1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 #include <linux/balloon_compaction.h> 52 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/vmscan.h> 57 58 struct scan_control { 59 /* Incremented by the number of inactive pages that were scanned */ 60 unsigned long nr_scanned; 61 62 /* Number of pages freed so far during a call to shrink_zones() */ 63 unsigned long nr_reclaimed; 64 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 unsigned long hibernation_mode; 69 70 /* This context's GFP mask */ 71 gfp_t gfp_mask; 72 73 int may_writepage; 74 75 /* Can mapped pages be reclaimed? */ 76 int may_unmap; 77 78 /* Can pages be swapped as part of reclaim? */ 79 int may_swap; 80 81 int order; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 /* 87 * The memory cgroup that hit its limit and as a result is the 88 * primary target of this reclaim invocation. 89 */ 90 struct mem_cgroup *target_mem_cgroup; 91 92 /* 93 * Nodemask of nodes allowed by the caller. If NULL, all nodes 94 * are scanned. 95 */ 96 nodemask_t *nodemask; 97 }; 98 99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 100 101 #ifdef ARCH_HAS_PREFETCH 102 #define prefetch_prev_lru_page(_page, _base, _field) \ 103 do { \ 104 if ((_page)->lru.prev != _base) { \ 105 struct page *prev; \ 106 \ 107 prev = lru_to_page(&(_page->lru)); \ 108 prefetch(&prev->_field); \ 109 } \ 110 } while (0) 111 #else 112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 113 #endif 114 115 #ifdef ARCH_HAS_PREFETCHW 116 #define prefetchw_prev_lru_page(_page, _base, _field) \ 117 do { \ 118 if ((_page)->lru.prev != _base) { \ 119 struct page *prev; \ 120 \ 121 prev = lru_to_page(&(_page->lru)); \ 122 prefetchw(&prev->_field); \ 123 } \ 124 } while (0) 125 #else 126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 127 #endif 128 129 /* 130 * From 0 .. 100. Higher means more swappy. 131 */ 132 int vm_swappiness = 60; 133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 134 135 static LIST_HEAD(shrinker_list); 136 static DECLARE_RWSEM(shrinker_rwsem); 137 138 #ifdef CONFIG_MEMCG 139 static bool global_reclaim(struct scan_control *sc) 140 { 141 return !sc->target_mem_cgroup; 142 } 143 #else 144 static bool global_reclaim(struct scan_control *sc) 145 { 146 return true; 147 } 148 #endif 149 150 static unsigned long zone_reclaimable_pages(struct zone *zone) 151 { 152 int nr; 153 154 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 155 zone_page_state(zone, NR_INACTIVE_FILE); 156 157 if (get_nr_swap_pages() > 0) 158 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 159 zone_page_state(zone, NR_INACTIVE_ANON); 160 161 return nr; 162 } 163 164 bool zone_reclaimable(struct zone *zone) 165 { 166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 167 } 168 169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 170 { 171 if (!mem_cgroup_disabled()) 172 return mem_cgroup_get_lru_size(lruvec, lru); 173 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 175 } 176 177 /* 178 * Add a shrinker callback to be called from the vm. 179 */ 180 int register_shrinker(struct shrinker *shrinker) 181 { 182 size_t size = sizeof(*shrinker->nr_deferred); 183 184 /* 185 * If we only have one possible node in the system anyway, save 186 * ourselves the trouble and disable NUMA aware behavior. This way we 187 * will save memory and some small loop time later. 188 */ 189 if (nr_node_ids == 1) 190 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 191 192 if (shrinker->flags & SHRINKER_NUMA_AWARE) 193 size *= nr_node_ids; 194 195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 196 if (!shrinker->nr_deferred) 197 return -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 list_add_tail(&shrinker->list, &shrinker_list); 201 up_write(&shrinker_rwsem); 202 return 0; 203 } 204 EXPORT_SYMBOL(register_shrinker); 205 206 /* 207 * Remove one 208 */ 209 void unregister_shrinker(struct shrinker *shrinker) 210 { 211 down_write(&shrinker_rwsem); 212 list_del(&shrinker->list); 213 up_write(&shrinker_rwsem); 214 kfree(shrinker->nr_deferred); 215 } 216 EXPORT_SYMBOL(unregister_shrinker); 217 218 #define SHRINK_BATCH 128 219 220 static unsigned long 221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 222 unsigned long nr_pages_scanned, unsigned long lru_pages) 223 { 224 unsigned long freed = 0; 225 unsigned long long delta; 226 long total_scan; 227 long freeable; 228 long nr; 229 long new_nr; 230 int nid = shrinkctl->nid; 231 long batch_size = shrinker->batch ? shrinker->batch 232 : SHRINK_BATCH; 233 234 freeable = shrinker->count_objects(shrinker, shrinkctl); 235 if (freeable == 0) 236 return 0; 237 238 /* 239 * copy the current shrinker scan count into a local variable 240 * and zero it so that other concurrent shrinker invocations 241 * don't also do this scanning work. 242 */ 243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 244 245 total_scan = nr; 246 delta = (4 * nr_pages_scanned) / shrinker->seeks; 247 delta *= freeable; 248 do_div(delta, lru_pages + 1); 249 total_scan += delta; 250 if (total_scan < 0) { 251 printk(KERN_ERR 252 "shrink_slab: %pF negative objects to delete nr=%ld\n", 253 shrinker->scan_objects, total_scan); 254 total_scan = freeable; 255 } 256 257 /* 258 * We need to avoid excessive windup on filesystem shrinkers 259 * due to large numbers of GFP_NOFS allocations causing the 260 * shrinkers to return -1 all the time. This results in a large 261 * nr being built up so when a shrink that can do some work 262 * comes along it empties the entire cache due to nr >>> 263 * freeable. This is bad for sustaining a working set in 264 * memory. 265 * 266 * Hence only allow the shrinker to scan the entire cache when 267 * a large delta change is calculated directly. 268 */ 269 if (delta < freeable / 4) 270 total_scan = min(total_scan, freeable / 2); 271 272 /* 273 * Avoid risking looping forever due to too large nr value: 274 * never try to free more than twice the estimate number of 275 * freeable entries. 276 */ 277 if (total_scan > freeable * 2) 278 total_scan = freeable * 2; 279 280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 281 nr_pages_scanned, lru_pages, 282 freeable, delta, total_scan); 283 284 /* 285 * Normally, we should not scan less than batch_size objects in one 286 * pass to avoid too frequent shrinker calls, but if the slab has less 287 * than batch_size objects in total and we are really tight on memory, 288 * we will try to reclaim all available objects, otherwise we can end 289 * up failing allocations although there are plenty of reclaimable 290 * objects spread over several slabs with usage less than the 291 * batch_size. 292 * 293 * We detect the "tight on memory" situations by looking at the total 294 * number of objects we want to scan (total_scan). If it is greater 295 * than the total number of objects on slab (freeable), we must be 296 * scanning at high prio and therefore should try to reclaim as much as 297 * possible. 298 */ 299 while (total_scan >= batch_size || 300 total_scan >= freeable) { 301 unsigned long ret; 302 unsigned long nr_to_scan = min(batch_size, total_scan); 303 304 shrinkctl->nr_to_scan = nr_to_scan; 305 ret = shrinker->scan_objects(shrinker, shrinkctl); 306 if (ret == SHRINK_STOP) 307 break; 308 freed += ret; 309 310 count_vm_events(SLABS_SCANNED, nr_to_scan); 311 total_scan -= nr_to_scan; 312 313 cond_resched(); 314 } 315 316 /* 317 * move the unused scan count back into the shrinker in a 318 * manner that handles concurrent updates. If we exhausted the 319 * scan, there is no need to do an update. 320 */ 321 if (total_scan > 0) 322 new_nr = atomic_long_add_return(total_scan, 323 &shrinker->nr_deferred[nid]); 324 else 325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 326 327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); 328 return freed; 329 } 330 331 /* 332 * Call the shrink functions to age shrinkable caches 333 * 334 * Here we assume it costs one seek to replace a lru page and that it also 335 * takes a seek to recreate a cache object. With this in mind we age equal 336 * percentages of the lru and ageable caches. This should balance the seeks 337 * generated by these structures. 338 * 339 * If the vm encountered mapped pages on the LRU it increase the pressure on 340 * slab to avoid swapping. 341 * 342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 343 * 344 * `lru_pages' represents the number of on-LRU pages in all the zones which 345 * are eligible for the caller's allocation attempt. It is used for balancing 346 * slab reclaim versus page reclaim. 347 * 348 * Returns the number of slab objects which we shrunk. 349 */ 350 unsigned long shrink_slab(struct shrink_control *shrinkctl, 351 unsigned long nr_pages_scanned, 352 unsigned long lru_pages) 353 { 354 struct shrinker *shrinker; 355 unsigned long freed = 0; 356 357 if (nr_pages_scanned == 0) 358 nr_pages_scanned = SWAP_CLUSTER_MAX; 359 360 if (!down_read_trylock(&shrinker_rwsem)) { 361 /* 362 * If we would return 0, our callers would understand that we 363 * have nothing else to shrink and give up trying. By returning 364 * 1 we keep it going and assume we'll be able to shrink next 365 * time. 366 */ 367 freed = 1; 368 goto out; 369 } 370 371 list_for_each_entry(shrinker, &shrinker_list, list) { 372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) { 373 shrinkctl->nid = 0; 374 freed += shrink_slab_node(shrinkctl, shrinker, 375 nr_pages_scanned, lru_pages); 376 continue; 377 } 378 379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 380 if (node_online(shrinkctl->nid)) 381 freed += shrink_slab_node(shrinkctl, shrinker, 382 nr_pages_scanned, lru_pages); 383 384 } 385 } 386 up_read(&shrinker_rwsem); 387 out: 388 cond_resched(); 389 return freed; 390 } 391 392 static inline int is_page_cache_freeable(struct page *page) 393 { 394 /* 395 * A freeable page cache page is referenced only by the caller 396 * that isolated the page, the page cache radix tree and 397 * optional buffer heads at page->private. 