1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 81 unsigned int may_writepage:1; 82 83 /* Can mapped pages be reclaimed? */ 84 unsigned int may_unmap:1; 85 86 /* Can pages be swapped as part of reclaim? */ 87 unsigned int may_swap:1; 88 89 /* 90 * Cgroups are not reclaimed below their configured memory.low, 91 * unless we threaten to OOM. If any cgroups are skipped due to 92 * memory.low and nothing was reclaimed, go back for memory.low. 93 */ 94 unsigned int memcg_low_reclaim:1; 95 unsigned int memcg_low_skipped:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Allocation order */ 103 s8 order; 104 105 /* Scan (total_size >> priority) pages at once */ 106 s8 priority; 107 108 /* The highest zone to isolate pages for reclaim from */ 109 s8 reclaim_idx; 110 111 /* This context's GFP mask */ 112 gfp_t gfp_mask; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 120 struct { 121 unsigned int dirty; 122 unsigned int unqueued_dirty; 123 unsigned int congested; 124 unsigned int writeback; 125 unsigned int immediate; 126 unsigned int file_taken; 127 unsigned int taken; 128 } nr; 129 }; 130 131 #ifdef ARCH_HAS_PREFETCH 132 #define prefetch_prev_lru_page(_page, _base, _field) \ 133 do { \ 134 if ((_page)->lru.prev != _base) { \ 135 struct page *prev; \ 136 \ 137 prev = lru_to_page(&(_page->lru)); \ 138 prefetch(&prev->_field); \ 139 } \ 140 } while (0) 141 #else 142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 143 #endif 144 145 #ifdef ARCH_HAS_PREFETCHW 146 #define prefetchw_prev_lru_page(_page, _base, _field) \ 147 do { \ 148 if ((_page)->lru.prev != _base) { \ 149 struct page *prev; \ 150 \ 151 prev = lru_to_page(&(_page->lru)); \ 152 prefetchw(&prev->_field); \ 153 } \ 154 } while (0) 155 #else 156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 157 #endif 158 159 /* 160 * From 0 .. 100. Higher means more swappy. 161 */ 162 int vm_swappiness = 60; 163 /* 164 * The total number of pages which are beyond the high watermark within all 165 * zones. 166 */ 167 unsigned long vm_total_pages; 168 169 static LIST_HEAD(shrinker_list); 170 static DECLARE_RWSEM(shrinker_rwsem); 171 172 #ifdef CONFIG_MEMCG_KMEM 173 174 /* 175 * We allow subsystems to populate their shrinker-related 176 * LRU lists before register_shrinker_prepared() is called 177 * for the shrinker, since we don't want to impose 178 * restrictions on their internal registration order. 179 * In this case shrink_slab_memcg() may find corresponding 180 * bit is set in the shrinkers map. 181 * 182 * This value is used by the function to detect registering 183 * shrinkers and to skip do_shrink_slab() calls for them. 184 */ 185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 186 187 static DEFINE_IDR(shrinker_idr); 188 static int shrinker_nr_max; 189 190 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 191 { 192 int id, ret = -ENOMEM; 193 194 down_write(&shrinker_rwsem); 195 /* This may call shrinker, so it must use down_read_trylock() */ 196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 197 if (id < 0) 198 goto unlock; 199 200 if (id >= shrinker_nr_max) { 201 if (memcg_expand_shrinker_maps(id)) { 202 idr_remove(&shrinker_idr, id); 203 goto unlock; 204 } 205 206 shrinker_nr_max = id + 1; 207 } 208 shrinker->id = id; 209 ret = 0; 210 unlock: 211 up_write(&shrinker_rwsem); 212 return ret; 213 } 214 215 static void unregister_memcg_shrinker(struct shrinker *shrinker) 216 { 217 int id = shrinker->id; 218 219 BUG_ON(id < 0); 220 221 down_write(&shrinker_rwsem); 222 idr_remove(&shrinker_idr, id); 223 up_write(&shrinker_rwsem); 224 } 225 #else /* CONFIG_MEMCG_KMEM */ 226 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 227 { 228 return 0; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 } 234 #endif /* CONFIG_MEMCG_KMEM */ 235 236 #ifdef CONFIG_MEMCG 237 static bool global_reclaim(struct scan_control *sc) 238 { 239 return !sc->target_mem_cgroup; 240 } 241 242 /** 243 * sane_reclaim - is the usual dirty throttling mechanism operational? 244 * @sc: scan_control in question 245 * 246 * The normal page dirty throttling mechanism in balance_dirty_pages() is 247 * completely broken with the legacy memcg and direct stalling in 248 * shrink_page_list() is used for throttling instead, which lacks all the 249 * niceties such as fairness, adaptive pausing, bandwidth proportional 250 * allocation and configurability. 251 * 252 * This function tests whether the vmscan currently in progress can assume 253 * that the normal dirty throttling mechanism is operational. 254 */ 255 static bool sane_reclaim(struct scan_control *sc) 256 { 257 struct mem_cgroup *memcg = sc->target_mem_cgroup; 258 259 if (!memcg) 260 return true; 261 #ifdef CONFIG_CGROUP_WRITEBACK 262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 263 return true; 264 #endif 265 return false; 266 } 267 268 static void set_memcg_congestion(pg_data_t *pgdat, 269 struct mem_cgroup *memcg, 270 bool congested) 271 { 272 struct mem_cgroup_per_node *mn; 273 274 if (!memcg) 275 return; 276 277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 278 WRITE_ONCE(mn->congested, congested); 279 } 280 281 static bool memcg_congested(pg_data_t *pgdat, 282 struct mem_cgroup *memcg) 283 { 284 struct mem_cgroup_per_node *mn; 285 286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 287 return READ_ONCE(mn->congested); 288 289 } 290 #else 291 static bool global_reclaim(struct scan_control *sc) 292 { 293 return true; 294 } 295 296 static bool sane_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static inline void set_memcg_congestion(struct pglist_data *pgdat, 302 struct mem_cgroup *memcg, bool congested) 303 { 304 } 305 306 static inline bool memcg_congested(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg) 308 { 309 return false; 310 311 } 312 #endif 313 314 /* 315 * This misses isolated pages which are not accounted for to save counters. 316 * As the data only determines if reclaim or compaction continues, it is 317 * not expected that isolated pages will be a dominating factor. 318 */ 319 unsigned long zone_reclaimable_pages(struct zone *zone) 320 { 321 unsigned long nr; 322 323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 325 if (get_nr_swap_pages() > 0) 326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 328 329 return nr; 330 } 331 332 /** 333 * lruvec_lru_size - Returns the number of pages on the given LRU list. 334 * @lruvec: lru vector 335 * @lru: lru to use 336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 337 */ 338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 339 { 340 unsigned long lru_size; 341 int zid; 342 343 if (!mem_cgroup_disabled()) 344 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 345 else 346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 347 348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 350 unsigned long size; 351 352 if (!managed_zone(zone)) 353 continue; 354 355 if (!mem_cgroup_disabled()) 356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 357 else 358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 359 NR_ZONE_LRU_BASE + lru); 360 lru_size -= min(size, lru_size); 361 } 362 363 return lru_size; 364 365 } 366 367 /* 368 * Add a shrinker callback to be called from the vm. 369 */ 370 int prealloc_shrinker(struct shrinker *shrinker) 371 { 372 size_t size = sizeof(*shrinker->nr_deferred); 373 374 if (shrinker->flags & SHRINKER_NUMA_AWARE) 375 size *= nr_node_ids; 376 377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 378 if (!shrinker->nr_deferred) 379 return -ENOMEM; 380 381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 382 if (prealloc_memcg_shrinker(shrinker)) 383 goto free_deferred; 384 } 385 386 return 0; 387 388 free_deferred: 389 kfree(shrinker->nr_deferred); 390 shrinker->nr_deferred = NULL; 391 return -ENOMEM; 392 } 393 394 void free_prealloced_shrinker(struct shrinker *shrinker) 395 { 396 if (!shrinker->nr_deferred) 397 return; 398 399 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 400 unregister_memcg_shrinker(shrinker); 401 402 kfree(shrinker->nr_deferred); 403 shrinker->nr_deferred = NULL; 404 } 405 406 void register_shrinker_prepared(struct shrinker *shrinker) 407 { 408 down_write(&shrinker_rwsem); 409 list_add_tail(&shrinker->list, &shrinker_list); 410 #ifdef CONFIG_MEMCG_KMEM 411 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 412 idr_replace(&shrinker_idr, shrinker, shrinker->id); 413 #endif 414 up_write(&shrinker_rwsem); 415 } 416 417 int register_shrinker(struct shrinker *shrinker) 418 { 419 int err = prealloc_shrinker(shrinker); 420 421 if (err) 422 return err; 423 register_shrinker_prepared(shrinker); 424 return 0; 425 } 426 EXPORT_SYMBOL(register_shrinker); 427 428 /* 429 * Remove one 430 */ 431 void unregister_shrinker(struct shrinker *shrinker) 432 { 433 if (!shrinker->nr_deferred) 434 return; 435 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 436 unregister_memcg_shrinker(shrinker); 437 down_write(&shrinker_rwsem); 438 list_del(&shrinker->list); 439 up_write(&shrinker_rwsem); 440 kfree(shrinker->nr_deferred); 441 shrinker->nr_deferred = NULL; 442 } 443 EXPORT_SYMBOL(unregister_shrinker); 444 445 #define SHRINK_BATCH 128 446 447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 448 struct shrinker *shrinker, int priority) 449 { 450 unsigned long freed = 0; 451 unsigned long long delta; 452 long total_scan; 453 long freeable; 454 long nr; 455 long new_nr; 456 int nid = shrinkctl->nid; 457 long batch_size = shrinker->batch ? shrinker->batch 458 : SHRINK_BATCH; 459 long scanned = 0, next_deferred; 460 461 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 462 nid = 0; 463 464 freeable = shrinker->count_objects(shrinker, shrinkctl); 465 if (freeable == 0 || freeable == SHRINK_EMPTY) 466 return freeable; 467 468 /* 469 * copy the current shrinker scan count into a local variable 470 * and zero it so that other concurrent shrinker invocations 471 * don't also do this scanning work. 472 */ 473 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 474 475 total_scan = nr; 476 delta = freeable >> priority; 477 delta *= 4; 478 do_div(delta, shrinker->seeks); 479 480 /* 481 * Make sure we apply some minimal pressure on default priority 482 * even on small cgroups. Stale objects are not only consuming memory 483 * by themselves, but can also hold a reference to a dying cgroup, 484 * preventing it from being reclaimed. A dying cgroup with all 485 * corresponding structures like per-cpu stats and kmem caches 486 * can be really big, so it may lead to a significant waste of memory. 487 */ 488 delta = max_t(unsigned long long, delta, min(freeable, batch_size)); 489 490 total_scan += delta; 491 if (total_scan < 0) { 492 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 493 shrinker->scan_objects, total_scan); 494 total_scan = freeable; 495 next_deferred = nr; 496 } else 497 next_deferred = total_scan; 498 499 /* 500 * We need to avoid excessive windup on filesystem shrinkers 501 * due to large numbers of GFP_NOFS allocations causing the 502 * shrinkers to return -1 all the time. This results in a large 503 * nr being built up so when a shrink that can do some work 504 * comes along it empties the entire cache due to nr >>> 505 * freeable. This is bad for sustaining a working set in 506 * memory. 507 * 508 * Hence only allow the shrinker to scan the entire cache when 509 * a large delta change is calculated directly. 510 */ 511 if (delta < freeable / 4) 512 total_scan = min(total_scan, freeable / 2); 513 514 /* 515 * Avoid risking looping forever due to too large nr value: 516 * never try to free more than twice the estimate number of 517 * freeable entries. 518 */ 519 if (total_scan > freeable * 2) 520 total_scan = freeable * 2; 521 522 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 523 freeable, delta, total_scan, priority); 524 525 /* 526 * Normally, we should not scan less than batch_size objects in one 527 * pass to avoid too frequent shrinker calls, but if the slab has less 528 * than batch_size objects in total and we are really tight on memory, 529 * we will try to reclaim all available objects, otherwise we can end 530 * up failing allocations although there are plenty of reclaimable 531 * objects spread over several slabs with usage less than the 532 * batch_size. 533 * 534 * We detect the "tight on memory" situations by looking at the total 535 * number of objects we want to scan (total_scan). If it is greater 536 * than the total number of objects on slab (freeable), we must be 537 * scanning at high prio and therefore should try to reclaim as much as 538 * possible. 539 */ 540 while (total_scan >= batch_size || 541 total_scan >= freeable) { 542 unsigned long ret; 543 unsigned long nr_to_scan = min(batch_size, total_scan); 544 545 shrinkctl->nr_to_scan = nr_to_scan; 546 shrinkctl->nr_scanned = nr_to_scan; 547 ret = shrinker->scan_objects(shrinker, shrinkctl); 548 if (ret == SHRINK_STOP) 549 break; 550 freed += ret; 551 552 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 553 total_scan -= shrinkctl->nr_scanned; 554 scanned += shrinkctl->nr_scanned; 555 556 cond_resched(); 557 } 558 559 if (next_deferred >= scanned) 560 next_deferred -= scanned; 561 else 562 next_deferred = 0; 563 /* 564 * move the unused scan count back into the shrinker in a 565 * manner that handles concurrent updates. If we exhausted the 566 * scan, there is no need to do an update. 567 */ 568 if (next_deferred > 0) 569 new_nr = atomic_long_add_return(next_deferred, 570 &shrinker->nr_deferred[nid]); 571 else 572 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 573 574 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 575 return freed; 576 } 577 578 #ifdef CONFIG_MEMCG_KMEM 579 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 580 struct mem_cgroup *memcg, int priority) 581 { 582 struct memcg_shrinker_map *map; 583 unsigned long freed = 0; 584 int ret, i; 585 586 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 587 return 0; 588 589 if (!down_read_trylock(&shrinker_rwsem)) 590 return 0; 591 592 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 593 true); 594 if (unlikely(!map)) 595 goto unlock; 596 597 for_each_set_bit(i, map->map, shrinker_nr_max) { 598 struct shrink_control sc = { 599 .gfp_mask = gfp_mask, 600 .nid = nid, 601 .memcg = memcg, 602 }; 603 struct shrinker *shrinker; 604 605 shrinker = idr_find(&shrinker_idr, i); 606 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 607 if (!shrinker) 608 clear_bit(i, map->map); 609 continue; 610 } 611 612 ret = do_shrink_slab(&sc, shrinker, priority); 613 if (ret == SHRINK_EMPTY) { 614 clear_bit(i, map->map); 615 /* 616 * After the shrinker reported that it had no objects to 617 * free, but before we cleared the corresponding bit in 618 * the memcg shrinker map, a new object might have been 619 * added. To make sure, we have the bit set in this 620 * case, we invoke the shrinker one more time and reset 621 * the bit if it reports that it is not empty anymore. 622 * The memory barrier here pairs with the barrier in 623 * memcg_set_shrinker_bit(): 624 * 625 * list_lru_add() shrink_slab_memcg() 626 * list_add_tail() clear_bit() 627 * <MB> <MB> 628 * set_bit() do_shrink_slab() 629 */ 630 smp_mb__after_atomic(); 631 ret = do_shrink_slab(&sc, shrinker, priority); 632 if (ret == SHRINK_EMPTY) 633 ret = 0; 634 else 635 memcg_set_shrinker_bit(memcg, nid, i); 636 } 637 freed += ret; 638 639 if (rwsem_is_contended(&shrinker_rwsem)) { 640 freed = freed ? : 1; 641 break; 642 } 643 } 644 unlock: 645 up_read(&shrinker_rwsem); 646 return freed; 647 } 648 #else /* CONFIG_MEMCG_KMEM */ 649 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 650 struct mem_cgroup *memcg, int priority) 651 { 652 return 0; 653 } 654 #endif /* CONFIG_MEMCG_KMEM */ 655 656 /** 657 * shrink_slab - shrink slab caches 658 * @gfp_mask: allocation context 659 * @nid: node whose slab caches to target 660 * @memcg: memory cgroup whose slab caches to target 661 * @priority: the reclaim priority 662 * 663 * Call the shrink functions to age shrinkable caches. 664 * 665 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 666 * unaware shrinkers will receive a node id of 0 instead. 667 * 668 * @memcg specifies the memory cgroup to target. Unaware shrinkers 669 * are called only if it is the root cgroup. 