1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/vmscan.h> 53 54 enum lumpy_mode { 55 LUMPY_MODE_NONE, 56 LUMPY_MODE_ASYNC, 57 LUMPY_MODE_SYNC, 58 }; 59 60 struct scan_control { 61 /* Incremented by the number of inactive pages that were scanned */ 62 unsigned long nr_scanned; 63 64 /* Number of pages freed so far during a call to shrink_zones() */ 65 unsigned long nr_reclaimed; 66 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 unsigned long hibernation_mode; 71 72 /* This context's GFP mask */ 73 gfp_t gfp_mask; 74 75 int may_writepage; 76 77 /* Can mapped pages be reclaimed? */ 78 int may_unmap; 79 80 /* Can pages be swapped as part of reclaim? */ 81 int may_swap; 82 83 int swappiness; 84 85 int order; 86 87 /* 88 * Intend to reclaim enough continuous memory rather than reclaim 89 * enough amount of memory. i.e, mode for high order allocation. 90 */ 91 enum lumpy_mode lumpy_reclaim_mode; 92 93 /* Which cgroup do we reclaim from */ 94 struct mem_cgroup *mem_cgroup; 95 96 /* 97 * Nodemask of nodes allowed by the caller. If NULL, all nodes 98 * are scanned. 99 */ 100 nodemask_t *nodemask; 101 }; 102 103 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 104 105 #ifdef ARCH_HAS_PREFETCH 106 #define prefetch_prev_lru_page(_page, _base, _field) \ 107 do { \ 108 if ((_page)->lru.prev != _base) { \ 109 struct page *prev; \ 110 \ 111 prev = lru_to_page(&(_page->lru)); \ 112 prefetch(&prev->_field); \ 113 } \ 114 } while (0) 115 #else 116 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 117 #endif 118 119 #ifdef ARCH_HAS_PREFETCHW 120 #define prefetchw_prev_lru_page(_page, _base, _field) \ 121 do { \ 122 if ((_page)->lru.prev != _base) { \ 123 struct page *prev; \ 124 \ 125 prev = lru_to_page(&(_page->lru)); \ 126 prefetchw(&prev->_field); \ 127 } \ 128 } while (0) 129 #else 130 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 131 #endif 132 133 /* 134 * From 0 .. 100. Higher means more swappy. 135 */ 136 int vm_swappiness = 60; 137 long vm_total_pages; /* The total number of pages which the VM controls */ 138 139 static LIST_HEAD(shrinker_list); 140 static DECLARE_RWSEM(shrinker_rwsem); 141 142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 143 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 144 #else 145 #define scanning_global_lru(sc) (1) 146 #endif 147 148 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 149 struct scan_control *sc) 150 { 151 if (!scanning_global_lru(sc)) 152 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 153 154 return &zone->reclaim_stat; 155 } 156 157 static unsigned long zone_nr_lru_pages(struct zone *zone, 158 struct scan_control *sc, enum lru_list lru) 159 { 160 if (!scanning_global_lru(sc)) 161 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 162 163 return zone_page_state(zone, NR_LRU_BASE + lru); 164 } 165 166 167 /* 168 * Add a shrinker callback to be called from the vm 169 */ 170 void register_shrinker(struct shrinker *shrinker) 171 { 172 shrinker->nr = 0; 173 down_write(&shrinker_rwsem); 174 list_add_tail(&shrinker->list, &shrinker_list); 175 up_write(&shrinker_rwsem); 176 } 177 EXPORT_SYMBOL(register_shrinker); 178 179 /* 180 * Remove one 181 */ 182 void unregister_shrinker(struct shrinker *shrinker) 183 { 184 down_write(&shrinker_rwsem); 185 list_del(&shrinker->list); 186 up_write(&shrinker_rwsem); 187 } 188 EXPORT_SYMBOL(unregister_shrinker); 189 190 #define SHRINK_BATCH 128 191 /* 192 * Call the shrink functions to age shrinkable caches 193 * 194 * Here we assume it costs one seek to replace a lru page and that it also 195 * takes a seek to recreate a cache object. With this in mind we age equal 196 * percentages of the lru and ageable caches. This should balance the seeks 197 * generated by these structures. 198 * 199 * If the vm encountered mapped pages on the LRU it increase the pressure on 200 * slab to avoid swapping. 201 * 202 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 203 * 204 * `lru_pages' represents the number of on-LRU pages in all the zones which 205 * are eligible for the caller's allocation attempt. It is used for balancing 206 * slab reclaim versus page reclaim. 207 * 208 * Returns the number of slab objects which we shrunk. 209 */ 210 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 211 unsigned long lru_pages) 212 { 213 struct shrinker *shrinker; 214 unsigned long ret = 0; 215 216 if (scanned == 0) 217 scanned = SWAP_CLUSTER_MAX; 218 219 if (!down_read_trylock(&shrinker_rwsem)) 220 return 1; /* Assume we'll be able to shrink next time */ 221 222 list_for_each_entry(shrinker, &shrinker_list, list) { 223 unsigned long long delta; 224 unsigned long total_scan; 225 unsigned long max_pass; 226 227 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask); 228 delta = (4 * scanned) / shrinker->seeks; 229 delta *= max_pass; 230 do_div(delta, lru_pages + 1); 231 shrinker->nr += delta; 232 if (shrinker->nr < 0) { 233 printk(KERN_ERR "shrink_slab: %pF negative objects to " 234 "delete nr=%ld\n", 235 shrinker->shrink, shrinker->nr); 236 shrinker->nr = max_pass; 237 } 238 239 /* 240 * Avoid risking looping forever due to too large nr value: 241 * never try to free more than twice the estimate number of 242 * freeable entries. 243 */ 244 if (shrinker->nr > max_pass * 2) 245 shrinker->nr = max_pass * 2; 246 247 total_scan = shrinker->nr; 248 shrinker->nr = 0; 249 250 while (total_scan >= SHRINK_BATCH) { 251 long this_scan = SHRINK_BATCH; 252 int shrink_ret; 253 int nr_before; 254 255 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask); 256 shrink_ret = (*shrinker->shrink)(shrinker, this_scan, 257 gfp_mask); 258 if (shrink_ret == -1) 259 break; 260 if (shrink_ret < nr_before) 261 ret += nr_before - shrink_ret; 262 count_vm_events(SLABS_SCANNED, this_scan); 263 total_scan -= this_scan; 264 265 cond_resched(); 266 } 267 268 shrinker->nr += total_scan; 269 } 270 up_read(&shrinker_rwsem); 271 return ret; 272 } 273 274 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc, 275 bool sync) 276 { 277 enum lumpy_mode mode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC; 278 279 /* 280 * Some reclaim have alredy been failed. No worth to try synchronous 281 * lumpy reclaim. 282 */ 283 if (sync && sc->lumpy_reclaim_mode == LUMPY_MODE_NONE) 284 return; 285 286 /* 287 * If we need a large contiguous chunk of memory, or have 288 * trouble getting a small set of contiguous pages, we 289 * will reclaim both active and inactive pages. 290 */ 291 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 292 sc->lumpy_reclaim_mode = mode; 293 else if (sc->order && priority < DEF_PRIORITY - 2) 294 sc->lumpy_reclaim_mode = mode; 295 else 296 sc->lumpy_reclaim_mode = LUMPY_MODE_NONE; 297 } 298 299 static void disable_lumpy_reclaim_mode(struct scan_control *sc) 300 { 301 sc->lumpy_reclaim_mode = LUMPY_MODE_NONE; 302 } 303 304 static inline int is_page_cache_freeable(struct page *page) 305 { 306 /* 307 * A freeable page cache page is referenced only by the caller 308 * that isolated the page, the page cache radix tree and 309 * optional buffer heads at page->private. 310 */ 311 return page_count(page) - page_has_private(page) == 2; 312 } 313 314 static int may_write_to_queue(struct backing_dev_info *bdi, 315 struct scan_control *sc) 316 { 317 if (current->flags & PF_SWAPWRITE) 318 return 1; 319 if (!bdi_write_congested(bdi)) 320 return 1; 321 if (bdi == current->backing_dev_info) 322 return 1; 323 324 /* lumpy reclaim for hugepage often need a lot of write */ 325 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 326 return 1; 327 return 0; 328 } 329 330 /* 331 * We detected a synchronous write error writing a page out. Probably 332 * -ENOSPC. We need to propagate that into the address_space for a subsequent 333 * fsync(), msync() or close(). 334 * 335 * The tricky part is that after writepage we cannot touch the mapping: nothing 336 * prevents it from being freed up. But we have a ref on the page and once 337 * that page is locked, the mapping is pinned. 338 * 339 * We're allowed to run sleeping lock_page() here because we know the caller has 340 * __GFP_FS. 341 */ 342 static void handle_write_error(struct address_space *mapping, 343 struct page *page, int error) 344 { 345 lock_page_nosync(page); 346 if (page_mapping(page) == mapping) 347 mapping_set_error(mapping, error); 348 unlock_page(page); 349 } 350 351 /* possible outcome of pageout() */ 352 typedef enum { 353 /* failed to write page out, page is locked */ 354 PAGE_KEEP, 355 /* move page to the active list, page is locked */ 356 PAGE_ACTIVATE, 357 /* page has been sent to the disk successfully, page is unlocked */ 358 PAGE_SUCCESS, 359 /* page is clean and locked */ 360 PAGE_CLEAN, 361 } pageout_t; 362 363 /* 364 * pageout is called by shrink_page_list() for each dirty page. 365 * Calls ->writepage(). 366 */ 367 static pageout_t pageout(struct page *page, struct address_space *mapping, 368 struct scan_control *sc) 369 { 370 /* 371 * If the page is dirty, only perform writeback if that write 372 * will be non-blocking. To prevent this allocation from being 373 * stalled by pagecache activity. But note that there may be 374 * stalls if we need to run get_block(). We could test 375 * PagePrivate for that. 376 * 377 * If this process is currently in __generic_file_aio_write() against 378 * this page's queue, we can perform writeback even if that 379 * will block. 380 * 381 * If the page is swapcache, write it back even if that would 382 * block, for some throttling. This happens by accident, because 383 * swap_backing_dev_info is bust: it doesn't reflect the 384 * congestion state of the swapdevs. Easy to fix, if needed. 385 */ 386 if (!is_page_cache_freeable(page)) 387 return PAGE_KEEP; 388 if (!mapping) { 389 /* 390 * Some data journaling orphaned pages can have 391 * page->mapping == NULL while being dirty with clean buffers. 392 */ 393 if (page_has_private(page)) { 394 if (try_to_free_buffers(page)) { 395 ClearPageDirty(page); 396 printk("%s: orphaned page\n", __func__); 397 return PAGE_CLEAN; 398 } 399 } 400 return PAGE_KEEP; 401 } 402 if (mapping->a_ops->writepage == NULL) 403 return PAGE_ACTIVATE; 404 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 405 return PAGE_KEEP; 406 407 if (clear_page_dirty_for_io(page)) { 408 int res; 409 struct writeback_control wbc = { 410 .sync_mode = WB_SYNC_NONE, 411 .nr_to_write = SWAP_CLUSTER_MAX, 412 .range_start = 0, 413 .range_end = LLONG_MAX, 414 .for_reclaim = 1, 415 }; 416 417 SetPageReclaim(page); 418 res = mapping->a_ops->writepage(page, &wbc); 419 if (res < 0) 420 handle_write_error(mapping, page, res); 421 if (res == AOP_WRITEPAGE_ACTIVATE) { 422 ClearPageReclaim(page); 423 return PAGE_ACTIVATE; 424 } 425 426 /* 427 * Wait on writeback if requested to. This happens when 428 * direct reclaiming a large contiguous area and the 429 * first attempt to free a range of pages fails. 430 */ 431 if (PageWriteback(page) && 432 sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC) 433 wait_on_page_writeback(page); 434 435 if (!PageWriteback(page)) { 436 /* synchronous write or broken a_ops? */ 437 ClearPageReclaim(page); 438 } 439 trace_mm_vmscan_writepage(page, 440 trace_reclaim_flags(page, sc->lumpy_reclaim_mode)); 441 inc_zone_page_state(page, NR_VMSCAN_WRITE); 442 return PAGE_SUCCESS; 443 } 444 445 return PAGE_CLEAN; 446 } 447 448 /* 449 * Same as remove_mapping, but if the page is removed from the mapping, it 450 * gets returned with a refcount of 0. 