1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* How many pages shrink_list() should reclaim */ 63 unsigned long nr_to_reclaim; 64 65 /* This context's GFP mask */ 66 gfp_t gfp_mask; 67 68 /* Allocation order */ 69 int order; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 unsigned int may_writepage:1; 87 88 /* Can mapped pages be reclaimed? */ 89 unsigned int may_unmap:1; 90 91 /* Can pages be swapped as part of reclaim? */ 92 unsigned int may_swap:1; 93 94 /* Can cgroups be reclaimed below their normal consumption range? */ 95 unsigned int may_thrash:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Incremented by the number of inactive pages that were scanned */ 103 unsigned long nr_scanned; 104 105 /* Number of pages freed so far during a call to shrink_zones() */ 106 unsigned long nr_reclaimed; 107 }; 108 109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 110 111 #ifdef ARCH_HAS_PREFETCH 112 #define prefetch_prev_lru_page(_page, _base, _field) \ 113 do { \ 114 if ((_page)->lru.prev != _base) { \ 115 struct page *prev; \ 116 \ 117 prev = lru_to_page(&(_page->lru)); \ 118 prefetch(&prev->_field); \ 119 } \ 120 } while (0) 121 #else 122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 123 #endif 124 125 #ifdef ARCH_HAS_PREFETCHW 126 #define prefetchw_prev_lru_page(_page, _base, _field) \ 127 do { \ 128 if ((_page)->lru.prev != _base) { \ 129 struct page *prev; \ 130 \ 131 prev = lru_to_page(&(_page->lru)); \ 132 prefetchw(&prev->_field); \ 133 } \ 134 } while (0) 135 #else 136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 137 #endif 138 139 /* 140 * From 0 .. 100. Higher means more swappy. 141 */ 142 int vm_swappiness = 60; 143 /* 144 * The total number of pages which are beyond the high watermark within all 145 * zones. 146 */ 147 unsigned long vm_total_pages; 148 149 static LIST_HEAD(shrinker_list); 150 static DECLARE_RWSEM(shrinker_rwsem); 151 152 #ifdef CONFIG_MEMCG 153 static bool global_reclaim(struct scan_control *sc) 154 { 155 return !sc->target_mem_cgroup; 156 } 157 158 /** 159 * sane_reclaim - is the usual dirty throttling mechanism operational? 160 * @sc: scan_control in question 161 * 162 * The normal page dirty throttling mechanism in balance_dirty_pages() is 163 * completely broken with the legacy memcg and direct stalling in 164 * shrink_page_list() is used for throttling instead, which lacks all the 165 * niceties such as fairness, adaptive pausing, bandwidth proportional 166 * allocation and configurability. 167 * 168 * This function tests whether the vmscan currently in progress can assume 169 * that the normal dirty throttling mechanism is operational. 170 */ 171 static bool sane_reclaim(struct scan_control *sc) 172 { 173 struct mem_cgroup *memcg = sc->target_mem_cgroup; 174 175 if (!memcg) 176 return true; 177 #ifdef CONFIG_CGROUP_WRITEBACK 178 if (cgroup_on_dfl(memcg->css.cgroup)) 179 return true; 180 #endif 181 return false; 182 } 183 #else 184 static bool global_reclaim(struct scan_control *sc) 185 { 186 return true; 187 } 188 189 static bool sane_reclaim(struct scan_control *sc) 190 { 191 return true; 192 } 193 #endif 194 195 static unsigned long zone_reclaimable_pages(struct zone *zone) 196 { 197 int nr; 198 199 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 200 zone_page_state(zone, NR_INACTIVE_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 204 zone_page_state(zone, NR_INACTIVE_ANON); 205 206 return nr; 207 } 208 209 bool zone_reclaimable(struct zone *zone) 210 { 211 return zone_page_state(zone, NR_PAGES_SCANNED) < 212 zone_reclaimable_pages(zone) * 6; 213 } 214 215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 216 { 217 if (!mem_cgroup_disabled()) 218 return mem_cgroup_get_lru_size(lruvec, lru); 219 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 221 } 222 223 /* 224 * Add a shrinker callback to be called from the vm. 225 */ 226 int register_shrinker(struct shrinker *shrinker) 227 { 228 size_t size = sizeof(*shrinker->nr_deferred); 229 230 /* 231 * If we only have one possible node in the system anyway, save 232 * ourselves the trouble and disable NUMA aware behavior. This way we 233 * will save memory and some small loop time later. 234 */ 235 if (nr_node_ids == 1) 236 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 237 238 if (shrinker->flags & SHRINKER_NUMA_AWARE) 239 size *= nr_node_ids; 240 241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 242 if (!shrinker->nr_deferred) 243 return -ENOMEM; 244 245 down_write(&shrinker_rwsem); 246 list_add_tail(&shrinker->list, &shrinker_list); 247 up_write(&shrinker_rwsem); 248 return 0; 249 } 250 EXPORT_SYMBOL(register_shrinker); 251 252 /* 253 * Remove one 254 */ 255 void unregister_shrinker(struct shrinker *shrinker) 256 { 257 down_write(&shrinker_rwsem); 258 list_del(&shrinker->list); 259 up_write(&shrinker_rwsem); 260 kfree(shrinker->nr_deferred); 261 } 262 EXPORT_SYMBOL(unregister_shrinker); 263 264 #define SHRINK_BATCH 128 265 266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 267 struct shrinker *shrinker, 268 unsigned long nr_scanned, 269 unsigned long nr_eligible) 270 { 271 unsigned long freed = 0; 272 unsigned long long delta; 273 long total_scan; 274 long freeable; 275 long nr; 276 long new_nr; 277 int nid = shrinkctl->nid; 278 long batch_size = shrinker->batch ? shrinker->batch 279 : SHRINK_BATCH; 280 281 freeable = shrinker->count_objects(shrinker, shrinkctl); 282 if (freeable == 0) 283 return 0; 284 285 /* 286 * copy the current shrinker scan count into a local variable 287 * and zero it so that other concurrent shrinker invocations 288 * don't also do this scanning work. 289 */ 290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 291 292 total_scan = nr; 293 delta = (4 * nr_scanned) / shrinker->seeks; 294 delta *= freeable; 295 do_div(delta, nr_eligible + 1); 296 total_scan += delta; 297 if (total_scan < 0) { 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 299 shrinker->scan_objects, total_scan); 300 total_scan = freeable; 301 } 302 303 /* 304 * We need to avoid excessive windup on filesystem shrinkers 305 * due to large numbers of GFP_NOFS allocations causing the 306 * shrinkers to return -1 all the time. This results in a large 307 * nr being built up so when a shrink that can do some work 308 * comes along it empties the entire cache due to nr >>> 309 * freeable. This is bad for sustaining a working set in 310 * memory. 311 * 312 * Hence only allow the shrinker to scan the entire cache when 313 * a large delta change is calculated directly. 314 */ 315 if (delta < freeable / 4) 316 total_scan = min(total_scan, freeable / 2); 317 318 /* 319 * Avoid risking looping forever due to too large nr value: 320 * never try to free more than twice the estimate number of 321 * freeable entries. 322 */ 323 if (total_scan > freeable * 2) 324 total_scan = freeable * 2; 325 326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 327 nr_scanned, nr_eligible, 328 freeable, delta, total_scan); 329 330 /* 331 * Normally, we should not scan less than batch_size objects in one 332 * pass to avoid too frequent shrinker calls, but if the slab has less 333 * than batch_size objects in total and we are really tight on memory, 334 * we will try to reclaim all available objects, otherwise we can end 335 * up failing allocations although there are plenty of reclaimable 336 * objects spread over several slabs with usage less than the 337 * batch_size. 338 * 339 * We detect the "tight on memory" situations by looking at the total 340 * number of objects we want to scan (total_scan). If it is greater 341 * than the total number of objects on slab (freeable), we must be 342 * scanning at high prio and therefore should try to reclaim as much as 343 * possible. 344 */ 345 while (total_scan >= batch_size || 346 total_scan >= freeable) { 347 unsigned long ret; 348 unsigned long nr_to_scan = min(batch_size, total_scan); 349 350 shrinkctl->nr_to_scan = nr_to_scan; 351 ret = shrinker->scan_objects(shrinker, shrinkctl); 352 if (ret == SHRINK_STOP) 353 break; 354 freed += ret; 355 356 count_vm_events(SLABS_SCANNED, nr_to_scan); 357 total_scan -= nr_to_scan; 358 359 cond_resched(); 360 } 361 362 /* 363 * move the unused scan count back into the shrinker in a 364 * manner that handles concurrent updates. If we exhausted the 365 * scan, there is no need to do an update. 366 */ 367 if (total_scan > 0) 368 new_nr = atomic_long_add_return(total_scan, 369 &shrinker->nr_deferred[nid]); 370 else 371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 372 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 374 return freed; 375 } 376 377 /** 378 * shrink_slab - shrink slab caches 379 * @gfp_mask: allocation context 380 * @nid: node whose slab caches to target 381 * @memcg: memory cgroup whose slab caches to target 382 * @nr_scanned: pressure numerator 383 * @nr_eligible: pressure denominator 384 * 385 * Call the shrink functions to age shrinkable caches. 386 * 387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 388 * unaware shrinkers will receive a node id of 0 instead. 389 * 390 * @memcg specifies the memory cgroup to target. If it is not NULL, 391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 392 * objects from the memory cgroup specified. Otherwise all shrinkers 393 * are called, and memcg aware shrinkers are supposed to scan the 394 * global list then. 395 * 396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 397 * the available objects should be scanned. Page reclaim for example 398 * passes the number of pages scanned and the number of pages on the 399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 400 * when it encountered mapped pages. The ratio is further biased by 401 * the ->seeks setting of the shrink function, which indicates the 402 * cost to recreate an object relative to that of an LRU page. 403 * 404 * Returns the number of reclaimed slab objects. 405 */ 406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 407 struct mem_cgroup *memcg, 408 unsigned long nr_scanned, 409 unsigned long nr_eligible) 410 { 411 struct shrinker *shrinker; 412 unsigned long freed = 0; 413 414 if (memcg && !memcg_kmem_is_active(memcg)) 415 return 0; 416 417 if (nr_scanned == 0) 418 nr_scanned = SWAP_CLUSTER_MAX; 419 420 if (!down_read_trylock(&shrinker_rwsem)) { 421 /* 422 * If we would return 0, our callers would understand that we 423 * have nothing else to shrink and give up trying. By returning 424 * 1 we keep it going and assume we'll be able to shrink next 425 * time. 426 */ 427 freed = 1; 428 goto out; 429 } 430 431 list_for_each_entry(shrinker, &shrinker_list, list) { 432 struct shrink_control sc = { 433 .gfp_mask = gfp_mask, 434 .nid = nid, 435 .memcg = memcg, 436 }; 437 438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE)) 439 continue; 440 441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 442 sc.nid = 0; 443 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 445 } 446 447 up_read(&shrinker_rwsem); 448 out: 449 cond_resched(); 450 return freed; 451 } 452 453 void drop_slab_node(int nid) 454 { 455 unsigned long freed; 456 457 do { 458 struct mem_cgroup *memcg = NULL; 459 460 freed = 0; 461 do { 462 freed += shrink_slab(GFP_KERNEL, nid, memcg, 463 1000, 1000); 464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 465 } while (freed > 10); 466 } 467 468 void drop_slab(void) 469 { 470 int nid; 471 472 for_each_online_node(nid) 473 drop_slab_node(nid); 474 } 475 476 static inline int is_page_cache_freeable(struct page *page) 477 { 478 /* 479 * A freeable page cache page is referenced only by the caller 480 * that isolated the page, the page cache radix tree and 481 * optional buffer heads at page->private. 482 */ 483 return page_count(page) - page_has_private(page) == 2; 484 } 485 486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 487 { 488 if (current->flags & PF_SWAPWRITE) 489 return 1; 490 if (!inode_write_congested(inode)) 491 return 1; 492 if (inode_to_bdi(inode) == current->backing_dev_info) 493 return 1; 494 return 0; 495 } 496 497 /* 498 * We detected a synchronous write error writing a page out. Probably 499 * -ENOSPC. We need to propagate that into the address_space for a subsequent 500 * fsync(), msync() or close(). 501 * 502 * The tricky part is that after writepage we cannot touch the mapping: nothing 503 * prevents it from being freed up. But we have a ref on the page and once 504 * that page is locked, the mapping is pinned. 505 * 506 * We're allowed to run sleeping lock_page() here because we know the caller has 507 * __GFP_FS. 508 */ 509 static void handle_write_error(struct address_space *mapping, 510 struct page *page, int error) 511 { 512 lock_page(page); 513 if (page_mapping(page) == mapping) 514 mapping_set_error(mapping, error); 515 unlock_page(page); 516 } 517 518 /* possible outcome of pageout() */ 519 typedef enum { 520 /* failed to write page out, page is locked */ 521 PAGE_KEEP, 522 /* move page to the active list, page is locked */ 523 PAGE_ACTIVATE, 524 /* page has been sent to the disk successfully, page is unlocked */ 525 PAGE_SUCCESS, 526 /* page is clean and locked */ 527 PAGE_CLEAN, 528 } pageout_t; 529 530 /* 531 * pageout is called by shrink_page_list() for each dirty page. 532 * Calls ->writepage(). 533 */ 534 static pageout_t pageout(struct page *page, struct address_space *mapping, 535 struct scan_control *sc) 536 { 537 /* 538 * If the page is dirty, only perform writeback if that write 539 * will be non-blocking. To prevent this allocation from being 540 * stalled by pagecache activity. But note that there may be 541 * stalls if we need to run get_block(). We could test 542 * PagePrivate for that. 543 * 544 * If this process is currently in __generic_file_write_iter() against 545 * this page's queue, we can perform writeback even if that 546 * will block. 547 * 548 * If the page is swapcache, write it back even if that would 549 * block, for some throttling. This happens by accident, because 550 * swap_backing_dev_info is bust: it doesn't reflect the 551 * congestion state of the swapdevs. Easy to fix, if needed. 552 */ 553 if (!is_page_cache_freeable(page)) 554 return PAGE_KEEP; 555 if (!mapping) { 556 /* 557 * Some data journaling orphaned pages can have 558 * page->mapping == NULL while being dirty with clean buffers. 559 */ 560 if (page_has_private(page)) { 561 if (try_to_free_buffers(page)) { 562 ClearPageDirty(page); 563 pr_info("%s: orphaned page\n", __func__); 564 return PAGE_CLEAN; 565 } 566 } 567 return PAGE_KEEP; 568 } 569 if (mapping->a_ops->writepage == NULL) 570 return PAGE_ACTIVATE; 571 if (!may_write_to_inode(mapping->host, sc)) 572 return PAGE_KEEP; 573 574 if (clear_page_dirty_for_io(page)) { 575 int res; 576 struct writeback_control wbc = { 577 .sync_mode = WB_SYNC_NONE, 578 .nr_to_write = SWAP_CLUSTER_MAX, 579 .range_start = 0, 580 .range_end = LLONG_MAX, 581 .for_reclaim = 1, 582 }; 583 584 SetPageReclaim(page); 585 res = mapping->a_ops->writepage(page, &wbc); 586 if (res < 0) 587 handle_write_error(mapping, page, res); 588 if (res == AOP_WRITEPAGE_ACTIVATE) { 589 ClearPageReclaim(page); 590 return PAGE_ACTIVATE; 591 } 592 593 if (!PageWriteback(page)) { 594 /* synchronous write or broken a_ops? */ 595 ClearPageReclaim(page); 596 } 597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 598 inc_zone_page_state(page, NR_VMSCAN_WRITE); 599 return PAGE_SUCCESS; 600 } 601 602 return PAGE_CLEAN; 603 } 604 605 /* 606 * Same as remove_mapping, but if the page is removed from the mapping, it 607 * gets returned with a refcount of 0. 