xref: /openbmc/linux/mm/vmscan.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
53 
54 enum lumpy_mode {
55 	LUMPY_MODE_NONE,
56 	LUMPY_MODE_ASYNC,
57 	LUMPY_MODE_SYNC,
58 };
59 
60 struct scan_control {
61 	/* Incremented by the number of inactive pages that were scanned */
62 	unsigned long nr_scanned;
63 
64 	/* Number of pages freed so far during a call to shrink_zones() */
65 	unsigned long nr_reclaimed;
66 
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	unsigned long hibernation_mode;
71 
72 	/* This context's GFP mask */
73 	gfp_t gfp_mask;
74 
75 	int may_writepage;
76 
77 	/* Can mapped pages be reclaimed? */
78 	int may_unmap;
79 
80 	/* Can pages be swapped as part of reclaim? */
81 	int may_swap;
82 
83 	int swappiness;
84 
85 	int order;
86 
87 	/*
88 	 * Intend to reclaim enough continuous memory rather than reclaim
89 	 * enough amount of memory. i.e, mode for high order allocation.
90 	 */
91 	enum lumpy_mode lumpy_reclaim_mode;
92 
93 	/* Which cgroup do we reclaim from */
94 	struct mem_cgroup *mem_cgroup;
95 
96 	/*
97 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
98 	 * are scanned.
99 	 */
100 	nodemask_t	*nodemask;
101 };
102 
103 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
104 
105 #ifdef ARCH_HAS_PREFETCH
106 #define prefetch_prev_lru_page(_page, _base, _field)			\
107 	do {								\
108 		if ((_page)->lru.prev != _base) {			\
109 			struct page *prev;				\
110 									\
111 			prev = lru_to_page(&(_page->lru));		\
112 			prefetch(&prev->_field);			\
113 		}							\
114 	} while (0)
115 #else
116 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
118 
119 #ifdef ARCH_HAS_PREFETCHW
120 #define prefetchw_prev_lru_page(_page, _base, _field)			\
121 	do {								\
122 		if ((_page)->lru.prev != _base) {			\
123 			struct page *prev;				\
124 									\
125 			prev = lru_to_page(&(_page->lru));		\
126 			prefetchw(&prev->_field);			\
127 		}							\
128 	} while (0)
129 #else
130 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132 
133 /*
134  * From 0 .. 100.  Higher means more swappy.
135  */
136 int vm_swappiness = 60;
137 long vm_total_pages;	/* The total number of pages which the VM controls */
138 
139 static LIST_HEAD(shrinker_list);
140 static DECLARE_RWSEM(shrinker_rwsem);
141 
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
143 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
144 #else
145 #define scanning_global_lru(sc)	(1)
146 #endif
147 
148 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
149 						  struct scan_control *sc)
150 {
151 	if (!scanning_global_lru(sc))
152 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
153 
154 	return &zone->reclaim_stat;
155 }
156 
157 static unsigned long zone_nr_lru_pages(struct zone *zone,
158 				struct scan_control *sc, enum lru_list lru)
159 {
160 	if (!scanning_global_lru(sc))
161 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
162 
163 	return zone_page_state(zone, NR_LRU_BASE + lru);
164 }
165 
166 
167 /*
168  * Add a shrinker callback to be called from the vm
169  */
170 void register_shrinker(struct shrinker *shrinker)
171 {
172 	shrinker->nr = 0;
173 	down_write(&shrinker_rwsem);
174 	list_add_tail(&shrinker->list, &shrinker_list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(register_shrinker);
178 
179 /*
180  * Remove one
181  */
182 void unregister_shrinker(struct shrinker *shrinker)
183 {
184 	down_write(&shrinker_rwsem);
185 	list_del(&shrinker->list);
186 	up_write(&shrinker_rwsem);
187 }
188 EXPORT_SYMBOL(unregister_shrinker);
189 
190 #define SHRINK_BATCH 128
191 /*
192  * Call the shrink functions to age shrinkable caches
193  *
194  * Here we assume it costs one seek to replace a lru page and that it also
195  * takes a seek to recreate a cache object.  With this in mind we age equal
196  * percentages of the lru and ageable caches.  This should balance the seeks
197  * generated by these structures.
198  *
199  * If the vm encountered mapped pages on the LRU it increase the pressure on
200  * slab to avoid swapping.
201  *
202  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
203  *
204  * `lru_pages' represents the number of on-LRU pages in all the zones which
205  * are eligible for the caller's allocation attempt.  It is used for balancing
206  * slab reclaim versus page reclaim.
207  *
208  * Returns the number of slab objects which we shrunk.
209  */
210 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
211 			unsigned long lru_pages)
212 {
213 	struct shrinker *shrinker;
214 	unsigned long ret = 0;
215 
216 	if (scanned == 0)
217 		scanned = SWAP_CLUSTER_MAX;
218 
219 	if (!down_read_trylock(&shrinker_rwsem))
220 		return 1;	/* Assume we'll be able to shrink next time */
221 
222 	list_for_each_entry(shrinker, &shrinker_list, list) {
223 		unsigned long long delta;
224 		unsigned long total_scan;
225 		unsigned long max_pass;
226 
227 		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
228 		delta = (4 * scanned) / shrinker->seeks;
229 		delta *= max_pass;
230 		do_div(delta, lru_pages + 1);
231 		shrinker->nr += delta;
232 		if (shrinker->nr < 0) {
233 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
234 			       "delete nr=%ld\n",
235 			       shrinker->shrink, shrinker->nr);
236 			shrinker->nr = max_pass;
237 		}
238 
239 		/*
240 		 * Avoid risking looping forever due to too large nr value:
241 		 * never try to free more than twice the estimate number of
242 		 * freeable entries.
243 		 */
244 		if (shrinker->nr > max_pass * 2)
245 			shrinker->nr = max_pass * 2;
246 
247 		total_scan = shrinker->nr;
248 		shrinker->nr = 0;
249 
250 		while (total_scan >= SHRINK_BATCH) {
251 			long this_scan = SHRINK_BATCH;
252 			int shrink_ret;
253 			int nr_before;
254 
255 			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
256 			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
257 								gfp_mask);
258 			if (shrink_ret == -1)
259 				break;
260 			if (shrink_ret < nr_before)
261 				ret += nr_before - shrink_ret;
262 			count_vm_events(SLABS_SCANNED, this_scan);
263 			total_scan -= this_scan;
264 
265 			cond_resched();
266 		}
267 
268 		shrinker->nr += total_scan;
269 	}
270 	up_read(&shrinker_rwsem);
271 	return ret;
272 }
273 
274 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc,
275 				   bool sync)
276 {
277 	enum lumpy_mode mode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC;
278 
279 	/*
280 	 * Some reclaim have alredy been failed. No worth to try synchronous
281 	 * lumpy reclaim.
282 	 */
283 	if (sync && sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
284 		return;
285 
286 	/*
287 	 * If we need a large contiguous chunk of memory, or have
288 	 * trouble getting a small set of contiguous pages, we
289 	 * will reclaim both active and inactive pages.
290 	 */
291 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
292 		sc->lumpy_reclaim_mode = mode;
293 	else if (sc->order && priority < DEF_PRIORITY - 2)
294 		sc->lumpy_reclaim_mode = mode;
295 	else
296 		sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
297 }
298 
299 static void disable_lumpy_reclaim_mode(struct scan_control *sc)
300 {
301 	sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
302 }
303 
304 static inline int is_page_cache_freeable(struct page *page)
305 {
306 	/*
307 	 * A freeable page cache page is referenced only by the caller
308 	 * that isolated the page, the page cache radix tree and
309 	 * optional buffer heads at page->private.
310 	 */
311 	return page_count(page) - page_has_private(page) == 2;
312 }
313 
314 static int may_write_to_queue(struct backing_dev_info *bdi,
315 			      struct scan_control *sc)
316 {
317 	if (current->flags & PF_SWAPWRITE)
318 		return 1;
319 	if (!bdi_write_congested(bdi))
320 		return 1;
321 	if (bdi == current->backing_dev_info)
322 		return 1;
323 
324 	/* lumpy reclaim for hugepage often need a lot of write */
325 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
326 		return 1;
327 	return 0;
328 }
329 
330 /*
331  * We detected a synchronous write error writing a page out.  Probably
332  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
333  * fsync(), msync() or close().
334  *
335  * The tricky part is that after writepage we cannot touch the mapping: nothing
336  * prevents it from being freed up.  But we have a ref on the page and once
337  * that page is locked, the mapping is pinned.
338  *
339  * We're allowed to run sleeping lock_page() here because we know the caller has
340  * __GFP_FS.
341  */
342 static void handle_write_error(struct address_space *mapping,
343 				struct page *page, int error)
344 {
345 	lock_page_nosync(page);
346 	if (page_mapping(page) == mapping)
347 		mapping_set_error(mapping, error);
348 	unlock_page(page);
349 }
350 
351 /* possible outcome of pageout() */
352 typedef enum {
353 	/* failed to write page out, page is locked */
354 	PAGE_KEEP,
355 	/* move page to the active list, page is locked */
356 	PAGE_ACTIVATE,
357 	/* page has been sent to the disk successfully, page is unlocked */
358 	PAGE_SUCCESS,
359 	/* page is clean and locked */
360 	PAGE_CLEAN,
361 } pageout_t;
362 
363 /*
364  * pageout is called by shrink_page_list() for each dirty page.
365  * Calls ->writepage().
366  */
367 static pageout_t pageout(struct page *page, struct address_space *mapping,
368 			 struct scan_control *sc)
369 {
370 	/*
371 	 * If the page is dirty, only perform writeback if that write
372 	 * will be non-blocking.  To prevent this allocation from being
373 	 * stalled by pagecache activity.  But note that there may be
374 	 * stalls if we need to run get_block().  We could test
375 	 * PagePrivate for that.
376 	 *
377 	 * If this process is currently in __generic_file_aio_write() against
378 	 * this page's queue, we can perform writeback even if that
379 	 * will block.
380 	 *
381 	 * If the page is swapcache, write it back even if that would
382 	 * block, for some throttling. This happens by accident, because
383 	 * swap_backing_dev_info is bust: it doesn't reflect the
384 	 * congestion state of the swapdevs.  Easy to fix, if needed.
385 	 */
386 	if (!is_page_cache_freeable(page))
387 		return PAGE_KEEP;
388 	if (!mapping) {
389 		/*
390 		 * Some data journaling orphaned pages can have
391 		 * page->mapping == NULL while being dirty with clean buffers.
392 		 */
393 		if (page_has_private(page)) {
394 			if (try_to_free_buffers(page)) {
395 				ClearPageDirty(page);
396 				printk("%s: orphaned page\n", __func__);
397 				return PAGE_CLEAN;
398 			}
399 		}
400 		return PAGE_KEEP;
401 	}
402 	if (mapping->a_ops->writepage == NULL)
403 		return PAGE_ACTIVATE;
404 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
405 		return PAGE_KEEP;
406 
407 	if (clear_page_dirty_for_io(page)) {
408 		int res;
409 		struct writeback_control wbc = {
410 			.sync_mode = WB_SYNC_NONE,
411 			.nr_to_write = SWAP_CLUSTER_MAX,
412 			.range_start = 0,
413 			.range_end = LLONG_MAX,
414 			.for_reclaim = 1,
415 		};
416 
417 		SetPageReclaim(page);
418 		res = mapping->a_ops->writepage(page, &wbc);
419 		if (res < 0)
420 			handle_write_error(mapping, page, res);
421 		if (res == AOP_WRITEPAGE_ACTIVATE) {
422 			ClearPageReclaim(page);
423 			return PAGE_ACTIVATE;
424 		}
425 
426 		/*
427 		 * Wait on writeback if requested to. This happens when
428 		 * direct reclaiming a large contiguous area and the
429 		 * first attempt to free a range of pages fails.
