xref: /openbmc/linux/mm/vmscan.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 
135 	/* for recording the reclaimed slab by now */
136 	struct reclaim_state reclaim_state;
137 };
138 
139 #ifdef ARCH_HAS_PREFETCH
140 #define prefetch_prev_lru_page(_page, _base, _field)			\
141 	do {								\
142 		if ((_page)->lru.prev != _base) {			\
143 			struct page *prev;				\
144 									\
145 			prev = lru_to_page(&(_page->lru));		\
146 			prefetch(&prev->_field);			\
147 		}							\
148 	} while (0)
149 #else
150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152 
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field)			\
155 	do {								\
156 		if ((_page)->lru.prev != _base) {			\
157 			struct page *prev;				\
158 									\
159 			prev = lru_to_page(&(_page->lru));		\
160 			prefetchw(&prev->_field);			\
161 		}							\
162 	} while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166 
167 /*
168  * From 0 .. 100.  Higher means more swappy.
169  */
170 int vm_swappiness = 60;
171 /*
172  * The total number of pages which are beyond the high watermark within all
173  * zones.
174  */
175 unsigned long vm_total_pages;
176 
177 static LIST_HEAD(shrinker_list);
178 static DECLARE_RWSEM(shrinker_rwsem);
179 
180 #ifdef CONFIG_MEMCG_KMEM
181 
182 /*
183  * We allow subsystems to populate their shrinker-related
184  * LRU lists before register_shrinker_prepared() is called
185  * for the shrinker, since we don't want to impose
186  * restrictions on their internal registration order.
187  * In this case shrink_slab_memcg() may find corresponding
188  * bit is set in the shrinkers map.
189  *
190  * This value is used by the function to detect registering
191  * shrinkers and to skip do_shrink_slab() calls for them.
192  */
193 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
194 
195 static DEFINE_IDR(shrinker_idr);
196 static int shrinker_nr_max;
197 
198 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
199 {
200 	int id, ret = -ENOMEM;
201 
202 	down_write(&shrinker_rwsem);
203 	/* This may call shrinker, so it must use down_read_trylock() */
204 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
205 	if (id < 0)
206 		goto unlock;
207 
208 	if (id >= shrinker_nr_max) {
209 		if (memcg_expand_shrinker_maps(id)) {
210 			idr_remove(&shrinker_idr, id);
211 			goto unlock;
212 		}
213 
214 		shrinker_nr_max = id + 1;
215 	}
216 	shrinker->id = id;
217 	ret = 0;
218 unlock:
219 	up_write(&shrinker_rwsem);
220 	return ret;
221 }
222 
223 static void unregister_memcg_shrinker(struct shrinker *shrinker)
224 {
225 	int id = shrinker->id;
226 
227 	BUG_ON(id < 0);
228 
229 	down_write(&shrinker_rwsem);
230 	idr_remove(&shrinker_idr, id);
231 	up_write(&shrinker_rwsem);
232 }
233 #else /* CONFIG_MEMCG_KMEM */
234 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
235 {
236 	return 0;
237 }
238 
239 static void unregister_memcg_shrinker(struct shrinker *shrinker)
240 {
241 }
242 #endif /* CONFIG_MEMCG_KMEM */
243 
244 static void set_task_reclaim_state(struct task_struct *task,
245 				   struct reclaim_state *rs)
246 {
247 	/* Check for an overwrite */
248 	WARN_ON_ONCE(rs && task->reclaim_state);
249 
250 	/* Check for the nulling of an already-nulled member */
251 	WARN_ON_ONCE(!rs && !task->reclaim_state);
252 
253 	task->reclaim_state = rs;
254 }
255 
256 #ifdef CONFIG_MEMCG
257 static bool global_reclaim(struct scan_control *sc)
258 {
259 	return !sc->target_mem_cgroup;
260 }
261 
262 /**
263  * sane_reclaim - is the usual dirty throttling mechanism operational?
264  * @sc: scan_control in question
265  *
266  * The normal page dirty throttling mechanism in balance_dirty_pages() is
267  * completely broken with the legacy memcg and direct stalling in
268  * shrink_page_list() is used for throttling instead, which lacks all the
269  * niceties such as fairness, adaptive pausing, bandwidth proportional
270  * allocation and configurability.
271  *
272  * This function tests whether the vmscan currently in progress can assume
273  * that the normal dirty throttling mechanism is operational.
274  */
275 static bool sane_reclaim(struct scan_control *sc)
276 {
277 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
278 
279 	if (!memcg)
280 		return true;
281 #ifdef CONFIG_CGROUP_WRITEBACK
282 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
283 		return true;
284 #endif
285 	return false;
286 }
287 
288 static void set_memcg_congestion(pg_data_t *pgdat,
289 				struct mem_cgroup *memcg,
290 				bool congested)
291 {
292 	struct mem_cgroup_per_node *mn;
293 
294 	if (!memcg)
295 		return;
296 
297 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
298 	WRITE_ONCE(mn->congested, congested);
299 }
300 
301 static bool memcg_congested(pg_data_t *pgdat,
302 			struct mem_cgroup *memcg)
303 {
304 	struct mem_cgroup_per_node *mn;
305 
306 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
307 	return READ_ONCE(mn->congested);
308 
309 }
310 #else
311 static bool global_reclaim(struct scan_control *sc)
312 {
313 	return true;
314 }
315 
316 static bool sane_reclaim(struct scan_control *sc)
317 {
318 	return true;
319 }
320 
321 static inline void set_memcg_congestion(struct pglist_data *pgdat,
322 				struct mem_cgroup *memcg, bool congested)
323 {
324 }
325 
326 static inline bool memcg_congested(struct pglist_data *pgdat,
327 			struct mem_cgroup *memcg)
328 {
329 	return false;
330 
331 }
332 #endif
333 
334 /*
335  * This misses isolated pages which are not accounted for to save counters.
336  * As the data only determines if reclaim or compaction continues, it is
337  * not expected that isolated pages will be a dominating factor.
338  */
339 unsigned long zone_reclaimable_pages(struct zone *zone)
340 {
341 	unsigned long nr;
342 
343 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
344 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
345 	if (get_nr_swap_pages() > 0)
346 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
347 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
348 
349 	return nr;
350 }
351 
352 /**
353  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
354  * @lruvec: lru vector
355  * @lru: lru to use
356  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
357  */
358 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
359 {
360 	unsigned long lru_size;
361 	int zid;
362 
363 	if (!mem_cgroup_disabled())
364 		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
365 	else
366 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
367 
368 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
369 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
370 		unsigned long size;
371 
372 		if (!managed_zone(zone))
373 			continue;
374 
375 		if (!mem_cgroup_disabled())
376 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
377 		else
378 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
379 				       NR_ZONE_LRU_BASE + lru);
380 		lru_size -= min(size, lru_size);
381 	}
382 
383 	return lru_size;
384 
385 }
386 
387 /*
388  * Add a shrinker callback to be called from the vm.
389  */
390 int prealloc_shrinker(struct shrinker *shrinker)
391 {
392 	unsigned int size = sizeof(*shrinker->nr_deferred);
393 
394 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
395 		size *= nr_node_ids;
396 
397 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
398 	if (!shrinker->nr_deferred)
399 		return -ENOMEM;
400 
401 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
402 		if (prealloc_memcg_shrinker(shrinker))
403 			goto free_deferred;
404 	}
405 
406 	return 0;
407 
408 free_deferred:
409 	kfree(shrinker->nr_deferred);
410 	shrinker->nr_deferred = NULL;
411 	return -ENOMEM;
412 }
413 
414 void free_prealloced_shrinker(struct shrinker *shrinker)
415 {
416 	if (!shrinker->nr_deferred)
417 		return;
418 
419 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
420 		unregister_memcg_shrinker(shrinker);
421 
422 	kfree(shrinker->nr_deferred);
423 	shrinker->nr_deferred = NULL;
424 }
425 
426 void register_shrinker_prepared(struct shrinker *shrinker)
427 {
428 	down_write(&shrinker_rwsem);
429 	list_add_tail(&shrinker->list, &shrinker_list);
430 #ifdef CONFIG_MEMCG_KMEM
431 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
432 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
433 #endif
434 	up_write(&shrinker_rwsem);
435 }
436 
437 int register_shrinker(struct shrinker *shrinker)
438 {
439 	int err = prealloc_shrinker(shrinker);
440 
441 	if (err)
442 		return err;
443 	register_shrinker_prepared(shrinker);
444 	return 0;
445 }
446 EXPORT_SYMBOL(register_shrinker);
447 
448 /*
449  * Remove one
450  */
451 void unregister_shrinker(struct shrinker *shrinker)
452 {
453 	if (!shrinker->nr_deferred)
454 		return;
455 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
456 		unregister_memcg_shrinker(shrinker);
457 	down_write(&shrinker_rwsem);
458 	list_del(&shrinker->list);
459 	up_write(&shrinker_rwsem);
460 	kfree(shrinker->nr_deferred);
461 	shrinker->nr_deferred = NULL;
462 }
463 EXPORT_SYMBOL(unregister_shrinker);
464 
465 #define SHRINK_BATCH 128
466 
467 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
468 				    struct shrinker *shrinker, int priority)
469 {
470 	unsigned long freed = 0;
471 	unsigned long long delta;
472 	long total_scan;
473 	long freeable;
474 	long nr;
475 	long new_nr;
476 	int nid = shrinkctl->nid;
477 	long batch_size = shrinker->batch ? shrinker->batch
478 					  : SHRINK_BATCH;
479 	long scanned = 0, next_deferred;
480 
481 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
482 		nid = 0;
483 
484 	freeable = shrinker->count_objects(shrinker, shrinkctl);
485 	if (freeable == 0 || freeable == SHRINK_EMPTY)
486 		return freeable;
487 
488 	/*
489 	 * copy the current shrinker scan count into a local variable
490 	 * and zero it so that other concurrent shrinker invocations
491 	 * don't also do this scanning work.
492 	 */
493 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
494 
495 	total_scan = nr;
496 	if (shrinker->seeks) {
497 		delta = freeable >> priority;
498 		delta *= 4;
499 		do_div(delta, shrinker->seeks);
500 	} else {
501 		/*
502 		 * These objects don't require any IO to create. Trim
503 		 * them aggressively under memory pressure to keep
504 		 * them from causing refetches in the IO caches.
505 		 */
506 		delta = freeable / 2;
507 	}
508 
509 	total_scan += delta;
510 	if (total_scan < 0) {
511 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
512 		       shrinker->scan_objects, total_scan);
513 		total_scan = freeable;
514 		next_deferred = nr;
515 	} else
516 		next_deferred = total_scan;
517 
518 	/*
519 	 * We need to avoid excessive windup on filesystem shrinkers
520 	 * due to large numbers of GFP_NOFS allocations causing the
521 	 * shrinkers to return -1 all the time. This results in a large
522 	 * nr being built up so when a shrink that can do some work
523 	 * comes along it empties the entire cache due to nr >>>
524 	 * freeable. This is bad for sustaining a working set in
525 	 * memory.
526 	 *
527 	 * Hence only allow the shrinker to scan the entire cache when
528 	 * a large delta change is calculated directly.
529 	 */
530 	if (delta < freeable / 4)
531 		total_scan = min(total_scan, freeable / 2);
532 
533 	/*
534 	 * Avoid risking looping forever due to too large nr value:
535 	 * never try to free more than twice the estimate number of
536 	 * freeable entries.
537 	 */
538 	if (total_scan > freeable * 2)
539 		total_scan = freeable * 2;
540 
541 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
542 				   freeable, delta, total_scan, priority);
543 
544 	/*
545 	 * Normally, we should not scan less than batch_size objects in one
546 	 * pass to avoid too frequent shrinker calls, but if the slab has less
547 	 * than batch_size objects in total and we are really tight on memory,
548 	 * we will try to reclaim all available objects, otherwise we can end
549 	 * up failing allocations although there are plenty of reclaimable
550 	 * objects spread over several slabs with usage less than the
551 	 * batch_size.
552 	 *
553 	 * We detect the "tight on memory" situations by looking at the total
554 	 * number of objects we want to scan (total_scan). If it is greater
555 	 * than the total number of objects on slab (freeable), we must be
556 	 * scanning at high prio and therefore should try to reclaim as much as
557 	 * possible.
558 	 */
559 	while (total_scan >= batch_size ||
560 	       total_scan >= freeable) {
561 		unsigned long ret;
562 		unsigned long nr_to_scan = min(batch_size, total_scan);
563 
564 		shrinkctl->nr_to_scan = nr_to_scan;
565 		shrinkctl->nr_scanned = nr_to_scan;
566 		ret = shrinker->scan_objects(shrinker, shrinkctl);
567 		if (ret == SHRINK_STOP)
568 			break;
569 		freed += ret;
570 
571 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
572 		total_scan -= shrinkctl->nr_scanned;
573 		scanned += shrinkctl->nr_scanned;
574 
575 		cond_resched();
576 	}
577 
578 	if (next_deferred >= scanned)
579 		next_deferred -= scanned;
580 	else
581 		next_deferred = 0;
582 	/*
583 	 * move the unused scan count back into the shrinker in a
584 	 * manner that handles concurrent updates. If we exhausted the
585 	 * scan, there is no need to do an update.
586 	 */
587 	if (next_deferred > 0)
588 		new_nr = atomic_long_add_return(next_deferred,
589 						&shrinker->nr_deferred[nid]);
590 	else
591 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
592 
593 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
594 	return freed;
595 }
596 
597 #ifdef CONFIG_MEMCG_KMEM
598 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
599 			struct mem_cgroup *memcg, int priority)
600 {
601 	struct memcg_shrinker_map *map;
602 	unsigned long ret, freed = 0;
603 	int i;
604 
605 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
606 		return 0;
607 
608 	if (!down_read_trylock(&shrinker_rwsem))
609 		return 0;
610 
611 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
612 					true);
613 	if (unlikely(!map))
614 		goto unlock;
615 
616 	for_each_set_bit(i, map->map, shrinker_nr_max) {
617 		struct shrink_control sc = {
618 			.gfp_mask = gfp_mask,
619 			.nid = nid,
620 			.memcg = memcg,
621 		};
622 		struct shrinker *shrinker;
623 
624 		shrinker = idr_find(&shrinker_idr, i);
625 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
626 			if (!shrinker)
627 				clear_bit(i, map->map);
628 			continue;
629 		}
630 
631 		ret = do_shrink_slab(&sc, shrinker, priority);
632 		if (ret == SHRINK_EMPTY) {
633 			clear_bit(i, map->map);
634 			/*
635 			 * After the shrinker reported that it had no objects to
636 			 * free, but before we cleared the corresponding bit in
637 			 * the memcg shrinker map, a new object might have been
638 			 * added. To make sure, we have the bit set in this
639 			 * case, we invoke the shrinker one more time and reset
640 			 * the bit if it reports that it is not empty anymore.
641 			 * The memory barrier here pairs with the barrier in
642 			 * memcg_set_shrinker_bit():
643 			 *
644 			 * list_lru_add()     shrink_slab_memcg()
645 			 *   list_add_tail()    clear_bit()
646 			 *   <MB>               <MB>
647 			 *   set_bit()          do_shrink_slab()
648 			 */
649 			smp_mb__after_atomic();
650 			ret = do_shrink_slab(&sc, shrinker, priority);
651 			if (ret == SHRINK_EMPTY)
652 				ret = 0;
653 			else
654 				memcg_set_shrinker_bit(memcg, nid, i);
655 		}
656 		freed += ret;
657 
658 		if (rwsem_is_contended(&shrinker_rwsem)) {
659 			freed = freed ? : 1;
660 			break;
661 		}
662 	}
663 unlock:
664 	up_read(&shrinker_rwsem);
665 	return freed;
666 }
667 #else /* CONFIG_MEMCG_KMEM */
668 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
669 			struct mem_cgroup *memcg, int priority)
670 {
671 	return 0;
672 }
673 #endif /* CONFIG_MEMCG_KMEM */
674 
675 /**
676  * shrink_slab - shrink slab caches
677  * @gfp_mask: allocation context
678  * @nid: node whose slab caches to target
679  * @memcg: memory cgroup whose slab caches to target
680  * @priority: the reclaim priority
681  *
682  * Call the shrink functions to age shrinkable caches.
683  *
684  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
685  * unaware shrinkers will receive a node id of 0 instead.
686  *
687  * @memcg specifies the memory cgroup to target. Unaware shrinkers
688  * are called only if it is the root cgroup.
689  *
690  * @priority is sc->priority, we take the number of objects and >> by priority
691  * in order to get the scan target.
692  *
693  * Returns the number of reclaimed slab objects.
694  */
695 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
696 				 struct mem_cgroup *memcg,
697 				 int priority)
698 {
699 	unsigned long ret, freed = 0;
700 	struct shrinker *shrinker;
701 
702 	/*
703 	 * The root memcg might be allocated even though memcg is disabled
704 	 * via "cgroup_disable=memory" boot parameter.  This could make
705 	 * mem_cgroup_is_root() return false, then just run memcg slab
706 	 * shrink, but skip global shrink.  This may result in premature
707 	 * oom.
