1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/module.h> 19 #include <linux/gfp.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/swap.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/highmem.h> 25 #include <linux/vmpressure.h> 26 #include <linux/vmstat.h> 27 #include <linux/file.h> 28 #include <linux/writeback.h> 29 #include <linux/blkdev.h> 30 #include <linux/buffer_head.h> /* for try_to_release_page(), 31 buffer_heads_over_limit */ 32 #include <linux/mm_inline.h> 33 #include <linux/backing-dev.h> 34 #include <linux/rmap.h> 35 #include <linux/topology.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/compaction.h> 39 #include <linux/notifier.h> 40 #include <linux/rwsem.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/freezer.h> 44 #include <linux/memcontrol.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 55 #include <linux/swapops.h> 56 #include <linux/balloon_compaction.h> 57 58 #include "internal.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/vmscan.h> 62 63 struct scan_control { 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 /* This context's GFP mask */ 68 gfp_t gfp_mask; 69 70 /* Allocation order */ 71 int order; 72 73 /* 74 * Nodemask of nodes allowed by the caller. If NULL, all nodes 75 * are scanned. 76 */ 77 nodemask_t *nodemask; 78 79 /* 80 * The memory cgroup that hit its limit and as a result is the 81 * primary target of this reclaim invocation. 82 */ 83 struct mem_cgroup *target_mem_cgroup; 84 85 /* Scan (total_size >> priority) pages at once */ 86 int priority; 87 88 /* The highest zone to isolate pages for reclaim from */ 89 enum zone_type reclaim_idx; 90 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 92 unsigned int may_writepage:1; 93 94 /* Can mapped pages be reclaimed? */ 95 unsigned int may_unmap:1; 96 97 /* Can pages be swapped as part of reclaim? */ 98 unsigned int may_swap:1; 99 100 /* 101 * Cgroups are not reclaimed below their configured memory.low, 102 * unless we threaten to OOM. If any cgroups are skipped due to 103 * memory.low and nothing was reclaimed, go back for memory.low. 104 */ 105 unsigned int memcg_low_reclaim:1; 106 unsigned int memcg_low_skipped:1; 107 108 unsigned int hibernation_mode:1; 109 110 /* One of the zones is ready for compaction */ 111 unsigned int compaction_ready:1; 112 113 /* Incremented by the number of inactive pages that were scanned */ 114 unsigned long nr_scanned; 115 116 /* Number of pages freed so far during a call to shrink_zones() */ 117 unsigned long nr_reclaimed; 118 }; 119 120 #ifdef ARCH_HAS_PREFETCH 121 #define prefetch_prev_lru_page(_page, _base, _field) \ 122 do { \ 123 if ((_page)->lru.prev != _base) { \ 124 struct page *prev; \ 125 \ 126 prev = lru_to_page(&(_page->lru)); \ 127 prefetch(&prev->_field); \ 128 } \ 129 } while (0) 130 #else 131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 132 #endif 133 134 #ifdef ARCH_HAS_PREFETCHW 135 #define prefetchw_prev_lru_page(_page, _base, _field) \ 136 do { \ 137 if ((_page)->lru.prev != _base) { \ 138 struct page *prev; \ 139 \ 140 prev = lru_to_page(&(_page->lru)); \ 141 prefetchw(&prev->_field); \ 142 } \ 143 } while (0) 144 #else 145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 146 #endif 147 148 /* 149 * From 0 .. 100. Higher means more swappy. 150 */ 151 int vm_swappiness = 60; 152 /* 153 * The total number of pages which are beyond the high watermark within all 154 * zones. 155 */ 156 unsigned long vm_total_pages; 157 158 static LIST_HEAD(shrinker_list); 159 static DECLARE_RWSEM(shrinker_rwsem); 160 161 #ifdef CONFIG_MEMCG 162 static bool global_reclaim(struct scan_control *sc) 163 { 164 return !sc->target_mem_cgroup; 165 } 166 167 /** 168 * sane_reclaim - is the usual dirty throttling mechanism operational? 169 * @sc: scan_control in question 170 * 171 * The normal page dirty throttling mechanism in balance_dirty_pages() is 172 * completely broken with the legacy memcg and direct stalling in 173 * shrink_page_list() is used for throttling instead, which lacks all the 174 * niceties such as fairness, adaptive pausing, bandwidth proportional 175 * allocation and configurability. 176 * 177 * This function tests whether the vmscan currently in progress can assume 178 * that the normal dirty throttling mechanism is operational. 179 */ 180 static bool sane_reclaim(struct scan_control *sc) 181 { 182 struct mem_cgroup *memcg = sc->target_mem_cgroup; 183 184 if (!memcg) 185 return true; 186 #ifdef CONFIG_CGROUP_WRITEBACK 187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 188 return true; 189 #endif 190 return false; 191 } 192 #else 193 static bool global_reclaim(struct scan_control *sc) 194 { 195 return true; 196 } 197 198 static bool sane_reclaim(struct scan_control *sc) 199 { 200 return true; 201 } 202 #endif 203 204 /* 205 * This misses isolated pages which are not accounted for to save counters. 206 * As the data only determines if reclaim or compaction continues, it is 207 * not expected that isolated pages will be a dominating factor. 208 */ 209 unsigned long zone_reclaimable_pages(struct zone *zone) 210 { 211 unsigned long nr; 212 213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 215 if (get_nr_swap_pages() > 0) 216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 218 219 return nr; 220 } 221 222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 223 { 224 unsigned long nr; 225 226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 229 230 if (get_nr_swap_pages() > 0) 231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 234 235 return nr; 236 } 237 238 /** 239 * lruvec_lru_size - Returns the number of pages on the given LRU list. 240 * @lruvec: lru vector 241 * @lru: lru to use 242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 243 */ 244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 245 { 246 unsigned long lru_size; 247 int zid; 248 249 if (!mem_cgroup_disabled()) 250 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 251 else 252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 253 254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 256 unsigned long size; 257 258 if (!managed_zone(zone)) 259 continue; 260 261 if (!mem_cgroup_disabled()) 262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 263 else 264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 265 NR_ZONE_LRU_BASE + lru); 266 lru_size -= min(size, lru_size); 267 } 268 269 return lru_size; 270 271 } 272 273 /* 274 * Add a shrinker callback to be called from the vm. 275 */ 276 int register_shrinker(struct shrinker *shrinker) 277 { 278 size_t size = sizeof(*shrinker->nr_deferred); 279 280 if (shrinker->flags & SHRINKER_NUMA_AWARE) 281 size *= nr_node_ids; 282 283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 284 if (!shrinker->nr_deferred) 285 return -ENOMEM; 286 287 down_write(&shrinker_rwsem); 288 list_add_tail(&shrinker->list, &shrinker_list); 289 up_write(&shrinker_rwsem); 290 return 0; 291 } 292 EXPORT_SYMBOL(register_shrinker); 293 294 /* 295 * Remove one 296 */ 297 void unregister_shrinker(struct shrinker *shrinker) 298 { 299 down_write(&shrinker_rwsem); 300 list_del(&shrinker->list); 301 up_write(&shrinker_rwsem); 302 kfree(shrinker->nr_deferred); 303 } 304 EXPORT_SYMBOL(unregister_shrinker); 305 306 #define SHRINK_BATCH 128 307 308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 309 struct shrinker *shrinker, 310 unsigned long nr_scanned, 311 unsigned long nr_eligible) 312 { 313 unsigned long freed = 0; 314 unsigned long long delta; 315 long total_scan; 316 long freeable; 317 long nr; 318 long new_nr; 319 int nid = shrinkctl->nid; 320 long batch_size = shrinker->batch ? shrinker->batch 321 : SHRINK_BATCH; 322 long scanned = 0, next_deferred; 323 324 freeable = shrinker->count_objects(shrinker, shrinkctl); 325 if (freeable == 0) 326 return 0; 327 328 /* 329 * copy the current shrinker scan count into a local variable 330 * and zero it so that other concurrent shrinker invocations 331 * don't also do this scanning work. 332 */ 333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 334 335 total_scan = nr; 336 delta = (4 * nr_scanned) / shrinker->seeks; 337 delta *= freeable; 338 do_div(delta, nr_eligible + 1); 339 total_scan += delta; 340 if (total_scan < 0) { 341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 342 shrinker->scan_objects, total_scan); 343 total_scan = freeable; 344 next_deferred = nr; 345 } else 346 next_deferred = total_scan; 347 348 /* 349 * We need to avoid excessive windup on filesystem shrinkers 350 * due to large numbers of GFP_NOFS allocations causing the 351 * shrinkers to return -1 all the time. This results in a large 352 * nr being built up so when a shrink that can do some work 353 * comes along it empties the entire cache due to nr >>> 354 * freeable. This is bad for sustaining a working set in 355 * memory. 356 * 357 * Hence only allow the shrinker to scan the entire cache when 358 * a large delta change is calculated directly. 359 */ 360 if (delta < freeable / 4) 361 total_scan = min(total_scan, freeable / 2); 362 363 /* 364 * Avoid risking looping forever due to too large nr value: 365 * never try to free more than twice the estimate number of 366 * freeable entries. 367 */ 368 if (total_scan > freeable * 2) 369 total_scan = freeable * 2; 370 371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 372 nr_scanned, nr_eligible, 373 freeable, delta, total_scan); 374 375 /* 376 * Normally, we should not scan less than batch_size objects in one 377 * pass to avoid too frequent shrinker calls, but if the slab has less 378 * than batch_size objects in total and we are really tight on memory, 379 * we will try to reclaim all available objects, otherwise we can end 380 * up failing allocations although there are plenty of reclaimable 381 * objects spread over several slabs with usage less than the 382 * batch_size. 383 * 384 * We detect the "tight on memory" situations by looking at the total 385 * number of objects we want to scan (total_scan). If it is greater 386 * than the total number of objects on slab (freeable), we must be 387 * scanning at high prio and therefore should try to reclaim as much as 388 * possible. 389 */ 390 while (total_scan >= batch_size || 391 total_scan >= freeable) { 392 unsigned long ret; 393 unsigned long nr_to_scan = min(batch_size, total_scan); 394 395 shrinkctl->nr_to_scan = nr_to_scan; 396 ret = shrinker->scan_objects(shrinker, shrinkctl); 397 if (ret == SHRINK_STOP) 398 break; 399 freed += ret; 400 401 count_vm_events(SLABS_SCANNED, nr_to_scan); 402 total_scan -= nr_to_scan; 403 scanned += nr_to_scan; 404 405 cond_resched(); 406 } 407 408 if (next_deferred >= scanned) 409 next_deferred -= scanned; 410 else 411 next_deferred = 0; 412 /* 413 * move the unused scan count back into the shrinker in a 414 * manner that handles concurrent updates. If we exhausted the 415 * scan, there is no need to do an update. 416 */ 417 if (next_deferred > 0) 418 new_nr = atomic_long_add_return(next_deferred, 419 &shrinker->nr_deferred[nid]); 420 else 421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 422 423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 424 return freed; 425 } 426 427 /** 428 * shrink_slab - shrink slab caches 429 * @gfp_mask: allocation context 430 * @nid: node whose slab caches to target 431 * @memcg: memory cgroup whose slab caches to target 432 * @nr_scanned: pressure numerator 433 * @nr_eligible: pressure denominator 434 * 435 * Call the shrink functions to age shrinkable caches. 436 * 437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 438 * unaware shrinkers will receive a node id of 0 instead. 439 * 440 * @memcg specifies the memory cgroup to target. If it is not NULL, 441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 442 * objects from the memory cgroup specified. Otherwise, only unaware 443 * shrinkers are called. 444 * 445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 446 * the available objects should be scanned. Page reclaim for example 447 * passes the number of pages scanned and the number of pages on the 448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 449 * when it encountered mapped pages. The ratio is further biased by 450 * the ->seeks setting of the shrink function, which indicates the 451 * cost to recreate an object relative to that of an LRU page. 452 * 453 * Returns the number of reclaimed slab objects. 454 */ 455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 456 struct mem_cgroup *memcg, 457 unsigned long nr_scanned, 458 unsigned long nr_eligible) 459 { 460 struct shrinker *shrinker; 461 unsigned long freed = 0; 462 463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 464 return 0; 465 466 if (nr_scanned == 0) 467 nr_scanned = SWAP_CLUSTER_MAX; 468 469 if (!down_read_trylock(&shrinker_rwsem)) { 470 /* 471 * If we would return 0, our callers would understand that we 472 * have nothing else to shrink and give up trying. By returning 473 * 1 we keep it going and assume we'll be able to shrink next 474 * time. 475 */ 476 freed = 1; 477 goto out; 478 } 479 480 list_for_each_entry(shrinker, &shrinker_list, list) { 481 struct shrink_control sc = { 482 .gfp_mask = gfp_mask, 483 .nid = nid, 484 .memcg = memcg, 485 }; 486 487 /* 488 * If kernel memory accounting is disabled, we ignore 489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 490 * passing NULL for memcg. 491 */ 492 if (memcg_kmem_enabled() && 493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 494 continue; 495 496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 497 sc.nid = 0; 498 499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 500 } 501 502 up_read(&shrinker_rwsem); 503 out: 504 cond_resched(); 505 return freed; 506 } 507 508 void drop_slab_node(int nid) 509 { 510 unsigned long freed; 511 512 do { 513 struct mem_cgroup *memcg = NULL; 514 515 freed = 0; 516 do { 517 freed += shrink_slab(GFP_KERNEL, nid, memcg, 518 1000, 1000); 519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 520 } while (freed > 10); 521 } 522 523 void drop_slab(void) 524 { 525 int nid; 526 527 for_each_online_node(nid) 528 drop_slab_node(nid); 529 } 530 531 static inline int is_page_cache_freeable(struct page *page) 532 { 533 /* 534 * A freeable page cache page is referenced only by the caller 535 * that isolated the page, the page cache radix tree and 536 * optional buffer heads at page->private. 537 */ 538 return page_count(page) - page_has_private(page) == 2; 539 } 540 541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 542 { 543 if (current->flags & PF_SWAPWRITE) 544 return 1; 545 if (!inode_write_congested(inode)) 546 return 1; 547 if (inode_to_bdi(inode) == current->backing_dev_info) 548 return 1; 549 return 0; 550 } 551 552 /* 553 * We detected a synchronous write error writing a page out. Probably 554 * -ENOSPC. We need to propagate that into the address_space for a subsequent 555 * fsync(), msync() or close(). 556 * 557 * The tricky part is that after writepage we cannot touch the mapping: nothing 558 * prevents it from being freed up. But we have a ref on the page and once 559 * that page is locked, the mapping is pinned. 