mem_cgroup *memcg,
682 				 int priority)
683 {
684 	unsigned long ret, freed = 0;
685 	struct shrinker *shrinker;
686 
687 	if (!mem_cgroup_is_root(memcg))
688 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689 
690 	if (!down_read_trylock(&shrinker_rwsem))
691 		goto out;
692 
693 	list_for_each_entry(shrinker, &shrinker_list, list) {
694 		struct shrink_control sc = {
695 			.gfp_mask = gfp_mask,
696 			.nid = nid,
697 			.memcg = memcg,
698 		};
699 
700 		ret = do_shrink_slab(&sc, shrinker, priority);
701 		if (ret == SHRINK_EMPTY)
702 			ret = 0;
703 		freed += ret;
704 		/*
705 		 * Bail out if someone want to register a new shrinker to
706 		 * prevent the regsitration from being stalled for long periods
707 		 * by parallel ongoing shrinking.
708 		 */
709 		if (rwsem_is_contended(&shrinker_rwsem)) {
710 			freed = freed ? : 1;
711 			break;
712 		}
713 	}
714 
715 	up_read(&shrinker_rwsem);
716 out:
717 	cond_resched();
718 	return freed;
719 }
720 
721 void drop_slab_node(int nid)
722 {
723 	unsigned long freed;
724 
725 	do {
726 		struct mem_cgroup *memcg = NULL;
727 
728 		freed = 0;
729 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 		do {
731 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 	} while (freed > 10);
734 }
735 
736 void drop_slab(void)
737 {
738 	int nid;
739 
740 	for_each_online_node(nid)
741 		drop_slab_node(nid);
742 }
743 
744 static inline int is_page_cache_freeable(struct page *page)
745 {
746 	/*
747 	 * A freeable page cache page is referenced only by the caller
748 	 * that isolated the page, the page cache and optional buffer
749 	 * heads at page->private.
750 	 */
751 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 		HPAGE_PMD_NR : 1;
753 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
754 }
755 
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
757 {
758 	if (current->flags & PF_SWAPWRITE)
759 		return 1;
760 	if (!inode_write_congested(inode))
761 		return 1;
762 	if (inode_to_bdi(inode) == current->backing_dev_info)
763 		return 1;
764 	return 0;
765 }
766 
767 /*
768  * We detected a synchronous write error writing a page out.  Probably
769  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
770  * fsync(), msync() or close().
771  *
772  * The tricky part is that after writepage we cannot touch the mapping: nothing
773  * prevents it from being freed up.  But we have a ref on the page and once
774  * that page is locked, the mapping is pinned.
775  *
776  * We're allowed to run sleeping lock_page() here because we know the caller has
777  * __GFP_FS.
778  */
779 static void handle_write_error(struct address_space *mapping,
780 				struct page *page, int error)
781 {
782 	lock_page(page);
783 	if (page_mapping(page) == mapping)
784 		mapping_set_error(mapping, error);
785 	unlock_page(page);
786 }
787 
788 /* possible outcome of pageout() */
789 typedef enum {
790 	/* failed to write page out, page is locked */
791 	PAGE_KEEP,
792 	/* move page to the active list, page is locked */
793 	PAGE_ACTIVATE,
794 	/* page has been sent to the disk successfully, page is unlocked */
795 	PAGE_SUCCESS,
796 	/* page is clean and locked */
797 	PAGE_CLEAN,
798 } pageout_t;
799 
800 /*
801  * pageout is called by shrink_page_list() for each dirty page.
802  * Calls ->writepage().
803  */
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 			 struct scan_control *sc)
806 {
807 	/*
808 	 * If the page is dirty, only perform writeback if that write
809 	 * will be non-blocking.  To prevent this allocation from being
810 	 * stalled by pagecache activity.  But note that there may be
811 	 * stalls if we need to run get_block().  We could test
812 	 * PagePrivate for that.
813 	 *
814 	 * If this process is currently in __generic_file_write_iter() against
815 	 * this page's queue, we can perform writeback even if that
816 	 * will block.
817 	 *
818 	 * If the page is swapcache, write it back even if that would
819 	 * block, for some throttling. This happens by accident, because
820 	 * swap_backing_dev_info is bust: it doesn't reflect the
821 	 * congestion state of the swapdevs.  Easy to fix, if needed.
822 	 */
823 	if (!is_page_cache_freeable(page))
824 		return PAGE_KEEP;
825 	if (!mapping) {
826 		/*
827 		 * Some data journaling orphaned pages can have
828 		 * page->mapping == NULL while being dirty with clean buffers.
829 		 */
830 		if (page_has_private(page)) {
831 			if (try_to_free_buffers(page)) {
832 				ClearPageDirty(page);
833 				pr_info("%s: orphaned page\n", __func__);
834 				return PAGE_CLEAN;
835 			}
836 		}
837 		return PAGE_KEEP;
838 	}
839 	if (mapping->a_ops->writepage == NULL)
840 		return PAGE_ACTIVATE;
841 	if (!may_write_to_inode(mapping->host, sc))
842 		return PAGE_KEEP;
843 
844 	if (clear_page_dirty_for_io(page)) {
845 		int res;
846 		struct writeback_control wbc = {
847 			.sync_mode = WB_SYNC_NONE,
848 			.nr_to_write = SWAP_CLUSTER_MAX,
849 			.range_start = 0,
850 			.range_end = LLONG_MAX,
851 			.for_reclaim = 1,
852 		};
853 
854 		SetPageReclaim(page);
855 		res = mapping->a_ops->writepage(page, &wbc);
856 		if (res < 0)
857 			handle_write_error(mapping, page, res);
858 		if (res == AOP_WRITEPAGE_ACTIVATE) {
859 			ClearPageReclaim(page);
860 			return PAGE_ACTIVATE;
861 		}
862 
863 		if (!PageWriteback(page)) {
864 			/* synchronous write or broken a_ops? */
865 			ClearPageReclaim(page);
866 		}
867 		trace_mm_vmscan_writepage(page);
868 		inc_node_page_state(page, NR_VMSCAN_WRITE);
869 		return PAGE_SUCCESS;
870 	}
871 
872 	return PAGE_CLEAN;
873 }
874 
875 /*
876  * Same as remove_mapping, but if the page is removed from the mapping, it
877  * gets returned with a refcount of 0.
878  */
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 			    bool reclaimed)
881 {
882 	unsigned long flags;
883 	int refcount;
884 
885 	BUG_ON(!PageLocked(page));
886 	BUG_ON(mapping != page_mapping(page));
887 
888 	xa_lock_irqsave(&mapping->i_pages, flags);
889 	/*
890 	 * The non racy check for a busy page.
891 	 *
892 	 * Must be careful with the order of the tests. When someone has
893 	 * a ref to the page, it may be possible that they dirty it then
894 	 * drop the reference. So if PageDirty is tested before page_count
895 	 * here, then the following race may occur:
896 	 *
897 	 * get_user_pages(&page);
898 	 * [user mapping goes away]
899 	 * write_to(page);
900 	 *				!PageDirty(page)    [good]
901 	 * SetPageDirty(page);
902 	 * put_page(page);
903 	 *				!page_count(page)   [good, discard it]
904 	 *
905 	 * [oops, our write_to data is lost]
906 	 *
907 	 * Reversing the order of the tests ensures such a situation cannot
908 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 	 * load is not satisfied before that of page->_refcount.
910 	 *
911 	 * Note that if SetPageDirty is always performed via set_page_dirty,
912 	 * and thus under the i_pages lock, then this ordering is not required.
913 	 */
914 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 		refcount = 1 + HPAGE_PMD_NR;
916 	else
917 		refcount = 2;
918 	if (!page_ref_freeze(page, refcount))
919 		goto cannot_free;
920 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 	if (unlikely(PageDirty(page))) {
922 		page_ref_unfreeze(page, refcount);
923 		goto cannot_free;
924 	}
925 
926 	if (PageSwapCache(page)) {
927 		swp_entry_t swap = { .val = page_private(page) };
928 		mem_cgroup_swapout(page, swap);
929 		__delete_from_swap_cache(page, swap);
930 		xa_unlock_irqrestore(&mapping->i_pages, flags);
931 		put_swap_page(page, swap);
932 	} else {
933 		void (*freepage)(struct page *);
934 		void *shadow = NULL;
935 
936 		freepage = mapping->a_ops->freepage;
937 		/*
938 		 * Remember a shadow entry for reclaimed file cache in
939 		 * order to detect refaults, thus thrashing, later on.
940 		 *
941 		 * But don't store shadows in an address space that is
942 		 * already exiting.  This is not just an optizimation,
943 		 * inode reclaim needs to empty out the radix tree or
944 		 * the nodes are lost.  Don't plant shadows behind its
945 		 * back.
946 		 *
947 		 * We also don't store shadows for DAX mappings because the
948 		 * only page cache pages found in these are zero pages
949 		 * covering holes, and because we don't want to mix DAX
950 		 * exceptional entries and shadow exceptional entries in the
951 		 * same address_space.
952 		 */
953 		if (reclaimed && page_is_file_cache(page) &&
954 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955 			shadow = workingset_eviction(page);
956 		__delete_from_page_cache(page, shadow);
957 		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 
959 		if (freepage != NULL)
960 			freepage(page);
961 	}
962 
963 	return 1;
964 
965 cannot_free:
966 	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 	return 0;
968 }
969 
970 /*
971  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
972  * someone else has a ref on the page, abort and return 0.  If it was
973  * successfully detached, return 1.  Assumes the caller has a single ref on
974  * this page.
975  */
976 int remove_mapping(struct address_space *mapping, struct page *page)
977 {
978 	if (__remove_mapping(mapping, page, false)) {
979 		/*
980 		 * Unfreezing the refcount with 1 rather than 2 effectively
981 		 * drops the pagecache ref for us without requiring another
982 		 * atomic operation.
983 		 */
984 		page_ref_unfreeze(page, 1);
985 		return 1;
986 	}
987 	return 0;
988 }
989 
990 /**
991  * putback_lru_page - put previously isolated page onto appropriate LRU list
992  * @page: page to be put back to appropriate lru list
993  *
994  * Add previously isolated @page to appropriate LRU list.
995  * Page may still be unevictable for other reasons.
996  *
997  * lru_lock must not be held, interrupts must be enabled.
998  */
999 void putback_lru_page(struct page *page)
1000 {
1001 	lru_cache_add(page);
1002 	put_page(page);		/* drop ref from isolate */
1003 }
1004 
1005 enum page_references {
1006 	PAGEREF_RECLAIM,
1007 	PAGEREF_RECLAIM_CLEAN,
1008 	PAGEREF_KEEP,
1009 	PAGEREF_ACTIVATE,
1010 };
1011 
1012 static enum page_references page_check_references(struct page *page,
1013 						  struct scan_control *sc)
1014 {
1015 	int referenced_ptes, referenced_page;
1016 	unsigned long vm_flags;
1017 
1018 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 					  &vm_flags);
1020 	referenced_page = TestClearPageReferenced(page);
1021 
1022 	/*
1023 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1024 	 * move the page to the unevictable list.
1025 	 */
1026 	if (vm_flags & VM_LOCKED)
1027 		return PAGEREF_RECLAIM;
1028 
1029 	if (referenced_ptes) {
1030 		if (PageSwapBacked(page))
1031 			return PAGEREF_ACTIVATE;
1032 		/*
1033 		 * All mapped pages start out with page table
1034 		 * references from the instantiating fault, so we need
1035 		 * to look twice if a mapped file page is used more
1036 		 * than once.
1037 		 *
1038 		 * Mark it and spare it for another trip around the
1039 		 * inactive list.  Another page table reference will
1040 		 * lead to its activation.
1041 		 *
1042 		 * Note: the mark is set for activated pages as well
1043 		 * so that recently deactivated but used pages are
1044 		 * quickly recovered.
1045 		 */
1046 		SetPageReferenced(page);
1047 
1048 		if (referenced_page || referenced_ptes > 1)
1049 			return PAGEREF_ACTIVATE;
1050 
1051 		/*
1052 		 * Activate file-backed executable pages after first usage.
1053 		 */
1054 		if (vm_flags & VM_EXEC)
1055 			return PAGEREF_ACTIVATE;
1056 
1057 		return PAGEREF_KEEP;
1058 	}
1059 
1060 	/* Reclaim if clean, defer dirty pages to writeback */
1061 	if (referenced_page && !PageSwapBacked(page))
1062 		return PAGEREF_RECLAIM_CLEAN;
1063 
1064 	return PAGEREF_RECLAIM;
1065 }
1066 
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 				       bool *dirty, bool *writeback)
1070 {
1071 	struct address_space *mapping;
1072 
1073 	/*
1074 	 * Anonymous pages are not handled by flushers and must be written
1075 	 * from reclaim context. Do not stall reclaim based on them
1076 	 */
1077 	if (!page_is_file_cache(page) ||
1078 	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 		*dirty = false;
1080 		*writeback = false;
1081 		return;
1082 	}
1083 
1084 	/* By default assume that the page flags are accurate */
1085 	*dirty = PageDirty(page);
1086 	*writeback = PageWriteback(page);
1087 
1088 	/* Verify dirty/writeback state if the filesystem supports it */
1089 	if (!page_has_private(page))
1090 		return;
1091 
1092 	mapping = page_mapping(page);
1093 	if (mapping && mapping->a_ops->is_dirty_writeback)
1094 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 }
1096 
1097 /*
1098  * shrink_page_list() returns the number of reclaimed pages
1099  */
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 				      struct pglist_data *pgdat,
1102 				      struct scan_control *sc,
1103 				      enum ttu_flags ttu_flags,
1104 				      struct reclaim_stat *stat,
1105 				      bool force_reclaim)
1106 {
1107 	LIST_HEAD(ret_pages);
1108 	LIST_HEAD(free_pages);
1109 	unsigned nr_reclaimed = 0;
1110 
1111 	memset(stat, 0, sizeof(*stat));
1112 	cond_resched();
1113 
1114 	while (!list_empty(page_list)) {
1115 		struct address_space *mapping;
1116 		struct page *page;
1117 		int may_enter_fs;
1118 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1119 		bool dirty, writeback;
1120 
1121 		cond_resched();
1122 
1123 		page = lru_to_page(page_list);
1124 		list_del(&page->lru);
1125 
1126 		if (!trylock_page(page))
1127 			goto keep;
1128 
1129 		VM_BUG_ON_PAGE(PageActive(page), page);
1130 
1131 		sc->nr_scanned++;
1132 
1133 		if (unlikely(!page_evictable(page)))
1134 			goto activate_locked;
1135 
1136 		if (!sc->may_unmap && page_mapped(page))
1137 			goto keep_locked;
1138 
1139 		/* Double the slab pressure for mapped and swapcache pages */
1140 		if ((page_mapped(page) || PageSwapCache(page)) &&
1141 		    !(PageAnon(page) && !PageSwapBacked(page)))
1142 			sc->nr_scanned++;
1143 
1144 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1146 
1147 		/*
1148 		 * The number of dirty pages determines if a node is marked
1149 		 * reclaim_congested which affects wait_iff_congested. kswapd
1150 		 * will stall and start writing pages if the tail of the LRU
1151 		 * is all dirty unqueued pages.