398 */ 399 return page_count(page) - page_has_private(page) == 2; 400 } 401 402 static int may_write_to_queue(struct backing_dev_info *bdi, 403 struct scan_control *sc) 404 { 405 if (current->flags & PF_SWAPWRITE) 406 return 1; 407 if (!bdi_write_congested(bdi)) 408 return 1; 409 if (bdi == current->backing_dev_info) 410 return 1; 411 return 0; 412 } 413 414 /* 415 * We detected a synchronous write error writing a page out. Probably 416 * -ENOSPC. We need to propagate that into the address_space for a subsequent 417 * fsync(), msync() or close(). 418 * 419 * The tricky part is that after writepage we cannot touch the mapping: nothing 420 * prevents it from being freed up. But we have a ref on the page and once 421 * that page is locked, the mapping is pinned. 422 * 423 * We're allowed to run sleeping lock_page() here because we know the caller has 424 * __GFP_FS. 425 */ 426 static void handle_write_error(struct address_space *mapping, 427 struct page *page, int error) 428 { 429 lock_page(page); 430 if (page_mapping(page) == mapping) 431 mapping_set_error(mapping, error); 432 unlock_page(page); 433 } 434 435 /* possible outcome of pageout() */ 436 typedef enum { 437 /* failed to write page out, page is locked */ 438 PAGE_KEEP, 439 /* move page to the active list, page is locked */ 440 PAGE_ACTIVATE, 441 /* page has been sent to the disk successfully, page is unlocked */ 442 PAGE_SUCCESS, 443 /* page is clean and locked */ 444 PAGE_CLEAN, 445 } pageout_t; 446 447 /* 448 * pageout is called by shrink_page_list() for each dirty page. 449 * Calls ->writepage(). 450 */ 451 static pageout_t pageout(struct page *page, struct address_space *mapping, 452 struct scan_control *sc) 453 { 454 /* 455 * If the page is dirty, only perform writeback if that write 456 * will be non-blocking. To prevent this allocation from being 457 * stalled by pagecache activity. But note that there may be 458 * stalls if we need to run get_block(). We could test 459 * PagePrivate for that. 460 * 461 * If this process is currently in __generic_file_aio_write() against 462 * this page's queue, we can perform writeback even if that 463 * will block. 464 * 465 * If the page is swapcache, write it back even if that would 466 * block, for some throttling. This happens by accident, because 467 * swap_backing_dev_info is bust: it doesn't reflect the 468 * congestion state of the swapdevs. Easy to fix, if needed. 469 */ 470 if (!is_page_cache_freeable(page)) 471 return PAGE_KEEP; 472 if (!mapping) { 473 /* 474 * Some data journaling orphaned pages can have 475 * page->mapping == NULL while being dirty with clean buffers. 476 */ 477 if (page_has_private(page)) { 478 if (try_to_free_buffers(page)) { 479 ClearPageDirty(page); 480 printk("%s: orphaned page\n", __func__); 481 return PAGE_CLEAN; 482 } 483 } 484 return PAGE_KEEP; 485 } 486 if (mapping->a_ops->writepage == NULL) 487 return PAGE_ACTIVATE; 488 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 489 return PAGE_KEEP; 490 491 if (clear_page_dirty_for_io(page)) { 492 int res; 493 struct writeback_control wbc = { 494 .sync_mode = WB_SYNC_NONE, 495 .nr_to_write = SWAP_CLUSTER_MAX, 496 .range_start = 0, 497 .range_end = LLONG_MAX, 498 .for_reclaim = 1, 499 }; 500 501 SetPageReclaim(page); 502 res = mapping->a_ops->writepage(page, &wbc); 503 if (res < 0) 504 handle_write_error(mapping, page, res); 505 if (res == AOP_WRITEPAGE_ACTIVATE) { 506 ClearPageReclaim(page); 507 return PAGE_ACTIVATE; 508 } 509 510 if (!PageWriteback(page)) { 511 /* synchronous write or broken a_ops? */ 512 ClearPageReclaim(page); 513 } 514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 515 inc_zone_page_state(page, NR_VMSCAN_WRITE); 516 return PAGE_SUCCESS; 517 } 518 519 return PAGE_CLEAN; 520 } 521 522 /* 523 * Same as remove_mapping, but if the page is removed from the mapping, it 524 * gets returned with a refcount of 0. 525 */ 526 static int __remove_mapping(struct address_space *mapping, struct page *page, 527 bool reclaimed) 528 { 529 BUG_ON(!PageLocked(page)); 530 BUG_ON(mapping != page_mapping(page)); 531 532 spin_lock_irq(&mapping->tree_lock); 533 /* 534 * The non racy check for a busy page. 535 * 536 * Must be careful with the order of the tests. When someone has 537 * a ref to the page, it may be possible that they dirty it then 538 * drop the reference. So if PageDirty is tested before page_count 539 * here, then the following race may occur: 540 * 541 * get_user_pages(&page); 542 * [user mapping goes away] 543 * write_to(page); 544 * !PageDirty(page) [good] 545 * SetPageDirty(page); 546 * put_page(page); 547 * !page_count(page) [good, discard it] 548 * 549 * [oops, our write_to data is lost] 550 * 551 * Reversing the order of the tests ensures such a situation cannot 552 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 553 * load is not satisfied before that of page->_count. 554 * 555 * Note that if SetPageDirty is always performed via set_page_dirty, 556 * and thus under tree_lock, then this ordering is not required. 557 */ 558 if (!page_freeze_refs(page, 2)) 559 goto cannot_free; 560 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 561 if (unlikely(PageDirty(page))) { 562 page_unfreeze_refs(page, 2); 563 goto cannot_free; 564 } 565 566 if (PageSwapCache(page)) { 567 swp_entry_t swap = { .val = page_private(page) }; 568 __delete_from_swap_cache(page); 569 spin_unlock_irq(&mapping->tree_lock); 570 swapcache_free(swap, page); 571 } else { 572 void (*freepage)(struct page *); 573 void *shadow = NULL; 574 575 freepage = mapping->a_ops->freepage; 576 /* 577 * Remember a shadow entry for reclaimed file cache in 578 * order to detect refaults, thus thrashing, later on. 579 * 580 * But don't store shadows in an address space that is 581 * already exiting. This is not just an optizimation, 582 * inode reclaim needs to empty out the radix tree or 583 * the nodes are lost. Don't plant shadows behind its 584 * back. 585 */ 586 if (reclaimed && page_is_file_cache(page) && 587 !mapping_exiting(mapping)) 588 shadow = workingset_eviction(mapping, page); 589 __delete_from_page_cache(page, shadow); 590 spin_unlock_irq(&mapping->tree_lock); 591 mem_cgroup_uncharge_cache_page(page); 592 593 if (freepage != NULL) 594 freepage(page); 595 } 596 597 return 1; 598 599 cannot_free: 600 spin_unlock_irq(&mapping->tree_lock); 601 return 0; 602 } 603 604 /* 605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 606 * someone else has a ref on the page, abort and return 0. If it was 607 * successfully detached, return 1. Assumes the caller has a single ref on 608 * this page. 609 */ 610 int remove_mapping(struct address_space *mapping, struct page *page) 611 { 612 if (__remove_mapping(mapping, page, false)) { 613 /* 614 * Unfreezing the refcount with 1 rather than 2 effectively 615 * drops the pagecache ref for us without requiring another 616 * atomic operation. 617 */ 618 page_unfreeze_refs(page, 1); 619 return 1; 620 } 621 return 0; 622 } 623 624 /** 625 * putback_lru_page - put previously isolated page onto appropriate LRU list 626 * @page: page to be put back to appropriate lru list 627 * 628 * Add previously isolated @page to appropriate LRU list. 629 * Page may still be unevictable for other reasons. 630 * 631 * lru_lock must not be held, interrupts must be enabled. 632 */ 633 void putback_lru_page(struct page *page) 634 { 635 bool is_unevictable; 636 int was_unevictable = PageUnevictable(page); 637 638 VM_BUG_ON_PAGE(PageLRU(page), page); 639 640 redo: 641 ClearPageUnevictable(page); 642 643 if (page_evictable(page)) { 644 /* 645 * For evictable pages, we can use the cache. 646 * In event of a race, worst case is we end up with an 647 * unevictable page on [in]active list. 648 * We know how to handle that. 649 */ 650 is_unevictable = false; 651 lru_cache_add(page); 652 } else { 653 /* 654 * Put unevictable pages directly on zone's unevictable 655 * list. 656 */ 657 is_unevictable = true; 658 add_page_to_unevictable_list(page); 659 /* 660 * When racing with an mlock or AS_UNEVICTABLE clearing 661 * (page is unlocked) make sure that if the other thread 662 * does not observe our setting of PG_lru and fails 663 * isolation/check_move_unevictable_pages, 664 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 665 * the page back to the evictable list. 666 * 667 * The other side is TestClearPageMlocked() or shmem_lock(). 668 */ 669 smp_mb(); 670 } 671 672 /* 673 * page's status can change while we move it among lru. If an evictable 674 * page is on unevictable list, it never be freed. To avoid that, 675 * check after we added it to the list, again. 676 */ 677 if (is_unevictable && page_evictable(page)) { 678 if (!isolate_lru_page(page)) { 679 put_page(page); 680 goto redo; 681 } 682 /* This means someone else dropped this page from LRU 683 * So, it will be freed or putback to LRU again. There is 684 * nothing to do here. 685 */ 686 } 687 688 if (was_unevictable && !is_unevictable) 689 count_vm_event(UNEVICTABLE_PGRESCUED); 690 else if (!was_unevictable && is_unevictable) 691 count_vm_event(UNEVICTABLE_PGCULLED); 692 693 put_page(page); /* drop ref from isolate */ 694 } 695 696 enum page_references { 697 PAGEREF_RECLAIM, 698 PAGEREF_RECLAIM_CLEAN, 699 PAGEREF_KEEP, 700 PAGEREF_ACTIVATE, 701 }; 702 703 static enum page_references page_check_references(struct page *page, 704 struct scan_control *sc) 705 { 706 int referenced_ptes, referenced_page; 707 unsigned long vm_flags; 708 709 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 710 &vm_flags); 711 referenced_page = TestClearPageReferenced(page); 712 713 /* 714 * Mlock lost the isolation race with us. Let try_to_unmap() 715 * move the page to the unevictable list. 716 */ 717 if (vm_flags & VM_LOCKED) 718 return PAGEREF_RECLAIM; 719 720 if (referenced_ptes) { 721 if (PageSwapBacked(page)) 722 return PAGEREF_ACTIVATE; 723 /* 724 * All mapped pages start out with page table 725 * references from the instantiating fault, so we need 726 * to look twice if a mapped file page is used more 727 * than once. 728 * 729 * Mark it and spare it for another trip around the 730 * inactive list. Another page table reference will 731 * lead to its activation. 732 * 733 * Note: the mark is set for activated pages as well 734 * so that recently deactivated but used pages are 735 * quickly recovered. 736 */ 737 SetPageReferenced(page); 738 739 if (referenced_page || referenced_ptes > 1) 740 return PAGEREF_ACTIVATE; 741 742 /* 743 * Activate file-backed executable pages after first usage. 