xref: /openbmc/linux/mm/vmscan.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 	unsigned int may_writepage:1;
82 
83 	/* Can mapped pages be reclaimed? */
84 	unsigned int may_unmap:1;
85 
86 	/* Can pages be swapped as part of reclaim? */
87 	unsigned int may_swap:1;
88 
89 	/*
90 	 * Cgroups are not reclaimed below their configured memory.low,
91 	 * unless we threaten to OOM. If any cgroups are skipped due to
92 	 * memory.low and nothing was reclaimed, go back for memory.low.
93 	 */
94 	unsigned int memcg_low_reclaim:1;
95 	unsigned int memcg_low_skipped:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Allocation order */
103 	s8 order;
104 
105 	/* Scan (total_size >> priority) pages at once */
106 	s8 priority;
107 
108 	/* The highest zone to isolate pages for reclaim from */
109 	s8 reclaim_idx;
110 
111 	/* This context's GFP mask */
112 	gfp_t gfp_mask;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 
120 	struct {
121 		unsigned int dirty;
122 		unsigned int unqueued_dirty;
123 		unsigned int congested;
124 		unsigned int writeback;
125 		unsigned int immediate;
126 		unsigned int file_taken;
127 		unsigned int taken;
128 	} nr;
129 };
130 
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)			\
133 	do {								\
134 		if ((_page)->lru.prev != _base) {			\
135 			struct page *prev;				\
136 									\
137 			prev = lru_to_page(&(_page->lru));		\
138 			prefetch(&prev->_field);			\
139 		}							\
140 	} while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144 
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)			\
147 	do {								\
148 		if ((_page)->lru.prev != _base) {			\
149 			struct page *prev;				\
150 									\
151 			prev = lru_to_page(&(_page->lru));		\
152 			prefetchw(&prev->_field);			\
153 		}							\
154 	} while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158 
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168 
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171 
172 #ifdef CONFIG_MEMCG_KMEM
173 
174 /*
175  * We allow subsystems to populate their shrinker-related
176  * LRU lists before register_shrinker_prepared() is called
177  * for the shrinker, since we don't want to impose
178  * restrictions on their internal registration order.
179  * In this case shrink_slab_memcg() may find corresponding
180  * bit is set in the shrinkers map.
181  *
182  * This value is used by the function to detect registering
183  * shrinkers and to skip do_shrink_slab() calls for them.
184  */
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186 
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
189 
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191 {
192 	int id, ret = -ENOMEM;
193 
194 	down_write(&shrinker_rwsem);
195 	/* This may call shrinker, so it must use down_read_trylock() */
196 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 	if (id < 0)
198 		goto unlock;
199 
200 	if (id >= shrinker_nr_max) {
201 		if (memcg_expand_shrinker_maps(id)) {
202 			idr_remove(&shrinker_idr, id);
203 			goto unlock;
204 		}
205 
206 		shrinker_nr_max = id + 1;
207 	}
208 	shrinker->id = id;
209 	ret = 0;
210 unlock:
211 	up_write(&shrinker_rwsem);
212 	return ret;
213 }
214 
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
216 {
217 	int id = shrinker->id;
218 
219 	BUG_ON(id < 0);
220 
221 	down_write(&shrinker_rwsem);
222 	idr_remove(&shrinker_idr, id);
223 	up_write(&shrinker_rwsem);
224 }
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227 {
228 	return 0;
229 }
230 
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 }
234 #endif /* CONFIG_MEMCG_KMEM */
235 
236 #ifdef CONFIG_MEMCG
237 static bool global_reclaim(struct scan_control *sc)
238 {
239 	return !sc->target_mem_cgroup;
240 }
241 
242 /**
243  * sane_reclaim - is the usual dirty throttling mechanism operational?
244  * @sc: scan_control in question
245  *
246  * The normal page dirty throttling mechanism in balance_dirty_pages() is
247  * completely broken with the legacy memcg and direct stalling in
248  * shrink_page_list() is used for throttling instead, which lacks all the
249  * niceties such as fairness, adaptive pausing, bandwidth proportional
250  * allocation and configurability.
251  *
252  * This function tests whether the vmscan currently in progress can assume
253  * that the normal dirty throttling mechanism is operational.
254  */
255 static bool sane_reclaim(struct scan_control *sc)
256 {
257 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
258 
259 	if (!memcg)
260 		return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 		return true;
264 #endif
265 	return false;
266 }
267 
268 static void set_memcg_congestion(pg_data_t *pgdat,
269 				struct mem_cgroup *memcg,
270 				bool congested)
271 {
272 	struct mem_cgroup_per_node *mn;
273 
274 	if (!memcg)
275 		return;
276 
277 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 	WRITE_ONCE(mn->congested, congested);
279 }
280 
281 static bool memcg_congested(pg_data_t *pgdat,
282 			struct mem_cgroup *memcg)
283 {
284 	struct mem_cgroup_per_node *mn;
285 
286 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 	return READ_ONCE(mn->congested);
288 
289 }
290 #else
291 static bool global_reclaim(struct scan_control *sc)
292 {
293 	return true;
294 }
295 
296 static bool sane_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 				struct mem_cgroup *memcg, bool congested)
303 {
304 }
305 
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 			struct mem_cgroup *memcg)
308 {
309 	return false;
310 
311 }
312 #endif
313 
314 /*
315  * This misses isolated pages which are not accounted for to save counters.
316  * As the data only determines if reclaim or compaction continues, it is
317  * not expected that isolated pages will be a dominating factor.
318  */
319 unsigned long zone_reclaimable_pages(struct zone *zone)
320 {
321 	unsigned long nr;
322 
323 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 	if (get_nr_swap_pages() > 0)
326 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328 
329 	return nr;
330 }
331 
332 /**
333  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
334  * @lruvec: lru vector
335  * @lru: lru to use
336  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337  */
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339 {
340 	unsigned long lru_size;
341 	int zid;
342 
343 	if (!mem_cgroup_disabled())
344 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 	else
346 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347 
348 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 		unsigned long size;
351 
352 		if (!managed_zone(zone))
353 			continue;
354 
355 		if (!mem_cgroup_disabled())
356 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 		else
358 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 				       NR_ZONE_LRU_BASE + lru);
360 		lru_size -= min(size, lru_size);
361 	}
362 
363 	return lru_size;
364 
365 }
366 
367 /*
368  * Add a shrinker callback to be called from the vm.
369  */
370 int prealloc_shrinker(struct shrinker *shrinker)
371 {
372 	size_t size = sizeof(*shrinker->nr_deferred);
373 
374 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 		size *= nr_node_ids;
376 
377 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 	if (!shrinker->nr_deferred)
379 		return -ENOMEM;
380 
381 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 		if (prealloc_memcg_shrinker(shrinker))
383 			goto free_deferred;
384 	}
385 
386 	return 0;
387 
388 free_deferred:
389 	kfree(shrinker->nr_deferred);
390 	shrinker->nr_deferred = NULL;
391 	return -ENOMEM;
392 }
393 
394 void free_prealloced_shrinker(struct shrinker *shrinker)
395 {
396 	if (!shrinker->nr_deferred)
397 		return;
398 
399 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 		unregister_memcg_shrinker(shrinker);
401 
402 	kfree(shrinker->nr_deferred);
403 	shrinker->nr_deferred = NULL;
404 }
405 
406 void register_shrinker_prepared(struct shrinker *shrinker)
407 {
408 	down_write(&shrinker_rwsem);
409 	list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 #endif
414 	up_write(&shrinker_rwsem);
415 }
416 
417 int register_shrinker(struct shrinker *shrinker)
418 {
419 	int err = prealloc_shrinker(shrinker);
420 
421 	if (err)
422 		return err;
423 	register_shrinker_prepared(shrinker);
424 	return 0;
425 }
426 EXPORT_SYMBOL(register_shrinker);
427 
428 /*
429  * Remove one
430  */
431 void unregister_shrinker(struct shrinker *shrinker)
432 {
433 	if (!shrinker->nr_deferred)
434 		return;
435 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 		unregister_memcg_shrinker(shrinker);
437 	down_write(&shrinker_rwsem);
438 	list_del(&shrinker->list);
439 	up_write(&shrinker_rwsem);
440 	kfree(shrinker->nr_deferred);
441 	shrinker->nr_deferred = NULL;
442 }
443 EXPORT_SYMBOL(unregister_shrinker);
444 
445 #define SHRINK_BATCH 128
446 
447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448 				    struct shrinker *shrinker, int priority)
449 {
450 	unsigned long freed = 0;
451 	unsigned long long delta;
452 	long total_scan;
453 	long freeable;
454 	long nr;
455 	long new_nr;
456 	int nid = shrinkctl->nid;
457 	long batch_size = shrinker->batch ? shrinker->batch
458 					  : SHRINK_BATCH;
459 	long scanned = 0, next_deferred;
460 
461 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462 		nid = 0;
463 
464 	freeable = shrinker->count_objects(shrinker, shrinkctl);
465 	if (freeable == 0 || freeable == SHRINK_EMPTY)
466 		return freeable;
467 
468 	/*
469 	 * copy the current shrinker scan count into a local variable
470 	 * and zero it so that other concurrent shrinker invocations
471 	 * don't also do this scanning work.
472 	 */
473 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474 
475 	total_scan = nr;
476 	delta = freeable >> priority;
477 	delta *= 4;
478 	do_div(delta, shrinker->seeks);
479 
480 	/*
481 	 * Make sure we apply some minimal pressure on default priority
482 	 * even on small cgroups. Stale objects are not only consuming memory
483 	 * by themselves, but can also hold a reference to a dying cgroup,
484 	 * preventing it from being reclaimed. A dying cgroup with all
485 	 * corresponding structures like per-cpu stats and kmem caches
486 	 * can be really big, so it may lead to a significant waste of memory.
487 	 */
488 	delta = max_t(unsigned long long, delta, min(freeable, batch_size));
489 
490 	total_scan += delta;
491 	if (total_scan < 0) {
492 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
493 		       shrinker->scan_objects, total_scan);
494 		total_scan = freeable;
495 		next_deferred = nr;
496 	} else
497 		next_deferred = total_scan;
498 
499 	/*
500 	 * We need to avoid excessive windup on filesystem shrinkers
501 	 * due to large numbers of GFP_NOFS allocations causing the
502 	 * shrinkers to return -1 all the time. This results in a large
503 	 * nr being built up so when a shrink that can do some work
504 	 * comes along it empties the entire cache due to nr >>>
505 	 * freeable. This is bad for sustaining a working set in
506 	 * memory.
507 	 *
508 	 * Hence only allow the shrinker to scan the entire cache when
509 	 * a large delta change is calculated directly.
510 	 */
511 	if (delta < freeable / 4)
512 		total_scan = min(total_scan, freeable / 2);
513 
514 	/*
515 	 * Avoid risking looping forever due to too large nr value:
516 	 * never try to free more than twice the estimate number of
517 	 * freeable entries.
518 	 */
519 	if (total_scan > freeable * 2)
520 		total_scan = freeable * 2;
521 
522 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
523 				   freeable, delta, total_scan, priority);
524 
525 	/*
526 	 * Normally, we should not scan less than batch_size objects in one
527 	 * pass to avoid too frequent shrinker calls, but if the slab has less
528 	 * than batch_size objects in total and we are really tight on memory,
529 	 * we will try to reclaim all available objects, otherwise we can end
530 	 * up failing allocations although there are plenty of reclaimable
531 	 * objects spread over several slabs with usage less than the
532 	 * batch_size.
533 	 *
534 	 * We detect the "tight on memory" situations by looking at the total
535 	 * number of objects we want to scan (total_scan). If it is greater
536 	 * than the total number of objects on slab (freeable), we must be
537 	 * scanning at high prio and therefore should try to reclaim as much as
538 	 * possible.
539 	 */
540 	while (total_scan >= batch_size ||
541 	       total_scan >= freeable) {
542 		unsigned long ret;
543 		unsigned long nr_to_scan = min(batch_size, total_scan);
544 
545 		shrinkctl->nr_to_scan = nr_to_scan;
546 		shrinkctl->nr_scanned = nr_to_scan;
547 		ret = shrinker->scan_objects(shrinker, shrinkctl);
548 		if (ret == SHRINK_STOP)
549 			break;
550 		freed += ret;
551 
552 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
553 		total_scan -= shrinkctl->nr_scanned;
554 		scanned += shrinkctl->nr_scanned;
555 
556 		cond_resched();
557 	}
558 
559 	if (next_deferred >= scanned)
560 		next_deferred -= scanned;
561 	else
562 		next_deferred = 0;
563 	/*
564 	 * move the unused scan count back into the shrinker in a
565 	 * manner that handles concurrent updates. If we exhausted the
566 	 * scan, there is no need to do an update.
567 	 */
568 	if (next_deferred > 0)
569 		new_nr = atomic_long_add_return(next_deferred,
570 						&shrinker->nr_deferred[nid]);
571 	else
572 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
573 
574 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
575 	return freed;
576 }
577 
578 #ifdef CONFIG_MEMCG_KMEM
579 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
580 			struct mem_cgroup *memcg, int priority)
581 {
582 	struct memcg_shrinker_map *map;
583 	unsigned long freed = 0;
584 	int ret, i;
585 
586 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
587 		return 0;
588 
589 	if (!down_read_trylock(&shrinker_rwsem))
590 		return 0;
591 
592 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
593 					true);
594 	if (unlikely(!map))
595 		goto unlock;
596 
597 	for_each_set_bit(i, map->map, shrinker_nr_max) {
598 		struct shrink_control sc = {
599 			.gfp_mask = gfp_mask,
600 			.nid = nid,
601 			.memcg = memcg,
602 		};
603 		struct shrinker *shrinker;
604 
605 		shrinker = idr_find(&shrinker_idr, i);
606 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
607 			if (!shrinker)
608 				clear_bit(i, map->map);
609 			continue;
610 		}
611 
612 		ret = do_shrink_slab(&sc, shrinker, priority);
613 		if (ret == SHRINK_EMPTY) {
614 			clear_bit(i, map->map);
615 			/*
616 			 * After the shrinker reported that it had no objects to
617 			 * free, but before we cleared the corresponding bit in
618 			 * the memcg shrinker map, a new object might have been
619 			 * added. To make sure, we have the bit set in this
620 			 * case, we invoke the shrinker one more time and reset
621 			 * the bit if it reports that it is not empty anymore.
622 			 * The memory barrier here pairs with the barrier in
623 			 * memcg_set_shrinker_bit():
624 			 *
625 			 * list_lru_add()     shrink_slab_memcg()
626 			 *   list_add_tail()    clear_bit()
627 			 *   <MB>               <MB>
628 			 *   set_bit()          do_shrink_slab()
629 			 */
630 			smp_mb__after_atomic();
631 			ret = do_shrink_slab(&sc, shrinker, priority);
632 			if (ret == SHRINK_EMPTY)
633 				ret = 0;
634 			else
635 				memcg_set_shrinker_bit(memcg, nid, i);
636 		}
637 		freed += ret;
638 
639 		if (rwsem_is_contended(&shrinker_rwsem)) {
640 			freed = freed ? : 1;
641 			break;
642 		}
643 	}
644 unlock:
645 	up_read(&shrinker_rwsem);
646 	return freed;
647 }
648 #else /* CONFIG_MEMCG_KMEM */
649 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
650 			struct mem_cgroup *memcg, int priority)
651 {
652 	return 0;
653 }
654 #endif /* CONFIG_MEMCG_KMEM */
655 
656 /**
657  * shrink_slab - shrink slab caches
658  * @gfp_mask: allocation context
659  * @nid: node whose slab caches to target
660  * @memcg: memory cgroup whose slab caches to target
661  * @priority: the reclaim priority
662  *
663  * Call the shrink functions to age shrinkable caches.
664  *
665  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
666  * unaware shrinkers will receive a node id of 0 instead.
667  *
668  * @memcg specifies the memory cgroup to target. Unaware shrinkers
669  * are called only if it is the root cgroup.
670  *
671  * @priority is sc->priority, we take the number of objects and >> by priority
672  * in order to get the scan target.
673  *
674  * Returns the number of reclaimed slab objects.