451 */ 452 static int __remove_mapping(struct address_space *mapping, struct page *page) 453 { 454 BUG_ON(!PageLocked(page)); 455 BUG_ON(mapping != page_mapping(page)); 456 457 spin_lock_irq(&mapping->tree_lock); 458 /* 459 * The non racy check for a busy page. 460 * 461 * Must be careful with the order of the tests. When someone has 462 * a ref to the page, it may be possible that they dirty it then 463 * drop the reference. So if PageDirty is tested before page_count 464 * here, then the following race may occur: 465 * 466 * get_user_pages(&page); 467 * [user mapping goes away] 468 * write_to(page); 469 * !PageDirty(page) [good] 470 * SetPageDirty(page); 471 * put_page(page); 472 * !page_count(page) [good, discard it] 473 * 474 * [oops, our write_to data is lost] 475 * 476 * Reversing the order of the tests ensures such a situation cannot 477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 478 * load is not satisfied before that of page->_count. 479 * 480 * Note that if SetPageDirty is always performed via set_page_dirty, 481 * and thus under tree_lock, then this ordering is not required. 482 */ 483 if (!page_freeze_refs(page, 2)) 484 goto cannot_free; 485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 486 if (unlikely(PageDirty(page))) { 487 page_unfreeze_refs(page, 2); 488 goto cannot_free; 489 } 490 491 if (PageSwapCache(page)) { 492 swp_entry_t swap = { .val = page_private(page) }; 493 __delete_from_swap_cache(page); 494 spin_unlock_irq(&mapping->tree_lock); 495 swapcache_free(swap, page); 496 } else { 497 void (*freepage)(struct page *); 498 499 freepage = mapping->a_ops->freepage; 500 501 __remove_from_page_cache(page); 502 spin_unlock_irq(&mapping->tree_lock); 503 mem_cgroup_uncharge_cache_page(page); 504 505 if (freepage != NULL) 506 freepage(page); 507 } 508 509 return 1; 510 511 cannot_free: 512 spin_unlock_irq(&mapping->tree_lock); 513 return 0; 514 } 515 516 /* 517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 518 * someone else has a ref on the page, abort and return 0. If it was 519 * successfully detached, return 1. Assumes the caller has a single ref on 520 * this page. 521 */ 522 int remove_mapping(struct address_space *mapping, struct page *page) 523 { 524 if (__remove_mapping(mapping, page)) { 525 /* 526 * Unfreezing the refcount with 1 rather than 2 effectively 527 * drops the pagecache ref for us without requiring another 528 * atomic operation. 529 */ 530 page_unfreeze_refs(page, 1); 531 return 1; 532 } 533 return 0; 534 } 535 536 /** 537 * putback_lru_page - put previously isolated page onto appropriate LRU list 538 * @page: page to be put back to appropriate lru list 539 * 540 * Add previously isolated @page to appropriate LRU list. 541 * Page may still be unevictable for other reasons. 542 * 543 * lru_lock must not be held, interrupts must be enabled. 544 */ 545 void putback_lru_page(struct page *page) 546 { 547 int lru; 548 int active = !!TestClearPageActive(page); 549 int was_unevictable = PageUnevictable(page); 550 551 VM_BUG_ON(PageLRU(page)); 552 553 redo: 554 ClearPageUnevictable(page); 555 556 if (page_evictable(page, NULL)) { 557 /* 558 * For evictable pages, we can use the cache. 559 * In event of a race, worst case is we end up with an 560 * unevictable page on [in]active list. 561 * We know how to handle that. 562 */ 563 lru = active + page_lru_base_type(page); 564 lru_cache_add_lru(page, lru); 565 } else { 566 /* 567 * Put unevictable pages directly on zone's unevictable 568 * list. 569 */ 570 lru = LRU_UNEVICTABLE; 571 add_page_to_unevictable_list(page); 572 /* 573 * When racing with an mlock clearing (page is 574 * unlocked), make sure that if the other thread does 575 * not observe our setting of PG_lru and fails 576 * isolation, we see PG_mlocked cleared below and move 577 * the page back to the evictable list. 578 * 579 * The other side is TestClearPageMlocked(). 580 */ 581 smp_mb(); 582 } 583 584 /* 585 * page's status can change while we move it among lru. If an evictable 586 * page is on unevictable list, it never be freed. To avoid that, 587 * check after we added it to the list, again. 588 */ 589 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 590 if (!isolate_lru_page(page)) { 591 put_page(page); 592 goto redo; 593 } 594 /* This means someone else dropped this page from LRU 595 * So, it will be freed or putback to LRU again. There is 596 * nothing to do here. 597 */ 598 } 599 600 if (was_unevictable && lru != LRU_UNEVICTABLE) 601 count_vm_event(UNEVICTABLE_PGRESCUED); 602 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 603 count_vm_event(UNEVICTABLE_PGCULLED); 604 605 put_page(page); /* drop ref from isolate */ 606 } 607 608 enum page_references { 609 PAGEREF_RECLAIM, 610 PAGEREF_RECLAIM_CLEAN, 611 PAGEREF_KEEP, 612 PAGEREF_ACTIVATE, 613 }; 614 615 static enum page_references page_check_references(struct page *page, 616 struct scan_control *sc) 617 { 618 int referenced_ptes, referenced_page; 619 unsigned long vm_flags; 620 621 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags); 622 referenced_page = TestClearPageReferenced(page); 623 624 /* Lumpy reclaim - ignore references */ 625 if (sc->lumpy_reclaim_mode != LUMPY_MODE_NONE) 626 return PAGEREF_RECLAIM; 627 628 /* 629 * Mlock lost the isolation race with us. Let try_to_unmap() 630 * move the page to the unevictable list. 631 */ 632 if (vm_flags & VM_LOCKED) 633 return PAGEREF_RECLAIM; 634 635 if (referenced_ptes) { 636 if (PageAnon(page)) 637 return PAGEREF_ACTIVATE; 638 /* 639 * All mapped pages start out with page table 640 * references from the instantiating fault, so we need 641 * to look twice if a mapped file page is used more 642 * than once. 643 * 644 * Mark it and spare it for another trip around the 645 * inactive list. Another page table reference will 646 * lead to its activation. 647 * 648 * Note: the mark is set for activated pages as well 649 * so that recently deactivated but used pages are 650 * quickly recovered. 651 */ 652 SetPageReferenced(page); 653 654 if (referenced_page) 655 return PAGEREF_ACTIVATE; 656 657 return PAGEREF_KEEP; 658 } 659 660 /* Reclaim if clean, defer dirty pages to writeback */ 661 if (referenced_page && !PageSwapBacked(page)) 662 return PAGEREF_RECLAIM_CLEAN; 663 664 return PAGEREF_RECLAIM; 665 } 666 667 static noinline_for_stack void free_page_list(struct list_head *free_pages) 668 { 669 struct pagevec freed_pvec; 670 struct page *page, *tmp; 671 672 pagevec_init(&freed_pvec, 1); 673 674 list_for_each_entry_safe(page, tmp, free_pages, lru) { 675 list_del(&page->lru); 676 if (!pagevec_add(&freed_pvec, page)) { 677 __pagevec_free(&freed_pvec); 678 pagevec_reinit(&freed_pvec); 679 } 680 } 681 682 pagevec_free(&freed_pvec); 683 } 684 685 /* 686 * shrink_page_list() returns the number of reclaimed pages 687 */ 688 static unsigned long shrink_page_list(struct list_head *page_list, 689 struct zone *zone, 690 struct scan_control *sc) 691 { 692 LIST_HEAD(ret_pages); 693 LIST_HEAD(free_pages); 694 int pgactivate = 0; 695 unsigned long nr_dirty = 0; 696 unsigned long nr_congested = 0; 697 unsigned long nr_reclaimed = 0; 698 699 cond_resched(); 700 701 while (!list_empty(page_list)) { 702 enum page_references references; 703 struct address_space *mapping; 704 struct page *page; 705 int may_enter_fs; 706 707 cond_resched(); 708 709 page = lru_to_page(page_list); 710 list_del(&page->lru); 711 712 if (!trylock_page(page)) 713 goto keep; 714 715 VM_BUG_ON(PageActive(page)); 716 VM_BUG_ON(page_zone(page) != zone); 717 718 sc->nr_scanned++; 719 720 if (unlikely(!page_evictable(page, NULL))) 721 goto cull_mlocked; 722 723 if (!sc->may_unmap && page_mapped(page)) 724 goto keep_locked; 725 726 /* Double the slab pressure for mapped and swapcache pages */ 727 if (page_mapped(page) || PageSwapCache(page)) 728 sc->nr_scanned++; 729 730 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 731 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 732 733 if (PageWriteback(page)) { 734 /* 735 * Synchronous reclaim is performed in two passes, 736 * first an asynchronous pass over the list to 737 * start parallel writeback, and a second synchronous 738 * pass to wait for the IO to complete. Wait here 739 * for any page for which writeback has already 740 * started. 741 */ 742 if (sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC && 743 may_enter_fs) 744 wait_on_page_writeback(page); 745 else { 746 unlock_page(page); 747 goto keep_lumpy; 748 } 749 } 750 751 references = page_check_references(page, sc); 752 switch (references) { 753 case PAGEREF_ACTIVATE: 754 goto activate_locked; 755 case PAGEREF_KEEP: 756 goto keep_locked; 757 case PAGEREF_RECLAIM: 758 case PAGEREF_RECLAIM_CLEAN: 759 ; /* try to reclaim the page below */ 760 } 761 762 /* 763 * Anonymous process memory has backing store? 764 * Try to allocate it some swap space here. 765 */ 766 if (PageAnon(page) && !PageSwapCache(page)) { 767 if (!(sc->gfp_mask & __GFP_IO)) 768 goto keep_locked; 769 if (!add_to_swap(page)) 770 goto activate_locked; 771 may_enter_fs = 1; 772 } 773 774 mapping = page_mapping(page); 775 776 /* 777 * The page is mapped into the page tables of one or more 778 * processes. Try to unmap it here. 779 */ 780 if (page_mapped(page) && mapping) { 781 switch (try_to_unmap(page, TTU_UNMAP)) { 782 case SWAP_FAIL: 783 goto activate_locked; 784 case SWAP_AGAIN: 785 goto keep_locked; 786 case SWAP_MLOCK: 787 goto cull_mlocked; 788 case SWAP_SUCCESS: 789 ; /* try to free the page below */ 790 } 791 } 792 793 if (PageDirty(page)) { 794 nr_dirty++; 795 796 if (references == PAGEREF_RECLAIM_CLEAN) 797 goto keep_locked; 798 if (!may_enter_fs) 799 goto keep_locked; 800 if (!sc->may_writepage) 801 goto keep_locked; 802 803 /* Page is dirty, try to write it out here */ 804 switch (pageout(page, mapping, sc)) { 805 case PAGE_KEEP: 806 nr_congested++; 807 goto keep_locked; 808 case PAGE_ACTIVATE: 809 goto activate_locked; 810 case PAGE_SUCCESS: 811 if (PageWriteback(page)) 812 goto keep_lumpy; 813 if (PageDirty(page)) 814 goto keep; 815 816 /* 817 * A synchronous write - probably a ramdisk. Go 818 * ahead and try to reclaim the page. 819 */ 820 if (!trylock_page(page)) 821 goto keep; 822 if (PageDirty(page) || PageWriteback(page)) 823 goto keep_locked; 824 mapping = page_mapping(page); 825 case PAGE_CLEAN: 826 ; /* try to free the page below */ 827 } 828 } 829 830 /* 831 * If the page has buffers, try to free the buffer mappings 832 * associated with this page. If we succeed we try to free 833 * the page as well. 834 * 835 * We do this even if the page is PageDirty(). 836 * try_to_release_page() does not perform I/O, but it is 837 * possible for a page to have PageDirty set, but it is actually 838 * clean (all its buffers are clean). This happens if the 839 * buffers were written out directly, with submit_bh(). ext3 840 * will do this, as well as the blockdev mapping. 841 * try_to_release_page() will discover that cleanness and will 842 * drop the buffers and mark the page clean - it can be freed. 843 * 844 * Rarely, pages can have buffers and no ->mapping. These are 845 * the pages which were not successfully invalidated in 846 * truncate_complete_page(). We try to drop those buffers here 847 * and if that worked, and the page is no longer mapped into 848 * process address space (page_count == 1) it can be freed. 849 * Otherwise, leave the page on the LRU so it is swappable. 