670 * 671 * @priority is sc->priority, we take the number of objects and >> by priority 672 * in order to get the scan target. 673 * 674 * Returns the number of reclaimed slab objects. 675 */ 676 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 677 struct mem_cgroup *memcg, 678 int priority) 679 { 680 struct shrinker *shrinker; 681 unsigned long freed = 0; 682 int ret; 683 684 if (!mem_cgroup_is_root(memcg)) 685 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 686 687 if (!down_read_trylock(&shrinker_rwsem)) 688 goto out; 689 690 list_for_each_entry(shrinker, &shrinker_list, list) { 691 struct shrink_control sc = { 692 .gfp_mask = gfp_mask, 693 .nid = nid, 694 .memcg = memcg, 695 }; 696 697 ret = do_shrink_slab(&sc, shrinker, priority); 698 if (ret == SHRINK_EMPTY) 699 ret = 0; 700 freed += ret; 701 /* 702 * Bail out if someone want to register a new shrinker to 703 * prevent the regsitration from being stalled for long periods 704 * by parallel ongoing shrinking. 705 */ 706 if (rwsem_is_contended(&shrinker_rwsem)) { 707 freed = freed ? : 1; 708 break; 709 } 710 } 711 712 up_read(&shrinker_rwsem); 713 out: 714 cond_resched(); 715 return freed; 716 } 717 718 void drop_slab_node(int nid) 719 { 720 unsigned long freed; 721 722 do { 723 struct mem_cgroup *memcg = NULL; 724 725 freed = 0; 726 memcg = mem_cgroup_iter(NULL, NULL, NULL); 727 do { 728 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 729 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 730 } while (freed > 10); 731 } 732 733 void drop_slab(void) 734 { 735 int nid; 736 737 for_each_online_node(nid) 738 drop_slab_node(nid); 739 } 740 741 static inline int is_page_cache_freeable(struct page *page) 742 { 743 /* 744 * A freeable page cache page is referenced only by the caller 745 * that isolated the page, the page cache radix tree and 746 * optional buffer heads at page->private. 747 */ 748 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 749 HPAGE_PMD_NR : 1; 750 return page_count(page) - page_has_private(page) == 1 + radix_pins; 751 } 752 753 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 754 { 755 if (current->flags & PF_SWAPWRITE) 756 return 1; 757 if (!inode_write_congested(inode)) 758 return 1; 759 if (inode_to_bdi(inode) == current->backing_dev_info) 760 return 1; 761 return 0; 762 } 763 764 /* 765 * We detected a synchronous write error writing a page out. Probably 766 * -ENOSPC. We need to propagate that into the address_space for a subsequent 767 * fsync(), msync() or close(). 768 * 769 * The tricky part is that after writepage we cannot touch the mapping: nothing 770 * prevents it from being freed up. But we have a ref on the page and once 771 * that page is locked, the mapping is pinned. 772 * 773 * We're allowed to run sleeping lock_page() here because we know the caller has 774 * __GFP_FS. 775 */ 776 static void handle_write_error(struct address_space *mapping, 777 struct page *page, int error) 778 { 779 lock_page(page); 780 if (page_mapping(page) == mapping) 781 mapping_set_error(mapping, error); 782 unlock_page(page); 783 } 784 785 /* possible outcome of pageout() */ 786 typedef enum { 787 /* failed to write page out, page is locked */ 788 PAGE_KEEP, 789 /* move page to the active list, page is locked */ 790 PAGE_ACTIVATE, 791 /* page has been sent to the disk successfully, page is unlocked */ 792 PAGE_SUCCESS, 793 /* page is clean and locked */ 794 PAGE_CLEAN, 795 } pageout_t; 796 797 /* 798 * pageout is called by shrink_page_list() for each dirty page. 799 * Calls ->writepage(). 800 */ 801 static pageout_t pageout(struct page *page, struct address_space *mapping, 802 struct scan_control *sc) 803 { 804 /* 805 * If the page is dirty, only perform writeback if that write 806 * will be non-blocking. To prevent this allocation from being 807 * stalled by pagecache activity. But note that there may be 808 * stalls if we need to run get_block(). We could test 809 * PagePrivate for that. 810 * 811 * If this process is currently in __generic_file_write_iter() against 812 * this page's queue, we can perform writeback even if that 813 * will block. 814 * 815 * If the page is swapcache, write it back even if that would 816 * block, for some throttling. This happens by accident, because 817 * swap_backing_dev_info is bust: it doesn't reflect the 818 * congestion state of the swapdevs. Easy to fix, if needed. 819 */ 820 if (!is_page_cache_freeable(page)) 821 return PAGE_KEEP; 822 if (!mapping) { 823 /* 824 * Some data journaling orphaned pages can have 825 * page->mapping == NULL while being dirty with clean buffers. 826 */ 827 if (page_has_private(page)) { 828 if (try_to_free_buffers(page)) { 829 ClearPageDirty(page); 830 pr_info("%s: orphaned page\n", __func__); 831 return PAGE_CLEAN; 832 } 833 } 834 return PAGE_KEEP; 835 } 836 if (mapping->a_ops->writepage == NULL) 837 return PAGE_ACTIVATE; 838 if (!may_write_to_inode(mapping->host, sc)) 839 return PAGE_KEEP; 840 841 if (clear_page_dirty_for_io(page)) { 842 int res; 843 struct writeback_control wbc = { 844 .sync_mode = WB_SYNC_NONE, 845 .nr_to_write = SWAP_CLUSTER_MAX, 846 .range_start = 0, 847 .range_end = LLONG_MAX, 848 .for_reclaim = 1, 849 }; 850 851 SetPageReclaim(page); 852 res = mapping->a_ops->writepage(page, &wbc); 853 if (res < 0) 854 handle_write_error(mapping, page, res); 855 if (res == AOP_WRITEPAGE_ACTIVATE) { 856 ClearPageReclaim(page); 857 return PAGE_ACTIVATE; 858 } 859 860 if (!PageWriteback(page)) { 861 /* synchronous write or broken a_ops? */ 862 ClearPageReclaim(page); 863 } 864 trace_mm_vmscan_writepage(page); 865 inc_node_page_state(page, NR_VMSCAN_WRITE); 866 return PAGE_SUCCESS; 867 } 868 869 return PAGE_CLEAN; 870 } 871 872 /* 873 * Same as remove_mapping, but if the page is removed from the mapping, it 874 * gets returned with a refcount of 0. 875 */ 876 static int __remove_mapping(struct address_space *mapping, struct page *page, 877 bool reclaimed) 878 { 879 unsigned long flags; 880 int refcount; 881 882 BUG_ON(!PageLocked(page)); 883 BUG_ON(mapping != page_mapping(page)); 884 885 xa_lock_irqsave(&mapping->i_pages, flags); 886 /* 887 * The non racy check for a busy page. 888 * 889 * Must be careful with the order of the tests. When someone has 890 * a ref to the page, it may be possible that they dirty it then 891 * drop the reference. So if PageDirty is tested before page_count 892 * here, then the following race may occur: 893 * 894 * get_user_pages(&page); 895 * [user mapping goes away] 896 * write_to(page); 897 * !PageDirty(page) [good] 898 * SetPageDirty(page); 899 * put_page(page); 900 * !page_count(page) [good, discard it] 901 * 902 * [oops, our write_to data is lost] 903 * 904 * Reversing the order of the tests ensures such a situation cannot 905 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 906 * load is not satisfied before that of page->_refcount. 907 * 908 * Note that if SetPageDirty is always performed via set_page_dirty, 909 * and thus under the i_pages lock, then this ordering is not required. 910 */ 911 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 912 refcount = 1 + HPAGE_PMD_NR; 913 else 914 refcount = 2; 915 if (!page_ref_freeze(page, refcount)) 916 goto cannot_free; 917 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 918 if (unlikely(PageDirty(page))) { 919 page_ref_unfreeze(page, refcount); 920 goto cannot_free; 921 } 922 923 if (PageSwapCache(page)) { 924 swp_entry_t swap = { .val = page_private(page) }; 925 mem_cgroup_swapout(page, swap); 926 __delete_from_swap_cache(page); 927 xa_unlock_irqrestore(&mapping->i_pages, flags); 928 put_swap_page(page, swap); 929 } else { 930 void (*freepage)(struct page *); 931 void *shadow = NULL; 932 933 freepage = mapping->a_ops->freepage; 934 /* 935 * Remember a shadow entry for reclaimed file cache in 936 * order to detect refaults, thus thrashing, later on. 937 * 938 * But don't store shadows in an address space that is 939 * already exiting. This is not just an optizimation, 940 * inode reclaim needs to empty out the radix tree or 941 * the nodes are lost. Don't plant shadows behind its 942 * back. 943 * 944 * We also don't store shadows for DAX mappings because the 945 * only page cache pages found in these are zero pages 946 * covering holes, and because we don't want to mix DAX 947 * exceptional entries and shadow exceptional entries in the 948 * same address_space. 949 */ 950 if (reclaimed && page_is_file_cache(page) && 951 !mapping_exiting(mapping) && !dax_mapping(mapping)) 952 shadow = workingset_eviction(mapping, page); 953 __delete_from_page_cache(page, shadow); 954 xa_unlock_irqrestore(&mapping->i_pages, flags); 955 956 if (freepage != NULL) 957 freepage(page); 958 } 959 960 return 1; 961 962 cannot_free: 963 xa_unlock_irqrestore(&mapping->i_pages, flags); 964 return 0; 965 } 966 967 /* 968 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 969 * someone else has a ref on the page, abort and return 0. If it was 970 * successfully detached, return 1. Assumes the caller has a single ref on 971 * this page. 972 */ 973 int remove_mapping(struct address_space *mapping, struct page *page) 974 { 975 if (__remove_mapping(mapping, page, false)) { 976 /* 977 * Unfreezing the refcount with 1 rather than 2 effectively 978 * drops the pagecache ref for us without requiring another 979 * atomic operation. 980 */ 981 page_ref_unfreeze(page, 1); 982 return 1; 983 } 984 return 0; 985 } 986 987 /** 988 * putback_lru_page - put previously isolated page onto appropriate LRU list 989 * @page: page to be put back to appropriate lru list 990 * 991 * Add previously isolated @page to appropriate LRU list. 992 * Page may still be unevictable for other reasons. 993 * 994 * lru_lock must not be held, interrupts must be enabled. 995 */ 996 void putback_lru_page(struct page *page) 997 { 998 lru_cache_add(page); 999 put_page(page); /* drop ref from isolate */ 1000 } 1001 1002 enum page_references { 1003 PAGEREF_RECLAIM, 1004 PAGEREF_RECLAIM_CLEAN, 1005 PAGEREF_KEEP, 1006 PAGEREF_ACTIVATE, 1007 }; 1008 1009 static enum page_references page_check_references(struct page *page, 1010 struct scan_control *sc) 1011 { 1012 int referenced_ptes, referenced_page; 1013 unsigned long vm_flags; 1014 1015 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1016 &vm_flags); 1017 referenced_page = TestClearPageReferenced(page); 1018 1019 /* 1020 * Mlock lost the isolation race with us. Let try_to_unmap() 1021 * move the page to the unevictable list. 1022 */ 1023 if (vm_flags & VM_LOCKED) 1024 return PAGEREF_RECLAIM; 1025 1026 if (referenced_ptes) { 1027 if (PageSwapBacked(page)) 1028 return PAGEREF_ACTIVATE; 1029 /* 1030 * All mapped pages start out with page table 1031 * references from the instantiating fault, so we need 1032 * to look twice if a mapped file page is used more 1033 * than once. 1034 * 1035 * Mark it and spare it for another trip around the 1036 * inactive list. Another page table reference will 1037 * lead to its activation. 1038 * 1039 * Note: the mark is set for activated pages as well 1040 * so that recently deactivated but used pages are 1041 * quickly recovered. 1042 */ 1043 SetPageReferenced(page); 1044 1045 if (referenced_page || referenced_ptes > 1) 1046 return PAGEREF_ACTIVATE; 1047 1048 /* 1049 * Activate file-backed executable pages after first usage. 1050 */ 1051 if (vm_flags & VM_EXEC) 1052 return PAGEREF_ACTIVATE; 1053 1054 return PAGEREF_KEEP; 1055 } 1056 1057 /* Reclaim if clean, defer dirty pages to writeback */ 1058 if (referenced_page && !PageSwapBacked(page)) 1059 return PAGEREF_RECLAIM_CLEAN; 1060 1061 return PAGEREF_RECLAIM; 1062 } 1063 1064 /* Check if a page is dirty or under writeback */ 1065 static void page_check_dirty_writeback(struct page *page, 1066 bool *dirty, bool *writeback) 1067 { 1068 struct address_space *mapping; 1069 1070 /* 1071 * Anonymous pages are not handled by flushers and must be written 1072 * from reclaim context. Do not stall reclaim based on them 1073 */ 1074 if (!page_is_file_cache(page) || 1075 (PageAnon(page) && !PageSwapBacked(page))) { 1076 *dirty = false; 1077 *writeback = false; 1078 return; 1079 } 1080 1081 /* By default assume that the page flags are accurate */ 1082 *dirty = PageDirty(page); 1083 *writeback = PageWriteback(page); 1084 1085 /* Verify dirty/writeback state if the filesystem supports it */ 1086 if (!page_has_private(page)) 1087 return; 1088 1089 mapping = page_mapping(page); 1090 if (mapping && mapping->a_ops->is_dirty_writeback) 1091 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1092 } 1093 1094 /* 1095 * shrink_page_list() returns the number of reclaimed pages 1096 */ 1097 static unsigned long shrink_page_list(struct list_head *page_list, 1098 struct pglist_data *pgdat, 1099 struct scan_control *sc, 1100 enum ttu_flags ttu_flags, 1101 struct reclaim_stat *stat, 1102 bool force_reclaim) 1103 { 1104 LIST_HEAD(ret_pages); 1105 LIST_HEAD(free_pages); 1106 int pgactivate = 0; 1107 unsigned nr_unqueued_dirty = 0; 1108 unsigned nr_dirty = 0; 1109 unsigned nr_congested = 0; 1110 unsigned nr_reclaimed = 0; 1111 unsigned nr_writeback = 0; 1112 unsigned nr_immediate = 0; 1113 unsigned nr_ref_keep = 0; 1114 unsigned nr_unmap_fail = 0; 1115 1116 cond_resched(); 1117 1118 while (!list_empty(page_list)) { 1119 struct address_space *mapping; 1120 struct page *page; 1121 int may_enter_fs; 1122 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1123 bool dirty, writeback; 1124 1125 cond_resched(); 1126 1127 page = lru_to_page(page_list); 1128 list_del(&page->lru); 1129 1130 if (!trylock_page(page)) 1131 goto keep; 1132 1133 VM_BUG_ON_PAGE(PageActive(page), page); 1134 1135 sc->nr_scanned++; 1136 1137 if (unlikely(!page_evictable(page))) 1138 goto activate_locked; 1139 1140 if (!sc->may_unmap && page_mapped(page)) 1141 goto keep_locked; 1142 1143 /* Double the slab pressure for mapped and swapcache pages */ 1144 if ((page_mapped(page) || PageSwapCache(page)) && 1145 !(PageAnon(page) && !PageSwapBacked(page))) 1146 sc->nr_scanned++; 1147 1148 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1149 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1150 1151 /* 1152 * The number of dirty pages determines if a node is marked 1153 * reclaim_congested which affects wait_iff_congested. kswapd 1154 * will stall and start writing pages if the tail of the LRU 1155 * is all dirty unqueued pages. 1156 */ 1157 page_check_dirty_writeback(page, &dirty, &writeback); 1158 if (dirty || writeback) 1159 nr_dirty++; 1160 1161 if (dirty && !writeback) 1162 nr_unqueued_dirty++; 1163 1164 /* 1165 * Treat this page as congested if the underlying BDI is or if 1166 * pages are cycling through the LRU so quickly that the 1167 * pages marked for immediate reclaim are making it to the 1168 * end of the LRU a second time. 1169 */ 1170 mapping = page_mapping(page); 1171 if (((dirty || writeback) && mapping && 1172 inode_write_congested(mapping->host)) || 1173 (writeback && PageReclaim(page))) 1174 nr_congested++; 1175 1176 /* 1177 * If a page at the tail of the LRU is under writeback, there 1178 * are three cases to consider. 1179 * 1180 * 1) If reclaim is encountering an excessive number of pages 1181 * under writeback and this page is both under writeback and 1182 * PageReclaim then it indicates that pages are being queued 1183 * for IO but are being recycled through the LRU before the 1184 * IO can complete. Waiting on the page itself risks an 1185 * indefinite stall if it is impossible to writeback the 1186 * page due to IO error or disconnected storage so instead 1187 * note that the LRU is being scanned too quickly and the 1188 * caller can stall after page list has been processed. 1189 * 1190 * 2) Global or new memcg reclaim encounters a page that is 1191 * not marked for immediate reclaim, or the caller does not 1192 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1193 * not to fs). In this case mark the page for immediate 1194 * reclaim and continue scanning. 1195 * 1196 * Require may_enter_fs because we would wait on fs, which 1197 * may not have submitted IO yet. And the loop driver might 1198 * enter reclaim, and deadlock if it waits on a page for 1199 * which it is needed to do the write (loop masks off 1200 * __GFP_IO|__GFP_FS for this reason); but more thought 1201 * would probably show more reasons. 