744 */ 745 if (vm_flags & VM_EXEC) 746 return PAGEREF_ACTIVATE; 747 748 return PAGEREF_KEEP; 749 } 750 751 /* Reclaim if clean, defer dirty pages to writeback */ 752 if (referenced_page && !PageSwapBacked(page)) 753 return PAGEREF_RECLAIM_CLEAN; 754 755 return PAGEREF_RECLAIM; 756 } 757 758 /* Check if a page is dirty or under writeback */ 759 static void page_check_dirty_writeback(struct page *page, 760 bool *dirty, bool *writeback) 761 { 762 struct address_space *mapping; 763 764 /* 765 * Anonymous pages are not handled by flushers and must be written 766 * from reclaim context. Do not stall reclaim based on them 767 */ 768 if (!page_is_file_cache(page)) { 769 *dirty = false; 770 *writeback = false; 771 return; 772 } 773 774 /* By default assume that the page flags are accurate */ 775 *dirty = PageDirty(page); 776 *writeback = PageWriteback(page); 777 778 /* Verify dirty/writeback state if the filesystem supports it */ 779 if (!page_has_private(page)) 780 return; 781 782 mapping = page_mapping(page); 783 if (mapping && mapping->a_ops->is_dirty_writeback) 784 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 785 } 786 787 /* 788 * shrink_page_list() returns the number of reclaimed pages 789 */ 790 static unsigned long shrink_page_list(struct list_head *page_list, 791 struct zone *zone, 792 struct scan_control *sc, 793 enum ttu_flags ttu_flags, 794 unsigned long *ret_nr_dirty, 795 unsigned long *ret_nr_unqueued_dirty, 796 unsigned long *ret_nr_congested, 797 unsigned long *ret_nr_writeback, 798 unsigned long *ret_nr_immediate, 799 bool force_reclaim) 800 { 801 LIST_HEAD(ret_pages); 802 LIST_HEAD(free_pages); 803 int pgactivate = 0; 804 unsigned long nr_unqueued_dirty = 0; 805 unsigned long nr_dirty = 0; 806 unsigned long nr_congested = 0; 807 unsigned long nr_reclaimed = 0; 808 unsigned long nr_writeback = 0; 809 unsigned long nr_immediate = 0; 810 811 cond_resched(); 812 813 mem_cgroup_uncharge_start(); 814 while (!list_empty(page_list)) { 815 struct address_space *mapping; 816 struct page *page; 817 int may_enter_fs; 818 enum page_references references = PAGEREF_RECLAIM_CLEAN; 819 bool dirty, writeback; 820 821 cond_resched(); 822 823 page = lru_to_page(page_list); 824 list_del(&page->lru); 825 826 if (!trylock_page(page)) 827 goto keep; 828 829 VM_BUG_ON_PAGE(PageActive(page), page); 830 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 831 832 sc->nr_scanned++; 833 834 if (unlikely(!page_evictable(page))) 835 goto cull_mlocked; 836 837 if (!sc->may_unmap && page_mapped(page)) 838 goto keep_locked; 839 840 /* Double the slab pressure for mapped and swapcache pages */ 841 if (page_mapped(page) || PageSwapCache(page)) 842 sc->nr_scanned++; 843 844 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 845 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 846 847 /* 848 * The number of dirty pages determines if a zone is marked 849 * reclaim_congested which affects wait_iff_congested. kswapd 850 * will stall and start writing pages if the tail of the LRU 851 * is all dirty unqueued pages. 852 */ 853 page_check_dirty_writeback(page, &dirty, &writeback); 854 if (dirty || writeback) 855 nr_dirty++; 856 857 if (dirty && !writeback) 858 nr_unqueued_dirty++; 859 860 /* 861 * Treat this page as congested if the underlying BDI is or if 862 * pages are cycling through the LRU so quickly that the 863 * pages marked for immediate reclaim are making it to the 864 * end of the LRU a second time. 865 */ 866 mapping = page_mapping(page); 867 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 868 (writeback && PageReclaim(page))) 869 nr_congested++; 870 871 /* 872 * If a page at the tail of the LRU is under writeback, there 873 * are three cases to consider. 874 * 875 * 1) If reclaim is encountering an excessive number of pages 876 * under writeback and this page is both under writeback and 877 * PageReclaim then it indicates that pages are being queued 878 * for IO but are being recycled through the LRU before the 879 * IO can complete. Waiting on the page itself risks an 880 * indefinite stall if it is impossible to writeback the 881 * page due to IO error or disconnected storage so instead 882 * note that the LRU is being scanned too quickly and the 883 * caller can stall after page list has been processed. 884 * 885 * 2) Global reclaim encounters a page, memcg encounters a 886 * page that is not marked for immediate reclaim or 887 * the caller does not have __GFP_IO. In this case mark 888 * the page for immediate reclaim and continue scanning. 889 * 890 * __GFP_IO is checked because a loop driver thread might 891 * enter reclaim, and deadlock if it waits on a page for 892 * which it is needed to do the write (loop masks off 893 * __GFP_IO|__GFP_FS for this reason); but more thought 894 * would probably show more reasons. 895 * 896 * Don't require __GFP_FS, since we're not going into the 897 * FS, just waiting on its writeback completion. Worryingly, 898 * ext4 gfs2 and xfs allocate pages with 899 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 900 * may_enter_fs here is liable to OOM on them. 901 * 902 * 3) memcg encounters a page that is not already marked 903 * PageReclaim. memcg does not have any dirty pages 904 * throttling so we could easily OOM just because too many 905 * pages are in writeback and there is nothing else to 906 * reclaim. Wait for the writeback to complete. 907 */ 908 if (PageWriteback(page)) { 909 /* Case 1 above */ 910 if (current_is_kswapd() && 911 PageReclaim(page) && 912 zone_is_reclaim_writeback(zone)) { 913 nr_immediate++; 914 goto keep_locked; 915 916 /* Case 2 above */ 917 } else if (global_reclaim(sc) || 918 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 919 /* 920 * This is slightly racy - end_page_writeback() 921 * might have just cleared PageReclaim, then 922 * setting PageReclaim here end up interpreted 923 * as PageReadahead - but that does not matter 924 * enough to care. What we do want is for this 925 * page to have PageReclaim set next time memcg 926 * reclaim reaches the tests above, so it will 927 * then wait_on_page_writeback() to avoid OOM; 928 * and it's also appropriate in global reclaim. 929 */ 930 SetPageReclaim(page); 931 nr_writeback++; 932 933 goto keep_locked; 934 935 /* Case 3 above */ 936 } else { 937 wait_on_page_writeback(page); 938 } 939 } 940 941 if (!force_reclaim) 942 references = page_check_references(page, sc); 943 944 switch (references) { 945 case PAGEREF_ACTIVATE: 946 goto activate_locked; 947 case PAGEREF_KEEP: 948 goto keep_locked; 949 case PAGEREF_RECLAIM: 950 case PAGEREF_RECLAIM_CLEAN: 951 ; /* try to reclaim the page below */ 952 } 953 954 /* 955 * Anonymous process memory has backing store? 956 * Try to allocate it some swap space here. 957 */ 958 if (PageAnon(page) && !PageSwapCache(page)) { 959 if (!(sc->gfp_mask & __GFP_IO)) 960 goto keep_locked; 961 if (!add_to_swap(page, page_list)) 962 goto activate_locked; 963 may_enter_fs = 1; 964 965 /* Adding to swap updated mapping */ 966 mapping = page_mapping(page); 967 } 968 969 /* 970 * The page is mapped into the page tables of one or more 971 * processes. Try to unmap it here. 972 */ 973 if (page_mapped(page) && mapping) { 974 switch (try_to_unmap(page, ttu_flags)) { 975 case SWAP_FAIL: 976 goto activate_locked; 977 case SWAP_AGAIN: 978 goto keep_locked; 979 case SWAP_MLOCK: 980 goto cull_mlocked; 981 case SWAP_SUCCESS: 982 ; /* try to free the page below */ 983 } 984 } 985 986 if (PageDirty(page)) { 987 /* 988 * Only kswapd can writeback filesystem pages to 989 * avoid risk of stack overflow but only writeback 990 * if many dirty pages have been encountered. 991 */ 992 if (page_is_file_cache(page) && 993 (!current_is_kswapd() || 994 !zone_is_reclaim_dirty(zone))) { 995 /* 996 * Immediately reclaim when written back. 997 * Similar in principal to deactivate_page() 998 * except we already have the page isolated 999 * and know it's dirty 1000 */ 1001 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1002 SetPageReclaim(page); 1003 1004 goto keep_locked; 1005 } 1006 1007 if (references == PAGEREF_RECLAIM_CLEAN) 1008 goto keep_locked; 1009 if (!may_enter_fs) 1010 goto keep_locked; 1011 if (!sc->may_writepage) 1012 goto keep_locked; 1013 1014 /* Page is dirty, try to write it out here */ 1015 switch (pageout(page, mapping, sc)) { 1016 case PAGE_KEEP: 1017 goto keep_locked; 1018 case PAGE_ACTIVATE: 1019 goto activate_locked; 1020 case PAGE_SUCCESS: 1021 if (PageWriteback(page)) 1022 goto keep; 1023 if (PageDirty(page)) 1024 goto keep; 1025 1026 /* 1027 * A synchronous write - probably a ramdisk. Go 1028 * ahead and try to reclaim the page. 1029 */ 1030 if (!trylock_page(page)) 1031 goto keep; 1032 if (PageDirty(page) || PageWriteback(page)) 1033 goto keep_locked; 1034 mapping = page_mapping(page); 1035 case PAGE_CLEAN: 1036 ; /* try to free the page below */ 1037 } 1038 } 1039 1040 /* 1041 * If the page has buffers, try to free the buffer mappings 1042 * associated with this page. If we succeed we try to free 1043 * the page as well. 1044 * 1045 * We do this even if the page is PageDirty(). 1046 * try_to_release_page() does not perform I/O, but it is 1047 * possible for a page to have PageDirty set, but it is actually 1048 * clean (all its buffers are clean). This happens if the 1049 * buffers were written out directly, with submit_bh(). ext3 1050 * will do this, as well as the blockdev mapping. 1051 * try_to_release_page() will discover that cleanness and will 1052 * drop the buffers and mark the page clean - it can be freed. 1053 * 1054 * Rarely, pages can have buffers and no ->mapping. These are 1055 * the pages which were not successfully invalidated in 1056 * truncate_complete_page(). We try to drop those buffers here 1057 * and if that worked, and the page is no longer mapped into 1058 * process address space (page_count == 1) it can be freed. 1059 * Otherwise, leave the page on the LRU so it is swappable. 1060 */ 1061 if (page_has_private(page)) { 1062 if (!try_to_release_page(page, sc->gfp_mask)) 1063 goto activate_locked; 1064 if (!mapping && page_count(page) == 1) { 1065 unlock_page(page); 1066 if (put_page_testzero(page)) 1067 goto free_it; 1068 else { 1069 /* 1070 * rare race with speculative reference. 