1152 		 */
1153 		page_check_dirty_writeback(page, &dirty, &writeback);
1154 		if (dirty || writeback)
1155 			stat->nr_dirty++;
1156 
1157 		if (dirty && !writeback)
1158 			stat->nr_unqueued_dirty++;
1159 
1160 		/*
1161 		 * Treat this page as congested if the underlying BDI is or if
1162 		 * pages are cycling through the LRU so quickly that the
1163 		 * pages marked for immediate reclaim are making it to the
1164 		 * end of the LRU a second time.
1165 		 */
1166 		mapping = page_mapping(page);
1167 		if (((dirty || writeback) && mapping &&
1168 		     inode_write_congested(mapping->host)) ||
1169 		    (writeback && PageReclaim(page)))
1170 			stat->nr_congested++;
1171 
1172 		/*
1173 		 * If a page at the tail of the LRU is under writeback, there
1174 		 * are three cases to consider.
1175 		 *
1176 		 * 1) If reclaim is encountering an excessive number of pages
1177 		 *    under writeback and this page is both under writeback and
1178 		 *    PageReclaim then it indicates that pages are being queued
1179 		 *    for IO but are being recycled through the LRU before the
1180 		 *    IO can complete. Waiting on the page itself risks an
1181 		 *    indefinite stall if it is impossible to writeback the
1182 		 *    page due to IO error or disconnected storage so instead
1183 		 *    note that the LRU is being scanned too quickly and the
1184 		 *    caller can stall after page list has been processed.
1185 		 *
1186 		 * 2) Global or new memcg reclaim encounters a page that is
1187 		 *    not marked for immediate reclaim, or the caller does not
1188 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 		 *    not to fs). In this case mark the page for immediate
1190 		 *    reclaim and continue scanning.
1191 		 *
1192 		 *    Require may_enter_fs because we would wait on fs, which
1193 		 *    may not have submitted IO yet. And the loop driver might
1194 		 *    enter reclaim, and deadlock if it waits on a page for
1195 		 *    which it is needed to do the write (loop masks off
1196 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1197 		 *    would probably show more reasons.
1198 		 *
1199 		 * 3) Legacy memcg encounters a page that is already marked
1200 		 *    PageReclaim. memcg does not have any dirty pages
1201 		 *    throttling so we could easily OOM just because too many
1202 		 *    pages are in writeback and there is nothing else to
1203 		 *    reclaim. Wait for the writeback to complete.
1204 		 *
1205 		 * In cases 1) and 2) we activate the pages to get them out of
1206 		 * the way while we continue scanning for clean pages on the
1207 		 * inactive list and refilling from the active list. The
1208 		 * observation here is that waiting for disk writes is more
1209 		 * expensive than potentially causing reloads down the line.
1210 		 * Since they're marked for immediate reclaim, they won't put
1211 		 * memory pressure on the cache working set any longer than it
1212 		 * takes to write them to disk.
1213 		 */
1214 		if (PageWriteback(page)) {
1215 			/* Case 1 above */
1216 			if (current_is_kswapd() &&
1217 			    PageReclaim(page) &&
1218 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219 				stat->nr_immediate++;
1220 				goto activate_locked;
1221 
1222 			/* Case 2 above */
1223 			} else if (sane_reclaim(sc) ||
1224 			    !PageReclaim(page) || !may_enter_fs) {
1225 				/*
1226 				 * This is slightly racy - end_page_writeback()
1227 				 * might have just cleared PageReclaim, then
1228 				 * setting PageReclaim here end up interpreted
1229 				 * as PageReadahead - but that does not matter
1230 				 * enough to care.  What we do want is for this
1231 				 * page to have PageReclaim set next time memcg
1232 				 * reclaim reaches the tests above, so it will
1233 				 * then wait_on_page_writeback() to avoid OOM;
1234 				 * and it's also appropriate in global reclaim.
1235 				 */
1236 				SetPageReclaim(page);
1237 				stat->nr_writeback++;
1238 				goto activate_locked;
1239 
1240 			/* Case 3 above */
1241 			} else {
1242 				unlock_page(page);
1243 				wait_on_page_writeback(page);
1244 				/* then go back and try same page again */
1245 				list_add_tail(&page->lru, page_list);
1246 				continue;
1247 			}
1248 		}
1249 
1250 		if (!force_reclaim)
1251 			references = page_check_references(page, sc);
1252 
1253 		switch (references) {
1254 		case PAGEREF_ACTIVATE:
1255 			goto activate_locked;
1256 		case PAGEREF_KEEP:
1257 			stat->nr_ref_keep++;
1258 			goto keep_locked;
1259 		case PAGEREF_RECLAIM:
1260 		case PAGEREF_RECLAIM_CLEAN:
1261 			; /* try to reclaim the page below */
1262 		}
1263 
1264 		/*
1265 		 * Anonymous process memory has backing store?
1266 		 * Try to allocate it some swap space here.
1267 		 * Lazyfree page could be freed directly
1268 		 */
1269 		if (PageAnon(page) && PageSwapBacked(page)) {
1270 			if (!PageSwapCache(page)) {
1271 				if (!(sc->gfp_mask & __GFP_IO))
1272 					goto keep_locked;
1273 				if (PageTransHuge(page)) {
1274 					/* cannot split THP, skip it */
1275 					if (!can_split_huge_page(page, NULL))
1276 						goto activate_locked;
1277 					/*
1278 					 * Split pages without a PMD map right
1279 					 * away. Chances are some or all of the
1280 					 * tail pages can be freed without IO.
1281 					 */
1282 					if (!compound_mapcount(page) &&
1283 					    split_huge_page_to_list(page,
1284 								    page_list))
1285 						goto activate_locked;
1286 				}
1287 				if (!add_to_swap(page)) {
1288 					if (!PageTransHuge(page))
1289 						goto activate_locked;
1290 					/* Fallback to swap normal pages */
1291 					if (split_huge_page_to_list(page,
1292 								    page_list))
1293 						goto activate_locked;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 					count_vm_event(THP_SWPOUT_FALLBACK);
1296 #endif
1297 					if (!add_to_swap(page))
1298 						goto activate_locked;
1299 				}
1300 
1301 				may_enter_fs = 1;
1302 
1303 				/* Adding to swap updated mapping */
1304 				mapping = page_mapping(page);
1305 			}
1306 		} else if (unlikely(PageTransHuge(page))) {
1307 			/* Split file THP */
1308 			if (split_huge_page_to_list(page, page_list))
1309 				goto keep_locked;
1310 		}
1311 
1312 		/*
1313 		 * The page is mapped into the page tables of one or more
1314 		 * processes. Try to unmap it here.
1315 		 */
1316 		if (page_mapped(page)) {
1317 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1318 
1319 			if (unlikely(PageTransHuge(page)))
1320 				flags |= TTU_SPLIT_HUGE_PMD;
1321 			if (!try_to_unmap(page, flags)) {
1322 				stat->nr_unmap_fail++;
1323 				goto activate_locked;
1324 			}
1325 		}
1326 
1327 		if (PageDirty(page)) {
1328 			/*
1329 			 * Only kswapd can writeback filesystem pages
1330 			 * to avoid risk of stack overflow. But avoid
1331 			 * injecting inefficient single-page IO into
1332 			 * flusher writeback as much as possible: only
1333 			 * write pages when we've encountered many
1334 			 * dirty pages, and when we've already scanned
1335 			 * the rest of the LRU for clean pages and see
1336 			 * the same dirty pages again (PageReclaim).
1337 			 */
1338 			if (page_is_file_cache(page) &&
1339 			    (!current_is_kswapd() || !PageReclaim(page) ||
1340 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341 				/*
1342 				 * Immediately reclaim when written back.
1343 				 * Similar in principal to deactivate_page()
1344 				 * except we already have the page isolated
1345 				 * and know it's dirty
1346 				 */
1347 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1348 				SetPageReclaim(page);
1349 
1350 				goto activate_locked;
1351 			}
1352 
1353 			if (references == PAGEREF_RECLAIM_CLEAN)
1354 				goto keep_locked;
1355 			if (!may_enter_fs)
1356 				goto keep_locked;
1357 			if (!sc->may_writepage)
1358 				goto keep_locked;
1359 
1360 			/*
1361 			 * Page is dirty. Flush the TLB if a writable entry
1362 			 * potentially exists to avoid CPU writes after IO
1363 			 * starts and then write it out here.
1364 			 */
1365 			try_to_unmap_flush_dirty();
1366 			switch (pageout(page, mapping, sc)) {
1367 			case PAGE_KEEP:
1368 				goto keep_locked;
1369 			case PAGE_ACTIVATE:
1370 				goto activate_locked;
1371 			case PAGE_SUCCESS:
1372 				if (PageWriteback(page))
1373 					goto keep;
1374 				if (PageDirty(page))
1375 					goto keep;
1376 
1377 				/*
1378 				 * A synchronous write - probably a ramdisk.  Go
1379 				 * ahead and try to reclaim the page.
1380 				 */
1381 				if (!trylock_page(page))
1382 					goto keep;
1383 				if (PageDirty(page) || PageWriteback(page))
1384 					goto keep_locked;
1385 				mapping = page_mapping(page);
1386 			case PAGE_CLEAN:
1387 				; /* try to free the page below */
1388 			}
1389 		}
1390 
1391 		/*
1392 		 * If the page has buffers, try to free the buffer mappings
1393 		 * associated with this page. If we succeed we try to free
1394 		 * the page as well.
1395 		 *
1396 		 * We do this even if the page is PageDirty().
1397 		 * try_to_release_page() does not perform I/O, but it is
1398 		 * possible for a page to have PageDirty set, but it is actually
1399 		 * clean (all its buffers are clean).  This happens if the
1400 		 * buffers were written out directly, with submit_bh(). ext3
1401 		 * will do this, as well as the blockdev mapping.
1402 		 * try_to_release_page() will discover that cleanness and will
1403 		 * drop the buffers and mark the page clean - it can be freed.
1404 		 *
1405 		 * Rarely, pages can have buffers and no ->mapping.  These are
1406 		 * the pages which were not successfully invalidated in
1407 		 * truncate_complete_page().  We try to drop those buffers here
1408 		 * and if that worked, and the page is no longer mapped into
1409 		 * process address space (page_count == 1) it can be freed.
1410 		 * Otherwise, leave the page on the LRU so it is swappable.
1411 		 */
1412 		if (page_has_private(page)) {
1413 			if (!try_to_release_page(page, sc->gfp_mask))
1414 				goto activate_locked;
1415 			if (!mapping && page_count(page) == 1) {
1416 				unlock_page(page);
1417 				if (put_page_testzero(page))
1418 					goto free_it;
1419 				else {
1420 					/*
1421 					 * rare race with speculative reference.
1422 					 * the speculative reference will free
1423 					 * this page shortly, so we may
1424 					 * increment nr_reclaimed here (and
1425 					 * leave it off the LRU).
1426 					 */
1427 					nr_reclaimed++;
1428 					continue;
1429 				}
1430 			}
1431 		}
1432 
1433 		if (PageAnon(page) && !PageSwapBacked(page)) {
1434 			/* follow __remove_mapping for reference */
1435 			if (!page_ref_freeze(page, 1))
1436 				goto keep_locked;
1437 			if (PageDirty(page)) {
1438 				page_ref_unfreeze(page, 1);
1439 				goto keep_locked;
1440 			}
1441 
1442 			count_vm_event(PGLAZYFREED);
1443 			count_memcg_page_event(page, PGLAZYFREED);
1444 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1445 			goto keep_locked;
1446 
1447 		unlock_page(page);
1448 free_it:
1449 		nr_reclaimed++;
1450 
1451 		/*
1452 		 * Is there need to periodically free_page_list? It would
1453 		 * appear not as the counts should be low
1454 		 */
1455 		if (unlikely(PageTransHuge(page))) {
1456 			mem_cgroup_uncharge(page);
1457 			(*get_compound_page_dtor(page))(page);
1458 		} else
1459 			list_add(&page->lru, &free_pages);
1460 		continue;
1461 
1462 activate_locked:
1463 		/* Not a candidate for swapping, so reclaim swap space. */
1464 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465 						PageMlocked(page)))
1466 			try_to_free_swap(page);
1467 		VM_BUG_ON_PAGE(PageActive(page), page);
1468 		if (!PageMlocked(page)) {
1469 			SetPageActive(page);
1470 			stat->nr_activate++;
1471 			count_memcg_page_event(page, PGACTIVATE);
1472 		}
1473 keep_locked:
1474 		unlock_page(page);
1475 keep:
1476 		list_add(&page->lru, &ret_pages);
1477 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1478 	}
1479 
1480 	mem_cgroup_uncharge_list(&free_pages);
1481 	try_to_unmap_flush();
1482 	free_unref_page_list(&free_pages);
1483 
1484 	list_splice(&ret_pages, page_list);
1485 	count_vm_events(PGACTIVATE, stat->nr_activate);
1486 
1487 	return nr_reclaimed;
1488 }
1489 
1490 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1491 					    struct list_head *page_list)
1492 {
1493 	struct scan_control sc = {
1494 		.gfp_mask = GFP_KERNEL,
1495 		.priority = DEF_PRIORITY,
1496 		.may_unmap = 1,
1497 	};
1498 	struct reclaim_stat dummy_stat;
1499 	unsigned long ret;
1500 	struct page *page, *next;
1501 	LIST_HEAD(clean_pages);
1502 
1503 	list_for_each_entry_safe(page, next, page_list, lru) {
1504 		if (page_is_file_cache(page) && !PageDirty(page) &&
1505 		    !__PageMovable(page)) {
1506 			ClearPageActive(page);
1507 			list_move(&page->lru, &clean_pages);
1508 		}
1509 	}
1510 
1511 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1512 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1513 	list_splice(&clean_pages, page_list);
1514 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1515 	return ret;
1516 }
1517 
1518 /*
1519  * Attempt to remove the specified page from its LRU.  Only take this page
1520  * if it is of the appropriate PageActive status.  Pages which are being
1521  * freed elsewhere are also ignored.
1522  *
1523  * page:	page to consider
1524  * mode:	one of the LRU isolation modes defined above
1525  *
1526  * returns 0 on success, -ve errno on failure.
1527  */
1528 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1529 {
1530 	int ret = -EINVAL;
1531 
1532 	/* Only take pages on the LRU. */
1533 	if (!PageLRU(page))
1534 		return ret;
1535 
1536 	/* Compaction should not handle unevictable pages but CMA can do so */
1537 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1538 		return ret;
1539 
1540 	ret = -EBUSY;
1541 
1542 	/*
1543 	 * To minimise LRU disruption, the caller can indicate that it only
1544 	 * wants to isolate pages it will be able to operate on without
1545 	 * blocking - clean pages for the most part.
