xref: /openbmc/linux/mm/vmscan.c (revision b9df3997)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/*
92 	 * Cgroups are not reclaimed below their configured memory.low,
93 	 * unless we threaten to OOM. If any cgroups are skipped due to
94 	 * memory.low and nothing was reclaimed, go back for memory.low.
95 	 */
96 	unsigned int memcg_low_reclaim:1;
97 	unsigned int memcg_low_skipped:1;
98 
99 	unsigned int hibernation_mode:1;
100 
101 	/* One of the zones is ready for compaction */
102 	unsigned int compaction_ready:1;
103 
104 	/* Allocation order */
105 	s8 order;
106 
107 	/* Scan (total_size >> priority) pages at once */
108 	s8 priority;
109 
110 	/* The highest zone to isolate pages for reclaim from */
111 	s8 reclaim_idx;
112 
113 	/* This context's GFP mask */
114 	gfp_t gfp_mask;
115 
116 	/* Incremented by the number of inactive pages that were scanned */
117 	unsigned long nr_scanned;
118 
119 	/* Number of pages freed so far during a call to shrink_zones() */
120 	unsigned long nr_reclaimed;
121 
122 	struct {
123 		unsigned int dirty;
124 		unsigned int unqueued_dirty;
125 		unsigned int congested;
126 		unsigned int writeback;
127 		unsigned int immediate;
128 		unsigned int file_taken;
129 		unsigned int taken;
130 	} nr;
131 
132 	/* for recording the reclaimed slab by now */
133 	struct reclaim_state reclaim_state;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static void set_task_reclaim_state(struct task_struct *task,
175 				   struct reclaim_state *rs)
176 {
177 	/* Check for an overwrite */
178 	WARN_ON_ONCE(rs && task->reclaim_state);
179 
180 	/* Check for the nulling of an already-nulled member */
181 	WARN_ON_ONCE(!rs && !task->reclaim_state);
182 
183 	task->reclaim_state = rs;
184 }
185 
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
188 
189 #ifdef CONFIG_MEMCG
190 /*
191  * We allow subsystems to populate their shrinker-related
192  * LRU lists before register_shrinker_prepared() is called
193  * for the shrinker, since we don't want to impose
194  * restrictions on their internal registration order.
195  * In this case shrink_slab_memcg() may find corresponding
196  * bit is set in the shrinkers map.
197  *
198  * This value is used by the function to detect registering
199  * shrinkers and to skip do_shrink_slab() calls for them.
200  */
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202 
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
205 
206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 {
208 	int id, ret = -ENOMEM;
209 
210 	down_write(&shrinker_rwsem);
211 	/* This may call shrinker, so it must use down_read_trylock() */
212 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 	if (id < 0)
214 		goto unlock;
215 
216 	if (id >= shrinker_nr_max) {
217 		if (memcg_expand_shrinker_maps(id)) {
218 			idr_remove(&shrinker_idr, id);
219 			goto unlock;
220 		}
221 
222 		shrinker_nr_max = id + 1;
223 	}
224 	shrinker->id = id;
225 	ret = 0;
226 unlock:
227 	up_write(&shrinker_rwsem);
228 	return ret;
229 }
230 
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	int id = shrinker->id;
234 
235 	BUG_ON(id < 0);
236 
237 	down_write(&shrinker_rwsem);
238 	idr_remove(&shrinker_idr, id);
239 	up_write(&shrinker_rwsem);
240 }
241 
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
297 {
298 	return 0;
299 }
300 
301 static void unregister_memcg_shrinker(struct shrinker *shrinker)
302 {
303 }
304 
305 static bool global_reclaim(struct scan_control *sc)
306 {
307 	return true;
308 }
309 
310 static bool sane_reclaim(struct scan_control *sc)
311 {
312 	return true;
313 }
314 
315 static inline void set_memcg_congestion(struct pglist_data *pgdat,
316 				struct mem_cgroup *memcg, bool congested)
317 {
318 }
319 
320 static inline bool memcg_congested(struct pglist_data *pgdat,
321 			struct mem_cgroup *memcg)
322 {
323 	return false;
324 
325 }
326 #endif
327 
328 /*
329  * This misses isolated pages which are not accounted for to save counters.
330  * As the data only determines if reclaim or compaction continues, it is
331  * not expected that isolated pages will be a dominating factor.
332  */
333 unsigned long zone_reclaimable_pages(struct zone *zone)
334 {
335 	unsigned long nr;
336 
337 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
338 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
339 	if (get_nr_swap_pages() > 0)
340 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
341 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
342 
343 	return nr;
344 }
345 
346 /**
347  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
348  * @lruvec: lru vector
349  * @lru: lru to use
350  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
351  */
352 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
353 {
354 	unsigned long lru_size;
355 	int zid;
356 
357 	if (!mem_cgroup_disabled())
358 		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
359 	else
360 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
361 
362 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
363 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
364 		unsigned long size;
365 
366 		if (!managed_zone(zone))
367 			continue;
368 
369 		if (!mem_cgroup_disabled())
370 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
371 		else
372 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
373 				       NR_ZONE_LRU_BASE + lru);
374 		lru_size -= min(size, lru_size);
375 	}
376 
377 	return lru_size;
378 
379 }
380 
381 /*
382  * Add a shrinker callback to be called from the vm.
383  */
384 int prealloc_shrinker(struct shrinker *shrinker)
385 {
386 	unsigned int size = sizeof(*shrinker->nr_deferred);
387 
388 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
389 		size *= nr_node_ids;
390 
391 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
392 	if (!shrinker->nr_deferred)
393 		return -ENOMEM;
394 
395 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
396 		if (prealloc_memcg_shrinker(shrinker))
397 			goto free_deferred;
398 	}
399 
400 	return 0;
401 
402 free_deferred:
403 	kfree(shrinker->nr_deferred);
404 	shrinker->nr_deferred = NULL;
405 	return -ENOMEM;
406 }
407 
408 void free_prealloced_shrinker(struct shrinker *shrinker)
409 {
410 	if (!shrinker->nr_deferred)
411 		return;
412 
413 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
414 		unregister_memcg_shrinker(shrinker);
415 
416 	kfree(shrinker->nr_deferred);
417 	shrinker->nr_deferred = NULL;
418 }
419 
420 void register_shrinker_prepared(struct shrinker *shrinker)
421 {
422 	down_write(&shrinker_rwsem);
423 	list_add_tail(&shrinker->list, &shrinker_list);
424 #ifdef CONFIG_MEMCG_KMEM
425 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
426 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
427 #endif
428 	up_write(&shrinker_rwsem);
429 }
430 
431 int register_shrinker(struct shrinker *shrinker)
432 {
433 	int err = prealloc_shrinker(shrinker);
434 
435 	if (err)
436 		return err;
437 	register_shrinker_prepared(shrinker);
438 	return 0;
439 }
440 EXPORT_SYMBOL(register_shrinker);
441 
442 /*
443  * Remove one
444  */
445 void unregister_shrinker(struct shrinker *shrinker)
446 {
447 	if (!shrinker->nr_deferred)
448 		return;
449 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
450 		unregister_memcg_shrinker(shrinker);
451 	down_write(&shrinker_rwsem);
452 	list_del(&shrinker->list);
453 	up_write(&shrinker_rwsem);
454 	kfree(shrinker->nr_deferred);
455 	shrinker->nr_deferred = NULL;
456 }
457 EXPORT_SYMBOL(unregister_shrinker);
458 
459 #define SHRINK_BATCH 128
460 
461 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
462 				    struct shrinker *shrinker, int priority)
463 {
464 	unsigned long freed = 0;
465 	unsigned long long delta;
466 	long total_scan;
467 	long freeable;
468 	long nr;
469 	long new_nr;
470 	int nid = shrinkctl->nid;
471 	long batch_size = shrinker->batch ? shrinker->batch
472 					  : SHRINK_BATCH;
473 	long scanned = 0, next_deferred;
474 
475 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
476 		nid = 0;
477 
478 	freeable = shrinker->count_objects(shrinker, shrinkctl);
479 	if (freeable == 0 || freeable == SHRINK_EMPTY)
480 		return freeable;
481 
482 	/*
483 	 * copy the current shrinker scan count into a local variable
484 	 * and zero it so that other concurrent shrinker invocations
485 	 * don't also do this scanning work.
486 	 */
487 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
488 
489 	total_scan = nr;
490 	if (shrinker->seeks) {
491 		delta = freeable >> priority;
492 		delta *= 4;
493 		do_div(delta, shrinker->seeks);
494 	} else {
495 		/*
496 		 * These objects don't require any IO to create. Trim
497 		 * them aggressively under memory pressure to keep
498 		 * them from causing refetches in the IO caches.
499 		 */
500 		delta = freeable / 2;
501 	}
502 
503 	total_scan += delta;
504 	if (total_scan < 0) {
505 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
506 		       shrinker->scan_objects, total_scan);
507 		total_scan = freeable;
508 		next_deferred = nr;
509 	} else
510 		next_deferred = total_scan;
511 
512 	/*
513 	 * We need to avoid excessive windup on filesystem shrinkers
514 	 * due to large numbers of GFP_NOFS allocations causing the
515 	 * shrinkers to return -1 all the time. This results in a large
516 	 * nr being built up so when a shrink that can do some work
517 	 * comes along it empties the entire cache due to nr >>>
518 	 * freeable. This is bad for sustaining a working set in
519 	 * memory.
520 	 *
521 	 * Hence only allow the shrinker to scan the entire cache when
522 	 * a large delta change is calculated directly.
523 	 */
524 	if (delta < freeable / 4)
525 		total_scan = min(total_scan, freeable / 2);
526 
527 	/*
528 	 * Avoid risking looping forever due to too large nr value:
529 	 * never try to free more than twice the estimate number of
530 	 * freeable entries.
531 	 */
532 	if (total_scan > freeable * 2)
533 		total_scan = freeable * 2;
534 
535 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
536 				   freeable, delta, total_scan, priority);
537 
538 	/*
539 	 * Normally, we should not scan less than batch_size objects in one
540 	 * pass to avoid too frequent shrinker calls, but if the slab has less
541 	 * than batch_size objects in total and we are really tight on memory,
542 	 * we will try to reclaim all available objects, otherwise we can end
543 	 * up failing allocations although there are plenty of reclaimable
544 	 * objects spread over several slabs with usage less than the
545 	 * batch_size.
546 	 *
547 	 * We detect the "tight on memory" situations by looking at the total
548 	 * number of objects we want to scan (total_scan). If it is greater
549 	 * than the total number of objects on slab (freeable), we must be
550 	 * scanning at high prio and therefore should try to reclaim as much as
551 	 * possible.
552 	 */
553 	while (total_scan >= batch_size ||
554 	       total_scan >= freeable) {
555 		unsigned long ret;
556 		unsigned long nr_to_scan = min(batch_size, total_scan);
557 
558 		shrinkctl->nr_to_scan = nr_to_scan;
559 		shrinkctl->nr_scanned = nr_to_scan;
560 		ret = shrinker->scan_objects(shrinker, shrinkctl);
561 		if (ret == SHRINK_STOP)
562 			break;
563 		freed += ret;
564 
565 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
566 		total_scan -= shrinkctl->nr_scanned;
567 		scanned += shrinkctl->nr_scanned;
568 
569 		cond_resched();
570 	}
571 
572 	if (next_deferred >= scanned)
573 		next_deferred -= scanned;
574 	else
575 		next_deferred = 0;
576 	/*
577 	 * move the unused scan count back into the shrinker in a
578 	 * manner that handles concurrent updates. If we exhausted the
579 	 * scan, there is no need to do an update.
580 	 */
581 	if (next_deferred > 0)
582 		new_nr = atomic_long_add_return(next_deferred,
583 						&shrinker->nr_deferred[nid]);
584 	else
585 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
586 
587 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
588 	return freed;
589 }
590 
591 #ifdef CONFIG_MEMCG
592 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
593 			struct mem_cgroup *memcg, int priority)
594 {
595 	struct memcg_shrinker_map *map;
596 	unsigned long ret, freed = 0;
597 	int i;
598 
599 	if (!mem_cgroup_online(memcg))
600 		return 0;
601 
602 	if (!down_read_trylock(&shrinker_rwsem))
603 		return 0;
604 
605 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
606 					true);
607 	if (unlikely(!map))
608 		goto unlock;
609 
610 	for_each_set_bit(i, map->map, shrinker_nr_max) {
611 		struct shrink_control sc = {
612 			.gfp_mask = gfp_mask,
613 			.nid = nid,
614 			.memcg = memcg,
615 		};
616 		struct shrinker *shrinker;
617 
618 		shrinker = idr_find(&shrinker_idr, i);
619 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
620 			if (!shrinker)
621 				clear_bit(i, map->map);
622 			continue;
623 		}
624 
625 		/* Call non-slab shrinkers even though kmem is disabled */
626 		if (!memcg_kmem_enabled() &&
627 		    !(shrinker->flags & SHRINKER_NONSLAB))
628 			continue;
629 
630 		ret = do_shrink_slab(&sc, shrinker, priority);
631 		if (ret == SHRINK_EMPTY) {
632 			clear_bit(i, map->map);
633 			/*
634 			 * After the shrinker reported that it had no objects to
635 			 * free, but before we cleared the corresponding bit in
636 			 * the memcg shrinker map, a new object might have been
637 			 * added. To make sure, we have the bit set in this
638 			 * case, we invoke the shrinker one more time and reset
639 			 * the bit if it reports that it is not empty anymore.
640 			 * The memory barrier here pairs with the barrier in
641 			 * memcg_set_shrinker_bit():
642 			 *
643 			 * list_lru_add()     shrink_slab_memcg()
644 			 *   list_add_tail()    clear_bit()
645 			 *   <MB>               <MB>
646 			 *   set_bit()          do_shrink_slab()
647 			 */
648 			smp_mb__after_atomic();
649 			ret = do_shrink_slab(&sc, shrinker, priority);
650 			if (ret == SHRINK_EMPTY)
651 				ret = 0;
652 			else
653 				memcg_set_shrinker_bit(memcg, nid, i);
654 		}
655 		freed += ret;
656 
657 		if (rwsem_is_contended(&shrinker_rwsem)) {
658 			freed = freed ? : 1;
659 			break;
660 		}
661 	}
662 unlock:
663 	up_read(&shrinker_rwsem);
664 	return freed;
665 }
666 #else /* CONFIG_MEMCG */
667 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
668 			struct mem_cgroup *memcg, int priority)
669 {
670 	return 0;
671 }
672 #endif /* CONFIG_MEMCG */
673 
674 /**
675  * shrink_slab - shrink slab caches
676  * @gfp_mask: allocation context
677  * @nid: node whose slab caches to target
678  * @memcg: memory cgroup whose slab caches to target
679  * @priority: the reclaim priority
680  *
681  * Call the shrink functions to age shrinkable caches.
682  *
683  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
684  * unaware shrinkers will receive a node id of 0 instead.
685  *
686  * @memcg specifies the memory cgroup to target. Unaware shrinkers
687  * are called only if it is the root cgroup.
688  *
689  * @priority is sc->priority, we take the number of objects and >> by priority
690  * in order to get the scan target.
691  *
692  * Returns the number of reclaimed slab objects.
693  */
694 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
695 				 struct mem_cgroup *memcg,
696 				 int priority)
697 {
698 	unsigned long ret, freed = 0;
699 	struct shrinker *shrinker;
700 
701 	/*
702 	 * The root memcg might be allocated even though memcg is disabled
703 	 * via "cgroup_disable=memory" boot parameter.  This could make
704 	 * mem_cgroup_is_root() return false, then just run memcg slab
705 	 * shrink, but skip global shrink.  This may result in premature
706 	 * oom.
707 	 */
708 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
709 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
710 
711 	if (!down_read_trylock(&shrinker_rwsem))
712 		goto out;
713 
714 	list_for_each_entry(shrinker, &shrinker_list, list) {
715 		struct shrink_control sc = {
716 			.gfp_mask = gfp_mask,
717 			.nid = nid,
718 			.memcg = memcg,
719 		};
720 
721 		ret = do_shrink_slab(&sc, shrinker, priority);
722 		if (ret == SHRINK_EMPTY)
723 			ret = 0;
724 		freed += ret;
725 		/*
726 		 * Bail out if someone want to register a new shrinker to
727 		 * prevent the regsitration from being stalled for long periods
728 		 * by parallel ongoing shrinking.