1071 * the speculative reference will free 1072 * this page shortly, so we may 1073 * increment nr_reclaimed here (and 1074 * leave it off the LRU). 1075 */ 1076 nr_reclaimed++; 1077 continue; 1078 } 1079 } 1080 } 1081 1082 if (!mapping || !__remove_mapping(mapping, page, true)) 1083 goto keep_locked; 1084 1085 /* 1086 * At this point, we have no other references and there is 1087 * no way to pick any more up (removed from LRU, removed 1088 * from pagecache). Can use non-atomic bitops now (and 1089 * we obviously don't have to worry about waking up a process 1090 * waiting on the page lock, because there are no references. 1091 */ 1092 __clear_page_locked(page); 1093 free_it: 1094 nr_reclaimed++; 1095 1096 /* 1097 * Is there need to periodically free_page_list? It would 1098 * appear not as the counts should be low 1099 */ 1100 list_add(&page->lru, &free_pages); 1101 continue; 1102 1103 cull_mlocked: 1104 if (PageSwapCache(page)) 1105 try_to_free_swap(page); 1106 unlock_page(page); 1107 putback_lru_page(page); 1108 continue; 1109 1110 activate_locked: 1111 /* Not a candidate for swapping, so reclaim swap space. */ 1112 if (PageSwapCache(page) && vm_swap_full()) 1113 try_to_free_swap(page); 1114 VM_BUG_ON_PAGE(PageActive(page), page); 1115 SetPageActive(page); 1116 pgactivate++; 1117 keep_locked: 1118 unlock_page(page); 1119 keep: 1120 list_add(&page->lru, &ret_pages); 1121 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1122 } 1123 1124 free_hot_cold_page_list(&free_pages, 1); 1125 1126 list_splice(&ret_pages, page_list); 1127 count_vm_events(PGACTIVATE, pgactivate); 1128 mem_cgroup_uncharge_end(); 1129 *ret_nr_dirty += nr_dirty; 1130 *ret_nr_congested += nr_congested; 1131 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1132 *ret_nr_writeback += nr_writeback; 1133 *ret_nr_immediate += nr_immediate; 1134 return nr_reclaimed; 1135 } 1136 1137 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1138 struct list_head *page_list) 1139 { 1140 struct scan_control sc = { 1141 .gfp_mask = GFP_KERNEL, 1142 .priority = DEF_PRIORITY, 1143 .may_unmap = 1, 1144 }; 1145 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1146 struct page *page, *next; 1147 LIST_HEAD(clean_pages); 1148 1149 list_for_each_entry_safe(page, next, page_list, lru) { 1150 if (page_is_file_cache(page) && !PageDirty(page) && 1151 !isolated_balloon_page(page)) { 1152 ClearPageActive(page); 1153 list_move(&page->lru, &clean_pages); 1154 } 1155 } 1156 1157 ret = shrink_page_list(&clean_pages, zone, &sc, 1158 TTU_UNMAP|TTU_IGNORE_ACCESS, 1159 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1160 list_splice(&clean_pages, page_list); 1161 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1162 return ret; 1163 } 1164 1165 /* 1166 * Attempt to remove the specified page from its LRU. Only take this page 1167 * if it is of the appropriate PageActive status. Pages which are being 1168 * freed elsewhere are also ignored. 1169 * 1170 * page: page to consider 1171 * mode: one of the LRU isolation modes defined above 1172 * 1173 * returns 0 on success, -ve errno on failure. 1174 */ 1175 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1176 { 1177 int ret = -EINVAL; 1178 1179 /* Only take pages on the LRU. */ 1180 if (!PageLRU(page)) 1181 return ret; 1182 1183 /* Compaction should not handle unevictable pages but CMA can do so */ 1184 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1185 return ret; 1186 1187 ret = -EBUSY; 1188 1189 /* 1190 * To minimise LRU disruption, the caller can indicate that it only 1191 * wants to isolate pages it will be able to operate on without 1192 * blocking - clean pages for the most part. 1193 * 1194 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1195 * is used by reclaim when it is cannot write to backing storage 1196 * 1197 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1198 * that it is possible to migrate without blocking 1199 */ 1200 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1201 /* All the caller can do on PageWriteback is block */ 1202 if (PageWriteback(page)) 1203 return ret; 1204 1205 if (PageDirty(page)) { 1206 struct address_space *mapping; 1207 1208 /* ISOLATE_CLEAN means only clean pages */ 1209 if (mode & ISOLATE_CLEAN) 1210 return ret; 1211 1212 /* 1213 * Only pages without mappings or that have a 1214 * ->migratepage callback are possible to migrate 1215 * without blocking 1216 */ 1217 mapping = page_mapping(page); 1218 if (mapping && !mapping->a_ops->migratepage) 1219 return ret; 1220 } 1221 } 1222 1223 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1224 return ret; 1225 1226 if (likely(get_page_unless_zero(page))) { 1227 /* 1228 * Be careful not to clear PageLRU until after we're 1229 * sure the page is not being freed elsewhere -- the 1230 * page release code relies on it. 1231 */ 1232 ClearPageLRU(page); 1233 ret = 0; 1234 } 1235 1236 return ret; 1237 } 1238 1239 /* 1240 * zone->lru_lock is heavily contended. Some of the functions that 1241 * shrink the lists perform better by taking out a batch of pages 1242 * and working on them outside the LRU lock. 1243 * 1244 * For pagecache intensive workloads, this function is the hottest 1245 * spot in the kernel (apart from copy_*_user functions). 1246 * 1247 * Appropriate locks must be held before calling this function. 1248 * 1249 * @nr_to_scan: The number of pages to look through on the list. 1250 * @lruvec: The LRU vector to pull pages from. 1251 * @dst: The temp list to put pages on to. 1252 * @nr_scanned: The number of pages that were scanned. 1253 * @sc: The scan_control struct for this reclaim session 1254 * @mode: One of the LRU isolation modes 1255 * @lru: LRU list id for isolating 1256 * 1257 * returns how many pages were moved onto *@dst. 1258 */ 1259 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1260 struct lruvec *lruvec, struct list_head *dst, 1261 unsigned long *nr_scanned, struct scan_control *sc, 1262 isolate_mode_t mode, enum lru_list lru) 1263 { 1264 struct list_head *src = &lruvec->lists[lru]; 1265 unsigned long nr_taken = 0; 1266 unsigned long scan; 1267 1268 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1269 struct page *page; 1270 int nr_pages; 1271 1272 page = lru_to_page(src); 1273 prefetchw_prev_lru_page(page, src, flags); 1274 1275 VM_BUG_ON_PAGE(!PageLRU(page), page); 1276 1277 switch (__isolate_lru_page(page, mode)) { 1278 case 0: 1279 nr_pages = hpage_nr_pages(page); 1280 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1281 list_move(&page->lru, dst); 1282 nr_taken += nr_pages; 1283 break; 1284 1285 case -EBUSY: 1286 /* else it is being freed elsewhere */ 1287 list_move(&page->lru, src); 1288 continue; 1289 1290 default: 1291 BUG(); 1292 } 1293 } 1294 1295 *nr_scanned = scan; 1296 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1297 nr_taken, mode, is_file_lru(lru)); 1298 return nr_taken; 1299 } 1300 1301 /** 1302 * isolate_lru_page - tries to isolate a page from its LRU list 1303 * @page: page to isolate from its LRU list 1304 * 1305 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1306 * vmstat statistic corresponding to whatever LRU list the page was on. 1307 * 1308 * Returns 0 if the page was removed from an LRU list. 1309 * Returns -EBUSY if the page was not on an LRU list. 1310 * 1311 * The returned page will have PageLRU() cleared. If it was found on 1312 * the active list, it will have PageActive set. If it was found on 1313 * the unevictable list, it will have the PageUnevictable bit set. That flag 1314 * may need to be cleared by the caller before letting the page go. 1315 * 1316 * The vmstat statistic corresponding to the list on which the page was 1317 * found will be decremented. 1318 * 1319 * Restrictions: 1320 * (1) Must be called with an elevated refcount on the page. This is a 1321 * fundamentnal difference from isolate_lru_pages (which is called 1322 * without a stable reference). 1323 * (2) the lru_lock must not be held. 1324 * (3) interrupts must be enabled. 1325 */ 1326 int isolate_lru_page(struct page *page) 1327 { 1328 int ret = -EBUSY; 1329 1330 VM_BUG_ON_PAGE(!page_count(page), page); 1331 1332 if (PageLRU(page)) { 1333 struct zone *zone = page_zone(page); 1334 struct lruvec *lruvec; 1335 1336 spin_lock_irq(&zone->lru_lock); 1337 lruvec = mem_cgroup_page_lruvec(page, zone); 1338 if (PageLRU(page)) { 1339 int lru = page_lru(page); 1340 get_page(page); 1341 ClearPageLRU(page); 1342 del_page_from_lru_list(page, lruvec, lru); 1343 ret = 0; 1344 } 1345 spin_unlock_irq(&zone->lru_lock); 1346 } 1347 return ret; 1348 } 1349 1350 /* 1351 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1352 * then get resheduled. When there are massive number of tasks doing page 1353 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1354 * the LRU list will go small and be scanned faster than necessary, leading to 1355 * unnecessary swapping, thrashing and OOM. 1356 */ 1357 static int too_many_isolated(struct zone *zone, int file, 1358 struct scan_control *sc) 1359 { 1360 unsigned long inactive, isolated; 1361 1362 if (current_is_kswapd()) 1363 return 0; 1364 1365 if (!global_reclaim(sc)) 1366 return 0; 1367 1368 if (file) { 1369 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1370 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1371 } else { 1372 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1373 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1374 } 1375 1376 /* 1377 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1378 * won't get blocked by normal direct-reclaimers, forming a circular 1379 * deadlock. 1380 */ 1381 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1382 inactive >>= 3; 1383 1384 return isolated > inactive; 1385 } 1386 1387 static noinline_for_stack void 1388 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1389 { 1390 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1391 struct zone *zone = lruvec_zone(lruvec); 1392 LIST_HEAD(pages_to_free); 1393 1394 /* 1395 * Put back any unfreeable pages. 