xref: /openbmc/linux/mm/vmscan.c (revision b9ccfda2)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 struct scan_control {
57 	/* Incremented by the number of inactive pages that were scanned */
58 	unsigned long nr_scanned;
59 
60 	/* Number of pages freed so far during a call to shrink_zones() */
61 	unsigned long nr_reclaimed;
62 
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	unsigned long hibernation_mode;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	int may_writepage;
72 
73 	/* Can mapped pages be reclaimed? */
74 	int may_unmap;
75 
76 	/* Can pages be swapped as part of reclaim? */
77 	int may_swap;
78 
79 	int order;
80 
81 	/* Scan (total_size >> priority) pages at once */
82 	int priority;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 	 * are scanned.
93 	 */
94 	nodemask_t	*nodemask;
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 	return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 	return true;
145 }
146 #endif
147 
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 	if (!mem_cgroup_disabled())
151 		return mem_cgroup_get_lru_size(lruvec, lru);
152 
153 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155 
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 	atomic_long_set(&shrinker->nr_in_batch, 0);
162 	down_write(&shrinker_rwsem);
163 	list_add_tail(&shrinker->list, &shrinker_list);
164 	up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167 
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 	down_write(&shrinker_rwsem);
174 	list_del(&shrinker->list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178 
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 				     struct shrink_control *sc,
181 				     unsigned long nr_to_scan)
182 {
183 	sc->nr_to_scan = nr_to_scan;
184 	return (*shrinker->shrink)(shrinker, sc);
185 }
186 
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 			  unsigned long nr_pages_scanned,
209 			  unsigned long lru_pages)
210 {
211 	struct shrinker *shrinker;
212 	unsigned long ret = 0;
213 
214 	if (nr_pages_scanned == 0)
215 		nr_pages_scanned = SWAP_CLUSTER_MAX;
216 
217 	if (!down_read_trylock(&shrinker_rwsem)) {
218 		/* Assume we'll be able to shrink next time */
219 		ret = 1;
220 		goto out;
221 	}
222 
223 	list_for_each_entry(shrinker, &shrinker_list, list) {
224 		unsigned long long delta;
225 		long total_scan;
226 		long max_pass;
227 		int shrink_ret = 0;
228 		long nr;
229 		long new_nr;
230 		long batch_size = shrinker->batch ? shrinker->batch
231 						  : SHRINK_BATCH;
232 
233 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 		if (max_pass <= 0)
235 			continue;
236 
237 		/*
238 		 * copy the current shrinker scan count into a local variable
239 		 * and zero it so that other concurrent shrinker invocations
240 		 * don't also do this scanning work.
241 		 */
242 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 
244 		total_scan = nr;
245 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 		delta *= max_pass;
247 		do_div(delta, lru_pages + 1);
248 		total_scan += delta;
249 		if (total_scan < 0) {
250 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 			       "delete nr=%ld\n",
252 			       shrinker->shrink, total_scan);
253 			total_scan = max_pass;
254 		}
255 
256 		/*
257 		 * We need to avoid excessive windup on filesystem shrinkers
258 		 * due to large numbers of GFP_NOFS allocations causing the
259 		 * shrinkers to return -1 all the time. This results in a large
260 		 * nr being built up so when a shrink that can do some work
261 		 * comes along it empties the entire cache due to nr >>>
262 		 * max_pass.  This is bad for sustaining a working set in
263 		 * memory.
264 		 *
265 		 * Hence only allow the shrinker to scan the entire cache when
266 		 * a large delta change is calculated directly.
267 		 */
268 		if (delta < max_pass / 4)
269 			total_scan = min(total_scan, max_pass / 2);
270 
271 		/*
272 		 * Avoid risking looping forever due to too large nr value:
273 		 * never try to free more than twice the estimate number of
274 		 * freeable entries.
275 		 */
276 		if (total_scan > max_pass * 2)
277 			total_scan = max_pass * 2;
278 
279 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 					nr_pages_scanned, lru_pages,
281 					max_pass, delta, total_scan);
282 
283 		while (total_scan >= batch_size) {
284 			int nr_before;
285 
286 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 							batch_size);
289 			if (shrink_ret == -1)
290 				break;
291 			if (shrink_ret < nr_before)
292 				ret += nr_before - shrink_ret;
293 			count_vm_events(SLABS_SCANNED, batch_size);
294 			total_scan -= batch_size;
295 
296 			cond_resched();
297 		}
298 
299 		/*
300 		 * move the unused scan count back into the shrinker in a
301 		 * manner that handles concurrent updates. If we exhausted the
302 		 * scan, there is no need to do an update.
303 		 */
304 		if (total_scan > 0)
305 			new_nr = atomic_long_add_return(total_scan,
306 					&shrinker->nr_in_batch);
307 		else
308 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 
310 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 	}
312 	up_read(&shrinker_rwsem);
313 out:
314 	cond_resched();
315 	return ret;
316 }
317 
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 	/*
321 	 * A freeable page cache page is referenced only by the caller
322 	 * that isolated the page, the page cache radix tree and
323 	 * optional buffer heads at page->private.
324 	 */
325 	return page_count(page) - page_has_private(page) == 2;
326 }
327 
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 			      struct scan_control *sc)
330 {
331 	if (current->flags & PF_SWAPWRITE)
332 		return 1;
333 	if (!bdi_write_congested(bdi))
334 		return 1;
335 	if (bdi == current->backing_dev_info)
336 		return 1;
337 	return 0;
338 }
339 
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353 				struct page *page, int error)
354 {
355 	lock_page(page);
356 	if (page_mapping(page) == mapping)
357 		mapping_set_error(mapping, error);
358 	unlock_page(page);
359 }
360 
361 /* possible outcome of pageout() */
362 typedef enum {
363 	/* failed to write page out, page is locked */
364 	PAGE_KEEP,
365 	/* move page to the active list, page is locked */
366 	PAGE_ACTIVATE,
367 	/* page has been sent to the disk successfully, page is unlocked */
368 	PAGE_SUCCESS,
369 	/* page is clean and locked */
370 	PAGE_CLEAN,
371 } pageout_t;
372 
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 			 struct scan_control *sc)
379 {
380 	/*
381 	 * If the page is dirty, only perform writeback if that write
382 	 * will be non-blocking.  To prevent this allocation from being
383 	 * stalled by pagecache activity.  But note that there may be
384 	 * stalls if we need to run get_block().  We could test
385 	 * PagePrivate for that.
386 	 *
387 	 * If this process is currently in __generic_file_aio_write() against
388 	 * this page's queue, we can perform writeback even if that
389 	 * will block.
390 	 *
391 	 * If the page is swapcache, write it back even if that would
392 	 * block, for some throttling. This happens by accident, because
393 	 * swap_backing_dev_info is bust: it doesn't reflect the
394 	 * congestion state of the swapdevs.  Easy to fix, if needed.
395 	 */
396 	if (!is_page_cache_freeable(page))
397 		return PAGE_KEEP;
398 	if (!mapping) {
399 		/*
400 		 * Some data journaling orphaned pages can have
401 		 * page->mapping == NULL while being dirty with clean buffers.
402 		 */
403 		if (page_has_private(page)) {
404 			if (try_to_free_buffers(page)) {
405 				ClearPageDirty(page);
406 				printk("%s: orphaned page\n", __func__);
407 				return PAGE_CLEAN;
408 			}
409 		}
410 		return PAGE_KEEP;
411 	}
412 	if (mapping->a_ops->writepage == NULL)
413 		return PAGE_ACTIVATE;
414 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 		return PAGE_KEEP;
416 
417 	if (clear_page_dirty_for_io(page)) {
418 		int res;
419 		struct writeback_control wbc = {
420 			.sync_mode = WB_SYNC_NONE,
421 			.nr_to_write = SWAP_CLUSTER_MAX,
422 			.range_start = 0,
423 			.range_end = LLONG_MAX,
424 			.for_reclaim = 1,
425 		};
426 
427 		SetPageReclaim(page);
428 		res = mapping->a_ops->writepage(page, &wbc);
429 		if (res < 0)
430 			handle_write_error(mapping, page, res);
431 		if (res == AOP_WRITEPAGE_ACTIVATE) {
432 			ClearPageReclaim(page);
433 			return PAGE_ACTIVATE;
434 		}
435 
436 		if (!PageWriteback(page)) {
437 			/* synchronous write or broken a_ops? */
438 			ClearPageReclaim(page);
439 		}
440 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		void (*freepage)(struct page *);
498 
499 		freepage = mapping->a_ops->freepage;
500 
501 		__delete_from_page_cache(page);
502 		spin_unlock_irq(&mapping->tree_lock);
503 		mem_cgroup_uncharge_cache_page(page);
504 
505 		if (freepage != NULL)
506 			freepage(page);
507 	}
508 
509 	return 1;
510 
511 cannot_free:
512 	spin_unlock_irq(&mapping->tree_lock);
513 	return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 	if (__remove_mapping(mapping, page)) {
525 		/*
526 		 * Unfreezing the refcount with 1 rather than 2 effectively
527 		 * drops the pagecache ref for us without requiring another
528 		 * atomic operation.
529 		 */
530 		page_unfreeze_refs(page, 1);
531 		return 1;
532 	}
533 	return 0;
534 }
535 
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547 	int lru;
548 	int active = !!TestClearPageActive(page);
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page, NULL)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = active + page_lru_base_type(page);
564 		lru_cache_add_lru(page, lru);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 				      struct zone *zone,
676 				      struct scan_control *sc,
677 				      unsigned long *ret_nr_dirty,
678 				      unsigned long *ret_nr_writeback)
679 {
680 	LIST_HEAD(ret_pages);
681 	LIST_HEAD(free_pages);
682 	int pgactivate = 0;
683 	unsigned long nr_dirty = 0;
684 	unsigned long nr_congested = 0;
685 	unsigned long nr_reclaimed = 0;
686 	unsigned long nr_writeback = 0;
687 
688 	cond_resched();
689 
690 	while (!list_empty(page_list)) {
691 		enum page_references references;
692 		struct address_space *mapping;
693 		struct page *page;
694 		int may_enter_fs;
695 
696 		cond_resched();
697 
698 		page = lru_to_page(page_list);
699 		list_del(&page->lru);
700 
701 		if (!trylock_page(page))
702 			goto keep;
703 
704 		VM_BUG_ON(PageActive(page));
705 		VM_BUG_ON(page_zone(page) != zone);
706 
707 		sc->nr_scanned++;
708 
709 		if (unlikely(!page_evictable(page, NULL)))
710 			goto cull_mlocked;
711 
712 		if (!sc->may_unmap && page_mapped(page))
713 			goto keep_locked;
714 
715 		/* Double the slab pressure for mapped and swapcache pages */
716 		if (page_mapped(page) || PageSwapCache(page))
717 			sc->nr_scanned++;
718 
719 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721 
722 		if (PageWriteback(page)) {
723 			nr_writeback++;
724 			unlock_page(page);
725 			goto keep;
726 		}
727 
728 		references = page_check_references(page, sc);
729 		switch (references) {
730 		case PAGEREF_ACTIVATE:
731 			goto activate_locked;
732 		case PAGEREF_KEEP:
733 			goto keep_locked;
734 		case PAGEREF_RECLAIM:
735 		case PAGEREF_RECLAIM_CLEAN:
736 			; /* try to reclaim the page below */
737 		}
738 
739 		/*
740 		 * Anonymous process memory has backing store?
741 		 * Try to allocate it some swap space here.
742 		 */
743 		if (PageAnon(page) && !PageSwapCache(page)) {
744 			if (!(sc->gfp_mask & __GFP_IO))
745 				goto keep_locked;
746 			if (!add_to_swap(page))
747 				goto activate_locked;
748 			may_enter_fs = 1;
749 		}
750 
751 		mapping = page_mapping(page);
752 
753 		/*
754 		 * The page is mapped into the page tables of one or more
755 		 * processes. Try to unmap it here.