560 * 561 * We're allowed to run sleeping lock_page() here because we know the caller has 562 * __GFP_FS. 563 */ 564 static void handle_write_error(struct address_space *mapping, 565 struct page *page, int error) 566 { 567 lock_page(page); 568 if (page_mapping(page) == mapping) 569 mapping_set_error(mapping, error); 570 unlock_page(page); 571 } 572 573 /* possible outcome of pageout() */ 574 typedef enum { 575 /* failed to write page out, page is locked */ 576 PAGE_KEEP, 577 /* move page to the active list, page is locked */ 578 PAGE_ACTIVATE, 579 /* page has been sent to the disk successfully, page is unlocked */ 580 PAGE_SUCCESS, 581 /* page is clean and locked */ 582 PAGE_CLEAN, 583 } pageout_t; 584 585 /* 586 * pageout is called by shrink_page_list() for each dirty page. 587 * Calls ->writepage(). 588 */ 589 static pageout_t pageout(struct page *page, struct address_space *mapping, 590 struct scan_control *sc) 591 { 592 /* 593 * If the page is dirty, only perform writeback if that write 594 * will be non-blocking. To prevent this allocation from being 595 * stalled by pagecache activity. But note that there may be 596 * stalls if we need to run get_block(). We could test 597 * PagePrivate for that. 598 * 599 * If this process is currently in __generic_file_write_iter() against 600 * this page's queue, we can perform writeback even if that 601 * will block. 602 * 603 * If the page is swapcache, write it back even if that would 604 * block, for some throttling. This happens by accident, because 605 * swap_backing_dev_info is bust: it doesn't reflect the 606 * congestion state of the swapdevs. Easy to fix, if needed. 607 */ 608 if (!is_page_cache_freeable(page)) 609 return PAGE_KEEP; 610 if (!mapping) { 611 /* 612 * Some data journaling orphaned pages can have 613 * page->mapping == NULL while being dirty with clean buffers. 614 */ 615 if (page_has_private(page)) { 616 if (try_to_free_buffers(page)) { 617 ClearPageDirty(page); 618 pr_info("%s: orphaned page\n", __func__); 619 return PAGE_CLEAN; 620 } 621 } 622 return PAGE_KEEP; 623 } 624 if (mapping->a_ops->writepage == NULL) 625 return PAGE_ACTIVATE; 626 if (!may_write_to_inode(mapping->host, sc)) 627 return PAGE_KEEP; 628 629 if (clear_page_dirty_for_io(page)) { 630 int res; 631 struct writeback_control wbc = { 632 .sync_mode = WB_SYNC_NONE, 633 .nr_to_write = SWAP_CLUSTER_MAX, 634 .range_start = 0, 635 .range_end = LLONG_MAX, 636 .for_reclaim = 1, 637 }; 638 639 SetPageReclaim(page); 640 res = mapping->a_ops->writepage(page, &wbc); 641 if (res < 0) 642 handle_write_error(mapping, page, res); 643 if (res == AOP_WRITEPAGE_ACTIVATE) { 644 ClearPageReclaim(page); 645 return PAGE_ACTIVATE; 646 } 647 648 if (!PageWriteback(page)) { 649 /* synchronous write or broken a_ops? */ 650 ClearPageReclaim(page); 651 } 652 trace_mm_vmscan_writepage(page); 653 inc_node_page_state(page, NR_VMSCAN_WRITE); 654 return PAGE_SUCCESS; 655 } 656 657 return PAGE_CLEAN; 658 } 659 660 /* 661 * Same as remove_mapping, but if the page is removed from the mapping, it 662 * gets returned with a refcount of 0. 663 */ 664 static int __remove_mapping(struct address_space *mapping, struct page *page, 665 bool reclaimed) 666 { 667 unsigned long flags; 668 669 BUG_ON(!PageLocked(page)); 670 BUG_ON(mapping != page_mapping(page)); 671 672 spin_lock_irqsave(&mapping->tree_lock, flags); 673 /* 674 * The non racy check for a busy page. 675 * 676 * Must be careful with the order of the tests. When someone has 677 * a ref to the page, it may be possible that they dirty it then 678 * drop the reference. So if PageDirty is tested before page_count 679 * here, then the following race may occur: 680 * 681 * get_user_pages(&page); 682 * [user mapping goes away] 683 * write_to(page); 684 * !PageDirty(page) [good] 685 * SetPageDirty(page); 686 * put_page(page); 687 * !page_count(page) [good, discard it] 688 * 689 * [oops, our write_to data is lost] 690 * 691 * Reversing the order of the tests ensures such a situation cannot 692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 693 * load is not satisfied before that of page->_refcount. 694 * 695 * Note that if SetPageDirty is always performed via set_page_dirty, 696 * and thus under tree_lock, then this ordering is not required. 697 */ 698 if (!page_ref_freeze(page, 2)) 699 goto cannot_free; 700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 701 if (unlikely(PageDirty(page))) { 702 page_ref_unfreeze(page, 2); 703 goto cannot_free; 704 } 705 706 if (PageSwapCache(page)) { 707 swp_entry_t swap = { .val = page_private(page) }; 708 mem_cgroup_swapout(page, swap); 709 __delete_from_swap_cache(page); 710 spin_unlock_irqrestore(&mapping->tree_lock, flags); 711 swapcache_free(swap); 712 } else { 713 void (*freepage)(struct page *); 714 void *shadow = NULL; 715 716 freepage = mapping->a_ops->freepage; 717 /* 718 * Remember a shadow entry for reclaimed file cache in 719 * order to detect refaults, thus thrashing, later on. 720 * 721 * But don't store shadows in an address space that is 722 * already exiting. This is not just an optizimation, 723 * inode reclaim needs to empty out the radix tree or 724 * the nodes are lost. Don't plant shadows behind its 725 * back. 726 * 727 * We also don't store shadows for DAX mappings because the 728 * only page cache pages found in these are zero pages 729 * covering holes, and because we don't want to mix DAX 730 * exceptional entries and shadow exceptional entries in the 731 * same page_tree. 732 */ 733 if (reclaimed && page_is_file_cache(page) && 734 !mapping_exiting(mapping) && !dax_mapping(mapping)) 735 shadow = workingset_eviction(mapping, page); 736 __delete_from_page_cache(page, shadow); 737 spin_unlock_irqrestore(&mapping->tree_lock, flags); 738 739 if (freepage != NULL) 740 freepage(page); 741 } 742 743 return 1; 744 745 cannot_free: 746 spin_unlock_irqrestore(&mapping->tree_lock, flags); 747 return 0; 748 } 749 750 /* 751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 752 * someone else has a ref on the page, abort and return 0. If it was 753 * successfully detached, return 1. Assumes the caller has a single ref on 754 * this page. 755 */ 756 int remove_mapping(struct address_space *mapping, struct page *page) 757 { 758 if (__remove_mapping(mapping, page, false)) { 759 /* 760 * Unfreezing the refcount with 1 rather than 2 effectively 761 * drops the pagecache ref for us without requiring another 762 * atomic operation. 763 */ 764 page_ref_unfreeze(page, 1); 765 return 1; 766 } 767 return 0; 768 } 769 770 /** 771 * putback_lru_page - put previously isolated page onto appropriate LRU list 772 * @page: page to be put back to appropriate lru list 773 * 774 * Add previously isolated @page to appropriate LRU list. 775 * Page may still be unevictable for other reasons. 776 * 777 * lru_lock must not be held, interrupts must be enabled. 778 */ 779 void putback_lru_page(struct page *page) 780 { 781 bool is_unevictable; 782 int was_unevictable = PageUnevictable(page); 783 784 VM_BUG_ON_PAGE(PageLRU(page), page); 785 786 redo: 787 ClearPageUnevictable(page); 788 789 if (page_evictable(page)) { 790 /* 791 * For evictable pages, we can use the cache. 792 * In event of a race, worst case is we end up with an 793 * unevictable page on [in]active list. 794 * We know how to handle that. 795 */ 796 is_unevictable = false; 797 lru_cache_add(page); 798 } else { 799 /* 800 * Put unevictable pages directly on zone's unevictable 801 * list. 802 */ 803 is_unevictable = true; 804 add_page_to_unevictable_list(page); 805 /* 806 * When racing with an mlock or AS_UNEVICTABLE clearing 807 * (page is unlocked) make sure that if the other thread 808 * does not observe our setting of PG_lru and fails 809 * isolation/check_move_unevictable_pages, 810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 811 * the page back to the evictable list. 812 * 813 * The other side is TestClearPageMlocked() or shmem_lock(). 814 */ 815 smp_mb(); 816 } 817 818 /* 819 * page's status can change while we move it among lru. If an evictable 820 * page is on unevictable list, it never be freed. To avoid that, 821 * check after we added it to the list, again. 822 */ 823 if (is_unevictable && page_evictable(page)) { 824 if (!isolate_lru_page(page)) { 825 put_page(page); 826 goto redo; 827 } 828 /* This means someone else dropped this page from LRU 829 * So, it will be freed or putback to LRU again. There is 830 * nothing to do here. 831 */ 832 } 833 834 if (was_unevictable && !is_unevictable) 835 count_vm_event(UNEVICTABLE_PGRESCUED); 836 else if (!was_unevictable && is_unevictable) 837 count_vm_event(UNEVICTABLE_PGCULLED); 838 839 put_page(page); /* drop ref from isolate */ 840 } 841 842 enum page_references { 843 PAGEREF_RECLAIM, 844 PAGEREF_RECLAIM_CLEAN, 845 PAGEREF_KEEP, 846 PAGEREF_ACTIVATE, 847 }; 848 849 static enum page_references page_check_references(struct page *page, 850 struct scan_control *sc) 851 { 852 int referenced_ptes, referenced_page; 853 unsigned long vm_flags; 854 855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 856 &vm_flags); 857 referenced_page = TestClearPageReferenced(page); 858 859 /* 860 * Mlock lost the isolation race with us. Let try_to_unmap() 861 * move the page to the unevictable list. 862 */ 863 if (vm_flags & VM_LOCKED) 864 return PAGEREF_RECLAIM; 865 866 if (referenced_ptes) { 867 if (PageSwapBacked(page)) 868 return PAGEREF_ACTIVATE; 869 /* 870 * All mapped pages start out with page table 871 * references from the instantiating fault, so we need 872 * to look twice if a mapped file page is used more 873 * than once. 874 * 875 * Mark it and spare it for another trip around the 876 * inactive list. Another page table reference will 877 * lead to its activation. 878 * 879 * Note: the mark is set for activated pages as well 880 * so that recently deactivated but used pages are 881 * quickly recovered. 882 */ 883 SetPageReferenced(page); 884 885 if (referenced_page || referenced_ptes > 1) 886 return PAGEREF_ACTIVATE; 887 888 /* 889 * Activate file-backed executable pages after first usage. 890 */ 891 if (vm_flags & VM_EXEC) 892 return PAGEREF_ACTIVATE; 893 894 return PAGEREF_KEEP; 895 } 896 897 /* Reclaim if clean, defer dirty pages to writeback */ 898 if (referenced_page && !PageSwapBacked(page)) 899 return PAGEREF_RECLAIM_CLEAN; 900 901 return PAGEREF_RECLAIM; 902 } 903 904 /* Check if a page is dirty or under writeback */ 905 static void page_check_dirty_writeback(struct page *page, 906 bool *dirty, bool *writeback) 907 { 908 struct address_space *mapping; 909 910 /* 911 * Anonymous pages are not handled by flushers and must be written 912 * from reclaim context. Do not stall reclaim based on them 913 */ 914 if (!page_is_file_cache(page) || 915 (PageAnon(page) && !PageSwapBacked(page))) { 916 *dirty = false; 917 *writeback = false; 918 return; 919 } 920 921 /* By default assume that the page flags are accurate */ 922 *dirty = PageDirty(page); 923 *writeback = PageWriteback(page); 924 925 /* Verify dirty/writeback state if the filesystem supports it */ 926 if (!page_has_private(page)) 927 return; 928 929 mapping = page_mapping(page); 930 if (mapping && mapping->a_ops->is_dirty_writeback) 931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 932 } 933 934 struct reclaim_stat { 935 unsigned nr_dirty; 936 unsigned nr_unqueued_dirty; 937 unsigned nr_congested; 938 unsigned nr_writeback; 939 unsigned nr_immediate; 940 unsigned nr_activate; 941 unsigned nr_ref_keep; 942 unsigned nr_unmap_fail; 943 }; 944 945 /* 946 * shrink_page_list() returns the number of reclaimed pages 947 */ 948 static unsigned long shrink_page_list(struct list_head *page_list, 949 struct pglist_data *pgdat, 950 struct scan_control *sc, 951 enum ttu_flags ttu_flags, 952 struct reclaim_stat *stat, 953 bool force_reclaim) 954 { 955 LIST_HEAD(ret_pages); 956 LIST_HEAD(free_pages); 957 int pgactivate = 0; 958 unsigned nr_unqueued_dirty = 0; 959 unsigned nr_dirty = 0; 960 unsigned nr_congested = 0; 961 unsigned nr_reclaimed = 0; 962 unsigned nr_writeback = 0; 963 unsigned nr_immediate = 0; 964 unsigned nr_ref_keep = 0; 965 unsigned nr_unmap_fail = 0; 966 967 cond_resched(); 968 969 while (!list_empty(page_list)) { 970 struct address_space *mapping; 971 struct page *page; 972 int may_enter_fs; 973 enum page_references references = PAGEREF_RECLAIM_CLEAN; 974 bool dirty, writeback; 975 976 cond_resched(); 977 978 page = lru_to_page(page_list); 979 list_del(&page->lru); 980 981 if (!trylock_page(page)) 982 goto keep; 983 984 VM_BUG_ON_PAGE(PageActive(page), page); 985 986 sc->nr_scanned++; 987 988 if (unlikely(!page_evictable(page))) 989 goto activate_locked; 990 991 if (!sc->may_unmap && page_mapped(page)) 992 goto keep_locked; 993 994 /* Double the slab pressure for mapped and swapcache pages */ 995 if ((page_mapped(page) || PageSwapCache(page)) && 996 !(PageAnon(page) && !PageSwapBacked(page))) 997 sc->nr_scanned++; 998 999 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1001 1002 /* 1003 * The number of dirty pages determines if a zone is marked 1004 * reclaim_congested which affects wait_iff_congested. kswapd 1005 * will stall and start writing pages if the tail of the LRU 1006 * is all dirty unqueued pages. 1007 */ 1008 page_check_dirty_writeback(page, &dirty, &writeback); 1009 if (dirty || writeback) 1010 nr_dirty++; 1011 1012 if (dirty && !writeback) 1013 nr_unqueued_dirty++; 1014 1015 /* 1016 * Treat this page as congested if the underlying BDI is or if 1017 * pages are cycling through the LRU so quickly that the 1018 * pages marked for immediate reclaim are making it to the 1019 * end of the LRU a second time. 1020 */ 1021 mapping = page_mapping(page); 1022 if (((dirty || writeback) && mapping && 1023 inode_write_congested(mapping->host)) || 1024 (writeback && PageReclaim(page))) 1025 nr_congested++; 1026 1027 /* 1028 * If a page at the tail of the LRU is under writeback, there 1029 * are three cases to consider. 1030 * 1031 * 1) If reclaim is encountering an excessive number of pages 1032 * under writeback and this page is both under writeback and 1033 * PageReclaim then it indicates that pages are being queued 1034 * for IO but are being recycled through the LRU before the 1035 * IO can complete. Waiting on the page itself risks an 1036 * indefinite stall if it is impossible to writeback the 1037 * page due to IO error or disconnected storage so instead 1038 * note that the LRU is being scanned too quickly and the 1039 * caller can stall after page list has been processed. 1040 * 1041 * 2) Global or new memcg reclaim encounters a page that is 1042 * not marked for immediate reclaim, or the caller does not 1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1044 * not to fs). In this case mark the page for immediate 1045 * reclaim and continue scanning. 1046 * 1047 * Require may_enter_fs because we would wait on fs, which 1048 * may not have submitted IO yet. And the loop driver might 1049 * enter reclaim, and deadlock if it waits on a page for 1050 * which it is needed to do the write (loop masks off 1051 * __GFP_IO|__GFP_FS for this reason); but more thought 1052 * would probably show more reasons. 1053 * 1054 * 3) Legacy memcg encounters a page that is already marked 1055 * PageReclaim. memcg does not have any dirty pages 1056 * throttling so we could easily OOM just because too many 1057 * pages are in writeback and there is nothing else to 1058 * reclaim. Wait for the writeback to complete. 