1396 */ 1397 while (!list_empty(page_list)) { 1398 struct page *page = lru_to_page(page_list); 1399 int lru; 1400 1401 VM_BUG_ON_PAGE(PageLRU(page), page); 1402 list_del(&page->lru); 1403 if (unlikely(!page_evictable(page))) { 1404 spin_unlock_irq(&zone->lru_lock); 1405 putback_lru_page(page); 1406 spin_lock_irq(&zone->lru_lock); 1407 continue; 1408 } 1409 1410 lruvec = mem_cgroup_page_lruvec(page, zone); 1411 1412 SetPageLRU(page); 1413 lru = page_lru(page); 1414 add_page_to_lru_list(page, lruvec, lru); 1415 1416 if (is_active_lru(lru)) { 1417 int file = is_file_lru(lru); 1418 int numpages = hpage_nr_pages(page); 1419 reclaim_stat->recent_rotated[file] += numpages; 1420 } 1421 if (put_page_testzero(page)) { 1422 __ClearPageLRU(page); 1423 __ClearPageActive(page); 1424 del_page_from_lru_list(page, lruvec, lru); 1425 1426 if (unlikely(PageCompound(page))) { 1427 spin_unlock_irq(&zone->lru_lock); 1428 (*get_compound_page_dtor(page))(page); 1429 spin_lock_irq(&zone->lru_lock); 1430 } else 1431 list_add(&page->lru, &pages_to_free); 1432 } 1433 } 1434 1435 /* 1436 * To save our caller's stack, now use input list for pages to free. 1437 */ 1438 list_splice(&pages_to_free, page_list); 1439 } 1440 1441 /* 1442 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1443 * of reclaimed pages 1444 */ 1445 static noinline_for_stack unsigned long 1446 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1447 struct scan_control *sc, enum lru_list lru) 1448 { 1449 LIST_HEAD(page_list); 1450 unsigned long nr_scanned; 1451 unsigned long nr_reclaimed = 0; 1452 unsigned long nr_taken; 1453 unsigned long nr_dirty = 0; 1454 unsigned long nr_congested = 0; 1455 unsigned long nr_unqueued_dirty = 0; 1456 unsigned long nr_writeback = 0; 1457 unsigned long nr_immediate = 0; 1458 isolate_mode_t isolate_mode = 0; 1459 int file = is_file_lru(lru); 1460 struct zone *zone = lruvec_zone(lruvec); 1461 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1462 1463 while (unlikely(too_many_isolated(zone, file, sc))) { 1464 congestion_wait(BLK_RW_ASYNC, HZ/10); 1465 1466 /* We are about to die and free our memory. Return now. */ 1467 if (fatal_signal_pending(current)) 1468 return SWAP_CLUSTER_MAX; 1469 } 1470 1471 lru_add_drain(); 1472 1473 if (!sc->may_unmap) 1474 isolate_mode |= ISOLATE_UNMAPPED; 1475 if (!sc->may_writepage) 1476 isolate_mode |= ISOLATE_CLEAN; 1477 1478 spin_lock_irq(&zone->lru_lock); 1479 1480 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1481 &nr_scanned, sc, isolate_mode, lru); 1482 1483 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1484 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1485 1486 if (global_reclaim(sc)) { 1487 zone->pages_scanned += nr_scanned; 1488 if (current_is_kswapd()) 1489 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1490 else 1491 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1492 } 1493 spin_unlock_irq(&zone->lru_lock); 1494 1495 if (nr_taken == 0) 1496 return 0; 1497 1498 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1499 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1500 &nr_writeback, &nr_immediate, 1501 false); 1502 1503 spin_lock_irq(&zone->lru_lock); 1504 1505 reclaim_stat->recent_scanned[file] += nr_taken; 1506 1507 if (global_reclaim(sc)) { 1508 if (current_is_kswapd()) 1509 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1510 nr_reclaimed); 1511 else 1512 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1513 nr_reclaimed); 1514 } 1515 1516 putback_inactive_pages(lruvec, &page_list); 1517 1518 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1519 1520 spin_unlock_irq(&zone->lru_lock); 1521 1522 free_hot_cold_page_list(&page_list, 1); 1523 1524 /* 1525 * If reclaim is isolating dirty pages under writeback, it implies 1526 * that the long-lived page allocation rate is exceeding the page 1527 * laundering rate. Either the global limits are not being effective 1528 * at throttling processes due to the page distribution throughout 1529 * zones or there is heavy usage of a slow backing device. The 1530 * only option is to throttle from reclaim context which is not ideal 1531 * as there is no guarantee the dirtying process is throttled in the 1532 * same way balance_dirty_pages() manages. 1533 * 1534 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1535 * of pages under pages flagged for immediate reclaim and stall if any 1536 * are encountered in the nr_immediate check below. 1537 */ 1538 if (nr_writeback && nr_writeback == nr_taken) 1539 zone_set_flag(zone, ZONE_WRITEBACK); 1540 1541 /* 1542 * memcg will stall in page writeback so only consider forcibly 1543 * stalling for global reclaim 1544 */ 1545 if (global_reclaim(sc)) { 1546 /* 1547 * Tag a zone as congested if all the dirty pages scanned were 1548 * backed by a congested BDI and wait_iff_congested will stall. 1549 */ 1550 if (nr_dirty && nr_dirty == nr_congested) 1551 zone_set_flag(zone, ZONE_CONGESTED); 1552 1553 /* 1554 * If dirty pages are scanned that are not queued for IO, it 1555 * implies that flushers are not keeping up. In this case, flag 1556 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1557 * pages from reclaim context. It will forcibly stall in the 1558 * next check. 1559 */ 1560 if (nr_unqueued_dirty == nr_taken) 1561 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1562 1563 /* 1564 * In addition, if kswapd scans pages marked marked for 1565 * immediate reclaim and under writeback (nr_immediate), it 1566 * implies that pages are cycling through the LRU faster than 1567 * they are written so also forcibly stall. 1568 */ 1569 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1570 congestion_wait(BLK_RW_ASYNC, HZ/10); 1571 } 1572 1573 /* 1574 * Stall direct reclaim for IO completions if underlying BDIs or zone 1575 * is congested. Allow kswapd to continue until it starts encountering 1576 * unqueued dirty pages or cycling through the LRU too quickly. 1577 */ 1578 if (!sc->hibernation_mode && !current_is_kswapd()) 1579 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1580 1581 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1582 zone_idx(zone), 1583 nr_scanned, nr_reclaimed, 1584 sc->priority, 1585 trace_shrink_flags(file)); 1586 return nr_reclaimed; 1587 } 1588 1589 /* 1590 * This moves pages from the active list to the inactive list. 1591 * 1592 * We move them the other way if the page is referenced by one or more 1593 * processes, from rmap. 1594 * 1595 * If the pages are mostly unmapped, the processing is fast and it is 1596 * appropriate to hold zone->lru_lock across the whole operation. But if 1597 * the pages are mapped, the processing is slow (page_referenced()) so we 1598 * should drop zone->lru_lock around each page. It's impossible to balance 1599 * this, so instead we remove the pages from the LRU while processing them. 1600 * It is safe to rely on PG_active against the non-LRU pages in here because 1601 * nobody will play with that bit on a non-LRU page. 1602 * 1603 * The downside is that we have to touch page->_count against each page. 1604 * But we had to alter page->flags anyway. 1605 */ 1606 1607 static void move_active_pages_to_lru(struct lruvec *lruvec, 1608 struct list_head *list, 1609 struct list_head *pages_to_free, 1610 enum lru_list lru) 1611 { 1612 struct zone *zone = lruvec_zone(lruvec); 1613 unsigned long pgmoved = 0; 1614 struct page *page; 1615 int nr_pages; 1616 1617 while (!list_empty(list)) { 1618 page = lru_to_page(list); 1619 lruvec = mem_cgroup_page_lruvec(page, zone); 1620 1621 VM_BUG_ON_PAGE(PageLRU(page), page); 1622 SetPageLRU(page); 1623 1624 nr_pages = hpage_nr_pages(page); 1625 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1626 list_move(&page->lru, &lruvec->lists[lru]); 1627 pgmoved += nr_pages; 1628 1629 if (put_page_testzero(page)) { 1630 __ClearPageLRU(page); 1631 __ClearPageActive(page); 1632 del_page_from_lru_list(page, lruvec, lru); 1633 1634 if (unlikely(PageCompound(page))) { 1635 spin_unlock_irq(&zone->lru_lock); 1636 (*get_compound_page_dtor(page))(page); 1637 spin_lock_irq(&zone->lru_lock); 1638 } else 1639 list_add(&page->lru, pages_to_free); 1640 } 1641 } 1642 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1643 if (!is_active_lru(lru)) 1644 __count_vm_events(PGDEACTIVATE, pgmoved); 1645 } 1646 1647 static void shrink_active_list(unsigned long nr_to_scan, 1648 struct lruvec *lruvec, 1649 struct scan_control *sc, 1650 enum lru_list lru) 1651 { 1652 unsigned long nr_taken; 1653 unsigned long nr_scanned; 1654 unsigned long vm_flags; 1655 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1656 LIST_HEAD(l_active); 1657 LIST_HEAD(l_inactive); 1658 struct page *page; 1659 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1660 unsigned long nr_rotated = 0; 1661 isolate_mode_t isolate_mode = 0; 1662 int file = is_file_lru(lru); 1663 struct zone *zone = lruvec_zone(lruvec); 1664 1665 lru_add_drain(); 1666 1667 if (!sc->may_unmap) 1668 isolate_mode |= ISOLATE_UNMAPPED; 1669 if (!sc->may_writepage) 1670 isolate_mode |= ISOLATE_CLEAN; 1671 1672 spin_lock_irq(&zone->lru_lock); 1673 1674 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1675 &nr_scanned, sc, isolate_mode, lru); 1676 if (global_reclaim(sc)) 1677 zone->pages_scanned += nr_scanned; 1678 1679 reclaim_stat->recent_scanned[file] += nr_taken; 1680 1681 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1682 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1683 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1684 spin_unlock_irq(&zone->lru_lock); 1685 1686 while (!list_empty(&l_hold)) { 1687 cond_resched(); 1688 page = lru_to_page(&l_hold); 1689 list_del(&page->lru); 1690 1691 if (unlikely(!page_evictable(page))) { 1692 putback_lru_page(page); 1693 continue; 1694 } 1695 1696 if (unlikely(buffer_heads_over_limit)) { 1697 if (page_has_private(page) && trylock_page(page)) { 1698 if (page_has_private(page)) 1699 try_to_release_page(page, 0); 1700 unlock_page(page); 1701 } 1702 } 1703 1704 if (page_referenced(page, 0, sc->target_mem_cgroup, 1705 &vm_flags)) { 1706 nr_rotated += hpage_nr_pages(page); 1707 /* 1708 * Identify referenced, file-backed active pages and 1709 * give them one more trip around the active list. So 1710 * that executable code get better chances to stay in 1711 * memory under moderate memory pressure. Anon pages 1712 * are not likely to be evicted by use-once streaming 1713 * IO, plus JVM can create lots of anon VM_EXEC pages, 1714 * so we ignore them here. 1715 */ 1716 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1717 list_add(&page->lru, &l_active); 1718 continue; 1719 } 1720 } 1721 1722 ClearPageActive(page); /* we are de-activating */ 1723 list_add(&page->lru, &l_inactive); 1724 } 1725 1726 /* 1727 * Move pages back to the lru list. 1728 */ 1729 spin_lock_irq(&zone->lru_lock); 1730 /* 1731 * Count referenced pages from currently used mappings as rotated, 1732 * even though only some of them are actually re-activated. This 1733 * helps balance scan pressure between file and anonymous pages in 1734 * get_scan_ratio. 