1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* 92 * Cgroups are not reclaimed below their configured memory.low, 93 * unless we threaten to OOM. If any cgroups are skipped due to 94 * memory.low and nothing was reclaimed, go back for memory.low. 95 */ 96 unsigned int memcg_low_reclaim:1; 97 unsigned int memcg_low_skipped:1; 98 99 unsigned int hibernation_mode:1; 100 101 /* One of the zones is ready for compaction */ 102 unsigned int compaction_ready:1; 103 104 /* Allocation order */ 105 s8 order; 106 107 /* Scan (total_size >> priority) pages at once */ 108 s8 priority; 109 110 /* The highest zone to isolate pages for reclaim from */ 111 s8 reclaim_idx; 112 113 /* This context's GFP mask */ 114 gfp_t gfp_mask; 115 116 /* Incremented by the number of inactive pages that were scanned */ 117 unsigned long nr_scanned; 118 119 /* Number of pages freed so far during a call to shrink_zones() */ 120 unsigned long nr_reclaimed; 121 122 struct { 123 unsigned int dirty; 124 unsigned int unqueued_dirty; 125 unsigned int congested; 126 unsigned int writeback; 127 unsigned int immediate; 128 unsigned int file_taken; 129 unsigned int taken; 130 } nr; 131 132 /* for recording the reclaimed slab by now */ 133 struct reclaim_state reclaim_state; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static void set_task_reclaim_state(struct task_struct *task, 175 struct reclaim_state *rs) 176 { 177 /* Check for an overwrite */ 178 WARN_ON_ONCE(rs && task->reclaim_state); 179 180 /* Check for the nulling of an already-nulled member */ 181 WARN_ON_ONCE(!rs && !task->reclaim_state); 182 183 task->reclaim_state = rs; 184 } 185 186 static LIST_HEAD(shrinker_list); 187 static DECLARE_RWSEM(shrinker_rwsem); 188 189 #ifdef CONFIG_MEMCG 190 /* 191 * We allow subsystems to populate their shrinker-related 192 * LRU lists before register_shrinker_prepared() is called 193 * for the shrinker, since we don't want to impose 194 * restrictions on their internal registration order. 195 * In this case shrink_slab_memcg() may find corresponding 196 * bit is set in the shrinkers map. 197 * 198 * This value is used by the function to detect registering 199 * shrinkers and to skip do_shrink_slab() calls for them. 200 */ 201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 202 203 static DEFINE_IDR(shrinker_idr); 204 static int shrinker_nr_max; 205 206 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 207 { 208 int id, ret = -ENOMEM; 209 210 down_write(&shrinker_rwsem); 211 /* This may call shrinker, so it must use down_read_trylock() */ 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 213 if (id < 0) 214 goto unlock; 215 216 if (id >= shrinker_nr_max) { 217 if (memcg_expand_shrinker_maps(id)) { 218 idr_remove(&shrinker_idr, id); 219 goto unlock; 220 } 221 222 shrinker_nr_max = id + 1; 223 } 224 shrinker->id = id; 225 ret = 0; 226 unlock: 227 up_write(&shrinker_rwsem); 228 return ret; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 int id = shrinker->id; 234 235 BUG_ON(id < 0); 236 237 down_write(&shrinker_rwsem); 238 idr_remove(&shrinker_idr, id); 239 up_write(&shrinker_rwsem); 240 } 241 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 297 { 298 return 0; 299 } 300 301 static void unregister_memcg_shrinker(struct shrinker *shrinker) 302 { 303 } 304 305 static bool global_reclaim(struct scan_control *sc) 306 { 307 return true; 308 } 309 310 static bool sane_reclaim(struct scan_control *sc) 311 { 312 return true; 313 } 314 315 static inline void set_memcg_congestion(struct pglist_data *pgdat, 316 struct mem_cgroup *memcg, bool congested) 317 { 318 } 319 320 static inline bool memcg_congested(struct pglist_data *pgdat, 321 struct mem_cgroup *memcg) 322 { 323 return false; 324 325 } 326 #endif 327 328 /* 329 * This misses isolated pages which are not accounted for to save counters. 330 * As the data only determines if reclaim or compaction continues, it is 331 * not expected that isolated pages will be a dominating factor. 332 */ 333 unsigned long zone_reclaimable_pages(struct zone *zone) 334 { 335 unsigned long nr; 336 337 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 338 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 339 if (get_nr_swap_pages() > 0) 340 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 342 343 return nr; 344 } 345 346 /** 347 * lruvec_lru_size - Returns the number of pages on the given LRU list. 348 * @lruvec: lru vector 349 * @lru: lru to use 350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 351 */ 352 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 353 { 354 unsigned long lru_size; 355 int zid; 356 357 if (!mem_cgroup_disabled()) 358 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 359 else 360 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 361 362 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 363 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 364 unsigned long size; 365 366 if (!managed_zone(zone)) 367 continue; 368 369 if (!mem_cgroup_disabled()) 370 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 371 else 372 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 373 NR_ZONE_LRU_BASE + lru); 374 lru_size -= min(size, lru_size); 375 } 376 377 return lru_size; 378 379 } 380 381 /* 382 * Add a shrinker callback to be called from the vm. 383 */ 384 int prealloc_shrinker(struct shrinker *shrinker) 385 { 386 unsigned int size = sizeof(*shrinker->nr_deferred); 387 388 if (shrinker->flags & SHRINKER_NUMA_AWARE) 389 size *= nr_node_ids; 390 391 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 392 if (!shrinker->nr_deferred) 393 return -ENOMEM; 394 395 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 396 if (prealloc_memcg_shrinker(shrinker)) 397 goto free_deferred; 398 } 399 400 return 0; 401 402 free_deferred: 403 kfree(shrinker->nr_deferred); 404 shrinker->nr_deferred = NULL; 405 return -ENOMEM; 406 } 407 408 void free_prealloced_shrinker(struct shrinker *shrinker) 409 { 410 if (!shrinker->nr_deferred) 411 return; 412 413 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 414 unregister_memcg_shrinker(shrinker); 415 416 kfree(shrinker->nr_deferred); 417 shrinker->nr_deferred = NULL; 418 } 419 420 void register_shrinker_prepared(struct shrinker *shrinker) 421 { 422 down_write(&shrinker_rwsem); 423 list_add_tail(&shrinker->list, &shrinker_list); 424 #ifdef CONFIG_MEMCG_KMEM 425 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 426 idr_replace(&shrinker_idr, shrinker, shrinker->id); 427 #endif 428 up_write(&shrinker_rwsem); 429 } 430 431 int register_shrinker(struct shrinker *shrinker) 432 { 433 int err = prealloc_shrinker(shrinker); 434 435 if (err) 436 return err; 437 register_shrinker_prepared(shrinker); 438 return 0; 439 } 440 EXPORT_SYMBOL(register_shrinker); 441 442 /* 443 * Remove one 444 */ 445 void unregister_shrinker(struct shrinker *shrinker) 446 { 447 if (!shrinker->nr_deferred) 448 return; 449 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 450 unregister_memcg_shrinker(shrinker); 451 down_write(&shrinker_rwsem); 452 list_del(&shrinker->list); 453 up_write(&shrinker_rwsem); 454 kfree(shrinker->nr_deferred); 455 shrinker->nr_deferred = NULL; 456 } 457 EXPORT_SYMBOL(unregister_shrinker); 458 459 #define SHRINK_BATCH 128 460 461 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 462 struct shrinker *shrinker, int priority) 463 { 464 unsigned long freed = 0; 465 unsigned long long delta; 466 long total_scan; 467 long freeable; 468 long nr; 469 long new_nr; 470 int nid = shrinkctl->nid; 471 long batch_size = shrinker->batch ? shrinker->batch 472 : SHRINK_BATCH; 473 long scanned = 0, next_deferred; 474 475 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 476 nid = 0; 477 478 freeable = shrinker->count_objects(shrinker, shrinkctl); 479 if (freeable == 0 || freeable == SHRINK_EMPTY) 480 return freeable; 481 482 /* 483 * copy the current shrinker scan count into a local variable 484 * and zero it so that other concurrent shrinker invocations 485 * don't also do this scanning work. 486 */ 487 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 488 489 total_scan = nr; 490 if (shrinker->seeks) { 491 delta = freeable >> priority; 492 delta *= 4; 493 do_div(delta, shrinker->seeks); 494 } else { 495 /* 496 * These objects don't require any IO to create. Trim 497 * them aggressively under memory pressure to keep 498 * them from causing refetches in the IO caches. 499 */ 500 delta = freeable / 2; 501 } 502 503 total_scan += delta; 504 if (total_scan < 0) { 505 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 506 shrinker->scan_objects, total_scan); 507 total_scan = freeable; 508 next_deferred = nr; 509 } else 510 next_deferred = total_scan; 511 512 /* 513 * We need to avoid excessive windup on filesystem shrinkers 514 * due to large numbers of GFP_NOFS allocations causing the 515 * shrinkers to return -1 all the time. This results in a large 516 * nr being built up so when a shrink that can do some work 517 * comes along it empties the entire cache due to nr >>> 518 * freeable. This is bad for sustaining a working set in 519 * memory. 520 * 521 * Hence only allow the shrinker to scan the entire cache when 522 * a large delta change is calculated directly. 523 */ 524 if (delta < freeable / 4) 525 total_scan = min(total_scan, freeable / 2); 526 527 /* 528 * Avoid risking looping forever due to too large nr value: 529 * never try to free more than twice the estimate number of 530 * freeable entries. 531 */ 532 if (total_scan > freeable * 2) 533 total_scan = freeable * 2; 534 535 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 536 freeable, delta, total_scan, priority); 537 538 /* 539 * Normally, we should not scan less than batch_size objects in one 540 * pass to avoid too frequent shrinker calls, but if the slab has less 541 * than batch_size objects in total and we are really tight on memory, 542 * we will try to reclaim all available objects, otherwise we can end 543 * up failing allocations although there are plenty of reclaimable 544 * objects spread over several slabs with usage less than the 545 * batch_size. 546 * 547 * We detect the "tight on memory" situations by looking at the total 548 * number of objects we want to scan (total_scan). If it is greater 549 * than the total number of objects on slab (freeable), we must be 550 * scanning at high prio and therefore should try to reclaim as much as 551 * possible. 552 */ 553 while (total_scan >= batch_size || 554 total_scan >= freeable) { 555 unsigned long ret; 556 unsigned long nr_to_scan = min(batch_size, total_scan); 557 558 shrinkctl->nr_to_scan = nr_to_scan; 559 shrinkctl->nr_scanned = nr_to_scan; 560 ret = shrinker->scan_objects(shrinker, shrinkctl); 561 if (ret == SHRINK_STOP) 562 break; 563 freed += ret; 564 565 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 566 total_scan -= shrinkctl->nr_scanned; 567 scanned += shrinkctl->nr_scanned; 568 569 cond_resched(); 570 } 571 572 if (next_deferred >= scanned) 573 next_deferred -= scanned; 574 else 575 next_deferred = 0; 576 /* 577 * move the unused scan count back into the shrinker in a 578 * manner that handles concurrent updates. If we exhausted the 579 * scan, there is no need to do an update. 580 */ 581 if (next_deferred > 0) 582 new_nr = atomic_long_add_return(next_deferred, 583 &shrinker->nr_deferred[nid]); 584 else 585 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 586 587 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 588 return freed; 589 } 590 591 #ifdef CONFIG_MEMCG 592 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 593 struct mem_cgroup *memcg, int priority) 594 { 595 struct memcg_shrinker_map *map; 596 unsigned long ret, freed = 0; 597 int i; 598 599 if (!mem_cgroup_online(memcg)) 600 return 0; 601 602 if (!down_read_trylock(&shrinker_rwsem)) 603 return 0; 604 605 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 606 true); 607 if (unlikely(!map)) 608 goto unlock; 609 610 for_each_set_bit(i, map->map, shrinker_nr_max) { 611 struct shrink_control sc = { 612 .gfp_mask = gfp_mask, 613 .nid = nid, 614 .memcg = memcg, 615 }; 616 struct shrinker *shrinker; 617 618 shrinker = idr_find(&shrinker_idr, i); 619 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 620 if (!shrinker) 621 clear_bit(i, map->map); 622 continue; 623 } 624 625 /* Call non-slab shrinkers even though kmem is disabled */ 626 if (!memcg_kmem_enabled() && 627 !(shrinker->flags & SHRINKER_NONSLAB)) 628 continue; 629 630 ret = do_shrink_slab(&sc, shrinker, priority); 631 if (ret == SHRINK_EMPTY) { 632 clear_bit(i, map->map); 633 /* 634 * After the shrinker reported that it had no objects to 635 * free, but before we cleared the corresponding bit in 636 * the memcg shrinker map, a new object might have been 637 * added. To make sure, we have the bit set in this 638 * case, we invoke the shrinker one more time and reset 639 * the bit if it reports that it is not empty anymore. 640 * The memory barrier here pairs with the barrier in 641 * memcg_set_shrinker_bit(): 642 * 643 * list_lru_add() shrink_slab_memcg() 644 * list_add_tail() clear_bit() 645 * <MB> <MB> 646 * set_bit() do_shrink_slab() 647 */ 648 smp_mb__after_atomic(); 649 ret = do_shrink_slab(&sc, shrinker, priority); 650 if (ret == SHRINK_EMPTY) 651 ret = 0; 652 else 653 memcg_set_shrinker_bit(memcg, nid, i); 654 } 655 freed += ret; 656 657 if (rwsem_is_contended(&shrinker_rwsem)) { 658 freed = freed ? : 1; 659 break; 660 } 661 } 662 unlock: 663 up_read(&shrinker_rwsem); 664 return freed; 665 } 666 #else /* CONFIG_MEMCG */ 667 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 668 struct mem_cgroup *memcg, int priority) 669 { 670 return 0; 671 } 672 #endif /* CONFIG_MEMCG */ 673 674 /** 675 * shrink_slab - shrink slab caches 676 * @gfp_mask: allocation context 677 * @nid: node whose slab caches to target 678 * @memcg: memory cgroup whose slab caches to target 679 * @priority: the reclaim priority 680 * 681 * Call the shrink functions to age shrinkable caches. 682 * 683 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 684 * unaware shrinkers will receive a node id of 0 instead. 685 * 686 * @memcg specifies the memory cgroup to target. Unaware shrinkers 687 * are called only if it is the root cgroup. 688 * 689 * @priority is sc->priority, we take the number of objects and >> by priority 690 * in order to get the scan target. 691 * 692 * Returns the number of reclaimed slab objects. 693 */ 694 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 695 struct mem_cgroup *memcg, 696 int priority) 697 { 698 unsigned long ret, freed = 0; 699 struct shrinker *shrinker; 700 701 /* 702 * The root memcg might be allocated even though memcg is disabled 703 * via "cgroup_disable=memory" boot parameter. This could make 704 * mem_cgroup_is_root() return false, then just run memcg slab 705 * shrink, but skip global shrink. This may result in premature 706 * oom. 707 */ 708 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 709 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 710 711 if (!down_read_trylock(&shrinker_rwsem)) 712 goto out; 713 714 list_for_each_entry(shrinker, &shrinker_list, list) { 715 struct shrink_control sc = { 716 .gfp_mask = gfp_mask, 717 .nid = nid, 718 .memcg = memcg, 719 }; 720 721 ret = do_shrink_slab(&sc, shrinker, priority); 722 if (ret == SHRINK_EMPTY) 723 ret = 0; 724 freed += ret; 725 /* 726 * Bail out if someone want to register a new shrinker to 727 * prevent the regsitration from being stalled for long periods 728 * by parallel ongoing shrinking. 729 */ 730 if (rwsem_is_contended(&shrinker_rwsem)) { 731 freed = freed ? : 1; 732 break; 733 } 734 } 735 736 up_read(&shrinker_rwsem); 737 out: 738 cond_resched(); 739 return freed; 740 } 741 742 void drop_slab_node(int nid) 743 { 744 unsigned long freed; 745 746 do { 747 struct mem_cgroup *memcg = NULL; 748 749 freed = 0; 750 memcg = mem_cgroup_iter(NULL, NULL, NULL); 751 do { 752 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 753 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 754 } while (freed > 10); 755 } 756 757 void drop_slab(void) 758 { 759 int nid; 760 761 for_each_online_node(nid) 762 drop_slab_node(nid); 763 } 764 765 static inline int is_page_cache_freeable(struct page *page) 766 { 767 /* 768 * A freeable page cache page is referenced only by the caller 769 * that isolated the page, the page cache and optional buffer 770 * heads at page->private. 