608 */ 609 static int __remove_mapping(struct address_space *mapping, struct page *page, 610 bool reclaimed) 611 { 612 unsigned long flags; 613 struct mem_cgroup *memcg; 614 615 BUG_ON(!PageLocked(page)); 616 BUG_ON(mapping != page_mapping(page)); 617 618 memcg = mem_cgroup_begin_page_stat(page); 619 spin_lock_irqsave(&mapping->tree_lock, flags); 620 /* 621 * The non racy check for a busy page. 622 * 623 * Must be careful with the order of the tests. When someone has 624 * a ref to the page, it may be possible that they dirty it then 625 * drop the reference. So if PageDirty is tested before page_count 626 * here, then the following race may occur: 627 * 628 * get_user_pages(&page); 629 * [user mapping goes away] 630 * write_to(page); 631 * !PageDirty(page) [good] 632 * SetPageDirty(page); 633 * put_page(page); 634 * !page_count(page) [good, discard it] 635 * 636 * [oops, our write_to data is lost] 637 * 638 * Reversing the order of the tests ensures such a situation cannot 639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 640 * load is not satisfied before that of page->_count. 641 * 642 * Note that if SetPageDirty is always performed via set_page_dirty, 643 * and thus under tree_lock, then this ordering is not required. 644 */ 645 if (!page_freeze_refs(page, 2)) 646 goto cannot_free; 647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 648 if (unlikely(PageDirty(page))) { 649 page_unfreeze_refs(page, 2); 650 goto cannot_free; 651 } 652 653 if (PageSwapCache(page)) { 654 swp_entry_t swap = { .val = page_private(page) }; 655 mem_cgroup_swapout(page, swap); 656 __delete_from_swap_cache(page); 657 spin_unlock_irqrestore(&mapping->tree_lock, flags); 658 mem_cgroup_end_page_stat(memcg); 659 swapcache_free(swap); 660 } else { 661 void (*freepage)(struct page *); 662 void *shadow = NULL; 663 664 freepage = mapping->a_ops->freepage; 665 /* 666 * Remember a shadow entry for reclaimed file cache in 667 * order to detect refaults, thus thrashing, later on. 668 * 669 * But don't store shadows in an address space that is 670 * already exiting. This is not just an optizimation, 671 * inode reclaim needs to empty out the radix tree or 672 * the nodes are lost. Don't plant shadows behind its 673 * back. 674 */ 675 if (reclaimed && page_is_file_cache(page) && 676 !mapping_exiting(mapping)) 677 shadow = workingset_eviction(mapping, page); 678 __delete_from_page_cache(page, shadow, memcg); 679 spin_unlock_irqrestore(&mapping->tree_lock, flags); 680 mem_cgroup_end_page_stat(memcg); 681 682 if (freepage != NULL) 683 freepage(page); 684 } 685 686 return 1; 687 688 cannot_free: 689 spin_unlock_irqrestore(&mapping->tree_lock, flags); 690 mem_cgroup_end_page_stat(memcg); 691 return 0; 692 } 693 694 /* 695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 696 * someone else has a ref on the page, abort and return 0. If it was 697 * successfully detached, return 1. Assumes the caller has a single ref on 698 * this page. 699 */ 700 int remove_mapping(struct address_space *mapping, struct page *page) 701 { 702 if (__remove_mapping(mapping, page, false)) { 703 /* 704 * Unfreezing the refcount with 1 rather than 2 effectively 705 * drops the pagecache ref for us without requiring another 706 * atomic operation. 707 */ 708 page_unfreeze_refs(page, 1); 709 return 1; 710 } 711 return 0; 712 } 713 714 /** 715 * putback_lru_page - put previously isolated page onto appropriate LRU list 716 * @page: page to be put back to appropriate lru list 717 * 718 * Add previously isolated @page to appropriate LRU list. 719 * Page may still be unevictable for other reasons. 720 * 721 * lru_lock must not be held, interrupts must be enabled. 722 */ 723 void putback_lru_page(struct page *page) 724 { 725 bool is_unevictable; 726 int was_unevictable = PageUnevictable(page); 727 728 VM_BUG_ON_PAGE(PageLRU(page), page); 729 730 redo: 731 ClearPageUnevictable(page); 732 733 if (page_evictable(page)) { 734 /* 735 * For evictable pages, we can use the cache. 736 * In event of a race, worst case is we end up with an 737 * unevictable page on [in]active list. 738 * We know how to handle that. 739 */ 740 is_unevictable = false; 741 lru_cache_add(page); 742 } else { 743 /* 744 * Put unevictable pages directly on zone's unevictable 745 * list. 746 */ 747 is_unevictable = true; 748 add_page_to_unevictable_list(page); 749 /* 750 * When racing with an mlock or AS_UNEVICTABLE clearing 751 * (page is unlocked) make sure that if the other thread 752 * does not observe our setting of PG_lru and fails 753 * isolation/check_move_unevictable_pages, 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 755 * the page back to the evictable list. 756 * 757 * The other side is TestClearPageMlocked() or shmem_lock(). 758 */ 759 smp_mb(); 760 } 761 762 /* 763 * page's status can change while we move it among lru. If an evictable 764 * page is on unevictable list, it never be freed. To avoid that, 765 * check after we added it to the list, again. 766 */ 767 if (is_unevictable && page_evictable(page)) { 768 if (!isolate_lru_page(page)) { 769 put_page(page); 770 goto redo; 771 } 772 /* This means someone else dropped this page from LRU 773 * So, it will be freed or putback to LRU again. There is 774 * nothing to do here. 775 */ 776 } 777 778 if (was_unevictable && !is_unevictable) 779 count_vm_event(UNEVICTABLE_PGRESCUED); 780 else if (!was_unevictable && is_unevictable) 781 count_vm_event(UNEVICTABLE_PGCULLED); 782 783 put_page(page); /* drop ref from isolate */ 784 } 785 786 enum page_references { 787 PAGEREF_RECLAIM, 788 PAGEREF_RECLAIM_CLEAN, 789 PAGEREF_KEEP, 790 PAGEREF_ACTIVATE, 791 }; 792 793 static enum page_references page_check_references(struct page *page, 794 struct scan_control *sc) 795 { 796 int referenced_ptes, referenced_page; 797 unsigned long vm_flags; 798 799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 800 &vm_flags); 801 referenced_page = TestClearPageReferenced(page); 802 803 /* 804 * Mlock lost the isolation race with us. Let try_to_unmap() 805 * move the page to the unevictable list. 806 */ 807 if (vm_flags & VM_LOCKED) 808 return PAGEREF_RECLAIM; 809 810 if (referenced_ptes) { 811 if (PageSwapBacked(page)) 812 return PAGEREF_ACTIVATE; 813 /* 814 * All mapped pages start out with page table 815 * references from the instantiating fault, so we need 816 * to look twice if a mapped file page is used more 817 * than once. 818 * 819 * Mark it and spare it for another trip around the 820 * inactive list. Another page table reference will 821 * lead to its activation. 822 * 823 * Note: the mark is set for activated pages as well 824 * so that recently deactivated but used pages are 825 * quickly recovered. 826 */ 827 SetPageReferenced(page); 828 829 if (referenced_page || referenced_ptes > 1) 830 return PAGEREF_ACTIVATE; 831 832 /* 833 * Activate file-backed executable pages after first usage. 834 */ 835 if (vm_flags & VM_EXEC) 836 return PAGEREF_ACTIVATE; 837 838 return PAGEREF_KEEP; 839 } 840 841 /* Reclaim if clean, defer dirty pages to writeback */ 842 if (referenced_page && !PageSwapBacked(page)) 843 return PAGEREF_RECLAIM_CLEAN; 844 845 return PAGEREF_RECLAIM; 846 } 847 848 /* Check if a page is dirty or under writeback */ 849 static void page_check_dirty_writeback(struct page *page, 850 bool *dirty, bool *writeback) 851 { 852 struct address_space *mapping; 853 854 /* 855 * Anonymous pages are not handled by flushers and must be written 856 * from reclaim context. Do not stall reclaim based on them 857 */ 858 if (!page_is_file_cache(page)) { 859 *dirty = false; 860 *writeback = false; 861 return; 862 } 863 864 /* By default assume that the page flags are accurate */ 865 *dirty = PageDirty(page); 866 *writeback = PageWriteback(page); 867 868 /* Verify dirty/writeback state if the filesystem supports it */ 869 if (!page_has_private(page)) 870 return; 871 872 mapping = page_mapping(page); 873 if (mapping && mapping->a_ops->is_dirty_writeback) 874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 875 } 876 877 /* 878 * shrink_page_list() returns the number of reclaimed pages 879 */ 880 static unsigned long shrink_page_list(struct list_head *page_list, 881 struct zone *zone, 882 struct scan_control *sc, 883 enum ttu_flags ttu_flags, 884 unsigned long *ret_nr_dirty, 885 unsigned long *ret_nr_unqueued_dirty, 886 unsigned long *ret_nr_congested, 887 unsigned long *ret_nr_writeback, 888 unsigned long *ret_nr_immediate, 889 bool force_reclaim) 890 { 891 LIST_HEAD(ret_pages); 892 LIST_HEAD(free_pages); 893 int pgactivate = 0; 894 unsigned long nr_unqueued_dirty = 0; 895 unsigned long nr_dirty = 0; 896 unsigned long nr_congested = 0; 897 unsigned long nr_reclaimed = 0; 898 unsigned long nr_writeback = 0; 899 unsigned long nr_immediate = 0; 900 901 cond_resched(); 902 903 while (!list_empty(page_list)) { 904 struct address_space *mapping; 905 struct page *page; 906 int may_enter_fs; 907 enum page_references references = PAGEREF_RECLAIM_CLEAN; 908 bool dirty, writeback; 909 910 cond_resched(); 911 912 page = lru_to_page(page_list); 913 list_del(&page->lru); 914 915 if (!trylock_page(page)) 916 goto keep; 917 918 VM_BUG_ON_PAGE(PageActive(page), page); 919 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 920 921 sc->nr_scanned++; 922 923 if (unlikely(!page_evictable(page))) 924 goto cull_mlocked; 925 926 if (!sc->may_unmap && page_mapped(page)) 927 goto keep_locked; 928 929 /* Double the slab pressure for mapped and swapcache pages */ 930 if (page_mapped(page) || PageSwapCache(page)) 931 sc->nr_scanned++; 932 933 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 935 936 /* 937 * The number of dirty pages determines if a zone is marked 938 * reclaim_congested which affects wait_iff_congested. kswapd 939 * will stall and start writing pages if the tail of the LRU 940 * is all dirty unqueued pages. 941 */ 942 page_check_dirty_writeback(page, &dirty, &writeback); 943 if (dirty || writeback) 944 nr_dirty++; 945 946 if (dirty && !writeback) 947 nr_unqueued_dirty++; 948 949 /* 950 * Treat this page as congested if the underlying BDI is or if 951 * pages are cycling through the LRU so quickly that the 952 * pages marked for immediate reclaim are making it to the 953 * end of the LRU a second time. 954 */ 955 mapping = page_mapping(page); 956 if (((dirty || writeback) && mapping && 957 inode_write_congested(mapping->host)) || 958 (writeback && PageReclaim(page))) 959 nr_congested++; 960 961 /* 962 * If a page at the tail of the LRU is under writeback, there 963 * are three cases to consider. 964 * 965 * 1) If reclaim is encountering an excessive number of pages 966 * under writeback and this page is both under writeback and 967 * PageReclaim then it indicates that pages are being queued 968 * for IO but are being recycled through the LRU before the 969 * IO can complete. Waiting on the page itself risks an 970 * indefinite stall if it is impossible to writeback the 971 * page due to IO error or disconnected storage so instead 972 * note that the LRU is being scanned too quickly and the 973 * caller can stall after page list has been processed. 974 * 975 * 2) Global or new memcg reclaim encounters a page that is 976 * not marked for immediate reclaim, or the caller does not 977 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 978 * not to fs). In this case mark the page for immediate 979 * reclaim and continue scanning. 980 * 981 * Require may_enter_fs because we would wait on fs, which 982 * may not have submitted IO yet. And the loop driver might 983 * enter reclaim, and deadlock if it waits on a page for 984 * which it is needed to do the write (loop masks off 985 * __GFP_IO|__GFP_FS for this reason); but more thought 986 * would probably show more reasons. 987 * 988 * 3) Legacy memcg encounters a page that is already marked 989 * PageReclaim. memcg does not have any dirty pages 990 * throttling so we could easily OOM just because too many 991 * pages are in writeback and there is nothing else to 992 * reclaim. Wait for the writeback to complete. 993 */ 994 if (PageWriteback(page)) { 995 /* Case 1 above */ 996 if (current_is_kswapd() && 997 PageReclaim(page) && 998 test_bit(ZONE_WRITEBACK, &zone->flags)) { 999 nr_immediate++; 1000 goto keep_locked; 1001 1002 /* Case 2 above */ 1003 } else if (sane_reclaim(sc) || 1004 !PageReclaim(page) || !may_enter_fs) { 1005 /* 1006 * This is slightly racy - end_page_writeback() 1007 * might have just cleared PageReclaim, then 1008 * setting PageReclaim here end up interpreted 1009 * as PageReadahead - but that does not matter 1010 * enough to care. What we do want is for this 1011 * page to have PageReclaim set next time memcg 1012 * reclaim reaches the tests above, so it will 1013 * then wait_on_page_writeback() to avoid OOM; 1014 * and it's also appropriate in global reclaim. 1015 */ 1016 SetPageReclaim(page); 1017 nr_writeback++; 1018 goto keep_locked; 1019 1020 /* Case 3 above */ 1021 } else { 1022 unlock_page(page); 1023 wait_on_page_writeback(page); 1024 /* then go back and try same page again */ 1025 list_add_tail(&page->lru, page_list); 1026 continue; 1027 } 1028 } 1029 1030 if (!force_reclaim) 1031 references = page_check_references(page, sc); 1032 1033 switch (references) { 1034 case PAGEREF_ACTIVATE: 1035 goto activate_locked; 1036 case PAGEREF_KEEP: 1037 goto keep_locked; 1038 case PAGEREF_RECLAIM: 1039 case PAGEREF_RECLAIM_CLEAN: 1040 ; /* try to reclaim the page below */ 1041 } 1042 1043 /* 1044 * Anonymous process memory has backing store? 1045 * Try to allocate it some swap space here. 1046 */ 1047 if (PageAnon(page) && !PageSwapCache(page)) { 1048 if (!(sc->gfp_mask & __GFP_IO)) 1049 goto keep_locked; 1050 if (!add_to_swap(page, page_list)) 1051 goto activate_locked; 1052 may_enter_fs = 1; 1053 1054 /* Adding to swap updated mapping */ 1055 mapping = page_mapping(page); 1056 } 1057 1058 /* 1059 * The page is mapped into the page tables of one or more 1060 * processes. Try to unmap it here. 1061 */ 1062 if (page_mapped(page) && mapping) { 1063 switch (try_to_unmap(page, 1064 ttu_flags|TTU_BATCH_FLUSH)) { 1065 case SWAP_FAIL: 1066 goto activate_locked; 1067 case SWAP_AGAIN: 1068 goto keep_locked; 1069 case SWAP_MLOCK: 1070 goto cull_mlocked; 1071 case SWAP_SUCCESS: 1072 ; /* try to free the page below */ 1073 } 1074 } 1075 1076 if (PageDirty(page)) { 1077 /* 1078 * Only kswapd can writeback filesystem pages to 1079 * avoid risk of stack overflow but only writeback 1080 * if many dirty pages have been encountered. 