708 	 */
709 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
710 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
711 
712 	if (!down_read_trylock(&shrinker_rwsem))
713 		goto out;
714 
715 	list_for_each_entry(shrinker, &shrinker_list, list) {
716 		struct shrink_control sc = {
717 			.gfp_mask = gfp_mask,
718 			.nid = nid,
719 			.memcg = memcg,
720 		};
721 
722 		ret = do_shrink_slab(&sc, shrinker, priority);
723 		if (ret == SHRINK_EMPTY)
724 			ret = 0;
725 		freed += ret;
726 		/*
727 		 * Bail out if someone want to register a new shrinker to
728 		 * prevent the regsitration from being stalled for long periods
729 		 * by parallel ongoing shrinking.
730 		 */
731 		if (rwsem_is_contended(&shrinker_rwsem)) {
732 			freed = freed ? : 1;
733 			break;
734 		}
735 	}
736 
737 	up_read(&shrinker_rwsem);
738 out:
739 	cond_resched();
740 	return freed;
741 }
742 
743 void drop_slab_node(int nid)
744 {
745 	unsigned long freed;
746 
747 	do {
748 		struct mem_cgroup *memcg = NULL;
749 
750 		freed = 0;
751 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
752 		do {
753 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
754 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
755 	} while (freed > 10);
756 }
757 
758 void drop_slab(void)
759 {
760 	int nid;
761 
762 	for_each_online_node(nid)
763 		drop_slab_node(nid);
764 }
765 
766 static inline int is_page_cache_freeable(struct page *page)
767 {
768 	/*
769 	 * A freeable page cache page is referenced only by the caller
770 	 * that isolated the page, the page cache and optional buffer
771 	 * heads at page->private.
772 	 */
773 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
774 		HPAGE_PMD_NR : 1;
775 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
776 }
777 
778 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
779 {
780 	if (current->flags & PF_SWAPWRITE)
781 		return 1;
782 	if (!inode_write_congested(inode))
783 		return 1;
784 	if (inode_to_bdi(inode) == current->backing_dev_info)
785 		return 1;
786 	return 0;
787 }
788 
789 /*
790  * We detected a synchronous write error writing a page out.  Probably
791  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
792  * fsync(), msync() or close().
793  *
794  * The tricky part is that after writepage we cannot touch the mapping: nothing
795  * prevents it from being freed up.  But we have a ref on the page and once
796  * that page is locked, the mapping is pinned.
797  *
798  * We're allowed to run sleeping lock_page() here because we know the caller has
799  * __GFP_FS.
800  */
801 static void handle_write_error(struct address_space *mapping,
802 				struct page *page, int error)
803 {
804 	lock_page(page);
805 	if (page_mapping(page) == mapping)
806 		mapping_set_error(mapping, error);
807 	unlock_page(page);
808 }
809 
810 /* possible outcome of pageout() */
811 typedef enum {
812 	/* failed to write page out, page is locked */
813 	PAGE_KEEP,
814 	/* move page to the active list, page is locked */
815 	PAGE_ACTIVATE,
816 	/* page has been sent to the disk successfully, page is unlocked */
817 	PAGE_SUCCESS,
818 	/* page is clean and locked */
819 	PAGE_CLEAN,
820 } pageout_t;
821 
822 /*
823  * pageout is called by shrink_page_list() for each dirty page.
824  * Calls ->writepage().
825  */
826 static pageout_t pageout(struct page *page, struct address_space *mapping,
827 			 struct scan_control *sc)
828 {
829 	/*
830 	 * If the page is dirty, only perform writeback if that write
831 	 * will be non-blocking.  To prevent this allocation from being
832 	 * stalled by pagecache activity.  But note that there may be
833 	 * stalls if we need to run get_block().  We could test
834 	 * PagePrivate for that.
835 	 *
836 	 * If this process is currently in __generic_file_write_iter() against
837 	 * this page's queue, we can perform writeback even if that
838 	 * will block.
839 	 *
840 	 * If the page is swapcache, write it back even if that would
841 	 * block, for some throttling. This happens by accident, because
842 	 * swap_backing_dev_info is bust: it doesn't reflect the
843 	 * congestion state of the swapdevs.  Easy to fix, if needed.
844 	 */
845 	if (!is_page_cache_freeable(page))
846 		return PAGE_KEEP;
847 	if (!mapping) {
848 		/*
849 		 * Some data journaling orphaned pages can have
850 		 * page->mapping == NULL while being dirty with clean buffers.
851 		 */
852 		if (page_has_private(page)) {
853 			if (try_to_free_buffers(page)) {
854 				ClearPageDirty(page);
855 				pr_info("%s: orphaned page\n", __func__);
856 				return PAGE_CLEAN;
857 			}
858 		}
859 		return PAGE_KEEP;
860 	}
861 	if (mapping->a_ops->writepage == NULL)
862 		return PAGE_ACTIVATE;
863 	if (!may_write_to_inode(mapping->host, sc))
864 		return PAGE_KEEP;
865 
866 	if (clear_page_dirty_for_io(page)) {
867 		int res;
868 		struct writeback_control wbc = {
869 			.sync_mode = WB_SYNC_NONE,
870 			.nr_to_write = SWAP_CLUSTER_MAX,
871 			.range_start = 0,
872 			.range_end = LLONG_MAX,
873 			.for_reclaim = 1,
874 		};
875 
876 		SetPageReclaim(page);
877 		res = mapping->a_ops->writepage(page, &wbc);
878 		if (res < 0)
879 			handle_write_error(mapping, page, res);
880 		if (res == AOP_WRITEPAGE_ACTIVATE) {
881 			ClearPageReclaim(page);
882 			return PAGE_ACTIVATE;
883 		}
884 
885 		if (!PageWriteback(page)) {
886 			/* synchronous write or broken a_ops? */
887 			ClearPageReclaim(page);
888 		}
889 		trace_mm_vmscan_writepage(page);
890 		inc_node_page_state(page, NR_VMSCAN_WRITE);
891 		return PAGE_SUCCESS;
892 	}
893 
894 	return PAGE_CLEAN;
895 }
896 
897 /*
898  * Same as remove_mapping, but if the page is removed from the mapping, it
899  * gets returned with a refcount of 0.
900  */
901 static int __remove_mapping(struct address_space *mapping, struct page *page,
902 			    bool reclaimed)
903 {
904 	unsigned long flags;
905 	int refcount;
906 
907 	BUG_ON(!PageLocked(page));
908 	BUG_ON(mapping != page_mapping(page));
909 
910 	xa_lock_irqsave(&mapping->i_pages, flags);
911 	/*
912 	 * The non racy check for a busy page.
913 	 *
914 	 * Must be careful with the order of the tests. When someone has
915 	 * a ref to the page, it may be possible that they dirty it then
916 	 * drop the reference. So if PageDirty is tested before page_count
917 	 * here, then the following race may occur:
918 	 *
919 	 * get_user_pages(&page);
920 	 * [user mapping goes away]
921 	 * write_to(page);
922 	 *				!PageDirty(page)    [good]
923 	 * SetPageDirty(page);
924 	 * put_page(page);
925 	 *				!page_count(page)   [good, discard it]
926 	 *
927 	 * [oops, our write_to data is lost]
928 	 *
929 	 * Reversing the order of the tests ensures such a situation cannot
930 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
931 	 * load is not satisfied before that of page->_refcount.
932 	 *
933 	 * Note that if SetPageDirty is always performed via set_page_dirty,
934 	 * and thus under the i_pages lock, then this ordering is not required.
935 	 */
936 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
937 		refcount = 1 + HPAGE_PMD_NR;
938 	else
939 		refcount = 2;
940 	if (!page_ref_freeze(page, refcount))
941 		goto cannot_free;
942 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
943 	if (unlikely(PageDirty(page))) {
944 		page_ref_unfreeze(page, refcount);
945 		goto cannot_free;
946 	}
947 
948 	if (PageSwapCache(page)) {
949 		swp_entry_t swap = { .val = page_private(page) };
950 		mem_cgroup_swapout(page, swap);
951 		__delete_from_swap_cache(page, swap);
952 		xa_unlock_irqrestore(&mapping->i_pages, flags);
953 		put_swap_page(page, swap);
954 	} else {
955 		void (*freepage)(struct page *);
956 		void *shadow = NULL;
957 
958 		freepage = mapping->a_ops->freepage;
959 		/*
960 		 * Remember a shadow entry for reclaimed file cache in
961 		 * order to detect refaults, thus thrashing, later on.
962 		 *
963 		 * But don't store shadows in an address space that is
964 		 * already exiting.  This is not just an optizimation,
965 		 * inode reclaim needs to empty out the radix tree or
966 		 * the nodes are lost.  Don't plant shadows behind its
967 		 * back.
968 		 *
969 		 * We also don't store shadows for DAX mappings because the
970 		 * only page cache pages found in these are zero pages
971 		 * covering holes, and because we don't want to mix DAX
972 		 * exceptional entries and shadow exceptional entries in the
973 		 * same address_space.
974 		 */
975 		if (reclaimed && page_is_file_cache(page) &&
976 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
977 			shadow = workingset_eviction(page);
978 		__delete_from_page_cache(page, shadow);
979 		xa_unlock_irqrestore(&mapping->i_pages, flags);
980 
981 		if (freepage != NULL)
982 			freepage(page);
983 	}
984 
985 	return 1;
986 
987 cannot_free:
988 	xa_unlock_irqrestore(&mapping->i_pages, flags);
989 	return 0;
990 }
991 
992 /*
993  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
994  * someone else has a ref on the page, abort and return 0.  If it was
995  * successfully detached, return 1.  Assumes the caller has a single ref on
996  * this page.
997  */
998 int remove_mapping(struct address_space *mapping, struct page *page)
999 {
1000 	if (__remove_mapping(mapping, page, false)) {
1001 		/*
1002 		 * Unfreezing the refcount with 1 rather than 2 effectively
1003 		 * drops the pagecache ref for us without requiring another
1004 		 * atomic operation.
1005 		 */
1006 		page_ref_unfreeze(page, 1);
1007 		return 1;
1008 	}
1009 	return 0;
1010 }
1011 
1012 /**
1013  * putback_lru_page - put previously isolated page onto appropriate LRU list
1014  * @page: page to be put back to appropriate lru list
1015  *
1016  * Add previously isolated @page to appropriate LRU list.
1017  * Page may still be unevictable for other reasons.
1018  *
1019  * lru_lock must not be held, interrupts must be enabled.
1020  */
1021 void putback_lru_page(struct page *page)
1022 {
1023 	lru_cache_add(page);
1024 	put_page(page);		/* drop ref from isolate */
1025 }
1026 
1027 enum page_references {
1028 	PAGEREF_RECLAIM,
1029 	PAGEREF_RECLAIM_CLEAN,
1030 	PAGEREF_KEEP,
1031 	PAGEREF_ACTIVATE,
1032 };
1033 
1034 static enum page_references page_check_references(struct page *page,
1035 						  struct scan_control *sc)
1036 {
1037 	int referenced_ptes, referenced_page;
1038 	unsigned long vm_flags;
1039 
1040 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1041 					  &vm_flags);
1042 	referenced_page = TestClearPageReferenced(page);
1043 
1044 	/*
1045 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1046 	 * move the page to the unevictable list.
1047 	 */
1048 	if (vm_flags & VM_LOCKED)
1049 		return PAGEREF_RECLAIM;
1050 
1051 	if (referenced_ptes) {
1052 		if (PageSwapBacked(page))
1053 			return PAGEREF_ACTIVATE;
1054 		/*
1055 		 * All mapped pages start out with page table
1056 		 * references from the instantiating fault, so we need
1057 		 * to look twice if a mapped file page is used more
1058 		 * than once.
1059 		 *
1060 		 * Mark it and spare it for another trip around the
1061 		 * inactive list.  Another page table reference will
1062 		 * lead to its activation.
1063 		 *
1064 		 * Note: the mark is set for activated pages as well
1065 		 * so that recently deactivated but used pages are
1066 		 * quickly recovered.
1067 		 */
1068 		SetPageReferenced(page);
1069 
1070 		if (referenced_page || referenced_ptes > 1)
1071 			return PAGEREF_ACTIVATE;
1072 
1073 		/*
1074 		 * Activate file-backed executable pages after first usage.
1075 		 */
1076 		if (vm_flags & VM_EXEC)
1077 			return PAGEREF_ACTIVATE;
1078 
1079 		return PAGEREF_KEEP;
1080 	}
1081 
1082 	/* Reclaim if clean, defer dirty pages to writeback */
1083 	if (referenced_page && !PageSwapBacked(page))
1084 		return PAGEREF_RECLAIM_CLEAN;
1085 
1086 	return PAGEREF_RECLAIM;
1087 }
1088 
1089 /* Check if a page is dirty or under writeback */
1090 static void page_check_dirty_writeback(struct page *page,
1091 				       bool *dirty, bool *writeback)
1092 {
1093 	struct address_space *mapping;
1094 
1095 	/*
1096 	 * Anonymous pages are not handled by flushers and must be written
1097 	 * from reclaim context. Do not stall reclaim based on them
1098 	 */
1099 	if (!page_is_file_cache(page) ||
1100 	    (PageAnon(page) && !PageSwapBacked(page))) {
1101 		*dirty = false;
1102 		*writeback = false;
1103 		return;
1104 	}
1105 
1106 	/* By default assume that the page flags are accurate */
1107 	*dirty = PageDirty(page);
1108 	*writeback = PageWriteback(page);
1109 
1110 	/* Verify dirty/writeback state if the filesystem supports it */
1111 	if (!page_has_private(page))
1112 		return;
1113 
1114 	mapping = page_mapping(page);
1115 	if (mapping && mapping->a_ops->is_dirty_writeback)
1116 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1117 }
1118 
1119 /*
1120  * shrink_page_list() returns the number of reclaimed pages
1121  */
1122 static unsigned long shrink_page_list(struct list_head *page_list,
1123 				      struct pglist_data *pgdat,
1124 				      struct scan_control *sc,
1125 				      enum ttu_flags ttu_flags,
1126 				      struct reclaim_stat *stat,
1127 				      bool force_reclaim)
1128 {
1129 	LIST_HEAD(ret_pages);
1130 	LIST_HEAD(free_pages);
1131 	unsigned nr_reclaimed = 0;
1132 	unsigned pgactivate = 0;
1133 
1134 	memset(stat, 0, sizeof(*stat));
1135 	cond_resched();
1136 
1137 	while (!list_empty(page_list)) {
1138 		struct address_space *mapping;
1139 		struct page *page;
1140 		int may_enter_fs;
1141 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1142 		bool dirty, writeback;
1143 		unsigned int nr_pages;
1144 
1145 		cond_resched();
1146 
1147 		page = lru_to_page(page_list);
1148 		list_del(&page->lru);
1149 
1150 		if (!trylock_page(page))
1151 			goto keep;
1152 
1153 		VM_BUG_ON_PAGE(PageActive(page), page);
1154 
1155 		nr_pages = 1 << compound_order(page);
1156 
1157 		/* Account the number of base pages even though THP */
1158 		sc->nr_scanned += nr_pages;
1159 
1160 		if (unlikely(!page_evictable(page)))
1161 			goto activate_locked;
1162 
1163 		if (!sc->may_unmap && page_mapped(page))
1164 			goto keep_locked;
1165 
1166 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1167 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1168 
1169 		/*
1170 		 * The number of dirty pages determines if a node is marked
1171 		 * reclaim_congested which affects wait_iff_congested. kswapd
1172 		 * will stall and start writing pages if the tail of the LRU
1173 		 * is all dirty unqueued pages.
1174 		 */
1175 		page_check_dirty_writeback(page, &dirty, &writeback);
1176 		if (dirty || writeback)
1177 			stat->nr_dirty++;
1178 
1179 		if (dirty && !writeback)
1180 			stat->nr_unqueued_dirty++;
1181 
1182 		/*
1183 		 * Treat this page as congested if the underlying BDI is or if
1184 		 * pages are cycling through the LRU so quickly that the
1185 		 * pages marked for immediate reclaim are making it to the
1186 		 * end of the LRU a second time.
1187 		 */
1188 		mapping = page_mapping(page);
1189 		if (((dirty || writeback) && mapping &&
1190 		     inode_write_congested(mapping->host)) ||
1191 		    (writeback && PageReclaim(page)))
1192 			stat->nr_congested++;
1193 
1194 		/*
1195 		 * If a page at the tail of the LRU is under writeback, there
1196 		 * are three cases to consider.
