1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* e.g. boosted watermark reclaim leaves slabs alone */ 92 unsigned int may_shrinkslab:1; 93 94 /* 95 * Cgroups are not reclaimed below their configured memory.low, 96 * unless we threaten to OOM. If any cgroups are skipped due to 97 * memory.low and nothing was reclaimed, go back for memory.low. 98 */ 99 unsigned int memcg_low_reclaim:1; 100 unsigned int memcg_low_skipped:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Allocation order */ 108 s8 order; 109 110 /* Scan (total_size >> priority) pages at once */ 111 s8 priority; 112 113 /* The highest zone to isolate pages for reclaim from */ 114 s8 reclaim_idx; 115 116 /* This context's GFP mask */ 117 gfp_t gfp_mask; 118 119 /* Incremented by the number of inactive pages that were scanned */ 120 unsigned long nr_scanned; 121 122 /* Number of pages freed so far during a call to shrink_zones() */ 123 unsigned long nr_reclaimed; 124 125 struct { 126 unsigned int dirty; 127 unsigned int unqueued_dirty; 128 unsigned int congested; 129 unsigned int writeback; 130 unsigned int immediate; 131 unsigned int file_taken; 132 unsigned int taken; 133 } nr; 134 135 /* for recording the reclaimed slab by now */ 136 struct reclaim_state reclaim_state; 137 }; 138 139 #ifdef ARCH_HAS_PREFETCH 140 #define prefetch_prev_lru_page(_page, _base, _field) \ 141 do { \ 142 if ((_page)->lru.prev != _base) { \ 143 struct page *prev; \ 144 \ 145 prev = lru_to_page(&(_page->lru)); \ 146 prefetch(&prev->_field); \ 147 } \ 148 } while (0) 149 #else 150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 151 #endif 152 153 #ifdef ARCH_HAS_PREFETCHW 154 #define prefetchw_prev_lru_page(_page, _base, _field) \ 155 do { \ 156 if ((_page)->lru.prev != _base) { \ 157 struct page *prev; \ 158 \ 159 prev = lru_to_page(&(_page->lru)); \ 160 prefetchw(&prev->_field); \ 161 } \ 162 } while (0) 163 #else 164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 165 #endif 166 167 /* 168 * From 0 .. 100. Higher means more swappy. 169 */ 170 int vm_swappiness = 60; 171 /* 172 * The total number of pages which are beyond the high watermark within all 173 * zones. 174 */ 175 unsigned long vm_total_pages; 176 177 static LIST_HEAD(shrinker_list); 178 static DECLARE_RWSEM(shrinker_rwsem); 179 180 #ifdef CONFIG_MEMCG_KMEM 181 182 /* 183 * We allow subsystems to populate their shrinker-related 184 * LRU lists before register_shrinker_prepared() is called 185 * for the shrinker, since we don't want to impose 186 * restrictions on their internal registration order. 187 * In this case shrink_slab_memcg() may find corresponding 188 * bit is set in the shrinkers map. 189 * 190 * This value is used by the function to detect registering 191 * shrinkers and to skip do_shrink_slab() calls for them. 192 */ 193 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 194 195 static DEFINE_IDR(shrinker_idr); 196 static int shrinker_nr_max; 197 198 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 199 { 200 int id, ret = -ENOMEM; 201 202 down_write(&shrinker_rwsem); 203 /* This may call shrinker, so it must use down_read_trylock() */ 204 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 205 if (id < 0) 206 goto unlock; 207 208 if (id >= shrinker_nr_max) { 209 if (memcg_expand_shrinker_maps(id)) { 210 idr_remove(&shrinker_idr, id); 211 goto unlock; 212 } 213 214 shrinker_nr_max = id + 1; 215 } 216 shrinker->id = id; 217 ret = 0; 218 unlock: 219 up_write(&shrinker_rwsem); 220 return ret; 221 } 222 223 static void unregister_memcg_shrinker(struct shrinker *shrinker) 224 { 225 int id = shrinker->id; 226 227 BUG_ON(id < 0); 228 229 down_write(&shrinker_rwsem); 230 idr_remove(&shrinker_idr, id); 231 up_write(&shrinker_rwsem); 232 } 233 #else /* CONFIG_MEMCG_KMEM */ 234 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 235 { 236 return 0; 237 } 238 239 static void unregister_memcg_shrinker(struct shrinker *shrinker) 240 { 241 } 242 #endif /* CONFIG_MEMCG_KMEM */ 243 244 static void set_task_reclaim_state(struct task_struct *task, 245 struct reclaim_state *rs) 246 { 247 /* Check for an overwrite */ 248 WARN_ON_ONCE(rs && task->reclaim_state); 249 250 /* Check for the nulling of an already-nulled member */ 251 WARN_ON_ONCE(!rs && !task->reclaim_state); 252 253 task->reclaim_state = rs; 254 } 255 256 #ifdef CONFIG_MEMCG 257 static bool global_reclaim(struct scan_control *sc) 258 { 259 return !sc->target_mem_cgroup; 260 } 261 262 /** 263 * sane_reclaim - is the usual dirty throttling mechanism operational? 264 * @sc: scan_control in question 265 * 266 * The normal page dirty throttling mechanism in balance_dirty_pages() is 267 * completely broken with the legacy memcg and direct stalling in 268 * shrink_page_list() is used for throttling instead, which lacks all the 269 * niceties such as fairness, adaptive pausing, bandwidth proportional 270 * allocation and configurability. 271 * 272 * This function tests whether the vmscan currently in progress can assume 273 * that the normal dirty throttling mechanism is operational. 274 */ 275 static bool sane_reclaim(struct scan_control *sc) 276 { 277 struct mem_cgroup *memcg = sc->target_mem_cgroup; 278 279 if (!memcg) 280 return true; 281 #ifdef CONFIG_CGROUP_WRITEBACK 282 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 283 return true; 284 #endif 285 return false; 286 } 287 288 static void set_memcg_congestion(pg_data_t *pgdat, 289 struct mem_cgroup *memcg, 290 bool congested) 291 { 292 struct mem_cgroup_per_node *mn; 293 294 if (!memcg) 295 return; 296 297 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 298 WRITE_ONCE(mn->congested, congested); 299 } 300 301 static bool memcg_congested(pg_data_t *pgdat, 302 struct mem_cgroup *memcg) 303 { 304 struct mem_cgroup_per_node *mn; 305 306 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 307 return READ_ONCE(mn->congested); 308 309 } 310 #else 311 static bool global_reclaim(struct scan_control *sc) 312 { 313 return true; 314 } 315 316 static bool sane_reclaim(struct scan_control *sc) 317 { 318 return true; 319 } 320 321 static inline void set_memcg_congestion(struct pglist_data *pgdat, 322 struct mem_cgroup *memcg, bool congested) 323 { 324 } 325 326 static inline bool memcg_congested(struct pglist_data *pgdat, 327 struct mem_cgroup *memcg) 328 { 329 return false; 330 331 } 332 #endif 333 334 /* 335 * This misses isolated pages which are not accounted for to save counters. 336 * As the data only determines if reclaim or compaction continues, it is 337 * not expected that isolated pages will be a dominating factor. 338 */ 339 unsigned long zone_reclaimable_pages(struct zone *zone) 340 { 341 unsigned long nr; 342 343 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 345 if (get_nr_swap_pages() > 0) 346 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 347 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 348 349 return nr; 350 } 351 352 /** 353 * lruvec_lru_size - Returns the number of pages on the given LRU list. 354 * @lruvec: lru vector 355 * @lru: lru to use 356 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 357 */ 358 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 359 { 360 unsigned long lru_size; 361 int zid; 362 363 if (!mem_cgroup_disabled()) 364 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 365 else 366 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 367 368 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 369 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 370 unsigned long size; 371 372 if (!managed_zone(zone)) 373 continue; 374 375 if (!mem_cgroup_disabled()) 376 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 377 else 378 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 379 NR_ZONE_LRU_BASE + lru); 380 lru_size -= min(size, lru_size); 381 } 382 383 return lru_size; 384 385 } 386 387 /* 388 * Add a shrinker callback to be called from the vm. 389 */ 390 int prealloc_shrinker(struct shrinker *shrinker) 391 { 392 unsigned int size = sizeof(*shrinker->nr_deferred); 393 394 if (shrinker->flags & SHRINKER_NUMA_AWARE) 395 size *= nr_node_ids; 396 397 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 398 if (!shrinker->nr_deferred) 399 return -ENOMEM; 400 401 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 402 if (prealloc_memcg_shrinker(shrinker)) 403 goto free_deferred; 404 } 405 406 return 0; 407 408 free_deferred: 409 kfree(shrinker->nr_deferred); 410 shrinker->nr_deferred = NULL; 411 return -ENOMEM; 412 } 413 414 void free_prealloced_shrinker(struct shrinker *shrinker) 415 { 416 if (!shrinker->nr_deferred) 417 return; 418 419 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 420 unregister_memcg_shrinker(shrinker); 421 422 kfree(shrinker->nr_deferred); 423 shrinker->nr_deferred = NULL; 424 } 425 426 void register_shrinker_prepared(struct shrinker *shrinker) 427 { 428 down_write(&shrinker_rwsem); 429 list_add_tail(&shrinker->list, &shrinker_list); 430 #ifdef CONFIG_MEMCG_KMEM 431 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 432 idr_replace(&shrinker_idr, shrinker, shrinker->id); 433 #endif 434 up_write(&shrinker_rwsem); 435 } 436 437 int register_shrinker(struct shrinker *shrinker) 438 { 439 int err = prealloc_shrinker(shrinker); 440 441 if (err) 442 return err; 443 register_shrinker_prepared(shrinker); 444 return 0; 445 } 446 EXPORT_SYMBOL(register_shrinker); 447 448 /* 449 * Remove one 450 */ 451 void unregister_shrinker(struct shrinker *shrinker) 452 { 453 if (!shrinker->nr_deferred) 454 return; 455 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 456 unregister_memcg_shrinker(shrinker); 457 down_write(&shrinker_rwsem); 458 list_del(&shrinker->list); 459 up_write(&shrinker_rwsem); 460 kfree(shrinker->nr_deferred); 461 shrinker->nr_deferred = NULL; 462 } 463 EXPORT_SYMBOL(unregister_shrinker); 464 465 #define SHRINK_BATCH 128 466 467 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 468 struct shrinker *shrinker, int priority) 469 { 470 unsigned long freed = 0; 471 unsigned long long delta; 472 long total_scan; 473 long freeable; 474 long nr; 475 long new_nr; 476 int nid = shrinkctl->nid; 477 long batch_size = shrinker->batch ? shrinker->batch 478 : SHRINK_BATCH; 479 long scanned = 0, next_deferred; 480 481 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 482 nid = 0; 483 484 freeable = shrinker->count_objects(shrinker, shrinkctl); 485 if (freeable == 0 || freeable == SHRINK_EMPTY) 486 return freeable; 487 488 /* 489 * copy the current shrinker scan count into a local variable 490 * and zero it so that other concurrent shrinker invocations 491 * don't also do this scanning work. 492 */ 493 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 494 495 total_scan = nr; 496 if (shrinker->seeks) { 497 delta = freeable >> priority; 498 delta *= 4; 499 do_div(delta, shrinker->seeks); 500 } else { 501 /* 502 * These objects don't require any IO to create. Trim 503 * them aggressively under memory pressure to keep 504 * them from causing refetches in the IO caches. 505 */ 506 delta = freeable / 2; 507 } 508 509 total_scan += delta; 510 if (total_scan < 0) { 511 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 512 shrinker->scan_objects, total_scan); 513 total_scan = freeable; 514 next_deferred = nr; 515 } else 516 next_deferred = total_scan; 517 518 /* 519 * We need to avoid excessive windup on filesystem shrinkers 520 * due to large numbers of GFP_NOFS allocations causing the 521 * shrinkers to return -1 all the time. This results in a large 522 * nr being built up so when a shrink that can do some work 523 * comes along it empties the entire cache due to nr >>> 524 * freeable. This is bad for sustaining a working set in 525 * memory. 526 * 527 * Hence only allow the shrinker to scan the entire cache when 528 * a large delta change is calculated directly. 529 */ 530 if (delta < freeable / 4) 531 total_scan = min(total_scan, freeable / 2); 532 533 /* 534 * Avoid risking looping forever due to too large nr value: 535 * never try to free more than twice the estimate number of 536 * freeable entries. 537 */ 538 if (total_scan > freeable * 2) 539 total_scan = freeable * 2; 540 541 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 542 freeable, delta, total_scan, priority); 543 544 /* 545 * Normally, we should not scan less than batch_size objects in one 546 * pass to avoid too frequent shrinker calls, but if the slab has less 547 * than batch_size objects in total and we are really tight on memory, 548 * we will try to reclaim all available objects, otherwise we can end 549 * up failing allocations although there are plenty of reclaimable 550 * objects spread over several slabs with usage less than the 551 * batch_size. 552 * 553 * We detect the "tight on memory" situations by looking at the total 554 * number of objects we want to scan (total_scan). If it is greater 555 * than the total number of objects on slab (freeable), we must be 556 * scanning at high prio and therefore should try to reclaim as much as 557 * possible. 558 */ 559 while (total_scan >= batch_size || 560 total_scan >= freeable) { 561 unsigned long ret; 562 unsigned long nr_to_scan = min(batch_size, total_scan); 563 564 shrinkctl->nr_to_scan = nr_to_scan; 565 shrinkctl->nr_scanned = nr_to_scan; 566 ret = shrinker->scan_objects(shrinker, shrinkctl); 567 if (ret == SHRINK_STOP) 568 break; 569 freed += ret; 570 571 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 572 total_scan -= shrinkctl->nr_scanned; 573 scanned += shrinkctl->nr_scanned; 574 575 cond_resched(); 576 } 577 578 if (next_deferred >= scanned) 579 next_deferred -= scanned; 580 else 581 next_deferred = 0; 582 /* 583 * move the unused scan count back into the shrinker in a 584 * manner that handles concurrent updates. If we exhausted the 585 * scan, there is no need to do an update. 586 */ 587 if (next_deferred > 0) 588 new_nr = atomic_long_add_return(next_deferred, 589 &shrinker->nr_deferred[nid]); 590 else 591 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 592 593 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 594 return freed; 595 } 596 597 #ifdef CONFIG_MEMCG_KMEM 598 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 599 struct mem_cgroup *memcg, int priority) 600 { 601 struct memcg_shrinker_map *map; 602 unsigned long ret, freed = 0; 603 int i; 604 605 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 606 return 0; 607 608 if (!down_read_trylock(&shrinker_rwsem)) 609 return 0; 610 611 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 612 true); 613 if (unlikely(!map)) 614 goto unlock; 615 616 for_each_set_bit(i, map->map, shrinker_nr_max) { 617 struct shrink_control sc = { 618 .gfp_mask = gfp_mask, 619 .nid = nid, 620 .memcg = memcg, 621 }; 622 struct shrinker *shrinker; 623 624 shrinker = idr_find(&shrinker_idr, i); 625 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 626 if (!shrinker) 627 clear_bit(i, map->map); 628 continue; 629 } 630 631 ret = do_shrink_slab(&sc, shrinker, priority); 632 if (ret == SHRINK_EMPTY) { 633 clear_bit(i, map->map); 634 /* 635 * After the shrinker reported that it had no objects to 636 * free, but before we cleared the corresponding bit in 637 * the memcg shrinker map, a new object might have been 638 * added. To make sure, we have the bit set in this 639 * case, we invoke the shrinker one more time and reset 640 * the bit if it reports that it is not empty anymore. 641 * The memory barrier here pairs with the barrier in 642 * memcg_set_shrinker_bit(): 643 * 644 * list_lru_add() shrink_slab_memcg() 645 * list_add_tail() clear_bit() 646 * <MB> <MB> 647 * set_bit() do_shrink_slab() 648 */ 649 smp_mb__after_atomic(); 650 ret = do_shrink_slab(&sc, shrinker, priority); 651 if (ret == SHRINK_EMPTY) 652 ret = 0; 653 else 654 memcg_set_shrinker_bit(memcg, nid, i); 655 } 656 freed += ret; 657 658 if (rwsem_is_contended(&shrinker_rwsem)) { 659 freed = freed ? : 1; 660 break; 661 } 662 } 663 unlock: 664 up_read(&shrinker_rwsem); 665 return freed; 666 } 667 #else /* CONFIG_MEMCG_KMEM */ 668 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 669 struct mem_cgroup *memcg, int priority) 670 { 671 return 0; 672 } 673 #endif /* CONFIG_MEMCG_KMEM */ 674 675 /** 676 * shrink_slab - shrink slab caches 677 * @gfp_mask: allocation context 678 * @nid: node whose slab caches to target 679 * @memcg: memory cgroup whose slab caches to target 680 * @priority: the reclaim priority 681 * 682 * Call the shrink functions to age shrinkable caches. 683 * 684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 685 * unaware shrinkers will receive a node id of 0 instead. 