850 */ 851 if (page_has_private(page)) { 852 if (!try_to_release_page(page, sc->gfp_mask)) 853 goto activate_locked; 854 if (!mapping && page_count(page) == 1) { 855 unlock_page(page); 856 if (put_page_testzero(page)) 857 goto free_it; 858 else { 859 /* 860 * rare race with speculative reference. 861 * the speculative reference will free 862 * this page shortly, so we may 863 * increment nr_reclaimed here (and 864 * leave it off the LRU). 865 */ 866 nr_reclaimed++; 867 continue; 868 } 869 } 870 } 871 872 if (!mapping || !__remove_mapping(mapping, page)) 873 goto keep_locked; 874 875 /* 876 * At this point, we have no other references and there is 877 * no way to pick any more up (removed from LRU, removed 878 * from pagecache). Can use non-atomic bitops now (and 879 * we obviously don't have to worry about waking up a process 880 * waiting on the page lock, because there are no references. 881 */ 882 __clear_page_locked(page); 883 free_it: 884 nr_reclaimed++; 885 886 /* 887 * Is there need to periodically free_page_list? It would 888 * appear not as the counts should be low 889 */ 890 list_add(&page->lru, &free_pages); 891 continue; 892 893 cull_mlocked: 894 if (PageSwapCache(page)) 895 try_to_free_swap(page); 896 unlock_page(page); 897 putback_lru_page(page); 898 disable_lumpy_reclaim_mode(sc); 899 continue; 900 901 activate_locked: 902 /* Not a candidate for swapping, so reclaim swap space. */ 903 if (PageSwapCache(page) && vm_swap_full()) 904 try_to_free_swap(page); 905 VM_BUG_ON(PageActive(page)); 906 SetPageActive(page); 907 pgactivate++; 908 keep_locked: 909 unlock_page(page); 910 keep: 911 disable_lumpy_reclaim_mode(sc); 912 keep_lumpy: 913 list_add(&page->lru, &ret_pages); 914 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 915 } 916 917 /* 918 * Tag a zone as congested if all the dirty pages encountered were 919 * backed by a congested BDI. In this case, reclaimers should just 920 * back off and wait for congestion to clear because further reclaim 921 * will encounter the same problem 922 */ 923 if (nr_dirty == nr_congested && nr_dirty != 0) 924 zone_set_flag(zone, ZONE_CONGESTED); 925 926 free_page_list(&free_pages); 927 928 list_splice(&ret_pages, page_list); 929 count_vm_events(PGACTIVATE, pgactivate); 930 return nr_reclaimed; 931 } 932 933 /* 934 * Attempt to remove the specified page from its LRU. Only take this page 935 * if it is of the appropriate PageActive status. Pages which are being 936 * freed elsewhere are also ignored. 937 * 938 * page: page to consider 939 * mode: one of the LRU isolation modes defined above 940 * 941 * returns 0 on success, -ve errno on failure. 942 */ 943 int __isolate_lru_page(struct page *page, int mode, int file) 944 { 945 int ret = -EINVAL; 946 947 /* Only take pages on the LRU. */ 948 if (!PageLRU(page)) 949 return ret; 950 951 /* 952 * When checking the active state, we need to be sure we are 953 * dealing with comparible boolean values. Take the logical not 954 * of each. 955 */ 956 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 957 return ret; 958 959 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 960 return ret; 961 962 /* 963 * When this function is being called for lumpy reclaim, we 964 * initially look into all LRU pages, active, inactive and 965 * unevictable; only give shrink_page_list evictable pages. 966 */ 967 if (PageUnevictable(page)) 968 return ret; 969 970 ret = -EBUSY; 971 972 if (likely(get_page_unless_zero(page))) { 973 /* 974 * Be careful not to clear PageLRU until after we're 975 * sure the page is not being freed elsewhere -- the 976 * page release code relies on it. 977 */ 978 ClearPageLRU(page); 979 ret = 0; 980 } 981 982 return ret; 983 } 984 985 /* 986 * zone->lru_lock is heavily contended. Some of the functions that 987 * shrink the lists perform better by taking out a batch of pages 988 * and working on them outside the LRU lock. 989 * 990 * For pagecache intensive workloads, this function is the hottest 991 * spot in the kernel (apart from copy_*_user functions). 992 * 993 * Appropriate locks must be held before calling this function. 994 * 995 * @nr_to_scan: The number of pages to look through on the list. 996 * @src: The LRU list to pull pages off. 997 * @dst: The temp list to put pages on to. 998 * @scanned: The number of pages that were scanned. 999 * @order: The caller's attempted allocation order 1000 * @mode: One of the LRU isolation modes 1001 * @file: True [1] if isolating file [!anon] pages 1002 * 1003 * returns how many pages were moved onto *@dst. 1004 */ 1005 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1006 struct list_head *src, struct list_head *dst, 1007 unsigned long *scanned, int order, int mode, int file) 1008 { 1009 unsigned long nr_taken = 0; 1010 unsigned long nr_lumpy_taken = 0; 1011 unsigned long nr_lumpy_dirty = 0; 1012 unsigned long nr_lumpy_failed = 0; 1013 unsigned long scan; 1014 1015 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1016 struct page *page; 1017 unsigned long pfn; 1018 unsigned long end_pfn; 1019 unsigned long page_pfn; 1020 int zone_id; 1021 1022 page = lru_to_page(src); 1023 prefetchw_prev_lru_page(page, src, flags); 1024 1025 VM_BUG_ON(!PageLRU(page)); 1026 1027 switch (__isolate_lru_page(page, mode, file)) { 1028 case 0: 1029 list_move(&page->lru, dst); 1030 mem_cgroup_del_lru(page); 1031 nr_taken++; 1032 break; 1033 1034 case -EBUSY: 1035 /* else it is being freed elsewhere */ 1036 list_move(&page->lru, src); 1037 mem_cgroup_rotate_lru_list(page, page_lru(page)); 1038 continue; 1039 1040 default: 1041 BUG(); 1042 } 1043 1044 if (!order) 1045 continue; 1046 1047 /* 1048 * Attempt to take all pages in the order aligned region 1049 * surrounding the tag page. Only take those pages of 1050 * the same active state as that tag page. We may safely 1051 * round the target page pfn down to the requested order 1052 * as the mem_map is guarenteed valid out to MAX_ORDER, 1053 * where that page is in a different zone we will detect 1054 * it from its zone id and abort this block scan. 1055 */ 1056 zone_id = page_zone_id(page); 1057 page_pfn = page_to_pfn(page); 1058 pfn = page_pfn & ~((1 << order) - 1); 1059 end_pfn = pfn + (1 << order); 1060 for (; pfn < end_pfn; pfn++) { 1061 struct page *cursor_page; 1062 1063 /* The target page is in the block, ignore it. */ 1064 if (unlikely(pfn == page_pfn)) 1065 continue; 1066 1067 /* Avoid holes within the zone. */ 1068 if (unlikely(!pfn_valid_within(pfn))) 1069 break; 1070 1071 cursor_page = pfn_to_page(pfn); 1072 1073 /* Check that we have not crossed a zone boundary. */ 1074 if (unlikely(page_zone_id(cursor_page) != zone_id)) 1075 break; 1076 1077 /* 1078 * If we don't have enough swap space, reclaiming of 1079 * anon page which don't already have a swap slot is 1080 * pointless. 1081 */ 1082 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 1083 !PageSwapCache(cursor_page)) 1084 break; 1085 1086 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 1087 list_move(&cursor_page->lru, dst); 1088 mem_cgroup_del_lru(cursor_page); 1089 nr_taken++; 1090 nr_lumpy_taken++; 1091 if (PageDirty(cursor_page)) 1092 nr_lumpy_dirty++; 1093 scan++; 1094 } else { 1095 /* the page is freed already. */ 1096 if (!page_count(cursor_page)) 1097 continue; 1098 break; 1099 } 1100 } 1101 1102 /* If we break out of the loop above, lumpy reclaim failed */ 1103 if (pfn < end_pfn) 1104 nr_lumpy_failed++; 1105 } 1106 1107 *scanned = scan; 1108 1109 trace_mm_vmscan_lru_isolate(order, 1110 nr_to_scan, scan, 1111 nr_taken, 1112 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed, 1113 mode); 1114 return nr_taken; 1115 } 1116 1117 static unsigned long isolate_pages_global(unsigned long nr, 1118 struct list_head *dst, 1119 unsigned long *scanned, int order, 1120 int mode, struct zone *z, 1121 int active, int file) 1122 { 1123 int lru = LRU_BASE; 1124 if (active) 1125 lru += LRU_ACTIVE; 1126 if (file) 1127 lru += LRU_FILE; 1128 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 1129 mode, file); 1130 } 1131 1132 /* 1133 * clear_active_flags() is a helper for shrink_active_list(), clearing 1134 * any active bits from the pages in the list. 1135 */ 1136 static unsigned long clear_active_flags(struct list_head *page_list, 1137 unsigned int *count) 1138 { 1139 int nr_active = 0; 1140 int lru; 1141 struct page *page; 1142 1143 list_for_each_entry(page, page_list, lru) { 1144 lru = page_lru_base_type(page); 1145 if (PageActive(page)) { 1146 lru += LRU_ACTIVE; 1147 ClearPageActive(page); 1148 nr_active++; 1149 } 1150 if (count) 1151 count[lru]++; 1152 } 1153 1154 return nr_active; 1155 } 1156 1157 /** 1158 * isolate_lru_page - tries to isolate a page from its LRU list 1159 * @page: page to isolate from its LRU list 1160 * 1161 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1162 * vmstat statistic corresponding to whatever LRU list the page was on. 1163 * 1164 * Returns 0 if the page was removed from an LRU list. 1165 * Returns -EBUSY if the page was not on an LRU list. 1166 * 1167 * The returned page will have PageLRU() cleared. If it was found on 1168 * the active list, it will have PageActive set. If it was found on 1169 * the unevictable list, it will have the PageUnevictable bit set. That flag 1170 * may need to be cleared by the caller before letting the page go. 1171 * 1172 * The vmstat statistic corresponding to the list on which the page was 1173 * found will be decremented. 1174 * 1175 * Restrictions: 1176 * (1) Must be called with an elevated refcount on the page. This is a 1177 * fundamentnal difference from isolate_lru_pages (which is called 1178 * without a stable reference). 1179 * (2) the lru_lock must not be held. 1180 * (3) interrupts must be enabled. 1181 */ 1182 int isolate_lru_page(struct page *page) 1183 { 1184 int ret = -EBUSY; 1185 1186 if (PageLRU(page)) { 1187 struct zone *zone = page_zone(page); 1188 1189 spin_lock_irq(&zone->lru_lock); 1190 if (PageLRU(page) && get_page_unless_zero(page)) { 1191 int lru = page_lru(page); 1192 ret = 0; 1193 ClearPageLRU(page); 1194 1195 del_page_from_lru_list(zone, page, lru); 1196 } 1197 spin_unlock_irq(&zone->lru_lock); 1198 } 1199 return ret; 1200 } 1201 1202 /* 1203 * Are there way too many processes in the direct reclaim path already? 1204 */ 1205 static int too_many_isolated(struct zone *zone, int file, 1206 struct scan_control *sc) 1207 { 1208 unsigned long inactive, isolated; 1209 1210 if (current_is_kswapd()) 1211 return 0; 1212 1213 if (!scanning_global_lru(sc)) 1214 return 0; 1215 1216 if (file) { 1217 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1218 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1219 } else { 1220 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1221 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1222 } 1223 1224 return isolated > inactive; 1225 } 1226 1227 /* 1228 * TODO: Try merging with migrations version of putback_lru_pages 1229 */ 1230 static noinline_for_stack void 1231 putback_lru_pages(struct zone *zone, struct scan_control *sc, 1232 unsigned long nr_anon, unsigned long nr_file, 1233 struct list_head *page_list) 1234 { 1235 struct page *page; 1236 struct pagevec pvec; 1237 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1238 1239 pagevec_init(&pvec, 1); 1240 1241 /* 1242 * Put back any unfreeable pages. 