1546 	 *
1547 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1548 	 * that it is possible to migrate without blocking
1549 	 */
1550 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1551 		/* All the caller can do on PageWriteback is block */
1552 		if (PageWriteback(page))
1553 			return ret;
1554 
1555 		if (PageDirty(page)) {
1556 			struct address_space *mapping;
1557 			bool migrate_dirty;
1558 
1559 			/*
1560 			 * Only pages without mappings or that have a
1561 			 * ->migratepage callback are possible to migrate
1562 			 * without blocking. However, we can be racing with
1563 			 * truncation so it's necessary to lock the page
1564 			 * to stabilise the mapping as truncation holds
1565 			 * the page lock until after the page is removed
1566 			 * from the page cache.
1567 			 */
1568 			if (!trylock_page(page))
1569 				return ret;
1570 
1571 			mapping = page_mapping(page);
1572 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1573 			unlock_page(page);
1574 			if (!migrate_dirty)
1575 				return ret;
1576 		}
1577 	}
1578 
1579 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1580 		return ret;
1581 
1582 	if (likely(get_page_unless_zero(page))) {
1583 		/*
1584 		 * Be careful not to clear PageLRU until after we're
1585 		 * sure the page is not being freed elsewhere -- the
1586 		 * page release code relies on it.
1587 		 */
1588 		ClearPageLRU(page);
1589 		ret = 0;
1590 	}
1591 
1592 	return ret;
1593 }
1594 
1595 
1596 /*
1597  * Update LRU sizes after isolating pages. The LRU size updates must
1598  * be complete before mem_cgroup_update_lru_size due to a santity check.
1599  */
1600 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1601 			enum lru_list lru, unsigned long *nr_zone_taken)
1602 {
1603 	int zid;
1604 
1605 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1606 		if (!nr_zone_taken[zid])
1607 			continue;
1608 
1609 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1610 #ifdef CONFIG_MEMCG
1611 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1612 #endif
1613 	}
1614 
1615 }
1616 
1617 /**
1618  * pgdat->lru_lock is heavily contended.  Some of the functions that
1619  * shrink the lists perform better by taking out a batch of pages
1620  * and working on them outside the LRU lock.
1621  *
1622  * For pagecache intensive workloads, this function is the hottest
1623  * spot in the kernel (apart from copy_*_user functions).
1624  *
1625  * Appropriate locks must be held before calling this function.
1626  *
1627  * @nr_to_scan:	The number of eligible pages to look through on the list.
1628  * @lruvec:	The LRU vector to pull pages from.
1629  * @dst:	The temp list to put pages on to.
1630  * @nr_scanned:	The number of pages that were scanned.
1631  * @sc:		The scan_control struct for this reclaim session
1632  * @mode:	One of the LRU isolation modes
1633  * @lru:	LRU list id for isolating
1634  *
1635  * returns how many pages were moved onto *@dst.
1636  */
1637 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1638 		struct lruvec *lruvec, struct list_head *dst,
1639 		unsigned long *nr_scanned, struct scan_control *sc,
1640 		enum lru_list lru)
1641 {
1642 	struct list_head *src = &lruvec->lists[lru];
1643 	unsigned long nr_taken = 0;
1644 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1645 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1646 	unsigned long skipped = 0;
1647 	unsigned long scan, total_scan, nr_pages;
1648 	LIST_HEAD(pages_skipped);
1649 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1650 
1651 	scan = 0;
1652 	for (total_scan = 0;
1653 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1654 	     total_scan++) {
1655 		struct page *page;
1656 
1657 		page = lru_to_page(src);
1658 		prefetchw_prev_lru_page(page, src, flags);
1659 
1660 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1661 
1662 		if (page_zonenum(page) > sc->reclaim_idx) {
1663 			list_move(&page->lru, &pages_skipped);
1664 			nr_skipped[page_zonenum(page)]++;
1665 			continue;
1666 		}
1667 
1668 		/*
1669 		 * Do not count skipped pages because that makes the function
1670 		 * return with no isolated pages if the LRU mostly contains
1671 		 * ineligible pages.  This causes the VM to not reclaim any
1672 		 * pages, triggering a premature OOM.
1673 		 */
1674 		scan++;
1675 		switch (__isolate_lru_page(page, mode)) {
1676 		case 0:
1677 			nr_pages = hpage_nr_pages(page);
1678 			nr_taken += nr_pages;
1679 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1680 			list_move(&page->lru, dst);
1681 			break;
1682 
1683 		case -EBUSY:
1684 			/* else it is being freed elsewhere */
1685 			list_move(&page->lru, src);
1686 			continue;
1687 
1688 		default:
1689 			BUG();
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * Splice any skipped pages to the start of the LRU list. Note that
1695 	 * this disrupts the LRU order when reclaiming for lower zones but
1696 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1697 	 * scanning would soon rescan the same pages to skip and put the
1698 	 * system at risk of premature OOM.
1699 	 */
1700 	if (!list_empty(&pages_skipped)) {
1701 		int zid;
1702 
1703 		list_splice(&pages_skipped, src);
1704 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1705 			if (!nr_skipped[zid])
1706 				continue;
1707 
1708 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1709 			skipped += nr_skipped[zid];
1710 		}
1711 	}
1712 	*nr_scanned = total_scan;
1713 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1714 				    total_scan, skipped, nr_taken, mode, lru);
1715 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1716 	return nr_taken;
1717 }
1718 
1719 /**
1720  * isolate_lru_page - tries to isolate a page from its LRU list
1721  * @page: page to isolate from its LRU list
1722  *
1723  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1724  * vmstat statistic corresponding to whatever LRU list the page was on.
1725  *
1726  * Returns 0 if the page was removed from an LRU list.
1727  * Returns -EBUSY if the page was not on an LRU list.
1728  *
1729  * The returned page will have PageLRU() cleared.  If it was found on
1730  * the active list, it will have PageActive set.  If it was found on
1731  * the unevictable list, it will have the PageUnevictable bit set. That flag
1732  * may need to be cleared by the caller before letting the page go.
1733  *
1734  * The vmstat statistic corresponding to the list on which the page was
1735  * found will be decremented.
1736  *
1737  * Restrictions:
1738  *
1739  * (1) Must be called with an elevated refcount on the page. This is a
1740  *     fundamentnal difference from isolate_lru_pages (which is called
1741  *     without a stable reference).
1742  * (2) the lru_lock must not be held.
1743  * (3) interrupts must be enabled.
1744  */
1745 int isolate_lru_page(struct page *page)
1746 {
1747 	int ret = -EBUSY;
1748 
1749 	VM_BUG_ON_PAGE(!page_count(page), page);
1750 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1751 
1752 	if (PageLRU(page)) {
1753 		pg_data_t *pgdat = page_pgdat(page);
1754 		struct lruvec *lruvec;
1755 
1756 		spin_lock_irq(&pgdat->lru_lock);
1757 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1758 		if (PageLRU(page)) {
1759 			int lru = page_lru(page);
1760 			get_page(page);
1761 			ClearPageLRU(page);
1762 			del_page_from_lru_list(page, lruvec, lru);
1763 			ret = 0;
1764 		}
1765 		spin_unlock_irq(&pgdat->lru_lock);
1766 	}
1767 	return ret;
1768 }
1769 
1770 /*
1771  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1772  * then get resheduled. When there are massive number of tasks doing page
1773  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1774  * the LRU list will go small and be scanned faster than necessary, leading to
1775  * unnecessary swapping, thrashing and OOM.
1776  */
1777 static int too_many_isolated(struct pglist_data *pgdat, int file,
1778 		struct scan_control *sc)
1779 {
1780 	unsigned long inactive, isolated;
1781 
1782 	if (current_is_kswapd())
1783 		return 0;
1784 
1785 	if (!sane_reclaim(sc))
1786 		return 0;
1787 
1788 	if (file) {
1789 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1790 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1791 	} else {
1792 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1793 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1794 	}
1795 
1796 	/*
1797 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1798 	 * won't get blocked by normal direct-reclaimers, forming a circular
1799 	 * deadlock.
1800 	 */
1801 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1802 		inactive >>= 3;
1803 
1804 	return isolated > inactive;
1805 }
1806 
1807 static noinline_for_stack void
1808 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1809 {
1810 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1811 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1812 	LIST_HEAD(pages_to_free);
1813 
1814 	/*
1815 	 * Put back any unfreeable pages.
1816 	 */
1817 	while (!list_empty(page_list)) {
1818 		struct page *page = lru_to_page(page_list);
1819 		int lru;
1820 
1821 		VM_BUG_ON_PAGE(PageLRU(page), page);
1822 		list_del(&page->lru);
1823 		if (unlikely(!page_evictable(page))) {
1824 			spin_unlock_irq(&pgdat->lru_lock);
1825 			putback_lru_page(page);
1826 			spin_lock_irq(&pgdat->lru_lock);
1827 			continue;
1828 		}
1829 
1830 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1831 
1832 		SetPageLRU(page);
1833 		lru = page_lru(page);
1834 		add_page_to_lru_list(page, lruvec, lru);
1835 
1836 		if (is_active_lru(lru)) {
1837 			int file = is_file_lru(lru);
1838 			int numpages = hpage_nr_pages(page);
1839 			reclaim_stat->recent_rotated[file] += numpages;
1840 		}
1841 		if (put_page_testzero(page)) {
1842 			__ClearPageLRU(page);
1843 			__ClearPageActive(page);
1844 			del_page_from_lru_list(page, lruvec, lru);
1845 
1846 			if (unlikely(PageCompound(page))) {
1847 				spin_unlock_irq(&pgdat->lru_lock);
1848 				mem_cgroup_uncharge(page);
1849 				(*get_compound_page_dtor(page))(page);
1850 				spin_lock_irq(&pgdat->lru_lock);
1851 			} else
1852 				list_add(&page->lru, &pages_to_free);
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * To save our caller's stack, now use input list for pages to free.
1858 	 */
1859 	list_splice(&pages_to_free, page_list);
1860 }
1861 
1862 /*
1863  * If a kernel thread (such as nfsd for loop-back mounts) services
1864  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1865  * In that case we should only throttle if the backing device it is
1866  * writing to is congested.  In other cases it is safe to throttle.
1867  */
1868 static int current_may_throttle(void)
1869 {
1870 	return !(current->flags & PF_LESS_THROTTLE) ||
1871 		current->backing_dev_info == NULL ||
1872 		bdi_write_congested(current->backing_dev_info);
1873 }
1874 
1875 /*
1876  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1877  * of reclaimed pages
1878  */
1879 static noinline_for_stack unsigned long
1880 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1881 		     struct scan_control *sc, enum lru_list lru)
1882 {
1883 	LIST_HEAD(page_list);
1884 	unsigned long nr_scanned;
1885 	unsigned long nr_reclaimed = 0;
1886 	unsigned long nr_taken;
1887 	struct reclaim_stat stat;
1888 	int file = is_file_lru(lru);
1889 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1890 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1891 	bool stalled = false;
1892 
1893 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1894 		if (stalled)
1895 			return 0;
1896 
1897 		/* wait a bit for the reclaimer. */
1898 		msleep(100);
1899 		stalled = true;
1900 
1901 		/* We are about to die and free our memory. Return now. */
1902 		if (fatal_signal_pending(current))
1903 			return SWAP_CLUSTER_MAX;
1904 	}
1905 
1906 	lru_add_drain();
1907 
1908 	spin_lock_irq(&pgdat->lru_lock);
1909 
1910 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1911 				     &nr_scanned, sc, lru);
1912 
1913 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1914 	reclaim_stat->recent_scanned[file] += nr_taken;
1915 
1916 	if (current_is_kswapd()) {
1917 		if (global_reclaim(sc))
1918 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1919 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1920 				   nr_scanned);
1921 	} else {
1922 		if (global_reclaim(sc))
1923 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1924 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1925 				   nr_scanned);
1926 	}
1927 	spin_unlock_irq(&pgdat->lru_lock);
1928 
1929 	if (nr_taken == 0)
1930 		return 0;
1931 
1932 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1933 				&stat, false);
1934 
1935 	spin_lock_irq(&pgdat->lru_lock);
1936 
1937 	if (current_is_kswapd()) {
1938 		if (global_reclaim(sc))
1939 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1940 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1941 				   nr_reclaimed);
1942 	} else {
1943 		if (global_reclaim(sc))
1944 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1945 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1946 				   nr_reclaimed);
1947 	}
1948 
1949 	putback_inactive_pages(lruvec, &page_list);
1950 
1951 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1952 
1953 	spin_unlock_irq(&pgdat->lru_lock);
1954 
1955 	mem_cgroup_uncharge_list(&page_list);
1956 	free_unref_page_list(&page_list);
1957 
1958 	/*
1959 	 * If dirty pages are scanned that are not queued for IO, it
1960 	 * implies that flushers are not doing their job. This can
1961 	 * happen when memory pressure pushes dirty pages to the end of
1962 	 * the LRU before the dirty limits are breached and the dirty
1963 	 * data has expired. It can also happen when the proportion of
1964 	 * dirty pages grows not through writes but through memory
1965 	 * pressure reclaiming all the clean cache. And in some cases,
1966 	 * the flushers simply cannot keep up with the allocation
1967 	 * rate. Nudge the flusher threads in case they are asleep.
1968 	 */
1969 	if (stat.nr_unqueued_dirty == nr_taken)
1970 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1971 
1972 	sc->nr.dirty += stat.nr_dirty;
1973 	sc->nr.congested += stat.nr_congested;
1974 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1975 	sc->nr.writeback += stat.nr_writeback;
1976 	sc->nr.immediate += stat.nr_immediate;
1977 	sc->nr.taken += nr_taken;
1978 	if (file)
1979 		sc->nr.file_taken += nr_taken;
1980 
1981 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1982 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1983 	return nr_reclaimed;
1984 }
1985 
1986 /*
1987  * This moves pages from the active list to the inactive list.
1988  *
1989  * We move them the other way if the page is referenced by one or more
1990  * processes, from rmap.
1991  *
1992  * If the pages are mostly unmapped, the processing is fast and it is
1993  * appropriate to hold pgdat->lru_lock across the whole operation.  But if
1994  * the pages are mapped, the processing is slow (page_referenced()) so we
1995  * should drop pgdat->lru_lock around each page.  It's impossible to balance
1996  * this, so instead we remove the pages from the LRU while processing them.
1997  * It is safe to rely on PG_active against the non-LRU pages in here because
1998  * nobody will play with that bit on a non-LRU page.
1999  *
2000  * The downside is that we have to touch page->_refcount against each page.
2001  * But we had to alter page->flags anyway.
2002  *
2003  * Returns the number of pages moved to the given lru.