771 */ 772 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 773 HPAGE_PMD_NR : 1; 774 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 775 } 776 777 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 778 { 779 if (current->flags & PF_SWAPWRITE) 780 return 1; 781 if (!inode_write_congested(inode)) 782 return 1; 783 if (inode_to_bdi(inode) == current->backing_dev_info) 784 return 1; 785 return 0; 786 } 787 788 /* 789 * We detected a synchronous write error writing a page out. Probably 790 * -ENOSPC. We need to propagate that into the address_space for a subsequent 791 * fsync(), msync() or close(). 792 * 793 * The tricky part is that after writepage we cannot touch the mapping: nothing 794 * prevents it from being freed up. But we have a ref on the page and once 795 * that page is locked, the mapping is pinned. 796 * 797 * We're allowed to run sleeping lock_page() here because we know the caller has 798 * __GFP_FS. 799 */ 800 static void handle_write_error(struct address_space *mapping, 801 struct page *page, int error) 802 { 803 lock_page(page); 804 if (page_mapping(page) == mapping) 805 mapping_set_error(mapping, error); 806 unlock_page(page); 807 } 808 809 /* possible outcome of pageout() */ 810 typedef enum { 811 /* failed to write page out, page is locked */ 812 PAGE_KEEP, 813 /* move page to the active list, page is locked */ 814 PAGE_ACTIVATE, 815 /* page has been sent to the disk successfully, page is unlocked */ 816 PAGE_SUCCESS, 817 /* page is clean and locked */ 818 PAGE_CLEAN, 819 } pageout_t; 820 821 /* 822 * pageout is called by shrink_page_list() for each dirty page. 823 * Calls ->writepage(). 824 */ 825 static pageout_t pageout(struct page *page, struct address_space *mapping, 826 struct scan_control *sc) 827 { 828 /* 829 * If the page is dirty, only perform writeback if that write 830 * will be non-blocking. To prevent this allocation from being 831 * stalled by pagecache activity. But note that there may be 832 * stalls if we need to run get_block(). We could test 833 * PagePrivate for that. 834 * 835 * If this process is currently in __generic_file_write_iter() against 836 * this page's queue, we can perform writeback even if that 837 * will block. 838 * 839 * If the page is swapcache, write it back even if that would 840 * block, for some throttling. This happens by accident, because 841 * swap_backing_dev_info is bust: it doesn't reflect the 842 * congestion state of the swapdevs. Easy to fix, if needed. 843 */ 844 if (!is_page_cache_freeable(page)) 845 return PAGE_KEEP; 846 if (!mapping) { 847 /* 848 * Some data journaling orphaned pages can have 849 * page->mapping == NULL while being dirty with clean buffers. 850 */ 851 if (page_has_private(page)) { 852 if (try_to_free_buffers(page)) { 853 ClearPageDirty(page); 854 pr_info("%s: orphaned page\n", __func__); 855 return PAGE_CLEAN; 856 } 857 } 858 return PAGE_KEEP; 859 } 860 if (mapping->a_ops->writepage == NULL) 861 return PAGE_ACTIVATE; 862 if (!may_write_to_inode(mapping->host, sc)) 863 return PAGE_KEEP; 864 865 if (clear_page_dirty_for_io(page)) { 866 int res; 867 struct writeback_control wbc = { 868 .sync_mode = WB_SYNC_NONE, 869 .nr_to_write = SWAP_CLUSTER_MAX, 870 .range_start = 0, 871 .range_end = LLONG_MAX, 872 .for_reclaim = 1, 873 }; 874 875 SetPageReclaim(page); 876 res = mapping->a_ops->writepage(page, &wbc); 877 if (res < 0) 878 handle_write_error(mapping, page, res); 879 if (res == AOP_WRITEPAGE_ACTIVATE) { 880 ClearPageReclaim(page); 881 return PAGE_ACTIVATE; 882 } 883 884 if (!PageWriteback(page)) { 885 /* synchronous write or broken a_ops? */ 886 ClearPageReclaim(page); 887 } 888 trace_mm_vmscan_writepage(page); 889 inc_node_page_state(page, NR_VMSCAN_WRITE); 890 return PAGE_SUCCESS; 891 } 892 893 return PAGE_CLEAN; 894 } 895 896 /* 897 * Same as remove_mapping, but if the page is removed from the mapping, it 898 * gets returned with a refcount of 0. 899 */ 900 static int __remove_mapping(struct address_space *mapping, struct page *page, 901 bool reclaimed) 902 { 903 unsigned long flags; 904 int refcount; 905 906 BUG_ON(!PageLocked(page)); 907 BUG_ON(mapping != page_mapping(page)); 908 909 xa_lock_irqsave(&mapping->i_pages, flags); 910 /* 911 * The non racy check for a busy page. 912 * 913 * Must be careful with the order of the tests. When someone has 914 * a ref to the page, it may be possible that they dirty it then 915 * drop the reference. So if PageDirty is tested before page_count 916 * here, then the following race may occur: 917 * 918 * get_user_pages(&page); 919 * [user mapping goes away] 920 * write_to(page); 921 * !PageDirty(page) [good] 922 * SetPageDirty(page); 923 * put_page(page); 924 * !page_count(page) [good, discard it] 925 * 926 * [oops, our write_to data is lost] 927 * 928 * Reversing the order of the tests ensures such a situation cannot 929 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 930 * load is not satisfied before that of page->_refcount. 931 * 932 * Note that if SetPageDirty is always performed via set_page_dirty, 933 * and thus under the i_pages lock, then this ordering is not required. 934 */ 935 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 936 refcount = 1 + HPAGE_PMD_NR; 937 else 938 refcount = 2; 939 if (!page_ref_freeze(page, refcount)) 940 goto cannot_free; 941 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 942 if (unlikely(PageDirty(page))) { 943 page_ref_unfreeze(page, refcount); 944 goto cannot_free; 945 } 946 947 if (PageSwapCache(page)) { 948 swp_entry_t swap = { .val = page_private(page) }; 949 mem_cgroup_swapout(page, swap); 950 __delete_from_swap_cache(page, swap); 951 xa_unlock_irqrestore(&mapping->i_pages, flags); 952 put_swap_page(page, swap); 953 } else { 954 void (*freepage)(struct page *); 955 void *shadow = NULL; 956 957 freepage = mapping->a_ops->freepage; 958 /* 959 * Remember a shadow entry for reclaimed file cache in 960 * order to detect refaults, thus thrashing, later on. 961 * 962 * But don't store shadows in an address space that is 963 * already exiting. This is not just an optizimation, 964 * inode reclaim needs to empty out the radix tree or 965 * the nodes are lost. Don't plant shadows behind its 966 * back. 967 * 968 * We also don't store shadows for DAX mappings because the 969 * only page cache pages found in these are zero pages 970 * covering holes, and because we don't want to mix DAX 971 * exceptional entries and shadow exceptional entries in the 972 * same address_space. 973 */ 974 if (reclaimed && page_is_file_cache(page) && 975 !mapping_exiting(mapping) && !dax_mapping(mapping)) 976 shadow = workingset_eviction(page); 977 __delete_from_page_cache(page, shadow); 978 xa_unlock_irqrestore(&mapping->i_pages, flags); 979 980 if (freepage != NULL) 981 freepage(page); 982 } 983 984 return 1; 985 986 cannot_free: 987 xa_unlock_irqrestore(&mapping->i_pages, flags); 988 return 0; 989 } 990 991 /* 992 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 993 * someone else has a ref on the page, abort and return 0. If it was 994 * successfully detached, return 1. Assumes the caller has a single ref on 995 * this page. 996 */ 997 int remove_mapping(struct address_space *mapping, struct page *page) 998 { 999 if (__remove_mapping(mapping, page, false)) { 1000 /* 1001 * Unfreezing the refcount with 1 rather than 2 effectively 1002 * drops the pagecache ref for us without requiring another 1003 * atomic operation. 1004 */ 1005 page_ref_unfreeze(page, 1); 1006 return 1; 1007 } 1008 return 0; 1009 } 1010 1011 /** 1012 * putback_lru_page - put previously isolated page onto appropriate LRU list 1013 * @page: page to be put back to appropriate lru list 1014 * 1015 * Add previously isolated @page to appropriate LRU list. 1016 * Page may still be unevictable for other reasons. 1017 * 1018 * lru_lock must not be held, interrupts must be enabled. 1019 */ 1020 void putback_lru_page(struct page *page) 1021 { 1022 lru_cache_add(page); 1023 put_page(page); /* drop ref from isolate */ 1024 } 1025 1026 enum page_references { 1027 PAGEREF_RECLAIM, 1028 PAGEREF_RECLAIM_CLEAN, 1029 PAGEREF_KEEP, 1030 PAGEREF_ACTIVATE, 1031 }; 1032 1033 static enum page_references page_check_references(struct page *page, 1034 struct scan_control *sc) 1035 { 1036 int referenced_ptes, referenced_page; 1037 unsigned long vm_flags; 1038 1039 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1040 &vm_flags); 1041 referenced_page = TestClearPageReferenced(page); 1042 1043 /* 1044 * Mlock lost the isolation race with us. Let try_to_unmap() 1045 * move the page to the unevictable list. 1046 */ 1047 if (vm_flags & VM_LOCKED) 1048 return PAGEREF_RECLAIM; 1049 1050 if (referenced_ptes) { 1051 if (PageSwapBacked(page)) 1052 return PAGEREF_ACTIVATE; 1053 /* 1054 * All mapped pages start out with page table 1055 * references from the instantiating fault, so we need 1056 * to look twice if a mapped file page is used more 1057 * than once. 1058 * 1059 * Mark it and spare it for another trip around the 1060 * inactive list. Another page table reference will 1061 * lead to its activation. 1062 * 1063 * Note: the mark is set for activated pages as well 1064 * so that recently deactivated but used pages are 1065 * quickly recovered. 1066 */ 1067 SetPageReferenced(page); 1068 1069 if (referenced_page || referenced_ptes > 1) 1070 return PAGEREF_ACTIVATE; 1071 1072 /* 1073 * Activate file-backed executable pages after first usage. 1074 */ 1075 if (vm_flags & VM_EXEC) 1076 return PAGEREF_ACTIVATE; 1077 1078 return PAGEREF_KEEP; 1079 } 1080 1081 /* Reclaim if clean, defer dirty pages to writeback */ 1082 if (referenced_page && !PageSwapBacked(page)) 1083 return PAGEREF_RECLAIM_CLEAN; 1084 1085 return PAGEREF_RECLAIM; 1086 } 1087 1088 /* Check if a page is dirty or under writeback */ 1089 static void page_check_dirty_writeback(struct page *page, 1090 bool *dirty, bool *writeback) 1091 { 1092 struct address_space *mapping; 1093 1094 /* 1095 * Anonymous pages are not handled by flushers and must be written 1096 * from reclaim context. Do not stall reclaim based on them 1097 */ 1098 if (!page_is_file_cache(page) || 1099 (PageAnon(page) && !PageSwapBacked(page))) { 1100 *dirty = false; 1101 *writeback = false; 1102 return; 1103 } 1104 1105 /* By default assume that the page flags are accurate */ 1106 *dirty = PageDirty(page); 1107 *writeback = PageWriteback(page); 1108 1109 /* Verify dirty/writeback state if the filesystem supports it */ 1110 if (!page_has_private(page)) 1111 return; 1112 1113 mapping = page_mapping(page); 1114 if (mapping && mapping->a_ops->is_dirty_writeback) 1115 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1116 } 1117 1118 /* 1119 * shrink_page_list() returns the number of reclaimed pages 1120 */ 1121 static unsigned long shrink_page_list(struct list_head *page_list, 1122 struct pglist_data *pgdat, 1123 struct scan_control *sc, 1124 enum ttu_flags ttu_flags, 1125 struct reclaim_stat *stat, 1126 bool ignore_references) 1127 { 1128 LIST_HEAD(ret_pages); 1129 LIST_HEAD(free_pages); 1130 unsigned nr_reclaimed = 0; 1131 unsigned pgactivate = 0; 1132 1133 memset(stat, 0, sizeof(*stat)); 1134 cond_resched(); 1135 1136 while (!list_empty(page_list)) { 1137 struct address_space *mapping; 1138 struct page *page; 1139 int may_enter_fs; 1140 enum page_references references = PAGEREF_RECLAIM; 1141 bool dirty, writeback; 1142 unsigned int nr_pages; 1143 1144 cond_resched(); 1145 1146 page = lru_to_page(page_list); 1147 list_del(&page->lru); 1148 1149 if (!trylock_page(page)) 1150 goto keep; 1151 1152 VM_BUG_ON_PAGE(PageActive(page), page); 1153 1154 nr_pages = compound_nr(page); 1155 1156 /* Account the number of base pages even though THP */ 1157 sc->nr_scanned += nr_pages; 1158 1159 if (unlikely(!page_evictable(page))) 1160 goto activate_locked; 1161 1162 if (!sc->may_unmap && page_mapped(page)) 1163 goto keep_locked; 1164 1165 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1166 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1167 1168 /* 1169 * The number of dirty pages determines if a node is marked 1170 * reclaim_congested which affects wait_iff_congested. kswapd 1171 * will stall and start writing pages if the tail of the LRU 1172 * is all dirty unqueued pages. 1173 */ 1174 page_check_dirty_writeback(page, &dirty, &writeback); 1175 if (dirty || writeback) 1176 stat->nr_dirty++; 1177 1178 if (dirty && !writeback) 1179 stat->nr_unqueued_dirty++; 1180 1181 /* 1182 * Treat this page as congested if the underlying BDI is or if 1183 * pages are cycling through the LRU so quickly that the 1184 * pages marked for immediate reclaim are making it to the 1185 * end of the LRU a second time. 1186 */ 1187 mapping = page_mapping(page); 1188 if (((dirty || writeback) && mapping && 1189 inode_write_congested(mapping->host)) || 1190 (writeback && PageReclaim(page))) 1191 stat->nr_congested++; 1192 1193 /* 1194 * If a page at the tail of the LRU is under writeback, there 1195 * are three cases to consider. 1196 * 1197 * 1) If reclaim is encountering an excessive number of pages 1198 * under writeback and this page is both under writeback and 1199 * PageReclaim then it indicates that pages are being queued 1200 * for IO but are being recycled through the LRU before the 1201 * IO can complete. Waiting on the page itself risks an 1202 * indefinite stall if it is impossible to writeback the 1203 * page due to IO error or disconnected storage so instead 1204 * note that the LRU is being scanned too quickly and the 1205 * caller can stall after page list has been processed. 1206 * 1207 * 2) Global or new memcg reclaim encounters a page that is 1208 * not marked for immediate reclaim, or the caller does not 1209 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1210 * not to fs). In this case mark the page for immediate 1211 * reclaim and continue scanning. 1212 * 1213 * Require may_enter_fs because we would wait on fs, which 1214 * may not have submitted IO yet. And the loop driver might 1215 * enter reclaim, and deadlock if it waits on a page for 1216 * which it is needed to do the write (loop masks off 1217 * __GFP_IO|__GFP_FS for this reason); but more thought 1218 * would probably show more reasons. 1219 * 1220 * 3) Legacy memcg encounters a page that is already marked 1221 * PageReclaim. memcg does not have any dirty pages 1222 * throttling so we could easily OOM just because too many 1223 * pages are in writeback and there is nothing else to 1224 * reclaim. Wait for the writeback to complete. 1225 * 1226 * In cases 1) and 2) we activate the pages to get them out of 1227 * the way while we continue scanning for clean pages on the 1228 * inactive list and refilling from the active list. The 1229 * observation here is that waiting for disk writes is more 1230 * expensive than potentially causing reloads down the line. 1231 * Since they're marked for immediate reclaim, they won't put 1232 * memory pressure on the cache working set any longer than it 1233 * takes to write them to disk. 1234 */ 1235 if (PageWriteback(page)) { 1236 /* Case 1 above */ 1237 if (current_is_kswapd() && 1238 PageReclaim(page) && 1239 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1240 stat->nr_immediate++; 1241 goto activate_locked; 1242 1243 /* Case 2 above */ 1244 } else if (sane_reclaim(sc) || 1245 !PageReclaim(page) || !may_enter_fs) { 1246 /* 1247 * This is slightly racy - end_page_writeback() 1248 * might have just cleared PageReclaim, then 1249 * setting PageReclaim here end up interpreted 1250 * as PageReadahead - but that does not matter 1251 * enough to care. What we do want is for this 1252 * page to have PageReclaim set next time memcg 1253 * reclaim reaches the tests above, so it will 1254 * then wait_on_page_writeback() to avoid OOM; 1255 * and it's also appropriate in global reclaim. 1256 */ 1257 SetPageReclaim(page); 1258 stat->nr_writeback++; 1259 goto activate_locked; 1260 1261 /* Case 3 above */ 1262 } else { 1263 unlock_page(page); 1264 wait_on_page_writeback(page); 1265 /* then go back and try same page again */ 1266 list_add_tail(&page->lru, page_list); 1267 continue; 1268 } 1269 } 1270 1271 if (!ignore_references) 1272 references = page_check_references(page, sc); 1273 1274 switch (references) { 1275 case PAGEREF_ACTIVATE: 1276 goto activate_locked; 1277 case PAGEREF_KEEP: 1278 stat->nr_ref_keep += nr_pages; 1279 goto keep_locked; 1280 case PAGEREF_RECLAIM: 1281 case PAGEREF_RECLAIM_CLEAN: 1282 ; /* try to reclaim the page below */ 1283 } 1284 1285 /* 1286 * Anonymous process memory has backing store? 