729 		 */
730 		if (rwsem_is_contended(&shrinker_rwsem)) {
731 			freed = freed ? : 1;
732 			break;
733 		}
734 	}
735 
736 	up_read(&shrinker_rwsem);
737 out:
738 	cond_resched();
739 	return freed;
740 }
741 
742 void drop_slab_node(int nid)
743 {
744 	unsigned long freed;
745 
746 	do {
747 		struct mem_cgroup *memcg = NULL;
748 
749 		freed = 0;
750 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
751 		do {
752 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
753 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
754 	} while (freed > 10);
755 }
756 
757 void drop_slab(void)
758 {
759 	int nid;
760 
761 	for_each_online_node(nid)
762 		drop_slab_node(nid);
763 }
764 
765 static inline int is_page_cache_freeable(struct page *page)
766 {
767 	/*
768 	 * A freeable page cache page is referenced only by the caller
769 	 * that isolated the page, the page cache and optional buffer
770 	 * heads at page->private.
771 	 */
772 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
773 		HPAGE_PMD_NR : 1;
774 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
775 }
776 
777 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
778 {
779 	if (current->flags & PF_SWAPWRITE)
780 		return 1;
781 	if (!inode_write_congested(inode))
782 		return 1;
783 	if (inode_to_bdi(inode) == current->backing_dev_info)
784 		return 1;
785 	return 0;
786 }
787 
788 /*
789  * We detected a synchronous write error writing a page out.  Probably
790  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
791  * fsync(), msync() or close().
792  *
793  * The tricky part is that after writepage we cannot touch the mapping: nothing
794  * prevents it from being freed up.  But we have a ref on the page and once
795  * that page is locked, the mapping is pinned.
796  *
797  * We're allowed to run sleeping lock_page() here because we know the caller has
798  * __GFP_FS.
799  */
800 static void handle_write_error(struct address_space *mapping,
801 				struct page *page, int error)
802 {
803 	lock_page(page);
804 	if (page_mapping(page) == mapping)
805 		mapping_set_error(mapping, error);
806 	unlock_page(page);
807 }
808 
809 /* possible outcome of pageout() */
810 typedef enum {
811 	/* failed to write page out, page is locked */
812 	PAGE_KEEP,
813 	/* move page to the active list, page is locked */
814 	PAGE_ACTIVATE,
815 	/* page has been sent to the disk successfully, page is unlocked */
816 	PAGE_SUCCESS,
817 	/* page is clean and locked */
818 	PAGE_CLEAN,
819 } pageout_t;
820 
821 /*
822  * pageout is called by shrink_page_list() for each dirty page.
823  * Calls ->writepage().
824  */
825 static pageout_t pageout(struct page *page, struct address_space *mapping,
826 			 struct scan_control *sc)
827 {
828 	/*
829 	 * If the page is dirty, only perform writeback if that write
830 	 * will be non-blocking.  To prevent this allocation from being
831 	 * stalled by pagecache activity.  But note that there may be
832 	 * stalls if we need to run get_block().  We could test
833 	 * PagePrivate for that.
834 	 *
835 	 * If this process is currently in __generic_file_write_iter() against
836 	 * this page's queue, we can perform writeback even if that
837 	 * will block.
838 	 *
839 	 * If the page is swapcache, write it back even if that would
840 	 * block, for some throttling. This happens by accident, because
841 	 * swap_backing_dev_info is bust: it doesn't reflect the
842 	 * congestion state of the swapdevs.  Easy to fix, if needed.
843 	 */
844 	if (!is_page_cache_freeable(page))
845 		return PAGE_KEEP;
846 	if (!mapping) {
847 		/*
848 		 * Some data journaling orphaned pages can have
849 		 * page->mapping == NULL while being dirty with clean buffers.
850 		 */
851 		if (page_has_private(page)) {
852 			if (try_to_free_buffers(page)) {
853 				ClearPageDirty(page);
854 				pr_info("%s: orphaned page\n", __func__);
855 				return PAGE_CLEAN;
856 			}
857 		}
858 		return PAGE_KEEP;
859 	}
860 	if (mapping->a_ops->writepage == NULL)
861 		return PAGE_ACTIVATE;
862 	if (!may_write_to_inode(mapping->host, sc))
863 		return PAGE_KEEP;
864 
865 	if (clear_page_dirty_for_io(page)) {
866 		int res;
867 		struct writeback_control wbc = {
868 			.sync_mode = WB_SYNC_NONE,
869 			.nr_to_write = SWAP_CLUSTER_MAX,
870 			.range_start = 0,
871 			.range_end = LLONG_MAX,
872 			.for_reclaim = 1,
873 		};
874 
875 		SetPageReclaim(page);
876 		res = mapping->a_ops->writepage(page, &wbc);
877 		if (res < 0)
878 			handle_write_error(mapping, page, res);
879 		if (res == AOP_WRITEPAGE_ACTIVATE) {
880 			ClearPageReclaim(page);
881 			return PAGE_ACTIVATE;
882 		}
883 
884 		if (!PageWriteback(page)) {
885 			/* synchronous write or broken a_ops? */
886 			ClearPageReclaim(page);
887 		}
888 		trace_mm_vmscan_writepage(page);
889 		inc_node_page_state(page, NR_VMSCAN_WRITE);
890 		return PAGE_SUCCESS;
891 	}
892 
893 	return PAGE_CLEAN;
894 }
895 
896 /*
897  * Same as remove_mapping, but if the page is removed from the mapping, it
898  * gets returned with a refcount of 0.
899  */
900 static int __remove_mapping(struct address_space *mapping, struct page *page,
901 			    bool reclaimed)
902 {
903 	unsigned long flags;
904 	int refcount;
905 
906 	BUG_ON(!PageLocked(page));
907 	BUG_ON(mapping != page_mapping(page));
908 
909 	xa_lock_irqsave(&mapping->i_pages, flags);
910 	/*
911 	 * The non racy check for a busy page.
912 	 *
913 	 * Must be careful with the order of the tests. When someone has
914 	 * a ref to the page, it may be possible that they dirty it then
915 	 * drop the reference. So if PageDirty is tested before page_count
916 	 * here, then the following race may occur:
917 	 *
918 	 * get_user_pages(&page);
919 	 * [user mapping goes away]
920 	 * write_to(page);
921 	 *				!PageDirty(page)    [good]
922 	 * SetPageDirty(page);
923 	 * put_page(page);
924 	 *				!page_count(page)   [good, discard it]
925 	 *
926 	 * [oops, our write_to data is lost]
927 	 *
928 	 * Reversing the order of the tests ensures such a situation cannot
929 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
930 	 * load is not satisfied before that of page->_refcount.
931 	 *
932 	 * Note that if SetPageDirty is always performed via set_page_dirty,
933 	 * and thus under the i_pages lock, then this ordering is not required.
934 	 */
935 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
936 		refcount = 1 + HPAGE_PMD_NR;
937 	else
938 		refcount = 2;
939 	if (!page_ref_freeze(page, refcount))
940 		goto cannot_free;
941 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
942 	if (unlikely(PageDirty(page))) {
943 		page_ref_unfreeze(page, refcount);
944 		goto cannot_free;
945 	}
946 
947 	if (PageSwapCache(page)) {
948 		swp_entry_t swap = { .val = page_private(page) };
949 		mem_cgroup_swapout(page, swap);
950 		__delete_from_swap_cache(page, swap);
951 		xa_unlock_irqrestore(&mapping->i_pages, flags);
952 		put_swap_page(page, swap);
953 	} else {
954 		void (*freepage)(struct page *);
955 		void *shadow = NULL;
956 
957 		freepage = mapping->a_ops->freepage;
958 		/*
959 		 * Remember a shadow entry for reclaimed file cache in
960 		 * order to detect refaults, thus thrashing, later on.
961 		 *
962 		 * But don't store shadows in an address space that is
963 		 * already exiting.  This is not just an optizimation,
964 		 * inode reclaim needs to empty out the radix tree or
965 		 * the nodes are lost.  Don't plant shadows behind its
966 		 * back.
967 		 *
968 		 * We also don't store shadows for DAX mappings because the
969 		 * only page cache pages found in these are zero pages
970 		 * covering holes, and because we don't want to mix DAX
971 		 * exceptional entries and shadow exceptional entries in the
972 		 * same address_space.
973 		 */
974 		if (reclaimed && page_is_file_cache(page) &&
975 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
976 			shadow = workingset_eviction(page);
977 		__delete_from_page_cache(page, shadow);
978 		xa_unlock_irqrestore(&mapping->i_pages, flags);
979 
980 		if (freepage != NULL)
981 			freepage(page);
982 	}
983 
984 	return 1;
985 
986 cannot_free:
987 	xa_unlock_irqrestore(&mapping->i_pages, flags);
988 	return 0;
989 }
990 
991 /*
992  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
993  * someone else has a ref on the page, abort and return 0.  If it was
994  * successfully detached, return 1.  Assumes the caller has a single ref on
995  * this page.
996  */
997 int remove_mapping(struct address_space *mapping, struct page *page)
998 {
999 	if (__remove_mapping(mapping, page, false)) {
1000 		/*
1001 		 * Unfreezing the refcount with 1 rather than 2 effectively
1002 		 * drops the pagecache ref for us without requiring another
1003 		 * atomic operation.
1004 		 */
1005 		page_ref_unfreeze(page, 1);
1006 		return 1;
1007 	}
1008 	return 0;
1009 }
1010 
1011 /**
1012  * putback_lru_page - put previously isolated page onto appropriate LRU list
1013  * @page: page to be put back to appropriate lru list
1014  *
1015  * Add previously isolated @page to appropriate LRU list.
1016  * Page may still be unevictable for other reasons.
1017  *
1018  * lru_lock must not be held, interrupts must be enabled.
1019  */
1020 void putback_lru_page(struct page *page)
1021 {
1022 	lru_cache_add(page);
1023 	put_page(page);		/* drop ref from isolate */
1024 }
1025 
1026 enum page_references {
1027 	PAGEREF_RECLAIM,
1028 	PAGEREF_RECLAIM_CLEAN,
1029 	PAGEREF_KEEP,
1030 	PAGEREF_ACTIVATE,
1031 };
1032 
1033 static enum page_references page_check_references(struct page *page,
1034 						  struct scan_control *sc)
1035 {
1036 	int referenced_ptes, referenced_page;
1037 	unsigned long vm_flags;
1038 
1039 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1040 					  &vm_flags);
1041 	referenced_page = TestClearPageReferenced(page);
1042 
1043 	/*
1044 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1045 	 * move the page to the unevictable list.
1046 	 */
1047 	if (vm_flags & VM_LOCKED)
1048 		return PAGEREF_RECLAIM;
1049 
1050 	if (referenced_ptes) {
1051 		if (PageSwapBacked(page))
1052 			return PAGEREF_ACTIVATE;
1053 		/*
1054 		 * All mapped pages start out with page table
1055 		 * references from the instantiating fault, so we need
1056 		 * to look twice if a mapped file page is used more
1057 		 * than once.
1058 		 *
1059 		 * Mark it and spare it for another trip around the
1060 		 * inactive list.  Another page table reference will
1061 		 * lead to its activation.
1062 		 *
1063 		 * Note: the mark is set for activated pages as well
1064 		 * so that recently deactivated but used pages are
1065 		 * quickly recovered.
1066 		 */
1067 		SetPageReferenced(page);
1068 
1069 		if (referenced_page || referenced_ptes > 1)
1070 			return PAGEREF_ACTIVATE;
1071 
1072 		/*
1073 		 * Activate file-backed executable pages after first usage.
1074 		 */
1075 		if (vm_flags & VM_EXEC)
1076 			return PAGEREF_ACTIVATE;
1077 
1078 		return PAGEREF_KEEP;
1079 	}
1080 
1081 	/* Reclaim if clean, defer dirty pages to writeback */
1082 	if (referenced_page && !PageSwapBacked(page))
1083 		return PAGEREF_RECLAIM_CLEAN;
1084 
1085 	return PAGEREF_RECLAIM;
1086 }
1087 
1088 /* Check if a page is dirty or under writeback */
1089 static void page_check_dirty_writeback(struct page *page,
1090 				       bool *dirty, bool *writeback)
1091 {
1092 	struct address_space *mapping;
1093 
1094 	/*
1095 	 * Anonymous pages are not handled by flushers and must be written
1096 	 * from reclaim context. Do not stall reclaim based on them
1097 	 */
1098 	if (!page_is_file_cache(page) ||
1099 	    (PageAnon(page) && !PageSwapBacked(page))) {
1100 		*dirty = false;
1101 		*writeback = false;
1102 		return;
1103 	}
1104 
1105 	/* By default assume that the page flags are accurate */
1106 	*dirty = PageDirty(page);
1107 	*writeback = PageWriteback(page);
1108 
1109 	/* Verify dirty/writeback state if the filesystem supports it */
1110 	if (!page_has_private(page))
1111 		return;
1112 
1113 	mapping = page_mapping(page);
1114 	if (mapping && mapping->a_ops->is_dirty_writeback)
1115 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1116 }
1117 
1118 /*
1119  * shrink_page_list() returns the number of reclaimed pages
1120  */
1121 static unsigned long shrink_page_list(struct list_head *page_list,
1122 				      struct pglist_data *pgdat,
1123 				      struct scan_control *sc,
1124 				      enum ttu_flags ttu_flags,
1125 				      struct reclaim_stat *stat,
1126 				      bool ignore_references)
1127 {
1128 	LIST_HEAD(ret_pages);
1129 	LIST_HEAD(free_pages);
1130 	unsigned nr_reclaimed = 0;
1131 	unsigned pgactivate = 0;
1132 
1133 	memset(stat, 0, sizeof(*stat));
1134 	cond_resched();
1135 
1136 	while (!list_empty(page_list)) {
1137 		struct address_space *mapping;
1138 		struct page *page;
1139 		int may_enter_fs;
1140 		enum page_references references = PAGEREF_RECLAIM;
1141 		bool dirty, writeback;
1142 		unsigned int nr_pages;
1143 
1144 		cond_resched();
1145 
1146 		page = lru_to_page(page_list);
1147 		list_del(&page->lru);
1148 
1149 		if (!trylock_page(page))
1150 			goto keep;
1151 
1152 		VM_BUG_ON_PAGE(PageActive(page), page);
1153 
1154 		nr_pages = compound_nr(page);
1155 
1156 		/* Account the number of base pages even though THP */
1157 		sc->nr_scanned += nr_pages;
1158 
1159 		if (unlikely(!page_evictable(page)))
1160 			goto activate_locked;
1161 
1162 		if (!sc->may_unmap && page_mapped(page))
1163 			goto keep_locked;
1164 
1165 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1166 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1167 
1168 		/*
1169 		 * The number of dirty pages determines if a node is marked
1170 		 * reclaim_congested which affects wait_iff_congested. kswapd
1171 		 * will stall and start writing pages if the tail of the LRU
1172 		 * is all dirty unqueued pages.
1173 		 */
1174 		page_check_dirty_writeback(page, &dirty, &writeback);
1175 		if (dirty || writeback)
1176 			stat->nr_dirty++;
1177 
1178 		if (dirty && !writeback)
1179 			stat->nr_unqueued_dirty++;
1180 
1181 		/*
1182 		 * Treat this page as congested if the underlying BDI is or if
1183 		 * pages are cycling through the LRU so quickly that the
1184 		 * pages marked for immediate reclaim are making it to the
1185 		 * end of the LRU a second time.
1186 		 */
1187 		mapping = page_mapping(page);
1188 		if (((dirty || writeback) && mapping &&
1189 		     inode_write_congested(mapping->host)) ||
1190 		    (writeback && PageReclaim(page)))
1191 			stat->nr_congested++;
1192 
1193 		/*
1194 		 * If a page at the tail of the LRU is under writeback, there
1195 		 * are three cases to consider.
1196 		 *
1197 		 * 1) If reclaim is encountering an excessive number of pages
1198 		 *    under writeback and this page is both under writeback and
1199 		 *    PageReclaim then it indicates that pages are being queued
1200 		 *    for IO but are being recycled through the LRU before the
1201 		 *    IO can complete. Waiting on the page itself risks an
1202 		 *    indefinite stall if it is impossible to writeback the
1203 		 *    page due to IO error or disconnected storage so instead
1204 		 *    note that the LRU is being scanned too quickly and the
1205 		 *    caller can stall after page list has been processed.
1206 		 *
1207 		 * 2) Global or new memcg reclaim encounters a page that is
1208 		 *    not marked for immediate reclaim, or the caller does not
1209 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1210 		 *    not to fs). In this case mark the page for immediate
1211 		 *    reclaim and continue scanning.
1212 		 *
1213 		 *    Require may_enter_fs because we would wait on fs, which
1214 		 *    may not have submitted IO yet. And the loop driver might
1215 		 *    enter reclaim, and deadlock if it waits on a page for
1216 		 *    which it is needed to do the write (loop masks off
1217 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1218 		 *    would probably show more reasons.
1219 		 *
1220 		 * 3) Legacy memcg encounters a page that is already marked
1221 		 *    PageReclaim. memcg does not have any dirty pages
1222 		 *    throttling so we could easily OOM just because too many
1223 		 *    pages are in writeback and there is nothing else to
1224 		 *    reclaim. Wait for the writeback to complete.