1081 */ 1082 if (page_is_file_cache(page) && 1083 (!current_is_kswapd() || 1084 !test_bit(ZONE_DIRTY, &zone->flags))) { 1085 /* 1086 * Immediately reclaim when written back. 1087 * Similar in principal to deactivate_page() 1088 * except we already have the page isolated 1089 * and know it's dirty 1090 */ 1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1092 SetPageReclaim(page); 1093 1094 goto keep_locked; 1095 } 1096 1097 if (references == PAGEREF_RECLAIM_CLEAN) 1098 goto keep_locked; 1099 if (!may_enter_fs) 1100 goto keep_locked; 1101 if (!sc->may_writepage) 1102 goto keep_locked; 1103 1104 /* 1105 * Page is dirty. Flush the TLB if a writable entry 1106 * potentially exists to avoid CPU writes after IO 1107 * starts and then write it out here. 1108 */ 1109 try_to_unmap_flush_dirty(); 1110 switch (pageout(page, mapping, sc)) { 1111 case PAGE_KEEP: 1112 goto keep_locked; 1113 case PAGE_ACTIVATE: 1114 goto activate_locked; 1115 case PAGE_SUCCESS: 1116 if (PageWriteback(page)) 1117 goto keep; 1118 if (PageDirty(page)) 1119 goto keep; 1120 1121 /* 1122 * A synchronous write - probably a ramdisk. Go 1123 * ahead and try to reclaim the page. 1124 */ 1125 if (!trylock_page(page)) 1126 goto keep; 1127 if (PageDirty(page) || PageWriteback(page)) 1128 goto keep_locked; 1129 mapping = page_mapping(page); 1130 case PAGE_CLEAN: 1131 ; /* try to free the page below */ 1132 } 1133 } 1134 1135 /* 1136 * If the page has buffers, try to free the buffer mappings 1137 * associated with this page. If we succeed we try to free 1138 * the page as well. 1139 * 1140 * We do this even if the page is PageDirty(). 1141 * try_to_release_page() does not perform I/O, but it is 1142 * possible for a page to have PageDirty set, but it is actually 1143 * clean (all its buffers are clean). This happens if the 1144 * buffers were written out directly, with submit_bh(). ext3 1145 * will do this, as well as the blockdev mapping. 1146 * try_to_release_page() will discover that cleanness and will 1147 * drop the buffers and mark the page clean - it can be freed. 1148 * 1149 * Rarely, pages can have buffers and no ->mapping. These are 1150 * the pages which were not successfully invalidated in 1151 * truncate_complete_page(). We try to drop those buffers here 1152 * and if that worked, and the page is no longer mapped into 1153 * process address space (page_count == 1) it can be freed. 1154 * Otherwise, leave the page on the LRU so it is swappable. 1155 */ 1156 if (page_has_private(page)) { 1157 if (!try_to_release_page(page, sc->gfp_mask)) 1158 goto activate_locked; 1159 if (!mapping && page_count(page) == 1) { 1160 unlock_page(page); 1161 if (put_page_testzero(page)) 1162 goto free_it; 1163 else { 1164 /* 1165 * rare race with speculative reference. 1166 * the speculative reference will free 1167 * this page shortly, so we may 1168 * increment nr_reclaimed here (and 1169 * leave it off the LRU). 1170 */ 1171 nr_reclaimed++; 1172 continue; 1173 } 1174 } 1175 } 1176 1177 if (!mapping || !__remove_mapping(mapping, page, true)) 1178 goto keep_locked; 1179 1180 /* 1181 * At this point, we have no other references and there is 1182 * no way to pick any more up (removed from LRU, removed 1183 * from pagecache). Can use non-atomic bitops now (and 1184 * we obviously don't have to worry about waking up a process 1185 * waiting on the page lock, because there are no references. 1186 */ 1187 __clear_page_locked(page); 1188 free_it: 1189 nr_reclaimed++; 1190 1191 /* 1192 * Is there need to periodically free_page_list? It would 1193 * appear not as the counts should be low 1194 */ 1195 list_add(&page->lru, &free_pages); 1196 continue; 1197 1198 cull_mlocked: 1199 if (PageSwapCache(page)) 1200 try_to_free_swap(page); 1201 unlock_page(page); 1202 list_add(&page->lru, &ret_pages); 1203 continue; 1204 1205 activate_locked: 1206 /* Not a candidate for swapping, so reclaim swap space. */ 1207 if (PageSwapCache(page) && vm_swap_full()) 1208 try_to_free_swap(page); 1209 VM_BUG_ON_PAGE(PageActive(page), page); 1210 SetPageActive(page); 1211 pgactivate++; 1212 keep_locked: 1213 unlock_page(page); 1214 keep: 1215 list_add(&page->lru, &ret_pages); 1216 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1217 } 1218 1219 mem_cgroup_uncharge_list(&free_pages); 1220 try_to_unmap_flush(); 1221 free_hot_cold_page_list(&free_pages, true); 1222 1223 list_splice(&ret_pages, page_list); 1224 count_vm_events(PGACTIVATE, pgactivate); 1225 1226 *ret_nr_dirty += nr_dirty; 1227 *ret_nr_congested += nr_congested; 1228 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1229 *ret_nr_writeback += nr_writeback; 1230 *ret_nr_immediate += nr_immediate; 1231 return nr_reclaimed; 1232 } 1233 1234 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1235 struct list_head *page_list) 1236 { 1237 struct scan_control sc = { 1238 .gfp_mask = GFP_KERNEL, 1239 .priority = DEF_PRIORITY, 1240 .may_unmap = 1, 1241 }; 1242 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1243 struct page *page, *next; 1244 LIST_HEAD(clean_pages); 1245 1246 list_for_each_entry_safe(page, next, page_list, lru) { 1247 if (page_is_file_cache(page) && !PageDirty(page) && 1248 !isolated_balloon_page(page)) { 1249 ClearPageActive(page); 1250 list_move(&page->lru, &clean_pages); 1251 } 1252 } 1253 1254 ret = shrink_page_list(&clean_pages, zone, &sc, 1255 TTU_UNMAP|TTU_IGNORE_ACCESS, 1256 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1257 list_splice(&clean_pages, page_list); 1258 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1259 return ret; 1260 } 1261 1262 /* 1263 * Attempt to remove the specified page from its LRU. Only take this page 1264 * if it is of the appropriate PageActive status. Pages which are being 1265 * freed elsewhere are also ignored. 1266 * 1267 * page: page to consider 1268 * mode: one of the LRU isolation modes defined above 1269 * 1270 * returns 0 on success, -ve errno on failure. 1271 */ 1272 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1273 { 1274 int ret = -EINVAL; 1275 1276 /* Only take pages on the LRU. */ 1277 if (!PageLRU(page)) 1278 return ret; 1279 1280 /* Compaction should not handle unevictable pages but CMA can do so */ 1281 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1282 return ret; 1283 1284 ret = -EBUSY; 1285 1286 /* 1287 * To minimise LRU disruption, the caller can indicate that it only 1288 * wants to isolate pages it will be able to operate on without 1289 * blocking - clean pages for the most part. 1290 * 1291 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1292 * is used by reclaim when it is cannot write to backing storage 1293 * 1294 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1295 * that it is possible to migrate without blocking 1296 */ 1297 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1298 /* All the caller can do on PageWriteback is block */ 1299 if (PageWriteback(page)) 1300 return ret; 1301 1302 if (PageDirty(page)) { 1303 struct address_space *mapping; 1304 1305 /* ISOLATE_CLEAN means only clean pages */ 1306 if (mode & ISOLATE_CLEAN) 1307 return ret; 1308 1309 /* 1310 * Only pages without mappings or that have a 1311 * ->migratepage callback are possible to migrate 1312 * without blocking 1313 */ 1314 mapping = page_mapping(page); 1315 if (mapping && !mapping->a_ops->migratepage) 1316 return ret; 1317 } 1318 } 1319 1320 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1321 return ret; 1322 1323 if (likely(get_page_unless_zero(page))) { 1324 /* 1325 * Be careful not to clear PageLRU until after we're 1326 * sure the page is not being freed elsewhere -- the 1327 * page release code relies on it. 1328 */ 1329 ClearPageLRU(page); 1330 ret = 0; 1331 } 1332 1333 return ret; 1334 } 1335 1336 /* 1337 * zone->lru_lock is heavily contended. Some of the functions that 1338 * shrink the lists perform better by taking out a batch of pages 1339 * and working on them outside the LRU lock. 1340 * 1341 * For pagecache intensive workloads, this function is the hottest 1342 * spot in the kernel (apart from copy_*_user functions). 1343 * 1344 * Appropriate locks must be held before calling this function. 1345 * 1346 * @nr_to_scan: The number of pages to look through on the list. 1347 * @lruvec: The LRU vector to pull pages from. 1348 * @dst: The temp list to put pages on to. 1349 * @nr_scanned: The number of pages that were scanned. 1350 * @sc: The scan_control struct for this reclaim session 1351 * @mode: One of the LRU isolation modes 1352 * @lru: LRU list id for isolating 1353 * 1354 * returns how many pages were moved onto *@dst. 1355 */ 1356 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1357 struct lruvec *lruvec, struct list_head *dst, 1358 unsigned long *nr_scanned, struct scan_control *sc, 1359 isolate_mode_t mode, enum lru_list lru) 1360 { 1361 struct list_head *src = &lruvec->lists[lru]; 1362 unsigned long nr_taken = 0; 1363 unsigned long scan; 1364 1365 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1366 !list_empty(src); scan++) { 1367 struct page *page; 1368 int nr_pages; 1369 1370 page = lru_to_page(src); 1371 prefetchw_prev_lru_page(page, src, flags); 1372 1373 VM_BUG_ON_PAGE(!PageLRU(page), page); 1374 1375 switch (__isolate_lru_page(page, mode)) { 1376 case 0: 1377 nr_pages = hpage_nr_pages(page); 1378 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1379 list_move(&page->lru, dst); 1380 nr_taken += nr_pages; 1381 break; 1382 1383 case -EBUSY: 1384 /* else it is being freed elsewhere */ 1385 list_move(&page->lru, src); 1386 continue; 1387 1388 default: 1389 BUG(); 1390 } 1391 } 1392 1393 *nr_scanned = scan; 1394 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1395 nr_taken, mode, is_file_lru(lru)); 1396 return nr_taken; 1397 } 1398 1399 /** 1400 * isolate_lru_page - tries to isolate a page from its LRU list 1401 * @page: page to isolate from its LRU list 1402 * 1403 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1404 * vmstat statistic corresponding to whatever LRU list the page was on. 1405 * 1406 * Returns 0 if the page was removed from an LRU list. 1407 * Returns -EBUSY if the page was not on an LRU list. 1408 * 1409 * The returned page will have PageLRU() cleared. If it was found on 1410 * the active list, it will have PageActive set. If it was found on 1411 * the unevictable list, it will have the PageUnevictable bit set. That flag 1412 * may need to be cleared by the caller before letting the page go. 1413 * 1414 * The vmstat statistic corresponding to the list on which the page was 1415 * found will be decremented. 1416 * 1417 * Restrictions: 1418 * (1) Must be called with an elevated refcount on the page. This is a 1419 * fundamentnal difference from isolate_lru_pages (which is called 1420 * without a stable reference). 1421 * (2) the lru_lock must not be held. 1422 * (3) interrupts must be enabled. 1423 */ 1424 int isolate_lru_page(struct page *page) 1425 { 1426 int ret = -EBUSY; 1427 1428 VM_BUG_ON_PAGE(!page_count(page), page); 1429 1430 if (PageLRU(page)) { 1431 struct zone *zone = page_zone(page); 1432 struct lruvec *lruvec; 1433 1434 spin_lock_irq(&zone->lru_lock); 1435 lruvec = mem_cgroup_page_lruvec(page, zone); 1436 if (PageLRU(page)) { 1437 int lru = page_lru(page); 1438 get_page(page); 1439 ClearPageLRU(page); 1440 del_page_from_lru_list(page, lruvec, lru); 1441 ret = 0; 1442 } 1443 spin_unlock_irq(&zone->lru_lock); 1444 } 1445 return ret; 1446 } 1447 1448 /* 1449 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1450 * then get resheduled. When there are massive number of tasks doing page 1451 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1452 * the LRU list will go small and be scanned faster than necessary, leading to 1453 * unnecessary swapping, thrashing and OOM. 1454 */ 1455 static int too_many_isolated(struct zone *zone, int file, 1456 struct scan_control *sc) 1457 { 1458 unsigned long inactive, isolated; 1459 1460 if (current_is_kswapd()) 1461 return 0; 1462 1463 if (!sane_reclaim(sc)) 1464 return 0; 1465 1466 if (file) { 1467 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1468 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1469 } else { 1470 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1471 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1472 } 1473 1474 /* 1475 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1476 * won't get blocked by normal direct-reclaimers, forming a circular 1477 * deadlock. 1478 */ 1479 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1480 inactive >>= 3; 1481 1482 return isolated > inactive; 1483 } 1484 1485 static noinline_for_stack void 1486 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1487 { 1488 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1489 struct zone *zone = lruvec_zone(lruvec); 1490 LIST_HEAD(pages_to_free); 1491 1492 /* 1493 * Put back any unfreeable pages. 1494 */ 1495 while (!list_empty(page_list)) { 1496 struct page *page = lru_to_page(page_list); 1497 int lru; 1498 1499 VM_BUG_ON_PAGE(PageLRU(page), page); 1500 list_del(&page->lru); 1501 if (unlikely(!page_evictable(page))) { 1502 spin_unlock_irq(&zone->lru_lock); 1503 putback_lru_page(page); 1504 spin_lock_irq(&zone->lru_lock); 1505 continue; 1506 } 1507 1508 lruvec = mem_cgroup_page_lruvec(page, zone); 1509 1510 SetPageLRU(page); 1511 lru = page_lru(page); 1512 add_page_to_lru_list(page, lruvec, lru); 1513 1514 if (is_active_lru(lru)) { 1515 int file = is_file_lru(lru); 1516 int numpages = hpage_nr_pages(page); 1517 reclaim_stat->recent_rotated[file] += numpages; 1518 } 1519 if (put_page_testzero(page)) { 1520 __ClearPageLRU(page); 1521 __ClearPageActive(page); 1522 del_page_from_lru_list(page, lruvec, lru); 1523 1524 if (unlikely(PageCompound(page))) { 1525 spin_unlock_irq(&zone->lru_lock); 1526 mem_cgroup_uncharge(page); 1527 (*get_compound_page_dtor(page))(page); 1528 spin_lock_irq(&zone->lru_lock); 1529 } else 1530 list_add(&page->lru, &pages_to_free); 1531 } 1532 } 1533 1534 /* 1535 * To save our caller's stack, now use input list for pages to free. 1536 */ 1537 list_splice(&pages_to_free, page_list); 1538 } 1539 1540 /* 1541 * If a kernel thread (such as nfsd for loop-back mounts) services 1542 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1543 * In that case we should only throttle if the backing device it is 1544 * writing to is congested. In other cases it is safe to throttle. 1545 */ 1546 static int current_may_throttle(void) 1547 { 1548 return !