1197 		 *
1198 		 * 1) If reclaim is encountering an excessive number of pages
1199 		 *    under writeback and this page is both under writeback and
1200 		 *    PageReclaim then it indicates that pages are being queued
1201 		 *    for IO but are being recycled through the LRU before the
1202 		 *    IO can complete. Waiting on the page itself risks an
1203 		 *    indefinite stall if it is impossible to writeback the
1204 		 *    page due to IO error or disconnected storage so instead
1205 		 *    note that the LRU is being scanned too quickly and the
1206 		 *    caller can stall after page list has been processed.
1207 		 *
1208 		 * 2) Global or new memcg reclaim encounters a page that is
1209 		 *    not marked for immediate reclaim, or the caller does not
1210 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1211 		 *    not to fs). In this case mark the page for immediate
1212 		 *    reclaim and continue scanning.
1213 		 *
1214 		 *    Require may_enter_fs because we would wait on fs, which
1215 		 *    may not have submitted IO yet. And the loop driver might
1216 		 *    enter reclaim, and deadlock if it waits on a page for
1217 		 *    which it is needed to do the write (loop masks off
1218 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1219 		 *    would probably show more reasons.
1220 		 *
1221 		 * 3) Legacy memcg encounters a page that is already marked
1222 		 *    PageReclaim. memcg does not have any dirty pages
1223 		 *    throttling so we could easily OOM just because too many
1224 		 *    pages are in writeback and there is nothing else to
1225 		 *    reclaim. Wait for the writeback to complete.
1226 		 *
1227 		 * In cases 1) and 2) we activate the pages to get them out of
1228 		 * the way while we continue scanning for clean pages on the
1229 		 * inactive list and refilling from the active list. The
1230 		 * observation here is that waiting for disk writes is more
1231 		 * expensive than potentially causing reloads down the line.
1232 		 * Since they're marked for immediate reclaim, they won't put
1233 		 * memory pressure on the cache working set any longer than it
1234 		 * takes to write them to disk.
1235 		 */
1236 		if (PageWriteback(page)) {
1237 			/* Case 1 above */
1238 			if (current_is_kswapd() &&
1239 			    PageReclaim(page) &&
1240 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1241 				stat->nr_immediate++;
1242 				goto activate_locked;
1243 
1244 			/* Case 2 above */
1245 			} else if (sane_reclaim(sc) ||
1246 			    !PageReclaim(page) || !may_enter_fs) {
1247 				/*
1248 				 * This is slightly racy - end_page_writeback()
1249 				 * might have just cleared PageReclaim, then
1250 				 * setting PageReclaim here end up interpreted
1251 				 * as PageReadahead - but that does not matter
1252 				 * enough to care.  What we do want is for this
1253 				 * page to have PageReclaim set next time memcg
1254 				 * reclaim reaches the tests above, so it will
1255 				 * then wait_on_page_writeback() to avoid OOM;
1256 				 * and it's also appropriate in global reclaim.
1257 				 */
1258 				SetPageReclaim(page);
1259 				stat->nr_writeback++;
1260 				goto activate_locked;
1261 
1262 			/* Case 3 above */
1263 			} else {
1264 				unlock_page(page);
1265 				wait_on_page_writeback(page);
1266 				/* then go back and try same page again */
1267 				list_add_tail(&page->lru, page_list);
1268 				continue;
1269 			}
1270 		}
1271 
1272 		if (!force_reclaim)
1273 			references = page_check_references(page, sc);
1274 
1275 		switch (references) {
1276 		case PAGEREF_ACTIVATE:
1277 			goto activate_locked;
1278 		case PAGEREF_KEEP:
1279 			stat->nr_ref_keep += nr_pages;
1280 			goto keep_locked;
1281 		case PAGEREF_RECLAIM:
1282 		case PAGEREF_RECLAIM_CLEAN:
1283 			; /* try to reclaim the page below */
1284 		}
1285 
1286 		/*
1287 		 * Anonymous process memory has backing store?
1288 		 * Try to allocate it some swap space here.
1289 		 * Lazyfree page could be freed directly
1290 		 */
1291 		if (PageAnon(page) && PageSwapBacked(page)) {
1292 			if (!PageSwapCache(page)) {
1293 				if (!(sc->gfp_mask & __GFP_IO))
1294 					goto keep_locked;
1295 				if (PageTransHuge(page)) {
1296 					/* cannot split THP, skip it */
1297 					if (!can_split_huge_page(page, NULL))
1298 						goto activate_locked;
1299 					/*
1300 					 * Split pages without a PMD map right
1301 					 * away. Chances are some or all of the
1302 					 * tail pages can be freed without IO.
1303 					 */
1304 					if (!compound_mapcount(page) &&
1305 					    split_huge_page_to_list(page,
1306 								    page_list))
1307 						goto activate_locked;
1308 				}
1309 				if (!add_to_swap(page)) {
1310 					if (!PageTransHuge(page))
1311 						goto activate_locked_split;
1312 					/* Fallback to swap normal pages */
1313 					if (split_huge_page_to_list(page,
1314 								    page_list))
1315 						goto activate_locked;
1316 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1317 					count_vm_event(THP_SWPOUT_FALLBACK);
1318 #endif
1319 					if (!add_to_swap(page))
1320 						goto activate_locked_split;
1321 				}
1322 
1323 				may_enter_fs = 1;
1324 
1325 				/* Adding to swap updated mapping */
1326 				mapping = page_mapping(page);
1327 			}
1328 		} else if (unlikely(PageTransHuge(page))) {
1329 			/* Split file THP */
1330 			if (split_huge_page_to_list(page, page_list))
1331 				goto keep_locked;
1332 		}
1333 
1334 		/*
1335 		 * THP may get split above, need minus tail pages and update
1336 		 * nr_pages to avoid accounting tail pages twice.
1337 		 *
1338 		 * The tail pages that are added into swap cache successfully
1339 		 * reach here.
1340 		 */
1341 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1342 			sc->nr_scanned -= (nr_pages - 1);
1343 			nr_pages = 1;
1344 		}
1345 
1346 		/*
1347 		 * The page is mapped into the page tables of one or more
1348 		 * processes. Try to unmap it here.
1349 		 */
1350 		if (page_mapped(page)) {
1351 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1352 
1353 			if (unlikely(PageTransHuge(page)))
1354 				flags |= TTU_SPLIT_HUGE_PMD;
1355 			if (!try_to_unmap(page, flags)) {
1356 				stat->nr_unmap_fail += nr_pages;
1357 				goto activate_locked;
1358 			}
1359 		}
1360 
1361 		if (PageDirty(page)) {
1362 			/*
1363 			 * Only kswapd can writeback filesystem pages
1364 			 * to avoid risk of stack overflow. But avoid
1365 			 * injecting inefficient single-page IO into
1366 			 * flusher writeback as much as possible: only
1367 			 * write pages when we've encountered many
1368 			 * dirty pages, and when we've already scanned
1369 			 * the rest of the LRU for clean pages and see
1370 			 * the same dirty pages again (PageReclaim).
1371 			 */
1372 			if (page_is_file_cache(page) &&
1373 			    (!current_is_kswapd() || !PageReclaim(page) ||
1374 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1375 				/*
1376 				 * Immediately reclaim when written back.
1377 				 * Similar in principal to deactivate_page()
1378 				 * except we already have the page isolated
1379 				 * and know it's dirty
1380 				 */
1381 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1382 				SetPageReclaim(page);
1383 
1384 				goto activate_locked;
1385 			}
1386 
1387 			if (references == PAGEREF_RECLAIM_CLEAN)
1388 				goto keep_locked;
1389 			if (!may_enter_fs)
1390 				goto keep_locked;
1391 			if (!sc->may_writepage)
1392 				goto keep_locked;
1393 
1394 			/*
1395 			 * Page is dirty. Flush the TLB if a writable entry
1396 			 * potentially exists to avoid CPU writes after IO
1397 			 * starts and then write it out here.
1398 			 */
1399 			try_to_unmap_flush_dirty();
1400 			switch (pageout(page, mapping, sc)) {
1401 			case PAGE_KEEP:
1402 				goto keep_locked;
1403 			case PAGE_ACTIVATE:
1404 				goto activate_locked;
1405 			case PAGE_SUCCESS:
1406 				if (PageWriteback(page))
1407 					goto keep;
1408 				if (PageDirty(page))
1409 					goto keep;
1410 
1411 				/*
1412 				 * A synchronous write - probably a ramdisk.  Go
1413 				 * ahead and try to reclaim the page.
1414 				 */
1415 				if (!trylock_page(page))
1416 					goto keep;
1417 				if (PageDirty(page) || PageWriteback(page))
1418 					goto keep_locked;
1419 				mapping = page_mapping(page);
1420 			case PAGE_CLEAN:
1421 				; /* try to free the page below */
1422 			}
1423 		}
1424 
1425 		/*
1426 		 * If the page has buffers, try to free the buffer mappings
1427 		 * associated with this page. If we succeed we try to free
1428 		 * the page as well.
1429 		 *
1430 		 * We do this even if the page is PageDirty().
1431 		 * try_to_release_page() does not perform I/O, but it is
1432 		 * possible for a page to have PageDirty set, but it is actually
1433 		 * clean (all its buffers are clean).  This happens if the
1434 		 * buffers were written out directly, with submit_bh(). ext3
1435 		 * will do this, as well as the blockdev mapping.
1436 		 * try_to_release_page() will discover that cleanness and will
1437 		 * drop the buffers and mark the page clean - it can be freed.
1438 		 *
1439 		 * Rarely, pages can have buffers and no ->mapping.  These are
1440 		 * the pages which were not successfully invalidated in
1441 		 * truncate_complete_page().  We try to drop those buffers here
1442 		 * and if that worked, and the page is no longer mapped into
1443 		 * process address space (page_count == 1) it can be freed.
1444 		 * Otherwise, leave the page on the LRU so it is swappable.
1445 		 */
1446 		if (page_has_private(page)) {
1447 			if (!try_to_release_page(page, sc->gfp_mask))
1448 				goto activate_locked;
1449 			if (!mapping && page_count(page) == 1) {
1450 				unlock_page(page);
1451 				if (put_page_testzero(page))
1452 					goto free_it;
1453 				else {
1454 					/*
1455 					 * rare race with speculative reference.
1456 					 * the speculative reference will free
1457 					 * this page shortly, so we may
1458 					 * increment nr_reclaimed here (and
1459 					 * leave it off the LRU).
1460 					 */
1461 					nr_reclaimed++;
1462 					continue;
1463 				}
1464 			}
1465 		}
1466 
1467 		if (PageAnon(page) && !PageSwapBacked(page)) {
1468 			/* follow __remove_mapping for reference */
1469 			if (!page_ref_freeze(page, 1))
1470 				goto keep_locked;
1471 			if (PageDirty(page)) {
1472 				page_ref_unfreeze(page, 1);
1473 				goto keep_locked;
1474 			}
1475 
1476 			count_vm_event(PGLAZYFREED);
1477 			count_memcg_page_event(page, PGLAZYFREED);
1478 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1479 			goto keep_locked;
1480 
1481 		unlock_page(page);
1482 free_it:
1483 		/*
1484 		 * THP may get swapped out in a whole, need account
1485 		 * all base pages.
1486 		 */
1487 		nr_reclaimed += nr_pages;
1488 
1489 		/*
1490 		 * Is there need to periodically free_page_list? It would
1491 		 * appear not as the counts should be low
1492 		 */
1493 		if (unlikely(PageTransHuge(page))) {
1494 			mem_cgroup_uncharge(page);
1495 			(*get_compound_page_dtor(page))(page);
1496 		} else
1497 			list_add(&page->lru, &free_pages);
1498 		continue;
1499 
1500 activate_locked_split:
1501 		/*
1502 		 * The tail pages that are failed to add into swap cache
1503 		 * reach here.  Fixup nr_scanned and nr_pages.
1504 		 */
1505 		if (nr_pages > 1) {
1506 			sc->nr_scanned -= (nr_pages - 1);
1507 			nr_pages = 1;
1508 		}
1509 activate_locked:
1510 		/* Not a candidate for swapping, so reclaim swap space. */
1511 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1512 						PageMlocked(page)))
1513 			try_to_free_swap(page);
1514 		VM_BUG_ON_PAGE(PageActive(page), page);
1515 		if (!PageMlocked(page)) {
1516 			int type = page_is_file_cache(page);
1517 			SetPageActive(page);
1518 			stat->nr_activate[type] += nr_pages;
1519 			count_memcg_page_event(page, PGACTIVATE);
1520 		}
1521 keep_locked:
1522 		unlock_page(page);
1523 keep:
1524 		list_add(&page->lru, &ret_pages);
1525 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1526 	}
1527 
1528 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1529 
1530 	mem_cgroup_uncharge_list(&free_pages);
1531 	try_to_unmap_flush();
1532 	free_unref_page_list(&free_pages);
1533 
1534 	list_splice(&ret_pages, page_list);
1535 	count_vm_events(PGACTIVATE, pgactivate);
1536 
1537 	return nr_reclaimed;
1538 }
1539 
1540 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1541 					    struct list_head *page_list)
1542 {
1543 	struct scan_control sc = {
1544 		.gfp_mask = GFP_KERNEL,
1545 		.priority = DEF_PRIORITY,
1546 		.may_unmap = 1,
1547 	};
1548 	struct reclaim_stat dummy_stat;
1549 	unsigned long ret;
1550 	struct page *page, *next;
1551 	LIST_HEAD(clean_pages);
1552 
1553 	list_for_each_entry_safe(page, next, page_list, lru) {
1554 		if (page_is_file_cache(page) && !PageDirty(page) &&
1555 		    !__PageMovable(page) && !PageUnevictable(page)) {
1556 			ClearPageActive(page);
1557 			list_move(&page->lru, &clean_pages);
1558 		}
1559 	}
1560 
1561 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1562 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1563 	list_splice(&clean_pages, page_list);
1564 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1565 	return ret;
1566 }
1567 
1568 /*
1569  * Attempt to remove the specified page from its LRU.  Only take this page
1570  * if it is of the appropriate PageActive status.  Pages which are being
1571  * freed elsewhere are also ignored.
1572  *
1573  * page:	page to consider
1574  * mode:	one of the LRU isolation modes defined above
1575  *
1576  * returns 0 on success, -ve errno on failure.
1577  */
1578 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1579 {
1580 	int ret = -EINVAL;
1581 
1582 	/* Only take pages on the LRU. */
1583 	if (!PageLRU(page))
1584 		return ret;
1585 
1586 	/* Compaction should not handle unevictable pages but CMA can do so */
1587 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1588 		return ret;
1589 
1590 	ret = -EBUSY;
1591 
1592 	/*
1593 	 * To minimise LRU disruption, the caller can indicate that it only
1594 	 * wants to isolate pages it will be able to operate on without
1595 	 * blocking - clean pages for the most part.
1596 	 *
1597 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1598 	 * that it is possible to migrate without blocking
1599 	 */
1600 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1601 		/* All the caller can do on PageWriteback is block */
1602 		if (PageWriteback(page))
1603 			return ret;
1604 
1605 		if (PageDirty(page)) {
1606 			struct address_space *mapping;
1607 			bool migrate_dirty;
1608 
1609 			/*
1610 			 * Only pages without mappings or that have a
1611 			 * ->migratepage callback are possible to migrate
1612 			 * without blocking. However, we can be racing with
1613 			 * truncation so it's necessary to lock the page
1614 			 * to stabilise the mapping as truncation holds
1615 			 * the page lock until after the page is removed
1616 			 * from the page cache.
1617 			 */
1618 			if (!trylock_page(page))
1619 				return ret;
1620 
1621 			mapping = page_mapping(page);
1622 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1623 			unlock_page(page);
1624 			if (!migrate_dirty)
1625 				return ret;
1626 		}
1627 	}
1628 
1629 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1630 		return ret;
1631 
1632 	if (likely(get_page_unless_zero(page))) {
1633 		/*
1634 		 * Be careful not to clear PageLRU until after we're
1635 		 * sure the page is not being freed elsewhere -- the
1636 		 * page release code relies on it.
1637 		 */
1638 		ClearPageLRU(page);
1639 		ret = 0;
1640 	}
1641 
1642 	return ret;
1643 }
1644 
1645 
1646 /*
1647  * Update LRU sizes after isolating pages. The LRU size updates must
1648  * be complete before mem_cgroup_update_lru_size due to a santity check.
1649  */
1650 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1651 			enum lru_list lru, unsigned long *nr_zone_taken)
1652 {
1653 	int zid;
1654 
1655 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 		if (!nr_zone_taken[zid])
1657 			continue;
1658 
1659 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1660 #ifdef CONFIG_MEMCG
1661 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1662 #endif
1663 	}
1664 
1665 }
1666 
1667 /**
1668  * pgdat->lru_lock is heavily contended.  Some of the functions that
1669  * shrink the lists perform better by taking out a batch of pages
1670  * and working on them outside the LRU lock.
1671  *
1672  * For pagecache intensive workloads, this function is the hottest
1673  * spot in the kernel (apart from copy_*_user functions).
1674  *
1675  * Appropriate locks must be held before calling this function.
1676  *
1677  * @nr_to_scan:	The number of eligible pages to look through on the list.