1243 */ 1244 spin_lock(&zone->lru_lock); 1245 while (!list_empty(page_list)) { 1246 int lru; 1247 page = lru_to_page(page_list); 1248 VM_BUG_ON(PageLRU(page)); 1249 list_del(&page->lru); 1250 if (unlikely(!page_evictable(page, NULL))) { 1251 spin_unlock_irq(&zone->lru_lock); 1252 putback_lru_page(page); 1253 spin_lock_irq(&zone->lru_lock); 1254 continue; 1255 } 1256 SetPageLRU(page); 1257 lru = page_lru(page); 1258 add_page_to_lru_list(zone, page, lru); 1259 if (is_active_lru(lru)) { 1260 int file = is_file_lru(lru); 1261 reclaim_stat->recent_rotated[file]++; 1262 } 1263 if (!pagevec_add(&pvec, page)) { 1264 spin_unlock_irq(&zone->lru_lock); 1265 __pagevec_release(&pvec); 1266 spin_lock_irq(&zone->lru_lock); 1267 } 1268 } 1269 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1270 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1271 1272 spin_unlock_irq(&zone->lru_lock); 1273 pagevec_release(&pvec); 1274 } 1275 1276 static noinline_for_stack void update_isolated_counts(struct zone *zone, 1277 struct scan_control *sc, 1278 unsigned long *nr_anon, 1279 unsigned long *nr_file, 1280 struct list_head *isolated_list) 1281 { 1282 unsigned long nr_active; 1283 unsigned int count[NR_LRU_LISTS] = { 0, }; 1284 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1285 1286 nr_active = clear_active_flags(isolated_list, count); 1287 __count_vm_events(PGDEACTIVATE, nr_active); 1288 1289 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1290 -count[LRU_ACTIVE_FILE]); 1291 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1292 -count[LRU_INACTIVE_FILE]); 1293 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1294 -count[LRU_ACTIVE_ANON]); 1295 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1296 -count[LRU_INACTIVE_ANON]); 1297 1298 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1299 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1300 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon); 1301 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file); 1302 1303 reclaim_stat->recent_scanned[0] += *nr_anon; 1304 reclaim_stat->recent_scanned[1] += *nr_file; 1305 } 1306 1307 /* 1308 * Returns true if the caller should wait to clean dirty/writeback pages. 1309 * 1310 * If we are direct reclaiming for contiguous pages and we do not reclaim 1311 * everything in the list, try again and wait for writeback IO to complete. 1312 * This will stall high-order allocations noticeably. Only do that when really 1313 * need to free the pages under high memory pressure. 1314 */ 1315 static inline bool should_reclaim_stall(unsigned long nr_taken, 1316 unsigned long nr_freed, 1317 int priority, 1318 struct scan_control *sc) 1319 { 1320 int lumpy_stall_priority; 1321 1322 /* kswapd should not stall on sync IO */ 1323 if (current_is_kswapd()) 1324 return false; 1325 1326 /* Only stall on lumpy reclaim */ 1327 if (sc->lumpy_reclaim_mode == LUMPY_MODE_NONE) 1328 return false; 1329 1330 /* If we have relaimed everything on the isolated list, no stall */ 1331 if (nr_freed == nr_taken) 1332 return false; 1333 1334 /* 1335 * For high-order allocations, there are two stall thresholds. 1336 * High-cost allocations stall immediately where as lower 1337 * order allocations such as stacks require the scanning 1338 * priority to be much higher before stalling. 1339 */ 1340 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1341 lumpy_stall_priority = DEF_PRIORITY; 1342 else 1343 lumpy_stall_priority = DEF_PRIORITY / 3; 1344 1345 return priority <= lumpy_stall_priority; 1346 } 1347 1348 /* 1349 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1350 * of reclaimed pages 1351 */ 1352 static noinline_for_stack unsigned long 1353 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, 1354 struct scan_control *sc, int priority, int file) 1355 { 1356 LIST_HEAD(page_list); 1357 unsigned long nr_scanned; 1358 unsigned long nr_reclaimed = 0; 1359 unsigned long nr_taken; 1360 unsigned long nr_anon; 1361 unsigned long nr_file; 1362 1363 while (unlikely(too_many_isolated(zone, file, sc))) { 1364 congestion_wait(BLK_RW_ASYNC, HZ/10); 1365 1366 /* We are about to die and free our memory. Return now. */ 1367 if (fatal_signal_pending(current)) 1368 return SWAP_CLUSTER_MAX; 1369 } 1370 1371 set_lumpy_reclaim_mode(priority, sc, false); 1372 lru_add_drain(); 1373 spin_lock_irq(&zone->lru_lock); 1374 1375 if (scanning_global_lru(sc)) { 1376 nr_taken = isolate_pages_global(nr_to_scan, 1377 &page_list, &nr_scanned, sc->order, 1378 sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ? 1379 ISOLATE_INACTIVE : ISOLATE_BOTH, 1380 zone, 0, file); 1381 zone->pages_scanned += nr_scanned; 1382 if (current_is_kswapd()) 1383 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1384 nr_scanned); 1385 else 1386 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1387 nr_scanned); 1388 } else { 1389 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, 1390 &page_list, &nr_scanned, sc->order, 1391 sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ? 1392 ISOLATE_INACTIVE : ISOLATE_BOTH, 1393 zone, sc->mem_cgroup, 1394 0, file); 1395 /* 1396 * mem_cgroup_isolate_pages() keeps track of 1397 * scanned pages on its own. 1398 */ 1399 } 1400 1401 if (nr_taken == 0) { 1402 spin_unlock_irq(&zone->lru_lock); 1403 return 0; 1404 } 1405 1406 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list); 1407 1408 spin_unlock_irq(&zone->lru_lock); 1409 1410 nr_reclaimed = shrink_page_list(&page_list, zone, sc); 1411 1412 /* Check if we should syncronously wait for writeback */ 1413 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { 1414 set_lumpy_reclaim_mode(priority, sc, true); 1415 nr_reclaimed += shrink_page_list(&page_list, zone, sc); 1416 } 1417 1418 local_irq_disable(); 1419 if (current_is_kswapd()) 1420 __count_vm_events(KSWAPD_STEAL, nr_reclaimed); 1421 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); 1422 1423 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); 1424 1425 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1426 zone_idx(zone), 1427 nr_scanned, nr_reclaimed, 1428 priority, 1429 trace_shrink_flags(file, sc->lumpy_reclaim_mode)); 1430 return nr_reclaimed; 1431 } 1432 1433 /* 1434 * This moves pages from the active list to the inactive list. 1435 * 1436 * We move them the other way if the page is referenced by one or more 1437 * processes, from rmap. 1438 * 1439 * If the pages are mostly unmapped, the processing is fast and it is 1440 * appropriate to hold zone->lru_lock across the whole operation. But if 1441 * the pages are mapped, the processing is slow (page_referenced()) so we 1442 * should drop zone->lru_lock around each page. It's impossible to balance 1443 * this, so instead we remove the pages from the LRU while processing them. 1444 * It is safe to rely on PG_active against the non-LRU pages in here because 1445 * nobody will play with that bit on a non-LRU page. 1446 * 1447 * The downside is that we have to touch page->_count against each page. 1448 * But we had to alter page->flags anyway. 1449 */ 1450 1451 static void move_active_pages_to_lru(struct zone *zone, 1452 struct list_head *list, 1453 enum lru_list lru) 1454 { 1455 unsigned long pgmoved = 0; 1456 struct pagevec pvec; 1457 struct page *page; 1458 1459 pagevec_init(&pvec, 1); 1460 1461 while (!list_empty(list)) { 1462 page = lru_to_page(list); 1463 1464 VM_BUG_ON(PageLRU(page)); 1465 SetPageLRU(page); 1466 1467 list_move(&page->lru, &zone->lru[lru].list); 1468 mem_cgroup_add_lru_list(page, lru); 1469 pgmoved++; 1470 1471 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1472 spin_unlock_irq(&zone->lru_lock); 1473 if (buffer_heads_over_limit) 1474 pagevec_strip(&pvec); 1475 __pagevec_release(&pvec); 1476 spin_lock_irq(&zone->lru_lock); 1477 } 1478 } 1479 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1480 if (!is_active_lru(lru)) 1481 __count_vm_events(PGDEACTIVATE, pgmoved); 1482 } 1483 1484 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1485 struct scan_control *sc, int priority, int file) 1486 { 1487 unsigned long nr_taken; 1488 unsigned long pgscanned; 1489 unsigned long vm_flags; 1490 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1491 LIST_HEAD(l_active); 1492 LIST_HEAD(l_inactive); 1493 struct page *page; 1494 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1495 unsigned long nr_rotated = 0; 1496 1497 lru_add_drain(); 1498 spin_lock_irq(&zone->lru_lock); 1499 if (scanning_global_lru(sc)) { 1500 nr_taken = isolate_pages_global(nr_pages, &l_hold, 1501 &pgscanned, sc->order, 1502 ISOLATE_ACTIVE, zone, 1503 1, file); 1504 zone->pages_scanned += pgscanned; 1505 } else { 1506 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold, 1507 &pgscanned, sc->order, 1508 ISOLATE_ACTIVE, zone, 1509 sc->mem_cgroup, 1, file); 1510 /* 1511 * mem_cgroup_isolate_pages() keeps track of 1512 * scanned pages on its own. 1513 */ 1514 } 1515 1516 reclaim_stat->recent_scanned[file] += nr_taken; 1517 1518 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1519 if (file) 1520 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1521 else 1522 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1523 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1524 spin_unlock_irq(&zone->lru_lock); 1525 1526 while (!list_empty(&l_hold)) { 1527 cond_resched(); 1528 page = lru_to_page(&l_hold); 1529 list_del(&page->lru); 1530 1531 if (unlikely(!page_evictable(page, NULL))) { 1532 putback_lru_page(page); 1533 continue; 1534 } 1535 1536 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1537 nr_rotated++; 1538 /* 1539 * Identify referenced, file-backed active pages and 1540 * give them one more trip around the active list. So 1541 * that executable code get better chances to stay in 1542 * memory under moderate memory pressure. Anon pages 1543 * are not likely to be evicted by use-once streaming 1544 * IO, plus JVM can create lots of anon VM_EXEC pages, 1545 * so we ignore them here. 1546 */ 1547 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1548 list_add(&page->lru, &l_active); 1549 continue; 1550 } 1551 } 1552 1553 ClearPageActive(page); /* we are de-activating */ 1554 list_add(&page->lru, &l_inactive); 1555 } 1556 1557 /* 1558 * Move pages back to the lru list. 1559 */ 1560 spin_lock_irq(&zone->lru_lock); 1561 /* 1562 * Count referenced pages from currently used mappings as rotated, 1563 * even though only some of them are actually re-activated. This 1564 * helps balance scan pressure between file and anonymous pages in 1565 * get_scan_ratio. 1566 */ 1567 reclaim_stat->recent_rotated[file] += nr_rotated; 1568 1569 move_active_pages_to_lru(zone, &l_active, 1570 LRU_ACTIVE + file * LRU_FILE); 1571 move_active_pages_to_lru(zone, &l_inactive, 1572 LRU_BASE + file * LRU_FILE); 1573 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1574 spin_unlock_irq(&zone->lru_lock); 1575 } 1576 1577 #ifdef CONFIG_SWAP 1578 static int inactive_anon_is_low_global(struct zone *zone) 1579 { 1580 unsigned long active, inactive; 1581 1582 active = zone_page_state(zone, NR_ACTIVE_ANON); 1583 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1584 1585 if (inactive * zone->inactive_ratio < active) 1586 return 1; 1587 1588 return 0; 1589 } 1590 1591 /** 1592 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1593 * @zone: zone to check 1594 * @sc: scan control of this context 1595 * 1596 * Returns true if the zone does not have enough inactive anon pages, 1597 * meaning some active anon pages need to be deactivated. 1598 */ 1599 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1600 { 1601 int low; 1602 1603 /* 1604 * If we don't have swap space, anonymous page deactivation 1605 * is pointless. 