1202 * 1203 * 3) Legacy memcg encounters a page that is already marked 1204 * PageReclaim. memcg does not have any dirty pages 1205 * throttling so we could easily OOM just because too many 1206 * pages are in writeback and there is nothing else to 1207 * reclaim. Wait for the writeback to complete. 1208 * 1209 * In cases 1) and 2) we activate the pages to get them out of 1210 * the way while we continue scanning for clean pages on the 1211 * inactive list and refilling from the active list. The 1212 * observation here is that waiting for disk writes is more 1213 * expensive than potentially causing reloads down the line. 1214 * Since they're marked for immediate reclaim, they won't put 1215 * memory pressure on the cache working set any longer than it 1216 * takes to write them to disk. 1217 */ 1218 if (PageWriteback(page)) { 1219 /* Case 1 above */ 1220 if (current_is_kswapd() && 1221 PageReclaim(page) && 1222 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1223 nr_immediate++; 1224 goto activate_locked; 1225 1226 /* Case 2 above */ 1227 } else if (sane_reclaim(sc) || 1228 !PageReclaim(page) || !may_enter_fs) { 1229 /* 1230 * This is slightly racy - end_page_writeback() 1231 * might have just cleared PageReclaim, then 1232 * setting PageReclaim here end up interpreted 1233 * as PageReadahead - but that does not matter 1234 * enough to care. What we do want is for this 1235 * page to have PageReclaim set next time memcg 1236 * reclaim reaches the tests above, so it will 1237 * then wait_on_page_writeback() to avoid OOM; 1238 * and it's also appropriate in global reclaim. 1239 */ 1240 SetPageReclaim(page); 1241 nr_writeback++; 1242 goto activate_locked; 1243 1244 /* Case 3 above */ 1245 } else { 1246 unlock_page(page); 1247 wait_on_page_writeback(page); 1248 /* then go back and try same page again */ 1249 list_add_tail(&page->lru, page_list); 1250 continue; 1251 } 1252 } 1253 1254 if (!force_reclaim) 1255 references = page_check_references(page, sc); 1256 1257 switch (references) { 1258 case PAGEREF_ACTIVATE: 1259 goto activate_locked; 1260 case PAGEREF_KEEP: 1261 nr_ref_keep++; 1262 goto keep_locked; 1263 case PAGEREF_RECLAIM: 1264 case PAGEREF_RECLAIM_CLEAN: 1265 ; /* try to reclaim the page below */ 1266 } 1267 1268 /* 1269 * Anonymous process memory has backing store? 1270 * Try to allocate it some swap space here. 1271 * Lazyfree page could be freed directly 1272 */ 1273 if (PageAnon(page) && PageSwapBacked(page)) { 1274 if (!PageSwapCache(page)) { 1275 if (!(sc->gfp_mask & __GFP_IO)) 1276 goto keep_locked; 1277 if (PageTransHuge(page)) { 1278 /* cannot split THP, skip it */ 1279 if (!can_split_huge_page(page, NULL)) 1280 goto activate_locked; 1281 /* 1282 * Split pages without a PMD map right 1283 * away. Chances are some or all of the 1284 * tail pages can be freed without IO. 1285 */ 1286 if (!compound_mapcount(page) && 1287 split_huge_page_to_list(page, 1288 page_list)) 1289 goto activate_locked; 1290 } 1291 if (!add_to_swap(page)) { 1292 if (!PageTransHuge(page)) 1293 goto activate_locked; 1294 /* Fallback to swap normal pages */ 1295 if (split_huge_page_to_list(page, 1296 page_list)) 1297 goto activate_locked; 1298 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1299 count_vm_event(THP_SWPOUT_FALLBACK); 1300 #endif 1301 if (!add_to_swap(page)) 1302 goto activate_locked; 1303 } 1304 1305 may_enter_fs = 1; 1306 1307 /* Adding to swap updated mapping */ 1308 mapping = page_mapping(page); 1309 } 1310 } else if (unlikely(PageTransHuge(page))) { 1311 /* Split file THP */ 1312 if (split_huge_page_to_list(page, page_list)) 1313 goto keep_locked; 1314 } 1315 1316 /* 1317 * The page is mapped into the page tables of one or more 1318 * processes. Try to unmap it here. 1319 */ 1320 if (page_mapped(page)) { 1321 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1322 1323 if (unlikely(PageTransHuge(page))) 1324 flags |= TTU_SPLIT_HUGE_PMD; 1325 if (!try_to_unmap(page, flags)) { 1326 nr_unmap_fail++; 1327 goto activate_locked; 1328 } 1329 } 1330 1331 if (PageDirty(page)) { 1332 /* 1333 * Only kswapd can writeback filesystem pages 1334 * to avoid risk of stack overflow. But avoid 1335 * injecting inefficient single-page IO into 1336 * flusher writeback as much as possible: only 1337 * write pages when we've encountered many 1338 * dirty pages, and when we've already scanned 1339 * the rest of the LRU for clean pages and see 1340 * the same dirty pages again (PageReclaim). 1341 */ 1342 if (page_is_file_cache(page) && 1343 (!current_is_kswapd() || !PageReclaim(page) || 1344 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1345 /* 1346 * Immediately reclaim when written back. 1347 * Similar in principal to deactivate_page() 1348 * except we already have the page isolated 1349 * and know it's dirty 1350 */ 1351 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1352 SetPageReclaim(page); 1353 1354 goto activate_locked; 1355 } 1356 1357 if (references == PAGEREF_RECLAIM_CLEAN) 1358 goto keep_locked; 1359 if (!may_enter_fs) 1360 goto keep_locked; 1361 if (!sc->may_writepage) 1362 goto keep_locked; 1363 1364 /* 1365 * Page is dirty. Flush the TLB if a writable entry 1366 * potentially exists to avoid CPU writes after IO 1367 * starts and then write it out here. 1368 */ 1369 try_to_unmap_flush_dirty(); 1370 switch (pageout(page, mapping, sc)) { 1371 case PAGE_KEEP: 1372 goto keep_locked; 1373 case PAGE_ACTIVATE: 1374 goto activate_locked; 1375 case PAGE_SUCCESS: 1376 if (PageWriteback(page)) 1377 goto keep; 1378 if (PageDirty(page)) 1379 goto keep; 1380 1381 /* 1382 * A synchronous write - probably a ramdisk. Go 1383 * ahead and try to reclaim the page. 1384 */ 1385 if (!trylock_page(page)) 1386 goto keep; 1387 if (PageDirty(page) || PageWriteback(page)) 1388 goto keep_locked; 1389 mapping = page_mapping(page); 1390 case PAGE_CLEAN: 1391 ; /* try to free the page below */ 1392 } 1393 } 1394 1395 /* 1396 * If the page has buffers, try to free the buffer mappings 1397 * associated with this page. If we succeed we try to free 1398 * the page as well. 1399 * 1400 * We do this even if the page is PageDirty(). 1401 * try_to_release_page() does not perform I/O, but it is 1402 * possible for a page to have PageDirty set, but it is actually 1403 * clean (all its buffers are clean). This happens if the 1404 * buffers were written out directly, with submit_bh(). ext3 1405 * will do this, as well as the blockdev mapping. 1406 * try_to_release_page() will discover that cleanness and will 1407 * drop the buffers and mark the page clean - it can be freed. 1408 * 1409 * Rarely, pages can have buffers and no ->mapping. These are 1410 * the pages which were not successfully invalidated in 1411 * truncate_complete_page(). We try to drop those buffers here 1412 * and if that worked, and the page is no longer mapped into 1413 * process address space (page_count == 1) it can be freed. 1414 * Otherwise, leave the page on the LRU so it is swappable. 1415 */ 1416 if (page_has_private(page)) { 1417 if (!try_to_release_page(page, sc->gfp_mask)) 1418 goto activate_locked; 1419 if (!mapping && page_count(page) == 1) { 1420 unlock_page(page); 1421 if (put_page_testzero(page)) 1422 goto free_it; 1423 else { 1424 /* 1425 * rare race with speculative reference. 1426 * the speculative reference will free 1427 * this page shortly, so we may 1428 * increment nr_reclaimed here (and 1429 * leave it off the LRU). 1430 */ 1431 nr_reclaimed++; 1432 continue; 1433 } 1434 } 1435 } 1436 1437 if (PageAnon(page) && !PageSwapBacked(page)) { 1438 /* follow __remove_mapping for reference */ 1439 if (!page_ref_freeze(page, 1)) 1440 goto keep_locked; 1441 if (PageDirty(page)) { 1442 page_ref_unfreeze(page, 1); 1443 goto keep_locked; 1444 } 1445 1446 count_vm_event(PGLAZYFREED); 1447 count_memcg_page_event(page, PGLAZYFREED); 1448 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1449 goto keep_locked; 1450 /* 1451 * At this point, we have no other references and there is 1452 * no way to pick any more up (removed from LRU, removed 1453 * from pagecache). Can use non-atomic bitops now (and 1454 * we obviously don't have to worry about waking up a process 1455 * waiting on the page lock, because there are no references. 1456 */ 1457 __ClearPageLocked(page); 1458 free_it: 1459 nr_reclaimed++; 1460 1461 /* 1462 * Is there need to periodically free_page_list? It would 1463 * appear not as the counts should be low 1464 */ 1465 if (unlikely(PageTransHuge(page))) { 1466 mem_cgroup_uncharge(page); 1467 (*get_compound_page_dtor(page))(page); 1468 } else 1469 list_add(&page->lru, &free_pages); 1470 continue; 1471 1472 activate_locked: 1473 /* Not a candidate for swapping, so reclaim swap space. */ 1474 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1475 PageMlocked(page))) 1476 try_to_free_swap(page); 1477 VM_BUG_ON_PAGE(PageActive(page), page); 1478 if (!PageMlocked(page)) { 1479 SetPageActive(page); 1480 pgactivate++; 1481 count_memcg_page_event(page, PGACTIVATE); 1482 } 1483 keep_locked: 1484 unlock_page(page); 1485 keep: 1486 list_add(&page->lru, &ret_pages); 1487 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1488 } 1489 1490 mem_cgroup_uncharge_list(&free_pages); 1491 try_to_unmap_flush(); 1492 free_unref_page_list(&free_pages); 1493 1494 list_splice(&ret_pages, page_list); 1495 count_vm_events(PGACTIVATE, pgactivate); 1496 1497 if (stat) { 1498 stat->nr_dirty = nr_dirty; 1499 stat->nr_congested = nr_congested; 1500 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1501 stat->nr_writeback = nr_writeback; 1502 stat->nr_immediate = nr_immediate; 1503 stat->nr_activate = pgactivate; 1504 stat->nr_ref_keep = nr_ref_keep; 1505 stat->nr_unmap_fail = nr_unmap_fail; 1506 } 1507 return nr_reclaimed; 1508 } 1509 1510 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1511 struct list_head *page_list) 1512 { 1513 struct scan_control sc = { 1514 .gfp_mask = GFP_KERNEL, 1515 .priority = DEF_PRIORITY, 1516 .may_unmap = 1, 1517 }; 1518 unsigned long ret; 1519 struct page *page, *next; 1520 LIST_HEAD(clean_pages); 1521 1522 list_for_each_entry_safe(page, next, page_list, lru) { 1523 if (page_is_file_cache(page) && !PageDirty(page) && 1524 !__PageMovable(page)) { 1525 ClearPageActive(page); 1526 list_move(&page->lru, &clean_pages); 1527 } 1528 } 1529 1530 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1531 TTU_IGNORE_ACCESS, NULL, true); 1532 list_splice(&clean_pages, page_list); 1533 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1534 return ret; 1535 } 1536 1537 /* 1538 * Attempt to remove the specified page from its LRU. Only take this page 1539 * if it is of the appropriate PageActive status. Pages which are being 1540 * freed elsewhere are also ignored. 1541 * 1542 * page: page to consider 1543 * mode: one of the LRU isolation modes defined above 1544 * 1545 * returns 0 on success, -ve errno on failure. 1546 */ 1547 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1548 { 1549 int ret = -EINVAL; 1550 1551 /* Only take pages on the LRU. */ 1552 if (!PageLRU(page)) 1553 return ret; 1554 1555 /* Compaction should not handle unevictable pages but CMA can do so */ 1556 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1557 return ret; 1558 1559 ret = -EBUSY; 1560 1561 /* 1562 * To minimise LRU disruption, the caller can indicate that it only 1563 * wants to isolate pages it will be able to operate on without 1564 * blocking - clean pages for the most part. 1565 * 1566 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1567 * that it is possible to migrate without blocking 1568 */ 1569 if (mode & ISOLATE_ASYNC_MIGRATE) { 1570 /* All the caller can do on PageWriteback is block */ 1571 if (PageWriteback(page)) 1572 return ret; 1573 1574 if (PageDirty(page)) { 1575 struct address_space *mapping; 1576 bool migrate_dirty; 1577 1578 /* 1579 * Only pages without mappings or that have a 1580 * ->migratepage callback are possible to migrate 1581 * without blocking. However, we can be racing with 1582 * truncation so it's necessary to lock the page 1583 * to stabilise the mapping as truncation holds 1584 * the page lock until after the page is removed 1585 * from the page cache. 1586 */ 1587 if (!trylock_page(page)) 1588 return ret; 1589 1590 mapping = page_mapping(page); 1591 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1592 unlock_page(page); 1593 if (!migrate_dirty) 1594 return ret; 1595 } 1596 } 1597 1598 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1599 return ret; 1600 1601 if (likely(get_page_unless_zero(page))) { 1602 /* 1603 * Be careful not to clear PageLRU until after we're 1604 * sure the page is not being freed elsewhere -- the 1605 * page release code relies on it. 1606 */ 1607 ClearPageLRU(page); 1608 ret = 0; 1609 } 1610 1611 return ret; 1612 } 1613 1614 1615 /* 1616 * Update LRU sizes after isolating pages. The LRU size updates must 1617 * be complete before mem_cgroup_update_lru_size due to a santity check. 1618 */ 1619 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1620 enum lru_list lru, unsigned long *nr_zone_taken) 1621 { 1622 int zid; 1623 1624 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1625 if (!nr_zone_taken[zid]) 1626 continue; 1627 1628 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1629 #ifdef CONFIG_MEMCG 1630 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1631 #endif 1632 } 1633 1634 } 1635 1636 /* 1637 * zone_lru_lock is heavily contended. Some of the functions that 1638 * shrink the lists perform better by taking out a batch of pages 1639 * and working on them outside the LRU lock. 1640 * 1641 * For pagecache intensive workloads, this function is the hottest 1642 * spot in the kernel (apart from copy_*_user functions). 1643 * 1644 * Appropriate locks must be held before calling this function. 1645 * 1646 * @nr_to_scan: The number of eligible pages to look through on the list. 1647 * @lruvec: The LRU vector to pull pages from. 1648 * @dst: The temp list to put pages on to. 1649 * @nr_scanned: The number of pages that were scanned. 1650 * @sc: The scan_control struct for this reclaim session 1651 * @mode: One of the LRU isolation modes 1652 * @lru: LRU list id for isolating 1653 * 1654 * returns how many pages were moved onto *@dst. 1655 */ 1656 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1657 struct lruvec *lruvec, struct list_head *dst, 1658 unsigned long *nr_scanned, struct scan_control *sc, 1659 isolate_mode_t mode, enum lru_list lru) 1660 { 1661 struct list_head *src = &lruvec->lists[lru]; 1662 unsigned long nr_taken = 0; 1663 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1664 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1665 unsigned long skipped = 0; 1666 unsigned long scan, total_scan, nr_pages; 1667 LIST_HEAD(pages_skipped); 1668 1669 scan = 0; 1670 for (total_scan = 0; 1671 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1672 total_scan++) { 1673 struct page *page; 1674 1675 page = lru_to_page(src); 1676 prefetchw_prev_lru_page(page, src, flags); 1677 1678 VM_BUG_ON_PAGE(!PageLRU(page), page); 1679 1680 if (page_zonenum(page) > sc->reclaim_idx) { 1681 list_move(&page->lru, &pages_skipped); 1682 nr_skipped[page_zonenum(page)]++; 1683 continue; 1684 } 1685 1686 /* 1687 * Do not count skipped pages because that makes the function 1688 * return with no isolated pages if the LRU mostly contains 1689 * ineligible pages. This causes the VM to not reclaim any 1690 * pages, triggering a premature OOM. 1691 */ 1692 scan++; 1693 switch (__isolate_lru_page(page, mode)) { 1694 case 0: 1695 nr_pages = hpage_nr_pages(page); 1696 nr_taken += nr_pages; 1697 nr_zone_taken[page_zonenum(page)] += nr_pages; 1698 list_move(&page->lru, dst); 1699 break; 1700 1701 case -EBUSY: 1702 /* else it is being freed elsewhere */ 1703 list_move(&page->lru, src); 1704 continue; 1705 1706 default: 1707 BUG(); 1708 } 1709 } 1710 1711 /* 1712 * Splice any skipped pages to the start of the LRU list. Note that 1713 * this disrupts the LRU order when reclaiming for lower zones but 1714 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1715 * scanning would soon rescan the same pages to skip and put the 1716 * system at risk of premature OOM. 1717 */ 1718 if (!list_empty(&pages_skipped)) { 1719 int zid; 1720 1721 list_splice(&pages_skipped, src); 1722 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1723 if (!nr_skipped[zid]) 1724 continue; 1725 1726 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1727 skipped += nr_skipped[zid]; 1728 } 1729 } 1730 *nr_scanned = total_scan; 1731 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1732 total_scan, skipped, nr_taken, mode, lru); 1733 update_lru_sizes(lruvec, lru, nr_zone_taken); 1734 return nr_taken; 1735 } 1736 1737 /** 1738 * isolate_lru_page - tries to isolate a page from its LRU list 1739 * @page: page to isolate from its LRU list 1740 * 1741 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1742 * vmstat statistic corresponding to whatever LRU list the page was on. 1743 * 1744 * Returns 0 if the page was removed from an LRU list. 1745 * Returns -EBUSY if the page was not on an LRU list. 1746 * 1747 * The returned page will have PageLRU() cleared. If it was found on 1748 * the active list, it will have PageActive set. If it was found on 1749 * the unevictable list, it will have the PageUnevictable bit set. That flag 1750 * may need to be cleared by the caller before letting the page go. 1751 * 1752 * The vmstat statistic corresponding to the list on which the page was 1753 * found will be decremented. 