(current->flags & PF_LESS_THROTTLE) || 1549 current->backing_dev_info == NULL || 1550 bdi_write_congested(current->backing_dev_info); 1551 } 1552 1553 /* 1554 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1555 * of reclaimed pages 1556 */ 1557 static noinline_for_stack unsigned long 1558 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1559 struct scan_control *sc, enum lru_list lru) 1560 { 1561 LIST_HEAD(page_list); 1562 unsigned long nr_scanned; 1563 unsigned long nr_reclaimed = 0; 1564 unsigned long nr_taken; 1565 unsigned long nr_dirty = 0; 1566 unsigned long nr_congested = 0; 1567 unsigned long nr_unqueued_dirty = 0; 1568 unsigned long nr_writeback = 0; 1569 unsigned long nr_immediate = 0; 1570 isolate_mode_t isolate_mode = 0; 1571 int file = is_file_lru(lru); 1572 struct zone *zone = lruvec_zone(lruvec); 1573 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1574 1575 while (unlikely(too_many_isolated(zone, file, sc))) { 1576 congestion_wait(BLK_RW_ASYNC, HZ/10); 1577 1578 /* We are about to die and free our memory. Return now. */ 1579 if (fatal_signal_pending(current)) 1580 return SWAP_CLUSTER_MAX; 1581 } 1582 1583 lru_add_drain(); 1584 1585 if (!sc->may_unmap) 1586 isolate_mode |= ISOLATE_UNMAPPED; 1587 if (!sc->may_writepage) 1588 isolate_mode |= ISOLATE_CLEAN; 1589 1590 spin_lock_irq(&zone->lru_lock); 1591 1592 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1593 &nr_scanned, sc, isolate_mode, lru); 1594 1595 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1596 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1597 1598 if (global_reclaim(sc)) { 1599 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1600 if (current_is_kswapd()) 1601 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1602 else 1603 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1604 } 1605 spin_unlock_irq(&zone->lru_lock); 1606 1607 if (nr_taken == 0) 1608 return 0; 1609 1610 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1611 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1612 &nr_writeback, &nr_immediate, 1613 false); 1614 1615 spin_lock_irq(&zone->lru_lock); 1616 1617 reclaim_stat->recent_scanned[file] += nr_taken; 1618 1619 if (global_reclaim(sc)) { 1620 if (current_is_kswapd()) 1621 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1622 nr_reclaimed); 1623 else 1624 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1625 nr_reclaimed); 1626 } 1627 1628 putback_inactive_pages(lruvec, &page_list); 1629 1630 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1631 1632 spin_unlock_irq(&zone->lru_lock); 1633 1634 mem_cgroup_uncharge_list(&page_list); 1635 free_hot_cold_page_list(&page_list, true); 1636 1637 /* 1638 * If reclaim is isolating dirty pages under writeback, it implies 1639 * that the long-lived page allocation rate is exceeding the page 1640 * laundering rate. Either the global limits are not being effective 1641 * at throttling processes due to the page distribution throughout 1642 * zones or there is heavy usage of a slow backing device. The 1643 * only option is to throttle from reclaim context which is not ideal 1644 * as there is no guarantee the dirtying process is throttled in the 1645 * same way balance_dirty_pages() manages. 1646 * 1647 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1648 * of pages under pages flagged for immediate reclaim and stall if any 1649 * are encountered in the nr_immediate check below. 1650 */ 1651 if (nr_writeback && nr_writeback == nr_taken) 1652 set_bit(ZONE_WRITEBACK, &zone->flags); 1653 1654 /* 1655 * Legacy memcg will stall in page writeback so avoid forcibly 1656 * stalling here. 1657 */ 1658 if (sane_reclaim(sc)) { 1659 /* 1660 * Tag a zone as congested if all the dirty pages scanned were 1661 * backed by a congested BDI and wait_iff_congested will stall. 1662 */ 1663 if (nr_dirty && nr_dirty == nr_congested) 1664 set_bit(ZONE_CONGESTED, &zone->flags); 1665 1666 /* 1667 * If dirty pages are scanned that are not queued for IO, it 1668 * implies that flushers are not keeping up. In this case, flag 1669 * the zone ZONE_DIRTY and kswapd will start writing pages from 1670 * reclaim context. 1671 */ 1672 if (nr_unqueued_dirty == nr_taken) 1673 set_bit(ZONE_DIRTY, &zone->flags); 1674 1675 /* 1676 * If kswapd scans pages marked marked for immediate 1677 * reclaim and under writeback (nr_immediate), it implies 1678 * that pages are cycling through the LRU faster than 1679 * they are written so also forcibly stall. 1680 */ 1681 if (nr_immediate && current_may_throttle()) 1682 congestion_wait(BLK_RW_ASYNC, HZ/10); 1683 } 1684 1685 /* 1686 * Stall direct reclaim for IO completions if underlying BDIs or zone 1687 * is congested. Allow kswapd to continue until it starts encountering 1688 * unqueued dirty pages or cycling through the LRU too quickly. 1689 */ 1690 if (!sc->hibernation_mode && !current_is_kswapd() && 1691 current_may_throttle()) 1692 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1693 1694 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1695 zone_idx(zone), 1696 nr_scanned, nr_reclaimed, 1697 sc->priority, 1698 trace_shrink_flags(file)); 1699 return nr_reclaimed; 1700 } 1701 1702 /* 1703 * This moves pages from the active list to the inactive list. 1704 * 1705 * We move them the other way if the page is referenced by one or more 1706 * processes, from rmap. 1707 * 1708 * If the pages are mostly unmapped, the processing is fast and it is 1709 * appropriate to hold zone->lru_lock across the whole operation. But if 1710 * the pages are mapped, the processing is slow (page_referenced()) so we 1711 * should drop zone->lru_lock around each page. It's impossible to balance 1712 * this, so instead we remove the pages from the LRU while processing them. 1713 * It is safe to rely on PG_active against the non-LRU pages in here because 1714 * nobody will play with that bit on a non-LRU page. 1715 * 1716 * The downside is that we have to touch page->_count against each page. 1717 * But we had to alter page->flags anyway. 1718 */ 1719 1720 static void move_active_pages_to_lru(struct lruvec *lruvec, 1721 struct list_head *list, 1722 struct list_head *pages_to_free, 1723 enum lru_list lru) 1724 { 1725 struct zone *zone = lruvec_zone(lruvec); 1726 unsigned long pgmoved = 0; 1727 struct page *page; 1728 int nr_pages; 1729 1730 while (!list_empty(list)) { 1731 page = lru_to_page(list); 1732 lruvec = mem_cgroup_page_lruvec(page, zone); 1733 1734 VM_BUG_ON_PAGE(PageLRU(page), page); 1735 SetPageLRU(page); 1736 1737 nr_pages = hpage_nr_pages(page); 1738 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1739 list_move(&page->lru, &lruvec->lists[lru]); 1740 pgmoved += nr_pages; 1741 1742 if (put_page_testzero(page)) { 1743 __ClearPageLRU(page); 1744 __ClearPageActive(page); 1745 del_page_from_lru_list(page, lruvec, lru); 1746 1747 if (unlikely(PageCompound(page))) { 1748 spin_unlock_irq(&zone->lru_lock); 1749 mem_cgroup_uncharge(page); 1750 (*get_compound_page_dtor(page))(page); 1751 spin_lock_irq(&zone->lru_lock); 1752 } else 1753 list_add(&page->lru, pages_to_free); 1754 } 1755 } 1756 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1757 if (!is_active_lru(lru)) 1758 __count_vm_events(PGDEACTIVATE, pgmoved); 1759 } 1760 1761 static void shrink_active_list(unsigned long nr_to_scan, 1762 struct lruvec *lruvec, 1763 struct scan_control *sc, 1764 enum lru_list lru) 1765 { 1766 unsigned long nr_taken; 1767 unsigned long nr_scanned; 1768 unsigned long vm_flags; 1769 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1770 LIST_HEAD(l_active); 1771 LIST_HEAD(l_inactive); 1772 struct page *page; 1773 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1774 unsigned long nr_rotated = 0; 1775 isolate_mode_t isolate_mode = 0; 1776 int file = is_file_lru(lru); 1777 struct zone *zone = lruvec_zone(lruvec); 1778 1779 lru_add_drain(); 1780 1781 if (!sc->may_unmap) 1782 isolate_mode |= ISOLATE_UNMAPPED; 1783 if (!sc->may_writepage) 1784 isolate_mode |= ISOLATE_CLEAN; 1785 1786 spin_lock_irq(&zone->lru_lock); 1787 1788 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1789 &nr_scanned, sc, isolate_mode, lru); 1790 if (global_reclaim(sc)) 1791 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1792 1793 reclaim_stat->recent_scanned[file] += nr_taken; 1794 1795 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1796 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1797 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1798 spin_unlock_irq(&zone->lru_lock); 1799 1800 while (!list_empty(&l_hold)) { 1801 cond_resched(); 1802 page = lru_to_page(&l_hold); 1803 list_del(&page->lru); 1804 1805 if (unlikely(!page_evictable(page))) { 1806 putback_lru_page(page); 1807 continue; 1808 } 1809 1810 if (unlikely(buffer_heads_over_limit)) { 1811 if (page_has_private(page) && trylock_page(page)) { 1812 if (page_has_private(page)) 1813 try_to_release_page(page, 0); 1814 unlock_page(page); 1815 } 1816 } 1817 1818 if (page_referenced(page, 0, sc->target_mem_cgroup, 1819 &vm_flags)) { 1820 nr_rotated += hpage_nr_pages(page); 1821 /* 1822 * Identify referenced, file-backed active pages and 1823 * give them one more trip around the active list. So 1824 * that executable code get better chances to stay in 1825 * memory under moderate memory pressure. Anon pages 1826 * are not likely to be evicted by use-once streaming 1827 * IO, plus JVM can create lots of anon VM_EXEC pages, 1828 * so we ignore them here. 1829 */ 1830 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1831 list_add(&page->lru, &l_active); 1832 continue; 1833 } 1834 } 1835 1836 ClearPageActive(page); /* we are de-activating */ 1837 list_add(&page->lru, &l_inactive); 1838 } 1839 1840 /* 1841 * Move pages back to the lru list. 1842 */ 1843 spin_lock_irq(&zone->lru_lock); 1844 /* 1845 * Count referenced pages from currently used mappings as rotated, 1846 * even though only some of them are actually re-activated. This 1847 * helps balance scan pressure between file and anonymous pages in 1848 * get_scan_count. 1849 */ 1850 reclaim_stat->recent_rotated[file] += nr_rotated; 1851 1852 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1853 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1854 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1855 spin_unlock_irq(&zone->lru_lock); 1856 1857 mem_cgroup_uncharge_list(&l_hold); 1858 free_hot_cold_page_list(&l_hold, true); 1859 } 1860 1861 #ifdef CONFIG_SWAP 1862 static int inactive_anon_is_low_global(struct zone *zone) 1863 { 1864 unsigned long active, inactive; 1865 1866 active = zone_page_state(zone, NR_ACTIVE_ANON); 1867 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1868 1869 if (inactive * zone->inactive_ratio < active) 1870 return 1; 1871 1872 return 0; 1873 } 1874 1875 /** 1876 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1877 * @lruvec: LRU vector to check 1878 * 1879 * Returns true if the zone does not have enough inactive anon pages, 1880 * meaning some active anon pages need to be deactivated. 1881 */ 1882 static int inactive_anon_is_low(struct lruvec *lruvec) 1883 { 1884 /* 1885 * If we don't have swap space, anonymous page deactivation 1886 * is pointless. 1887 */ 1888 if (!total_swap_pages) 1889 return 0; 1890 1891 if (!mem_cgroup_disabled()) 1892 return mem_cgroup_inactive_anon_is_low(lruvec); 1893 1894 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1895 } 1896 #else 1897 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1898 { 1899 return 0; 1900 } 1901 #endif 1902 1903 /** 1904 * inactive_file_is_low - check if file pages need to be deactivated 1905 * @lruvec: LRU vector to check 1906 * 1907 * When the system is doing streaming IO, memory pressure here 1908 * ensures that active file pages get deactivated, until more 1909 * than half of the file pages are on the inactive list. 1910 * 1911 * Once we get to that situation, protect the system's working 1912 * set from being evicted by disabling active file page aging. 1913 * 1914 * This uses a different ratio than the anonymous pages, because 1915 * the page cache uses a use-once replacement algorithm. 1916 */ 1917 static int inactive_file_is_low(struct lruvec *lruvec) 1918 { 1919 unsigned long inactive; 1920 unsigned long active; 1921 1922 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1923 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1924 1925 return active > inactive; 1926 } 1927 1928 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1929 { 1930 if (is_file_lru(lru)) 1931 return inactive_file_is_low(lruvec); 1932 else 1933 return inactive_anon_is_low(lruvec); 1934 } 1935 1936 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1937 struct lruvec *lruvec, struct scan_control *sc) 1938 { 1939 if (is_active_lru(lru)) { 1940 if (inactive_list_is_low(lruvec, lru)) 1941 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1942 return 0; 1943 } 1944 1945 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1946 } 1947 1948 enum scan_balance { 1949 SCAN_EQUAL, 1950 SCAN_FRACT, 1951 SCAN_ANON, 1952 SCAN_FILE, 1953 }; 1954 1955 /* 1956 * Determine how aggressively the anon and file LRU lists should be 1957 * scanned. The relative value of each set of LRU lists is determined 1958 * by looking at the fraction of the pages scanned we did rotate back 1959 * onto the active list instead of evict. 1960 * 1961 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1962 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1963 */ 1964 static void get_scan_count(struct lruvec *lruvec, int swappiness, 1965 struct scan_control *sc, unsigned long *nr, 1966 unsigned long *lru_pages) 1967 { 1968 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1969 u64 fraction[2]; 1970 u64 denominator = 0; /* gcc */ 1971 struct zone *zone = lruvec_zone(lruvec); 1972 unsigned long anon_prio, file_prio; 1973 enum scan_balance scan_balance; 1974 unsigned long anon, file; 1975 bool force_scan = false; 1976 unsigned long ap, fp; 1977 enum lru_list lru; 1978 bool some_scanned; 1979 int pass; 1980 1981 /* 1982 * If the zone or memcg is small, nr[l] can be 0. This 1983 * results in no scanning on this priority and a potential 1984 * priority drop. Global direct reclaim can go to the next 1985 * zone and tends to have no problems. Global kswapd is for 1986 * zone balancing and it needs to scan a minimum amount. When 1987 * reclaiming for a memcg, a priority drop can cause high 1988 * latencies, so it's better to scan a minimum amount there as 1989 * well. 1990 */ 1991 if (current_is_kswapd()) { 1992 if (!zone_reclaimable(zone)) 1993 force_scan = true; 1994 if (!mem_cgroup_lruvec_online(lruvec)) 1995 force_scan = true; 1996 } 1997 if (!global_reclaim(sc)) 1998 force_scan = true; 1999 2000 /* If we have no swap space, do not bother scanning anon pages. */ 2001 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 2002 scan_balance = SCAN_FILE; 2003 goto out; 2004 } 2005 2006 /* 2007 * Global reclaim will swap to prevent OOM even with no 2008 * swappiness, but memcg users want to use this knob to 2009 * disable swapping for individual groups completely when 2010 * using the memory controller's swap limit feature would be 2011 * too expensive. 2012 */ 2013 if (!global_reclaim(sc) && !swappiness) { 2014 scan_balance = SCAN_FILE; 2015 goto out; 2016 } 2017 2018 /* 2019 * Do not apply any pressure balancing cleverness when the 2020 * system is close to OOM, scan both anon and file equally 2021 * (unless the swappiness setting disagrees with swapping). 