1606 */ 1607 if (!total_swap_pages) 1608 return 0; 1609 1610 if (scanning_global_lru(sc)) 1611 low = inactive_anon_is_low_global(zone); 1612 else 1613 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1614 return low; 1615 } 1616 #else 1617 static inline int inactive_anon_is_low(struct zone *zone, 1618 struct scan_control *sc) 1619 { 1620 return 0; 1621 } 1622 #endif 1623 1624 static int inactive_file_is_low_global(struct zone *zone) 1625 { 1626 unsigned long active, inactive; 1627 1628 active = zone_page_state(zone, NR_ACTIVE_FILE); 1629 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1630 1631 return (active > inactive); 1632 } 1633 1634 /** 1635 * inactive_file_is_low - check if file pages need to be deactivated 1636 * @zone: zone to check 1637 * @sc: scan control of this context 1638 * 1639 * When the system is doing streaming IO, memory pressure here 1640 * ensures that active file pages get deactivated, until more 1641 * than half of the file pages are on the inactive list. 1642 * 1643 * Once we get to that situation, protect the system's working 1644 * set from being evicted by disabling active file page aging. 1645 * 1646 * This uses a different ratio than the anonymous pages, because 1647 * the page cache uses a use-once replacement algorithm. 1648 */ 1649 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1650 { 1651 int low; 1652 1653 if (scanning_global_lru(sc)) 1654 low = inactive_file_is_low_global(zone); 1655 else 1656 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1657 return low; 1658 } 1659 1660 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc, 1661 int file) 1662 { 1663 if (file) 1664 return inactive_file_is_low(zone, sc); 1665 else 1666 return inactive_anon_is_low(zone, sc); 1667 } 1668 1669 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1670 struct zone *zone, struct scan_control *sc, int priority) 1671 { 1672 int file = is_file_lru(lru); 1673 1674 if (is_active_lru(lru)) { 1675 if (inactive_list_is_low(zone, sc, file)) 1676 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1677 return 0; 1678 } 1679 1680 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1681 } 1682 1683 /* 1684 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1685 * until we collected @swap_cluster_max pages to scan. 1686 */ 1687 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1688 unsigned long *nr_saved_scan) 1689 { 1690 unsigned long nr; 1691 1692 *nr_saved_scan += nr_to_scan; 1693 nr = *nr_saved_scan; 1694 1695 if (nr >= SWAP_CLUSTER_MAX) 1696 *nr_saved_scan = 0; 1697 else 1698 nr = 0; 1699 1700 return nr; 1701 } 1702 1703 /* 1704 * Determine how aggressively the anon and file LRU lists should be 1705 * scanned. The relative value of each set of LRU lists is determined 1706 * by looking at the fraction of the pages scanned we did rotate back 1707 * onto the active list instead of evict. 1708 * 1709 * nr[0] = anon pages to scan; nr[1] = file pages to scan 1710 */ 1711 static void get_scan_count(struct zone *zone, struct scan_control *sc, 1712 unsigned long *nr, int priority) 1713 { 1714 unsigned long anon, file, free; 1715 unsigned long anon_prio, file_prio; 1716 unsigned long ap, fp; 1717 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1718 u64 fraction[2], denominator; 1719 enum lru_list l; 1720 int noswap = 0; 1721 1722 /* If we have no swap space, do not bother scanning anon pages. */ 1723 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1724 noswap = 1; 1725 fraction[0] = 0; 1726 fraction[1] = 1; 1727 denominator = 1; 1728 goto out; 1729 } 1730 1731 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1732 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1733 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1734 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1735 1736 if (scanning_global_lru(sc)) { 1737 free = zone_page_state(zone, NR_FREE_PAGES); 1738 /* If we have very few page cache pages, 1739 force-scan anon pages. */ 1740 if (unlikely(file + free <= high_wmark_pages(zone))) { 1741 fraction[0] = 1; 1742 fraction[1] = 0; 1743 denominator = 1; 1744 goto out; 1745 } 1746 } 1747 1748 /* 1749 * With swappiness at 100, anonymous and file have the same priority. 1750 * This scanning priority is essentially the inverse of IO cost. 1751 */ 1752 anon_prio = sc->swappiness; 1753 file_prio = 200 - sc->swappiness; 1754 1755 /* 1756 * OK, so we have swap space and a fair amount of page cache 1757 * pages. We use the recently rotated / recently scanned 1758 * ratios to determine how valuable each cache is. 1759 * 1760 * Because workloads change over time (and to avoid overflow) 1761 * we keep these statistics as a floating average, which ends 1762 * up weighing recent references more than old ones. 1763 * 1764 * anon in [0], file in [1] 1765 */ 1766 spin_lock_irq(&zone->lru_lock); 1767 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1768 reclaim_stat->recent_scanned[0] /= 2; 1769 reclaim_stat->recent_rotated[0] /= 2; 1770 } 1771 1772 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1773 reclaim_stat->recent_scanned[1] /= 2; 1774 reclaim_stat->recent_rotated[1] /= 2; 1775 } 1776 1777 /* 1778 * The amount of pressure on anon vs file pages is inversely 1779 * proportional to the fraction of recently scanned pages on 1780 * each list that were recently referenced and in active use. 1781 */ 1782 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1783 ap /= reclaim_stat->recent_rotated[0] + 1; 1784 1785 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1786 fp /= reclaim_stat->recent_rotated[1] + 1; 1787 spin_unlock_irq(&zone->lru_lock); 1788 1789 fraction[0] = ap; 1790 fraction[1] = fp; 1791 denominator = ap + fp + 1; 1792 out: 1793 for_each_evictable_lru(l) { 1794 int file = is_file_lru(l); 1795 unsigned long scan; 1796 1797 scan = zone_nr_lru_pages(zone, sc, l); 1798 if (priority || noswap) { 1799 scan >>= priority; 1800 scan = div64_u64(scan * fraction[file], denominator); 1801 } 1802 nr[l] = nr_scan_try_batch(scan, 1803 &reclaim_stat->nr_saved_scan[l]); 1804 } 1805 } 1806 1807 /* 1808 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1809 */ 1810 static void shrink_zone(int priority, struct zone *zone, 1811 struct scan_control *sc) 1812 { 1813 unsigned long nr[NR_LRU_LISTS]; 1814 unsigned long nr_to_scan; 1815 enum lru_list l; 1816 unsigned long nr_reclaimed = sc->nr_reclaimed; 1817 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1818 1819 get_scan_count(zone, sc, nr, priority); 1820 1821 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1822 nr[LRU_INACTIVE_FILE]) { 1823 for_each_evictable_lru(l) { 1824 if (nr[l]) { 1825 nr_to_scan = min_t(unsigned long, 1826 nr[l], SWAP_CLUSTER_MAX); 1827 nr[l] -= nr_to_scan; 1828 1829 nr_reclaimed += shrink_list(l, nr_to_scan, 1830 zone, sc, priority); 1831 } 1832 } 1833 /* 1834 * On large memory systems, scan >> priority can become 1835 * really large. This is fine for the starting priority; 1836 * we want to put equal scanning pressure on each zone. 1837 * However, if the VM has a harder time of freeing pages, 1838 * with multiple processes reclaiming pages, the total 1839 * freeing target can get unreasonably large. 1840 */ 1841 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY) 1842 break; 1843 } 1844 1845 sc->nr_reclaimed = nr_reclaimed; 1846 1847 /* 1848 * Even if we did not try to evict anon pages at all, we want to 1849 * rebalance the anon lru active/inactive ratio. 1850 */ 1851 if (inactive_anon_is_low(zone, sc)) 1852 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1853 1854 throttle_vm_writeout(sc->gfp_mask); 1855 } 1856 1857 /* 1858 * This is the direct reclaim path, for page-allocating processes. We only 1859 * try to reclaim pages from zones which will satisfy the caller's allocation 1860 * request. 1861 * 1862 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1863 * Because: 1864 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1865 * allocation or 1866 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1867 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1868 * zone defense algorithm. 1869 * 1870 * If a zone is deemed to be full of pinned pages then just give it a light 1871 * scan then give up on it. 1872 */ 1873 static void shrink_zones(int priority, struct zonelist *zonelist, 1874 struct scan_control *sc) 1875 { 1876 struct zoneref *z; 1877 struct zone *zone; 1878 1879 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1880 gfp_zone(sc->gfp_mask), sc->nodemask) { 1881 if (!populated_zone(zone)) 1882 continue; 1883 /* 1884 * Take care memory controller reclaiming has small influence 1885 * to global LRU. 1886 */ 1887 if (scanning_global_lru(sc)) { 1888 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1889 continue; 1890 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1891 continue; /* Let kswapd poll it */ 1892 } 1893 1894 shrink_zone(priority, zone, sc); 1895 } 1896 } 1897 1898 static bool zone_reclaimable(struct zone *zone) 1899 { 1900 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 1901 } 1902 1903 /* 1904 * As hibernation is going on, kswapd is freezed so that it can't mark 1905 * the zone into all_unreclaimable. It can't handle OOM during hibernation. 1906 * So let's check zone's unreclaimable in direct reclaim as well as kswapd. 1907 */ 1908 static bool all_unreclaimable(struct zonelist *zonelist, 1909 struct scan_control *sc) 1910 { 1911 struct zoneref *z; 1912 struct zone *zone; 1913 bool all_unreclaimable = true; 1914 1915 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1916 gfp_zone(sc->gfp_mask), sc->nodemask) { 1917 if (!populated_zone(zone)) 1918 continue; 1919 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1920 continue; 1921 if (zone_reclaimable(zone)) { 1922 all_unreclaimable = false; 1923 break; 1924 } 1925 } 1926 1927 return all_unreclaimable; 1928 } 1929 1930 /* 1931 * This is the main entry point to direct page reclaim. 1932 * 1933 * If a full scan of the inactive list fails to free enough memory then we 1934 * are "out of memory" and something needs to be killed. 1935 * 1936 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1937 * high - the zone may be full of dirty or under-writeback pages, which this 1938 * caller can't do much about. We kick the writeback threads and take explicit 1939 * naps in the hope that some of these pages can be written. But if the 1940 * allocating task holds filesystem locks which prevent writeout this might not 1941 * work, and the allocation attempt will fail. 1942 * 1943 * returns: 0, if no pages reclaimed 1944 * else, the number of pages reclaimed 1945 */ 1946 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1947 struct scan_control *sc) 1948 { 1949 int priority; 1950 unsigned long total_scanned = 0; 1951 struct reclaim_state *reclaim_state = current->reclaim_state; 1952 struct zoneref *z; 1953 struct zone *zone; 1954 unsigned long writeback_threshold; 1955 1956 get_mems_allowed(); 1957 delayacct_freepages_start(); 1958 1959 if (scanning_global_lru(sc)) 1960 count_vm_event(ALLOCSTALL); 1961 1962 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1963 sc->nr_scanned = 0; 1964 if (!priority) 1965 disable_swap_token(); 1966 shrink_zones(priority, zonelist, sc); 1967 /* 1968 * Don't shrink slabs when reclaiming memory from 1969 * over limit cgroups 1970 */ 1971 if (scanning_global_lru(sc)) { 1972 unsigned long lru_pages = 0; 1973 for_each_zone_zonelist(zone, z, zonelist, 1974 gfp_zone(sc->gfp_mask)) { 1975 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1976 continue; 1977 1978 lru_pages += zone_reclaimable_pages(zone); 1979 } 1980 1981 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1982 if (reclaim_state) { 1983 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1984 reclaim_state->reclaimed_slab = 0; 1985 } 1986 } 1987 total_scanned += sc->nr_scanned; 1988 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 1989 goto out; 1990 1991 /* 1992 * Try to write back as many pages as we just scanned. This 1993 * tends to cause slow streaming writers to write data to the 1994 * disk smoothly, at the dirtying rate, which is nice. But 1995 * that's undesirable in laptop mode, where we *want* lumpy 1996 * writeout. So in laptop mode, write out the whole world. 