2004  */
2005 
2006 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2007 				     struct list_head *list,
2008 				     struct list_head *pages_to_free,
2009 				     enum lru_list lru)
2010 {
2011 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2012 	struct page *page;
2013 	int nr_pages;
2014 	int nr_moved = 0;
2015 
2016 	while (!list_empty(list)) {
2017 		page = lru_to_page(list);
2018 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2019 
2020 		VM_BUG_ON_PAGE(PageLRU(page), page);
2021 		SetPageLRU(page);
2022 
2023 		nr_pages = hpage_nr_pages(page);
2024 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2025 		list_move(&page->lru, &lruvec->lists[lru]);
2026 
2027 		if (put_page_testzero(page)) {
2028 			__ClearPageLRU(page);
2029 			__ClearPageActive(page);
2030 			del_page_from_lru_list(page, lruvec, lru);
2031 
2032 			if (unlikely(PageCompound(page))) {
2033 				spin_unlock_irq(&pgdat->lru_lock);
2034 				mem_cgroup_uncharge(page);
2035 				(*get_compound_page_dtor(page))(page);
2036 				spin_lock_irq(&pgdat->lru_lock);
2037 			} else
2038 				list_add(&page->lru, pages_to_free);
2039 		} else {
2040 			nr_moved += nr_pages;
2041 		}
2042 	}
2043 
2044 	if (!is_active_lru(lru)) {
2045 		__count_vm_events(PGDEACTIVATE, nr_moved);
2046 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2047 				   nr_moved);
2048 	}
2049 
2050 	return nr_moved;
2051 }
2052 
2053 static void shrink_active_list(unsigned long nr_to_scan,
2054 			       struct lruvec *lruvec,
2055 			       struct scan_control *sc,
2056 			       enum lru_list lru)
2057 {
2058 	unsigned long nr_taken;
2059 	unsigned long nr_scanned;
2060 	unsigned long vm_flags;
2061 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2062 	LIST_HEAD(l_active);
2063 	LIST_HEAD(l_inactive);
2064 	struct page *page;
2065 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2066 	unsigned nr_deactivate, nr_activate;
2067 	unsigned nr_rotated = 0;
2068 	int file = is_file_lru(lru);
2069 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2070 
2071 	lru_add_drain();
2072 
2073 	spin_lock_irq(&pgdat->lru_lock);
2074 
2075 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2076 				     &nr_scanned, sc, lru);
2077 
2078 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2079 	reclaim_stat->recent_scanned[file] += nr_taken;
2080 
2081 	__count_vm_events(PGREFILL, nr_scanned);
2082 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2083 
2084 	spin_unlock_irq(&pgdat->lru_lock);
2085 
2086 	while (!list_empty(&l_hold)) {
2087 		cond_resched();
2088 		page = lru_to_page(&l_hold);
2089 		list_del(&page->lru);
2090 
2091 		if (unlikely(!page_evictable(page))) {
2092 			putback_lru_page(page);
2093 			continue;
2094 		}
2095 
2096 		if (unlikely(buffer_heads_over_limit)) {
2097 			if (page_has_private(page) && trylock_page(page)) {
2098 				if (page_has_private(page))
2099 					try_to_release_page(page, 0);
2100 				unlock_page(page);
2101 			}
2102 		}
2103 
2104 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2105 				    &vm_flags)) {
2106 			nr_rotated += hpage_nr_pages(page);
2107 			/*
2108 			 * Identify referenced, file-backed active pages and
2109 			 * give them one more trip around the active list. So
2110 			 * that executable code get better chances to stay in
2111 			 * memory under moderate memory pressure.  Anon pages
2112 			 * are not likely to be evicted by use-once streaming
2113 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2114 			 * so we ignore them here.
2115 			 */
2116 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2117 				list_add(&page->lru, &l_active);
2118 				continue;
2119 			}
2120 		}
2121 
2122 		ClearPageActive(page);	/* we are de-activating */
2123 		SetPageWorkingset(page);
2124 		list_add(&page->lru, &l_inactive);
2125 	}
2126 
2127 	/*
2128 	 * Move pages back to the lru list.
2129 	 */
2130 	spin_lock_irq(&pgdat->lru_lock);
2131 	/*
2132 	 * Count referenced pages from currently used mappings as rotated,
2133 	 * even though only some of them are actually re-activated.  This
2134 	 * helps balance scan pressure between file and anonymous pages in
2135 	 * get_scan_count.
2136 	 */
2137 	reclaim_stat->recent_rotated[file] += nr_rotated;
2138 
2139 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2140 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2141 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2142 	spin_unlock_irq(&pgdat->lru_lock);
2143 
2144 	mem_cgroup_uncharge_list(&l_hold);
2145 	free_unref_page_list(&l_hold);
2146 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2147 			nr_deactivate, nr_rotated, sc->priority, file);
2148 }
2149 
2150 /*
2151  * The inactive anon list should be small enough that the VM never has
2152  * to do too much work.
2153  *
2154  * The inactive file list should be small enough to leave most memory
2155  * to the established workingset on the scan-resistant active list,
2156  * but large enough to avoid thrashing the aggregate readahead window.
2157  *
2158  * Both inactive lists should also be large enough that each inactive
2159  * page has a chance to be referenced again before it is reclaimed.
2160  *
2161  * If that fails and refaulting is observed, the inactive list grows.
2162  *
2163  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2164  * on this LRU, maintained by the pageout code. An inactive_ratio
2165  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2166  *
2167  * total     target    max
2168  * memory    ratio     inactive
2169  * -------------------------------------
2170  *   10MB       1         5MB
2171  *  100MB       1        50MB
2172  *    1GB       3       250MB
2173  *   10GB      10       0.9GB
2174  *  100GB      31         3GB
2175  *    1TB     101        10GB
2176  *   10TB     320        32GB
2177  */
2178 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2179 				 struct mem_cgroup *memcg,
2180 				 struct scan_control *sc, bool actual_reclaim)
2181 {
2182 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2183 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2184 	enum lru_list inactive_lru = file * LRU_FILE;
2185 	unsigned long inactive, active;
2186 	unsigned long inactive_ratio;
2187 	unsigned long refaults;
2188 	unsigned long gb;
2189 
2190 	/*
2191 	 * If we don't have swap space, anonymous page deactivation
2192 	 * is pointless.
2193 	 */
2194 	if (!file && !total_swap_pages)
2195 		return false;
2196 
2197 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2198 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2199 
2200 	if (memcg)
2201 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2202 	else
2203 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2204 
2205 	/*
2206 	 * When refaults are being observed, it means a new workingset
2207 	 * is being established. Disable active list protection to get
2208 	 * rid of the stale workingset quickly.
2209 	 */
2210 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2211 		inactive_ratio = 0;
2212 	} else {
2213 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2214 		if (gb)
2215 			inactive_ratio = int_sqrt(10 * gb);
2216 		else
2217 			inactive_ratio = 1;
2218 	}
2219 
2220 	if (actual_reclaim)
2221 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2222 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2223 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2224 			inactive_ratio, file);
2225 
2226 	return inactive * inactive_ratio < active;
2227 }
2228 
2229 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2230 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2231 				 struct scan_control *sc)
2232 {
2233 	if (is_active_lru(lru)) {
2234 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2235 					 memcg, sc, true))
2236 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2237 		return 0;
2238 	}
2239 
2240 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2241 }
2242 
2243 enum scan_balance {
2244 	SCAN_EQUAL,
2245 	SCAN_FRACT,
2246 	SCAN_ANON,
2247 	SCAN_FILE,
2248 };
2249 
2250 /*
2251  * Determine how aggressively the anon and file LRU lists should be
2252  * scanned.  The relative value of each set of LRU lists is determined
2253  * by looking at the fraction of the pages scanned we did rotate back
2254  * onto the active list instead of evict.
2255  *
2256  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2257  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2258  */
2259 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2260 			   struct scan_control *sc, unsigned long *nr,
2261 			   unsigned long *lru_pages)
2262 {
2263 	int swappiness = mem_cgroup_swappiness(memcg);
2264 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2265 	u64 fraction[2];
2266 	u64 denominator = 0;	/* gcc */
2267 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2268 	unsigned long anon_prio, file_prio;
2269 	enum scan_balance scan_balance;
2270 	unsigned long anon, file;
2271 	unsigned long ap, fp;
2272 	enum lru_list lru;
2273 
2274 	/* If we have no swap space, do not bother scanning anon pages. */
2275 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2276 		scan_balance = SCAN_FILE;
2277 		goto out;
2278 	}
2279 
2280 	/*
2281 	 * Global reclaim will swap to prevent OOM even with no
2282 	 * swappiness, but memcg users want to use this knob to
2283 	 * disable swapping for individual groups completely when
2284 	 * using the memory controller's swap limit feature would be
2285 	 * too expensive.
2286 	 */
2287 	if (!global_reclaim(sc) && !swappiness) {
2288 		scan_balance = SCAN_FILE;
2289 		goto out;
2290 	}
2291 
2292 	/*
2293 	 * Do not apply any pressure balancing cleverness when the
2294 	 * system is close to OOM, scan both anon and file equally
2295 	 * (unless the swappiness setting disagrees with swapping).
2296 	 */
2297 	if (!sc->priority && swappiness) {
2298 		scan_balance = SCAN_EQUAL;
2299 		goto out;
2300 	}
2301 
2302 	/*
2303 	 * Prevent the reclaimer from falling into the cache trap: as
2304 	 * cache pages start out inactive, every cache fault will tip
2305 	 * the scan balance towards the file LRU.  And as the file LRU
2306 	 * shrinks, so does the window for rotation from references.
2307 	 * This means we have a runaway feedback loop where a tiny
2308 	 * thrashing file LRU becomes infinitely more attractive than
2309 	 * anon pages.  Try to detect this based on file LRU size.
2310 	 */
2311 	if (global_reclaim(sc)) {
2312 		unsigned long pgdatfile;
2313 		unsigned long pgdatfree;
2314 		int z;
2315 		unsigned long total_high_wmark = 0;
2316 
2317 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2318 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2319 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2320 
2321 		for (z = 0; z < MAX_NR_ZONES; z++) {
2322 			struct zone *zone = &pgdat->node_zones[z];
2323 			if (!managed_zone(zone))
2324 				continue;
2325 
2326 			total_high_wmark += high_wmark_pages(zone);
2327 		}
2328 
2329 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2330 			/*
2331 			 * Force SCAN_ANON if there are enough inactive
2332 			 * anonymous pages on the LRU in eligible zones.
2333 			 * Otherwise, the small LRU gets thrashed.
2334 			 */
2335 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2336 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2337 					>> sc->priority) {
2338 				scan_balance = SCAN_ANON;
2339 				goto out;
2340 			}
2341 		}
2342 	}
2343 
2344 	/*
2345 	 * If there is enough inactive page cache, i.e. if the size of the
2346 	 * inactive list is greater than that of the active list *and* the
2347 	 * inactive list actually has some pages to scan on this priority, we
2348 	 * do not reclaim anything from the anonymous working set right now.
2349 	 * Without the second condition we could end up never scanning an
2350 	 * lruvec even if it has plenty of old anonymous pages unless the
2351 	 * system is under heavy pressure.
2352 	 */
2353 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2354 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2355 		scan_balance = SCAN_FILE;
2356 		goto out;
2357 	}
2358 
2359 	scan_balance = SCAN_FRACT;
2360 
2361 	/*
2362 	 * With swappiness at 100, anonymous and file have the same priority.
2363 	 * This scanning priority is essentially the inverse of IO cost.
2364 	 */
2365 	anon_prio = swappiness;
2366 	file_prio = 200 - anon_prio;
2367 
2368 	/*
2369 	 * OK, so we have swap space and a fair amount of page cache
2370 	 * pages.  We use the recently rotated / recently scanned
2371 	 * ratios to determine how valuable each cache is.
2372 	 *
2373 	 * Because workloads change over time (and to avoid overflow)
2374 	 * we keep these statistics as a floating average, which ends
2375 	 * up weighing recent references more than old ones.
2376 	 *
2377 	 * anon in [0], file in [1]
2378 	 */
2379 
2380 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2381 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2382 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2383 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2384 
2385 	spin_lock_irq(&pgdat->lru_lock);
2386 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2387 		reclaim_stat->recent_scanned[0] /= 2;
2388 		reclaim_stat->recent_rotated[0] /= 2;
2389 	}
2390 
2391 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2392 		reclaim_stat->recent_scanned[1] /= 2;
2393 		reclaim_stat->recent_rotated[1] /= 2;
2394 	}
2395 
2396 	/*
2397 	 * The amount of pressure on anon vs file pages is inversely
2398 	 * proportional to the fraction of recently scanned pages on
2399 	 * each list that were recently referenced and in active use.
2400 	 */
2401 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2402 	ap /= reclaim_stat->recent_rotated[0] + 1;
2403 
2404 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2405 	fp /= reclaim_stat->recent_rotated[1] + 1;
2406 	spin_unlock_irq(&pgdat->lru_lock);
2407 
2408 	fraction[0] = ap;
2409 	fraction[1] = fp;
2410 	denominator = ap + fp + 1;
2411 out:
2412 	*lru_pages = 0;
2413 	for_each_evictable_lru(lru) {
2414 		int file = is_file_lru(lru);
2415 		unsigned long size;
2416 		unsigned long scan;
2417 
2418 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2419 		scan = size >> sc->priority;
2420 		/*
2421 		 * If the cgroup's already been deleted, make sure to
2422 		 * scrape out the remaining cache.
2423 		 */
2424 		if (!scan && !mem_cgroup_online(memcg))
2425 			scan = min(size, SWAP_CLUSTER_MAX);
2426 
2427 		switch (scan_balance) {
2428 		case SCAN_EQUAL:
2429 			/* Scan lists relative to size */
2430 			break;
2431 		case SCAN_FRACT:
2432 			/*
2433 			 * Scan types proportional to swappiness and
2434 			 * their relative recent reclaim efficiency.
2435 			 * Make sure we don't miss the last page
2436 			 * because of a round-off error.
2437 			 */
2438 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2439 						  denominator);
2440 			break;
2441 		case SCAN_FILE:
2442 		case SCAN_ANON:
2443 			/* Scan one type exclusively */
2444 			if ((scan_balance == SCAN_FILE) != file) {
2445 				size = 0;
2446 				scan = 0;
2447 			}
2448 			break;
2449 		default:
2450 			/* Look ma, no brain */
2451 			BUG();
2452 		}
2453 
2454 		*lru_pages += size;
2455 		nr[lru] = scan;
2456 	}
2457 }
2458 
2459 /*
2460  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2461  */
2462 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2463 			      struct scan_control *sc, unsigned long *lru_pages)
2464 {
2465 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2466 	unsigned long nr[NR_LRU_LISTS];
2467 	unsigned long targets[NR_LRU_LISTS];
2468 	unsigned long nr_to_scan;
2469 	enum lru_list lru;
2470 	unsigned long nr_reclaimed = 0;
2471 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2472 	struct blk_plug plug;
2473 	bool scan_adjusted;
2474 
2475 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2476 
2477 	/* Record the original scan target for proportional adjustments later */
2478 	memcpy(targets, nr, sizeof(nr));
2479 
2480 	/*
2481 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2482 	 * event that can occur when there is little memory pressure e.g.