430 		 */
431 		if (PageWriteback(page) &&
432 		    sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC)
433 			wait_on_page_writeback(page);
434 
435 		if (!PageWriteback(page)) {
436 			/* synchronous write or broken a_ops? */
437 			ClearPageReclaim(page);
438 		}
439 		trace_mm_vmscan_writepage(page,
440 			trace_reclaim_flags(page, sc->lumpy_reclaim_mode));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		void (*freepage)(struct page *);
498 
499 		freepage = mapping->a_ops->freepage;
500 
501 		__remove_from_page_cache(page);
502 		spin_unlock_irq(&mapping->tree_lock);
503 		mem_cgroup_uncharge_cache_page(page);
504 
505 		if (freepage != NULL)
506 			freepage(page);
507 	}
508 
509 	return 1;
510 
511 cannot_free:
512 	spin_unlock_irq(&mapping->tree_lock);
513 	return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 	if (__remove_mapping(mapping, page)) {
525 		/*
526 		 * Unfreezing the refcount with 1 rather than 2 effectively
527 		 * drops the pagecache ref for us without requiring another
528 		 * atomic operation.
529 		 */
530 		page_unfreeze_refs(page, 1);
531 		return 1;
532 	}
533 	return 0;
534 }
535 
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547 	int lru;
548 	int active = !!TestClearPageActive(page);
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page, NULL)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = active + page_lru_base_type(page);
564 		lru_cache_add_lru(page, lru);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock clearing (page is
574 		 * unlocked), make sure that if the other thread does
575 		 * not observe our setting of PG_lru and fails
576 		 * isolation, we see PG_mlocked cleared below and move
577 		 * the page back to the evictable list.
578 		 *
579 		 * The other side is TestClearPageMlocked().
580 		 */
581 		smp_mb();
582 	}
583 
584 	/*
585 	 * page's status can change while we move it among lru. If an evictable
586 	 * page is on unevictable list, it never be freed. To avoid that,
587 	 * check after we added it to the list, again.
588 	 */
589 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
590 		if (!isolate_lru_page(page)) {
591 			put_page(page);
592 			goto redo;
593 		}
594 		/* This means someone else dropped this page from LRU
595 		 * So, it will be freed or putback to LRU again. There is
596 		 * nothing to do here.
597 		 */
598 	}
599 
600 	if (was_unevictable && lru != LRU_UNEVICTABLE)
601 		count_vm_event(UNEVICTABLE_PGRESCUED);
602 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
603 		count_vm_event(UNEVICTABLE_PGCULLED);
604 
605 	put_page(page);		/* drop ref from isolate */
606 }
607 
608 enum page_references {
609 	PAGEREF_RECLAIM,
610 	PAGEREF_RECLAIM_CLEAN,
611 	PAGEREF_KEEP,
612 	PAGEREF_ACTIVATE,
613 };
614 
615 static enum page_references page_check_references(struct page *page,
616 						  struct scan_control *sc)
617 {
618 	int referenced_ptes, referenced_page;
619 	unsigned long vm_flags;
620 
621 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
622 	referenced_page = TestClearPageReferenced(page);
623 
624 	/* Lumpy reclaim - ignore references */
625 	if (sc->lumpy_reclaim_mode != LUMPY_MODE_NONE)
626 		return PAGEREF_RECLAIM;
627 
628 	/*
629 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
630 	 * move the page to the unevictable list.
631 	 */
632 	if (vm_flags & VM_LOCKED)
633 		return PAGEREF_RECLAIM;
634 
635 	if (referenced_ptes) {
636 		if (PageAnon(page))
637 			return PAGEREF_ACTIVATE;
638 		/*
639 		 * All mapped pages start out with page table
640 		 * references from the instantiating fault, so we need
641 		 * to look twice if a mapped file page is used more
642 		 * than once.
643 		 *
644 		 * Mark it and spare it for another trip around the
645 		 * inactive list.  Another page table reference will
646 		 * lead to its activation.
647 		 *
648 		 * Note: the mark is set for activated pages as well
649 		 * so that recently deactivated but used pages are
650 		 * quickly recovered.
651 		 */
652 		SetPageReferenced(page);
653 
654 		if (referenced_page)
655 			return PAGEREF_ACTIVATE;
656 
657 		return PAGEREF_KEEP;
658 	}
659 
660 	/* Reclaim if clean, defer dirty pages to writeback */
661 	if (referenced_page && !PageSwapBacked(page))
662 		return PAGEREF_RECLAIM_CLEAN;
663 
664 	return PAGEREF_RECLAIM;
665 }
666 
667 static noinline_for_stack void free_page_list(struct list_head *free_pages)
668 {
669 	struct pagevec freed_pvec;
670 	struct page *page, *tmp;
671 
672 	pagevec_init(&freed_pvec, 1);
673 
674 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
675 		list_del(&page->lru);
676 		if (!pagevec_add(&freed_pvec, page)) {
677 			__pagevec_free(&freed_pvec);
678 			pagevec_reinit(&freed_pvec);
679 		}
680 	}
681 
682 	pagevec_free(&freed_pvec);
683 }
684 
685 /*
686  * shrink_page_list() returns the number of reclaimed pages
687  */
688 static unsigned long shrink_page_list(struct list_head *page_list,
689 				      struct zone *zone,
690 				      struct scan_control *sc)
691 {
692 	LIST_HEAD(ret_pages);
693 	LIST_HEAD(free_pages);
694 	int pgactivate = 0;
695 	unsigned long nr_dirty = 0;
696 	unsigned long nr_congested = 0;
697 	unsigned long nr_reclaimed = 0;
698 
699 	cond_resched();
700 
701 	while (!list_empty(page_list)) {
702 		enum page_references references;
703 		struct address_space *mapping;
704 		struct page *page;
705 		int may_enter_fs;
706 
707 		cond_resched();
708 
709 		page = lru_to_page(page_list);
710 		list_del(&page->lru);
711 
712 		if (!trylock_page(page))
713 			goto keep;
714 
715 		VM_BUG_ON(PageActive(page));
716 		VM_BUG_ON(page_zone(page) != zone);
717 
718 		sc->nr_scanned++;
719 
720 		if (unlikely(!page_evictable(page, NULL)))
721 			goto cull_mlocked;
722 
723 		if (!sc->may_unmap && page_mapped(page))
724 			goto keep_locked;
725 
726 		/* Double the slab pressure for mapped and swapcache pages */
727 		if (page_mapped(page) || PageSwapCache(page))
728 			sc->nr_scanned++;
729 
730 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
731 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
732 
733 		if (PageWriteback(page)) {
734 			/*
735 			 * Synchronous reclaim is performed in two passes,
736 			 * first an asynchronous pass over the list to
737 			 * start parallel writeback, and a second synchronous
738 			 * pass to wait for the IO to complete.  Wait here
739 			 * for any page for which writeback has already
740 			 * started.
741 			 */
742 			if (sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC &&
743 			    may_enter_fs)
744 				wait_on_page_writeback(page);
745 			else {
746 				unlock_page(page);
747 				goto keep_lumpy;
748 			}
749 		}
750 
751 		references = page_check_references(page, sc);
752 		switch (references) {
753 		case PAGEREF_ACTIVATE:
754 			goto activate_locked;
755 		case PAGEREF_KEEP:
756 			goto keep_locked;
757 		case PAGEREF_RECLAIM:
758 		case PAGEREF_RECLAIM_CLEAN:
759 			; /* try to reclaim the page below */
760 		}
761 
762 		/*
763 		 * Anonymous process memory has backing store?
764 		 * Try to allocate it some swap space here.
765 		 */
766 		if (PageAnon(page) && !PageSwapCache(page)) {
767 			if (!(sc->gfp_mask & __GFP_IO))
768 				goto keep_locked;
769 			if (!add_to_swap(page))
770 				goto activate_locked;
771 			may_enter_fs = 1;
772 		}
773 
774 		mapping = page_mapping(page);
775 
776 		/*
777 		 * The page is mapped into the page tables of one or more
778 		 * processes. Try to unmap it here.
779 		 */
780 		if (page_mapped(page) && mapping) {
781 			switch (try_to_unmap(page, TTU_UNMAP)) {
782 			case SWAP_FAIL:
783 				goto activate_locked;
784 			case SWAP_AGAIN:
785 				goto keep_locked;
786 			case SWAP_MLOCK:
787 				goto cull_mlocked;
788 			case SWAP_SUCCESS:
789 				; /* try to free the page below */
790 			}
791 		}
792 
793 		if (PageDirty(page)) {
794 			nr_dirty++;
795 
796 			if (references == PAGEREF_RECLAIM_CLEAN)
797 				goto keep_locked;
798 			if (!may_enter_fs)
799 				goto keep_locked;
800 			if (!sc->may_writepage)
801 				goto keep_locked;
802 
803 			/* Page is dirty, try to write it out here */
804 			switch (pageout(page, mapping, sc)) {
805 			case PAGE_KEEP:
806 				nr_congested++;
807 				goto keep_locked;
808 			case PAGE_ACTIVATE:
809 				goto activate_locked;
810 			case PAGE_SUCCESS:
811 				if (PageWriteback(page))
812 					goto keep_lumpy;
813 				if (PageDirty(page))
814 					goto keep;
815 
816 				/*
817 				 * A synchronous write - probably a ramdisk.  Go
818 				 * ahead and try to reclaim the page.
819 				 */
820 				if (!trylock_page(page))
821 					goto keep;
822 				if (PageDirty(page) || PageWriteback(page))
823 					goto keep_locked;
824 				mapping = page_mapping(page);
825 			case PAGE_CLEAN:
826 				; /* try to free the page below */
827 			}
828 		}
829 
830 		/*
831 		 * If the page has buffers, try to free the buffer mappings
832 		 * associated with this page. If we succeed we try to free
833 		 * the page as well.
834 		 *
835 		 * We do this even if the page is PageDirty().
836 		 * try_to_release_page() does not perform I/O, but it is
837 		 * possible for a page to have PageDirty set, but it is actually
838 		 * clean (all its buffers are clean).  This happens if the
839 		 * buffers were written out directly, with submit_bh(). ext3
840 		 * will do this, as well as the blockdev mapping.
841 		 * try_to_release_page() will discover that cleanness and will
842 		 * drop the buffers and mark the page clean - it can be freed.
843 		 *
844 		 * Rarely, pages can have buffers and no ->mapping.  These are
845 		 * the pages which were not successfully invalidated in
846 		 * truncate_complete_page().  We try to drop those buffers here
847 		 * and if that worked, and the page is no longer mapped into
848 		 * process address space (page_count == 1) it can be freed.
849 		 * Otherwise, leave the page on the LRU so it is swappable.
850 		 */
851 		if (page_has_private(page)) {
852 			if (!try_to_release_page(page, sc->gfp_mask))
853 				goto activate_locked;
854 			if (!mapping && page_count(page) == 1) {
855 				unlock_page(page);
856 				if (put_page_testzero(page))
857 					goto free_it;
858 				else {
859 					/*
860 					 * rare race with speculative reference.
861 					 * the speculative reference will free
862 					 * this page shortly, so we may
863 					 * increment nr_reclaimed here (and
864 					 * leave it off the LRU).