1287 * Try to allocate it some swap space here. 1288 * Lazyfree page could be freed directly 1289 */ 1290 if (PageAnon(page) && PageSwapBacked(page)) { 1291 if (!PageSwapCache(page)) { 1292 if (!(sc->gfp_mask & __GFP_IO)) 1293 goto keep_locked; 1294 if (PageTransHuge(page)) { 1295 /* cannot split THP, skip it */ 1296 if (!can_split_huge_page(page, NULL)) 1297 goto activate_locked; 1298 /* 1299 * Split pages without a PMD map right 1300 * away. Chances are some or all of the 1301 * tail pages can be freed without IO. 1302 */ 1303 if (!compound_mapcount(page) && 1304 split_huge_page_to_list(page, 1305 page_list)) 1306 goto activate_locked; 1307 } 1308 if (!add_to_swap(page)) { 1309 if (!PageTransHuge(page)) 1310 goto activate_locked_split; 1311 /* Fallback to swap normal pages */ 1312 if (split_huge_page_to_list(page, 1313 page_list)) 1314 goto activate_locked; 1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1316 count_vm_event(THP_SWPOUT_FALLBACK); 1317 #endif 1318 if (!add_to_swap(page)) 1319 goto activate_locked_split; 1320 } 1321 1322 may_enter_fs = 1; 1323 1324 /* Adding to swap updated mapping */ 1325 mapping = page_mapping(page); 1326 } 1327 } else if (unlikely(PageTransHuge(page))) { 1328 /* Split file THP */ 1329 if (split_huge_page_to_list(page, page_list)) 1330 goto keep_locked; 1331 } 1332 1333 /* 1334 * THP may get split above, need minus tail pages and update 1335 * nr_pages to avoid accounting tail pages twice. 1336 * 1337 * The tail pages that are added into swap cache successfully 1338 * reach here. 1339 */ 1340 if ((nr_pages > 1) && !PageTransHuge(page)) { 1341 sc->nr_scanned -= (nr_pages - 1); 1342 nr_pages = 1; 1343 } 1344 1345 /* 1346 * The page is mapped into the page tables of one or more 1347 * processes. Try to unmap it here. 1348 */ 1349 if (page_mapped(page)) { 1350 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1351 1352 if (unlikely(PageTransHuge(page))) 1353 flags |= TTU_SPLIT_HUGE_PMD; 1354 if (!try_to_unmap(page, flags)) { 1355 stat->nr_unmap_fail += nr_pages; 1356 goto activate_locked; 1357 } 1358 } 1359 1360 if (PageDirty(page)) { 1361 /* 1362 * Only kswapd can writeback filesystem pages 1363 * to avoid risk of stack overflow. But avoid 1364 * injecting inefficient single-page IO into 1365 * flusher writeback as much as possible: only 1366 * write pages when we've encountered many 1367 * dirty pages, and when we've already scanned 1368 * the rest of the LRU for clean pages and see 1369 * the same dirty pages again (PageReclaim). 1370 */ 1371 if (page_is_file_cache(page) && 1372 (!current_is_kswapd() || !PageReclaim(page) || 1373 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1374 /* 1375 * Immediately reclaim when written back. 1376 * Similar in principal to deactivate_page() 1377 * except we already have the page isolated 1378 * and know it's dirty 1379 */ 1380 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1381 SetPageReclaim(page); 1382 1383 goto activate_locked; 1384 } 1385 1386 if (references == PAGEREF_RECLAIM_CLEAN) 1387 goto keep_locked; 1388 if (!may_enter_fs) 1389 goto keep_locked; 1390 if (!sc->may_writepage) 1391 goto keep_locked; 1392 1393 /* 1394 * Page is dirty. Flush the TLB if a writable entry 1395 * potentially exists to avoid CPU writes after IO 1396 * starts and then write it out here. 1397 */ 1398 try_to_unmap_flush_dirty(); 1399 switch (pageout(page, mapping, sc)) { 1400 case PAGE_KEEP: 1401 goto keep_locked; 1402 case PAGE_ACTIVATE: 1403 goto activate_locked; 1404 case PAGE_SUCCESS: 1405 if (PageWriteback(page)) 1406 goto keep; 1407 if (PageDirty(page)) 1408 goto keep; 1409 1410 /* 1411 * A synchronous write - probably a ramdisk. Go 1412 * ahead and try to reclaim the page. 1413 */ 1414 if (!trylock_page(page)) 1415 goto keep; 1416 if (PageDirty(page) || PageWriteback(page)) 1417 goto keep_locked; 1418 mapping = page_mapping(page); 1419 case PAGE_CLEAN: 1420 ; /* try to free the page below */ 1421 } 1422 } 1423 1424 /* 1425 * If the page has buffers, try to free the buffer mappings 1426 * associated with this page. If we succeed we try to free 1427 * the page as well. 1428 * 1429 * We do this even if the page is PageDirty(). 1430 * try_to_release_page() does not perform I/O, but it is 1431 * possible for a page to have PageDirty set, but it is actually 1432 * clean (all its buffers are clean). This happens if the 1433 * buffers were written out directly, with submit_bh(). ext3 1434 * will do this, as well as the blockdev mapping. 1435 * try_to_release_page() will discover that cleanness and will 1436 * drop the buffers and mark the page clean - it can be freed. 1437 * 1438 * Rarely, pages can have buffers and no ->mapping. These are 1439 * the pages which were not successfully invalidated in 1440 * truncate_complete_page(). We try to drop those buffers here 1441 * and if that worked, and the page is no longer mapped into 1442 * process address space (page_count == 1) it can be freed. 1443 * Otherwise, leave the page on the LRU so it is swappable. 1444 */ 1445 if (page_has_private(page)) { 1446 if (!try_to_release_page(page, sc->gfp_mask)) 1447 goto activate_locked; 1448 if (!mapping && page_count(page) == 1) { 1449 unlock_page(page); 1450 if (put_page_testzero(page)) 1451 goto free_it; 1452 else { 1453 /* 1454 * rare race with speculative reference. 1455 * the speculative reference will free 1456 * this page shortly, so we may 1457 * increment nr_reclaimed here (and 1458 * leave it off the LRU). 1459 */ 1460 nr_reclaimed++; 1461 continue; 1462 } 1463 } 1464 } 1465 1466 if (PageAnon(page) && !PageSwapBacked(page)) { 1467 /* follow __remove_mapping for reference */ 1468 if (!page_ref_freeze(page, 1)) 1469 goto keep_locked; 1470 if (PageDirty(page)) { 1471 page_ref_unfreeze(page, 1); 1472 goto keep_locked; 1473 } 1474 1475 count_vm_event(PGLAZYFREED); 1476 count_memcg_page_event(page, PGLAZYFREED); 1477 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1478 goto keep_locked; 1479 1480 unlock_page(page); 1481 free_it: 1482 /* 1483 * THP may get swapped out in a whole, need account 1484 * all base pages. 1485 */ 1486 nr_reclaimed += nr_pages; 1487 1488 /* 1489 * Is there need to periodically free_page_list? It would 1490 * appear not as the counts should be low 1491 */ 1492 if (unlikely(PageTransHuge(page))) 1493 (*get_compound_page_dtor(page))(page); 1494 else 1495 list_add(&page->lru, &free_pages); 1496 continue; 1497 1498 activate_locked_split: 1499 /* 1500 * The tail pages that are failed to add into swap cache 1501 * reach here. Fixup nr_scanned and nr_pages. 1502 */ 1503 if (nr_pages > 1) { 1504 sc->nr_scanned -= (nr_pages - 1); 1505 nr_pages = 1; 1506 } 1507 activate_locked: 1508 /* Not a candidate for swapping, so reclaim swap space. */ 1509 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1510 PageMlocked(page))) 1511 try_to_free_swap(page); 1512 VM_BUG_ON_PAGE(PageActive(page), page); 1513 if (!PageMlocked(page)) { 1514 int type = page_is_file_cache(page); 1515 SetPageActive(page); 1516 stat->nr_activate[type] += nr_pages; 1517 count_memcg_page_event(page, PGACTIVATE); 1518 } 1519 keep_locked: 1520 unlock_page(page); 1521 keep: 1522 list_add(&page->lru, &ret_pages); 1523 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1524 } 1525 1526 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1527 1528 mem_cgroup_uncharge_list(&free_pages); 1529 try_to_unmap_flush(); 1530 free_unref_page_list(&free_pages); 1531 1532 list_splice(&ret_pages, page_list); 1533 count_vm_events(PGACTIVATE, pgactivate); 1534 1535 return nr_reclaimed; 1536 } 1537 1538 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1539 struct list_head *page_list) 1540 { 1541 struct scan_control sc = { 1542 .gfp_mask = GFP_KERNEL, 1543 .priority = DEF_PRIORITY, 1544 .may_unmap = 1, 1545 }; 1546 struct reclaim_stat dummy_stat; 1547 unsigned long ret; 1548 struct page *page, *next; 1549 LIST_HEAD(clean_pages); 1550 1551 list_for_each_entry_safe(page, next, page_list, lru) { 1552 if (page_is_file_cache(page) && !PageDirty(page) && 1553 !__PageMovable(page) && !PageUnevictable(page)) { 1554 ClearPageActive(page); 1555 list_move(&page->lru, &clean_pages); 1556 } 1557 } 1558 1559 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1560 TTU_IGNORE_ACCESS, &dummy_stat, true); 1561 list_splice(&clean_pages, page_list); 1562 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1563 return ret; 1564 } 1565 1566 /* 1567 * Attempt to remove the specified page from its LRU. Only take this page 1568 * if it is of the appropriate PageActive status. Pages which are being 1569 * freed elsewhere are also ignored. 1570 * 1571 * page: page to consider 1572 * mode: one of the LRU isolation modes defined above 1573 * 1574 * returns 0 on success, -ve errno on failure. 1575 */ 1576 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1577 { 1578 int ret = -EINVAL; 1579 1580 /* Only take pages on the LRU. */ 1581 if (!PageLRU(page)) 1582 return ret; 1583 1584 /* Compaction should not handle unevictable pages but CMA can do so */ 1585 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1586 return ret; 1587 1588 ret = -EBUSY; 1589 1590 /* 1591 * To minimise LRU disruption, the caller can indicate that it only 1592 * wants to isolate pages it will be able to operate on without 1593 * blocking - clean pages for the most part. 1594 * 1595 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1596 * that it is possible to migrate without blocking 1597 */ 1598 if (mode & ISOLATE_ASYNC_MIGRATE) { 1599 /* All the caller can do on PageWriteback is block */ 1600 if (PageWriteback(page)) 1601 return ret; 1602 1603 if (PageDirty(page)) { 1604 struct address_space *mapping; 1605 bool migrate_dirty; 1606 1607 /* 1608 * Only pages without mappings or that have a 1609 * ->migratepage callback are possible to migrate 1610 * without blocking. However, we can be racing with 1611 * truncation so it's necessary to lock the page 1612 * to stabilise the mapping as truncation holds 1613 * the page lock until after the page is removed 1614 * from the page cache. 1615 */ 1616 if (!trylock_page(page)) 1617 return ret; 1618 1619 mapping = page_mapping(page); 1620 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1621 unlock_page(page); 1622 if (!migrate_dirty) 1623 return ret; 1624 } 1625 } 1626 1627 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1628 return ret; 1629 1630 if (likely(get_page_unless_zero(page))) { 1631 /* 1632 * Be careful not to clear PageLRU until after we're 1633 * sure the page is not being freed elsewhere -- the 1634 * page release code relies on it. 1635 */ 1636 ClearPageLRU(page); 1637 ret = 0; 1638 } 1639 1640 return ret; 1641 } 1642 1643 1644 /* 1645 * Update LRU sizes after isolating pages. The LRU size updates must 1646 * be complete before mem_cgroup_update_lru_size due to a santity check. 1647 */ 1648 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1649 enum lru_list lru, unsigned long *nr_zone_taken) 1650 { 1651 int zid; 1652 1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1654 if (!nr_zone_taken[zid]) 1655 continue; 1656 1657 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1658 #ifdef CONFIG_MEMCG 1659 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1660 #endif 1661 } 1662 1663 } 1664 1665 /** 1666 * pgdat->lru_lock is heavily contended. Some of the functions that 1667 * shrink the lists perform better by taking out a batch of pages 1668 * and working on them outside the LRU lock. 1669 * 1670 * For pagecache intensive workloads, this function is the hottest 1671 * spot in the kernel (apart from copy_*_user functions). 1672 * 1673 * Appropriate locks must be held before calling this function. 1674 * 1675 * @nr_to_scan: The number of eligible pages to look through on the list. 1676 * @lruvec: The LRU vector to pull pages from. 1677 * @dst: The temp list to put pages on to. 1678 * @nr_scanned: The number of pages that were scanned. 1679 * @sc: The scan_control struct for this reclaim session 1680 * @mode: One of the LRU isolation modes 1681 * @lru: LRU list id for isolating 1682 * 1683 * returns how many pages were moved onto *@dst. 1684 */ 1685 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1686 struct lruvec *lruvec, struct list_head *dst, 1687 unsigned long *nr_scanned, struct scan_control *sc, 1688 enum lru_list lru) 1689 { 1690 struct list_head *src = &lruvec->lists[lru]; 1691 unsigned long nr_taken = 0; 1692 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1693 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1694 unsigned long skipped = 0; 1695 unsigned long scan, total_scan, nr_pages; 1696 LIST_HEAD(pages_skipped); 1697 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1698 1699 total_scan = 0; 1700 scan = 0; 1701 while (scan < nr_to_scan && !list_empty(src)) { 1702 struct page *page; 1703 1704 page = lru_to_page(src); 1705 prefetchw_prev_lru_page(page, src, flags); 1706 1707 VM_BUG_ON_PAGE(!PageLRU(page), page); 1708 1709 nr_pages = compound_nr(page); 1710 total_scan += nr_pages; 1711 1712 if (page_zonenum(page) > sc->reclaim_idx) { 1713 list_move(&page->lru, &pages_skipped); 1714 nr_skipped[page_zonenum(page)] += nr_pages; 1715 continue; 1716 } 1717 1718 /* 1719 * Do not count skipped pages because that makes the function 1720 * return with no isolated pages if the LRU mostly contains 1721 * ineligible pages. This causes the VM to not reclaim any 1722 * pages, triggering a premature OOM. 1723 * 1724 * Account all tail pages of THP. This would not cause 1725 * premature OOM since __isolate_lru_page() returns -EBUSY 1726 * only when the page is being freed somewhere else. 1727 */ 1728 scan += nr_pages; 1729 switch (__isolate_lru_page(page, mode)) { 1730 case 0: 1731 nr_taken += nr_pages; 1732 nr_zone_taken[page_zonenum(page)] += nr_pages; 1733 list_move(&page->lru, dst); 1734 break; 1735 1736 case -EBUSY: 1737 /* else it is being freed elsewhere */ 1738 list_move(&page->lru, src); 1739 continue; 1740 1741 default: 1742 BUG(); 1743 } 1744 } 1745 1746 /* 1747 * Splice any skipped pages to the start of the LRU list. Note that 1748 * this disrupts the LRU order when reclaiming for lower zones but 1749 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1750 * scanning would soon rescan the same pages to skip and put the 1751 * system at risk of premature OOM. 1752 */ 1753 if (!list_empty(&pages_skipped)) { 1754 int zid; 1755 1756 list_splice(&pages_skipped, src); 1757 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1758 if (!nr_skipped[zid]) 1759 continue; 1760 1761 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1762 skipped += nr_skipped[zid]; 1763 } 1764 } 1765 *nr_scanned = total_scan; 1766 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1767 total_scan, skipped, nr_taken, mode, lru); 1768 update_lru_sizes(lruvec, lru, nr_zone_taken); 1769 return nr_taken; 1770 } 1771 1772 /** 1773 * isolate_lru_page - tries to isolate a page from its LRU list 1774 * @page: page to isolate from its LRU list 1775 * 1776 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1777 * vmstat statistic corresponding to whatever LRU list the page was on. 1778 * 1779 * Returns 0 if the page was removed from an LRU list. 1780 * Returns -EBUSY if the page was not on an LRU list. 1781 * 1782 * The returned page will have PageLRU() cleared. If it was found on 1783 * the active list, it will have PageActive set. If it was found on 1784 * the unevictable list, it will have the PageUnevictable bit set. That flag 1785 * may need to be cleared by the caller before letting the page go. 1786 * 1787 * The vmstat statistic corresponding to the list on which the page was 1788 * found will be decremented. 1789 * 1790 * Restrictions: 1791 * 1792 * (1) Must be called with an elevated refcount on the page. This is a 1793 * fundamentnal difference from isolate_lru_pages (which is called 1794 * without a stable reference). 1795 * (2) the lru_lock must not be held. 1796 * (3) interrupts must be enabled. 