756 		 */
757 		if (page_mapped(page) && mapping) {
758 			switch (try_to_unmap(page, TTU_UNMAP)) {
759 			case SWAP_FAIL:
760 				goto activate_locked;
761 			case SWAP_AGAIN:
762 				goto keep_locked;
763 			case SWAP_MLOCK:
764 				goto cull_mlocked;
765 			case SWAP_SUCCESS:
766 				; /* try to free the page below */
767 			}
768 		}
769 
770 		if (PageDirty(page)) {
771 			nr_dirty++;
772 
773 			/*
774 			 * Only kswapd can writeback filesystem pages to
775 			 * avoid risk of stack overflow but do not writeback
776 			 * unless under significant pressure.
777 			 */
778 			if (page_is_file_cache(page) &&
779 					(!current_is_kswapd() ||
780 					 sc->priority >= DEF_PRIORITY - 2)) {
781 				/*
782 				 * Immediately reclaim when written back.
783 				 * Similar in principal to deactivate_page()
784 				 * except we already have the page isolated
785 				 * and know it's dirty
786 				 */
787 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
788 				SetPageReclaim(page);
789 
790 				goto keep_locked;
791 			}
792 
793 			if (references == PAGEREF_RECLAIM_CLEAN)
794 				goto keep_locked;
795 			if (!may_enter_fs)
796 				goto keep_locked;
797 			if (!sc->may_writepage)
798 				goto keep_locked;
799 
800 			/* Page is dirty, try to write it out here */
801 			switch (pageout(page, mapping, sc)) {
802 			case PAGE_KEEP:
803 				nr_congested++;
804 				goto keep_locked;
805 			case PAGE_ACTIVATE:
806 				goto activate_locked;
807 			case PAGE_SUCCESS:
808 				if (PageWriteback(page))
809 					goto keep;
810 				if (PageDirty(page))
811 					goto keep;
812 
813 				/*
814 				 * A synchronous write - probably a ramdisk.  Go
815 				 * ahead and try to reclaim the page.
816 				 */
817 				if (!trylock_page(page))
818 					goto keep;
819 				if (PageDirty(page) || PageWriteback(page))
820 					goto keep_locked;
821 				mapping = page_mapping(page);
822 			case PAGE_CLEAN:
823 				; /* try to free the page below */
824 			}
825 		}
826 
827 		/*
828 		 * If the page has buffers, try to free the buffer mappings
829 		 * associated with this page. If we succeed we try to free
830 		 * the page as well.
831 		 *
832 		 * We do this even if the page is PageDirty().
833 		 * try_to_release_page() does not perform I/O, but it is
834 		 * possible for a page to have PageDirty set, but it is actually
835 		 * clean (all its buffers are clean).  This happens if the
836 		 * buffers were written out directly, with submit_bh(). ext3
837 		 * will do this, as well as the blockdev mapping.
838 		 * try_to_release_page() will discover that cleanness and will
839 		 * drop the buffers and mark the page clean - it can be freed.
840 		 *
841 		 * Rarely, pages can have buffers and no ->mapping.  These are
842 		 * the pages which were not successfully invalidated in
843 		 * truncate_complete_page().  We try to drop those buffers here
844 		 * and if that worked, and the page is no longer mapped into
845 		 * process address space (page_count == 1) it can be freed.
846 		 * Otherwise, leave the page on the LRU so it is swappable.
847 		 */
848 		if (page_has_private(page)) {
849 			if (!try_to_release_page(page, sc->gfp_mask))
850 				goto activate_locked;
851 			if (!mapping && page_count(page) == 1) {
852 				unlock_page(page);
853 				if (put_page_testzero(page))
854 					goto free_it;
855 				else {
856 					/*
857 					 * rare race with speculative reference.
858 					 * the speculative reference will free
859 					 * this page shortly, so we may
860 					 * increment nr_reclaimed here (and
861 					 * leave it off the LRU).
862 					 */
863 					nr_reclaimed++;
864 					continue;
865 				}
866 			}
867 		}
868 
869 		if (!mapping || !__remove_mapping(mapping, page))
870 			goto keep_locked;
871 
872 		/*
873 		 * At this point, we have no other references and there is
874 		 * no way to pick any more up (removed from LRU, removed
875 		 * from pagecache). Can use non-atomic bitops now (and
876 		 * we obviously don't have to worry about waking up a process
877 		 * waiting on the page lock, because there are no references.
878 		 */
879 		__clear_page_locked(page);
880 free_it:
881 		nr_reclaimed++;
882 
883 		/*
884 		 * Is there need to periodically free_page_list? It would
885 		 * appear not as the counts should be low
886 		 */
887 		list_add(&page->lru, &free_pages);
888 		continue;
889 
890 cull_mlocked:
891 		if (PageSwapCache(page))
892 			try_to_free_swap(page);
893 		unlock_page(page);
894 		putback_lru_page(page);
895 		continue;
896 
897 activate_locked:
898 		/* Not a candidate for swapping, so reclaim swap space. */
899 		if (PageSwapCache(page) && vm_swap_full())
900 			try_to_free_swap(page);
901 		VM_BUG_ON(PageActive(page));
902 		SetPageActive(page);
903 		pgactivate++;
904 keep_locked:
905 		unlock_page(page);
906 keep:
907 		list_add(&page->lru, &ret_pages);
908 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
909 	}
910 
911 	/*
912 	 * Tag a zone as congested if all the dirty pages encountered were
913 	 * backed by a congested BDI. In this case, reclaimers should just
914 	 * back off and wait for congestion to clear because further reclaim
915 	 * will encounter the same problem
916 	 */
917 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
918 		zone_set_flag(zone, ZONE_CONGESTED);
919 
920 	free_hot_cold_page_list(&free_pages, 1);
921 
922 	list_splice(&ret_pages, page_list);
923 	count_vm_events(PGACTIVATE, pgactivate);
924 	*ret_nr_dirty += nr_dirty;
925 	*ret_nr_writeback += nr_writeback;
926 	return nr_reclaimed;
927 }
928 
929 /*
930  * Attempt to remove the specified page from its LRU.  Only take this page
931  * if it is of the appropriate PageActive status.  Pages which are being
932  * freed elsewhere are also ignored.
933  *
934  * page:	page to consider
935  * mode:	one of the LRU isolation modes defined above
936  *
937  * returns 0 on success, -ve errno on failure.
938  */
939 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
940 {
941 	int ret = -EINVAL;
942 
943 	/* Only take pages on the LRU. */
944 	if (!PageLRU(page))
945 		return ret;
946 
947 	/* Do not give back unevictable pages for compaction */
948 	if (PageUnevictable(page))
949 		return ret;
950 
951 	ret = -EBUSY;
952 
953 	/*
954 	 * To minimise LRU disruption, the caller can indicate that it only
955 	 * wants to isolate pages it will be able to operate on without
956 	 * blocking - clean pages for the most part.
957 	 *
958 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
959 	 * is used by reclaim when it is cannot write to backing storage
960 	 *
961 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
962 	 * that it is possible to migrate without blocking
963 	 */
964 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
965 		/* All the caller can do on PageWriteback is block */
966 		if (PageWriteback(page))
967 			return ret;
968 
969 		if (PageDirty(page)) {
970 			struct address_space *mapping;
971 
972 			/* ISOLATE_CLEAN means only clean pages */
973 			if (mode & ISOLATE_CLEAN)
974 				return ret;
975 
976 			/*
977 			 * Only pages without mappings or that have a
978 			 * ->migratepage callback are possible to migrate
979 			 * without blocking
980 			 */
981 			mapping = page_mapping(page);
982 			if (mapping && !mapping->a_ops->migratepage)
983 				return ret;
984 		}
985 	}
986 
987 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
988 		return ret;
989 
990 	if (likely(get_page_unless_zero(page))) {
991 		/*
992 		 * Be careful not to clear PageLRU until after we're
993 		 * sure the page is not being freed elsewhere -- the
994 		 * page release code relies on it.
995 		 */
996 		ClearPageLRU(page);
997 		ret = 0;
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 /*
1004  * zone->lru_lock is heavily contended.  Some of the functions that
1005  * shrink the lists perform better by taking out a batch of pages
1006  * and working on them outside the LRU lock.
1007  *
1008  * For pagecache intensive workloads, this function is the hottest
1009  * spot in the kernel (apart from copy_*_user functions).
1010  *
1011  * Appropriate locks must be held before calling this function.
1012  *
1013  * @nr_to_scan:	The number of pages to look through on the list.
1014  * @lruvec:	The LRU vector to pull pages from.
1015  * @dst:	The temp list to put pages on to.
1016  * @nr_scanned:	The number of pages that were scanned.
1017  * @sc:		The scan_control struct for this reclaim session
1018  * @mode:	One of the LRU isolation modes
1019  * @lru:	LRU list id for isolating
1020  *
1021  * returns how many pages were moved onto *@dst.
1022  */
1023 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1024 		struct lruvec *lruvec, struct list_head *dst,
1025 		unsigned long *nr_scanned, struct scan_control *sc,
1026 		isolate_mode_t mode, enum lru_list lru)
1027 {
1028 	struct list_head *src = &lruvec->lists[lru];
1029 	unsigned long nr_taken = 0;
1030 	unsigned long scan;
1031 
1032 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033 		struct page *page;
1034 		int nr_pages;
1035 
1036 		page = lru_to_page(src);
1037 		prefetchw_prev_lru_page(page, src, flags);
1038 
1039 		VM_BUG_ON(!PageLRU(page));
1040 
1041 		switch (__isolate_lru_page(page, mode)) {
1042 		case 0:
1043 			nr_pages = hpage_nr_pages(page);
1044 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1045 			list_move(&page->lru, dst);
1046 			nr_taken += nr_pages;
1047 			break;
1048 
1049 		case -EBUSY:
1050 			/* else it is being freed elsewhere */
1051 			list_move(&page->lru, src);
1052 			continue;
1053 
1054 		default:
1055 			BUG();
1056 		}
1057 	}
1058 
1059 	*nr_scanned = scan;
1060 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1061 				    nr_taken, mode, is_file_lru(lru));
1062 	return nr_taken;
1063 }
1064 
1065 /**
1066  * isolate_lru_page - tries to isolate a page from its LRU list
1067  * @page: page to isolate from its LRU list
1068  *
1069  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1070  * vmstat statistic corresponding to whatever LRU list the page was on.
1071  *
1072  * Returns 0 if the page was removed from an LRU list.
1073  * Returns -EBUSY if the page was not on an LRU list.
1074  *
1075  * The returned page will have PageLRU() cleared.  If it was found on
1076  * the active list, it will have PageActive set.  If it was found on
1077  * the unevictable list, it will have the PageUnevictable bit set. That flag
1078  * may need to be cleared by the caller before letting the page go.
1079  *
1080  * The vmstat statistic corresponding to the list on which the page was
1081  * found will be decremented.
1082  *
1083  * Restrictions:
1084  * (1) Must be called with an elevated refcount on the page. This is a
1085  *     fundamentnal difference from isolate_lru_pages (which is called
1086  *     without a stable reference).
1087  * (2) the lru_lock must not be held.
1088  * (3) interrupts must be enabled.
1089  */
1090 int isolate_lru_page(struct page *page)
1091 {
1092 	int ret = -EBUSY;
1093 
1094 	VM_BUG_ON(!page_count(page));
1095 
1096 	if (PageLRU(page)) {
1097 		struct zone *zone = page_zone(page);
1098 		struct lruvec *lruvec;
1099 
1100 		spin_lock_irq(&zone->lru_lock);
1101 		lruvec = mem_cgroup_page_lruvec(page, zone);
1102 		if (PageLRU(page)) {
1103 			int lru = page_lru(page);
1104 			get_page(page);
1105 			ClearPageLRU(page);
1106 			del_page_from_lru_list(page, lruvec, lru);
1107 			ret = 0;
1108 		}
1109 		spin_unlock_irq(&zone->lru_lock);
1110 	}
1111 	return ret;
1112 }
1113 
1114 /*
1115  * Are there way too many processes in the direct reclaim path already?