1754 * 1755 * Restrictions: 1756 * 1757 * (1) Must be called with an elevated refcount on the page. This is a 1758 * fundamentnal difference from isolate_lru_pages (which is called 1759 * without a stable reference). 1760 * (2) the lru_lock must not be held. 1761 * (3) interrupts must be enabled. 1762 */ 1763 int isolate_lru_page(struct page *page) 1764 { 1765 int ret = -EBUSY; 1766 1767 VM_BUG_ON_PAGE(!page_count(page), page); 1768 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1769 1770 if (PageLRU(page)) { 1771 struct zone *zone = page_zone(page); 1772 struct lruvec *lruvec; 1773 1774 spin_lock_irq(zone_lru_lock(zone)); 1775 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1776 if (PageLRU(page)) { 1777 int lru = page_lru(page); 1778 get_page(page); 1779 ClearPageLRU(page); 1780 del_page_from_lru_list(page, lruvec, lru); 1781 ret = 0; 1782 } 1783 spin_unlock_irq(zone_lru_lock(zone)); 1784 } 1785 return ret; 1786 } 1787 1788 /* 1789 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1790 * then get resheduled. When there are massive number of tasks doing page 1791 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1792 * the LRU list will go small and be scanned faster than necessary, leading to 1793 * unnecessary swapping, thrashing and OOM. 1794 */ 1795 static int too_many_isolated(struct pglist_data *pgdat, int file, 1796 struct scan_control *sc) 1797 { 1798 unsigned long inactive, isolated; 1799 1800 if (current_is_kswapd()) 1801 return 0; 1802 1803 if (!sane_reclaim(sc)) 1804 return 0; 1805 1806 if (file) { 1807 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1808 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1809 } else { 1810 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1811 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1812 } 1813 1814 /* 1815 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1816 * won't get blocked by normal direct-reclaimers, forming a circular 1817 * deadlock. 1818 */ 1819 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1820 inactive >>= 3; 1821 1822 return isolated > inactive; 1823 } 1824 1825 static noinline_for_stack void 1826 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1827 { 1828 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1829 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1830 LIST_HEAD(pages_to_free); 1831 1832 /* 1833 * Put back any unfreeable pages. 1834 */ 1835 while (!list_empty(page_list)) { 1836 struct page *page = lru_to_page(page_list); 1837 int lru; 1838 1839 VM_BUG_ON_PAGE(PageLRU(page), page); 1840 list_del(&page->lru); 1841 if (unlikely(!page_evictable(page))) { 1842 spin_unlock_irq(&pgdat->lru_lock); 1843 putback_lru_page(page); 1844 spin_lock_irq(&pgdat->lru_lock); 1845 continue; 1846 } 1847 1848 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1849 1850 SetPageLRU(page); 1851 lru = page_lru(page); 1852 add_page_to_lru_list(page, lruvec, lru); 1853 1854 if (is_active_lru(lru)) { 1855 int file = is_file_lru(lru); 1856 int numpages = hpage_nr_pages(page); 1857 reclaim_stat->recent_rotated[file] += numpages; 1858 } 1859 if (put_page_testzero(page)) { 1860 __ClearPageLRU(page); 1861 __ClearPageActive(page); 1862 del_page_from_lru_list(page, lruvec, lru); 1863 1864 if (unlikely(PageCompound(page))) { 1865 spin_unlock_irq(&pgdat->lru_lock); 1866 mem_cgroup_uncharge(page); 1867 (*get_compound_page_dtor(page))(page); 1868 spin_lock_irq(&pgdat->lru_lock); 1869 } else 1870 list_add(&page->lru, &pages_to_free); 1871 } 1872 } 1873 1874 /* 1875 * To save our caller's stack, now use input list for pages to free. 1876 */ 1877 list_splice(&pages_to_free, page_list); 1878 } 1879 1880 /* 1881 * If a kernel thread (such as nfsd for loop-back mounts) services 1882 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1883 * In that case we should only throttle if the backing device it is 1884 * writing to is congested. In other cases it is safe to throttle. 1885 */ 1886 static int current_may_throttle(void) 1887 { 1888 return !(current->flags & PF_LESS_THROTTLE) || 1889 current->backing_dev_info == NULL || 1890 bdi_write_congested(current->backing_dev_info); 1891 } 1892 1893 /* 1894 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1895 * of reclaimed pages 1896 */ 1897 static noinline_for_stack unsigned long 1898 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1899 struct scan_control *sc, enum lru_list lru) 1900 { 1901 LIST_HEAD(page_list); 1902 unsigned long nr_scanned; 1903 unsigned long nr_reclaimed = 0; 1904 unsigned long nr_taken; 1905 struct reclaim_stat stat = {}; 1906 isolate_mode_t isolate_mode = 0; 1907 int file = is_file_lru(lru); 1908 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1909 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1910 bool stalled = false; 1911 1912 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1913 if (stalled) 1914 return 0; 1915 1916 /* wait a bit for the reclaimer. */ 1917 msleep(100); 1918 stalled = true; 1919 1920 /* We are about to die and free our memory. Return now. */ 1921 if (fatal_signal_pending(current)) 1922 return SWAP_CLUSTER_MAX; 1923 } 1924 1925 lru_add_drain(); 1926 1927 if (!sc->may_unmap) 1928 isolate_mode |= ISOLATE_UNMAPPED; 1929 1930 spin_lock_irq(&pgdat->lru_lock); 1931 1932 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1933 &nr_scanned, sc, isolate_mode, lru); 1934 1935 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1936 reclaim_stat->recent_scanned[file] += nr_taken; 1937 1938 if (current_is_kswapd()) { 1939 if (global_reclaim(sc)) 1940 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1941 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1942 nr_scanned); 1943 } else { 1944 if (global_reclaim(sc)) 1945 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1946 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1947 nr_scanned); 1948 } 1949 spin_unlock_irq(&pgdat->lru_lock); 1950 1951 if (nr_taken == 0) 1952 return 0; 1953 1954 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1955 &stat, false); 1956 1957 spin_lock_irq(&pgdat->lru_lock); 1958 1959 if (current_is_kswapd()) { 1960 if (global_reclaim(sc)) 1961 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1962 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1963 nr_reclaimed); 1964 } else { 1965 if (global_reclaim(sc)) 1966 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1967 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1968 nr_reclaimed); 1969 } 1970 1971 putback_inactive_pages(lruvec, &page_list); 1972 1973 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1974 1975 spin_unlock_irq(&pgdat->lru_lock); 1976 1977 mem_cgroup_uncharge_list(&page_list); 1978 free_unref_page_list(&page_list); 1979 1980 /* 1981 * If dirty pages are scanned that are not queued for IO, it 1982 * implies that flushers are not doing their job. This can 1983 * happen when memory pressure pushes dirty pages to the end of 1984 * the LRU before the dirty limits are breached and the dirty 1985 * data has expired. It can also happen when the proportion of 1986 * dirty pages grows not through writes but through memory 1987 * pressure reclaiming all the clean cache. And in some cases, 1988 * the flushers simply cannot keep up with the allocation 1989 * rate. Nudge the flusher threads in case they are asleep. 1990 */ 1991 if (stat.nr_unqueued_dirty == nr_taken) 1992 wakeup_flusher_threads(WB_REASON_VMSCAN); 1993 1994 sc->nr.dirty += stat.nr_dirty; 1995 sc->nr.congested += stat.nr_congested; 1996 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1997 sc->nr.writeback += stat.nr_writeback; 1998 sc->nr.immediate += stat.nr_immediate; 1999 sc->nr.taken += nr_taken; 2000 if (file) 2001 sc->nr.file_taken += nr_taken; 2002 2003 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2004 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2005 return nr_reclaimed; 2006 } 2007 2008 /* 2009 * This moves pages from the active list to the inactive list. 2010 * 2011 * We move them the other way if the page is referenced by one or more 2012 * processes, from rmap. 2013 * 2014 * If the pages are mostly unmapped, the processing is fast and it is 2015 * appropriate to hold zone_lru_lock across the whole operation. But if 2016 * the pages are mapped, the processing is slow (page_referenced()) so we 2017 * should drop zone_lru_lock around each page. It's impossible to balance 2018 * this, so instead we remove the pages from the LRU while processing them. 2019 * It is safe to rely on PG_active against the non-LRU pages in here because 2020 * nobody will play with that bit on a non-LRU page. 2021 * 2022 * The downside is that we have to touch page->_refcount against each page. 2023 * But we had to alter page->flags anyway. 2024 * 2025 * Returns the number of pages moved to the given lru. 2026 */ 2027 2028 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 2029 struct list_head *list, 2030 struct list_head *pages_to_free, 2031 enum lru_list lru) 2032 { 2033 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2034 struct page *page; 2035 int nr_pages; 2036 int nr_moved = 0; 2037 2038 while (!list_empty(list)) { 2039 page = lru_to_page(list); 2040 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2041 2042 VM_BUG_ON_PAGE(PageLRU(page), page); 2043 SetPageLRU(page); 2044 2045 nr_pages = hpage_nr_pages(page); 2046 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 2047 list_move(&page->lru, &lruvec->lists[lru]); 2048 2049 if (put_page_testzero(page)) { 2050 __ClearPageLRU(page); 2051 __ClearPageActive(page); 2052 del_page_from_lru_list(page, lruvec, lru); 2053 2054 if (unlikely(PageCompound(page))) { 2055 spin_unlock_irq(&pgdat->lru_lock); 2056 mem_cgroup_uncharge(page); 2057 (*get_compound_page_dtor(page))(page); 2058 spin_lock_irq(&pgdat->lru_lock); 2059 } else 2060 list_add(&page->lru, pages_to_free); 2061 } else { 2062 nr_moved += nr_pages; 2063 } 2064 } 2065 2066 if (!is_active_lru(lru)) { 2067 __count_vm_events(PGDEACTIVATE, nr_moved); 2068 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 2069 nr_moved); 2070 } 2071 2072 return nr_moved; 2073 } 2074 2075 static void shrink_active_list(unsigned long nr_to_scan, 2076 struct lruvec *lruvec, 2077 struct scan_control *sc, 2078 enum lru_list lru) 2079 { 2080 unsigned long nr_taken; 2081 unsigned long nr_scanned; 2082 unsigned long vm_flags; 2083 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2084 LIST_HEAD(l_active); 2085 LIST_HEAD(l_inactive); 2086 struct page *page; 2087 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2088 unsigned nr_deactivate, nr_activate; 2089 unsigned nr_rotated = 0; 2090 isolate_mode_t isolate_mode = 0; 2091 int file = is_file_lru(lru); 2092 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2093 2094 lru_add_drain(); 2095 2096 if (!sc->may_unmap) 2097 isolate_mode |= ISOLATE_UNMAPPED; 2098 2099 spin_lock_irq(&pgdat->lru_lock); 2100 2101 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2102 &nr_scanned, sc, isolate_mode, lru); 2103 2104 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2105 reclaim_stat->recent_scanned[file] += nr_taken; 2106 2107 __count_vm_events(PGREFILL, nr_scanned); 2108 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2109 2110 spin_unlock_irq(&pgdat->lru_lock); 2111 2112 while (!list_empty(&l_hold)) { 2113 cond_resched(); 2114 page = lru_to_page(&l_hold); 2115 list_del(&page->lru); 2116 2117 if (unlikely(!page_evictable(page))) { 2118 putback_lru_page(page); 2119 continue; 2120 } 2121 2122 if (unlikely(buffer_heads_over_limit)) { 2123 if (page_has_private(page) && trylock_page(page)) { 2124 if (page_has_private(page)) 2125 try_to_release_page(page, 0); 2126 unlock_page(page); 2127 } 2128 } 2129 2130 if (page_referenced(page, 0, sc->target_mem_cgroup, 2131 &vm_flags)) { 2132 nr_rotated += hpage_nr_pages(page); 2133 /* 2134 * Identify referenced, file-backed active pages and 2135 * give them one more trip around the active list. So 2136 * that executable code get better chances to stay in 2137 * memory under moderate memory pressure. Anon pages 2138 * are not likely to be evicted by use-once streaming 2139 * IO, plus JVM can create lots of anon VM_EXEC pages, 2140 * so we ignore them here. 2141 */ 2142 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2143 list_add(&page->lru, &l_active); 2144 continue; 2145 } 2146 } 2147 2148 ClearPageActive(page); /* we are de-activating */ 2149 list_add(&page->lru, &l_inactive); 2150 } 2151 2152 /* 2153 * Move pages back to the lru list. 2154 */ 2155 spin_lock_irq(&pgdat->lru_lock); 2156 /* 2157 * Count referenced pages from currently used mappings as rotated, 2158 * even though only some of them are actually re-activated. This 2159 * helps balance scan pressure between file and anonymous pages in 2160 * get_scan_count. 2161 */ 2162 reclaim_stat->recent_rotated[file] += nr_rotated; 2163 2164 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2165 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2166 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2167 spin_unlock_irq(&pgdat->lru_lock); 2168 2169 mem_cgroup_uncharge_list(&l_hold); 2170 free_unref_page_list(&l_hold); 2171 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2172 nr_deactivate, nr_rotated, sc->priority, file); 2173 } 2174 2175 /* 2176 * The inactive anon list should be small enough that the VM never has 2177 * to do too much work. 2178 * 2179 * The inactive file list should be small enough to leave most memory 2180 * to the established workingset on the scan-resistant active list, 2181 * but large enough to avoid thrashing the aggregate readahead window. 2182 * 2183 * Both inactive lists should also be large enough that each inactive 2184 * page has a chance to be referenced again before it is reclaimed. 2185 * 2186 * If that fails and refaulting is observed, the inactive list grows. 2187 * 2188 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2189 * on this LRU, maintained by the pageout code. An inactive_ratio 2190 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2191 * 2192 * total target max 2193 * memory ratio inactive 2194 * ------------------------------------- 2195 * 10MB 1 5MB 2196 * 100MB 1 50MB 2197 * 1GB 3 250MB 2198 * 10GB 10 0.9GB 2199 * 100GB 31 3GB 2200 * 1TB 101 10GB 2201 * 10TB 320 32GB 2202 */ 2203 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2204 struct mem_cgroup *memcg, 2205 struct scan_control *sc, bool actual_reclaim) 2206 { 2207 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2208 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2209 enum lru_list inactive_lru = file * LRU_FILE; 2210 unsigned long inactive, active; 2211 unsigned long inactive_ratio; 2212 unsigned long refaults; 2213 unsigned long gb; 2214 2215 /* 2216 * If we don't have swap space, anonymous page deactivation 2217 * is pointless. 