1225 		 *
1226 		 * In cases 1) and 2) we activate the pages to get them out of
1227 		 * the way while we continue scanning for clean pages on the
1228 		 * inactive list and refilling from the active list. The
1229 		 * observation here is that waiting for disk writes is more
1230 		 * expensive than potentially causing reloads down the line.
1231 		 * Since they're marked for immediate reclaim, they won't put
1232 		 * memory pressure on the cache working set any longer than it
1233 		 * takes to write them to disk.
1234 		 */
1235 		if (PageWriteback(page)) {
1236 			/* Case 1 above */
1237 			if (current_is_kswapd() &&
1238 			    PageReclaim(page) &&
1239 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1240 				stat->nr_immediate++;
1241 				goto activate_locked;
1242 
1243 			/* Case 2 above */
1244 			} else if (sane_reclaim(sc) ||
1245 			    !PageReclaim(page) || !may_enter_fs) {
1246 				/*
1247 				 * This is slightly racy - end_page_writeback()
1248 				 * might have just cleared PageReclaim, then
1249 				 * setting PageReclaim here end up interpreted
1250 				 * as PageReadahead - but that does not matter
1251 				 * enough to care.  What we do want is for this
1252 				 * page to have PageReclaim set next time memcg
1253 				 * reclaim reaches the tests above, so it will
1254 				 * then wait_on_page_writeback() to avoid OOM;
1255 				 * and it's also appropriate in global reclaim.
1256 				 */
1257 				SetPageReclaim(page);
1258 				stat->nr_writeback++;
1259 				goto activate_locked;
1260 
1261 			/* Case 3 above */
1262 			} else {
1263 				unlock_page(page);
1264 				wait_on_page_writeback(page);
1265 				/* then go back and try same page again */
1266 				list_add_tail(&page->lru, page_list);
1267 				continue;
1268 			}
1269 		}
1270 
1271 		if (!ignore_references)
1272 			references = page_check_references(page, sc);
1273 
1274 		switch (references) {
1275 		case PAGEREF_ACTIVATE:
1276 			goto activate_locked;
1277 		case PAGEREF_KEEP:
1278 			stat->nr_ref_keep += nr_pages;
1279 			goto keep_locked;
1280 		case PAGEREF_RECLAIM:
1281 		case PAGEREF_RECLAIM_CLEAN:
1282 			; /* try to reclaim the page below */
1283 		}
1284 
1285 		/*
1286 		 * Anonymous process memory has backing store?
1287 		 * Try to allocate it some swap space here.
1288 		 * Lazyfree page could be freed directly
1289 		 */
1290 		if (PageAnon(page) && PageSwapBacked(page)) {
1291 			if (!PageSwapCache(page)) {
1292 				if (!(sc->gfp_mask & __GFP_IO))
1293 					goto keep_locked;
1294 				if (PageTransHuge(page)) {
1295 					/* cannot split THP, skip it */
1296 					if (!can_split_huge_page(page, NULL))
1297 						goto activate_locked;
1298 					/*
1299 					 * Split pages without a PMD map right
1300 					 * away. Chances are some or all of the
1301 					 * tail pages can be freed without IO.
1302 					 */
1303 					if (!compound_mapcount(page) &&
1304 					    split_huge_page_to_list(page,
1305 								    page_list))
1306 						goto activate_locked;
1307 				}
1308 				if (!add_to_swap(page)) {
1309 					if (!PageTransHuge(page))
1310 						goto activate_locked_split;
1311 					/* Fallback to swap normal pages */
1312 					if (split_huge_page_to_list(page,
1313 								    page_list))
1314 						goto activate_locked;
1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 					count_vm_event(THP_SWPOUT_FALLBACK);
1317 #endif
1318 					if (!add_to_swap(page))
1319 						goto activate_locked_split;
1320 				}
1321 
1322 				may_enter_fs = 1;
1323 
1324 				/* Adding to swap updated mapping */
1325 				mapping = page_mapping(page);
1326 			}
1327 		} else if (unlikely(PageTransHuge(page))) {
1328 			/* Split file THP */
1329 			if (split_huge_page_to_list(page, page_list))
1330 				goto keep_locked;
1331 		}
1332 
1333 		/*
1334 		 * THP may get split above, need minus tail pages and update
1335 		 * nr_pages to avoid accounting tail pages twice.
1336 		 *
1337 		 * The tail pages that are added into swap cache successfully
1338 		 * reach here.
1339 		 */
1340 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1341 			sc->nr_scanned -= (nr_pages - 1);
1342 			nr_pages = 1;
1343 		}
1344 
1345 		/*
1346 		 * The page is mapped into the page tables of one or more
1347 		 * processes. Try to unmap it here.
1348 		 */
1349 		if (page_mapped(page)) {
1350 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1351 
1352 			if (unlikely(PageTransHuge(page)))
1353 				flags |= TTU_SPLIT_HUGE_PMD;
1354 			if (!try_to_unmap(page, flags)) {
1355 				stat->nr_unmap_fail += nr_pages;
1356 				goto activate_locked;
1357 			}
1358 		}
1359 
1360 		if (PageDirty(page)) {
1361 			/*
1362 			 * Only kswapd can writeback filesystem pages
1363 			 * to avoid risk of stack overflow. But avoid
1364 			 * injecting inefficient single-page IO into
1365 			 * flusher writeback as much as possible: only
1366 			 * write pages when we've encountered many
1367 			 * dirty pages, and when we've already scanned
1368 			 * the rest of the LRU for clean pages and see
1369 			 * the same dirty pages again (PageReclaim).
1370 			 */
1371 			if (page_is_file_cache(page) &&
1372 			    (!current_is_kswapd() || !PageReclaim(page) ||
1373 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1374 				/*
1375 				 * Immediately reclaim when written back.
1376 				 * Similar in principal to deactivate_page()
1377 				 * except we already have the page isolated
1378 				 * and know it's dirty
1379 				 */
1380 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1381 				SetPageReclaim(page);
1382 
1383 				goto activate_locked;
1384 			}
1385 
1386 			if (references == PAGEREF_RECLAIM_CLEAN)
1387 				goto keep_locked;
1388 			if (!may_enter_fs)
1389 				goto keep_locked;
1390 			if (!sc->may_writepage)
1391 				goto keep_locked;
1392 
1393 			/*
1394 			 * Page is dirty. Flush the TLB if a writable entry
1395 			 * potentially exists to avoid CPU writes after IO
1396 			 * starts and then write it out here.
1397 			 */
1398 			try_to_unmap_flush_dirty();
1399 			switch (pageout(page, mapping, sc)) {
1400 			case PAGE_KEEP:
1401 				goto keep_locked;
1402 			case PAGE_ACTIVATE:
1403 				goto activate_locked;
1404 			case PAGE_SUCCESS:
1405 				if (PageWriteback(page))
1406 					goto keep;
1407 				if (PageDirty(page))
1408 					goto keep;
1409 
1410 				/*
1411 				 * A synchronous write - probably a ramdisk.  Go
1412 				 * ahead and try to reclaim the page.
1413 				 */
1414 				if (!trylock_page(page))
1415 					goto keep;
1416 				if (PageDirty(page) || PageWriteback(page))
1417 					goto keep_locked;
1418 				mapping = page_mapping(page);
1419 			case PAGE_CLEAN:
1420 				; /* try to free the page below */
1421 			}
1422 		}
1423 
1424 		/*
1425 		 * If the page has buffers, try to free the buffer mappings
1426 		 * associated with this page. If we succeed we try to free
1427 		 * the page as well.
1428 		 *
1429 		 * We do this even if the page is PageDirty().
1430 		 * try_to_release_page() does not perform I/O, but it is
1431 		 * possible for a page to have PageDirty set, but it is actually
1432 		 * clean (all its buffers are clean).  This happens if the
1433 		 * buffers were written out directly, with submit_bh(). ext3
1434 		 * will do this, as well as the blockdev mapping.
1435 		 * try_to_release_page() will discover that cleanness and will
1436 		 * drop the buffers and mark the page clean - it can be freed.
1437 		 *
1438 		 * Rarely, pages can have buffers and no ->mapping.  These are
1439 		 * the pages which were not successfully invalidated in
1440 		 * truncate_complete_page().  We try to drop those buffers here
1441 		 * and if that worked, and the page is no longer mapped into
1442 		 * process address space (page_count == 1) it can be freed.
1443 		 * Otherwise, leave the page on the LRU so it is swappable.
1444 		 */
1445 		if (page_has_private(page)) {
1446 			if (!try_to_release_page(page, sc->gfp_mask))
1447 				goto activate_locked;
1448 			if (!mapping && page_count(page) == 1) {
1449 				unlock_page(page);
1450 				if (put_page_testzero(page))
1451 					goto free_it;
1452 				else {
1453 					/*
1454 					 * rare race with speculative reference.
1455 					 * the speculative reference will free
1456 					 * this page shortly, so we may
1457 					 * increment nr_reclaimed here (and
1458 					 * leave it off the LRU).
1459 					 */
1460 					nr_reclaimed++;
1461 					continue;
1462 				}
1463 			}
1464 		}
1465 
1466 		if (PageAnon(page) && !PageSwapBacked(page)) {
1467 			/* follow __remove_mapping for reference */
1468 			if (!page_ref_freeze(page, 1))
1469 				goto keep_locked;
1470 			if (PageDirty(page)) {
1471 				page_ref_unfreeze(page, 1);
1472 				goto keep_locked;
1473 			}
1474 
1475 			count_vm_event(PGLAZYFREED);
1476 			count_memcg_page_event(page, PGLAZYFREED);
1477 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1478 			goto keep_locked;
1479 
1480 		unlock_page(page);
1481 free_it:
1482 		/*
1483 		 * THP may get swapped out in a whole, need account
1484 		 * all base pages.
1485 		 */
1486 		nr_reclaimed += nr_pages;
1487 
1488 		/*
1489 		 * Is there need to periodically free_page_list? It would
1490 		 * appear not as the counts should be low
1491 		 */
1492 		if (unlikely(PageTransHuge(page)))
1493 			(*get_compound_page_dtor(page))(page);
1494 		else
1495 			list_add(&page->lru, &free_pages);
1496 		continue;
1497 
1498 activate_locked_split:
1499 		/*
1500 		 * The tail pages that are failed to add into swap cache
1501 		 * reach here.  Fixup nr_scanned and nr_pages.
1502 		 */
1503 		if (nr_pages > 1) {
1504 			sc->nr_scanned -= (nr_pages - 1);
1505 			nr_pages = 1;
1506 		}
1507 activate_locked:
1508 		/* Not a candidate for swapping, so reclaim swap space. */
1509 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1510 						PageMlocked(page)))
1511 			try_to_free_swap(page);
1512 		VM_BUG_ON_PAGE(PageActive(page), page);
1513 		if (!PageMlocked(page)) {
1514 			int type = page_is_file_cache(page);
1515 			SetPageActive(page);
1516 			stat->nr_activate[type] += nr_pages;
1517 			count_memcg_page_event(page, PGACTIVATE);
1518 		}
1519 keep_locked:
1520 		unlock_page(page);
1521 keep:
1522 		list_add(&page->lru, &ret_pages);
1523 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1524 	}
1525 
1526 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1527 
1528 	mem_cgroup_uncharge_list(&free_pages);
1529 	try_to_unmap_flush();
1530 	free_unref_page_list(&free_pages);
1531 
1532 	list_splice(&ret_pages, page_list);
1533 	count_vm_events(PGACTIVATE, pgactivate);
1534 
1535 	return nr_reclaimed;
1536 }
1537 
1538 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1539 					    struct list_head *page_list)
1540 {
1541 	struct scan_control sc = {
1542 		.gfp_mask = GFP_KERNEL,
1543 		.priority = DEF_PRIORITY,
1544 		.may_unmap = 1,
1545 	};
1546 	struct reclaim_stat dummy_stat;
1547 	unsigned long ret;
1548 	struct page *page, *next;
1549 	LIST_HEAD(clean_pages);
1550 
1551 	list_for_each_entry_safe(page, next, page_list, lru) {
1552 		if (page_is_file_cache(page) && !PageDirty(page) &&
1553 		    !__PageMovable(page) && !PageUnevictable(page)) {
1554 			ClearPageActive(page);
1555 			list_move(&page->lru, &clean_pages);
1556 		}
1557 	}
1558 
1559 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1560 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1561 	list_splice(&clean_pages, page_list);
1562 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1563 	return ret;
1564 }
1565 
1566 /*
1567  * Attempt to remove the specified page from its LRU.  Only take this page
1568  * if it is of the appropriate PageActive status.  Pages which are being
1569  * freed elsewhere are also ignored.
1570  *
1571  * page:	page to consider
1572  * mode:	one of the LRU isolation modes defined above
1573  *
1574  * returns 0 on success, -ve errno on failure.
1575  */
1576 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1577 {
1578 	int ret = -EINVAL;
1579 
1580 	/* Only take pages on the LRU. */
1581 	if (!PageLRU(page))
1582 		return ret;
1583 
1584 	/* Compaction should not handle unevictable pages but CMA can do so */
1585 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1586 		return ret;
1587 
1588 	ret = -EBUSY;
1589 
1590 	/*
1591 	 * To minimise LRU disruption, the caller can indicate that it only
1592 	 * wants to isolate pages it will be able to operate on without
1593 	 * blocking - clean pages for the most part.
1594 	 *
1595 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1596 	 * that it is possible to migrate without blocking
1597 	 */
1598 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1599 		/* All the caller can do on PageWriteback is block */
1600 		if (PageWriteback(page))
1601 			return ret;
1602 
1603 		if (PageDirty(page)) {
1604 			struct address_space *mapping;
1605 			bool migrate_dirty;
1606 
1607 			/*
1608 			 * Only pages without mappings or that have a
1609 			 * ->migratepage callback are possible to migrate
1610 			 * without blocking. However, we can be racing with
1611 			 * truncation so it's necessary to lock the page
1612 			 * to stabilise the mapping as truncation holds
1613 			 * the page lock until after the page is removed
1614 			 * from the page cache.
1615 			 */
1616 			if (!trylock_page(page))
1617 				return ret;
1618 
1619 			mapping = page_mapping(page);
1620 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1621 			unlock_page(page);
1622 			if (!migrate_dirty)
1623 				return ret;
1624 		}
1625 	}
1626 
1627 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1628 		return ret;
1629 
1630 	if (likely(get_page_unless_zero(page))) {
1631 		/*
1632 		 * Be careful not to clear PageLRU until after we're
1633 		 * sure the page is not being freed elsewhere -- the
1634 		 * page release code relies on it.
1635 		 */
1636 		ClearPageLRU(page);
1637 		ret = 0;
1638 	}
1639 
1640 	return ret;
1641 }
1642 
1643 
1644 /*
1645  * Update LRU sizes after isolating pages. The LRU size updates must
1646  * be complete before mem_cgroup_update_lru_size due to a santity check.
1647  */
1648 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1649 			enum lru_list lru, unsigned long *nr_zone_taken)
1650 {
1651 	int zid;
1652 
1653 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654 		if (!nr_zone_taken[zid])
1655 			continue;
1656 
1657 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1658 #ifdef CONFIG_MEMCG
1659 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1660 #endif
1661 	}
1662 
1663 }
1664 
1665 /**
1666  * pgdat->lru_lock is heavily contended.  Some of the functions that
1667  * shrink the lists perform better by taking out a batch of pages
1668  * and working on them outside the LRU lock.
1669  *
1670  * For pagecache intensive workloads, this function is the hottest
1671  * spot in the kernel (apart from copy_*_user functions).
1672  *
1673  * Appropriate locks must be held before calling this function.
1674  *
1675  * @nr_to_scan:	The number of eligible pages to look through on the list.
1676  * @lruvec:	The LRU vector to pull pages from.
1677  * @dst:	The temp list to put pages on to.
1678  * @nr_scanned:	The number of pages that were scanned.
1679  * @sc:		The scan_control struct for this reclaim session
1680  * @mode:	One of the LRU isolation modes
1681  * @lru:	LRU list id for isolating
1682  *
1683  * returns how many pages were moved onto *@dst.