2022 */ 2023 if (!sc->priority && swappiness) { 2024 scan_balance = SCAN_EQUAL; 2025 goto out; 2026 } 2027 2028 /* 2029 * Prevent the reclaimer from falling into the cache trap: as 2030 * cache pages start out inactive, every cache fault will tip 2031 * the scan balance towards the file LRU. And as the file LRU 2032 * shrinks, so does the window for rotation from references. 2033 * This means we have a runaway feedback loop where a tiny 2034 * thrashing file LRU becomes infinitely more attractive than 2035 * anon pages. Try to detect this based on file LRU size. 2036 */ 2037 if (global_reclaim(sc)) { 2038 unsigned long zonefile; 2039 unsigned long zonefree; 2040 2041 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2042 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2043 zone_page_state(zone, NR_INACTIVE_FILE); 2044 2045 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2046 scan_balance = SCAN_ANON; 2047 goto out; 2048 } 2049 } 2050 2051 /* 2052 * There is enough inactive page cache, do not reclaim 2053 * anything from the anonymous working set right now. 2054 */ 2055 if (!inactive_file_is_low(lruvec)) { 2056 scan_balance = SCAN_FILE; 2057 goto out; 2058 } 2059 2060 scan_balance = SCAN_FRACT; 2061 2062 /* 2063 * With swappiness at 100, anonymous and file have the same priority. 2064 * This scanning priority is essentially the inverse of IO cost. 2065 */ 2066 anon_prio = swappiness; 2067 file_prio = 200 - anon_prio; 2068 2069 /* 2070 * OK, so we have swap space and a fair amount of page cache 2071 * pages. We use the recently rotated / recently scanned 2072 * ratios to determine how valuable each cache is. 2073 * 2074 * Because workloads change over time (and to avoid overflow) 2075 * we keep these statistics as a floating average, which ends 2076 * up weighing recent references more than old ones. 2077 * 2078 * anon in [0], file in [1] 2079 */ 2080 2081 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 2082 get_lru_size(lruvec, LRU_INACTIVE_ANON); 2083 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 2084 get_lru_size(lruvec, LRU_INACTIVE_FILE); 2085 2086 spin_lock_irq(&zone->lru_lock); 2087 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2088 reclaim_stat->recent_scanned[0] /= 2; 2089 reclaim_stat->recent_rotated[0] /= 2; 2090 } 2091 2092 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2093 reclaim_stat->recent_scanned[1] /= 2; 2094 reclaim_stat->recent_rotated[1] /= 2; 2095 } 2096 2097 /* 2098 * The amount of pressure on anon vs file pages is inversely 2099 * proportional to the fraction of recently scanned pages on 2100 * each list that were recently referenced and in active use. 2101 */ 2102 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2103 ap /= reclaim_stat->recent_rotated[0] + 1; 2104 2105 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2106 fp /= reclaim_stat->recent_rotated[1] + 1; 2107 spin_unlock_irq(&zone->lru_lock); 2108 2109 fraction[0] = ap; 2110 fraction[1] = fp; 2111 denominator = ap + fp + 1; 2112 out: 2113 some_scanned = false; 2114 /* Only use force_scan on second pass. */ 2115 for (pass = 0; !some_scanned && pass < 2; pass++) { 2116 *lru_pages = 0; 2117 for_each_evictable_lru(lru) { 2118 int file = is_file_lru(lru); 2119 unsigned long size; 2120 unsigned long scan; 2121 2122 size = get_lru_size(lruvec, lru); 2123 scan = size >> sc->priority; 2124 2125 if (!scan && pass && force_scan) 2126 scan = min(size, SWAP_CLUSTER_MAX); 2127 2128 switch (scan_balance) { 2129 case SCAN_EQUAL: 2130 /* Scan lists relative to size */ 2131 break; 2132 case SCAN_FRACT: 2133 /* 2134 * Scan types proportional to swappiness and 2135 * their relative recent reclaim efficiency. 2136 */ 2137 scan = div64_u64(scan * fraction[file], 2138 denominator); 2139 break; 2140 case SCAN_FILE: 2141 case SCAN_ANON: 2142 /* Scan one type exclusively */ 2143 if ((scan_balance == SCAN_FILE) != file) { 2144 size = 0; 2145 scan = 0; 2146 } 2147 break; 2148 default: 2149 /* Look ma, no brain */ 2150 BUG(); 2151 } 2152 2153 *lru_pages += size; 2154 nr[lru] = scan; 2155 2156 /* 2157 * Skip the second pass and don't force_scan, 2158 * if we found something to scan. 2159 */ 2160 some_scanned |= !!scan; 2161 } 2162 } 2163 } 2164 2165 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2166 static void init_tlb_ubc(void) 2167 { 2168 /* 2169 * This deliberately does not clear the cpumask as it's expensive 2170 * and unnecessary. If there happens to be data in there then the 2171 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2172 * then will be cleared. 2173 */ 2174 current->tlb_ubc.flush_required = false; 2175 } 2176 #else 2177 static inline void init_tlb_ubc(void) 2178 { 2179 } 2180 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2181 2182 /* 2183 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2184 */ 2185 static void shrink_lruvec(struct lruvec *lruvec, int swappiness, 2186 struct scan_control *sc, unsigned long *lru_pages) 2187 { 2188 unsigned long nr[NR_LRU_LISTS]; 2189 unsigned long targets[NR_LRU_LISTS]; 2190 unsigned long nr_to_scan; 2191 enum lru_list lru; 2192 unsigned long nr_reclaimed = 0; 2193 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2194 struct blk_plug plug; 2195 bool scan_adjusted; 2196 2197 get_scan_count(lruvec, swappiness, sc, nr, lru_pages); 2198 2199 /* Record the original scan target for proportional adjustments later */ 2200 memcpy(targets, nr, sizeof(nr)); 2201 2202 /* 2203 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2204 * event that can occur when there is little memory pressure e.g. 2205 * multiple streaming readers/writers. Hence, we do not abort scanning 2206 * when the requested number of pages are reclaimed when scanning at 2207 * DEF_PRIORITY on the assumption that the fact we are direct 2208 * reclaiming implies that kswapd is not keeping up and it is best to 2209 * do a batch of work at once. For memcg reclaim one check is made to 2210 * abort proportional reclaim if either the file or anon lru has already 2211 * dropped to zero at the first pass. 2212 */ 2213 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2214 sc->priority == DEF_PRIORITY); 2215 2216 init_tlb_ubc(); 2217 2218 blk_start_plug(&plug); 2219 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2220 nr[LRU_INACTIVE_FILE]) { 2221 unsigned long nr_anon, nr_file, percentage; 2222 unsigned long nr_scanned; 2223 2224 for_each_evictable_lru(lru) { 2225 if (nr[lru]) { 2226 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2227 nr[lru] -= nr_to_scan; 2228 2229 nr_reclaimed += shrink_list(lru, nr_to_scan, 2230 lruvec, sc); 2231 } 2232 } 2233 2234 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2235 continue; 2236 2237 /* 2238 * For kswapd and memcg, reclaim at least the number of pages 2239 * requested. Ensure that the anon and file LRUs are scanned 2240 * proportionally what was requested by get_scan_count(). We 2241 * stop reclaiming one LRU and reduce the amount scanning 2242 * proportional to the original scan target. 2243 */ 2244 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2245 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2246 2247 /* 2248 * It's just vindictive to attack the larger once the smaller 2249 * has gone to zero. And given the way we stop scanning the 2250 * smaller below, this makes sure that we only make one nudge 2251 * towards proportionality once we've got nr_to_reclaim. 2252 */ 2253 if (!nr_file || !nr_anon) 2254 break; 2255 2256 if (nr_file > nr_anon) { 2257 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2258 targets[LRU_ACTIVE_ANON] + 1; 2259 lru = LRU_BASE; 2260 percentage = nr_anon * 100 / scan_target; 2261 } else { 2262 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2263 targets[LRU_ACTIVE_FILE] + 1; 2264 lru = LRU_FILE; 2265 percentage = nr_file * 100 / scan_target; 2266 } 2267 2268 /* Stop scanning the smaller of the LRU */ 2269 nr[lru] = 0; 2270 nr[lru + LRU_ACTIVE] = 0; 2271 2272 /* 2273 * Recalculate the other LRU scan count based on its original 2274 * scan target and the percentage scanning already complete 2275 */ 2276 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2277 nr_scanned = targets[lru] - nr[lru]; 2278 nr[lru] = targets[lru] * (100 - percentage) / 100; 2279 nr[lru] -= min(nr[lru], nr_scanned); 2280 2281 lru += LRU_ACTIVE; 2282 nr_scanned = targets[lru] - nr[lru]; 2283 nr[lru] = targets[lru] * (100 - percentage) / 100; 2284 nr[lru] -= min(nr[lru], nr_scanned); 2285 2286 scan_adjusted = true; 2287 } 2288 blk_finish_plug(&plug); 2289 sc->nr_reclaimed += nr_reclaimed; 2290 2291 /* 2292 * Even if we did not try to evict anon pages at all, we want to 2293 * rebalance the anon lru active/inactive ratio. 2294 */ 2295 if (inactive_anon_is_low(lruvec)) 2296 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2297 sc, LRU_ACTIVE_ANON); 2298 2299 throttle_vm_writeout(sc->gfp_mask); 2300 } 2301 2302 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2303 static bool in_reclaim_compaction(struct scan_control *sc) 2304 { 2305 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2306 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2307 sc->priority < DEF_PRIORITY - 2)) 2308 return true; 2309 2310 return false; 2311 } 2312 2313 /* 2314 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2315 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2316 * true if more pages should be reclaimed such that when the page allocator 2317 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2318 * It will give up earlier than that if there is difficulty reclaiming pages. 2319 */ 2320 static inline bool should_continue_reclaim(struct zone *zone, 2321 unsigned long nr_reclaimed, 2322 unsigned long nr_scanned, 2323 struct scan_control *sc) 2324 { 2325 unsigned long pages_for_compaction; 2326 unsigned long inactive_lru_pages; 2327 2328 /* If not in reclaim/compaction mode, stop */ 2329 if (!in_reclaim_compaction(sc)) 2330 return false; 2331 2332 /* Consider stopping depending on scan and reclaim activity */ 2333 if (sc->gfp_mask & __GFP_REPEAT) { 2334 /* 2335 * For __GFP_REPEAT allocations, stop reclaiming if the 2336 * full LRU list has been scanned and we are still failing 2337 * to reclaim pages. This full LRU scan is potentially 2338 * expensive but a __GFP_REPEAT caller really wants to succeed 2339 */ 2340 if (!nr_reclaimed && !nr_scanned) 2341 return false; 2342 } else { 2343 /* 2344 * For non-__GFP_REPEAT allocations which can presumably 2345 * fail without consequence, stop if we failed to reclaim 2346 * any pages from the last SWAP_CLUSTER_MAX number of 2347 * pages that were scanned. This will return to the 2348 * caller faster at the risk reclaim/compaction and 2349 * the resulting allocation attempt fails 2350 */ 2351 if (!nr_reclaimed) 2352 return false; 2353 } 2354 2355 /* 2356 * If we have not reclaimed enough pages for compaction and the 2357 * inactive lists are large enough, continue reclaiming 2358 */ 2359 pages_for_compaction = (2UL << sc->order); 2360 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2361 if (get_nr_swap_pages() > 0) 2362 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2363 if (sc->nr_reclaimed < pages_for_compaction && 2364 inactive_lru_pages > pages_for_compaction) 2365 return true; 2366 2367 /* If compaction would go ahead or the allocation would succeed, stop */ 2368 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2369 case COMPACT_PARTIAL: 2370 case COMPACT_CONTINUE: 2371 return false; 2372 default: 2373 return true; 2374 } 2375 } 2376 2377 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2378 bool is_classzone) 2379 { 2380 struct reclaim_state *reclaim_state = current->reclaim_state; 2381 unsigned long nr_reclaimed, nr_scanned; 2382 bool reclaimable = false; 2383 2384 do { 2385 struct mem_cgroup *root = sc->target_mem_cgroup; 2386 struct mem_cgroup_reclaim_cookie reclaim = { 2387 .zone = zone, 2388 .priority = sc->priority, 2389 }; 2390 unsigned long zone_lru_pages = 0; 2391 struct mem_cgroup *memcg; 2392 2393 nr_reclaimed = sc->nr_reclaimed; 2394 nr_scanned = sc->nr_scanned; 2395 2396 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2397 do { 2398 unsigned long lru_pages; 2399 unsigned long scanned; 2400 struct lruvec *lruvec; 2401 int swappiness; 2402 2403 if (mem_cgroup_low(root, memcg)) { 2404 if (!sc->may_thrash) 2405 continue; 2406 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2407 } 2408 2409 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2410 swappiness = mem_cgroup_swappiness(memcg); 2411 scanned = sc->nr_scanned; 2412 2413 shrink_lruvec(lruvec, swappiness, sc, &lru_pages); 2414 zone_lru_pages += lru_pages; 2415 2416 if (memcg && is_classzone) 2417 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2418 memcg, sc->nr_scanned - scanned, 2419 lru_pages); 2420 2421 /* 2422 * Direct reclaim and kswapd have to scan all memory 2423 * cgroups to fulfill the overall scan target for the 2424 * zone. 2425 * 2426 * Limit reclaim, on the other hand, only cares about 2427 * nr_to_reclaim pages to be reclaimed and it will 2428 * retry with decreasing priority if one round over the 2429 * whole hierarchy is not sufficient. 2430 */ 2431 if (!global_reclaim(sc) && 2432 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2433 mem_cgroup_iter_break(root, memcg); 2434 break; 2435 } 2436 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2437 2438 /* 2439 * Shrink the slab caches in the same proportion that 2440 * the eligible LRU pages were scanned. 2441 */ 2442 if (global_reclaim(sc) && is_classzone) 2443 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2444 sc->nr_scanned - nr_scanned, 2445 zone_lru_pages); 2446 2447 if (reclaim_state) { 2448 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2449 reclaim_state->reclaimed_slab = 0; 2450 } 2451 2452 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2453 sc->nr_scanned - nr_scanned, 2454 sc->nr_reclaimed - nr_reclaimed); 2455 2456 if (sc->nr_reclaimed - nr_reclaimed) 2457 reclaimable = true; 2458 2459 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2460 sc->nr_scanned - nr_scanned, sc)); 2461 2462 return reclaimable; 2463 } 2464 2465 /* 2466 * Returns true if compaction should go ahead for a high-order request, or 2467 * the high-order allocation would succeed without compaction. 2468 */ 2469 static inline bool compaction_ready(struct zone *zone, int order) 2470 { 2471 unsigned long balance_gap, watermark; 2472 bool watermark_ok; 2473 2474 /* 2475 * Compaction takes time to run and there are potentially other 2476 * callers using the pages just freed. Continue reclaiming until 2477 * there is a buffer of free pages available to give compaction 2478 * a reasonable chance of completing and allocating the page 2479 */ 2480 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2481 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2482 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2483 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2484 2485 /* 2486 * If compaction is deferred, reclaim up to a point where 2487 * compaction will have a chance of success when re-enabled 2488 */ 2489 if (compaction_deferred(zone, order)) 2490 return watermark_ok; 2491 2492 /* 2493 * If compaction is not ready to start and allocation is not likely 2494 * to succeed without it, then keep reclaiming. 