2218 */ 2219 if (!file && !total_swap_pages) 2220 return false; 2221 2222 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2223 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2224 2225 if (memcg) 2226 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2227 else 2228 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2229 2230 /* 2231 * When refaults are being observed, it means a new workingset 2232 * is being established. Disable active list protection to get 2233 * rid of the stale workingset quickly. 2234 */ 2235 if (file && actual_reclaim && lruvec->refaults != refaults) { 2236 inactive_ratio = 0; 2237 } else { 2238 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2239 if (gb) 2240 inactive_ratio = int_sqrt(10 * gb); 2241 else 2242 inactive_ratio = 1; 2243 } 2244 2245 if (actual_reclaim) 2246 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2247 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2248 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2249 inactive_ratio, file); 2250 2251 return inactive * inactive_ratio < active; 2252 } 2253 2254 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2255 struct lruvec *lruvec, struct mem_cgroup *memcg, 2256 struct scan_control *sc) 2257 { 2258 if (is_active_lru(lru)) { 2259 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2260 memcg, sc, true)) 2261 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2262 return 0; 2263 } 2264 2265 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2266 } 2267 2268 enum scan_balance { 2269 SCAN_EQUAL, 2270 SCAN_FRACT, 2271 SCAN_ANON, 2272 SCAN_FILE, 2273 }; 2274 2275 /* 2276 * Determine how aggressively the anon and file LRU lists should be 2277 * scanned. The relative value of each set of LRU lists is determined 2278 * by looking at the fraction of the pages scanned we did rotate back 2279 * onto the active list instead of evict. 2280 * 2281 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2282 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2283 */ 2284 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2285 struct scan_control *sc, unsigned long *nr, 2286 unsigned long *lru_pages) 2287 { 2288 int swappiness = mem_cgroup_swappiness(memcg); 2289 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2290 u64 fraction[2]; 2291 u64 denominator = 0; /* gcc */ 2292 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2293 unsigned long anon_prio, file_prio; 2294 enum scan_balance scan_balance; 2295 unsigned long anon, file; 2296 unsigned long ap, fp; 2297 enum lru_list lru; 2298 2299 /* If we have no swap space, do not bother scanning anon pages. */ 2300 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2301 scan_balance = SCAN_FILE; 2302 goto out; 2303 } 2304 2305 /* 2306 * Global reclaim will swap to prevent OOM even with no 2307 * swappiness, but memcg users want to use this knob to 2308 * disable swapping for individual groups completely when 2309 * using the memory controller's swap limit feature would be 2310 * too expensive. 2311 */ 2312 if (!global_reclaim(sc) && !swappiness) { 2313 scan_balance = SCAN_FILE; 2314 goto out; 2315 } 2316 2317 /* 2318 * Do not apply any pressure balancing cleverness when the 2319 * system is close to OOM, scan both anon and file equally 2320 * (unless the swappiness setting disagrees with swapping). 2321 */ 2322 if (!sc->priority && swappiness) { 2323 scan_balance = SCAN_EQUAL; 2324 goto out; 2325 } 2326 2327 /* 2328 * Prevent the reclaimer from falling into the cache trap: as 2329 * cache pages start out inactive, every cache fault will tip 2330 * the scan balance towards the file LRU. And as the file LRU 2331 * shrinks, so does the window for rotation from references. 2332 * This means we have a runaway feedback loop where a tiny 2333 * thrashing file LRU becomes infinitely more attractive than 2334 * anon pages. Try to detect this based on file LRU size. 2335 */ 2336 if (global_reclaim(sc)) { 2337 unsigned long pgdatfile; 2338 unsigned long pgdatfree; 2339 int z; 2340 unsigned long total_high_wmark = 0; 2341 2342 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2343 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2344 node_page_state(pgdat, NR_INACTIVE_FILE); 2345 2346 for (z = 0; z < MAX_NR_ZONES; z++) { 2347 struct zone *zone = &pgdat->node_zones[z]; 2348 if (!managed_zone(zone)) 2349 continue; 2350 2351 total_high_wmark += high_wmark_pages(zone); 2352 } 2353 2354 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2355 /* 2356 * Force SCAN_ANON if there are enough inactive 2357 * anonymous pages on the LRU in eligible zones. 2358 * Otherwise, the small LRU gets thrashed. 2359 */ 2360 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2361 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2362 >> sc->priority) { 2363 scan_balance = SCAN_ANON; 2364 goto out; 2365 } 2366 } 2367 } 2368 2369 /* 2370 * If there is enough inactive page cache, i.e. if the size of the 2371 * inactive list is greater than that of the active list *and* the 2372 * inactive list actually has some pages to scan on this priority, we 2373 * do not reclaim anything from the anonymous working set right now. 2374 * Without the second condition we could end up never scanning an 2375 * lruvec even if it has plenty of old anonymous pages unless the 2376 * system is under heavy pressure. 2377 */ 2378 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2379 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2380 scan_balance = SCAN_FILE; 2381 goto out; 2382 } 2383 2384 scan_balance = SCAN_FRACT; 2385 2386 /* 2387 * With swappiness at 100, anonymous and file have the same priority. 2388 * This scanning priority is essentially the inverse of IO cost. 2389 */ 2390 anon_prio = swappiness; 2391 file_prio = 200 - anon_prio; 2392 2393 /* 2394 * OK, so we have swap space and a fair amount of page cache 2395 * pages. We use the recently rotated / recently scanned 2396 * ratios to determine how valuable each cache is. 2397 * 2398 * Because workloads change over time (and to avoid overflow) 2399 * we keep these statistics as a floating average, which ends 2400 * up weighing recent references more than old ones. 2401 * 2402 * anon in [0], file in [1] 2403 */ 2404 2405 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2406 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2407 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2408 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2409 2410 spin_lock_irq(&pgdat->lru_lock); 2411 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2412 reclaim_stat->recent_scanned[0] /= 2; 2413 reclaim_stat->recent_rotated[0] /= 2; 2414 } 2415 2416 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2417 reclaim_stat->recent_scanned[1] /= 2; 2418 reclaim_stat->recent_rotated[1] /= 2; 2419 } 2420 2421 /* 2422 * The amount of pressure on anon vs file pages is inversely 2423 * proportional to the fraction of recently scanned pages on 2424 * each list that were recently referenced and in active use. 2425 */ 2426 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2427 ap /= reclaim_stat->recent_rotated[0] + 1; 2428 2429 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2430 fp /= reclaim_stat->recent_rotated[1] + 1; 2431 spin_unlock_irq(&pgdat->lru_lock); 2432 2433 fraction[0] = ap; 2434 fraction[1] = fp; 2435 denominator = ap + fp + 1; 2436 out: 2437 *lru_pages = 0; 2438 for_each_evictable_lru(lru) { 2439 int file = is_file_lru(lru); 2440 unsigned long size; 2441 unsigned long scan; 2442 2443 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2444 scan = size >> sc->priority; 2445 /* 2446 * If the cgroup's already been deleted, make sure to 2447 * scrape out the remaining cache. 2448 */ 2449 if (!scan && !mem_cgroup_online(memcg)) 2450 scan = min(size, SWAP_CLUSTER_MAX); 2451 2452 switch (scan_balance) { 2453 case SCAN_EQUAL: 2454 /* Scan lists relative to size */ 2455 break; 2456 case SCAN_FRACT: 2457 /* 2458 * Scan types proportional to swappiness and 2459 * their relative recent reclaim efficiency. 2460 */ 2461 scan = div64_u64(scan * fraction[file], 2462 denominator); 2463 break; 2464 case SCAN_FILE: 2465 case SCAN_ANON: 2466 /* Scan one type exclusively */ 2467 if ((scan_balance == SCAN_FILE) != file) { 2468 size = 0; 2469 scan = 0; 2470 } 2471 break; 2472 default: 2473 /* Look ma, no brain */ 2474 BUG(); 2475 } 2476 2477 *lru_pages += size; 2478 nr[lru] = scan; 2479 } 2480 } 2481 2482 /* 2483 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2484 */ 2485 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2486 struct scan_control *sc, unsigned long *lru_pages) 2487 { 2488 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2489 unsigned long nr[NR_LRU_LISTS]; 2490 unsigned long targets[NR_LRU_LISTS]; 2491 unsigned long nr_to_scan; 2492 enum lru_list lru; 2493 unsigned long nr_reclaimed = 0; 2494 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2495 struct blk_plug plug; 2496 bool scan_adjusted; 2497 2498 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2499 2500 /* Record the original scan target for proportional adjustments later */ 2501 memcpy(targets, nr, sizeof(nr)); 2502 2503 /* 2504 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2505 * event that can occur when there is little memory pressure e.g. 2506 * multiple streaming readers/writers. Hence, we do not abort scanning 2507 * when the requested number of pages are reclaimed when scanning at 2508 * DEF_PRIORITY on the assumption that the fact we are direct 2509 * reclaiming implies that kswapd is not keeping up and it is best to 2510 * do a batch of work at once. For memcg reclaim one check is made to 2511 * abort proportional reclaim if either the file or anon lru has already 2512 * dropped to zero at the first pass. 2513 */ 2514 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2515 sc->priority == DEF_PRIORITY); 2516 2517 blk_start_plug(&plug); 2518 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2519 nr[LRU_INACTIVE_FILE]) { 2520 unsigned long nr_anon, nr_file, percentage; 2521 unsigned long nr_scanned; 2522 2523 for_each_evictable_lru(lru) { 2524 if (nr[lru]) { 2525 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2526 nr[lru] -= nr_to_scan; 2527 2528 nr_reclaimed += shrink_list(lru, nr_to_scan, 2529 lruvec, memcg, sc); 2530 } 2531 } 2532 2533 cond_resched(); 2534 2535 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2536 continue; 2537 2538 /* 2539 * For kswapd and memcg, reclaim at least the number of pages 2540 * requested. Ensure that the anon and file LRUs are scanned 2541 * proportionally what was requested by get_scan_count(). We 2542 * stop reclaiming one LRU and reduce the amount scanning 2543 * proportional to the original scan target. 2544 */ 2545 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2546 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2547 2548 /* 2549 * It's just vindictive to attack the larger once the smaller 2550 * has gone to zero. And given the way we stop scanning the 2551 * smaller below, this makes sure that we only make one nudge 2552 * towards proportionality once we've got nr_to_reclaim. 2553 */ 2554 if (!nr_file || !nr_anon) 2555 break; 2556 2557 if (nr_file > nr_anon) { 2558 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2559 targets[LRU_ACTIVE_ANON] + 1; 2560 lru = LRU_BASE; 2561 percentage = nr_anon * 100 / scan_target; 2562 } else { 2563 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2564 targets[LRU_ACTIVE_FILE] + 1; 2565 lru = LRU_FILE; 2566 percentage = nr_file * 100 / scan_target; 2567 } 2568 2569 /* Stop scanning the smaller of the LRU */ 2570 nr[lru] = 0; 2571 nr[lru + LRU_ACTIVE] = 0; 2572 2573 /* 2574 * Recalculate the other LRU scan count based on its original 2575 * scan target and the percentage scanning already complete 2576 */ 2577 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2578 nr_scanned = targets[lru] - nr[lru]; 2579 nr[lru] = targets[lru] * (100 - percentage) / 100; 2580 nr[lru] -= min(nr[lru], nr_scanned); 2581 2582 lru += LRU_ACTIVE; 2583 nr_scanned = targets[lru] - nr[lru]; 2584 nr[lru] = targets[lru] * (100 - percentage) / 100; 2585 nr[lru] -= min(nr[lru], nr_scanned); 2586 2587 scan_adjusted = true; 2588 } 2589 blk_finish_plug(&plug); 2590 sc->nr_reclaimed += nr_reclaimed; 2591 2592 /* 2593 * Even if we did not try to evict anon pages at all, we want to 2594 * rebalance the anon lru active/inactive ratio. 2595 */ 2596 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2597 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2598 sc, LRU_ACTIVE_ANON); 2599 } 2600 2601 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2602 static bool in_reclaim_compaction(struct scan_control *sc) 2603 { 2604 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2605 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2606 sc->priority < DEF_PRIORITY - 2)) 2607 return true; 2608 2609 return false; 2610 } 2611 2612 /* 2613 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2614 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2615 * true if more pages should be reclaimed such that when the page allocator 2616 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2617 * It will give up earlier than that if there is difficulty reclaiming pages. 2618 */ 2619 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2620 unsigned long nr_reclaimed, 2621 unsigned long nr_scanned, 2622 struct scan_control *sc) 2623 { 2624 unsigned long pages_for_compaction; 2625 unsigned long inactive_lru_pages; 2626 int z; 2627 2628 /* If not in reclaim/compaction mode, stop */ 2629 if (!in_reclaim_compaction(sc)) 2630 return false; 2631 2632 /* Consider stopping depending on scan and reclaim activity */ 2633 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2634 /* 2635 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2636 * full LRU list has been scanned and we are still failing 2637 * to reclaim pages. This full LRU scan is potentially 2638 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2639 */ 2640 if (!nr_reclaimed && !nr_scanned) 2641 return false; 2642 } else { 2643 /* 2644 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2645 * fail without consequence, stop if we failed to reclaim 2646 * any pages from the last SWAP_CLUSTER_MAX number of 2647 * pages that were scanned. This will return to the 2648 * caller faster at the risk reclaim/compaction and 2649 * the resulting allocation attempt fails 2650 */ 2651 if (!nr_reclaimed) 2652 return false; 2653 } 2654 2655 /* 2656 * If we have not reclaimed enough pages for compaction and the 2657 * inactive lists are large enough, continue reclaiming 2658 */ 2659 pages_for_compaction = compact_gap(sc->order); 2660 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2661 if (get_nr_swap_pages() > 0) 2662 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2663 if (sc->nr_reclaimed < pages_for_compaction && 2664 inactive_lru_pages > pages_for_compaction) 2665 return true; 2666 2667 /* If compaction would go ahead or the allocation would succeed, stop */ 2668 for (z = 0; z <= sc->reclaim_idx; z++) { 2669 struct zone *zone = &pgdat->node_zones[z]; 2670 if (!managed_zone(zone)) 2671 continue; 2672 2673 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2674 case COMPACT_SUCCESS: 2675 case COMPACT_CONTINUE: 2676 return false; 2677 default: 2678 /* check next zone */ 2679 ; 2680 } 2681 } 2682 return true; 2683 } 2684 2685 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2686 { 2687 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2688 (memcg && memcg_congested(pgdat, memcg)); 2689 } 2690 2691 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2692 { 2693 struct reclaim_state *reclaim_state = current->reclaim_state; 2694 unsigned long nr_reclaimed, nr_scanned; 2695 bool reclaimable = false; 2696 2697 do { 2698 struct mem_cgroup *root = sc->target_mem_cgroup; 2699 struct mem_cgroup_reclaim_cookie reclaim = { 2700 .pgdat = pgdat, 2701 .priority = sc->priority, 2702 }; 2703 unsigned long node_lru_pages = 0; 2704 struct mem_cgroup *memcg; 2705 2706 memset(&sc->nr, 0, sizeof(sc->nr)); 2707 2708 nr_reclaimed = sc->nr_reclaimed; 2709 nr_scanned = sc->nr_scanned; 2710 2711 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2712 do { 2713 unsigned long lru_pages; 2714 unsigned long reclaimed; 2715 unsigned long scanned; 2716 2717 switch (mem_cgroup_protected(root, memcg)) { 2718 case MEMCG_PROT_MIN: 2719 /* 2720 * Hard protection. 