675  */
676 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
677 				 struct mem_cgroup *memcg,
678 				 int priority)
679 {
680 	struct shrinker *shrinker;
681 	unsigned long freed = 0;
682 	int ret;
683 
684 	if (!mem_cgroup_is_root(memcg))
685 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
686 
687 	if (!down_read_trylock(&shrinker_rwsem))
688 		goto out;
689 
690 	list_for_each_entry(shrinker, &shrinker_list, list) {
691 		struct shrink_control sc = {
692 			.gfp_mask = gfp_mask,
693 			.nid = nid,
694 			.memcg = memcg,
695 		};
696 
697 		ret = do_shrink_slab(&sc, shrinker, priority);
698 		if (ret == SHRINK_EMPTY)
699 			ret = 0;
700 		freed += ret;
701 		/*
702 		 * Bail out if someone want to register a new shrinker to
703 		 * prevent the regsitration from being stalled for long periods
704 		 * by parallel ongoing shrinking.
705 		 */
706 		if (rwsem_is_contended(&shrinker_rwsem)) {
707 			freed = freed ? : 1;
708 			break;
709 		}
710 	}
711 
712 	up_read(&shrinker_rwsem);
713 out:
714 	cond_resched();
715 	return freed;
716 }
717 
718 void drop_slab_node(int nid)
719 {
720 	unsigned long freed;
721 
722 	do {
723 		struct mem_cgroup *memcg = NULL;
724 
725 		freed = 0;
726 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
727 		do {
728 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
729 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
730 	} while (freed > 10);
731 }
732 
733 void drop_slab(void)
734 {
735 	int nid;
736 
737 	for_each_online_node(nid)
738 		drop_slab_node(nid);
739 }
740 
741 static inline int is_page_cache_freeable(struct page *page)
742 {
743 	/*
744 	 * A freeable page cache page is referenced only by the caller
745 	 * that isolated the page, the page cache radix tree and
746 	 * optional buffer heads at page->private.
747 	 */
748 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
749 		HPAGE_PMD_NR : 1;
750 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
751 }
752 
753 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
754 {
755 	if (current->flags & PF_SWAPWRITE)
756 		return 1;
757 	if (!inode_write_congested(inode))
758 		return 1;
759 	if (inode_to_bdi(inode) == current->backing_dev_info)
760 		return 1;
761 	return 0;
762 }
763 
764 /*
765  * We detected a synchronous write error writing a page out.  Probably
766  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
767  * fsync(), msync() or close().
768  *
769  * The tricky part is that after writepage we cannot touch the mapping: nothing
770  * prevents it from being freed up.  But we have a ref on the page and once
771  * that page is locked, the mapping is pinned.
772  *
773  * We're allowed to run sleeping lock_page() here because we know the caller has
774  * __GFP_FS.
775  */
776 static void handle_write_error(struct address_space *mapping,
777 				struct page *page, int error)
778 {
779 	lock_page(page);
780 	if (page_mapping(page) == mapping)
781 		mapping_set_error(mapping, error);
782 	unlock_page(page);
783 }
784 
785 /* possible outcome of pageout() */
786 typedef enum {
787 	/* failed to write page out, page is locked */
788 	PAGE_KEEP,
789 	/* move page to the active list, page is locked */
790 	PAGE_ACTIVATE,
791 	/* page has been sent to the disk successfully, page is unlocked */
792 	PAGE_SUCCESS,
793 	/* page is clean and locked */
794 	PAGE_CLEAN,
795 } pageout_t;
796 
797 /*
798  * pageout is called by shrink_page_list() for each dirty page.
799  * Calls ->writepage().
800  */
801 static pageout_t pageout(struct page *page, struct address_space *mapping,
802 			 struct scan_control *sc)
803 {
804 	/*
805 	 * If the page is dirty, only perform writeback if that write
806 	 * will be non-blocking.  To prevent this allocation from being
807 	 * stalled by pagecache activity.  But note that there may be
808 	 * stalls if we need to run get_block().  We could test
809 	 * PagePrivate for that.
810 	 *
811 	 * If this process is currently in __generic_file_write_iter() against
812 	 * this page's queue, we can perform writeback even if that
813 	 * will block.
814 	 *
815 	 * If the page is swapcache, write it back even if that would
816 	 * block, for some throttling. This happens by accident, because
817 	 * swap_backing_dev_info is bust: it doesn't reflect the
818 	 * congestion state of the swapdevs.  Easy to fix, if needed.
819 	 */
820 	if (!is_page_cache_freeable(page))
821 		return PAGE_KEEP;
822 	if (!mapping) {
823 		/*
824 		 * Some data journaling orphaned pages can have
825 		 * page->mapping == NULL while being dirty with clean buffers.
826 		 */
827 		if (page_has_private(page)) {
828 			if (try_to_free_buffers(page)) {
829 				ClearPageDirty(page);
830 				pr_info("%s: orphaned page\n", __func__);
831 				return PAGE_CLEAN;
832 			}
833 		}
834 		return PAGE_KEEP;
835 	}
836 	if (mapping->a_ops->writepage == NULL)
837 		return PAGE_ACTIVATE;
838 	if (!may_write_to_inode(mapping->host, sc))
839 		return PAGE_KEEP;
840 
841 	if (clear_page_dirty_for_io(page)) {
842 		int res;
843 		struct writeback_control wbc = {
844 			.sync_mode = WB_SYNC_NONE,
845 			.nr_to_write = SWAP_CLUSTER_MAX,
846 			.range_start = 0,
847 			.range_end = LLONG_MAX,
848 			.for_reclaim = 1,
849 		};
850 
851 		SetPageReclaim(page);
852 		res = mapping->a_ops->writepage(page, &wbc);
853 		if (res < 0)
854 			handle_write_error(mapping, page, res);
855 		if (res == AOP_WRITEPAGE_ACTIVATE) {
856 			ClearPageReclaim(page);
857 			return PAGE_ACTIVATE;
858 		}
859 
860 		if (!PageWriteback(page)) {
861 			/* synchronous write or broken a_ops? */
862 			ClearPageReclaim(page);
863 		}
864 		trace_mm_vmscan_writepage(page);
865 		inc_node_page_state(page, NR_VMSCAN_WRITE);
866 		return PAGE_SUCCESS;
867 	}
868 
869 	return PAGE_CLEAN;
870 }
871 
872 /*
873  * Same as remove_mapping, but if the page is removed from the mapping, it
874  * gets returned with a refcount of 0.
875  */
876 static int __remove_mapping(struct address_space *mapping, struct page *page,
877 			    bool reclaimed)
878 {
879 	unsigned long flags;
880 	int refcount;
881 
882 	BUG_ON(!PageLocked(page));
883 	BUG_ON(mapping != page_mapping(page));
884 
885 	xa_lock_irqsave(&mapping->i_pages, flags);
886 	/*
887 	 * The non racy check for a busy page.
888 	 *
889 	 * Must be careful with the order of the tests. When someone has
890 	 * a ref to the page, it may be possible that they dirty it then
891 	 * drop the reference. So if PageDirty is tested before page_count
892 	 * here, then the following race may occur:
893 	 *
894 	 * get_user_pages(&page);
895 	 * [user mapping goes away]
896 	 * write_to(page);
897 	 *				!PageDirty(page)    [good]
898 	 * SetPageDirty(page);
899 	 * put_page(page);
900 	 *				!page_count(page)   [good, discard it]
901 	 *
902 	 * [oops, our write_to data is lost]
903 	 *
904 	 * Reversing the order of the tests ensures such a situation cannot
905 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
906 	 * load is not satisfied before that of page->_refcount.
907 	 *
908 	 * Note that if SetPageDirty is always performed via set_page_dirty,
909 	 * and thus under the i_pages lock, then this ordering is not required.
910 	 */
911 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
912 		refcount = 1 + HPAGE_PMD_NR;
913 	else
914 		refcount = 2;
915 	if (!page_ref_freeze(page, refcount))
916 		goto cannot_free;
917 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
918 	if (unlikely(PageDirty(page))) {
919 		page_ref_unfreeze(page, refcount);
920 		goto cannot_free;
921 	}
922 
923 	if (PageSwapCache(page)) {
924 		swp_entry_t swap = { .val = page_private(page) };
925 		mem_cgroup_swapout(page, swap);
926 		__delete_from_swap_cache(page);
927 		xa_unlock_irqrestore(&mapping->i_pages, flags);
928 		put_swap_page(page, swap);
929 	} else {
930 		void (*freepage)(struct page *);
931 		void *shadow = NULL;
932 
933 		freepage = mapping->a_ops->freepage;
934 		/*
935 		 * Remember a shadow entry for reclaimed file cache in
936 		 * order to detect refaults, thus thrashing, later on.
937 		 *
938 		 * But don't store shadows in an address space that is
939 		 * already exiting.  This is not just an optizimation,
940 		 * inode reclaim needs to empty out the radix tree or
941 		 * the nodes are lost.  Don't plant shadows behind its
942 		 * back.
943 		 *
944 		 * We also don't store shadows for DAX mappings because the
945 		 * only page cache pages found in these are zero pages
946 		 * covering holes, and because we don't want to mix DAX
947 		 * exceptional entries and shadow exceptional entries in the
948 		 * same address_space.
949 		 */
950 		if (reclaimed && page_is_file_cache(page) &&
951 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
952 			shadow = workingset_eviction(mapping, page);
953 		__delete_from_page_cache(page, shadow);
954 		xa_unlock_irqrestore(&mapping->i_pages, flags);
955 
956 		if (freepage != NULL)
957 			freepage(page);
958 	}
959 
960 	return 1;
961 
962 cannot_free:
963 	xa_unlock_irqrestore(&mapping->i_pages, flags);
964 	return 0;
965 }
966 
967 /*
968  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
969  * someone else has a ref on the page, abort and return 0.  If it was
970  * successfully detached, return 1.  Assumes the caller has a single ref on
971  * this page.
972  */
973 int remove_mapping(struct address_space *mapping, struct page *page)
974 {
975 	if (__remove_mapping(mapping, page, false)) {
976 		/*
977 		 * Unfreezing the refcount with 1 rather than 2 effectively
978 		 * drops the pagecache ref for us without requiring another
979 		 * atomic operation.
980 		 */
981 		page_ref_unfreeze(page, 1);
982 		return 1;
983 	}
984 	return 0;
985 }
986 
987 /**
988  * putback_lru_page - put previously isolated page onto appropriate LRU list
989  * @page: page to be put back to appropriate lru list
990  *
991  * Add previously isolated @page to appropriate LRU list.
992  * Page may still be unevictable for other reasons.
993  *
994  * lru_lock must not be held, interrupts must be enabled.
995  */
996 void putback_lru_page(struct page *page)
997 {
998 	lru_cache_add(page);
999 	put_page(page);		/* drop ref from isolate */
1000 }
1001 
1002 enum page_references {
1003 	PAGEREF_RECLAIM,
1004 	PAGEREF_RECLAIM_CLEAN,
1005 	PAGEREF_KEEP,
1006 	PAGEREF_ACTIVATE,
1007 };
1008 
1009 static enum page_references page_check_references(struct page *page,
1010 						  struct scan_control *sc)
1011 {
1012 	int referenced_ptes, referenced_page;
1013 	unsigned long vm_flags;
1014 
1015 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1016 					  &vm_flags);
1017 	referenced_page = TestClearPageReferenced(page);
1018 
1019 	/*
1020 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1021 	 * move the page to the unevictable list.
1022 	 */
1023 	if (vm_flags & VM_LOCKED)
1024 		return PAGEREF_RECLAIM;
1025 
1026 	if (referenced_ptes) {
1027 		if (PageSwapBacked(page))
1028 			return PAGEREF_ACTIVATE;
1029 		/*
1030 		 * All mapped pages start out with page table
1031 		 * references from the instantiating fault, so we need
1032 		 * to look twice if a mapped file page is used more
1033 		 * than once.
1034 		 *
1035 		 * Mark it and spare it for another trip around the
1036 		 * inactive list.  Another page table reference will
1037 		 * lead to its activation.
1038 		 *
1039 		 * Note: the mark is set for activated pages as well
1040 		 * so that recently deactivated but used pages are
1041 		 * quickly recovered.
1042 		 */
1043 		SetPageReferenced(page);
1044 
1045 		if (referenced_page || referenced_ptes > 1)
1046 			return PAGEREF_ACTIVATE;
1047 
1048 		/*
1049 		 * Activate file-backed executable pages after first usage.
1050 		 */
1051 		if (vm_flags & VM_EXEC)
1052 			return PAGEREF_ACTIVATE;
1053 
1054 		return PAGEREF_KEEP;
1055 	}
1056 
1057 	/* Reclaim if clean, defer dirty pages to writeback */
1058 	if (referenced_page && !PageSwapBacked(page))
1059 		return PAGEREF_RECLAIM_CLEAN;
1060 
1061 	return PAGEREF_RECLAIM;
1062 }
1063 
1064 /* Check if a page is dirty or under writeback */
1065 static void page_check_dirty_writeback(struct page *page,
1066 				       bool *dirty, bool *writeback)
1067 {
1068 	struct address_space *mapping;
1069 
1070 	/*
1071 	 * Anonymous pages are not handled by flushers and must be written
1072 	 * from reclaim context. Do not stall reclaim based on them
1073 	 */
1074 	if (!page_is_file_cache(page) ||
1075 	    (PageAnon(page) && !PageSwapBacked(page))) {
1076 		*dirty = false;
1077 		*writeback = false;
1078 		return;
1079 	}
1080 
1081 	/* By default assume that the page flags are accurate */
1082 	*dirty = PageDirty(page);
1083 	*writeback = PageWriteback(page);
1084 
1085 	/* Verify dirty/writeback state if the filesystem supports it */
1086 	if (!page_has_private(page))
1087 		return;
1088 
1089 	mapping = page_mapping(page);
1090 	if (mapping && mapping->a_ops->is_dirty_writeback)
1091 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1092 }
1093 
1094 /*
1095  * shrink_page_list() returns the number of reclaimed pages
1096  */
1097 static unsigned long shrink_page_list(struct list_head *page_list,
1098 				      struct pglist_data *pgdat,
1099 				      struct scan_control *sc,
1100 				      enum ttu_flags ttu_flags,
1101 				      struct reclaim_stat *stat,
1102 				      bool force_reclaim)
1103 {
1104 	LIST_HEAD(ret_pages);
1105 	LIST_HEAD(free_pages);
1106 	int pgactivate = 0;
1107 	unsigned nr_unqueued_dirty = 0;
1108 	unsigned nr_dirty = 0;
1109 	unsigned nr_congested = 0;
1110 	unsigned nr_reclaimed = 0;
1111 	unsigned nr_writeback = 0;
1112 	unsigned nr_immediate = 0;
1113 	unsigned nr_ref_keep = 0;
1114 	unsigned nr_unmap_fail = 0;
1115 
1116 	cond_resched();
1117 
1118 	while (!list_empty(page_list)) {
1119 		struct address_space *mapping;
1120 		struct page *page;
1121 		int may_enter_fs;
1122 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1123 		bool dirty, writeback;
1124 
1125 		cond_resched();
1126 
1127 		page = lru_to_page(page_list);
1128 		list_del(&page->lru);
1129 
1130 		if (!trylock_page(page))
1131 			goto keep;
1132 
1133 		VM_BUG_ON_PAGE(PageActive(page), page);
1134 
1135 		sc->nr_scanned++;
1136 
1137 		if (unlikely(!page_evictable(page)))
1138 			goto activate_locked;
1139 
1140 		if (!sc->may_unmap && page_mapped(page))
1141 			goto keep_locked;
1142 
1143 		/* Double the slab pressure for mapped and swapcache pages */
1144 		if ((page_mapped(page) || PageSwapCache(page)) &&
1145 		    !(PageAnon(page) && !PageSwapBacked(page)))
1146 			sc->nr_scanned++;
1147 
1148 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1149 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1150 
1151 		/*
1152 		 * The number of dirty pages determines if a node is marked
1153 		 * reclaim_congested which affects wait_iff_congested. kswapd
1154 		 * will stall and start writing pages if the tail of the LRU
1155 		 * is all dirty unqueued pages.
1156 		 */
1157 		page_check_dirty_writeback(page, &dirty, &writeback);
1158 		if (dirty || writeback)
1159 			nr_dirty++;
1160 
1161 		if (dirty && !writeback)
1162 			nr_unqueued_dirty++;
1163 
1164 		/*
1165 		 * Treat this page as congested if the underlying BDI is or if
1166 		 * pages are cycling through the LRU so quickly that the
1167 		 * pages marked for immediate reclaim are making it to the
1168 		 * end of the LRU a second time.
1169 		 */
1170 		mapping = page_mapping(page);
1171 		if (((dirty || writeback) && mapping &&
1172 		     inode_write_congested(mapping->host)) ||
1173 		    (writeback && PageReclaim(page)))
1174 			nr_congested++;
1175 
1176 		/*
1177 		 * If a page at the tail of the LRU is under writeback, there
1178 		 * are three cases to consider.