1997 */ 1998 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 1999 if (total_scanned > writeback_threshold) { 2000 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 2001 sc->may_writepage = 1; 2002 } 2003 2004 /* Take a nap, wait for some writeback to complete */ 2005 if (!sc->hibernation_mode && sc->nr_scanned && 2006 priority < DEF_PRIORITY - 2) { 2007 struct zone *preferred_zone; 2008 2009 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), 2010 NULL, &preferred_zone); 2011 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); 2012 } 2013 } 2014 2015 out: 2016 delayacct_freepages_end(); 2017 put_mems_allowed(); 2018 2019 if (sc->nr_reclaimed) 2020 return sc->nr_reclaimed; 2021 2022 /* top priority shrink_zones still had more to do? don't OOM, then */ 2023 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc)) 2024 return 1; 2025 2026 return 0; 2027 } 2028 2029 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2030 gfp_t gfp_mask, nodemask_t *nodemask) 2031 { 2032 unsigned long nr_reclaimed; 2033 struct scan_control sc = { 2034 .gfp_mask = gfp_mask, 2035 .may_writepage = !laptop_mode, 2036 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2037 .may_unmap = 1, 2038 .may_swap = 1, 2039 .swappiness = vm_swappiness, 2040 .order = order, 2041 .mem_cgroup = NULL, 2042 .nodemask = nodemask, 2043 }; 2044 2045 trace_mm_vmscan_direct_reclaim_begin(order, 2046 sc.may_writepage, 2047 gfp_mask); 2048 2049 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2050 2051 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2052 2053 return nr_reclaimed; 2054 } 2055 2056 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 2057 2058 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 2059 gfp_t gfp_mask, bool noswap, 2060 unsigned int swappiness, 2061 struct zone *zone) 2062 { 2063 struct scan_control sc = { 2064 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2065 .may_writepage = !laptop_mode, 2066 .may_unmap = 1, 2067 .may_swap = !noswap, 2068 .swappiness = swappiness, 2069 .order = 0, 2070 .mem_cgroup = mem, 2071 }; 2072 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2073 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2074 2075 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, 2076 sc.may_writepage, 2077 sc.gfp_mask); 2078 2079 /* 2080 * NOTE: Although we can get the priority field, using it 2081 * here is not a good idea, since it limits the pages we can scan. 2082 * if we don't reclaim here, the shrink_zone from balance_pgdat 2083 * will pick up pages from other mem cgroup's as well. We hack 2084 * the priority and make it zero. 2085 */ 2086 shrink_zone(0, zone, &sc); 2087 2088 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2089 2090 return sc.nr_reclaimed; 2091 } 2092 2093 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 2094 gfp_t gfp_mask, 2095 bool noswap, 2096 unsigned int swappiness) 2097 { 2098 struct zonelist *zonelist; 2099 unsigned long nr_reclaimed; 2100 struct scan_control sc = { 2101 .may_writepage = !laptop_mode, 2102 .may_unmap = 1, 2103 .may_swap = !noswap, 2104 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2105 .swappiness = swappiness, 2106 .order = 0, 2107 .mem_cgroup = mem_cont, 2108 .nodemask = NULL, /* we don't care the placement */ 2109 }; 2110 2111 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2112 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2113 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 2114 2115 trace_mm_vmscan_memcg_reclaim_begin(0, 2116 sc.may_writepage, 2117 sc.gfp_mask); 2118 2119 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2120 2121 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2122 2123 return nr_reclaimed; 2124 } 2125 #endif 2126 2127 /* is kswapd sleeping prematurely? */ 2128 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining) 2129 { 2130 int i; 2131 2132 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2133 if (remaining) 2134 return 1; 2135 2136 /* If after HZ/10, a zone is below the high mark, it's premature */ 2137 for (i = 0; i < pgdat->nr_zones; i++) { 2138 struct zone *zone = pgdat->node_zones + i; 2139 2140 if (!populated_zone(zone)) 2141 continue; 2142 2143 if (zone->all_unreclaimable) 2144 continue; 2145 2146 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone), 2147 0, 0)) 2148 return 1; 2149 } 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * For kswapd, balance_pgdat() will work across all this node's zones until 2156 * they are all at high_wmark_pages(zone). 2157 * 2158 * Returns the number of pages which were actually freed. 2159 * 2160 * There is special handling here for zones which are full of pinned pages. 2161 * This can happen if the pages are all mlocked, or if they are all used by 2162 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2163 * What we do is to detect the case where all pages in the zone have been 2164 * scanned twice and there has been zero successful reclaim. Mark the zone as 2165 * dead and from now on, only perform a short scan. Basically we're polling 2166 * the zone for when the problem goes away. 2167 * 2168 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2169 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2170 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2171 * lower zones regardless of the number of free pages in the lower zones. This 2172 * interoperates with the page allocator fallback scheme to ensure that aging 2173 * of pages is balanced across the zones. 2174 */ 2175 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 2176 { 2177 int all_zones_ok; 2178 int priority; 2179 int i; 2180 unsigned long total_scanned; 2181 struct reclaim_state *reclaim_state = current->reclaim_state; 2182 struct scan_control sc = { 2183 .gfp_mask = GFP_KERNEL, 2184 .may_unmap = 1, 2185 .may_swap = 1, 2186 /* 2187 * kswapd doesn't want to be bailed out while reclaim. because 2188 * we want to put equal scanning pressure on each zone. 2189 */ 2190 .nr_to_reclaim = ULONG_MAX, 2191 .swappiness = vm_swappiness, 2192 .order = order, 2193 .mem_cgroup = NULL, 2194 }; 2195 loop_again: 2196 total_scanned = 0; 2197 sc.nr_reclaimed = 0; 2198 sc.may_writepage = !laptop_mode; 2199 count_vm_event(PAGEOUTRUN); 2200 2201 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 2202 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2203 unsigned long lru_pages = 0; 2204 int has_under_min_watermark_zone = 0; 2205 2206 /* The swap token gets in the way of swapout... */ 2207 if (!priority) 2208 disable_swap_token(); 2209 2210 all_zones_ok = 1; 2211 2212 /* 2213 * Scan in the highmem->dma direction for the highest 2214 * zone which needs scanning 2215 */ 2216 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2217 struct zone *zone = pgdat->node_zones + i; 2218 2219 if (!populated_zone(zone)) 2220 continue; 2221 2222 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2223 continue; 2224 2225 /* 2226 * Do some background aging of the anon list, to give 2227 * pages a chance to be referenced before reclaiming. 2228 */ 2229 if (inactive_anon_is_low(zone, &sc)) 2230 shrink_active_list(SWAP_CLUSTER_MAX, zone, 2231 &sc, priority, 0); 2232 2233 if (!zone_watermark_ok(zone, order, 2234 high_wmark_pages(zone), 0, 0)) { 2235 end_zone = i; 2236 break; 2237 } 2238 } 2239 if (i < 0) 2240 goto out; 2241 2242 for (i = 0; i <= end_zone; i++) { 2243 struct zone *zone = pgdat->node_zones + i; 2244 2245 lru_pages += zone_reclaimable_pages(zone); 2246 } 2247 2248 /* 2249 * Now scan the zone in the dma->highmem direction, stopping 2250 * at the last zone which needs scanning. 2251 * 2252 * We do this because the page allocator works in the opposite 2253 * direction. This prevents the page allocator from allocating 2254 * pages behind kswapd's direction of progress, which would 2255 * cause too much scanning of the lower zones. 2256 */ 2257 for (i = 0; i <= end_zone; i++) { 2258 struct zone *zone = pgdat->node_zones + i; 2259 int nr_slab; 2260 2261 if (!populated_zone(zone)) 2262 continue; 2263 2264 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2265 continue; 2266 2267 sc.nr_scanned = 0; 2268 2269 /* 2270 * Call soft limit reclaim before calling shrink_zone. 2271 * For now we ignore the return value 2272 */ 2273 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); 2274 2275 /* 2276 * We put equal pressure on every zone, unless one 2277 * zone has way too many pages free already. 2278 */ 2279 if (!zone_watermark_ok(zone, order, 2280 8*high_wmark_pages(zone), end_zone, 0)) 2281 shrink_zone(priority, zone, &sc); 2282 reclaim_state->reclaimed_slab = 0; 2283 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2284 lru_pages); 2285 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2286 total_scanned += sc.nr_scanned; 2287 if (zone->all_unreclaimable) 2288 continue; 2289 if (nr_slab == 0 && !zone_reclaimable(zone)) 2290 zone->all_unreclaimable = 1; 2291 /* 2292 * If we've done a decent amount of scanning and 2293 * the reclaim ratio is low, start doing writepage 2294 * even in laptop mode 2295 */ 2296 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2297 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2298 sc.may_writepage = 1; 2299 2300 if (!zone_watermark_ok(zone, order, 2301 high_wmark_pages(zone), end_zone, 0)) { 2302 all_zones_ok = 0; 2303 /* 2304 * We are still under min water mark. This 2305 * means that we have a GFP_ATOMIC allocation 2306 * failure risk. Hurry up! 2307 */ 2308 if (!zone_watermark_ok(zone, order, 2309 min_wmark_pages(zone), end_zone, 0)) 2310 has_under_min_watermark_zone = 1; 2311 } else { 2312 /* 2313 * If a zone reaches its high watermark, 2314 * consider it to be no longer congested. It's 2315 * possible there are dirty pages backed by 2316 * congested BDIs but as pressure is relieved, 2317 * spectulatively avoid congestion waits 2318 */ 2319 zone_clear_flag(zone, ZONE_CONGESTED); 2320 } 2321 2322 } 2323 if (all_zones_ok) 2324 break; /* kswapd: all done */ 2325 /* 2326 * OK, kswapd is getting into trouble. Take a nap, then take 2327 * another pass across the zones. 2328 */ 2329 if (total_scanned && (priority < DEF_PRIORITY - 2)) { 2330 if (has_under_min_watermark_zone) 2331 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2332 else 2333 congestion_wait(BLK_RW_ASYNC, HZ/10); 2334 } 2335 2336 /* 2337 * We do this so kswapd doesn't build up large priorities for 2338 * example when it is freeing in parallel with allocators. It 2339 * matches the direct reclaim path behaviour in terms of impact 2340 * on zone->*_priority. 2341 */ 2342 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2343 break; 2344 } 2345 out: 2346 if (!all_zones_ok) { 2347 cond_resched(); 2348 2349 try_to_freeze(); 2350 2351 /* 2352 * Fragmentation may mean that the system cannot be 2353 * rebalanced for high-order allocations in all zones. 