1684  */
1685 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1686 		struct lruvec *lruvec, struct list_head *dst,
1687 		unsigned long *nr_scanned, struct scan_control *sc,
1688 		enum lru_list lru)
1689 {
1690 	struct list_head *src = &lruvec->lists[lru];
1691 	unsigned long nr_taken = 0;
1692 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1693 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1694 	unsigned long skipped = 0;
1695 	unsigned long scan, total_scan, nr_pages;
1696 	LIST_HEAD(pages_skipped);
1697 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1698 
1699 	total_scan = 0;
1700 	scan = 0;
1701 	while (scan < nr_to_scan && !list_empty(src)) {
1702 		struct page *page;
1703 
1704 		page = lru_to_page(src);
1705 		prefetchw_prev_lru_page(page, src, flags);
1706 
1707 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1708 
1709 		nr_pages = compound_nr(page);
1710 		total_scan += nr_pages;
1711 
1712 		if (page_zonenum(page) > sc->reclaim_idx) {
1713 			list_move(&page->lru, &pages_skipped);
1714 			nr_skipped[page_zonenum(page)] += nr_pages;
1715 			continue;
1716 		}
1717 
1718 		/*
1719 		 * Do not count skipped pages because that makes the function
1720 		 * return with no isolated pages if the LRU mostly contains
1721 		 * ineligible pages.  This causes the VM to not reclaim any
1722 		 * pages, triggering a premature OOM.
1723 		 *
1724 		 * Account all tail pages of THP.  This would not cause
1725 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1726 		 * only when the page is being freed somewhere else.
1727 		 */
1728 		scan += nr_pages;
1729 		switch (__isolate_lru_page(page, mode)) {
1730 		case 0:
1731 			nr_taken += nr_pages;
1732 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1733 			list_move(&page->lru, dst);
1734 			break;
1735 
1736 		case -EBUSY:
1737 			/* else it is being freed elsewhere */
1738 			list_move(&page->lru, src);
1739 			continue;
1740 
1741 		default:
1742 			BUG();
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * Splice any skipped pages to the start of the LRU list. Note that
1748 	 * this disrupts the LRU order when reclaiming for lower zones but
1749 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1750 	 * scanning would soon rescan the same pages to skip and put the
1751 	 * system at risk of premature OOM.
1752 	 */
1753 	if (!list_empty(&pages_skipped)) {
1754 		int zid;
1755 
1756 		list_splice(&pages_skipped, src);
1757 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1758 			if (!nr_skipped[zid])
1759 				continue;
1760 
1761 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1762 			skipped += nr_skipped[zid];
1763 		}
1764 	}
1765 	*nr_scanned = total_scan;
1766 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1767 				    total_scan, skipped, nr_taken, mode, lru);
1768 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1769 	return nr_taken;
1770 }
1771 
1772 /**
1773  * isolate_lru_page - tries to isolate a page from its LRU list
1774  * @page: page to isolate from its LRU list
1775  *
1776  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1777  * vmstat statistic corresponding to whatever LRU list the page was on.
1778  *
1779  * Returns 0 if the page was removed from an LRU list.
1780  * Returns -EBUSY if the page was not on an LRU list.
1781  *
1782  * The returned page will have PageLRU() cleared.  If it was found on
1783  * the active list, it will have PageActive set.  If it was found on
1784  * the unevictable list, it will have the PageUnevictable bit set. That flag
1785  * may need to be cleared by the caller before letting the page go.
1786  *
1787  * The vmstat statistic corresponding to the list on which the page was
1788  * found will be decremented.
1789  *
1790  * Restrictions:
1791  *
1792  * (1) Must be called with an elevated refcount on the page. This is a
1793  *     fundamentnal difference from isolate_lru_pages (which is called
1794  *     without a stable reference).
1795  * (2) the lru_lock must not be held.
1796  * (3) interrupts must be enabled.
1797  */
1798 int isolate_lru_page(struct page *page)
1799 {
1800 	int ret = -EBUSY;
1801 
1802 	VM_BUG_ON_PAGE(!page_count(page), page);
1803 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1804 
1805 	if (PageLRU(page)) {
1806 		pg_data_t *pgdat = page_pgdat(page);
1807 		struct lruvec *lruvec;
1808 
1809 		spin_lock_irq(&pgdat->lru_lock);
1810 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1811 		if (PageLRU(page)) {
1812 			int lru = page_lru(page);
1813 			get_page(page);
1814 			ClearPageLRU(page);
1815 			del_page_from_lru_list(page, lruvec, lru);
1816 			ret = 0;
1817 		}
1818 		spin_unlock_irq(&pgdat->lru_lock);
1819 	}
1820 	return ret;
1821 }
1822 
1823 /*
1824  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1825  * then get resheduled. When there are massive number of tasks doing page
1826  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1827  * the LRU list will go small and be scanned faster than necessary, leading to
1828  * unnecessary swapping, thrashing and OOM.
1829  */
1830 static int too_many_isolated(struct pglist_data *pgdat, int file,
1831 		struct scan_control *sc)
1832 {
1833 	unsigned long inactive, isolated;
1834 
1835 	if (current_is_kswapd())
1836 		return 0;
1837 
1838 	if (!sane_reclaim(sc))
1839 		return 0;
1840 
1841 	if (file) {
1842 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1843 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1844 	} else {
1845 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1846 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1847 	}
1848 
1849 	/*
1850 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1851 	 * won't get blocked by normal direct-reclaimers, forming a circular
1852 	 * deadlock.
1853 	 */
1854 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1855 		inactive >>= 3;
1856 
1857 	return isolated > inactive;
1858 }
1859 
1860 /*
1861  * This moves pages from @list to corresponding LRU list.
1862  *
1863  * We move them the other way if the page is referenced by one or more
1864  * processes, from rmap.
1865  *
1866  * If the pages are mostly unmapped, the processing is fast and it is
1867  * appropriate to hold zone_lru_lock across the whole operation.  But if
1868  * the pages are mapped, the processing is slow (page_referenced()) so we
1869  * should drop zone_lru_lock around each page.  It's impossible to balance
1870  * this, so instead we remove the pages from the LRU while processing them.
1871  * It is safe to rely on PG_active against the non-LRU pages in here because
1872  * nobody will play with that bit on a non-LRU page.
1873  *
1874  * The downside is that we have to touch page->_refcount against each page.
1875  * But we had to alter page->flags anyway.
1876  *
1877  * Returns the number of pages moved to the given lruvec.
1878  */
1879 
1880 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1881 						     struct list_head *list)
1882 {
1883 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1884 	int nr_pages, nr_moved = 0;
1885 	LIST_HEAD(pages_to_free);
1886 	struct page *page;
1887 	enum lru_list lru;
1888 
1889 	while (!list_empty(list)) {
1890 		page = lru_to_page(list);
1891 		VM_BUG_ON_PAGE(PageLRU(page), page);
1892 		if (unlikely(!page_evictable(page))) {
1893 			list_del(&page->lru);
1894 			spin_unlock_irq(&pgdat->lru_lock);
1895 			putback_lru_page(page);
1896 			spin_lock_irq(&pgdat->lru_lock);
1897 			continue;
1898 		}
1899 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1900 
1901 		SetPageLRU(page);
1902 		lru = page_lru(page);
1903 
1904 		nr_pages = hpage_nr_pages(page);
1905 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1906 		list_move(&page->lru, &lruvec->lists[lru]);
1907 
1908 		if (put_page_testzero(page)) {
1909 			__ClearPageLRU(page);
1910 			__ClearPageActive(page);
1911 			del_page_from_lru_list(page, lruvec, lru);
1912 
1913 			if (unlikely(PageCompound(page))) {
1914 				spin_unlock_irq(&pgdat->lru_lock);
1915 				(*get_compound_page_dtor(page))(page);
1916 				spin_lock_irq(&pgdat->lru_lock);
1917 			} else
1918 				list_add(&page->lru, &pages_to_free);
1919 		} else {
1920 			nr_moved += nr_pages;
1921 		}
1922 	}
1923 
1924 	/*
1925 	 * To save our caller's stack, now use input list for pages to free.
1926 	 */
1927 	list_splice(&pages_to_free, list);
1928 
1929 	return nr_moved;
1930 }
1931 
1932 /*
1933  * If a kernel thread (such as nfsd for loop-back mounts) services
1934  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935  * In that case we should only throttle if the backing device it is
1936  * writing to is congested.  In other cases it is safe to throttle.
1937  */
1938 static int current_may_throttle(void)
1939 {
1940 	return !(current->flags & PF_LESS_THROTTLE) ||
1941 		current->backing_dev_info == NULL ||
1942 		bdi_write_congested(current->backing_dev_info);
1943 }
1944 
1945 /*
1946  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1947  * of reclaimed pages
1948  */
1949 static noinline_for_stack unsigned long
1950 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1951 		     struct scan_control *sc, enum lru_list lru)
1952 {
1953 	LIST_HEAD(page_list);
1954 	unsigned long nr_scanned;
1955 	unsigned long nr_reclaimed = 0;
1956 	unsigned long nr_taken;
1957 	struct reclaim_stat stat;
1958 	int file = is_file_lru(lru);
1959 	enum vm_event_item item;
1960 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1961 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962 	bool stalled = false;
1963 
1964 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1965 		if (stalled)
1966 			return 0;
1967 
1968 		/* wait a bit for the reclaimer. */
1969 		msleep(100);
1970 		stalled = true;
1971 
1972 		/* We are about to die and free our memory. Return now. */
1973 		if (fatal_signal_pending(current))
1974 			return SWAP_CLUSTER_MAX;
1975 	}
1976 
1977 	lru_add_drain();
1978 
1979 	spin_lock_irq(&pgdat->lru_lock);
1980 
1981 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1982 				     &nr_scanned, sc, lru);
1983 
1984 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1985 	reclaim_stat->recent_scanned[file] += nr_taken;
1986 
1987 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1988 	if (global_reclaim(sc))
1989 		__count_vm_events(item, nr_scanned);
1990 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1991 	spin_unlock_irq(&pgdat->lru_lock);
1992 
1993 	if (nr_taken == 0)
1994 		return 0;
1995 
1996 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1997 				&stat, false);
1998 
1999 	spin_lock_irq(&pgdat->lru_lock);
2000 
2001 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2002 	if (global_reclaim(sc))
2003 		__count_vm_events(item, nr_reclaimed);
2004 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2005 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2006 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2007 
2008 	move_pages_to_lru(lruvec, &page_list);
2009 
2010 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2011 
2012 	spin_unlock_irq(&pgdat->lru_lock);
2013 
2014 	mem_cgroup_uncharge_list(&page_list);
2015 	free_unref_page_list(&page_list);
2016 
2017 	/*
2018 	 * If dirty pages are scanned that are not queued for IO, it
2019 	 * implies that flushers are not doing their job. This can
2020 	 * happen when memory pressure pushes dirty pages to the end of
2021 	 * the LRU before the dirty limits are breached and the dirty
2022 	 * data has expired. It can also happen when the proportion of
2023 	 * dirty pages grows not through writes but through memory
2024 	 * pressure reclaiming all the clean cache. And in some cases,
2025 	 * the flushers simply cannot keep up with the allocation
2026 	 * rate. Nudge the flusher threads in case they are asleep.
2027 	 */
2028 	if (stat.nr_unqueued_dirty == nr_taken)
2029 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2030 
2031 	sc->nr.dirty += stat.nr_dirty;
2032 	sc->nr.congested += stat.nr_congested;
2033 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2034 	sc->nr.writeback += stat.nr_writeback;
2035 	sc->nr.immediate += stat.nr_immediate;
2036 	sc->nr.taken += nr_taken;
2037 	if (file)
2038 		sc->nr.file_taken += nr_taken;
2039 
2040 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2041 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2042 	return nr_reclaimed;
2043 }
2044 
2045 static void shrink_active_list(unsigned long nr_to_scan,
2046 			       struct lruvec *lruvec,
2047 			       struct scan_control *sc,
2048 			       enum lru_list lru)
2049 {
2050 	unsigned long nr_taken;
2051 	unsigned long nr_scanned;
2052 	unsigned long vm_flags;
2053 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2054 	LIST_HEAD(l_active);
2055 	LIST_HEAD(l_inactive);
2056 	struct page *page;
2057 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2058 	unsigned nr_deactivate, nr_activate;
2059 	unsigned nr_rotated = 0;
2060 	int file = is_file_lru(lru);
2061 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2062 
2063 	lru_add_drain();
2064 
2065 	spin_lock_irq(&pgdat->lru_lock);
2066 
2067 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2068 				     &nr_scanned, sc, lru);
2069 
2070 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2071 	reclaim_stat->recent_scanned[file] += nr_taken;
2072 
2073 	__count_vm_events(PGREFILL, nr_scanned);
2074 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2075 
2076 	spin_unlock_irq(&pgdat->lru_lock);
2077 
2078 	while (!list_empty(&l_hold)) {
2079 		cond_resched();
2080 		page = lru_to_page(&l_hold);
2081 		list_del(&page->lru);
2082 
2083 		if (unlikely(!page_evictable(page))) {
2084 			putback_lru_page(page);
2085 			continue;
2086 		}
2087 
2088 		if (unlikely(buffer_heads_over_limit)) {
2089 			if (page_has_private(page) && trylock_page(page)) {
2090 				if (page_has_private(page))
2091 					try_to_release_page(page, 0);
2092 				unlock_page(page);
2093 			}
2094 		}
2095 
2096 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2097 				    &vm_flags)) {
2098 			nr_rotated += hpage_nr_pages(page);
2099 			/*
2100 			 * Identify referenced, file-backed active pages and
2101 			 * give them one more trip around the active list. So
2102 			 * that executable code get better chances to stay in
2103 			 * memory under moderate memory pressure.  Anon pages
2104 			 * are not likely to be evicted by use-once streaming
2105 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2106 			 * so we ignore them here.
2107 			 */
2108 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2109 				list_add(&page->lru, &l_active);
2110 				continue;
2111 			}
2112 		}
2113 
2114 		ClearPageActive(page);	/* we are de-activating */
2115 		SetPageWorkingset(page);
2116 		list_add(&page->lru, &l_inactive);
2117 	}
2118 
2119 	/*
2120 	 * Move pages back to the lru list.
2121 	 */
2122 	spin_lock_irq(&pgdat->lru_lock);
2123 	/*
2124 	 * Count referenced pages from currently used mappings as rotated,
2125 	 * even though only some of them are actually re-activated.  This
2126 	 * helps balance scan pressure between file and anonymous pages in
2127 	 * get_scan_count.
2128 	 */
2129 	reclaim_stat->recent_rotated[file] += nr_rotated;
2130 
2131 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2132 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2133 	/* Keep all free pages in l_active list */
2134 	list_splice(&l_inactive, &l_active);
2135 
2136 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2137 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2138 
2139 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2140 	spin_unlock_irq(&pgdat->lru_lock);
2141 
2142 	mem_cgroup_uncharge_list(&l_active);
2143 	free_unref_page_list(&l_active);
2144 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2145 			nr_deactivate, nr_rotated, sc->priority, file);
2146 }
2147 
2148 unsigned long reclaim_pages(struct list_head *page_list)
2149 {
2150 	int nid = -1;
2151 	unsigned long nr_reclaimed = 0;
2152 	LIST_HEAD(node_page_list);
2153 	struct reclaim_stat dummy_stat;
2154 	struct page *page;
2155 	struct scan_control sc = {
2156 		.gfp_mask = GFP_KERNEL,
2157 		.priority = DEF_PRIORITY,
2158 		.may_writepage = 1,
2159 		.may_unmap = 1,
2160 		.may_swap = 1,
2161 	};
2162 
2163 	while (!list_empty(page_list)) {
2164 		page = lru_to_page(page_list);
2165 		if (nid == -1) {
2166 			nid = page_to_nid(page);
2167 			INIT_LIST_HEAD(&node_page_list);
2168 		}
2169 
2170 		if (nid == page_to_nid(page)) {
2171 			ClearPageActive(page);
2172 			list_move(&page->lru, &node_page_list);
2173 			continue;
2174 		}
2175 
2176 		nr_reclaimed += shrink_page_list(&node_page_list,
2177 						NODE_DATA(nid),
2178 						&sc, 0,
2179 						&dummy_stat, false);
2180 		while (!list_empty(&node_page_list)) {
2181 			page = lru_to_page(&node_page_list);
2182 			list_del(&page->lru);
2183 			putback_lru_page(page);
2184 		}
2185 
2186 		nid = -1;
2187 	}
2188 
2189 	if (!list_empty(&node_page_list)) {
2190 		nr_reclaimed += shrink_page_list(&node_page_list,
2191 						NODE_DATA(nid),
2192 						&sc, 0,
2193 						&dummy_stat, false);
2194 		while (!list_empty(&node_page_list)) {
2195 			page = lru_to_page(&node_page_list);
2196 			list_del(&page->lru);
2197 			putback_lru_page(page);
2198 		}
2199 	}
2200 
2201 	return nr_reclaimed;
2202 }
2203 
2204 /*
2205  * The inactive anon list should be small enough that the VM never has
2206  * to do too much work.
2207  *
2208  * The inactive file list should be small enough to leave most memory
2209  * to the established workingset on the scan-resistant active list,
2210  * but large enough to avoid thrashing the aggregate readahead window.
2211  *
2212  * Both inactive lists should also be large enough that each inactive
2213  * page has a chance to be referenced again before it is reclaimed.