1678  * @lruvec:	The LRU vector to pull pages from.
1679  * @dst:	The temp list to put pages on to.
1680  * @nr_scanned:	The number of pages that were scanned.
1681  * @sc:		The scan_control struct for this reclaim session
1682  * @mode:	One of the LRU isolation modes
1683  * @lru:	LRU list id for isolating
1684  *
1685  * returns how many pages were moved onto *@dst.
1686  */
1687 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1688 		struct lruvec *lruvec, struct list_head *dst,
1689 		unsigned long *nr_scanned, struct scan_control *sc,
1690 		enum lru_list lru)
1691 {
1692 	struct list_head *src = &lruvec->lists[lru];
1693 	unsigned long nr_taken = 0;
1694 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1695 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1696 	unsigned long skipped = 0;
1697 	unsigned long scan, total_scan, nr_pages;
1698 	LIST_HEAD(pages_skipped);
1699 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1700 
1701 	total_scan = 0;
1702 	scan = 0;
1703 	while (scan < nr_to_scan && !list_empty(src)) {
1704 		struct page *page;
1705 
1706 		page = lru_to_page(src);
1707 		prefetchw_prev_lru_page(page, src, flags);
1708 
1709 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1710 
1711 		nr_pages = 1 << compound_order(page);
1712 		total_scan += nr_pages;
1713 
1714 		if (page_zonenum(page) > sc->reclaim_idx) {
1715 			list_move(&page->lru, &pages_skipped);
1716 			nr_skipped[page_zonenum(page)] += nr_pages;
1717 			continue;
1718 		}
1719 
1720 		/*
1721 		 * Do not count skipped pages because that makes the function
1722 		 * return with no isolated pages if the LRU mostly contains
1723 		 * ineligible pages.  This causes the VM to not reclaim any
1724 		 * pages, triggering a premature OOM.
1725 		 *
1726 		 * Account all tail pages of THP.  This would not cause
1727 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1728 		 * only when the page is being freed somewhere else.
1729 		 */
1730 		scan += nr_pages;
1731 		switch (__isolate_lru_page(page, mode)) {
1732 		case 0:
1733 			nr_taken += nr_pages;
1734 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1735 			list_move(&page->lru, dst);
1736 			break;
1737 
1738 		case -EBUSY:
1739 			/* else it is being freed elsewhere */
1740 			list_move(&page->lru, src);
1741 			continue;
1742 
1743 		default:
1744 			BUG();
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * Splice any skipped pages to the start of the LRU list. Note that
1750 	 * this disrupts the LRU order when reclaiming for lower zones but
1751 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1752 	 * scanning would soon rescan the same pages to skip and put the
1753 	 * system at risk of premature OOM.
1754 	 */
1755 	if (!list_empty(&pages_skipped)) {
1756 		int zid;
1757 
1758 		list_splice(&pages_skipped, src);
1759 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1760 			if (!nr_skipped[zid])
1761 				continue;
1762 
1763 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1764 			skipped += nr_skipped[zid];
1765 		}
1766 	}
1767 	*nr_scanned = total_scan;
1768 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1769 				    total_scan, skipped, nr_taken, mode, lru);
1770 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1771 	return nr_taken;
1772 }
1773 
1774 /**
1775  * isolate_lru_page - tries to isolate a page from its LRU list
1776  * @page: page to isolate from its LRU list
1777  *
1778  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1779  * vmstat statistic corresponding to whatever LRU list the page was on.
1780  *
1781  * Returns 0 if the page was removed from an LRU list.
1782  * Returns -EBUSY if the page was not on an LRU list.
1783  *
1784  * The returned page will have PageLRU() cleared.  If it was found on
1785  * the active list, it will have PageActive set.  If it was found on
1786  * the unevictable list, it will have the PageUnevictable bit set. That flag
1787  * may need to be cleared by the caller before letting the page go.
1788  *
1789  * The vmstat statistic corresponding to the list on which the page was
1790  * found will be decremented.
1791  *
1792  * Restrictions:
1793  *
1794  * (1) Must be called with an elevated refcount on the page. This is a
1795  *     fundamentnal difference from isolate_lru_pages (which is called
1796  *     without a stable reference).
1797  * (2) the lru_lock must not be held.
1798  * (3) interrupts must be enabled.
1799  */
1800 int isolate_lru_page(struct page *page)
1801 {
1802 	int ret = -EBUSY;
1803 
1804 	VM_BUG_ON_PAGE(!page_count(page), page);
1805 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1806 
1807 	if (PageLRU(page)) {
1808 		pg_data_t *pgdat = page_pgdat(page);
1809 		struct lruvec *lruvec;
1810 
1811 		spin_lock_irq(&pgdat->lru_lock);
1812 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1813 		if (PageLRU(page)) {
1814 			int lru = page_lru(page);
1815 			get_page(page);
1816 			ClearPageLRU(page);
1817 			del_page_from_lru_list(page, lruvec, lru);
1818 			ret = 0;
1819 		}
1820 		spin_unlock_irq(&pgdat->lru_lock);
1821 	}
1822 	return ret;
1823 }
1824 
1825 /*
1826  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1827  * then get resheduled. When there are massive number of tasks doing page
1828  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1829  * the LRU list will go small and be scanned faster than necessary, leading to
1830  * unnecessary swapping, thrashing and OOM.
1831  */
1832 static int too_many_isolated(struct pglist_data *pgdat, int file,
1833 		struct scan_control *sc)
1834 {
1835 	unsigned long inactive, isolated;
1836 
1837 	if (current_is_kswapd())
1838 		return 0;
1839 
1840 	if (!sane_reclaim(sc))
1841 		return 0;
1842 
1843 	if (file) {
1844 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1845 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1846 	} else {
1847 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1848 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1849 	}
1850 
1851 	/*
1852 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1853 	 * won't get blocked by normal direct-reclaimers, forming a circular
1854 	 * deadlock.
1855 	 */
1856 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1857 		inactive >>= 3;
1858 
1859 	return isolated > inactive;
1860 }
1861 
1862 /*
1863  * This moves pages from @list to corresponding LRU list.
1864  *
1865  * We move them the other way if the page is referenced by one or more
1866  * processes, from rmap.
1867  *
1868  * If the pages are mostly unmapped, the processing is fast and it is
1869  * appropriate to hold zone_lru_lock across the whole operation.  But if
1870  * the pages are mapped, the processing is slow (page_referenced()) so we
1871  * should drop zone_lru_lock around each page.  It's impossible to balance
1872  * this, so instead we remove the pages from the LRU while processing them.
1873  * It is safe to rely on PG_active against the non-LRU pages in here because
1874  * nobody will play with that bit on a non-LRU page.
1875  *
1876  * The downside is that we have to touch page->_refcount against each page.
1877  * But we had to alter page->flags anyway.
1878  *
1879  * Returns the number of pages moved to the given lruvec.
1880  */
1881 
1882 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1883 						     struct list_head *list)
1884 {
1885 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1886 	int nr_pages, nr_moved = 0;
1887 	LIST_HEAD(pages_to_free);
1888 	struct page *page;
1889 	enum lru_list lru;
1890 
1891 	while (!list_empty(list)) {
1892 		page = lru_to_page(list);
1893 		VM_BUG_ON_PAGE(PageLRU(page), page);
1894 		if (unlikely(!page_evictable(page))) {
1895 			list_del(&page->lru);
1896 			spin_unlock_irq(&pgdat->lru_lock);
1897 			putback_lru_page(page);
1898 			spin_lock_irq(&pgdat->lru_lock);
1899 			continue;
1900 		}
1901 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1902 
1903 		SetPageLRU(page);
1904 		lru = page_lru(page);
1905 
1906 		nr_pages = hpage_nr_pages(page);
1907 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1908 		list_move(&page->lru, &lruvec->lists[lru]);
1909 
1910 		if (put_page_testzero(page)) {
1911 			__ClearPageLRU(page);
1912 			__ClearPageActive(page);
1913 			del_page_from_lru_list(page, lruvec, lru);
1914 
1915 			if (unlikely(PageCompound(page))) {
1916 				spin_unlock_irq(&pgdat->lru_lock);
1917 				mem_cgroup_uncharge(page);
1918 				(*get_compound_page_dtor(page))(page);
1919 				spin_lock_irq(&pgdat->lru_lock);
1920 			} else
1921 				list_add(&page->lru, &pages_to_free);
1922 		} else {
1923 			nr_moved += nr_pages;
1924 		}
1925 	}
1926 
1927 	/*
1928 	 * To save our caller's stack, now use input list for pages to free.
1929 	 */
1930 	list_splice(&pages_to_free, list);
1931 
1932 	return nr_moved;
1933 }
1934 
1935 /*
1936  * If a kernel thread (such as nfsd for loop-back mounts) services
1937  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1938  * In that case we should only throttle if the backing device it is
1939  * writing to is congested.  In other cases it is safe to throttle.
1940  */
1941 static int current_may_throttle(void)
1942 {
1943 	return !(current->flags & PF_LESS_THROTTLE) ||
1944 		current->backing_dev_info == NULL ||
1945 		bdi_write_congested(current->backing_dev_info);
1946 }
1947 
1948 /*
1949  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1950  * of reclaimed pages
1951  */
1952 static noinline_for_stack unsigned long
1953 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1954 		     struct scan_control *sc, enum lru_list lru)
1955 {
1956 	LIST_HEAD(page_list);
1957 	unsigned long nr_scanned;
1958 	unsigned long nr_reclaimed = 0;
1959 	unsigned long nr_taken;
1960 	struct reclaim_stat stat;
1961 	int file = is_file_lru(lru);
1962 	enum vm_event_item item;
1963 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1964 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1965 	bool stalled = false;
1966 
1967 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1968 		if (stalled)
1969 			return 0;
1970 
1971 		/* wait a bit for the reclaimer. */
1972 		msleep(100);
1973 		stalled = true;
1974 
1975 		/* We are about to die and free our memory. Return now. */
1976 		if (fatal_signal_pending(current))
1977 			return SWAP_CLUSTER_MAX;
1978 	}
1979 
1980 	lru_add_drain();
1981 
1982 	spin_lock_irq(&pgdat->lru_lock);
1983 
1984 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1985 				     &nr_scanned, sc, lru);
1986 
1987 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1988 	reclaim_stat->recent_scanned[file] += nr_taken;
1989 
1990 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1991 	if (global_reclaim(sc))
1992 		__count_vm_events(item, nr_scanned);
1993 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1994 	spin_unlock_irq(&pgdat->lru_lock);
1995 
1996 	if (nr_taken == 0)
1997 		return 0;
1998 
1999 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
2000 				&stat, false);
2001 
2002 	spin_lock_irq(&pgdat->lru_lock);
2003 
2004 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2005 	if (global_reclaim(sc))
2006 		__count_vm_events(item, nr_reclaimed);
2007 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2008 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2009 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2010 
2011 	move_pages_to_lru(lruvec, &page_list);
2012 
2013 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2014 
2015 	spin_unlock_irq(&pgdat->lru_lock);
2016 
2017 	mem_cgroup_uncharge_list(&page_list);
2018 	free_unref_page_list(&page_list);
2019 
2020 	/*
2021 	 * If dirty pages are scanned that are not queued for IO, it
2022 	 * implies that flushers are not doing their job. This can
2023 	 * happen when memory pressure pushes dirty pages to the end of
2024 	 * the LRU before the dirty limits are breached and the dirty
2025 	 * data has expired. It can also happen when the proportion of
2026 	 * dirty pages grows not through writes but through memory
2027 	 * pressure reclaiming all the clean cache. And in some cases,
2028 	 * the flushers simply cannot keep up with the allocation
2029 	 * rate. Nudge the flusher threads in case they are asleep.
2030 	 */
2031 	if (stat.nr_unqueued_dirty == nr_taken)
2032 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2033 
2034 	sc->nr.dirty += stat.nr_dirty;
2035 	sc->nr.congested += stat.nr_congested;
2036 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2037 	sc->nr.writeback += stat.nr_writeback;
2038 	sc->nr.immediate += stat.nr_immediate;
2039 	sc->nr.taken += nr_taken;
2040 	if (file)
2041 		sc->nr.file_taken += nr_taken;
2042 
2043 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2044 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2045 	return nr_reclaimed;
2046 }
2047 
2048 static void shrink_active_list(unsigned long nr_to_scan,
2049 			       struct lruvec *lruvec,
2050 			       struct scan_control *sc,
2051 			       enum lru_list lru)
2052 {
2053 	unsigned long nr_taken;
2054 	unsigned long nr_scanned;
2055 	unsigned long vm_flags;
2056 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2057 	LIST_HEAD(l_active);
2058 	LIST_HEAD(l_inactive);
2059 	struct page *page;
2060 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2061 	unsigned nr_deactivate, nr_activate;
2062 	unsigned nr_rotated = 0;
2063 	int file = is_file_lru(lru);
2064 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2065 
2066 	lru_add_drain();
2067 
2068 	spin_lock_irq(&pgdat->lru_lock);
2069 
2070 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2071 				     &nr_scanned, sc, lru);
2072 
2073 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2074 	reclaim_stat->recent_scanned[file] += nr_taken;
2075 
2076 	__count_vm_events(PGREFILL, nr_scanned);
2077 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2078 
2079 	spin_unlock_irq(&pgdat->lru_lock);
2080 
2081 	while (!list_empty(&l_hold)) {
2082 		cond_resched();
2083 		page = lru_to_page(&l_hold);
2084 		list_del(&page->lru);
2085 
2086 		if (unlikely(!page_evictable(page))) {
2087 			putback_lru_page(page);
2088 			continue;
2089 		}
2090 
2091 		if (unlikely(buffer_heads_over_limit)) {
2092 			if (page_has_private(page) && trylock_page(page)) {
2093 				if (page_has_private(page))
2094 					try_to_release_page(page, 0);
2095 				unlock_page(page);
2096 			}
2097 		}
2098 
2099 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2100 				    &vm_flags)) {
2101 			nr_rotated += hpage_nr_pages(page);
2102 			/*
2103 			 * Identify referenced, file-backed active pages and
2104 			 * give them one more trip around the active list. So
2105 			 * that executable code get better chances to stay in
2106 			 * memory under moderate memory pressure.  Anon pages
2107 			 * are not likely to be evicted by use-once streaming
2108 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2109 			 * so we ignore them here.
2110 			 */
2111 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2112 				list_add(&page->lru, &l_active);
2113 				continue;
2114 			}
2115 		}
2116 
2117 		ClearPageActive(page);	/* we are de-activating */
2118 		SetPageWorkingset(page);
2119 		list_add(&page->lru, &l_inactive);
2120 	}
2121 
2122 	/*
2123 	 * Move pages back to the lru list.
2124 	 */
2125 	spin_lock_irq(&pgdat->lru_lock);
2126 	/*
2127 	 * Count referenced pages from currently used mappings as rotated,
2128 	 * even though only some of them are actually re-activated.  This
2129 	 * helps balance scan pressure between file and anonymous pages in
2130 	 * get_scan_count.
2131 	 */
2132 	reclaim_stat->recent_rotated[file] += nr_rotated;
2133 
2134 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2135 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2136 	/* Keep all free pages in l_active list */
2137 	list_splice(&l_inactive, &l_active);
2138 
2139 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2140 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2141 
2142 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2143 	spin_unlock_irq(&pgdat->lru_lock);
2144 
2145 	mem_cgroup_uncharge_list(&l_active);
2146 	free_unref_page_list(&l_active);
2147 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2148 			nr_deactivate, nr_rotated, sc->priority, file);
2149 }
2150 
2151 /*
2152  * The inactive anon list should be small enough that the VM never has
2153  * to do too much work.
2154  *
2155  * The inactive file list should be small enough to leave most memory
2156  * to the established workingset on the scan-resistant active list,
2157  * but large enough to avoid thrashing the aggregate readahead window.
2158  *
2159  * Both inactive lists should also be large enough that each inactive
2160  * page has a chance to be referenced again before it is reclaimed.
2161  *
2162  * If that fails and refaulting is observed, the inactive list grows.
2163  *
2164  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2165  * on this LRU, maintained by the pageout code. An inactive_ratio
2166  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2167  *
2168  * total     target    max
2169  * memory    ratio     inactive
2170  * -------------------------------------
2171  *   10MB       1         5MB
2172  *  100MB       1        50MB
2173  *    1GB       3       250MB
2174  *   10GB      10       0.9GB
2175  *  100GB      31         3GB
2176  *    1TB     101        10GB
2177  *   10TB     320        32GB
2178  */
2179 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2180 				 struct scan_control *sc, bool trace)
2181 {
2182 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2183 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2184 	enum lru_list inactive_lru = file * LRU_FILE;
2185 	unsigned long inactive, active;
2186 	unsigned long inactive_ratio;
2187 	unsigned long refaults;
2188 	unsigned long gb;
2189 
2190 	/*
2191 	 * If we don't have swap space, anonymous page deactivation
2192 	 * is pointless.