686 * 687 * @memcg specifies the memory cgroup to target. Unaware shrinkers 688 * are called only if it is the root cgroup. 689 * 690 * @priority is sc->priority, we take the number of objects and >> by priority 691 * in order to get the scan target. 692 * 693 * Returns the number of reclaimed slab objects. 694 */ 695 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 696 struct mem_cgroup *memcg, 697 int priority) 698 { 699 unsigned long ret, freed = 0; 700 struct shrinker *shrinker; 701 702 /* 703 * The root memcg might be allocated even though memcg is disabled 704 * via "cgroup_disable=memory" boot parameter. This could make 705 * mem_cgroup_is_root() return false, then just run memcg slab 706 * shrink, but skip global shrink. This may result in premature 707 * oom. 708 */ 709 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 710 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 711 712 if (!down_read_trylock(&shrinker_rwsem)) 713 goto out; 714 715 list_for_each_entry(shrinker, &shrinker_list, list) { 716 struct shrink_control sc = { 717 .gfp_mask = gfp_mask, 718 .nid = nid, 719 .memcg = memcg, 720 }; 721 722 ret = do_shrink_slab(&sc, shrinker, priority); 723 if (ret == SHRINK_EMPTY) 724 ret = 0; 725 freed += ret; 726 /* 727 * Bail out if someone want to register a new shrinker to 728 * prevent the regsitration from being stalled for long periods 729 * by parallel ongoing shrinking. 730 */ 731 if (rwsem_is_contended(&shrinker_rwsem)) { 732 freed = freed ? : 1; 733 break; 734 } 735 } 736 737 up_read(&shrinker_rwsem); 738 out: 739 cond_resched(); 740 return freed; 741 } 742 743 void drop_slab_node(int nid) 744 { 745 unsigned long freed; 746 747 do { 748 struct mem_cgroup *memcg = NULL; 749 750 freed = 0; 751 memcg = mem_cgroup_iter(NULL, NULL, NULL); 752 do { 753 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 754 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 755 } while (freed > 10); 756 } 757 758 void drop_slab(void) 759 { 760 int nid; 761 762 for_each_online_node(nid) 763 drop_slab_node(nid); 764 } 765 766 static inline int is_page_cache_freeable(struct page *page) 767 { 768 /* 769 * A freeable page cache page is referenced only by the caller 770 * that isolated the page, the page cache and optional buffer 771 * heads at page->private. 772 */ 773 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 774 HPAGE_PMD_NR : 1; 775 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 776 } 777 778 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 779 { 780 if (current->flags & PF_SWAPWRITE) 781 return 1; 782 if (!inode_write_congested(inode)) 783 return 1; 784 if (inode_to_bdi(inode) == current->backing_dev_info) 785 return 1; 786 return 0; 787 } 788 789 /* 790 * We detected a synchronous write error writing a page out. Probably 791 * -ENOSPC. We need to propagate that into the address_space for a subsequent 792 * fsync(), msync() or close(). 793 * 794 * The tricky part is that after writepage we cannot touch the mapping: nothing 795 * prevents it from being freed up. But we have a ref on the page and once 796 * that page is locked, the mapping is pinned. 797 * 798 * We're allowed to run sleeping lock_page() here because we know the caller has 799 * __GFP_FS. 800 */ 801 static void handle_write_error(struct address_space *mapping, 802 struct page *page, int error) 803 { 804 lock_page(page); 805 if (page_mapping(page) == mapping) 806 mapping_set_error(mapping, error); 807 unlock_page(page); 808 } 809 810 /* possible outcome of pageout() */ 811 typedef enum { 812 /* failed to write page out, page is locked */ 813 PAGE_KEEP, 814 /* move page to the active list, page is locked */ 815 PAGE_ACTIVATE, 816 /* page has been sent to the disk successfully, page is unlocked */ 817 PAGE_SUCCESS, 818 /* page is clean and locked */ 819 PAGE_CLEAN, 820 } pageout_t; 821 822 /* 823 * pageout is called by shrink_page_list() for each dirty page. 824 * Calls ->writepage(). 825 */ 826 static pageout_t pageout(struct page *page, struct address_space *mapping, 827 struct scan_control *sc) 828 { 829 /* 830 * If the page is dirty, only perform writeback if that write 831 * will be non-blocking. To prevent this allocation from being 832 * stalled by pagecache activity. But note that there may be 833 * stalls if we need to run get_block(). We could test 834 * PagePrivate for that. 835 * 836 * If this process is currently in __generic_file_write_iter() against 837 * this page's queue, we can perform writeback even if that 838 * will block. 839 * 840 * If the page is swapcache, write it back even if that would 841 * block, for some throttling. This happens by accident, because 842 * swap_backing_dev_info is bust: it doesn't reflect the 843 * congestion state of the swapdevs. Easy to fix, if needed. 844 */ 845 if (!is_page_cache_freeable(page)) 846 return PAGE_KEEP; 847 if (!mapping) { 848 /* 849 * Some data journaling orphaned pages can have 850 * page->mapping == NULL while being dirty with clean buffers. 851 */ 852 if (page_has_private(page)) { 853 if (try_to_free_buffers(page)) { 854 ClearPageDirty(page); 855 pr_info("%s: orphaned page\n", __func__); 856 return PAGE_CLEAN; 857 } 858 } 859 return PAGE_KEEP; 860 } 861 if (mapping->a_ops->writepage == NULL) 862 return PAGE_ACTIVATE; 863 if (!may_write_to_inode(mapping->host, sc)) 864 return PAGE_KEEP; 865 866 if (clear_page_dirty_for_io(page)) { 867 int res; 868 struct writeback_control wbc = { 869 .sync_mode = WB_SYNC_NONE, 870 .nr_to_write = SWAP_CLUSTER_MAX, 871 .range_start = 0, 872 .range_end = LLONG_MAX, 873 .for_reclaim = 1, 874 }; 875 876 SetPageReclaim(page); 877 res = mapping->a_ops->writepage(page, &wbc); 878 if (res < 0) 879 handle_write_error(mapping, page, res); 880 if (res == AOP_WRITEPAGE_ACTIVATE) { 881 ClearPageReclaim(page); 882 return PAGE_ACTIVATE; 883 } 884 885 if (!PageWriteback(page)) { 886 /* synchronous write or broken a_ops? */ 887 ClearPageReclaim(page); 888 } 889 trace_mm_vmscan_writepage(page); 890 inc_node_page_state(page, NR_VMSCAN_WRITE); 891 return PAGE_SUCCESS; 892 } 893 894 return PAGE_CLEAN; 895 } 896 897 /* 898 * Same as remove_mapping, but if the page is removed from the mapping, it 899 * gets returned with a refcount of 0. 900 */ 901 static int __remove_mapping(struct address_space *mapping, struct page *page, 902 bool reclaimed) 903 { 904 unsigned long flags; 905 int refcount; 906 907 BUG_ON(!PageLocked(page)); 908 BUG_ON(mapping != page_mapping(page)); 909 910 xa_lock_irqsave(&mapping->i_pages, flags); 911 /* 912 * The non racy check for a busy page. 913 * 914 * Must be careful with the order of the tests. When someone has 915 * a ref to the page, it may be possible that they dirty it then 916 * drop the reference. So if PageDirty is tested before page_count 917 * here, then the following race may occur: 918 * 919 * get_user_pages(&page); 920 * [user mapping goes away] 921 * write_to(page); 922 * !PageDirty(page) [good] 923 * SetPageDirty(page); 924 * put_page(page); 925 * !page_count(page) [good, discard it] 926 * 927 * [oops, our write_to data is lost] 928 * 929 * Reversing the order of the tests ensures such a situation cannot 930 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 931 * load is not satisfied before that of page->_refcount. 932 * 933 * Note that if SetPageDirty is always performed via set_page_dirty, 934 * and thus under the i_pages lock, then this ordering is not required. 935 */ 936 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 937 refcount = 1 + HPAGE_PMD_NR; 938 else 939 refcount = 2; 940 if (!page_ref_freeze(page, refcount)) 941 goto cannot_free; 942 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 943 if (unlikely(PageDirty(page))) { 944 page_ref_unfreeze(page, refcount); 945 goto cannot_free; 946 } 947 948 if (PageSwapCache(page)) { 949 swp_entry_t swap = { .val = page_private(page) }; 950 mem_cgroup_swapout(page, swap); 951 __delete_from_swap_cache(page, swap); 952 xa_unlock_irqrestore(&mapping->i_pages, flags); 953 put_swap_page(page, swap); 954 } else { 955 void (*freepage)(struct page *); 956 void *shadow = NULL; 957 958 freepage = mapping->a_ops->freepage; 959 /* 960 * Remember a shadow entry for reclaimed file cache in 961 * order to detect refaults, thus thrashing, later on. 962 * 963 * But don't store shadows in an address space that is 964 * already exiting. This is not just an optizimation, 965 * inode reclaim needs to empty out the radix tree or 966 * the nodes are lost. Don't plant shadows behind its 967 * back. 968 * 969 * We also don't store shadows for DAX mappings because the 970 * only page cache pages found in these are zero pages 971 * covering holes, and because we don't want to mix DAX 972 * exceptional entries and shadow exceptional entries in the 973 * same address_space. 974 */ 975 if (reclaimed && page_is_file_cache(page) && 976 !mapping_exiting(mapping) && !dax_mapping(mapping)) 977 shadow = workingset_eviction(page); 978 __delete_from_page_cache(page, shadow); 979 xa_unlock_irqrestore(&mapping->i_pages, flags); 980 981 if (freepage != NULL) 982 freepage(page); 983 } 984 985 return 1; 986 987 cannot_free: 988 xa_unlock_irqrestore(&mapping->i_pages, flags); 989 return 0; 990 } 991 992 /* 993 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 994 * someone else has a ref on the page, abort and return 0. If it was 995 * successfully detached, return 1. Assumes the caller has a single ref on 996 * this page. 997 */ 998 int remove_mapping(struct address_space *mapping, struct page *page) 999 { 1000 if (__remove_mapping(mapping, page, false)) { 1001 /* 1002 * Unfreezing the refcount with 1 rather than 2 effectively 1003 * drops the pagecache ref for us without requiring another 1004 * atomic operation. 1005 */ 1006 page_ref_unfreeze(page, 1); 1007 return 1; 1008 } 1009 return 0; 1010 } 1011 1012 /** 1013 * putback_lru_page - put previously isolated page onto appropriate LRU list 1014 * @page: page to be put back to appropriate lru list 1015 * 1016 * Add previously isolated @page to appropriate LRU list. 1017 * Page may still be unevictable for other reasons. 1018 * 1019 * lru_lock must not be held, interrupts must be enabled. 1020 */ 1021 void putback_lru_page(struct page *page) 1022 { 1023 lru_cache_add(page); 1024 put_page(page); /* drop ref from isolate */ 1025 } 1026 1027 enum page_references { 1028 PAGEREF_RECLAIM, 1029 PAGEREF_RECLAIM_CLEAN, 1030 PAGEREF_KEEP, 1031 PAGEREF_ACTIVATE, 1032 }; 1033 1034 static enum page_references page_check_references(struct page *page, 1035 struct scan_control *sc) 1036 { 1037 int referenced_ptes, referenced_page; 1038 unsigned long vm_flags; 1039 1040 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1041 &vm_flags); 1042 referenced_page = TestClearPageReferenced(page); 1043 1044 /* 1045 * Mlock lost the isolation race with us. Let try_to_unmap() 1046 * move the page to the unevictable list. 1047 */ 1048 if (vm_flags & VM_LOCKED) 1049 return PAGEREF_RECLAIM; 1050 1051 if (referenced_ptes) { 1052 if (PageSwapBacked(page)) 1053 return PAGEREF_ACTIVATE; 1054 /* 1055 * All mapped pages start out with page table 1056 * references from the instantiating fault, so we need 1057 * to look twice if a mapped file page is used more 1058 * than once. 1059 * 1060 * Mark it and spare it for another trip around the 1061 * inactive list. Another page table reference will 1062 * lead to its activation. 1063 * 1064 * Note: the mark is set for activated pages as well 1065 * so that recently deactivated but used pages are 1066 * quickly recovered. 1067 */ 1068 SetPageReferenced(page); 1069 1070 if (referenced_page || referenced_ptes > 1) 1071 return PAGEREF_ACTIVATE; 1072 1073 /* 1074 * Activate file-backed executable pages after first usage. 1075 */ 1076 if (vm_flags & VM_EXEC) 1077 return PAGEREF_ACTIVATE; 1078 1079 return PAGEREF_KEEP; 1080 } 1081 1082 /* Reclaim if clean, defer dirty pages to writeback */ 1083 if (referenced_page && !PageSwapBacked(page)) 1084 return PAGEREF_RECLAIM_CLEAN; 1085 1086 return PAGEREF_RECLAIM; 1087 } 1088 1089 /* Check if a page is dirty or under writeback */ 1090 static void page_check_dirty_writeback(struct page *page, 1091 bool *dirty, bool *writeback) 1092 { 1093 struct address_space *mapping; 1094 1095 /* 1096 * Anonymous pages are not handled by flushers and must be written 1097 * from reclaim context. Do not stall reclaim based on them 1098 */ 1099 if (!page_is_file_cache(page) || 1100 (PageAnon(page) && !PageSwapBacked(page))) { 1101 *dirty = false; 1102 *writeback = false; 1103 return; 1104 } 1105 1106 /* By default assume that the page flags are accurate */ 1107 *dirty = PageDirty(page); 1108 *writeback = PageWriteback(page); 1109 1110 /* Verify dirty/writeback state if the filesystem supports it */ 1111 if (!page_has_private(page)) 1112 return; 1113 1114 mapping = page_mapping(page); 1115 if (mapping && mapping->a_ops->is_dirty_writeback) 1116 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1117 } 1118 1119 /* 1120 * shrink_page_list() returns the number of reclaimed pages 1121 */ 1122 static unsigned long shrink_page_list(struct list_head *page_list, 1123 struct pglist_data *pgdat, 1124 struct scan_control *sc, 1125 enum ttu_flags ttu_flags, 1126 struct reclaim_stat *stat, 1127 bool force_reclaim) 1128 { 1129 LIST_HEAD(ret_pages); 1130 LIST_HEAD(free_pages); 1131 unsigned nr_reclaimed = 0; 1132 unsigned pgactivate = 0; 1133 1134 memset(stat, 0, sizeof(*stat)); 1135 cond_resched(); 1136 1137 while (!list_empty(page_list)) { 1138 struct address_space *mapping; 1139 struct page *page; 1140 int may_enter_fs; 1141 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1142 bool dirty, writeback; 1143 unsigned int nr_pages; 1144 1145 cond_resched(); 1146 1147 page = lru_to_page(page_list); 1148 list_del(&page->lru); 1149 1150 if (!trylock_page(page)) 1151 goto keep; 1152 1153 VM_BUG_ON_PAGE(PageActive(page), page); 1154 1155 nr_pages = 1 << compound_order(page); 1156 1157 /* Account the number of base pages even though THP */ 1158 sc->nr_scanned += nr_pages; 1159 1160 if (unlikely(!page_evictable(page))) 1161 goto activate_locked; 1162 1163 if (!sc->may_unmap && page_mapped(page)) 1164 goto keep_locked; 1165 1166 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1167 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1168 1169 /* 1170 * The number of dirty pages determines if a node is marked 1171 * reclaim_congested which affects wait_iff_congested. kswapd 1172 * will stall and start writing pages if the tail of the LRU 1173 * is all dirty unqueued pages. 1174 */ 1175 page_check_dirty_writeback(page, &dirty, &writeback); 1176 if (dirty || writeback) 1177 stat->nr_dirty++; 1178 1179 if (dirty && !writeback) 1180 stat->nr_unqueued_dirty++; 1181 1182 /* 1183 * Treat this page as congested if the underlying BDI is or if 1184 * pages are cycling through the LRU so quickly that the 1185 * pages marked for immediate reclaim are making it to the 1186 * end of the LRU a second time. 1187 */ 1188 mapping = page_mapping(page); 1189 if (((dirty || writeback) && mapping && 1190 inode_write_congested(mapping->host)) || 1191 (writeback && PageReclaim(page))) 1192 stat->nr_congested++; 1193 1194 /* 1195 * If a page at the tail of the LRU is under writeback, there 1196 * are three cases to consider. 1197 * 1198 * 1) If reclaim is encountering an excessive number of pages 1199 * under writeback and this page is both under writeback and 1200 * PageReclaim then it indicates that pages are being queued 1201 * for IO but are being recycled through the LRU before the 1202 * IO can complete. Waiting on the page itself risks an 1203 * indefinite stall if it is impossible to writeback the 1204 * page due to IO error or disconnected storage so instead 1205 * note that the LRU is being scanned too quickly and the 1206 * caller can stall after page list has been processed. 1207 * 1208 * 2) Global or new memcg reclaim encounters a page that is 1209 * not marked for immediate reclaim, or the caller does not 1210 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1211 * not to fs). In this case mark the page for immediate 1212 * reclaim and continue scanning. 1213 * 1214 * Require may_enter_fs because we would wait on fs, which 1215 * may not have submitted IO yet. And the loop driver might 1216 * enter reclaim, and deadlock if it waits on a page for 1217 * which it is needed to do the write (loop masks off 1218 * __GFP_IO|__GFP_FS for this reason); but more thought 1219 * would probably show more reasons. 1220 * 1221 * 3) Legacy memcg encounters a page that is already marked 1222 * PageReclaim. memcg does not have any dirty pages 1223 * throttling so we could easily OOM just because too many 1224 * pages are in writeback and there is nothing else to 1225 * reclaim. Wait for the writeback to complete. 