2721 * If there is no reclaimable memory, OOM. 2722 */ 2723 continue; 2724 case MEMCG_PROT_LOW: 2725 /* 2726 * Soft protection. 2727 * Respect the protection only as long as 2728 * there is an unprotected supply 2729 * of reclaimable memory from other cgroups. 2730 */ 2731 if (!sc->memcg_low_reclaim) { 2732 sc->memcg_low_skipped = 1; 2733 continue; 2734 } 2735 memcg_memory_event(memcg, MEMCG_LOW); 2736 break; 2737 case MEMCG_PROT_NONE: 2738 break; 2739 } 2740 2741 reclaimed = sc->nr_reclaimed; 2742 scanned = sc->nr_scanned; 2743 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2744 node_lru_pages += lru_pages; 2745 2746 shrink_slab(sc->gfp_mask, pgdat->node_id, 2747 memcg, sc->priority); 2748 2749 /* Record the group's reclaim efficiency */ 2750 vmpressure(sc->gfp_mask, memcg, false, 2751 sc->nr_scanned - scanned, 2752 sc->nr_reclaimed - reclaimed); 2753 2754 /* 2755 * Direct reclaim and kswapd have to scan all memory 2756 * cgroups to fulfill the overall scan target for the 2757 * node. 2758 * 2759 * Limit reclaim, on the other hand, only cares about 2760 * nr_to_reclaim pages to be reclaimed and it will 2761 * retry with decreasing priority if one round over the 2762 * whole hierarchy is not sufficient. 2763 */ 2764 if (!global_reclaim(sc) && 2765 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2766 mem_cgroup_iter_break(root, memcg); 2767 break; 2768 } 2769 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2770 2771 if (reclaim_state) { 2772 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2773 reclaim_state->reclaimed_slab = 0; 2774 } 2775 2776 /* Record the subtree's reclaim efficiency */ 2777 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2778 sc->nr_scanned - nr_scanned, 2779 sc->nr_reclaimed - nr_reclaimed); 2780 2781 if (sc->nr_reclaimed - nr_reclaimed) 2782 reclaimable = true; 2783 2784 if (current_is_kswapd()) { 2785 /* 2786 * If reclaim is isolating dirty pages under writeback, 2787 * it implies that the long-lived page allocation rate 2788 * is exceeding the page laundering rate. Either the 2789 * global limits are not being effective at throttling 2790 * processes due to the page distribution throughout 2791 * zones or there is heavy usage of a slow backing 2792 * device. The only option is to throttle from reclaim 2793 * context which is not ideal as there is no guarantee 2794 * the dirtying process is throttled in the same way 2795 * balance_dirty_pages() manages. 2796 * 2797 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2798 * count the number of pages under pages flagged for 2799 * immediate reclaim and stall if any are encountered 2800 * in the nr_immediate check below. 2801 */ 2802 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2803 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2804 2805 /* 2806 * Tag a node as congested if all the dirty pages 2807 * scanned were backed by a congested BDI and 2808 * wait_iff_congested will stall. 2809 */ 2810 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2811 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2812 2813 /* Allow kswapd to start writing pages during reclaim.*/ 2814 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2815 set_bit(PGDAT_DIRTY, &pgdat->flags); 2816 2817 /* 2818 * If kswapd scans pages marked marked for immediate 2819 * reclaim and under writeback (nr_immediate), it 2820 * implies that pages are cycling through the LRU 2821 * faster than they are written so also forcibly stall. 2822 */ 2823 if (sc->nr.immediate) 2824 congestion_wait(BLK_RW_ASYNC, HZ/10); 2825 } 2826 2827 /* 2828 * Legacy memcg will stall in page writeback so avoid forcibly 2829 * stalling in wait_iff_congested(). 2830 */ 2831 if (!global_reclaim(sc) && sane_reclaim(sc) && 2832 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2833 set_memcg_congestion(pgdat, root, true); 2834 2835 /* 2836 * Stall direct reclaim for IO completions if underlying BDIs 2837 * and node is congested. Allow kswapd to continue until it 2838 * starts encountering unqueued dirty pages or cycling through 2839 * the LRU too quickly. 2840 */ 2841 if (!sc->hibernation_mode && !current_is_kswapd() && 2842 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2843 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2844 2845 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2846 sc->nr_scanned - nr_scanned, sc)); 2847 2848 /* 2849 * Kswapd gives up on balancing particular nodes after too 2850 * many failures to reclaim anything from them and goes to 2851 * sleep. On reclaim progress, reset the failure counter. A 2852 * successful direct reclaim run will revive a dormant kswapd. 2853 */ 2854 if (reclaimable) 2855 pgdat->kswapd_failures = 0; 2856 2857 return reclaimable; 2858 } 2859 2860 /* 2861 * Returns true if compaction should go ahead for a costly-order request, or 2862 * the allocation would already succeed without compaction. Return false if we 2863 * should reclaim first. 2864 */ 2865 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2866 { 2867 unsigned long watermark; 2868 enum compact_result suitable; 2869 2870 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2871 if (suitable == COMPACT_SUCCESS) 2872 /* Allocation should succeed already. Don't reclaim. */ 2873 return true; 2874 if (suitable == COMPACT_SKIPPED) 2875 /* Compaction cannot yet proceed. Do reclaim. */ 2876 return false; 2877 2878 /* 2879 * Compaction is already possible, but it takes time to run and there 2880 * are potentially other callers using the pages just freed. So proceed 2881 * with reclaim to make a buffer of free pages available to give 2882 * compaction a reasonable chance of completing and allocating the page. 2883 * Note that we won't actually reclaim the whole buffer in one attempt 2884 * as the target watermark in should_continue_reclaim() is lower. But if 2885 * we are already above the high+gap watermark, don't reclaim at all. 2886 */ 2887 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2888 2889 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2890 } 2891 2892 /* 2893 * This is the direct reclaim path, for page-allocating processes. We only 2894 * try to reclaim pages from zones which will satisfy the caller's allocation 2895 * request. 2896 * 2897 * If a zone is deemed to be full of pinned pages then just give it a light 2898 * scan then give up on it. 2899 */ 2900 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2901 { 2902 struct zoneref *z; 2903 struct zone *zone; 2904 unsigned long nr_soft_reclaimed; 2905 unsigned long nr_soft_scanned; 2906 gfp_t orig_mask; 2907 pg_data_t *last_pgdat = NULL; 2908 2909 /* 2910 * If the number of buffer_heads in the machine exceeds the maximum 2911 * allowed level, force direct reclaim to scan the highmem zone as 2912 * highmem pages could be pinning lowmem pages storing buffer_heads 2913 */ 2914 orig_mask = sc->gfp_mask; 2915 if (buffer_heads_over_limit) { 2916 sc->gfp_mask |= __GFP_HIGHMEM; 2917 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2918 } 2919 2920 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2921 sc->reclaim_idx, sc->nodemask) { 2922 /* 2923 * Take care memory controller reclaiming has small influence 2924 * to global LRU. 2925 */ 2926 if (global_reclaim(sc)) { 2927 if (!cpuset_zone_allowed(zone, 2928 GFP_KERNEL | __GFP_HARDWALL)) 2929 continue; 2930 2931 /* 2932 * If we already have plenty of memory free for 2933 * compaction in this zone, don't free any more. 2934 * Even though compaction is invoked for any 2935 * non-zero order, only frequent costly order 2936 * reclamation is disruptive enough to become a 2937 * noticeable problem, like transparent huge 2938 * page allocations. 2939 */ 2940 if (IS_ENABLED(CONFIG_COMPACTION) && 2941 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2942 compaction_ready(zone, sc)) { 2943 sc->compaction_ready = true; 2944 continue; 2945 } 2946 2947 /* 2948 * Shrink each node in the zonelist once. If the 2949 * zonelist is ordered by zone (not the default) then a 2950 * node may be shrunk multiple times but in that case 2951 * the user prefers lower zones being preserved. 2952 */ 2953 if (zone->zone_pgdat == last_pgdat) 2954 continue; 2955 2956 /* 2957 * This steals pages from memory cgroups over softlimit 2958 * and returns the number of reclaimed pages and 2959 * scanned pages. This works for global memory pressure 2960 * and balancing, not for a memcg's limit. 2961 */ 2962 nr_soft_scanned = 0; 2963 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2964 sc->order, sc->gfp_mask, 2965 &nr_soft_scanned); 2966 sc->nr_reclaimed += nr_soft_reclaimed; 2967 sc->nr_scanned += nr_soft_scanned; 2968 /* need some check for avoid more shrink_zone() */ 2969 } 2970 2971 /* See comment about same check for global reclaim above */ 2972 if (zone->zone_pgdat == last_pgdat) 2973 continue; 2974 last_pgdat = zone->zone_pgdat; 2975 shrink_node(zone->zone_pgdat, sc); 2976 } 2977 2978 /* 2979 * Restore to original mask to avoid the impact on the caller if we 2980 * promoted it to __GFP_HIGHMEM. 2981 */ 2982 sc->gfp_mask = orig_mask; 2983 } 2984 2985 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2986 { 2987 struct mem_cgroup *memcg; 2988 2989 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2990 do { 2991 unsigned long refaults; 2992 struct lruvec *lruvec; 2993 2994 if (memcg) 2995 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2996 else 2997 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2998 2999 lruvec = mem_cgroup_lruvec(pgdat, memcg); 3000 lruvec->refaults = refaults; 3001 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 3002 } 3003 3004 /* 3005 * This is the main entry point to direct page reclaim. 3006 * 3007 * If a full scan of the inactive list fails to free enough memory then we 3008 * are "out of memory" and something needs to be killed. 3009 * 3010 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3011 * high - the zone may be full of dirty or under-writeback pages, which this 3012 * caller can't do much about. We kick the writeback threads and take explicit 3013 * naps in the hope that some of these pages can be written. But if the 3014 * allocating task holds filesystem locks which prevent writeout this might not 3015 * work, and the allocation attempt will fail. 3016 * 3017 * returns: 0, if no pages reclaimed 3018 * else, the number of pages reclaimed 3019 */ 3020 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3021 struct scan_control *sc) 3022 { 3023 int initial_priority = sc->priority; 3024 pg_data_t *last_pgdat; 3025 struct zoneref *z; 3026 struct zone *zone; 3027 retry: 3028 delayacct_freepages_start(); 3029 3030 if (global_reclaim(sc)) 3031 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3032 3033 do { 3034 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3035 sc->priority); 3036 sc->nr_scanned = 0; 3037 shrink_zones(zonelist, sc); 3038 3039 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3040 break; 3041 3042 if (sc->compaction_ready) 3043 break; 3044 3045 /* 3046 * If we're getting trouble reclaiming, start doing 3047 * writepage even in laptop mode. 3048 */ 3049 if (sc->priority < DEF_PRIORITY - 2) 3050 sc->may_writepage = 1; 3051 } while (--sc->priority >= 0); 3052 3053 last_pgdat = NULL; 3054 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3055 sc->nodemask) { 3056 if (zone->zone_pgdat == last_pgdat) 3057 continue; 3058 last_pgdat = zone->zone_pgdat; 3059 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3060 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3061 } 3062 3063 delayacct_freepages_end(); 3064 3065 if (sc->nr_reclaimed) 3066 return sc->nr_reclaimed; 3067 3068 /* Aborted reclaim to try compaction? don't OOM, then */ 3069 if (sc->compaction_ready) 3070 return 1; 3071 3072 /* Untapped cgroup reserves? Don't OOM, retry. */ 3073 if (sc->memcg_low_skipped) { 3074 sc->priority = initial_priority; 3075 sc->memcg_low_reclaim = 1; 3076 sc->memcg_low_skipped = 0; 3077 goto retry; 3078 } 3079 3080 return 0; 3081 } 3082 3083 static bool allow_direct_reclaim(pg_data_t *pgdat) 3084 { 3085 struct zone *zone; 3086 unsigned long pfmemalloc_reserve = 0; 3087 unsigned long free_pages = 0; 3088 int i; 3089 bool wmark_ok; 3090 3091 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3092 return true; 3093 3094 for (i = 0; i <= ZONE_NORMAL; i++) { 3095 zone = &pgdat->node_zones[i]; 3096 if (!managed_zone(zone)) 3097 continue; 3098 3099 if (!zone_reclaimable_pages(zone)) 3100 continue; 3101 3102 pfmemalloc_reserve += min_wmark_pages(zone); 3103 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3104 } 3105 3106 /* If there are no reserves (unexpected config) then do not throttle */ 3107 if (!pfmemalloc_reserve) 3108 return true; 3109 3110 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3111 3112 /* kswapd must be awake if processes are being throttled */ 3113 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3114 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3115 (enum zone_type)ZONE_NORMAL); 3116 wake_up_interruptible(&pgdat->kswapd_wait); 3117 } 3118 3119 return wmark_ok; 3120 } 3121 3122 /* 3123 * Throttle direct reclaimers if backing storage is backed by the network 3124 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3125 * depleted. kswapd will continue to make progress and wake the processes 3126 * when the low watermark is reached. 3127 * 3128 * Returns true if a fatal signal was delivered during throttling. If this 3129 * happens, the page allocator should not consider triggering the OOM killer. 3130 */ 3131 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3132 nodemask_t *nodemask) 3133 { 3134 struct zoneref *z; 3135 struct zone *zone; 3136 pg_data_t *pgdat = NULL; 3137 3138 /* 3139 * Kernel threads should not be throttled as they may be indirectly 3140 * responsible for cleaning pages necessary for reclaim to make forward 3141 * progress. kjournald for example may enter direct reclaim while 3142 * committing a transaction where throttling it could forcing other 3143 * processes to block on log_wait_commit(). 3144 */ 3145 if (current->flags & PF_KTHREAD) 3146 goto out; 3147 3148 /* 3149 * If a fatal signal is pending, this process should not throttle. 3150 * It should return quickly so it can exit and free its memory 3151 */ 3152 if (fatal_signal_pending(current)) 3153 goto out; 3154 3155 /* 3156 * Check if the pfmemalloc reserves are ok by finding the first node 3157 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3158 * GFP_KERNEL will be required for allocating network buffers when 3159 * swapping over the network so ZONE_HIGHMEM is unusable. 3160 * 3161 * Throttling is based on the first usable node and throttled processes 3162 * wait on a queue until kswapd makes progress and wakes them. There 3163 * is an affinity then between processes waking up and where reclaim 3164 * progress has been made assuming the process wakes on the same node. 3165 * More importantly, processes running on remote nodes will not compete 3166 * for remote pfmemalloc reserves and processes on different nodes 3167 * should make reasonable progress. 3168 */ 3169 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3170 gfp_zone(gfp_mask), nodemask) { 3171 if (zone_idx(zone) > ZONE_NORMAL) 3172 continue; 3173 3174 /* Throttle based on the first usable node */ 3175 pgdat = zone->zone_pgdat; 3176 if (allow_direct_reclaim(pgdat)) 3177 goto out; 3178 break; 3179 } 3180 3181 /* If no zone was usable by the allocation flags then do not throttle */ 3182 if (!pgdat) 3183 goto out; 3184 3185 /* Account for the throttling */ 3186 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3187 3188 /* 3189 * If the caller cannot enter the filesystem, it's possible that it 3190 * is due to the caller holding an FS lock or performing a journal 3191 * transaction in the case of a filesystem like ext[3|4]. In this case, 3192 * it is not safe to block on pfmemalloc_wait as kswapd could be 3193 * blocked waiting on the same lock. Instead, throttle for up to a 3194 * second before continuing. 3195 */ 3196 if (!