2193 	 */
2194 	if (!file && !total_swap_pages)
2195 		return false;
2196 
2197 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2198 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2199 
2200 	/*
2201 	 * When refaults are being observed, it means a new workingset
2202 	 * is being established. Disable active list protection to get
2203 	 * rid of the stale workingset quickly.
2204 	 */
2205 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2206 	if (file && lruvec->refaults != refaults) {
2207 		inactive_ratio = 0;
2208 	} else {
2209 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2210 		if (gb)
2211 			inactive_ratio = int_sqrt(10 * gb);
2212 		else
2213 			inactive_ratio = 1;
2214 	}
2215 
2216 	if (trace)
2217 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2218 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2219 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2220 			inactive_ratio, file);
2221 
2222 	return inactive * inactive_ratio < active;
2223 }
2224 
2225 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2226 				 struct lruvec *lruvec, struct scan_control *sc)
2227 {
2228 	if (is_active_lru(lru)) {
2229 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2230 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2231 		return 0;
2232 	}
2233 
2234 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2235 }
2236 
2237 enum scan_balance {
2238 	SCAN_EQUAL,
2239 	SCAN_FRACT,
2240 	SCAN_ANON,
2241 	SCAN_FILE,
2242 };
2243 
2244 /*
2245  * Determine how aggressively the anon and file LRU lists should be
2246  * scanned.  The relative value of each set of LRU lists is determined
2247  * by looking at the fraction of the pages scanned we did rotate back
2248  * onto the active list instead of evict.
2249  *
2250  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2251  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2252  */
2253 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2254 			   struct scan_control *sc, unsigned long *nr,
2255 			   unsigned long *lru_pages)
2256 {
2257 	int swappiness = mem_cgroup_swappiness(memcg);
2258 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2259 	u64 fraction[2];
2260 	u64 denominator = 0;	/* gcc */
2261 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2262 	unsigned long anon_prio, file_prio;
2263 	enum scan_balance scan_balance;
2264 	unsigned long anon, file;
2265 	unsigned long ap, fp;
2266 	enum lru_list lru;
2267 
2268 	/* If we have no swap space, do not bother scanning anon pages. */
2269 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2270 		scan_balance = SCAN_FILE;
2271 		goto out;
2272 	}
2273 
2274 	/*
2275 	 * Global reclaim will swap to prevent OOM even with no
2276 	 * swappiness, but memcg users want to use this knob to
2277 	 * disable swapping for individual groups completely when
2278 	 * using the memory controller's swap limit feature would be
2279 	 * too expensive.
2280 	 */
2281 	if (!global_reclaim(sc) && !swappiness) {
2282 		scan_balance = SCAN_FILE;
2283 		goto out;
2284 	}
2285 
2286 	/*
2287 	 * Do not apply any pressure balancing cleverness when the
2288 	 * system is close to OOM, scan both anon and file equally
2289 	 * (unless the swappiness setting disagrees with swapping).
2290 	 */
2291 	if (!sc->priority && swappiness) {
2292 		scan_balance = SCAN_EQUAL;
2293 		goto out;
2294 	}
2295 
2296 	/*
2297 	 * Prevent the reclaimer from falling into the cache trap: as
2298 	 * cache pages start out inactive, every cache fault will tip
2299 	 * the scan balance towards the file LRU.  And as the file LRU
2300 	 * shrinks, so does the window for rotation from references.
2301 	 * This means we have a runaway feedback loop where a tiny
2302 	 * thrashing file LRU becomes infinitely more attractive than
2303 	 * anon pages.  Try to detect this based on file LRU size.
2304 	 */
2305 	if (global_reclaim(sc)) {
2306 		unsigned long pgdatfile;
2307 		unsigned long pgdatfree;
2308 		int z;
2309 		unsigned long total_high_wmark = 0;
2310 
2311 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2312 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2313 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2314 
2315 		for (z = 0; z < MAX_NR_ZONES; z++) {
2316 			struct zone *zone = &pgdat->node_zones[z];
2317 			if (!managed_zone(zone))
2318 				continue;
2319 
2320 			total_high_wmark += high_wmark_pages(zone);
2321 		}
2322 
2323 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2324 			/*
2325 			 * Force SCAN_ANON if there are enough inactive
2326 			 * anonymous pages on the LRU in eligible zones.
2327 			 * Otherwise, the small LRU gets thrashed.
2328 			 */
2329 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2330 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2331 					>> sc->priority) {
2332 				scan_balance = SCAN_ANON;
2333 				goto out;
2334 			}
2335 		}
2336 	}
2337 
2338 	/*
2339 	 * If there is enough inactive page cache, i.e. if the size of the
2340 	 * inactive list is greater than that of the active list *and* the
2341 	 * inactive list actually has some pages to scan on this priority, we
2342 	 * do not reclaim anything from the anonymous working set right now.
2343 	 * Without the second condition we could end up never scanning an
2344 	 * lruvec even if it has plenty of old anonymous pages unless the
2345 	 * system is under heavy pressure.
2346 	 */
2347 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2348 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2349 		scan_balance = SCAN_FILE;
2350 		goto out;
2351 	}
2352 
2353 	scan_balance = SCAN_FRACT;
2354 
2355 	/*
2356 	 * With swappiness at 100, anonymous and file have the same priority.
2357 	 * This scanning priority is essentially the inverse of IO cost.
2358 	 */
2359 	anon_prio = swappiness;
2360 	file_prio = 200 - anon_prio;
2361 
2362 	/*
2363 	 * OK, so we have swap space and a fair amount of page cache
2364 	 * pages.  We use the recently rotated / recently scanned
2365 	 * ratios to determine how valuable each cache is.
2366 	 *
2367 	 * Because workloads change over time (and to avoid overflow)
2368 	 * we keep these statistics as a floating average, which ends
2369 	 * up weighing recent references more than old ones.
2370 	 *
2371 	 * anon in [0], file in [1]
2372 	 */
2373 
2374 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2375 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2376 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2377 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2378 
2379 	spin_lock_irq(&pgdat->lru_lock);
2380 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2381 		reclaim_stat->recent_scanned[0] /= 2;
2382 		reclaim_stat->recent_rotated[0] /= 2;
2383 	}
2384 
2385 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2386 		reclaim_stat->recent_scanned[1] /= 2;
2387 		reclaim_stat->recent_rotated[1] /= 2;
2388 	}
2389 
2390 	/*
2391 	 * The amount of pressure on anon vs file pages is inversely
2392 	 * proportional to the fraction of recently scanned pages on
2393 	 * each list that were recently referenced and in active use.
2394 	 */
2395 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2396 	ap /= reclaim_stat->recent_rotated[0] + 1;
2397 
2398 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2399 	fp /= reclaim_stat->recent_rotated[1] + 1;
2400 	spin_unlock_irq(&pgdat->lru_lock);
2401 
2402 	fraction[0] = ap;
2403 	fraction[1] = fp;
2404 	denominator = ap + fp + 1;
2405 out:
2406 	*lru_pages = 0;
2407 	for_each_evictable_lru(lru) {
2408 		int file = is_file_lru(lru);
2409 		unsigned long size;
2410 		unsigned long scan;
2411 
2412 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2413 		scan = size >> sc->priority;
2414 		/*
2415 		 * If the cgroup's already been deleted, make sure to
2416 		 * scrape out the remaining cache.
2417 		 */
2418 		if (!scan && !mem_cgroup_online(memcg))
2419 			scan = min(size, SWAP_CLUSTER_MAX);
2420 
2421 		switch (scan_balance) {
2422 		case SCAN_EQUAL:
2423 			/* Scan lists relative to size */
2424 			break;
2425 		case SCAN_FRACT:
2426 			/*
2427 			 * Scan types proportional to swappiness and
2428 			 * their relative recent reclaim efficiency.
2429 			 * Make sure we don't miss the last page
2430 			 * because of a round-off error.
2431 			 */
2432 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2433 						  denominator);
2434 			break;
2435 		case SCAN_FILE:
2436 		case SCAN_ANON:
2437 			/* Scan one type exclusively */
2438 			if ((scan_balance == SCAN_FILE) != file) {
2439 				size = 0;
2440 				scan = 0;
2441 			}
2442 			break;
2443 		default:
2444 			/* Look ma, no brain */
2445 			BUG();
2446 		}
2447 
2448 		*lru_pages += size;
2449 		nr[lru] = scan;
2450 	}
2451 }
2452 
2453 /*
2454  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2455  */
2456 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2457 			      struct scan_control *sc, unsigned long *lru_pages)
2458 {
2459 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2460 	unsigned long nr[NR_LRU_LISTS];
2461 	unsigned long targets[NR_LRU_LISTS];
2462 	unsigned long nr_to_scan;
2463 	enum lru_list lru;
2464 	unsigned long nr_reclaimed = 0;
2465 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2466 	struct blk_plug plug;
2467 	bool scan_adjusted;
2468 
2469 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2470 
2471 	/* Record the original scan target for proportional adjustments later */
2472 	memcpy(targets, nr, sizeof(nr));
2473 
2474 	/*
2475 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2476 	 * event that can occur when there is little memory pressure e.g.
2477 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2478 	 * when the requested number of pages are reclaimed when scanning at
2479 	 * DEF_PRIORITY on the assumption that the fact we are direct
2480 	 * reclaiming implies that kswapd is not keeping up and it is best to
2481 	 * do a batch of work at once. For memcg reclaim one check is made to
2482 	 * abort proportional reclaim if either the file or anon lru has already
2483 	 * dropped to zero at the first pass.
2484 	 */
2485 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2486 			 sc->priority == DEF_PRIORITY);
2487 
2488 	blk_start_plug(&plug);
2489 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2490 					nr[LRU_INACTIVE_FILE]) {
2491 		unsigned long nr_anon, nr_file, percentage;
2492 		unsigned long nr_scanned;
2493 
2494 		for_each_evictable_lru(lru) {
2495 			if (nr[lru]) {
2496 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2497 				nr[lru] -= nr_to_scan;
2498 
2499 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2500 							    lruvec, sc);
2501 			}
2502 		}
2503 
2504 		cond_resched();
2505 
2506 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2507 			continue;
2508 
2509 		/*
2510 		 * For kswapd and memcg, reclaim at least the number of pages
2511 		 * requested. Ensure that the anon and file LRUs are scanned
2512 		 * proportionally what was requested by get_scan_count(). We
2513 		 * stop reclaiming one LRU and reduce the amount scanning
2514 		 * proportional to the original scan target.
2515 		 */
2516 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2517 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2518 
2519 		/*
2520 		 * It's just vindictive to attack the larger once the smaller
2521 		 * has gone to zero.  And given the way we stop scanning the
2522 		 * smaller below, this makes sure that we only make one nudge
2523 		 * towards proportionality once we've got nr_to_reclaim.
2524 		 */
2525 		if (!nr_file || !nr_anon)
2526 			break;
2527 
2528 		if (nr_file > nr_anon) {
2529 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2530 						targets[LRU_ACTIVE_ANON] + 1;
2531 			lru = LRU_BASE;
2532 			percentage = nr_anon * 100 / scan_target;
2533 		} else {
2534 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2535 						targets[LRU_ACTIVE_FILE] + 1;
2536 			lru = LRU_FILE;
2537 			percentage = nr_file * 100 / scan_target;
2538 		}
2539 
2540 		/* Stop scanning the smaller of the LRU */
2541 		nr[lru] = 0;
2542 		nr[lru + LRU_ACTIVE] = 0;
2543 
2544 		/*
2545 		 * Recalculate the other LRU scan count based on its original
2546 		 * scan target and the percentage scanning already complete
2547 		 */
2548 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2549 		nr_scanned = targets[lru] - nr[lru];
2550 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2551 		nr[lru] -= min(nr[lru], nr_scanned);
2552 
2553 		lru += LRU_ACTIVE;
2554 		nr_scanned = targets[lru] - nr[lru];
2555 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2556 		nr[lru] -= min(nr[lru], nr_scanned);
2557 
2558 		scan_adjusted = true;
2559 	}
2560 	blk_finish_plug(&plug);
2561 	sc->nr_reclaimed += nr_reclaimed;
2562 
2563 	/*
2564 	 * Even if we did not try to evict anon pages at all, we want to
2565 	 * rebalance the anon lru active/inactive ratio.
2566 	 */
2567 	if (inactive_list_is_low(lruvec, false, sc, true))
2568 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2569 				   sc, LRU_ACTIVE_ANON);
2570 }
2571 
2572 /* Use reclaim/compaction for costly allocs or under memory pressure */
2573 static bool in_reclaim_compaction(struct scan_control *sc)
2574 {
2575 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2576 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2577 			 sc->priority < DEF_PRIORITY - 2))
2578 		return true;
2579 
2580 	return false;
2581 }
2582 
2583 /*
2584  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2585  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2586  * true if more pages should be reclaimed such that when the page allocator
2587  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2588  * It will give up earlier than that if there is difficulty reclaiming pages.
2589  */
2590 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2591 					unsigned long nr_reclaimed,
2592 					unsigned long nr_scanned,
2593 					struct scan_control *sc)
2594 {
2595 	unsigned long pages_for_compaction;
2596 	unsigned long inactive_lru_pages;
2597 	int z;
2598 
2599 	/* If not in reclaim/compaction mode, stop */
2600 	if (!in_reclaim_compaction(sc))
2601 		return false;
2602 
2603 	/* Consider stopping depending on scan and reclaim activity */
2604 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2605 		/*
2606 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2607 		 * full LRU list has been scanned and we are still failing
2608 		 * to reclaim pages. This full LRU scan is potentially
2609 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2610 		 */
2611 		if (!nr_reclaimed && !nr_scanned)
2612 			return false;
2613 	} else {
2614 		/*
2615 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2616 		 * fail without consequence, stop if we failed to reclaim
2617 		 * any pages from the last SWAP_CLUSTER_MAX number of
2618 		 * pages that were scanned. This will return to the
2619 		 * caller faster at the risk reclaim/compaction and
2620 		 * the resulting allocation attempt fails
2621 		 */
2622 		if (!nr_reclaimed)
2623 			return false;
2624 	}
2625 
2626 	/*
2627 	 * If we have not reclaimed enough pages for compaction and the
2628 	 * inactive lists are large enough, continue reclaiming
2629 	 */
2630 	pages_for_compaction = compact_gap(sc->order);
2631 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2632 	if (get_nr_swap_pages() > 0)
2633 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2634 	if (sc->nr_reclaimed < pages_for_compaction &&
2635 			inactive_lru_pages > pages_for_compaction)
2636 		return true;
2637 
2638 	/* If compaction would go ahead or the allocation would succeed, stop */
2639 	for (z = 0; z <= sc->reclaim_idx; z++) {
2640 		struct zone *zone = &pgdat->node_zones[z];
2641 		if (!managed_zone(zone))
2642 			continue;
2643 
2644 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2645 		case COMPACT_SUCCESS:
2646 		case COMPACT_CONTINUE:
2647 			return false;
2648 		default:
2649 			/* check next zone */
2650 			;
2651 		}
2652 	}
2653 	return true;
2654 }
2655 
2656 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2657 {
2658 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2659 		(memcg && memcg_congested(pgdat, memcg));
2660 }
2661 
2662 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2663 {
2664 	struct reclaim_state *reclaim_state = current->reclaim_state;
2665 	unsigned long nr_reclaimed, nr_scanned;
2666 	bool reclaimable = false;
2667 
2668 	do {
2669 		struct mem_cgroup *root = sc->target_mem_cgroup;
2670 		struct mem_cgroup_reclaim_cookie reclaim = {
2671 			.pgdat = pgdat,
2672 			.priority = sc->priority,
2673 		};
2674 		unsigned long node_lru_pages = 0;
2675 		struct mem_cgroup *memcg;
2676 
2677 		memset(&sc->nr, 0, sizeof(sc->nr));
2678 
2679 		nr_reclaimed = sc->nr_reclaimed;
2680 		nr_scanned = sc->nr_scanned;
2681 
2682 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2683 		do {
2684 			unsigned long lru_pages;
2685 			unsigned long reclaimed;
2686 			unsigned long scanned;
2687 
2688 			switch (mem_cgroup_protected(root, memcg)) {
2689 			case MEMCG_PROT_MIN:
2690 				/*
2691 				 * Hard protection.
2692 				 * If there is no reclaimable memory, OOM.
2693 				 */
2694 				continue;
2695 			case MEMCG_PROT_LOW:
2696 				/*
2697 				 * Soft protection.
2698 				 * Respect the protection only as long as
2699 				 * there is an unprotected supply
2700 				 * of reclaimable memory from other cgroups.