1226 * 1227 * In cases 1) and 2) we activate the pages to get them out of 1228 * the way while we continue scanning for clean pages on the 1229 * inactive list and refilling from the active list. The 1230 * observation here is that waiting for disk writes is more 1231 * expensive than potentially causing reloads down the line. 1232 * Since they're marked for immediate reclaim, they won't put 1233 * memory pressure on the cache working set any longer than it 1234 * takes to write them to disk. 1235 */ 1236 if (PageWriteback(page)) { 1237 /* Case 1 above */ 1238 if (current_is_kswapd() && 1239 PageReclaim(page) && 1240 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1241 stat->nr_immediate++; 1242 goto activate_locked; 1243 1244 /* Case 2 above */ 1245 } else if (sane_reclaim(sc) || 1246 !PageReclaim(page) || !may_enter_fs) { 1247 /* 1248 * This is slightly racy - end_page_writeback() 1249 * might have just cleared PageReclaim, then 1250 * setting PageReclaim here end up interpreted 1251 * as PageReadahead - but that does not matter 1252 * enough to care. What we do want is for this 1253 * page to have PageReclaim set next time memcg 1254 * reclaim reaches the tests above, so it will 1255 * then wait_on_page_writeback() to avoid OOM; 1256 * and it's also appropriate in global reclaim. 1257 */ 1258 SetPageReclaim(page); 1259 stat->nr_writeback++; 1260 goto activate_locked; 1261 1262 /* Case 3 above */ 1263 } else { 1264 unlock_page(page); 1265 wait_on_page_writeback(page); 1266 /* then go back and try same page again */ 1267 list_add_tail(&page->lru, page_list); 1268 continue; 1269 } 1270 } 1271 1272 if (!force_reclaim) 1273 references = page_check_references(page, sc); 1274 1275 switch (references) { 1276 case PAGEREF_ACTIVATE: 1277 goto activate_locked; 1278 case PAGEREF_KEEP: 1279 stat->nr_ref_keep += nr_pages; 1280 goto keep_locked; 1281 case PAGEREF_RECLAIM: 1282 case PAGEREF_RECLAIM_CLEAN: 1283 ; /* try to reclaim the page below */ 1284 } 1285 1286 /* 1287 * Anonymous process memory has backing store? 1288 * Try to allocate it some swap space here. 1289 * Lazyfree page could be freed directly 1290 */ 1291 if (PageAnon(page) && PageSwapBacked(page)) { 1292 if (!PageSwapCache(page)) { 1293 if (!(sc->gfp_mask & __GFP_IO)) 1294 goto keep_locked; 1295 if (PageTransHuge(page)) { 1296 /* cannot split THP, skip it */ 1297 if (!can_split_huge_page(page, NULL)) 1298 goto activate_locked; 1299 /* 1300 * Split pages without a PMD map right 1301 * away. Chances are some or all of the 1302 * tail pages can be freed without IO. 1303 */ 1304 if (!compound_mapcount(page) && 1305 split_huge_page_to_list(page, 1306 page_list)) 1307 goto activate_locked; 1308 } 1309 if (!add_to_swap(page)) { 1310 if (!PageTransHuge(page)) 1311 goto activate_locked_split; 1312 /* Fallback to swap normal pages */ 1313 if (split_huge_page_to_list(page, 1314 page_list)) 1315 goto activate_locked; 1316 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1317 count_vm_event(THP_SWPOUT_FALLBACK); 1318 #endif 1319 if (!add_to_swap(page)) 1320 goto activate_locked_split; 1321 } 1322 1323 may_enter_fs = 1; 1324 1325 /* Adding to swap updated mapping */ 1326 mapping = page_mapping(page); 1327 } 1328 } else if (unlikely(PageTransHuge(page))) { 1329 /* Split file THP */ 1330 if (split_huge_page_to_list(page, page_list)) 1331 goto keep_locked; 1332 } 1333 1334 /* 1335 * THP may get split above, need minus tail pages and update 1336 * nr_pages to avoid accounting tail pages twice. 1337 * 1338 * The tail pages that are added into swap cache successfully 1339 * reach here. 1340 */ 1341 if ((nr_pages > 1) && !PageTransHuge(page)) { 1342 sc->nr_scanned -= (nr_pages - 1); 1343 nr_pages = 1; 1344 } 1345 1346 /* 1347 * The page is mapped into the page tables of one or more 1348 * processes. Try to unmap it here. 1349 */ 1350 if (page_mapped(page)) { 1351 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1352 1353 if (unlikely(PageTransHuge(page))) 1354 flags |= TTU_SPLIT_HUGE_PMD; 1355 if (!try_to_unmap(page, flags)) { 1356 stat->nr_unmap_fail += nr_pages; 1357 goto activate_locked; 1358 } 1359 } 1360 1361 if (PageDirty(page)) { 1362 /* 1363 * Only kswapd can writeback filesystem pages 1364 * to avoid risk of stack overflow. But avoid 1365 * injecting inefficient single-page IO into 1366 * flusher writeback as much as possible: only 1367 * write pages when we've encountered many 1368 * dirty pages, and when we've already scanned 1369 * the rest of the LRU for clean pages and see 1370 * the same dirty pages again (PageReclaim). 1371 */ 1372 if (page_is_file_cache(page) && 1373 (!current_is_kswapd() || !PageReclaim(page) || 1374 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1375 /* 1376 * Immediately reclaim when written back. 1377 * Similar in principal to deactivate_page() 1378 * except we already have the page isolated 1379 * and know it's dirty 1380 */ 1381 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1382 SetPageReclaim(page); 1383 1384 goto activate_locked; 1385 } 1386 1387 if (references == PAGEREF_RECLAIM_CLEAN) 1388 goto keep_locked; 1389 if (!may_enter_fs) 1390 goto keep_locked; 1391 if (!sc->may_writepage) 1392 goto keep_locked; 1393 1394 /* 1395 * Page is dirty. Flush the TLB if a writable entry 1396 * potentially exists to avoid CPU writes after IO 1397 * starts and then write it out here. 1398 */ 1399 try_to_unmap_flush_dirty(); 1400 switch (pageout(page, mapping, sc)) { 1401 case PAGE_KEEP: 1402 goto keep_locked; 1403 case PAGE_ACTIVATE: 1404 goto activate_locked; 1405 case PAGE_SUCCESS: 1406 if (PageWriteback(page)) 1407 goto keep; 1408 if (PageDirty(page)) 1409 goto keep; 1410 1411 /* 1412 * A synchronous write - probably a ramdisk. Go 1413 * ahead and try to reclaim the page. 1414 */ 1415 if (!trylock_page(page)) 1416 goto keep; 1417 if (PageDirty(page) || PageWriteback(page)) 1418 goto keep_locked; 1419 mapping = page_mapping(page); 1420 case PAGE_CLEAN: 1421 ; /* try to free the page below */ 1422 } 1423 } 1424 1425 /* 1426 * If the page has buffers, try to free the buffer mappings 1427 * associated with this page. If we succeed we try to free 1428 * the page as well. 1429 * 1430 * We do this even if the page is PageDirty(). 1431 * try_to_release_page() does not perform I/O, but it is 1432 * possible for a page to have PageDirty set, but it is actually 1433 * clean (all its buffers are clean). This happens if the 1434 * buffers were written out directly, with submit_bh(). ext3 1435 * will do this, as well as the blockdev mapping. 1436 * try_to_release_page() will discover that cleanness and will 1437 * drop the buffers and mark the page clean - it can be freed. 1438 * 1439 * Rarely, pages can have buffers and no ->mapping. These are 1440 * the pages which were not successfully invalidated in 1441 * truncate_complete_page(). We try to drop those buffers here 1442 * and if that worked, and the page is no longer mapped into 1443 * process address space (page_count == 1) it can be freed. 1444 * Otherwise, leave the page on the LRU so it is swappable. 1445 */ 1446 if (page_has_private(page)) { 1447 if (!try_to_release_page(page, sc->gfp_mask)) 1448 goto activate_locked; 1449 if (!mapping && page_count(page) == 1) { 1450 unlock_page(page); 1451 if (put_page_testzero(page)) 1452 goto free_it; 1453 else { 1454 /* 1455 * rare race with speculative reference. 1456 * the speculative reference will free 1457 * this page shortly, so we may 1458 * increment nr_reclaimed here (and 1459 * leave it off the LRU). 1460 */ 1461 nr_reclaimed++; 1462 continue; 1463 } 1464 } 1465 } 1466 1467 if (PageAnon(page) && !PageSwapBacked(page)) { 1468 /* follow __remove_mapping for reference */ 1469 if (!page_ref_freeze(page, 1)) 1470 goto keep_locked; 1471 if (PageDirty(page)) { 1472 page_ref_unfreeze(page, 1); 1473 goto keep_locked; 1474 } 1475 1476 count_vm_event(PGLAZYFREED); 1477 count_memcg_page_event(page, PGLAZYFREED); 1478 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1479 goto keep_locked; 1480 1481 unlock_page(page); 1482 free_it: 1483 /* 1484 * THP may get swapped out in a whole, need account 1485 * all base pages. 1486 */ 1487 nr_reclaimed += nr_pages; 1488 1489 /* 1490 * Is there need to periodically free_page_list? It would 1491 * appear not as the counts should be low 1492 */ 1493 if (unlikely(PageTransHuge(page))) { 1494 mem_cgroup_uncharge(page); 1495 (*get_compound_page_dtor(page))(page); 1496 } else 1497 list_add(&page->lru, &free_pages); 1498 continue; 1499 1500 activate_locked_split: 1501 /* 1502 * The tail pages that are failed to add into swap cache 1503 * reach here. Fixup nr_scanned and nr_pages. 1504 */ 1505 if (nr_pages > 1) { 1506 sc->nr_scanned -= (nr_pages - 1); 1507 nr_pages = 1; 1508 } 1509 activate_locked: 1510 /* Not a candidate for swapping, so reclaim swap space. */ 1511 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1512 PageMlocked(page))) 1513 try_to_free_swap(page); 1514 VM_BUG_ON_PAGE(PageActive(page), page); 1515 if (!PageMlocked(page)) { 1516 int type = page_is_file_cache(page); 1517 SetPageActive(page); 1518 stat->nr_activate[type] += nr_pages; 1519 count_memcg_page_event(page, PGACTIVATE); 1520 } 1521 keep_locked: 1522 unlock_page(page); 1523 keep: 1524 list_add(&page->lru, &ret_pages); 1525 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1526 } 1527 1528 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1529 1530 mem_cgroup_uncharge_list(&free_pages); 1531 try_to_unmap_flush(); 1532 free_unref_page_list(&free_pages); 1533 1534 list_splice(&ret_pages, page_list); 1535 count_vm_events(PGACTIVATE, pgactivate); 1536 1537 return nr_reclaimed; 1538 } 1539 1540 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1541 struct list_head *page_list) 1542 { 1543 struct scan_control sc = { 1544 .gfp_mask = GFP_KERNEL, 1545 .priority = DEF_PRIORITY, 1546 .may_unmap = 1, 1547 }; 1548 struct reclaim_stat dummy_stat; 1549 unsigned long ret; 1550 struct page *page, *next; 1551 LIST_HEAD(clean_pages); 1552 1553 list_for_each_entry_safe(page, next, page_list, lru) { 1554 if (page_is_file_cache(page) && !PageDirty(page) && 1555 !__PageMovable(page) && !PageUnevictable(page)) { 1556 ClearPageActive(page); 1557 list_move(&page->lru, &clean_pages); 1558 } 1559 } 1560 1561 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1562 TTU_IGNORE_ACCESS, &dummy_stat, true); 1563 list_splice(&clean_pages, page_list); 1564 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1565 return ret; 1566 } 1567 1568 /* 1569 * Attempt to remove the specified page from its LRU. Only take this page 1570 * if it is of the appropriate PageActive status. Pages which are being 1571 * freed elsewhere are also ignored. 1572 * 1573 * page: page to consider 1574 * mode: one of the LRU isolation modes defined above 1575 * 1576 * returns 0 on success, -ve errno on failure. 1577 */ 1578 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1579 { 1580 int ret = -EINVAL; 1581 1582 /* Only take pages on the LRU. */ 1583 if (!PageLRU(page)) 1584 return ret; 1585 1586 /* Compaction should not handle unevictable pages but CMA can do so */ 1587 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1588 return ret; 1589 1590 ret = -EBUSY; 1591 1592 /* 1593 * To minimise LRU disruption, the caller can indicate that it only 1594 * wants to isolate pages it will be able to operate on without 1595 * blocking - clean pages for the most part. 1596 * 1597 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1598 * that it is possible to migrate without blocking 1599 */ 1600 if (mode & ISOLATE_ASYNC_MIGRATE) { 1601 /* All the caller can do on PageWriteback is block */ 1602 if (PageWriteback(page)) 1603 return ret; 1604 1605 if (PageDirty(page)) { 1606 struct address_space *mapping; 1607 bool migrate_dirty; 1608 1609 /* 1610 * Only pages without mappings or that have a 1611 * ->migratepage callback are possible to migrate 1612 * without blocking. However, we can be racing with 1613 * truncation so it's necessary to lock the page 1614 * to stabilise the mapping as truncation holds 1615 * the page lock until after the page is removed 1616 * from the page cache. 1617 */ 1618 if (!trylock_page(page)) 1619 return ret; 1620 1621 mapping = page_mapping(page); 1622 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1623 unlock_page(page); 1624 if (!migrate_dirty) 1625 return ret; 1626 } 1627 } 1628 1629 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1630 return ret; 1631 1632 if (likely(get_page_unless_zero(page))) { 1633 /* 1634 * Be careful not to clear PageLRU until after we're 1635 * sure the page is not being freed elsewhere -- the 1636 * page release code relies on it. 1637 */ 1638 ClearPageLRU(page); 1639 ret = 0; 1640 } 1641 1642 return ret; 1643 } 1644 1645 1646 /* 1647 * Update LRU sizes after isolating pages. The LRU size updates must 1648 * be complete before mem_cgroup_update_lru_size due to a santity check. 1649 */ 1650 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1651 enum lru_list lru, unsigned long *nr_zone_taken) 1652 { 1653 int zid; 1654 1655 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1656 if (!nr_zone_taken[zid]) 1657 continue; 1658 1659 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1660 #ifdef CONFIG_MEMCG 1661 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1662 #endif 1663 } 1664 1665 } 1666 1667 /** 1668 * pgdat->lru_lock is heavily contended. Some of the functions that 1669 * shrink the lists perform better by taking out a batch of pages 1670 * and working on them outside the LRU lock. 1671 * 1672 * For pagecache intensive workloads, this function is the hottest 1673 * spot in the kernel (apart from copy_*_user functions). 1674 * 1675 * Appropriate locks must be held before calling this function. 1676 * 1677 * @nr_to_scan: The number of eligible pages to look through on the list. 1678 * @lruvec: The LRU vector to pull pages from. 1679 * @dst: The temp list to put pages on to. 1680 * @nr_scanned: The number of pages that were scanned. 1681 * @sc: The scan_control struct for this reclaim session 1682 * @mode: One of the LRU isolation modes 1683 * @lru: LRU list id for isolating 1684 * 1685 * returns how many pages were moved onto *@dst. 1686 */ 1687 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1688 struct lruvec *lruvec, struct list_head *dst, 1689 unsigned long *nr_scanned, struct scan_control *sc, 1690 enum lru_list lru) 1691 { 1692 struct list_head *src = &lruvec->lists[lru]; 1693 unsigned long nr_taken = 0; 1694 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1695 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1696 unsigned long skipped = 0; 1697 unsigned long scan, total_scan, nr_pages; 1698 LIST_HEAD(pages_skipped); 1699 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1700 1701 total_scan = 0; 1702 scan = 0; 1703 while (scan < nr_to_scan && !list_empty(src)) { 1704 struct page *page; 1705 1706 page = lru_to_page(src); 1707 prefetchw_prev_lru_page(page, src, flags); 1708 1709 VM_BUG_ON_PAGE(!PageLRU(page), page); 1710 1711 nr_pages = 1 << compound_order(page); 1712 total_scan += nr_pages; 1713 1714 if (page_zonenum(page) > sc->reclaim_idx) { 1715 list_move(&page->lru, &pages_skipped); 1716 nr_skipped[page_zonenum(page)] += nr_pages; 1717 continue; 1718 } 1719 1720 /* 1721 * Do not count skipped pages because that makes the function 1722 * return with no isolated pages if the LRU mostly contains 1723 * ineligible pages. This causes the VM to not reclaim any 1724 * pages, triggering a premature OOM. 1725 * 1726 * Account all tail pages of THP. This would not cause 1727 * premature OOM since __isolate_lru_page() returns -EBUSY 1728 * only when the page is being freed somewhere else. 1729 */ 1730 scan += nr_pages; 1731 switch (__isolate_lru_page(page, mode)) { 1732 case 0: 1733 nr_taken += nr_pages; 1734 nr_zone_taken[page_zonenum(page)] += nr_pages; 1735 list_move(&page->lru, dst); 1736 break; 1737 1738 case -EBUSY: 1739 /* else it is being freed elsewhere */ 1740 list_move(&page->lru, src); 1741 continue; 1742 1743 default: 1744 BUG(); 1745 } 1746 } 1747 1748 /* 1749 * Splice any skipped pages to the start of the LRU list. Note that 1750 * this disrupts the LRU order when reclaiming for lower zones but 1751 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1752 * scanning would soon rescan the same pages to skip and put the 1753 * system at risk of premature OOM. 1754 */ 1755 if (!list_empty(&pages_skipped)) { 1756 int zid; 1757 1758 list_splice(&pages_skipped, src); 1759 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1760 if (!nr_skipped[zid]) 1761 continue; 1762 1763 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1764 skipped += nr_skipped[zid]; 1765 } 1766 } 1767 *nr_scanned = total_scan; 1768 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1769 total_scan, skipped, nr_taken, mode, lru); 1770 update_lru_sizes(lruvec, lru, nr_zone_taken); 1771 return nr_taken; 1772 } 1773 1774 /** 1775 * isolate_lru_page - tries to isolate a page from its LRU list 1776 * @page: page to isolate from its LRU list 1777 * 1778 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1779 * vmstat statistic corresponding to whatever LRU list the page was on. 1780 * 1781 * Returns 0 if the page was removed from an LRU list. 1782 * Returns -EBUSY if the page was not on an LRU list. 1783 * 1784 * The returned page will have PageLRU() cleared. If it was found on 1785 * the active list, it will have PageActive set. If it was found on 1786 * the unevictable list, it will have the PageUnevictable bit set. That flag 1787 * may need to be cleared by the caller before letting the page go. 1788 * 1789 * The vmstat statistic corresponding to the list on which the page was 1790 * found will be decremented. 