1179 		 *
1180 		 * 1) If reclaim is encountering an excessive number of pages
1181 		 *    under writeback and this page is both under writeback and
1182 		 *    PageReclaim then it indicates that pages are being queued
1183 		 *    for IO but are being recycled through the LRU before the
1184 		 *    IO can complete. Waiting on the page itself risks an
1185 		 *    indefinite stall if it is impossible to writeback the
1186 		 *    page due to IO error or disconnected storage so instead
1187 		 *    note that the LRU is being scanned too quickly and the
1188 		 *    caller can stall after page list has been processed.
1189 		 *
1190 		 * 2) Global or new memcg reclaim encounters a page that is
1191 		 *    not marked for immediate reclaim, or the caller does not
1192 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1193 		 *    not to fs). In this case mark the page for immediate
1194 		 *    reclaim and continue scanning.
1195 		 *
1196 		 *    Require may_enter_fs because we would wait on fs, which
1197 		 *    may not have submitted IO yet. And the loop driver might
1198 		 *    enter reclaim, and deadlock if it waits on a page for
1199 		 *    which it is needed to do the write (loop masks off
1200 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1201 		 *    would probably show more reasons.
1202 		 *
1203 		 * 3) Legacy memcg encounters a page that is already marked
1204 		 *    PageReclaim. memcg does not have any dirty pages
1205 		 *    throttling so we could easily OOM just because too many
1206 		 *    pages are in writeback and there is nothing else to
1207 		 *    reclaim. Wait for the writeback to complete.
1208 		 *
1209 		 * In cases 1) and 2) we activate the pages to get them out of
1210 		 * the way while we continue scanning for clean pages on the
1211 		 * inactive list and refilling from the active list. The
1212 		 * observation here is that waiting for disk writes is more
1213 		 * expensive than potentially causing reloads down the line.
1214 		 * Since they're marked for immediate reclaim, they won't put
1215 		 * memory pressure on the cache working set any longer than it
1216 		 * takes to write them to disk.
1217 		 */
1218 		if (PageWriteback(page)) {
1219 			/* Case 1 above */
1220 			if (current_is_kswapd() &&
1221 			    PageReclaim(page) &&
1222 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1223 				nr_immediate++;
1224 				goto activate_locked;
1225 
1226 			/* Case 2 above */
1227 			} else if (sane_reclaim(sc) ||
1228 			    !PageReclaim(page) || !may_enter_fs) {
1229 				/*
1230 				 * This is slightly racy - end_page_writeback()
1231 				 * might have just cleared PageReclaim, then
1232 				 * setting PageReclaim here end up interpreted
1233 				 * as PageReadahead - but that does not matter
1234 				 * enough to care.  What we do want is for this
1235 				 * page to have PageReclaim set next time memcg
1236 				 * reclaim reaches the tests above, so it will
1237 				 * then wait_on_page_writeback() to avoid OOM;
1238 				 * and it's also appropriate in global reclaim.
1239 				 */
1240 				SetPageReclaim(page);
1241 				nr_writeback++;
1242 				goto activate_locked;
1243 
1244 			/* Case 3 above */
1245 			} else {
1246 				unlock_page(page);
1247 				wait_on_page_writeback(page);
1248 				/* then go back and try same page again */
1249 				list_add_tail(&page->lru, page_list);
1250 				continue;
1251 			}
1252 		}
1253 
1254 		if (!force_reclaim)
1255 			references = page_check_references(page, sc);
1256 
1257 		switch (references) {
1258 		case PAGEREF_ACTIVATE:
1259 			goto activate_locked;
1260 		case PAGEREF_KEEP:
1261 			nr_ref_keep++;
1262 			goto keep_locked;
1263 		case PAGEREF_RECLAIM:
1264 		case PAGEREF_RECLAIM_CLEAN:
1265 			; /* try to reclaim the page below */
1266 		}
1267 
1268 		/*
1269 		 * Anonymous process memory has backing store?
1270 		 * Try to allocate it some swap space here.
1271 		 * Lazyfree page could be freed directly
1272 		 */
1273 		if (PageAnon(page) && PageSwapBacked(page)) {
1274 			if (!PageSwapCache(page)) {
1275 				if (!(sc->gfp_mask & __GFP_IO))
1276 					goto keep_locked;
1277 				if (PageTransHuge(page)) {
1278 					/* cannot split THP, skip it */
1279 					if (!can_split_huge_page(page, NULL))
1280 						goto activate_locked;
1281 					/*
1282 					 * Split pages without a PMD map right
1283 					 * away. Chances are some or all of the
1284 					 * tail pages can be freed without IO.
1285 					 */
1286 					if (!compound_mapcount(page) &&
1287 					    split_huge_page_to_list(page,
1288 								    page_list))
1289 						goto activate_locked;
1290 				}
1291 				if (!add_to_swap(page)) {
1292 					if (!PageTransHuge(page))
1293 						goto activate_locked;
1294 					/* Fallback to swap normal pages */
1295 					if (split_huge_page_to_list(page,
1296 								    page_list))
1297 						goto activate_locked;
1298 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1299 					count_vm_event(THP_SWPOUT_FALLBACK);
1300 #endif
1301 					if (!add_to_swap(page))
1302 						goto activate_locked;
1303 				}
1304 
1305 				may_enter_fs = 1;
1306 
1307 				/* Adding to swap updated mapping */
1308 				mapping = page_mapping(page);
1309 			}
1310 		} else if (unlikely(PageTransHuge(page))) {
1311 			/* Split file THP */
1312 			if (split_huge_page_to_list(page, page_list))
1313 				goto keep_locked;
1314 		}
1315 
1316 		/*
1317 		 * The page is mapped into the page tables of one or more
1318 		 * processes. Try to unmap it here.
1319 		 */
1320 		if (page_mapped(page)) {
1321 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1322 
1323 			if (unlikely(PageTransHuge(page)))
1324 				flags |= TTU_SPLIT_HUGE_PMD;
1325 			if (!try_to_unmap(page, flags)) {
1326 				nr_unmap_fail++;
1327 				goto activate_locked;
1328 			}
1329 		}
1330 
1331 		if (PageDirty(page)) {
1332 			/*
1333 			 * Only kswapd can writeback filesystem pages
1334 			 * to avoid risk of stack overflow. But avoid
1335 			 * injecting inefficient single-page IO into
1336 			 * flusher writeback as much as possible: only
1337 			 * write pages when we've encountered many
1338 			 * dirty pages, and when we've already scanned
1339 			 * the rest of the LRU for clean pages and see
1340 			 * the same dirty pages again (PageReclaim).
1341 			 */
1342 			if (page_is_file_cache(page) &&
1343 			    (!current_is_kswapd() || !PageReclaim(page) ||
1344 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1345 				/*
1346 				 * Immediately reclaim when written back.
1347 				 * Similar in principal to deactivate_page()
1348 				 * except we already have the page isolated
1349 				 * and know it's dirty
1350 				 */
1351 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1352 				SetPageReclaim(page);
1353 
1354 				goto activate_locked;
1355 			}
1356 
1357 			if (references == PAGEREF_RECLAIM_CLEAN)
1358 				goto keep_locked;
1359 			if (!may_enter_fs)
1360 				goto keep_locked;
1361 			if (!sc->may_writepage)
1362 				goto keep_locked;
1363 
1364 			/*
1365 			 * Page is dirty. Flush the TLB if a writable entry
1366 			 * potentially exists to avoid CPU writes after IO
1367 			 * starts and then write it out here.
1368 			 */
1369 			try_to_unmap_flush_dirty();
1370 			switch (pageout(page, mapping, sc)) {
1371 			case PAGE_KEEP:
1372 				goto keep_locked;
1373 			case PAGE_ACTIVATE:
1374 				goto activate_locked;
1375 			case PAGE_SUCCESS:
1376 				if (PageWriteback(page))
1377 					goto keep;
1378 				if (PageDirty(page))
1379 					goto keep;
1380 
1381 				/*
1382 				 * A synchronous write - probably a ramdisk.  Go
1383 				 * ahead and try to reclaim the page.
1384 				 */
1385 				if (!trylock_page(page))
1386 					goto keep;
1387 				if (PageDirty(page) || PageWriteback(page))
1388 					goto keep_locked;
1389 				mapping = page_mapping(page);
1390 			case PAGE_CLEAN:
1391 				; /* try to free the page below */
1392 			}
1393 		}
1394 
1395 		/*
1396 		 * If the page has buffers, try to free the buffer mappings
1397 		 * associated with this page. If we succeed we try to free
1398 		 * the page as well.
1399 		 *
1400 		 * We do this even if the page is PageDirty().
1401 		 * try_to_release_page() does not perform I/O, but it is
1402 		 * possible for a page to have PageDirty set, but it is actually
1403 		 * clean (all its buffers are clean).  This happens if the
1404 		 * buffers were written out directly, with submit_bh(). ext3
1405 		 * will do this, as well as the blockdev mapping.
1406 		 * try_to_release_page() will discover that cleanness and will
1407 		 * drop the buffers and mark the page clean - it can be freed.
1408 		 *
1409 		 * Rarely, pages can have buffers and no ->mapping.  These are
1410 		 * the pages which were not successfully invalidated in
1411 		 * truncate_complete_page().  We try to drop those buffers here
1412 		 * and if that worked, and the page is no longer mapped into
1413 		 * process address space (page_count == 1) it can be freed.
1414 		 * Otherwise, leave the page on the LRU so it is swappable.
1415 		 */
1416 		if (page_has_private(page)) {
1417 			if (!try_to_release_page(page, sc->gfp_mask))
1418 				goto activate_locked;
1419 			if (!mapping && page_count(page) == 1) {
1420 				unlock_page(page);
1421 				if (put_page_testzero(page))
1422 					goto free_it;
1423 				else {
1424 					/*
1425 					 * rare race with speculative reference.
1426 					 * the speculative reference will free
1427 					 * this page shortly, so we may
1428 					 * increment nr_reclaimed here (and
1429 					 * leave it off the LRU).
1430 					 */
1431 					nr_reclaimed++;
1432 					continue;
1433 				}
1434 			}
1435 		}
1436 
1437 		if (PageAnon(page) && !PageSwapBacked(page)) {
1438 			/* follow __remove_mapping for reference */
1439 			if (!page_ref_freeze(page, 1))
1440 				goto keep_locked;
1441 			if (PageDirty(page)) {
1442 				page_ref_unfreeze(page, 1);
1443 				goto keep_locked;
1444 			}
1445 
1446 			count_vm_event(PGLAZYFREED);
1447 			count_memcg_page_event(page, PGLAZYFREED);
1448 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1449 			goto keep_locked;
1450 		/*
1451 		 * At this point, we have no other references and there is
1452 		 * no way to pick any more up (removed from LRU, removed
1453 		 * from pagecache). Can use non-atomic bitops now (and
1454 		 * we obviously don't have to worry about waking up a process
1455 		 * waiting on the page lock, because there are no references.
1456 		 */
1457 		__ClearPageLocked(page);
1458 free_it:
1459 		nr_reclaimed++;
1460 
1461 		/*
1462 		 * Is there need to periodically free_page_list? It would
1463 		 * appear not as the counts should be low
1464 		 */
1465 		if (unlikely(PageTransHuge(page))) {
1466 			mem_cgroup_uncharge(page);
1467 			(*get_compound_page_dtor(page))(page);
1468 		} else
1469 			list_add(&page->lru, &free_pages);
1470 		continue;
1471 
1472 activate_locked:
1473 		/* Not a candidate for swapping, so reclaim swap space. */
1474 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1475 						PageMlocked(page)))
1476 			try_to_free_swap(page);
1477 		VM_BUG_ON_PAGE(PageActive(page), page);
1478 		if (!PageMlocked(page)) {
1479 			SetPageActive(page);
1480 			pgactivate++;
1481 			count_memcg_page_event(page, PGACTIVATE);
1482 		}
1483 keep_locked:
1484 		unlock_page(page);
1485 keep:
1486 		list_add(&page->lru, &ret_pages);
1487 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1488 	}
1489 
1490 	mem_cgroup_uncharge_list(&free_pages);
1491 	try_to_unmap_flush();
1492 	free_unref_page_list(&free_pages);
1493 
1494 	list_splice(&ret_pages, page_list);
1495 	count_vm_events(PGACTIVATE, pgactivate);
1496 
1497 	if (stat) {
1498 		stat->nr_dirty = nr_dirty;
1499 		stat->nr_congested = nr_congested;
1500 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1501 		stat->nr_writeback = nr_writeback;
1502 		stat->nr_immediate = nr_immediate;
1503 		stat->nr_activate = pgactivate;
1504 		stat->nr_ref_keep = nr_ref_keep;
1505 		stat->nr_unmap_fail = nr_unmap_fail;
1506 	}
1507 	return nr_reclaimed;
1508 }
1509 
1510 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1511 					    struct list_head *page_list)
1512 {
1513 	struct scan_control sc = {
1514 		.gfp_mask = GFP_KERNEL,
1515 		.priority = DEF_PRIORITY,
1516 		.may_unmap = 1,
1517 	};
1518 	unsigned long ret;
1519 	struct page *page, *next;
1520 	LIST_HEAD(clean_pages);
1521 
1522 	list_for_each_entry_safe(page, next, page_list, lru) {
1523 		if (page_is_file_cache(page) && !PageDirty(page) &&
1524 		    !__PageMovable(page)) {
1525 			ClearPageActive(page);
1526 			list_move(&page->lru, &clean_pages);
1527 		}
1528 	}
1529 
1530 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1531 			TTU_IGNORE_ACCESS, NULL, true);
1532 	list_splice(&clean_pages, page_list);
1533 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1534 	return ret;
1535 }
1536 
1537 /*
1538  * Attempt to remove the specified page from its LRU.  Only take this page
1539  * if it is of the appropriate PageActive status.  Pages which are being
1540  * freed elsewhere are also ignored.
1541  *
1542  * page:	page to consider
1543  * mode:	one of the LRU isolation modes defined above
1544  *
1545  * returns 0 on success, -ve errno on failure.
1546  */
1547 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1548 {
1549 	int ret = -EINVAL;
1550 
1551 	/* Only take pages on the LRU. */
1552 	if (!PageLRU(page))
1553 		return ret;
1554 
1555 	/* Compaction should not handle unevictable pages but CMA can do so */
1556 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1557 		return ret;
1558 
1559 	ret = -EBUSY;
1560 
1561 	/*
1562 	 * To minimise LRU disruption, the caller can indicate that it only
1563 	 * wants to isolate pages it will be able to operate on without
1564 	 * blocking - clean pages for the most part.
1565 	 *
1566 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1567 	 * that it is possible to migrate without blocking
1568 	 */
1569 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1570 		/* All the caller can do on PageWriteback is block */
1571 		if (PageWriteback(page))
1572 			return ret;
1573 
1574 		if (PageDirty(page)) {
1575 			struct address_space *mapping;
1576 			bool migrate_dirty;
1577 
1578 			/*
1579 			 * Only pages without mappings or that have a
1580 			 * ->migratepage callback are possible to migrate
1581 			 * without blocking. However, we can be racing with
1582 			 * truncation so it's necessary to lock the page
1583 			 * to stabilise the mapping as truncation holds
1584 			 * the page lock until after the page is removed
1585 			 * from the page cache.
1586 			 */
1587 			if (!trylock_page(page))
1588 				return ret;
1589 
1590 			mapping = page_mapping(page);
1591 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1592 			unlock_page(page);
1593 			if (!migrate_dirty)
1594 				return ret;
1595 		}
1596 	}
1597 
1598 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1599 		return ret;
1600 
1601 	if (likely(get_page_unless_zero(page))) {
1602 		/*
1603 		 * Be careful not to clear PageLRU until after we're
1604 		 * sure the page is not being freed elsewhere -- the
1605 		 * page release code relies on it.
1606 		 */
1607 		ClearPageLRU(page);
1608 		ret = 0;
1609 	}
1610 
1611 	return ret;
1612 }
1613 
1614 
1615 /*
1616  * Update LRU sizes after isolating pages. The LRU size updates must
1617  * be complete before mem_cgroup_update_lru_size due to a santity check.
1618  */
1619 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1620 			enum lru_list lru, unsigned long *nr_zone_taken)
1621 {
1622 	int zid;
1623 
1624 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1625 		if (!nr_zone_taken[zid])
1626 			continue;
1627 
1628 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1629 #ifdef CONFIG_MEMCG
1630 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1631 #endif
1632 	}
1633 
1634 }
1635 
1636 /*
1637  * zone_lru_lock is heavily contended.  Some of the functions that
1638  * shrink the lists perform better by taking out a batch of pages
1639  * and working on them outside the LRU lock.