865 					 */
866 					nr_reclaimed++;
867 					continue;
868 				}
869 			}
870 		}
871 
872 		if (!mapping || !__remove_mapping(mapping, page))
873 			goto keep_locked;
874 
875 		/*
876 		 * At this point, we have no other references and there is
877 		 * no way to pick any more up (removed from LRU, removed
878 		 * from pagecache). Can use non-atomic bitops now (and
879 		 * we obviously don't have to worry about waking up a process
880 		 * waiting on the page lock, because there are no references.
881 		 */
882 		__clear_page_locked(page);
883 free_it:
884 		nr_reclaimed++;
885 
886 		/*
887 		 * Is there need to periodically free_page_list? It would
888 		 * appear not as the counts should be low
889 		 */
890 		list_add(&page->lru, &free_pages);
891 		continue;
892 
893 cull_mlocked:
894 		if (PageSwapCache(page))
895 			try_to_free_swap(page);
896 		unlock_page(page);
897 		putback_lru_page(page);
898 		disable_lumpy_reclaim_mode(sc);
899 		continue;
900 
901 activate_locked:
902 		/* Not a candidate for swapping, so reclaim swap space. */
903 		if (PageSwapCache(page) && vm_swap_full())
904 			try_to_free_swap(page);
905 		VM_BUG_ON(PageActive(page));
906 		SetPageActive(page);
907 		pgactivate++;
908 keep_locked:
909 		unlock_page(page);
910 keep:
911 		disable_lumpy_reclaim_mode(sc);
912 keep_lumpy:
913 		list_add(&page->lru, &ret_pages);
914 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
915 	}
916 
917 	/*
918 	 * Tag a zone as congested if all the dirty pages encountered were
919 	 * backed by a congested BDI. In this case, reclaimers should just
920 	 * back off and wait for congestion to clear because further reclaim
921 	 * will encounter the same problem
922 	 */
923 	if (nr_dirty == nr_congested && nr_dirty != 0)
924 		zone_set_flag(zone, ZONE_CONGESTED);
925 
926 	free_page_list(&free_pages);
927 
928 	list_splice(&ret_pages, page_list);
929 	count_vm_events(PGACTIVATE, pgactivate);
930 	return nr_reclaimed;
931 }
932 
933 /*
934  * Attempt to remove the specified page from its LRU.  Only take this page
935  * if it is of the appropriate PageActive status.  Pages which are being
936  * freed elsewhere are also ignored.
937  *
938  * page:	page to consider
939  * mode:	one of the LRU isolation modes defined above
940  *
941  * returns 0 on success, -ve errno on failure.
942  */
943 int __isolate_lru_page(struct page *page, int mode, int file)
944 {
945 	int ret = -EINVAL;
946 
947 	/* Only take pages on the LRU. */
948 	if (!PageLRU(page))
949 		return ret;
950 
951 	/*
952 	 * When checking the active state, we need to be sure we are
953 	 * dealing with comparible boolean values.  Take the logical not
954 	 * of each.
955 	 */
956 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
957 		return ret;
958 
959 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
960 		return ret;
961 
962 	/*
963 	 * When this function is being called for lumpy reclaim, we
964 	 * initially look into all LRU pages, active, inactive and
965 	 * unevictable; only give shrink_page_list evictable pages.
966 	 */
967 	if (PageUnevictable(page))
968 		return ret;
969 
970 	ret = -EBUSY;
971 
972 	if (likely(get_page_unless_zero(page))) {
973 		/*
974 		 * Be careful not to clear PageLRU until after we're
975 		 * sure the page is not being freed elsewhere -- the
976 		 * page release code relies on it.
977 		 */
978 		ClearPageLRU(page);
979 		ret = 0;
980 	}
981 
982 	return ret;
983 }
984 
985 /*
986  * zone->lru_lock is heavily contended.  Some of the functions that
987  * shrink the lists perform better by taking out a batch of pages
988  * and working on them outside the LRU lock.
989  *
990  * For pagecache intensive workloads, this function is the hottest
991  * spot in the kernel (apart from copy_*_user functions).
992  *
993  * Appropriate locks must be held before calling this function.
994  *
995  * @nr_to_scan:	The number of pages to look through on the list.
996  * @src:	The LRU list to pull pages off.
997  * @dst:	The temp list to put pages on to.
998  * @scanned:	The number of pages that were scanned.
999  * @order:	The caller's attempted allocation order
1000  * @mode:	One of the LRU isolation modes
1001  * @file:	True [1] if isolating file [!anon] pages
1002  *
1003  * returns how many pages were moved onto *@dst.
1004  */
1005 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1006 		struct list_head *src, struct list_head *dst,
1007 		unsigned long *scanned, int order, int mode, int file)
1008 {
1009 	unsigned long nr_taken = 0;
1010 	unsigned long nr_lumpy_taken = 0;
1011 	unsigned long nr_lumpy_dirty = 0;
1012 	unsigned long nr_lumpy_failed = 0;
1013 	unsigned long scan;
1014 
1015 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1016 		struct page *page;
1017 		unsigned long pfn;
1018 		unsigned long end_pfn;
1019 		unsigned long page_pfn;
1020 		int zone_id;
1021 
1022 		page = lru_to_page(src);
1023 		prefetchw_prev_lru_page(page, src, flags);
1024 
1025 		VM_BUG_ON(!PageLRU(page));
1026 
1027 		switch (__isolate_lru_page(page, mode, file)) {
1028 		case 0:
1029 			list_move(&page->lru, dst);
1030 			mem_cgroup_del_lru(page);
1031 			nr_taken++;
1032 			break;
1033 
1034 		case -EBUSY:
1035 			/* else it is being freed elsewhere */
1036 			list_move(&page->lru, src);
1037 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1038 			continue;
1039 
1040 		default:
1041 			BUG();
1042 		}
1043 
1044 		if (!order)
1045 			continue;
1046 
1047 		/*
1048 		 * Attempt to take all pages in the order aligned region
1049 		 * surrounding the tag page.  Only take those pages of
1050 		 * the same active state as that tag page.  We may safely
1051 		 * round the target page pfn down to the requested order
1052 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
1053 		 * where that page is in a different zone we will detect
1054 		 * it from its zone id and abort this block scan.
1055 		 */
1056 		zone_id = page_zone_id(page);
1057 		page_pfn = page_to_pfn(page);
1058 		pfn = page_pfn & ~((1 << order) - 1);
1059 		end_pfn = pfn + (1 << order);
1060 		for (; pfn < end_pfn; pfn++) {
1061 			struct page *cursor_page;
1062 
1063 			/* The target page is in the block, ignore it. */
1064 			if (unlikely(pfn == page_pfn))
1065 				continue;
1066 
1067 			/* Avoid holes within the zone. */
1068 			if (unlikely(!pfn_valid_within(pfn)))
1069 				break;
1070 
1071 			cursor_page = pfn_to_page(pfn);
1072 
1073 			/* Check that we have not crossed a zone boundary. */
1074 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1075 				break;
1076 
1077 			/*
1078 			 * If we don't have enough swap space, reclaiming of
1079 			 * anon page which don't already have a swap slot is
1080 			 * pointless.
1081 			 */
1082 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1083 			    !PageSwapCache(cursor_page))
1084 				break;
1085 
1086 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1087 				list_move(&cursor_page->lru, dst);
1088 				mem_cgroup_del_lru(cursor_page);
1089 				nr_taken++;
1090 				nr_lumpy_taken++;
1091 				if (PageDirty(cursor_page))
1092 					nr_lumpy_dirty++;
1093 				scan++;
1094 			} else {
1095 				/* the page is freed already. */
1096 				if (!page_count(cursor_page))
1097 					continue;
1098 				break;
1099 			}
1100 		}
1101 
1102 		/* If we break out of the loop above, lumpy reclaim failed */
1103 		if (pfn < end_pfn)
1104 			nr_lumpy_failed++;
1105 	}
1106 
1107 	*scanned = scan;
1108 
1109 	trace_mm_vmscan_lru_isolate(order,
1110 			nr_to_scan, scan,
1111 			nr_taken,
1112 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1113 			mode);
1114 	return nr_taken;
1115 }
1116 
1117 static unsigned long isolate_pages_global(unsigned long nr,
1118 					struct list_head *dst,
1119 					unsigned long *scanned, int order,
1120 					int mode, struct zone *z,
1121 					int active, int file)
1122 {
1123 	int lru = LRU_BASE;
1124 	if (active)
1125 		lru += LRU_ACTIVE;
1126 	if (file)
1127 		lru += LRU_FILE;
1128 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1129 								mode, file);
1130 }
1131 
1132 /*
1133  * clear_active_flags() is a helper for shrink_active_list(), clearing
1134  * any active bits from the pages in the list.
1135  */
1136 static unsigned long clear_active_flags(struct list_head *page_list,
1137 					unsigned int *count)
1138 {
1139 	int nr_active = 0;
1140 	int lru;
1141 	struct page *page;
1142 
1143 	list_for_each_entry(page, page_list, lru) {
1144 		lru = page_lru_base_type(page);
1145 		if (PageActive(page)) {
1146 			lru += LRU_ACTIVE;
1147 			ClearPageActive(page);
1148 			nr_active++;
1149 		}
1150 		if (count)
1151 			count[lru]++;
1152 	}
1153 
1154 	return nr_active;
1155 }
1156 
1157 /**
1158  * isolate_lru_page - tries to isolate a page from its LRU list
1159  * @page: page to isolate from its LRU list
1160  *
1161  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1162  * vmstat statistic corresponding to whatever LRU list the page was on.
1163  *
1164  * Returns 0 if the page was removed from an LRU list.
1165  * Returns -EBUSY if the page was not on an LRU list.
1166  *
1167  * The returned page will have PageLRU() cleared.  If it was found on
1168  * the active list, it will have PageActive set.  If it was found on
1169  * the unevictable list, it will have the PageUnevictable bit set. That flag
1170  * may need to be cleared by the caller before letting the page go.
1171  *
1172  * The vmstat statistic corresponding to the list on which the page was
1173  * found will be decremented.
1174  *
1175  * Restrictions:
1176  * (1) Must be called with an elevated refcount on the page. This is a
1177  *     fundamentnal difference from isolate_lru_pages (which is called
1178  *     without a stable reference).
1179  * (2) the lru_lock must not be held.
1180  * (3) interrupts must be enabled.
1181  */
1182 int isolate_lru_page(struct page *page)
1183 {
1184 	int ret = -EBUSY;
1185 
1186 	if (PageLRU(page)) {
1187 		struct zone *zone = page_zone(page);
1188 
1189 		spin_lock_irq(&zone->lru_lock);
1190 		if (PageLRU(page) && get_page_unless_zero(page)) {
1191 			int lru = page_lru(page);
1192 			ret = 0;
1193 			ClearPageLRU(page);
1194 
1195 			del_page_from_lru_list(zone, page, lru);
1196 		}
1197 		spin_unlock_irq(&zone->lru_lock);
1198 	}
1199 	return ret;
1200 }
1201 
1202 /*
1203  * Are there way too many processes in the direct reclaim path already?
1204  */
1205 static int too_many_isolated(struct zone *zone, int file,
1206 		struct scan_control *sc)
1207 {
1208 	unsigned long inactive, isolated;
1209 
1210 	if (current_is_kswapd())
1211 		return 0;
1212 
1213 	if (!scanning_global_lru(sc))
1214 		return 0;
1215 
1216 	if (file) {
1217 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1218 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1219 	} else {
1220 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1221 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1222 	}
1223 
1224 	return isolated > inactive;
1225 }
1226 
1227 /*
1228  * TODO: Try merging with migrations version of putback_lru_pages
1229  */
1230 static noinline_for_stack void
1231 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1232 				unsigned long nr_anon, unsigned long nr_file,
1233 				struct list_head *page_list)
1234 {
1235 	struct page *page;
1236 	struct pagevec pvec;
1237 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1238 
1239 	pagevec_init(&pvec, 1);
1240 
1241 	/*
1242 	 * Put back any unfreeable pages.