1116  */
1117 static int too_many_isolated(struct zone *zone, int file,
1118 		struct scan_control *sc)
1119 {
1120 	unsigned long inactive, isolated;
1121 
1122 	if (current_is_kswapd())
1123 		return 0;
1124 
1125 	if (!global_reclaim(sc))
1126 		return 0;
1127 
1128 	if (file) {
1129 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1130 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1131 	} else {
1132 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1133 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1134 	}
1135 
1136 	return isolated > inactive;
1137 }
1138 
1139 static noinline_for_stack void
1140 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1141 {
1142 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1143 	struct zone *zone = lruvec_zone(lruvec);
1144 	LIST_HEAD(pages_to_free);
1145 
1146 	/*
1147 	 * Put back any unfreeable pages.
1148 	 */
1149 	while (!list_empty(page_list)) {
1150 		struct page *page = lru_to_page(page_list);
1151 		int lru;
1152 
1153 		VM_BUG_ON(PageLRU(page));
1154 		list_del(&page->lru);
1155 		if (unlikely(!page_evictable(page, NULL))) {
1156 			spin_unlock_irq(&zone->lru_lock);
1157 			putback_lru_page(page);
1158 			spin_lock_irq(&zone->lru_lock);
1159 			continue;
1160 		}
1161 
1162 		lruvec = mem_cgroup_page_lruvec(page, zone);
1163 
1164 		SetPageLRU(page);
1165 		lru = page_lru(page);
1166 		add_page_to_lru_list(page, lruvec, lru);
1167 
1168 		if (is_active_lru(lru)) {
1169 			int file = is_file_lru(lru);
1170 			int numpages = hpage_nr_pages(page);
1171 			reclaim_stat->recent_rotated[file] += numpages;
1172 		}
1173 		if (put_page_testzero(page)) {
1174 			__ClearPageLRU(page);
1175 			__ClearPageActive(page);
1176 			del_page_from_lru_list(page, lruvec, lru);
1177 
1178 			if (unlikely(PageCompound(page))) {
1179 				spin_unlock_irq(&zone->lru_lock);
1180 				(*get_compound_page_dtor(page))(page);
1181 				spin_lock_irq(&zone->lru_lock);
1182 			} else
1183 				list_add(&page->lru, &pages_to_free);
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * To save our caller's stack, now use input list for pages to free.
1189 	 */
1190 	list_splice(&pages_to_free, page_list);
1191 }
1192 
1193 /*
1194  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1195  * of reclaimed pages
1196  */
1197 static noinline_for_stack unsigned long
1198 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1199 		     struct scan_control *sc, enum lru_list lru)
1200 {
1201 	LIST_HEAD(page_list);
1202 	unsigned long nr_scanned;
1203 	unsigned long nr_reclaimed = 0;
1204 	unsigned long nr_taken;
1205 	unsigned long nr_dirty = 0;
1206 	unsigned long nr_writeback = 0;
1207 	isolate_mode_t isolate_mode = 0;
1208 	int file = is_file_lru(lru);
1209 	struct zone *zone = lruvec_zone(lruvec);
1210 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1211 
1212 	while (unlikely(too_many_isolated(zone, file, sc))) {
1213 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1214 
1215 		/* We are about to die and free our memory. Return now. */
1216 		if (fatal_signal_pending(current))
1217 			return SWAP_CLUSTER_MAX;
1218 	}
1219 
1220 	lru_add_drain();
1221 
1222 	if (!sc->may_unmap)
1223 		isolate_mode |= ISOLATE_UNMAPPED;
1224 	if (!sc->may_writepage)
1225 		isolate_mode |= ISOLATE_CLEAN;
1226 
1227 	spin_lock_irq(&zone->lru_lock);
1228 
1229 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1230 				     &nr_scanned, sc, isolate_mode, lru);
1231 
1232 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1233 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1234 
1235 	if (global_reclaim(sc)) {
1236 		zone->pages_scanned += nr_scanned;
1237 		if (current_is_kswapd())
1238 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1239 		else
1240 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1241 	}
1242 	spin_unlock_irq(&zone->lru_lock);
1243 
1244 	if (nr_taken == 0)
1245 		return 0;
1246 
1247 	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1248 						&nr_dirty, &nr_writeback);
1249 
1250 	spin_lock_irq(&zone->lru_lock);
1251 
1252 	reclaim_stat->recent_scanned[file] += nr_taken;
1253 
1254 	if (global_reclaim(sc)) {
1255 		if (current_is_kswapd())
1256 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1257 					       nr_reclaimed);
1258 		else
1259 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1260 					       nr_reclaimed);
1261 	}
1262 
1263 	putback_inactive_pages(lruvec, &page_list);
1264 
1265 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1266 
1267 	spin_unlock_irq(&zone->lru_lock);
1268 
1269 	free_hot_cold_page_list(&page_list, 1);
1270 
1271 	/*
1272 	 * If reclaim is isolating dirty pages under writeback, it implies
1273 	 * that the long-lived page allocation rate is exceeding the page
1274 	 * laundering rate. Either the global limits are not being effective
1275 	 * at throttling processes due to the page distribution throughout
1276 	 * zones or there is heavy usage of a slow backing device. The
1277 	 * only option is to throttle from reclaim context which is not ideal
1278 	 * as there is no guarantee the dirtying process is throttled in the
1279 	 * same way balance_dirty_pages() manages.
1280 	 *
1281 	 * This scales the number of dirty pages that must be under writeback
1282 	 * before throttling depending on priority. It is a simple backoff
1283 	 * function that has the most effect in the range DEF_PRIORITY to
1284 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1285 	 * in trouble and reclaim is considered to be in trouble.
1286 	 *
1287 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1288 	 * DEF_PRIORITY-1  50% must be PageWriteback
1289 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1290 	 * ...
1291 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1292 	 *                     isolated page is PageWriteback
1293 	 */
1294 	if (nr_writeback && nr_writeback >=
1295 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1296 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1297 
1298 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1299 		zone_idx(zone),
1300 		nr_scanned, nr_reclaimed,
1301 		sc->priority,
1302 		trace_shrink_flags(file));
1303 	return nr_reclaimed;
1304 }
1305 
1306 /*
1307  * This moves pages from the active list to the inactive list.
1308  *
1309  * We move them the other way if the page is referenced by one or more
1310  * processes, from rmap.
1311  *
1312  * If the pages are mostly unmapped, the processing is fast and it is
1313  * appropriate to hold zone->lru_lock across the whole operation.  But if
1314  * the pages are mapped, the processing is slow (page_referenced()) so we
1315  * should drop zone->lru_lock around each page.  It's impossible to balance
1316  * this, so instead we remove the pages from the LRU while processing them.
1317  * It is safe to rely on PG_active against the non-LRU pages in here because
1318  * nobody will play with that bit on a non-LRU page.
1319  *
1320  * The downside is that we have to touch page->_count against each page.
1321  * But we had to alter page->flags anyway.
1322  */
1323 
1324 static void move_active_pages_to_lru(struct lruvec *lruvec,
1325 				     struct list_head *list,
1326 				     struct list_head *pages_to_free,
1327 				     enum lru_list lru)
1328 {
1329 	struct zone *zone = lruvec_zone(lruvec);
1330 	unsigned long pgmoved = 0;
1331 	struct page *page;
1332 	int nr_pages;
1333 
1334 	while (!list_empty(list)) {
1335 		page = lru_to_page(list);
1336 		lruvec = mem_cgroup_page_lruvec(page, zone);
1337 
1338 		VM_BUG_ON(PageLRU(page));
1339 		SetPageLRU(page);
1340 
1341 		nr_pages = hpage_nr_pages(page);
1342 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1343 		list_move(&page->lru, &lruvec->lists[lru]);
1344 		pgmoved += nr_pages;
1345 
1346 		if (put_page_testzero(page)) {
1347 			__ClearPageLRU(page);
1348 			__ClearPageActive(page);
1349 			del_page_from_lru_list(page, lruvec, lru);
1350 
1351 			if (unlikely(PageCompound(page))) {
1352 				spin_unlock_irq(&zone->lru_lock);
1353 				(*get_compound_page_dtor(page))(page);
1354 				spin_lock_irq(&zone->lru_lock);
1355 			} else
1356 				list_add(&page->lru, pages_to_free);
1357 		}
1358 	}
1359 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1360 	if (!is_active_lru(lru))
1361 		__count_vm_events(PGDEACTIVATE, pgmoved);
1362 }
1363 
1364 static void shrink_active_list(unsigned long nr_to_scan,
1365 			       struct lruvec *lruvec,
1366 			       struct scan_control *sc,
1367 			       enum lru_list lru)
1368 {
1369 	unsigned long nr_taken;
1370 	unsigned long nr_scanned;
1371 	unsigned long vm_flags;
1372 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1373 	LIST_HEAD(l_active);
1374 	LIST_HEAD(l_inactive);
1375 	struct page *page;
1376 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1377 	unsigned long nr_rotated = 0;
1378 	isolate_mode_t isolate_mode = 0;
1379 	int file = is_file_lru(lru);
1380 	struct zone *zone = lruvec_zone(lruvec);
1381 
1382 	lru_add_drain();
1383 
1384 	if (!sc->may_unmap)
1385 		isolate_mode |= ISOLATE_UNMAPPED;
1386 	if (!sc->may_writepage)
1387 		isolate_mode |= ISOLATE_CLEAN;
1388 
1389 	spin_lock_irq(&zone->lru_lock);
1390 
1391 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1392 				     &nr_scanned, sc, isolate_mode, lru);
1393 	if (global_reclaim(sc))
1394 		zone->pages_scanned += nr_scanned;
1395 
1396 	reclaim_stat->recent_scanned[file] += nr_taken;
1397 
1398 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1399 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1400 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1401 	spin_unlock_irq(&zone->lru_lock);
1402 
1403 	while (!list_empty(&l_hold)) {
1404 		cond_resched();
1405 		page = lru_to_page(&l_hold);
1406 		list_del(&page->lru);
1407 
1408 		if (unlikely(!page_evictable(page, NULL))) {
1409 			putback_lru_page(page);
1410 			continue;
1411 		}
1412 
1413 		if (unlikely(buffer_heads_over_limit)) {
1414 			if (page_has_private(page) && trylock_page(page)) {
1415 				if (page_has_private(page))
1416 					try_to_release_page(page, 0);
1417 				unlock_page(page);
1418 			}
1419 		}
1420 
1421 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1422 				    &vm_flags)) {
1423 			nr_rotated += hpage_nr_pages(page);
1424 			/*
1425 			 * Identify referenced, file-backed active pages and
1426 			 * give them one more trip around the active list. So
1427 			 * that executable code get better chances to stay in
1428 			 * memory under moderate memory pressure.  Anon pages
1429 			 * are not likely to be evicted by use-once streaming
1430 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1431 			 * so we ignore them here.
1432 			 */
1433 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1434 				list_add(&page->lru, &l_active);
1435 				continue;
1436 			}
1437 		}
1438 
1439 		ClearPageActive(page);	/* we are de-activating */
1440 		list_add(&page->lru, &l_inactive);
1441 	}
1442 
1443 	/*
1444 	 * Move pages back to the lru list.
1445 	 */
1446 	spin_lock_irq(&zone->lru_lock);
1447 	/*
1448 	 * Count referenced pages from currently used mappings as rotated,
1449 	 * even though only some of them are actually re-activated.  This
1450 	 * helps balance scan pressure between file and anonymous pages in
1451 	 * get_scan_ratio.
1452 	 */
1453 	reclaim_stat->recent_rotated[file] += nr_rotated;
1454 
1455 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1456 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1457 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1458 	spin_unlock_irq(&zone->lru_lock);
1459 
1460 	free_hot_cold_page_list(&l_hold, 1);
1461 }
1462 
1463 #ifdef CONFIG_SWAP
1464 static int inactive_anon_is_low_global(struct zone *zone)
1465 {
1466 	unsigned long active, inactive;
1467 
1468 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1469 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1470 
1471 	if (inactive * zone->inactive_ratio < active)
1472 		return 1;
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1479  * @lruvec: LRU vector to check
1480  *
1481  * Returns true if the zone does not have enough inactive anon pages,
1482  * meaning some active anon pages need to be deactivated.