1640  *
1641  * For pagecache intensive workloads, this function is the hottest
1642  * spot in the kernel (apart from copy_*_user functions).
1643  *
1644  * Appropriate locks must be held before calling this function.
1645  *
1646  * @nr_to_scan:	The number of eligible pages to look through on the list.
1647  * @lruvec:	The LRU vector to pull pages from.
1648  * @dst:	The temp list to put pages on to.
1649  * @nr_scanned:	The number of pages that were scanned.
1650  * @sc:		The scan_control struct for this reclaim session
1651  * @mode:	One of the LRU isolation modes
1652  * @lru:	LRU list id for isolating
1653  *
1654  * returns how many pages were moved onto *@dst.
1655  */
1656 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1657 		struct lruvec *lruvec, struct list_head *dst,
1658 		unsigned long *nr_scanned, struct scan_control *sc,
1659 		isolate_mode_t mode, enum lru_list lru)
1660 {
1661 	struct list_head *src = &lruvec->lists[lru];
1662 	unsigned long nr_taken = 0;
1663 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1664 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1665 	unsigned long skipped = 0;
1666 	unsigned long scan, total_scan, nr_pages;
1667 	LIST_HEAD(pages_skipped);
1668 
1669 	scan = 0;
1670 	for (total_scan = 0;
1671 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1672 	     total_scan++) {
1673 		struct page *page;
1674 
1675 		page = lru_to_page(src);
1676 		prefetchw_prev_lru_page(page, src, flags);
1677 
1678 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1679 
1680 		if (page_zonenum(page) > sc->reclaim_idx) {
1681 			list_move(&page->lru, &pages_skipped);
1682 			nr_skipped[page_zonenum(page)]++;
1683 			continue;
1684 		}
1685 
1686 		/*
1687 		 * Do not count skipped pages because that makes the function
1688 		 * return with no isolated pages if the LRU mostly contains
1689 		 * ineligible pages.  This causes the VM to not reclaim any
1690 		 * pages, triggering a premature OOM.
1691 		 */
1692 		scan++;
1693 		switch (__isolate_lru_page(page, mode)) {
1694 		case 0:
1695 			nr_pages = hpage_nr_pages(page);
1696 			nr_taken += nr_pages;
1697 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1698 			list_move(&page->lru, dst);
1699 			break;
1700 
1701 		case -EBUSY:
1702 			/* else it is being freed elsewhere */
1703 			list_move(&page->lru, src);
1704 			continue;
1705 
1706 		default:
1707 			BUG();
1708 		}
1709 	}
1710 
1711 	/*
1712 	 * Splice any skipped pages to the start of the LRU list. Note that
1713 	 * this disrupts the LRU order when reclaiming for lower zones but
1714 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1715 	 * scanning would soon rescan the same pages to skip and put the
1716 	 * system at risk of premature OOM.
1717 	 */
1718 	if (!list_empty(&pages_skipped)) {
1719 		int zid;
1720 
1721 		list_splice(&pages_skipped, src);
1722 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1723 			if (!nr_skipped[zid])
1724 				continue;
1725 
1726 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1727 			skipped += nr_skipped[zid];
1728 		}
1729 	}
1730 	*nr_scanned = total_scan;
1731 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1732 				    total_scan, skipped, nr_taken, mode, lru);
1733 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1734 	return nr_taken;
1735 }
1736 
1737 /**
1738  * isolate_lru_page - tries to isolate a page from its LRU list
1739  * @page: page to isolate from its LRU list
1740  *
1741  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1742  * vmstat statistic corresponding to whatever LRU list the page was on.
1743  *
1744  * Returns 0 if the page was removed from an LRU list.
1745  * Returns -EBUSY if the page was not on an LRU list.
1746  *
1747  * The returned page will have PageLRU() cleared.  If it was found on
1748  * the active list, it will have PageActive set.  If it was found on
1749  * the unevictable list, it will have the PageUnevictable bit set. That flag
1750  * may need to be cleared by the caller before letting the page go.
1751  *
1752  * The vmstat statistic corresponding to the list on which the page was
1753  * found will be decremented.
1754  *
1755  * Restrictions:
1756  *
1757  * (1) Must be called with an elevated refcount on the page. This is a
1758  *     fundamentnal difference from isolate_lru_pages (which is called
1759  *     without a stable reference).
1760  * (2) the lru_lock must not be held.
1761  * (3) interrupts must be enabled.
1762  */
1763 int isolate_lru_page(struct page *page)
1764 {
1765 	int ret = -EBUSY;
1766 
1767 	VM_BUG_ON_PAGE(!page_count(page), page);
1768 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1769 
1770 	if (PageLRU(page)) {
1771 		struct zone *zone = page_zone(page);
1772 		struct lruvec *lruvec;
1773 
1774 		spin_lock_irq(zone_lru_lock(zone));
1775 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1776 		if (PageLRU(page)) {
1777 			int lru = page_lru(page);
1778 			get_page(page);
1779 			ClearPageLRU(page);
1780 			del_page_from_lru_list(page, lruvec, lru);
1781 			ret = 0;
1782 		}
1783 		spin_unlock_irq(zone_lru_lock(zone));
1784 	}
1785 	return ret;
1786 }
1787 
1788 /*
1789  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1790  * then get resheduled. When there are massive number of tasks doing page
1791  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1792  * the LRU list will go small and be scanned faster than necessary, leading to
1793  * unnecessary swapping, thrashing and OOM.
1794  */
1795 static int too_many_isolated(struct pglist_data *pgdat, int file,
1796 		struct scan_control *sc)
1797 {
1798 	unsigned long inactive, isolated;
1799 
1800 	if (current_is_kswapd())
1801 		return 0;
1802 
1803 	if (!sane_reclaim(sc))
1804 		return 0;
1805 
1806 	if (file) {
1807 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1808 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1809 	} else {
1810 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1811 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1812 	}
1813 
1814 	/*
1815 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1816 	 * won't get blocked by normal direct-reclaimers, forming a circular
1817 	 * deadlock.
1818 	 */
1819 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1820 		inactive >>= 3;
1821 
1822 	return isolated > inactive;
1823 }
1824 
1825 static noinline_for_stack void
1826 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1827 {
1828 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1829 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1830 	LIST_HEAD(pages_to_free);
1831 
1832 	/*
1833 	 * Put back any unfreeable pages.
1834 	 */
1835 	while (!list_empty(page_list)) {
1836 		struct page *page = lru_to_page(page_list);
1837 		int lru;
1838 
1839 		VM_BUG_ON_PAGE(PageLRU(page), page);
1840 		list_del(&page->lru);
1841 		if (unlikely(!page_evictable(page))) {
1842 			spin_unlock_irq(&pgdat->lru_lock);
1843 			putback_lru_page(page);
1844 			spin_lock_irq(&pgdat->lru_lock);
1845 			continue;
1846 		}
1847 
1848 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1849 
1850 		SetPageLRU(page);
1851 		lru = page_lru(page);
1852 		add_page_to_lru_list(page, lruvec, lru);
1853 
1854 		if (is_active_lru(lru)) {
1855 			int file = is_file_lru(lru);
1856 			int numpages = hpage_nr_pages(page);
1857 			reclaim_stat->recent_rotated[file] += numpages;
1858 		}
1859 		if (put_page_testzero(page)) {
1860 			__ClearPageLRU(page);
1861 			__ClearPageActive(page);
1862 			del_page_from_lru_list(page, lruvec, lru);
1863 
1864 			if (unlikely(PageCompound(page))) {
1865 				spin_unlock_irq(&pgdat->lru_lock);
1866 				mem_cgroup_uncharge(page);
1867 				(*get_compound_page_dtor(page))(page);
1868 				spin_lock_irq(&pgdat->lru_lock);
1869 			} else
1870 				list_add(&page->lru, &pages_to_free);
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * To save our caller's stack, now use input list for pages to free.
1876 	 */
1877 	list_splice(&pages_to_free, page_list);
1878 }
1879 
1880 /*
1881  * If a kernel thread (such as nfsd for loop-back mounts) services
1882  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1883  * In that case we should only throttle if the backing device it is
1884  * writing to is congested.  In other cases it is safe to throttle.
1885  */
1886 static int current_may_throttle(void)
1887 {
1888 	return !(current->flags & PF_LESS_THROTTLE) ||
1889 		current->backing_dev_info == NULL ||
1890 		bdi_write_congested(current->backing_dev_info);
1891 }
1892 
1893 /*
1894  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1895  * of reclaimed pages
1896  */
1897 static noinline_for_stack unsigned long
1898 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1899 		     struct scan_control *sc, enum lru_list lru)
1900 {
1901 	LIST_HEAD(page_list);
1902 	unsigned long nr_scanned;
1903 	unsigned long nr_reclaimed = 0;
1904 	unsigned long nr_taken;
1905 	struct reclaim_stat stat = {};
1906 	isolate_mode_t isolate_mode = 0;
1907 	int file = is_file_lru(lru);
1908 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1909 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1910 	bool stalled = false;
1911 
1912 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1913 		if (stalled)
1914 			return 0;
1915 
1916 		/* wait a bit for the reclaimer. */
1917 		msleep(100);
1918 		stalled = true;
1919 
1920 		/* We are about to die and free our memory. Return now. */
1921 		if (fatal_signal_pending(current))
1922 			return SWAP_CLUSTER_MAX;
1923 	}
1924 
1925 	lru_add_drain();
1926 
1927 	if (!sc->may_unmap)
1928 		isolate_mode |= ISOLATE_UNMAPPED;
1929 
1930 	spin_lock_irq(&pgdat->lru_lock);
1931 
1932 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1933 				     &nr_scanned, sc, isolate_mode, lru);
1934 
1935 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936 	reclaim_stat->recent_scanned[file] += nr_taken;
1937 
1938 	if (current_is_kswapd()) {
1939 		if (global_reclaim(sc))
1940 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1941 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1942 				   nr_scanned);
1943 	} else {
1944 		if (global_reclaim(sc))
1945 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1946 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1947 				   nr_scanned);
1948 	}
1949 	spin_unlock_irq(&pgdat->lru_lock);
1950 
1951 	if (nr_taken == 0)
1952 		return 0;
1953 
1954 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1955 				&stat, false);
1956 
1957 	spin_lock_irq(&pgdat->lru_lock);
1958 
1959 	if (current_is_kswapd()) {
1960 		if (global_reclaim(sc))
1961 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1962 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1963 				   nr_reclaimed);
1964 	} else {
1965 		if (global_reclaim(sc))
1966 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1967 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1968 				   nr_reclaimed);
1969 	}
1970 
1971 	putback_inactive_pages(lruvec, &page_list);
1972 
1973 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1974 
1975 	spin_unlock_irq(&pgdat->lru_lock);
1976 
1977 	mem_cgroup_uncharge_list(&page_list);
1978 	free_unref_page_list(&page_list);
1979 
1980 	/*
1981 	 * If dirty pages are scanned that are not queued for IO, it
1982 	 * implies that flushers are not doing their job. This can
1983 	 * happen when memory pressure pushes dirty pages to the end of
1984 	 * the LRU before the dirty limits are breached and the dirty
1985 	 * data has expired. It can also happen when the proportion of
1986 	 * dirty pages grows not through writes but through memory
1987 	 * pressure reclaiming all the clean cache. And in some cases,
1988 	 * the flushers simply cannot keep up with the allocation
1989 	 * rate. Nudge the flusher threads in case they are asleep.
1990 	 */
1991 	if (stat.nr_unqueued_dirty == nr_taken)
1992 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1993 
1994 	sc->nr.dirty += stat.nr_dirty;
1995 	sc->nr.congested += stat.nr_congested;
1996 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1997 	sc->nr.writeback += stat.nr_writeback;
1998 	sc->nr.immediate += stat.nr_immediate;
1999 	sc->nr.taken += nr_taken;
2000 	if (file)
2001 		sc->nr.file_taken += nr_taken;
2002 
2003 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2004 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2005 	return nr_reclaimed;
2006 }
2007 
2008 /*
2009  * This moves pages from the active list to the inactive list.
2010  *
2011  * We move them the other way if the page is referenced by one or more
2012  * processes, from rmap.
2013  *
2014  * If the pages are mostly unmapped, the processing is fast and it is
2015  * appropriate to hold zone_lru_lock across the whole operation.  But if
2016  * the pages are mapped, the processing is slow (page_referenced()) so we
2017  * should drop zone_lru_lock around each page.  It's impossible to balance
2018  * this, so instead we remove the pages from the LRU while processing them.
2019  * It is safe to rely on PG_active against the non-LRU pages in here because
2020  * nobody will play with that bit on a non-LRU page.
2021  *
2022  * The downside is that we have to touch page->_refcount against each page.
2023  * But we had to alter page->flags anyway.
2024  *
2025  * Returns the number of pages moved to the given lru.
2026  */
2027 
2028 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2029 				     struct list_head *list,
2030 				     struct list_head *pages_to_free,
2031 				     enum lru_list lru)
2032 {
2033 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2034 	struct page *page;
2035 	int nr_pages;
2036 	int nr_moved = 0;
2037 
2038 	while (!list_empty(list)) {
2039 		page = lru_to_page(list);
2040 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2041 
2042 		VM_BUG_ON_PAGE(PageLRU(page), page);
2043 		SetPageLRU(page);
2044 
2045 		nr_pages = hpage_nr_pages(page);
2046 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2047 		list_move(&page->lru, &lruvec->lists[lru]);
2048 
2049 		if (put_page_testzero(page)) {
2050 			__ClearPageLRU(page);
2051 			__ClearPageActive(page);
2052 			del_page_from_lru_list(page, lruvec, lru);
2053 
2054 			if (unlikely(PageCompound(page))) {
2055 				spin_unlock_irq(&pgdat->lru_lock);
2056 				mem_cgroup_uncharge(page);
2057 				(*get_compound_page_dtor(page))(page);
2058 				spin_lock_irq(&pgdat->lru_lock);
2059 			} else
2060 				list_add(&page->lru, pages_to_free);
2061 		} else {
2062 			nr_moved += nr_pages;
2063 		}
2064 	}
2065 
2066 	if (!is_active_lru(lru)) {
2067 		__count_vm_events(PGDEACTIVATE, nr_moved);
2068 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2069 				   nr_moved);
2070 	}
2071 
2072 	return nr_moved;
2073 }
2074 
2075 static void shrink_active_list(unsigned long nr_to_scan,
2076 			       struct lruvec *lruvec,
2077 			       struct scan_control *sc,
2078 			       enum lru_list lru)
2079 {
2080 	unsigned long nr_taken;
2081 	unsigned long nr_scanned;
2082 	unsigned long vm_flags;
2083 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2084 	LIST_HEAD(l_active);
2085 	LIST_HEAD(l_inactive);
2086 	struct page *page;
2087 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2088 	unsigned nr_deactivate, nr_activate;
2089 	unsigned nr_rotated = 0;
2090 	isolate_mode_t isolate_mode = 0;
2091 	int file = is_file_lru(lru);
2092 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2093 
2094 	lru_add_drain();
2095 
2096 	if (!sc->may_unmap)
2097 		isolate_mode |= ISOLATE_UNMAPPED;
2098 
2099 	spin_lock_irq(&pgdat->lru_lock);
2100 
2101 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2102 				     &nr_scanned, sc, isolate_mode, lru);
2103 
2104 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2105 	reclaim_stat->recent_scanned[file] += nr_taken;
2106 
2107 	__count_vm_events(PGREFILL, nr_scanned);
2108 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2109 
2110 	spin_unlock_irq(&pgdat->lru_lock);
2111 
2112 	while (!list_empty(&l_hold)) {
2113 		cond_resched();
2114 		page = lru_to_page(&l_hold);
2115 		list_del(&page->lru);
2116 
2117 		if (unlikely(!page_evictable(page))) {
2118 			putback_lru_page(page);
2119 			continue;
2120 		}
2121 
2122 		if (unlikely(buffer_heads_over_limit)) {
2123 			if (page_has_private(page) && trylock_page(page)) {
2124 				if (page_has_private(page))
2125 					try_to_release_page(page, 0);
2126 				unlock_page(page);
2127 			}
2128 		}
2129 
2130 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2131 				    &vm_flags)) {
2132 			nr_rotated += hpage_nr_pages(page);
2133 			/*
2134 			 * Identify referenced, file-backed active pages and
2135 			 * give them one more trip around the active list. So
2136 			 * that executable code get better chances to stay in
2137 			 * memory under moderate memory pressure.  Anon pages
2138 			 * are not likely to be evicted by use-once streaming
2139 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2140 			 * so we ignore them here.