1059 * 1060 * In cases 1) and 2) we activate the pages to get them out of 1061 * the way while we continue scanning for clean pages on the 1062 * inactive list and refilling from the active list. The 1063 * observation here is that waiting for disk writes is more 1064 * expensive than potentially causing reloads down the line. 1065 * Since they're marked for immediate reclaim, they won't put 1066 * memory pressure on the cache working set any longer than it 1067 * takes to write them to disk. 1068 */ 1069 if (PageWriteback(page)) { 1070 /* Case 1 above */ 1071 if (current_is_kswapd() && 1072 PageReclaim(page) && 1073 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1074 nr_immediate++; 1075 goto activate_locked; 1076 1077 /* Case 2 above */ 1078 } else if (sane_reclaim(sc) || 1079 !PageReclaim(page) || !may_enter_fs) { 1080 /* 1081 * This is slightly racy - end_page_writeback() 1082 * might have just cleared PageReclaim, then 1083 * setting PageReclaim here end up interpreted 1084 * as PageReadahead - but that does not matter 1085 * enough to care. What we do want is for this 1086 * page to have PageReclaim set next time memcg 1087 * reclaim reaches the tests above, so it will 1088 * then wait_on_page_writeback() to avoid OOM; 1089 * and it's also appropriate in global reclaim. 1090 */ 1091 SetPageReclaim(page); 1092 nr_writeback++; 1093 goto activate_locked; 1094 1095 /* Case 3 above */ 1096 } else { 1097 unlock_page(page); 1098 wait_on_page_writeback(page); 1099 /* then go back and try same page again */ 1100 list_add_tail(&page->lru, page_list); 1101 continue; 1102 } 1103 } 1104 1105 if (!force_reclaim) 1106 references = page_check_references(page, sc); 1107 1108 switch (references) { 1109 case PAGEREF_ACTIVATE: 1110 goto activate_locked; 1111 case PAGEREF_KEEP: 1112 nr_ref_keep++; 1113 goto keep_locked; 1114 case PAGEREF_RECLAIM: 1115 case PAGEREF_RECLAIM_CLEAN: 1116 ; /* try to reclaim the page below */ 1117 } 1118 1119 /* 1120 * Anonymous process memory has backing store? 1121 * Try to allocate it some swap space here. 1122 * Lazyfree page could be freed directly 1123 */ 1124 if (PageAnon(page) && PageSwapBacked(page) && 1125 !PageSwapCache(page)) { 1126 if (!(sc->gfp_mask & __GFP_IO)) 1127 goto keep_locked; 1128 if (!add_to_swap(page, page_list)) 1129 goto activate_locked; 1130 may_enter_fs = 1; 1131 1132 /* Adding to swap updated mapping */ 1133 mapping = page_mapping(page); 1134 } else if (unlikely(PageTransHuge(page))) { 1135 /* Split file THP */ 1136 if (split_huge_page_to_list(page, page_list)) 1137 goto keep_locked; 1138 } 1139 1140 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1141 1142 /* 1143 * The page is mapped into the page tables of one or more 1144 * processes. Try to unmap it here. 1145 */ 1146 if (page_mapped(page)) { 1147 if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) { 1148 nr_unmap_fail++; 1149 goto activate_locked; 1150 } 1151 } 1152 1153 if (PageDirty(page)) { 1154 /* 1155 * Only kswapd can writeback filesystem pages 1156 * to avoid risk of stack overflow. But avoid 1157 * injecting inefficient single-page IO into 1158 * flusher writeback as much as possible: only 1159 * write pages when we've encountered many 1160 * dirty pages, and when we've already scanned 1161 * the rest of the LRU for clean pages and see 1162 * the same dirty pages again (PageReclaim). 1163 */ 1164 if (page_is_file_cache(page) && 1165 (!current_is_kswapd() || !PageReclaim(page) || 1166 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1167 /* 1168 * Immediately reclaim when written back. 1169 * Similar in principal to deactivate_page() 1170 * except we already have the page isolated 1171 * and know it's dirty 1172 */ 1173 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1174 SetPageReclaim(page); 1175 1176 goto activate_locked; 1177 } 1178 1179 if (references == PAGEREF_RECLAIM_CLEAN) 1180 goto keep_locked; 1181 if (!may_enter_fs) 1182 goto keep_locked; 1183 if (!sc->may_writepage) 1184 goto keep_locked; 1185 1186 /* 1187 * Page is dirty. Flush the TLB if a writable entry 1188 * potentially exists to avoid CPU writes after IO 1189 * starts and then write it out here. 1190 */ 1191 try_to_unmap_flush_dirty(); 1192 switch (pageout(page, mapping, sc)) { 1193 case PAGE_KEEP: 1194 goto keep_locked; 1195 case PAGE_ACTIVATE: 1196 goto activate_locked; 1197 case PAGE_SUCCESS: 1198 if (PageWriteback(page)) 1199 goto keep; 1200 if (PageDirty(page)) 1201 goto keep; 1202 1203 /* 1204 * A synchronous write - probably a ramdisk. Go 1205 * ahead and try to reclaim the page. 1206 */ 1207 if (!trylock_page(page)) 1208 goto keep; 1209 if (PageDirty(page) || PageWriteback(page)) 1210 goto keep_locked; 1211 mapping = page_mapping(page); 1212 case PAGE_CLEAN: 1213 ; /* try to free the page below */ 1214 } 1215 } 1216 1217 /* 1218 * If the page has buffers, try to free the buffer mappings 1219 * associated with this page. If we succeed we try to free 1220 * the page as well. 1221 * 1222 * We do this even if the page is PageDirty(). 1223 * try_to_release_page() does not perform I/O, but it is 1224 * possible for a page to have PageDirty set, but it is actually 1225 * clean (all its buffers are clean). This happens if the 1226 * buffers were written out directly, with submit_bh(). ext3 1227 * will do this, as well as the blockdev mapping. 1228 * try_to_release_page() will discover that cleanness and will 1229 * drop the buffers and mark the page clean - it can be freed. 1230 * 1231 * Rarely, pages can have buffers and no ->mapping. These are 1232 * the pages which were not successfully invalidated in 1233 * truncate_complete_page(). We try to drop those buffers here 1234 * and if that worked, and the page is no longer mapped into 1235 * process address space (page_count == 1) it can be freed. 1236 * Otherwise, leave the page on the LRU so it is swappable. 1237 */ 1238 if (page_has_private(page)) { 1239 if (!try_to_release_page(page, sc->gfp_mask)) 1240 goto activate_locked; 1241 if (!mapping && page_count(page) == 1) { 1242 unlock_page(page); 1243 if (put_page_testzero(page)) 1244 goto free_it; 1245 else { 1246 /* 1247 * rare race with speculative reference. 1248 * the speculative reference will free 1249 * this page shortly, so we may 1250 * increment nr_reclaimed here (and 1251 * leave it off the LRU). 1252 */ 1253 nr_reclaimed++; 1254 continue; 1255 } 1256 } 1257 } 1258 1259 if (PageAnon(page) && !PageSwapBacked(page)) { 1260 /* follow __remove_mapping for reference */ 1261 if (!page_ref_freeze(page, 1)) 1262 goto keep_locked; 1263 if (PageDirty(page)) { 1264 page_ref_unfreeze(page, 1); 1265 goto keep_locked; 1266 } 1267 1268 count_vm_event(PGLAZYFREED); 1269 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1270 goto keep_locked; 1271 /* 1272 * At this point, we have no other references and there is 1273 * no way to pick any more up (removed from LRU, removed 1274 * from pagecache). Can use non-atomic bitops now (and 1275 * we obviously don't have to worry about waking up a process 1276 * waiting on the page lock, because there are no references. 1277 */ 1278 __ClearPageLocked(page); 1279 free_it: 1280 nr_reclaimed++; 1281 1282 /* 1283 * Is there need to periodically free_page_list? It would 1284 * appear not as the counts should be low 1285 */ 1286 list_add(&page->lru, &free_pages); 1287 continue; 1288 1289 activate_locked: 1290 /* Not a candidate for swapping, so reclaim swap space. */ 1291 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1292 PageMlocked(page))) 1293 try_to_free_swap(page); 1294 VM_BUG_ON_PAGE(PageActive(page), page); 1295 if (!PageMlocked(page)) { 1296 SetPageActive(page); 1297 pgactivate++; 1298 } 1299 keep_locked: 1300 unlock_page(page); 1301 keep: 1302 list_add(&page->lru, &ret_pages); 1303 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1304 } 1305 1306 mem_cgroup_uncharge_list(&free_pages); 1307 try_to_unmap_flush(); 1308 free_hot_cold_page_list(&free_pages, true); 1309 1310 list_splice(&ret_pages, page_list); 1311 count_vm_events(PGACTIVATE, pgactivate); 1312 1313 if (stat) { 1314 stat->nr_dirty = nr_dirty; 1315 stat->nr_congested = nr_congested; 1316 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1317 stat->nr_writeback = nr_writeback; 1318 stat->nr_immediate = nr_immediate; 1319 stat->nr_activate = pgactivate; 1320 stat->nr_ref_keep = nr_ref_keep; 1321 stat->nr_unmap_fail = nr_unmap_fail; 1322 } 1323 return nr_reclaimed; 1324 } 1325 1326 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1327 struct list_head *page_list) 1328 { 1329 struct scan_control sc = { 1330 .gfp_mask = GFP_KERNEL, 1331 .priority = DEF_PRIORITY, 1332 .may_unmap = 1, 1333 }; 1334 unsigned long ret; 1335 struct page *page, *next; 1336 LIST_HEAD(clean_pages); 1337 1338 list_for_each_entry_safe(page, next, page_list, lru) { 1339 if (page_is_file_cache(page) && !PageDirty(page) && 1340 !__PageMovable(page)) { 1341 ClearPageActive(page); 1342 list_move(&page->lru, &clean_pages); 1343 } 1344 } 1345 1346 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1347 TTU_IGNORE_ACCESS, NULL, true); 1348 list_splice(&clean_pages, page_list); 1349 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1350 return ret; 1351 } 1352 1353 /* 1354 * Attempt to remove the specified page from its LRU. Only take this page 1355 * if it is of the appropriate PageActive status. Pages which are being 1356 * freed elsewhere are also ignored. 1357 * 1358 * page: page to consider 1359 * mode: one of the LRU isolation modes defined above 1360 * 1361 * returns 0 on success, -ve errno on failure. 1362 */ 1363 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1364 { 1365 int ret = -EINVAL; 1366 1367 /* Only take pages on the LRU. */ 1368 if (!PageLRU(page)) 1369 return ret; 1370 1371 /* Compaction should not handle unevictable pages but CMA can do so */ 1372 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1373 return ret; 1374 1375 ret = -EBUSY; 1376 1377 /* 1378 * To minimise LRU disruption, the caller can indicate that it only 1379 * wants to isolate pages it will be able to operate on without 1380 * blocking - clean pages for the most part. 1381 * 1382 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1383 * that it is possible to migrate without blocking 1384 */ 1385 if (mode & ISOLATE_ASYNC_MIGRATE) { 1386 /* All the caller can do on PageWriteback is block */ 1387 if (PageWriteback(page)) 1388 return ret; 1389 1390 if (PageDirty(page)) { 1391 struct address_space *mapping; 1392 1393 /* 1394 * Only pages without mappings or that have a 1395 * ->migratepage callback are possible to migrate 1396 * without blocking 1397 */ 1398 mapping = page_mapping(page); 1399 if (mapping && !mapping->a_ops->migratepage) 1400 return ret; 1401 } 1402 } 1403 1404 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1405 return ret; 1406 1407 if (likely(get_page_unless_zero(page))) { 1408 /* 1409 * Be careful not to clear PageLRU until after we're 1410 * sure the page is not being freed elsewhere -- the 1411 * page release code relies on it. 1412 */ 1413 ClearPageLRU(page); 1414 ret = 0; 1415 } 1416 1417 return ret; 1418 } 1419 1420 1421 /* 1422 * Update LRU sizes after isolating pages. The LRU size updates must 1423 * be complete before mem_cgroup_update_lru_size due to a santity check. 1424 */ 1425 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1426 enum lru_list lru, unsigned long *nr_zone_taken) 1427 { 1428 int zid; 1429 1430 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1431 if (!nr_zone_taken[zid]) 1432 continue; 1433 1434 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1435 #ifdef CONFIG_MEMCG 1436 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1437 #endif 1438 } 1439 1440 } 1441 1442 /* 1443 * zone_lru_lock is heavily contended. Some of the functions that 1444 * shrink the lists perform better by taking out a batch of pages 1445 * and working on them outside the LRU lock. 1446 * 1447 * For pagecache intensive workloads, this function is the hottest 1448 * spot in the kernel (apart from copy_*_user functions). 1449 * 1450 * Appropriate locks must be held before calling this function. 1451 * 1452 * @nr_to_scan: The number of eligible pages to look through on the list. 1453 * @lruvec: The LRU vector to pull pages from. 1454 * @dst: The temp list to put pages on to. 1455 * @nr_scanned: The number of pages that were scanned. 1456 * @sc: The scan_control struct for this reclaim session 1457 * @mode: One of the LRU isolation modes 1458 * @lru: LRU list id for isolating 1459 * 1460 * returns how many pages were moved onto *@dst. 1461 */ 1462 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1463 struct lruvec *lruvec, struct list_head *dst, 1464 unsigned long *nr_scanned, struct scan_control *sc, 1465 isolate_mode_t mode, enum lru_list lru) 1466 { 1467 struct list_head *src = &lruvec->lists[lru]; 1468 unsigned long nr_taken = 0; 1469 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1470 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1471 unsigned long skipped = 0; 1472 unsigned long scan, total_scan, nr_pages; 1473 LIST_HEAD(pages_skipped); 1474 1475 scan = 0; 1476 for (total_scan = 0; 1477 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1478 total_scan++) { 1479 struct page *page; 1480 1481 page = lru_to_page(src); 1482 prefetchw_prev_lru_page(page, src, flags); 1483 1484 VM_BUG_ON_PAGE(!PageLRU(page), page); 1485 1486 if (page_zonenum(page) > sc->reclaim_idx) { 1487 list_move(&page->lru, &pages_skipped); 1488 nr_skipped[page_zonenum(page)]++; 1489 continue; 1490 } 1491 1492 /* 1493 * Do not count skipped pages because that makes the function 1494 * return with no isolated pages if the LRU mostly contains 1495 * ineligible pages. This causes the VM to not reclaim any 1496 * pages, triggering a premature OOM. 1497 */ 1498 scan++; 1499 switch (__isolate_lru_page(page, mode)) { 1500 case 0: 1501 nr_pages = hpage_nr_pages(page); 1502 nr_taken += nr_pages; 1503 nr_zone_taken[page_zonenum(page)] += nr_pages; 1504 list_move(&page->lru, dst); 1505 break; 1506 1507 case -EBUSY: 1508 /* else it is being freed elsewhere */ 1509 list_move(&page->lru, src); 1510 continue; 1511 1512 default: 1513 BUG(); 1514 } 1515 } 1516 1517 /* 1518 * Splice any skipped pages to the start of the LRU list. Note that 1519 * this disrupts the LRU order when reclaiming for lower zones but 1520 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1521 * scanning would soon rescan the same pages to skip and put the 1522 * system at risk of premature OOM. 1523 */ 1524 if (!list_empty(&pages_skipped)) { 1525 int zid; 1526 1527 list_splice(&pages_skipped, src); 1528 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1529 if (!nr_skipped[zid]) 1530 continue; 1531 1532 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1533 skipped += nr_skipped[zid]; 1534 } 1535 } 1536 *nr_scanned = total_scan; 1537 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1538 total_scan, skipped, nr_taken, mode, lru); 1539 update_lru_sizes(lruvec, lru, nr_zone_taken); 1540 return nr_taken; 1541 } 1542 1543 /** 1544 * isolate_lru_page - tries to isolate a page from its LRU list 1545 * @page: page to isolate from its LRU list 1546 * 1547 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1548 * vmstat statistic corresponding to whatever LRU list the page was on. 1549 * 1550 * Returns 0 if the page was removed from an LRU list. 1551 * Returns -EBUSY if the page was not on an LRU list. 1552 * 1553 * The returned page will have PageLRU() cleared. If it was found on 1554 * the active list, it will have PageActive set. If it was found on 1555 * the unevictable list, it will have the PageUnevictable bit set. That flag 1556 * may need to be cleared by the caller before letting the page go. 1557 * 1558 * The vmstat statistic corresponding to the list on which the page was 1559 * found will be decremented. 