2483 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2484 	 * when the requested number of pages are reclaimed when scanning at
2485 	 * DEF_PRIORITY on the assumption that the fact we are direct
2486 	 * reclaiming implies that kswapd is not keeping up and it is best to
2487 	 * do a batch of work at once. For memcg reclaim one check is made to
2488 	 * abort proportional reclaim if either the file or anon lru has already
2489 	 * dropped to zero at the first pass.
2490 	 */
2491 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2492 			 sc->priority == DEF_PRIORITY);
2493 
2494 	blk_start_plug(&plug);
2495 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2496 					nr[LRU_INACTIVE_FILE]) {
2497 		unsigned long nr_anon, nr_file, percentage;
2498 		unsigned long nr_scanned;
2499 
2500 		for_each_evictable_lru(lru) {
2501 			if (nr[lru]) {
2502 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2503 				nr[lru] -= nr_to_scan;
2504 
2505 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2506 							    lruvec, memcg, sc);
2507 			}
2508 		}
2509 
2510 		cond_resched();
2511 
2512 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2513 			continue;
2514 
2515 		/*
2516 		 * For kswapd and memcg, reclaim at least the number of pages
2517 		 * requested. Ensure that the anon and file LRUs are scanned
2518 		 * proportionally what was requested by get_scan_count(). We
2519 		 * stop reclaiming one LRU and reduce the amount scanning
2520 		 * proportional to the original scan target.
2521 		 */
2522 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2523 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2524 
2525 		/*
2526 		 * It's just vindictive to attack the larger once the smaller
2527 		 * has gone to zero.  And given the way we stop scanning the
2528 		 * smaller below, this makes sure that we only make one nudge
2529 		 * towards proportionality once we've got nr_to_reclaim.
2530 		 */
2531 		if (!nr_file || !nr_anon)
2532 			break;
2533 
2534 		if (nr_file > nr_anon) {
2535 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2536 						targets[LRU_ACTIVE_ANON] + 1;
2537 			lru = LRU_BASE;
2538 			percentage = nr_anon * 100 / scan_target;
2539 		} else {
2540 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2541 						targets[LRU_ACTIVE_FILE] + 1;
2542 			lru = LRU_FILE;
2543 			percentage = nr_file * 100 / scan_target;
2544 		}
2545 
2546 		/* Stop scanning the smaller of the LRU */
2547 		nr[lru] = 0;
2548 		nr[lru + LRU_ACTIVE] = 0;
2549 
2550 		/*
2551 		 * Recalculate the other LRU scan count based on its original
2552 		 * scan target and the percentage scanning already complete
2553 		 */
2554 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2555 		nr_scanned = targets[lru] - nr[lru];
2556 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2557 		nr[lru] -= min(nr[lru], nr_scanned);
2558 
2559 		lru += LRU_ACTIVE;
2560 		nr_scanned = targets[lru] - nr[lru];
2561 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2562 		nr[lru] -= min(nr[lru], nr_scanned);
2563 
2564 		scan_adjusted = true;
2565 	}
2566 	blk_finish_plug(&plug);
2567 	sc->nr_reclaimed += nr_reclaimed;
2568 
2569 	/*
2570 	 * Even if we did not try to evict anon pages at all, we want to
2571 	 * rebalance the anon lru active/inactive ratio.
2572 	 */
2573 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2574 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2575 				   sc, LRU_ACTIVE_ANON);
2576 }
2577 
2578 /* Use reclaim/compaction for costly allocs or under memory pressure */
2579 static bool in_reclaim_compaction(struct scan_control *sc)
2580 {
2581 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2582 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2583 			 sc->priority < DEF_PRIORITY - 2))
2584 		return true;
2585 
2586 	return false;
2587 }
2588 
2589 /*
2590  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2591  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2592  * true if more pages should be reclaimed such that when the page allocator
2593  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2594  * It will give up earlier than that if there is difficulty reclaiming pages.
2595  */
2596 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2597 					unsigned long nr_reclaimed,
2598 					unsigned long nr_scanned,
2599 					struct scan_control *sc)
2600 {
2601 	unsigned long pages_for_compaction;
2602 	unsigned long inactive_lru_pages;
2603 	int z;
2604 
2605 	/* If not in reclaim/compaction mode, stop */
2606 	if (!in_reclaim_compaction(sc))
2607 		return false;
2608 
2609 	/* Consider stopping depending on scan and reclaim activity */
2610 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2611 		/*
2612 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2613 		 * full LRU list has been scanned and we are still failing
2614 		 * to reclaim pages. This full LRU scan is potentially
2615 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2616 		 */
2617 		if (!nr_reclaimed && !nr_scanned)
2618 			return false;
2619 	} else {
2620 		/*
2621 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2622 		 * fail without consequence, stop if we failed to reclaim
2623 		 * any pages from the last SWAP_CLUSTER_MAX number of
2624 		 * pages that were scanned. This will return to the
2625 		 * caller faster at the risk reclaim/compaction and
2626 		 * the resulting allocation attempt fails
2627 		 */
2628 		if (!nr_reclaimed)
2629 			return false;
2630 	}
2631 
2632 	/*
2633 	 * If we have not reclaimed enough pages for compaction and the
2634 	 * inactive lists are large enough, continue reclaiming
2635 	 */
2636 	pages_for_compaction = compact_gap(sc->order);
2637 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2638 	if (get_nr_swap_pages() > 0)
2639 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2640 	if (sc->nr_reclaimed < pages_for_compaction &&
2641 			inactive_lru_pages > pages_for_compaction)
2642 		return true;
2643 
2644 	/* If compaction would go ahead or the allocation would succeed, stop */
2645 	for (z = 0; z <= sc->reclaim_idx; z++) {
2646 		struct zone *zone = &pgdat->node_zones[z];
2647 		if (!managed_zone(zone))
2648 			continue;
2649 
2650 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2651 		case COMPACT_SUCCESS:
2652 		case COMPACT_CONTINUE:
2653 			return false;
2654 		default:
2655 			/* check next zone */
2656 			;
2657 		}
2658 	}
2659 	return true;
2660 }
2661 
2662 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2663 {
2664 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2665 		(memcg && memcg_congested(pgdat, memcg));
2666 }
2667 
2668 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2669 {
2670 	struct reclaim_state *reclaim_state = current->reclaim_state;
2671 	unsigned long nr_reclaimed, nr_scanned;
2672 	bool reclaimable = false;
2673 
2674 	do {
2675 		struct mem_cgroup *root = sc->target_mem_cgroup;
2676 		struct mem_cgroup_reclaim_cookie reclaim = {
2677 			.pgdat = pgdat,
2678 			.priority = sc->priority,
2679 		};
2680 		unsigned long node_lru_pages = 0;
2681 		struct mem_cgroup *memcg;
2682 
2683 		memset(&sc->nr, 0, sizeof(sc->nr));
2684 
2685 		nr_reclaimed = sc->nr_reclaimed;
2686 		nr_scanned = sc->nr_scanned;
2687 
2688 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2689 		do {
2690 			unsigned long lru_pages;
2691 			unsigned long reclaimed;
2692 			unsigned long scanned;
2693 
2694 			switch (mem_cgroup_protected(root, memcg)) {
2695 			case MEMCG_PROT_MIN:
2696 				/*
2697 				 * Hard protection.
2698 				 * If there is no reclaimable memory, OOM.
2699 				 */
2700 				continue;
2701 			case MEMCG_PROT_LOW:
2702 				/*
2703 				 * Soft protection.
2704 				 * Respect the protection only as long as
2705 				 * there is an unprotected supply
2706 				 * of reclaimable memory from other cgroups.
2707 				 */
2708 				if (!sc->memcg_low_reclaim) {
2709 					sc->memcg_low_skipped = 1;
2710 					continue;
2711 				}
2712 				memcg_memory_event(memcg, MEMCG_LOW);
2713 				break;
2714 			case MEMCG_PROT_NONE:
2715 				break;
2716 			}
2717 
2718 			reclaimed = sc->nr_reclaimed;
2719 			scanned = sc->nr_scanned;
2720 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2721 			node_lru_pages += lru_pages;
2722 
2723 			if (sc->may_shrinkslab) {
2724 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2725 				    memcg, sc->priority);
2726 			}
2727 
2728 			/* Record the group's reclaim efficiency */
2729 			vmpressure(sc->gfp_mask, memcg, false,
2730 				   sc->nr_scanned - scanned,
2731 				   sc->nr_reclaimed - reclaimed);
2732 
2733 			/*
2734 			 * Kswapd have to scan all memory cgroups to fulfill
2735 			 * the overall scan target for the node.
2736 			 *
2737 			 * Limit reclaim, on the other hand, only cares about
2738 			 * nr_to_reclaim pages to be reclaimed and it will
2739 			 * retry with decreasing priority if one round over the
2740 			 * whole hierarchy is not sufficient.
2741 			 */
2742 			if (!current_is_kswapd() &&
2743 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2744 				mem_cgroup_iter_break(root, memcg);
2745 				break;
2746 			}
2747 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2748 
2749 		if (reclaim_state) {
2750 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2751 			reclaim_state->reclaimed_slab = 0;
2752 		}
2753 
2754 		/* Record the subtree's reclaim efficiency */
2755 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2756 			   sc->nr_scanned - nr_scanned,
2757 			   sc->nr_reclaimed - nr_reclaimed);
2758 
2759 		if (sc->nr_reclaimed - nr_reclaimed)
2760 			reclaimable = true;
2761 
2762 		if (current_is_kswapd()) {
2763 			/*
2764 			 * If reclaim is isolating dirty pages under writeback,
2765 			 * it implies that the long-lived page allocation rate
2766 			 * is exceeding the page laundering rate. Either the
2767 			 * global limits are not being effective at throttling
2768 			 * processes due to the page distribution throughout
2769 			 * zones or there is heavy usage of a slow backing
2770 			 * device. The only option is to throttle from reclaim
2771 			 * context which is not ideal as there is no guarantee
2772 			 * the dirtying process is throttled in the same way
2773 			 * balance_dirty_pages() manages.
2774 			 *
2775 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2776 			 * count the number of pages under pages flagged for
2777 			 * immediate reclaim and stall if any are encountered
2778 			 * in the nr_immediate check below.
2779 			 */
2780 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2781 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2782 
2783 			/*
2784 			 * Tag a node as congested if all the dirty pages
2785 			 * scanned were backed by a congested BDI and
2786 			 * wait_iff_congested will stall.
2787 			 */
2788 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2789 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2790 
2791 			/* Allow kswapd to start writing pages during reclaim.*/
2792 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2793 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2794 
2795 			/*
2796 			 * If kswapd scans pages marked marked for immediate
2797 			 * reclaim and under writeback (nr_immediate), it
2798 			 * implies that pages are cycling through the LRU
2799 			 * faster than they are written so also forcibly stall.
2800 			 */
2801 			if (sc->nr.immediate)
2802 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2803 		}
2804 
2805 		/*
2806 		 * Legacy memcg will stall in page writeback so avoid forcibly
2807 		 * stalling in wait_iff_congested().
2808 		 */
2809 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2810 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2811 			set_memcg_congestion(pgdat, root, true);
2812 
2813 		/*
2814 		 * Stall direct reclaim for IO completions if underlying BDIs
2815 		 * and node is congested. Allow kswapd to continue until it
2816 		 * starts encountering unqueued dirty pages or cycling through
2817 		 * the LRU too quickly.
2818 		 */
2819 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2820 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2821 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2822 
2823 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2824 					 sc->nr_scanned - nr_scanned, sc));
2825 
2826 	/*
2827 	 * Kswapd gives up on balancing particular nodes after too
2828 	 * many failures to reclaim anything from them and goes to
2829 	 * sleep. On reclaim progress, reset the failure counter. A
2830 	 * successful direct reclaim run will revive a dormant kswapd.
2831 	 */
2832 	if (reclaimable)
2833 		pgdat->kswapd_failures = 0;
2834 
2835 	return reclaimable;
2836 }
2837 
2838 /*
2839  * Returns true if compaction should go ahead for a costly-order request, or
2840  * the allocation would already succeed without compaction. Return false if we
2841  * should reclaim first.
2842  */
2843 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2844 {
2845 	unsigned long watermark;
2846 	enum compact_result suitable;
2847 
2848 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2849 	if (suitable == COMPACT_SUCCESS)
2850 		/* Allocation should succeed already. Don't reclaim. */
2851 		return true;
2852 	if (suitable == COMPACT_SKIPPED)
2853 		/* Compaction cannot yet proceed. Do reclaim. */
2854 		return false;
2855 
2856 	/*
2857 	 * Compaction is already possible, but it takes time to run and there
2858 	 * are potentially other callers using the pages just freed. So proceed
2859 	 * with reclaim to make a buffer of free pages available to give
2860 	 * compaction a reasonable chance of completing and allocating the page.
2861 	 * Note that we won't actually reclaim the whole buffer in one attempt
2862 	 * as the target watermark in should_continue_reclaim() is lower. But if
2863 	 * we are already above the high+gap watermark, don't reclaim at all.
2864 	 */
2865 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2866 
2867 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2868 }
2869 
2870 /*
2871  * This is the direct reclaim path, for page-allocating processes.  We only
2872  * try to reclaim pages from zones which will satisfy the caller's allocation
2873  * request.
2874  *
2875  * If a zone is deemed to be full of pinned pages then just give it a light
2876  * scan then give up on it.
2877  */
2878 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2879 {
2880 	struct zoneref *z;
2881 	struct zone *zone;
2882 	unsigned long nr_soft_reclaimed;
2883 	unsigned long nr_soft_scanned;
2884 	gfp_t orig_mask;
2885 	pg_data_t *last_pgdat = NULL;
2886 
2887 	/*
2888 	 * If the number of buffer_heads in the machine exceeds the maximum
2889 	 * allowed level, force direct reclaim to scan the highmem zone as
2890 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2891 	 */
2892 	orig_mask = sc->gfp_mask;
2893 	if (buffer_heads_over_limit) {
2894 		sc->gfp_mask |= __GFP_HIGHMEM;
2895 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2896 	}
2897 
2898 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2899 					sc->reclaim_idx, sc->nodemask) {
2900 		/*
2901 		 * Take care memory controller reclaiming has small influence
2902 		 * to global LRU.