1735 */ 1736 reclaim_stat->recent_rotated[file] += nr_rotated; 1737 1738 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1739 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1740 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1741 spin_unlock_irq(&zone->lru_lock); 1742 1743 free_hot_cold_page_list(&l_hold, 1); 1744 } 1745 1746 #ifdef CONFIG_SWAP 1747 static int inactive_anon_is_low_global(struct zone *zone) 1748 { 1749 unsigned long active, inactive; 1750 1751 active = zone_page_state(zone, NR_ACTIVE_ANON); 1752 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1753 1754 if (inactive * zone->inactive_ratio < active) 1755 return 1; 1756 1757 return 0; 1758 } 1759 1760 /** 1761 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1762 * @lruvec: LRU vector to check 1763 * 1764 * Returns true if the zone does not have enough inactive anon pages, 1765 * meaning some active anon pages need to be deactivated. 1766 */ 1767 static int inactive_anon_is_low(struct lruvec *lruvec) 1768 { 1769 /* 1770 * If we don't have swap space, anonymous page deactivation 1771 * is pointless. 1772 */ 1773 if (!total_swap_pages) 1774 return 0; 1775 1776 if (!mem_cgroup_disabled()) 1777 return mem_cgroup_inactive_anon_is_low(lruvec); 1778 1779 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1780 } 1781 #else 1782 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1783 { 1784 return 0; 1785 } 1786 #endif 1787 1788 /** 1789 * inactive_file_is_low - check if file pages need to be deactivated 1790 * @lruvec: LRU vector to check 1791 * 1792 * When the system is doing streaming IO, memory pressure here 1793 * ensures that active file pages get deactivated, until more 1794 * than half of the file pages are on the inactive list. 1795 * 1796 * Once we get to that situation, protect the system's working 1797 * set from being evicted by disabling active file page aging. 1798 * 1799 * This uses a different ratio than the anonymous pages, because 1800 * the page cache uses a use-once replacement algorithm. 1801 */ 1802 static int inactive_file_is_low(struct lruvec *lruvec) 1803 { 1804 unsigned long inactive; 1805 unsigned long active; 1806 1807 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1808 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1809 1810 return active > inactive; 1811 } 1812 1813 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1814 { 1815 if (is_file_lru(lru)) 1816 return inactive_file_is_low(lruvec); 1817 else 1818 return inactive_anon_is_low(lruvec); 1819 } 1820 1821 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1822 struct lruvec *lruvec, struct scan_control *sc) 1823 { 1824 if (is_active_lru(lru)) { 1825 if (inactive_list_is_low(lruvec, lru)) 1826 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1827 return 0; 1828 } 1829 1830 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1831 } 1832 1833 static int vmscan_swappiness(struct scan_control *sc) 1834 { 1835 if (global_reclaim(sc)) 1836 return vm_swappiness; 1837 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1838 } 1839 1840 enum scan_balance { 1841 SCAN_EQUAL, 1842 SCAN_FRACT, 1843 SCAN_ANON, 1844 SCAN_FILE, 1845 }; 1846 1847 /* 1848 * Determine how aggressively the anon and file LRU lists should be 1849 * scanned. The relative value of each set of LRU lists is determined 1850 * by looking at the fraction of the pages scanned we did rotate back 1851 * onto the active list instead of evict. 1852 * 1853 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1854 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1855 */ 1856 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1857 unsigned long *nr) 1858 { 1859 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1860 u64 fraction[2]; 1861 u64 denominator = 0; /* gcc */ 1862 struct zone *zone = lruvec_zone(lruvec); 1863 unsigned long anon_prio, file_prio; 1864 enum scan_balance scan_balance; 1865 unsigned long anon, file; 1866 bool force_scan = false; 1867 unsigned long ap, fp; 1868 enum lru_list lru; 1869 1870 /* 1871 * If the zone or memcg is small, nr[l] can be 0. This 1872 * results in no scanning on this priority and a potential 1873 * priority drop. Global direct reclaim can go to the next 1874 * zone and tends to have no problems. Global kswapd is for 1875 * zone balancing and it needs to scan a minimum amount. When 1876 * reclaiming for a memcg, a priority drop can cause high 1877 * latencies, so it's better to scan a minimum amount there as 1878 * well. 1879 */ 1880 if (current_is_kswapd() && !zone_reclaimable(zone)) 1881 force_scan = true; 1882 if (!global_reclaim(sc)) 1883 force_scan = true; 1884 1885 /* If we have no swap space, do not bother scanning anon pages. */ 1886 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1887 scan_balance = SCAN_FILE; 1888 goto out; 1889 } 1890 1891 /* 1892 * Global reclaim will swap to prevent OOM even with no 1893 * swappiness, but memcg users want to use this knob to 1894 * disable swapping for individual groups completely when 1895 * using the memory controller's swap limit feature would be 1896 * too expensive. 1897 */ 1898 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1899 scan_balance = SCAN_FILE; 1900 goto out; 1901 } 1902 1903 /* 1904 * Do not apply any pressure balancing cleverness when the 1905 * system is close to OOM, scan both anon and file equally 1906 * (unless the swappiness setting disagrees with swapping). 1907 */ 1908 if (!sc->priority && vmscan_swappiness(sc)) { 1909 scan_balance = SCAN_EQUAL; 1910 goto out; 1911 } 1912 1913 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1914 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1915 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1916 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1917 1918 /* 1919 * There is enough inactive page cache, do not reclaim 1920 * anything from the anonymous working set right now. 1921 */ 1922 if (!inactive_file_is_low(lruvec)) { 1923 scan_balance = SCAN_FILE; 1924 goto out; 1925 } 1926 1927 scan_balance = SCAN_FRACT; 1928 1929 /* 1930 * With swappiness at 100, anonymous and file have the same priority. 1931 * This scanning priority is essentially the inverse of IO cost. 1932 */ 1933 anon_prio = vmscan_swappiness(sc); 1934 file_prio = 200 - anon_prio; 1935 1936 /* 1937 * OK, so we have swap space and a fair amount of page cache 1938 * pages. We use the recently rotated / recently scanned 1939 * ratios to determine how valuable each cache is. 1940 * 1941 * Because workloads change over time (and to avoid overflow) 1942 * we keep these statistics as a floating average, which ends 1943 * up weighing recent references more than old ones. 1944 * 1945 * anon in [0], file in [1] 1946 */ 1947 spin_lock_irq(&zone->lru_lock); 1948 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1949 reclaim_stat->recent_scanned[0] /= 2; 1950 reclaim_stat->recent_rotated[0] /= 2; 1951 } 1952 1953 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1954 reclaim_stat->recent_scanned[1] /= 2; 1955 reclaim_stat->recent_rotated[1] /= 2; 1956 } 1957 1958 /* 1959 * The amount of pressure on anon vs file pages is inversely 1960 * proportional to the fraction of recently scanned pages on 1961 * each list that were recently referenced and in active use. 1962 */ 1963 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1964 ap /= reclaim_stat->recent_rotated[0] + 1; 1965 1966 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1967 fp /= reclaim_stat->recent_rotated[1] + 1; 1968 spin_unlock_irq(&zone->lru_lock); 1969 1970 fraction[0] = ap; 1971 fraction[1] = fp; 1972 denominator = ap + fp + 1; 1973 out: 1974 for_each_evictable_lru(lru) { 1975 int file = is_file_lru(lru); 1976 unsigned long size; 1977 unsigned long scan; 1978 1979 size = get_lru_size(lruvec, lru); 1980 scan = size >> sc->priority; 1981 1982 if (!scan && force_scan) 1983 scan = min(size, SWAP_CLUSTER_MAX); 1984 1985 switch (scan_balance) { 1986 case SCAN_EQUAL: 1987 /* Scan lists relative to size */ 1988 break; 1989 case SCAN_FRACT: 1990 /* 1991 * Scan types proportional to swappiness and 1992 * their relative recent reclaim efficiency. 1993 */ 1994 scan = div64_u64(scan * fraction[file], denominator); 1995 break; 1996 case SCAN_FILE: 1997 case SCAN_ANON: 1998 /* Scan one type exclusively */ 1999 if ((scan_balance == SCAN_FILE) != file) 2000 scan = 0; 2001 break; 2002 default: 2003 /* Look ma, no brain */ 2004 BUG(); 2005 } 2006 nr[lru] = scan; 2007 } 2008 } 2009 2010 /* 2011 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2012 */ 2013 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2014 { 2015 unsigned long nr[NR_LRU_LISTS]; 2016 unsigned long targets[NR_LRU_LISTS]; 2017 unsigned long nr_to_scan; 2018 enum lru_list lru; 2019 unsigned long nr_reclaimed = 0; 2020 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2021 struct blk_plug plug; 2022 bool scan_adjusted = false; 2023 2024 get_scan_count(lruvec, sc, nr); 2025 2026 /* Record the original scan target for proportional adjustments later */ 2027 memcpy(targets, nr, sizeof(nr)); 2028 2029 blk_start_plug(&plug); 2030 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2031 nr[LRU_INACTIVE_FILE]) { 2032 unsigned long nr_anon, nr_file, percentage; 2033 unsigned long nr_scanned; 2034 2035 for_each_evictable_lru(lru) { 2036 if (nr[lru]) { 2037 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2038 nr[lru] -= nr_to_scan; 2039 2040 nr_reclaimed += shrink_list(lru, nr_to_scan, 2041 lruvec, sc); 2042 } 2043 } 2044 2045 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2046 continue; 2047 2048 /* 2049 * For global direct reclaim, reclaim only the number of pages 2050 * requested. Less care is taken to scan proportionally as it 2051 * is more important to minimise direct reclaim stall latency 2052 * than it is to properly age the LRU lists. 