2495 */ 2496 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2497 return false; 2498 2499 return watermark_ok; 2500 } 2501 2502 /* 2503 * This is the direct reclaim path, for page-allocating processes. We only 2504 * try to reclaim pages from zones which will satisfy the caller's allocation 2505 * request. 2506 * 2507 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2508 * Because: 2509 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2510 * allocation or 2511 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2512 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2513 * zone defense algorithm. 2514 * 2515 * If a zone is deemed to be full of pinned pages then just give it a light 2516 * scan then give up on it. 2517 * 2518 * Returns true if a zone was reclaimable. 2519 */ 2520 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2521 { 2522 struct zoneref *z; 2523 struct zone *zone; 2524 unsigned long nr_soft_reclaimed; 2525 unsigned long nr_soft_scanned; 2526 gfp_t orig_mask; 2527 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2528 bool reclaimable = false; 2529 2530 /* 2531 * If the number of buffer_heads in the machine exceeds the maximum 2532 * allowed level, force direct reclaim to scan the highmem zone as 2533 * highmem pages could be pinning lowmem pages storing buffer_heads 2534 */ 2535 orig_mask = sc->gfp_mask; 2536 if (buffer_heads_over_limit) 2537 sc->gfp_mask |= __GFP_HIGHMEM; 2538 2539 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2540 requested_highidx, sc->nodemask) { 2541 enum zone_type classzone_idx; 2542 2543 if (!populated_zone(zone)) 2544 continue; 2545 2546 classzone_idx = requested_highidx; 2547 while (!populated_zone(zone->zone_pgdat->node_zones + 2548 classzone_idx)) 2549 classzone_idx--; 2550 2551 /* 2552 * Take care memory controller reclaiming has small influence 2553 * to global LRU. 2554 */ 2555 if (global_reclaim(sc)) { 2556 if (!cpuset_zone_allowed(zone, 2557 GFP_KERNEL | __GFP_HARDWALL)) 2558 continue; 2559 2560 if (sc->priority != DEF_PRIORITY && 2561 !zone_reclaimable(zone)) 2562 continue; /* Let kswapd poll it */ 2563 2564 /* 2565 * If we already have plenty of memory free for 2566 * compaction in this zone, don't free any more. 2567 * Even though compaction is invoked for any 2568 * non-zero order, only frequent costly order 2569 * reclamation is disruptive enough to become a 2570 * noticeable problem, like transparent huge 2571 * page allocations. 2572 */ 2573 if (IS_ENABLED(CONFIG_COMPACTION) && 2574 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2575 zonelist_zone_idx(z) <= requested_highidx && 2576 compaction_ready(zone, sc->order)) { 2577 sc->compaction_ready = true; 2578 continue; 2579 } 2580 2581 /* 2582 * This steals pages from memory cgroups over softlimit 2583 * and returns the number of reclaimed pages and 2584 * scanned pages. This works for global memory pressure 2585 * and balancing, not for a memcg's limit. 2586 */ 2587 nr_soft_scanned = 0; 2588 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2589 sc->order, sc->gfp_mask, 2590 &nr_soft_scanned); 2591 sc->nr_reclaimed += nr_soft_reclaimed; 2592 sc->nr_scanned += nr_soft_scanned; 2593 if (nr_soft_reclaimed) 2594 reclaimable = true; 2595 /* need some check for avoid more shrink_zone() */ 2596 } 2597 2598 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2599 reclaimable = true; 2600 2601 if (global_reclaim(sc) && 2602 !reclaimable && zone_reclaimable(zone)) 2603 reclaimable = true; 2604 } 2605 2606 /* 2607 * Restore to original mask to avoid the impact on the caller if we 2608 * promoted it to __GFP_HIGHMEM. 2609 */ 2610 sc->gfp_mask = orig_mask; 2611 2612 return reclaimable; 2613 } 2614 2615 /* 2616 * This is the main entry point to direct page reclaim. 2617 * 2618 * If a full scan of the inactive list fails to free enough memory then we 2619 * are "out of memory" and something needs to be killed. 2620 * 2621 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2622 * high - the zone may be full of dirty or under-writeback pages, which this 2623 * caller can't do much about. We kick the writeback threads and take explicit 2624 * naps in the hope that some of these pages can be written. But if the 2625 * allocating task holds filesystem locks which prevent writeout this might not 2626 * work, and the allocation attempt will fail. 2627 * 2628 * returns: 0, if no pages reclaimed 2629 * else, the number of pages reclaimed 2630 */ 2631 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2632 struct scan_control *sc) 2633 { 2634 int initial_priority = sc->priority; 2635 unsigned long total_scanned = 0; 2636 unsigned long writeback_threshold; 2637 bool zones_reclaimable; 2638 retry: 2639 delayacct_freepages_start(); 2640 2641 if (global_reclaim(sc)) 2642 count_vm_event(ALLOCSTALL); 2643 2644 do { 2645 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2646 sc->priority); 2647 sc->nr_scanned = 0; 2648 zones_reclaimable = shrink_zones(zonelist, sc); 2649 2650 total_scanned += sc->nr_scanned; 2651 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2652 break; 2653 2654 if (sc->compaction_ready) 2655 break; 2656 2657 /* 2658 * If we're getting trouble reclaiming, start doing 2659 * writepage even in laptop mode. 2660 */ 2661 if (sc->priority < DEF_PRIORITY - 2) 2662 sc->may_writepage = 1; 2663 2664 /* 2665 * Try to write back as many pages as we just scanned. This 2666 * tends to cause slow streaming writers to write data to the 2667 * disk smoothly, at the dirtying rate, which is nice. But 2668 * that's undesirable in laptop mode, where we *want* lumpy 2669 * writeout. So in laptop mode, write out the whole world. 2670 */ 2671 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2672 if (total_scanned > writeback_threshold) { 2673 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2674 WB_REASON_TRY_TO_FREE_PAGES); 2675 sc->may_writepage = 1; 2676 } 2677 } while (--sc->priority >= 0); 2678 2679 delayacct_freepages_end(); 2680 2681 if (sc->nr_reclaimed) 2682 return sc->nr_reclaimed; 2683 2684 /* Aborted reclaim to try compaction? don't OOM, then */ 2685 if (sc->compaction_ready) 2686 return 1; 2687 2688 /* Untapped cgroup reserves? Don't OOM, retry. */ 2689 if (!sc->may_thrash) { 2690 sc->priority = initial_priority; 2691 sc->may_thrash = 1; 2692 goto retry; 2693 } 2694 2695 /* Any of the zones still reclaimable? Don't OOM. */ 2696 if (zones_reclaimable) 2697 return 1; 2698 2699 return 0; 2700 } 2701 2702 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2703 { 2704 struct zone *zone; 2705 unsigned long pfmemalloc_reserve = 0; 2706 unsigned long free_pages = 0; 2707 int i; 2708 bool wmark_ok; 2709 2710 for (i = 0; i <= ZONE_NORMAL; i++) { 2711 zone = &pgdat->node_zones[i]; 2712 if (!populated_zone(zone) || 2713 zone_reclaimable_pages(zone) == 0) 2714 continue; 2715 2716 pfmemalloc_reserve += min_wmark_pages(zone); 2717 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2718 } 2719 2720 /* If there are no reserves (unexpected config) then do not throttle */ 2721 if (!pfmemalloc_reserve) 2722 return true; 2723 2724 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2725 2726 /* kswapd must be awake if processes are being throttled */ 2727 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2728 pgdat->classzone_idx = min(pgdat->classzone_idx, 2729 (enum zone_type)ZONE_NORMAL); 2730 wake_up_interruptible(&pgdat->kswapd_wait); 2731 } 2732 2733 return wmark_ok; 2734 } 2735 2736 /* 2737 * Throttle direct reclaimers if backing storage is backed by the network 2738 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2739 * depleted. kswapd will continue to make progress and wake the processes 2740 * when the low watermark is reached. 2741 * 2742 * Returns true if a fatal signal was delivered during throttling. If this 2743 * happens, the page allocator should not consider triggering the OOM killer. 2744 */ 2745 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2746 nodemask_t *nodemask) 2747 { 2748 struct zoneref *z; 2749 struct zone *zone; 2750 pg_data_t *pgdat = NULL; 2751 2752 /* 2753 * Kernel threads should not be throttled as they may be indirectly 2754 * responsible for cleaning pages necessary for reclaim to make forward 2755 * progress. kjournald for example may enter direct reclaim while 2756 * committing a transaction where throttling it could forcing other 2757 * processes to block on log_wait_commit(). 2758 */ 2759 if (current->flags & PF_KTHREAD) 2760 goto out; 2761 2762 /* 2763 * If a fatal signal is pending, this process should not throttle. 2764 * It should return quickly so it can exit and free its memory 2765 */ 2766 if (fatal_signal_pending(current)) 2767 goto out; 2768 2769 /* 2770 * Check if the pfmemalloc reserves are ok by finding the first node 2771 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2772 * GFP_KERNEL will be required for allocating network buffers when 2773 * swapping over the network so ZONE_HIGHMEM is unusable. 2774 * 2775 * Throttling is based on the first usable node and throttled processes 2776 * wait on a queue until kswapd makes progress and wakes them. There 2777 * is an affinity then between processes waking up and where reclaim 2778 * progress has been made assuming the process wakes on the same node. 2779 * More importantly, processes running on remote nodes will not compete 2780 * for remote pfmemalloc reserves and processes on different nodes 2781 * should make reasonable progress. 2782 */ 2783 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2784 gfp_zone(gfp_mask), nodemask) { 2785 if (zone_idx(zone) > ZONE_NORMAL) 2786 continue; 2787 2788 /* Throttle based on the first usable node */ 2789 pgdat = zone->zone_pgdat; 2790 if (pfmemalloc_watermark_ok(pgdat)) 2791 goto out; 2792 break; 2793 } 2794 2795 /* If no zone was usable by the allocation flags then do not throttle */ 2796 if (!pgdat) 2797 goto out; 2798 2799 /* Account for the throttling */ 2800 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2801 2802 /* 2803 * If the caller cannot enter the filesystem, it's possible that it 2804 * is due to the caller holding an FS lock or performing a journal 2805 * transaction in the case of a filesystem like ext[3|4]. In this case, 2806 * it is not safe to block on pfmemalloc_wait as kswapd could be 2807 * blocked waiting on the same lock. Instead, throttle for up to a 2808 * second before continuing. 2809 */ 2810 if (!(gfp_mask & __GFP_FS)) { 2811 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2812 pfmemalloc_watermark_ok(pgdat), HZ); 2813 2814 goto check_pending; 2815 } 2816 2817 /* Throttle until kswapd wakes the process */ 2818 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2819 pfmemalloc_watermark_ok(pgdat)); 2820 2821 check_pending: 2822 if (fatal_signal_pending(current)) 2823 return true; 2824 2825 out: 2826 return false; 2827 } 2828 2829 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2830 gfp_t gfp_mask, nodemask_t *nodemask) 2831 { 2832 unsigned long nr_reclaimed; 2833 struct scan_control sc = { 2834 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2835 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2836 .order = order, 2837 .nodemask = nodemask, 2838 .priority = DEF_PRIORITY, 2839 .may_writepage = !laptop_mode, 2840 .may_unmap = 1, 2841 .may_swap = 1, 2842 }; 2843 2844 /* 2845 * Do not enter reclaim if fatal signal was delivered while throttled. 2846 * 1 is returned so that the page allocator does not OOM kill at this 2847 * point. 2848 */ 2849 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2850 return 1; 2851 2852 trace_mm_vmscan_direct_reclaim_begin(order, 2853 sc.may_writepage, 2854 gfp_mask); 2855 2856 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2857 2858 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2859 2860 return nr_reclaimed; 2861 } 2862 2863 #ifdef CONFIG_MEMCG 2864 2865 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2866 gfp_t gfp_mask, bool noswap, 2867 struct zone *zone, 2868 unsigned long *nr_scanned) 2869 { 2870 struct scan_control sc = { 2871 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2872 .target_mem_cgroup = memcg, 2873 .may_writepage = !laptop_mode, 2874 .may_unmap = 1, 2875 .may_swap = !noswap, 2876 }; 2877 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2878 int swappiness = mem_cgroup_swappiness(memcg); 2879 unsigned long lru_pages; 2880 2881 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2882 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2883 2884 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2885 sc.may_writepage, 2886 sc.gfp_mask); 2887 2888 /* 2889 * NOTE: Although we can get the priority field, using it 2890 * here is not a good idea, since it limits the pages we can scan. 2891 * if we don't reclaim here, the shrink_zone from balance_pgdat 2892 * will pick up pages from other mem cgroup's as well. We hack 2893 * the priority and make it zero. 2894 */ 2895 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages); 2896 2897 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2898 2899 *nr_scanned = sc.nr_scanned; 2900 return sc.nr_reclaimed; 2901 } 2902 2903 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2904 unsigned long nr_pages, 2905 gfp_t gfp_mask, 2906 bool may_swap) 2907 { 2908 struct zonelist *zonelist; 2909 unsigned long nr_reclaimed; 2910 int nid; 2911 struct scan_control sc = { 2912 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2913 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2914 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2915 .target_mem_cgroup = memcg, 2916 .priority = DEF_PRIORITY, 2917 .may_writepage = !laptop_mode, 2918 .may_unmap = 1, 2919 .may_swap = may_swap, 2920 }; 2921 2922 /* 2923 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2924 * take care of from where we get pages. So the node where we start the 2925 * scan does not need to be the current node. 2926 */ 2927 nid = mem_cgroup_select_victim_node(memcg); 2928 2929 zonelist = NODE_DATA(nid)->node_zonelists; 2930 2931 trace_mm_vmscan_memcg_reclaim_begin(0, 2932 sc.may_writepage, 2933 sc.gfp_mask); 2934 2935 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2936 2937 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2938 2939 return nr_reclaimed; 2940 } 2941 #endif 2942 2943 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2944 { 2945 struct mem_cgroup *memcg; 2946 2947 if (!total_swap_pages) 2948 return; 2949 2950 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2951 do { 2952 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2953 2954 if (inactive_anon_is_low(lruvec)) 2955 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2956 sc, LRU_ACTIVE_ANON); 2957 2958 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2959 } while (memcg); 2960 } 2961 2962 static bool zone_balanced(struct zone *zone, int order, 2963 unsigned long balance_gap, int classzone_idx) 2964 { 2965 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2966 balance_gap, classzone_idx, 0)) 2967 return false; 2968 2969 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2970 order, 0, classzone_idx) == COMPACT_SKIPPED) 2971 return false; 2972 2973 return true; 2974 } 2975 2976 /* 2977 * pgdat_balanced() is used when checking if a node is balanced. 