2214  *
2215  * If that fails and refaulting is observed, the inactive list grows.
2216  *
2217  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2218  * on this LRU, maintained by the pageout code. An inactive_ratio
2219  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2220  *
2221  * total     target    max
2222  * memory    ratio     inactive
2223  * -------------------------------------
2224  *   10MB       1         5MB
2225  *  100MB       1        50MB
2226  *    1GB       3       250MB
2227  *   10GB      10       0.9GB
2228  *  100GB      31         3GB
2229  *    1TB     101        10GB
2230  *   10TB     320        32GB
2231  */
2232 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2233 				 struct scan_control *sc, bool trace)
2234 {
2235 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2236 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237 	enum lru_list inactive_lru = file * LRU_FILE;
2238 	unsigned long inactive, active;
2239 	unsigned long inactive_ratio;
2240 	unsigned long refaults;
2241 	unsigned long gb;
2242 
2243 	/*
2244 	 * If we don't have swap space, anonymous page deactivation
2245 	 * is pointless.
2246 	 */
2247 	if (!file && !total_swap_pages)
2248 		return false;
2249 
2250 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2251 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2252 
2253 	/*
2254 	 * When refaults are being observed, it means a new workingset
2255 	 * is being established. Disable active list protection to get
2256 	 * rid of the stale workingset quickly.
2257 	 */
2258 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2259 	if (file && lruvec->refaults != refaults) {
2260 		inactive_ratio = 0;
2261 	} else {
2262 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2263 		if (gb)
2264 			inactive_ratio = int_sqrt(10 * gb);
2265 		else
2266 			inactive_ratio = 1;
2267 	}
2268 
2269 	if (trace)
2270 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2271 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2272 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2273 			inactive_ratio, file);
2274 
2275 	return inactive * inactive_ratio < active;
2276 }
2277 
2278 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2279 				 struct lruvec *lruvec, struct scan_control *sc)
2280 {
2281 	if (is_active_lru(lru)) {
2282 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2283 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2284 		return 0;
2285 	}
2286 
2287 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2288 }
2289 
2290 enum scan_balance {
2291 	SCAN_EQUAL,
2292 	SCAN_FRACT,
2293 	SCAN_ANON,
2294 	SCAN_FILE,
2295 };
2296 
2297 /*
2298  * Determine how aggressively the anon and file LRU lists should be
2299  * scanned.  The relative value of each set of LRU lists is determined
2300  * by looking at the fraction of the pages scanned we did rotate back
2301  * onto the active list instead of evict.
2302  *
2303  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2304  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2305  */
2306 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2307 			   struct scan_control *sc, unsigned long *nr,
2308 			   unsigned long *lru_pages)
2309 {
2310 	int swappiness = mem_cgroup_swappiness(memcg);
2311 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2312 	u64 fraction[2];
2313 	u64 denominator = 0;	/* gcc */
2314 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2315 	unsigned long anon_prio, file_prio;
2316 	enum scan_balance scan_balance;
2317 	unsigned long anon, file;
2318 	unsigned long ap, fp;
2319 	enum lru_list lru;
2320 
2321 	/* If we have no swap space, do not bother scanning anon pages. */
2322 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2323 		scan_balance = SCAN_FILE;
2324 		goto out;
2325 	}
2326 
2327 	/*
2328 	 * Global reclaim will swap to prevent OOM even with no
2329 	 * swappiness, but memcg users want to use this knob to
2330 	 * disable swapping for individual groups completely when
2331 	 * using the memory controller's swap limit feature would be
2332 	 * too expensive.
2333 	 */
2334 	if (!global_reclaim(sc) && !swappiness) {
2335 		scan_balance = SCAN_FILE;
2336 		goto out;
2337 	}
2338 
2339 	/*
2340 	 * Do not apply any pressure balancing cleverness when the
2341 	 * system is close to OOM, scan both anon and file equally
2342 	 * (unless the swappiness setting disagrees with swapping).
2343 	 */
2344 	if (!sc->priority && swappiness) {
2345 		scan_balance = SCAN_EQUAL;
2346 		goto out;
2347 	}
2348 
2349 	/*
2350 	 * Prevent the reclaimer from falling into the cache trap: as
2351 	 * cache pages start out inactive, every cache fault will tip
2352 	 * the scan balance towards the file LRU.  And as the file LRU
2353 	 * shrinks, so does the window for rotation from references.
2354 	 * This means we have a runaway feedback loop where a tiny
2355 	 * thrashing file LRU becomes infinitely more attractive than
2356 	 * anon pages.  Try to detect this based on file LRU size.
2357 	 */
2358 	if (global_reclaim(sc)) {
2359 		unsigned long pgdatfile;
2360 		unsigned long pgdatfree;
2361 		int z;
2362 		unsigned long total_high_wmark = 0;
2363 
2364 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2365 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2366 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2367 
2368 		for (z = 0; z < MAX_NR_ZONES; z++) {
2369 			struct zone *zone = &pgdat->node_zones[z];
2370 			if (!managed_zone(zone))
2371 				continue;
2372 
2373 			total_high_wmark += high_wmark_pages(zone);
2374 		}
2375 
2376 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2377 			/*
2378 			 * Force SCAN_ANON if there are enough inactive
2379 			 * anonymous pages on the LRU in eligible zones.
2380 			 * Otherwise, the small LRU gets thrashed.
2381 			 */
2382 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2383 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2384 					>> sc->priority) {
2385 				scan_balance = SCAN_ANON;
2386 				goto out;
2387 			}
2388 		}
2389 	}
2390 
2391 	/*
2392 	 * If there is enough inactive page cache, i.e. if the size of the
2393 	 * inactive list is greater than that of the active list *and* the
2394 	 * inactive list actually has some pages to scan on this priority, we
2395 	 * do not reclaim anything from the anonymous working set right now.
2396 	 * Without the second condition we could end up never scanning an
2397 	 * lruvec even if it has plenty of old anonymous pages unless the
2398 	 * system is under heavy pressure.
2399 	 */
2400 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2401 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2402 		scan_balance = SCAN_FILE;
2403 		goto out;
2404 	}
2405 
2406 	scan_balance = SCAN_FRACT;
2407 
2408 	/*
2409 	 * With swappiness at 100, anonymous and file have the same priority.
2410 	 * This scanning priority is essentially the inverse of IO cost.
2411 	 */
2412 	anon_prio = swappiness;
2413 	file_prio = 200 - anon_prio;
2414 
2415 	/*
2416 	 * OK, so we have swap space and a fair amount of page cache
2417 	 * pages.  We use the recently rotated / recently scanned
2418 	 * ratios to determine how valuable each cache is.
2419 	 *
2420 	 * Because workloads change over time (and to avoid overflow)
2421 	 * we keep these statistics as a floating average, which ends
2422 	 * up weighing recent references more than old ones.
2423 	 *
2424 	 * anon in [0], file in [1]
2425 	 */
2426 
2427 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2428 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2429 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2430 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2431 
2432 	spin_lock_irq(&pgdat->lru_lock);
2433 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2434 		reclaim_stat->recent_scanned[0] /= 2;
2435 		reclaim_stat->recent_rotated[0] /= 2;
2436 	}
2437 
2438 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2439 		reclaim_stat->recent_scanned[1] /= 2;
2440 		reclaim_stat->recent_rotated[1] /= 2;
2441 	}
2442 
2443 	/*
2444 	 * The amount of pressure on anon vs file pages is inversely
2445 	 * proportional to the fraction of recently scanned pages on
2446 	 * each list that were recently referenced and in active use.
2447 	 */
2448 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2449 	ap /= reclaim_stat->recent_rotated[0] + 1;
2450 
2451 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2452 	fp /= reclaim_stat->recent_rotated[1] + 1;
2453 	spin_unlock_irq(&pgdat->lru_lock);
2454 
2455 	fraction[0] = ap;
2456 	fraction[1] = fp;
2457 	denominator = ap + fp + 1;
2458 out:
2459 	*lru_pages = 0;
2460 	for_each_evictable_lru(lru) {
2461 		int file = is_file_lru(lru);
2462 		unsigned long size;
2463 		unsigned long scan;
2464 
2465 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2466 		scan = size >> sc->priority;
2467 		/*
2468 		 * If the cgroup's already been deleted, make sure to
2469 		 * scrape out the remaining cache.
2470 		 */
2471 		if (!scan && !mem_cgroup_online(memcg))
2472 			scan = min(size, SWAP_CLUSTER_MAX);
2473 
2474 		switch (scan_balance) {
2475 		case SCAN_EQUAL:
2476 			/* Scan lists relative to size */
2477 			break;
2478 		case SCAN_FRACT:
2479 			/*
2480 			 * Scan types proportional to swappiness and
2481 			 * their relative recent reclaim efficiency.
2482 			 * Make sure we don't miss the last page
2483 			 * because of a round-off error.
2484 			 */
2485 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2486 						  denominator);
2487 			break;
2488 		case SCAN_FILE:
2489 		case SCAN_ANON:
2490 			/* Scan one type exclusively */
2491 			if ((scan_balance == SCAN_FILE) != file) {
2492 				size = 0;
2493 				scan = 0;
2494 			}
2495 			break;
2496 		default:
2497 			/* Look ma, no brain */
2498 			BUG();
2499 		}
2500 
2501 		*lru_pages += size;
2502 		nr[lru] = scan;
2503 	}
2504 }
2505 
2506 /*
2507  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2508  */
2509 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2510 			      struct scan_control *sc, unsigned long *lru_pages)
2511 {
2512 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2513 	unsigned long nr[NR_LRU_LISTS];
2514 	unsigned long targets[NR_LRU_LISTS];
2515 	unsigned long nr_to_scan;
2516 	enum lru_list lru;
2517 	unsigned long nr_reclaimed = 0;
2518 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2519 	struct blk_plug plug;
2520 	bool scan_adjusted;
2521 
2522 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2523 
2524 	/* Record the original scan target for proportional adjustments later */
2525 	memcpy(targets, nr, sizeof(nr));
2526 
2527 	/*
2528 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2529 	 * event that can occur when there is little memory pressure e.g.
2530 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2531 	 * when the requested number of pages are reclaimed when scanning at
2532 	 * DEF_PRIORITY on the assumption that the fact we are direct
2533 	 * reclaiming implies that kswapd is not keeping up and it is best to
2534 	 * do a batch of work at once. For memcg reclaim one check is made to
2535 	 * abort proportional reclaim if either the file or anon lru has already
2536 	 * dropped to zero at the first pass.
2537 	 */
2538 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2539 			 sc->priority == DEF_PRIORITY);
2540 
2541 	blk_start_plug(&plug);
2542 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2543 					nr[LRU_INACTIVE_FILE]) {
2544 		unsigned long nr_anon, nr_file, percentage;
2545 		unsigned long nr_scanned;
2546 
2547 		for_each_evictable_lru(lru) {
2548 			if (nr[lru]) {
2549 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2550 				nr[lru] -= nr_to_scan;
2551 
2552 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2553 							    lruvec, sc);
2554 			}
2555 		}
2556 
2557 		cond_resched();
2558 
2559 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2560 			continue;
2561 
2562 		/*
2563 		 * For kswapd and memcg, reclaim at least the number of pages
2564 		 * requested. Ensure that the anon and file LRUs are scanned
2565 		 * proportionally what was requested by get_scan_count(). We
2566 		 * stop reclaiming one LRU and reduce the amount scanning
2567 		 * proportional to the original scan target.
2568 		 */
2569 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2570 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2571 
2572 		/*
2573 		 * It's just vindictive to attack the larger once the smaller
2574 		 * has gone to zero.  And given the way we stop scanning the
2575 		 * smaller below, this makes sure that we only make one nudge
2576 		 * towards proportionality once we've got nr_to_reclaim.
2577 		 */
2578 		if (!nr_file || !nr_anon)
2579 			break;
2580 
2581 		if (nr_file > nr_anon) {
2582 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2583 						targets[LRU_ACTIVE_ANON] + 1;
2584 			lru = LRU_BASE;
2585 			percentage = nr_anon * 100 / scan_target;
2586 		} else {
2587 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2588 						targets[LRU_ACTIVE_FILE] + 1;
2589 			lru = LRU_FILE;
2590 			percentage = nr_file * 100 / scan_target;
2591 		}
2592 
2593 		/* Stop scanning the smaller of the LRU */
2594 		nr[lru] = 0;
2595 		nr[lru + LRU_ACTIVE] = 0;
2596 
2597 		/*
2598 		 * Recalculate the other LRU scan count based on its original
2599 		 * scan target and the percentage scanning already complete
2600 		 */
2601 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2602 		nr_scanned = targets[lru] - nr[lru];
2603 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2604 		nr[lru] -= min(nr[lru], nr_scanned);
2605 
2606 		lru += LRU_ACTIVE;
2607 		nr_scanned = targets[lru] - nr[lru];
2608 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2609 		nr[lru] -= min(nr[lru], nr_scanned);
2610 
2611 		scan_adjusted = true;
2612 	}
2613 	blk_finish_plug(&plug);
2614 	sc->nr_reclaimed += nr_reclaimed;
2615 
2616 	/*
2617 	 * Even if we did not try to evict anon pages at all, we want to
2618 	 * rebalance the anon lru active/inactive ratio.
2619 	 */
2620 	if (inactive_list_is_low(lruvec, false, sc, true))
2621 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2622 				   sc, LRU_ACTIVE_ANON);
2623 }
2624 
2625 /* Use reclaim/compaction for costly allocs or under memory pressure */
2626 static bool in_reclaim_compaction(struct scan_control *sc)
2627 {
2628 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2629 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2630 			 sc->priority < DEF_PRIORITY - 2))
2631 		return true;
2632 
2633 	return false;
2634 }
2635 
2636 /*
2637  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2638  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2639  * true if more pages should be reclaimed such that when the page allocator
2640  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2641  * It will give up earlier than that if there is difficulty reclaiming pages.
2642  */
2643 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2644 					unsigned long nr_reclaimed,
2645 					struct scan_control *sc)
2646 {
2647 	unsigned long pages_for_compaction;
2648 	unsigned long inactive_lru_pages;
2649 	int z;
2650 
2651 	/* If not in reclaim/compaction mode, stop */
2652 	if (!in_reclaim_compaction(sc))
2653 		return false;
2654 
2655 	/*
2656 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2657 	 * number of pages that were scanned. This will return to the caller
2658 	 * with the risk reclaim/compaction and the resulting allocation attempt
2659 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2660 	 * allocations through requiring that the full LRU list has been scanned
2661 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2662 	 * scan, but that approximation was wrong, and there were corner cases
2663 	 * where always a non-zero amount of pages were scanned.
2664 	 */
2665 	if (!nr_reclaimed)
2666 		return false;
2667 
2668 	/* If compaction would go ahead or the allocation would succeed, stop */
2669 	for (z = 0; z <= sc->reclaim_idx; z++) {
2670 		struct zone *zone = &pgdat->node_zones[z];
2671 		if (!managed_zone(zone))
2672 			continue;
2673 
2674 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2675 		case COMPACT_SUCCESS:
2676 		case COMPACT_CONTINUE:
2677 			return false;
2678 		default:
2679 			/* check next zone */
2680 			;
2681 		}
2682 	}
2683 
2684 	/*
2685 	 * If we have not reclaimed enough pages for compaction and the
2686 	 * inactive lists are large enough, continue reclaiming
2687 	 */
2688 	pages_for_compaction = compact_gap(sc->order);
2689 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2690 	if (get_nr_swap_pages() > 0)
2691 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2692 
2693 	return inactive_lru_pages > pages_for_compaction;
2694 }
2695 
2696 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2697 {
2698 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2699 		(memcg && memcg_congested(pgdat, memcg));
2700 }
2701 
2702 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2703 {
2704 	struct reclaim_state *reclaim_state = current->reclaim_state;
2705 	unsigned long nr_reclaimed, nr_scanned;
2706 	bool reclaimable = false;
2707 
2708 	do {
2709 		struct mem_cgroup *root = sc->target_mem_cgroup;
2710 		unsigned long node_lru_pages = 0;
2711 		struct mem_cgroup *memcg;
2712 
2713 		memset(&sc->nr, 0, sizeof(sc->nr));
2714 
2715 		nr_reclaimed = sc->nr_reclaimed;
2716 		nr_scanned = sc->nr_scanned;
2717 
2718 		memcg = mem_cgroup_iter(root, NULL, NULL);
2719 		do {
2720 			unsigned long lru_pages;
2721 			unsigned long reclaimed;
2722 			unsigned long scanned;
2723 
2724 			switch (mem_cgroup_protected(root, memcg)) {
2725 			case MEMCG_PROT_MIN:
2726 				/*
2727 				 * Hard protection.
2728 				 * If there is no reclaimable memory, OOM.
2729 				 */
2730 				continue;
2731 			case MEMCG_PROT_LOW:
2732 				/*
2733 				 * Soft protection.