2903 		 */
2904 		if (global_reclaim(sc)) {
2905 			if (!cpuset_zone_allowed(zone,
2906 						 GFP_KERNEL | __GFP_HARDWALL))
2907 				continue;
2908 
2909 			/*
2910 			 * If we already have plenty of memory free for
2911 			 * compaction in this zone, don't free any more.
2912 			 * Even though compaction is invoked for any
2913 			 * non-zero order, only frequent costly order
2914 			 * reclamation is disruptive enough to become a
2915 			 * noticeable problem, like transparent huge
2916 			 * page allocations.
2917 			 */
2918 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2919 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2920 			    compaction_ready(zone, sc)) {
2921 				sc->compaction_ready = true;
2922 				continue;
2923 			}
2924 
2925 			/*
2926 			 * Shrink each node in the zonelist once. If the
2927 			 * zonelist is ordered by zone (not the default) then a
2928 			 * node may be shrunk multiple times but in that case
2929 			 * the user prefers lower zones being preserved.
2930 			 */
2931 			if (zone->zone_pgdat == last_pgdat)
2932 				continue;
2933 
2934 			/*
2935 			 * This steals pages from memory cgroups over softlimit
2936 			 * and returns the number of reclaimed pages and
2937 			 * scanned pages. This works for global memory pressure
2938 			 * and balancing, not for a memcg's limit.
2939 			 */
2940 			nr_soft_scanned = 0;
2941 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2942 						sc->order, sc->gfp_mask,
2943 						&nr_soft_scanned);
2944 			sc->nr_reclaimed += nr_soft_reclaimed;
2945 			sc->nr_scanned += nr_soft_scanned;
2946 			/* need some check for avoid more shrink_zone() */
2947 		}
2948 
2949 		/* See comment about same check for global reclaim above */
2950 		if (zone->zone_pgdat == last_pgdat)
2951 			continue;
2952 		last_pgdat = zone->zone_pgdat;
2953 		shrink_node(zone->zone_pgdat, sc);
2954 	}
2955 
2956 	/*
2957 	 * Restore to original mask to avoid the impact on the caller if we
2958 	 * promoted it to __GFP_HIGHMEM.
2959 	 */
2960 	sc->gfp_mask = orig_mask;
2961 }
2962 
2963 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2964 {
2965 	struct mem_cgroup *memcg;
2966 
2967 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2968 	do {
2969 		unsigned long refaults;
2970 		struct lruvec *lruvec;
2971 
2972 		if (memcg)
2973 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2974 		else
2975 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2976 
2977 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2978 		lruvec->refaults = refaults;
2979 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2980 }
2981 
2982 /*
2983  * This is the main entry point to direct page reclaim.
2984  *
2985  * If a full scan of the inactive list fails to free enough memory then we
2986  * are "out of memory" and something needs to be killed.
2987  *
2988  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2989  * high - the zone may be full of dirty or under-writeback pages, which this
2990  * caller can't do much about.  We kick the writeback threads and take explicit
2991  * naps in the hope that some of these pages can be written.  But if the
2992  * allocating task holds filesystem locks which prevent writeout this might not
2993  * work, and the allocation attempt will fail.
2994  *
2995  * returns:	0, if no pages reclaimed
2996  * 		else, the number of pages reclaimed
2997  */
2998 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2999 					  struct scan_control *sc)
3000 {
3001 	int initial_priority = sc->priority;
3002 	pg_data_t *last_pgdat;
3003 	struct zoneref *z;
3004 	struct zone *zone;
3005 retry:
3006 	delayacct_freepages_start();
3007 
3008 	if (global_reclaim(sc))
3009 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3010 
3011 	do {
3012 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3013 				sc->priority);
3014 		sc->nr_scanned = 0;
3015 		shrink_zones(zonelist, sc);
3016 
3017 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3018 			break;
3019 
3020 		if (sc->compaction_ready)
3021 			break;
3022 
3023 		/*
3024 		 * If we're getting trouble reclaiming, start doing
3025 		 * writepage even in laptop mode.
3026 		 */
3027 		if (sc->priority < DEF_PRIORITY - 2)
3028 			sc->may_writepage = 1;
3029 	} while (--sc->priority >= 0);
3030 
3031 	last_pgdat = NULL;
3032 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3033 					sc->nodemask) {
3034 		if (zone->zone_pgdat == last_pgdat)
3035 			continue;
3036 		last_pgdat = zone->zone_pgdat;
3037 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3038 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3039 	}
3040 
3041 	delayacct_freepages_end();
3042 
3043 	if (sc->nr_reclaimed)
3044 		return sc->nr_reclaimed;
3045 
3046 	/* Aborted reclaim to try compaction? don't OOM, then */
3047 	if (sc->compaction_ready)
3048 		return 1;
3049 
3050 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3051 	if (sc->memcg_low_skipped) {
3052 		sc->priority = initial_priority;
3053 		sc->memcg_low_reclaim = 1;
3054 		sc->memcg_low_skipped = 0;
3055 		goto retry;
3056 	}
3057 
3058 	return 0;
3059 }
3060 
3061 static bool allow_direct_reclaim(pg_data_t *pgdat)
3062 {
3063 	struct zone *zone;
3064 	unsigned long pfmemalloc_reserve = 0;
3065 	unsigned long free_pages = 0;
3066 	int i;
3067 	bool wmark_ok;
3068 
3069 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3070 		return true;
3071 
3072 	for (i = 0; i <= ZONE_NORMAL; i++) {
3073 		zone = &pgdat->node_zones[i];
3074 		if (!managed_zone(zone))
3075 			continue;
3076 
3077 		if (!zone_reclaimable_pages(zone))
3078 			continue;
3079 
3080 		pfmemalloc_reserve += min_wmark_pages(zone);
3081 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3082 	}
3083 
3084 	/* If there are no reserves (unexpected config) then do not throttle */
3085 	if (!pfmemalloc_reserve)
3086 		return true;
3087 
3088 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3089 
3090 	/* kswapd must be awake if processes are being throttled */
3091 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3092 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3093 						(enum zone_type)ZONE_NORMAL);
3094 		wake_up_interruptible(&pgdat->kswapd_wait);
3095 	}
3096 
3097 	return wmark_ok;
3098 }
3099 
3100 /*
3101  * Throttle direct reclaimers if backing storage is backed by the network
3102  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3103  * depleted. kswapd will continue to make progress and wake the processes
3104  * when the low watermark is reached.
3105  *
3106  * Returns true if a fatal signal was delivered during throttling. If this
3107  * happens, the page allocator should not consider triggering the OOM killer.
3108  */
3109 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3110 					nodemask_t *nodemask)
3111 {
3112 	struct zoneref *z;
3113 	struct zone *zone;
3114 	pg_data_t *pgdat = NULL;
3115 
3116 	/*
3117 	 * Kernel threads should not be throttled as they may be indirectly
3118 	 * responsible for cleaning pages necessary for reclaim to make forward
3119 	 * progress. kjournald for example may enter direct reclaim while
3120 	 * committing a transaction where throttling it could forcing other
3121 	 * processes to block on log_wait_commit().
3122 	 */
3123 	if (current->flags & PF_KTHREAD)
3124 		goto out;
3125 
3126 	/*
3127 	 * If a fatal signal is pending, this process should not throttle.
3128 	 * It should return quickly so it can exit and free its memory
3129 	 */
3130 	if (fatal_signal_pending(current))
3131 		goto out;
3132 
3133 	/*
3134 	 * Check if the pfmemalloc reserves are ok by finding the first node
3135 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3136 	 * GFP_KERNEL will be required for allocating network buffers when
3137 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3138 	 *
3139 	 * Throttling is based on the first usable node and throttled processes
3140 	 * wait on a queue until kswapd makes progress and wakes them. There
3141 	 * is an affinity then between processes waking up and where reclaim
3142 	 * progress has been made assuming the process wakes on the same node.
3143 	 * More importantly, processes running on remote nodes will not compete
3144 	 * for remote pfmemalloc reserves and processes on different nodes
3145 	 * should make reasonable progress.
3146 	 */
3147 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3148 					gfp_zone(gfp_mask), nodemask) {
3149 		if (zone_idx(zone) > ZONE_NORMAL)
3150 			continue;
3151 
3152 		/* Throttle based on the first usable node */
3153 		pgdat = zone->zone_pgdat;
3154 		if (allow_direct_reclaim(pgdat))
3155 			goto out;
3156 		break;
3157 	}
3158 
3159 	/* If no zone was usable by the allocation flags then do not throttle */
3160 	if (!pgdat)
3161 		goto out;
3162 
3163 	/* Account for the throttling */
3164 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3165 
3166 	/*
3167 	 * If the caller cannot enter the filesystem, it's possible that it
3168 	 * is due to the caller holding an FS lock or performing a journal
3169 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3170 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3171 	 * blocked waiting on the same lock. Instead, throttle for up to a
3172 	 * second before continuing.
3173 	 */
3174 	if (!(gfp_mask & __GFP_FS)) {
3175 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3176 			allow_direct_reclaim(pgdat), HZ);
3177 
3178 		goto check_pending;
3179 	}
3180 
3181 	/* Throttle until kswapd wakes the process */
3182 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3183 		allow_direct_reclaim(pgdat));
3184 
3185 check_pending:
3186 	if (fatal_signal_pending(current))
3187 		return true;
3188 
3189 out:
3190 	return false;
3191 }
3192 
3193 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3194 				gfp_t gfp_mask, nodemask_t *nodemask)
3195 {
3196 	unsigned long nr_reclaimed;
3197 	struct scan_control sc = {
3198 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3199 		.gfp_mask = current_gfp_context(gfp_mask),
3200 		.reclaim_idx = gfp_zone(gfp_mask),
3201 		.order = order,
3202 		.nodemask = nodemask,
3203 		.priority = DEF_PRIORITY,
3204 		.may_writepage = !laptop_mode,
3205 		.may_unmap = 1,
3206 		.may_swap = 1,
3207 		.may_shrinkslab = 1,
3208 	};
3209 
3210 	/*
3211 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3212 	 * Confirm they are large enough for max values.
3213 	 */
3214 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3215 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3216 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3217 
3218 	/*
3219 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3220 	 * 1 is returned so that the page allocator does not OOM kill at this
3221 	 * point.
3222 	 */
3223 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3224 		return 1;
3225 
3226 	trace_mm_vmscan_direct_reclaim_begin(order,
3227 				sc.may_writepage,
3228 				sc.gfp_mask,
3229 				sc.reclaim_idx);
3230 
3231 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3232 
3233 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3234 
3235 	return nr_reclaimed;
3236 }
3237 
3238 #ifdef CONFIG_MEMCG
3239 
3240 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3241 						gfp_t gfp_mask, bool noswap,
3242 						pg_data_t *pgdat,
3243 						unsigned long *nr_scanned)
3244 {
3245 	struct scan_control sc = {
3246 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3247 		.target_mem_cgroup = memcg,
3248 		.may_writepage = !laptop_mode,
3249 		.may_unmap = 1,
3250 		.reclaim_idx = MAX_NR_ZONES - 1,
3251 		.may_swap = !noswap,
3252 		.may_shrinkslab = 1,
3253 	};
3254 	unsigned long lru_pages;
3255 
3256 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3257 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3258 
3259 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3260 						      sc.may_writepage,
3261 						      sc.gfp_mask,
3262 						      sc.reclaim_idx);
3263 
3264 	/*
3265 	 * NOTE: Although we can get the priority field, using it
3266 	 * here is not a good idea, since it limits the pages we can scan.
3267 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3268 	 * will pick up pages from other mem cgroup's as well. We hack
3269 	 * the priority and make it zero.
3270 	 */
3271 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3272 
3273 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3274 
3275 	*nr_scanned = sc.nr_scanned;
3276 	return sc.nr_reclaimed;
3277 }
3278 
3279 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3280 					   unsigned long nr_pages,
3281 					   gfp_t gfp_mask,
3282 					   bool may_swap)
3283 {
3284 	struct zonelist *zonelist;
3285 	unsigned long nr_reclaimed;
3286 	unsigned long pflags;
3287 	int nid;
3288 	unsigned int noreclaim_flag;
3289 	struct scan_control sc = {
3290 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3291 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3292 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3293 		.reclaim_idx = MAX_NR_ZONES - 1,
3294 		.target_mem_cgroup = memcg,
3295 		.priority = DEF_PRIORITY,
3296 		.may_writepage = !laptop_mode,
3297 		.may_unmap = 1,
3298 		.may_swap = may_swap,
3299 		.may_shrinkslab = 1,
3300 	};
3301 
3302 	/*
3303 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3304 	 * take care of from where we get pages. So the node where we start the
3305 	 * scan does not need to be the current node.
3306 	 */
3307 	nid = mem_cgroup_select_victim_node(memcg);
3308 
3309 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3310 
3311 	trace_mm_vmscan_memcg_reclaim_begin(0,
3312 					    sc.may_writepage,
3313 					    sc.gfp_mask,
3314 					    sc.reclaim_idx);
3315 
3316 	psi_memstall_enter(&pflags);
3317 	noreclaim_flag = memalloc_noreclaim_save();
3318 
3319 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3320 
3321 	memalloc_noreclaim_restore(noreclaim_flag);
3322 	psi_memstall_leave(&pflags);
3323 
3324 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3325 
3326 	return nr_reclaimed;
3327 }
3328 #endif
3329 
3330 static void age_active_anon(struct pglist_data *pgdat,
3331 				struct scan_control *sc)
3332 {
3333 	struct mem_cgroup *memcg;
3334 
3335 	if (!total_swap_pages)
3336 		return;
3337 
3338 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3339 	do {
3340 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3341 
3342 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3343 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3344 					   sc, LRU_ACTIVE_ANON);
3345 
3346 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3347 	} while (memcg);
3348 }
3349 
3350 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3351 {
3352 	int i;
3353 	struct zone *zone;
3354 
3355 	/*
3356 	 * Check for watermark boosts top-down as the higher zones
3357 	 * are more likely to be boosted. Both watermarks and boosts
3358 	 * should not be checked at the time time as reclaim would
3359 	 * start prematurely when there is no boosting and a lower
3360 	 * zone is balanced.
3361 	 */
3362 	for (i = classzone_idx; i >= 0; i--) {
3363 		zone = pgdat->node_zones + i;
3364 		if (!managed_zone(zone))
3365 			continue;
3366 
3367 		if (zone->watermark_boost)
3368 			return true;
3369 	}
3370 
3371 	return false;
3372 }
3373 
3374 /*
3375  * Returns true if there is an eligible zone balanced for the request order
3376  * and classzone_idx
3377  */
3378 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3379 {
3380 	int i;
3381 	unsigned long mark = -1;
3382 	struct zone *zone;
3383 
3384 	/*
3385 	 * Check watermarks bottom-up as lower zones are more likely to
3386 	 * meet watermarks.