1243 	 */
1244 	spin_lock(&zone->lru_lock);
1245 	while (!list_empty(page_list)) {
1246 		int lru;
1247 		page = lru_to_page(page_list);
1248 		VM_BUG_ON(PageLRU(page));
1249 		list_del(&page->lru);
1250 		if (unlikely(!page_evictable(page, NULL))) {
1251 			spin_unlock_irq(&zone->lru_lock);
1252 			putback_lru_page(page);
1253 			spin_lock_irq(&zone->lru_lock);
1254 			continue;
1255 		}
1256 		SetPageLRU(page);
1257 		lru = page_lru(page);
1258 		add_page_to_lru_list(zone, page, lru);
1259 		if (is_active_lru(lru)) {
1260 			int file = is_file_lru(lru);
1261 			reclaim_stat->recent_rotated[file]++;
1262 		}
1263 		if (!pagevec_add(&pvec, page)) {
1264 			spin_unlock_irq(&zone->lru_lock);
1265 			__pagevec_release(&pvec);
1266 			spin_lock_irq(&zone->lru_lock);
1267 		}
1268 	}
1269 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1270 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1271 
1272 	spin_unlock_irq(&zone->lru_lock);
1273 	pagevec_release(&pvec);
1274 }
1275 
1276 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1277 					struct scan_control *sc,
1278 					unsigned long *nr_anon,
1279 					unsigned long *nr_file,
1280 					struct list_head *isolated_list)
1281 {
1282 	unsigned long nr_active;
1283 	unsigned int count[NR_LRU_LISTS] = { 0, };
1284 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1285 
1286 	nr_active = clear_active_flags(isolated_list, count);
1287 	__count_vm_events(PGDEACTIVATE, nr_active);
1288 
1289 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1290 			      -count[LRU_ACTIVE_FILE]);
1291 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1292 			      -count[LRU_INACTIVE_FILE]);
1293 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1294 			      -count[LRU_ACTIVE_ANON]);
1295 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1296 			      -count[LRU_INACTIVE_ANON]);
1297 
1298 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1299 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1300 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1301 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1302 
1303 	reclaim_stat->recent_scanned[0] += *nr_anon;
1304 	reclaim_stat->recent_scanned[1] += *nr_file;
1305 }
1306 
1307 /*
1308  * Returns true if the caller should wait to clean dirty/writeback pages.
1309  *
1310  * If we are direct reclaiming for contiguous pages and we do not reclaim
1311  * everything in the list, try again and wait for writeback IO to complete.
1312  * This will stall high-order allocations noticeably. Only do that when really
1313  * need to free the pages under high memory pressure.
1314  */
1315 static inline bool should_reclaim_stall(unsigned long nr_taken,
1316 					unsigned long nr_freed,
1317 					int priority,
1318 					struct scan_control *sc)
1319 {
1320 	int lumpy_stall_priority;
1321 
1322 	/* kswapd should not stall on sync IO */
1323 	if (current_is_kswapd())
1324 		return false;
1325 
1326 	/* Only stall on lumpy reclaim */
1327 	if (sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
1328 		return false;
1329 
1330 	/* If we have relaimed everything on the isolated list, no stall */
1331 	if (nr_freed == nr_taken)
1332 		return false;
1333 
1334 	/*
1335 	 * For high-order allocations, there are two stall thresholds.
1336 	 * High-cost allocations stall immediately where as lower
1337 	 * order allocations such as stacks require the scanning
1338 	 * priority to be much higher before stalling.
1339 	 */
1340 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1341 		lumpy_stall_priority = DEF_PRIORITY;
1342 	else
1343 		lumpy_stall_priority = DEF_PRIORITY / 3;
1344 
1345 	return priority <= lumpy_stall_priority;
1346 }
1347 
1348 /*
1349  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1350  * of reclaimed pages
1351  */
1352 static noinline_for_stack unsigned long
1353 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1354 			struct scan_control *sc, int priority, int file)
1355 {
1356 	LIST_HEAD(page_list);
1357 	unsigned long nr_scanned;
1358 	unsigned long nr_reclaimed = 0;
1359 	unsigned long nr_taken;
1360 	unsigned long nr_anon;
1361 	unsigned long nr_file;
1362 
1363 	while (unlikely(too_many_isolated(zone, file, sc))) {
1364 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1365 
1366 		/* We are about to die and free our memory. Return now. */
1367 		if (fatal_signal_pending(current))
1368 			return SWAP_CLUSTER_MAX;
1369 	}
1370 
1371 	set_lumpy_reclaim_mode(priority, sc, false);
1372 	lru_add_drain();
1373 	spin_lock_irq(&zone->lru_lock);
1374 
1375 	if (scanning_global_lru(sc)) {
1376 		nr_taken = isolate_pages_global(nr_to_scan,
1377 			&page_list, &nr_scanned, sc->order,
1378 			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
1379 					ISOLATE_INACTIVE : ISOLATE_BOTH,
1380 			zone, 0, file);
1381 		zone->pages_scanned += nr_scanned;
1382 		if (current_is_kswapd())
1383 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1384 					       nr_scanned);
1385 		else
1386 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1387 					       nr_scanned);
1388 	} else {
1389 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1390 			&page_list, &nr_scanned, sc->order,
1391 			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
1392 					ISOLATE_INACTIVE : ISOLATE_BOTH,
1393 			zone, sc->mem_cgroup,
1394 			0, file);
1395 		/*
1396 		 * mem_cgroup_isolate_pages() keeps track of
1397 		 * scanned pages on its own.
1398 		 */
1399 	}
1400 
1401 	if (nr_taken == 0) {
1402 		spin_unlock_irq(&zone->lru_lock);
1403 		return 0;
1404 	}
1405 
1406 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1407 
1408 	spin_unlock_irq(&zone->lru_lock);
1409 
1410 	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1411 
1412 	/* Check if we should syncronously wait for writeback */
1413 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1414 		set_lumpy_reclaim_mode(priority, sc, true);
1415 		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1416 	}
1417 
1418 	local_irq_disable();
1419 	if (current_is_kswapd())
1420 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1421 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1422 
1423 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1424 
1425 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1426 		zone_idx(zone),
1427 		nr_scanned, nr_reclaimed,
1428 		priority,
1429 		trace_shrink_flags(file, sc->lumpy_reclaim_mode));
1430 	return nr_reclaimed;
1431 }
1432 
1433 /*
1434  * This moves pages from the active list to the inactive list.
1435  *
1436  * We move them the other way if the page is referenced by one or more
1437  * processes, from rmap.
1438  *
1439  * If the pages are mostly unmapped, the processing is fast and it is
1440  * appropriate to hold zone->lru_lock across the whole operation.  But if
1441  * the pages are mapped, the processing is slow (page_referenced()) so we
1442  * should drop zone->lru_lock around each page.  It's impossible to balance
1443  * this, so instead we remove the pages from the LRU while processing them.
1444  * It is safe to rely on PG_active against the non-LRU pages in here because
1445  * nobody will play with that bit on a non-LRU page.
1446  *
1447  * The downside is that we have to touch page->_count against each page.
1448  * But we had to alter page->flags anyway.
1449  */
1450 
1451 static void move_active_pages_to_lru(struct zone *zone,
1452 				     struct list_head *list,
1453 				     enum lru_list lru)
1454 {
1455 	unsigned long pgmoved = 0;
1456 	struct pagevec pvec;
1457 	struct page *page;
1458 
1459 	pagevec_init(&pvec, 1);
1460 
1461 	while (!list_empty(list)) {
1462 		page = lru_to_page(list);
1463 
1464 		VM_BUG_ON(PageLRU(page));
1465 		SetPageLRU(page);
1466 
1467 		list_move(&page->lru, &zone->lru[lru].list);
1468 		mem_cgroup_add_lru_list(page, lru);
1469 		pgmoved++;
1470 
1471 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1472 			spin_unlock_irq(&zone->lru_lock);
1473 			if (buffer_heads_over_limit)
1474 				pagevec_strip(&pvec);
1475 			__pagevec_release(&pvec);
1476 			spin_lock_irq(&zone->lru_lock);
1477 		}
1478 	}
1479 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1480 	if (!is_active_lru(lru))
1481 		__count_vm_events(PGDEACTIVATE, pgmoved);
1482 }
1483 
1484 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1485 			struct scan_control *sc, int priority, int file)
1486 {
1487 	unsigned long nr_taken;
1488 	unsigned long pgscanned;
1489 	unsigned long vm_flags;
1490 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1491 	LIST_HEAD(l_active);
1492 	LIST_HEAD(l_inactive);
1493 	struct page *page;
1494 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1495 	unsigned long nr_rotated = 0;
1496 
1497 	lru_add_drain();
1498 	spin_lock_irq(&zone->lru_lock);
1499 	if (scanning_global_lru(sc)) {
1500 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1501 						&pgscanned, sc->order,
1502 						ISOLATE_ACTIVE, zone,
1503 						1, file);
1504 		zone->pages_scanned += pgscanned;
1505 	} else {
1506 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1507 						&pgscanned, sc->order,
1508 						ISOLATE_ACTIVE, zone,
1509 						sc->mem_cgroup, 1, file);
1510 		/*
1511 		 * mem_cgroup_isolate_pages() keeps track of
1512 		 * scanned pages on its own.
1513 		 */
1514 	}
1515 
1516 	reclaim_stat->recent_scanned[file] += nr_taken;
1517 
1518 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1519 	if (file)
1520 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1521 	else
1522 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1523 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1524 	spin_unlock_irq(&zone->lru_lock);
1525 
1526 	while (!list_empty(&l_hold)) {
1527 		cond_resched();
1528 		page = lru_to_page(&l_hold);
1529 		list_del(&page->lru);
1530 
1531 		if (unlikely(!page_evictable(page, NULL))) {
1532 			putback_lru_page(page);
1533 			continue;
1534 		}
1535 
1536 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1537 			nr_rotated++;
1538 			/*
1539 			 * Identify referenced, file-backed active pages and
1540 			 * give them one more trip around the active list. So
1541 			 * that executable code get better chances to stay in
1542 			 * memory under moderate memory pressure.  Anon pages
1543 			 * are not likely to be evicted by use-once streaming
1544 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1545 			 * so we ignore them here.
1546 			 */
1547 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1548 				list_add(&page->lru, &l_active);
1549 				continue;
1550 			}
1551 		}
1552 
1553 		ClearPageActive(page);	/* we are de-activating */
1554 		list_add(&page->lru, &l_inactive);
1555 	}
1556 
1557 	/*
1558 	 * Move pages back to the lru list.
1559 	 */
1560 	spin_lock_irq(&zone->lru_lock);
1561 	/*
1562 	 * Count referenced pages from currently used mappings as rotated,
1563 	 * even though only some of them are actually re-activated.  This
1564 	 * helps balance scan pressure between file and anonymous pages in
1565 	 * get_scan_ratio.
1566 	 */
1567 	reclaim_stat->recent_rotated[file] += nr_rotated;
1568 
1569 	move_active_pages_to_lru(zone, &l_active,
1570 						LRU_ACTIVE + file * LRU_FILE);
1571 	move_active_pages_to_lru(zone, &l_inactive,
1572 						LRU_BASE   + file * LRU_FILE);
1573 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1574 	spin_unlock_irq(&zone->lru_lock);
1575 }
1576 
1577 #ifdef CONFIG_SWAP
1578 static int inactive_anon_is_low_global(struct zone *zone)
1579 {
1580 	unsigned long active, inactive;
1581 
1582 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1583 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1584 
1585 	if (inactive * zone->inactive_ratio < active)
1586 		return 1;
1587 
1588 	return 0;
1589 }
1590 
1591 /**
1592  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1593  * @zone: zone to check
1594  * @sc:   scan control of this context
1595  *
1596  * Returns true if the zone does not have enough inactive anon pages,
1597  * meaning some active anon pages need to be deactivated.