1483  */
1484 static int inactive_anon_is_low(struct lruvec *lruvec)
1485 {
1486 	/*
1487 	 * If we don't have swap space, anonymous page deactivation
1488 	 * is pointless.
1489 	 */
1490 	if (!total_swap_pages)
1491 		return 0;
1492 
1493 	if (!mem_cgroup_disabled())
1494 		return mem_cgroup_inactive_anon_is_low(lruvec);
1495 
1496 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1497 }
1498 #else
1499 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1500 {
1501 	return 0;
1502 }
1503 #endif
1504 
1505 static int inactive_file_is_low_global(struct zone *zone)
1506 {
1507 	unsigned long active, inactive;
1508 
1509 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1510 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1511 
1512 	return (active > inactive);
1513 }
1514 
1515 /**
1516  * inactive_file_is_low - check if file pages need to be deactivated
1517  * @lruvec: LRU vector to check
1518  *
1519  * When the system is doing streaming IO, memory pressure here
1520  * ensures that active file pages get deactivated, until more
1521  * than half of the file pages are on the inactive list.
1522  *
1523  * Once we get to that situation, protect the system's working
1524  * set from being evicted by disabling active file page aging.
1525  *
1526  * This uses a different ratio than the anonymous pages, because
1527  * the page cache uses a use-once replacement algorithm.
1528  */
1529 static int inactive_file_is_low(struct lruvec *lruvec)
1530 {
1531 	if (!mem_cgroup_disabled())
1532 		return mem_cgroup_inactive_file_is_low(lruvec);
1533 
1534 	return inactive_file_is_low_global(lruvec_zone(lruvec));
1535 }
1536 
1537 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1538 {
1539 	if (is_file_lru(lru))
1540 		return inactive_file_is_low(lruvec);
1541 	else
1542 		return inactive_anon_is_low(lruvec);
1543 }
1544 
1545 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1546 				 struct lruvec *lruvec, struct scan_control *sc)
1547 {
1548 	if (is_active_lru(lru)) {
1549 		if (inactive_list_is_low(lruvec, lru))
1550 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1551 		return 0;
1552 	}
1553 
1554 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1555 }
1556 
1557 static int vmscan_swappiness(struct scan_control *sc)
1558 {
1559 	if (global_reclaim(sc))
1560 		return vm_swappiness;
1561 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1562 }
1563 
1564 /*
1565  * Determine how aggressively the anon and file LRU lists should be
1566  * scanned.  The relative value of each set of LRU lists is determined
1567  * by looking at the fraction of the pages scanned we did rotate back
1568  * onto the active list instead of evict.
1569  *
1570  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1571  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1572  */
1573 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1574 			   unsigned long *nr)
1575 {
1576 	unsigned long anon, file, free;
1577 	unsigned long anon_prio, file_prio;
1578 	unsigned long ap, fp;
1579 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1580 	u64 fraction[2], denominator;
1581 	enum lru_list lru;
1582 	int noswap = 0;
1583 	bool force_scan = false;
1584 	struct zone *zone = lruvec_zone(lruvec);
1585 
1586 	/*
1587 	 * If the zone or memcg is small, nr[l] can be 0.  This
1588 	 * results in no scanning on this priority and a potential
1589 	 * priority drop.  Global direct reclaim can go to the next
1590 	 * zone and tends to have no problems. Global kswapd is for
1591 	 * zone balancing and it needs to scan a minimum amount. When
1592 	 * reclaiming for a memcg, a priority drop can cause high
1593 	 * latencies, so it's better to scan a minimum amount there as
1594 	 * well.
1595 	 */
1596 	if (current_is_kswapd() && zone->all_unreclaimable)
1597 		force_scan = true;
1598 	if (!global_reclaim(sc))
1599 		force_scan = true;
1600 
1601 	/* If we have no swap space, do not bother scanning anon pages. */
1602 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1603 		noswap = 1;
1604 		fraction[0] = 0;
1605 		fraction[1] = 1;
1606 		denominator = 1;
1607 		goto out;
1608 	}
1609 
1610 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1611 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1612 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1613 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1614 
1615 	if (global_reclaim(sc)) {
1616 		free  = zone_page_state(zone, NR_FREE_PAGES);
1617 		/* If we have very few page cache pages,
1618 		   force-scan anon pages. */
1619 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1620 			fraction[0] = 1;
1621 			fraction[1] = 0;
1622 			denominator = 1;
1623 			goto out;
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * With swappiness at 100, anonymous and file have the same priority.
1629 	 * This scanning priority is essentially the inverse of IO cost.
1630 	 */
1631 	anon_prio = vmscan_swappiness(sc);
1632 	file_prio = 200 - anon_prio;
1633 
1634 	/*
1635 	 * OK, so we have swap space and a fair amount of page cache
1636 	 * pages.  We use the recently rotated / recently scanned
1637 	 * ratios to determine how valuable each cache is.
1638 	 *
1639 	 * Because workloads change over time (and to avoid overflow)
1640 	 * we keep these statistics as a floating average, which ends
1641 	 * up weighing recent references more than old ones.
1642 	 *
1643 	 * anon in [0], file in [1]
1644 	 */
1645 	spin_lock_irq(&zone->lru_lock);
1646 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1647 		reclaim_stat->recent_scanned[0] /= 2;
1648 		reclaim_stat->recent_rotated[0] /= 2;
1649 	}
1650 
1651 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1652 		reclaim_stat->recent_scanned[1] /= 2;
1653 		reclaim_stat->recent_rotated[1] /= 2;
1654 	}
1655 
1656 	/*
1657 	 * The amount of pressure on anon vs file pages is inversely
1658 	 * proportional to the fraction of recently scanned pages on
1659 	 * each list that were recently referenced and in active use.
1660 	 */
1661 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1662 	ap /= reclaim_stat->recent_rotated[0] + 1;
1663 
1664 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1665 	fp /= reclaim_stat->recent_rotated[1] + 1;
1666 	spin_unlock_irq(&zone->lru_lock);
1667 
1668 	fraction[0] = ap;
1669 	fraction[1] = fp;
1670 	denominator = ap + fp + 1;
1671 out:
1672 	for_each_evictable_lru(lru) {
1673 		int file = is_file_lru(lru);
1674 		unsigned long scan;
1675 
1676 		scan = get_lru_size(lruvec, lru);
1677 		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1678 			scan >>= sc->priority;
1679 			if (!scan && force_scan)
1680 				scan = SWAP_CLUSTER_MAX;
1681 			scan = div64_u64(scan * fraction[file], denominator);
1682 		}
1683 		nr[lru] = scan;
1684 	}
1685 }
1686 
1687 /* Use reclaim/compaction for costly allocs or under memory pressure */
1688 static bool in_reclaim_compaction(struct scan_control *sc)
1689 {
1690 	if (COMPACTION_BUILD && sc->order &&
1691 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1692 			 sc->priority < DEF_PRIORITY - 2))
1693 		return true;
1694 
1695 	return false;
1696 }
1697 
1698 /*
1699  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1700  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1701  * true if more pages should be reclaimed such that when the page allocator
1702  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1703  * It will give up earlier than that if there is difficulty reclaiming pages.
1704  */
1705 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1706 					unsigned long nr_reclaimed,
1707 					unsigned long nr_scanned,
1708 					struct scan_control *sc)
1709 {
1710 	unsigned long pages_for_compaction;
1711 	unsigned long inactive_lru_pages;
1712 
1713 	/* If not in reclaim/compaction mode, stop */
1714 	if (!in_reclaim_compaction(sc))
1715 		return false;
1716 
1717 	/* Consider stopping depending on scan and reclaim activity */
1718 	if (sc->gfp_mask & __GFP_REPEAT) {
1719 		/*
1720 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1721 		 * full LRU list has been scanned and we are still failing
1722 		 * to reclaim pages. This full LRU scan is potentially
1723 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1724 		 */
1725 		if (!nr_reclaimed && !nr_scanned)
1726 			return false;
1727 	} else {
1728 		/*
1729 		 * For non-__GFP_REPEAT allocations which can presumably
1730 		 * fail without consequence, stop if we failed to reclaim
1731 		 * any pages from the last SWAP_CLUSTER_MAX number of
1732 		 * pages that were scanned. This will return to the
1733 		 * caller faster at the risk reclaim/compaction and
1734 		 * the resulting allocation attempt fails
1735 		 */
1736 		if (!nr_reclaimed)
1737 			return false;
1738 	}
1739 
1740 	/*
1741 	 * If we have not reclaimed enough pages for compaction and the
1742 	 * inactive lists are large enough, continue reclaiming
1743 	 */
1744 	pages_for_compaction = (2UL << sc->order);
1745 	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1746 	if (nr_swap_pages > 0)
1747 		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1748 	if (sc->nr_reclaimed < pages_for_compaction &&
1749 			inactive_lru_pages > pages_for_compaction)
1750 		return true;
1751 
1752 	/* If compaction would go ahead or the allocation would succeed, stop */
1753 	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1754 	case COMPACT_PARTIAL:
1755 	case COMPACT_CONTINUE:
1756 		return false;
1757 	default:
1758 		return true;
1759 	}
1760 }
1761 
1762 /*
1763  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1764  */
1765 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1766 {
1767 	unsigned long nr[NR_LRU_LISTS];
1768 	unsigned long nr_to_scan;
1769 	enum lru_list lru;
1770 	unsigned long nr_reclaimed, nr_scanned;
1771 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1772 	struct blk_plug plug;
1773 
1774 restart:
1775 	nr_reclaimed = 0;
1776 	nr_scanned = sc->nr_scanned;
1777 	get_scan_count(lruvec, sc, nr);
1778 
1779 	blk_start_plug(&plug);
1780 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1781 					nr[LRU_INACTIVE_FILE]) {
1782 		for_each_evictable_lru(lru) {
1783 			if (nr[lru]) {
1784 				nr_to_scan = min_t(unsigned long,
1785 						   nr[lru], SWAP_CLUSTER_MAX);
1786 				nr[lru] -= nr_to_scan;
1787 
1788 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1789 							    lruvec, sc);
1790 			}
1791 		}
1792 		/*
1793 		 * On large memory systems, scan >> priority can become
1794 		 * really large. This is fine for the starting priority;
1795 		 * we want to put equal scanning pressure on each zone.
1796 		 * However, if the VM has a harder time of freeing pages,
1797 		 * with multiple processes reclaiming pages, the total
1798 		 * freeing target can get unreasonably large.
1799 		 */
1800 		if (nr_reclaimed >= nr_to_reclaim &&
1801 		    sc->priority < DEF_PRIORITY)
1802 			break;
1803 	}
1804 	blk_finish_plug(&plug);
1805 	sc->nr_reclaimed += nr_reclaimed;
1806 
1807 	/*
1808 	 * Even if we did not try to evict anon pages at all, we want to
1809 	 * rebalance the anon lru active/inactive ratio.
1810 	 */
1811 	if (inactive_anon_is_low(lruvec))
1812 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1813 				   sc, LRU_ACTIVE_ANON);
1814 
1815 	/* reclaim/compaction might need reclaim to continue */
1816 	if (should_continue_reclaim(lruvec, nr_reclaimed,
1817 				    sc->nr_scanned - nr_scanned, sc))
1818 		goto restart;
1819 
1820 	throttle_vm_writeout(sc->gfp_mask);
1821 }
1822 
1823 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1824 {
1825 	struct mem_cgroup *root = sc->target_mem_cgroup;
1826 	struct mem_cgroup_reclaim_cookie reclaim = {
1827 		.zone = zone,
1828 		.priority = sc->priority,
1829 	};
1830 	struct mem_cgroup *memcg;
1831 
1832 	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1833 	do {
1834 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1835 
1836 		shrink_lruvec(lruvec, sc);
1837 
1838 		/*
1839 		 * Limit reclaim has historically picked one memcg and
1840 		 * scanned it with decreasing priority levels until
1841 		 * nr_to_reclaim had been reclaimed.  This priority
1842 		 * cycle is thus over after a single memcg.