2354 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2355 * it means the zones have been fully scanned and are still 2356 * not balanced. For high-order allocations, there is 2357 * little point trying all over again as kswapd may 2358 * infinite loop. 2359 * 2360 * Instead, recheck all watermarks at order-0 as they 2361 * are the most important. If watermarks are ok, kswapd will go 2362 * back to sleep. High-order users can still perform direct 2363 * reclaim if they wish. 2364 */ 2365 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2366 order = sc.order = 0; 2367 2368 goto loop_again; 2369 } 2370 2371 return sc.nr_reclaimed; 2372 } 2373 2374 /* 2375 * The background pageout daemon, started as a kernel thread 2376 * from the init process. 2377 * 2378 * This basically trickles out pages so that we have _some_ 2379 * free memory available even if there is no other activity 2380 * that frees anything up. This is needed for things like routing 2381 * etc, where we otherwise might have all activity going on in 2382 * asynchronous contexts that cannot page things out. 2383 * 2384 * If there are applications that are active memory-allocators 2385 * (most normal use), this basically shouldn't matter. 2386 */ 2387 static int kswapd(void *p) 2388 { 2389 unsigned long order; 2390 pg_data_t *pgdat = (pg_data_t*)p; 2391 struct task_struct *tsk = current; 2392 DEFINE_WAIT(wait); 2393 struct reclaim_state reclaim_state = { 2394 .reclaimed_slab = 0, 2395 }; 2396 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2397 2398 lockdep_set_current_reclaim_state(GFP_KERNEL); 2399 2400 if (!cpumask_empty(cpumask)) 2401 set_cpus_allowed_ptr(tsk, cpumask); 2402 current->reclaim_state = &reclaim_state; 2403 2404 /* 2405 * Tell the memory management that we're a "memory allocator", 2406 * and that if we need more memory we should get access to it 2407 * regardless (see "__alloc_pages()"). "kswapd" should 2408 * never get caught in the normal page freeing logic. 2409 * 2410 * (Kswapd normally doesn't need memory anyway, but sometimes 2411 * you need a small amount of memory in order to be able to 2412 * page out something else, and this flag essentially protects 2413 * us from recursively trying to free more memory as we're 2414 * trying to free the first piece of memory in the first place). 2415 */ 2416 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2417 set_freezable(); 2418 2419 order = 0; 2420 for ( ; ; ) { 2421 unsigned long new_order; 2422 int ret; 2423 2424 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2425 new_order = pgdat->kswapd_max_order; 2426 pgdat->kswapd_max_order = 0; 2427 if (order < new_order) { 2428 /* 2429 * Don't sleep if someone wants a larger 'order' 2430 * allocation 2431 */ 2432 order = new_order; 2433 } else { 2434 if (!freezing(current) && !kthread_should_stop()) { 2435 long remaining = 0; 2436 2437 /* Try to sleep for a short interval */ 2438 if (!sleeping_prematurely(pgdat, order, remaining)) { 2439 remaining = schedule_timeout(HZ/10); 2440 finish_wait(&pgdat->kswapd_wait, &wait); 2441 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2442 } 2443 2444 /* 2445 * After a short sleep, check if it was a 2446 * premature sleep. If not, then go fully 2447 * to sleep until explicitly woken up 2448 */ 2449 if (!sleeping_prematurely(pgdat, order, remaining)) { 2450 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 2451 schedule(); 2452 } else { 2453 if (remaining) 2454 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2455 else 2456 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2457 } 2458 } 2459 2460 order = pgdat->kswapd_max_order; 2461 } 2462 finish_wait(&pgdat->kswapd_wait, &wait); 2463 2464 ret = try_to_freeze(); 2465 if (kthread_should_stop()) 2466 break; 2467 2468 /* 2469 * We can speed up thawing tasks if we don't call balance_pgdat 2470 * after returning from the refrigerator 2471 */ 2472 if (!ret) { 2473 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 2474 balance_pgdat(pgdat, order); 2475 } 2476 } 2477 return 0; 2478 } 2479 2480 /* 2481 * A zone is low on free memory, so wake its kswapd task to service it. 2482 */ 2483 void wakeup_kswapd(struct zone *zone, int order) 2484 { 2485 pg_data_t *pgdat; 2486 2487 if (!populated_zone(zone)) 2488 return; 2489 2490 pgdat = zone->zone_pgdat; 2491 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2492 return; 2493 if (pgdat->kswapd_max_order < order) 2494 pgdat->kswapd_max_order = order; 2495 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 2496 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2497 return; 2498 if (!waitqueue_active(&pgdat->kswapd_wait)) 2499 return; 2500 wake_up_interruptible(&pgdat->kswapd_wait); 2501 } 2502 2503 /* 2504 * The reclaimable count would be mostly accurate. 2505 * The less reclaimable pages may be 2506 * - mlocked pages, which will be moved to unevictable list when encountered 2507 * - mapped pages, which may require several travels to be reclaimed 2508 * - dirty pages, which is not "instantly" reclaimable 2509 */ 2510 unsigned long global_reclaimable_pages(void) 2511 { 2512 int nr; 2513 2514 nr = global_page_state(NR_ACTIVE_FILE) + 2515 global_page_state(NR_INACTIVE_FILE); 2516 2517 if (nr_swap_pages > 0) 2518 nr += global_page_state(NR_ACTIVE_ANON) + 2519 global_page_state(NR_INACTIVE_ANON); 2520 2521 return nr; 2522 } 2523 2524 unsigned long zone_reclaimable_pages(struct zone *zone) 2525 { 2526 int nr; 2527 2528 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2529 zone_page_state(zone, NR_INACTIVE_FILE); 2530 2531 if (nr_swap_pages > 0) 2532 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2533 zone_page_state(zone, NR_INACTIVE_ANON); 2534 2535 return nr; 2536 } 2537 2538 #ifdef CONFIG_HIBERNATION 2539 /* 2540 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 2541 * freed pages. 2542 * 2543 * Rather than trying to age LRUs the aim is to preserve the overall 2544 * LRU order by reclaiming preferentially 2545 * inactive > active > active referenced > active mapped 2546 */ 2547 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 2548 { 2549 struct reclaim_state reclaim_state; 2550 struct scan_control sc = { 2551 .gfp_mask = GFP_HIGHUSER_MOVABLE, 2552 .may_swap = 1, 2553 .may_unmap = 1, 2554 .may_writepage = 1, 2555 .nr_to_reclaim = nr_to_reclaim, 2556 .hibernation_mode = 1, 2557 .swappiness = vm_swappiness, 2558 .order = 0, 2559 }; 2560 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 2561 struct task_struct *p = current; 2562 unsigned long nr_reclaimed; 2563 2564 p->flags |= PF_MEMALLOC; 2565 lockdep_set_current_reclaim_state(sc.gfp_mask); 2566 reclaim_state.reclaimed_slab = 0; 2567 p->reclaim_state = &reclaim_state; 2568 2569 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2570 2571 p->reclaim_state = NULL; 2572 lockdep_clear_current_reclaim_state(); 2573 p->flags &= ~PF_MEMALLOC; 2574 2575 return nr_reclaimed; 2576 } 2577 #endif /* CONFIG_HIBERNATION */ 2578 2579 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2580 not required for correctness. So if the last cpu in a node goes 2581 away, we get changed to run anywhere: as the first one comes back, 2582 restore their cpu bindings. */ 2583 static int __devinit cpu_callback(struct notifier_block *nfb, 2584 unsigned long action, void *hcpu) 2585 { 2586 int nid; 2587 2588 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2589 for_each_node_state(nid, N_HIGH_MEMORY) { 2590 pg_data_t *pgdat = NODE_DATA(nid); 2591 const struct cpumask *mask; 2592 2593 mask = cpumask_of_node(pgdat->node_id); 2594 2595 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2596 /* One of our CPUs online: restore mask */ 2597 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2598 } 2599 } 2600 return NOTIFY_OK; 2601 } 2602 2603 /* 2604 * This kswapd start function will be called by init and node-hot-add. 2605 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2606 */ 2607 int kswapd_run(int nid) 2608 { 2609 pg_data_t *pgdat = NODE_DATA(nid); 2610 int ret = 0; 2611 2612 if (pgdat->kswapd) 2613 return 0; 2614 2615 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2616 if (IS_ERR(pgdat->kswapd)) { 2617 /* failure at boot is fatal */ 2618 BUG_ON(system_state == SYSTEM_BOOTING); 2619 printk("Failed to start kswapd on node %d\n",nid); 2620 ret = -1; 2621 } 2622 return ret; 2623 } 2624 2625 /* 2626 * Called by memory hotplug when all memory in a node is offlined. 2627 */ 2628 void kswapd_stop(int nid) 2629 { 2630 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 2631 2632 if (kswapd) 2633 kthread_stop(kswapd); 2634 } 2635 2636 static int __init kswapd_init(void) 2637 { 2638 int nid; 2639 2640 swap_setup(); 2641 for_each_node_state(nid, N_HIGH_MEMORY) 2642 kswapd_run(nid); 2643 hotcpu_notifier(cpu_callback, 0); 2644 return 0; 2645 } 2646 2647 module_init(kswapd_init) 2648 2649 #ifdef CONFIG_NUMA 2650 /* 2651 * Zone reclaim mode 2652 * 2653 * If non-zero call zone_reclaim when the number of free pages falls below 2654 * the watermarks. 2655 */ 2656 int zone_reclaim_mode __read_mostly; 2657 2658 #define RECLAIM_OFF 0 2659 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2660 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2661 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2662 2663 /* 2664 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2665 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2666 * a zone. 2667 */ 2668 #define ZONE_RECLAIM_PRIORITY 4 2669 2670 /* 2671 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2672 * occur. 2673 */ 2674 int sysctl_min_unmapped_ratio = 1; 2675 2676 /* 2677 * If the number of slab pages in a zone grows beyond this percentage then 2678 * slab reclaim needs to occur. 2679 */ 2680 int sysctl_min_slab_ratio = 5; 2681 2682 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2683 { 2684 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2685 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2686 zone_page_state(zone, NR_ACTIVE_FILE); 2687 2688 /* 2689 * It's possible for there to be more file mapped pages than 2690 * accounted for by the pages on the file LRU lists because 2691 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2692 */ 2693 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2694 } 2695 2696 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2697 static long zone_pagecache_reclaimable(struct zone *zone) 2698 { 2699 long nr_pagecache_reclaimable; 2700 long delta = 0; 2701 2702 /* 2703 * If RECLAIM_SWAP is set, then all file pages are considered 2704 * potentially reclaimable. Otherwise, we have to worry about 2705 * pages like swapcache and zone_unmapped_file_pages() provides 2706 * a better estimate 2707 */ 2708 if (zone_reclaim_mode & RECLAIM_SWAP) 2709 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2710 else 2711 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2712 2713 /* If we can't clean pages, remove dirty pages from consideration */ 2714 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2715 delta += zone_page_state(zone, NR_FILE_DIRTY); 2716 2717 /* Watch for any possible underflows due to delta */ 2718 if (unlikely(delta > nr_pagecache_reclaimable)) 2719 delta = nr_pagecache_reclaimable; 2720 2721 return nr_pagecache_reclaimable - delta; 2722 } 2723 2724 /* 2725 * Try to free up some pages from this zone through reclaim. 