1791 * 1792 * Restrictions: 1793 * 1794 * (1) Must be called with an elevated refcount on the page. This is a 1795 * fundamentnal difference from isolate_lru_pages (which is called 1796 * without a stable reference). 1797 * (2) the lru_lock must not be held. 1798 * (3) interrupts must be enabled. 1799 */ 1800 int isolate_lru_page(struct page *page) 1801 { 1802 int ret = -EBUSY; 1803 1804 VM_BUG_ON_PAGE(!page_count(page), page); 1805 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1806 1807 if (PageLRU(page)) { 1808 pg_data_t *pgdat = page_pgdat(page); 1809 struct lruvec *lruvec; 1810 1811 spin_lock_irq(&pgdat->lru_lock); 1812 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1813 if (PageLRU(page)) { 1814 int lru = page_lru(page); 1815 get_page(page); 1816 ClearPageLRU(page); 1817 del_page_from_lru_list(page, lruvec, lru); 1818 ret = 0; 1819 } 1820 spin_unlock_irq(&pgdat->lru_lock); 1821 } 1822 return ret; 1823 } 1824 1825 /* 1826 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1827 * then get resheduled. When there are massive number of tasks doing page 1828 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1829 * the LRU list will go small and be scanned faster than necessary, leading to 1830 * unnecessary swapping, thrashing and OOM. 1831 */ 1832 static int too_many_isolated(struct pglist_data *pgdat, int file, 1833 struct scan_control *sc) 1834 { 1835 unsigned long inactive, isolated; 1836 1837 if (current_is_kswapd()) 1838 return 0; 1839 1840 if (!sane_reclaim(sc)) 1841 return 0; 1842 1843 if (file) { 1844 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1845 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1846 } else { 1847 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1848 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1849 } 1850 1851 /* 1852 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1853 * won't get blocked by normal direct-reclaimers, forming a circular 1854 * deadlock. 1855 */ 1856 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1857 inactive >>= 3; 1858 1859 return isolated > inactive; 1860 } 1861 1862 /* 1863 * This moves pages from @list to corresponding LRU list. 1864 * 1865 * We move them the other way if the page is referenced by one or more 1866 * processes, from rmap. 1867 * 1868 * If the pages are mostly unmapped, the processing is fast and it is 1869 * appropriate to hold zone_lru_lock across the whole operation. But if 1870 * the pages are mapped, the processing is slow (page_referenced()) so we 1871 * should drop zone_lru_lock around each page. It's impossible to balance 1872 * this, so instead we remove the pages from the LRU while processing them. 1873 * It is safe to rely on PG_active against the non-LRU pages in here because 1874 * nobody will play with that bit on a non-LRU page. 1875 * 1876 * The downside is that we have to touch page->_refcount against each page. 1877 * But we had to alter page->flags anyway. 1878 * 1879 * Returns the number of pages moved to the given lruvec. 1880 */ 1881 1882 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1883 struct list_head *list) 1884 { 1885 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1886 int nr_pages, nr_moved = 0; 1887 LIST_HEAD(pages_to_free); 1888 struct page *page; 1889 enum lru_list lru; 1890 1891 while (!list_empty(list)) { 1892 page = lru_to_page(list); 1893 VM_BUG_ON_PAGE(PageLRU(page), page); 1894 if (unlikely(!page_evictable(page))) { 1895 list_del(&page->lru); 1896 spin_unlock_irq(&pgdat->lru_lock); 1897 putback_lru_page(page); 1898 spin_lock_irq(&pgdat->lru_lock); 1899 continue; 1900 } 1901 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1902 1903 SetPageLRU(page); 1904 lru = page_lru(page); 1905 1906 nr_pages = hpage_nr_pages(page); 1907 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1908 list_move(&page->lru, &lruvec->lists[lru]); 1909 1910 if (put_page_testzero(page)) { 1911 __ClearPageLRU(page); 1912 __ClearPageActive(page); 1913 del_page_from_lru_list(page, lruvec, lru); 1914 1915 if (unlikely(PageCompound(page))) { 1916 spin_unlock_irq(&pgdat->lru_lock); 1917 mem_cgroup_uncharge(page); 1918 (*get_compound_page_dtor(page))(page); 1919 spin_lock_irq(&pgdat->lru_lock); 1920 } else 1921 list_add(&page->lru, &pages_to_free); 1922 } else { 1923 nr_moved += nr_pages; 1924 } 1925 } 1926 1927 /* 1928 * To save our caller's stack, now use input list for pages to free. 1929 */ 1930 list_splice(&pages_to_free, list); 1931 1932 return nr_moved; 1933 } 1934 1935 /* 1936 * If a kernel thread (such as nfsd for loop-back mounts) services 1937 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1938 * In that case we should only throttle if the backing device it is 1939 * writing to is congested. In other cases it is safe to throttle. 1940 */ 1941 static int current_may_throttle(void) 1942 { 1943 return !(current->flags & PF_LESS_THROTTLE) || 1944 current->backing_dev_info == NULL || 1945 bdi_write_congested(current->backing_dev_info); 1946 } 1947 1948 /* 1949 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1950 * of reclaimed pages 1951 */ 1952 static noinline_for_stack unsigned long 1953 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1954 struct scan_control *sc, enum lru_list lru) 1955 { 1956 LIST_HEAD(page_list); 1957 unsigned long nr_scanned; 1958 unsigned long nr_reclaimed = 0; 1959 unsigned long nr_taken; 1960 struct reclaim_stat stat; 1961 int file = is_file_lru(lru); 1962 enum vm_event_item item; 1963 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1964 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1965 bool stalled = false; 1966 1967 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1968 if (stalled) 1969 return 0; 1970 1971 /* wait a bit for the reclaimer. */ 1972 msleep(100); 1973 stalled = true; 1974 1975 /* We are about to die and free our memory. Return now. */ 1976 if (fatal_signal_pending(current)) 1977 return SWAP_CLUSTER_MAX; 1978 } 1979 1980 lru_add_drain(); 1981 1982 spin_lock_irq(&pgdat->lru_lock); 1983 1984 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1985 &nr_scanned, sc, lru); 1986 1987 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1988 reclaim_stat->recent_scanned[file] += nr_taken; 1989 1990 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1991 if (global_reclaim(sc)) 1992 __count_vm_events(item, nr_scanned); 1993 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1994 spin_unlock_irq(&pgdat->lru_lock); 1995 1996 if (nr_taken == 0) 1997 return 0; 1998 1999 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 2000 &stat, false); 2001 2002 spin_lock_irq(&pgdat->lru_lock); 2003 2004 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2005 if (global_reclaim(sc)) 2006 __count_vm_events(item, nr_reclaimed); 2007 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2008 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 2009 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 2010 2011 move_pages_to_lru(lruvec, &page_list); 2012 2013 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2014 2015 spin_unlock_irq(&pgdat->lru_lock); 2016 2017 mem_cgroup_uncharge_list(&page_list); 2018 free_unref_page_list(&page_list); 2019 2020 /* 2021 * If dirty pages are scanned that are not queued for IO, it 2022 * implies that flushers are not doing their job. This can 2023 * happen when memory pressure pushes dirty pages to the end of 2024 * the LRU before the dirty limits are breached and the dirty 2025 * data has expired. It can also happen when the proportion of 2026 * dirty pages grows not through writes but through memory 2027 * pressure reclaiming all the clean cache. And in some cases, 2028 * the flushers simply cannot keep up with the allocation 2029 * rate. Nudge the flusher threads in case they are asleep. 2030 */ 2031 if (stat.nr_unqueued_dirty == nr_taken) 2032 wakeup_flusher_threads(WB_REASON_VMSCAN); 2033 2034 sc->nr.dirty += stat.nr_dirty; 2035 sc->nr.congested += stat.nr_congested; 2036 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2037 sc->nr.writeback += stat.nr_writeback; 2038 sc->nr.immediate += stat.nr_immediate; 2039 sc->nr.taken += nr_taken; 2040 if (file) 2041 sc->nr.file_taken += nr_taken; 2042 2043 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2044 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2045 return nr_reclaimed; 2046 } 2047 2048 static void shrink_active_list(unsigned long nr_to_scan, 2049 struct lruvec *lruvec, 2050 struct scan_control *sc, 2051 enum lru_list lru) 2052 { 2053 unsigned long nr_taken; 2054 unsigned long nr_scanned; 2055 unsigned long vm_flags; 2056 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2057 LIST_HEAD(l_active); 2058 LIST_HEAD(l_inactive); 2059 struct page *page; 2060 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2061 unsigned nr_deactivate, nr_activate; 2062 unsigned nr_rotated = 0; 2063 int file = is_file_lru(lru); 2064 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2065 2066 lru_add_drain(); 2067 2068 spin_lock_irq(&pgdat->lru_lock); 2069 2070 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2071 &nr_scanned, sc, lru); 2072 2073 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2074 reclaim_stat->recent_scanned[file] += nr_taken; 2075 2076 __count_vm_events(PGREFILL, nr_scanned); 2077 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2078 2079 spin_unlock_irq(&pgdat->lru_lock); 2080 2081 while (!list_empty(&l_hold)) { 2082 cond_resched(); 2083 page = lru_to_page(&l_hold); 2084 list_del(&page->lru); 2085 2086 if (unlikely(!page_evictable(page))) { 2087 putback_lru_page(page); 2088 continue; 2089 } 2090 2091 if (unlikely(buffer_heads_over_limit)) { 2092 if (page_has_private(page) && trylock_page(page)) { 2093 if (page_has_private(page)) 2094 try_to_release_page(page, 0); 2095 unlock_page(page); 2096 } 2097 } 2098 2099 if (page_referenced(page, 0, sc->target_mem_cgroup, 2100 &vm_flags)) { 2101 nr_rotated += hpage_nr_pages(page); 2102 /* 2103 * Identify referenced, file-backed active pages and 2104 * give them one more trip around the active list. So 2105 * that executable code get better chances to stay in 2106 * memory under moderate memory pressure. Anon pages 2107 * are not likely to be evicted by use-once streaming 2108 * IO, plus JVM can create lots of anon VM_EXEC pages, 2109 * so we ignore them here. 2110 */ 2111 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2112 list_add(&page->lru, &l_active); 2113 continue; 2114 } 2115 } 2116 2117 ClearPageActive(page); /* we are de-activating */ 2118 SetPageWorkingset(page); 2119 list_add(&page->lru, &l_inactive); 2120 } 2121 2122 /* 2123 * Move pages back to the lru list. 2124 */ 2125 spin_lock_irq(&pgdat->lru_lock); 2126 /* 2127 * Count referenced pages from currently used mappings as rotated, 2128 * even though only some of them are actually re-activated. This 2129 * helps balance scan pressure between file and anonymous pages in 2130 * get_scan_count. 2131 */ 2132 reclaim_stat->recent_rotated[file] += nr_rotated; 2133 2134 nr_activate = move_pages_to_lru(lruvec, &l_active); 2135 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2136 /* Keep all free pages in l_active list */ 2137 list_splice(&l_inactive, &l_active); 2138 2139 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2140 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2141 2142 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2143 spin_unlock_irq(&pgdat->lru_lock); 2144 2145 mem_cgroup_uncharge_list(&l_active); 2146 free_unref_page_list(&l_active); 2147 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2148 nr_deactivate, nr_rotated, sc->priority, file); 2149 } 2150 2151 /* 2152 * The inactive anon list should be small enough that the VM never has 2153 * to do too much work. 2154 * 2155 * The inactive file list should be small enough to leave most memory 2156 * to the established workingset on the scan-resistant active list, 2157 * but large enough to avoid thrashing the aggregate readahead window. 2158 * 2159 * Both inactive lists should also be large enough that each inactive 2160 * page has a chance to be referenced again before it is reclaimed. 2161 * 2162 * If that fails and refaulting is observed, the inactive list grows. 2163 * 2164 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2165 * on this LRU, maintained by the pageout code. An inactive_ratio 2166 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2167 * 2168 * total target max 2169 * memory ratio inactive 2170 * ------------------------------------- 2171 * 10MB 1 5MB 2172 * 100MB 1 50MB 2173 * 1GB 3 250MB 2174 * 10GB 10 0.9GB 2175 * 100GB 31 3GB 2176 * 1TB 101 10GB 2177 * 10TB 320 32GB 2178 */ 2179 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2180 struct scan_control *sc, bool trace) 2181 { 2182 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2183 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2184 enum lru_list inactive_lru = file * LRU_FILE; 2185 unsigned long inactive, active; 2186 unsigned long inactive_ratio; 2187 unsigned long refaults; 2188 unsigned long gb; 2189 2190 /* 2191 * If we don't have swap space, anonymous page deactivation 2192 * is pointless. 2193 */ 2194 if (!file && !total_swap_pages) 2195 return false; 2196 2197 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2198 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2199 2200 /* 2201 * When refaults are being observed, it means a new workingset 2202 * is being established. Disable active list protection to get 2203 * rid of the stale workingset quickly. 2204 */ 2205 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2206 if (file && lruvec->refaults != refaults) { 2207 inactive_ratio = 0; 2208 } else { 2209 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2210 if (gb) 2211 inactive_ratio = int_sqrt(10 * gb); 2212 else 2213 inactive_ratio = 1; 2214 } 2215 2216 if (trace) 2217 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2218 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2219 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2220 inactive_ratio, file); 2221 2222 return inactive * inactive_ratio < active; 2223 } 2224 2225 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2226 struct lruvec *lruvec, struct scan_control *sc) 2227 { 2228 if (is_active_lru(lru)) { 2229 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2230 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2231 return 0; 2232 } 2233 2234 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2235 } 2236 2237 enum scan_balance { 2238 SCAN_EQUAL, 2239 SCAN_FRACT, 2240 SCAN_ANON, 2241 SCAN_FILE, 2242 }; 2243 2244 /* 2245 * Determine how aggressively the anon and file LRU lists should be 2246 * scanned. The relative value of each set of LRU lists is determined 2247 * by looking at the fraction of the pages scanned we did rotate back 2248 * onto the active list instead of evict. 