1797 */ 1798 int isolate_lru_page(struct page *page) 1799 { 1800 int ret = -EBUSY; 1801 1802 VM_BUG_ON_PAGE(!page_count(page), page); 1803 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1804 1805 if (PageLRU(page)) { 1806 pg_data_t *pgdat = page_pgdat(page); 1807 struct lruvec *lruvec; 1808 1809 spin_lock_irq(&pgdat->lru_lock); 1810 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1811 if (PageLRU(page)) { 1812 int lru = page_lru(page); 1813 get_page(page); 1814 ClearPageLRU(page); 1815 del_page_from_lru_list(page, lruvec, lru); 1816 ret = 0; 1817 } 1818 spin_unlock_irq(&pgdat->lru_lock); 1819 } 1820 return ret; 1821 } 1822 1823 /* 1824 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1825 * then get resheduled. When there are massive number of tasks doing page 1826 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1827 * the LRU list will go small and be scanned faster than necessary, leading to 1828 * unnecessary swapping, thrashing and OOM. 1829 */ 1830 static int too_many_isolated(struct pglist_data *pgdat, int file, 1831 struct scan_control *sc) 1832 { 1833 unsigned long inactive, isolated; 1834 1835 if (current_is_kswapd()) 1836 return 0; 1837 1838 if (!sane_reclaim(sc)) 1839 return 0; 1840 1841 if (file) { 1842 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1843 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1844 } else { 1845 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1846 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1847 } 1848 1849 /* 1850 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1851 * won't get blocked by normal direct-reclaimers, forming a circular 1852 * deadlock. 1853 */ 1854 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1855 inactive >>= 3; 1856 1857 return isolated > inactive; 1858 } 1859 1860 /* 1861 * This moves pages from @list to corresponding LRU list. 1862 * 1863 * We move them the other way if the page is referenced by one or more 1864 * processes, from rmap. 1865 * 1866 * If the pages are mostly unmapped, the processing is fast and it is 1867 * appropriate to hold zone_lru_lock across the whole operation. But if 1868 * the pages are mapped, the processing is slow (page_referenced()) so we 1869 * should drop zone_lru_lock around each page. It's impossible to balance 1870 * this, so instead we remove the pages from the LRU while processing them. 1871 * It is safe to rely on PG_active against the non-LRU pages in here because 1872 * nobody will play with that bit on a non-LRU page. 1873 * 1874 * The downside is that we have to touch page->_refcount against each page. 1875 * But we had to alter page->flags anyway. 1876 * 1877 * Returns the number of pages moved to the given lruvec. 1878 */ 1879 1880 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1881 struct list_head *list) 1882 { 1883 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1884 int nr_pages, nr_moved = 0; 1885 LIST_HEAD(pages_to_free); 1886 struct page *page; 1887 enum lru_list lru; 1888 1889 while (!list_empty(list)) { 1890 page = lru_to_page(list); 1891 VM_BUG_ON_PAGE(PageLRU(page), page); 1892 if (unlikely(!page_evictable(page))) { 1893 list_del(&page->lru); 1894 spin_unlock_irq(&pgdat->lru_lock); 1895 putback_lru_page(page); 1896 spin_lock_irq(&pgdat->lru_lock); 1897 continue; 1898 } 1899 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1900 1901 SetPageLRU(page); 1902 lru = page_lru(page); 1903 1904 nr_pages = hpage_nr_pages(page); 1905 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1906 list_move(&page->lru, &lruvec->lists[lru]); 1907 1908 if (put_page_testzero(page)) { 1909 __ClearPageLRU(page); 1910 __ClearPageActive(page); 1911 del_page_from_lru_list(page, lruvec, lru); 1912 1913 if (unlikely(PageCompound(page))) { 1914 spin_unlock_irq(&pgdat->lru_lock); 1915 (*get_compound_page_dtor(page))(page); 1916 spin_lock_irq(&pgdat->lru_lock); 1917 } else 1918 list_add(&page->lru, &pages_to_free); 1919 } else { 1920 nr_moved += nr_pages; 1921 } 1922 } 1923 1924 /* 1925 * To save our caller's stack, now use input list for pages to free. 1926 */ 1927 list_splice(&pages_to_free, list); 1928 1929 return nr_moved; 1930 } 1931 1932 /* 1933 * If a kernel thread (such as nfsd for loop-back mounts) services 1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1935 * In that case we should only throttle if the backing device it is 1936 * writing to is congested. In other cases it is safe to throttle. 1937 */ 1938 static int current_may_throttle(void) 1939 { 1940 return !(current->flags & PF_LESS_THROTTLE) || 1941 current->backing_dev_info == NULL || 1942 bdi_write_congested(current->backing_dev_info); 1943 } 1944 1945 /* 1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1947 * of reclaimed pages 1948 */ 1949 static noinline_for_stack unsigned long 1950 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1951 struct scan_control *sc, enum lru_list lru) 1952 { 1953 LIST_HEAD(page_list); 1954 unsigned long nr_scanned; 1955 unsigned long nr_reclaimed = 0; 1956 unsigned long nr_taken; 1957 struct reclaim_stat stat; 1958 int file = is_file_lru(lru); 1959 enum vm_event_item item; 1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1962 bool stalled = false; 1963 1964 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1965 if (stalled) 1966 return 0; 1967 1968 /* wait a bit for the reclaimer. */ 1969 msleep(100); 1970 stalled = true; 1971 1972 /* We are about to die and free our memory. Return now. */ 1973 if (fatal_signal_pending(current)) 1974 return SWAP_CLUSTER_MAX; 1975 } 1976 1977 lru_add_drain(); 1978 1979 spin_lock_irq(&pgdat->lru_lock); 1980 1981 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1982 &nr_scanned, sc, lru); 1983 1984 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1985 reclaim_stat->recent_scanned[file] += nr_taken; 1986 1987 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1988 if (global_reclaim(sc)) 1989 __count_vm_events(item, nr_scanned); 1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1991 spin_unlock_irq(&pgdat->lru_lock); 1992 1993 if (nr_taken == 0) 1994 return 0; 1995 1996 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1997 &stat, false); 1998 1999 spin_lock_irq(&pgdat->lru_lock); 2000 2001 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2002 if (global_reclaim(sc)) 2003 __count_vm_events(item, nr_reclaimed); 2004 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2005 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 2006 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 2007 2008 move_pages_to_lru(lruvec, &page_list); 2009 2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2011 2012 spin_unlock_irq(&pgdat->lru_lock); 2013 2014 mem_cgroup_uncharge_list(&page_list); 2015 free_unref_page_list(&page_list); 2016 2017 /* 2018 * If dirty pages are scanned that are not queued for IO, it 2019 * implies that flushers are not doing their job. This can 2020 * happen when memory pressure pushes dirty pages to the end of 2021 * the LRU before the dirty limits are breached and the dirty 2022 * data has expired. It can also happen when the proportion of 2023 * dirty pages grows not through writes but through memory 2024 * pressure reclaiming all the clean cache. And in some cases, 2025 * the flushers simply cannot keep up with the allocation 2026 * rate. Nudge the flusher threads in case they are asleep. 2027 */ 2028 if (stat.nr_unqueued_dirty == nr_taken) 2029 wakeup_flusher_threads(WB_REASON_VMSCAN); 2030 2031 sc->nr.dirty += stat.nr_dirty; 2032 sc->nr.congested += stat.nr_congested; 2033 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2034 sc->nr.writeback += stat.nr_writeback; 2035 sc->nr.immediate += stat.nr_immediate; 2036 sc->nr.taken += nr_taken; 2037 if (file) 2038 sc->nr.file_taken += nr_taken; 2039 2040 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2041 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2042 return nr_reclaimed; 2043 } 2044 2045 static void shrink_active_list(unsigned long nr_to_scan, 2046 struct lruvec *lruvec, 2047 struct scan_control *sc, 2048 enum lru_list lru) 2049 { 2050 unsigned long nr_taken; 2051 unsigned long nr_scanned; 2052 unsigned long vm_flags; 2053 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2054 LIST_HEAD(l_active); 2055 LIST_HEAD(l_inactive); 2056 struct page *page; 2057 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2058 unsigned nr_deactivate, nr_activate; 2059 unsigned nr_rotated = 0; 2060 int file = is_file_lru(lru); 2061 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2062 2063 lru_add_drain(); 2064 2065 spin_lock_irq(&pgdat->lru_lock); 2066 2067 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2068 &nr_scanned, sc, lru); 2069 2070 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2071 reclaim_stat->recent_scanned[file] += nr_taken; 2072 2073 __count_vm_events(PGREFILL, nr_scanned); 2074 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2075 2076 spin_unlock_irq(&pgdat->lru_lock); 2077 2078 while (!list_empty(&l_hold)) { 2079 cond_resched(); 2080 page = lru_to_page(&l_hold); 2081 list_del(&page->lru); 2082 2083 if (unlikely(!page_evictable(page))) { 2084 putback_lru_page(page); 2085 continue; 2086 } 2087 2088 if (unlikely(buffer_heads_over_limit)) { 2089 if (page_has_private(page) && trylock_page(page)) { 2090 if (page_has_private(page)) 2091 try_to_release_page(page, 0); 2092 unlock_page(page); 2093 } 2094 } 2095 2096 if (page_referenced(page, 0, sc->target_mem_cgroup, 2097 &vm_flags)) { 2098 nr_rotated += hpage_nr_pages(page); 2099 /* 2100 * Identify referenced, file-backed active pages and 2101 * give them one more trip around the active list. So 2102 * that executable code get better chances to stay in 2103 * memory under moderate memory pressure. Anon pages 2104 * are not likely to be evicted by use-once streaming 2105 * IO, plus JVM can create lots of anon VM_EXEC pages, 2106 * so we ignore them here. 2107 */ 2108 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2109 list_add(&page->lru, &l_active); 2110 continue; 2111 } 2112 } 2113 2114 ClearPageActive(page); /* we are de-activating */ 2115 SetPageWorkingset(page); 2116 list_add(&page->lru, &l_inactive); 2117 } 2118 2119 /* 2120 * Move pages back to the lru list. 2121 */ 2122 spin_lock_irq(&pgdat->lru_lock); 2123 /* 2124 * Count referenced pages from currently used mappings as rotated, 2125 * even though only some of them are actually re-activated. This 2126 * helps balance scan pressure between file and anonymous pages in 2127 * get_scan_count. 2128 */ 2129 reclaim_stat->recent_rotated[file] += nr_rotated; 2130 2131 nr_activate = move_pages_to_lru(lruvec, &l_active); 2132 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2133 /* Keep all free pages in l_active list */ 2134 list_splice(&l_inactive, &l_active); 2135 2136 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2138 2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2140 spin_unlock_irq(&pgdat->lru_lock); 2141 2142 mem_cgroup_uncharge_list(&l_active); 2143 free_unref_page_list(&l_active); 2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2145 nr_deactivate, nr_rotated, sc->priority, file); 2146 } 2147 2148 unsigned long reclaim_pages(struct list_head *page_list) 2149 { 2150 int nid = -1; 2151 unsigned long nr_reclaimed = 0; 2152 LIST_HEAD(node_page_list); 2153 struct reclaim_stat dummy_stat; 2154 struct page *page; 2155 struct scan_control sc = { 2156 .gfp_mask = GFP_KERNEL, 2157 .priority = DEF_PRIORITY, 2158 .may_writepage = 1, 2159 .may_unmap = 1, 2160 .may_swap = 1, 2161 }; 2162 2163 while (!list_empty(page_list)) { 2164 page = lru_to_page(page_list); 2165 if (nid == -1) { 2166 nid = page_to_nid(page); 2167 INIT_LIST_HEAD(&node_page_list); 2168 } 2169 2170 if (nid == page_to_nid(page)) { 2171 ClearPageActive(page); 2172 list_move(&page->lru, &node_page_list); 2173 continue; 2174 } 2175 2176 nr_reclaimed += shrink_page_list(&node_page_list, 2177 NODE_DATA(nid), 2178 &sc, 0, 2179 &dummy_stat, false); 2180 while (!list_empty(&node_page_list)) { 2181 page = lru_to_page(&node_page_list); 2182 list_del(&page->lru); 2183 putback_lru_page(page); 2184 } 2185 2186 nid = -1; 2187 } 2188 2189 if (!list_empty(&node_page_list)) { 2190 nr_reclaimed += shrink_page_list(&node_page_list, 2191 NODE_DATA(nid), 2192 &sc, 0, 2193 &dummy_stat, false); 2194 while (!list_empty(&node_page_list)) { 2195 page = lru_to_page(&node_page_list); 2196 list_del(&page->lru); 2197 putback_lru_page(page); 2198 } 2199 } 2200 2201 return nr_reclaimed; 2202 } 2203 2204 /* 2205 * The inactive anon list should be small enough that the VM never has 2206 * to do too much work. 2207 * 2208 * The inactive file list should be small enough to leave most memory 2209 * to the established workingset on the scan-resistant active list, 2210 * but large enough to avoid thrashing the aggregate readahead window. 2211 * 2212 * Both inactive lists should also be large enough that each inactive 2213 * page has a chance to be referenced again before it is reclaimed. 2214 * 2215 * If that fails and refaulting is observed, the inactive list grows. 2216 * 2217 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2218 * on this LRU, maintained by the pageout code. An inactive_ratio 2219 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2220 * 2221 * total target max 2222 * memory ratio inactive 2223 * ------------------------------------- 2224 * 10MB 1 5MB 2225 * 100MB 1 50MB 2226 * 1GB 3 250MB 2227 * 10GB 10 0.9GB 2228 * 100GB 31 3GB 2229 * 1TB 101 10GB 2230 * 10TB 320 32GB 2231 */ 2232 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2233 struct scan_control *sc, bool trace) 2234 { 2235 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2236 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2237 enum lru_list inactive_lru = file * LRU_FILE; 2238 unsigned long inactive, active; 2239 unsigned long inactive_ratio; 2240 unsigned long refaults; 2241 unsigned long gb; 2242 2243 /* 2244 * If we don't have swap space, anonymous page deactivation 2245 * is pointless. 2246 */ 2247 if (!file && !total_swap_pages) 2248 return false; 2249 2250 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2251 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2252 2253 /* 2254 * When refaults are being observed, it means a new workingset 2255 * is being established. Disable active list protection to get 2256 * rid of the stale workingset quickly. 2257 */ 2258 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2259 if (file && lruvec->refaults != refaults) { 2260 inactive_ratio = 0; 2261 } else { 2262 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2263 if (gb) 2264 inactive_ratio = int_sqrt(10 * gb); 2265 else 2266 inactive_ratio = 1; 2267 } 2268 2269 if (trace) 2270 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2271 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2272 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2273 inactive_ratio, file); 2274 2275 return inactive * inactive_ratio < active; 2276 } 2277 2278 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2279 struct lruvec *lruvec, struct scan_control *sc) 2280 { 2281 if (is_active_lru(lru)) { 2282 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2283 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2284 return 0; 2285 } 2286 2287 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2288 } 2289 2290 enum scan_balance { 2291 SCAN_EQUAL, 2292 SCAN_FRACT, 2293 SCAN_ANON, 2294 SCAN_FILE, 2295 }; 2296 2297 /* 2298 * Determine how aggressively the anon and file LRU lists should be 2299 * scanned. The relative value of each set of LRU lists is determined 2300 * by looking at the fraction of the pages scanned we did rotate back 2301 * onto the active list instead of evict. 2302 * 2303 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2304 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2305 */ 2306 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2307 struct scan_control *sc, unsigned long *nr, 2308 unsigned long *lru_pages) 2309 { 2310 int swappiness = mem_cgroup_swappiness(memcg); 2311 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2312 u64 fraction[2]; 2313 u64 denominator = 0; /* gcc */ 2314 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2315 unsigned long anon_prio, file_prio; 2316 enum scan_balance scan_balance; 2317 unsigned long anon, file; 2318 unsigned long ap, fp; 2319 enum lru_list lru; 2320 2321 /* If we have no swap space, do not bother scanning anon pages. */ 2322 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2323 scan_balance = SCAN_FILE; 2324 goto out; 2325 } 2326 2327 /* 2328 * Global reclaim will swap to prevent OOM even with no 2329 * swappiness, but memcg users want to use this knob to 2330 * disable swapping for individual groups completely when 2331 * using the memory controller's swap limit feature would be 2332 * too expensive. 