2141 			 */
2142 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2143 				list_add(&page->lru, &l_active);
2144 				continue;
2145 			}
2146 		}
2147 
2148 		ClearPageActive(page);	/* we are de-activating */
2149 		list_add(&page->lru, &l_inactive);
2150 	}
2151 
2152 	/*
2153 	 * Move pages back to the lru list.
2154 	 */
2155 	spin_lock_irq(&pgdat->lru_lock);
2156 	/*
2157 	 * Count referenced pages from currently used mappings as rotated,
2158 	 * even though only some of them are actually re-activated.  This
2159 	 * helps balance scan pressure between file and anonymous pages in
2160 	 * get_scan_count.
2161 	 */
2162 	reclaim_stat->recent_rotated[file] += nr_rotated;
2163 
2164 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2165 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2166 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2167 	spin_unlock_irq(&pgdat->lru_lock);
2168 
2169 	mem_cgroup_uncharge_list(&l_hold);
2170 	free_unref_page_list(&l_hold);
2171 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2172 			nr_deactivate, nr_rotated, sc->priority, file);
2173 }
2174 
2175 /*
2176  * The inactive anon list should be small enough that the VM never has
2177  * to do too much work.
2178  *
2179  * The inactive file list should be small enough to leave most memory
2180  * to the established workingset on the scan-resistant active list,
2181  * but large enough to avoid thrashing the aggregate readahead window.
2182  *
2183  * Both inactive lists should also be large enough that each inactive
2184  * page has a chance to be referenced again before it is reclaimed.
2185  *
2186  * If that fails and refaulting is observed, the inactive list grows.
2187  *
2188  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2189  * on this LRU, maintained by the pageout code. An inactive_ratio
2190  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2191  *
2192  * total     target    max
2193  * memory    ratio     inactive
2194  * -------------------------------------
2195  *   10MB       1         5MB
2196  *  100MB       1        50MB
2197  *    1GB       3       250MB
2198  *   10GB      10       0.9GB
2199  *  100GB      31         3GB
2200  *    1TB     101        10GB
2201  *   10TB     320        32GB
2202  */
2203 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2204 				 struct mem_cgroup *memcg,
2205 				 struct scan_control *sc, bool actual_reclaim)
2206 {
2207 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2208 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2209 	enum lru_list inactive_lru = file * LRU_FILE;
2210 	unsigned long inactive, active;
2211 	unsigned long inactive_ratio;
2212 	unsigned long refaults;
2213 	unsigned long gb;
2214 
2215 	/*
2216 	 * If we don't have swap space, anonymous page deactivation
2217 	 * is pointless.
2218 	 */
2219 	if (!file && !total_swap_pages)
2220 		return false;
2221 
2222 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2223 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2224 
2225 	if (memcg)
2226 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2227 	else
2228 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2229 
2230 	/*
2231 	 * When refaults are being observed, it means a new workingset
2232 	 * is being established. Disable active list protection to get
2233 	 * rid of the stale workingset quickly.
2234 	 */
2235 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2236 		inactive_ratio = 0;
2237 	} else {
2238 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2239 		if (gb)
2240 			inactive_ratio = int_sqrt(10 * gb);
2241 		else
2242 			inactive_ratio = 1;
2243 	}
2244 
2245 	if (actual_reclaim)
2246 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2247 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2248 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2249 			inactive_ratio, file);
2250 
2251 	return inactive * inactive_ratio < active;
2252 }
2253 
2254 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2255 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2256 				 struct scan_control *sc)
2257 {
2258 	if (is_active_lru(lru)) {
2259 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2260 					 memcg, sc, true))
2261 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2262 		return 0;
2263 	}
2264 
2265 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2266 }
2267 
2268 enum scan_balance {
2269 	SCAN_EQUAL,
2270 	SCAN_FRACT,
2271 	SCAN_ANON,
2272 	SCAN_FILE,
2273 };
2274 
2275 /*
2276  * Determine how aggressively the anon and file LRU lists should be
2277  * scanned.  The relative value of each set of LRU lists is determined
2278  * by looking at the fraction of the pages scanned we did rotate back
2279  * onto the active list instead of evict.
2280  *
2281  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2282  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2283  */
2284 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2285 			   struct scan_control *sc, unsigned long *nr,
2286 			   unsigned long *lru_pages)
2287 {
2288 	int swappiness = mem_cgroup_swappiness(memcg);
2289 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2290 	u64 fraction[2];
2291 	u64 denominator = 0;	/* gcc */
2292 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2293 	unsigned long anon_prio, file_prio;
2294 	enum scan_balance scan_balance;
2295 	unsigned long anon, file;
2296 	unsigned long ap, fp;
2297 	enum lru_list lru;
2298 
2299 	/* If we have no swap space, do not bother scanning anon pages. */
2300 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2301 		scan_balance = SCAN_FILE;
2302 		goto out;
2303 	}
2304 
2305 	/*
2306 	 * Global reclaim will swap to prevent OOM even with no
2307 	 * swappiness, but memcg users want to use this knob to
2308 	 * disable swapping for individual groups completely when
2309 	 * using the memory controller's swap limit feature would be
2310 	 * too expensive.
2311 	 */
2312 	if (!global_reclaim(sc) && !swappiness) {
2313 		scan_balance = SCAN_FILE;
2314 		goto out;
2315 	}
2316 
2317 	/*
2318 	 * Do not apply any pressure balancing cleverness when the
2319 	 * system is close to OOM, scan both anon and file equally
2320 	 * (unless the swappiness setting disagrees with swapping).
2321 	 */
2322 	if (!sc->priority && swappiness) {
2323 		scan_balance = SCAN_EQUAL;
2324 		goto out;
2325 	}
2326 
2327 	/*
2328 	 * Prevent the reclaimer from falling into the cache trap: as
2329 	 * cache pages start out inactive, every cache fault will tip
2330 	 * the scan balance towards the file LRU.  And as the file LRU
2331 	 * shrinks, so does the window for rotation from references.
2332 	 * This means we have a runaway feedback loop where a tiny
2333 	 * thrashing file LRU becomes infinitely more attractive than
2334 	 * anon pages.  Try to detect this based on file LRU size.
2335 	 */
2336 	if (global_reclaim(sc)) {
2337 		unsigned long pgdatfile;
2338 		unsigned long pgdatfree;
2339 		int z;
2340 		unsigned long total_high_wmark = 0;
2341 
2342 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2343 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2344 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2345 
2346 		for (z = 0; z < MAX_NR_ZONES; z++) {
2347 			struct zone *zone = &pgdat->node_zones[z];
2348 			if (!managed_zone(zone))
2349 				continue;
2350 
2351 			total_high_wmark += high_wmark_pages(zone);
2352 		}
2353 
2354 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2355 			/*
2356 			 * Force SCAN_ANON if there are enough inactive
2357 			 * anonymous pages on the LRU in eligible zones.
2358 			 * Otherwise, the small LRU gets thrashed.
2359 			 */
2360 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2361 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2362 					>> sc->priority) {
2363 				scan_balance = SCAN_ANON;
2364 				goto out;
2365 			}
2366 		}
2367 	}
2368 
2369 	/*
2370 	 * If there is enough inactive page cache, i.e. if the size of the
2371 	 * inactive list is greater than that of the active list *and* the
2372 	 * inactive list actually has some pages to scan on this priority, we
2373 	 * do not reclaim anything from the anonymous working set right now.
2374 	 * Without the second condition we could end up never scanning an
2375 	 * lruvec even if it has plenty of old anonymous pages unless the
2376 	 * system is under heavy pressure.
2377 	 */
2378 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2379 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2380 		scan_balance = SCAN_FILE;
2381 		goto out;
2382 	}
2383 
2384 	scan_balance = SCAN_FRACT;
2385 
2386 	/*
2387 	 * With swappiness at 100, anonymous and file have the same priority.
2388 	 * This scanning priority is essentially the inverse of IO cost.
2389 	 */
2390 	anon_prio = swappiness;
2391 	file_prio = 200 - anon_prio;
2392 
2393 	/*
2394 	 * OK, so we have swap space and a fair amount of page cache
2395 	 * pages.  We use the recently rotated / recently scanned
2396 	 * ratios to determine how valuable each cache is.
2397 	 *
2398 	 * Because workloads change over time (and to avoid overflow)
2399 	 * we keep these statistics as a floating average, which ends
2400 	 * up weighing recent references more than old ones.
2401 	 *
2402 	 * anon in [0], file in [1]
2403 	 */
2404 
2405 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2406 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2407 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2408 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2409 
2410 	spin_lock_irq(&pgdat->lru_lock);
2411 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2412 		reclaim_stat->recent_scanned[0] /= 2;
2413 		reclaim_stat->recent_rotated[0] /= 2;
2414 	}
2415 
2416 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2417 		reclaim_stat->recent_scanned[1] /= 2;
2418 		reclaim_stat->recent_rotated[1] /= 2;
2419 	}
2420 
2421 	/*
2422 	 * The amount of pressure on anon vs file pages is inversely
2423 	 * proportional to the fraction of recently scanned pages on
2424 	 * each list that were recently referenced and in active use.
2425 	 */
2426 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2427 	ap /= reclaim_stat->recent_rotated[0] + 1;
2428 
2429 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2430 	fp /= reclaim_stat->recent_rotated[1] + 1;
2431 	spin_unlock_irq(&pgdat->lru_lock);
2432 
2433 	fraction[0] = ap;
2434 	fraction[1] = fp;
2435 	denominator = ap + fp + 1;
2436 out:
2437 	*lru_pages = 0;
2438 	for_each_evictable_lru(lru) {
2439 		int file = is_file_lru(lru);
2440 		unsigned long size;
2441 		unsigned long scan;
2442 
2443 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2444 		scan = size >> sc->priority;
2445 		/*
2446 		 * If the cgroup's already been deleted, make sure to
2447 		 * scrape out the remaining cache.
2448 		 */
2449 		if (!scan && !mem_cgroup_online(memcg))
2450 			scan = min(size, SWAP_CLUSTER_MAX);
2451 
2452 		switch (scan_balance) {
2453 		case SCAN_EQUAL:
2454 			/* Scan lists relative to size */
2455 			break;
2456 		case SCAN_FRACT:
2457 			/*
2458 			 * Scan types proportional to swappiness and
2459 			 * their relative recent reclaim efficiency.
2460 			 */
2461 			scan = div64_u64(scan * fraction[file],
2462 					 denominator);
2463 			break;
2464 		case SCAN_FILE:
2465 		case SCAN_ANON:
2466 			/* Scan one type exclusively */
2467 			if ((scan_balance == SCAN_FILE) != file) {
2468 				size = 0;
2469 				scan = 0;
2470 			}
2471 			break;
2472 		default:
2473 			/* Look ma, no brain */
2474 			BUG();
2475 		}
2476 
2477 		*lru_pages += size;
2478 		nr[lru] = scan;
2479 	}
2480 }
2481 
2482 /*
2483  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2484  */
2485 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2486 			      struct scan_control *sc, unsigned long *lru_pages)
2487 {
2488 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2489 	unsigned long nr[NR_LRU_LISTS];
2490 	unsigned long targets[NR_LRU_LISTS];
2491 	unsigned long nr_to_scan;
2492 	enum lru_list lru;
2493 	unsigned long nr_reclaimed = 0;
2494 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2495 	struct blk_plug plug;
2496 	bool scan_adjusted;
2497 
2498 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2499 
2500 	/* Record the original scan target for proportional adjustments later */
2501 	memcpy(targets, nr, sizeof(nr));
2502 
2503 	/*
2504 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2505 	 * event that can occur when there is little memory pressure e.g.
2506 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2507 	 * when the requested number of pages are reclaimed when scanning at
2508 	 * DEF_PRIORITY on the assumption that the fact we are direct
2509 	 * reclaiming implies that kswapd is not keeping up and it is best to
2510 	 * do a batch of work at once. For memcg reclaim one check is made to
2511 	 * abort proportional reclaim if either the file or anon lru has already
2512 	 * dropped to zero at the first pass.
2513 	 */
2514 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2515 			 sc->priority == DEF_PRIORITY);
2516 
2517 	blk_start_plug(&plug);
2518 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2519 					nr[LRU_INACTIVE_FILE]) {
2520 		unsigned long nr_anon, nr_file, percentage;
2521 		unsigned long nr_scanned;
2522 
2523 		for_each_evictable_lru(lru) {
2524 			if (nr[lru]) {
2525 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2526 				nr[lru] -= nr_to_scan;
2527 
2528 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2529 							    lruvec, memcg, sc);
2530 			}
2531 		}
2532 
2533 		cond_resched();
2534 
2535 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2536 			continue;
2537 
2538 		/*
2539 		 * For kswapd and memcg, reclaim at least the number of pages
2540 		 * requested. Ensure that the anon and file LRUs are scanned
2541 		 * proportionally what was requested by get_scan_count(). We
2542 		 * stop reclaiming one LRU and reduce the amount scanning
2543 		 * proportional to the original scan target.
2544 		 */
2545 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2546 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2547 
2548 		/*
2549 		 * It's just vindictive to attack the larger once the smaller
2550 		 * has gone to zero.  And given the way we stop scanning the
2551 		 * smaller below, this makes sure that we only make one nudge
2552 		 * towards proportionality once we've got nr_to_reclaim.
2553 		 */
2554 		if (!nr_file || !nr_anon)
2555 			break;
2556 
2557 		if (nr_file > nr_anon) {
2558 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2559 						targets[LRU_ACTIVE_ANON] + 1;
2560 			lru = LRU_BASE;
2561 			percentage = nr_anon * 100 / scan_target;
2562 		} else {
2563 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2564 						targets[LRU_ACTIVE_FILE] + 1;
2565 			lru = LRU_FILE;
2566 			percentage = nr_file * 100 / scan_target;
2567 		}
2568 
2569 		/* Stop scanning the smaller of the LRU */
2570 		nr[lru] = 0;
2571 		nr[lru + LRU_ACTIVE] = 0;
2572 
2573 		/*
2574 		 * Recalculate the other LRU scan count based on its original
2575 		 * scan target and the percentage scanning already complete
2576 		 */
2577 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2578 		nr_scanned = targets[lru] - nr[lru];
2579 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2580 		nr[lru] -= min(nr[lru], nr_scanned);
2581 
2582 		lru += LRU_ACTIVE;
2583 		nr_scanned = targets[lru] - nr[lru];
2584 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2585 		nr[lru] -= min(nr[lru], nr_scanned);
2586 
2587 		scan_adjusted = true;
2588 	}
2589 	blk_finish_plug(&plug);
2590 	sc->nr_reclaimed += nr_reclaimed;
2591 
2592 	/*
2593 	 * Even if we did not try to evict anon pages at all, we want to
2594 	 * rebalance the anon lru active/inactive ratio.
2595 	 */
2596 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2597 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2598 				   sc, LRU_ACTIVE_ANON);
2599 }
2600 
2601 /* Use reclaim/compaction for costly allocs or under memory pressure */
2602 static bool in_reclaim_compaction(struct scan_control *sc)
2603 {
2604 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2605 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2606 			 sc->priority < DEF_PRIORITY - 2))
2607 		return true;
2608 
2609 	return false;
2610 }
2611 
2612 /*
2613  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2614  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2615  * true if more pages should be reclaimed such that when the page allocator
2616  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2617  * It will give up earlier than that if there is difficulty reclaiming pages.