1843 		 *
1844 		 * Direct reclaim and kswapd, on the other hand, have
1845 		 * to scan all memory cgroups to fulfill the overall
1846 		 * scan target for the zone.
1847 		 */
1848 		if (!global_reclaim(sc)) {
1849 			mem_cgroup_iter_break(root, memcg);
1850 			break;
1851 		}
1852 		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1853 	} while (memcg);
1854 }
1855 
1856 /* Returns true if compaction should go ahead for a high-order request */
1857 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1858 {
1859 	unsigned long balance_gap, watermark;
1860 	bool watermark_ok;
1861 
1862 	/* Do not consider compaction for orders reclaim is meant to satisfy */
1863 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1864 		return false;
1865 
1866 	/*
1867 	 * Compaction takes time to run and there are potentially other
1868 	 * callers using the pages just freed. Continue reclaiming until
1869 	 * there is a buffer of free pages available to give compaction
1870 	 * a reasonable chance of completing and allocating the page
1871 	 */
1872 	balance_gap = min(low_wmark_pages(zone),
1873 		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1874 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1875 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1876 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1877 
1878 	/*
1879 	 * If compaction is deferred, reclaim up to a point where
1880 	 * compaction will have a chance of success when re-enabled
1881 	 */
1882 	if (compaction_deferred(zone, sc->order))
1883 		return watermark_ok;
1884 
1885 	/* If compaction is not ready to start, keep reclaiming */
1886 	if (!compaction_suitable(zone, sc->order))
1887 		return false;
1888 
1889 	return watermark_ok;
1890 }
1891 
1892 /*
1893  * This is the direct reclaim path, for page-allocating processes.  We only
1894  * try to reclaim pages from zones which will satisfy the caller's allocation
1895  * request.
1896  *
1897  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1898  * Because:
1899  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1900  *    allocation or
1901  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1902  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1903  *    zone defense algorithm.
1904  *
1905  * If a zone is deemed to be full of pinned pages then just give it a light
1906  * scan then give up on it.
1907  *
1908  * This function returns true if a zone is being reclaimed for a costly
1909  * high-order allocation and compaction is ready to begin. This indicates to
1910  * the caller that it should consider retrying the allocation instead of
1911  * further reclaim.
1912  */
1913 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1914 {
1915 	struct zoneref *z;
1916 	struct zone *zone;
1917 	unsigned long nr_soft_reclaimed;
1918 	unsigned long nr_soft_scanned;
1919 	bool aborted_reclaim = false;
1920 
1921 	/*
1922 	 * If the number of buffer_heads in the machine exceeds the maximum
1923 	 * allowed level, force direct reclaim to scan the highmem zone as
1924 	 * highmem pages could be pinning lowmem pages storing buffer_heads
1925 	 */
1926 	if (buffer_heads_over_limit)
1927 		sc->gfp_mask |= __GFP_HIGHMEM;
1928 
1929 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1930 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1931 		if (!populated_zone(zone))
1932 			continue;
1933 		/*
1934 		 * Take care memory controller reclaiming has small influence
1935 		 * to global LRU.
1936 		 */
1937 		if (global_reclaim(sc)) {
1938 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1939 				continue;
1940 			if (zone->all_unreclaimable &&
1941 					sc->priority != DEF_PRIORITY)
1942 				continue;	/* Let kswapd poll it */
1943 			if (COMPACTION_BUILD) {
1944 				/*
1945 				 * If we already have plenty of memory free for
1946 				 * compaction in this zone, don't free any more.
1947 				 * Even though compaction is invoked for any
1948 				 * non-zero order, only frequent costly order
1949 				 * reclamation is disruptive enough to become a
1950 				 * noticeable problem, like transparent huge
1951 				 * page allocations.
1952 				 */
1953 				if (compaction_ready(zone, sc)) {
1954 					aborted_reclaim = true;
1955 					continue;
1956 				}
1957 			}
1958 			/*
1959 			 * This steals pages from memory cgroups over softlimit
1960 			 * and returns the number of reclaimed pages and
1961 			 * scanned pages. This works for global memory pressure
1962 			 * and balancing, not for a memcg's limit.
1963 			 */
1964 			nr_soft_scanned = 0;
1965 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1966 						sc->order, sc->gfp_mask,
1967 						&nr_soft_scanned);
1968 			sc->nr_reclaimed += nr_soft_reclaimed;
1969 			sc->nr_scanned += nr_soft_scanned;
1970 			/* need some check for avoid more shrink_zone() */
1971 		}
1972 
1973 		shrink_zone(zone, sc);
1974 	}
1975 
1976 	return aborted_reclaim;
1977 }
1978 
1979 static bool zone_reclaimable(struct zone *zone)
1980 {
1981 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1982 }
1983 
1984 /* All zones in zonelist are unreclaimable? */
1985 static bool all_unreclaimable(struct zonelist *zonelist,
1986 		struct scan_control *sc)
1987 {
1988 	struct zoneref *z;
1989 	struct zone *zone;
1990 
1991 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1992 			gfp_zone(sc->gfp_mask), sc->nodemask) {
1993 		if (!populated_zone(zone))
1994 			continue;
1995 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1996 			continue;
1997 		if (!zone->all_unreclaimable)
1998 			return false;
1999 	}
2000 
2001 	return true;
2002 }
2003 
2004 /*
2005  * This is the main entry point to direct page reclaim.
2006  *
2007  * If a full scan of the inactive list fails to free enough memory then we
2008  * are "out of memory" and something needs to be killed.
2009  *
2010  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2011  * high - the zone may be full of dirty or under-writeback pages, which this
2012  * caller can't do much about.  We kick the writeback threads and take explicit
2013  * naps in the hope that some of these pages can be written.  But if the
2014  * allocating task holds filesystem locks which prevent writeout this might not
2015  * work, and the allocation attempt will fail.
2016  *
2017  * returns:	0, if no pages reclaimed
2018  * 		else, the number of pages reclaimed
2019  */
2020 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2021 					struct scan_control *sc,
2022 					struct shrink_control *shrink)
2023 {
2024 	unsigned long total_scanned = 0;
2025 	struct reclaim_state *reclaim_state = current->reclaim_state;
2026 	struct zoneref *z;
2027 	struct zone *zone;
2028 	unsigned long writeback_threshold;
2029 	bool aborted_reclaim;
2030 
2031 	delayacct_freepages_start();
2032 
2033 	if (global_reclaim(sc))
2034 		count_vm_event(ALLOCSTALL);
2035 
2036 	do {
2037 		sc->nr_scanned = 0;
2038 		aborted_reclaim = shrink_zones(zonelist, sc);
2039 
2040 		/*
2041 		 * Don't shrink slabs when reclaiming memory from
2042 		 * over limit cgroups
2043 		 */
2044 		if (global_reclaim(sc)) {
2045 			unsigned long lru_pages = 0;
2046 			for_each_zone_zonelist(zone, z, zonelist,
2047 					gfp_zone(sc->gfp_mask)) {
2048 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2049 					continue;
2050 
2051 				lru_pages += zone_reclaimable_pages(zone);
2052 			}
2053 
2054 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2055 			if (reclaim_state) {
2056 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2057 				reclaim_state->reclaimed_slab = 0;
2058 			}
2059 		}
2060 		total_scanned += sc->nr_scanned;
2061 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2062 			goto out;
2063 
2064 		/*
2065 		 * Try to write back as many pages as we just scanned.  This
2066 		 * tends to cause slow streaming writers to write data to the
2067 		 * disk smoothly, at the dirtying rate, which is nice.   But
2068 		 * that's undesirable in laptop mode, where we *want* lumpy
2069 		 * writeout.  So in laptop mode, write out the whole world.
2070 		 */
2071 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2072 		if (total_scanned > writeback_threshold) {
2073 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2074 						WB_REASON_TRY_TO_FREE_PAGES);
2075 			sc->may_writepage = 1;
2076 		}
2077 
2078 		/* Take a nap, wait for some writeback to complete */
2079 		if (!sc->hibernation_mode && sc->nr_scanned &&
2080 		    sc->priority < DEF_PRIORITY - 2) {
2081 			struct zone *preferred_zone;
2082 
2083 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2084 						&cpuset_current_mems_allowed,
2085 						&preferred_zone);
2086 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2087 		}
2088 	} while (--sc->priority >= 0);
2089 
2090 out:
2091 	delayacct_freepages_end();
2092 
2093 	if (sc->nr_reclaimed)
2094 		return sc->nr_reclaimed;
2095 
2096 	/*
2097 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2098 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2099 	 * check.
2100 	 */
2101 	if (oom_killer_disabled)
2102 		return 0;
2103 
2104 	/* Aborted reclaim to try compaction? don't OOM, then */
2105 	if (aborted_reclaim)
2106 		return 1;
2107 
2108 	/* top priority shrink_zones still had more to do? don't OOM, then */
2109 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2110 		return 1;
2111 
2112 	return 0;
2113 }
2114 
2115 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2116 				gfp_t gfp_mask, nodemask_t *nodemask)
2117 {
2118 	unsigned long nr_reclaimed;
2119 	struct scan_control sc = {
2120 		.gfp_mask = gfp_mask,
2121 		.may_writepage = !laptop_mode,
2122 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2123 		.may_unmap = 1,
2124 		.may_swap = 1,
2125 		.order = order,
2126 		.priority = DEF_PRIORITY,
2127 		.target_mem_cgroup = NULL,
2128 		.nodemask = nodemask,
2129 	};
2130 	struct shrink_control shrink = {
2131 		.gfp_mask = sc.gfp_mask,
2132 	};
2133 
2134 	trace_mm_vmscan_direct_reclaim_begin(order,
2135 				sc.may_writepage,
2136 				gfp_mask);
2137 
2138 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2139 
2140 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2141 
2142 	return nr_reclaimed;
2143 }
2144 
2145 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2146 
2147 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2148 						gfp_t gfp_mask, bool noswap,
2149 						struct zone *zone,
2150 						unsigned long *nr_scanned)
2151 {
2152 	struct scan_control sc = {
2153 		.nr_scanned = 0,
2154 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2155 		.may_writepage = !laptop_mode,
2156 		.may_unmap = 1,
2157 		.may_swap = !noswap,
2158 		.order = 0,
2159 		.priority = 0,
2160 		.target_mem_cgroup = memcg,
2161 	};
2162 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2163 
2164 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2165 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2166 
2167 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2168 						      sc.may_writepage,
2169 						      sc.gfp_mask);
2170 
2171 	/*
2172 	 * NOTE: Although we can get the priority field, using it
2173 	 * here is not a good idea, since it limits the pages we can scan.
2174 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2175 	 * will pick up pages from other mem cgroup's as well. We hack
2176 	 * the priority and make it zero.
2177 	 */
2178 	shrink_lruvec(lruvec, &sc);
2179 
2180 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2181 
2182 	*nr_scanned = sc.nr_scanned;
2183 	return sc.nr_reclaimed;
2184 }
2185 
2186 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2187 					   gfp_t gfp_mask,
2188 					   bool noswap)
2189 {
2190 	struct zonelist *zonelist;
2191 	unsigned long nr_reclaimed;
2192 	int nid;
2193 	struct scan_control sc = {
2194 		.may_writepage = !laptop_mode,
2195 		.may_unmap = 1,
2196 		.may_swap = !noswap,
2197 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2198 		.order = 0,
2199 		.priority = DEF_PRIORITY,
2200 		.target_mem_cgroup = memcg,
2201 		.nodemask = NULL, /* we don't care the placement */
2202 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2203 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2204 	};
2205 	struct shrink_control shrink = {
2206 		.gfp_mask = sc.gfp_mask,
2207 	};
2208 
2209 	/*
2210 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2211 	 * take care of from where we get pages. So the node where we start the
2212 	 * scan does not need to be the current node.