2249 * 2250 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2251 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2252 */ 2253 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2254 struct scan_control *sc, unsigned long *nr, 2255 unsigned long *lru_pages) 2256 { 2257 int swappiness = mem_cgroup_swappiness(memcg); 2258 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2259 u64 fraction[2]; 2260 u64 denominator = 0; /* gcc */ 2261 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2262 unsigned long anon_prio, file_prio; 2263 enum scan_balance scan_balance; 2264 unsigned long anon, file; 2265 unsigned long ap, fp; 2266 enum lru_list lru; 2267 2268 /* If we have no swap space, do not bother scanning anon pages. */ 2269 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2270 scan_balance = SCAN_FILE; 2271 goto out; 2272 } 2273 2274 /* 2275 * Global reclaim will swap to prevent OOM even with no 2276 * swappiness, but memcg users want to use this knob to 2277 * disable swapping for individual groups completely when 2278 * using the memory controller's swap limit feature would be 2279 * too expensive. 2280 */ 2281 if (!global_reclaim(sc) && !swappiness) { 2282 scan_balance = SCAN_FILE; 2283 goto out; 2284 } 2285 2286 /* 2287 * Do not apply any pressure balancing cleverness when the 2288 * system is close to OOM, scan both anon and file equally 2289 * (unless the swappiness setting disagrees with swapping). 2290 */ 2291 if (!sc->priority && swappiness) { 2292 scan_balance = SCAN_EQUAL; 2293 goto out; 2294 } 2295 2296 /* 2297 * Prevent the reclaimer from falling into the cache trap: as 2298 * cache pages start out inactive, every cache fault will tip 2299 * the scan balance towards the file LRU. And as the file LRU 2300 * shrinks, so does the window for rotation from references. 2301 * This means we have a runaway feedback loop where a tiny 2302 * thrashing file LRU becomes infinitely more attractive than 2303 * anon pages. Try to detect this based on file LRU size. 2304 */ 2305 if (global_reclaim(sc)) { 2306 unsigned long pgdatfile; 2307 unsigned long pgdatfree; 2308 int z; 2309 unsigned long total_high_wmark = 0; 2310 2311 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2312 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2313 node_page_state(pgdat, NR_INACTIVE_FILE); 2314 2315 for (z = 0; z < MAX_NR_ZONES; z++) { 2316 struct zone *zone = &pgdat->node_zones[z]; 2317 if (!managed_zone(zone)) 2318 continue; 2319 2320 total_high_wmark += high_wmark_pages(zone); 2321 } 2322 2323 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2324 /* 2325 * Force SCAN_ANON if there are enough inactive 2326 * anonymous pages on the LRU in eligible zones. 2327 * Otherwise, the small LRU gets thrashed. 2328 */ 2329 if (!inactive_list_is_low(lruvec, false, sc, false) && 2330 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2331 >> sc->priority) { 2332 scan_balance = SCAN_ANON; 2333 goto out; 2334 } 2335 } 2336 } 2337 2338 /* 2339 * If there is enough inactive page cache, i.e. if the size of the 2340 * inactive list is greater than that of the active list *and* the 2341 * inactive list actually has some pages to scan on this priority, we 2342 * do not reclaim anything from the anonymous working set right now. 2343 * Without the second condition we could end up never scanning an 2344 * lruvec even if it has plenty of old anonymous pages unless the 2345 * system is under heavy pressure. 2346 */ 2347 if (!inactive_list_is_low(lruvec, true, sc, false) && 2348 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2349 scan_balance = SCAN_FILE; 2350 goto out; 2351 } 2352 2353 scan_balance = SCAN_FRACT; 2354 2355 /* 2356 * With swappiness at 100, anonymous and file have the same priority. 2357 * This scanning priority is essentially the inverse of IO cost. 2358 */ 2359 anon_prio = swappiness; 2360 file_prio = 200 - anon_prio; 2361 2362 /* 2363 * OK, so we have swap space and a fair amount of page cache 2364 * pages. We use the recently rotated / recently scanned 2365 * ratios to determine how valuable each cache is. 2366 * 2367 * Because workloads change over time (and to avoid overflow) 2368 * we keep these statistics as a floating average, which ends 2369 * up weighing recent references more than old ones. 2370 * 2371 * anon in [0], file in [1] 2372 */ 2373 2374 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2375 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2376 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2377 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2378 2379 spin_lock_irq(&pgdat->lru_lock); 2380 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2381 reclaim_stat->recent_scanned[0] /= 2; 2382 reclaim_stat->recent_rotated[0] /= 2; 2383 } 2384 2385 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2386 reclaim_stat->recent_scanned[1] /= 2; 2387 reclaim_stat->recent_rotated[1] /= 2; 2388 } 2389 2390 /* 2391 * The amount of pressure on anon vs file pages is inversely 2392 * proportional to the fraction of recently scanned pages on 2393 * each list that were recently referenced and in active use. 2394 */ 2395 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2396 ap /= reclaim_stat->recent_rotated[0] + 1; 2397 2398 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2399 fp /= reclaim_stat->recent_rotated[1] + 1; 2400 spin_unlock_irq(&pgdat->lru_lock); 2401 2402 fraction[0] = ap; 2403 fraction[1] = fp; 2404 denominator = ap + fp + 1; 2405 out: 2406 *lru_pages = 0; 2407 for_each_evictable_lru(lru) { 2408 int file = is_file_lru(lru); 2409 unsigned long size; 2410 unsigned long scan; 2411 2412 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2413 scan = size >> sc->priority; 2414 /* 2415 * If the cgroup's already been deleted, make sure to 2416 * scrape out the remaining cache. 2417 */ 2418 if (!scan && !mem_cgroup_online(memcg)) 2419 scan = min(size, SWAP_CLUSTER_MAX); 2420 2421 switch (scan_balance) { 2422 case SCAN_EQUAL: 2423 /* Scan lists relative to size */ 2424 break; 2425 case SCAN_FRACT: 2426 /* 2427 * Scan types proportional to swappiness and 2428 * their relative recent reclaim efficiency. 2429 * Make sure we don't miss the last page 2430 * because of a round-off error. 2431 */ 2432 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2433 denominator); 2434 break; 2435 case SCAN_FILE: 2436 case SCAN_ANON: 2437 /* Scan one type exclusively */ 2438 if ((scan_balance == SCAN_FILE) != file) { 2439 size = 0; 2440 scan = 0; 2441 } 2442 break; 2443 default: 2444 /* Look ma, no brain */ 2445 BUG(); 2446 } 2447 2448 *lru_pages += size; 2449 nr[lru] = scan; 2450 } 2451 } 2452 2453 /* 2454 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2455 */ 2456 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2457 struct scan_control *sc, unsigned long *lru_pages) 2458 { 2459 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2460 unsigned long nr[NR_LRU_LISTS]; 2461 unsigned long targets[NR_LRU_LISTS]; 2462 unsigned long nr_to_scan; 2463 enum lru_list lru; 2464 unsigned long nr_reclaimed = 0; 2465 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2466 struct blk_plug plug; 2467 bool scan_adjusted; 2468 2469 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2470 2471 /* Record the original scan target for proportional adjustments later */ 2472 memcpy(targets, nr, sizeof(nr)); 2473 2474 /* 2475 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2476 * event that can occur when there is little memory pressure e.g. 2477 * multiple streaming readers/writers. Hence, we do not abort scanning 2478 * when the requested number of pages are reclaimed when scanning at 2479 * DEF_PRIORITY on the assumption that the fact we are direct 2480 * reclaiming implies that kswapd is not keeping up and it is best to 2481 * do a batch of work at once. For memcg reclaim one check is made to 2482 * abort proportional reclaim if either the file or anon lru has already 2483 * dropped to zero at the first pass. 2484 */ 2485 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2486 sc->priority == DEF_PRIORITY); 2487 2488 blk_start_plug(&plug); 2489 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2490 nr[LRU_INACTIVE_FILE]) { 2491 unsigned long nr_anon, nr_file, percentage; 2492 unsigned long nr_scanned; 2493 2494 for_each_evictable_lru(lru) { 2495 if (nr[lru]) { 2496 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2497 nr[lru] -= nr_to_scan; 2498 2499 nr_reclaimed += shrink_list(lru, nr_to_scan, 2500 lruvec, sc); 2501 } 2502 } 2503 2504 cond_resched(); 2505 2506 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2507 continue; 2508 2509 /* 2510 * For kswapd and memcg, reclaim at least the number of pages 2511 * requested. Ensure that the anon and file LRUs are scanned 2512 * proportionally what was requested by get_scan_count(). We 2513 * stop reclaiming one LRU and reduce the amount scanning 2514 * proportional to the original scan target. 2515 */ 2516 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2517 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2518 2519 /* 2520 * It's just vindictive to attack the larger once the smaller 2521 * has gone to zero. And given the way we stop scanning the 2522 * smaller below, this makes sure that we only make one nudge 2523 * towards proportionality once we've got nr_to_reclaim. 2524 */ 2525 if (!nr_file || !nr_anon) 2526 break; 2527 2528 if (nr_file > nr_anon) { 2529 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2530 targets[LRU_ACTIVE_ANON] + 1; 2531 lru = LRU_BASE; 2532 percentage = nr_anon * 100 / scan_target; 2533 } else { 2534 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2535 targets[LRU_ACTIVE_FILE] + 1; 2536 lru = LRU_FILE; 2537 percentage = nr_file * 100 / scan_target; 2538 } 2539 2540 /* Stop scanning the smaller of the LRU */ 2541 nr[lru] = 0; 2542 nr[lru + LRU_ACTIVE] = 0; 2543 2544 /* 2545 * Recalculate the other LRU scan count based on its original 2546 * scan target and the percentage scanning already complete 2547 */ 2548 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2549 nr_scanned = targets[lru] - nr[lru]; 2550 nr[lru] = targets[lru] * (100 - percentage) / 100; 2551 nr[lru] -= min(nr[lru], nr_scanned); 2552 2553 lru += LRU_ACTIVE; 2554 nr_scanned = targets[lru] - nr[lru]; 2555 nr[lru] = targets[lru] * (100 - percentage) / 100; 2556 nr[lru] -= min(nr[lru], nr_scanned); 2557 2558 scan_adjusted = true; 2559 } 2560 blk_finish_plug(&plug); 2561 sc->nr_reclaimed += nr_reclaimed; 2562 2563 /* 2564 * Even if we did not try to evict anon pages at all, we want to 2565 * rebalance the anon lru active/inactive ratio. 2566 */ 2567 if (inactive_list_is_low(lruvec, false, sc, true)) 2568 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2569 sc, LRU_ACTIVE_ANON); 2570 } 2571 2572 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2573 static bool in_reclaim_compaction(struct scan_control *sc) 2574 { 2575 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2576 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2577 sc->priority < DEF_PRIORITY - 2)) 2578 return true; 2579 2580 return false; 2581 } 2582 2583 /* 2584 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2585 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2586 * true if more pages should be reclaimed such that when the page allocator 2587 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2588 * It will give up earlier than that if there is difficulty reclaiming pages. 2589 */ 2590 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2591 unsigned long nr_reclaimed, 2592 unsigned long nr_scanned, 2593 struct scan_control *sc) 2594 { 2595 unsigned long pages_for_compaction; 2596 unsigned long inactive_lru_pages; 2597 int z; 2598 2599 /* If not in reclaim/compaction mode, stop */ 2600 if (!in_reclaim_compaction(sc)) 2601 return false; 2602 2603 /* Consider stopping depending on scan and reclaim activity */ 2604 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2605 /* 2606 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2607 * full LRU list has been scanned and we are still failing 2608 * to reclaim pages. This full LRU scan is potentially 2609 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2610 */ 2611 if (!nr_reclaimed && !nr_scanned) 2612 return false; 2613 } else { 2614 /* 2615 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2616 * fail without consequence, stop if we failed to reclaim 2617 * any pages from the last SWAP_CLUSTER_MAX number of 2618 * pages that were scanned. This will return to the 2619 * caller faster at the risk reclaim/compaction and 2620 * the resulting allocation attempt fails 2621 */ 2622 if (!nr_reclaimed) 2623 return false; 2624 } 2625 2626 /* 2627 * If we have not reclaimed enough pages for compaction and the 2628 * inactive lists are large enough, continue reclaiming 2629 */ 2630 pages_for_compaction = compact_gap(sc->order); 2631 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2632 if (get_nr_swap_pages() > 0) 2633 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2634 if (sc->nr_reclaimed < pages_for_compaction && 2635 inactive_lru_pages > pages_for_compaction) 2636 return true; 2637 2638 /* If compaction would go ahead or the allocation would succeed, stop */ 2639 for (z = 0; z <= sc->reclaim_idx; z++) { 2640 struct zone *zone = &pgdat->node_zones[z]; 2641 if (!managed_zone(zone)) 2642 continue; 2643 2644 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2645 case COMPACT_SUCCESS: 2646 case COMPACT_CONTINUE: 2647 return false; 2648 default: 2649 /* check next zone */ 2650 ; 2651 } 2652 } 2653 return true; 2654 } 2655 2656 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2657 { 2658 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2659 (memcg && memcg_congested(pgdat, memcg)); 2660 } 2661 2662 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2663 { 2664 struct reclaim_state *reclaim_state = current->reclaim_state; 2665 unsigned long nr_reclaimed, nr_scanned; 2666 bool reclaimable = false; 2667 2668 do { 2669 struct mem_cgroup *root = sc->target_mem_cgroup; 2670 struct mem_cgroup_reclaim_cookie reclaim = { 2671 .pgdat = pgdat, 2672 .priority = sc->priority, 2673 }; 2674 unsigned long node_lru_pages = 0; 2675 struct mem_cgroup *memcg; 2676 2677 memset(&sc->nr, 0, sizeof(sc->nr)); 2678 2679 nr_reclaimed = sc->nr_reclaimed; 2680 nr_scanned = sc->nr_scanned; 2681 2682 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2683 do { 2684 unsigned long lru_pages; 2685 unsigned long reclaimed; 2686 unsigned long scanned; 2687 2688 switch (mem_cgroup_protected(root, memcg)) { 2689 case MEMCG_PROT_MIN: 2690 /* 2691 * Hard protection. 2692 * If there is no reclaimable memory, OOM. 2693 */ 2694 continue; 2695 case MEMCG_PROT_LOW: 2696 /* 2697 * Soft protection. 2698 * Respect the protection only as long as 2699 * there is an unprotected supply 2700 * of reclaimable memory from other cgroups. 2701 */ 2702 if (!sc->memcg_low_reclaim) { 2703 sc->memcg_low_skipped = 1; 2704 continue; 2705 } 2706 memcg_memory_event(memcg, MEMCG_LOW); 2707 break; 2708 case MEMCG_PROT_NONE: 2709 break; 2710 } 2711 2712 reclaimed = sc->nr_reclaimed; 2713 scanned = sc->nr_scanned; 2714 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2715 node_lru_pages += lru_pages; 2716 2717 if (sc->may_shrinkslab) { 2718 shrink_slab(sc->gfp_mask, pgdat->node_id, 2719 memcg, sc->priority); 2720 } 2721 2722 /* Record the group's reclaim efficiency */ 2723 vmpressure(sc->gfp_mask, memcg, false, 2724 sc->nr_scanned - scanned, 2725 sc->nr_reclaimed - reclaimed); 2726 2727 /* 2728 * Kswapd have to scan all memory cgroups to fulfill 2729 * the overall scan target for the node. 2730 * 2731 * Limit reclaim, on the other hand, only cares about 2732 * nr_to_reclaim pages to be reclaimed and it will 2733 * retry with decreasing priority if one round over the 2734 * whole hierarchy is not sufficient. 2735 */ 2736 if (!current_is_kswapd() && 2737 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2738 mem_cgroup_iter_break(root, memcg); 2739 break; 2740 } 2741 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2742 2743 if (reclaim_state) { 2744 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2745 reclaim_state->reclaimed_slab = 0; 2746 } 2747 2748 /* Record the subtree's reclaim efficiency */ 2749 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2750 sc->nr_scanned - nr_scanned, 2751 sc->nr_reclaimed - nr_reclaimed); 2752 2753 if (sc->nr_reclaimed - nr_reclaimed) 2754 reclaimable = true; 2755 2756 if (current_is_kswapd()) { 2757 /* 2758 * If reclaim is isolating dirty pages under writeback, 2759 * it implies that the long-lived page allocation rate 2760 * is exceeding the page laundering rate. Either the 2761 * global limits are not being effective at throttling 2762 * processes due to the page distribution throughout 2763 * zones or there is heavy usage of a slow backing 2764 * device. The only option is to throttle from reclaim 2765 * context which is not ideal as there is no guarantee 2766 * the dirtying process is throttled in the same way 2767 * balance_dirty_pages() manages. 