2701 				 */
2702 				if (!sc->memcg_low_reclaim) {
2703 					sc->memcg_low_skipped = 1;
2704 					continue;
2705 				}
2706 				memcg_memory_event(memcg, MEMCG_LOW);
2707 				break;
2708 			case MEMCG_PROT_NONE:
2709 				break;
2710 			}
2711 
2712 			reclaimed = sc->nr_reclaimed;
2713 			scanned = sc->nr_scanned;
2714 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2715 			node_lru_pages += lru_pages;
2716 
2717 			if (sc->may_shrinkslab) {
2718 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2719 				    memcg, sc->priority);
2720 			}
2721 
2722 			/* Record the group's reclaim efficiency */
2723 			vmpressure(sc->gfp_mask, memcg, false,
2724 				   sc->nr_scanned - scanned,
2725 				   sc->nr_reclaimed - reclaimed);
2726 
2727 			/*
2728 			 * Kswapd have to scan all memory cgroups to fulfill
2729 			 * the overall scan target for the node.
2730 			 *
2731 			 * Limit reclaim, on the other hand, only cares about
2732 			 * nr_to_reclaim pages to be reclaimed and it will
2733 			 * retry with decreasing priority if one round over the
2734 			 * whole hierarchy is not sufficient.
2735 			 */
2736 			if (!current_is_kswapd() &&
2737 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2738 				mem_cgroup_iter_break(root, memcg);
2739 				break;
2740 			}
2741 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2742 
2743 		if (reclaim_state) {
2744 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2745 			reclaim_state->reclaimed_slab = 0;
2746 		}
2747 
2748 		/* Record the subtree's reclaim efficiency */
2749 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2750 			   sc->nr_scanned - nr_scanned,
2751 			   sc->nr_reclaimed - nr_reclaimed);
2752 
2753 		if (sc->nr_reclaimed - nr_reclaimed)
2754 			reclaimable = true;
2755 
2756 		if (current_is_kswapd()) {
2757 			/*
2758 			 * If reclaim is isolating dirty pages under writeback,
2759 			 * it implies that the long-lived page allocation rate
2760 			 * is exceeding the page laundering rate. Either the
2761 			 * global limits are not being effective at throttling
2762 			 * processes due to the page distribution throughout
2763 			 * zones or there is heavy usage of a slow backing
2764 			 * device. The only option is to throttle from reclaim
2765 			 * context which is not ideal as there is no guarantee
2766 			 * the dirtying process is throttled in the same way
2767 			 * balance_dirty_pages() manages.
2768 			 *
2769 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2770 			 * count the number of pages under pages flagged for
2771 			 * immediate reclaim and stall if any are encountered
2772 			 * in the nr_immediate check below.
2773 			 */
2774 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2775 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2776 
2777 			/*
2778 			 * Tag a node as congested if all the dirty pages
2779 			 * scanned were backed by a congested BDI and
2780 			 * wait_iff_congested will stall.
2781 			 */
2782 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2783 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2784 
2785 			/* Allow kswapd to start writing pages during reclaim.*/
2786 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2787 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2788 
2789 			/*
2790 			 * If kswapd scans pages marked marked for immediate
2791 			 * reclaim and under writeback (nr_immediate), it
2792 			 * implies that pages are cycling through the LRU
2793 			 * faster than they are written so also forcibly stall.
2794 			 */
2795 			if (sc->nr.immediate)
2796 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2797 		}
2798 
2799 		/*
2800 		 * Legacy memcg will stall in page writeback so avoid forcibly
2801 		 * stalling in wait_iff_congested().
2802 		 */
2803 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2804 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2805 			set_memcg_congestion(pgdat, root, true);
2806 
2807 		/*
2808 		 * Stall direct reclaim for IO completions if underlying BDIs
2809 		 * and node is congested. Allow kswapd to continue until it
2810 		 * starts encountering unqueued dirty pages or cycling through
2811 		 * the LRU too quickly.
2812 		 */
2813 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2814 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2815 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2816 
2817 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2818 					 sc->nr_scanned - nr_scanned, sc));
2819 
2820 	/*
2821 	 * Kswapd gives up on balancing particular nodes after too
2822 	 * many failures to reclaim anything from them and goes to
2823 	 * sleep. On reclaim progress, reset the failure counter. A
2824 	 * successful direct reclaim run will revive a dormant kswapd.
2825 	 */
2826 	if (reclaimable)
2827 		pgdat->kswapd_failures = 0;
2828 
2829 	return reclaimable;
2830 }
2831 
2832 /*
2833  * Returns true if compaction should go ahead for a costly-order request, or
2834  * the allocation would already succeed without compaction. Return false if we
2835  * should reclaim first.
2836  */
2837 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2838 {
2839 	unsigned long watermark;
2840 	enum compact_result suitable;
2841 
2842 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2843 	if (suitable == COMPACT_SUCCESS)
2844 		/* Allocation should succeed already. Don't reclaim. */
2845 		return true;
2846 	if (suitable == COMPACT_SKIPPED)
2847 		/* Compaction cannot yet proceed. Do reclaim. */
2848 		return false;
2849 
2850 	/*
2851 	 * Compaction is already possible, but it takes time to run and there
2852 	 * are potentially other callers using the pages just freed. So proceed
2853 	 * with reclaim to make a buffer of free pages available to give
2854 	 * compaction a reasonable chance of completing and allocating the page.
2855 	 * Note that we won't actually reclaim the whole buffer in one attempt
2856 	 * as the target watermark in should_continue_reclaim() is lower. But if
2857 	 * we are already above the high+gap watermark, don't reclaim at all.
2858 	 */
2859 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2860 
2861 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2862 }
2863 
2864 /*
2865  * This is the direct reclaim path, for page-allocating processes.  We only
2866  * try to reclaim pages from zones which will satisfy the caller's allocation
2867  * request.
2868  *
2869  * If a zone is deemed to be full of pinned pages then just give it a light
2870  * scan then give up on it.
2871  */
2872 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2873 {
2874 	struct zoneref *z;
2875 	struct zone *zone;
2876 	unsigned long nr_soft_reclaimed;
2877 	unsigned long nr_soft_scanned;
2878 	gfp_t orig_mask;
2879 	pg_data_t *last_pgdat = NULL;
2880 
2881 	/*
2882 	 * If the number of buffer_heads in the machine exceeds the maximum
2883 	 * allowed level, force direct reclaim to scan the highmem zone as
2884 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2885 	 */
2886 	orig_mask = sc->gfp_mask;
2887 	if (buffer_heads_over_limit) {
2888 		sc->gfp_mask |= __GFP_HIGHMEM;
2889 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2890 	}
2891 
2892 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2893 					sc->reclaim_idx, sc->nodemask) {
2894 		/*
2895 		 * Take care memory controller reclaiming has small influence
2896 		 * to global LRU.
2897 		 */
2898 		if (global_reclaim(sc)) {
2899 			if (!cpuset_zone_allowed(zone,
2900 						 GFP_KERNEL | __GFP_HARDWALL))
2901 				continue;
2902 
2903 			/*
2904 			 * If we already have plenty of memory free for
2905 			 * compaction in this zone, don't free any more.
2906 			 * Even though compaction is invoked for any
2907 			 * non-zero order, only frequent costly order
2908 			 * reclamation is disruptive enough to become a
2909 			 * noticeable problem, like transparent huge
2910 			 * page allocations.
2911 			 */
2912 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2913 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2914 			    compaction_ready(zone, sc)) {
2915 				sc->compaction_ready = true;
2916 				continue;
2917 			}
2918 
2919 			/*
2920 			 * Shrink each node in the zonelist once. If the
2921 			 * zonelist is ordered by zone (not the default) then a
2922 			 * node may be shrunk multiple times but in that case
2923 			 * the user prefers lower zones being preserved.
2924 			 */
2925 			if (zone->zone_pgdat == last_pgdat)
2926 				continue;
2927 
2928 			/*
2929 			 * This steals pages from memory cgroups over softlimit
2930 			 * and returns the number of reclaimed pages and
2931 			 * scanned pages. This works for global memory pressure
2932 			 * and balancing, not for a memcg's limit.
2933 			 */
2934 			nr_soft_scanned = 0;
2935 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2936 						sc->order, sc->gfp_mask,
2937 						&nr_soft_scanned);
2938 			sc->nr_reclaimed += nr_soft_reclaimed;
2939 			sc->nr_scanned += nr_soft_scanned;
2940 			/* need some check for avoid more shrink_zone() */
2941 		}
2942 
2943 		/* See comment about same check for global reclaim above */
2944 		if (zone->zone_pgdat == last_pgdat)
2945 			continue;
2946 		last_pgdat = zone->zone_pgdat;
2947 		shrink_node(zone->zone_pgdat, sc);
2948 	}
2949 
2950 	/*
2951 	 * Restore to original mask to avoid the impact on the caller if we
2952 	 * promoted it to __GFP_HIGHMEM.
2953 	 */
2954 	sc->gfp_mask = orig_mask;
2955 }
2956 
2957 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2958 {
2959 	struct mem_cgroup *memcg;
2960 
2961 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2962 	do {
2963 		unsigned long refaults;
2964 		struct lruvec *lruvec;
2965 
2966 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2967 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2968 		lruvec->refaults = refaults;
2969 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2970 }
2971 
2972 /*
2973  * This is the main entry point to direct page reclaim.
2974  *
2975  * If a full scan of the inactive list fails to free enough memory then we
2976  * are "out of memory" and something needs to be killed.
2977  *
2978  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2979  * high - the zone may be full of dirty or under-writeback pages, which this
2980  * caller can't do much about.  We kick the writeback threads and take explicit
2981  * naps in the hope that some of these pages can be written.  But if the
2982  * allocating task holds filesystem locks which prevent writeout this might not
2983  * work, and the allocation attempt will fail.
2984  *
2985  * returns:	0, if no pages reclaimed
2986  * 		else, the number of pages reclaimed
2987  */
2988 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2989 					  struct scan_control *sc)
2990 {
2991 	int initial_priority = sc->priority;
2992 	pg_data_t *last_pgdat;
2993 	struct zoneref *z;
2994 	struct zone *zone;
2995 retry:
2996 	delayacct_freepages_start();
2997 
2998 	if (global_reclaim(sc))
2999 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3000 
3001 	do {
3002 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3003 				sc->priority);
3004 		sc->nr_scanned = 0;
3005 		shrink_zones(zonelist, sc);
3006 
3007 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3008 			break;
3009 
3010 		if (sc->compaction_ready)
3011 			break;
3012 
3013 		/*
3014 		 * If we're getting trouble reclaiming, start doing
3015 		 * writepage even in laptop mode.
3016 		 */
3017 		if (sc->priority < DEF_PRIORITY - 2)
3018 			sc->may_writepage = 1;
3019 	} while (--sc->priority >= 0);
3020 
3021 	last_pgdat = NULL;
3022 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3023 					sc->nodemask) {
3024 		if (zone->zone_pgdat == last_pgdat)
3025 			continue;
3026 		last_pgdat = zone->zone_pgdat;
3027 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3028 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3029 	}
3030 
3031 	delayacct_freepages_end();
3032 
3033 	if (sc->nr_reclaimed)
3034 		return sc->nr_reclaimed;
3035 
3036 	/* Aborted reclaim to try compaction? don't OOM, then */
3037 	if (sc->compaction_ready)
3038 		return 1;
3039 
3040 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3041 	if (sc->memcg_low_skipped) {
3042 		sc->priority = initial_priority;
3043 		sc->memcg_low_reclaim = 1;
3044 		sc->memcg_low_skipped = 0;
3045 		goto retry;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 static bool allow_direct_reclaim(pg_data_t *pgdat)
3052 {
3053 	struct zone *zone;
3054 	unsigned long pfmemalloc_reserve = 0;
3055 	unsigned long free_pages = 0;
3056 	int i;
3057 	bool wmark_ok;
3058 
3059 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3060 		return true;
3061 
3062 	for (i = 0; i <= ZONE_NORMAL; i++) {
3063 		zone = &pgdat->node_zones[i];
3064 		if (!managed_zone(zone))
3065 			continue;
3066 
3067 		if (!zone_reclaimable_pages(zone))
3068 			continue;
3069 
3070 		pfmemalloc_reserve += min_wmark_pages(zone);
3071 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3072 	}
3073 
3074 	/* If there are no reserves (unexpected config) then do not throttle */
3075 	if (!pfmemalloc_reserve)
3076 		return true;
3077 
3078 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3079 
3080 	/* kswapd must be awake if processes are being throttled */
3081 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3082 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3083 						(enum zone_type)ZONE_NORMAL);
3084 		wake_up_interruptible(&pgdat->kswapd_wait);
3085 	}
3086 
3087 	return wmark_ok;
3088 }
3089 
3090 /*
3091  * Throttle direct reclaimers if backing storage is backed by the network
3092  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3093  * depleted. kswapd will continue to make progress and wake the processes
3094  * when the low watermark is reached.
3095  *
3096  * Returns true if a fatal signal was delivered during throttling. If this
3097  * happens, the page allocator should not consider triggering the OOM killer.
3098  */
3099 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3100 					nodemask_t *nodemask)
3101 {
3102 	struct zoneref *z;
3103 	struct zone *zone;
3104 	pg_data_t *pgdat = NULL;
3105 
3106 	/*
3107 	 * Kernel threads should not be throttled as they may be indirectly
3108 	 * responsible for cleaning pages necessary for reclaim to make forward
3109 	 * progress. kjournald for example may enter direct reclaim while
3110 	 * committing a transaction where throttling it could forcing other
3111 	 * processes to block on log_wait_commit().
3112 	 */
3113 	if (current->flags & PF_KTHREAD)
3114 		goto out;
3115 
3116 	/*
3117 	 * If a fatal signal is pending, this process should not throttle.
3118 	 * It should return quickly so it can exit and free its memory
3119 	 */
3120 	if (fatal_signal_pending(current))
3121 		goto out;
3122 
3123 	/*
3124 	 * Check if the pfmemalloc reserves are ok by finding the first node
3125 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3126 	 * GFP_KERNEL will be required for allocating network buffers when
3127 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3128 	 *
3129 	 * Throttling is based on the first usable node and throttled processes
3130 	 * wait on a queue until kswapd makes progress and wakes them. There
3131 	 * is an affinity then between processes waking up and where reclaim
3132 	 * progress has been made assuming the process wakes on the same node.
3133 	 * More importantly, processes running on remote nodes will not compete
3134 	 * for remote pfmemalloc reserves and processes on different nodes
3135 	 * should make reasonable progress.
3136 	 */
3137 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3138 					gfp_zone(gfp_mask), nodemask) {
3139 		if (zone_idx(zone) > ZONE_NORMAL)
3140 			continue;
3141 
3142 		/* Throttle based on the first usable node */
3143 		pgdat = zone->zone_pgdat;
3144 		if (allow_direct_reclaim(pgdat))
3145 			goto out;
3146 		break;
3147 	}
3148 
3149 	/* If no zone was usable by the allocation flags then do not throttle */
3150 	if (!pgdat)
3151 		goto out;
3152 
3153 	/* Account for the throttling */
3154 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3155 
3156 	/*
3157 	 * If the caller cannot enter the filesystem, it's possible that it
3158 	 * is due to the caller holding an FS lock or performing a journal
3159 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3160 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3161 	 * blocked waiting on the same lock. Instead, throttle for up to a
3162 	 * second before continuing.
3163 	 */
3164 	if (!(gfp_mask & __GFP_FS)) {
3165 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3166 			allow_direct_reclaim(pgdat), HZ);
3167 
3168 		goto check_pending;
3169 	}
3170 
3171 	/* Throttle until kswapd wakes the process */
3172 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3173 		allow_direct_reclaim(pgdat));
3174 
3175 check_pending:
3176 	if (fatal_signal_pending(current))
3177 		return true;
3178 
3179 out:
3180 	return false;
3181 }
3182 
3183 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3184 				gfp_t gfp_mask, nodemask_t *nodemask)
3185 {
3186 	unsigned long nr_reclaimed;
3187 	struct scan_control sc = {
3188 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3189 		.gfp_mask = current_gfp_context(gfp_mask),
3190 		.reclaim_idx = gfp_zone(gfp_mask),
3191 		.order = order,
3192 		.nodemask = nodemask,
3193 		.priority = DEF_PRIORITY,
3194 		.may_writepage = !laptop_mode,
3195 		.may_unmap = 1,
3196 		.may_swap = 1,
3197 		.may_shrinkslab = 1,
3198 	};
3199 
3200 	/*
3201 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3202 	 * Confirm they are large enough for max values.
3203 	 */
3204 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3205 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3206 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3207 
3208 	/*
3209 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3210 	 * 1 is returned so that the page allocator does not OOM kill at this
3211 	 * point.