2618  */
2619 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2620 					unsigned long nr_reclaimed,
2621 					unsigned long nr_scanned,
2622 					struct scan_control *sc)
2623 {
2624 	unsigned long pages_for_compaction;
2625 	unsigned long inactive_lru_pages;
2626 	int z;
2627 
2628 	/* If not in reclaim/compaction mode, stop */
2629 	if (!in_reclaim_compaction(sc))
2630 		return false;
2631 
2632 	/* Consider stopping depending on scan and reclaim activity */
2633 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2634 		/*
2635 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2636 		 * full LRU list has been scanned and we are still failing
2637 		 * to reclaim pages. This full LRU scan is potentially
2638 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2639 		 */
2640 		if (!nr_reclaimed && !nr_scanned)
2641 			return false;
2642 	} else {
2643 		/*
2644 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2645 		 * fail without consequence, stop if we failed to reclaim
2646 		 * any pages from the last SWAP_CLUSTER_MAX number of
2647 		 * pages that were scanned. This will return to the
2648 		 * caller faster at the risk reclaim/compaction and
2649 		 * the resulting allocation attempt fails
2650 		 */
2651 		if (!nr_reclaimed)
2652 			return false;
2653 	}
2654 
2655 	/*
2656 	 * If we have not reclaimed enough pages for compaction and the
2657 	 * inactive lists are large enough, continue reclaiming
2658 	 */
2659 	pages_for_compaction = compact_gap(sc->order);
2660 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2661 	if (get_nr_swap_pages() > 0)
2662 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2663 	if (sc->nr_reclaimed < pages_for_compaction &&
2664 			inactive_lru_pages > pages_for_compaction)
2665 		return true;
2666 
2667 	/* If compaction would go ahead or the allocation would succeed, stop */
2668 	for (z = 0; z <= sc->reclaim_idx; z++) {
2669 		struct zone *zone = &pgdat->node_zones[z];
2670 		if (!managed_zone(zone))
2671 			continue;
2672 
2673 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2674 		case COMPACT_SUCCESS:
2675 		case COMPACT_CONTINUE:
2676 			return false;
2677 		default:
2678 			/* check next zone */
2679 			;
2680 		}
2681 	}
2682 	return true;
2683 }
2684 
2685 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2686 {
2687 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2688 		(memcg && memcg_congested(pgdat, memcg));
2689 }
2690 
2691 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2692 {
2693 	struct reclaim_state *reclaim_state = current->reclaim_state;
2694 	unsigned long nr_reclaimed, nr_scanned;
2695 	bool reclaimable = false;
2696 
2697 	do {
2698 		struct mem_cgroup *root = sc->target_mem_cgroup;
2699 		struct mem_cgroup_reclaim_cookie reclaim = {
2700 			.pgdat = pgdat,
2701 			.priority = sc->priority,
2702 		};
2703 		unsigned long node_lru_pages = 0;
2704 		struct mem_cgroup *memcg;
2705 
2706 		memset(&sc->nr, 0, sizeof(sc->nr));
2707 
2708 		nr_reclaimed = sc->nr_reclaimed;
2709 		nr_scanned = sc->nr_scanned;
2710 
2711 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2712 		do {
2713 			unsigned long lru_pages;
2714 			unsigned long reclaimed;
2715 			unsigned long scanned;
2716 
2717 			switch (mem_cgroup_protected(root, memcg)) {
2718 			case MEMCG_PROT_MIN:
2719 				/*
2720 				 * Hard protection.
2721 				 * If there is no reclaimable memory, OOM.
2722 				 */
2723 				continue;
2724 			case MEMCG_PROT_LOW:
2725 				/*
2726 				 * Soft protection.
2727 				 * Respect the protection only as long as
2728 				 * there is an unprotected supply
2729 				 * of reclaimable memory from other cgroups.
2730 				 */
2731 				if (!sc->memcg_low_reclaim) {
2732 					sc->memcg_low_skipped = 1;
2733 					continue;
2734 				}
2735 				memcg_memory_event(memcg, MEMCG_LOW);
2736 				break;
2737 			case MEMCG_PROT_NONE:
2738 				break;
2739 			}
2740 
2741 			reclaimed = sc->nr_reclaimed;
2742 			scanned = sc->nr_scanned;
2743 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2744 			node_lru_pages += lru_pages;
2745 
2746 			shrink_slab(sc->gfp_mask, pgdat->node_id,
2747 				    memcg, sc->priority);
2748 
2749 			/* Record the group's reclaim efficiency */
2750 			vmpressure(sc->gfp_mask, memcg, false,
2751 				   sc->nr_scanned - scanned,
2752 				   sc->nr_reclaimed - reclaimed);
2753 
2754 			/*
2755 			 * Direct reclaim and kswapd have to scan all memory
2756 			 * cgroups to fulfill the overall scan target for the
2757 			 * node.
2758 			 *
2759 			 * Limit reclaim, on the other hand, only cares about
2760 			 * nr_to_reclaim pages to be reclaimed and it will
2761 			 * retry with decreasing priority if one round over the
2762 			 * whole hierarchy is not sufficient.
2763 			 */
2764 			if (!global_reclaim(sc) &&
2765 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2766 				mem_cgroup_iter_break(root, memcg);
2767 				break;
2768 			}
2769 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2770 
2771 		if (reclaim_state) {
2772 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2773 			reclaim_state->reclaimed_slab = 0;
2774 		}
2775 
2776 		/* Record the subtree's reclaim efficiency */
2777 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2778 			   sc->nr_scanned - nr_scanned,
2779 			   sc->nr_reclaimed - nr_reclaimed);
2780 
2781 		if (sc->nr_reclaimed - nr_reclaimed)
2782 			reclaimable = true;
2783 
2784 		if (current_is_kswapd()) {
2785 			/*
2786 			 * If reclaim is isolating dirty pages under writeback,
2787 			 * it implies that the long-lived page allocation rate
2788 			 * is exceeding the page laundering rate. Either the
2789 			 * global limits are not being effective at throttling
2790 			 * processes due to the page distribution throughout
2791 			 * zones or there is heavy usage of a slow backing
2792 			 * device. The only option is to throttle from reclaim
2793 			 * context which is not ideal as there is no guarantee
2794 			 * the dirtying process is throttled in the same way
2795 			 * balance_dirty_pages() manages.
2796 			 *
2797 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2798 			 * count the number of pages under pages flagged for
2799 			 * immediate reclaim and stall if any are encountered
2800 			 * in the nr_immediate check below.
2801 			 */
2802 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2803 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2804 
2805 			/*
2806 			 * Tag a node as congested if all the dirty pages
2807 			 * scanned were backed by a congested BDI and
2808 			 * wait_iff_congested will stall.
2809 			 */
2810 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2811 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2812 
2813 			/* Allow kswapd to start writing pages during reclaim.*/
2814 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2815 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2816 
2817 			/*
2818 			 * If kswapd scans pages marked marked for immediate
2819 			 * reclaim and under writeback (nr_immediate), it
2820 			 * implies that pages are cycling through the LRU
2821 			 * faster than they are written so also forcibly stall.
2822 			 */
2823 			if (sc->nr.immediate)
2824 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2825 		}
2826 
2827 		/*
2828 		 * Legacy memcg will stall in page writeback so avoid forcibly
2829 		 * stalling in wait_iff_congested().
2830 		 */
2831 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2832 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2833 			set_memcg_congestion(pgdat, root, true);
2834 
2835 		/*
2836 		 * Stall direct reclaim for IO completions if underlying BDIs
2837 		 * and node is congested. Allow kswapd to continue until it
2838 		 * starts encountering unqueued dirty pages or cycling through
2839 		 * the LRU too quickly.
2840 		 */
2841 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2842 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2843 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2844 
2845 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2846 					 sc->nr_scanned - nr_scanned, sc));
2847 
2848 	/*
2849 	 * Kswapd gives up on balancing particular nodes after too
2850 	 * many failures to reclaim anything from them and goes to
2851 	 * sleep. On reclaim progress, reset the failure counter. A
2852 	 * successful direct reclaim run will revive a dormant kswapd.
2853 	 */
2854 	if (reclaimable)
2855 		pgdat->kswapd_failures = 0;
2856 
2857 	return reclaimable;
2858 }
2859 
2860 /*
2861  * Returns true if compaction should go ahead for a costly-order request, or
2862  * the allocation would already succeed without compaction. Return false if we
2863  * should reclaim first.
2864  */
2865 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2866 {
2867 	unsigned long watermark;
2868 	enum compact_result suitable;
2869 
2870 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2871 	if (suitable == COMPACT_SUCCESS)
2872 		/* Allocation should succeed already. Don't reclaim. */
2873 		return true;
2874 	if (suitable == COMPACT_SKIPPED)
2875 		/* Compaction cannot yet proceed. Do reclaim. */
2876 		return false;
2877 
2878 	/*
2879 	 * Compaction is already possible, but it takes time to run and there
2880 	 * are potentially other callers using the pages just freed. So proceed
2881 	 * with reclaim to make a buffer of free pages available to give
2882 	 * compaction a reasonable chance of completing and allocating the page.
2883 	 * Note that we won't actually reclaim the whole buffer in one attempt
2884 	 * as the target watermark in should_continue_reclaim() is lower. But if
2885 	 * we are already above the high+gap watermark, don't reclaim at all.
2886 	 */
2887 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2888 
2889 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2890 }
2891 
2892 /*
2893  * This is the direct reclaim path, for page-allocating processes.  We only
2894  * try to reclaim pages from zones which will satisfy the caller's allocation
2895  * request.
2896  *
2897  * If a zone is deemed to be full of pinned pages then just give it a light
2898  * scan then give up on it.
2899  */
2900 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2901 {
2902 	struct zoneref *z;
2903 	struct zone *zone;
2904 	unsigned long nr_soft_reclaimed;
2905 	unsigned long nr_soft_scanned;
2906 	gfp_t orig_mask;
2907 	pg_data_t *last_pgdat = NULL;
2908 
2909 	/*
2910 	 * If the number of buffer_heads in the machine exceeds the maximum
2911 	 * allowed level, force direct reclaim to scan the highmem zone as
2912 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2913 	 */
2914 	orig_mask = sc->gfp_mask;
2915 	if (buffer_heads_over_limit) {
2916 		sc->gfp_mask |= __GFP_HIGHMEM;
2917 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2918 	}
2919 
2920 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2921 					sc->reclaim_idx, sc->nodemask) {
2922 		/*
2923 		 * Take care memory controller reclaiming has small influence
2924 		 * to global LRU.
2925 		 */
2926 		if (global_reclaim(sc)) {
2927 			if (!cpuset_zone_allowed(zone,
2928 						 GFP_KERNEL | __GFP_HARDWALL))
2929 				continue;
2930 
2931 			/*
2932 			 * If we already have plenty of memory free for
2933 			 * compaction in this zone, don't free any more.
2934 			 * Even though compaction is invoked for any
2935 			 * non-zero order, only frequent costly order
2936 			 * reclamation is disruptive enough to become a
2937 			 * noticeable problem, like transparent huge
2938 			 * page allocations.
2939 			 */
2940 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2941 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2942 			    compaction_ready(zone, sc)) {
2943 				sc->compaction_ready = true;
2944 				continue;
2945 			}
2946 
2947 			/*
2948 			 * Shrink each node in the zonelist once. If the
2949 			 * zonelist is ordered by zone (not the default) then a
2950 			 * node may be shrunk multiple times but in that case
2951 			 * the user prefers lower zones being preserved.
2952 			 */
2953 			if (zone->zone_pgdat == last_pgdat)
2954 				continue;
2955 
2956 			/*
2957 			 * This steals pages from memory cgroups over softlimit
2958 			 * and returns the number of reclaimed pages and
2959 			 * scanned pages. This works for global memory pressure
2960 			 * and balancing, not for a memcg's limit.
2961 			 */
2962 			nr_soft_scanned = 0;
2963 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2964 						sc->order, sc->gfp_mask,
2965 						&nr_soft_scanned);
2966 			sc->nr_reclaimed += nr_soft_reclaimed;
2967 			sc->nr_scanned += nr_soft_scanned;
2968 			/* need some check for avoid more shrink_zone() */
2969 		}
2970 
2971 		/* See comment about same check for global reclaim above */
2972 		if (zone->zone_pgdat == last_pgdat)
2973 			continue;
2974 		last_pgdat = zone->zone_pgdat;
2975 		shrink_node(zone->zone_pgdat, sc);
2976 	}
2977 
2978 	/*
2979 	 * Restore to original mask to avoid the impact on the caller if we
2980 	 * promoted it to __GFP_HIGHMEM.
2981 	 */
2982 	sc->gfp_mask = orig_mask;
2983 }
2984 
2985 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2986 {
2987 	struct mem_cgroup *memcg;
2988 
2989 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2990 	do {
2991 		unsigned long refaults;
2992 		struct lruvec *lruvec;
2993 
2994 		if (memcg)
2995 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2996 		else
2997 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2998 
2999 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3000 		lruvec->refaults = refaults;
3001 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3002 }
3003 
3004 /*
3005  * This is the main entry point to direct page reclaim.
3006  *
3007  * If a full scan of the inactive list fails to free enough memory then we
3008  * are "out of memory" and something needs to be killed.
3009  *
3010  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3011  * high - the zone may be full of dirty or under-writeback pages, which this
3012  * caller can't do much about.  We kick the writeback threads and take explicit
3013  * naps in the hope that some of these pages can be written.  But if the
3014  * allocating task holds filesystem locks which prevent writeout this might not
3015  * work, and the allocation attempt will fail.
3016  *
3017  * returns:	0, if no pages reclaimed
3018  * 		else, the number of pages reclaimed
3019  */
3020 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3021 					  struct scan_control *sc)
3022 {
3023 	int initial_priority = sc->priority;
3024 	pg_data_t *last_pgdat;
3025 	struct zoneref *z;
3026 	struct zone *zone;
3027 retry:
3028 	delayacct_freepages_start();
3029 
3030 	if (global_reclaim(sc))
3031 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3032 
3033 	do {
3034 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3035 				sc->priority);
3036 		sc->nr_scanned = 0;
3037 		shrink_zones(zonelist, sc);
3038 
3039 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3040 			break;
3041 
3042 		if (sc->compaction_ready)
3043 			break;
3044 
3045 		/*
3046 		 * If we're getting trouble reclaiming, start doing
3047 		 * writepage even in laptop mode.
3048 		 */
3049 		if (sc->priority < DEF_PRIORITY - 2)
3050 			sc->may_writepage = 1;
3051 	} while (--sc->priority >= 0);
3052 
3053 	last_pgdat = NULL;
3054 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3055 					sc->nodemask) {
3056 		if (zone->zone_pgdat == last_pgdat)
3057 			continue;
3058 		last_pgdat = zone->zone_pgdat;
3059 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3060 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3061 	}
3062 
3063 	delayacct_freepages_end();
3064 
3065 	if (sc->nr_reclaimed)
3066 		return sc->nr_reclaimed;
3067 
3068 	/* Aborted reclaim to try compaction? don't OOM, then */
3069 	if (sc->compaction_ready)
3070 		return 1;
3071 
3072 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3073 	if (sc->memcg_low_skipped) {
3074 		sc->priority = initial_priority;
3075 		sc->memcg_low_reclaim = 1;
3076 		sc->memcg_low_skipped = 0;
3077 		goto retry;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 static bool allow_direct_reclaim(pg_data_t *pgdat)
3084 {
3085 	struct zone *zone;
3086 	unsigned long pfmemalloc_reserve = 0;
3087 	unsigned long free_pages = 0;
3088 	int i;
3089 	bool wmark_ok;
3090 
3091 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3092 		return true;
3093 
3094 	for (i = 0; i <= ZONE_NORMAL; i++) {
3095 		zone = &pgdat->node_zones[i];
3096 		if (!managed_zone(zone))
3097 			continue;
3098 
3099 		if (!zone_reclaimable_pages(zone))
3100 			continue;
3101 
3102 		pfmemalloc_reserve += min_wmark_pages(zone);
3103 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3104 	}
3105 
3106 	/* If there are no reserves (unexpected config) then do not throttle */
3107 	if (!pfmemalloc_reserve)
3108 		return true;
3109 
3110 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3111 
3112 	/* kswapd must be awake if processes are being throttled */
3113 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3114 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3115 						(enum zone_type)ZONE_NORMAL);
3116 		wake_up_interruptible(&pgdat->kswapd_wait);
3117 	}
3118 
3119 	return wmark_ok;
3120 }
3121 
3122 /*
3123  * Throttle direct reclaimers if backing storage is backed by the network
3124  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3125  * depleted. kswapd will continue to make progress and wake the processes
3126  * when the low watermark is reached.
3127  *
3128  * Returns true if a fatal signal was delivered during throttling. If this
3129  * happens, the page allocator should not consider triggering the OOM killer.
3130  */
3131 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3132 					nodemask_t *nodemask)
3133 {
3134 	struct zoneref *z;
3135 	struct zone *zone;
3136 	pg_data_t *pgdat = NULL;
3137 
3138 	/*
3139 	 * Kernel threads should not be throttled as they may be indirectly
3140 	 * responsible for cleaning pages necessary for reclaim to make forward
3141 	 * progress. kjournald for example may enter direct reclaim while
3142 	 * committing a transaction where throttling it could forcing other
3143 	 * processes to block on log_wait_commit().
3144 	 */
3145 	if (current->flags & PF_KTHREAD)
3146 		goto out;
3147 
3148 	/*
3149 	 * If a fatal signal is pending, this process should not throttle.