2053 */ 2054 if (global_reclaim(sc) && !current_is_kswapd()) 2055 break; 2056 2057 /* 2058 * For kswapd and memcg, reclaim at least the number of pages 2059 * requested. Ensure that the anon and file LRUs shrink 2060 * proportionally what was requested by get_scan_count(). We 2061 * stop reclaiming one LRU and reduce the amount scanning 2062 * proportional to the original scan target. 2063 */ 2064 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2065 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2066 2067 if (nr_file > nr_anon) { 2068 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2069 targets[LRU_ACTIVE_ANON] + 1; 2070 lru = LRU_BASE; 2071 percentage = nr_anon * 100 / scan_target; 2072 } else { 2073 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2074 targets[LRU_ACTIVE_FILE] + 1; 2075 lru = LRU_FILE; 2076 percentage = nr_file * 100 / scan_target; 2077 } 2078 2079 /* Stop scanning the smaller of the LRU */ 2080 nr[lru] = 0; 2081 nr[lru + LRU_ACTIVE] = 0; 2082 2083 /* 2084 * Recalculate the other LRU scan count based on its original 2085 * scan target and the percentage scanning already complete 2086 */ 2087 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2088 nr_scanned = targets[lru] - nr[lru]; 2089 nr[lru] = targets[lru] * (100 - percentage) / 100; 2090 nr[lru] -= min(nr[lru], nr_scanned); 2091 2092 lru += LRU_ACTIVE; 2093 nr_scanned = targets[lru] - nr[lru]; 2094 nr[lru] = targets[lru] * (100 - percentage) / 100; 2095 nr[lru] -= min(nr[lru], nr_scanned); 2096 2097 scan_adjusted = true; 2098 } 2099 blk_finish_plug(&plug); 2100 sc->nr_reclaimed += nr_reclaimed; 2101 2102 /* 2103 * Even if we did not try to evict anon pages at all, we want to 2104 * rebalance the anon lru active/inactive ratio. 2105 */ 2106 if (inactive_anon_is_low(lruvec)) 2107 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2108 sc, LRU_ACTIVE_ANON); 2109 2110 throttle_vm_writeout(sc->gfp_mask); 2111 } 2112 2113 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2114 static bool in_reclaim_compaction(struct scan_control *sc) 2115 { 2116 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2117 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2118 sc->priority < DEF_PRIORITY - 2)) 2119 return true; 2120 2121 return false; 2122 } 2123 2124 /* 2125 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2126 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2127 * true if more pages should be reclaimed such that when the page allocator 2128 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2129 * It will give up earlier than that if there is difficulty reclaiming pages. 2130 */ 2131 static inline bool should_continue_reclaim(struct zone *zone, 2132 unsigned long nr_reclaimed, 2133 unsigned long nr_scanned, 2134 struct scan_control *sc) 2135 { 2136 unsigned long pages_for_compaction; 2137 unsigned long inactive_lru_pages; 2138 2139 /* If not in reclaim/compaction mode, stop */ 2140 if (!in_reclaim_compaction(sc)) 2141 return false; 2142 2143 /* Consider stopping depending on scan and reclaim activity */ 2144 if (sc->gfp_mask & __GFP_REPEAT) { 2145 /* 2146 * For __GFP_REPEAT allocations, stop reclaiming if the 2147 * full LRU list has been scanned and we are still failing 2148 * to reclaim pages. This full LRU scan is potentially 2149 * expensive but a __GFP_REPEAT caller really wants to succeed 2150 */ 2151 if (!nr_reclaimed && !nr_scanned) 2152 return false; 2153 } else { 2154 /* 2155 * For non-__GFP_REPEAT allocations which can presumably 2156 * fail without consequence, stop if we failed to reclaim 2157 * any pages from the last SWAP_CLUSTER_MAX number of 2158 * pages that were scanned. This will return to the 2159 * caller faster at the risk reclaim/compaction and 2160 * the resulting allocation attempt fails 2161 */ 2162 if (!nr_reclaimed) 2163 return false; 2164 } 2165 2166 /* 2167 * If we have not reclaimed enough pages for compaction and the 2168 * inactive lists are large enough, continue reclaiming 2169 */ 2170 pages_for_compaction = (2UL << sc->order); 2171 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2172 if (get_nr_swap_pages() > 0) 2173 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2174 if (sc->nr_reclaimed < pages_for_compaction && 2175 inactive_lru_pages > pages_for_compaction) 2176 return true; 2177 2178 /* If compaction would go ahead or the allocation would succeed, stop */ 2179 switch (compaction_suitable(zone, sc->order)) { 2180 case COMPACT_PARTIAL: 2181 case COMPACT_CONTINUE: 2182 return false; 2183 default: 2184 return true; 2185 } 2186 } 2187 2188 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2189 { 2190 unsigned long nr_reclaimed, nr_scanned; 2191 2192 do { 2193 struct mem_cgroup *root = sc->target_mem_cgroup; 2194 struct mem_cgroup_reclaim_cookie reclaim = { 2195 .zone = zone, 2196 .priority = sc->priority, 2197 }; 2198 struct mem_cgroup *memcg; 2199 2200 nr_reclaimed = sc->nr_reclaimed; 2201 nr_scanned = sc->nr_scanned; 2202 2203 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2204 do { 2205 struct lruvec *lruvec; 2206 2207 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2208 2209 shrink_lruvec(lruvec, sc); 2210 2211 /* 2212 * Direct reclaim and kswapd have to scan all memory 2213 * cgroups to fulfill the overall scan target for the 2214 * zone. 2215 * 2216 * Limit reclaim, on the other hand, only cares about 2217 * nr_to_reclaim pages to be reclaimed and it will 2218 * retry with decreasing priority if one round over the 2219 * whole hierarchy is not sufficient. 2220 */ 2221 if (!global_reclaim(sc) && 2222 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2223 mem_cgroup_iter_break(root, memcg); 2224 break; 2225 } 2226 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2227 } while (memcg); 2228 2229 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2230 sc->nr_scanned - nr_scanned, 2231 sc->nr_reclaimed - nr_reclaimed); 2232 2233 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2234 sc->nr_scanned - nr_scanned, sc)); 2235 } 2236 2237 /* Returns true if compaction should go ahead for a high-order request */ 2238 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2239 { 2240 unsigned long balance_gap, watermark; 2241 bool watermark_ok; 2242 2243 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2244 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2245 return false; 2246 2247 /* 2248 * Compaction takes time to run and there are potentially other 2249 * callers using the pages just freed. Continue reclaiming until 2250 * there is a buffer of free pages available to give compaction 2251 * a reasonable chance of completing and allocating the page 2252 */ 2253 balance_gap = min(low_wmark_pages(zone), 2254 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2255 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2256 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2257 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2258 2259 /* 2260 * If compaction is deferred, reclaim up to a point where 2261 * compaction will have a chance of success when re-enabled 2262 */ 2263 if (compaction_deferred(zone, sc->order)) 2264 return watermark_ok; 2265 2266 /* If compaction is not ready to start, keep reclaiming */ 2267 if (!compaction_suitable(zone, sc->order)) 2268 return false; 2269 2270 return watermark_ok; 2271 } 2272 2273 /* 2274 * This is the direct reclaim path, for page-allocating processes. We only 2275 * try to reclaim pages from zones which will satisfy the caller's allocation 2276 * request. 2277 * 2278 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2279 * Because: 2280 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2281 * allocation or 2282 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2283 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2284 * zone defense algorithm. 2285 * 2286 * If a zone is deemed to be full of pinned pages then just give it a light 2287 * scan then give up on it. 2288 * 2289 * This function returns true if a zone is being reclaimed for a costly 2290 * high-order allocation and compaction is ready to begin. This indicates to 2291 * the caller that it should consider retrying the allocation instead of 2292 * further reclaim. 2293 */ 2294 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2295 { 2296 struct zoneref *z; 2297 struct zone *zone; 2298 unsigned long nr_soft_reclaimed; 2299 unsigned long nr_soft_scanned; 2300 unsigned long lru_pages = 0; 2301 bool aborted_reclaim = false; 2302 struct reclaim_state *reclaim_state = current->reclaim_state; 2303 gfp_t orig_mask; 2304 struct shrink_control shrink = { 2305 .gfp_mask = sc->gfp_mask, 2306 }; 2307 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2308 2309 /* 2310 * If the number of buffer_heads in the machine exceeds the maximum 2311 * allowed level, force direct reclaim to scan the highmem zone as 2312 * highmem pages could be pinning lowmem pages storing buffer_heads 2313 */ 2314 orig_mask = sc->gfp_mask; 2315 if (buffer_heads_over_limit) 2316 sc->gfp_mask |= __GFP_HIGHMEM; 2317 2318 nodes_clear(shrink.nodes_to_scan); 2319 2320 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2321 gfp_zone(sc->gfp_mask), sc->nodemask) { 2322 if (!populated_zone(zone)) 2323 continue; 2324 /* 2325 * Take care memory controller reclaiming has small influence 2326 * to global LRU. 2327 */ 2328 if (global_reclaim(sc)) { 2329 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2330 continue; 2331 2332 lru_pages += zone_reclaimable_pages(zone); 2333 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2334 2335 if (sc->priority != DEF_PRIORITY && 2336 !zone_reclaimable(zone)) 2337 continue; /* Let kswapd poll it */ 2338 if (IS_ENABLED(CONFIG_COMPACTION)) { 2339 /* 2340 * If we already have plenty of memory free for 2341 * compaction in this zone, don't free any more. 2342 * Even though compaction is invoked for any 2343 * non-zero order, only frequent costly order 2344 * reclamation is disruptive enough to become a 2345 * noticeable problem, like transparent huge 2346 * page allocations. 