3387 	 */
3388 	for (i = 0; i <= classzone_idx; i++) {
3389 		zone = pgdat->node_zones + i;
3390 
3391 		if (!managed_zone(zone))
3392 			continue;
3393 
3394 		mark = high_wmark_pages(zone);
3395 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3396 			return true;
3397 	}
3398 
3399 	/*
3400 	 * If a node has no populated zone within classzone_idx, it does not
3401 	 * need balancing by definition. This can happen if a zone-restricted
3402 	 * allocation tries to wake a remote kswapd.
3403 	 */
3404 	if (mark == -1)
3405 		return true;
3406 
3407 	return false;
3408 }
3409 
3410 /* Clear pgdat state for congested, dirty or under writeback. */
3411 static void clear_pgdat_congested(pg_data_t *pgdat)
3412 {
3413 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3414 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3415 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3416 }
3417 
3418 /*
3419  * Prepare kswapd for sleeping. This verifies that there are no processes
3420  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3421  *
3422  * Returns true if kswapd is ready to sleep
3423  */
3424 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3425 {
3426 	/*
3427 	 * The throttled processes are normally woken up in balance_pgdat() as
3428 	 * soon as allow_direct_reclaim() is true. But there is a potential
3429 	 * race between when kswapd checks the watermarks and a process gets
3430 	 * throttled. There is also a potential race if processes get
3431 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3432 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3433 	 * the wake up checks. If kswapd is going to sleep, no process should
3434 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3435 	 * the wake up is premature, processes will wake kswapd and get
3436 	 * throttled again. The difference from wake ups in balance_pgdat() is
3437 	 * that here we are under prepare_to_wait().
3438 	 */
3439 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3440 		wake_up_all(&pgdat->pfmemalloc_wait);
3441 
3442 	/* Hopeless node, leave it to direct reclaim */
3443 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3444 		return true;
3445 
3446 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3447 		clear_pgdat_congested(pgdat);
3448 		return true;
3449 	}
3450 
3451 	return false;
3452 }
3453 
3454 /*
3455  * kswapd shrinks a node of pages that are at or below the highest usable
3456  * zone that is currently unbalanced.
3457  *
3458  * Returns true if kswapd scanned at least the requested number of pages to
3459  * reclaim or if the lack of progress was due to pages under writeback.
3460  * This is used to determine if the scanning priority needs to be raised.
3461  */
3462 static bool kswapd_shrink_node(pg_data_t *pgdat,
3463 			       struct scan_control *sc)
3464 {
3465 	struct zone *zone;
3466 	int z;
3467 
3468 	/* Reclaim a number of pages proportional to the number of zones */
3469 	sc->nr_to_reclaim = 0;
3470 	for (z = 0; z <= sc->reclaim_idx; z++) {
3471 		zone = pgdat->node_zones + z;
3472 		if (!managed_zone(zone))
3473 			continue;
3474 
3475 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3476 	}
3477 
3478 	/*
3479 	 * Historically care was taken to put equal pressure on all zones but
3480 	 * now pressure is applied based on node LRU order.
3481 	 */
3482 	shrink_node(pgdat, sc);
3483 
3484 	/*
3485 	 * Fragmentation may mean that the system cannot be rebalanced for
3486 	 * high-order allocations. If twice the allocation size has been
3487 	 * reclaimed then recheck watermarks only at order-0 to prevent
3488 	 * excessive reclaim. Assume that a process requested a high-order
3489 	 * can direct reclaim/compact.
3490 	 */
3491 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3492 		sc->order = 0;
3493 
3494 	return sc->nr_scanned >= sc->nr_to_reclaim;
3495 }
3496 
3497 /*
3498  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3499  * that are eligible for use by the caller until at least one zone is
3500  * balanced.
3501  *
3502  * Returns the order kswapd finished reclaiming at.
3503  *
3504  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3505  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3506  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3507  * or lower is eligible for reclaim until at least one usable zone is
3508  * balanced.
3509  */
3510 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3511 {
3512 	int i;
3513 	unsigned long nr_soft_reclaimed;
3514 	unsigned long nr_soft_scanned;
3515 	unsigned long pflags;
3516 	unsigned long nr_boost_reclaim;
3517 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3518 	bool boosted;
3519 	struct zone *zone;
3520 	struct scan_control sc = {
3521 		.gfp_mask = GFP_KERNEL,
3522 		.order = order,
3523 		.may_unmap = 1,
3524 	};
3525 
3526 	psi_memstall_enter(&pflags);
3527 	__fs_reclaim_acquire();
3528 
3529 	count_vm_event(PAGEOUTRUN);
3530 
3531 	/*
3532 	 * Account for the reclaim boost. Note that the zone boost is left in
3533 	 * place so that parallel allocations that are near the watermark will
3534 	 * stall or direct reclaim until kswapd is finished.
3535 	 */
3536 	nr_boost_reclaim = 0;
3537 	for (i = 0; i <= classzone_idx; i++) {
3538 		zone = pgdat->node_zones + i;
3539 		if (!managed_zone(zone))
3540 			continue;
3541 
3542 		nr_boost_reclaim += zone->watermark_boost;
3543 		zone_boosts[i] = zone->watermark_boost;
3544 	}
3545 	boosted = nr_boost_reclaim;
3546 
3547 restart:
3548 	sc.priority = DEF_PRIORITY;
3549 	do {
3550 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3551 		bool raise_priority = true;
3552 		bool balanced;
3553 		bool ret;
3554 
3555 		sc.reclaim_idx = classzone_idx;
3556 
3557 		/*
3558 		 * If the number of buffer_heads exceeds the maximum allowed
3559 		 * then consider reclaiming from all zones. This has a dual
3560 		 * purpose -- on 64-bit systems it is expected that
3561 		 * buffer_heads are stripped during active rotation. On 32-bit
3562 		 * systems, highmem pages can pin lowmem memory and shrinking
3563 		 * buffers can relieve lowmem pressure. Reclaim may still not
3564 		 * go ahead if all eligible zones for the original allocation
3565 		 * request are balanced to avoid excessive reclaim from kswapd.
3566 		 */
3567 		if (buffer_heads_over_limit) {
3568 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3569 				zone = pgdat->node_zones + i;
3570 				if (!managed_zone(zone))
3571 					continue;
3572 
3573 				sc.reclaim_idx = i;
3574 				break;
3575 			}
3576 		}
3577 
3578 		/*
3579 		 * If the pgdat is imbalanced then ignore boosting and preserve
3580 		 * the watermarks for a later time and restart. Note that the
3581 		 * zone watermarks will be still reset at the end of balancing
3582 		 * on the grounds that the normal reclaim should be enough to
3583 		 * re-evaluate if boosting is required when kswapd next wakes.
3584 		 */
3585 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3586 		if (!balanced && nr_boost_reclaim) {
3587 			nr_boost_reclaim = 0;
3588 			goto restart;
3589 		}
3590 
3591 		/*
3592 		 * If boosting is not active then only reclaim if there are no
3593 		 * eligible zones. Note that sc.reclaim_idx is not used as
3594 		 * buffer_heads_over_limit may have adjusted it.
3595 		 */
3596 		if (!nr_boost_reclaim && balanced)
3597 			goto out;
3598 
3599 		/* Limit the priority of boosting to avoid reclaim writeback */
3600 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3601 			raise_priority = false;
3602 
3603 		/*
3604 		 * Do not writeback or swap pages for boosted reclaim. The
3605 		 * intent is to relieve pressure not issue sub-optimal IO
3606 		 * from reclaim context. If no pages are reclaimed, the
3607 		 * reclaim will be aborted.
3608 		 */
3609 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3610 		sc.may_swap = !nr_boost_reclaim;
3611 		sc.may_shrinkslab = !nr_boost_reclaim;
3612 
3613 		/*
3614 		 * Do some background aging of the anon list, to give
3615 		 * pages a chance to be referenced before reclaiming. All
3616 		 * pages are rotated regardless of classzone as this is
3617 		 * about consistent aging.
3618 		 */
3619 		age_active_anon(pgdat, &sc);
3620 
3621 		/*
3622 		 * If we're getting trouble reclaiming, start doing writepage
3623 		 * even in laptop mode.
3624 		 */
3625 		if (sc.priority < DEF_PRIORITY - 2)
3626 			sc.may_writepage = 1;
3627 
3628 		/* Call soft limit reclaim before calling shrink_node. */
3629 		sc.nr_scanned = 0;
3630 		nr_soft_scanned = 0;
3631 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3632 						sc.gfp_mask, &nr_soft_scanned);
3633 		sc.nr_reclaimed += nr_soft_reclaimed;
3634 
3635 		/*
3636 		 * There should be no need to raise the scanning priority if
3637 		 * enough pages are already being scanned that that high
3638 		 * watermark would be met at 100% efficiency.
3639 		 */
3640 		if (kswapd_shrink_node(pgdat, &sc))
3641 			raise_priority = false;
3642 
3643 		/*
3644 		 * If the low watermark is met there is no need for processes
3645 		 * to be throttled on pfmemalloc_wait as they should not be
3646 		 * able to safely make forward progress. Wake them
3647 		 */
3648 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3649 				allow_direct_reclaim(pgdat))
3650 			wake_up_all(&pgdat->pfmemalloc_wait);
3651 
3652 		/* Check if kswapd should be suspending */
3653 		__fs_reclaim_release();
3654 		ret = try_to_freeze();
3655 		__fs_reclaim_acquire();
3656 		if (ret || kthread_should_stop())
3657 			break;
3658 
3659 		/*
3660 		 * Raise priority if scanning rate is too low or there was no
3661 		 * progress in reclaiming pages
3662 		 */
3663 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3664 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3665 
3666 		/*
3667 		 * If reclaim made no progress for a boost, stop reclaim as
3668 		 * IO cannot be queued and it could be an infinite loop in
3669 		 * extreme circumstances.
3670 		 */
3671 		if (nr_boost_reclaim && !nr_reclaimed)
3672 			break;
3673 
3674 		if (raise_priority || !nr_reclaimed)
3675 			sc.priority--;
3676 	} while (sc.priority >= 1);
3677 
3678 	if (!sc.nr_reclaimed)
3679 		pgdat->kswapd_failures++;
3680 
3681 out:
3682 	/* If reclaim was boosted, account for the reclaim done in this pass */
3683 	if (boosted) {
3684 		unsigned long flags;
3685 
3686 		for (i = 0; i <= classzone_idx; i++) {
3687 			if (!zone_boosts[i])
3688 				continue;
3689 
3690 			/* Increments are under the zone lock */
3691 			zone = pgdat->node_zones + i;
3692 			spin_lock_irqsave(&zone->lock, flags);
3693 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3694 			spin_unlock_irqrestore(&zone->lock, flags);
3695 		}
3696 
3697 		/*
3698 		 * As there is now likely space, wakeup kcompact to defragment
3699 		 * pageblocks.
3700 		 */
3701 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3702 	}
3703 
3704 	snapshot_refaults(NULL, pgdat);
3705 	__fs_reclaim_release();
3706 	psi_memstall_leave(&pflags);
3707 	/*
3708 	 * Return the order kswapd stopped reclaiming at as
3709 	 * prepare_kswapd_sleep() takes it into account. If another caller
3710 	 * entered the allocator slow path while kswapd was awake, order will
3711 	 * remain at the higher level.
3712 	 */
3713 	return sc.order;
3714 }
3715 
3716 /*
3717  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3718  * allocation request woke kswapd for. When kswapd has not woken recently,
3719  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3720  * given classzone and returns it or the highest classzone index kswapd
3721  * was recently woke for.
3722  */
3723 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3724 					   enum zone_type classzone_idx)
3725 {
3726 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3727 		return classzone_idx;
3728 
3729 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3730 }
3731 
3732 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3733 				unsigned int classzone_idx)
3734 {
3735 	long remaining = 0;
3736 	DEFINE_WAIT(wait);
3737 
3738 	if (freezing(current) || kthread_should_stop())
3739 		return;
3740 
3741 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3742 
3743 	/*
3744 	 * Try to sleep for a short interval. Note that kcompactd will only be
3745 	 * woken if it is possible to sleep for a short interval. This is
3746 	 * deliberate on the assumption that if reclaim cannot keep an
3747 	 * eligible zone balanced that it's also unlikely that compaction will
3748 	 * succeed.
3749 	 */
3750 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3751 		/*
3752 		 * Compaction records what page blocks it recently failed to
3753 		 * isolate pages from and skips them in the future scanning.
3754 		 * When kswapd is going to sleep, it is reasonable to assume
3755 		 * that pages and compaction may succeed so reset the cache.
3756 		 */
3757 		reset_isolation_suitable(pgdat);
3758 
3759 		/*
3760 		 * We have freed the memory, now we should compact it to make
3761 		 * allocation of the requested order possible.
3762 		 */
3763 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3764 
3765 		remaining = schedule_timeout(HZ/10);
3766 
3767 		/*
3768 		 * If woken prematurely then reset kswapd_classzone_idx and
3769 		 * order. The values will either be from a wakeup request or
3770 		 * the previous request that slept prematurely.
3771 		 */
3772 		if (remaining) {
3773 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3774 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3775 		}
3776 
3777 		finish_wait(&pgdat->kswapd_wait, &wait);
3778 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3779 	}
3780 
3781 	/*
3782 	 * After a short sleep, check if it was a premature sleep. If not, then
3783 	 * go fully to sleep until explicitly woken up.
3784 	 */
3785 	if (!remaining &&
3786 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3787 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3788 
3789 		/*
3790 		 * vmstat counters are not perfectly accurate and the estimated
3791 		 * value for counters such as NR_FREE_PAGES can deviate from the
3792 		 * true value by nr_online_cpus * threshold. To avoid the zone
3793 		 * watermarks being breached while under pressure, we reduce the
3794 		 * per-cpu vmstat threshold while kswapd is awake and restore
3795 		 * them before going back to sleep.
3796 		 */
3797 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3798 
3799 		if (!kthread_should_stop())
3800 			schedule();
3801 
3802 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3803 	} else {
3804 		if (remaining)
3805 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3806 		else
3807 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3808 	}
3809 	finish_wait(&pgdat->kswapd_wait, &wait);
3810 }
3811 
3812 /*
3813  * The background pageout daemon, started as a kernel thread
3814  * from the init process.
3815  *
3816  * This basically trickles out pages so that we have _some_
3817  * free memory available even if there is no other activity
3818  * that frees anything up. This is needed for things like routing
3819  * etc, where we otherwise might have all activity going on in
3820  * asynchronous contexts that cannot page things out.
3821  *
3822  * If there are applications that are active memory-allocators
3823  * (most normal use), this basically shouldn't matter.