2734 				 * Respect the protection only as long as
2735 				 * there is an unprotected supply
2736 				 * of reclaimable memory from other cgroups.
2737 				 */
2738 				if (!sc->memcg_low_reclaim) {
2739 					sc->memcg_low_skipped = 1;
2740 					continue;
2741 				}
2742 				memcg_memory_event(memcg, MEMCG_LOW);
2743 				break;
2744 			case MEMCG_PROT_NONE:
2745 				break;
2746 			}
2747 
2748 			reclaimed = sc->nr_reclaimed;
2749 			scanned = sc->nr_scanned;
2750 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2751 			node_lru_pages += lru_pages;
2752 
2753 			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2754 					sc->priority);
2755 
2756 			/* Record the group's reclaim efficiency */
2757 			vmpressure(sc->gfp_mask, memcg, false,
2758 				   sc->nr_scanned - scanned,
2759 				   sc->nr_reclaimed - reclaimed);
2760 
2761 		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2762 
2763 		if (reclaim_state) {
2764 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2765 			reclaim_state->reclaimed_slab = 0;
2766 		}
2767 
2768 		/* Record the subtree's reclaim efficiency */
2769 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2770 			   sc->nr_scanned - nr_scanned,
2771 			   sc->nr_reclaimed - nr_reclaimed);
2772 
2773 		if (sc->nr_reclaimed - nr_reclaimed)
2774 			reclaimable = true;
2775 
2776 		if (current_is_kswapd()) {
2777 			/*
2778 			 * If reclaim is isolating dirty pages under writeback,
2779 			 * it implies that the long-lived page allocation rate
2780 			 * is exceeding the page laundering rate. Either the
2781 			 * global limits are not being effective at throttling
2782 			 * processes due to the page distribution throughout
2783 			 * zones or there is heavy usage of a slow backing
2784 			 * device. The only option is to throttle from reclaim
2785 			 * context which is not ideal as there is no guarantee
2786 			 * the dirtying process is throttled in the same way
2787 			 * balance_dirty_pages() manages.
2788 			 *
2789 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2790 			 * count the number of pages under pages flagged for
2791 			 * immediate reclaim and stall if any are encountered
2792 			 * in the nr_immediate check below.
2793 			 */
2794 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2795 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2796 
2797 			/*
2798 			 * Tag a node as congested if all the dirty pages
2799 			 * scanned were backed by a congested BDI and
2800 			 * wait_iff_congested will stall.
2801 			 */
2802 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2803 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2804 
2805 			/* Allow kswapd to start writing pages during reclaim.*/
2806 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2807 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2808 
2809 			/*
2810 			 * If kswapd scans pages marked marked for immediate
2811 			 * reclaim and under writeback (nr_immediate), it
2812 			 * implies that pages are cycling through the LRU
2813 			 * faster than they are written so also forcibly stall.
2814 			 */
2815 			if (sc->nr.immediate)
2816 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2817 		}
2818 
2819 		/*
2820 		 * Legacy memcg will stall in page writeback so avoid forcibly
2821 		 * stalling in wait_iff_congested().
2822 		 */
2823 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2824 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2825 			set_memcg_congestion(pgdat, root, true);
2826 
2827 		/*
2828 		 * Stall direct reclaim for IO completions if underlying BDIs
2829 		 * and node is congested. Allow kswapd to continue until it
2830 		 * starts encountering unqueued dirty pages or cycling through
2831 		 * the LRU too quickly.
2832 		 */
2833 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2834 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2835 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2836 
2837 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2838 					 sc));
2839 
2840 	/*
2841 	 * Kswapd gives up on balancing particular nodes after too
2842 	 * many failures to reclaim anything from them and goes to
2843 	 * sleep. On reclaim progress, reset the failure counter. A
2844 	 * successful direct reclaim run will revive a dormant kswapd.
2845 	 */
2846 	if (reclaimable)
2847 		pgdat->kswapd_failures = 0;
2848 
2849 	return reclaimable;
2850 }
2851 
2852 /*
2853  * Returns true if compaction should go ahead for a costly-order request, or
2854  * the allocation would already succeed without compaction. Return false if we
2855  * should reclaim first.
2856  */
2857 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2858 {
2859 	unsigned long watermark;
2860 	enum compact_result suitable;
2861 
2862 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2863 	if (suitable == COMPACT_SUCCESS)
2864 		/* Allocation should succeed already. Don't reclaim. */
2865 		return true;
2866 	if (suitable == COMPACT_SKIPPED)
2867 		/* Compaction cannot yet proceed. Do reclaim. */
2868 		return false;
2869 
2870 	/*
2871 	 * Compaction is already possible, but it takes time to run and there
2872 	 * are potentially other callers using the pages just freed. So proceed
2873 	 * with reclaim to make a buffer of free pages available to give
2874 	 * compaction a reasonable chance of completing and allocating the page.
2875 	 * Note that we won't actually reclaim the whole buffer in one attempt
2876 	 * as the target watermark in should_continue_reclaim() is lower. But if
2877 	 * we are already above the high+gap watermark, don't reclaim at all.
2878 	 */
2879 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2880 
2881 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2882 }
2883 
2884 /*
2885  * This is the direct reclaim path, for page-allocating processes.  We only
2886  * try to reclaim pages from zones which will satisfy the caller's allocation
2887  * request.
2888  *
2889  * If a zone is deemed to be full of pinned pages then just give it a light
2890  * scan then give up on it.
2891  */
2892 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2893 {
2894 	struct zoneref *z;
2895 	struct zone *zone;
2896 	unsigned long nr_soft_reclaimed;
2897 	unsigned long nr_soft_scanned;
2898 	gfp_t orig_mask;
2899 	pg_data_t *last_pgdat = NULL;
2900 
2901 	/*
2902 	 * If the number of buffer_heads in the machine exceeds the maximum
2903 	 * allowed level, force direct reclaim to scan the highmem zone as
2904 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2905 	 */
2906 	orig_mask = sc->gfp_mask;
2907 	if (buffer_heads_over_limit) {
2908 		sc->gfp_mask |= __GFP_HIGHMEM;
2909 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2910 	}
2911 
2912 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2913 					sc->reclaim_idx, sc->nodemask) {
2914 		/*
2915 		 * Take care memory controller reclaiming has small influence
2916 		 * to global LRU.
2917 		 */
2918 		if (global_reclaim(sc)) {
2919 			if (!cpuset_zone_allowed(zone,
2920 						 GFP_KERNEL | __GFP_HARDWALL))
2921 				continue;
2922 
2923 			/*
2924 			 * If we already have plenty of memory free for
2925 			 * compaction in this zone, don't free any more.
2926 			 * Even though compaction is invoked for any
2927 			 * non-zero order, only frequent costly order
2928 			 * reclamation is disruptive enough to become a
2929 			 * noticeable problem, like transparent huge
2930 			 * page allocations.
2931 			 */
2932 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2933 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2934 			    compaction_ready(zone, sc)) {
2935 				sc->compaction_ready = true;
2936 				continue;
2937 			}
2938 
2939 			/*
2940 			 * Shrink each node in the zonelist once. If the
2941 			 * zonelist is ordered by zone (not the default) then a
2942 			 * node may be shrunk multiple times but in that case
2943 			 * the user prefers lower zones being preserved.
2944 			 */
2945 			if (zone->zone_pgdat == last_pgdat)
2946 				continue;
2947 
2948 			/*
2949 			 * This steals pages from memory cgroups over softlimit
2950 			 * and returns the number of reclaimed pages and
2951 			 * scanned pages. This works for global memory pressure
2952 			 * and balancing, not for a memcg's limit.
2953 			 */
2954 			nr_soft_scanned = 0;
2955 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2956 						sc->order, sc->gfp_mask,
2957 						&nr_soft_scanned);
2958 			sc->nr_reclaimed += nr_soft_reclaimed;
2959 			sc->nr_scanned += nr_soft_scanned;
2960 			/* need some check for avoid more shrink_zone() */
2961 		}
2962 
2963 		/* See comment about same check for global reclaim above */
2964 		if (zone->zone_pgdat == last_pgdat)
2965 			continue;
2966 		last_pgdat = zone->zone_pgdat;
2967 		shrink_node(zone->zone_pgdat, sc);
2968 	}
2969 
2970 	/*
2971 	 * Restore to original mask to avoid the impact on the caller if we
2972 	 * promoted it to __GFP_HIGHMEM.
2973 	 */
2974 	sc->gfp_mask = orig_mask;
2975 }
2976 
2977 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2978 {
2979 	struct mem_cgroup *memcg;
2980 
2981 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2982 	do {
2983 		unsigned long refaults;
2984 		struct lruvec *lruvec;
2985 
2986 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2987 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2988 		lruvec->refaults = refaults;
2989 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2990 }
2991 
2992 /*
2993  * This is the main entry point to direct page reclaim.
2994  *
2995  * If a full scan of the inactive list fails to free enough memory then we
2996  * are "out of memory" and something needs to be killed.
2997  *
2998  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2999  * high - the zone may be full of dirty or under-writeback pages, which this
3000  * caller can't do much about.  We kick the writeback threads and take explicit
3001  * naps in the hope that some of these pages can be written.  But if the
3002  * allocating task holds filesystem locks which prevent writeout this might not
3003  * work, and the allocation attempt will fail.
3004  *
3005  * returns:	0, if no pages reclaimed
3006  * 		else, the number of pages reclaimed
3007  */
3008 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3009 					  struct scan_control *sc)
3010 {
3011 	int initial_priority = sc->priority;
3012 	pg_data_t *last_pgdat;
3013 	struct zoneref *z;
3014 	struct zone *zone;
3015 retry:
3016 	delayacct_freepages_start();
3017 
3018 	if (global_reclaim(sc))
3019 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3020 
3021 	do {
3022 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3023 				sc->priority);
3024 		sc->nr_scanned = 0;
3025 		shrink_zones(zonelist, sc);
3026 
3027 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3028 			break;
3029 
3030 		if (sc->compaction_ready)
3031 			break;
3032 
3033 		/*
3034 		 * If we're getting trouble reclaiming, start doing
3035 		 * writepage even in laptop mode.
3036 		 */
3037 		if (sc->priority < DEF_PRIORITY - 2)
3038 			sc->may_writepage = 1;
3039 	} while (--sc->priority >= 0);
3040 
3041 	last_pgdat = NULL;
3042 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3043 					sc->nodemask) {
3044 		if (zone->zone_pgdat == last_pgdat)
3045 			continue;
3046 		last_pgdat = zone->zone_pgdat;
3047 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3048 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3049 	}
3050 
3051 	delayacct_freepages_end();
3052 
3053 	if (sc->nr_reclaimed)
3054 		return sc->nr_reclaimed;
3055 
3056 	/* Aborted reclaim to try compaction? don't OOM, then */
3057 	if (sc->compaction_ready)
3058 		return 1;
3059 
3060 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3061 	if (sc->memcg_low_skipped) {
3062 		sc->priority = initial_priority;
3063 		sc->memcg_low_reclaim = 1;
3064 		sc->memcg_low_skipped = 0;
3065 		goto retry;
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 static bool allow_direct_reclaim(pg_data_t *pgdat)
3072 {
3073 	struct zone *zone;
3074 	unsigned long pfmemalloc_reserve = 0;
3075 	unsigned long free_pages = 0;
3076 	int i;
3077 	bool wmark_ok;
3078 
3079 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3080 		return true;
3081 
3082 	for (i = 0; i <= ZONE_NORMAL; i++) {
3083 		zone = &pgdat->node_zones[i];
3084 		if (!managed_zone(zone))
3085 			continue;
3086 
3087 		if (!zone_reclaimable_pages(zone))
3088 			continue;
3089 
3090 		pfmemalloc_reserve += min_wmark_pages(zone);
3091 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3092 	}
3093 
3094 	/* If there are no reserves (unexpected config) then do not throttle */
3095 	if (!pfmemalloc_reserve)
3096 		return true;
3097 
3098 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3099 
3100 	/* kswapd must be awake if processes are being throttled */
3101 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3102 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3103 						(enum zone_type)ZONE_NORMAL);
3104 		wake_up_interruptible(&pgdat->kswapd_wait);
3105 	}
3106 
3107 	return wmark_ok;
3108 }
3109 
3110 /*
3111  * Throttle direct reclaimers if backing storage is backed by the network
3112  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3113  * depleted. kswapd will continue to make progress and wake the processes
3114  * when the low watermark is reached.
3115  *
3116  * Returns true if a fatal signal was delivered during throttling. If this
3117  * happens, the page allocator should not consider triggering the OOM killer.
3118  */
3119 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3120 					nodemask_t *nodemask)
3121 {
3122 	struct zoneref *z;
3123 	struct zone *zone;
3124 	pg_data_t *pgdat = NULL;
3125 
3126 	/*
3127 	 * Kernel threads should not be throttled as they may be indirectly
3128 	 * responsible for cleaning pages necessary for reclaim to make forward
3129 	 * progress. kjournald for example may enter direct reclaim while
3130 	 * committing a transaction where throttling it could forcing other
3131 	 * processes to block on log_wait_commit().
3132 	 */
3133 	if (current->flags & PF_KTHREAD)
3134 		goto out;
3135 
3136 	/*
3137 	 * If a fatal signal is pending, this process should not throttle.
3138 	 * It should return quickly so it can exit and free its memory
3139 	 */
3140 	if (fatal_signal_pending(current))
3141 		goto out;
3142 
3143 	/*
3144 	 * Check if the pfmemalloc reserves are ok by finding the first node
3145 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3146 	 * GFP_KERNEL will be required for allocating network buffers when
3147 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3148 	 *
3149 	 * Throttling is based on the first usable node and throttled processes
3150 	 * wait on a queue until kswapd makes progress and wakes them. There
3151 	 * is an affinity then between processes waking up and where reclaim
3152 	 * progress has been made assuming the process wakes on the same node.
3153 	 * More importantly, processes running on remote nodes will not compete
3154 	 * for remote pfmemalloc reserves and processes on different nodes
3155 	 * should make reasonable progress.
3156 	 */
3157 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3158 					gfp_zone(gfp_mask), nodemask) {
3159 		if (zone_idx(zone) > ZONE_NORMAL)
3160 			continue;
3161 
3162 		/* Throttle based on the first usable node */
3163 		pgdat = zone->zone_pgdat;
3164 		if (allow_direct_reclaim(pgdat))
3165 			goto out;
3166 		break;
3167 	}
3168 
3169 	/* If no zone was usable by the allocation flags then do not throttle */
3170 	if (!pgdat)
3171 		goto out;
3172 
3173 	/* Account for the throttling */
3174 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3175 
3176 	/*
3177 	 * If the caller cannot enter the filesystem, it's possible that it
3178 	 * is due to the caller holding an FS lock or performing a journal
3179 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3180 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3181 	 * blocked waiting on the same lock. Instead, throttle for up to a
3182 	 * second before continuing.
3183 	 */
3184 	if (!(gfp_mask & __GFP_FS)) {
3185 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3186 			allow_direct_reclaim(pgdat), HZ);
3187 
3188 		goto check_pending;
3189 	}
3190 
3191 	/* Throttle until kswapd wakes the process */
3192 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3193 		allow_direct_reclaim(pgdat));
3194 
3195 check_pending:
3196 	if (fatal_signal_pending(current))
3197 		return true;
3198 
3199 out:
3200 	return false;
3201 }
3202 
3203 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3204 				gfp_t gfp_mask, nodemask_t *nodemask)
3205 {
3206 	unsigned long nr_reclaimed;
3207 	struct scan_control sc = {
3208 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3209 		.gfp_mask = current_gfp_context(gfp_mask),
3210 		.reclaim_idx = gfp_zone(gfp_mask),
3211 		.order = order,
3212 		.nodemask = nodemask,
3213 		.priority = DEF_PRIORITY,
3214 		.may_writepage = !laptop_mode,
3215 		.may_unmap = 1,
3216 		.may_swap = 1,
3217 	};
3218 
3219 	/*
3220 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3221 	 * Confirm they are large enough for max values.
3222 	 */
3223 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3224 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3225 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3226 
3227 	/*
3228 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3229 	 * 1 is returned so that the page allocator does not OOM kill at this
3230 	 * point.