3212 	 */
3213 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3214 		return 1;
3215 
3216 	set_task_reclaim_state(current, &sc.reclaim_state);
3217 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3218 
3219 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3220 
3221 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3222 	set_task_reclaim_state(current, NULL);
3223 
3224 	return nr_reclaimed;
3225 }
3226 
3227 #ifdef CONFIG_MEMCG
3228 
3229 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3230 						gfp_t gfp_mask, bool noswap,
3231 						pg_data_t *pgdat,
3232 						unsigned long *nr_scanned)
3233 {
3234 	struct scan_control sc = {
3235 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3236 		.target_mem_cgroup = memcg,
3237 		.may_writepage = !laptop_mode,
3238 		.may_unmap = 1,
3239 		.reclaim_idx = MAX_NR_ZONES - 1,
3240 		.may_swap = !noswap,
3241 		.may_shrinkslab = 1,
3242 	};
3243 	unsigned long lru_pages;
3244 
3245 	set_task_reclaim_state(current, &sc.reclaim_state);
3246 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3247 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3248 
3249 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3250 						      sc.gfp_mask);
3251 
3252 	/*
3253 	 * NOTE: Although we can get the priority field, using it
3254 	 * here is not a good idea, since it limits the pages we can scan.
3255 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3256 	 * will pick up pages from other mem cgroup's as well. We hack
3257 	 * the priority and make it zero.
3258 	 */
3259 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3260 
3261 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3262 
3263 	set_task_reclaim_state(current, NULL);
3264 	*nr_scanned = sc.nr_scanned;
3265 
3266 	return sc.nr_reclaimed;
3267 }
3268 
3269 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3270 					   unsigned long nr_pages,
3271 					   gfp_t gfp_mask,
3272 					   bool may_swap)
3273 {
3274 	struct zonelist *zonelist;
3275 	unsigned long nr_reclaimed;
3276 	unsigned long pflags;
3277 	int nid;
3278 	unsigned int noreclaim_flag;
3279 	struct scan_control sc = {
3280 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3281 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3282 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3283 		.reclaim_idx = MAX_NR_ZONES - 1,
3284 		.target_mem_cgroup = memcg,
3285 		.priority = DEF_PRIORITY,
3286 		.may_writepage = !laptop_mode,
3287 		.may_unmap = 1,
3288 		.may_swap = may_swap,
3289 		.may_shrinkslab = 1,
3290 	};
3291 
3292 	set_task_reclaim_state(current, &sc.reclaim_state);
3293 	/*
3294 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3295 	 * take care of from where we get pages. So the node where we start the
3296 	 * scan does not need to be the current node.
3297 	 */
3298 	nid = mem_cgroup_select_victim_node(memcg);
3299 
3300 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3301 
3302 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3303 
3304 	psi_memstall_enter(&pflags);
3305 	noreclaim_flag = memalloc_noreclaim_save();
3306 
3307 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3308 
3309 	memalloc_noreclaim_restore(noreclaim_flag);
3310 	psi_memstall_leave(&pflags);
3311 
3312 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3313 	set_task_reclaim_state(current, NULL);
3314 
3315 	return nr_reclaimed;
3316 }
3317 #endif
3318 
3319 static void age_active_anon(struct pglist_data *pgdat,
3320 				struct scan_control *sc)
3321 {
3322 	struct mem_cgroup *memcg;
3323 
3324 	if (!total_swap_pages)
3325 		return;
3326 
3327 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3328 	do {
3329 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3330 
3331 		if (inactive_list_is_low(lruvec, false, sc, true))
3332 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3333 					   sc, LRU_ACTIVE_ANON);
3334 
3335 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3336 	} while (memcg);
3337 }
3338 
3339 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3340 {
3341 	int i;
3342 	struct zone *zone;
3343 
3344 	/*
3345 	 * Check for watermark boosts top-down as the higher zones
3346 	 * are more likely to be boosted. Both watermarks and boosts
3347 	 * should not be checked at the time time as reclaim would
3348 	 * start prematurely when there is no boosting and a lower
3349 	 * zone is balanced.
3350 	 */
3351 	for (i = classzone_idx; i >= 0; i--) {
3352 		zone = pgdat->node_zones + i;
3353 		if (!managed_zone(zone))
3354 			continue;
3355 
3356 		if (zone->watermark_boost)
3357 			return true;
3358 	}
3359 
3360 	return false;
3361 }
3362 
3363 /*
3364  * Returns true if there is an eligible zone balanced for the request order
3365  * and classzone_idx
3366  */
3367 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3368 {
3369 	int i;
3370 	unsigned long mark = -1;
3371 	struct zone *zone;
3372 
3373 	/*
3374 	 * Check watermarks bottom-up as lower zones are more likely to
3375 	 * meet watermarks.
3376 	 */
3377 	for (i = 0; i <= classzone_idx; i++) {
3378 		zone = pgdat->node_zones + i;
3379 
3380 		if (!managed_zone(zone))
3381 			continue;
3382 
3383 		mark = high_wmark_pages(zone);
3384 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3385 			return true;
3386 	}
3387 
3388 	/*
3389 	 * If a node has no populated zone within classzone_idx, it does not
3390 	 * need balancing by definition. This can happen if a zone-restricted
3391 	 * allocation tries to wake a remote kswapd.
3392 	 */
3393 	if (mark == -1)
3394 		return true;
3395 
3396 	return false;
3397 }
3398 
3399 /* Clear pgdat state for congested, dirty or under writeback. */
3400 static void clear_pgdat_congested(pg_data_t *pgdat)
3401 {
3402 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3403 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3404 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3405 }
3406 
3407 /*
3408  * Prepare kswapd for sleeping. This verifies that there are no processes
3409  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3410  *
3411  * Returns true if kswapd is ready to sleep
3412  */
3413 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3414 {
3415 	/*
3416 	 * The throttled processes are normally woken up in balance_pgdat() as
3417 	 * soon as allow_direct_reclaim() is true. But there is a potential
3418 	 * race between when kswapd checks the watermarks and a process gets
3419 	 * throttled. There is also a potential race if processes get
3420 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3421 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3422 	 * the wake up checks. If kswapd is going to sleep, no process should
3423 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3424 	 * the wake up is premature, processes will wake kswapd and get
3425 	 * throttled again. The difference from wake ups in balance_pgdat() is
3426 	 * that here we are under prepare_to_wait().
3427 	 */
3428 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3429 		wake_up_all(&pgdat->pfmemalloc_wait);
3430 
3431 	/* Hopeless node, leave it to direct reclaim */
3432 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3433 		return true;
3434 
3435 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3436 		clear_pgdat_congested(pgdat);
3437 		return true;
3438 	}
3439 
3440 	return false;
3441 }
3442 
3443 /*
3444  * kswapd shrinks a node of pages that are at or below the highest usable
3445  * zone that is currently unbalanced.
3446  *
3447  * Returns true if kswapd scanned at least the requested number of pages to
3448  * reclaim or if the lack of progress was due to pages under writeback.
3449  * This is used to determine if the scanning priority needs to be raised.
3450  */
3451 static bool kswapd_shrink_node(pg_data_t *pgdat,
3452 			       struct scan_control *sc)
3453 {
3454 	struct zone *zone;
3455 	int z;
3456 
3457 	/* Reclaim a number of pages proportional to the number of zones */
3458 	sc->nr_to_reclaim = 0;
3459 	for (z = 0; z <= sc->reclaim_idx; z++) {
3460 		zone = pgdat->node_zones + z;
3461 		if (!managed_zone(zone))
3462 			continue;
3463 
3464 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3465 	}
3466 
3467 	/*
3468 	 * Historically care was taken to put equal pressure on all zones but
3469 	 * now pressure is applied based on node LRU order.
3470 	 */
3471 	shrink_node(pgdat, sc);
3472 
3473 	/*
3474 	 * Fragmentation may mean that the system cannot be rebalanced for
3475 	 * high-order allocations. If twice the allocation size has been
3476 	 * reclaimed then recheck watermarks only at order-0 to prevent
3477 	 * excessive reclaim. Assume that a process requested a high-order
3478 	 * can direct reclaim/compact.
3479 	 */
3480 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3481 		sc->order = 0;
3482 
3483 	return sc->nr_scanned >= sc->nr_to_reclaim;
3484 }
3485 
3486 /*
3487  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3488  * that are eligible for use by the caller until at least one zone is
3489  * balanced.
3490  *
3491  * Returns the order kswapd finished reclaiming at.
3492  *
3493  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3494  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3495  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3496  * or lower is eligible for reclaim until at least one usable zone is
3497  * balanced.
3498  */
3499 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3500 {
3501 	int i;
3502 	unsigned long nr_soft_reclaimed;
3503 	unsigned long nr_soft_scanned;
3504 	unsigned long pflags;
3505 	unsigned long nr_boost_reclaim;
3506 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3507 	bool boosted;
3508 	struct zone *zone;
3509 	struct scan_control sc = {
3510 		.gfp_mask = GFP_KERNEL,
3511 		.order = order,
3512 		.may_unmap = 1,
3513 	};
3514 
3515 	set_task_reclaim_state(current, &sc.reclaim_state);
3516 	psi_memstall_enter(&pflags);
3517 	__fs_reclaim_acquire();
3518 
3519 	count_vm_event(PAGEOUTRUN);
3520 
3521 	/*
3522 	 * Account for the reclaim boost. Note that the zone boost is left in
3523 	 * place so that parallel allocations that are near the watermark will
3524 	 * stall or direct reclaim until kswapd is finished.
3525 	 */
3526 	nr_boost_reclaim = 0;
3527 	for (i = 0; i <= classzone_idx; i++) {
3528 		zone = pgdat->node_zones + i;
3529 		if (!managed_zone(zone))
3530 			continue;
3531 
3532 		nr_boost_reclaim += zone->watermark_boost;
3533 		zone_boosts[i] = zone->watermark_boost;
3534 	}
3535 	boosted = nr_boost_reclaim;
3536 
3537 restart:
3538 	sc.priority = DEF_PRIORITY;
3539 	do {
3540 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3541 		bool raise_priority = true;
3542 		bool balanced;
3543 		bool ret;
3544 
3545 		sc.reclaim_idx = classzone_idx;
3546 
3547 		/*
3548 		 * If the number of buffer_heads exceeds the maximum allowed
3549 		 * then consider reclaiming from all zones. This has a dual
3550 		 * purpose -- on 64-bit systems it is expected that
3551 		 * buffer_heads are stripped during active rotation. On 32-bit
3552 		 * systems, highmem pages can pin lowmem memory and shrinking
3553 		 * buffers can relieve lowmem pressure. Reclaim may still not
3554 		 * go ahead if all eligible zones for the original allocation
3555 		 * request are balanced to avoid excessive reclaim from kswapd.
3556 		 */
3557 		if (buffer_heads_over_limit) {
3558 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3559 				zone = pgdat->node_zones + i;
3560 				if (!managed_zone(zone))
3561 					continue;
3562 
3563 				sc.reclaim_idx = i;
3564 				break;
3565 			}
3566 		}
3567 
3568 		/*
3569 		 * If the pgdat is imbalanced then ignore boosting and preserve
3570 		 * the watermarks for a later time and restart. Note that the
3571 		 * zone watermarks will be still reset at the end of balancing
3572 		 * on the grounds that the normal reclaim should be enough to
3573 		 * re-evaluate if boosting is required when kswapd next wakes.
3574 		 */
3575 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3576 		if (!balanced && nr_boost_reclaim) {
3577 			nr_boost_reclaim = 0;
3578 			goto restart;
3579 		}
3580 
3581 		/*
3582 		 * If boosting is not active then only reclaim if there are no
3583 		 * eligible zones. Note that sc.reclaim_idx is not used as
3584 		 * buffer_heads_over_limit may have adjusted it.
3585 		 */
3586 		if (!nr_boost_reclaim && balanced)
3587 			goto out;
3588 
3589 		/* Limit the priority of boosting to avoid reclaim writeback */
3590 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3591 			raise_priority = false;
3592 
3593 		/*
3594 		 * Do not writeback or swap pages for boosted reclaim. The
3595 		 * intent is to relieve pressure not issue sub-optimal IO
3596 		 * from reclaim context. If no pages are reclaimed, the
3597 		 * reclaim will be aborted.
3598 		 */
3599 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3600 		sc.may_swap = !nr_boost_reclaim;
3601 		sc.may_shrinkslab = !nr_boost_reclaim;
3602 
3603 		/*
3604 		 * Do some background aging of the anon list, to give
3605 		 * pages a chance to be referenced before reclaiming. All
3606 		 * pages are rotated regardless of classzone as this is
3607 		 * about consistent aging.
3608 		 */
3609 		age_active_anon(pgdat, &sc);
3610 
3611 		/*
3612 		 * If we're getting trouble reclaiming, start doing writepage
3613 		 * even in laptop mode.
3614 		 */
3615 		if (sc.priority < DEF_PRIORITY - 2)
3616 			sc.may_writepage = 1;
3617 
3618 		/* Call soft limit reclaim before calling shrink_node. */
3619 		sc.nr_scanned = 0;
3620 		nr_soft_scanned = 0;
3621 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3622 						sc.gfp_mask, &nr_soft_scanned);
3623 		sc.nr_reclaimed += nr_soft_reclaimed;
3624 
3625 		/*
3626 		 * There should be no need to raise the scanning priority if
3627 		 * enough pages are already being scanned that that high
3628 		 * watermark would be met at 100% efficiency.
3629 		 */
3630 		if (kswapd_shrink_node(pgdat, &sc))
3631 			raise_priority = false;
3632 
3633 		/*
3634 		 * If the low watermark is met there is no need for processes
3635 		 * to be throttled on pfmemalloc_wait as they should not be
3636 		 * able to safely make forward progress. Wake them
3637 		 */
3638 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3639 				allow_direct_reclaim(pgdat))
3640 			wake_up_all(&pgdat->pfmemalloc_wait);
3641 
3642 		/* Check if kswapd should be suspending */
3643 		__fs_reclaim_release();
3644 		ret = try_to_freeze();
3645 		__fs_reclaim_acquire();
3646 		if (ret || kthread_should_stop())
3647 			break;
3648 
3649 		/*
3650 		 * Raise priority if scanning rate is too low or there was no
3651 		 * progress in reclaiming pages
3652 		 */
3653 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3654 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3655 
3656 		/*
3657 		 * If reclaim made no progress for a boost, stop reclaim as
3658 		 * IO cannot be queued and it could be an infinite loop in
3659 		 * extreme circumstances.
3660 		 */
3661 		if (nr_boost_reclaim && !nr_reclaimed)
3662 			break;
3663 
3664 		if (raise_priority || !nr_reclaimed)
3665 			sc.priority--;
3666 	} while (sc.priority >= 1);
3667 
3668 	if (!sc.nr_reclaimed)
3669 		pgdat->kswapd_failures++;
3670 
3671 out:
3672 	/* If reclaim was boosted, account for the reclaim done in this pass */
3673 	if (boosted) {
3674 		unsigned long flags;
3675 
3676 		for (i = 0; i <= classzone_idx; i++) {
3677 			if (!zone_boosts[i])
3678 				continue;
3679 
3680 			/* Increments are under the zone lock */
3681 			zone = pgdat->node_zones + i;
3682 			spin_lock_irqsave(&zone->lock, flags);
3683 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3684 			spin_unlock_irqrestore(&zone->lock, flags);
3685 		}
3686 
3687 		/*
3688 		 * As there is now likely space, wakeup kcompact to defragment
3689 		 * pageblocks.
3690 		 */
3691 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3692 	}
3693 
3694 	snapshot_refaults(NULL, pgdat);
3695 	__fs_reclaim_release();
3696 	psi_memstall_leave(&pflags);
3697 	set_task_reclaim_state(current, NULL);
3698 
3699 	/*
3700 	 * Return the order kswapd stopped reclaiming at as
3701 	 * prepare_kswapd_sleep() takes it into account. If another caller
3702 	 * entered the allocator slow path while kswapd was awake, order will
3703 	 * remain at the higher level.
3704 	 */
3705 	return sc.order;
3706 }
3707 
3708 /*
3709  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3710  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3711  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3712  * after previous reclaim attempt (node is still unbalanced). In that case
3713  * return the zone index of the previous kswapd reclaim cycle.
3714  */
3715 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3716 					   enum zone_type prev_classzone_idx)
3717 {
3718 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3719 		return prev_classzone_idx;
3720 	return pgdat->kswapd_classzone_idx;
3721 }
3722 
3723 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3724 				unsigned int classzone_idx)
3725 {
3726 	long remaining = 0;
3727 	DEFINE_WAIT(wait);
3728 
3729 	if (freezing(current) || kthread_should_stop())
3730 		return;
3731 
3732 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3733 
3734 	/*
3735 	 * Try to sleep for a short interval. Note that kcompactd will only be
3736 	 * woken if it is possible to sleep for a short interval. This is
3737 	 * deliberate on the assumption that if reclaim cannot keep an
3738 	 * eligible zone balanced that it's also unlikely that compaction will
3739 	 * succeed.
3740 	 */
3741 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3742 		/*
3743 		 * Compaction records what page blocks it recently failed to
3744 		 * isolate pages from and skips them in the future scanning.
3745 		 * When kswapd is going to sleep, it is reasonable to assume
3746 		 * that pages and compaction may succeed so reset the cache.
3747 		 */
3748 		reset_isolation_suitable(pgdat);
3749 
3750 		/*
3751 		 * We have freed the memory, now we should compact it to make
3752 		 * allocation of the requested order possible.