(gfp_mask & __GFP_FS)) { 3197 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3198 allow_direct_reclaim(pgdat), HZ); 3199 3200 goto check_pending; 3201 } 3202 3203 /* Throttle until kswapd wakes the process */ 3204 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3205 allow_direct_reclaim(pgdat)); 3206 3207 check_pending: 3208 if (fatal_signal_pending(current)) 3209 return true; 3210 3211 out: 3212 return false; 3213 } 3214 3215 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3216 gfp_t gfp_mask, nodemask_t *nodemask) 3217 { 3218 unsigned long nr_reclaimed; 3219 struct scan_control sc = { 3220 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3221 .gfp_mask = current_gfp_context(gfp_mask), 3222 .reclaim_idx = gfp_zone(gfp_mask), 3223 .order = order, 3224 .nodemask = nodemask, 3225 .priority = DEF_PRIORITY, 3226 .may_writepage = !laptop_mode, 3227 .may_unmap = 1, 3228 .may_swap = 1, 3229 }; 3230 3231 /* 3232 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3233 * Confirm they are large enough for max values. 3234 */ 3235 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3236 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3237 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3238 3239 /* 3240 * Do not enter reclaim if fatal signal was delivered while throttled. 3241 * 1 is returned so that the page allocator does not OOM kill at this 3242 * point. 3243 */ 3244 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3245 return 1; 3246 3247 trace_mm_vmscan_direct_reclaim_begin(order, 3248 sc.may_writepage, 3249 sc.gfp_mask, 3250 sc.reclaim_idx); 3251 3252 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3253 3254 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3255 3256 return nr_reclaimed; 3257 } 3258 3259 #ifdef CONFIG_MEMCG 3260 3261 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3262 gfp_t gfp_mask, bool noswap, 3263 pg_data_t *pgdat, 3264 unsigned long *nr_scanned) 3265 { 3266 struct scan_control sc = { 3267 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3268 .target_mem_cgroup = memcg, 3269 .may_writepage = !laptop_mode, 3270 .may_unmap = 1, 3271 .reclaim_idx = MAX_NR_ZONES - 1, 3272 .may_swap = !noswap, 3273 }; 3274 unsigned long lru_pages; 3275 3276 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3277 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3278 3279 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3280 sc.may_writepage, 3281 sc.gfp_mask, 3282 sc.reclaim_idx); 3283 3284 /* 3285 * NOTE: Although we can get the priority field, using it 3286 * here is not a good idea, since it limits the pages we can scan. 3287 * if we don't reclaim here, the shrink_node from balance_pgdat 3288 * will pick up pages from other mem cgroup's as well. We hack 3289 * the priority and make it zero. 3290 */ 3291 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3292 3293 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3294 3295 *nr_scanned = sc.nr_scanned; 3296 return sc.nr_reclaimed; 3297 } 3298 3299 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3300 unsigned long nr_pages, 3301 gfp_t gfp_mask, 3302 bool may_swap) 3303 { 3304 struct zonelist *zonelist; 3305 unsigned long nr_reclaimed; 3306 int nid; 3307 unsigned int noreclaim_flag; 3308 struct scan_control sc = { 3309 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3310 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3311 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3312 .reclaim_idx = MAX_NR_ZONES - 1, 3313 .target_mem_cgroup = memcg, 3314 .priority = DEF_PRIORITY, 3315 .may_writepage = !laptop_mode, 3316 .may_unmap = 1, 3317 .may_swap = may_swap, 3318 }; 3319 3320 /* 3321 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3322 * take care of from where we get pages. So the node where we start the 3323 * scan does not need to be the current node. 3324 */ 3325 nid = mem_cgroup_select_victim_node(memcg); 3326 3327 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3328 3329 trace_mm_vmscan_memcg_reclaim_begin(0, 3330 sc.may_writepage, 3331 sc.gfp_mask, 3332 sc.reclaim_idx); 3333 3334 noreclaim_flag = memalloc_noreclaim_save(); 3335 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3336 memalloc_noreclaim_restore(noreclaim_flag); 3337 3338 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3339 3340 return nr_reclaimed; 3341 } 3342 #endif 3343 3344 static void age_active_anon(struct pglist_data *pgdat, 3345 struct scan_control *sc) 3346 { 3347 struct mem_cgroup *memcg; 3348 3349 if (!total_swap_pages) 3350 return; 3351 3352 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3353 do { 3354 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3355 3356 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3357 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3358 sc, LRU_ACTIVE_ANON); 3359 3360 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3361 } while (memcg); 3362 } 3363 3364 /* 3365 * Returns true if there is an eligible zone balanced for the request order 3366 * and classzone_idx 3367 */ 3368 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3369 { 3370 int i; 3371 unsigned long mark = -1; 3372 struct zone *zone; 3373 3374 for (i = 0; i <= classzone_idx; i++) { 3375 zone = pgdat->node_zones + i; 3376 3377 if (!managed_zone(zone)) 3378 continue; 3379 3380 mark = high_wmark_pages(zone); 3381 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3382 return true; 3383 } 3384 3385 /* 3386 * If a node has no populated zone within classzone_idx, it does not 3387 * need balancing by definition. This can happen if a zone-restricted 3388 * allocation tries to wake a remote kswapd. 3389 */ 3390 if (mark == -1) 3391 return true; 3392 3393 return false; 3394 } 3395 3396 /* Clear pgdat state for congested, dirty or under writeback. */ 3397 static void clear_pgdat_congested(pg_data_t *pgdat) 3398 { 3399 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3400 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3401 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3402 } 3403 3404 /* 3405 * Prepare kswapd for sleeping. This verifies that there are no processes 3406 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3407 * 3408 * Returns true if kswapd is ready to sleep 3409 */ 3410 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3411 { 3412 /* 3413 * The throttled processes are normally woken up in balance_pgdat() as 3414 * soon as allow_direct_reclaim() is true. But there is a potential 3415 * race between when kswapd checks the watermarks and a process gets 3416 * throttled. There is also a potential race if processes get 3417 * throttled, kswapd wakes, a large process exits thereby balancing the 3418 * zones, which causes kswapd to exit balance_pgdat() before reaching 3419 * the wake up checks. If kswapd is going to sleep, no process should 3420 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3421 * the wake up is premature, processes will wake kswapd and get 3422 * throttled again. The difference from wake ups in balance_pgdat() is 3423 * that here we are under prepare_to_wait(). 3424 */ 3425 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3426 wake_up_all(&pgdat->pfmemalloc_wait); 3427 3428 /* Hopeless node, leave it to direct reclaim */ 3429 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3430 return true; 3431 3432 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3433 clear_pgdat_congested(pgdat); 3434 return true; 3435 } 3436 3437 return false; 3438 } 3439 3440 /* 3441 * kswapd shrinks a node of pages that are at or below the highest usable 3442 * zone that is currently unbalanced. 3443 * 3444 * Returns true if kswapd scanned at least the requested number of pages to 3445 * reclaim or if the lack of progress was due to pages under writeback. 3446 * This is used to determine if the scanning priority needs to be raised. 3447 */ 3448 static bool kswapd_shrink_node(pg_data_t *pgdat, 3449 struct scan_control *sc) 3450 { 3451 struct zone *zone; 3452 int z; 3453 3454 /* Reclaim a number of pages proportional to the number of zones */ 3455 sc->nr_to_reclaim = 0; 3456 for (z = 0; z <= sc->reclaim_idx; z++) { 3457 zone = pgdat->node_zones + z; 3458 if (!managed_zone(zone)) 3459 continue; 3460 3461 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3462 } 3463 3464 /* 3465 * Historically care was taken to put equal pressure on all zones but 3466 * now pressure is applied based on node LRU order. 3467 */ 3468 shrink_node(pgdat, sc); 3469 3470 /* 3471 * Fragmentation may mean that the system cannot be rebalanced for 3472 * high-order allocations. If twice the allocation size has been 3473 * reclaimed then recheck watermarks only at order-0 to prevent 3474 * excessive reclaim. Assume that a process requested a high-order 3475 * can direct reclaim/compact. 3476 */ 3477 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3478 sc->order = 0; 3479 3480 return sc->nr_scanned >= sc->nr_to_reclaim; 3481 } 3482 3483 /* 3484 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3485 * that are eligible for use by the caller until at least one zone is 3486 * balanced. 3487 * 3488 * Returns the order kswapd finished reclaiming at. 3489 * 3490 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3491 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3492 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3493 * or lower is eligible for reclaim until at least one usable zone is 3494 * balanced. 3495 */ 3496 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3497 { 3498 int i; 3499 unsigned long nr_soft_reclaimed; 3500 unsigned long nr_soft_scanned; 3501 struct zone *zone; 3502 struct scan_control sc = { 3503 .gfp_mask = GFP_KERNEL, 3504 .order = order, 3505 .priority = DEF_PRIORITY, 3506 .may_writepage = !laptop_mode, 3507 .may_unmap = 1, 3508 .may_swap = 1, 3509 }; 3510 3511 __fs_reclaim_acquire(); 3512 3513 count_vm_event(PAGEOUTRUN); 3514 3515 do { 3516 unsigned long nr_reclaimed = sc.nr_reclaimed; 3517 bool raise_priority = true; 3518 bool ret; 3519 3520 sc.reclaim_idx = classzone_idx; 3521 3522 /* 3523 * If the number of buffer_heads exceeds the maximum allowed 3524 * then consider reclaiming from all zones. This has a dual 3525 * purpose -- on 64-bit systems it is expected that 3526 * buffer_heads are stripped during active rotation. On 32-bit 3527 * systems, highmem pages can pin lowmem memory and shrinking 3528 * buffers can relieve lowmem pressure. Reclaim may still not 3529 * go ahead if all eligible zones for the original allocation 3530 * request are balanced to avoid excessive reclaim from kswapd. 3531 */ 3532 if (buffer_heads_over_limit) { 3533 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3534 zone = pgdat->node_zones + i; 3535 if (!managed_zone(zone)) 3536 continue; 3537 3538 sc.reclaim_idx = i; 3539 break; 3540 } 3541 } 3542 3543 /* 3544 * Only reclaim if there are no eligible zones. Note that 3545 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3546 * have adjusted it. 3547 */ 3548 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3549 goto out; 3550 3551 /* 3552 * Do some background aging of the anon list, to give 3553 * pages a chance to be referenced before reclaiming. All 3554 * pages are rotated regardless of classzone as this is 3555 * about consistent aging. 3556 */ 3557 age_active_anon(pgdat, &sc); 3558 3559 /* 3560 * If we're getting trouble reclaiming, start doing writepage 3561 * even in laptop mode. 3562 */ 3563 if (sc.priority < DEF_PRIORITY - 2) 3564 sc.may_writepage = 1; 3565 3566 /* Call soft limit reclaim before calling shrink_node. */ 3567 sc.nr_scanned = 0; 3568 nr_soft_scanned = 0; 3569 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3570 sc.gfp_mask, &nr_soft_scanned); 3571 sc.nr_reclaimed += nr_soft_reclaimed; 3572 3573 /* 3574 * There should be no need to raise the scanning priority if 3575 * enough pages are already being scanned that that high 3576 * watermark would be met at 100% efficiency. 3577 */ 3578 if (kswapd_shrink_node(pgdat, &sc)) 3579 raise_priority = false; 3580 3581 /* 3582 * If the low watermark is met there is no need for processes 3583 * to be throttled on pfmemalloc_wait as they should not be 3584 * able to safely make forward progress. Wake them 3585 */ 3586 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3587 allow_direct_reclaim(pgdat)) 3588 wake_up_all(&pgdat->pfmemalloc_wait); 3589 3590 /* Check if kswapd should be suspending */ 3591 __fs_reclaim_release(); 3592 ret = try_to_freeze(); 3593 __fs_reclaim_acquire(); 3594 if (ret || kthread_should_stop()) 3595 break; 3596 3597 /* 3598 * Raise priority if scanning rate is too low or there was no 3599 * progress in reclaiming pages 3600 */ 3601 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3602 if (raise_priority || !nr_reclaimed) 3603 sc.priority--; 3604 } while (sc.priority >= 1); 3605 3606 if (!sc.nr_reclaimed) 3607 pgdat->kswapd_failures++; 3608 3609 out: 3610 snapshot_refaults(NULL, pgdat); 3611 __fs_reclaim_release(); 3612 /* 3613 * Return the order kswapd stopped reclaiming at as 3614 * prepare_kswapd_sleep() takes it into account. If another caller 3615 * entered the allocator slow path while kswapd was awake, order will 3616 * remain at the higher level. 3617 */ 3618 return sc.order; 3619 } 3620 3621 /* 3622 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3623 * allocation request woke kswapd for. When kswapd has not woken recently, 3624 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3625 * given classzone and returns it or the highest classzone index kswapd 3626 * was recently woke for. 3627 */ 3628 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3629 enum zone_type classzone_idx) 3630 { 3631 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3632 return classzone_idx; 3633 3634 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3635 } 3636 3637 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3638 unsigned int classzone_idx) 3639 { 3640 long remaining = 0; 3641 DEFINE_WAIT(wait); 3642 3643 if (freezing(current) || kthread_should_stop()) 3644 return; 3645 3646 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3647 3648 /* 3649 * Try to sleep for a short interval. Note that kcompactd will only be 3650 * woken if it is possible to sleep for a short interval. This is 3651 * deliberate on the assumption that if reclaim cannot keep an 3652 * eligible zone balanced that it's also unlikely that compaction will 3653 * succeed. 3654 */ 3655 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3656 /* 3657 * Compaction records what page blocks it recently failed to 3658 * isolate pages from and skips them in the future scanning. 3659 * When kswapd is going to sleep, it is reasonable to assume 3660 * that pages and compaction may succeed so reset the cache. 3661 */ 3662 reset_isolation_suitable(pgdat); 3663 3664 /* 3665 * We have freed the memory, now we should compact it to make 3666 * allocation of the requested order possible. 3667 */ 3668 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3669 3670 remaining = schedule_timeout(HZ/10); 3671 3672 /* 3673 * If woken prematurely then reset kswapd_classzone_idx and 3674 * order. The values will either be from a wakeup request or 3675 * the previous request that slept prematurely. 3676 */ 3677 if (remaining) { 3678 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3679 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3680 } 3681 3682 finish_wait(&pgdat->kswapd_wait, &wait); 3683 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3684 } 3685 3686 /* 3687 * After a short sleep, check if it was a premature sleep. If not, then 3688 * go fully to sleep until explicitly woken up. 3689 */ 3690 if (!remaining && 3691 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3692 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3693 3694 /* 3695 * vmstat counters are not perfectly accurate and the estimated 3696 * value for counters such as NR_FREE_PAGES can deviate from the 3697 * true value by nr_online_cpus * threshold. To avoid the zone 3698 * watermarks being breached while under pressure, we reduce the 3699 * per-cpu vmstat threshold while kswapd is awake and restore 3700 * them before going back to sleep. 