1598  */
1599 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1600 {
1601 	int low;
1602 
1603 	/*
1604 	 * If we don't have swap space, anonymous page deactivation
1605 	 * is pointless.
1606 	 */
1607 	if (!total_swap_pages)
1608 		return 0;
1609 
1610 	if (scanning_global_lru(sc))
1611 		low = inactive_anon_is_low_global(zone);
1612 	else
1613 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1614 	return low;
1615 }
1616 #else
1617 static inline int inactive_anon_is_low(struct zone *zone,
1618 					struct scan_control *sc)
1619 {
1620 	return 0;
1621 }
1622 #endif
1623 
1624 static int inactive_file_is_low_global(struct zone *zone)
1625 {
1626 	unsigned long active, inactive;
1627 
1628 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1629 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1630 
1631 	return (active > inactive);
1632 }
1633 
1634 /**
1635  * inactive_file_is_low - check if file pages need to be deactivated
1636  * @zone: zone to check
1637  * @sc:   scan control of this context
1638  *
1639  * When the system is doing streaming IO, memory pressure here
1640  * ensures that active file pages get deactivated, until more
1641  * than half of the file pages are on the inactive list.
1642  *
1643  * Once we get to that situation, protect the system's working
1644  * set from being evicted by disabling active file page aging.
1645  *
1646  * This uses a different ratio than the anonymous pages, because
1647  * the page cache uses a use-once replacement algorithm.
1648  */
1649 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1650 {
1651 	int low;
1652 
1653 	if (scanning_global_lru(sc))
1654 		low = inactive_file_is_low_global(zone);
1655 	else
1656 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1657 	return low;
1658 }
1659 
1660 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1661 				int file)
1662 {
1663 	if (file)
1664 		return inactive_file_is_low(zone, sc);
1665 	else
1666 		return inactive_anon_is_low(zone, sc);
1667 }
1668 
1669 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1670 	struct zone *zone, struct scan_control *sc, int priority)
1671 {
1672 	int file = is_file_lru(lru);
1673 
1674 	if (is_active_lru(lru)) {
1675 		if (inactive_list_is_low(zone, sc, file))
1676 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1677 		return 0;
1678 	}
1679 
1680 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1681 }
1682 
1683 /*
1684  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1685  * until we collected @swap_cluster_max pages to scan.
1686  */
1687 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1688 				       unsigned long *nr_saved_scan)
1689 {
1690 	unsigned long nr;
1691 
1692 	*nr_saved_scan += nr_to_scan;
1693 	nr = *nr_saved_scan;
1694 
1695 	if (nr >= SWAP_CLUSTER_MAX)
1696 		*nr_saved_scan = 0;
1697 	else
1698 		nr = 0;
1699 
1700 	return nr;
1701 }
1702 
1703 /*
1704  * Determine how aggressively the anon and file LRU lists should be
1705  * scanned.  The relative value of each set of LRU lists is determined
1706  * by looking at the fraction of the pages scanned we did rotate back
1707  * onto the active list instead of evict.
1708  *
1709  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1710  */
1711 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1712 					unsigned long *nr, int priority)
1713 {
1714 	unsigned long anon, file, free;
1715 	unsigned long anon_prio, file_prio;
1716 	unsigned long ap, fp;
1717 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1718 	u64 fraction[2], denominator;
1719 	enum lru_list l;
1720 	int noswap = 0;
1721 
1722 	/* If we have no swap space, do not bother scanning anon pages. */
1723 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1724 		noswap = 1;
1725 		fraction[0] = 0;
1726 		fraction[1] = 1;
1727 		denominator = 1;
1728 		goto out;
1729 	}
1730 
1731 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1732 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1733 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1734 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1735 
1736 	if (scanning_global_lru(sc)) {
1737 		free  = zone_page_state(zone, NR_FREE_PAGES);
1738 		/* If we have very few page cache pages,
1739 		   force-scan anon pages. */
1740 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1741 			fraction[0] = 1;
1742 			fraction[1] = 0;
1743 			denominator = 1;
1744 			goto out;
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * With swappiness at 100, anonymous and file have the same priority.
1750 	 * This scanning priority is essentially the inverse of IO cost.
1751 	 */
1752 	anon_prio = sc->swappiness;
1753 	file_prio = 200 - sc->swappiness;
1754 
1755 	/*
1756 	 * OK, so we have swap space and a fair amount of page cache
1757 	 * pages.  We use the recently rotated / recently scanned
1758 	 * ratios to determine how valuable each cache is.
1759 	 *
1760 	 * Because workloads change over time (and to avoid overflow)
1761 	 * we keep these statistics as a floating average, which ends
1762 	 * up weighing recent references more than old ones.
1763 	 *
1764 	 * anon in [0], file in [1]
1765 	 */
1766 	spin_lock_irq(&zone->lru_lock);
1767 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1768 		reclaim_stat->recent_scanned[0] /= 2;
1769 		reclaim_stat->recent_rotated[0] /= 2;
1770 	}
1771 
1772 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1773 		reclaim_stat->recent_scanned[1] /= 2;
1774 		reclaim_stat->recent_rotated[1] /= 2;
1775 	}
1776 
1777 	/*
1778 	 * The amount of pressure on anon vs file pages is inversely
1779 	 * proportional to the fraction of recently scanned pages on
1780 	 * each list that were recently referenced and in active use.
1781 	 */
1782 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1783 	ap /= reclaim_stat->recent_rotated[0] + 1;
1784 
1785 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1786 	fp /= reclaim_stat->recent_rotated[1] + 1;
1787 	spin_unlock_irq(&zone->lru_lock);
1788 
1789 	fraction[0] = ap;
1790 	fraction[1] = fp;
1791 	denominator = ap + fp + 1;
1792 out:
1793 	for_each_evictable_lru(l) {
1794 		int file = is_file_lru(l);
1795 		unsigned long scan;
1796 
1797 		scan = zone_nr_lru_pages(zone, sc, l);
1798 		if (priority || noswap) {
1799 			scan >>= priority;
1800 			scan = div64_u64(scan * fraction[file], denominator);
1801 		}
1802 		nr[l] = nr_scan_try_batch(scan,
1803 					  &reclaim_stat->nr_saved_scan[l]);
1804 	}
1805 }
1806 
1807 /*
1808  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1809  */
1810 static void shrink_zone(int priority, struct zone *zone,
1811 				struct scan_control *sc)
1812 {
1813 	unsigned long nr[NR_LRU_LISTS];
1814 	unsigned long nr_to_scan;
1815 	enum lru_list l;
1816 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1817 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1818 
1819 	get_scan_count(zone, sc, nr, priority);
1820 
1821 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1822 					nr[LRU_INACTIVE_FILE]) {
1823 		for_each_evictable_lru(l) {
1824 			if (nr[l]) {
1825 				nr_to_scan = min_t(unsigned long,
1826 						   nr[l], SWAP_CLUSTER_MAX);
1827 				nr[l] -= nr_to_scan;
1828 
1829 				nr_reclaimed += shrink_list(l, nr_to_scan,
1830 							    zone, sc, priority);
1831 			}
1832 		}
1833 		/*
1834 		 * On large memory systems, scan >> priority can become
1835 		 * really large. This is fine for the starting priority;
1836 		 * we want to put equal scanning pressure on each zone.
1837 		 * However, if the VM has a harder time of freeing pages,
1838 		 * with multiple processes reclaiming pages, the total
1839 		 * freeing target can get unreasonably large.
1840 		 */
1841 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1842 			break;
1843 	}
1844 
1845 	sc->nr_reclaimed = nr_reclaimed;
1846 
1847 	/*
1848 	 * Even if we did not try to evict anon pages at all, we want to
1849 	 * rebalance the anon lru active/inactive ratio.
1850 	 */
1851 	if (inactive_anon_is_low(zone, sc))
1852 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1853 
1854 	throttle_vm_writeout(sc->gfp_mask);
1855 }
1856 
1857 /*
1858  * This is the direct reclaim path, for page-allocating processes.  We only
1859  * try to reclaim pages from zones which will satisfy the caller's allocation
1860  * request.
1861  *
1862  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1863  * Because:
1864  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1865  *    allocation or
1866  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1867  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1868  *    zone defense algorithm.
1869  *
1870  * If a zone is deemed to be full of pinned pages then just give it a light
1871  * scan then give up on it.
1872  */
1873 static void shrink_zones(int priority, struct zonelist *zonelist,
1874 					struct scan_control *sc)
1875 {
1876 	struct zoneref *z;
1877 	struct zone *zone;
1878 
1879 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1880 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1881 		if (!populated_zone(zone))
1882 			continue;
1883 		/*
1884 		 * Take care memory controller reclaiming has small influence
1885 		 * to global LRU.
1886 		 */
1887 		if (scanning_global_lru(sc)) {
1888 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1889 				continue;
1890 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1891 				continue;	/* Let kswapd poll it */
1892 		}
1893 
1894 		shrink_zone(priority, zone, sc);
1895 	}
1896 }
1897 
1898 static bool zone_reclaimable(struct zone *zone)
1899 {
1900 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1901 }
1902 
1903 /*
1904  * As hibernation is going on, kswapd is freezed so that it can't mark
1905  * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1906  * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1907  */
1908 static bool all_unreclaimable(struct zonelist *zonelist,
1909 		struct scan_control *sc)
1910 {
1911 	struct zoneref *z;
1912 	struct zone *zone;
1913 	bool all_unreclaimable = true;
1914 
1915 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1916 			gfp_zone(sc->gfp_mask), sc->nodemask) {
1917 		if (!populated_zone(zone))
1918 			continue;
1919 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1920 			continue;
1921 		if (zone_reclaimable(zone)) {
1922 			all_unreclaimable = false;
1923 			break;
1924 		}
1925 	}
1926 
1927 	return all_unreclaimable;
1928 }
1929 
1930 /*
1931  * This is the main entry point to direct page reclaim.
1932  *
1933  * If a full scan of the inactive list fails to free enough memory then we
1934  * are "out of memory" and something needs to be killed.
1935  *
1936  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1937  * high - the zone may be full of dirty or under-writeback pages, which this
1938  * caller can't do much about.  We kick the writeback threads and take explicit
1939  * naps in the hope that some of these pages can be written.  But if the
1940  * allocating task holds filesystem locks which prevent writeout this might not
1941  * work, and the allocation attempt will fail.