1560 * 1561 * Restrictions: 1562 * (1) Must be called with an elevated refcount on the page. This is a 1563 * fundamentnal difference from isolate_lru_pages (which is called 1564 * without a stable reference). 1565 * (2) the lru_lock must not be held. 1566 * (3) interrupts must be enabled. 1567 */ 1568 int isolate_lru_page(struct page *page) 1569 { 1570 int ret = -EBUSY; 1571 1572 VM_BUG_ON_PAGE(!page_count(page), page); 1573 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1574 1575 if (PageLRU(page)) { 1576 struct zone *zone = page_zone(page); 1577 struct lruvec *lruvec; 1578 1579 spin_lock_irq(zone_lru_lock(zone)); 1580 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1581 if (PageLRU(page)) { 1582 int lru = page_lru(page); 1583 get_page(page); 1584 ClearPageLRU(page); 1585 del_page_from_lru_list(page, lruvec, lru); 1586 ret = 0; 1587 } 1588 spin_unlock_irq(zone_lru_lock(zone)); 1589 } 1590 return ret; 1591 } 1592 1593 /* 1594 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1595 * then get resheduled. When there are massive number of tasks doing page 1596 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1597 * the LRU list will go small and be scanned faster than necessary, leading to 1598 * unnecessary swapping, thrashing and OOM. 1599 */ 1600 static int too_many_isolated(struct pglist_data *pgdat, int file, 1601 struct scan_control *sc) 1602 { 1603 unsigned long inactive, isolated; 1604 1605 if (current_is_kswapd()) 1606 return 0; 1607 1608 if (!sane_reclaim(sc)) 1609 return 0; 1610 1611 if (file) { 1612 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1613 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1614 } else { 1615 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1616 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1617 } 1618 1619 /* 1620 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1621 * won't get blocked by normal direct-reclaimers, forming a circular 1622 * deadlock. 1623 */ 1624 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1625 inactive >>= 3; 1626 1627 return isolated > inactive; 1628 } 1629 1630 static noinline_for_stack void 1631 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1632 { 1633 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1634 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1635 LIST_HEAD(pages_to_free); 1636 1637 /* 1638 * Put back any unfreeable pages. 1639 */ 1640 while (!list_empty(page_list)) { 1641 struct page *page = lru_to_page(page_list); 1642 int lru; 1643 1644 VM_BUG_ON_PAGE(PageLRU(page), page); 1645 list_del(&page->lru); 1646 if (unlikely(!page_evictable(page))) { 1647 spin_unlock_irq(&pgdat->lru_lock); 1648 putback_lru_page(page); 1649 spin_lock_irq(&pgdat->lru_lock); 1650 continue; 1651 } 1652 1653 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1654 1655 SetPageLRU(page); 1656 lru = page_lru(page); 1657 add_page_to_lru_list(page, lruvec, lru); 1658 1659 if (is_active_lru(lru)) { 1660 int file = is_file_lru(lru); 1661 int numpages = hpage_nr_pages(page); 1662 reclaim_stat->recent_rotated[file] += numpages; 1663 } 1664 if (put_page_testzero(page)) { 1665 __ClearPageLRU(page); 1666 __ClearPageActive(page); 1667 del_page_from_lru_list(page, lruvec, lru); 1668 1669 if (unlikely(PageCompound(page))) { 1670 spin_unlock_irq(&pgdat->lru_lock); 1671 mem_cgroup_uncharge(page); 1672 (*get_compound_page_dtor(page))(page); 1673 spin_lock_irq(&pgdat->lru_lock); 1674 } else 1675 list_add(&page->lru, &pages_to_free); 1676 } 1677 } 1678 1679 /* 1680 * To save our caller's stack, now use input list for pages to free. 1681 */ 1682 list_splice(&pages_to_free, page_list); 1683 } 1684 1685 /* 1686 * If a kernel thread (such as nfsd for loop-back mounts) services 1687 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1688 * In that case we should only throttle if the backing device it is 1689 * writing to is congested. In other cases it is safe to throttle. 1690 */ 1691 static int current_may_throttle(void) 1692 { 1693 return !(current->flags & PF_LESS_THROTTLE) || 1694 current->backing_dev_info == NULL || 1695 bdi_write_congested(current->backing_dev_info); 1696 } 1697 1698 /* 1699 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1700 * of reclaimed pages 1701 */ 1702 static noinline_for_stack unsigned long 1703 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1704 struct scan_control *sc, enum lru_list lru) 1705 { 1706 LIST_HEAD(page_list); 1707 unsigned long nr_scanned; 1708 unsigned long nr_reclaimed = 0; 1709 unsigned long nr_taken; 1710 struct reclaim_stat stat = {}; 1711 isolate_mode_t isolate_mode = 0; 1712 int file = is_file_lru(lru); 1713 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1714 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1715 1716 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1717 congestion_wait(BLK_RW_ASYNC, HZ/10); 1718 1719 /* We are about to die and free our memory. Return now. */ 1720 if (fatal_signal_pending(current)) 1721 return SWAP_CLUSTER_MAX; 1722 } 1723 1724 lru_add_drain(); 1725 1726 if (!sc->may_unmap) 1727 isolate_mode |= ISOLATE_UNMAPPED; 1728 1729 spin_lock_irq(&pgdat->lru_lock); 1730 1731 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1732 &nr_scanned, sc, isolate_mode, lru); 1733 1734 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1735 reclaim_stat->recent_scanned[file] += nr_taken; 1736 1737 if (global_reclaim(sc)) { 1738 if (current_is_kswapd()) 1739 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1740 else 1741 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1742 } 1743 spin_unlock_irq(&pgdat->lru_lock); 1744 1745 if (nr_taken == 0) 1746 return 0; 1747 1748 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1749 &stat, false); 1750 1751 spin_lock_irq(&pgdat->lru_lock); 1752 1753 if (global_reclaim(sc)) { 1754 if (current_is_kswapd()) 1755 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1756 else 1757 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1758 } 1759 1760 putback_inactive_pages(lruvec, &page_list); 1761 1762 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1763 1764 spin_unlock_irq(&pgdat->lru_lock); 1765 1766 mem_cgroup_uncharge_list(&page_list); 1767 free_hot_cold_page_list(&page_list, true); 1768 1769 /* 1770 * If reclaim is isolating dirty pages under writeback, it implies 1771 * that the long-lived page allocation rate is exceeding the page 1772 * laundering rate. Either the global limits are not being effective 1773 * at throttling processes due to the page distribution throughout 1774 * zones or there is heavy usage of a slow backing device. The 1775 * only option is to throttle from reclaim context which is not ideal 1776 * as there is no guarantee the dirtying process is throttled in the 1777 * same way balance_dirty_pages() manages. 1778 * 1779 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1780 * of pages under pages flagged for immediate reclaim and stall if any 1781 * are encountered in the nr_immediate check below. 1782 */ 1783 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1784 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1785 1786 /* 1787 * Legacy memcg will stall in page writeback so avoid forcibly 1788 * stalling here. 1789 */ 1790 if (sane_reclaim(sc)) { 1791 /* 1792 * Tag a zone as congested if all the dirty pages scanned were 1793 * backed by a congested BDI and wait_iff_congested will stall. 1794 */ 1795 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1796 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1797 1798 /* 1799 * If dirty pages are scanned that are not queued for IO, it 1800 * implies that flushers are not doing their job. This can 1801 * happen when memory pressure pushes dirty pages to the end of 1802 * the LRU before the dirty limits are breached and the dirty 1803 * data has expired. It can also happen when the proportion of 1804 * dirty pages grows not through writes but through memory 1805 * pressure reclaiming all the clean cache. And in some cases, 1806 * the flushers simply cannot keep up with the allocation 1807 * rate. Nudge the flusher threads in case they are asleep, but 1808 * also allow kswapd to start writing pages during reclaim. 1809 */ 1810 if (stat.nr_unqueued_dirty == nr_taken) { 1811 wakeup_flusher_threads(0, WB_REASON_VMSCAN); 1812 set_bit(PGDAT_DIRTY, &pgdat->flags); 1813 } 1814 1815 /* 1816 * If kswapd scans pages marked marked for immediate 1817 * reclaim and under writeback (nr_immediate), it implies 1818 * that pages are cycling through the LRU faster than 1819 * they are written so also forcibly stall. 1820 */ 1821 if (stat.nr_immediate && current_may_throttle()) 1822 congestion_wait(BLK_RW_ASYNC, HZ/10); 1823 } 1824 1825 /* 1826 * Stall direct reclaim for IO completions if underlying BDIs or zone 1827 * is congested. Allow kswapd to continue until it starts encountering 1828 * unqueued dirty pages or cycling through the LRU too quickly. 1829 */ 1830 if (!sc->hibernation_mode && !current_is_kswapd() && 1831 current_may_throttle()) 1832 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1833 1834 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1835 nr_scanned, nr_reclaimed, 1836 stat.nr_dirty, stat.nr_writeback, 1837 stat.nr_congested, stat.nr_immediate, 1838 stat.nr_activate, stat.nr_ref_keep, 1839 stat.nr_unmap_fail, 1840 sc->priority, file); 1841 return nr_reclaimed; 1842 } 1843 1844 /* 1845 * This moves pages from the active list to the inactive list. 1846 * 1847 * We move them the other way if the page is referenced by one or more 1848 * processes, from rmap. 1849 * 1850 * If the pages are mostly unmapped, the processing is fast and it is 1851 * appropriate to hold zone_lru_lock across the whole operation. But if 1852 * the pages are mapped, the processing is slow (page_referenced()) so we 1853 * should drop zone_lru_lock around each page. It's impossible to balance 1854 * this, so instead we remove the pages from the LRU while processing them. 1855 * It is safe to rely on PG_active against the non-LRU pages in here because 1856 * nobody will play with that bit on a non-LRU page. 1857 * 1858 * The downside is that we have to touch page->_refcount against each page. 1859 * But we had to alter page->flags anyway. 1860 * 1861 * Returns the number of pages moved to the given lru. 1862 */ 1863 1864 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1865 struct list_head *list, 1866 struct list_head *pages_to_free, 1867 enum lru_list lru) 1868 { 1869 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1870 struct page *page; 1871 int nr_pages; 1872 int nr_moved = 0; 1873 1874 while (!list_empty(list)) { 1875 page = lru_to_page(list); 1876 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1877 1878 VM_BUG_ON_PAGE(PageLRU(page), page); 1879 SetPageLRU(page); 1880 1881 nr_pages = hpage_nr_pages(page); 1882 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1883 list_move(&page->lru, &lruvec->lists[lru]); 1884 1885 if (put_page_testzero(page)) { 1886 __ClearPageLRU(page); 1887 __ClearPageActive(page); 1888 del_page_from_lru_list(page, lruvec, lru); 1889 1890 if (unlikely(PageCompound(page))) { 1891 spin_unlock_irq(&pgdat->lru_lock); 1892 mem_cgroup_uncharge(page); 1893 (*get_compound_page_dtor(page))(page); 1894 spin_lock_irq(&pgdat->lru_lock); 1895 } else 1896 list_add(&page->lru, pages_to_free); 1897 } else { 1898 nr_moved += nr_pages; 1899 } 1900 } 1901 1902 if (!is_active_lru(lru)) 1903 __count_vm_events(PGDEACTIVATE, nr_moved); 1904 1905 return nr_moved; 1906 } 1907 1908 static void shrink_active_list(unsigned long nr_to_scan, 1909 struct lruvec *lruvec, 1910 struct scan_control *sc, 1911 enum lru_list lru) 1912 { 1913 unsigned long nr_taken; 1914 unsigned long nr_scanned; 1915 unsigned long vm_flags; 1916 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1917 LIST_HEAD(l_active); 1918 LIST_HEAD(l_inactive); 1919 struct page *page; 1920 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1921 unsigned nr_deactivate, nr_activate; 1922 unsigned nr_rotated = 0; 1923 isolate_mode_t isolate_mode = 0; 1924 int file = is_file_lru(lru); 1925 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1926 1927 lru_add_drain(); 1928 1929 if (!sc->may_unmap) 1930 isolate_mode |= ISOLATE_UNMAPPED; 1931 1932 spin_lock_irq(&pgdat->lru_lock); 1933 1934 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1935 &nr_scanned, sc, isolate_mode, lru); 1936 1937 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1938 reclaim_stat->recent_scanned[file] += nr_taken; 1939 1940 __count_vm_events(PGREFILL, nr_scanned); 1941 1942 spin_unlock_irq(&pgdat->lru_lock); 1943 1944 while (!list_empty(&l_hold)) { 1945 cond_resched(); 1946 page = lru_to_page(&l_hold); 1947 list_del(&page->lru); 1948 1949 if (unlikely(!page_evictable(page))) { 1950 putback_lru_page(page); 1951 continue; 1952 } 1953 1954 if (unlikely(buffer_heads_over_limit)) { 1955 if (page_has_private(page) && trylock_page(page)) { 1956 if (page_has_private(page)) 1957 try_to_release_page(page, 0); 1958 unlock_page(page); 1959 } 1960 } 1961 1962 if (page_referenced(page, 0, sc->target_mem_cgroup, 1963 &vm_flags)) { 1964 nr_rotated += hpage_nr_pages(page); 1965 /* 1966 * Identify referenced, file-backed active pages and 1967 * give them one more trip around the active list. So 1968 * that executable code get better chances to stay in 1969 * memory under moderate memory pressure. Anon pages 1970 * are not likely to be evicted by use-once streaming 1971 * IO, plus JVM can create lots of anon VM_EXEC pages, 1972 * so we ignore them here. 1973 */ 1974 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1975 list_add(&page->lru, &l_active); 1976 continue; 1977 } 1978 } 1979 1980 ClearPageActive(page); /* we are de-activating */ 1981 list_add(&page->lru, &l_inactive); 1982 } 1983 1984 /* 1985 * Move pages back to the lru list. 1986 */ 1987 spin_lock_irq(&pgdat->lru_lock); 1988 /* 1989 * Count referenced pages from currently used mappings as rotated, 1990 * even though only some of them are actually re-activated. This 1991 * helps balance scan pressure between file and anonymous pages in 1992 * get_scan_count. 1993 */ 1994 reclaim_stat->recent_rotated[file] += nr_rotated; 1995 1996 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1997 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1998 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1999 spin_unlock_irq(&pgdat->lru_lock); 2000 2001 mem_cgroup_uncharge_list(&l_hold); 2002 free_hot_cold_page_list(&l_hold, true); 2003 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2004 nr_deactivate, nr_rotated, sc->priority, file); 2005 } 2006 2007 /* 2008 * The inactive anon list should be small enough that the VM never has 2009 * to do too much work. 2010 * 2011 * The inactive file list should be small enough to leave most memory 2012 * to the established workingset on the scan-resistant active list, 2013 * but large enough to avoid thrashing the aggregate readahead window. 2014 * 2015 * Both inactive lists should also be large enough that each inactive 2016 * page has a chance to be referenced again before it is reclaimed. 2017 * 2018 * If that fails and refaulting is observed, the inactive list grows. 