2333 */ 2334 if (!global_reclaim(sc) && !swappiness) { 2335 scan_balance = SCAN_FILE; 2336 goto out; 2337 } 2338 2339 /* 2340 * Do not apply any pressure balancing cleverness when the 2341 * system is close to OOM, scan both anon and file equally 2342 * (unless the swappiness setting disagrees with swapping). 2343 */ 2344 if (!sc->priority && swappiness) { 2345 scan_balance = SCAN_EQUAL; 2346 goto out; 2347 } 2348 2349 /* 2350 * Prevent the reclaimer from falling into the cache trap: as 2351 * cache pages start out inactive, every cache fault will tip 2352 * the scan balance towards the file LRU. And as the file LRU 2353 * shrinks, so does the window for rotation from references. 2354 * This means we have a runaway feedback loop where a tiny 2355 * thrashing file LRU becomes infinitely more attractive than 2356 * anon pages. Try to detect this based on file LRU size. 2357 */ 2358 if (global_reclaim(sc)) { 2359 unsigned long pgdatfile; 2360 unsigned long pgdatfree; 2361 int z; 2362 unsigned long total_high_wmark = 0; 2363 2364 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2365 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2366 node_page_state(pgdat, NR_INACTIVE_FILE); 2367 2368 for (z = 0; z < MAX_NR_ZONES; z++) { 2369 struct zone *zone = &pgdat->node_zones[z]; 2370 if (!managed_zone(zone)) 2371 continue; 2372 2373 total_high_wmark += high_wmark_pages(zone); 2374 } 2375 2376 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2377 /* 2378 * Force SCAN_ANON if there are enough inactive 2379 * anonymous pages on the LRU in eligible zones. 2380 * Otherwise, the small LRU gets thrashed. 2381 */ 2382 if (!inactive_list_is_low(lruvec, false, sc, false) && 2383 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2384 >> sc->priority) { 2385 scan_balance = SCAN_ANON; 2386 goto out; 2387 } 2388 } 2389 } 2390 2391 /* 2392 * If there is enough inactive page cache, i.e. if the size of the 2393 * inactive list is greater than that of the active list *and* the 2394 * inactive list actually has some pages to scan on this priority, we 2395 * do not reclaim anything from the anonymous working set right now. 2396 * Without the second condition we could end up never scanning an 2397 * lruvec even if it has plenty of old anonymous pages unless the 2398 * system is under heavy pressure. 2399 */ 2400 if (!inactive_list_is_low(lruvec, true, sc, false) && 2401 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2402 scan_balance = SCAN_FILE; 2403 goto out; 2404 } 2405 2406 scan_balance = SCAN_FRACT; 2407 2408 /* 2409 * With swappiness at 100, anonymous and file have the same priority. 2410 * This scanning priority is essentially the inverse of IO cost. 2411 */ 2412 anon_prio = swappiness; 2413 file_prio = 200 - anon_prio; 2414 2415 /* 2416 * OK, so we have swap space and a fair amount of page cache 2417 * pages. We use the recently rotated / recently scanned 2418 * ratios to determine how valuable each cache is. 2419 * 2420 * Because workloads change over time (and to avoid overflow) 2421 * we keep these statistics as a floating average, which ends 2422 * up weighing recent references more than old ones. 2423 * 2424 * anon in [0], file in [1] 2425 */ 2426 2427 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2428 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2429 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2430 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2431 2432 spin_lock_irq(&pgdat->lru_lock); 2433 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2434 reclaim_stat->recent_scanned[0] /= 2; 2435 reclaim_stat->recent_rotated[0] /= 2; 2436 } 2437 2438 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2439 reclaim_stat->recent_scanned[1] /= 2; 2440 reclaim_stat->recent_rotated[1] /= 2; 2441 } 2442 2443 /* 2444 * The amount of pressure on anon vs file pages is inversely 2445 * proportional to the fraction of recently scanned pages on 2446 * each list that were recently referenced and in active use. 2447 */ 2448 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2449 ap /= reclaim_stat->recent_rotated[0] + 1; 2450 2451 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2452 fp /= reclaim_stat->recent_rotated[1] + 1; 2453 spin_unlock_irq(&pgdat->lru_lock); 2454 2455 fraction[0] = ap; 2456 fraction[1] = fp; 2457 denominator = ap + fp + 1; 2458 out: 2459 *lru_pages = 0; 2460 for_each_evictable_lru(lru) { 2461 int file = is_file_lru(lru); 2462 unsigned long size; 2463 unsigned long scan; 2464 2465 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2466 scan = size >> sc->priority; 2467 /* 2468 * If the cgroup's already been deleted, make sure to 2469 * scrape out the remaining cache. 2470 */ 2471 if (!scan && !mem_cgroup_online(memcg)) 2472 scan = min(size, SWAP_CLUSTER_MAX); 2473 2474 switch (scan_balance) { 2475 case SCAN_EQUAL: 2476 /* Scan lists relative to size */ 2477 break; 2478 case SCAN_FRACT: 2479 /* 2480 * Scan types proportional to swappiness and 2481 * their relative recent reclaim efficiency. 2482 * Make sure we don't miss the last page 2483 * because of a round-off error. 2484 */ 2485 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2486 denominator); 2487 break; 2488 case SCAN_FILE: 2489 case SCAN_ANON: 2490 /* Scan one type exclusively */ 2491 if ((scan_balance == SCAN_FILE) != file) { 2492 size = 0; 2493 scan = 0; 2494 } 2495 break; 2496 default: 2497 /* Look ma, no brain */ 2498 BUG(); 2499 } 2500 2501 *lru_pages += size; 2502 nr[lru] = scan; 2503 } 2504 } 2505 2506 /* 2507 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2508 */ 2509 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2510 struct scan_control *sc, unsigned long *lru_pages) 2511 { 2512 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2513 unsigned long nr[NR_LRU_LISTS]; 2514 unsigned long targets[NR_LRU_LISTS]; 2515 unsigned long nr_to_scan; 2516 enum lru_list lru; 2517 unsigned long nr_reclaimed = 0; 2518 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2519 struct blk_plug plug; 2520 bool scan_adjusted; 2521 2522 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2523 2524 /* Record the original scan target for proportional adjustments later */ 2525 memcpy(targets, nr, sizeof(nr)); 2526 2527 /* 2528 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2529 * event that can occur when there is little memory pressure e.g. 2530 * multiple streaming readers/writers. Hence, we do not abort scanning 2531 * when the requested number of pages are reclaimed when scanning at 2532 * DEF_PRIORITY on the assumption that the fact we are direct 2533 * reclaiming implies that kswapd is not keeping up and it is best to 2534 * do a batch of work at once. For memcg reclaim one check is made to 2535 * abort proportional reclaim if either the file or anon lru has already 2536 * dropped to zero at the first pass. 2537 */ 2538 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2539 sc->priority == DEF_PRIORITY); 2540 2541 blk_start_plug(&plug); 2542 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2543 nr[LRU_INACTIVE_FILE]) { 2544 unsigned long nr_anon, nr_file, percentage; 2545 unsigned long nr_scanned; 2546 2547 for_each_evictable_lru(lru) { 2548 if (nr[lru]) { 2549 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2550 nr[lru] -= nr_to_scan; 2551 2552 nr_reclaimed += shrink_list(lru, nr_to_scan, 2553 lruvec, sc); 2554 } 2555 } 2556 2557 cond_resched(); 2558 2559 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2560 continue; 2561 2562 /* 2563 * For kswapd and memcg, reclaim at least the number of pages 2564 * requested. Ensure that the anon and file LRUs are scanned 2565 * proportionally what was requested by get_scan_count(). We 2566 * stop reclaiming one LRU and reduce the amount scanning 2567 * proportional to the original scan target. 2568 */ 2569 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2570 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2571 2572 /* 2573 * It's just vindictive to attack the larger once the smaller 2574 * has gone to zero. And given the way we stop scanning the 2575 * smaller below, this makes sure that we only make one nudge 2576 * towards proportionality once we've got nr_to_reclaim. 2577 */ 2578 if (!nr_file || !nr_anon) 2579 break; 2580 2581 if (nr_file > nr_anon) { 2582 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2583 targets[LRU_ACTIVE_ANON] + 1; 2584 lru = LRU_BASE; 2585 percentage = nr_anon * 100 / scan_target; 2586 } else { 2587 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2588 targets[LRU_ACTIVE_FILE] + 1; 2589 lru = LRU_FILE; 2590 percentage = nr_file * 100 / scan_target; 2591 } 2592 2593 /* Stop scanning the smaller of the LRU */ 2594 nr[lru] = 0; 2595 nr[lru + LRU_ACTIVE] = 0; 2596 2597 /* 2598 * Recalculate the other LRU scan count based on its original 2599 * scan target and the percentage scanning already complete 2600 */ 2601 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2602 nr_scanned = targets[lru] - nr[lru]; 2603 nr[lru] = targets[lru] * (100 - percentage) / 100; 2604 nr[lru] -= min(nr[lru], nr_scanned); 2605 2606 lru += LRU_ACTIVE; 2607 nr_scanned = targets[lru] - nr[lru]; 2608 nr[lru] = targets[lru] * (100 - percentage) / 100; 2609 nr[lru] -= min(nr[lru], nr_scanned); 2610 2611 scan_adjusted = true; 2612 } 2613 blk_finish_plug(&plug); 2614 sc->nr_reclaimed += nr_reclaimed; 2615 2616 /* 2617 * Even if we did not try to evict anon pages at all, we want to 2618 * rebalance the anon lru active/inactive ratio. 2619 */ 2620 if (inactive_list_is_low(lruvec, false, sc, true)) 2621 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2622 sc, LRU_ACTIVE_ANON); 2623 } 2624 2625 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2626 static bool in_reclaim_compaction(struct scan_control *sc) 2627 { 2628 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2629 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2630 sc->priority < DEF_PRIORITY - 2)) 2631 return true; 2632 2633 return false; 2634 } 2635 2636 /* 2637 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2638 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2639 * true if more pages should be reclaimed such that when the page allocator 2640 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2641 * It will give up earlier than that if there is difficulty reclaiming pages. 2642 */ 2643 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2644 unsigned long nr_reclaimed, 2645 struct scan_control *sc) 2646 { 2647 unsigned long pages_for_compaction; 2648 unsigned long inactive_lru_pages; 2649 int z; 2650 2651 /* If not in reclaim/compaction mode, stop */ 2652 if (!in_reclaim_compaction(sc)) 2653 return false; 2654 2655 /* 2656 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2657 * number of pages that were scanned. This will return to the caller 2658 * with the risk reclaim/compaction and the resulting allocation attempt 2659 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2660 * allocations through requiring that the full LRU list has been scanned 2661 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2662 * scan, but that approximation was wrong, and there were corner cases 2663 * where always a non-zero amount of pages were scanned. 2664 */ 2665 if (!nr_reclaimed) 2666 return false; 2667 2668 /* If compaction would go ahead or the allocation would succeed, stop */ 2669 for (z = 0; z <= sc->reclaim_idx; z++) { 2670 struct zone *zone = &pgdat->node_zones[z]; 2671 if (!managed_zone(zone)) 2672 continue; 2673 2674 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2675 case COMPACT_SUCCESS: 2676 case COMPACT_CONTINUE: 2677 return false; 2678 default: 2679 /* check next zone */ 2680 ; 2681 } 2682 } 2683 2684 /* 2685 * If we have not reclaimed enough pages for compaction and the 2686 * inactive lists are large enough, continue reclaiming 2687 */ 2688 pages_for_compaction = compact_gap(sc->order); 2689 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2690 if (get_nr_swap_pages() > 0) 2691 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2692 2693 return inactive_lru_pages > pages_for_compaction; 2694 } 2695 2696 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2697 { 2698 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2699 (memcg && memcg_congested(pgdat, memcg)); 2700 } 2701 2702 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2703 { 2704 struct reclaim_state *reclaim_state = current->reclaim_state; 2705 unsigned long nr_reclaimed, nr_scanned; 2706 bool reclaimable = false; 2707 2708 do { 2709 struct mem_cgroup *root = sc->target_mem_cgroup; 2710 unsigned long node_lru_pages = 0; 2711 struct mem_cgroup *memcg; 2712 2713 memset(&sc->nr, 0, sizeof(sc->nr)); 2714 2715 nr_reclaimed = sc->nr_reclaimed; 2716 nr_scanned = sc->nr_scanned; 2717 2718 memcg = mem_cgroup_iter(root, NULL, NULL); 2719 do { 2720 unsigned long lru_pages; 2721 unsigned long reclaimed; 2722 unsigned long scanned; 2723 2724 switch (mem_cgroup_protected(root, memcg)) { 2725 case MEMCG_PROT_MIN: 2726 /* 2727 * Hard protection. 2728 * If there is no reclaimable memory, OOM. 2729 */ 2730 continue; 2731 case MEMCG_PROT_LOW: 2732 /* 2733 * Soft protection. 2734 * Respect the protection only as long as 2735 * there is an unprotected supply 2736 * of reclaimable memory from other cgroups. 2737 */ 2738 if (!sc->memcg_low_reclaim) { 2739 sc->memcg_low_skipped = 1; 2740 continue; 2741 } 2742 memcg_memory_event(memcg, MEMCG_LOW); 2743 break; 2744 case MEMCG_PROT_NONE: 2745 break; 2746 } 2747 2748 reclaimed = sc->nr_reclaimed; 2749 scanned = sc->nr_scanned; 2750 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2751 node_lru_pages += lru_pages; 2752 2753 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2754 sc->priority); 2755 2756 /* Record the group's reclaim efficiency */ 2757 vmpressure(sc->gfp_mask, memcg, false, 2758 sc->nr_scanned - scanned, 2759 sc->nr_reclaimed - reclaimed); 2760 2761 } while ((memcg = mem_cgroup_iter(root, memcg, NULL))); 2762 2763 if (reclaim_state) { 2764 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2765 reclaim_state->reclaimed_slab = 0; 2766 } 2767 2768 /* Record the subtree's reclaim efficiency */ 2769 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2770 sc->nr_scanned - nr_scanned, 2771 sc->nr_reclaimed - nr_reclaimed); 2772 2773 if (sc->nr_reclaimed - nr_reclaimed) 2774 reclaimable = true; 2775 2776 if (current_is_kswapd()) { 2777 /* 2778 * If reclaim is isolating dirty pages under writeback, 2779 * it implies that the long-lived page allocation rate 2780 * is exceeding the page laundering rate. Either the 2781 * global limits are not being effective at throttling 2782 * processes due to the page distribution throughout 2783 * zones or there is heavy usage of a slow backing 2784 * device. The only option is to throttle from reclaim 2785 * context which is not ideal as there is no guarantee 2786 * the dirtying process is throttled in the same way 2787 * balance_dirty_pages() manages. 2788 * 2789 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2790 * count the number of pages under pages flagged for 2791 * immediate reclaim and stall if any are encountered 2792 * in the nr_immediate check below. 2793 */ 2794 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2795 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2796 2797 /* 2798 * Tag a node as congested if all the dirty pages 2799 * scanned were backed by a congested BDI and 2800 * wait_iff_congested will stall. 2801 */ 2802 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2803 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2804 2805 /* Allow kswapd to start writing pages during reclaim.*/ 2806 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2807 set_bit(PGDAT_DIRTY, &pgdat->flags); 2808 2809 /* 2810 * If kswapd scans pages marked marked for immediate 2811 * reclaim and under writeback (nr_immediate), it 2812 * implies that pages are cycling through the LRU 2813 * faster than they are written so also forcibly stall. 