3824  */
3825 static int kswapd(void *p)
3826 {
3827 	unsigned int alloc_order, reclaim_order;
3828 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3829 	pg_data_t *pgdat = (pg_data_t*)p;
3830 	struct task_struct *tsk = current;
3831 
3832 	struct reclaim_state reclaim_state = {
3833 		.reclaimed_slab = 0,
3834 	};
3835 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3836 
3837 	if (!cpumask_empty(cpumask))
3838 		set_cpus_allowed_ptr(tsk, cpumask);
3839 	current->reclaim_state = &reclaim_state;
3840 
3841 	/*
3842 	 * Tell the memory management that we're a "memory allocator",
3843 	 * and that if we need more memory we should get access to it
3844 	 * regardless (see "__alloc_pages()"). "kswapd" should
3845 	 * never get caught in the normal page freeing logic.
3846 	 *
3847 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3848 	 * you need a small amount of memory in order to be able to
3849 	 * page out something else, and this flag essentially protects
3850 	 * us from recursively trying to free more memory as we're
3851 	 * trying to free the first piece of memory in the first place).
3852 	 */
3853 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3854 	set_freezable();
3855 
3856 	pgdat->kswapd_order = 0;
3857 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3858 	for ( ; ; ) {
3859 		bool ret;
3860 
3861 		alloc_order = reclaim_order = pgdat->kswapd_order;
3862 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3863 
3864 kswapd_try_sleep:
3865 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3866 					classzone_idx);
3867 
3868 		/* Read the new order and classzone_idx */
3869 		alloc_order = reclaim_order = pgdat->kswapd_order;
3870 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3871 		pgdat->kswapd_order = 0;
3872 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3873 
3874 		ret = try_to_freeze();
3875 		if (kthread_should_stop())
3876 			break;
3877 
3878 		/*
3879 		 * We can speed up thawing tasks if we don't call balance_pgdat
3880 		 * after returning from the refrigerator
3881 		 */
3882 		if (ret)
3883 			continue;
3884 
3885 		/*
3886 		 * Reclaim begins at the requested order but if a high-order
3887 		 * reclaim fails then kswapd falls back to reclaiming for
3888 		 * order-0. If that happens, kswapd will consider sleeping
3889 		 * for the order it finished reclaiming at (reclaim_order)
3890 		 * but kcompactd is woken to compact for the original
3891 		 * request (alloc_order).
3892 		 */
3893 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3894 						alloc_order);
3895 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3896 		if (reclaim_order < alloc_order)
3897 			goto kswapd_try_sleep;
3898 	}
3899 
3900 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3901 	current->reclaim_state = NULL;
3902 
3903 	return 0;
3904 }
3905 
3906 /*
3907  * A zone is low on free memory or too fragmented for high-order memory.  If
3908  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3909  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3910  * has failed or is not needed, still wake up kcompactd if only compaction is
3911  * needed.
3912  */
3913 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3914 		   enum zone_type classzone_idx)
3915 {
3916 	pg_data_t *pgdat;
3917 
3918 	if (!managed_zone(zone))
3919 		return;
3920 
3921 	if (!cpuset_zone_allowed(zone, gfp_flags))
3922 		return;
3923 	pgdat = zone->zone_pgdat;
3924 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3925 							   classzone_idx);
3926 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3927 	if (!waitqueue_active(&pgdat->kswapd_wait))
3928 		return;
3929 
3930 	/* Hopeless node, leave it to direct reclaim if possible */
3931 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3932 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3933 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3934 		/*
3935 		 * There may be plenty of free memory available, but it's too
3936 		 * fragmented for high-order allocations.  Wake up kcompactd
3937 		 * and rely on compaction_suitable() to determine if it's
3938 		 * needed.  If it fails, it will defer subsequent attempts to
3939 		 * ratelimit its work.
3940 		 */
3941 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3942 			wakeup_kcompactd(pgdat, order, classzone_idx);
3943 		return;
3944 	}
3945 
3946 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3947 				      gfp_flags);
3948 	wake_up_interruptible(&pgdat->kswapd_wait);
3949 }
3950 
3951 #ifdef CONFIG_HIBERNATION
3952 /*
3953  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3954  * freed pages.
3955  *
3956  * Rather than trying to age LRUs the aim is to preserve the overall
3957  * LRU order by reclaiming preferentially
3958  * inactive > active > active referenced > active mapped
3959  */
3960 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3961 {
3962 	struct reclaim_state reclaim_state;
3963 	struct scan_control sc = {
3964 		.nr_to_reclaim = nr_to_reclaim,
3965 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3966 		.reclaim_idx = MAX_NR_ZONES - 1,
3967 		.priority = DEF_PRIORITY,
3968 		.may_writepage = 1,
3969 		.may_unmap = 1,
3970 		.may_swap = 1,
3971 		.hibernation_mode = 1,
3972 	};
3973 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3974 	struct task_struct *p = current;
3975 	unsigned long nr_reclaimed;
3976 	unsigned int noreclaim_flag;
3977 
3978 	fs_reclaim_acquire(sc.gfp_mask);
3979 	noreclaim_flag = memalloc_noreclaim_save();
3980 	reclaim_state.reclaimed_slab = 0;
3981 	p->reclaim_state = &reclaim_state;
3982 
3983 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3984 
3985 	p->reclaim_state = NULL;
3986 	memalloc_noreclaim_restore(noreclaim_flag);
3987 	fs_reclaim_release(sc.gfp_mask);
3988 
3989 	return nr_reclaimed;
3990 }
3991 #endif /* CONFIG_HIBERNATION */
3992 
3993 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3994    not required for correctness.  So if the last cpu in a node goes
3995    away, we get changed to run anywhere: as the first one comes back,
3996    restore their cpu bindings. */
3997 static int kswapd_cpu_online(unsigned int cpu)
3998 {
3999 	int nid;
4000 
4001 	for_each_node_state(nid, N_MEMORY) {
4002 		pg_data_t *pgdat = NODE_DATA(nid);
4003 		const struct cpumask *mask;
4004 
4005 		mask = cpumask_of_node(pgdat->node_id);
4006 
4007 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4008 			/* One of our CPUs online: restore mask */
4009 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4010 	}
4011 	return 0;
4012 }
4013 
4014 /*
4015  * This kswapd start function will be called by init and node-hot-add.
4016  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4017  */
4018 int kswapd_run(int nid)
4019 {
4020 	pg_data_t *pgdat = NODE_DATA(nid);
4021 	int ret = 0;
4022 
4023 	if (pgdat->kswapd)
4024 		return 0;
4025 
4026 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4027 	if (IS_ERR(pgdat->kswapd)) {
4028 		/* failure at boot is fatal */
4029 		BUG_ON(system_state < SYSTEM_RUNNING);
4030 		pr_err("Failed to start kswapd on node %d\n", nid);
4031 		ret = PTR_ERR(pgdat->kswapd);
4032 		pgdat->kswapd = NULL;
4033 	}
4034 	return ret;
4035 }
4036 
4037 /*
4038  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4039  * hold mem_hotplug_begin/end().
4040  */
4041 void kswapd_stop(int nid)
4042 {
4043 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4044 
4045 	if (kswapd) {
4046 		kthread_stop(kswapd);
4047 		NODE_DATA(nid)->kswapd = NULL;
4048 	}
4049 }
4050 
4051 static int __init kswapd_init(void)
4052 {
4053 	int nid, ret;
4054 
4055 	swap_setup();
4056 	for_each_node_state(nid, N_MEMORY)
4057  		kswapd_run(nid);
4058 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4059 					"mm/vmscan:online", kswapd_cpu_online,
4060 					NULL);
4061 	WARN_ON(ret < 0);
4062 	return 0;
4063 }
4064 
4065 module_init(kswapd_init)
4066 
4067 #ifdef CONFIG_NUMA
4068 /*
4069  * Node reclaim mode
4070  *
4071  * If non-zero call node_reclaim when the number of free pages falls below
4072  * the watermarks.
4073  */
4074 int node_reclaim_mode __read_mostly;
4075 
4076 #define RECLAIM_OFF 0
4077 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4078 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4079 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4080 
4081 /*
4082  * Priority for NODE_RECLAIM. This determines the fraction of pages
4083  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4084  * a zone.
4085  */
4086 #define NODE_RECLAIM_PRIORITY 4
4087 
4088 /*
4089  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4090  * occur.
4091  */
4092 int sysctl_min_unmapped_ratio = 1;
4093 
4094 /*
4095  * If the number of slab pages in a zone grows beyond this percentage then
4096  * slab reclaim needs to occur.
4097  */
4098 int sysctl_min_slab_ratio = 5;
4099 
4100 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4101 {
4102 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4103 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4104 		node_page_state(pgdat, NR_ACTIVE_FILE);
4105 
4106 	/*
4107 	 * It's possible for there to be more file mapped pages than
4108 	 * accounted for by the pages on the file LRU lists because
4109 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4110 	 */
4111 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4112 }
4113 
4114 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4115 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4116 {
4117 	unsigned long nr_pagecache_reclaimable;
4118 	unsigned long delta = 0;
4119 
4120 	/*
4121 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4122 	 * potentially reclaimable. Otherwise, we have to worry about
4123 	 * pages like swapcache and node_unmapped_file_pages() provides
4124 	 * a better estimate
4125 	 */
4126 	if (node_reclaim_mode & RECLAIM_UNMAP)
4127 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4128 	else
4129 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4130 
4131 	/* If we can't clean pages, remove dirty pages from consideration */
4132 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4133 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4134 
4135 	/* Watch for any possible underflows due to delta */
4136 	if (unlikely(delta > nr_pagecache_reclaimable))
4137 		delta = nr_pagecache_reclaimable;
4138 
4139 	return nr_pagecache_reclaimable - delta;
4140 }
4141 
4142 /*
4143  * Try to free up some pages from this node through reclaim.
4144  */
4145 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4146 {
4147 	/* Minimum pages needed in order to stay on node */
4148 	const unsigned long nr_pages = 1 << order;
4149 	struct task_struct *p = current;
4150 	struct reclaim_state reclaim_state;
4151 	unsigned int noreclaim_flag;
4152 	struct scan_control sc = {
4153 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4154 		.gfp_mask = current_gfp_context(gfp_mask),
4155 		.order = order,
4156 		.priority = NODE_RECLAIM_PRIORITY,
4157 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4158 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4159 		.may_swap = 1,
4160 		.reclaim_idx = gfp_zone(gfp_mask),
4161 	};
4162 
4163 	cond_resched();
4164 	fs_reclaim_acquire(sc.gfp_mask);
4165 	/*
4166 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4167 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4168 	 * and RECLAIM_UNMAP.
4169 	 */
4170 	noreclaim_flag = memalloc_noreclaim_save();
4171 	p->flags |= PF_SWAPWRITE;
4172 	reclaim_state.reclaimed_slab = 0;
4173 	p->reclaim_state = &reclaim_state;
4174 
4175 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4176 		/*
4177 		 * Free memory by calling shrink node with increasing
4178 		 * priorities until we have enough memory freed.
4179 		 */
4180 		do {
4181 			shrink_node(pgdat, &sc);
4182 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4183 	}
4184 
4185 	p->reclaim_state = NULL;
4186 	current->flags &= ~PF_SWAPWRITE;
4187 	memalloc_noreclaim_restore(noreclaim_flag);
4188 	fs_reclaim_release(sc.gfp_mask);
4189 	return sc.nr_reclaimed >= nr_pages;
4190 }
4191 
4192 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4193 {
4194 	int ret;
4195 
4196 	/*
4197 	 * Node reclaim reclaims unmapped file backed pages and
4198 	 * slab pages if we are over the defined limits.
4199 	 *
4200 	 * A small portion of unmapped file backed pages is needed for
4201 	 * file I/O otherwise pages read by file I/O will be immediately
4202 	 * thrown out if the node is overallocated. So we do not reclaim
4203 	 * if less than a specified percentage of the node is used by
4204 	 * unmapped file backed pages.
4205 	 */
4206 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4207 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4208 		return NODE_RECLAIM_FULL;
4209 
4210 	/*
4211 	 * Do not scan if the allocation should not be delayed.
4212 	 */
4213 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4214 		return NODE_RECLAIM_NOSCAN;
4215 
4216 	/*
4217 	 * Only run node reclaim on the local node or on nodes that do not
4218 	 * have associated processors. This will favor the local processor
4219 	 * over remote processors and spread off node memory allocations
4220 	 * as wide as possible.
4221 	 */
4222 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4223 		return NODE_RECLAIM_NOSCAN;
4224 
4225 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4226 		return NODE_RECLAIM_NOSCAN;
4227 
4228 	ret = __node_reclaim(pgdat, gfp_mask, order);
4229 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4230 
4231 	if (!ret)
4232 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4233 
4234 	return ret;
4235 }
4236 #endif
4237 
4238 /*
4239  * page_evictable - test whether a page is evictable
4240  * @page: the page to test
4241  *
4242  * Test whether page is evictable--i.e., should be placed on active/inactive
4243  * lists vs unevictable list.
4244  *
4245  * Reasons page might not be evictable:
4246  * (1) page's mapping marked unevictable
4247  * (2) page is part of an mlocked VMA
4248  *
4249  */
4250 int page_evictable(struct page *page)
4251 {
4252 	int ret;
4253 
4254 	/* Prevent address_space of inode and swap cache from being freed */
4255 	rcu_read_lock();
4256 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4257 	rcu_read_unlock();
4258 	return ret;
4259 }
4260 
4261 /**
4262  * check_move_unevictable_pages - check pages for evictability and move to
4263  * appropriate zone lru list
4264  * @pvec: pagevec with lru pages to check
4265  *
4266  * Checks pages for evictability, if an evictable page is in the unevictable
4267  * lru list, moves it to the appropriate evictable lru list. This function
4268  * should be only used for lru pages.
4269  */
4270 void check_move_unevictable_pages(struct pagevec *pvec)
4271 {
4272 	struct lruvec *lruvec;
4273 	struct pglist_data *pgdat = NULL;
4274 	int pgscanned = 0;
4275 	int pgrescued = 0;
4276 	int i;
4277 
4278 	for (i = 0; i < pvec->nr; i++) {
4279 		struct page *page = pvec->pages[i];
4280 		struct pglist_data *pagepgdat = page_pgdat(page);
4281 
4282 		pgscanned++;
4283 		if (pagepgdat != pgdat) {
4284 			if (pgdat)
4285 				spin_unlock_irq(&pgdat->lru_lock);
4286 			pgdat = pagepgdat;
4287 			spin_lock_irq(&pgdat->lru_lock);
4288 		}
4289 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4290 
4291 		if (!PageLRU(page) || !PageUnevictable(page))
4292 			continue;
4293 
4294 		if (page_evictable(page)) {
4295 			enum lru_list lru = page_lru_base_type(page);
4296 
4297 			VM_BUG_ON_PAGE(PageActive(page), page);
4298 			ClearPageUnevictable(page);
4299 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4300 			add_page_to_lru_list(page, lruvec, lru);
4301 			pgrescued++;
4302 		}
4303 	}
4304 
4305 	if (pgdat) {
4306 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4307 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4308 		spin_unlock_irq(&pgdat->lru_lock);
4309 	}
4310 }
4311 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4312