2019 * 2020 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2021 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2022 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2023 * 2024 * total target max 2025 * memory ratio inactive 2026 * ------------------------------------- 2027 * 10MB 1 5MB 2028 * 100MB 1 50MB 2029 * 1GB 3 250MB 2030 * 10GB 10 0.9GB 2031 * 100GB 31 3GB 2032 * 1TB 101 10GB 2033 * 10TB 320 32GB 2034 */ 2035 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2036 struct mem_cgroup *memcg, 2037 struct scan_control *sc, bool actual_reclaim) 2038 { 2039 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2040 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2041 enum lru_list inactive_lru = file * LRU_FILE; 2042 unsigned long inactive, active; 2043 unsigned long inactive_ratio; 2044 unsigned long refaults; 2045 unsigned long gb; 2046 2047 /* 2048 * If we don't have swap space, anonymous page deactivation 2049 * is pointless. 2050 */ 2051 if (!file && !total_swap_pages) 2052 return false; 2053 2054 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2055 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2056 2057 if (memcg) 2058 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2059 else 2060 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2061 2062 /* 2063 * When refaults are being observed, it means a new workingset 2064 * is being established. Disable active list protection to get 2065 * rid of the stale workingset quickly. 2066 */ 2067 if (file && actual_reclaim && lruvec->refaults != refaults) { 2068 inactive_ratio = 0; 2069 } else { 2070 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2071 if (gb) 2072 inactive_ratio = int_sqrt(10 * gb); 2073 else 2074 inactive_ratio = 1; 2075 } 2076 2077 if (actual_reclaim) 2078 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2079 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2080 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2081 inactive_ratio, file); 2082 2083 return inactive * inactive_ratio < active; 2084 } 2085 2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2087 struct lruvec *lruvec, struct mem_cgroup *memcg, 2088 struct scan_control *sc) 2089 { 2090 if (is_active_lru(lru)) { 2091 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2092 memcg, sc, true)) 2093 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2094 return 0; 2095 } 2096 2097 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2098 } 2099 2100 enum scan_balance { 2101 SCAN_EQUAL, 2102 SCAN_FRACT, 2103 SCAN_ANON, 2104 SCAN_FILE, 2105 }; 2106 2107 /* 2108 * Determine how aggressively the anon and file LRU lists should be 2109 * scanned. The relative value of each set of LRU lists is determined 2110 * by looking at the fraction of the pages scanned we did rotate back 2111 * onto the active list instead of evict. 2112 * 2113 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2114 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2115 */ 2116 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2117 struct scan_control *sc, unsigned long *nr, 2118 unsigned long *lru_pages) 2119 { 2120 int swappiness = mem_cgroup_swappiness(memcg); 2121 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2122 u64 fraction[2]; 2123 u64 denominator = 0; /* gcc */ 2124 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2125 unsigned long anon_prio, file_prio; 2126 enum scan_balance scan_balance; 2127 unsigned long anon, file; 2128 unsigned long ap, fp; 2129 enum lru_list lru; 2130 2131 /* If we have no swap space, do not bother scanning anon pages. */ 2132 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2133 scan_balance = SCAN_FILE; 2134 goto out; 2135 } 2136 2137 /* 2138 * Global reclaim will swap to prevent OOM even with no 2139 * swappiness, but memcg users want to use this knob to 2140 * disable swapping for individual groups completely when 2141 * using the memory controller's swap limit feature would be 2142 * too expensive. 2143 */ 2144 if (!global_reclaim(sc) && !swappiness) { 2145 scan_balance = SCAN_FILE; 2146 goto out; 2147 } 2148 2149 /* 2150 * Do not apply any pressure balancing cleverness when the 2151 * system is close to OOM, scan both anon and file equally 2152 * (unless the swappiness setting disagrees with swapping). 2153 */ 2154 if (!sc->priority && swappiness) { 2155 scan_balance = SCAN_EQUAL; 2156 goto out; 2157 } 2158 2159 /* 2160 * Prevent the reclaimer from falling into the cache trap: as 2161 * cache pages start out inactive, every cache fault will tip 2162 * the scan balance towards the file LRU. And as the file LRU 2163 * shrinks, so does the window for rotation from references. 2164 * This means we have a runaway feedback loop where a tiny 2165 * thrashing file LRU becomes infinitely more attractive than 2166 * anon pages. Try to detect this based on file LRU size. 2167 */ 2168 if (global_reclaim(sc)) { 2169 unsigned long pgdatfile; 2170 unsigned long pgdatfree; 2171 int z; 2172 unsigned long total_high_wmark = 0; 2173 2174 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2175 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2176 node_page_state(pgdat, NR_INACTIVE_FILE); 2177 2178 for (z = 0; z < MAX_NR_ZONES; z++) { 2179 struct zone *zone = &pgdat->node_zones[z]; 2180 if (!managed_zone(zone)) 2181 continue; 2182 2183 total_high_wmark += high_wmark_pages(zone); 2184 } 2185 2186 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2187 scan_balance = SCAN_ANON; 2188 goto out; 2189 } 2190 } 2191 2192 /* 2193 * If there is enough inactive page cache, i.e. if the size of the 2194 * inactive list is greater than that of the active list *and* the 2195 * inactive list actually has some pages to scan on this priority, we 2196 * do not reclaim anything from the anonymous working set right now. 2197 * Without the second condition we could end up never scanning an 2198 * lruvec even if it has plenty of old anonymous pages unless the 2199 * system is under heavy pressure. 2200 */ 2201 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2202 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2203 scan_balance = SCAN_FILE; 2204 goto out; 2205 } 2206 2207 scan_balance = SCAN_FRACT; 2208 2209 /* 2210 * With swappiness at 100, anonymous and file have the same priority. 2211 * This scanning priority is essentially the inverse of IO cost. 2212 */ 2213 anon_prio = swappiness; 2214 file_prio = 200 - anon_prio; 2215 2216 /* 2217 * OK, so we have swap space and a fair amount of page cache 2218 * pages. We use the recently rotated / recently scanned 2219 * ratios to determine how valuable each cache is. 2220 * 2221 * Because workloads change over time (and to avoid overflow) 2222 * we keep these statistics as a floating average, which ends 2223 * up weighing recent references more than old ones. 2224 * 2225 * anon in [0], file in [1] 2226 */ 2227 2228 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2229 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2230 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2231 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2232 2233 spin_lock_irq(&pgdat->lru_lock); 2234 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2235 reclaim_stat->recent_scanned[0] /= 2; 2236 reclaim_stat->recent_rotated[0] /= 2; 2237 } 2238 2239 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2240 reclaim_stat->recent_scanned[1] /= 2; 2241 reclaim_stat->recent_rotated[1] /= 2; 2242 } 2243 2244 /* 2245 * The amount of pressure on anon vs file pages is inversely 2246 * proportional to the fraction of recently scanned pages on 2247 * each list that were recently referenced and in active use. 2248 */ 2249 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2250 ap /= reclaim_stat->recent_rotated[0] + 1; 2251 2252 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2253 fp /= reclaim_stat->recent_rotated[1] + 1; 2254 spin_unlock_irq(&pgdat->lru_lock); 2255 2256 fraction[0] = ap; 2257 fraction[1] = fp; 2258 denominator = ap + fp + 1; 2259 out: 2260 *lru_pages = 0; 2261 for_each_evictable_lru(lru) { 2262 int file = is_file_lru(lru); 2263 unsigned long size; 2264 unsigned long scan; 2265 2266 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2267 scan = size >> sc->priority; 2268 /* 2269 * If the cgroup's already been deleted, make sure to 2270 * scrape out the remaining cache. 2271 */ 2272 if (!scan && !mem_cgroup_online(memcg)) 2273 scan = min(size, SWAP_CLUSTER_MAX); 2274 2275 switch (scan_balance) { 2276 case SCAN_EQUAL: 2277 /* Scan lists relative to size */ 2278 break; 2279 case SCAN_FRACT: 2280 /* 2281 * Scan types proportional to swappiness and 2282 * their relative recent reclaim efficiency. 2283 */ 2284 scan = div64_u64(scan * fraction[file], 2285 denominator); 2286 break; 2287 case SCAN_FILE: 2288 case SCAN_ANON: 2289 /* Scan one type exclusively */ 2290 if ((scan_balance == SCAN_FILE) != file) { 2291 size = 0; 2292 scan = 0; 2293 } 2294 break; 2295 default: 2296 /* Look ma, no brain */ 2297 BUG(); 2298 } 2299 2300 *lru_pages += size; 2301 nr[lru] = scan; 2302 } 2303 } 2304 2305 /* 2306 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2307 */ 2308 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2309 struct scan_control *sc, unsigned long *lru_pages) 2310 { 2311 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2312 unsigned long nr[NR_LRU_LISTS]; 2313 unsigned long targets[NR_LRU_LISTS]; 2314 unsigned long nr_to_scan; 2315 enum lru_list lru; 2316 unsigned long nr_reclaimed = 0; 2317 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2318 struct blk_plug plug; 2319 bool scan_adjusted; 2320 2321 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2322 2323 /* Record the original scan target for proportional adjustments later */ 2324 memcpy(targets, nr, sizeof(nr)); 2325 2326 /* 2327 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2328 * event that can occur when there is little memory pressure e.g. 2329 * multiple streaming readers/writers. Hence, we do not abort scanning 2330 * when the requested number of pages are reclaimed when scanning at 2331 * DEF_PRIORITY on the assumption that the fact we are direct 2332 * reclaiming implies that kswapd is not keeping up and it is best to 2333 * do a batch of work at once. For memcg reclaim one check is made to 2334 * abort proportional reclaim if either the file or anon lru has already 2335 * dropped to zero at the first pass. 2336 */ 2337 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2338 sc->priority == DEF_PRIORITY); 2339 2340 blk_start_plug(&plug); 2341 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2342 nr[LRU_INACTIVE_FILE]) { 2343 unsigned long nr_anon, nr_file, percentage; 2344 unsigned long nr_scanned; 2345 2346 for_each_evictable_lru(lru) { 2347 if (nr[lru]) { 2348 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2349 nr[lru] -= nr_to_scan; 2350 2351 nr_reclaimed += shrink_list(lru, nr_to_scan, 2352 lruvec, memcg, sc); 2353 } 2354 } 2355 2356 cond_resched(); 2357 2358 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2359 continue; 2360 2361 /* 2362 * For kswapd and memcg, reclaim at least the number of pages 2363 * requested. Ensure that the anon and file LRUs are scanned 2364 * proportionally what was requested by get_scan_count(). We 2365 * stop reclaiming one LRU and reduce the amount scanning 2366 * proportional to the original scan target. 2367 */ 2368 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2369 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2370 2371 /* 2372 * It's just vindictive to attack the larger once the smaller 2373 * has gone to zero. And given the way we stop scanning the 2374 * smaller below, this makes sure that we only make one nudge 2375 * towards proportionality once we've got nr_to_reclaim. 2376 */ 2377 if (!nr_file || !nr_anon) 2378 break; 2379 2380 if (nr_file > nr_anon) { 2381 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2382 targets[LRU_ACTIVE_ANON] + 1; 2383 lru = LRU_BASE; 2384 percentage = nr_anon * 100 / scan_target; 2385 } else { 2386 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2387 targets[LRU_ACTIVE_FILE] + 1; 2388 lru = LRU_FILE; 2389 percentage = nr_file * 100 / scan_target; 2390 } 2391 2392 /* Stop scanning the smaller of the LRU */ 2393 nr[lru] = 0; 2394 nr[lru + LRU_ACTIVE] = 0; 2395 2396 /* 2397 * Recalculate the other LRU scan count based on its original 2398 * scan target and the percentage scanning already complete 2399 */ 2400 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2401 nr_scanned = targets[lru] - nr[lru]; 2402 nr[lru] = targets[lru] * (100 - percentage) / 100; 2403 nr[lru] -= min(nr[lru], nr_scanned); 2404 2405 lru += LRU_ACTIVE; 2406 nr_scanned = targets[lru] - nr[lru]; 2407 nr[lru] = targets[lru] * (100 - percentage) / 100; 2408 nr[lru] -= min(nr[lru], nr_scanned); 2409 2410 scan_adjusted = true; 2411 } 2412 blk_finish_plug(&plug); 2413 sc->nr_reclaimed += nr_reclaimed; 2414 2415 /* 2416 * Even if we did not try to evict anon pages at all, we want to 2417 * rebalance the anon lru active/inactive ratio. 2418 */ 2419 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2420 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2421 sc, LRU_ACTIVE_ANON); 2422 } 2423 2424 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2425 static bool in_reclaim_compaction(struct scan_control *sc) 2426 { 2427 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2428 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2429 sc->priority < DEF_PRIORITY - 2)) 2430 return true; 2431 2432 return false; 2433 } 2434 2435 /* 2436 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2437 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2438 * true if more pages should be reclaimed such that when the page allocator 2439 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2440 * It will give up earlier than that if there is difficulty reclaiming pages. 