2814 */ 2815 if (sc->nr.immediate) 2816 congestion_wait(BLK_RW_ASYNC, HZ/10); 2817 } 2818 2819 /* 2820 * Legacy memcg will stall in page writeback so avoid forcibly 2821 * stalling in wait_iff_congested(). 2822 */ 2823 if (!global_reclaim(sc) && sane_reclaim(sc) && 2824 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2825 set_memcg_congestion(pgdat, root, true); 2826 2827 /* 2828 * Stall direct reclaim for IO completions if underlying BDIs 2829 * and node is congested. Allow kswapd to continue until it 2830 * starts encountering unqueued dirty pages or cycling through 2831 * the LRU too quickly. 2832 */ 2833 if (!sc->hibernation_mode && !current_is_kswapd() && 2834 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2835 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2836 2837 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2838 sc)); 2839 2840 /* 2841 * Kswapd gives up on balancing particular nodes after too 2842 * many failures to reclaim anything from them and goes to 2843 * sleep. On reclaim progress, reset the failure counter. A 2844 * successful direct reclaim run will revive a dormant kswapd. 2845 */ 2846 if (reclaimable) 2847 pgdat->kswapd_failures = 0; 2848 2849 return reclaimable; 2850 } 2851 2852 /* 2853 * Returns true if compaction should go ahead for a costly-order request, or 2854 * the allocation would already succeed without compaction. Return false if we 2855 * should reclaim first. 2856 */ 2857 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2858 { 2859 unsigned long watermark; 2860 enum compact_result suitable; 2861 2862 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2863 if (suitable == COMPACT_SUCCESS) 2864 /* Allocation should succeed already. Don't reclaim. */ 2865 return true; 2866 if (suitable == COMPACT_SKIPPED) 2867 /* Compaction cannot yet proceed. Do reclaim. */ 2868 return false; 2869 2870 /* 2871 * Compaction is already possible, but it takes time to run and there 2872 * are potentially other callers using the pages just freed. So proceed 2873 * with reclaim to make a buffer of free pages available to give 2874 * compaction a reasonable chance of completing and allocating the page. 2875 * Note that we won't actually reclaim the whole buffer in one attempt 2876 * as the target watermark in should_continue_reclaim() is lower. But if 2877 * we are already above the high+gap watermark, don't reclaim at all. 2878 */ 2879 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2880 2881 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2882 } 2883 2884 /* 2885 * This is the direct reclaim path, for page-allocating processes. We only 2886 * try to reclaim pages from zones which will satisfy the caller's allocation 2887 * request. 2888 * 2889 * If a zone is deemed to be full of pinned pages then just give it a light 2890 * scan then give up on it. 2891 */ 2892 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2893 { 2894 struct zoneref *z; 2895 struct zone *zone; 2896 unsigned long nr_soft_reclaimed; 2897 unsigned long nr_soft_scanned; 2898 gfp_t orig_mask; 2899 pg_data_t *last_pgdat = NULL; 2900 2901 /* 2902 * If the number of buffer_heads in the machine exceeds the maximum 2903 * allowed level, force direct reclaim to scan the highmem zone as 2904 * highmem pages could be pinning lowmem pages storing buffer_heads 2905 */ 2906 orig_mask = sc->gfp_mask; 2907 if (buffer_heads_over_limit) { 2908 sc->gfp_mask |= __GFP_HIGHMEM; 2909 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2910 } 2911 2912 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2913 sc->reclaim_idx, sc->nodemask) { 2914 /* 2915 * Take care memory controller reclaiming has small influence 2916 * to global LRU. 2917 */ 2918 if (global_reclaim(sc)) { 2919 if (!cpuset_zone_allowed(zone, 2920 GFP_KERNEL | __GFP_HARDWALL)) 2921 continue; 2922 2923 /* 2924 * If we already have plenty of memory free for 2925 * compaction in this zone, don't free any more. 2926 * Even though compaction is invoked for any 2927 * non-zero order, only frequent costly order 2928 * reclamation is disruptive enough to become a 2929 * noticeable problem, like transparent huge 2930 * page allocations. 2931 */ 2932 if (IS_ENABLED(CONFIG_COMPACTION) && 2933 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2934 compaction_ready(zone, sc)) { 2935 sc->compaction_ready = true; 2936 continue; 2937 } 2938 2939 /* 2940 * Shrink each node in the zonelist once. If the 2941 * zonelist is ordered by zone (not the default) then a 2942 * node may be shrunk multiple times but in that case 2943 * the user prefers lower zones being preserved. 2944 */ 2945 if (zone->zone_pgdat == last_pgdat) 2946 continue; 2947 2948 /* 2949 * This steals pages from memory cgroups over softlimit 2950 * and returns the number of reclaimed pages and 2951 * scanned pages. This works for global memory pressure 2952 * and balancing, not for a memcg's limit. 2953 */ 2954 nr_soft_scanned = 0; 2955 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2956 sc->order, sc->gfp_mask, 2957 &nr_soft_scanned); 2958 sc->nr_reclaimed += nr_soft_reclaimed; 2959 sc->nr_scanned += nr_soft_scanned; 2960 /* need some check for avoid more shrink_zone() */ 2961 } 2962 2963 /* See comment about same check for global reclaim above */ 2964 if (zone->zone_pgdat == last_pgdat) 2965 continue; 2966 last_pgdat = zone->zone_pgdat; 2967 shrink_node(zone->zone_pgdat, sc); 2968 } 2969 2970 /* 2971 * Restore to original mask to avoid the impact on the caller if we 2972 * promoted it to __GFP_HIGHMEM. 2973 */ 2974 sc->gfp_mask = orig_mask; 2975 } 2976 2977 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2978 { 2979 struct mem_cgroup *memcg; 2980 2981 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2982 do { 2983 unsigned long refaults; 2984 struct lruvec *lruvec; 2985 2986 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2987 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2988 lruvec->refaults = refaults; 2989 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2990 } 2991 2992 /* 2993 * This is the main entry point to direct page reclaim. 2994 * 2995 * If a full scan of the inactive list fails to free enough memory then we 2996 * are "out of memory" and something needs to be killed. 2997 * 2998 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2999 * high - the zone may be full of dirty or under-writeback pages, which this 3000 * caller can't do much about. We kick the writeback threads and take explicit 3001 * naps in the hope that some of these pages can be written. But if the 3002 * allocating task holds filesystem locks which prevent writeout this might not 3003 * work, and the allocation attempt will fail. 3004 * 3005 * returns: 0, if no pages reclaimed 3006 * else, the number of pages reclaimed 3007 */ 3008 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3009 struct scan_control *sc) 3010 { 3011 int initial_priority = sc->priority; 3012 pg_data_t *last_pgdat; 3013 struct zoneref *z; 3014 struct zone *zone; 3015 retry: 3016 delayacct_freepages_start(); 3017 3018 if (global_reclaim(sc)) 3019 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3020 3021 do { 3022 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3023 sc->priority); 3024 sc->nr_scanned = 0; 3025 shrink_zones(zonelist, sc); 3026 3027 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3028 break; 3029 3030 if (sc->compaction_ready) 3031 break; 3032 3033 /* 3034 * If we're getting trouble reclaiming, start doing 3035 * writepage even in laptop mode. 3036 */ 3037 if (sc->priority < DEF_PRIORITY - 2) 3038 sc->may_writepage = 1; 3039 } while (--sc->priority >= 0); 3040 3041 last_pgdat = NULL; 3042 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3043 sc->nodemask) { 3044 if (zone->zone_pgdat == last_pgdat) 3045 continue; 3046 last_pgdat = zone->zone_pgdat; 3047 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3048 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3049 } 3050 3051 delayacct_freepages_end(); 3052 3053 if (sc->nr_reclaimed) 3054 return sc->nr_reclaimed; 3055 3056 /* Aborted reclaim to try compaction? don't OOM, then */ 3057 if (sc->compaction_ready) 3058 return 1; 3059 3060 /* Untapped cgroup reserves? Don't OOM, retry. */ 3061 if (sc->memcg_low_skipped) { 3062 sc->priority = initial_priority; 3063 sc->memcg_low_reclaim = 1; 3064 sc->memcg_low_skipped = 0; 3065 goto retry; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static bool allow_direct_reclaim(pg_data_t *pgdat) 3072 { 3073 struct zone *zone; 3074 unsigned long pfmemalloc_reserve = 0; 3075 unsigned long free_pages = 0; 3076 int i; 3077 bool wmark_ok; 3078 3079 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3080 return true; 3081 3082 for (i = 0; i <= ZONE_NORMAL; i++) { 3083 zone = &pgdat->node_zones[i]; 3084 if (!managed_zone(zone)) 3085 continue; 3086 3087 if (!zone_reclaimable_pages(zone)) 3088 continue; 3089 3090 pfmemalloc_reserve += min_wmark_pages(zone); 3091 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3092 } 3093 3094 /* If there are no reserves (unexpected config) then do not throttle */ 3095 if (!pfmemalloc_reserve) 3096 return true; 3097 3098 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3099 3100 /* kswapd must be awake if processes are being throttled */ 3101 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3102 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3103 (enum zone_type)ZONE_NORMAL); 3104 wake_up_interruptible(&pgdat->kswapd_wait); 3105 } 3106 3107 return wmark_ok; 3108 } 3109 3110 /* 3111 * Throttle direct reclaimers if backing storage is backed by the network 3112 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3113 * depleted. kswapd will continue to make progress and wake the processes 3114 * when the low watermark is reached. 3115 * 3116 * Returns true if a fatal signal was delivered during throttling. If this 3117 * happens, the page allocator should not consider triggering the OOM killer. 3118 */ 3119 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3120 nodemask_t *nodemask) 3121 { 3122 struct zoneref *z; 3123 struct zone *zone; 3124 pg_data_t *pgdat = NULL; 3125 3126 /* 3127 * Kernel threads should not be throttled as they may be indirectly 3128 * responsible for cleaning pages necessary for reclaim to make forward 3129 * progress. kjournald for example may enter direct reclaim while 3130 * committing a transaction where throttling it could forcing other 3131 * processes to block on log_wait_commit(). 3132 */ 3133 if (current->flags & PF_KTHREAD) 3134 goto out; 3135 3136 /* 3137 * If a fatal signal is pending, this process should not throttle. 3138 * It should return quickly so it can exit and free its memory 3139 */ 3140 if (fatal_signal_pending(current)) 3141 goto out; 3142 3143 /* 3144 * Check if the pfmemalloc reserves are ok by finding the first node 3145 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3146 * GFP_KERNEL will be required for allocating network buffers when 3147 * swapping over the network so ZONE_HIGHMEM is unusable. 3148 * 3149 * Throttling is based on the first usable node and throttled processes 3150 * wait on a queue until kswapd makes progress and wakes them. There 3151 * is an affinity then between processes waking up and where reclaim 3152 * progress has been made assuming the process wakes on the same node. 3153 * More importantly, processes running on remote nodes will not compete 3154 * for remote pfmemalloc reserves and processes on different nodes 3155 * should make reasonable progress. 3156 */ 3157 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3158 gfp_zone(gfp_mask), nodemask) { 3159 if (zone_idx(zone) > ZONE_NORMAL) 3160 continue; 3161 3162 /* Throttle based on the first usable node */ 3163 pgdat = zone->zone_pgdat; 3164 if (allow_direct_reclaim(pgdat)) 3165 goto out; 3166 break; 3167 } 3168 3169 /* If no zone was usable by the allocation flags then do not throttle */ 3170 if (!pgdat) 3171 goto out; 3172 3173 /* Account for the throttling */ 3174 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3175 3176 /* 3177 * If the caller cannot enter the filesystem, it's possible that it 3178 * is due to the caller holding an FS lock or performing a journal 3179 * transaction in the case of a filesystem like ext[3|4]. In this case, 3180 * it is not safe to block on pfmemalloc_wait as kswapd could be 3181 * blocked waiting on the same lock. Instead, throttle for up to a 3182 * second before continuing. 3183 */ 3184 if (!(gfp_mask & __GFP_FS)) { 3185 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3186 allow_direct_reclaim(pgdat), HZ); 3187 3188 goto check_pending; 3189 } 3190 3191 /* Throttle until kswapd wakes the process */ 3192 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3193 allow_direct_reclaim(pgdat)); 3194 3195 check_pending: 3196 if (fatal_signal_pending(current)) 3197 return true; 3198 3199 out: 3200 return false; 3201 } 3202 3203 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3204 gfp_t gfp_mask, nodemask_t *nodemask) 3205 { 3206 unsigned long nr_reclaimed; 3207 struct scan_control sc = { 3208 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3209 .gfp_mask = current_gfp_context(gfp_mask), 3210 .reclaim_idx = gfp_zone(gfp_mask), 3211 .order = order, 3212 .nodemask = nodemask, 3213 .priority = DEF_PRIORITY, 3214 .may_writepage = !laptop_mode, 3215 .may_unmap = 1, 3216 .may_swap = 1, 3217 }; 3218 3219 /* 3220 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3221 * Confirm they are large enough for max values. 3222 */ 3223 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3224 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3225 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3226 3227 /* 3228 * Do not enter reclaim if fatal signal was delivered while throttled. 3229 * 1 is returned so that the page allocator does not OOM kill at this 3230 * point. 3231 */ 3232 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3233 return 1; 3234 3235 set_task_reclaim_state(current, &sc.reclaim_state); 3236 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3237 3238 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3239 3240 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3241 set_task_reclaim_state(current, NULL); 3242 3243 return nr_reclaimed; 3244 } 3245 3246 #ifdef CONFIG_MEMCG 3247 3248 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3249 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3250 gfp_t gfp_mask, bool noswap, 3251 pg_data_t *pgdat, 3252 unsigned long *nr_scanned) 3253 { 3254 struct scan_control sc = { 3255 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3256 .target_mem_cgroup = memcg, 3257 .may_writepage = !laptop_mode, 3258 .may_unmap = 1, 3259 .reclaim_idx = MAX_NR_ZONES - 1, 3260 .may_swap = !noswap, 3261 }; 3262 unsigned long lru_pages; 3263 3264 WARN_ON_ONCE(!current->reclaim_state); 3265 3266 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3267 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3268 3269 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3270 sc.gfp_mask); 3271 3272 /* 3273 * NOTE: Although we can get the priority field, using it 3274 * here is not a good idea, since it limits the pages we can scan. 3275 * if we don't reclaim here, the shrink_node from balance_pgdat 3276 * will pick up pages from other mem cgroup's as well. We hack 3277 * the priority and make it zero. 3278 */ 3279 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3280 3281 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3282 3283 *nr_scanned = sc.nr_scanned; 3284 3285 return sc.nr_reclaimed; 3286 } 3287 3288 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3289 unsigned long nr_pages, 3290 gfp_t gfp_mask, 3291 bool may_swap) 3292 { 3293 struct zonelist *zonelist; 3294 unsigned long nr_reclaimed; 3295 unsigned long pflags; 3296 int nid; 3297 unsigned int noreclaim_flag; 3298 struct scan_control sc = { 3299 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3300 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3302 .reclaim_idx = MAX_NR_ZONES - 1, 3303 .target_mem_cgroup = memcg, 3304 .priority = DEF_PRIORITY, 3305 .may_writepage = !laptop_mode, 3306 .may_unmap = 1, 3307 .may_swap = may_swap, 3308 }; 3309 3310 set_task_reclaim_state(current, &sc.reclaim_state); 3311 /* 3312 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3313 * take care of from where we get pages. So the node where we start the 3314 * scan does not need to be the current node. 3315 */ 3316 nid = mem_cgroup_select_victim_node(memcg); 3317 3318 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3319 3320 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3321 3322 psi_memstall_enter(&pflags); 3323 noreclaim_flag = memalloc_noreclaim_save(); 3324 3325 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3326 3327 memalloc_noreclaim_restore(noreclaim_flag); 3328 psi_memstall_leave(&pflags); 3329 3330 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3331 set_task_reclaim_state(current, NULL); 3332 3333 return nr_reclaimed; 3334 } 3335 #endif 3336 3337 static void age_active_anon(struct pglist_data *pgdat, 3338 struct scan_control *sc) 3339 { 3340 struct mem_cgroup *memcg; 3341 3342 if (!total_swap_pages) 3343 return; 3344 3345 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3346 do { 3347 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3348 3349 if (inactive_list_is_low(lruvec, false, sc, true)) 3350 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3351 sc, LRU_ACTIVE_ANON); 3352 3353 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3354 } while (memcg); 3355 } 3356 3357 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3358 { 3359 int i; 3360 struct zone *zone; 3361 3362 /* 3363 * Check for watermark boosts top-down as the higher zones 3364 * are more likely to be boosted. Both watermarks and boosts 3365 * should not be checked at the time time as reclaim would 3366 * start prematurely when there is no boosting and a lower 3367 * zone is balanced. 