3150 	 * It should return quickly so it can exit and free its memory
3151 	 */
3152 	if (fatal_signal_pending(current))
3153 		goto out;
3154 
3155 	/*
3156 	 * Check if the pfmemalloc reserves are ok by finding the first node
3157 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3158 	 * GFP_KERNEL will be required for allocating network buffers when
3159 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3160 	 *
3161 	 * Throttling is based on the first usable node and throttled processes
3162 	 * wait on a queue until kswapd makes progress and wakes them. There
3163 	 * is an affinity then between processes waking up and where reclaim
3164 	 * progress has been made assuming the process wakes on the same node.
3165 	 * More importantly, processes running on remote nodes will not compete
3166 	 * for remote pfmemalloc reserves and processes on different nodes
3167 	 * should make reasonable progress.
3168 	 */
3169 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3170 					gfp_zone(gfp_mask), nodemask) {
3171 		if (zone_idx(zone) > ZONE_NORMAL)
3172 			continue;
3173 
3174 		/* Throttle based on the first usable node */
3175 		pgdat = zone->zone_pgdat;
3176 		if (allow_direct_reclaim(pgdat))
3177 			goto out;
3178 		break;
3179 	}
3180 
3181 	/* If no zone was usable by the allocation flags then do not throttle */
3182 	if (!pgdat)
3183 		goto out;
3184 
3185 	/* Account for the throttling */
3186 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3187 
3188 	/*
3189 	 * If the caller cannot enter the filesystem, it's possible that it
3190 	 * is due to the caller holding an FS lock or performing a journal
3191 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3192 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3193 	 * blocked waiting on the same lock. Instead, throttle for up to a
3194 	 * second before continuing.
3195 	 */
3196 	if (!(gfp_mask & __GFP_FS)) {
3197 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3198 			allow_direct_reclaim(pgdat), HZ);
3199 
3200 		goto check_pending;
3201 	}
3202 
3203 	/* Throttle until kswapd wakes the process */
3204 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3205 		allow_direct_reclaim(pgdat));
3206 
3207 check_pending:
3208 	if (fatal_signal_pending(current))
3209 		return true;
3210 
3211 out:
3212 	return false;
3213 }
3214 
3215 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3216 				gfp_t gfp_mask, nodemask_t *nodemask)
3217 {
3218 	unsigned long nr_reclaimed;
3219 	struct scan_control sc = {
3220 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3221 		.gfp_mask = current_gfp_context(gfp_mask),
3222 		.reclaim_idx = gfp_zone(gfp_mask),
3223 		.order = order,
3224 		.nodemask = nodemask,
3225 		.priority = DEF_PRIORITY,
3226 		.may_writepage = !laptop_mode,
3227 		.may_unmap = 1,
3228 		.may_swap = 1,
3229 	};
3230 
3231 	/*
3232 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3233 	 * Confirm they are large enough for max values.
3234 	 */
3235 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3236 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3237 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3238 
3239 	/*
3240 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3241 	 * 1 is returned so that the page allocator does not OOM kill at this
3242 	 * point.
3243 	 */
3244 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3245 		return 1;
3246 
3247 	trace_mm_vmscan_direct_reclaim_begin(order,
3248 				sc.may_writepage,
3249 				sc.gfp_mask,
3250 				sc.reclaim_idx);
3251 
3252 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3253 
3254 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3255 
3256 	return nr_reclaimed;
3257 }
3258 
3259 #ifdef CONFIG_MEMCG
3260 
3261 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3262 						gfp_t gfp_mask, bool noswap,
3263 						pg_data_t *pgdat,
3264 						unsigned long *nr_scanned)
3265 {
3266 	struct scan_control sc = {
3267 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3268 		.target_mem_cgroup = memcg,
3269 		.may_writepage = !laptop_mode,
3270 		.may_unmap = 1,
3271 		.reclaim_idx = MAX_NR_ZONES - 1,
3272 		.may_swap = !noswap,
3273 	};
3274 	unsigned long lru_pages;
3275 
3276 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3277 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3278 
3279 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3280 						      sc.may_writepage,
3281 						      sc.gfp_mask,
3282 						      sc.reclaim_idx);
3283 
3284 	/*
3285 	 * NOTE: Although we can get the priority field, using it
3286 	 * here is not a good idea, since it limits the pages we can scan.
3287 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3288 	 * will pick up pages from other mem cgroup's as well. We hack
3289 	 * the priority and make it zero.
3290 	 */
3291 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3292 
3293 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3294 
3295 	*nr_scanned = sc.nr_scanned;
3296 	return sc.nr_reclaimed;
3297 }
3298 
3299 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3300 					   unsigned long nr_pages,
3301 					   gfp_t gfp_mask,
3302 					   bool may_swap)
3303 {
3304 	struct zonelist *zonelist;
3305 	unsigned long nr_reclaimed;
3306 	int nid;
3307 	unsigned int noreclaim_flag;
3308 	struct scan_control sc = {
3309 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3310 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3311 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3312 		.reclaim_idx = MAX_NR_ZONES - 1,
3313 		.target_mem_cgroup = memcg,
3314 		.priority = DEF_PRIORITY,
3315 		.may_writepage = !laptop_mode,
3316 		.may_unmap = 1,
3317 		.may_swap = may_swap,
3318 	};
3319 
3320 	/*
3321 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3322 	 * take care of from where we get pages. So the node where we start the
3323 	 * scan does not need to be the current node.
3324 	 */
3325 	nid = mem_cgroup_select_victim_node(memcg);
3326 
3327 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3328 
3329 	trace_mm_vmscan_memcg_reclaim_begin(0,
3330 					    sc.may_writepage,
3331 					    sc.gfp_mask,
3332 					    sc.reclaim_idx);
3333 
3334 	noreclaim_flag = memalloc_noreclaim_save();
3335 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3336 	memalloc_noreclaim_restore(noreclaim_flag);
3337 
3338 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3339 
3340 	return nr_reclaimed;
3341 }
3342 #endif
3343 
3344 static void age_active_anon(struct pglist_data *pgdat,
3345 				struct scan_control *sc)
3346 {
3347 	struct mem_cgroup *memcg;
3348 
3349 	if (!total_swap_pages)
3350 		return;
3351 
3352 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3353 	do {
3354 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3355 
3356 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3357 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3358 					   sc, LRU_ACTIVE_ANON);
3359 
3360 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3361 	} while (memcg);
3362 }
3363 
3364 /*
3365  * Returns true if there is an eligible zone balanced for the request order
3366  * and classzone_idx
3367  */
3368 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3369 {
3370 	int i;
3371 	unsigned long mark = -1;
3372 	struct zone *zone;
3373 
3374 	for (i = 0; i <= classzone_idx; i++) {
3375 		zone = pgdat->node_zones + i;
3376 
3377 		if (!managed_zone(zone))
3378 			continue;
3379 
3380 		mark = high_wmark_pages(zone);
3381 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3382 			return true;
3383 	}
3384 
3385 	/*
3386 	 * If a node has no populated zone within classzone_idx, it does not
3387 	 * need balancing by definition. This can happen if a zone-restricted
3388 	 * allocation tries to wake a remote kswapd.
3389 	 */
3390 	if (mark == -1)
3391 		return true;
3392 
3393 	return false;
3394 }
3395 
3396 /* Clear pgdat state for congested, dirty or under writeback. */
3397 static void clear_pgdat_congested(pg_data_t *pgdat)
3398 {
3399 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3400 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3401 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3402 }
3403 
3404 /*
3405  * Prepare kswapd for sleeping. This verifies that there are no processes
3406  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3407  *
3408  * Returns true if kswapd is ready to sleep
3409  */
3410 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3411 {
3412 	/*
3413 	 * The throttled processes are normally woken up in balance_pgdat() as
3414 	 * soon as allow_direct_reclaim() is true. But there is a potential
3415 	 * race between when kswapd checks the watermarks and a process gets
3416 	 * throttled. There is also a potential race if processes get
3417 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3418 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3419 	 * the wake up checks. If kswapd is going to sleep, no process should
3420 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3421 	 * the wake up is premature, processes will wake kswapd and get
3422 	 * throttled again. The difference from wake ups in balance_pgdat() is
3423 	 * that here we are under prepare_to_wait().
3424 	 */
3425 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3426 		wake_up_all(&pgdat->pfmemalloc_wait);
3427 
3428 	/* Hopeless node, leave it to direct reclaim */
3429 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3430 		return true;
3431 
3432 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3433 		clear_pgdat_congested(pgdat);
3434 		return true;
3435 	}
3436 
3437 	return false;
3438 }
3439 
3440 /*
3441  * kswapd shrinks a node of pages that are at or below the highest usable
3442  * zone that is currently unbalanced.
3443  *
3444  * Returns true if kswapd scanned at least the requested number of pages to
3445  * reclaim or if the lack of progress was due to pages under writeback.
3446  * This is used to determine if the scanning priority needs to be raised.
3447  */
3448 static bool kswapd_shrink_node(pg_data_t *pgdat,
3449 			       struct scan_control *sc)
3450 {
3451 	struct zone *zone;
3452 	int z;
3453 
3454 	/* Reclaim a number of pages proportional to the number of zones */
3455 	sc->nr_to_reclaim = 0;
3456 	for (z = 0; z <= sc->reclaim_idx; z++) {
3457 		zone = pgdat->node_zones + z;
3458 		if (!managed_zone(zone))
3459 			continue;
3460 
3461 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3462 	}
3463 
3464 	/*
3465 	 * Historically care was taken to put equal pressure on all zones but
3466 	 * now pressure is applied based on node LRU order.
3467 	 */
3468 	shrink_node(pgdat, sc);
3469 
3470 	/*
3471 	 * Fragmentation may mean that the system cannot be rebalanced for
3472 	 * high-order allocations. If twice the allocation size has been
3473 	 * reclaimed then recheck watermarks only at order-0 to prevent
3474 	 * excessive reclaim. Assume that a process requested a high-order
3475 	 * can direct reclaim/compact.
3476 	 */
3477 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3478 		sc->order = 0;
3479 
3480 	return sc->nr_scanned >= sc->nr_to_reclaim;
3481 }
3482 
3483 /*
3484  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3485  * that are eligible for use by the caller until at least one zone is
3486  * balanced.
3487  *
3488  * Returns the order kswapd finished reclaiming at.
3489  *
3490  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3491  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3492  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3493  * or lower is eligible for reclaim until at least one usable zone is
3494  * balanced.
3495  */
3496 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3497 {
3498 	int i;
3499 	unsigned long nr_soft_reclaimed;
3500 	unsigned long nr_soft_scanned;
3501 	struct zone *zone;
3502 	struct scan_control sc = {
3503 		.gfp_mask = GFP_KERNEL,
3504 		.order = order,
3505 		.priority = DEF_PRIORITY,
3506 		.may_writepage = !laptop_mode,
3507 		.may_unmap = 1,
3508 		.may_swap = 1,
3509 	};
3510 
3511 	__fs_reclaim_acquire();
3512 
3513 	count_vm_event(PAGEOUTRUN);
3514 
3515 	do {
3516 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3517 		bool raise_priority = true;
3518 		bool ret;
3519 
3520 		sc.reclaim_idx = classzone_idx;
3521 
3522 		/*
3523 		 * If the number of buffer_heads exceeds the maximum allowed
3524 		 * then consider reclaiming from all zones. This has a dual
3525 		 * purpose -- on 64-bit systems it is expected that
3526 		 * buffer_heads are stripped during active rotation. On 32-bit
3527 		 * systems, highmem pages can pin lowmem memory and shrinking
3528 		 * buffers can relieve lowmem pressure. Reclaim may still not
3529 		 * go ahead if all eligible zones for the original allocation
3530 		 * request are balanced to avoid excessive reclaim from kswapd.
3531 		 */
3532 		if (buffer_heads_over_limit) {
3533 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3534 				zone = pgdat->node_zones + i;
3535 				if (!managed_zone(zone))
3536 					continue;
3537 
3538 				sc.reclaim_idx = i;
3539 				break;
3540 			}
3541 		}
3542 
3543 		/*
3544 		 * Only reclaim if there are no eligible zones. Note that
3545 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3546 		 * have adjusted it.
3547 		 */
3548 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3549 			goto out;
3550 
3551 		/*
3552 		 * Do some background aging of the anon list, to give
3553 		 * pages a chance to be referenced before reclaiming. All
3554 		 * pages are rotated regardless of classzone as this is
3555 		 * about consistent aging.
3556 		 */
3557 		age_active_anon(pgdat, &sc);
3558 
3559 		/*
3560 		 * If we're getting trouble reclaiming, start doing writepage
3561 		 * even in laptop mode.
3562 		 */
3563 		if (sc.priority < DEF_PRIORITY - 2)
3564 			sc.may_writepage = 1;
3565 
3566 		/* Call soft limit reclaim before calling shrink_node. */
3567 		sc.nr_scanned = 0;
3568 		nr_soft_scanned = 0;
3569 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3570 						sc.gfp_mask, &nr_soft_scanned);
3571 		sc.nr_reclaimed += nr_soft_reclaimed;
3572 
3573 		/*
3574 		 * There should be no need to raise the scanning priority if
3575 		 * enough pages are already being scanned that that high
3576 		 * watermark would be met at 100% efficiency.
3577 		 */
3578 		if (kswapd_shrink_node(pgdat, &sc))
3579 			raise_priority = false;
3580 
3581 		/*
3582 		 * If the low watermark is met there is no need for processes
3583 		 * to be throttled on pfmemalloc_wait as they should not be
3584 		 * able to safely make forward progress. Wake them
3585 		 */
3586 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3587 				allow_direct_reclaim(pgdat))
3588 			wake_up_all(&pgdat->pfmemalloc_wait);
3589 
3590 		/* Check if kswapd should be suspending */
3591 		__fs_reclaim_release();
3592 		ret = try_to_freeze();
3593 		__fs_reclaim_acquire();
3594 		if (ret || kthread_should_stop())
3595 			break;
3596 
3597 		/*
3598 		 * Raise priority if scanning rate is too low or there was no
3599 		 * progress in reclaiming pages
3600 		 */
3601 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3602 		if (raise_priority || !nr_reclaimed)
3603 			sc.priority--;
3604 	} while (sc.priority >= 1);
3605 
3606 	if (!sc.nr_reclaimed)
3607 		pgdat->kswapd_failures++;
3608 
3609 out:
3610 	snapshot_refaults(NULL, pgdat);
3611 	__fs_reclaim_release();
3612 	/*
3613 	 * Return the order kswapd stopped reclaiming at as
3614 	 * prepare_kswapd_sleep() takes it into account. If another caller
3615 	 * entered the allocator slow path while kswapd was awake, order will
3616 	 * remain at the higher level.
3617 	 */
3618 	return sc.order;
3619 }
3620 
3621 /*
3622  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3623  * allocation request woke kswapd for. When kswapd has not woken recently,
3624  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3625  * given classzone and returns it or the highest classzone index kswapd
3626  * was recently woke for.
3627  */
3628 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3629 					   enum zone_type classzone_idx)
3630 {
3631 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3632 		return classzone_idx;
3633 
3634 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3635 }
3636 
3637 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3638 				unsigned int classzone_idx)
3639 {
3640 	long remaining = 0;
3641 	DEFINE_WAIT(wait);
3642 
3643 	if (freezing(current) || kthread_should_stop())
3644 		return;
3645 
3646 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3647 
3648 	/*
3649 	 * Try to sleep for a short interval. Note that kcompactd will only be
3650 	 * woken if it is possible to sleep for a short interval. This is
3651 	 * deliberate on the assumption that if reclaim cannot keep an
3652 	 * eligible zone balanced that it's also unlikely that compaction will
3653 	 * succeed.
3654 	 */
3655 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3656 		/*
3657 		 * Compaction records what page blocks it recently failed to
3658 		 * isolate pages from and skips them in the future scanning.
3659 		 * When kswapd is going to sleep, it is reasonable to assume
3660 		 * that pages and compaction may succeed so reset the cache.
3661 		 */
3662 		reset_isolation_suitable(pgdat);
3663 
3664 		/*
3665 		 * We have freed the memory, now we should compact it to make
3666 		 * allocation of the requested order possible.
3667 		 */
3668 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3669 
3670 		remaining = schedule_timeout(HZ/10);
3671 
3672 		/*
3673 		 * If woken prematurely then reset kswapd_classzone_idx and
3674 		 * order. The values will either be from a wakeup request or
3675 		 * the previous request that slept prematurely.
3676 		 */
3677 		if (remaining) {
3678 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3679 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3680 		}
3681 
3682 		finish_wait(&pgdat->kswapd_wait, &wait);
3683 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3684 	}
3685 
3686 	/*
3687 	 * After a short sleep, check if it was a premature sleep. If not, then
3688 	 * go fully to sleep until explicitly woken up.