1942  *
1943  * returns:	0, if no pages reclaimed
1944  * 		else, the number of pages reclaimed
1945  */
1946 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1947 					struct scan_control *sc)
1948 {
1949 	int priority;
1950 	unsigned long total_scanned = 0;
1951 	struct reclaim_state *reclaim_state = current->reclaim_state;
1952 	struct zoneref *z;
1953 	struct zone *zone;
1954 	unsigned long writeback_threshold;
1955 
1956 	get_mems_allowed();
1957 	delayacct_freepages_start();
1958 
1959 	if (scanning_global_lru(sc))
1960 		count_vm_event(ALLOCSTALL);
1961 
1962 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1963 		sc->nr_scanned = 0;
1964 		if (!priority)
1965 			disable_swap_token();
1966 		shrink_zones(priority, zonelist, sc);
1967 		/*
1968 		 * Don't shrink slabs when reclaiming memory from
1969 		 * over limit cgroups
1970 		 */
1971 		if (scanning_global_lru(sc)) {
1972 			unsigned long lru_pages = 0;
1973 			for_each_zone_zonelist(zone, z, zonelist,
1974 					gfp_zone(sc->gfp_mask)) {
1975 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1976 					continue;
1977 
1978 				lru_pages += zone_reclaimable_pages(zone);
1979 			}
1980 
1981 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1982 			if (reclaim_state) {
1983 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1984 				reclaim_state->reclaimed_slab = 0;
1985 			}
1986 		}
1987 		total_scanned += sc->nr_scanned;
1988 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1989 			goto out;
1990 
1991 		/*
1992 		 * Try to write back as many pages as we just scanned.  This
1993 		 * tends to cause slow streaming writers to write data to the
1994 		 * disk smoothly, at the dirtying rate, which is nice.   But
1995 		 * that's undesirable in laptop mode, where we *want* lumpy
1996 		 * writeout.  So in laptop mode, write out the whole world.
1997 		 */
1998 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1999 		if (total_scanned > writeback_threshold) {
2000 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2001 			sc->may_writepage = 1;
2002 		}
2003 
2004 		/* Take a nap, wait for some writeback to complete */
2005 		if (!sc->hibernation_mode && sc->nr_scanned &&
2006 		    priority < DEF_PRIORITY - 2) {
2007 			struct zone *preferred_zone;
2008 
2009 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2010 							NULL, &preferred_zone);
2011 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2012 		}
2013 	}
2014 
2015 out:
2016 	delayacct_freepages_end();
2017 	put_mems_allowed();
2018 
2019 	if (sc->nr_reclaimed)
2020 		return sc->nr_reclaimed;
2021 
2022 	/* top priority shrink_zones still had more to do? don't OOM, then */
2023 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2024 		return 1;
2025 
2026 	return 0;
2027 }
2028 
2029 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2030 				gfp_t gfp_mask, nodemask_t *nodemask)
2031 {
2032 	unsigned long nr_reclaimed;
2033 	struct scan_control sc = {
2034 		.gfp_mask = gfp_mask,
2035 		.may_writepage = !laptop_mode,
2036 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2037 		.may_unmap = 1,
2038 		.may_swap = 1,
2039 		.swappiness = vm_swappiness,
2040 		.order = order,
2041 		.mem_cgroup = NULL,
2042 		.nodemask = nodemask,
2043 	};
2044 
2045 	trace_mm_vmscan_direct_reclaim_begin(order,
2046 				sc.may_writepage,
2047 				gfp_mask);
2048 
2049 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2050 
2051 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2052 
2053 	return nr_reclaimed;
2054 }
2055 
2056 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2057 
2058 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2059 						gfp_t gfp_mask, bool noswap,
2060 						unsigned int swappiness,
2061 						struct zone *zone)
2062 {
2063 	struct scan_control sc = {
2064 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2065 		.may_writepage = !laptop_mode,
2066 		.may_unmap = 1,
2067 		.may_swap = !noswap,
2068 		.swappiness = swappiness,
2069 		.order = 0,
2070 		.mem_cgroup = mem,
2071 	};
2072 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2073 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2074 
2075 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2076 						      sc.may_writepage,
2077 						      sc.gfp_mask);
2078 
2079 	/*
2080 	 * NOTE: Although we can get the priority field, using it
2081 	 * here is not a good idea, since it limits the pages we can scan.
2082 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2083 	 * will pick up pages from other mem cgroup's as well. We hack
2084 	 * the priority and make it zero.
2085 	 */
2086 	shrink_zone(0, zone, &sc);
2087 
2088 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2089 
2090 	return sc.nr_reclaimed;
2091 }
2092 
2093 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2094 					   gfp_t gfp_mask,
2095 					   bool noswap,
2096 					   unsigned int swappiness)
2097 {
2098 	struct zonelist *zonelist;
2099 	unsigned long nr_reclaimed;
2100 	struct scan_control sc = {
2101 		.may_writepage = !laptop_mode,
2102 		.may_unmap = 1,
2103 		.may_swap = !noswap,
2104 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2105 		.swappiness = swappiness,
2106 		.order = 0,
2107 		.mem_cgroup = mem_cont,
2108 		.nodemask = NULL, /* we don't care the placement */
2109 	};
2110 
2111 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2112 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2113 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2114 
2115 	trace_mm_vmscan_memcg_reclaim_begin(0,
2116 					    sc.may_writepage,
2117 					    sc.gfp_mask);
2118 
2119 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2120 
2121 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2122 
2123 	return nr_reclaimed;
2124 }
2125 #endif
2126 
2127 /* is kswapd sleeping prematurely? */
2128 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2129 {
2130 	int i;
2131 
2132 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2133 	if (remaining)
2134 		return 1;
2135 
2136 	/* If after HZ/10, a zone is below the high mark, it's premature */
2137 	for (i = 0; i < pgdat->nr_zones; i++) {
2138 		struct zone *zone = pgdat->node_zones + i;
2139 
2140 		if (!populated_zone(zone))
2141 			continue;
2142 
2143 		if (zone->all_unreclaimable)
2144 			continue;
2145 
2146 		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2147 								0, 0))
2148 			return 1;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 /*
2155  * For kswapd, balance_pgdat() will work across all this node's zones until
2156  * they are all at high_wmark_pages(zone).
2157  *
2158  * Returns the number of pages which were actually freed.
2159  *
2160  * There is special handling here for zones which are full of pinned pages.
2161  * This can happen if the pages are all mlocked, or if they are all used by
2162  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2163  * What we do is to detect the case where all pages in the zone have been
2164  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2165  * dead and from now on, only perform a short scan.  Basically we're polling
2166  * the zone for when the problem goes away.
2167  *
2168  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2169  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2170  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2171  * lower zones regardless of the number of free pages in the lower zones. This
2172  * interoperates with the page allocator fallback scheme to ensure that aging
2173  * of pages is balanced across the zones.
2174  */
2175 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2176 {
2177 	int all_zones_ok;
2178 	int priority;
2179 	int i;
2180 	unsigned long total_scanned;
2181 	struct reclaim_state *reclaim_state = current->reclaim_state;
2182 	struct scan_control sc = {
2183 		.gfp_mask = GFP_KERNEL,
2184 		.may_unmap = 1,
2185 		.may_swap = 1,
2186 		/*
2187 		 * kswapd doesn't want to be bailed out while reclaim. because
2188 		 * we want to put equal scanning pressure on each zone.
2189 		 */
2190 		.nr_to_reclaim = ULONG_MAX,
2191 		.swappiness = vm_swappiness,
2192 		.order = order,
2193 		.mem_cgroup = NULL,
2194 	};
2195 loop_again:
2196 	total_scanned = 0;
2197 	sc.nr_reclaimed = 0;
2198 	sc.may_writepage = !laptop_mode;
2199 	count_vm_event(PAGEOUTRUN);
2200 
2201 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2202 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2203 		unsigned long lru_pages = 0;
2204 		int has_under_min_watermark_zone = 0;
2205 
2206 		/* The swap token gets in the way of swapout... */
2207 		if (!priority)
2208 			disable_swap_token();
2209 
2210 		all_zones_ok = 1;
2211 
2212 		/*
2213 		 * Scan in the highmem->dma direction for the highest
2214 		 * zone which needs scanning
2215 		 */
2216 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2217 			struct zone *zone = pgdat->node_zones + i;
2218 
2219 			if (!populated_zone(zone))
2220 				continue;
2221 
2222 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2223 				continue;
2224 
2225 			/*
2226 			 * Do some background aging of the anon list, to give
2227 			 * pages a chance to be referenced before reclaiming.
2228 			 */
2229 			if (inactive_anon_is_low(zone, &sc))
2230 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2231 							&sc, priority, 0);
2232 
2233 			if (!zone_watermark_ok(zone, order,
2234 					high_wmark_pages(zone), 0, 0)) {
2235 				end_zone = i;
2236 				break;
2237 			}
2238 		}
2239 		if (i < 0)
2240 			goto out;
2241 
2242 		for (i = 0; i <= end_zone; i++) {
2243 			struct zone *zone = pgdat->node_zones + i;
2244 
2245 			lru_pages += zone_reclaimable_pages(zone);
2246 		}
2247 
2248 		/*
2249 		 * Now scan the zone in the dma->highmem direction, stopping
2250 		 * at the last zone which needs scanning.
2251 		 *
2252 		 * We do this because the page allocator works in the opposite
2253 		 * direction.  This prevents the page allocator from allocating
2254 		 * pages behind kswapd's direction of progress, which would
2255 		 * cause too much scanning of the lower zones.
2256 		 */
2257 		for (i = 0; i <= end_zone; i++) {
2258 			struct zone *zone = pgdat->node_zones + i;
2259 			int nr_slab;
2260 
2261 			if (!populated_zone(zone))
2262 				continue;
2263 
2264 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2265 				continue;
2266 
2267 			sc.nr_scanned = 0;
2268 
2269 			/*
2270 			 * Call soft limit reclaim before calling shrink_zone.
2271 			 * For now we ignore the return value
2272 			 */
2273 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2274 
2275 			/*
2276 			 * We put equal pressure on every zone, unless one
2277 			 * zone has way too many pages free already.
2278 			 */
2279 			if (!zone_watermark_ok(zone, order,
2280 					8*high_wmark_pages(zone), end_zone, 0))
2281 				shrink_zone(priority, zone, &sc);
2282 			reclaim_state->reclaimed_slab = 0;
2283 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2284 						lru_pages);
2285 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2286 			total_scanned += sc.nr_scanned;
2287 			if (zone->all_unreclaimable)
2288 				continue;
2289 			if (nr_slab == 0 && !zone_reclaimable(zone))
2290 				zone->all_unreclaimable = 1;
2291 			/*
2292 			 * If we've done a decent amount of scanning and
2293 			 * the reclaim ratio is low, start doing writepage
2294 			 * even in laptop mode
2295 			 */
2296 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2297 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2298 				sc.may_writepage = 1;
2299 
2300 			if (!zone_watermark_ok(zone, order,
2301 					high_wmark_pages(zone), end_zone, 0)) {
2302 				all_zones_ok = 0;
2303 				/*
2304 				 * We are still under min water mark.  This
2305 				 * means that we have a GFP_ATOMIC allocation
2306 				 * failure risk. Hurry up!
2307 				 */
2308 				if (!zone_watermark_ok(zone, order,
2309 					    min_wmark_pages(zone), end_zone, 0))
2310 					has_under_min_watermark_zone = 1;
2311 			} else {
2312 				/*
2313 				 * If a zone reaches its high watermark,
2314 				 * consider it to be no longer congested. It's
2315 				 * possible there are dirty pages backed by
2316 				 * congested BDIs but as pressure is relieved,
2317 				 * spectulatively avoid congestion waits
2318 				 */
2319 				zone_clear_flag(zone, ZONE_CONGESTED);
2320 			}
2321 
2322 		}
2323 		if (all_zones_ok)
2324 			break;		/* kswapd: all done */
2325 		/*
2326 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2327 		 * another pass across the zones.
2328 		 */
2329 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2330 			if (has_under_min_watermark_zone)
2331 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2332 			else
2333 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2334 		}
2335 
2336 		/*
2337 		 * We do this so kswapd doesn't build up large priorities for
2338 		 * example when it is freeing in parallel with allocators. It
2339 		 * matches the direct reclaim path behaviour in terms of impact
2340 		 * on zone->*_priority.