3368 */ 3369 for (i = classzone_idx; i >= 0; i--) { 3370 zone = pgdat->node_zones + i; 3371 if (!managed_zone(zone)) 3372 continue; 3373 3374 if (zone->watermark_boost) 3375 return true; 3376 } 3377 3378 return false; 3379 } 3380 3381 /* 3382 * Returns true if there is an eligible zone balanced for the request order 3383 * and classzone_idx 3384 */ 3385 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3386 { 3387 int i; 3388 unsigned long mark = -1; 3389 struct zone *zone; 3390 3391 /* 3392 * Check watermarks bottom-up as lower zones are more likely to 3393 * meet watermarks. 3394 */ 3395 for (i = 0; i <= classzone_idx; i++) { 3396 zone = pgdat->node_zones + i; 3397 3398 if (!managed_zone(zone)) 3399 continue; 3400 3401 mark = high_wmark_pages(zone); 3402 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3403 return true; 3404 } 3405 3406 /* 3407 * If a node has no populated zone within classzone_idx, it does not 3408 * need balancing by definition. This can happen if a zone-restricted 3409 * allocation tries to wake a remote kswapd. 3410 */ 3411 if (mark == -1) 3412 return true; 3413 3414 return false; 3415 } 3416 3417 /* Clear pgdat state for congested, dirty or under writeback. */ 3418 static void clear_pgdat_congested(pg_data_t *pgdat) 3419 { 3420 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3421 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3422 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3423 } 3424 3425 /* 3426 * Prepare kswapd for sleeping. This verifies that there are no processes 3427 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3428 * 3429 * Returns true if kswapd is ready to sleep 3430 */ 3431 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3432 { 3433 /* 3434 * The throttled processes are normally woken up in balance_pgdat() as 3435 * soon as allow_direct_reclaim() is true. But there is a potential 3436 * race between when kswapd checks the watermarks and a process gets 3437 * throttled. There is also a potential race if processes get 3438 * throttled, kswapd wakes, a large process exits thereby balancing the 3439 * zones, which causes kswapd to exit balance_pgdat() before reaching 3440 * the wake up checks. If kswapd is going to sleep, no process should 3441 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3442 * the wake up is premature, processes will wake kswapd and get 3443 * throttled again. The difference from wake ups in balance_pgdat() is 3444 * that here we are under prepare_to_wait(). 3445 */ 3446 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3447 wake_up_all(&pgdat->pfmemalloc_wait); 3448 3449 /* Hopeless node, leave it to direct reclaim */ 3450 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3451 return true; 3452 3453 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3454 clear_pgdat_congested(pgdat); 3455 return true; 3456 } 3457 3458 return false; 3459 } 3460 3461 /* 3462 * kswapd shrinks a node of pages that are at or below the highest usable 3463 * zone that is currently unbalanced. 3464 * 3465 * Returns true if kswapd scanned at least the requested number of pages to 3466 * reclaim or if the lack of progress was due to pages under writeback. 3467 * This is used to determine if the scanning priority needs to be raised. 3468 */ 3469 static bool kswapd_shrink_node(pg_data_t *pgdat, 3470 struct scan_control *sc) 3471 { 3472 struct zone *zone; 3473 int z; 3474 3475 /* Reclaim a number of pages proportional to the number of zones */ 3476 sc->nr_to_reclaim = 0; 3477 for (z = 0; z <= sc->reclaim_idx; z++) { 3478 zone = pgdat->node_zones + z; 3479 if (!managed_zone(zone)) 3480 continue; 3481 3482 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3483 } 3484 3485 /* 3486 * Historically care was taken to put equal pressure on all zones but 3487 * now pressure is applied based on node LRU order. 3488 */ 3489 shrink_node(pgdat, sc); 3490 3491 /* 3492 * Fragmentation may mean that the system cannot be rebalanced for 3493 * high-order allocations. If twice the allocation size has been 3494 * reclaimed then recheck watermarks only at order-0 to prevent 3495 * excessive reclaim. Assume that a process requested a high-order 3496 * can direct reclaim/compact. 3497 */ 3498 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3499 sc->order = 0; 3500 3501 return sc->nr_scanned >= sc->nr_to_reclaim; 3502 } 3503 3504 /* 3505 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3506 * that are eligible for use by the caller until at least one zone is 3507 * balanced. 3508 * 3509 * Returns the order kswapd finished reclaiming at. 3510 * 3511 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3512 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3513 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3514 * or lower is eligible for reclaim until at least one usable zone is 3515 * balanced. 3516 */ 3517 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3518 { 3519 int i; 3520 unsigned long nr_soft_reclaimed; 3521 unsigned long nr_soft_scanned; 3522 unsigned long pflags; 3523 unsigned long nr_boost_reclaim; 3524 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3525 bool boosted; 3526 struct zone *zone; 3527 struct scan_control sc = { 3528 .gfp_mask = GFP_KERNEL, 3529 .order = order, 3530 .may_unmap = 1, 3531 }; 3532 3533 set_task_reclaim_state(current, &sc.reclaim_state); 3534 psi_memstall_enter(&pflags); 3535 __fs_reclaim_acquire(); 3536 3537 count_vm_event(PAGEOUTRUN); 3538 3539 /* 3540 * Account for the reclaim boost. Note that the zone boost is left in 3541 * place so that parallel allocations that are near the watermark will 3542 * stall or direct reclaim until kswapd is finished. 3543 */ 3544 nr_boost_reclaim = 0; 3545 for (i = 0; i <= classzone_idx; i++) { 3546 zone = pgdat->node_zones + i; 3547 if (!managed_zone(zone)) 3548 continue; 3549 3550 nr_boost_reclaim += zone->watermark_boost; 3551 zone_boosts[i] = zone->watermark_boost; 3552 } 3553 boosted = nr_boost_reclaim; 3554 3555 restart: 3556 sc.priority = DEF_PRIORITY; 3557 do { 3558 unsigned long nr_reclaimed = sc.nr_reclaimed; 3559 bool raise_priority = true; 3560 bool balanced; 3561 bool ret; 3562 3563 sc.reclaim_idx = classzone_idx; 3564 3565 /* 3566 * If the number of buffer_heads exceeds the maximum allowed 3567 * then consider reclaiming from all zones. This has a dual 3568 * purpose -- on 64-bit systems it is expected that 3569 * buffer_heads are stripped during active rotation. On 32-bit 3570 * systems, highmem pages can pin lowmem memory and shrinking 3571 * buffers can relieve lowmem pressure. Reclaim may still not 3572 * go ahead if all eligible zones for the original allocation 3573 * request are balanced to avoid excessive reclaim from kswapd. 3574 */ 3575 if (buffer_heads_over_limit) { 3576 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3577 zone = pgdat->node_zones + i; 3578 if (!managed_zone(zone)) 3579 continue; 3580 3581 sc.reclaim_idx = i; 3582 break; 3583 } 3584 } 3585 3586 /* 3587 * If the pgdat is imbalanced then ignore boosting and preserve 3588 * the watermarks for a later time and restart. Note that the 3589 * zone watermarks will be still reset at the end of balancing 3590 * on the grounds that the normal reclaim should be enough to 3591 * re-evaluate if boosting is required when kswapd next wakes. 3592 */ 3593 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3594 if (!balanced && nr_boost_reclaim) { 3595 nr_boost_reclaim = 0; 3596 goto restart; 3597 } 3598 3599 /* 3600 * If boosting is not active then only reclaim if there are no 3601 * eligible zones. Note that sc.reclaim_idx is not used as 3602 * buffer_heads_over_limit may have adjusted it. 3603 */ 3604 if (!nr_boost_reclaim && balanced) 3605 goto out; 3606 3607 /* Limit the priority of boosting to avoid reclaim writeback */ 3608 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3609 raise_priority = false; 3610 3611 /* 3612 * Do not writeback or swap pages for boosted reclaim. The 3613 * intent is to relieve pressure not issue sub-optimal IO 3614 * from reclaim context. If no pages are reclaimed, the 3615 * reclaim will be aborted. 3616 */ 3617 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3618 sc.may_swap = !nr_boost_reclaim; 3619 3620 /* 3621 * Do some background aging of the anon list, to give 3622 * pages a chance to be referenced before reclaiming. All 3623 * pages are rotated regardless of classzone as this is 3624 * about consistent aging. 3625 */ 3626 age_active_anon(pgdat, &sc); 3627 3628 /* 3629 * If we're getting trouble reclaiming, start doing writepage 3630 * even in laptop mode. 3631 */ 3632 if (sc.priority < DEF_PRIORITY - 2) 3633 sc.may_writepage = 1; 3634 3635 /* Call soft limit reclaim before calling shrink_node. */ 3636 sc.nr_scanned = 0; 3637 nr_soft_scanned = 0; 3638 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3639 sc.gfp_mask, &nr_soft_scanned); 3640 sc.nr_reclaimed += nr_soft_reclaimed; 3641 3642 /* 3643 * There should be no need to raise the scanning priority if 3644 * enough pages are already being scanned that that high 3645 * watermark would be met at 100% efficiency. 3646 */ 3647 if (kswapd_shrink_node(pgdat, &sc)) 3648 raise_priority = false; 3649 3650 /* 3651 * If the low watermark is met there is no need for processes 3652 * to be throttled on pfmemalloc_wait as they should not be 3653 * able to safely make forward progress. Wake them 3654 */ 3655 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3656 allow_direct_reclaim(pgdat)) 3657 wake_up_all(&pgdat->pfmemalloc_wait); 3658 3659 /* Check if kswapd should be suspending */ 3660 __fs_reclaim_release(); 3661 ret = try_to_freeze(); 3662 __fs_reclaim_acquire(); 3663 if (ret || kthread_should_stop()) 3664 break; 3665 3666 /* 3667 * Raise priority if scanning rate is too low or there was no 3668 * progress in reclaiming pages 3669 */ 3670 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3671 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3672 3673 /* 3674 * If reclaim made no progress for a boost, stop reclaim as 3675 * IO cannot be queued and it could be an infinite loop in 3676 * extreme circumstances. 3677 */ 3678 if (nr_boost_reclaim && !nr_reclaimed) 3679 break; 3680 3681 if (raise_priority || !nr_reclaimed) 3682 sc.priority--; 3683 } while (sc.priority >= 1); 3684 3685 if (!sc.nr_reclaimed) 3686 pgdat->kswapd_failures++; 3687 3688 out: 3689 /* If reclaim was boosted, account for the reclaim done in this pass */ 3690 if (boosted) { 3691 unsigned long flags; 3692 3693 for (i = 0; i <= classzone_idx; i++) { 3694 if (!zone_boosts[i]) 3695 continue; 3696 3697 /* Increments are under the zone lock */ 3698 zone = pgdat->node_zones + i; 3699 spin_lock_irqsave(&zone->lock, flags); 3700 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3701 spin_unlock_irqrestore(&zone->lock, flags); 3702 } 3703 3704 /* 3705 * As there is now likely space, wakeup kcompact to defragment 3706 * pageblocks. 3707 */ 3708 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3709 } 3710 3711 snapshot_refaults(NULL, pgdat); 3712 __fs_reclaim_release(); 3713 psi_memstall_leave(&pflags); 3714 set_task_reclaim_state(current, NULL); 3715 3716 /* 3717 * Return the order kswapd stopped reclaiming at as 3718 * prepare_kswapd_sleep() takes it into account. If another caller 3719 * entered the allocator slow path while kswapd was awake, order will 3720 * remain at the higher level. 3721 */ 3722 return sc.order; 3723 } 3724 3725 /* 3726 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3727 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3728 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3729 * after previous reclaim attempt (node is still unbalanced). In that case 3730 * return the zone index of the previous kswapd reclaim cycle. 3731 */ 3732 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3733 enum zone_type prev_classzone_idx) 3734 { 3735 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3736 return prev_classzone_idx; 3737 return pgdat->kswapd_classzone_idx; 3738 } 3739 3740 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3741 unsigned int classzone_idx) 3742 { 3743 long remaining = 0; 3744 DEFINE_WAIT(wait); 3745 3746 if (freezing(current) || kthread_should_stop()) 3747 return; 3748 3749 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3750 3751 /* 3752 * Try to sleep for a short interval. Note that kcompactd will only be 3753 * woken if it is possible to sleep for a short interval. This is 3754 * deliberate on the assumption that if reclaim cannot keep an 3755 * eligible zone balanced that it's also unlikely that compaction will 3756 * succeed. 3757 */ 3758 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3759 /* 3760 * Compaction records what page blocks it recently failed to 3761 * isolate pages from and skips them in the future scanning. 3762 * When kswapd is going to sleep, it is reasonable to assume 3763 * that pages and compaction may succeed so reset the cache. 3764 */ 3765 reset_isolation_suitable(pgdat); 3766 3767 /* 3768 * We have freed the memory, now we should compact it to make 3769 * allocation of the requested order possible. 3770 */ 3771 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3772 3773 remaining = schedule_timeout(HZ/10); 3774 3775 /* 3776 * If woken prematurely then reset kswapd_classzone_idx and 3777 * order. The values will either be from a wakeup request or 3778 * the previous request that slept prematurely. 3779 */ 3780 if (remaining) { 3781 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3782 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3783 } 3784 3785 finish_wait(&pgdat->kswapd_wait, &wait); 3786 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3787 } 3788 3789 /* 3790 * After a short sleep, check if it was a premature sleep. If not, then 3791 * go fully to sleep until explicitly woken up. 3792 */ 3793 if (!remaining && 3794 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3795 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3796 3797 /* 3798 * vmstat counters are not perfectly accurate and the estimated 3799 * value for counters such as NR_FREE_PAGES can deviate from the 3800 * true value by nr_online_cpus * threshold. To avoid the zone 3801 * watermarks being breached while under pressure, we reduce the 3802 * per-cpu vmstat threshold while kswapd is awake and restore 3803 * them before going back to sleep. 