2768 * 2769 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2770 * count the number of pages under pages flagged for 2771 * immediate reclaim and stall if any are encountered 2772 * in the nr_immediate check below. 2773 */ 2774 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2775 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2776 2777 /* 2778 * Tag a node as congested if all the dirty pages 2779 * scanned were backed by a congested BDI and 2780 * wait_iff_congested will stall. 2781 */ 2782 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2783 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2784 2785 /* Allow kswapd to start writing pages during reclaim.*/ 2786 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2787 set_bit(PGDAT_DIRTY, &pgdat->flags); 2788 2789 /* 2790 * If kswapd scans pages marked marked for immediate 2791 * reclaim and under writeback (nr_immediate), it 2792 * implies that pages are cycling through the LRU 2793 * faster than they are written so also forcibly stall. 2794 */ 2795 if (sc->nr.immediate) 2796 congestion_wait(BLK_RW_ASYNC, HZ/10); 2797 } 2798 2799 /* 2800 * Legacy memcg will stall in page writeback so avoid forcibly 2801 * stalling in wait_iff_congested(). 2802 */ 2803 if (!global_reclaim(sc) && sane_reclaim(sc) && 2804 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2805 set_memcg_congestion(pgdat, root, true); 2806 2807 /* 2808 * Stall direct reclaim for IO completions if underlying BDIs 2809 * and node is congested. Allow kswapd to continue until it 2810 * starts encountering unqueued dirty pages or cycling through 2811 * the LRU too quickly. 2812 */ 2813 if (!sc->hibernation_mode && !current_is_kswapd() && 2814 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2815 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2816 2817 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2818 sc->nr_scanned - nr_scanned, sc)); 2819 2820 /* 2821 * Kswapd gives up on balancing particular nodes after too 2822 * many failures to reclaim anything from them and goes to 2823 * sleep. On reclaim progress, reset the failure counter. A 2824 * successful direct reclaim run will revive a dormant kswapd. 2825 */ 2826 if (reclaimable) 2827 pgdat->kswapd_failures = 0; 2828 2829 return reclaimable; 2830 } 2831 2832 /* 2833 * Returns true if compaction should go ahead for a costly-order request, or 2834 * the allocation would already succeed without compaction. Return false if we 2835 * should reclaim first. 2836 */ 2837 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2838 { 2839 unsigned long watermark; 2840 enum compact_result suitable; 2841 2842 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2843 if (suitable == COMPACT_SUCCESS) 2844 /* Allocation should succeed already. Don't reclaim. */ 2845 return true; 2846 if (suitable == COMPACT_SKIPPED) 2847 /* Compaction cannot yet proceed. Do reclaim. */ 2848 return false; 2849 2850 /* 2851 * Compaction is already possible, but it takes time to run and there 2852 * are potentially other callers using the pages just freed. So proceed 2853 * with reclaim to make a buffer of free pages available to give 2854 * compaction a reasonable chance of completing and allocating the page. 2855 * Note that we won't actually reclaim the whole buffer in one attempt 2856 * as the target watermark in should_continue_reclaim() is lower. But if 2857 * we are already above the high+gap watermark, don't reclaim at all. 2858 */ 2859 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2860 2861 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2862 } 2863 2864 /* 2865 * This is the direct reclaim path, for page-allocating processes. We only 2866 * try to reclaim pages from zones which will satisfy the caller's allocation 2867 * request. 2868 * 2869 * If a zone is deemed to be full of pinned pages then just give it a light 2870 * scan then give up on it. 2871 */ 2872 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2873 { 2874 struct zoneref *z; 2875 struct zone *zone; 2876 unsigned long nr_soft_reclaimed; 2877 unsigned long nr_soft_scanned; 2878 gfp_t orig_mask; 2879 pg_data_t *last_pgdat = NULL; 2880 2881 /* 2882 * If the number of buffer_heads in the machine exceeds the maximum 2883 * allowed level, force direct reclaim to scan the highmem zone as 2884 * highmem pages could be pinning lowmem pages storing buffer_heads 2885 */ 2886 orig_mask = sc->gfp_mask; 2887 if (buffer_heads_over_limit) { 2888 sc->gfp_mask |= __GFP_HIGHMEM; 2889 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2890 } 2891 2892 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2893 sc->reclaim_idx, sc->nodemask) { 2894 /* 2895 * Take care memory controller reclaiming has small influence 2896 * to global LRU. 2897 */ 2898 if (global_reclaim(sc)) { 2899 if (!cpuset_zone_allowed(zone, 2900 GFP_KERNEL | __GFP_HARDWALL)) 2901 continue; 2902 2903 /* 2904 * If we already have plenty of memory free for 2905 * compaction in this zone, don't free any more. 2906 * Even though compaction is invoked for any 2907 * non-zero order, only frequent costly order 2908 * reclamation is disruptive enough to become a 2909 * noticeable problem, like transparent huge 2910 * page allocations. 2911 */ 2912 if (IS_ENABLED(CONFIG_COMPACTION) && 2913 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2914 compaction_ready(zone, sc)) { 2915 sc->compaction_ready = true; 2916 continue; 2917 } 2918 2919 /* 2920 * Shrink each node in the zonelist once. If the 2921 * zonelist is ordered by zone (not the default) then a 2922 * node may be shrunk multiple times but in that case 2923 * the user prefers lower zones being preserved. 2924 */ 2925 if (zone->zone_pgdat == last_pgdat) 2926 continue; 2927 2928 /* 2929 * This steals pages from memory cgroups over softlimit 2930 * and returns the number of reclaimed pages and 2931 * scanned pages. This works for global memory pressure 2932 * and balancing, not for a memcg's limit. 2933 */ 2934 nr_soft_scanned = 0; 2935 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2936 sc->order, sc->gfp_mask, 2937 &nr_soft_scanned); 2938 sc->nr_reclaimed += nr_soft_reclaimed; 2939 sc->nr_scanned += nr_soft_scanned; 2940 /* need some check for avoid more shrink_zone() */ 2941 } 2942 2943 /* See comment about same check for global reclaim above */ 2944 if (zone->zone_pgdat == last_pgdat) 2945 continue; 2946 last_pgdat = zone->zone_pgdat; 2947 shrink_node(zone->zone_pgdat, sc); 2948 } 2949 2950 /* 2951 * Restore to original mask to avoid the impact on the caller if we 2952 * promoted it to __GFP_HIGHMEM. 2953 */ 2954 sc->gfp_mask = orig_mask; 2955 } 2956 2957 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2958 { 2959 struct mem_cgroup *memcg; 2960 2961 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2962 do { 2963 unsigned long refaults; 2964 struct lruvec *lruvec; 2965 2966 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2967 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2968 lruvec->refaults = refaults; 2969 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2970 } 2971 2972 /* 2973 * This is the main entry point to direct page reclaim. 2974 * 2975 * If a full scan of the inactive list fails to free enough memory then we 2976 * are "out of memory" and something needs to be killed. 2977 * 2978 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2979 * high - the zone may be full of dirty or under-writeback pages, which this 2980 * caller can't do much about. We kick the writeback threads and take explicit 2981 * naps in the hope that some of these pages can be written. But if the 2982 * allocating task holds filesystem locks which prevent writeout this might not 2983 * work, and the allocation attempt will fail. 2984 * 2985 * returns: 0, if no pages reclaimed 2986 * else, the number of pages reclaimed 2987 */ 2988 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2989 struct scan_control *sc) 2990 { 2991 int initial_priority = sc->priority; 2992 pg_data_t *last_pgdat; 2993 struct zoneref *z; 2994 struct zone *zone; 2995 retry: 2996 delayacct_freepages_start(); 2997 2998 if (global_reclaim(sc)) 2999 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3000 3001 do { 3002 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3003 sc->priority); 3004 sc->nr_scanned = 0; 3005 shrink_zones(zonelist, sc); 3006 3007 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3008 break; 3009 3010 if (sc->compaction_ready) 3011 break; 3012 3013 /* 3014 * If we're getting trouble reclaiming, start doing 3015 * writepage even in laptop mode. 3016 */ 3017 if (sc->priority < DEF_PRIORITY - 2) 3018 sc->may_writepage = 1; 3019 } while (--sc->priority >= 0); 3020 3021 last_pgdat = NULL; 3022 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3023 sc->nodemask) { 3024 if (zone->zone_pgdat == last_pgdat) 3025 continue; 3026 last_pgdat = zone->zone_pgdat; 3027 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3028 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3029 } 3030 3031 delayacct_freepages_end(); 3032 3033 if (sc->nr_reclaimed) 3034 return sc->nr_reclaimed; 3035 3036 /* Aborted reclaim to try compaction? don't OOM, then */ 3037 if (sc->compaction_ready) 3038 return 1; 3039 3040 /* Untapped cgroup reserves? Don't OOM, retry. */ 3041 if (sc->memcg_low_skipped) { 3042 sc->priority = initial_priority; 3043 sc->memcg_low_reclaim = 1; 3044 sc->memcg_low_skipped = 0; 3045 goto retry; 3046 } 3047 3048 return 0; 3049 } 3050 3051 static bool allow_direct_reclaim(pg_data_t *pgdat) 3052 { 3053 struct zone *zone; 3054 unsigned long pfmemalloc_reserve = 0; 3055 unsigned long free_pages = 0; 3056 int i; 3057 bool wmark_ok; 3058 3059 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3060 return true; 3061 3062 for (i = 0; i <= ZONE_NORMAL; i++) { 3063 zone = &pgdat->node_zones[i]; 3064 if (!managed_zone(zone)) 3065 continue; 3066 3067 if (!zone_reclaimable_pages(zone)) 3068 continue; 3069 3070 pfmemalloc_reserve += min_wmark_pages(zone); 3071 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3072 } 3073 3074 /* If there are no reserves (unexpected config) then do not throttle */ 3075 if (!pfmemalloc_reserve) 3076 return true; 3077 3078 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3079 3080 /* kswapd must be awake if processes are being throttled */ 3081 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3082 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3083 (enum zone_type)ZONE_NORMAL); 3084 wake_up_interruptible(&pgdat->kswapd_wait); 3085 } 3086 3087 return wmark_ok; 3088 } 3089 3090 /* 3091 * Throttle direct reclaimers if backing storage is backed by the network 3092 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3093 * depleted. kswapd will continue to make progress and wake the processes 3094 * when the low watermark is reached. 3095 * 3096 * Returns true if a fatal signal was delivered during throttling. If this 3097 * happens, the page allocator should not consider triggering the OOM killer. 3098 */ 3099 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3100 nodemask_t *nodemask) 3101 { 3102 struct zoneref *z; 3103 struct zone *zone; 3104 pg_data_t *pgdat = NULL; 3105 3106 /* 3107 * Kernel threads should not be throttled as they may be indirectly 3108 * responsible for cleaning pages necessary for reclaim to make forward 3109 * progress. kjournald for example may enter direct reclaim while 3110 * committing a transaction where throttling it could forcing other 3111 * processes to block on log_wait_commit(). 3112 */ 3113 if (current->flags & PF_KTHREAD) 3114 goto out; 3115 3116 /* 3117 * If a fatal signal is pending, this process should not throttle. 3118 * It should return quickly so it can exit and free its memory 3119 */ 3120 if (fatal_signal_pending(current)) 3121 goto out; 3122 3123 /* 3124 * Check if the pfmemalloc reserves are ok by finding the first node 3125 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3126 * GFP_KERNEL will be required for allocating network buffers when 3127 * swapping over the network so ZONE_HIGHMEM is unusable. 3128 * 3129 * Throttling is based on the first usable node and throttled processes 3130 * wait on a queue until kswapd makes progress and wakes them. There 3131 * is an affinity then between processes waking up and where reclaim 3132 * progress has been made assuming the process wakes on the same node. 3133 * More importantly, processes running on remote nodes will not compete 3134 * for remote pfmemalloc reserves and processes on different nodes 3135 * should make reasonable progress. 3136 */ 3137 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3138 gfp_zone(gfp_mask), nodemask) { 3139 if (zone_idx(zone) > ZONE_NORMAL) 3140 continue; 3141 3142 /* Throttle based on the first usable node */ 3143 pgdat = zone->zone_pgdat; 3144 if (allow_direct_reclaim(pgdat)) 3145 goto out; 3146 break; 3147 } 3148 3149 /* If no zone was usable by the allocation flags then do not throttle */ 3150 if (!pgdat) 3151 goto out; 3152 3153 /* Account for the throttling */ 3154 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3155 3156 /* 3157 * If the caller cannot enter the filesystem, it's possible that it 3158 * is due to the caller holding an FS lock or performing a journal 3159 * transaction in the case of a filesystem like ext[3|4]. In this case, 3160 * it is not safe to block on pfmemalloc_wait as kswapd could be 3161 * blocked waiting on the same lock. Instead, throttle for up to a 3162 * second before continuing. 3163 */ 3164 if (!(gfp_mask & __GFP_FS)) { 3165 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3166 allow_direct_reclaim(pgdat), HZ); 3167 3168 goto check_pending; 3169 } 3170 3171 /* Throttle until kswapd wakes the process */ 3172 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3173 allow_direct_reclaim(pgdat)); 3174 3175 check_pending: 3176 if (fatal_signal_pending(current)) 3177 return true; 3178 3179 out: 3180 return false; 3181 } 3182 3183 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3184 gfp_t gfp_mask, nodemask_t *nodemask) 3185 { 3186 unsigned long nr_reclaimed; 3187 struct scan_control sc = { 3188 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3189 .gfp_mask = current_gfp_context(gfp_mask), 3190 .reclaim_idx = gfp_zone(gfp_mask), 3191 .order = order, 3192 .nodemask = nodemask, 3193 .priority = DEF_PRIORITY, 3194 .may_writepage = !laptop_mode, 3195 .may_unmap = 1, 3196 .may_swap = 1, 3197 .may_shrinkslab = 1, 3198 }; 3199 3200 /* 3201 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3202 * Confirm they are large enough for max values. 3203 */ 3204 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3205 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3206 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3207 3208 /* 3209 * Do not enter reclaim if fatal signal was delivered while throttled. 3210 * 1 is returned so that the page allocator does not OOM kill at this 3211 * point. 