2213 	 */
2214 	nid = mem_cgroup_select_victim_node(memcg);
2215 
2216 	zonelist = NODE_DATA(nid)->node_zonelists;
2217 
2218 	trace_mm_vmscan_memcg_reclaim_begin(0,
2219 					    sc.may_writepage,
2220 					    sc.gfp_mask);
2221 
2222 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2223 
2224 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2225 
2226 	return nr_reclaimed;
2227 }
2228 #endif
2229 
2230 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2231 {
2232 	struct mem_cgroup *memcg;
2233 
2234 	if (!total_swap_pages)
2235 		return;
2236 
2237 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2238 	do {
2239 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2240 
2241 		if (inactive_anon_is_low(lruvec))
2242 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2243 					   sc, LRU_ACTIVE_ANON);
2244 
2245 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2246 	} while (memcg);
2247 }
2248 
2249 /*
2250  * pgdat_balanced is used when checking if a node is balanced for high-order
2251  * allocations. Only zones that meet watermarks and are in a zone allowed
2252  * by the callers classzone_idx are added to balanced_pages. The total of
2253  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2254  * for the node to be considered balanced. Forcing all zones to be balanced
2255  * for high orders can cause excessive reclaim when there are imbalanced zones.
2256  * The choice of 25% is due to
2257  *   o a 16M DMA zone that is balanced will not balance a zone on any
2258  *     reasonable sized machine
2259  *   o On all other machines, the top zone must be at least a reasonable
2260  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2261  *     would need to be at least 256M for it to be balance a whole node.
2262  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2263  *     to balance a node on its own. These seemed like reasonable ratios.
2264  */
2265 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2266 						int classzone_idx)
2267 {
2268 	unsigned long present_pages = 0;
2269 	int i;
2270 
2271 	for (i = 0; i <= classzone_idx; i++)
2272 		present_pages += pgdat->node_zones[i].present_pages;
2273 
2274 	/* A special case here: if zone has no page, we think it's balanced */
2275 	return balanced_pages >= (present_pages >> 2);
2276 }
2277 
2278 /* is kswapd sleeping prematurely? */
2279 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2280 					int classzone_idx)
2281 {
2282 	int i;
2283 	unsigned long balanced = 0;
2284 	bool all_zones_ok = true;
2285 
2286 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2287 	if (remaining)
2288 		return true;
2289 
2290 	/* Check the watermark levels */
2291 	for (i = 0; i <= classzone_idx; i++) {
2292 		struct zone *zone = pgdat->node_zones + i;
2293 
2294 		if (!populated_zone(zone))
2295 			continue;
2296 
2297 		/*
2298 		 * balance_pgdat() skips over all_unreclaimable after
2299 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2300 		 * they must be considered balanced here as well if kswapd
2301 		 * is to sleep
2302 		 */
2303 		if (zone->all_unreclaimable) {
2304 			balanced += zone->present_pages;
2305 			continue;
2306 		}
2307 
2308 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2309 							i, 0))
2310 			all_zones_ok = false;
2311 		else
2312 			balanced += zone->present_pages;
2313 	}
2314 
2315 	/*
2316 	 * For high-order requests, the balanced zones must contain at least
2317 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2318 	 * must be balanced
2319 	 */
2320 	if (order)
2321 		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2322 	else
2323 		return !all_zones_ok;
2324 }
2325 
2326 /*
2327  * For kswapd, balance_pgdat() will work across all this node's zones until
2328  * they are all at high_wmark_pages(zone).
2329  *
2330  * Returns the final order kswapd was reclaiming at
2331  *
2332  * There is special handling here for zones which are full of pinned pages.
2333  * This can happen if the pages are all mlocked, or if they are all used by
2334  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2335  * What we do is to detect the case where all pages in the zone have been
2336  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2337  * dead and from now on, only perform a short scan.  Basically we're polling
2338  * the zone for when the problem goes away.
2339  *
2340  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2341  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2342  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2343  * lower zones regardless of the number of free pages in the lower zones. This
2344  * interoperates with the page allocator fallback scheme to ensure that aging
2345  * of pages is balanced across the zones.
2346  */
2347 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2348 							int *classzone_idx)
2349 {
2350 	int all_zones_ok;
2351 	unsigned long balanced;
2352 	int i;
2353 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2354 	unsigned long total_scanned;
2355 	struct reclaim_state *reclaim_state = current->reclaim_state;
2356 	unsigned long nr_soft_reclaimed;
2357 	unsigned long nr_soft_scanned;
2358 	struct scan_control sc = {
2359 		.gfp_mask = GFP_KERNEL,
2360 		.may_unmap = 1,
2361 		.may_swap = 1,
2362 		/*
2363 		 * kswapd doesn't want to be bailed out while reclaim. because
2364 		 * we want to put equal scanning pressure on each zone.
2365 		 */
2366 		.nr_to_reclaim = ULONG_MAX,
2367 		.order = order,
2368 		.target_mem_cgroup = NULL,
2369 	};
2370 	struct shrink_control shrink = {
2371 		.gfp_mask = sc.gfp_mask,
2372 	};
2373 loop_again:
2374 	total_scanned = 0;
2375 	sc.priority = DEF_PRIORITY;
2376 	sc.nr_reclaimed = 0;
2377 	sc.may_writepage = !laptop_mode;
2378 	count_vm_event(PAGEOUTRUN);
2379 
2380 	do {
2381 		unsigned long lru_pages = 0;
2382 		int has_under_min_watermark_zone = 0;
2383 
2384 		all_zones_ok = 1;
2385 		balanced = 0;
2386 
2387 		/*
2388 		 * Scan in the highmem->dma direction for the highest
2389 		 * zone which needs scanning
2390 		 */
2391 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2392 			struct zone *zone = pgdat->node_zones + i;
2393 
2394 			if (!populated_zone(zone))
2395 				continue;
2396 
2397 			if (zone->all_unreclaimable &&
2398 			    sc.priority != DEF_PRIORITY)
2399 				continue;
2400 
2401 			/*
2402 			 * Do some background aging of the anon list, to give
2403 			 * pages a chance to be referenced before reclaiming.
2404 			 */
2405 			age_active_anon(zone, &sc);
2406 
2407 			/*
2408 			 * If the number of buffer_heads in the machine
2409 			 * exceeds the maximum allowed level and this node
2410 			 * has a highmem zone, force kswapd to reclaim from
2411 			 * it to relieve lowmem pressure.
2412 			 */
2413 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2414 				end_zone = i;
2415 				break;
2416 			}
2417 
2418 			if (!zone_watermark_ok_safe(zone, order,
2419 					high_wmark_pages(zone), 0, 0)) {
2420 				end_zone = i;
2421 				break;
2422 			} else {
2423 				/* If balanced, clear the congested flag */
2424 				zone_clear_flag(zone, ZONE_CONGESTED);
2425 			}
2426 		}
2427 		if (i < 0)
2428 			goto out;
2429 
2430 		for (i = 0; i <= end_zone; i++) {
2431 			struct zone *zone = pgdat->node_zones + i;
2432 
2433 			lru_pages += zone_reclaimable_pages(zone);
2434 		}
2435 
2436 		/*
2437 		 * Now scan the zone in the dma->highmem direction, stopping
2438 		 * at the last zone which needs scanning.
2439 		 *
2440 		 * We do this because the page allocator works in the opposite
2441 		 * direction.  This prevents the page allocator from allocating
2442 		 * pages behind kswapd's direction of progress, which would
2443 		 * cause too much scanning of the lower zones.
2444 		 */
2445 		for (i = 0; i <= end_zone; i++) {
2446 			struct zone *zone = pgdat->node_zones + i;
2447 			int nr_slab, testorder;
2448 			unsigned long balance_gap;
2449 
2450 			if (!populated_zone(zone))
2451 				continue;
2452 
2453 			if (zone->all_unreclaimable &&
2454 			    sc.priority != DEF_PRIORITY)
2455 				continue;
2456 
2457 			sc.nr_scanned = 0;
2458 
2459 			nr_soft_scanned = 0;
2460 			/*
2461 			 * Call soft limit reclaim before calling shrink_zone.
2462 			 */
2463 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2464 							order, sc.gfp_mask,
2465 							&nr_soft_scanned);
2466 			sc.nr_reclaimed += nr_soft_reclaimed;
2467 			total_scanned += nr_soft_scanned;
2468 
2469 			/*
2470 			 * We put equal pressure on every zone, unless
2471 			 * one zone has way too many pages free
2472 			 * already. The "too many pages" is defined
2473 			 * as the high wmark plus a "gap" where the
2474 			 * gap is either the low watermark or 1%
2475 			 * of the zone, whichever is smaller.
2476 			 */
2477 			balance_gap = min(low_wmark_pages(zone),
2478 				(zone->present_pages +
2479 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2480 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2481 			/*
2482 			 * Kswapd reclaims only single pages with compaction
2483 			 * enabled. Trying too hard to reclaim until contiguous
2484 			 * free pages have become available can hurt performance
2485 			 * by evicting too much useful data from memory.
2486 			 * Do not reclaim more than needed for compaction.
2487 			 */
2488 			testorder = order;
2489 			if (COMPACTION_BUILD && order &&
2490 					compaction_suitable(zone, order) !=
2491 						COMPACT_SKIPPED)
2492 				testorder = 0;
2493 
2494 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2495 				    !zone_watermark_ok_safe(zone, testorder,
2496 					high_wmark_pages(zone) + balance_gap,
2497 					end_zone, 0)) {
2498 				shrink_zone(zone, &sc);
2499 
2500 				reclaim_state->reclaimed_slab = 0;
2501 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2502 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2503 				total_scanned += sc.nr_scanned;
2504 
2505 				if (nr_slab == 0 && !zone_reclaimable(zone))
2506 					zone->all_unreclaimable = 1;
2507 			}
2508 
2509 			/*
2510 			 * If we've done a decent amount of scanning and
2511 			 * the reclaim ratio is low, start doing writepage
2512 			 * even in laptop mode
2513 			 */
2514 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2515 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2516 				sc.may_writepage = 1;
2517 
2518 			if (zone->all_unreclaimable) {
2519 				if (end_zone && end_zone == i)
2520 					end_zone--;
2521 				continue;
2522 			}
2523 
2524 			if (!zone_watermark_ok_safe(zone, testorder,
2525 					high_wmark_pages(zone), end_zone, 0)) {
2526 				all_zones_ok = 0;
2527 				/*
2528 				 * We are still under min water mark.  This
2529 				 * means that we have a GFP_ATOMIC allocation
2530 				 * failure risk. Hurry up!
2531 				 */
2532 				if (!zone_watermark_ok_safe(zone, order,
2533 					    min_wmark_pages(zone), end_zone, 0))
2534 					has_under_min_watermark_zone = 1;
2535 			} else {
2536 				/*
2537 				 * If a zone reaches its high watermark,
2538 				 * consider it to be no longer congested. It's
2539 				 * possible there are dirty pages backed by
2540 				 * congested BDIs but as pressure is relieved,
2541 				 * speculatively avoid congestion waits
2542 				 */
2543 				zone_clear_flag(zone, ZONE_CONGESTED);
2544 				if (i <= *classzone_idx)
2545 					balanced += zone->present_pages;
2546 			}
2547 
2548 		}
2549 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2550 			break;		/* kswapd: all done */
2551 		/*
2552 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2553 		 * another pass across the zones.
2554 		 */
2555 		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2556 			if (has_under_min_watermark_zone)
2557 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2558 			else
2559 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2560 		}
2561 
2562 		/*
2563 		 * We do this so kswapd doesn't build up large priorities for
2564 		 * example when it is freeing in parallel with allocators. It
2565 		 * matches the direct reclaim path behaviour in terms of impact
2566 		 * on zone->*_priority.
2567 		 */
2568 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2569 			break;
2570 	} while (--sc.priority >= 0);
2571 out:
2572 
2573 	/*
2574 	 * order-0: All zones must meet high watermark for a balanced node
2575 	 * high-order: Balanced zones must make up at least 25% of the node
2576 	 *             for the node to be balanced
2577 	 */
2578 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2579 		cond_resched();
2580 
2581 		try_to_freeze();
2582 
2583 		/*
2584 		 * Fragmentation may mean that the system cannot be
2585 		 * rebalanced for high-order allocations in all zones.