2978 * 2979 * For order-0, all zones must be balanced! 2980 * 2981 * For high-order allocations only zones that meet watermarks and are in a 2982 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2983 * total of balanced pages must be at least 25% of the zones allowed by 2984 * classzone_idx for the node to be considered balanced. Forcing all zones to 2985 * be balanced for high orders can cause excessive reclaim when there are 2986 * imbalanced zones. 2987 * The choice of 25% is due to 2988 * o a 16M DMA zone that is balanced will not balance a zone on any 2989 * reasonable sized machine 2990 * o On all other machines, the top zone must be at least a reasonable 2991 * percentage of the middle zones. For example, on 32-bit x86, highmem 2992 * would need to be at least 256M for it to be balance a whole node. 2993 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2994 * to balance a node on its own. These seemed like reasonable ratios. 2995 */ 2996 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2997 { 2998 unsigned long managed_pages = 0; 2999 unsigned long balanced_pages = 0; 3000 int i; 3001 3002 /* Check the watermark levels */ 3003 for (i = 0; i <= classzone_idx; i++) { 3004 struct zone *zone = pgdat->node_zones + i; 3005 3006 if (!populated_zone(zone)) 3007 continue; 3008 3009 managed_pages += zone->managed_pages; 3010 3011 /* 3012 * A special case here: 3013 * 3014 * balance_pgdat() skips over all_unreclaimable after 3015 * DEF_PRIORITY. Effectively, it considers them balanced so 3016 * they must be considered balanced here as well! 3017 */ 3018 if (!zone_reclaimable(zone)) { 3019 balanced_pages += zone->managed_pages; 3020 continue; 3021 } 3022 3023 if (zone_balanced(zone, order, 0, i)) 3024 balanced_pages += zone->managed_pages; 3025 else if (!order) 3026 return false; 3027 } 3028 3029 if (order) 3030 return balanced_pages >= (managed_pages >> 2); 3031 else 3032 return true; 3033 } 3034 3035 /* 3036 * Prepare kswapd for sleeping. This verifies that there are no processes 3037 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3038 * 3039 * Returns true if kswapd is ready to sleep 3040 */ 3041 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3042 int classzone_idx) 3043 { 3044 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3045 if (remaining) 3046 return false; 3047 3048 /* 3049 * The throttled processes are normally woken up in balance_pgdat() as 3050 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3051 * race between when kswapd checks the watermarks and a process gets 3052 * throttled. There is also a potential race if processes get 3053 * throttled, kswapd wakes, a large process exits thereby balancing the 3054 * zones, which causes kswapd to exit balance_pgdat() before reaching 3055 * the wake up checks. If kswapd is going to sleep, no process should 3056 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3057 * the wake up is premature, processes will wake kswapd and get 3058 * throttled again. The difference from wake ups in balance_pgdat() is 3059 * that here we are under prepare_to_wait(). 3060 */ 3061 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3062 wake_up_all(&pgdat->pfmemalloc_wait); 3063 3064 return pgdat_balanced(pgdat, order, classzone_idx); 3065 } 3066 3067 /* 3068 * kswapd shrinks the zone by the number of pages required to reach 3069 * the high watermark. 3070 * 3071 * Returns true if kswapd scanned at least the requested number of pages to 3072 * reclaim or if the lack of progress was due to pages under writeback. 3073 * This is used to determine if the scanning priority needs to be raised. 3074 */ 3075 static bool kswapd_shrink_zone(struct zone *zone, 3076 int classzone_idx, 3077 struct scan_control *sc, 3078 unsigned long *nr_attempted) 3079 { 3080 int testorder = sc->order; 3081 unsigned long balance_gap; 3082 bool lowmem_pressure; 3083 3084 /* Reclaim above the high watermark. */ 3085 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3086 3087 /* 3088 * Kswapd reclaims only single pages with compaction enabled. Trying 3089 * too hard to reclaim until contiguous free pages have become 3090 * available can hurt performance by evicting too much useful data 3091 * from memory. Do not reclaim more than needed for compaction. 3092 */ 3093 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3094 compaction_suitable(zone, sc->order, 0, classzone_idx) 3095 != COMPACT_SKIPPED) 3096 testorder = 0; 3097 3098 /* 3099 * We put equal pressure on every zone, unless one zone has way too 3100 * many pages free already. The "too many pages" is defined as the 3101 * high wmark plus a "gap" where the gap is either the low 3102 * watermark or 1% of the zone, whichever is smaller. 3103 */ 3104 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3105 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3106 3107 /* 3108 * If there is no low memory pressure or the zone is balanced then no 3109 * reclaim is necessary 3110 */ 3111 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3112 if (!lowmem_pressure && zone_balanced(zone, testorder, 3113 balance_gap, classzone_idx)) 3114 return true; 3115 3116 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3117 3118 /* Account for the number of pages attempted to reclaim */ 3119 *nr_attempted += sc->nr_to_reclaim; 3120 3121 clear_bit(ZONE_WRITEBACK, &zone->flags); 3122 3123 /* 3124 * If a zone reaches its high watermark, consider it to be no longer 3125 * congested. It's possible there are dirty pages backed by congested 3126 * BDIs but as pressure is relieved, speculatively avoid congestion 3127 * waits. 3128 */ 3129 if (zone_reclaimable(zone) && 3130 zone_balanced(zone, testorder, 0, classzone_idx)) { 3131 clear_bit(ZONE_CONGESTED, &zone->flags); 3132 clear_bit(ZONE_DIRTY, &zone->flags); 3133 } 3134 3135 return sc->nr_scanned >= sc->nr_to_reclaim; 3136 } 3137 3138 /* 3139 * For kswapd, balance_pgdat() will work across all this node's zones until 3140 * they are all at high_wmark_pages(zone). 3141 * 3142 * Returns the final order kswapd was reclaiming at 3143 * 3144 * There is special handling here for zones which are full of pinned pages. 3145 * This can happen if the pages are all mlocked, or if they are all used by 3146 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3147 * What we do is to detect the case where all pages in the zone have been 3148 * scanned twice and there has been zero successful reclaim. Mark the zone as 3149 * dead and from now on, only perform a short scan. Basically we're polling 3150 * the zone for when the problem goes away. 3151 * 3152 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3153 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3154 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3155 * lower zones regardless of the number of free pages in the lower zones. This 3156 * interoperates with the page allocator fallback scheme to ensure that aging 3157 * of pages is balanced across the zones. 3158 */ 3159 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3160 int *classzone_idx) 3161 { 3162 int i; 3163 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3164 unsigned long nr_soft_reclaimed; 3165 unsigned long nr_soft_scanned; 3166 struct scan_control sc = { 3167 .gfp_mask = GFP_KERNEL, 3168 .order = order, 3169 .priority = DEF_PRIORITY, 3170 .may_writepage = !laptop_mode, 3171 .may_unmap = 1, 3172 .may_swap = 1, 3173 }; 3174 count_vm_event(PAGEOUTRUN); 3175 3176 do { 3177 unsigned long nr_attempted = 0; 3178 bool raise_priority = true; 3179 bool pgdat_needs_compaction = (order > 0); 3180 3181 sc.nr_reclaimed = 0; 3182 3183 /* 3184 * Scan in the highmem->dma direction for the highest 3185 * zone which needs scanning 3186 */ 3187 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3188 struct zone *zone = pgdat->node_zones + i; 3189 3190 if (!populated_zone(zone)) 3191 continue; 3192 3193 if (sc.priority != DEF_PRIORITY && 3194 !zone_reclaimable(zone)) 3195 continue; 3196 3197 /* 3198 * Do some background aging of the anon list, to give 3199 * pages a chance to be referenced before reclaiming. 3200 */ 3201 age_active_anon(zone, &sc); 3202 3203 /* 3204 * If the number of buffer_heads in the machine 3205 * exceeds the maximum allowed level and this node 3206 * has a highmem zone, force kswapd to reclaim from 3207 * it to relieve lowmem pressure. 3208 */ 3209 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3210 end_zone = i; 3211 break; 3212 } 3213 3214 if (!zone_balanced(zone, order, 0, 0)) { 3215 end_zone = i; 3216 break; 3217 } else { 3218 /* 3219 * If balanced, clear the dirty and congested 3220 * flags 3221 */ 3222 clear_bit(ZONE_CONGESTED, &zone->flags); 3223 clear_bit(ZONE_DIRTY, &zone->flags); 3224 } 3225 } 3226 3227 if (i < 0) 3228 goto out; 3229 3230 for (i = 0; i <= end_zone; i++) { 3231 struct zone *zone = pgdat->node_zones + i; 3232 3233 if (!populated_zone(zone)) 3234 continue; 3235 3236 /* 3237 * If any zone is currently balanced then kswapd will 3238 * not call compaction as it is expected that the 3239 * necessary pages are already available. 3240 */ 3241 if (pgdat_needs_compaction && 3242 zone_watermark_ok(zone, order, 3243 low_wmark_pages(zone), 3244 *classzone_idx, 0)) 3245 pgdat_needs_compaction = false; 3246 } 3247 3248 /* 3249 * If we're getting trouble reclaiming, start doing writepage 3250 * even in laptop mode. 3251 */ 3252 if (sc.priority < DEF_PRIORITY - 2) 3253 sc.may_writepage = 1; 3254 3255 /* 3256 * Now scan the zone in the dma->highmem direction, stopping 3257 * at the last zone which needs scanning. 3258 * 3259 * We do this because the page allocator works in the opposite 3260 * direction. This prevents the page allocator from allocating 3261 * pages behind kswapd's direction of progress, which would 3262 * cause too much scanning of the lower zones. 3263 */ 3264 for (i = 0; i <= end_zone; i++) { 3265 struct zone *zone = pgdat->node_zones + i; 3266 3267 if (!populated_zone(zone)) 3268 continue; 3269 3270 if (sc.priority != DEF_PRIORITY && 3271 !zone_reclaimable(zone)) 3272 continue; 3273 3274 sc.nr_scanned = 0; 3275 3276 nr_soft_scanned = 0; 3277 /* 3278 * Call soft limit reclaim before calling shrink_zone. 3279 */ 3280 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3281 order, sc.gfp_mask, 3282 &nr_soft_scanned); 3283 sc.nr_reclaimed += nr_soft_reclaimed; 3284 3285 /* 3286 * There should be no need to raise the scanning 3287 * priority if enough pages are already being scanned 3288 * that that high watermark would be met at 100% 3289 * efficiency. 3290 */ 3291 if (kswapd_shrink_zone(zone, end_zone, 3292 &sc, &nr_attempted)) 3293 raise_priority = false; 3294 } 3295 3296 /* 3297 * If the low watermark is met there is no need for processes 3298 * to be throttled on pfmemalloc_wait as they should not be 3299 * able to safely make forward progress. Wake them 3300 */ 3301 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3302 pfmemalloc_watermark_ok(pgdat)) 3303 wake_up_all(&pgdat->pfmemalloc_wait); 3304 3305 /* 3306 * Fragmentation may mean that the system cannot be rebalanced 3307 * for high-order allocations in all zones. If twice the 3308 * allocation size has been reclaimed and the zones are still 3309 * not balanced then recheck the watermarks at order-0 to 3310 * prevent kswapd reclaiming excessively. Assume that a 3311 * process requested a high-order can direct reclaim/compact. 3312 */ 3313 if (order && sc.nr_reclaimed >= 2UL << order) 3314 order = sc.order = 0; 3315 3316 /* Check if kswapd should be suspending */ 3317 if (try_to_freeze() || kthread_should_stop()) 3318 break; 3319 3320 /* 3321 * Compact if necessary and kswapd is reclaiming at least the 3322 * high watermark number of pages as requsted 3323 */ 3324 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3325 compact_pgdat(pgdat, order); 3326 3327 /* 3328 * Raise priority if scanning rate is too low or there was no 3329 * progress in reclaiming pages 3330 */ 3331 if (raise_priority || !sc.nr_reclaimed) 3332 sc.priority--; 3333 } while (sc.priority >= 1 && 3334 !pgdat_balanced(pgdat, order, *classzone_idx)); 3335 3336 out: 3337 /* 3338 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3339 * makes a decision on the order we were last reclaiming at. However, 3340 * if another caller entered the allocator slow path while kswapd 3341 * was awake, order will remain at the higher level 3342 */ 3343 *classzone_idx = end_zone; 3344 return order; 3345 } 3346 3347 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3348 { 3349 long remaining = 0; 3350 DEFINE_WAIT(wait); 3351 3352 if (freezing(current) || kthread_should_stop()) 3353 return; 3354 3355 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3356 3357 /* Try to sleep for a short interval */ 3358 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3359 remaining = schedule_timeout(HZ/10); 3360 finish_wait(&pgdat->kswapd_wait, &wait); 3361 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3362 } 3363 3364 /* 3365 * After a short sleep, check if it was a premature sleep. If not, then 3366 * go fully to sleep until explicitly woken up. 3367 */ 3368 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3369 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3370 3371 /* 3372 * vmstat counters are not perfectly accurate and the estimated 3373 * value for counters such as NR_FREE_PAGES can deviate from the 3374 * true value by nr_online_cpus * threshold. To avoid the zone 3375 * watermarks being breached while under pressure, we reduce the 3376 * per-cpu vmstat threshold while kswapd is awake and restore 3377 * them before going back to sleep. 3378 */ 3379 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3380 3381 /* 3382 * Compaction records what page blocks it recently failed to 3383 * isolate pages from and skips them in the future scanning. 3384 * When kswapd is going to sleep, it is reasonable to assume 3385 * that pages and compaction may succeed so reset the cache. 3386 */ 3387 reset_isolation_suitable(pgdat); 3388 3389 if (!kthread_should_stop()) 3390 schedule(); 3391 3392 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3393 } else { 3394 if (remaining) 3395 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3396 else 3397 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3398 } 3399 finish_wait(&pgdat->kswapd_wait, &wait); 3400 } 3401 3402 /* 3403 * The background pageout daemon, started as a kernel thread 3404 * from the init process. 