3212 */ 3213 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3214 return 1; 3215 3216 set_task_reclaim_state(current, &sc.reclaim_state); 3217 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3218 3219 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3220 3221 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3222 set_task_reclaim_state(current, NULL); 3223 3224 return nr_reclaimed; 3225 } 3226 3227 #ifdef CONFIG_MEMCG 3228 3229 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3230 gfp_t gfp_mask, bool noswap, 3231 pg_data_t *pgdat, 3232 unsigned long *nr_scanned) 3233 { 3234 struct scan_control sc = { 3235 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3236 .target_mem_cgroup = memcg, 3237 .may_writepage = !laptop_mode, 3238 .may_unmap = 1, 3239 .reclaim_idx = MAX_NR_ZONES - 1, 3240 .may_swap = !noswap, 3241 .may_shrinkslab = 1, 3242 }; 3243 unsigned long lru_pages; 3244 3245 set_task_reclaim_state(current, &sc.reclaim_state); 3246 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3247 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3248 3249 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3250 sc.gfp_mask); 3251 3252 /* 3253 * NOTE: Although we can get the priority field, using it 3254 * here is not a good idea, since it limits the pages we can scan. 3255 * if we don't reclaim here, the shrink_node from balance_pgdat 3256 * will pick up pages from other mem cgroup's as well. We hack 3257 * the priority and make it zero. 3258 */ 3259 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3260 3261 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3262 3263 set_task_reclaim_state(current, NULL); 3264 *nr_scanned = sc.nr_scanned; 3265 3266 return sc.nr_reclaimed; 3267 } 3268 3269 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3270 unsigned long nr_pages, 3271 gfp_t gfp_mask, 3272 bool may_swap) 3273 { 3274 struct zonelist *zonelist; 3275 unsigned long nr_reclaimed; 3276 unsigned long pflags; 3277 int nid; 3278 unsigned int noreclaim_flag; 3279 struct scan_control sc = { 3280 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3281 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3282 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3283 .reclaim_idx = MAX_NR_ZONES - 1, 3284 .target_mem_cgroup = memcg, 3285 .priority = DEF_PRIORITY, 3286 .may_writepage = !laptop_mode, 3287 .may_unmap = 1, 3288 .may_swap = may_swap, 3289 .may_shrinkslab = 1, 3290 }; 3291 3292 set_task_reclaim_state(current, &sc.reclaim_state); 3293 /* 3294 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3295 * take care of from where we get pages. So the node where we start the 3296 * scan does not need to be the current node. 3297 */ 3298 nid = mem_cgroup_select_victim_node(memcg); 3299 3300 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3301 3302 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3303 3304 psi_memstall_enter(&pflags); 3305 noreclaim_flag = memalloc_noreclaim_save(); 3306 3307 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3308 3309 memalloc_noreclaim_restore(noreclaim_flag); 3310 psi_memstall_leave(&pflags); 3311 3312 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3313 set_task_reclaim_state(current, NULL); 3314 3315 return nr_reclaimed; 3316 } 3317 #endif 3318 3319 static void age_active_anon(struct pglist_data *pgdat, 3320 struct scan_control *sc) 3321 { 3322 struct mem_cgroup *memcg; 3323 3324 if (!total_swap_pages) 3325 return; 3326 3327 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3328 do { 3329 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3330 3331 if (inactive_list_is_low(lruvec, false, sc, true)) 3332 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3333 sc, LRU_ACTIVE_ANON); 3334 3335 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3336 } while (memcg); 3337 } 3338 3339 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3340 { 3341 int i; 3342 struct zone *zone; 3343 3344 /* 3345 * Check for watermark boosts top-down as the higher zones 3346 * are more likely to be boosted. Both watermarks and boosts 3347 * should not be checked at the time time as reclaim would 3348 * start prematurely when there is no boosting and a lower 3349 * zone is balanced. 3350 */ 3351 for (i = classzone_idx; i >= 0; i--) { 3352 zone = pgdat->node_zones + i; 3353 if (!managed_zone(zone)) 3354 continue; 3355 3356 if (zone->watermark_boost) 3357 return true; 3358 } 3359 3360 return false; 3361 } 3362 3363 /* 3364 * Returns true if there is an eligible zone balanced for the request order 3365 * and classzone_idx 3366 */ 3367 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3368 { 3369 int i; 3370 unsigned long mark = -1; 3371 struct zone *zone; 3372 3373 /* 3374 * Check watermarks bottom-up as lower zones are more likely to 3375 * meet watermarks. 3376 */ 3377 for (i = 0; i <= classzone_idx; i++) { 3378 zone = pgdat->node_zones + i; 3379 3380 if (!managed_zone(zone)) 3381 continue; 3382 3383 mark = high_wmark_pages(zone); 3384 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3385 return true; 3386 } 3387 3388 /* 3389 * If a node has no populated zone within classzone_idx, it does not 3390 * need balancing by definition. This can happen if a zone-restricted 3391 * allocation tries to wake a remote kswapd. 3392 */ 3393 if (mark == -1) 3394 return true; 3395 3396 return false; 3397 } 3398 3399 /* Clear pgdat state for congested, dirty or under writeback. */ 3400 static void clear_pgdat_congested(pg_data_t *pgdat) 3401 { 3402 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3403 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3404 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3405 } 3406 3407 /* 3408 * Prepare kswapd for sleeping. This verifies that there are no processes 3409 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3410 * 3411 * Returns true if kswapd is ready to sleep 3412 */ 3413 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3414 { 3415 /* 3416 * The throttled processes are normally woken up in balance_pgdat() as 3417 * soon as allow_direct_reclaim() is true. But there is a potential 3418 * race between when kswapd checks the watermarks and a process gets 3419 * throttled. There is also a potential race if processes get 3420 * throttled, kswapd wakes, a large process exits thereby balancing the 3421 * zones, which causes kswapd to exit balance_pgdat() before reaching 3422 * the wake up checks. If kswapd is going to sleep, no process should 3423 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3424 * the wake up is premature, processes will wake kswapd and get 3425 * throttled again. The difference from wake ups in balance_pgdat() is 3426 * that here we are under prepare_to_wait(). 3427 */ 3428 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3429 wake_up_all(&pgdat->pfmemalloc_wait); 3430 3431 /* Hopeless node, leave it to direct reclaim */ 3432 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3433 return true; 3434 3435 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3436 clear_pgdat_congested(pgdat); 3437 return true; 3438 } 3439 3440 return false; 3441 } 3442 3443 /* 3444 * kswapd shrinks a node of pages that are at or below the highest usable 3445 * zone that is currently unbalanced. 3446 * 3447 * Returns true if kswapd scanned at least the requested number of pages to 3448 * reclaim or if the lack of progress was due to pages under writeback. 3449 * This is used to determine if the scanning priority needs to be raised. 3450 */ 3451 static bool kswapd_shrink_node(pg_data_t *pgdat, 3452 struct scan_control *sc) 3453 { 3454 struct zone *zone; 3455 int z; 3456 3457 /* Reclaim a number of pages proportional to the number of zones */ 3458 sc->nr_to_reclaim = 0; 3459 for (z = 0; z <= sc->reclaim_idx; z++) { 3460 zone = pgdat->node_zones + z; 3461 if (!managed_zone(zone)) 3462 continue; 3463 3464 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3465 } 3466 3467 /* 3468 * Historically care was taken to put equal pressure on all zones but 3469 * now pressure is applied based on node LRU order. 3470 */ 3471 shrink_node(pgdat, sc); 3472 3473 /* 3474 * Fragmentation may mean that the system cannot be rebalanced for 3475 * high-order allocations. If twice the allocation size has been 3476 * reclaimed then recheck watermarks only at order-0 to prevent 3477 * excessive reclaim. Assume that a process requested a high-order 3478 * can direct reclaim/compact. 3479 */ 3480 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3481 sc->order = 0; 3482 3483 return sc->nr_scanned >= sc->nr_to_reclaim; 3484 } 3485 3486 /* 3487 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3488 * that are eligible for use by the caller until at least one zone is 3489 * balanced. 3490 * 3491 * Returns the order kswapd finished reclaiming at. 3492 * 3493 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3494 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3495 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3496 * or lower is eligible for reclaim until at least one usable zone is 3497 * balanced. 3498 */ 3499 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3500 { 3501 int i; 3502 unsigned long nr_soft_reclaimed; 3503 unsigned long nr_soft_scanned; 3504 unsigned long pflags; 3505 unsigned long nr_boost_reclaim; 3506 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3507 bool boosted; 3508 struct zone *zone; 3509 struct scan_control sc = { 3510 .gfp_mask = GFP_KERNEL, 3511 .order = order, 3512 .may_unmap = 1, 3513 }; 3514 3515 set_task_reclaim_state(current, &sc.reclaim_state); 3516 psi_memstall_enter(&pflags); 3517 __fs_reclaim_acquire(); 3518 3519 count_vm_event(PAGEOUTRUN); 3520 3521 /* 3522 * Account for the reclaim boost. Note that the zone boost is left in 3523 * place so that parallel allocations that are near the watermark will 3524 * stall or direct reclaim until kswapd is finished. 3525 */ 3526 nr_boost_reclaim = 0; 3527 for (i = 0; i <= classzone_idx; i++) { 3528 zone = pgdat->node_zones + i; 3529 if (!managed_zone(zone)) 3530 continue; 3531 3532 nr_boost_reclaim += zone->watermark_boost; 3533 zone_boosts[i] = zone->watermark_boost; 3534 } 3535 boosted = nr_boost_reclaim; 3536 3537 restart: 3538 sc.priority = DEF_PRIORITY; 3539 do { 3540 unsigned long nr_reclaimed = sc.nr_reclaimed; 3541 bool raise_priority = true; 3542 bool balanced; 3543 bool ret; 3544 3545 sc.reclaim_idx = classzone_idx; 3546 3547 /* 3548 * If the number of buffer_heads exceeds the maximum allowed 3549 * then consider reclaiming from all zones. This has a dual 3550 * purpose -- on 64-bit systems it is expected that 3551 * buffer_heads are stripped during active rotation. On 32-bit 3552 * systems, highmem pages can pin lowmem memory and shrinking 3553 * buffers can relieve lowmem pressure. Reclaim may still not 3554 * go ahead if all eligible zones for the original allocation 3555 * request are balanced to avoid excessive reclaim from kswapd. 3556 */ 3557 if (buffer_heads_over_limit) { 3558 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3559 zone = pgdat->node_zones + i; 3560 if (!managed_zone(zone)) 3561 continue; 3562 3563 sc.reclaim_idx = i; 3564 break; 3565 } 3566 } 3567 3568 /* 3569 * If the pgdat is imbalanced then ignore boosting and preserve 3570 * the watermarks for a later time and restart. Note that the 3571 * zone watermarks will be still reset at the end of balancing 3572 * on the grounds that the normal reclaim should be enough to 3573 * re-evaluate if boosting is required when kswapd next wakes. 3574 */ 3575 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3576 if (!balanced && nr_boost_reclaim) { 3577 nr_boost_reclaim = 0; 3578 goto restart; 3579 } 3580 3581 /* 3582 * If boosting is not active then only reclaim if there are no 3583 * eligible zones. Note that sc.reclaim_idx is not used as 3584 * buffer_heads_over_limit may have adjusted it. 3585 */ 3586 if (!nr_boost_reclaim && balanced) 3587 goto out; 3588 3589 /* Limit the priority of boosting to avoid reclaim writeback */ 3590 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3591 raise_priority = false; 3592 3593 /* 3594 * Do not writeback or swap pages for boosted reclaim. The 3595 * intent is to relieve pressure not issue sub-optimal IO 3596 * from reclaim context. If no pages are reclaimed, the 3597 * reclaim will be aborted. 3598 */ 3599 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3600 sc.may_swap = !nr_boost_reclaim; 3601 sc.may_shrinkslab = !nr_boost_reclaim; 3602 3603 /* 3604 * Do some background aging of the anon list, to give 3605 * pages a chance to be referenced before reclaiming. All 3606 * pages are rotated regardless of classzone as this is 3607 * about consistent aging. 3608 */ 3609 age_active_anon(pgdat, &sc); 3610 3611 /* 3612 * If we're getting trouble reclaiming, start doing writepage 3613 * even in laptop mode. 3614 */ 3615 if (sc.priority < DEF_PRIORITY - 2) 3616 sc.may_writepage = 1; 3617 3618 /* Call soft limit reclaim before calling shrink_node. */ 3619 sc.nr_scanned = 0; 3620 nr_soft_scanned = 0; 3621 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3622 sc.gfp_mask, &nr_soft_scanned); 3623 sc.nr_reclaimed += nr_soft_reclaimed; 3624 3625 /* 3626 * There should be no need to raise the scanning priority if 3627 * enough pages are already being scanned that that high 3628 * watermark would be met at 100% efficiency. 3629 */ 3630 if (kswapd_shrink_node(pgdat, &sc)) 3631 raise_priority = false; 3632 3633 /* 3634 * If the low watermark is met there is no need for processes 3635 * to be throttled on pfmemalloc_wait as they should not be 3636 * able to safely make forward progress. Wake them 3637 */ 3638 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3639 allow_direct_reclaim(pgdat)) 3640 wake_up_all(&pgdat->pfmemalloc_wait); 3641 3642 /* Check if kswapd should be suspending */ 3643 __fs_reclaim_release(); 3644 ret = try_to_freeze(); 3645 __fs_reclaim_acquire(); 3646 if (ret || kthread_should_stop()) 3647 break; 3648 3649 /* 3650 * Raise priority if scanning rate is too low or there was no 3651 * progress in reclaiming pages 3652 */ 3653 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3654 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3655 3656 /* 3657 * If reclaim made no progress for a boost, stop reclaim as 3658 * IO cannot be queued and it could be an infinite loop in 3659 * extreme circumstances. 3660 */ 3661 if (nr_boost_reclaim && !nr_reclaimed) 3662 break; 3663 3664 if (raise_priority || !nr_reclaimed) 3665 sc.priority--; 3666 } while (sc.priority >= 1); 3667 3668 if (!sc.nr_reclaimed) 3669 pgdat->kswapd_failures++; 3670 3671 out: 3672 /* If reclaim was boosted, account for the reclaim done in this pass */ 3673 if (boosted) { 3674 unsigned long flags; 3675 3676 for (i = 0; i <= classzone_idx; i++) { 3677 if (!zone_boosts[i]) 3678 continue; 3679 3680 /* Increments are under the zone lock */ 3681 zone = pgdat->node_zones + i; 3682 spin_lock_irqsave(&zone->lock, flags); 3683 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3684 spin_unlock_irqrestore(&zone->lock, flags); 3685 } 3686 3687 /* 3688 * As there is now likely space, wakeup kcompact to defragment 3689 * pageblocks. 3690 */ 3691 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3692 } 3693 3694 snapshot_refaults(NULL, pgdat); 3695 __fs_reclaim_release(); 3696 psi_memstall_leave(&pflags); 3697 set_task_reclaim_state(current, NULL); 3698 3699 /* 3700 * Return the order kswapd stopped reclaiming at as 3701 * prepare_kswapd_sleep() takes it into account. If another caller 3702 * entered the allocator slow path while kswapd was awake, order will 3703 * remain at the higher level. 3704 */ 3705 return sc.order; 3706 } 3707 3708 /* 3709 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3710 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3711 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3712 * after previous reclaim attempt (node is still unbalanced). In that case 3713 * return the zone index of the previous kswapd reclaim cycle. 3714 */ 3715 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3716 enum zone_type prev_classzone_idx) 3717 { 3718 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3719 return prev_classzone_idx; 3720 return pgdat->kswapd_classzone_idx; 3721 } 3722 3723 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3724 unsigned int classzone_idx) 3725 { 3726 long remaining = 0; 3727 DEFINE_WAIT(wait); 3728 3729 if (freezing(current) || kthread_should_stop()) 3730 return; 3731 3732 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3733 3734 /* 3735 * Try to sleep for a short interval. Note that kcompactd will only be 3736 * woken if it is possible to sleep for a short interval. This is 3737 * deliberate on the assumption that if reclaim cannot keep an 3738 * eligible zone balanced that it's also unlikely that compaction will 3739 * succeed. 3740 */ 3741 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3742 /* 3743 * Compaction records what page blocks it recently failed to 3744 * isolate pages from and skips them in the future scanning. 3745 * When kswapd is going to sleep, it is reasonable to assume 3746 * that pages and compaction may succeed so reset the cache. 3747 */ 3748 reset_isolation_suitable(pgdat); 3749 3750 /* 3751 * We have freed the memory, now we should compact it to make 3752 * allocation of the requested order possible. 3753 */ 3754 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3755 3756 remaining = schedule_timeout(HZ/10); 3757 3758 /* 3759 * If woken prematurely then reset kswapd_classzone_idx and 3760 * order. The values will either be from a wakeup request or 3761 * the previous request that slept prematurely. 3762 */ 3763 if (remaining) { 3764 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3765 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3766 } 3767 3768 finish_wait(&pgdat->kswapd_wait, &wait); 3769 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3770 } 3771 3772 /* 3773 * After a short sleep, check if it was a premature sleep. If not, then 3774 * go fully to sleep until explicitly woken up. 3775 */ 3776 if (!remaining && 3777 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3778 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3779 3780 /* 3781 * vmstat counters are not perfectly accurate and the estimated 3782 * value for counters such as NR_FREE_PAGES can deviate from the 3783 * true value by nr_online_cpus * threshold. To avoid the zone 3784 * watermarks being breached while under pressure, we reduce the 3785 * per-cpu vmstat threshold while kswapd is awake and restore 3786 * them before going back to sleep. 