2586 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2587 		 * it means the zones have been fully scanned and are still
2588 		 * not balanced. For high-order allocations, there is
2589 		 * little point trying all over again as kswapd may
2590 		 * infinite loop.
2591 		 *
2592 		 * Instead, recheck all watermarks at order-0 as they
2593 		 * are the most important. If watermarks are ok, kswapd will go
2594 		 * back to sleep. High-order users can still perform direct
2595 		 * reclaim if they wish.
2596 		 */
2597 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2598 			order = sc.order = 0;
2599 
2600 		goto loop_again;
2601 	}
2602 
2603 	/*
2604 	 * If kswapd was reclaiming at a higher order, it has the option of
2605 	 * sleeping without all zones being balanced. Before it does, it must
2606 	 * ensure that the watermarks for order-0 on *all* zones are met and
2607 	 * that the congestion flags are cleared. The congestion flag must
2608 	 * be cleared as kswapd is the only mechanism that clears the flag
2609 	 * and it is potentially going to sleep here.
2610 	 */
2611 	if (order) {
2612 		int zones_need_compaction = 1;
2613 
2614 		for (i = 0; i <= end_zone; i++) {
2615 			struct zone *zone = pgdat->node_zones + i;
2616 
2617 			if (!populated_zone(zone))
2618 				continue;
2619 
2620 			if (zone->all_unreclaimable &&
2621 			    sc.priority != DEF_PRIORITY)
2622 				continue;
2623 
2624 			/* Would compaction fail due to lack of free memory? */
2625 			if (COMPACTION_BUILD &&
2626 			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2627 				goto loop_again;
2628 
2629 			/* Confirm the zone is balanced for order-0 */
2630 			if (!zone_watermark_ok(zone, 0,
2631 					high_wmark_pages(zone), 0, 0)) {
2632 				order = sc.order = 0;
2633 				goto loop_again;
2634 			}
2635 
2636 			/* Check if the memory needs to be defragmented. */
2637 			if (zone_watermark_ok(zone, order,
2638 				    low_wmark_pages(zone), *classzone_idx, 0))
2639 				zones_need_compaction = 0;
2640 
2641 			/* If balanced, clear the congested flag */
2642 			zone_clear_flag(zone, ZONE_CONGESTED);
2643 		}
2644 
2645 		if (zones_need_compaction)
2646 			compact_pgdat(pgdat, order);
2647 	}
2648 
2649 	/*
2650 	 * Return the order we were reclaiming at so sleeping_prematurely()
2651 	 * makes a decision on the order we were last reclaiming at. However,
2652 	 * if another caller entered the allocator slow path while kswapd
2653 	 * was awake, order will remain at the higher level
2654 	 */
2655 	*classzone_idx = end_zone;
2656 	return order;
2657 }
2658 
2659 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2660 {
2661 	long remaining = 0;
2662 	DEFINE_WAIT(wait);
2663 
2664 	if (freezing(current) || kthread_should_stop())
2665 		return;
2666 
2667 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2668 
2669 	/* Try to sleep for a short interval */
2670 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2671 		remaining = schedule_timeout(HZ/10);
2672 		finish_wait(&pgdat->kswapd_wait, &wait);
2673 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2674 	}
2675 
2676 	/*
2677 	 * After a short sleep, check if it was a premature sleep. If not, then
2678 	 * go fully to sleep until explicitly woken up.
2679 	 */
2680 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2681 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2682 
2683 		/*
2684 		 * vmstat counters are not perfectly accurate and the estimated
2685 		 * value for counters such as NR_FREE_PAGES can deviate from the
2686 		 * true value by nr_online_cpus * threshold. To avoid the zone
2687 		 * watermarks being breached while under pressure, we reduce the
2688 		 * per-cpu vmstat threshold while kswapd is awake and restore
2689 		 * them before going back to sleep.
2690 		 */
2691 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2692 
2693 		if (!kthread_should_stop())
2694 			schedule();
2695 
2696 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2697 	} else {
2698 		if (remaining)
2699 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2700 		else
2701 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2702 	}
2703 	finish_wait(&pgdat->kswapd_wait, &wait);
2704 }
2705 
2706 /*
2707  * The background pageout daemon, started as a kernel thread
2708  * from the init process.
2709  *
2710  * This basically trickles out pages so that we have _some_
2711  * free memory available even if there is no other activity
2712  * that frees anything up. This is needed for things like routing
2713  * etc, where we otherwise might have all activity going on in
2714  * asynchronous contexts that cannot page things out.
2715  *
2716  * If there are applications that are active memory-allocators
2717  * (most normal use), this basically shouldn't matter.
2718  */
2719 static int kswapd(void *p)
2720 {
2721 	unsigned long order, new_order;
2722 	unsigned balanced_order;
2723 	int classzone_idx, new_classzone_idx;
2724 	int balanced_classzone_idx;
2725 	pg_data_t *pgdat = (pg_data_t*)p;
2726 	struct task_struct *tsk = current;
2727 
2728 	struct reclaim_state reclaim_state = {
2729 		.reclaimed_slab = 0,
2730 	};
2731 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2732 
2733 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2734 
2735 	if (!cpumask_empty(cpumask))
2736 		set_cpus_allowed_ptr(tsk, cpumask);
2737 	current->reclaim_state = &reclaim_state;
2738 
2739 	/*
2740 	 * Tell the memory management that we're a "memory allocator",
2741 	 * and that if we need more memory we should get access to it
2742 	 * regardless (see "__alloc_pages()"). "kswapd" should
2743 	 * never get caught in the normal page freeing logic.
2744 	 *
2745 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2746 	 * you need a small amount of memory in order to be able to
2747 	 * page out something else, and this flag essentially protects
2748 	 * us from recursively trying to free more memory as we're
2749 	 * trying to free the first piece of memory in the first place).
2750 	 */
2751 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2752 	set_freezable();
2753 
2754 	order = new_order = 0;
2755 	balanced_order = 0;
2756 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2757 	balanced_classzone_idx = classzone_idx;
2758 	for ( ; ; ) {
2759 		int ret;
2760 
2761 		/*
2762 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2763 		 * new request of a similar or harder type will succeed soon
2764 		 * so consider going to sleep on the basis we reclaimed at
2765 		 */
2766 		if (balanced_classzone_idx >= new_classzone_idx &&
2767 					balanced_order == new_order) {
2768 			new_order = pgdat->kswapd_max_order;
2769 			new_classzone_idx = pgdat->classzone_idx;
2770 			pgdat->kswapd_max_order =  0;
2771 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2772 		}
2773 
2774 		if (order < new_order || classzone_idx > new_classzone_idx) {
2775 			/*
2776 			 * Don't sleep if someone wants a larger 'order'
2777 			 * allocation or has tigher zone constraints
2778 			 */
2779 			order = new_order;
2780 			classzone_idx = new_classzone_idx;
2781 		} else {
2782 			kswapd_try_to_sleep(pgdat, balanced_order,
2783 						balanced_classzone_idx);
2784 			order = pgdat->kswapd_max_order;
2785 			classzone_idx = pgdat->classzone_idx;
2786 			new_order = order;
2787 			new_classzone_idx = classzone_idx;
2788 			pgdat->kswapd_max_order = 0;
2789 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2790 		}
2791 
2792 		ret = try_to_freeze();
2793 		if (kthread_should_stop())
2794 			break;
2795 
2796 		/*
2797 		 * We can speed up thawing tasks if we don't call balance_pgdat
2798 		 * after returning from the refrigerator
2799 		 */
2800 		if (!ret) {
2801 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2802 			balanced_classzone_idx = classzone_idx;
2803 			balanced_order = balance_pgdat(pgdat, order,
2804 						&balanced_classzone_idx);
2805 		}
2806 	}
2807 	return 0;
2808 }
2809 
2810 /*
2811  * A zone is low on free memory, so wake its kswapd task to service it.
2812  */
2813 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2814 {
2815 	pg_data_t *pgdat;
2816 
2817 	if (!populated_zone(zone))
2818 		return;
2819 
2820 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2821 		return;
2822 	pgdat = zone->zone_pgdat;
2823 	if (pgdat->kswapd_max_order < order) {
2824 		pgdat->kswapd_max_order = order;
2825 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2826 	}
2827 	if (!waitqueue_active(&pgdat->kswapd_wait))
2828 		return;
2829 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2830 		return;
2831 
2832 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2833 	wake_up_interruptible(&pgdat->kswapd_wait);
2834 }
2835 
2836 /*
2837  * The reclaimable count would be mostly accurate.
2838  * The less reclaimable pages may be
2839  * - mlocked pages, which will be moved to unevictable list when encountered
2840  * - mapped pages, which may require several travels to be reclaimed
2841  * - dirty pages, which is not "instantly" reclaimable
2842  */
2843 unsigned long global_reclaimable_pages(void)
2844 {
2845 	int nr;
2846 
2847 	nr = global_page_state(NR_ACTIVE_FILE) +
2848 	     global_page_state(NR_INACTIVE_FILE);
2849 
2850 	if (nr_swap_pages > 0)
2851 		nr += global_page_state(NR_ACTIVE_ANON) +
2852 		      global_page_state(NR_INACTIVE_ANON);
2853 
2854 	return nr;
2855 }
2856 
2857 unsigned long zone_reclaimable_pages(struct zone *zone)
2858 {
2859 	int nr;
2860 
2861 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2862 	     zone_page_state(zone, NR_INACTIVE_FILE);
2863 
2864 	if (nr_swap_pages > 0)
2865 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2866 		      zone_page_state(zone, NR_INACTIVE_ANON);
2867 
2868 	return nr;
2869 }
2870 
2871 #ifdef CONFIG_HIBERNATION
2872 /*
2873  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2874  * freed pages.
2875  *
2876  * Rather than trying to age LRUs the aim is to preserve the overall
2877  * LRU order by reclaiming preferentially
2878  * inactive > active > active referenced > active mapped
2879  */
2880 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2881 {
2882 	struct reclaim_state reclaim_state;
2883 	struct scan_control sc = {
2884 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2885 		.may_swap = 1,
2886 		.may_unmap = 1,
2887 		.may_writepage = 1,
2888 		.nr_to_reclaim = nr_to_reclaim,
2889 		.hibernation_mode = 1,
2890 		.order = 0,
2891 		.priority = DEF_PRIORITY,
2892 	};
2893 	struct shrink_control shrink = {
2894 		.gfp_mask = sc.gfp_mask,
2895 	};
2896 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2897 	struct task_struct *p = current;
2898 	unsigned long nr_reclaimed;
2899 
2900 	p->flags |= PF_MEMALLOC;
2901 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2902 	reclaim_state.reclaimed_slab = 0;
2903 	p->reclaim_state = &reclaim_state;
2904 
2905 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2906 
2907 	p->reclaim_state = NULL;
2908 	lockdep_clear_current_reclaim_state();
2909 	p->flags &= ~PF_MEMALLOC;
2910 
2911 	return nr_reclaimed;
2912 }
2913 #endif /* CONFIG_HIBERNATION */
2914 
2915 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2916    not required for correctness.  So if the last cpu in a node goes
2917    away, we get changed to run anywhere: as the first one comes back,
2918    restore their cpu bindings. */
2919 static int __devinit cpu_callback(struct notifier_block *nfb,
2920 				  unsigned long action, void *hcpu)
2921 {
2922 	int nid;
2923 
2924 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2925 		for_each_node_state(nid, N_HIGH_MEMORY) {
2926 			pg_data_t *pgdat = NODE_DATA(nid);
2927 			const struct cpumask *mask;
2928 
2929 			mask = cpumask_of_node(pgdat->node_id);
2930 
2931 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2932 				/* One of our CPUs online: restore mask */
2933 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2934 		}
2935 	}
2936 	return NOTIFY_OK;
2937 }
2938 
2939 /*
2940  * This kswapd start function will be called by init and node-hot-add.