3689 	 */
3690 	if (!remaining &&
3691 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3692 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3693 
3694 		/*
3695 		 * vmstat counters are not perfectly accurate and the estimated
3696 		 * value for counters such as NR_FREE_PAGES can deviate from the
3697 		 * true value by nr_online_cpus * threshold. To avoid the zone
3698 		 * watermarks being breached while under pressure, we reduce the
3699 		 * per-cpu vmstat threshold while kswapd is awake and restore
3700 		 * them before going back to sleep.
3701 		 */
3702 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3703 
3704 		if (!kthread_should_stop())
3705 			schedule();
3706 
3707 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3708 	} else {
3709 		if (remaining)
3710 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3711 		else
3712 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3713 	}
3714 	finish_wait(&pgdat->kswapd_wait, &wait);
3715 }
3716 
3717 /*
3718  * The background pageout daemon, started as a kernel thread
3719  * from the init process.
3720  *
3721  * This basically trickles out pages so that we have _some_
3722  * free memory available even if there is no other activity
3723  * that frees anything up. This is needed for things like routing
3724  * etc, where we otherwise might have all activity going on in
3725  * asynchronous contexts that cannot page things out.
3726  *
3727  * If there are applications that are active memory-allocators
3728  * (most normal use), this basically shouldn't matter.
3729  */
3730 static int kswapd(void *p)
3731 {
3732 	unsigned int alloc_order, reclaim_order;
3733 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3734 	pg_data_t *pgdat = (pg_data_t*)p;
3735 	struct task_struct *tsk = current;
3736 
3737 	struct reclaim_state reclaim_state = {
3738 		.reclaimed_slab = 0,
3739 	};
3740 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3741 
3742 	if (!cpumask_empty(cpumask))
3743 		set_cpus_allowed_ptr(tsk, cpumask);
3744 	current->reclaim_state = &reclaim_state;
3745 
3746 	/*
3747 	 * Tell the memory management that we're a "memory allocator",
3748 	 * and that if we need more memory we should get access to it
3749 	 * regardless (see "__alloc_pages()"). "kswapd" should
3750 	 * never get caught in the normal page freeing logic.
3751 	 *
3752 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3753 	 * you need a small amount of memory in order to be able to
3754 	 * page out something else, and this flag essentially protects
3755 	 * us from recursively trying to free more memory as we're
3756 	 * trying to free the first piece of memory in the first place).
3757 	 */
3758 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3759 	set_freezable();
3760 
3761 	pgdat->kswapd_order = 0;
3762 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3763 	for ( ; ; ) {
3764 		bool ret;
3765 
3766 		alloc_order = reclaim_order = pgdat->kswapd_order;
3767 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3768 
3769 kswapd_try_sleep:
3770 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3771 					classzone_idx);
3772 
3773 		/* Read the new order and classzone_idx */
3774 		alloc_order = reclaim_order = pgdat->kswapd_order;
3775 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3776 		pgdat->kswapd_order = 0;
3777 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3778 
3779 		ret = try_to_freeze();
3780 		if (kthread_should_stop())
3781 			break;
3782 
3783 		/*
3784 		 * We can speed up thawing tasks if we don't call balance_pgdat
3785 		 * after returning from the refrigerator
3786 		 */
3787 		if (ret)
3788 			continue;
3789 
3790 		/*
3791 		 * Reclaim begins at the requested order but if a high-order
3792 		 * reclaim fails then kswapd falls back to reclaiming for
3793 		 * order-0. If that happens, kswapd will consider sleeping
3794 		 * for the order it finished reclaiming at (reclaim_order)
3795 		 * but kcompactd is woken to compact for the original
3796 		 * request (alloc_order).
3797 		 */
3798 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3799 						alloc_order);
3800 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3801 		if (reclaim_order < alloc_order)
3802 			goto kswapd_try_sleep;
3803 	}
3804 
3805 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3806 	current->reclaim_state = NULL;
3807 
3808 	return 0;
3809 }
3810 
3811 /*
3812  * A zone is low on free memory or too fragmented for high-order memory.  If
3813  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3814  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3815  * has failed or is not needed, still wake up kcompactd if only compaction is
3816  * needed.
3817  */
3818 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3819 		   enum zone_type classzone_idx)
3820 {
3821 	pg_data_t *pgdat;
3822 
3823 	if (!managed_zone(zone))
3824 		return;
3825 
3826 	if (!cpuset_zone_allowed(zone, gfp_flags))
3827 		return;
3828 	pgdat = zone->zone_pgdat;
3829 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3830 							   classzone_idx);
3831 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3832 	if (!waitqueue_active(&pgdat->kswapd_wait))
3833 		return;
3834 
3835 	/* Hopeless node, leave it to direct reclaim if possible */
3836 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3837 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3838 		/*
3839 		 * There may be plenty of free memory available, but it's too
3840 		 * fragmented for high-order allocations.  Wake up kcompactd
3841 		 * and rely on compaction_suitable() to determine if it's
3842 		 * needed.  If it fails, it will defer subsequent attempts to
3843 		 * ratelimit its work.
3844 		 */
3845 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3846 			wakeup_kcompactd(pgdat, order, classzone_idx);
3847 		return;
3848 	}
3849 
3850 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3851 				      gfp_flags);
3852 	wake_up_interruptible(&pgdat->kswapd_wait);
3853 }
3854 
3855 #ifdef CONFIG_HIBERNATION
3856 /*
3857  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3858  * freed pages.
3859  *
3860  * Rather than trying to age LRUs the aim is to preserve the overall
3861  * LRU order by reclaiming preferentially
3862  * inactive > active > active referenced > active mapped
3863  */
3864 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3865 {
3866 	struct reclaim_state reclaim_state;
3867 	struct scan_control sc = {
3868 		.nr_to_reclaim = nr_to_reclaim,
3869 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3870 		.reclaim_idx = MAX_NR_ZONES - 1,
3871 		.priority = DEF_PRIORITY,
3872 		.may_writepage = 1,
3873 		.may_unmap = 1,
3874 		.may_swap = 1,
3875 		.hibernation_mode = 1,
3876 	};
3877 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3878 	struct task_struct *p = current;
3879 	unsigned long nr_reclaimed;
3880 	unsigned int noreclaim_flag;
3881 
3882 	fs_reclaim_acquire(sc.gfp_mask);
3883 	noreclaim_flag = memalloc_noreclaim_save();
3884 	reclaim_state.reclaimed_slab = 0;
3885 	p->reclaim_state = &reclaim_state;
3886 
3887 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3888 
3889 	p->reclaim_state = NULL;
3890 	memalloc_noreclaim_restore(noreclaim_flag);
3891 	fs_reclaim_release(sc.gfp_mask);
3892 
3893 	return nr_reclaimed;
3894 }
3895 #endif /* CONFIG_HIBERNATION */
3896 
3897 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3898    not required for correctness.  So if the last cpu in a node goes
3899    away, we get changed to run anywhere: as the first one comes back,
3900    restore their cpu bindings. */
3901 static int kswapd_cpu_online(unsigned int cpu)
3902 {
3903 	int nid;
3904 
3905 	for_each_node_state(nid, N_MEMORY) {
3906 		pg_data_t *pgdat = NODE_DATA(nid);
3907 		const struct cpumask *mask;
3908 
3909 		mask = cpumask_of_node(pgdat->node_id);
3910 
3911 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3912 			/* One of our CPUs online: restore mask */
3913 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3914 	}
3915 	return 0;
3916 }
3917 
3918 /*
3919  * This kswapd start function will be called by init and node-hot-add.
3920  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3921  */
3922 int kswapd_run(int nid)
3923 {
3924 	pg_data_t *pgdat = NODE_DATA(nid);
3925 	int ret = 0;
3926 
3927 	if (pgdat->kswapd)
3928 		return 0;
3929 
3930 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3931 	if (IS_ERR(pgdat->kswapd)) {
3932 		/* failure at boot is fatal */
3933 		BUG_ON(system_state < SYSTEM_RUNNING);
3934 		pr_err("Failed to start kswapd on node %d\n", nid);
3935 		ret = PTR_ERR(pgdat->kswapd);
3936 		pgdat->kswapd = NULL;
3937 	}
3938 	return ret;
3939 }
3940 
3941 /*
3942  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3943  * hold mem_hotplug_begin/end().
3944  */
3945 void kswapd_stop(int nid)
3946 {
3947 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3948 
3949 	if (kswapd) {
3950 		kthread_stop(kswapd);
3951 		NODE_DATA(nid)->kswapd = NULL;
3952 	}
3953 }
3954 
3955 static int __init kswapd_init(void)
3956 {
3957 	int nid, ret;
3958 
3959 	swap_setup();
3960 	for_each_node_state(nid, N_MEMORY)
3961  		kswapd_run(nid);
3962 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3963 					"mm/vmscan:online", kswapd_cpu_online,
3964 					NULL);
3965 	WARN_ON(ret < 0);
3966 	return 0;
3967 }
3968 
3969 module_init(kswapd_init)
3970 
3971 #ifdef CONFIG_NUMA
3972 /*
3973  * Node reclaim mode
3974  *
3975  * If non-zero call node_reclaim when the number of free pages falls below
3976  * the watermarks.
3977  */
3978 int node_reclaim_mode __read_mostly;
3979 
3980 #define RECLAIM_OFF 0
3981 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3982 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3983 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3984 
3985 /*
3986  * Priority for NODE_RECLAIM. This determines the fraction of pages
3987  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3988  * a zone.
3989  */
3990 #define NODE_RECLAIM_PRIORITY 4
3991 
3992 /*
3993  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3994  * occur.
3995  */
3996 int sysctl_min_unmapped_ratio = 1;
3997 
3998 /*
3999  * If the number of slab pages in a zone grows beyond this percentage then
4000  * slab reclaim needs to occur.
4001  */
4002 int sysctl_min_slab_ratio = 5;
4003 
4004 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4005 {
4006 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4007 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4008 		node_page_state(pgdat, NR_ACTIVE_FILE);
4009 
4010 	/*
4011 	 * It's possible for there to be more file mapped pages than
4012 	 * accounted for by the pages on the file LRU lists because
4013 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4014 	 */
4015 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4016 }
4017 
4018 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4019 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4020 {
4021 	unsigned long nr_pagecache_reclaimable;
4022 	unsigned long delta = 0;
4023 
4024 	/*
4025 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4026 	 * potentially reclaimable. Otherwise, we have to worry about
4027 	 * pages like swapcache and node_unmapped_file_pages() provides
4028 	 * a better estimate
4029 	 */
4030 	if (node_reclaim_mode & RECLAIM_UNMAP)
4031 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4032 	else
4033 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4034 
4035 	/* If we can't clean pages, remove dirty pages from consideration */
4036 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4037 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4038 
4039 	/* Watch for any possible underflows due to delta */
4040 	if (unlikely(delta > nr_pagecache_reclaimable))
4041 		delta = nr_pagecache_reclaimable;
4042 
4043 	return nr_pagecache_reclaimable - delta;
4044 }
4045 
4046 /*
4047  * Try to free up some pages from this node through reclaim.
4048  */
4049 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4050 {
4051 	/* Minimum pages needed in order to stay on node */
4052 	const unsigned long nr_pages = 1 << order;
4053 	struct task_struct *p = current;
4054 	struct reclaim_state reclaim_state;
4055 	unsigned int noreclaim_flag;
4056 	struct scan_control sc = {
4057 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4058 		.gfp_mask = current_gfp_context(gfp_mask),
4059 		.order = order,
4060 		.priority = NODE_RECLAIM_PRIORITY,
4061 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4062 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4063 		.may_swap = 1,
4064 		.reclaim_idx = gfp_zone(gfp_mask),
4065 	};
4066 
4067 	cond_resched();
4068 	fs_reclaim_acquire(sc.gfp_mask);
4069 	/*
4070 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4071 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4072 	 * and RECLAIM_UNMAP.
4073 	 */
4074 	noreclaim_flag = memalloc_noreclaim_save();
4075 	p->flags |= PF_SWAPWRITE;
4076 	reclaim_state.reclaimed_slab = 0;
4077 	p->reclaim_state = &reclaim_state;
4078 
4079 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4080 		/*
4081 		 * Free memory by calling shrink node with increasing
4082 		 * priorities until we have enough memory freed.
4083 		 */
4084 		do {
4085 			shrink_node(pgdat, &sc);
4086 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4087 	}
4088 
4089 	p->reclaim_state = NULL;
4090 	current->flags &= ~PF_SWAPWRITE;
4091 	memalloc_noreclaim_restore(noreclaim_flag);
4092 	fs_reclaim_release(sc.gfp_mask);
4093 	return sc.nr_reclaimed >= nr_pages;
4094 }
4095 
4096 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4097 {
4098 	int ret;
4099 
4100 	/*
4101 	 * Node reclaim reclaims unmapped file backed pages and
4102 	 * slab pages if we are over the defined limits.
4103 	 *
4104 	 * A small portion of unmapped file backed pages is needed for
4105 	 * file I/O otherwise pages read by file I/O will be immediately
4106 	 * thrown out if the node is overallocated. So we do not reclaim
4107 	 * if less than a specified percentage of the node is used by
4108 	 * unmapped file backed pages.
4109 	 */
4110 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4111 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4112 		return NODE_RECLAIM_FULL;
4113 
4114 	/*
4115 	 * Do not scan if the allocation should not be delayed.
4116 	 */
4117 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4118 		return NODE_RECLAIM_NOSCAN;
4119 
4120 	/*
4121 	 * Only run node reclaim on the local node or on nodes that do not
4122 	 * have associated processors. This will favor the local processor
4123 	 * over remote processors and spread off node memory allocations
4124 	 * as wide as possible.
4125 	 */
4126 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4127 		return NODE_RECLAIM_NOSCAN;
4128 
4129 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4130 		return NODE_RECLAIM_NOSCAN;
4131 
4132 	ret = __node_reclaim(pgdat, gfp_mask, order);
4133 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4134 
4135 	if (!ret)
4136 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4137 
4138 	return ret;
4139 }
4140 #endif
4141 
4142 /*
4143  * page_evictable - test whether a page is evictable
4144  * @page: the page to test
4145  *
4146  * Test whether page is evictable--i.e., should be placed on active/inactive
4147  * lists vs unevictable list.
4148  *
4149  * Reasons page might not be evictable:
4150  * (1) page's mapping marked unevictable
4151  * (2) page is part of an mlocked VMA
4152  *
4153  */
4154 int page_evictable(struct page *page)
4155 {
4156 	int ret;
4157 
4158 	/* Prevent address_space of inode and swap cache from being freed */
4159 	rcu_read_lock();
4160 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4161 	rcu_read_unlock();
4162 	return ret;
4163 }
4164 
4165 #ifdef CONFIG_SHMEM
4166 /**
4167  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4168  * @pages:	array of pages to check
4169  * @nr_pages:	number of pages to check
4170  *
4171  * Checks pages for evictability and moves them to the appropriate lru list.
4172  *
4173  * This function is only used for SysV IPC SHM_UNLOCK.
4174  */
4175 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4176 {
4177 	struct lruvec *lruvec;
4178 	struct pglist_data *pgdat = NULL;
4179 	int pgscanned = 0;
4180 	int pgrescued = 0;
4181 	int i;
4182 
4183 	for (i = 0; i < nr_pages; i++) {
4184 		struct page *page = pages[i];
4185 		struct pglist_data *pagepgdat = page_pgdat(page);
4186 
4187 		pgscanned++;
4188 		if (pagepgdat != pgdat) {
4189 			if (pgdat)
4190 				spin_unlock_irq(&pgdat->lru_lock);
4191 			pgdat = pagepgdat;
4192 			spin_lock_irq(&pgdat->lru_lock);
4193 		}
4194 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4195 
4196 		if (!PageLRU(page) || !PageUnevictable(page))
4197 			continue;
4198 
4199 		if (page_evictable(page)) {
4200 			enum lru_list lru = page_lru_base_type(page);
4201 
4202 			VM_BUG_ON_PAGE(PageActive(page), page);
4203 			ClearPageUnevictable(page);
4204 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4205 			add_page_to_lru_list(page, lruvec, lru);
4206 			pgrescued++;
4207 		}
4208 	}
4209 
4210 	if (pgdat) {
4211 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4212 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4213 		spin_unlock_irq(&pgdat->lru_lock);
4214 	}
4215 }
4216 #endif /* CONFIG_SHMEM */
4217