3701 */ 3702 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3703 3704 if (!kthread_should_stop()) 3705 schedule(); 3706 3707 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3708 } else { 3709 if (remaining) 3710 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3711 else 3712 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3713 } 3714 finish_wait(&pgdat->kswapd_wait, &wait); 3715 } 3716 3717 /* 3718 * The background pageout daemon, started as a kernel thread 3719 * from the init process. 3720 * 3721 * This basically trickles out pages so that we have _some_ 3722 * free memory available even if there is no other activity 3723 * that frees anything up. This is needed for things like routing 3724 * etc, where we otherwise might have all activity going on in 3725 * asynchronous contexts that cannot page things out. 3726 * 3727 * If there are applications that are active memory-allocators 3728 * (most normal use), this basically shouldn't matter. 3729 */ 3730 static int kswapd(void *p) 3731 { 3732 unsigned int alloc_order, reclaim_order; 3733 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3734 pg_data_t *pgdat = (pg_data_t*)p; 3735 struct task_struct *tsk = current; 3736 3737 struct reclaim_state reclaim_state = { 3738 .reclaimed_slab = 0, 3739 }; 3740 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3741 3742 if (!cpumask_empty(cpumask)) 3743 set_cpus_allowed_ptr(tsk, cpumask); 3744 current->reclaim_state = &reclaim_state; 3745 3746 /* 3747 * Tell the memory management that we're a "memory allocator", 3748 * and that if we need more memory we should get access to it 3749 * regardless (see "__alloc_pages()"). "kswapd" should 3750 * never get caught in the normal page freeing logic. 3751 * 3752 * (Kswapd normally doesn't need memory anyway, but sometimes 3753 * you need a small amount of memory in order to be able to 3754 * page out something else, and this flag essentially protects 3755 * us from recursively trying to free more memory as we're 3756 * trying to free the first piece of memory in the first place). 3757 */ 3758 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3759 set_freezable(); 3760 3761 pgdat->kswapd_order = 0; 3762 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3763 for ( ; ; ) { 3764 bool ret; 3765 3766 alloc_order = reclaim_order = pgdat->kswapd_order; 3767 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3768 3769 kswapd_try_sleep: 3770 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3771 classzone_idx); 3772 3773 /* Read the new order and classzone_idx */ 3774 alloc_order = reclaim_order = pgdat->kswapd_order; 3775 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3776 pgdat->kswapd_order = 0; 3777 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3778 3779 ret = try_to_freeze(); 3780 if (kthread_should_stop()) 3781 break; 3782 3783 /* 3784 * We can speed up thawing tasks if we don't call balance_pgdat 3785 * after returning from the refrigerator 3786 */ 3787 if (ret) 3788 continue; 3789 3790 /* 3791 * Reclaim begins at the requested order but if a high-order 3792 * reclaim fails then kswapd falls back to reclaiming for 3793 * order-0. If that happens, kswapd will consider sleeping 3794 * for the order it finished reclaiming at (reclaim_order) 3795 * but kcompactd is woken to compact for the original 3796 * request (alloc_order). 3797 */ 3798 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3799 alloc_order); 3800 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3801 if (reclaim_order < alloc_order) 3802 goto kswapd_try_sleep; 3803 } 3804 3805 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3806 current->reclaim_state = NULL; 3807 3808 return 0; 3809 } 3810 3811 /* 3812 * A zone is low on free memory or too fragmented for high-order memory. If 3813 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3814 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3815 * has failed or is not needed, still wake up kcompactd if only compaction is 3816 * needed. 3817 */ 3818 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3819 enum zone_type classzone_idx) 3820 { 3821 pg_data_t *pgdat; 3822 3823 if (!managed_zone(zone)) 3824 return; 3825 3826 if (!cpuset_zone_allowed(zone, gfp_flags)) 3827 return; 3828 pgdat = zone->zone_pgdat; 3829 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3830 classzone_idx); 3831 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3832 if (!waitqueue_active(&pgdat->kswapd_wait)) 3833 return; 3834 3835 /* Hopeless node, leave it to direct reclaim if possible */ 3836 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3837 pgdat_balanced(pgdat, order, classzone_idx)) { 3838 /* 3839 * There may be plenty of free memory available, but it's too 3840 * fragmented for high-order allocations. Wake up kcompactd 3841 * and rely on compaction_suitable() to determine if it's 3842 * needed. If it fails, it will defer subsequent attempts to 3843 * ratelimit its work. 3844 */ 3845 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3846 wakeup_kcompactd(pgdat, order, classzone_idx); 3847 return; 3848 } 3849 3850 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3851 gfp_flags); 3852 wake_up_interruptible(&pgdat->kswapd_wait); 3853 } 3854 3855 #ifdef CONFIG_HIBERNATION 3856 /* 3857 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3858 * freed pages. 3859 * 3860 * Rather than trying to age LRUs the aim is to preserve the overall 3861 * LRU order by reclaiming preferentially 3862 * inactive > active > active referenced > active mapped 3863 */ 3864 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3865 { 3866 struct reclaim_state reclaim_state; 3867 struct scan_control sc = { 3868 .nr_to_reclaim = nr_to_reclaim, 3869 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3870 .reclaim_idx = MAX_NR_ZONES - 1, 3871 .priority = DEF_PRIORITY, 3872 .may_writepage = 1, 3873 .may_unmap = 1, 3874 .may_swap = 1, 3875 .hibernation_mode = 1, 3876 }; 3877 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3878 struct task_struct *p = current; 3879 unsigned long nr_reclaimed; 3880 unsigned int noreclaim_flag; 3881 3882 fs_reclaim_acquire(sc.gfp_mask); 3883 noreclaim_flag = memalloc_noreclaim_save(); 3884 reclaim_state.reclaimed_slab = 0; 3885 p->reclaim_state = &reclaim_state; 3886 3887 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3888 3889 p->reclaim_state = NULL; 3890 memalloc_noreclaim_restore(noreclaim_flag); 3891 fs_reclaim_release(sc.gfp_mask); 3892 3893 return nr_reclaimed; 3894 } 3895 #endif /* CONFIG_HIBERNATION */ 3896 3897 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3898 not required for correctness. So if the last cpu in a node goes 3899 away, we get changed to run anywhere: as the first one comes back, 3900 restore their cpu bindings. */ 3901 static int kswapd_cpu_online(unsigned int cpu) 3902 { 3903 int nid; 3904 3905 for_each_node_state(nid, N_MEMORY) { 3906 pg_data_t *pgdat = NODE_DATA(nid); 3907 const struct cpumask *mask; 3908 3909 mask = cpumask_of_node(pgdat->node_id); 3910 3911 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3912 /* One of our CPUs online: restore mask */ 3913 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3914 } 3915 return 0; 3916 } 3917 3918 /* 3919 * This kswapd start function will be called by init and node-hot-add. 3920 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3921 */ 3922 int kswapd_run(int nid) 3923 { 3924 pg_data_t *pgdat = NODE_DATA(nid); 3925 int ret = 0; 3926 3927 if (pgdat->kswapd) 3928 return 0; 3929 3930 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3931 if (IS_ERR(pgdat->kswapd)) { 3932 /* failure at boot is fatal */ 3933 BUG_ON(system_state < SYSTEM_RUNNING); 3934 pr_err("Failed to start kswapd on node %d\n", nid); 3935 ret = PTR_ERR(pgdat->kswapd); 3936 pgdat->kswapd = NULL; 3937 } 3938 return ret; 3939 } 3940 3941 /* 3942 * Called by memory hotplug when all memory in a node is offlined. Caller must 3943 * hold mem_hotplug_begin/end(). 3944 */ 3945 void kswapd_stop(int nid) 3946 { 3947 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3948 3949 if (kswapd) { 3950 kthread_stop(kswapd); 3951 NODE_DATA(nid)->kswapd = NULL; 3952 } 3953 } 3954 3955 static int __init kswapd_init(void) 3956 { 3957 int nid, ret; 3958 3959 swap_setup(); 3960 for_each_node_state(nid, N_MEMORY) 3961 kswapd_run(nid); 3962 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3963 "mm/vmscan:online", kswapd_cpu_online, 3964 NULL); 3965 WARN_ON(ret < 0); 3966 return 0; 3967 } 3968 3969 module_init(kswapd_init) 3970 3971 #ifdef CONFIG_NUMA 3972 /* 3973 * Node reclaim mode 3974 * 3975 * If non-zero call node_reclaim when the number of free pages falls below 3976 * the watermarks. 3977 */ 3978 int node_reclaim_mode __read_mostly; 3979 3980 #define RECLAIM_OFF 0 3981 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3982 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3983 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3984 3985 /* 3986 * Priority for NODE_RECLAIM. This determines the fraction of pages 3987 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3988 * a zone. 3989 */ 3990 #define NODE_RECLAIM_PRIORITY 4 3991 3992 /* 3993 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3994 * occur. 3995 */ 3996 int sysctl_min_unmapped_ratio = 1; 3997 3998 /* 3999 * If the number of slab pages in a zone grows beyond this percentage then 4000 * slab reclaim needs to occur. 4001 */ 4002 int sysctl_min_slab_ratio = 5; 4003 4004 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4005 { 4006 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4007 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4008 node_page_state(pgdat, NR_ACTIVE_FILE); 4009 4010 /* 4011 * It's possible for there to be more file mapped pages than 4012 * accounted for by the pages on the file LRU lists because 4013 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4014 */ 4015 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4016 } 4017 4018 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4019 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4020 { 4021 unsigned long nr_pagecache_reclaimable; 4022 unsigned long delta = 0; 4023 4024 /* 4025 * If RECLAIM_UNMAP is set, then all file pages are considered 4026 * potentially reclaimable. Otherwise, we have to worry about 4027 * pages like swapcache and node_unmapped_file_pages() provides 4028 * a better estimate 4029 */ 4030 if (node_reclaim_mode & RECLAIM_UNMAP) 4031 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4032 else 4033 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4034 4035 /* If we can't clean pages, remove dirty pages from consideration */ 4036 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4037 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4038 4039 /* Watch for any possible underflows due to delta */ 4040 if (unlikely(delta > nr_pagecache_reclaimable)) 4041 delta = nr_pagecache_reclaimable; 4042 4043 return nr_pagecache_reclaimable - delta; 4044 } 4045 4046 /* 4047 * Try to free up some pages from this node through reclaim. 4048 */ 4049 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4050 { 4051 /* Minimum pages needed in order to stay on node */ 4052 const unsigned long nr_pages = 1 << order; 4053 struct task_struct *p = current; 4054 struct reclaim_state reclaim_state; 4055 unsigned int noreclaim_flag; 4056 struct scan_control sc = { 4057 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4058 .gfp_mask = current_gfp_context(gfp_mask), 4059 .order = order, 4060 .priority = NODE_RECLAIM_PRIORITY, 4061 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4062 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4063 .may_swap = 1, 4064 .reclaim_idx = gfp_zone(gfp_mask), 4065 }; 4066 4067 cond_resched(); 4068 fs_reclaim_acquire(sc.gfp_mask); 4069 /* 4070 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4071 * and we also need to be able to write out pages for RECLAIM_WRITE 4072 * and RECLAIM_UNMAP. 4073 */ 4074 noreclaim_flag = memalloc_noreclaim_save(); 4075 p->flags |= PF_SWAPWRITE; 4076 reclaim_state.reclaimed_slab = 0; 4077 p->reclaim_state = &reclaim_state; 4078 4079 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4080 /* 4081 * Free memory by calling shrink node with increasing 4082 * priorities until we have enough memory freed. 4083 */ 4084 do { 4085 shrink_node(pgdat, &sc); 4086 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4087 } 4088 4089 p->reclaim_state = NULL; 4090 current->flags &= ~PF_SWAPWRITE; 4091 memalloc_noreclaim_restore(noreclaim_flag); 4092 fs_reclaim_release(sc.gfp_mask); 4093 return sc.nr_reclaimed >= nr_pages; 4094 } 4095 4096 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4097 { 4098 int ret; 4099 4100 /* 4101 * Node reclaim reclaims unmapped file backed pages and 4102 * slab pages if we are over the defined limits. 4103 * 4104 * A small portion of unmapped file backed pages is needed for 4105 * file I/O otherwise pages read by file I/O will be immediately 4106 * thrown out if the node is overallocated. So we do not reclaim 4107 * if less than a specified percentage of the node is used by 4108 * unmapped file backed pages. 4109 */ 4110 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4111 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4112 return NODE_RECLAIM_FULL; 4113 4114 /* 4115 * Do not scan if the allocation should not be delayed. 4116 */ 4117 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4118 return NODE_RECLAIM_NOSCAN; 4119 4120 /* 4121 * Only run node reclaim on the local node or on nodes that do not 4122 * have associated processors. This will favor the local processor 4123 * over remote processors and spread off node memory allocations 4124 * as wide as possible. 4125 */ 4126 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4127 return NODE_RECLAIM_NOSCAN; 4128 4129 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4130 return NODE_RECLAIM_NOSCAN; 4131 4132 ret = __node_reclaim(pgdat, gfp_mask, order); 4133 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4134 4135 if (!ret) 4136 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4137 4138 return ret; 4139 } 4140 #endif 4141 4142 /* 4143 * page_evictable - test whether a page is evictable 4144 * @page: the page to test 4145 * 4146 * Test whether page is evictable--i.e., should be placed on active/inactive 4147 * lists vs unevictable list. 4148 * 4149 * Reasons page might not be evictable: 4150 * (1) page's mapping marked unevictable 4151 * (2) page is part of an mlocked VMA 4152 * 4153 */ 4154 int page_evictable(struct page *page) 4155 { 4156 int ret; 4157 4158 /* Prevent address_space of inode and swap cache from being freed */ 4159 rcu_read_lock(); 4160 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4161 rcu_read_unlock(); 4162 return ret; 4163 } 4164 4165 #ifdef CONFIG_SHMEM 4166 /** 4167 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 4168 * @pages: array of pages to check 4169 * @nr_pages: number of pages to check 4170 * 4171 * Checks pages for evictability and moves them to the appropriate lru list. 4172 * 4173 * This function is only used for SysV IPC SHM_UNLOCK. 4174 */ 4175 void check_move_unevictable_pages(struct page **pages, int nr_pages) 4176 { 4177 struct lruvec *lruvec; 4178 struct pglist_data *pgdat = NULL; 4179 int pgscanned = 0; 4180 int pgrescued = 0; 4181 int i; 4182 4183 for (i = 0; i < nr_pages; i++) { 4184 struct page *page = pages[i]; 4185 struct pglist_data *pagepgdat = page_pgdat(page); 4186 4187 pgscanned++; 4188 if (pagepgdat != pgdat) { 4189 if (pgdat) 4190 spin_unlock_irq(&pgdat->lru_lock); 4191 pgdat = pagepgdat; 4192 spin_lock_irq(&pgdat->lru_lock); 4193 } 4194 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4195 4196 if (!PageLRU(page) || !PageUnevictable(page)) 4197 continue; 4198 4199 if (page_evictable(page)) { 4200 enum lru_list lru = page_lru_base_type(page); 4201 4202 VM_BUG_ON_PAGE(PageActive(page), page); 4203 ClearPageUnevictable(page); 4204 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4205 add_page_to_lru_list(page, lruvec, lru); 4206 pgrescued++; 4207 } 4208 } 4209 4210 if (pgdat) { 4211 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4212 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4213 spin_unlock_irq(&pgdat->lru_lock); 4214 } 4215 } 4216 #endif /* CONFIG_SHMEM */ 4217