2941  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2942  */
2943 int kswapd_run(int nid)
2944 {
2945 	pg_data_t *pgdat = NODE_DATA(nid);
2946 	int ret = 0;
2947 
2948 	if (pgdat->kswapd)
2949 		return 0;
2950 
2951 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2952 	if (IS_ERR(pgdat->kswapd)) {
2953 		/* failure at boot is fatal */
2954 		BUG_ON(system_state == SYSTEM_BOOTING);
2955 		printk("Failed to start kswapd on node %d\n",nid);
2956 		ret = -1;
2957 	}
2958 	return ret;
2959 }
2960 
2961 /*
2962  * Called by memory hotplug when all memory in a node is offlined.  Caller must
2963  * hold lock_memory_hotplug().
2964  */
2965 void kswapd_stop(int nid)
2966 {
2967 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2968 
2969 	if (kswapd) {
2970 		kthread_stop(kswapd);
2971 		NODE_DATA(nid)->kswapd = NULL;
2972 	}
2973 }
2974 
2975 static int __init kswapd_init(void)
2976 {
2977 	int nid;
2978 
2979 	swap_setup();
2980 	for_each_node_state(nid, N_HIGH_MEMORY)
2981  		kswapd_run(nid);
2982 	hotcpu_notifier(cpu_callback, 0);
2983 	return 0;
2984 }
2985 
2986 module_init(kswapd_init)
2987 
2988 #ifdef CONFIG_NUMA
2989 /*
2990  * Zone reclaim mode
2991  *
2992  * If non-zero call zone_reclaim when the number of free pages falls below
2993  * the watermarks.
2994  */
2995 int zone_reclaim_mode __read_mostly;
2996 
2997 #define RECLAIM_OFF 0
2998 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2999 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3000 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3001 
3002 /*
3003  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3004  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3005  * a zone.
3006  */
3007 #define ZONE_RECLAIM_PRIORITY 4
3008 
3009 /*
3010  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3011  * occur.
3012  */
3013 int sysctl_min_unmapped_ratio = 1;
3014 
3015 /*
3016  * If the number of slab pages in a zone grows beyond this percentage then
3017  * slab reclaim needs to occur.
3018  */
3019 int sysctl_min_slab_ratio = 5;
3020 
3021 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3022 {
3023 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3024 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3025 		zone_page_state(zone, NR_ACTIVE_FILE);
3026 
3027 	/*
3028 	 * It's possible for there to be more file mapped pages than
3029 	 * accounted for by the pages on the file LRU lists because
3030 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3031 	 */
3032 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3033 }
3034 
3035 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3036 static long zone_pagecache_reclaimable(struct zone *zone)
3037 {
3038 	long nr_pagecache_reclaimable;
3039 	long delta = 0;
3040 
3041 	/*
3042 	 * If RECLAIM_SWAP is set, then all file pages are considered
3043 	 * potentially reclaimable. Otherwise, we have to worry about
3044 	 * pages like swapcache and zone_unmapped_file_pages() provides
3045 	 * a better estimate
3046 	 */
3047 	if (zone_reclaim_mode & RECLAIM_SWAP)
3048 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3049 	else
3050 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3051 
3052 	/* If we can't clean pages, remove dirty pages from consideration */
3053 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3054 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3055 
3056 	/* Watch for any possible underflows due to delta */
3057 	if (unlikely(delta > nr_pagecache_reclaimable))
3058 		delta = nr_pagecache_reclaimable;
3059 
3060 	return nr_pagecache_reclaimable - delta;
3061 }
3062 
3063 /*
3064  * Try to free up some pages from this zone through reclaim.
3065  */
3066 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3067 {
3068 	/* Minimum pages needed in order to stay on node */
3069 	const unsigned long nr_pages = 1 << order;
3070 	struct task_struct *p = current;
3071 	struct reclaim_state reclaim_state;
3072 	struct scan_control sc = {
3073 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3074 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3075 		.may_swap = 1,
3076 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3077 				       SWAP_CLUSTER_MAX),
3078 		.gfp_mask = gfp_mask,
3079 		.order = order,
3080 		.priority = ZONE_RECLAIM_PRIORITY,
3081 	};
3082 	struct shrink_control shrink = {
3083 		.gfp_mask = sc.gfp_mask,
3084 	};
3085 	unsigned long nr_slab_pages0, nr_slab_pages1;
3086 
3087 	cond_resched();
3088 	/*
3089 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3090 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3091 	 * and RECLAIM_SWAP.
3092 	 */
3093 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3094 	lockdep_set_current_reclaim_state(gfp_mask);
3095 	reclaim_state.reclaimed_slab = 0;
3096 	p->reclaim_state = &reclaim_state;
3097 
3098 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3099 		/*
3100 		 * Free memory by calling shrink zone with increasing
3101 		 * priorities until we have enough memory freed.
3102 		 */
3103 		do {
3104 			shrink_zone(zone, &sc);
3105 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3106 	}
3107 
3108 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3109 	if (nr_slab_pages0 > zone->min_slab_pages) {
3110 		/*
3111 		 * shrink_slab() does not currently allow us to determine how
3112 		 * many pages were freed in this zone. So we take the current
3113 		 * number of slab pages and shake the slab until it is reduced
3114 		 * by the same nr_pages that we used for reclaiming unmapped
3115 		 * pages.
3116 		 *
3117 		 * Note that shrink_slab will free memory on all zones and may
3118 		 * take a long time.
3119 		 */
3120 		for (;;) {
3121 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3122 
3123 			/* No reclaimable slab or very low memory pressure */
3124 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3125 				break;
3126 
3127 			/* Freed enough memory */
3128 			nr_slab_pages1 = zone_page_state(zone,
3129 							NR_SLAB_RECLAIMABLE);
3130 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3131 				break;
3132 		}
3133 
3134 		/*
3135 		 * Update nr_reclaimed by the number of slab pages we
3136 		 * reclaimed from this zone.
3137 		 */
3138 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3139 		if (nr_slab_pages1 < nr_slab_pages0)
3140 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3141 	}
3142 
3143 	p->reclaim_state = NULL;
3144 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3145 	lockdep_clear_current_reclaim_state();
3146 	return sc.nr_reclaimed >= nr_pages;
3147 }
3148 
3149 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3150 {
3151 	int node_id;
3152 	int ret;
3153 
3154 	/*
3155 	 * Zone reclaim reclaims unmapped file backed pages and
3156 	 * slab pages if we are over the defined limits.
3157 	 *
3158 	 * A small portion of unmapped file backed pages is needed for
3159 	 * file I/O otherwise pages read by file I/O will be immediately
3160 	 * thrown out if the zone is overallocated. So we do not reclaim
3161 	 * if less than a specified percentage of the zone is used by
3162 	 * unmapped file backed pages.
3163 	 */
3164 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3165 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3166 		return ZONE_RECLAIM_FULL;
3167 
3168 	if (zone->all_unreclaimable)
3169 		return ZONE_RECLAIM_FULL;
3170 
3171 	/*
3172 	 * Do not scan if the allocation should not be delayed.
3173 	 */
3174 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3175 		return ZONE_RECLAIM_NOSCAN;
3176 
3177 	/*
3178 	 * Only run zone reclaim on the local zone or on zones that do not
3179 	 * have associated processors. This will favor the local processor
3180 	 * over remote processors and spread off node memory allocations
3181 	 * as wide as possible.
3182 	 */
3183 	node_id = zone_to_nid(zone);
3184 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3185 		return ZONE_RECLAIM_NOSCAN;
3186 
3187 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3188 		return ZONE_RECLAIM_NOSCAN;
3189 
3190 	ret = __zone_reclaim(zone, gfp_mask, order);
3191 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3192 
3193 	if (!ret)
3194 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3195 
3196 	return ret;
3197 }
3198 #endif
3199 
3200 /*
3201  * page_evictable - test whether a page is evictable
3202  * @page: the page to test
3203  * @vma: the VMA in which the page is or will be mapped, may be NULL
3204  *
3205  * Test whether page is evictable--i.e., should be placed on active/inactive
3206  * lists vs unevictable list.  The vma argument is !NULL when called from the
3207  * fault path to determine how to instantate a new page.
3208  *
3209  * Reasons page might not be evictable:
3210  * (1) page's mapping marked unevictable
3211  * (2) page is part of an mlocked VMA
3212  *
3213  */
3214 int page_evictable(struct page *page, struct vm_area_struct *vma)
3215 {
3216 
3217 	if (mapping_unevictable(page_mapping(page)))
3218 		return 0;
3219 
3220 	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3221 		return 0;
3222 
3223 	return 1;
3224 }
3225 
3226 #ifdef CONFIG_SHMEM
3227 /**
3228  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3229  * @pages:	array of pages to check
3230  * @nr_pages:	number of pages to check
3231  *
3232  * Checks pages for evictability and moves them to the appropriate lru list.
3233  *
3234  * This function is only used for SysV IPC SHM_UNLOCK.
3235  */
3236 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3237 {
3238 	struct lruvec *lruvec;
3239 	struct zone *zone = NULL;
3240 	int pgscanned = 0;
3241 	int pgrescued = 0;
3242 	int i;
3243 
3244 	for (i = 0; i < nr_pages; i++) {
3245 		struct page *page = pages[i];
3246 		struct zone *pagezone;
3247 
3248 		pgscanned++;
3249 		pagezone = page_zone(page);
3250 		if (pagezone != zone) {
3251 			if (zone)
3252 				spin_unlock_irq(&zone->lru_lock);
3253 			zone = pagezone;
3254 			spin_lock_irq(&zone->lru_lock);
3255 		}
3256 		lruvec = mem_cgroup_page_lruvec(page, zone);
3257 
3258 		if (!PageLRU(page) || !PageUnevictable(page))
3259 			continue;
3260 
3261 		if (page_evictable(page, NULL)) {
3262 			enum lru_list lru = page_lru_base_type(page);
3263 
3264 			VM_BUG_ON(PageActive(page));
3265 			ClearPageUnevictable(page);
3266 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3267 			add_page_to_lru_list(page, lruvec, lru);
3268 			pgrescued++;
3269 		}
3270 	}
3271 
3272 	if (zone) {
3273 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3274 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3275 		spin_unlock_irq(&zone->lru_lock);
3276 	}
3277 }
3278 #endif /* CONFIG_SHMEM */
3279 
3280 static void warn_scan_unevictable_pages(void)
3281 {
3282 	printk_once(KERN_WARNING
3283 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3284 		    "disabled for lack of a legitimate use case.  If you have "
3285 		    "one, please send an email to linux-mm@kvack.org.\n",
3286 		    current->comm);
3287 }
3288 
3289 /*
3290  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3291  * all nodes' unevictable lists for evictable pages
3292  */
3293 unsigned long scan_unevictable_pages;
3294 
3295 int scan_unevictable_handler(struct ctl_table *table, int write,
3296 			   void __user *buffer,
3297 			   size_t *length, loff_t *ppos)
3298 {
3299 	warn_scan_unevictable_pages();
3300 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3301 	scan_unevictable_pages = 0;
3302 	return 0;
3303 }
3304 
3305 #ifdef CONFIG_NUMA
3306 /*
3307  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3308  * a specified node's per zone unevictable lists for evictable pages.
3309  */
3310 
3311 static ssize_t read_scan_unevictable_node(struct device *dev,
3312 					  struct device_attribute *attr,
3313 					  char *buf)
3314 {
3315 	warn_scan_unevictable_pages();
3316 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3317 }
3318 
3319 static ssize_t write_scan_unevictable_node(struct device *dev,
3320 					   struct device_attribute *attr,
3321 					const char *buf, size_t count)
3322 {
3323 	warn_scan_unevictable_pages();
3324 	return 1;
3325 }
3326 
3327 
3328 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3329 			read_scan_unevictable_node,
3330 			write_scan_unevictable_node);
3331 
3332 int scan_unevictable_register_node(struct node *node)
3333 {
3334 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3335 }
3336 
3337 void scan_unevictable_unregister_node(struct node *node)
3338 {
3339 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3340 }
3341 #endif
3342