3787 */ 3788 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3789 3790 if (!kthread_should_stop()) 3791 schedule(); 3792 3793 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3794 } else { 3795 if (remaining) 3796 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3797 else 3798 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3799 } 3800 finish_wait(&pgdat->kswapd_wait, &wait); 3801 } 3802 3803 /* 3804 * The background pageout daemon, started as a kernel thread 3805 * from the init process. 3806 * 3807 * This basically trickles out pages so that we have _some_ 3808 * free memory available even if there is no other activity 3809 * that frees anything up. This is needed for things like routing 3810 * etc, where we otherwise might have all activity going on in 3811 * asynchronous contexts that cannot page things out. 3812 * 3813 * If there are applications that are active memory-allocators 3814 * (most normal use), this basically shouldn't matter. 3815 */ 3816 static int kswapd(void *p) 3817 { 3818 unsigned int alloc_order, reclaim_order; 3819 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3820 pg_data_t *pgdat = (pg_data_t*)p; 3821 struct task_struct *tsk = current; 3822 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3823 3824 if (!cpumask_empty(cpumask)) 3825 set_cpus_allowed_ptr(tsk, cpumask); 3826 3827 /* 3828 * Tell the memory management that we're a "memory allocator", 3829 * and that if we need more memory we should get access to it 3830 * regardless (see "__alloc_pages()"). "kswapd" should 3831 * never get caught in the normal page freeing logic. 3832 * 3833 * (Kswapd normally doesn't need memory anyway, but sometimes 3834 * you need a small amount of memory in order to be able to 3835 * page out something else, and this flag essentially protects 3836 * us from recursively trying to free more memory as we're 3837 * trying to free the first piece of memory in the first place). 3838 */ 3839 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3840 set_freezable(); 3841 3842 pgdat->kswapd_order = 0; 3843 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3844 for ( ; ; ) { 3845 bool ret; 3846 3847 alloc_order = reclaim_order = pgdat->kswapd_order; 3848 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3849 3850 kswapd_try_sleep: 3851 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3852 classzone_idx); 3853 3854 /* Read the new order and classzone_idx */ 3855 alloc_order = reclaim_order = pgdat->kswapd_order; 3856 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3857 pgdat->kswapd_order = 0; 3858 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3859 3860 ret = try_to_freeze(); 3861 if (kthread_should_stop()) 3862 break; 3863 3864 /* 3865 * We can speed up thawing tasks if we don't call balance_pgdat 3866 * after returning from the refrigerator 3867 */ 3868 if (ret) 3869 continue; 3870 3871 /* 3872 * Reclaim begins at the requested order but if a high-order 3873 * reclaim fails then kswapd falls back to reclaiming for 3874 * order-0. If that happens, kswapd will consider sleeping 3875 * for the order it finished reclaiming at (reclaim_order) 3876 * but kcompactd is woken to compact for the original 3877 * request (alloc_order). 3878 */ 3879 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3880 alloc_order); 3881 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3882 if (reclaim_order < alloc_order) 3883 goto kswapd_try_sleep; 3884 } 3885 3886 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3887 3888 return 0; 3889 } 3890 3891 /* 3892 * A zone is low on free memory or too fragmented for high-order memory. If 3893 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3894 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3895 * has failed or is not needed, still wake up kcompactd if only compaction is 3896 * needed. 3897 */ 3898 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3899 enum zone_type classzone_idx) 3900 { 3901 pg_data_t *pgdat; 3902 3903 if (!managed_zone(zone)) 3904 return; 3905 3906 if (!cpuset_zone_allowed(zone, gfp_flags)) 3907 return; 3908 pgdat = zone->zone_pgdat; 3909 3910 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3911 pgdat->kswapd_classzone_idx = classzone_idx; 3912 else 3913 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3914 classzone_idx); 3915 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3916 if (!waitqueue_active(&pgdat->kswapd_wait)) 3917 return; 3918 3919 /* Hopeless node, leave it to direct reclaim if possible */ 3920 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3921 (pgdat_balanced(pgdat, order, classzone_idx) && 3922 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3923 /* 3924 * There may be plenty of free memory available, but it's too 3925 * fragmented for high-order allocations. Wake up kcompactd 3926 * and rely on compaction_suitable() to determine if it's 3927 * needed. If it fails, it will defer subsequent attempts to 3928 * ratelimit its work. 3929 */ 3930 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3931 wakeup_kcompactd(pgdat, order, classzone_idx); 3932 return; 3933 } 3934 3935 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3936 gfp_flags); 3937 wake_up_interruptible(&pgdat->kswapd_wait); 3938 } 3939 3940 #ifdef CONFIG_HIBERNATION 3941 /* 3942 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3943 * freed pages. 3944 * 3945 * Rather than trying to age LRUs the aim is to preserve the overall 3946 * LRU order by reclaiming preferentially 3947 * inactive > active > active referenced > active mapped 3948 */ 3949 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3950 { 3951 struct scan_control sc = { 3952 .nr_to_reclaim = nr_to_reclaim, 3953 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3954 .reclaim_idx = MAX_NR_ZONES - 1, 3955 .priority = DEF_PRIORITY, 3956 .may_writepage = 1, 3957 .may_unmap = 1, 3958 .may_swap = 1, 3959 .hibernation_mode = 1, 3960 }; 3961 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3962 unsigned long nr_reclaimed; 3963 unsigned int noreclaim_flag; 3964 3965 fs_reclaim_acquire(sc.gfp_mask); 3966 noreclaim_flag = memalloc_noreclaim_save(); 3967 set_task_reclaim_state(current, &sc.reclaim_state); 3968 3969 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3970 3971 set_task_reclaim_state(current, NULL); 3972 memalloc_noreclaim_restore(noreclaim_flag); 3973 fs_reclaim_release(sc.gfp_mask); 3974 3975 return nr_reclaimed; 3976 } 3977 #endif /* CONFIG_HIBERNATION */ 3978 3979 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3980 not required for correctness. So if the last cpu in a node goes 3981 away, we get changed to run anywhere: as the first one comes back, 3982 restore their cpu bindings. */ 3983 static int kswapd_cpu_online(unsigned int cpu) 3984 { 3985 int nid; 3986 3987 for_each_node_state(nid, N_MEMORY) { 3988 pg_data_t *pgdat = NODE_DATA(nid); 3989 const struct cpumask *mask; 3990 3991 mask = cpumask_of_node(pgdat->node_id); 3992 3993 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3994 /* One of our CPUs online: restore mask */ 3995 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3996 } 3997 return 0; 3998 } 3999 4000 /* 4001 * This kswapd start function will be called by init and node-hot-add. 4002 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4003 */ 4004 int kswapd_run(int nid) 4005 { 4006 pg_data_t *pgdat = NODE_DATA(nid); 4007 int ret = 0; 4008 4009 if (pgdat->kswapd) 4010 return 0; 4011 4012 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4013 if (IS_ERR(pgdat->kswapd)) { 4014 /* failure at boot is fatal */ 4015 BUG_ON(system_state < SYSTEM_RUNNING); 4016 pr_err("Failed to start kswapd on node %d\n", nid); 4017 ret = PTR_ERR(pgdat->kswapd); 4018 pgdat->kswapd = NULL; 4019 } 4020 return ret; 4021 } 4022 4023 /* 4024 * Called by memory hotplug when all memory in a node is offlined. Caller must 4025 * hold mem_hotplug_begin/end(). 4026 */ 4027 void kswapd_stop(int nid) 4028 { 4029 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4030 4031 if (kswapd) { 4032 kthread_stop(kswapd); 4033 NODE_DATA(nid)->kswapd = NULL; 4034 } 4035 } 4036 4037 static int __init kswapd_init(void) 4038 { 4039 int nid, ret; 4040 4041 swap_setup(); 4042 for_each_node_state(nid, N_MEMORY) 4043 kswapd_run(nid); 4044 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4045 "mm/vmscan:online", kswapd_cpu_online, 4046 NULL); 4047 WARN_ON(ret < 0); 4048 return 0; 4049 } 4050 4051 module_init(kswapd_init) 4052 4053 #ifdef CONFIG_NUMA 4054 /* 4055 * Node reclaim mode 4056 * 4057 * If non-zero call node_reclaim when the number of free pages falls below 4058 * the watermarks. 4059 */ 4060 int node_reclaim_mode __read_mostly; 4061 4062 #define RECLAIM_OFF 0 4063 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4064 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4065 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4066 4067 /* 4068 * Priority for NODE_RECLAIM. This determines the fraction of pages 4069 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4070 * a zone. 4071 */ 4072 #define NODE_RECLAIM_PRIORITY 4 4073 4074 /* 4075 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4076 * occur. 4077 */ 4078 int sysctl_min_unmapped_ratio = 1; 4079 4080 /* 4081 * If the number of slab pages in a zone grows beyond this percentage then 4082 * slab reclaim needs to occur. 4083 */ 4084 int sysctl_min_slab_ratio = 5; 4085 4086 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4087 { 4088 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4089 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4090 node_page_state(pgdat, NR_ACTIVE_FILE); 4091 4092 /* 4093 * It's possible for there to be more file mapped pages than 4094 * accounted for by the pages on the file LRU lists because 4095 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4096 */ 4097 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4098 } 4099 4100 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4101 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4102 { 4103 unsigned long nr_pagecache_reclaimable; 4104 unsigned long delta = 0; 4105 4106 /* 4107 * If RECLAIM_UNMAP is set, then all file pages are considered 4108 * potentially reclaimable. Otherwise, we have to worry about 4109 * pages like swapcache and node_unmapped_file_pages() provides 4110 * a better estimate 4111 */ 4112 if (node_reclaim_mode & RECLAIM_UNMAP) 4113 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4114 else 4115 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4116 4117 /* If we can't clean pages, remove dirty pages from consideration */ 4118 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4119 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4120 4121 /* Watch for any possible underflows due to delta */ 4122 if (unlikely(delta > nr_pagecache_reclaimable)) 4123 delta = nr_pagecache_reclaimable; 4124 4125 return nr_pagecache_reclaimable - delta; 4126 } 4127 4128 /* 4129 * Try to free up some pages from this node through reclaim. 4130 */ 4131 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4132 { 4133 /* Minimum pages needed in order to stay on node */ 4134 const unsigned long nr_pages = 1 << order; 4135 struct task_struct *p = current; 4136 unsigned int noreclaim_flag; 4137 struct scan_control sc = { 4138 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4139 .gfp_mask = current_gfp_context(gfp_mask), 4140 .order = order, 4141 .priority = NODE_RECLAIM_PRIORITY, 4142 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4143 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4144 .may_swap = 1, 4145 .reclaim_idx = gfp_zone(gfp_mask), 4146 }; 4147 4148 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4149 sc.gfp_mask); 4150 4151 cond_resched(); 4152 fs_reclaim_acquire(sc.gfp_mask); 4153 /* 4154 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4155 * and we also need to be able to write out pages for RECLAIM_WRITE 4156 * and RECLAIM_UNMAP. 4157 */ 4158 noreclaim_flag = memalloc_noreclaim_save(); 4159 p->flags |= PF_SWAPWRITE; 4160 set_task_reclaim_state(p, &sc.reclaim_state); 4161 4162 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4163 /* 4164 * Free memory by calling shrink node with increasing 4165 * priorities until we have enough memory freed. 4166 */ 4167 do { 4168 shrink_node(pgdat, &sc); 4169 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4170 } 4171 4172 set_task_reclaim_state(p, NULL); 4173 current->flags &= ~PF_SWAPWRITE; 4174 memalloc_noreclaim_restore(noreclaim_flag); 4175 fs_reclaim_release(sc.gfp_mask); 4176 4177 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4178 4179 return sc.nr_reclaimed >= nr_pages; 4180 } 4181 4182 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4183 { 4184 int ret; 4185 4186 /* 4187 * Node reclaim reclaims unmapped file backed pages and 4188 * slab pages if we are over the defined limits. 4189 * 4190 * A small portion of unmapped file backed pages is needed for 4191 * file I/O otherwise pages read by file I/O will be immediately 4192 * thrown out if the node is overallocated. So we do not reclaim 4193 * if less than a specified percentage of the node is used by 4194 * unmapped file backed pages. 4195 */ 4196 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4197 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4198 return NODE_RECLAIM_FULL; 4199 4200 /* 4201 * Do not scan if the allocation should not be delayed. 4202 */ 4203 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4204 return NODE_RECLAIM_NOSCAN; 4205 4206 /* 4207 * Only run node reclaim on the local node or on nodes that do not 4208 * have associated processors. This will favor the local processor 4209 * over remote processors and spread off node memory allocations 4210 * as wide as possible. 4211 */ 4212 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4213 return NODE_RECLAIM_NOSCAN; 4214 4215 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4216 return NODE_RECLAIM_NOSCAN; 4217 4218 ret = __node_reclaim(pgdat, gfp_mask, order); 4219 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4220 4221 if (!ret) 4222 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4223 4224 return ret; 4225 } 4226 #endif 4227 4228 /* 4229 * page_evictable - test whether a page is evictable 4230 * @page: the page to test 4231 * 4232 * Test whether page is evictable--i.e., should be placed on active/inactive 4233 * lists vs unevictable list. 4234 * 4235 * Reasons page might not be evictable: 4236 * (1) page's mapping marked unevictable 4237 * (2) page is part of an mlocked VMA 4238 * 4239 */ 4240 int page_evictable(struct page *page) 4241 { 4242 int ret; 4243 4244 /* Prevent address_space of inode and swap cache from being freed */ 4245 rcu_read_lock(); 4246 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4247 rcu_read_unlock(); 4248 return ret; 4249 } 4250 4251 /** 4252 * check_move_unevictable_pages - check pages for evictability and move to 4253 * appropriate zone lru list 4254 * @pvec: pagevec with lru pages to check 4255 * 4256 * Checks pages for evictability, if an evictable page is in the unevictable 4257 * lru list, moves it to the appropriate evictable lru list. This function 4258 * should be only used for lru pages. 4259 */ 4260 void check_move_unevictable_pages(struct pagevec *pvec) 4261 { 4262 struct lruvec *lruvec; 4263 struct pglist_data *pgdat = NULL; 4264 int pgscanned = 0; 4265 int pgrescued = 0; 4266 int i; 4267 4268 for (i = 0; i < pvec->nr; i++) { 4269 struct page *page = pvec->pages[i]; 4270 struct pglist_data *pagepgdat = page_pgdat(page); 4271 4272 pgscanned++; 4273 if (pagepgdat != pgdat) { 4274 if (pgdat) 4275 spin_unlock_irq(&pgdat->lru_lock); 4276 pgdat = pagepgdat; 4277 spin_lock_irq(&pgdat->lru_lock); 4278 } 4279 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4280 4281 if (!PageLRU(page) || !PageUnevictable(page)) 4282 continue; 4283 4284 if (page_evictable(page)) { 4285 enum lru_list lru = page_lru_base_type(page); 4286 4287 VM_BUG_ON_PAGE(PageActive(page), page); 4288 ClearPageUnevictable(page); 4289 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4290 add_page_to_lru_list(page, lruvec, lru); 4291 pgrescued++; 4292 } 4293 } 4294 4295 if (pgdat) { 4296 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4297 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4298 spin_unlock_irq(&pgdat->lru_lock); 4299 } 4300 } 4301 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4302