3231 	 */
3232 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3233 		return 1;
3234 
3235 	set_task_reclaim_state(current, &sc.reclaim_state);
3236 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3237 
3238 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3239 
3240 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3241 	set_task_reclaim_state(current, NULL);
3242 
3243 	return nr_reclaimed;
3244 }
3245 
3246 #ifdef CONFIG_MEMCG
3247 
3248 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3249 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3250 						gfp_t gfp_mask, bool noswap,
3251 						pg_data_t *pgdat,
3252 						unsigned long *nr_scanned)
3253 {
3254 	struct scan_control sc = {
3255 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3256 		.target_mem_cgroup = memcg,
3257 		.may_writepage = !laptop_mode,
3258 		.may_unmap = 1,
3259 		.reclaim_idx = MAX_NR_ZONES - 1,
3260 		.may_swap = !noswap,
3261 	};
3262 	unsigned long lru_pages;
3263 
3264 	WARN_ON_ONCE(!current->reclaim_state);
3265 
3266 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3267 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3268 
3269 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3270 						      sc.gfp_mask);
3271 
3272 	/*
3273 	 * NOTE: Although we can get the priority field, using it
3274 	 * here is not a good idea, since it limits the pages we can scan.
3275 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3276 	 * will pick up pages from other mem cgroup's as well. We hack
3277 	 * the priority and make it zero.
3278 	 */
3279 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3280 
3281 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3282 
3283 	*nr_scanned = sc.nr_scanned;
3284 
3285 	return sc.nr_reclaimed;
3286 }
3287 
3288 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3289 					   unsigned long nr_pages,
3290 					   gfp_t gfp_mask,
3291 					   bool may_swap)
3292 {
3293 	struct zonelist *zonelist;
3294 	unsigned long nr_reclaimed;
3295 	unsigned long pflags;
3296 	int nid;
3297 	unsigned int noreclaim_flag;
3298 	struct scan_control sc = {
3299 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3300 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3301 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3302 		.reclaim_idx = MAX_NR_ZONES - 1,
3303 		.target_mem_cgroup = memcg,
3304 		.priority = DEF_PRIORITY,
3305 		.may_writepage = !laptop_mode,
3306 		.may_unmap = 1,
3307 		.may_swap = may_swap,
3308 	};
3309 
3310 	set_task_reclaim_state(current, &sc.reclaim_state);
3311 	/*
3312 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3313 	 * take care of from where we get pages. So the node where we start the
3314 	 * scan does not need to be the current node.
3315 	 */
3316 	nid = mem_cgroup_select_victim_node(memcg);
3317 
3318 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3319 
3320 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3321 
3322 	psi_memstall_enter(&pflags);
3323 	noreclaim_flag = memalloc_noreclaim_save();
3324 
3325 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3326 
3327 	memalloc_noreclaim_restore(noreclaim_flag);
3328 	psi_memstall_leave(&pflags);
3329 
3330 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3331 	set_task_reclaim_state(current, NULL);
3332 
3333 	return nr_reclaimed;
3334 }
3335 #endif
3336 
3337 static void age_active_anon(struct pglist_data *pgdat,
3338 				struct scan_control *sc)
3339 {
3340 	struct mem_cgroup *memcg;
3341 
3342 	if (!total_swap_pages)
3343 		return;
3344 
3345 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3346 	do {
3347 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3348 
3349 		if (inactive_list_is_low(lruvec, false, sc, true))
3350 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3351 					   sc, LRU_ACTIVE_ANON);
3352 
3353 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3354 	} while (memcg);
3355 }
3356 
3357 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3358 {
3359 	int i;
3360 	struct zone *zone;
3361 
3362 	/*
3363 	 * Check for watermark boosts top-down as the higher zones
3364 	 * are more likely to be boosted. Both watermarks and boosts
3365 	 * should not be checked at the time time as reclaim would
3366 	 * start prematurely when there is no boosting and a lower
3367 	 * zone is balanced.
3368 	 */
3369 	for (i = classzone_idx; i >= 0; i--) {
3370 		zone = pgdat->node_zones + i;
3371 		if (!managed_zone(zone))
3372 			continue;
3373 
3374 		if (zone->watermark_boost)
3375 			return true;
3376 	}
3377 
3378 	return false;
3379 }
3380 
3381 /*
3382  * Returns true if there is an eligible zone balanced for the request order
3383  * and classzone_idx
3384  */
3385 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3386 {
3387 	int i;
3388 	unsigned long mark = -1;
3389 	struct zone *zone;
3390 
3391 	/*
3392 	 * Check watermarks bottom-up as lower zones are more likely to
3393 	 * meet watermarks.
3394 	 */
3395 	for (i = 0; i <= classzone_idx; i++) {
3396 		zone = pgdat->node_zones + i;
3397 
3398 		if (!managed_zone(zone))
3399 			continue;
3400 
3401 		mark = high_wmark_pages(zone);
3402 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3403 			return true;
3404 	}
3405 
3406 	/*
3407 	 * If a node has no populated zone within classzone_idx, it does not
3408 	 * need balancing by definition. This can happen if a zone-restricted
3409 	 * allocation tries to wake a remote kswapd.
3410 	 */
3411 	if (mark == -1)
3412 		return true;
3413 
3414 	return false;
3415 }
3416 
3417 /* Clear pgdat state for congested, dirty or under writeback. */
3418 static void clear_pgdat_congested(pg_data_t *pgdat)
3419 {
3420 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3421 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3422 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3423 }
3424 
3425 /*
3426  * Prepare kswapd for sleeping. This verifies that there are no processes
3427  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3428  *
3429  * Returns true if kswapd is ready to sleep
3430  */
3431 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3432 {
3433 	/*
3434 	 * The throttled processes are normally woken up in balance_pgdat() as
3435 	 * soon as allow_direct_reclaim() is true. But there is a potential
3436 	 * race between when kswapd checks the watermarks and a process gets
3437 	 * throttled. There is also a potential race if processes get
3438 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3439 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3440 	 * the wake up checks. If kswapd is going to sleep, no process should
3441 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3442 	 * the wake up is premature, processes will wake kswapd and get
3443 	 * throttled again. The difference from wake ups in balance_pgdat() is
3444 	 * that here we are under prepare_to_wait().
3445 	 */
3446 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3447 		wake_up_all(&pgdat->pfmemalloc_wait);
3448 
3449 	/* Hopeless node, leave it to direct reclaim */
3450 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3451 		return true;
3452 
3453 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3454 		clear_pgdat_congested(pgdat);
3455 		return true;
3456 	}
3457 
3458 	return false;
3459 }
3460 
3461 /*
3462  * kswapd shrinks a node of pages that are at or below the highest usable
3463  * zone that is currently unbalanced.
3464  *
3465  * Returns true if kswapd scanned at least the requested number of pages to
3466  * reclaim or if the lack of progress was due to pages under writeback.
3467  * This is used to determine if the scanning priority needs to be raised.
3468  */
3469 static bool kswapd_shrink_node(pg_data_t *pgdat,
3470 			       struct scan_control *sc)
3471 {
3472 	struct zone *zone;
3473 	int z;
3474 
3475 	/* Reclaim a number of pages proportional to the number of zones */
3476 	sc->nr_to_reclaim = 0;
3477 	for (z = 0; z <= sc->reclaim_idx; z++) {
3478 		zone = pgdat->node_zones + z;
3479 		if (!managed_zone(zone))
3480 			continue;
3481 
3482 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3483 	}
3484 
3485 	/*
3486 	 * Historically care was taken to put equal pressure on all zones but
3487 	 * now pressure is applied based on node LRU order.
3488 	 */
3489 	shrink_node(pgdat, sc);
3490 
3491 	/*
3492 	 * Fragmentation may mean that the system cannot be rebalanced for
3493 	 * high-order allocations. If twice the allocation size has been
3494 	 * reclaimed then recheck watermarks only at order-0 to prevent
3495 	 * excessive reclaim. Assume that a process requested a high-order
3496 	 * can direct reclaim/compact.
3497 	 */
3498 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3499 		sc->order = 0;
3500 
3501 	return sc->nr_scanned >= sc->nr_to_reclaim;
3502 }
3503 
3504 /*
3505  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3506  * that are eligible for use by the caller until at least one zone is
3507  * balanced.
3508  *
3509  * Returns the order kswapd finished reclaiming at.
3510  *
3511  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3512  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3513  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3514  * or lower is eligible for reclaim until at least one usable zone is
3515  * balanced.
3516  */
3517 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3518 {
3519 	int i;
3520 	unsigned long nr_soft_reclaimed;
3521 	unsigned long nr_soft_scanned;
3522 	unsigned long pflags;
3523 	unsigned long nr_boost_reclaim;
3524 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3525 	bool boosted;
3526 	struct zone *zone;
3527 	struct scan_control sc = {
3528 		.gfp_mask = GFP_KERNEL,
3529 		.order = order,
3530 		.may_unmap = 1,
3531 	};
3532 
3533 	set_task_reclaim_state(current, &sc.reclaim_state);
3534 	psi_memstall_enter(&pflags);
3535 	__fs_reclaim_acquire();
3536 
3537 	count_vm_event(PAGEOUTRUN);
3538 
3539 	/*
3540 	 * Account for the reclaim boost. Note that the zone boost is left in
3541 	 * place so that parallel allocations that are near the watermark will
3542 	 * stall or direct reclaim until kswapd is finished.
3543 	 */
3544 	nr_boost_reclaim = 0;
3545 	for (i = 0; i <= classzone_idx; i++) {
3546 		zone = pgdat->node_zones + i;
3547 		if (!managed_zone(zone))
3548 			continue;
3549 
3550 		nr_boost_reclaim += zone->watermark_boost;
3551 		zone_boosts[i] = zone->watermark_boost;
3552 	}
3553 	boosted = nr_boost_reclaim;
3554 
3555 restart:
3556 	sc.priority = DEF_PRIORITY;
3557 	do {
3558 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3559 		bool raise_priority = true;
3560 		bool balanced;
3561 		bool ret;
3562 
3563 		sc.reclaim_idx = classzone_idx;
3564 
3565 		/*
3566 		 * If the number of buffer_heads exceeds the maximum allowed
3567 		 * then consider reclaiming from all zones. This has a dual
3568 		 * purpose -- on 64-bit systems it is expected that
3569 		 * buffer_heads are stripped during active rotation. On 32-bit
3570 		 * systems, highmem pages can pin lowmem memory and shrinking
3571 		 * buffers can relieve lowmem pressure. Reclaim may still not
3572 		 * go ahead if all eligible zones for the original allocation
3573 		 * request are balanced to avoid excessive reclaim from kswapd.
3574 		 */
3575 		if (buffer_heads_over_limit) {
3576 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3577 				zone = pgdat->node_zones + i;
3578 				if (!managed_zone(zone))
3579 					continue;
3580 
3581 				sc.reclaim_idx = i;
3582 				break;
3583 			}
3584 		}
3585 
3586 		/*
3587 		 * If the pgdat is imbalanced then ignore boosting and preserve
3588 		 * the watermarks for a later time and restart. Note that the
3589 		 * zone watermarks will be still reset at the end of balancing
3590 		 * on the grounds that the normal reclaim should be enough to
3591 		 * re-evaluate if boosting is required when kswapd next wakes.
3592 		 */
3593 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3594 		if (!balanced && nr_boost_reclaim) {
3595 			nr_boost_reclaim = 0;
3596 			goto restart;
3597 		}
3598 
3599 		/*
3600 		 * If boosting is not active then only reclaim if there are no
3601 		 * eligible zones. Note that sc.reclaim_idx is not used as
3602 		 * buffer_heads_over_limit may have adjusted it.
3603 		 */
3604 		if (!nr_boost_reclaim && balanced)
3605 			goto out;
3606 
3607 		/* Limit the priority of boosting to avoid reclaim writeback */
3608 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3609 			raise_priority = false;
3610 
3611 		/*
3612 		 * Do not writeback or swap pages for boosted reclaim. The
3613 		 * intent is to relieve pressure not issue sub-optimal IO
3614 		 * from reclaim context. If no pages are reclaimed, the
3615 		 * reclaim will be aborted.
3616 		 */
3617 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3618 		sc.may_swap = !nr_boost_reclaim;
3619 
3620 		/*
3621 		 * Do some background aging of the anon list, to give
3622 		 * pages a chance to be referenced before reclaiming. All
3623 		 * pages are rotated regardless of classzone as this is
3624 		 * about consistent aging.
3625 		 */
3626 		age_active_anon(pgdat, &sc);
3627 
3628 		/*
3629 		 * If we're getting trouble reclaiming, start doing writepage
3630 		 * even in laptop mode.
3631 		 */
3632 		if (sc.priority < DEF_PRIORITY - 2)
3633 			sc.may_writepage = 1;
3634 
3635 		/* Call soft limit reclaim before calling shrink_node. */
3636 		sc.nr_scanned = 0;
3637 		nr_soft_scanned = 0;
3638 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3639 						sc.gfp_mask, &nr_soft_scanned);
3640 		sc.nr_reclaimed += nr_soft_reclaimed;
3641 
3642 		/*
3643 		 * There should be no need to raise the scanning priority if
3644 		 * enough pages are already being scanned that that high
3645 		 * watermark would be met at 100% efficiency.
3646 		 */
3647 		if (kswapd_shrink_node(pgdat, &sc))
3648 			raise_priority = false;
3649 
3650 		/*
3651 		 * If the low watermark is met there is no need for processes
3652 		 * to be throttled on pfmemalloc_wait as they should not be
3653 		 * able to safely make forward progress. Wake them
3654 		 */
3655 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3656 				allow_direct_reclaim(pgdat))
3657 			wake_up_all(&pgdat->pfmemalloc_wait);
3658 
3659 		/* Check if kswapd should be suspending */
3660 		__fs_reclaim_release();
3661 		ret = try_to_freeze();
3662 		__fs_reclaim_acquire();
3663 		if (ret || kthread_should_stop())
3664 			break;
3665 
3666 		/*
3667 		 * Raise priority if scanning rate is too low or there was no
3668 		 * progress in reclaiming pages
3669 		 */
3670 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3671 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3672 
3673 		/*
3674 		 * If reclaim made no progress for a boost, stop reclaim as
3675 		 * IO cannot be queued and it could be an infinite loop in
3676 		 * extreme circumstances.
3677 		 */
3678 		if (nr_boost_reclaim && !nr_reclaimed)
3679 			break;
3680 
3681 		if (raise_priority || !nr_reclaimed)
3682 			sc.priority--;
3683 	} while (sc.priority >= 1);
3684 
3685 	if (!sc.nr_reclaimed)
3686 		pgdat->kswapd_failures++;
3687 
3688 out:
3689 	/* If reclaim was boosted, account for the reclaim done in this pass */
3690 	if (boosted) {
3691 		unsigned long flags;
3692 
3693 		for (i = 0; i <= classzone_idx; i++) {
3694 			if (!zone_boosts[i])
3695 				continue;
3696 
3697 			/* Increments are under the zone lock */
3698 			zone = pgdat->node_zones + i;
3699 			spin_lock_irqsave(&zone->lock, flags);
3700 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3701 			spin_unlock_irqrestore(&zone->lock, flags);
3702 		}
3703 
3704 		/*
3705 		 * As there is now likely space, wakeup kcompact to defragment
3706 		 * pageblocks.
3707 		 */
3708 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3709 	}
3710 
3711 	snapshot_refaults(NULL, pgdat);
3712 	__fs_reclaim_release();
3713 	psi_memstall_leave(&pflags);
3714 	set_task_reclaim_state(current, NULL);
3715 
3716 	/*
3717 	 * Return the order kswapd stopped reclaiming at as
3718 	 * prepare_kswapd_sleep() takes it into account. If another caller
3719 	 * entered the allocator slow path while kswapd was awake, order will
3720 	 * remain at the higher level.
3721 	 */
3722 	return sc.order;
3723 }
3724 
3725 /*
3726  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3727  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3728  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3729  * after previous reclaim attempt (node is still unbalanced). In that case
3730  * return the zone index of the previous kswapd reclaim cycle.
3731  */
3732 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3733 					   enum zone_type prev_classzone_idx)
3734 {
3735 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3736 		return prev_classzone_idx;
3737 	return pgdat->kswapd_classzone_idx;
3738 }
3739 
3740 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3741 				unsigned int classzone_idx)
3742 {
3743 	long remaining = 0;
3744 	DEFINE_WAIT(wait);
3745 
3746 	if (freezing(current) || kthread_should_stop())
3747 		return;
3748 
3749 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3750 
3751 	/*
3752 	 * Try to sleep for a short interval. Note that kcompactd will only be
3753 	 * woken if it is possible to sleep for a short interval. This is
3754 	 * deliberate on the assumption that if reclaim cannot keep an
3755 	 * eligible zone balanced that it's also unlikely that compaction will
3756 	 * succeed.
3757 	 */
3758 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3759 		/*
3760 		 * Compaction records what page blocks it recently failed to
3761 		 * isolate pages from and skips them in the future scanning.
3762 		 * When kswapd is going to sleep, it is reasonable to assume
3763 		 * that pages and compaction may succeed so reset the cache.
3764 		 */
3765 		reset_isolation_suitable(pgdat);
3766 
3767 		/*
3768 		 * We have freed the memory, now we should compact it to make
3769 		 * allocation of the requested order possible.