2441 */ 2442 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2443 unsigned long nr_reclaimed, 2444 unsigned long nr_scanned, 2445 struct scan_control *sc) 2446 { 2447 unsigned long pages_for_compaction; 2448 unsigned long inactive_lru_pages; 2449 int z; 2450 2451 /* If not in reclaim/compaction mode, stop */ 2452 if (!in_reclaim_compaction(sc)) 2453 return false; 2454 2455 /* Consider stopping depending on scan and reclaim activity */ 2456 if (sc->gfp_mask & __GFP_REPEAT) { 2457 /* 2458 * For __GFP_REPEAT allocations, stop reclaiming if the 2459 * full LRU list has been scanned and we are still failing 2460 * to reclaim pages. This full LRU scan is potentially 2461 * expensive but a __GFP_REPEAT caller really wants to succeed 2462 */ 2463 if (!nr_reclaimed && !nr_scanned) 2464 return false; 2465 } else { 2466 /* 2467 * For non-__GFP_REPEAT allocations which can presumably 2468 * fail without consequence, stop if we failed to reclaim 2469 * any pages from the last SWAP_CLUSTER_MAX number of 2470 * pages that were scanned. This will return to the 2471 * caller faster at the risk reclaim/compaction and 2472 * the resulting allocation attempt fails 2473 */ 2474 if (!nr_reclaimed) 2475 return false; 2476 } 2477 2478 /* 2479 * If we have not reclaimed enough pages for compaction and the 2480 * inactive lists are large enough, continue reclaiming 2481 */ 2482 pages_for_compaction = compact_gap(sc->order); 2483 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2484 if (get_nr_swap_pages() > 0) 2485 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2486 if (sc->nr_reclaimed < pages_for_compaction && 2487 inactive_lru_pages > pages_for_compaction) 2488 return true; 2489 2490 /* If compaction would go ahead or the allocation would succeed, stop */ 2491 for (z = 0; z <= sc->reclaim_idx; z++) { 2492 struct zone *zone = &pgdat->node_zones[z]; 2493 if (!managed_zone(zone)) 2494 continue; 2495 2496 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2497 case COMPACT_SUCCESS: 2498 case COMPACT_CONTINUE: 2499 return false; 2500 default: 2501 /* check next zone */ 2502 ; 2503 } 2504 } 2505 return true; 2506 } 2507 2508 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2509 { 2510 struct reclaim_state *reclaim_state = current->reclaim_state; 2511 unsigned long nr_reclaimed, nr_scanned; 2512 bool reclaimable = false; 2513 2514 do { 2515 struct mem_cgroup *root = sc->target_mem_cgroup; 2516 struct mem_cgroup_reclaim_cookie reclaim = { 2517 .pgdat = pgdat, 2518 .priority = sc->priority, 2519 }; 2520 unsigned long node_lru_pages = 0; 2521 struct mem_cgroup *memcg; 2522 2523 nr_reclaimed = sc->nr_reclaimed; 2524 nr_scanned = sc->nr_scanned; 2525 2526 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2527 do { 2528 unsigned long lru_pages; 2529 unsigned long reclaimed; 2530 unsigned long scanned; 2531 2532 if (mem_cgroup_low(root, memcg)) { 2533 if (!sc->memcg_low_reclaim) { 2534 sc->memcg_low_skipped = 1; 2535 continue; 2536 } 2537 mem_cgroup_event(memcg, MEMCG_LOW); 2538 } 2539 2540 reclaimed = sc->nr_reclaimed; 2541 scanned = sc->nr_scanned; 2542 2543 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2544 node_lru_pages += lru_pages; 2545 2546 if (memcg) 2547 shrink_slab(sc->gfp_mask, pgdat->node_id, 2548 memcg, sc->nr_scanned - scanned, 2549 lru_pages); 2550 2551 /* Record the group's reclaim efficiency */ 2552 vmpressure(sc->gfp_mask, memcg, false, 2553 sc->nr_scanned - scanned, 2554 sc->nr_reclaimed - reclaimed); 2555 2556 /* 2557 * Direct reclaim and kswapd have to scan all memory 2558 * cgroups to fulfill the overall scan target for the 2559 * node. 2560 * 2561 * Limit reclaim, on the other hand, only cares about 2562 * nr_to_reclaim pages to be reclaimed and it will 2563 * retry with decreasing priority if one round over the 2564 * whole hierarchy is not sufficient. 2565 */ 2566 if (!global_reclaim(sc) && 2567 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2568 mem_cgroup_iter_break(root, memcg); 2569 break; 2570 } 2571 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2572 2573 /* 2574 * Shrink the slab caches in the same proportion that 2575 * the eligible LRU pages were scanned. 2576 */ 2577 if (global_reclaim(sc)) 2578 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2579 sc->nr_scanned - nr_scanned, 2580 node_lru_pages); 2581 2582 if (reclaim_state) { 2583 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2584 reclaim_state->reclaimed_slab = 0; 2585 } 2586 2587 /* Record the subtree's reclaim efficiency */ 2588 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2589 sc->nr_scanned - nr_scanned, 2590 sc->nr_reclaimed - nr_reclaimed); 2591 2592 if (sc->nr_reclaimed - nr_reclaimed) 2593 reclaimable = true; 2594 2595 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2596 sc->nr_scanned - nr_scanned, sc)); 2597 2598 /* 2599 * Kswapd gives up on balancing particular nodes after too 2600 * many failures to reclaim anything from them and goes to 2601 * sleep. On reclaim progress, reset the failure counter. A 2602 * successful direct reclaim run will revive a dormant kswapd. 2603 */ 2604 if (reclaimable) 2605 pgdat->kswapd_failures = 0; 2606 2607 return reclaimable; 2608 } 2609 2610 /* 2611 * Returns true if compaction should go ahead for a costly-order request, or 2612 * the allocation would already succeed without compaction. Return false if we 2613 * should reclaim first. 2614 */ 2615 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2616 { 2617 unsigned long watermark; 2618 enum compact_result suitable; 2619 2620 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2621 if (suitable == COMPACT_SUCCESS) 2622 /* Allocation should succeed already. Don't reclaim. */ 2623 return true; 2624 if (suitable == COMPACT_SKIPPED) 2625 /* Compaction cannot yet proceed. Do reclaim. */ 2626 return false; 2627 2628 /* 2629 * Compaction is already possible, but it takes time to run and there 2630 * are potentially other callers using the pages just freed. So proceed 2631 * with reclaim to make a buffer of free pages available to give 2632 * compaction a reasonable chance of completing and allocating the page. 2633 * Note that we won't actually reclaim the whole buffer in one attempt 2634 * as the target watermark in should_continue_reclaim() is lower. But if 2635 * we are already above the high+gap watermark, don't reclaim at all. 2636 */ 2637 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2638 2639 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2640 } 2641 2642 /* 2643 * This is the direct reclaim path, for page-allocating processes. We only 2644 * try to reclaim pages from zones which will satisfy the caller's allocation 2645 * request. 2646 * 2647 * If a zone is deemed to be full of pinned pages then just give it a light 2648 * scan then give up on it. 2649 */ 2650 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2651 { 2652 struct zoneref *z; 2653 struct zone *zone; 2654 unsigned long nr_soft_reclaimed; 2655 unsigned long nr_soft_scanned; 2656 gfp_t orig_mask; 2657 pg_data_t *last_pgdat = NULL; 2658 2659 /* 2660 * If the number of buffer_heads in the machine exceeds the maximum 2661 * allowed level, force direct reclaim to scan the highmem zone as 2662 * highmem pages could be pinning lowmem pages storing buffer_heads 2663 */ 2664 orig_mask = sc->gfp_mask; 2665 if (buffer_heads_over_limit) { 2666 sc->gfp_mask |= __GFP_HIGHMEM; 2667 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2668 } 2669 2670 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2671 sc->reclaim_idx, sc->nodemask) { 2672 /* 2673 * Take care memory controller reclaiming has small influence 2674 * to global LRU. 2675 */ 2676 if (global_reclaim(sc)) { 2677 if (!cpuset_zone_allowed(zone, 2678 GFP_KERNEL | __GFP_HARDWALL)) 2679 continue; 2680 2681 /* 2682 * If we already have plenty of memory free for 2683 * compaction in this zone, don't free any more. 2684 * Even though compaction is invoked for any 2685 * non-zero order, only frequent costly order 2686 * reclamation is disruptive enough to become a 2687 * noticeable problem, like transparent huge 2688 * page allocations. 2689 */ 2690 if (IS_ENABLED(CONFIG_COMPACTION) && 2691 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2692 compaction_ready(zone, sc)) { 2693 sc->compaction_ready = true; 2694 continue; 2695 } 2696 2697 /* 2698 * Shrink each node in the zonelist once. If the 2699 * zonelist is ordered by zone (not the default) then a 2700 * node may be shrunk multiple times but in that case 2701 * the user prefers lower zones being preserved. 2702 */ 2703 if (zone->zone_pgdat == last_pgdat) 2704 continue; 2705 2706 /* 2707 * This steals pages from memory cgroups over softlimit 2708 * and returns the number of reclaimed pages and 2709 * scanned pages. This works for global memory pressure 2710 * and balancing, not for a memcg's limit. 2711 */ 2712 nr_soft_scanned = 0; 2713 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2714 sc->order, sc->gfp_mask, 2715 &nr_soft_scanned); 2716 sc->nr_reclaimed += nr_soft_reclaimed; 2717 sc->nr_scanned += nr_soft_scanned; 2718 /* need some check for avoid more shrink_zone() */ 2719 } 2720 2721 /* See comment about same check for global reclaim above */ 2722 if (zone->zone_pgdat == last_pgdat) 2723 continue; 2724 last_pgdat = zone->zone_pgdat; 2725 shrink_node(zone->zone_pgdat, sc); 2726 } 2727 2728 /* 2729 * Restore to original mask to avoid the impact on the caller if we 2730 * promoted it to __GFP_HIGHMEM. 2731 */ 2732 sc->gfp_mask = orig_mask; 2733 } 2734 2735 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2736 { 2737 struct mem_cgroup *memcg; 2738 2739 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2740 do { 2741 unsigned long refaults; 2742 struct lruvec *lruvec; 2743 2744 if (memcg) 2745 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2746 else 2747 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2748 2749 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2750 lruvec->refaults = refaults; 2751 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2752 } 2753 2754 /* 2755 * This is the main entry point to direct page reclaim. 2756 * 2757 * If a full scan of the inactive list fails to free enough memory then we 2758 * are "out of memory" and something needs to be killed. 2759 * 2760 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2761 * high - the zone may be full of dirty or under-writeback pages, which this 2762 * caller can't do much about. We kick the writeback threads and take explicit 2763 * naps in the hope that some of these pages can be written. But if the 2764 * allocating task holds filesystem locks which prevent writeout this might not 2765 * work, and the allocation attempt will fail. 2766 * 2767 * returns: 0, if no pages reclaimed 2768 * else, the number of pages reclaimed 2769 */ 2770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2771 struct scan_control *sc) 2772 { 2773 int initial_priority = sc->priority; 2774 pg_data_t *last_pgdat; 2775 struct zoneref *z; 2776 struct zone *zone; 2777 retry: 2778 delayacct_freepages_start(); 2779 2780 if (global_reclaim(sc)) 2781 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2782 2783 do { 2784 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2785 sc->priority); 2786 sc->nr_scanned = 0; 2787 shrink_zones(zonelist, sc); 2788 2789 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2790 break; 2791 2792 if (sc->compaction_ready) 2793 break; 2794 2795 /* 2796 * If we're getting trouble reclaiming, start doing 2797 * writepage even in laptop mode. 2798 */ 2799 if (sc->priority < DEF_PRIORITY - 2) 2800 sc->may_writepage = 1; 2801 } while (--sc->priority >= 0); 2802 2803 last_pgdat = NULL; 2804 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2805 sc->nodemask) { 2806 if (zone->zone_pgdat == last_pgdat) 2807 continue; 2808 last_pgdat = zone->zone_pgdat; 2809 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2810 } 2811 2812 delayacct_freepages_end(); 2813 2814 if (sc->nr_reclaimed) 2815 return sc->nr_reclaimed; 2816 2817 /* Aborted reclaim to try compaction? don't OOM, then */ 2818 if (sc->compaction_ready) 2819 return 1; 2820 2821 /* Untapped cgroup reserves? Don't OOM, retry. */ 2822 if (sc->memcg_low_skipped) { 2823 sc->priority = initial_priority; 2824 sc->memcg_low_reclaim = 1; 2825 sc->memcg_low_skipped = 0; 2826 goto retry; 2827 } 2828 2829 return 0; 2830 } 2831 2832 static bool allow_direct_reclaim(pg_data_t *pgdat) 2833 { 2834 struct zone *zone; 2835 unsigned long pfmemalloc_reserve = 0; 2836 unsigned long free_pages = 0; 2837 int i; 2838 bool wmark_ok; 2839 2840 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2841 return true; 2842 2843 for (i = 0; i <= ZONE_NORMAL; i++) { 2844 zone = &pgdat->node_zones[i]; 2845 if (!managed_zone(zone)) 2846 continue; 2847 2848 if (!zone_reclaimable_pages(zone)) 2849 continue; 2850 2851 pfmemalloc_reserve += min_wmark_pages(zone); 2852 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2853 } 2854 2855 /* If there are no reserves (unexpected config) then do not throttle */ 2856 if (!pfmemalloc_reserve) 2857 return true; 2858 2859 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2860 2861 /* kswapd must be awake if processes are being throttled */ 2862 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2863 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2864 (enum zone_type)ZONE_NORMAL); 2865 wake_up_interruptible(&pgdat->kswapd_wait); 2866 } 2867 2868 return wmark_ok; 2869 } 2870 2871 /* 2872 * Throttle direct reclaimers if backing storage is backed by the network 2873 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2874 * depleted. kswapd will continue to make progress and wake the processes 2875 * when the low watermark is reached. 2876 * 2877 * Returns true if a fatal signal was delivered during throttling. If this 2878 * happens, the page allocator should not consider triggering the OOM killer. 2879 */ 2880 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2881 nodemask_t *nodemask) 2882 { 2883 struct zoneref *z; 2884 struct zone *zone; 2885 pg_data_t *pgdat = NULL; 2886 2887 /* 2888 * Kernel threads should not be throttled as they may be indirectly 2889 * responsible for cleaning pages necessary for reclaim to make forward 2890 * progress. kjournald for example may enter direct reclaim while 2891 * committing a transaction where throttling it could forcing other 2892 * processes to block on log_wait_commit(). 2893 */ 2894 if (current->flags & PF_KTHREAD) 2895 goto out; 2896 2897 /* 2898 * If a fatal signal is pending, this process should not throttle. 2899 * It should return quickly so it can exit and free its memory 2900 */ 2901 if (fatal_signal_pending(current)) 2902 goto out; 2903 2904 /* 2905 * Check if the pfmemalloc reserves are ok by finding the first node 2906 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2907 * GFP_KERNEL will be required for allocating network buffers when 2908 * swapping over the network so ZONE_HIGHMEM is unusable. 2909 * 2910 * Throttling is based on the first usable node and throttled processes 2911 * wait on a queue until kswapd makes progress and wakes them. There 2912 * is an affinity then between processes waking up and where reclaim 2913 * progress has been made assuming the process wakes on the same node. 2914 * More importantly, processes running on remote nodes will not compete 2915 * for remote pfmemalloc reserves and processes on different nodes 2916 * should make reasonable progress. 2917 */ 2918 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2919 gfp_zone(gfp_mask), nodemask) { 2920 if (zone_idx(zone) > ZONE_NORMAL) 2921 continue; 2922 2923 /* Throttle based on the first usable node */ 2924 pgdat = zone->zone_pgdat; 2925 if (allow_direct_reclaim(pgdat)) 2926 goto out; 2927 break; 2928 } 2929 2930 /* If no zone was usable by the allocation flags then do not throttle */ 2931 if (!pgdat) 2932 goto out; 2933 2934 /* Account for the throttling */ 2935 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2936 2937 /* 2938 * If the caller cannot enter the filesystem, it's possible that it 2939 * is due to the caller holding an FS lock or performing a journal 2940 * transaction in the case of a filesystem like ext[3|4]. In this case, 2941 * it is not safe to block on pfmemalloc_wait as kswapd could be 2942 * blocked waiting on the same lock. Instead, throttle for up to a 2943 * second before continuing. 2944 */ 2945 if (!(gfp_mask & __GFP_FS)) { 2946 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2947 allow_direct_reclaim(pgdat), HZ); 2948 2949 goto check_pending; 2950 } 2951 2952 /* Throttle until kswapd wakes the process */ 2953 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2954 allow_direct_reclaim(pgdat)); 2955 2956 check_pending: 2957 if (fatal_signal_pending(current)) 2958 return true; 2959 2960 out: 2961 return false; 2962 } 2963 2964 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2965 gfp_t gfp_mask, nodemask_t *nodemask) 2966 { 2967 unsigned long nr_reclaimed; 2968 struct scan_control sc = { 2969 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2970 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)), 2971 .reclaim_idx = gfp_zone(gfp_mask), 2972 .order = order, 2973 .nodemask = nodemask, 2974 .priority = DEF_PRIORITY, 2975 .may_writepage = !laptop_mode, 2976 .may_unmap = 1, 2977 .may_swap = 1, 2978 }; 2979 2980 /* 2981 * Do not enter reclaim if fatal signal was delivered while throttled. 