2726 */ 2727 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2728 { 2729 /* Minimum pages needed in order to stay on node */ 2730 const unsigned long nr_pages = 1 << order; 2731 struct task_struct *p = current; 2732 struct reclaim_state reclaim_state; 2733 int priority; 2734 struct scan_control sc = { 2735 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2736 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2737 .may_swap = 1, 2738 .nr_to_reclaim = max_t(unsigned long, nr_pages, 2739 SWAP_CLUSTER_MAX), 2740 .gfp_mask = gfp_mask, 2741 .swappiness = vm_swappiness, 2742 .order = order, 2743 }; 2744 unsigned long nr_slab_pages0, nr_slab_pages1; 2745 2746 cond_resched(); 2747 /* 2748 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2749 * and we also need to be able to write out pages for RECLAIM_WRITE 2750 * and RECLAIM_SWAP. 2751 */ 2752 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2753 lockdep_set_current_reclaim_state(gfp_mask); 2754 reclaim_state.reclaimed_slab = 0; 2755 p->reclaim_state = &reclaim_state; 2756 2757 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2758 /* 2759 * Free memory by calling shrink zone with increasing 2760 * priorities until we have enough memory freed. 2761 */ 2762 priority = ZONE_RECLAIM_PRIORITY; 2763 do { 2764 shrink_zone(priority, zone, &sc); 2765 priority--; 2766 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2767 } 2768 2769 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2770 if (nr_slab_pages0 > zone->min_slab_pages) { 2771 /* 2772 * shrink_slab() does not currently allow us to determine how 2773 * many pages were freed in this zone. So we take the current 2774 * number of slab pages and shake the slab until it is reduced 2775 * by the same nr_pages that we used for reclaiming unmapped 2776 * pages. 2777 * 2778 * Note that shrink_slab will free memory on all zones and may 2779 * take a long time. 2780 */ 2781 for (;;) { 2782 unsigned long lru_pages = zone_reclaimable_pages(zone); 2783 2784 /* No reclaimable slab or very low memory pressure */ 2785 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages)) 2786 break; 2787 2788 /* Freed enough memory */ 2789 nr_slab_pages1 = zone_page_state(zone, 2790 NR_SLAB_RECLAIMABLE); 2791 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 2792 break; 2793 } 2794 2795 /* 2796 * Update nr_reclaimed by the number of slab pages we 2797 * reclaimed from this zone. 2798 */ 2799 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2800 if (nr_slab_pages1 < nr_slab_pages0) 2801 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 2802 } 2803 2804 p->reclaim_state = NULL; 2805 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2806 lockdep_clear_current_reclaim_state(); 2807 return sc.nr_reclaimed >= nr_pages; 2808 } 2809 2810 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2811 { 2812 int node_id; 2813 int ret; 2814 2815 /* 2816 * Zone reclaim reclaims unmapped file backed pages and 2817 * slab pages if we are over the defined limits. 2818 * 2819 * A small portion of unmapped file backed pages is needed for 2820 * file I/O otherwise pages read by file I/O will be immediately 2821 * thrown out if the zone is overallocated. So we do not reclaim 2822 * if less than a specified percentage of the zone is used by 2823 * unmapped file backed pages. 2824 */ 2825 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2826 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2827 return ZONE_RECLAIM_FULL; 2828 2829 if (zone->all_unreclaimable) 2830 return ZONE_RECLAIM_FULL; 2831 2832 /* 2833 * Do not scan if the allocation should not be delayed. 2834 */ 2835 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2836 return ZONE_RECLAIM_NOSCAN; 2837 2838 /* 2839 * Only run zone reclaim on the local zone or on zones that do not 2840 * have associated processors. This will favor the local processor 2841 * over remote processors and spread off node memory allocations 2842 * as wide as possible. 2843 */ 2844 node_id = zone_to_nid(zone); 2845 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2846 return ZONE_RECLAIM_NOSCAN; 2847 2848 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2849 return ZONE_RECLAIM_NOSCAN; 2850 2851 ret = __zone_reclaim(zone, gfp_mask, order); 2852 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2853 2854 if (!ret) 2855 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2856 2857 return ret; 2858 } 2859 #endif 2860 2861 /* 2862 * page_evictable - test whether a page is evictable 2863 * @page: the page to test 2864 * @vma: the VMA in which the page is or will be mapped, may be NULL 2865 * 2866 * Test whether page is evictable--i.e., should be placed on active/inactive 2867 * lists vs unevictable list. The vma argument is !NULL when called from the 2868 * fault path to determine how to instantate a new page. 2869 * 2870 * Reasons page might not be evictable: 2871 * (1) page's mapping marked unevictable 2872 * (2) page is part of an mlocked VMA 2873 * 2874 */ 2875 int page_evictable(struct page *page, struct vm_area_struct *vma) 2876 { 2877 2878 if (mapping_unevictable(page_mapping(page))) 2879 return 0; 2880 2881 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2882 return 0; 2883 2884 return 1; 2885 } 2886 2887 /** 2888 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2889 * @page: page to check evictability and move to appropriate lru list 2890 * @zone: zone page is in 2891 * 2892 * Checks a page for evictability and moves the page to the appropriate 2893 * zone lru list. 2894 * 2895 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2896 * have PageUnevictable set. 2897 */ 2898 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2899 { 2900 VM_BUG_ON(PageActive(page)); 2901 2902 retry: 2903 ClearPageUnevictable(page); 2904 if (page_evictable(page, NULL)) { 2905 enum lru_list l = page_lru_base_type(page); 2906 2907 __dec_zone_state(zone, NR_UNEVICTABLE); 2908 list_move(&page->lru, &zone->lru[l].list); 2909 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2910 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2911 __count_vm_event(UNEVICTABLE_PGRESCUED); 2912 } else { 2913 /* 2914 * rotate unevictable list 2915 */ 2916 SetPageUnevictable(page); 2917 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2918 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2919 if (page_evictable(page, NULL)) 2920 goto retry; 2921 } 2922 } 2923 2924 /** 2925 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2926 * @mapping: struct address_space to scan for evictable pages 2927 * 2928 * Scan all pages in mapping. Check unevictable pages for 2929 * evictability and move them to the appropriate zone lru list. 2930 */ 2931 void scan_mapping_unevictable_pages(struct address_space *mapping) 2932 { 2933 pgoff_t next = 0; 2934 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2935 PAGE_CACHE_SHIFT; 2936 struct zone *zone; 2937 struct pagevec pvec; 2938 2939 if (mapping->nrpages == 0) 2940 return; 2941 2942 pagevec_init(&pvec, 0); 2943 while (next < end && 2944 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2945 int i; 2946 int pg_scanned = 0; 2947 2948 zone = NULL; 2949 2950 for (i = 0; i < pagevec_count(&pvec); i++) { 2951 struct page *page = pvec.pages[i]; 2952 pgoff_t page_index = page->index; 2953 struct zone *pagezone = page_zone(page); 2954 2955 pg_scanned++; 2956 if (page_index > next) 2957 next = page_index; 2958 next++; 2959 2960 if (pagezone != zone) { 2961 if (zone) 2962 spin_unlock_irq(&zone->lru_lock); 2963 zone = pagezone; 2964 spin_lock_irq(&zone->lru_lock); 2965 } 2966 2967 if (PageLRU(page) && PageUnevictable(page)) 2968 check_move_unevictable_page(page, zone); 2969 } 2970 if (zone) 2971 spin_unlock_irq(&zone->lru_lock); 2972 pagevec_release(&pvec); 2973 2974 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2975 } 2976 2977 } 2978 2979 /** 2980 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2981 * @zone - zone of which to scan the unevictable list 2982 * 2983 * Scan @zone's unevictable LRU lists to check for pages that have become 2984 * evictable. Move those that have to @zone's inactive list where they 2985 * become candidates for reclaim, unless shrink_inactive_zone() decides 2986 * to reactivate them. Pages that are still unevictable are rotated 2987 * back onto @zone's unevictable list. 2988 */ 2989 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2990 static void scan_zone_unevictable_pages(struct zone *zone) 2991 { 2992 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2993 unsigned long scan; 2994 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2995 2996 while (nr_to_scan > 0) { 2997 unsigned long batch_size = min(nr_to_scan, 2998 SCAN_UNEVICTABLE_BATCH_SIZE); 2999 3000 spin_lock_irq(&zone->lru_lock); 3001 for (scan = 0; scan < batch_size; scan++) { 3002 struct page *page = lru_to_page(l_unevictable); 3003 3004 if (!trylock_page(page)) 3005 continue; 3006 3007 prefetchw_prev_lru_page(page, l_unevictable, flags); 3008 3009 if (likely(PageLRU(page) && PageUnevictable(page))) 3010 check_move_unevictable_page(page, zone); 3011 3012 unlock_page(page); 3013 } 3014 spin_unlock_irq(&zone->lru_lock); 3015 3016 nr_to_scan -= batch_size; 3017 } 3018 } 3019 3020 3021 /** 3022 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 3023 * 3024 * A really big hammer: scan all zones' unevictable LRU lists to check for 3025 * pages that have become evictable. Move those back to the zones' 3026 * inactive list where they become candidates for reclaim. 3027 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 3028 * and we add swap to the system. As such, it runs in the context of a task 3029 * that has possibly/probably made some previously unevictable pages 3030 * evictable. 3031 */ 3032 static void scan_all_zones_unevictable_pages(void) 3033 { 3034 struct zone *zone; 3035 3036 for_each_zone(zone) { 3037 scan_zone_unevictable_pages(zone); 3038 } 3039 } 3040 3041 /* 3042 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3043 * all nodes' unevictable lists for evictable pages 3044 */ 3045 unsigned long scan_unevictable_pages; 3046 3047 int scan_unevictable_handler(struct ctl_table *table, int write, 3048 void __user *buffer, 3049 size_t *length, loff_t *ppos) 3050 { 3051 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3052 3053 if (write && *(unsigned long *)table->data) 3054 scan_all_zones_unevictable_pages(); 3055 3056 scan_unevictable_pages = 0; 3057 return 0; 3058 } 3059 3060 #ifdef CONFIG_NUMA 3061 /* 3062 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3063 * a specified node's per zone unevictable lists for evictable pages. 3064 */ 3065 3066 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 3067 struct sysdev_attribute *attr, 3068 char *buf) 3069 { 3070 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3071 } 3072 3073 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 3074 struct sysdev_attribute *attr, 3075 const char *buf, size_t count) 3076 { 3077 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 3078 struct zone *zone; 3079 unsigned long res; 3080 unsigned long req = strict_strtoul(buf, 10, &res); 3081 3082 if (!req) 3083 return 1; /* zero is no-op */ 3084 3085 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 3086 if (!populated_zone(zone)) 3087 continue; 3088 scan_zone_unevictable_pages(zone); 3089 } 3090 return 1; 3091 } 3092 3093 3094 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3095 read_scan_unevictable_node, 3096 write_scan_unevictable_node); 3097 3098 int scan_unevictable_register_node(struct node *node) 3099 { 3100 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 3101 } 3102 3103 void scan_unevictable_unregister_node(struct node *node) 3104 { 3105 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 3106 } 3107 #endif 3108