3804 */ 3805 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3806 3807 if (!kthread_should_stop()) 3808 schedule(); 3809 3810 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3811 } else { 3812 if (remaining) 3813 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3814 else 3815 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3816 } 3817 finish_wait(&pgdat->kswapd_wait, &wait); 3818 } 3819 3820 /* 3821 * The background pageout daemon, started as a kernel thread 3822 * from the init process. 3823 * 3824 * This basically trickles out pages so that we have _some_ 3825 * free memory available even if there is no other activity 3826 * that frees anything up. This is needed for things like routing 3827 * etc, where we otherwise might have all activity going on in 3828 * asynchronous contexts that cannot page things out. 3829 * 3830 * If there are applications that are active memory-allocators 3831 * (most normal use), this basically shouldn't matter. 3832 */ 3833 static int kswapd(void *p) 3834 { 3835 unsigned int alloc_order, reclaim_order; 3836 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3837 pg_data_t *pgdat = (pg_data_t*)p; 3838 struct task_struct *tsk = current; 3839 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3840 3841 if (!cpumask_empty(cpumask)) 3842 set_cpus_allowed_ptr(tsk, cpumask); 3843 3844 /* 3845 * Tell the memory management that we're a "memory allocator", 3846 * and that if we need more memory we should get access to it 3847 * regardless (see "__alloc_pages()"). "kswapd" should 3848 * never get caught in the normal page freeing logic. 3849 * 3850 * (Kswapd normally doesn't need memory anyway, but sometimes 3851 * you need a small amount of memory in order to be able to 3852 * page out something else, and this flag essentially protects 3853 * us from recursively trying to free more memory as we're 3854 * trying to free the first piece of memory in the first place). 3855 */ 3856 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3857 set_freezable(); 3858 3859 pgdat->kswapd_order = 0; 3860 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3861 for ( ; ; ) { 3862 bool ret; 3863 3864 alloc_order = reclaim_order = pgdat->kswapd_order; 3865 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3866 3867 kswapd_try_sleep: 3868 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3869 classzone_idx); 3870 3871 /* Read the new order and classzone_idx */ 3872 alloc_order = reclaim_order = pgdat->kswapd_order; 3873 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3874 pgdat->kswapd_order = 0; 3875 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3876 3877 ret = try_to_freeze(); 3878 if (kthread_should_stop()) 3879 break; 3880 3881 /* 3882 * We can speed up thawing tasks if we don't call balance_pgdat 3883 * after returning from the refrigerator 3884 */ 3885 if (ret) 3886 continue; 3887 3888 /* 3889 * Reclaim begins at the requested order but if a high-order 3890 * reclaim fails then kswapd falls back to reclaiming for 3891 * order-0. If that happens, kswapd will consider sleeping 3892 * for the order it finished reclaiming at (reclaim_order) 3893 * but kcompactd is woken to compact for the original 3894 * request (alloc_order). 3895 */ 3896 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3897 alloc_order); 3898 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3899 if (reclaim_order < alloc_order) 3900 goto kswapd_try_sleep; 3901 } 3902 3903 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3904 3905 return 0; 3906 } 3907 3908 /* 3909 * A zone is low on free memory or too fragmented for high-order memory. If 3910 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3911 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3912 * has failed or is not needed, still wake up kcompactd if only compaction is 3913 * needed. 3914 */ 3915 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3916 enum zone_type classzone_idx) 3917 { 3918 pg_data_t *pgdat; 3919 3920 if (!managed_zone(zone)) 3921 return; 3922 3923 if (!cpuset_zone_allowed(zone, gfp_flags)) 3924 return; 3925 pgdat = zone->zone_pgdat; 3926 3927 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3928 pgdat->kswapd_classzone_idx = classzone_idx; 3929 else 3930 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3931 classzone_idx); 3932 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3933 if (!waitqueue_active(&pgdat->kswapd_wait)) 3934 return; 3935 3936 /* Hopeless node, leave it to direct reclaim if possible */ 3937 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3938 (pgdat_balanced(pgdat, order, classzone_idx) && 3939 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3940 /* 3941 * There may be plenty of free memory available, but it's too 3942 * fragmented for high-order allocations. Wake up kcompactd 3943 * and rely on compaction_suitable() to determine if it's 3944 * needed. If it fails, it will defer subsequent attempts to 3945 * ratelimit its work. 3946 */ 3947 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3948 wakeup_kcompactd(pgdat, order, classzone_idx); 3949 return; 3950 } 3951 3952 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3953 gfp_flags); 3954 wake_up_interruptible(&pgdat->kswapd_wait); 3955 } 3956 3957 #ifdef CONFIG_HIBERNATION 3958 /* 3959 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3960 * freed pages. 3961 * 3962 * Rather than trying to age LRUs the aim is to preserve the overall 3963 * LRU order by reclaiming preferentially 3964 * inactive > active > active referenced > active mapped 3965 */ 3966 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3967 { 3968 struct scan_control sc = { 3969 .nr_to_reclaim = nr_to_reclaim, 3970 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3971 .reclaim_idx = MAX_NR_ZONES - 1, 3972 .priority = DEF_PRIORITY, 3973 .may_writepage = 1, 3974 .may_unmap = 1, 3975 .may_swap = 1, 3976 .hibernation_mode = 1, 3977 }; 3978 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3979 unsigned long nr_reclaimed; 3980 unsigned int noreclaim_flag; 3981 3982 fs_reclaim_acquire(sc.gfp_mask); 3983 noreclaim_flag = memalloc_noreclaim_save(); 3984 set_task_reclaim_state(current, &sc.reclaim_state); 3985 3986 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3987 3988 set_task_reclaim_state(current, NULL); 3989 memalloc_noreclaim_restore(noreclaim_flag); 3990 fs_reclaim_release(sc.gfp_mask); 3991 3992 return nr_reclaimed; 3993 } 3994 #endif /* CONFIG_HIBERNATION */ 3995 3996 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3997 not required for correctness. So if the last cpu in a node goes 3998 away, we get changed to run anywhere: as the first one comes back, 3999 restore their cpu bindings. */ 4000 static int kswapd_cpu_online(unsigned int cpu) 4001 { 4002 int nid; 4003 4004 for_each_node_state(nid, N_MEMORY) { 4005 pg_data_t *pgdat = NODE_DATA(nid); 4006 const struct cpumask *mask; 4007 4008 mask = cpumask_of_node(pgdat->node_id); 4009 4010 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 4011 /* One of our CPUs online: restore mask */ 4012 set_cpus_allowed_ptr(pgdat->kswapd, mask); 4013 } 4014 return 0; 4015 } 4016 4017 /* 4018 * This kswapd start function will be called by init and node-hot-add. 4019 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4020 */ 4021 int kswapd_run(int nid) 4022 { 4023 pg_data_t *pgdat = NODE_DATA(nid); 4024 int ret = 0; 4025 4026 if (pgdat->kswapd) 4027 return 0; 4028 4029 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4030 if (IS_ERR(pgdat->kswapd)) { 4031 /* failure at boot is fatal */ 4032 BUG_ON(system_state < SYSTEM_RUNNING); 4033 pr_err("Failed to start kswapd on node %d\n", nid); 4034 ret = PTR_ERR(pgdat->kswapd); 4035 pgdat->kswapd = NULL; 4036 } 4037 return ret; 4038 } 4039 4040 /* 4041 * Called by memory hotplug when all memory in a node is offlined. Caller must 4042 * hold mem_hotplug_begin/end(). 4043 */ 4044 void kswapd_stop(int nid) 4045 { 4046 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4047 4048 if (kswapd) { 4049 kthread_stop(kswapd); 4050 NODE_DATA(nid)->kswapd = NULL; 4051 } 4052 } 4053 4054 static int __init kswapd_init(void) 4055 { 4056 int nid, ret; 4057 4058 swap_setup(); 4059 for_each_node_state(nid, N_MEMORY) 4060 kswapd_run(nid); 4061 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4062 "mm/vmscan:online", kswapd_cpu_online, 4063 NULL); 4064 WARN_ON(ret < 0); 4065 return 0; 4066 } 4067 4068 module_init(kswapd_init) 4069 4070 #ifdef CONFIG_NUMA 4071 /* 4072 * Node reclaim mode 4073 * 4074 * If non-zero call node_reclaim when the number of free pages falls below 4075 * the watermarks. 4076 */ 4077 int node_reclaim_mode __read_mostly; 4078 4079 #define RECLAIM_OFF 0 4080 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4081 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4082 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4083 4084 /* 4085 * Priority for NODE_RECLAIM. This determines the fraction of pages 4086 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4087 * a zone. 4088 */ 4089 #define NODE_RECLAIM_PRIORITY 4 4090 4091 /* 4092 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4093 * occur. 4094 */ 4095 int sysctl_min_unmapped_ratio = 1; 4096 4097 /* 4098 * If the number of slab pages in a zone grows beyond this percentage then 4099 * slab reclaim needs to occur. 4100 */ 4101 int sysctl_min_slab_ratio = 5; 4102 4103 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4104 { 4105 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4106 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4107 node_page_state(pgdat, NR_ACTIVE_FILE); 4108 4109 /* 4110 * It's possible for there to be more file mapped pages than 4111 * accounted for by the pages on the file LRU lists because 4112 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4113 */ 4114 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4115 } 4116 4117 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4118 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4119 { 4120 unsigned long nr_pagecache_reclaimable; 4121 unsigned long delta = 0; 4122 4123 /* 4124 * If RECLAIM_UNMAP is set, then all file pages are considered 4125 * potentially reclaimable. Otherwise, we have to worry about 4126 * pages like swapcache and node_unmapped_file_pages() provides 4127 * a better estimate 4128 */ 4129 if (node_reclaim_mode & RECLAIM_UNMAP) 4130 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4131 else 4132 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4133 4134 /* If we can't clean pages, remove dirty pages from consideration */ 4135 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4136 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4137 4138 /* Watch for any possible underflows due to delta */ 4139 if (unlikely(delta > nr_pagecache_reclaimable)) 4140 delta = nr_pagecache_reclaimable; 4141 4142 return nr_pagecache_reclaimable - delta; 4143 } 4144 4145 /* 4146 * Try to free up some pages from this node through reclaim. 4147 */ 4148 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4149 { 4150 /* Minimum pages needed in order to stay on node */ 4151 const unsigned long nr_pages = 1 << order; 4152 struct task_struct *p = current; 4153 unsigned int noreclaim_flag; 4154 struct scan_control sc = { 4155 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4156 .gfp_mask = current_gfp_context(gfp_mask), 4157 .order = order, 4158 .priority = NODE_RECLAIM_PRIORITY, 4159 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4160 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4161 .may_swap = 1, 4162 .reclaim_idx = gfp_zone(gfp_mask), 4163 }; 4164 4165 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4166 sc.gfp_mask); 4167 4168 cond_resched(); 4169 fs_reclaim_acquire(sc.gfp_mask); 4170 /* 4171 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4172 * and we also need to be able to write out pages for RECLAIM_WRITE 4173 * and RECLAIM_UNMAP. 4174 */ 4175 noreclaim_flag = memalloc_noreclaim_save(); 4176 p->flags |= PF_SWAPWRITE; 4177 set_task_reclaim_state(p, &sc.reclaim_state); 4178 4179 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4180 /* 4181 * Free memory by calling shrink node with increasing 4182 * priorities until we have enough memory freed. 4183 */ 4184 do { 4185 shrink_node(pgdat, &sc); 4186 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4187 } 4188 4189 set_task_reclaim_state(p, NULL); 4190 current->flags &= ~PF_SWAPWRITE; 4191 memalloc_noreclaim_restore(noreclaim_flag); 4192 fs_reclaim_release(sc.gfp_mask); 4193 4194 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4195 4196 return sc.nr_reclaimed >= nr_pages; 4197 } 4198 4199 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4200 { 4201 int ret; 4202 4203 /* 4204 * Node reclaim reclaims unmapped file backed pages and 4205 * slab pages if we are over the defined limits. 4206 * 4207 * A small portion of unmapped file backed pages is needed for 4208 * file I/O otherwise pages read by file I/O will be immediately 4209 * thrown out if the node is overallocated. So we do not reclaim 4210 * if less than a specified percentage of the node is used by 4211 * unmapped file backed pages. 4212 */ 4213 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4214 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4215 return NODE_RECLAIM_FULL; 4216 4217 /* 4218 * Do not scan if the allocation should not be delayed. 4219 */ 4220 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4221 return NODE_RECLAIM_NOSCAN; 4222 4223 /* 4224 * Only run node reclaim on the local node or on nodes that do not 4225 * have associated processors. This will favor the local processor 4226 * over remote processors and spread off node memory allocations 4227 * as wide as possible. 4228 */ 4229 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4230 return NODE_RECLAIM_NOSCAN; 4231 4232 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4233 return NODE_RECLAIM_NOSCAN; 4234 4235 ret = __node_reclaim(pgdat, gfp_mask, order); 4236 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4237 4238 if (!ret) 4239 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4240 4241 return ret; 4242 } 4243 #endif 4244 4245 /* 4246 * page_evictable - test whether a page is evictable 4247 * @page: the page to test 4248 * 4249 * Test whether page is evictable--i.e., should be placed on active/inactive 4250 * lists vs unevictable list. 4251 * 4252 * Reasons page might not be evictable: 4253 * (1) page's mapping marked unevictable 4254 * (2) page is part of an mlocked VMA 4255 * 4256 */ 4257 int page_evictable(struct page *page) 4258 { 4259 int ret; 4260 4261 /* Prevent address_space of inode and swap cache from being freed */ 4262 rcu_read_lock(); 4263 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4264 rcu_read_unlock(); 4265 return ret; 4266 } 4267 4268 /** 4269 * check_move_unevictable_pages - check pages for evictability and move to 4270 * appropriate zone lru list 4271 * @pvec: pagevec with lru pages to check 4272 * 4273 * Checks pages for evictability, if an evictable page is in the unevictable 4274 * lru list, moves it to the appropriate evictable lru list. This function 4275 * should be only used for lru pages. 4276 */ 4277 void check_move_unevictable_pages(struct pagevec *pvec) 4278 { 4279 struct lruvec *lruvec; 4280 struct pglist_data *pgdat = NULL; 4281 int pgscanned = 0; 4282 int pgrescued = 0; 4283 int i; 4284 4285 for (i = 0; i < pvec->nr; i++) { 4286 struct page *page = pvec->pages[i]; 4287 struct pglist_data *pagepgdat = page_pgdat(page); 4288 4289 pgscanned++; 4290 if (pagepgdat != pgdat) { 4291 if (pgdat) 4292 spin_unlock_irq(&pgdat->lru_lock); 4293 pgdat = pagepgdat; 4294 spin_lock_irq(&pgdat->lru_lock); 4295 } 4296 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4297 4298 if (!PageLRU(page) || !PageUnevictable(page)) 4299 continue; 4300 4301 if (page_evictable(page)) { 4302 enum lru_list lru = page_lru_base_type(page); 4303 4304 VM_BUG_ON_PAGE(PageActive(page), page); 4305 ClearPageUnevictable(page); 4306 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4307 add_page_to_lru_list(page, lruvec, lru); 4308 pgrescued++; 4309 } 4310 } 4311 4312 if (pgdat) { 4313 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4314 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4315 spin_unlock_irq(&pgdat->lru_lock); 4316 } 4317 } 4318 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4319