2341 		 */
2342 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2343 			break;
2344 	}
2345 out:
2346 	if (!all_zones_ok) {
2347 		cond_resched();
2348 
2349 		try_to_freeze();
2350 
2351 		/*
2352 		 * Fragmentation may mean that the system cannot be
2353 		 * rebalanced for high-order allocations in all zones.
2354 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2355 		 * it means the zones have been fully scanned and are still
2356 		 * not balanced. For high-order allocations, there is
2357 		 * little point trying all over again as kswapd may
2358 		 * infinite loop.
2359 		 *
2360 		 * Instead, recheck all watermarks at order-0 as they
2361 		 * are the most important. If watermarks are ok, kswapd will go
2362 		 * back to sleep. High-order users can still perform direct
2363 		 * reclaim if they wish.
2364 		 */
2365 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2366 			order = sc.order = 0;
2367 
2368 		goto loop_again;
2369 	}
2370 
2371 	return sc.nr_reclaimed;
2372 }
2373 
2374 /*
2375  * The background pageout daemon, started as a kernel thread
2376  * from the init process.
2377  *
2378  * This basically trickles out pages so that we have _some_
2379  * free memory available even if there is no other activity
2380  * that frees anything up. This is needed for things like routing
2381  * etc, where we otherwise might have all activity going on in
2382  * asynchronous contexts that cannot page things out.
2383  *
2384  * If there are applications that are active memory-allocators
2385  * (most normal use), this basically shouldn't matter.
2386  */
2387 static int kswapd(void *p)
2388 {
2389 	unsigned long order;
2390 	pg_data_t *pgdat = (pg_data_t*)p;
2391 	struct task_struct *tsk = current;
2392 	DEFINE_WAIT(wait);
2393 	struct reclaim_state reclaim_state = {
2394 		.reclaimed_slab = 0,
2395 	};
2396 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2397 
2398 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2399 
2400 	if (!cpumask_empty(cpumask))
2401 		set_cpus_allowed_ptr(tsk, cpumask);
2402 	current->reclaim_state = &reclaim_state;
2403 
2404 	/*
2405 	 * Tell the memory management that we're a "memory allocator",
2406 	 * and that if we need more memory we should get access to it
2407 	 * regardless (see "__alloc_pages()"). "kswapd" should
2408 	 * never get caught in the normal page freeing logic.
2409 	 *
2410 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2411 	 * you need a small amount of memory in order to be able to
2412 	 * page out something else, and this flag essentially protects
2413 	 * us from recursively trying to free more memory as we're
2414 	 * trying to free the first piece of memory in the first place).
2415 	 */
2416 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2417 	set_freezable();
2418 
2419 	order = 0;
2420 	for ( ; ; ) {
2421 		unsigned long new_order;
2422 		int ret;
2423 
2424 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2425 		new_order = pgdat->kswapd_max_order;
2426 		pgdat->kswapd_max_order = 0;
2427 		if (order < new_order) {
2428 			/*
2429 			 * Don't sleep if someone wants a larger 'order'
2430 			 * allocation
2431 			 */
2432 			order = new_order;
2433 		} else {
2434 			if (!freezing(current) && !kthread_should_stop()) {
2435 				long remaining = 0;
2436 
2437 				/* Try to sleep for a short interval */
2438 				if (!sleeping_prematurely(pgdat, order, remaining)) {
2439 					remaining = schedule_timeout(HZ/10);
2440 					finish_wait(&pgdat->kswapd_wait, &wait);
2441 					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2442 				}
2443 
2444 				/*
2445 				 * After a short sleep, check if it was a
2446 				 * premature sleep. If not, then go fully
2447 				 * to sleep until explicitly woken up
2448 				 */
2449 				if (!sleeping_prematurely(pgdat, order, remaining)) {
2450 					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2451 					schedule();
2452 				} else {
2453 					if (remaining)
2454 						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2455 					else
2456 						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2457 				}
2458 			}
2459 
2460 			order = pgdat->kswapd_max_order;
2461 		}
2462 		finish_wait(&pgdat->kswapd_wait, &wait);
2463 
2464 		ret = try_to_freeze();
2465 		if (kthread_should_stop())
2466 			break;
2467 
2468 		/*
2469 		 * We can speed up thawing tasks if we don't call balance_pgdat
2470 		 * after returning from the refrigerator
2471 		 */
2472 		if (!ret) {
2473 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2474 			balance_pgdat(pgdat, order);
2475 		}
2476 	}
2477 	return 0;
2478 }
2479 
2480 /*
2481  * A zone is low on free memory, so wake its kswapd task to service it.
2482  */
2483 void wakeup_kswapd(struct zone *zone, int order)
2484 {
2485 	pg_data_t *pgdat;
2486 
2487 	if (!populated_zone(zone))
2488 		return;
2489 
2490 	pgdat = zone->zone_pgdat;
2491 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2492 		return;
2493 	if (pgdat->kswapd_max_order < order)
2494 		pgdat->kswapd_max_order = order;
2495 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2496 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2497 		return;
2498 	if (!waitqueue_active(&pgdat->kswapd_wait))
2499 		return;
2500 	wake_up_interruptible(&pgdat->kswapd_wait);
2501 }
2502 
2503 /*
2504  * The reclaimable count would be mostly accurate.
2505  * The less reclaimable pages may be
2506  * - mlocked pages, which will be moved to unevictable list when encountered
2507  * - mapped pages, which may require several travels to be reclaimed
2508  * - dirty pages, which is not "instantly" reclaimable
2509  */
2510 unsigned long global_reclaimable_pages(void)
2511 {
2512 	int nr;
2513 
2514 	nr = global_page_state(NR_ACTIVE_FILE) +
2515 	     global_page_state(NR_INACTIVE_FILE);
2516 
2517 	if (nr_swap_pages > 0)
2518 		nr += global_page_state(NR_ACTIVE_ANON) +
2519 		      global_page_state(NR_INACTIVE_ANON);
2520 
2521 	return nr;
2522 }
2523 
2524 unsigned long zone_reclaimable_pages(struct zone *zone)
2525 {
2526 	int nr;
2527 
2528 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2529 	     zone_page_state(zone, NR_INACTIVE_FILE);
2530 
2531 	if (nr_swap_pages > 0)
2532 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2533 		      zone_page_state(zone, NR_INACTIVE_ANON);
2534 
2535 	return nr;
2536 }
2537 
2538 #ifdef CONFIG_HIBERNATION
2539 /*
2540  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2541  * freed pages.
2542  *
2543  * Rather than trying to age LRUs the aim is to preserve the overall
2544  * LRU order by reclaiming preferentially
2545  * inactive > active > active referenced > active mapped
2546  */
2547 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2548 {
2549 	struct reclaim_state reclaim_state;
2550 	struct scan_control sc = {
2551 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2552 		.may_swap = 1,
2553 		.may_unmap = 1,
2554 		.may_writepage = 1,
2555 		.nr_to_reclaim = nr_to_reclaim,
2556 		.hibernation_mode = 1,
2557 		.swappiness = vm_swappiness,
2558 		.order = 0,
2559 	};
2560 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2561 	struct task_struct *p = current;
2562 	unsigned long nr_reclaimed;
2563 
2564 	p->flags |= PF_MEMALLOC;
2565 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2566 	reclaim_state.reclaimed_slab = 0;
2567 	p->reclaim_state = &reclaim_state;
2568 
2569 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2570 
2571 	p->reclaim_state = NULL;
2572 	lockdep_clear_current_reclaim_state();
2573 	p->flags &= ~PF_MEMALLOC;
2574 
2575 	return nr_reclaimed;
2576 }
2577 #endif /* CONFIG_HIBERNATION */
2578 
2579 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2580    not required for correctness.  So if the last cpu in a node goes
2581    away, we get changed to run anywhere: as the first one comes back,
2582    restore their cpu bindings. */
2583 static int __devinit cpu_callback(struct notifier_block *nfb,
2584 				  unsigned long action, void *hcpu)
2585 {
2586 	int nid;
2587 
2588 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2589 		for_each_node_state(nid, N_HIGH_MEMORY) {
2590 			pg_data_t *pgdat = NODE_DATA(nid);
2591 			const struct cpumask *mask;
2592 
2593 			mask = cpumask_of_node(pgdat->node_id);
2594 
2595 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2596 				/* One of our CPUs online: restore mask */
2597 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2598 		}
2599 	}
2600 	return NOTIFY_OK;
2601 }
2602 
2603 /*
2604  * This kswapd start function will be called by init and node-hot-add.
2605  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2606  */
2607 int kswapd_run(int nid)
2608 {
2609 	pg_data_t *pgdat = NODE_DATA(nid);
2610 	int ret = 0;
2611 
2612 	if (pgdat->kswapd)
2613 		return 0;
2614 
2615 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2616 	if (IS_ERR(pgdat->kswapd)) {
2617 		/* failure at boot is fatal */
2618 		BUG_ON(system_state == SYSTEM_BOOTING);
2619 		printk("Failed to start kswapd on node %d\n",nid);
2620 		ret = -1;
2621 	}
2622 	return ret;
2623 }
2624 
2625 /*
2626  * Called by memory hotplug when all memory in a node is offlined.
2627  */
2628 void kswapd_stop(int nid)
2629 {
2630 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2631 
2632 	if (kswapd)
2633 		kthread_stop(kswapd);
2634 }
2635 
2636 static int __init kswapd_init(void)
2637 {
2638 	int nid;
2639 
2640 	swap_setup();
2641 	for_each_node_state(nid, N_HIGH_MEMORY)
2642  		kswapd_run(nid);
2643 	hotcpu_notifier(cpu_callback, 0);
2644 	return 0;
2645 }
2646 
2647 module_init(kswapd_init)
2648 
2649 #ifdef CONFIG_NUMA
2650 /*
2651  * Zone reclaim mode
2652  *
2653  * If non-zero call zone_reclaim when the number of free pages falls below
2654  * the watermarks.
2655  */
2656 int zone_reclaim_mode __read_mostly;
2657 
2658 #define RECLAIM_OFF 0
2659 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2660 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2661 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2662 
2663 /*
2664  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2665  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2666  * a zone.
2667  */
2668 #define ZONE_RECLAIM_PRIORITY 4
2669 
2670 /*
2671  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2672  * occur.
2673  */
2674 int sysctl_min_unmapped_ratio = 1;
2675 
2676 /*
2677  * If the number of slab pages in a zone grows beyond this percentage then
2678  * slab reclaim needs to occur.
2679  */
2680 int sysctl_min_slab_ratio = 5;
2681 
2682 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2683 {
2684 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2685 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2686 		zone_page_state(zone, NR_ACTIVE_FILE);
2687 
2688 	/*
2689 	 * It's possible for there to be more file mapped pages than
2690 	 * accounted for by the pages on the file LRU lists because
2691 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2692 	 */
2693 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2694 }
2695 
2696 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2697 static long zone_pagecache_reclaimable(struct zone *zone)
2698 {
2699 	long nr_pagecache_reclaimable;
2700 	long delta = 0;
2701 
2702 	/*
2703 	 * If RECLAIM_SWAP is set, then all file pages are considered
2704 	 * potentially reclaimable. Otherwise, we have to worry about
2705 	 * pages like swapcache and zone_unmapped_file_pages() provides
2706 	 * a better estimate
2707 	 */
2708 	if (zone_reclaim_mode & RECLAIM_SWAP)
2709 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2710 	else
2711 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2712 
2713 	/* If we can't clean pages, remove dirty pages from consideration */
2714 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2715 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2716 
2717 	/* Watch for any possible underflows due to delta */
2718 	if (unlikely(delta > nr_pagecache_reclaimable))
2719 		delta = nr_pagecache_reclaimable;
2720 
2721 	return nr_pagecache_reclaimable - delta;
2722 }
2723 
2724 /*
2725  * Try to free up some pages from this zone through reclaim.