3770 		 */
3771 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3772 
3773 		remaining = schedule_timeout(HZ/10);
3774 
3775 		/*
3776 		 * If woken prematurely then reset kswapd_classzone_idx and
3777 		 * order. The values will either be from a wakeup request or
3778 		 * the previous request that slept prematurely.
3779 		 */
3780 		if (remaining) {
3781 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3782 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3783 		}
3784 
3785 		finish_wait(&pgdat->kswapd_wait, &wait);
3786 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3787 	}
3788 
3789 	/*
3790 	 * After a short sleep, check if it was a premature sleep. If not, then
3791 	 * go fully to sleep until explicitly woken up.
3792 	 */
3793 	if (!remaining &&
3794 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3795 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3796 
3797 		/*
3798 		 * vmstat counters are not perfectly accurate and the estimated
3799 		 * value for counters such as NR_FREE_PAGES can deviate from the
3800 		 * true value by nr_online_cpus * threshold. To avoid the zone
3801 		 * watermarks being breached while under pressure, we reduce the
3802 		 * per-cpu vmstat threshold while kswapd is awake and restore
3803 		 * them before going back to sleep.
3804 		 */
3805 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3806 
3807 		if (!kthread_should_stop())
3808 			schedule();
3809 
3810 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3811 	} else {
3812 		if (remaining)
3813 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3814 		else
3815 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3816 	}
3817 	finish_wait(&pgdat->kswapd_wait, &wait);
3818 }
3819 
3820 /*
3821  * The background pageout daemon, started as a kernel thread
3822  * from the init process.
3823  *
3824  * This basically trickles out pages so that we have _some_
3825  * free memory available even if there is no other activity
3826  * that frees anything up. This is needed for things like routing
3827  * etc, where we otherwise might have all activity going on in
3828  * asynchronous contexts that cannot page things out.
3829  *
3830  * If there are applications that are active memory-allocators
3831  * (most normal use), this basically shouldn't matter.
3832  */
3833 static int kswapd(void *p)
3834 {
3835 	unsigned int alloc_order, reclaim_order;
3836 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3837 	pg_data_t *pgdat = (pg_data_t*)p;
3838 	struct task_struct *tsk = current;
3839 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3840 
3841 	if (!cpumask_empty(cpumask))
3842 		set_cpus_allowed_ptr(tsk, cpumask);
3843 
3844 	/*
3845 	 * Tell the memory management that we're a "memory allocator",
3846 	 * and that if we need more memory we should get access to it
3847 	 * regardless (see "__alloc_pages()"). "kswapd" should
3848 	 * never get caught in the normal page freeing logic.
3849 	 *
3850 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3851 	 * you need a small amount of memory in order to be able to
3852 	 * page out something else, and this flag essentially protects
3853 	 * us from recursively trying to free more memory as we're
3854 	 * trying to free the first piece of memory in the first place).
3855 	 */
3856 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3857 	set_freezable();
3858 
3859 	pgdat->kswapd_order = 0;
3860 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3861 	for ( ; ; ) {
3862 		bool ret;
3863 
3864 		alloc_order = reclaim_order = pgdat->kswapd_order;
3865 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3866 
3867 kswapd_try_sleep:
3868 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3869 					classzone_idx);
3870 
3871 		/* Read the new order and classzone_idx */
3872 		alloc_order = reclaim_order = pgdat->kswapd_order;
3873 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3874 		pgdat->kswapd_order = 0;
3875 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3876 
3877 		ret = try_to_freeze();
3878 		if (kthread_should_stop())
3879 			break;
3880 
3881 		/*
3882 		 * We can speed up thawing tasks if we don't call balance_pgdat
3883 		 * after returning from the refrigerator
3884 		 */
3885 		if (ret)
3886 			continue;
3887 
3888 		/*
3889 		 * Reclaim begins at the requested order but if a high-order
3890 		 * reclaim fails then kswapd falls back to reclaiming for
3891 		 * order-0. If that happens, kswapd will consider sleeping
3892 		 * for the order it finished reclaiming at (reclaim_order)
3893 		 * but kcompactd is woken to compact for the original
3894 		 * request (alloc_order).
3895 		 */
3896 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3897 						alloc_order);
3898 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3899 		if (reclaim_order < alloc_order)
3900 			goto kswapd_try_sleep;
3901 	}
3902 
3903 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3904 
3905 	return 0;
3906 }
3907 
3908 /*
3909  * A zone is low on free memory or too fragmented for high-order memory.  If
3910  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3911  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3912  * has failed or is not needed, still wake up kcompactd if only compaction is
3913  * needed.
3914  */
3915 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3916 		   enum zone_type classzone_idx)
3917 {
3918 	pg_data_t *pgdat;
3919 
3920 	if (!managed_zone(zone))
3921 		return;
3922 
3923 	if (!cpuset_zone_allowed(zone, gfp_flags))
3924 		return;
3925 	pgdat = zone->zone_pgdat;
3926 
3927 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3928 		pgdat->kswapd_classzone_idx = classzone_idx;
3929 	else
3930 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3931 						  classzone_idx);
3932 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3933 	if (!waitqueue_active(&pgdat->kswapd_wait))
3934 		return;
3935 
3936 	/* Hopeless node, leave it to direct reclaim if possible */
3937 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3938 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3939 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3940 		/*
3941 		 * There may be plenty of free memory available, but it's too
3942 		 * fragmented for high-order allocations.  Wake up kcompactd
3943 		 * and rely on compaction_suitable() to determine if it's
3944 		 * needed.  If it fails, it will defer subsequent attempts to
3945 		 * ratelimit its work.
3946 		 */
3947 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3948 			wakeup_kcompactd(pgdat, order, classzone_idx);
3949 		return;
3950 	}
3951 
3952 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3953 				      gfp_flags);
3954 	wake_up_interruptible(&pgdat->kswapd_wait);
3955 }
3956 
3957 #ifdef CONFIG_HIBERNATION
3958 /*
3959  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3960  * freed pages.
3961  *
3962  * Rather than trying to age LRUs the aim is to preserve the overall
3963  * LRU order by reclaiming preferentially
3964  * inactive > active > active referenced > active mapped
3965  */
3966 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3967 {
3968 	struct scan_control sc = {
3969 		.nr_to_reclaim = nr_to_reclaim,
3970 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3971 		.reclaim_idx = MAX_NR_ZONES - 1,
3972 		.priority = DEF_PRIORITY,
3973 		.may_writepage = 1,
3974 		.may_unmap = 1,
3975 		.may_swap = 1,
3976 		.hibernation_mode = 1,
3977 	};
3978 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3979 	unsigned long nr_reclaimed;
3980 	unsigned int noreclaim_flag;
3981 
3982 	fs_reclaim_acquire(sc.gfp_mask);
3983 	noreclaim_flag = memalloc_noreclaim_save();
3984 	set_task_reclaim_state(current, &sc.reclaim_state);
3985 
3986 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3987 
3988 	set_task_reclaim_state(current, NULL);
3989 	memalloc_noreclaim_restore(noreclaim_flag);
3990 	fs_reclaim_release(sc.gfp_mask);
3991 
3992 	return nr_reclaimed;
3993 }
3994 #endif /* CONFIG_HIBERNATION */
3995 
3996 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3997    not required for correctness.  So if the last cpu in a node goes
3998    away, we get changed to run anywhere: as the first one comes back,
3999    restore their cpu bindings. */
4000 static int kswapd_cpu_online(unsigned int cpu)
4001 {
4002 	int nid;
4003 
4004 	for_each_node_state(nid, N_MEMORY) {
4005 		pg_data_t *pgdat = NODE_DATA(nid);
4006 		const struct cpumask *mask;
4007 
4008 		mask = cpumask_of_node(pgdat->node_id);
4009 
4010 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4011 			/* One of our CPUs online: restore mask */
4012 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4013 	}
4014 	return 0;
4015 }
4016 
4017 /*
4018  * This kswapd start function will be called by init and node-hot-add.
4019  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4020  */
4021 int kswapd_run(int nid)
4022 {
4023 	pg_data_t *pgdat = NODE_DATA(nid);
4024 	int ret = 0;
4025 
4026 	if (pgdat->kswapd)
4027 		return 0;
4028 
4029 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4030 	if (IS_ERR(pgdat->kswapd)) {
4031 		/* failure at boot is fatal */
4032 		BUG_ON(system_state < SYSTEM_RUNNING);
4033 		pr_err("Failed to start kswapd on node %d\n", nid);
4034 		ret = PTR_ERR(pgdat->kswapd);
4035 		pgdat->kswapd = NULL;
4036 	}
4037 	return ret;
4038 }
4039 
4040 /*
4041  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4042  * hold mem_hotplug_begin/end().
4043  */
4044 void kswapd_stop(int nid)
4045 {
4046 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4047 
4048 	if (kswapd) {
4049 		kthread_stop(kswapd);
4050 		NODE_DATA(nid)->kswapd = NULL;
4051 	}
4052 }
4053 
4054 static int __init kswapd_init(void)
4055 {
4056 	int nid, ret;
4057 
4058 	swap_setup();
4059 	for_each_node_state(nid, N_MEMORY)
4060  		kswapd_run(nid);
4061 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4062 					"mm/vmscan:online", kswapd_cpu_online,
4063 					NULL);
4064 	WARN_ON(ret < 0);
4065 	return 0;
4066 }
4067 
4068 module_init(kswapd_init)
4069 
4070 #ifdef CONFIG_NUMA
4071 /*
4072  * Node reclaim mode
4073  *
4074  * If non-zero call node_reclaim when the number of free pages falls below
4075  * the watermarks.
4076  */
4077 int node_reclaim_mode __read_mostly;
4078 
4079 #define RECLAIM_OFF 0
4080 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4081 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4082 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4083 
4084 /*
4085  * Priority for NODE_RECLAIM. This determines the fraction of pages
4086  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4087  * a zone.
4088  */
4089 #define NODE_RECLAIM_PRIORITY 4
4090 
4091 /*
4092  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4093  * occur.
4094  */
4095 int sysctl_min_unmapped_ratio = 1;
4096 
4097 /*
4098  * If the number of slab pages in a zone grows beyond this percentage then
4099  * slab reclaim needs to occur.
4100  */
4101 int sysctl_min_slab_ratio = 5;
4102 
4103 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4104 {
4105 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4106 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4107 		node_page_state(pgdat, NR_ACTIVE_FILE);
4108 
4109 	/*
4110 	 * It's possible for there to be more file mapped pages than
4111 	 * accounted for by the pages on the file LRU lists because
4112 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4113 	 */
4114 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4115 }
4116 
4117 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4118 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4119 {
4120 	unsigned long nr_pagecache_reclaimable;
4121 	unsigned long delta = 0;
4122 
4123 	/*
4124 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4125 	 * potentially reclaimable. Otherwise, we have to worry about
4126 	 * pages like swapcache and node_unmapped_file_pages() provides
4127 	 * a better estimate
4128 	 */
4129 	if (node_reclaim_mode & RECLAIM_UNMAP)
4130 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4131 	else
4132 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4133 
4134 	/* If we can't clean pages, remove dirty pages from consideration */
4135 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4136 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4137 
4138 	/* Watch for any possible underflows due to delta */
4139 	if (unlikely(delta > nr_pagecache_reclaimable))
4140 		delta = nr_pagecache_reclaimable;
4141 
4142 	return nr_pagecache_reclaimable - delta;
4143 }
4144 
4145 /*
4146  * Try to free up some pages from this node through reclaim.
4147  */
4148 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4149 {
4150 	/* Minimum pages needed in order to stay on node */
4151 	const unsigned long nr_pages = 1 << order;
4152 	struct task_struct *p = current;
4153 	unsigned int noreclaim_flag;
4154 	struct scan_control sc = {
4155 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4156 		.gfp_mask = current_gfp_context(gfp_mask),
4157 		.order = order,
4158 		.priority = NODE_RECLAIM_PRIORITY,
4159 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4160 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4161 		.may_swap = 1,
4162 		.reclaim_idx = gfp_zone(gfp_mask),
4163 	};
4164 
4165 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4166 					   sc.gfp_mask);
4167 
4168 	cond_resched();
4169 	fs_reclaim_acquire(sc.gfp_mask);
4170 	/*
4171 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4172 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4173 	 * and RECLAIM_UNMAP.
4174 	 */
4175 	noreclaim_flag = memalloc_noreclaim_save();
4176 	p->flags |= PF_SWAPWRITE;
4177 	set_task_reclaim_state(p, &sc.reclaim_state);
4178 
4179 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4180 		/*
4181 		 * Free memory by calling shrink node with increasing
4182 		 * priorities until we have enough memory freed.
4183 		 */
4184 		do {
4185 			shrink_node(pgdat, &sc);
4186 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4187 	}
4188 
4189 	set_task_reclaim_state(p, NULL);
4190 	current->flags &= ~PF_SWAPWRITE;
4191 	memalloc_noreclaim_restore(noreclaim_flag);
4192 	fs_reclaim_release(sc.gfp_mask);
4193 
4194 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4195 
4196 	return sc.nr_reclaimed >= nr_pages;
4197 }
4198 
4199 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4200 {
4201 	int ret;
4202 
4203 	/*
4204 	 * Node reclaim reclaims unmapped file backed pages and
4205 	 * slab pages if we are over the defined limits.
4206 	 *
4207 	 * A small portion of unmapped file backed pages is needed for
4208 	 * file I/O otherwise pages read by file I/O will be immediately
4209 	 * thrown out if the node is overallocated. So we do not reclaim
4210 	 * if less than a specified percentage of the node is used by
4211 	 * unmapped file backed pages.
4212 	 */
4213 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4214 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4215 		return NODE_RECLAIM_FULL;
4216 
4217 	/*
4218 	 * Do not scan if the allocation should not be delayed.
4219 	 */
4220 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4221 		return NODE_RECLAIM_NOSCAN;
4222 
4223 	/*
4224 	 * Only run node reclaim on the local node or on nodes that do not
4225 	 * have associated processors. This will favor the local processor
4226 	 * over remote processors and spread off node memory allocations
4227 	 * as wide as possible.
4228 	 */
4229 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4230 		return NODE_RECLAIM_NOSCAN;
4231 
4232 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4233 		return NODE_RECLAIM_NOSCAN;
4234 
4235 	ret = __node_reclaim(pgdat, gfp_mask, order);
4236 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4237 
4238 	if (!ret)
4239 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4240 
4241 	return ret;
4242 }
4243 #endif
4244 
4245 /*
4246  * page_evictable - test whether a page is evictable
4247  * @page: the page to test
4248  *
4249  * Test whether page is evictable--i.e., should be placed on active/inactive
4250  * lists vs unevictable list.
4251  *
4252  * Reasons page might not be evictable:
4253  * (1) page's mapping marked unevictable
4254  * (2) page is part of an mlocked VMA
4255  *
4256  */
4257 int page_evictable(struct page *page)
4258 {
4259 	int ret;
4260 
4261 	/* Prevent address_space of inode and swap cache from being freed */
4262 	rcu_read_lock();
4263 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4264 	rcu_read_unlock();
4265 	return ret;
4266 }
4267 
4268 /**
4269  * check_move_unevictable_pages - check pages for evictability and move to
4270  * appropriate zone lru list
4271  * @pvec: pagevec with lru pages to check
4272  *
4273  * Checks pages for evictability, if an evictable page is in the unevictable
4274  * lru list, moves it to the appropriate evictable lru list. This function
4275  * should be only used for lru pages.
4276  */
4277 void check_move_unevictable_pages(struct pagevec *pvec)
4278 {
4279 	struct lruvec *lruvec;
4280 	struct pglist_data *pgdat = NULL;
4281 	int pgscanned = 0;
4282 	int pgrescued = 0;
4283 	int i;
4284 
4285 	for (i = 0; i < pvec->nr; i++) {
4286 		struct page *page = pvec->pages[i];
4287 		struct pglist_data *pagepgdat = page_pgdat(page);
4288 
4289 		pgscanned++;
4290 		if (pagepgdat != pgdat) {
4291 			if (pgdat)
4292 				spin_unlock_irq(&pgdat->lru_lock);
4293 			pgdat = pagepgdat;
4294 			spin_lock_irq(&pgdat->lru_lock);
4295 		}
4296 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4297 
4298 		if (!PageLRU(page) || !PageUnevictable(page))
4299 			continue;
4300 
4301 		if (page_evictable(page)) {
4302 			enum lru_list lru = page_lru_base_type(page);
4303 
4304 			VM_BUG_ON_PAGE(PageActive(page), page);
4305 			ClearPageUnevictable(page);
4306 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4307 			add_page_to_lru_list(page, lruvec, lru);
4308 			pgrescued++;
4309 		}
4310 	}
4311 
4312 	if (pgdat) {
4313 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4314 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4315 		spin_unlock_irq(&pgdat->lru_lock);
4316 	}
4317 }
4318 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4319