2982 * 1 is returned so that the page allocator does not OOM kill at this 2983 * point. 2984 */ 2985 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2986 return 1; 2987 2988 trace_mm_vmscan_direct_reclaim_begin(order, 2989 sc.may_writepage, 2990 gfp_mask, 2991 sc.reclaim_idx); 2992 2993 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2994 2995 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2996 2997 return nr_reclaimed; 2998 } 2999 3000 #ifdef CONFIG_MEMCG 3001 3002 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3003 gfp_t gfp_mask, bool noswap, 3004 pg_data_t *pgdat, 3005 unsigned long *nr_scanned) 3006 { 3007 struct scan_control sc = { 3008 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3009 .target_mem_cgroup = memcg, 3010 .may_writepage = !laptop_mode, 3011 .may_unmap = 1, 3012 .reclaim_idx = MAX_NR_ZONES - 1, 3013 .may_swap = !noswap, 3014 }; 3015 unsigned long lru_pages; 3016 3017 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3018 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3019 3020 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3021 sc.may_writepage, 3022 sc.gfp_mask, 3023 sc.reclaim_idx); 3024 3025 /* 3026 * NOTE: Although we can get the priority field, using it 3027 * here is not a good idea, since it limits the pages we can scan. 3028 * if we don't reclaim here, the shrink_node from balance_pgdat 3029 * will pick up pages from other mem cgroup's as well. We hack 3030 * the priority and make it zero. 3031 */ 3032 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3033 3034 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3035 3036 *nr_scanned = sc.nr_scanned; 3037 return sc.nr_reclaimed; 3038 } 3039 3040 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3041 unsigned long nr_pages, 3042 gfp_t gfp_mask, 3043 bool may_swap) 3044 { 3045 struct zonelist *zonelist; 3046 unsigned long nr_reclaimed; 3047 int nid; 3048 unsigned int noreclaim_flag; 3049 struct scan_control sc = { 3050 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3051 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3052 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3053 .reclaim_idx = MAX_NR_ZONES - 1, 3054 .target_mem_cgroup = memcg, 3055 .priority = DEF_PRIORITY, 3056 .may_writepage = !laptop_mode, 3057 .may_unmap = 1, 3058 .may_swap = may_swap, 3059 }; 3060 3061 /* 3062 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3063 * take care of from where we get pages. So the node where we start the 3064 * scan does not need to be the current node. 3065 */ 3066 nid = mem_cgroup_select_victim_node(memcg); 3067 3068 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3069 3070 trace_mm_vmscan_memcg_reclaim_begin(0, 3071 sc.may_writepage, 3072 sc.gfp_mask, 3073 sc.reclaim_idx); 3074 3075 noreclaim_flag = memalloc_noreclaim_save(); 3076 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3077 memalloc_noreclaim_restore(noreclaim_flag); 3078 3079 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3080 3081 return nr_reclaimed; 3082 } 3083 #endif 3084 3085 static void age_active_anon(struct pglist_data *pgdat, 3086 struct scan_control *sc) 3087 { 3088 struct mem_cgroup *memcg; 3089 3090 if (!total_swap_pages) 3091 return; 3092 3093 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3094 do { 3095 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3096 3097 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3098 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3099 sc, LRU_ACTIVE_ANON); 3100 3101 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3102 } while (memcg); 3103 } 3104 3105 /* 3106 * Returns true if there is an eligible zone balanced for the request order 3107 * and classzone_idx 3108 */ 3109 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3110 { 3111 int i; 3112 unsigned long mark = -1; 3113 struct zone *zone; 3114 3115 for (i = 0; i <= classzone_idx; i++) { 3116 zone = pgdat->node_zones + i; 3117 3118 if (!managed_zone(zone)) 3119 continue; 3120 3121 mark = high_wmark_pages(zone); 3122 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3123 return true; 3124 } 3125 3126 /* 3127 * If a node has no populated zone within classzone_idx, it does not 3128 * need balancing by definition. This can happen if a zone-restricted 3129 * allocation tries to wake a remote kswapd. 3130 */ 3131 if (mark == -1) 3132 return true; 3133 3134 return false; 3135 } 3136 3137 /* Clear pgdat state for congested, dirty or under writeback. */ 3138 static void clear_pgdat_congested(pg_data_t *pgdat) 3139 { 3140 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3141 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3142 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3143 } 3144 3145 /* 3146 * Prepare kswapd for sleeping. This verifies that there are no processes 3147 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3148 * 3149 * Returns true if kswapd is ready to sleep 3150 */ 3151 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3152 { 3153 /* 3154 * The throttled processes are normally woken up in balance_pgdat() as 3155 * soon as allow_direct_reclaim() is true. But there is a potential 3156 * race between when kswapd checks the watermarks and a process gets 3157 * throttled. There is also a potential race if processes get 3158 * throttled, kswapd wakes, a large process exits thereby balancing the 3159 * zones, which causes kswapd to exit balance_pgdat() before reaching 3160 * the wake up checks. If kswapd is going to sleep, no process should 3161 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3162 * the wake up is premature, processes will wake kswapd and get 3163 * throttled again. The difference from wake ups in balance_pgdat() is 3164 * that here we are under prepare_to_wait(). 3165 */ 3166 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3167 wake_up_all(&pgdat->pfmemalloc_wait); 3168 3169 /* Hopeless node, leave it to direct reclaim */ 3170 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3171 return true; 3172 3173 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3174 clear_pgdat_congested(pgdat); 3175 return true; 3176 } 3177 3178 return false; 3179 } 3180 3181 /* 3182 * kswapd shrinks a node of pages that are at or below the highest usable 3183 * zone that is currently unbalanced. 3184 * 3185 * Returns true if kswapd scanned at least the requested number of pages to 3186 * reclaim or if the lack of progress was due to pages under writeback. 3187 * This is used to determine if the scanning priority needs to be raised. 3188 */ 3189 static bool kswapd_shrink_node(pg_data_t *pgdat, 3190 struct scan_control *sc) 3191 { 3192 struct zone *zone; 3193 int z; 3194 3195 /* Reclaim a number of pages proportional to the number of zones */ 3196 sc->nr_to_reclaim = 0; 3197 for (z = 0; z <= sc->reclaim_idx; z++) { 3198 zone = pgdat->node_zones + z; 3199 if (!managed_zone(zone)) 3200 continue; 3201 3202 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3203 } 3204 3205 /* 3206 * Historically care was taken to put equal pressure on all zones but 3207 * now pressure is applied based on node LRU order. 3208 */ 3209 shrink_node(pgdat, sc); 3210 3211 /* 3212 * Fragmentation may mean that the system cannot be rebalanced for 3213 * high-order allocations. If twice the allocation size has been 3214 * reclaimed then recheck watermarks only at order-0 to prevent 3215 * excessive reclaim. Assume that a process requested a high-order 3216 * can direct reclaim/compact. 3217 */ 3218 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3219 sc->order = 0; 3220 3221 return sc->nr_scanned >= sc->nr_to_reclaim; 3222 } 3223 3224 /* 3225 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3226 * that are eligible for use by the caller until at least one zone is 3227 * balanced. 3228 * 3229 * Returns the order kswapd finished reclaiming at. 3230 * 3231 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3232 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3233 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3234 * or lower is eligible for reclaim until at least one usable zone is 3235 * balanced. 3236 */ 3237 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3238 { 3239 int i; 3240 unsigned long nr_soft_reclaimed; 3241 unsigned long nr_soft_scanned; 3242 struct zone *zone; 3243 struct scan_control sc = { 3244 .gfp_mask = GFP_KERNEL, 3245 .order = order, 3246 .priority = DEF_PRIORITY, 3247 .may_writepage = !laptop_mode, 3248 .may_unmap = 1, 3249 .may_swap = 1, 3250 }; 3251 count_vm_event(PAGEOUTRUN); 3252 3253 do { 3254 unsigned long nr_reclaimed = sc.nr_reclaimed; 3255 bool raise_priority = true; 3256 3257 sc.reclaim_idx = classzone_idx; 3258 3259 /* 3260 * If the number of buffer_heads exceeds the maximum allowed 3261 * then consider reclaiming from all zones. This has a dual 3262 * purpose -- on 64-bit systems it is expected that 3263 * buffer_heads are stripped during active rotation. On 32-bit 3264 * systems, highmem pages can pin lowmem memory and shrinking 3265 * buffers can relieve lowmem pressure. Reclaim may still not 3266 * go ahead if all eligible zones for the original allocation 3267 * request are balanced to avoid excessive reclaim from kswapd. 3268 */ 3269 if (buffer_heads_over_limit) { 3270 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3271 zone = pgdat->node_zones + i; 3272 if (!managed_zone(zone)) 3273 continue; 3274 3275 sc.reclaim_idx = i; 3276 break; 3277 } 3278 } 3279 3280 /* 3281 * Only reclaim if there are no eligible zones. Note that 3282 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3283 * have adjusted it. 3284 */ 3285 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3286 goto out; 3287 3288 /* 3289 * Do some background aging of the anon list, to give 3290 * pages a chance to be referenced before reclaiming. All 3291 * pages are rotated regardless of classzone as this is 3292 * about consistent aging. 3293 */ 3294 age_active_anon(pgdat, &sc); 3295 3296 /* 3297 * If we're getting trouble reclaiming, start doing writepage 3298 * even in laptop mode. 3299 */ 3300 if (sc.priority < DEF_PRIORITY - 2) 3301 sc.may_writepage = 1; 3302 3303 /* Call soft limit reclaim before calling shrink_node. */ 3304 sc.nr_scanned = 0; 3305 nr_soft_scanned = 0; 3306 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3307 sc.gfp_mask, &nr_soft_scanned); 3308 sc.nr_reclaimed += nr_soft_reclaimed; 3309 3310 /* 3311 * There should be no need to raise the scanning priority if 3312 * enough pages are already being scanned that that high 3313 * watermark would be met at 100% efficiency. 3314 */ 3315 if (kswapd_shrink_node(pgdat, &sc)) 3316 raise_priority = false; 3317 3318 /* 3319 * If the low watermark is met there is no need for processes 3320 * to be throttled on pfmemalloc_wait as they should not be 3321 * able to safely make forward progress. Wake them 3322 */ 3323 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3324 allow_direct_reclaim(pgdat)) 3325 wake_up_all(&pgdat->pfmemalloc_wait); 3326 3327 /* Check if kswapd should be suspending */ 3328 if (try_to_freeze() || kthread_should_stop()) 3329 break; 3330 3331 /* 3332 * Raise priority if scanning rate is too low or there was no 3333 * progress in reclaiming pages 3334 */ 3335 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3336 if (raise_priority || !nr_reclaimed) 3337 sc.priority--; 3338 } while (sc.priority >= 1); 3339 3340 if (!sc.nr_reclaimed) 3341 pgdat->kswapd_failures++; 3342 3343 out: 3344 snapshot_refaults(NULL, pgdat); 3345 /* 3346 * Return the order kswapd stopped reclaiming at as 3347 * prepare_kswapd_sleep() takes it into account. If another caller 3348 * entered the allocator slow path while kswapd was awake, order will 3349 * remain at the higher level. 3350 */ 3351 return sc.order; 3352 } 3353 3354 /* 3355 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3356 * allocation request woke kswapd for. When kswapd has not woken recently, 3357 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3358 * given classzone and returns it or the highest classzone index kswapd 3359 * was recently woke for. 3360 */ 3361 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3362 enum zone_type classzone_idx) 3363 { 3364 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3365 return classzone_idx; 3366 3367 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3368 } 3369 3370 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3371 unsigned int classzone_idx) 3372 { 3373 long remaining = 0; 3374 DEFINE_WAIT(wait); 3375 3376 if (freezing(current) || kthread_should_stop()) 3377 return; 3378 3379 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3380 3381 /* 3382 * Try to sleep for a short interval. Note that kcompactd will only be 3383 * woken if it is possible to sleep for a short interval. This is 3384 * deliberate on the assumption that if reclaim cannot keep an 3385 * eligible zone balanced that it's also unlikely that compaction will 3386 * succeed. 3387 */ 3388 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3389 /* 3390 * Compaction records what page blocks it recently failed to 3391 * isolate pages from and skips them in the future scanning. 3392 * When kswapd is going to sleep, it is reasonable to assume 3393 * that pages and compaction may succeed so reset the cache. 3394 */ 3395 reset_isolation_suitable(pgdat); 3396 3397 /* 3398 * We have freed the memory, now we should compact it to make 3399 * allocation of the requested order possible. 3400 */ 3401 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3402 3403 remaining = schedule_timeout(HZ/10); 3404 3405 /* 3406 * If woken prematurely then reset kswapd_classzone_idx and 3407 * order. The values will either be from a wakeup request or 3408 * the previous request that slept prematurely. 3409 */ 3410 if (remaining) { 3411 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3412 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3413 } 3414 3415 finish_wait(&pgdat->kswapd_wait, &wait); 3416 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3417 } 3418 3419 /* 3420 * After a short sleep, check if it was a premature sleep. If not, then 3421 * go fully to sleep until explicitly woken up. 3422 */ 3423 if (!remaining && 3424 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3425 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3426 3427 /* 3428 * vmstat counters are not perfectly accurate and the estimated 3429 * value for counters such as NR_FREE_PAGES can deviate from the 3430 * true value by nr_online_cpus * threshold. To avoid the zone 3431 * watermarks being breached while under pressure, we reduce the 3432 * per-cpu vmstat threshold while kswapd is awake and restore 3433 * them before going back to sleep. 3434 */ 3435 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3436 3437 if (!kthread_should_stop()) 3438 schedule(); 3439 3440 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3441 } else { 3442 if (remaining) 3443 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3444 else 3445 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3446 } 3447 finish_wait(&pgdat->kswapd_wait, &wait); 3448 } 3449 3450 /* 3451 * The background pageout daemon, started as a kernel thread 3452 * from the init process. 