2726  */
2727 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2728 {
2729 	/* Minimum pages needed in order to stay on node */
2730 	const unsigned long nr_pages = 1 << order;
2731 	struct task_struct *p = current;
2732 	struct reclaim_state reclaim_state;
2733 	int priority;
2734 	struct scan_control sc = {
2735 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2736 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2737 		.may_swap = 1,
2738 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2739 				       SWAP_CLUSTER_MAX),
2740 		.gfp_mask = gfp_mask,
2741 		.swappiness = vm_swappiness,
2742 		.order = order,
2743 	};
2744 	unsigned long nr_slab_pages0, nr_slab_pages1;
2745 
2746 	cond_resched();
2747 	/*
2748 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2749 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2750 	 * and RECLAIM_SWAP.
2751 	 */
2752 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2753 	lockdep_set_current_reclaim_state(gfp_mask);
2754 	reclaim_state.reclaimed_slab = 0;
2755 	p->reclaim_state = &reclaim_state;
2756 
2757 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2758 		/*
2759 		 * Free memory by calling shrink zone with increasing
2760 		 * priorities until we have enough memory freed.
2761 		 */
2762 		priority = ZONE_RECLAIM_PRIORITY;
2763 		do {
2764 			shrink_zone(priority, zone, &sc);
2765 			priority--;
2766 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2767 	}
2768 
2769 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2770 	if (nr_slab_pages0 > zone->min_slab_pages) {
2771 		/*
2772 		 * shrink_slab() does not currently allow us to determine how
2773 		 * many pages were freed in this zone. So we take the current
2774 		 * number of slab pages and shake the slab until it is reduced
2775 		 * by the same nr_pages that we used for reclaiming unmapped
2776 		 * pages.
2777 		 *
2778 		 * Note that shrink_slab will free memory on all zones and may
2779 		 * take a long time.
2780 		 */
2781 		for (;;) {
2782 			unsigned long lru_pages = zone_reclaimable_pages(zone);
2783 
2784 			/* No reclaimable slab or very low memory pressure */
2785 			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2786 				break;
2787 
2788 			/* Freed enough memory */
2789 			nr_slab_pages1 = zone_page_state(zone,
2790 							NR_SLAB_RECLAIMABLE);
2791 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2792 				break;
2793 		}
2794 
2795 		/*
2796 		 * Update nr_reclaimed by the number of slab pages we
2797 		 * reclaimed from this zone.
2798 		 */
2799 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2800 		if (nr_slab_pages1 < nr_slab_pages0)
2801 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2802 	}
2803 
2804 	p->reclaim_state = NULL;
2805 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2806 	lockdep_clear_current_reclaim_state();
2807 	return sc.nr_reclaimed >= nr_pages;
2808 }
2809 
2810 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2811 {
2812 	int node_id;
2813 	int ret;
2814 
2815 	/*
2816 	 * Zone reclaim reclaims unmapped file backed pages and
2817 	 * slab pages if we are over the defined limits.
2818 	 *
2819 	 * A small portion of unmapped file backed pages is needed for
2820 	 * file I/O otherwise pages read by file I/O will be immediately
2821 	 * thrown out if the zone is overallocated. So we do not reclaim
2822 	 * if less than a specified percentage of the zone is used by
2823 	 * unmapped file backed pages.
2824 	 */
2825 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2826 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2827 		return ZONE_RECLAIM_FULL;
2828 
2829 	if (zone->all_unreclaimable)
2830 		return ZONE_RECLAIM_FULL;
2831 
2832 	/*
2833 	 * Do not scan if the allocation should not be delayed.
2834 	 */
2835 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2836 		return ZONE_RECLAIM_NOSCAN;
2837 
2838 	/*
2839 	 * Only run zone reclaim on the local zone or on zones that do not
2840 	 * have associated processors. This will favor the local processor
2841 	 * over remote processors and spread off node memory allocations
2842 	 * as wide as possible.
2843 	 */
2844 	node_id = zone_to_nid(zone);
2845 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2846 		return ZONE_RECLAIM_NOSCAN;
2847 
2848 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2849 		return ZONE_RECLAIM_NOSCAN;
2850 
2851 	ret = __zone_reclaim(zone, gfp_mask, order);
2852 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2853 
2854 	if (!ret)
2855 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2856 
2857 	return ret;
2858 }
2859 #endif
2860 
2861 /*
2862  * page_evictable - test whether a page is evictable
2863  * @page: the page to test
2864  * @vma: the VMA in which the page is or will be mapped, may be NULL
2865  *
2866  * Test whether page is evictable--i.e., should be placed on active/inactive
2867  * lists vs unevictable list.  The vma argument is !NULL when called from the
2868  * fault path to determine how to instantate a new page.
2869  *
2870  * Reasons page might not be evictable:
2871  * (1) page's mapping marked unevictable
2872  * (2) page is part of an mlocked VMA
2873  *
2874  */
2875 int page_evictable(struct page *page, struct vm_area_struct *vma)
2876 {
2877 
2878 	if (mapping_unevictable(page_mapping(page)))
2879 		return 0;
2880 
2881 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2882 		return 0;
2883 
2884 	return 1;
2885 }
2886 
2887 /**
2888  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2889  * @page: page to check evictability and move to appropriate lru list
2890  * @zone: zone page is in
2891  *
2892  * Checks a page for evictability and moves the page to the appropriate
2893  * zone lru list.
2894  *
2895  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2896  * have PageUnevictable set.
2897  */
2898 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2899 {
2900 	VM_BUG_ON(PageActive(page));
2901 
2902 retry:
2903 	ClearPageUnevictable(page);
2904 	if (page_evictable(page, NULL)) {
2905 		enum lru_list l = page_lru_base_type(page);
2906 
2907 		__dec_zone_state(zone, NR_UNEVICTABLE);
2908 		list_move(&page->lru, &zone->lru[l].list);
2909 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2910 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2911 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2912 	} else {
2913 		/*
2914 		 * rotate unevictable list
2915 		 */
2916 		SetPageUnevictable(page);
2917 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2918 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2919 		if (page_evictable(page, NULL))
2920 			goto retry;
2921 	}
2922 }
2923 
2924 /**
2925  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2926  * @mapping: struct address_space to scan for evictable pages
2927  *
2928  * Scan all pages in mapping.  Check unevictable pages for
2929  * evictability and move them to the appropriate zone lru list.
2930  */
2931 void scan_mapping_unevictable_pages(struct address_space *mapping)
2932 {
2933 	pgoff_t next = 0;
2934 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2935 			 PAGE_CACHE_SHIFT;
2936 	struct zone *zone;
2937 	struct pagevec pvec;
2938 
2939 	if (mapping->nrpages == 0)
2940 		return;
2941 
2942 	pagevec_init(&pvec, 0);
2943 	while (next < end &&
2944 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2945 		int i;
2946 		int pg_scanned = 0;
2947 
2948 		zone = NULL;
2949 
2950 		for (i = 0; i < pagevec_count(&pvec); i++) {
2951 			struct page *page = pvec.pages[i];
2952 			pgoff_t page_index = page->index;
2953 			struct zone *pagezone = page_zone(page);
2954 
2955 			pg_scanned++;
2956 			if (page_index > next)
2957 				next = page_index;
2958 			next++;
2959 
2960 			if (pagezone != zone) {
2961 				if (zone)
2962 					spin_unlock_irq(&zone->lru_lock);
2963 				zone = pagezone;
2964 				spin_lock_irq(&zone->lru_lock);
2965 			}
2966 
2967 			if (PageLRU(page) && PageUnevictable(page))
2968 				check_move_unevictable_page(page, zone);
2969 		}
2970 		if (zone)
2971 			spin_unlock_irq(&zone->lru_lock);
2972 		pagevec_release(&pvec);
2973 
2974 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2975 	}
2976 
2977 }
2978 
2979 /**
2980  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2981  * @zone - zone of which to scan the unevictable list
2982  *
2983  * Scan @zone's unevictable LRU lists to check for pages that have become
2984  * evictable.  Move those that have to @zone's inactive list where they
2985  * become candidates for reclaim, unless shrink_inactive_zone() decides
2986  * to reactivate them.  Pages that are still unevictable are rotated
2987  * back onto @zone's unevictable list.
2988  */
2989 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2990 static void scan_zone_unevictable_pages(struct zone *zone)
2991 {
2992 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2993 	unsigned long scan;
2994 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2995 
2996 	while (nr_to_scan > 0) {
2997 		unsigned long batch_size = min(nr_to_scan,
2998 						SCAN_UNEVICTABLE_BATCH_SIZE);
2999 
3000 		spin_lock_irq(&zone->lru_lock);
3001 		for (scan = 0;  scan < batch_size; scan++) {
3002 			struct page *page = lru_to_page(l_unevictable);
3003 
3004 			if (!trylock_page(page))
3005 				continue;
3006 
3007 			prefetchw_prev_lru_page(page, l_unevictable, flags);
3008 
3009 			if (likely(PageLRU(page) && PageUnevictable(page)))
3010 				check_move_unevictable_page(page, zone);
3011 
3012 			unlock_page(page);
3013 		}
3014 		spin_unlock_irq(&zone->lru_lock);
3015 
3016 		nr_to_scan -= batch_size;
3017 	}
3018 }
3019 
3020 
3021 /**
3022  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3023  *
3024  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3025  * pages that have become evictable.  Move those back to the zones'
3026  * inactive list where they become candidates for reclaim.
3027  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3028  * and we add swap to the system.  As such, it runs in the context of a task
3029  * that has possibly/probably made some previously unevictable pages
3030  * evictable.
3031  */
3032 static void scan_all_zones_unevictable_pages(void)
3033 {
3034 	struct zone *zone;
3035 
3036 	for_each_zone(zone) {
3037 		scan_zone_unevictable_pages(zone);
3038 	}
3039 }
3040 
3041 /*
3042  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3043  * all nodes' unevictable lists for evictable pages
3044  */
3045 unsigned long scan_unevictable_pages;
3046 
3047 int scan_unevictable_handler(struct ctl_table *table, int write,
3048 			   void __user *buffer,
3049 			   size_t *length, loff_t *ppos)
3050 {
3051 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3052 
3053 	if (write && *(unsigned long *)table->data)
3054 		scan_all_zones_unevictable_pages();
3055 
3056 	scan_unevictable_pages = 0;
3057 	return 0;
3058 }
3059 
3060 #ifdef CONFIG_NUMA
3061 /*
3062  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3063  * a specified node's per zone unevictable lists for evictable pages.
3064  */
3065 
3066 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3067 					  struct sysdev_attribute *attr,
3068 					  char *buf)
3069 {
3070 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3071 }
3072 
3073 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3074 					   struct sysdev_attribute *attr,
3075 					const char *buf, size_t count)
3076 {
3077 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3078 	struct zone *zone;
3079 	unsigned long res;
3080 	unsigned long req = strict_strtoul(buf, 10, &res);
3081 
3082 	if (!req)
3083 		return 1;	/* zero is no-op */
3084 
3085 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3086 		if (!populated_zone(zone))
3087 			continue;
3088 		scan_zone_unevictable_pages(zone);
3089 	}
3090 	return 1;
3091 }
3092 
3093 
3094 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3095 			read_scan_unevictable_node,
3096 			write_scan_unevictable_node);
3097 
3098 int scan_unevictable_register_node(struct node *node)
3099 {
3100 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3101 }
3102 
3103 void scan_unevictable_unregister_node(struct node *node)
3104 {
3105 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3106 }
3107 #endif
3108