3405 * 3406 * This basically trickles out pages so that we have _some_ 3407 * free memory available even if there is no other activity 3408 * that frees anything up. This is needed for things like routing 3409 * etc, where we otherwise might have all activity going on in 3410 * asynchronous contexts that cannot page things out. 3411 * 3412 * If there are applications that are active memory-allocators 3413 * (most normal use), this basically shouldn't matter. 3414 */ 3415 static int kswapd(void *p) 3416 { 3417 unsigned long order, new_order; 3418 unsigned balanced_order; 3419 int classzone_idx, new_classzone_idx; 3420 int balanced_classzone_idx; 3421 pg_data_t *pgdat = (pg_data_t*)p; 3422 struct task_struct *tsk = current; 3423 3424 struct reclaim_state reclaim_state = { 3425 .reclaimed_slab = 0, 3426 }; 3427 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3428 3429 lockdep_set_current_reclaim_state(GFP_KERNEL); 3430 3431 if (!cpumask_empty(cpumask)) 3432 set_cpus_allowed_ptr(tsk, cpumask); 3433 current->reclaim_state = &reclaim_state; 3434 3435 /* 3436 * Tell the memory management that we're a "memory allocator", 3437 * and that if we need more memory we should get access to it 3438 * regardless (see "__alloc_pages()"). "kswapd" should 3439 * never get caught in the normal page freeing logic. 3440 * 3441 * (Kswapd normally doesn't need memory anyway, but sometimes 3442 * you need a small amount of memory in order to be able to 3443 * page out something else, and this flag essentially protects 3444 * us from recursively trying to free more memory as we're 3445 * trying to free the first piece of memory in the first place). 3446 */ 3447 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3448 set_freezable(); 3449 3450 order = new_order = 0; 3451 balanced_order = 0; 3452 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3453 balanced_classzone_idx = classzone_idx; 3454 for ( ; ; ) { 3455 bool ret; 3456 3457 /* 3458 * If the last balance_pgdat was unsuccessful it's unlikely a 3459 * new request of a similar or harder type will succeed soon 3460 * so consider going to sleep on the basis we reclaimed at 3461 */ 3462 if (balanced_classzone_idx >= new_classzone_idx && 3463 balanced_order == new_order) { 3464 new_order = pgdat->kswapd_max_order; 3465 new_classzone_idx = pgdat->classzone_idx; 3466 pgdat->kswapd_max_order = 0; 3467 pgdat->classzone_idx = pgdat->nr_zones - 1; 3468 } 3469 3470 if (order < new_order || classzone_idx > new_classzone_idx) { 3471 /* 3472 * Don't sleep if someone wants a larger 'order' 3473 * allocation or has tigher zone constraints 3474 */ 3475 order = new_order; 3476 classzone_idx = new_classzone_idx; 3477 } else { 3478 kswapd_try_to_sleep(pgdat, balanced_order, 3479 balanced_classzone_idx); 3480 order = pgdat->kswapd_max_order; 3481 classzone_idx = pgdat->classzone_idx; 3482 new_order = order; 3483 new_classzone_idx = classzone_idx; 3484 pgdat->kswapd_max_order = 0; 3485 pgdat->classzone_idx = pgdat->nr_zones - 1; 3486 } 3487 3488 ret = try_to_freeze(); 3489 if (kthread_should_stop()) 3490 break; 3491 3492 /* 3493 * We can speed up thawing tasks if we don't call balance_pgdat 3494 * after returning from the refrigerator 3495 */ 3496 if (!ret) { 3497 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3498 balanced_classzone_idx = classzone_idx; 3499 balanced_order = balance_pgdat(pgdat, order, 3500 &balanced_classzone_idx); 3501 } 3502 } 3503 3504 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3505 current->reclaim_state = NULL; 3506 lockdep_clear_current_reclaim_state(); 3507 3508 return 0; 3509 } 3510 3511 /* 3512 * A zone is low on free memory, so wake its kswapd task to service it. 3513 */ 3514 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3515 { 3516 pg_data_t *pgdat; 3517 3518 if (!populated_zone(zone)) 3519 return; 3520 3521 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3522 return; 3523 pgdat = zone->zone_pgdat; 3524 if (pgdat->kswapd_max_order < order) { 3525 pgdat->kswapd_max_order = order; 3526 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3527 } 3528 if (!waitqueue_active(&pgdat->kswapd_wait)) 3529 return; 3530 if (zone_balanced(zone, order, 0, 0)) 3531 return; 3532 3533 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3534 wake_up_interruptible(&pgdat->kswapd_wait); 3535 } 3536 3537 #ifdef CONFIG_HIBERNATION 3538 /* 3539 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3540 * freed pages. 3541 * 3542 * Rather than trying to age LRUs the aim is to preserve the overall 3543 * LRU order by reclaiming preferentially 3544 * inactive > active > active referenced > active mapped 3545 */ 3546 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3547 { 3548 struct reclaim_state reclaim_state; 3549 struct scan_control sc = { 3550 .nr_to_reclaim = nr_to_reclaim, 3551 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3552 .priority = DEF_PRIORITY, 3553 .may_writepage = 1, 3554 .may_unmap = 1, 3555 .may_swap = 1, 3556 .hibernation_mode = 1, 3557 }; 3558 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3559 struct task_struct *p = current; 3560 unsigned long nr_reclaimed; 3561 3562 p->flags |= PF_MEMALLOC; 3563 lockdep_set_current_reclaim_state(sc.gfp_mask); 3564 reclaim_state.reclaimed_slab = 0; 3565 p->reclaim_state = &reclaim_state; 3566 3567 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3568 3569 p->reclaim_state = NULL; 3570 lockdep_clear_current_reclaim_state(); 3571 p->flags &= ~PF_MEMALLOC; 3572 3573 return nr_reclaimed; 3574 } 3575 #endif /* CONFIG_HIBERNATION */ 3576 3577 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3578 not required for correctness. So if the last cpu in a node goes 3579 away, we get changed to run anywhere: as the first one comes back, 3580 restore their cpu bindings. */ 3581 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3582 void *hcpu) 3583 { 3584 int nid; 3585 3586 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3587 for_each_node_state(nid, N_MEMORY) { 3588 pg_data_t *pgdat = NODE_DATA(nid); 3589 const struct cpumask *mask; 3590 3591 mask = cpumask_of_node(pgdat->node_id); 3592 3593 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3594 /* One of our CPUs online: restore mask */ 3595 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3596 } 3597 } 3598 return NOTIFY_OK; 3599 } 3600 3601 /* 3602 * This kswapd start function will be called by init and node-hot-add. 3603 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3604 */ 3605 int kswapd_run(int nid) 3606 { 3607 pg_data_t *pgdat = NODE_DATA(nid); 3608 int ret = 0; 3609 3610 if (pgdat->kswapd) 3611 return 0; 3612 3613 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3614 if (IS_ERR(pgdat->kswapd)) { 3615 /* failure at boot is fatal */ 3616 BUG_ON(system_state == SYSTEM_BOOTING); 3617 pr_err("Failed to start kswapd on node %d\n", nid); 3618 ret = PTR_ERR(pgdat->kswapd); 3619 pgdat->kswapd = NULL; 3620 } 3621 return ret; 3622 } 3623 3624 /* 3625 * Called by memory hotplug when all memory in a node is offlined. Caller must 3626 * hold mem_hotplug_begin/end(). 3627 */ 3628 void kswapd_stop(int nid) 3629 { 3630 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3631 3632 if (kswapd) { 3633 kthread_stop(kswapd); 3634 NODE_DATA(nid)->kswapd = NULL; 3635 } 3636 } 3637 3638 static int __init kswapd_init(void) 3639 { 3640 int nid; 3641 3642 swap_setup(); 3643 for_each_node_state(nid, N_MEMORY) 3644 kswapd_run(nid); 3645 hotcpu_notifier(cpu_callback, 0); 3646 return 0; 3647 } 3648 3649 module_init(kswapd_init) 3650 3651 #ifdef CONFIG_NUMA 3652 /* 3653 * Zone reclaim mode 3654 * 3655 * If non-zero call zone_reclaim when the number of free pages falls below 3656 * the watermarks. 3657 */ 3658 int zone_reclaim_mode __read_mostly; 3659 3660 #define RECLAIM_OFF 0 3661 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3662 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3663 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3664 3665 /* 3666 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3667 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3668 * a zone. 3669 */ 3670 #define ZONE_RECLAIM_PRIORITY 4 3671 3672 /* 3673 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3674 * occur. 3675 */ 3676 int sysctl_min_unmapped_ratio = 1; 3677 3678 /* 3679 * If the number of slab pages in a zone grows beyond this percentage then 3680 * slab reclaim needs to occur. 3681 */ 3682 int sysctl_min_slab_ratio = 5; 3683 3684 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3685 { 3686 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3687 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3688 zone_page_state(zone, NR_ACTIVE_FILE); 3689 3690 /* 3691 * It's possible for there to be more file mapped pages than 3692 * accounted for by the pages on the file LRU lists because 3693 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3694 */ 3695 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3696 } 3697 3698 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3699 static long zone_pagecache_reclaimable(struct zone *zone) 3700 { 3701 long nr_pagecache_reclaimable; 3702 long delta = 0; 3703 3704 /* 3705 * If RECLAIM_UNMAP is set, then all file pages are considered 3706 * potentially reclaimable. Otherwise, we have to worry about 3707 * pages like swapcache and zone_unmapped_file_pages() provides 3708 * a better estimate 3709 */ 3710 if (zone_reclaim_mode & RECLAIM_UNMAP) 3711 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3712 else 3713 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3714 3715 /* If we can't clean pages, remove dirty pages from consideration */ 3716 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3717 delta += zone_page_state(zone, NR_FILE_DIRTY); 3718 3719 /* Watch for any possible underflows due to delta */ 3720 if (unlikely(delta > nr_pagecache_reclaimable)) 3721 delta = nr_pagecache_reclaimable; 3722 3723 return nr_pagecache_reclaimable - delta; 3724 } 3725 3726 /* 3727 * Try to free up some pages from this zone through reclaim. 3728 */ 3729 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3730 { 3731 /* Minimum pages needed in order to stay on node */ 3732 const unsigned long nr_pages = 1 << order; 3733 struct task_struct *p = current; 3734 struct reclaim_state reclaim_state; 3735 struct scan_control sc = { 3736 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3737 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3738 .order = order, 3739 .priority = ZONE_RECLAIM_PRIORITY, 3740 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3741 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3742 .may_swap = 1, 3743 }; 3744 3745 cond_resched(); 3746 /* 3747 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3748 * and we also need to be able to write out pages for RECLAIM_WRITE 3749 * and RECLAIM_UNMAP. 3750 */ 3751 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3752 lockdep_set_current_reclaim_state(gfp_mask); 3753 reclaim_state.reclaimed_slab = 0; 3754 p->reclaim_state = &reclaim_state; 3755 3756 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3757 /* 3758 * Free memory by calling shrink zone with increasing 3759 * priorities until we have enough memory freed. 3760 */ 3761 do { 3762 shrink_zone(zone, &sc, true); 3763 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3764 } 3765 3766 p->reclaim_state = NULL; 3767 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3768 lockdep_clear_current_reclaim_state(); 3769 return sc.nr_reclaimed >= nr_pages; 3770 } 3771 3772 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3773 { 3774 int node_id; 3775 int ret; 3776 3777 /* 3778 * Zone reclaim reclaims unmapped file backed pages and 3779 * slab pages if we are over the defined limits. 3780 * 3781 * A small portion of unmapped file backed pages is needed for 3782 * file I/O otherwise pages read by file I/O will be immediately 3783 * thrown out if the zone is overallocated. So we do not reclaim 3784 * if less than a specified percentage of the zone is used by 3785 * unmapped file backed pages. 3786 */ 3787 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3788 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3789 return ZONE_RECLAIM_FULL; 3790 3791 if (!zone_reclaimable(zone)) 3792 return ZONE_RECLAIM_FULL; 3793 3794 /* 3795 * Do not scan if the allocation should not be delayed. 3796 */ 3797 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3798 return ZONE_RECLAIM_NOSCAN; 3799 3800 /* 3801 * Only run zone reclaim on the local zone or on zones that do not 3802 * have associated processors. This will favor the local processor 3803 * over remote processors and spread off node memory allocations 3804 * as wide as possible. 3805 */ 3806 node_id = zone_to_nid(zone); 3807 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3808 return ZONE_RECLAIM_NOSCAN; 3809 3810 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3811 return ZONE_RECLAIM_NOSCAN; 3812 3813 ret = __zone_reclaim(zone, gfp_mask, order); 3814 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3815 3816 if (!ret) 3817 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3818 3819 return ret; 3820 } 3821 #endif 3822 3823 /* 3824 * page_evictable - test whether a page is evictable 3825 * @page: the page to test 3826 * 3827 * Test whether page is evictable--i.e., should be placed on active/inactive 3828 * lists vs unevictable list. 3829 * 3830 * Reasons page might not be evictable: 3831 * (1) page's mapping marked unevictable 3832 * (2) page is part of an mlocked VMA 3833 * 3834 */ 3835 int page_evictable(struct page *page) 3836 { 3837 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3838 } 3839 3840 #ifdef CONFIG_SHMEM 3841 /** 3842 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3843 * @pages: array of pages to check 3844 * @nr_pages: number of pages to check 3845 * 3846 * Checks pages for evictability and moves them to the appropriate lru list. 3847 * 3848 * This function is only used for SysV IPC SHM_UNLOCK. 3849 */ 3850 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3851 { 3852 struct lruvec *lruvec; 3853 struct zone *zone = NULL; 3854 int pgscanned = 0; 3855 int pgrescued = 0; 3856 int i; 3857 3858 for (i = 0; i < nr_pages; i++) { 3859 struct page *page = pages[i]; 3860 struct zone *pagezone; 3861 3862 pgscanned++; 3863 pagezone = page_zone(page); 3864 if (pagezone != zone) { 3865 if (zone) 3866 spin_unlock_irq(&zone->lru_lock); 3867 zone = pagezone; 3868 spin_lock_irq(&zone->lru_lock); 3869 } 3870 lruvec = mem_cgroup_page_lruvec(page, zone); 3871 3872 if (!PageLRU(page) || !PageUnevictable(page)) 3873 continue; 3874 3875 if (page_evictable(page)) { 3876 enum lru_list lru = page_lru_base_type(page); 3877 3878 VM_BUG_ON_PAGE(PageActive(page), page); 3879 ClearPageUnevictable(page); 3880 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3881 add_page_to_lru_list(page, lruvec, lru); 3882 pgrescued++; 3883 } 3884 } 3885 3886 if (zone) { 3887 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3888 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3889 spin_unlock_irq(&zone->lru_lock); 3890 } 3891 } 3892 #endif /* CONFIG_SHMEM */ 3893