3453 * 3454 * This basically trickles out pages so that we have _some_ 3455 * free memory available even if there is no other activity 3456 * that frees anything up. This is needed for things like routing 3457 * etc, where we otherwise might have all activity going on in 3458 * asynchronous contexts that cannot page things out. 3459 * 3460 * If there are applications that are active memory-allocators 3461 * (most normal use), this basically shouldn't matter. 3462 */ 3463 static int kswapd(void *p) 3464 { 3465 unsigned int alloc_order, reclaim_order; 3466 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3467 pg_data_t *pgdat = (pg_data_t*)p; 3468 struct task_struct *tsk = current; 3469 3470 struct reclaim_state reclaim_state = { 3471 .reclaimed_slab = 0, 3472 }; 3473 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3474 3475 lockdep_set_current_reclaim_state(GFP_KERNEL); 3476 3477 if (!cpumask_empty(cpumask)) 3478 set_cpus_allowed_ptr(tsk, cpumask); 3479 current->reclaim_state = &reclaim_state; 3480 3481 /* 3482 * Tell the memory management that we're a "memory allocator", 3483 * and that if we need more memory we should get access to it 3484 * regardless (see "__alloc_pages()"). "kswapd" should 3485 * never get caught in the normal page freeing logic. 3486 * 3487 * (Kswapd normally doesn't need memory anyway, but sometimes 3488 * you need a small amount of memory in order to be able to 3489 * page out something else, and this flag essentially protects 3490 * us from recursively trying to free more memory as we're 3491 * trying to free the first piece of memory in the first place). 3492 */ 3493 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3494 set_freezable(); 3495 3496 pgdat->kswapd_order = 0; 3497 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3498 for ( ; ; ) { 3499 bool ret; 3500 3501 alloc_order = reclaim_order = pgdat->kswapd_order; 3502 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3503 3504 kswapd_try_sleep: 3505 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3506 classzone_idx); 3507 3508 /* Read the new order and classzone_idx */ 3509 alloc_order = reclaim_order = pgdat->kswapd_order; 3510 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3511 pgdat->kswapd_order = 0; 3512 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3513 3514 ret = try_to_freeze(); 3515 if (kthread_should_stop()) 3516 break; 3517 3518 /* 3519 * We can speed up thawing tasks if we don't call balance_pgdat 3520 * after returning from the refrigerator 3521 */ 3522 if (ret) 3523 continue; 3524 3525 /* 3526 * Reclaim begins at the requested order but if a high-order 3527 * reclaim fails then kswapd falls back to reclaiming for 3528 * order-0. If that happens, kswapd will consider sleeping 3529 * for the order it finished reclaiming at (reclaim_order) 3530 * but kcompactd is woken to compact for the original 3531 * request (alloc_order). 3532 */ 3533 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3534 alloc_order); 3535 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3536 if (reclaim_order < alloc_order) 3537 goto kswapd_try_sleep; 3538 } 3539 3540 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3541 current->reclaim_state = NULL; 3542 lockdep_clear_current_reclaim_state(); 3543 3544 return 0; 3545 } 3546 3547 /* 3548 * A zone is low on free memory, so wake its kswapd task to service it. 3549 */ 3550 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3551 { 3552 pg_data_t *pgdat; 3553 3554 if (!managed_zone(zone)) 3555 return; 3556 3557 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3558 return; 3559 pgdat = zone->zone_pgdat; 3560 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3561 classzone_idx); 3562 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3563 if (!waitqueue_active(&pgdat->kswapd_wait)) 3564 return; 3565 3566 /* Hopeless node, leave it to direct reclaim */ 3567 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3568 return; 3569 3570 if (pgdat_balanced(pgdat, order, classzone_idx)) 3571 return; 3572 3573 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order); 3574 wake_up_interruptible(&pgdat->kswapd_wait); 3575 } 3576 3577 #ifdef CONFIG_HIBERNATION 3578 /* 3579 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3580 * freed pages. 3581 * 3582 * Rather than trying to age LRUs the aim is to preserve the overall 3583 * LRU order by reclaiming preferentially 3584 * inactive > active > active referenced > active mapped 3585 */ 3586 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3587 { 3588 struct reclaim_state reclaim_state; 3589 struct scan_control sc = { 3590 .nr_to_reclaim = nr_to_reclaim, 3591 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3592 .reclaim_idx = MAX_NR_ZONES - 1, 3593 .priority = DEF_PRIORITY, 3594 .may_writepage = 1, 3595 .may_unmap = 1, 3596 .may_swap = 1, 3597 .hibernation_mode = 1, 3598 }; 3599 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3600 struct task_struct *p = current; 3601 unsigned long nr_reclaimed; 3602 unsigned int noreclaim_flag; 3603 3604 noreclaim_flag = memalloc_noreclaim_save(); 3605 lockdep_set_current_reclaim_state(sc.gfp_mask); 3606 reclaim_state.reclaimed_slab = 0; 3607 p->reclaim_state = &reclaim_state; 3608 3609 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3610 3611 p->reclaim_state = NULL; 3612 lockdep_clear_current_reclaim_state(); 3613 memalloc_noreclaim_restore(noreclaim_flag); 3614 3615 return nr_reclaimed; 3616 } 3617 #endif /* CONFIG_HIBERNATION */ 3618 3619 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3620 not required for correctness. So if the last cpu in a node goes 3621 away, we get changed to run anywhere: as the first one comes back, 3622 restore their cpu bindings. */ 3623 static int kswapd_cpu_online(unsigned int cpu) 3624 { 3625 int nid; 3626 3627 for_each_node_state(nid, N_MEMORY) { 3628 pg_data_t *pgdat = NODE_DATA(nid); 3629 const struct cpumask *mask; 3630 3631 mask = cpumask_of_node(pgdat->node_id); 3632 3633 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3634 /* One of our CPUs online: restore mask */ 3635 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3636 } 3637 return 0; 3638 } 3639 3640 /* 3641 * This kswapd start function will be called by init and node-hot-add. 3642 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3643 */ 3644 int kswapd_run(int nid) 3645 { 3646 pg_data_t *pgdat = NODE_DATA(nid); 3647 int ret = 0; 3648 3649 if (pgdat->kswapd) 3650 return 0; 3651 3652 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3653 if (IS_ERR(pgdat->kswapd)) { 3654 /* failure at boot is fatal */ 3655 BUG_ON(system_state == SYSTEM_BOOTING); 3656 pr_err("Failed to start kswapd on node %d\n", nid); 3657 ret = PTR_ERR(pgdat->kswapd); 3658 pgdat->kswapd = NULL; 3659 } 3660 return ret; 3661 } 3662 3663 /* 3664 * Called by memory hotplug when all memory in a node is offlined. Caller must 3665 * hold mem_hotplug_begin/end(). 3666 */ 3667 void kswapd_stop(int nid) 3668 { 3669 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3670 3671 if (kswapd) { 3672 kthread_stop(kswapd); 3673 NODE_DATA(nid)->kswapd = NULL; 3674 } 3675 } 3676 3677 static int __init kswapd_init(void) 3678 { 3679 int nid, ret; 3680 3681 swap_setup(); 3682 for_each_node_state(nid, N_MEMORY) 3683 kswapd_run(nid); 3684 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3685 "mm/vmscan:online", kswapd_cpu_online, 3686 NULL); 3687 WARN_ON(ret < 0); 3688 return 0; 3689 } 3690 3691 module_init(kswapd_init) 3692 3693 #ifdef CONFIG_NUMA 3694 /* 3695 * Node reclaim mode 3696 * 3697 * If non-zero call node_reclaim when the number of free pages falls below 3698 * the watermarks. 3699 */ 3700 int node_reclaim_mode __read_mostly; 3701 3702 #define RECLAIM_OFF 0 3703 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3704 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3705 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3706 3707 /* 3708 * Priority for NODE_RECLAIM. This determines the fraction of pages 3709 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3710 * a zone. 3711 */ 3712 #define NODE_RECLAIM_PRIORITY 4 3713 3714 /* 3715 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3716 * occur. 3717 */ 3718 int sysctl_min_unmapped_ratio = 1; 3719 3720 /* 3721 * If the number of slab pages in a zone grows beyond this percentage then 3722 * slab reclaim needs to occur. 3723 */ 3724 int sysctl_min_slab_ratio = 5; 3725 3726 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3727 { 3728 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3729 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3730 node_page_state(pgdat, NR_ACTIVE_FILE); 3731 3732 /* 3733 * It's possible for there to be more file mapped pages than 3734 * accounted for by the pages on the file LRU lists because 3735 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3736 */ 3737 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3738 } 3739 3740 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3741 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3742 { 3743 unsigned long nr_pagecache_reclaimable; 3744 unsigned long delta = 0; 3745 3746 /* 3747 * If RECLAIM_UNMAP is set, then all file pages are considered 3748 * potentially reclaimable. Otherwise, we have to worry about 3749 * pages like swapcache and node_unmapped_file_pages() provides 3750 * a better estimate 3751 */ 3752 if (node_reclaim_mode & RECLAIM_UNMAP) 3753 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3754 else 3755 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3756 3757 /* If we can't clean pages, remove dirty pages from consideration */ 3758 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3759 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3760 3761 /* Watch for any possible underflows due to delta */ 3762 if (unlikely(delta > nr_pagecache_reclaimable)) 3763 delta = nr_pagecache_reclaimable; 3764 3765 return nr_pagecache_reclaimable - delta; 3766 } 3767 3768 /* 3769 * Try to free up some pages from this node through reclaim. 3770 */ 3771 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3772 { 3773 /* Minimum pages needed in order to stay on node */ 3774 const unsigned long nr_pages = 1 << order; 3775 struct task_struct *p = current; 3776 struct reclaim_state reclaim_state; 3777 int classzone_idx = gfp_zone(gfp_mask); 3778 unsigned int noreclaim_flag; 3779 struct scan_control sc = { 3780 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3781 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)), 3782 .order = order, 3783 .priority = NODE_RECLAIM_PRIORITY, 3784 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3785 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3786 .may_swap = 1, 3787 .reclaim_idx = classzone_idx, 3788 }; 3789 3790 cond_resched(); 3791 /* 3792 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3793 * and we also need to be able to write out pages for RECLAIM_WRITE 3794 * and RECLAIM_UNMAP. 3795 */ 3796 noreclaim_flag = memalloc_noreclaim_save(); 3797 p->flags |= PF_SWAPWRITE; 3798 lockdep_set_current_reclaim_state(gfp_mask); 3799 reclaim_state.reclaimed_slab = 0; 3800 p->reclaim_state = &reclaim_state; 3801 3802 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3803 /* 3804 * Free memory by calling shrink zone with increasing 3805 * priorities until we have enough memory freed. 3806 */ 3807 do { 3808 shrink_node(pgdat, &sc); 3809 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3810 } 3811 3812 p->reclaim_state = NULL; 3813 current->flags &= ~PF_SWAPWRITE; 3814 memalloc_noreclaim_restore(noreclaim_flag); 3815 lockdep_clear_current_reclaim_state(); 3816 return sc.nr_reclaimed >= nr_pages; 3817 } 3818 3819 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3820 { 3821 int ret; 3822 3823 /* 3824 * Node reclaim reclaims unmapped file backed pages and 3825 * slab pages if we are over the defined limits. 3826 * 3827 * A small portion of unmapped file backed pages is needed for 3828 * file I/O otherwise pages read by file I/O will be immediately 3829 * thrown out if the node is overallocated. So we do not reclaim 3830 * if less than a specified percentage of the node is used by 3831 * unmapped file backed pages. 3832 */ 3833 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3834 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3835 return NODE_RECLAIM_FULL; 3836 3837 /* 3838 * Do not scan if the allocation should not be delayed. 3839 */ 3840 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3841 return NODE_RECLAIM_NOSCAN; 3842 3843 /* 3844 * Only run node reclaim on the local node or on nodes that do not 3845 * have associated processors. This will favor the local processor 3846 * over remote processors and spread off node memory allocations 3847 * as wide as possible. 3848 */ 3849 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3850 return NODE_RECLAIM_NOSCAN; 3851 3852 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3853 return NODE_RECLAIM_NOSCAN; 3854 3855 ret = __node_reclaim(pgdat, gfp_mask, order); 3856 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3857 3858 if (!ret) 3859 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3860 3861 return ret; 3862 } 3863 #endif 3864 3865 /* 3866 * page_evictable - test whether a page is evictable 3867 * @page: the page to test 3868 * 3869 * Test whether page is evictable--i.e., should be placed on active/inactive 3870 * lists vs unevictable list. 3871 * 3872 * Reasons page might not be evictable: 3873 * (1) page's mapping marked unevictable 3874 * (2) page is part of an mlocked VMA 3875 * 3876 */ 3877 int page_evictable(struct page *page) 3878 { 3879 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3880 } 3881 3882 #ifdef CONFIG_SHMEM 3883 /** 3884 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3885 * @pages: array of pages to check 3886 * @nr_pages: number of pages to check 3887 * 3888 * Checks pages for evictability and moves them to the appropriate lru list. 3889 * 3890 * This function is only used for SysV IPC SHM_UNLOCK. 3891 */ 3892 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3893 { 3894 struct lruvec *lruvec; 3895 struct pglist_data *pgdat = NULL; 3896 int pgscanned = 0; 3897 int pgrescued = 0; 3898 int i; 3899 3900 for (i = 0; i < nr_pages; i++) { 3901 struct page *page = pages[i]; 3902 struct pglist_data *pagepgdat = page_pgdat(page); 3903 3904 pgscanned++; 3905 if (pagepgdat != pgdat) { 3906 if (pgdat) 3907 spin_unlock_irq(&pgdat->lru_lock); 3908 pgdat = pagepgdat; 3909 spin_lock_irq(&pgdat->lru_lock); 3910 } 3911 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3912 3913 if (!PageLRU(page) || !PageUnevictable(page)) 3914 continue; 3915 3916 if (page_evictable(page)) { 3917 enum lru_list lru = page_lru_base_type(page); 3918 3919 VM_BUG_ON_PAGE(PageActive(page), page); 3920 ClearPageUnevictable(page); 3921 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3922 add_page_to_lru_list(page, lruvec, lru); 3923 pgrescued++; 3924 } 3925 } 3926 3927 if (pgdat) { 3928 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3929 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3930 spin_unlock_irq(&pgdat->lru_lock); 3931 } 3932 } 3933 #endif /* CONFIG_SHMEM */ 3934