3753 		 */
3754 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3755 
3756 		remaining = schedule_timeout(HZ/10);
3757 
3758 		/*
3759 		 * If woken prematurely then reset kswapd_classzone_idx and
3760 		 * order. The values will either be from a wakeup request or
3761 		 * the previous request that slept prematurely.
3762 		 */
3763 		if (remaining) {
3764 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3765 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3766 		}
3767 
3768 		finish_wait(&pgdat->kswapd_wait, &wait);
3769 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3770 	}
3771 
3772 	/*
3773 	 * After a short sleep, check if it was a premature sleep. If not, then
3774 	 * go fully to sleep until explicitly woken up.
3775 	 */
3776 	if (!remaining &&
3777 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3778 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3779 
3780 		/*
3781 		 * vmstat counters are not perfectly accurate and the estimated
3782 		 * value for counters such as NR_FREE_PAGES can deviate from the
3783 		 * true value by nr_online_cpus * threshold. To avoid the zone
3784 		 * watermarks being breached while under pressure, we reduce the
3785 		 * per-cpu vmstat threshold while kswapd is awake and restore
3786 		 * them before going back to sleep.
3787 		 */
3788 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3789 
3790 		if (!kthread_should_stop())
3791 			schedule();
3792 
3793 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3794 	} else {
3795 		if (remaining)
3796 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3797 		else
3798 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3799 	}
3800 	finish_wait(&pgdat->kswapd_wait, &wait);
3801 }
3802 
3803 /*
3804  * The background pageout daemon, started as a kernel thread
3805  * from the init process.
3806  *
3807  * This basically trickles out pages so that we have _some_
3808  * free memory available even if there is no other activity
3809  * that frees anything up. This is needed for things like routing
3810  * etc, where we otherwise might have all activity going on in
3811  * asynchronous contexts that cannot page things out.
3812  *
3813  * If there are applications that are active memory-allocators
3814  * (most normal use), this basically shouldn't matter.
3815  */
3816 static int kswapd(void *p)
3817 {
3818 	unsigned int alloc_order, reclaim_order;
3819 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3820 	pg_data_t *pgdat = (pg_data_t*)p;
3821 	struct task_struct *tsk = current;
3822 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3823 
3824 	if (!cpumask_empty(cpumask))
3825 		set_cpus_allowed_ptr(tsk, cpumask);
3826 
3827 	/*
3828 	 * Tell the memory management that we're a "memory allocator",
3829 	 * and that if we need more memory we should get access to it
3830 	 * regardless (see "__alloc_pages()"). "kswapd" should
3831 	 * never get caught in the normal page freeing logic.
3832 	 *
3833 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3834 	 * you need a small amount of memory in order to be able to
3835 	 * page out something else, and this flag essentially protects
3836 	 * us from recursively trying to free more memory as we're
3837 	 * trying to free the first piece of memory in the first place).
3838 	 */
3839 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3840 	set_freezable();
3841 
3842 	pgdat->kswapd_order = 0;
3843 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3844 	for ( ; ; ) {
3845 		bool ret;
3846 
3847 		alloc_order = reclaim_order = pgdat->kswapd_order;
3848 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3849 
3850 kswapd_try_sleep:
3851 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3852 					classzone_idx);
3853 
3854 		/* Read the new order and classzone_idx */
3855 		alloc_order = reclaim_order = pgdat->kswapd_order;
3856 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3857 		pgdat->kswapd_order = 0;
3858 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3859 
3860 		ret = try_to_freeze();
3861 		if (kthread_should_stop())
3862 			break;
3863 
3864 		/*
3865 		 * We can speed up thawing tasks if we don't call balance_pgdat
3866 		 * after returning from the refrigerator
3867 		 */
3868 		if (ret)
3869 			continue;
3870 
3871 		/*
3872 		 * Reclaim begins at the requested order but if a high-order
3873 		 * reclaim fails then kswapd falls back to reclaiming for
3874 		 * order-0. If that happens, kswapd will consider sleeping
3875 		 * for the order it finished reclaiming at (reclaim_order)
3876 		 * but kcompactd is woken to compact for the original
3877 		 * request (alloc_order).
3878 		 */
3879 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3880 						alloc_order);
3881 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3882 		if (reclaim_order < alloc_order)
3883 			goto kswapd_try_sleep;
3884 	}
3885 
3886 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3887 
3888 	return 0;
3889 }
3890 
3891 /*
3892  * A zone is low on free memory or too fragmented for high-order memory.  If
3893  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3894  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3895  * has failed or is not needed, still wake up kcompactd if only compaction is
3896  * needed.
3897  */
3898 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3899 		   enum zone_type classzone_idx)
3900 {
3901 	pg_data_t *pgdat;
3902 
3903 	if (!managed_zone(zone))
3904 		return;
3905 
3906 	if (!cpuset_zone_allowed(zone, gfp_flags))
3907 		return;
3908 	pgdat = zone->zone_pgdat;
3909 
3910 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3911 		pgdat->kswapd_classzone_idx = classzone_idx;
3912 	else
3913 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3914 						  classzone_idx);
3915 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3916 	if (!waitqueue_active(&pgdat->kswapd_wait))
3917 		return;
3918 
3919 	/* Hopeless node, leave it to direct reclaim if possible */
3920 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3921 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3922 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3923 		/*
3924 		 * There may be plenty of free memory available, but it's too
3925 		 * fragmented for high-order allocations.  Wake up kcompactd
3926 		 * and rely on compaction_suitable() to determine if it's
3927 		 * needed.  If it fails, it will defer subsequent attempts to
3928 		 * ratelimit its work.
3929 		 */
3930 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3931 			wakeup_kcompactd(pgdat, order, classzone_idx);
3932 		return;
3933 	}
3934 
3935 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3936 				      gfp_flags);
3937 	wake_up_interruptible(&pgdat->kswapd_wait);
3938 }
3939 
3940 #ifdef CONFIG_HIBERNATION
3941 /*
3942  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3943  * freed pages.
3944  *
3945  * Rather than trying to age LRUs the aim is to preserve the overall
3946  * LRU order by reclaiming preferentially
3947  * inactive > active > active referenced > active mapped
3948  */
3949 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3950 {
3951 	struct scan_control sc = {
3952 		.nr_to_reclaim = nr_to_reclaim,
3953 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3954 		.reclaim_idx = MAX_NR_ZONES - 1,
3955 		.priority = DEF_PRIORITY,
3956 		.may_writepage = 1,
3957 		.may_unmap = 1,
3958 		.may_swap = 1,
3959 		.hibernation_mode = 1,
3960 	};
3961 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3962 	unsigned long nr_reclaimed;
3963 	unsigned int noreclaim_flag;
3964 
3965 	fs_reclaim_acquire(sc.gfp_mask);
3966 	noreclaim_flag = memalloc_noreclaim_save();
3967 	set_task_reclaim_state(current, &sc.reclaim_state);
3968 
3969 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3970 
3971 	set_task_reclaim_state(current, NULL);
3972 	memalloc_noreclaim_restore(noreclaim_flag);
3973 	fs_reclaim_release(sc.gfp_mask);
3974 
3975 	return nr_reclaimed;
3976 }
3977 #endif /* CONFIG_HIBERNATION */
3978 
3979 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3980    not required for correctness.  So if the last cpu in a node goes
3981    away, we get changed to run anywhere: as the first one comes back,
3982    restore their cpu bindings. */
3983 static int kswapd_cpu_online(unsigned int cpu)
3984 {
3985 	int nid;
3986 
3987 	for_each_node_state(nid, N_MEMORY) {
3988 		pg_data_t *pgdat = NODE_DATA(nid);
3989 		const struct cpumask *mask;
3990 
3991 		mask = cpumask_of_node(pgdat->node_id);
3992 
3993 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3994 			/* One of our CPUs online: restore mask */
3995 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3996 	}
3997 	return 0;
3998 }
3999 
4000 /*
4001  * This kswapd start function will be called by init and node-hot-add.
4002  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4003  */
4004 int kswapd_run(int nid)
4005 {
4006 	pg_data_t *pgdat = NODE_DATA(nid);
4007 	int ret = 0;
4008 
4009 	if (pgdat->kswapd)
4010 		return 0;
4011 
4012 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4013 	if (IS_ERR(pgdat->kswapd)) {
4014 		/* failure at boot is fatal */
4015 		BUG_ON(system_state < SYSTEM_RUNNING);
4016 		pr_err("Failed to start kswapd on node %d\n", nid);
4017 		ret = PTR_ERR(pgdat->kswapd);
4018 		pgdat->kswapd = NULL;
4019 	}
4020 	return ret;
4021 }
4022 
4023 /*
4024  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4025  * hold mem_hotplug_begin/end().
4026  */
4027 void kswapd_stop(int nid)
4028 {
4029 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4030 
4031 	if (kswapd) {
4032 		kthread_stop(kswapd);
4033 		NODE_DATA(nid)->kswapd = NULL;
4034 	}
4035 }
4036 
4037 static int __init kswapd_init(void)
4038 {
4039 	int nid, ret;
4040 
4041 	swap_setup();
4042 	for_each_node_state(nid, N_MEMORY)
4043  		kswapd_run(nid);
4044 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4045 					"mm/vmscan:online", kswapd_cpu_online,
4046 					NULL);
4047 	WARN_ON(ret < 0);
4048 	return 0;
4049 }
4050 
4051 module_init(kswapd_init)
4052 
4053 #ifdef CONFIG_NUMA
4054 /*
4055  * Node reclaim mode
4056  *
4057  * If non-zero call node_reclaim when the number of free pages falls below
4058  * the watermarks.
4059  */
4060 int node_reclaim_mode __read_mostly;
4061 
4062 #define RECLAIM_OFF 0
4063 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4064 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4065 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4066 
4067 /*
4068  * Priority for NODE_RECLAIM. This determines the fraction of pages
4069  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4070  * a zone.
4071  */
4072 #define NODE_RECLAIM_PRIORITY 4
4073 
4074 /*
4075  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4076  * occur.
4077  */
4078 int sysctl_min_unmapped_ratio = 1;
4079 
4080 /*
4081  * If the number of slab pages in a zone grows beyond this percentage then
4082  * slab reclaim needs to occur.
4083  */
4084 int sysctl_min_slab_ratio = 5;
4085 
4086 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4087 {
4088 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4089 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4090 		node_page_state(pgdat, NR_ACTIVE_FILE);
4091 
4092 	/*
4093 	 * It's possible for there to be more file mapped pages than
4094 	 * accounted for by the pages on the file LRU lists because
4095 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4096 	 */
4097 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4098 }
4099 
4100 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4101 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4102 {
4103 	unsigned long nr_pagecache_reclaimable;
4104 	unsigned long delta = 0;
4105 
4106 	/*
4107 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4108 	 * potentially reclaimable. Otherwise, we have to worry about
4109 	 * pages like swapcache and node_unmapped_file_pages() provides
4110 	 * a better estimate
4111 	 */
4112 	if (node_reclaim_mode & RECLAIM_UNMAP)
4113 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4114 	else
4115 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4116 
4117 	/* If we can't clean pages, remove dirty pages from consideration */
4118 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4119 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4120 
4121 	/* Watch for any possible underflows due to delta */
4122 	if (unlikely(delta > nr_pagecache_reclaimable))
4123 		delta = nr_pagecache_reclaimable;
4124 
4125 	return nr_pagecache_reclaimable - delta;
4126 }
4127 
4128 /*
4129  * Try to free up some pages from this node through reclaim.
4130  */
4131 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4132 {
4133 	/* Minimum pages needed in order to stay on node */
4134 	const unsigned long nr_pages = 1 << order;
4135 	struct task_struct *p = current;
4136 	unsigned int noreclaim_flag;
4137 	struct scan_control sc = {
4138 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4139 		.gfp_mask = current_gfp_context(gfp_mask),
4140 		.order = order,
4141 		.priority = NODE_RECLAIM_PRIORITY,
4142 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4143 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4144 		.may_swap = 1,
4145 		.reclaim_idx = gfp_zone(gfp_mask),
4146 	};
4147 
4148 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4149 					   sc.gfp_mask);
4150 
4151 	cond_resched();
4152 	fs_reclaim_acquire(sc.gfp_mask);
4153 	/*
4154 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4155 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4156 	 * and RECLAIM_UNMAP.
4157 	 */
4158 	noreclaim_flag = memalloc_noreclaim_save();
4159 	p->flags |= PF_SWAPWRITE;
4160 	set_task_reclaim_state(p, &sc.reclaim_state);
4161 
4162 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4163 		/*
4164 		 * Free memory by calling shrink node with increasing
4165 		 * priorities until we have enough memory freed.
4166 		 */
4167 		do {
4168 			shrink_node(pgdat, &sc);
4169 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4170 	}
4171 
4172 	set_task_reclaim_state(p, NULL);
4173 	current->flags &= ~PF_SWAPWRITE;
4174 	memalloc_noreclaim_restore(noreclaim_flag);
4175 	fs_reclaim_release(sc.gfp_mask);
4176 
4177 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4178 
4179 	return sc.nr_reclaimed >= nr_pages;
4180 }
4181 
4182 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4183 {
4184 	int ret;
4185 
4186 	/*
4187 	 * Node reclaim reclaims unmapped file backed pages and
4188 	 * slab pages if we are over the defined limits.
4189 	 *
4190 	 * A small portion of unmapped file backed pages is needed for
4191 	 * file I/O otherwise pages read by file I/O will be immediately
4192 	 * thrown out if the node is overallocated. So we do not reclaim
4193 	 * if less than a specified percentage of the node is used by
4194 	 * unmapped file backed pages.
4195 	 */
4196 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4197 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4198 		return NODE_RECLAIM_FULL;
4199 
4200 	/*
4201 	 * Do not scan if the allocation should not be delayed.
4202 	 */
4203 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4204 		return NODE_RECLAIM_NOSCAN;
4205 
4206 	/*
4207 	 * Only run node reclaim on the local node or on nodes that do not
4208 	 * have associated processors. This will favor the local processor
4209 	 * over remote processors and spread off node memory allocations
4210 	 * as wide as possible.
4211 	 */
4212 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4213 		return NODE_RECLAIM_NOSCAN;
4214 
4215 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4216 		return NODE_RECLAIM_NOSCAN;
4217 
4218 	ret = __node_reclaim(pgdat, gfp_mask, order);
4219 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4220 
4221 	if (!ret)
4222 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4223 
4224 	return ret;
4225 }
4226 #endif
4227 
4228 /*
4229  * page_evictable - test whether a page is evictable
4230  * @page: the page to test
4231  *
4232  * Test whether page is evictable--i.e., should be placed on active/inactive
4233  * lists vs unevictable list.
4234  *
4235  * Reasons page might not be evictable:
4236  * (1) page's mapping marked unevictable
4237  * (2) page is part of an mlocked VMA
4238  *
4239  */
4240 int page_evictable(struct page *page)
4241 {
4242 	int ret;
4243 
4244 	/* Prevent address_space of inode and swap cache from being freed */
4245 	rcu_read_lock();
4246 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4247 	rcu_read_unlock();
4248 	return ret;
4249 }
4250 
4251 /**
4252  * check_move_unevictable_pages - check pages for evictability and move to
4253  * appropriate zone lru list
4254  * @pvec: pagevec with lru pages to check
4255  *
4256  * Checks pages for evictability, if an evictable page is in the unevictable
4257  * lru list, moves it to the appropriate evictable lru list. This function
4258  * should be only used for lru pages.
4259  */
4260 void check_move_unevictable_pages(struct pagevec *pvec)
4261 {
4262 	struct lruvec *lruvec;
4263 	struct pglist_data *pgdat = NULL;
4264 	int pgscanned = 0;
4265 	int pgrescued = 0;
4266 	int i;
4267 
4268 	for (i = 0; i < pvec->nr; i++) {
4269 		struct page *page = pvec->pages[i];
4270 		struct pglist_data *pagepgdat = page_pgdat(page);
4271 
4272 		pgscanned++;
4273 		if (pagepgdat != pgdat) {
4274 			if (pgdat)
4275 				spin_unlock_irq(&pgdat->lru_lock);
4276 			pgdat = pagepgdat;
4277 			spin_lock_irq(&pgdat->lru_lock);
4278 		}
4279 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4280 
4281 		if (!PageLRU(page) || !PageUnevictable(page))
4282 			continue;
4283 
4284 		if (page_evictable(page)) {
4285 			enum lru_list lru = page_lru_base_type(page);
4286 
4287 			VM_BUG_ON_PAGE(PageActive(page), page);
4288 			ClearPageUnevictable(page);
4289 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4290 			add_page_to_lru_list(page, lruvec, lru);
4291 			pgrescued++;
4292 		}
4293 	}
4294 
4295 	if (pgdat) {
4296 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4297 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4298 		spin_unlock_irq(&pgdat->lru_lock);
4299 	}
4300 }
4301 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4302