2347 */ 2348 if ((zonelist_zone_idx(z) <= requested_highidx) 2349 && compaction_ready(zone, sc)) { 2350 aborted_reclaim = true; 2351 continue; 2352 } 2353 } 2354 /* 2355 * This steals pages from memory cgroups over softlimit 2356 * and returns the number of reclaimed pages and 2357 * scanned pages. This works for global memory pressure 2358 * and balancing, not for a memcg's limit. 2359 */ 2360 nr_soft_scanned = 0; 2361 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2362 sc->order, sc->gfp_mask, 2363 &nr_soft_scanned); 2364 sc->nr_reclaimed += nr_soft_reclaimed; 2365 sc->nr_scanned += nr_soft_scanned; 2366 /* need some check for avoid more shrink_zone() */ 2367 } 2368 2369 shrink_zone(zone, sc); 2370 } 2371 2372 /* 2373 * Don't shrink slabs when reclaiming memory from over limit cgroups 2374 * but do shrink slab at least once when aborting reclaim for 2375 * compaction to avoid unevenly scanning file/anon LRU pages over slab 2376 * pages. 2377 */ 2378 if (global_reclaim(sc)) { 2379 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2380 if (reclaim_state) { 2381 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2382 reclaim_state->reclaimed_slab = 0; 2383 } 2384 } 2385 2386 /* 2387 * Restore to original mask to avoid the impact on the caller if we 2388 * promoted it to __GFP_HIGHMEM. 2389 */ 2390 sc->gfp_mask = orig_mask; 2391 2392 return aborted_reclaim; 2393 } 2394 2395 /* All zones in zonelist are unreclaimable? */ 2396 static bool all_unreclaimable(struct zonelist *zonelist, 2397 struct scan_control *sc) 2398 { 2399 struct zoneref *z; 2400 struct zone *zone; 2401 2402 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2403 gfp_zone(sc->gfp_mask), sc->nodemask) { 2404 if (!populated_zone(zone)) 2405 continue; 2406 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2407 continue; 2408 if (zone_reclaimable(zone)) 2409 return false; 2410 } 2411 2412 return true; 2413 } 2414 2415 /* 2416 * This is the main entry point to direct page reclaim. 2417 * 2418 * If a full scan of the inactive list fails to free enough memory then we 2419 * are "out of memory" and something needs to be killed. 2420 * 2421 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2422 * high - the zone may be full of dirty or under-writeback pages, which this 2423 * caller can't do much about. We kick the writeback threads and take explicit 2424 * naps in the hope that some of these pages can be written. But if the 2425 * allocating task holds filesystem locks which prevent writeout this might not 2426 * work, and the allocation attempt will fail. 2427 * 2428 * returns: 0, if no pages reclaimed 2429 * else, the number of pages reclaimed 2430 */ 2431 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2432 struct scan_control *sc) 2433 { 2434 unsigned long total_scanned = 0; 2435 unsigned long writeback_threshold; 2436 bool aborted_reclaim; 2437 2438 delayacct_freepages_start(); 2439 2440 if (global_reclaim(sc)) 2441 count_vm_event(ALLOCSTALL); 2442 2443 do { 2444 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2445 sc->priority); 2446 sc->nr_scanned = 0; 2447 aborted_reclaim = shrink_zones(zonelist, sc); 2448 2449 total_scanned += sc->nr_scanned; 2450 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2451 goto out; 2452 2453 /* 2454 * If we're getting trouble reclaiming, start doing 2455 * writepage even in laptop mode. 2456 */ 2457 if (sc->priority < DEF_PRIORITY - 2) 2458 sc->may_writepage = 1; 2459 2460 /* 2461 * Try to write back as many pages as we just scanned. This 2462 * tends to cause slow streaming writers to write data to the 2463 * disk smoothly, at the dirtying rate, which is nice. But 2464 * that's undesirable in laptop mode, where we *want* lumpy 2465 * writeout. So in laptop mode, write out the whole world. 2466 */ 2467 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2468 if (total_scanned > writeback_threshold) { 2469 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2470 WB_REASON_TRY_TO_FREE_PAGES); 2471 sc->may_writepage = 1; 2472 } 2473 } while (--sc->priority >= 0 && !aborted_reclaim); 2474 2475 out: 2476 delayacct_freepages_end(); 2477 2478 if (sc->nr_reclaimed) 2479 return sc->nr_reclaimed; 2480 2481 /* 2482 * As hibernation is going on, kswapd is freezed so that it can't mark 2483 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2484 * check. 2485 */ 2486 if (oom_killer_disabled) 2487 return 0; 2488 2489 /* Aborted reclaim to try compaction? don't OOM, then */ 2490 if (aborted_reclaim) 2491 return 1; 2492 2493 /* top priority shrink_zones still had more to do? don't OOM, then */ 2494 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2495 return 1; 2496 2497 return 0; 2498 } 2499 2500 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2501 { 2502 struct zone *zone; 2503 unsigned long pfmemalloc_reserve = 0; 2504 unsigned long free_pages = 0; 2505 int i; 2506 bool wmark_ok; 2507 2508 for (i = 0; i <= ZONE_NORMAL; i++) { 2509 zone = &pgdat->node_zones[i]; 2510 pfmemalloc_reserve += min_wmark_pages(zone); 2511 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2512 } 2513 2514 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2515 2516 /* kswapd must be awake if processes are being throttled */ 2517 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2518 pgdat->classzone_idx = min(pgdat->classzone_idx, 2519 (enum zone_type)ZONE_NORMAL); 2520 wake_up_interruptible(&pgdat->kswapd_wait); 2521 } 2522 2523 return wmark_ok; 2524 } 2525 2526 /* 2527 * Throttle direct reclaimers if backing storage is backed by the network 2528 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2529 * depleted. kswapd will continue to make progress and wake the processes 2530 * when the low watermark is reached. 2531 * 2532 * Returns true if a fatal signal was delivered during throttling. If this 2533 * happens, the page allocator should not consider triggering the OOM killer. 2534 */ 2535 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2536 nodemask_t *nodemask) 2537 { 2538 struct zone *zone; 2539 int high_zoneidx = gfp_zone(gfp_mask); 2540 pg_data_t *pgdat; 2541 2542 /* 2543 * Kernel threads should not be throttled as they may be indirectly 2544 * responsible for cleaning pages necessary for reclaim to make forward 2545 * progress. kjournald for example may enter direct reclaim while 2546 * committing a transaction where throttling it could forcing other 2547 * processes to block on log_wait_commit(). 2548 */ 2549 if (current->flags & PF_KTHREAD) 2550 goto out; 2551 2552 /* 2553 * If a fatal signal is pending, this process should not throttle. 2554 * It should return quickly so it can exit and free its memory 2555 */ 2556 if (fatal_signal_pending(current)) 2557 goto out; 2558 2559 /* Check if the pfmemalloc reserves are ok */ 2560 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2561 pgdat = zone->zone_pgdat; 2562 if (pfmemalloc_watermark_ok(pgdat)) 2563 goto out; 2564 2565 /* Account for the throttling */ 2566 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2567 2568 /* 2569 * If the caller cannot enter the filesystem, it's possible that it 2570 * is due to the caller holding an FS lock or performing a journal 2571 * transaction in the case of a filesystem like ext[3|4]. In this case, 2572 * it is not safe to block on pfmemalloc_wait as kswapd could be 2573 * blocked waiting on the same lock. Instead, throttle for up to a 2574 * second before continuing. 2575 */ 2576 if (!(gfp_mask & __GFP_FS)) { 2577 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2578 pfmemalloc_watermark_ok(pgdat), HZ); 2579 2580 goto check_pending; 2581 } 2582 2583 /* Throttle until kswapd wakes the process */ 2584 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2585 pfmemalloc_watermark_ok(pgdat)); 2586 2587 check_pending: 2588 if (fatal_signal_pending(current)) 2589 return true; 2590 2591 out: 2592 return false; 2593 } 2594 2595 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2596 gfp_t gfp_mask, nodemask_t *nodemask) 2597 { 2598 unsigned long nr_reclaimed; 2599 struct scan_control sc = { 2600 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2601 .may_writepage = !laptop_mode, 2602 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2603 .may_unmap = 1, 2604 .may_swap = 1, 2605 .order = order, 2606 .priority = DEF_PRIORITY, 2607 .target_mem_cgroup = NULL, 2608 .nodemask = nodemask, 2609 }; 2610 2611 /* 2612 * Do not enter reclaim if fatal signal was delivered while throttled. 2613 * 1 is returned so that the page allocator does not OOM kill at this 2614 * point. 2615 */ 2616 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2617 return 1; 2618 2619 trace_mm_vmscan_direct_reclaim_begin(order, 2620 sc.may_writepage, 2621 gfp_mask); 2622 2623 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2624 2625 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2626 2627 return nr_reclaimed; 2628 } 2629 2630 #ifdef CONFIG_MEMCG 2631 2632 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2633 gfp_t gfp_mask, bool noswap, 2634 struct zone *zone, 2635 unsigned long *nr_scanned) 2636 { 2637 struct scan_control sc = { 2638 .nr_scanned = 0, 2639 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2640 .may_writepage = !laptop_mode, 2641 .may_unmap = 1, 2642 .may_swap = !noswap, 2643 .order = 0, 2644 .priority = 0, 2645 .target_mem_cgroup = memcg, 2646 }; 2647 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2648 2649 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2650 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2651 2652 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2653 sc.may_writepage, 2654 sc.gfp_mask); 2655 2656 /* 2657 * NOTE: Although we can get the priority field, using it 2658 * here is not a good idea, since it limits the pages we can scan. 2659 * if we don't reclaim here, the shrink_zone from balance_pgdat 2660 * will pick up pages from other mem cgroup's as well. We hack 2661 * the priority and make it zero. 2662 */ 2663 shrink_lruvec(lruvec, &sc); 2664 2665 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2666 2667 *nr_scanned = sc.nr_scanned; 2668 return sc.nr_reclaimed; 2669 } 2670 2671 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2672 gfp_t gfp_mask, 2673 bool noswap) 2674 { 2675 struct zonelist *zonelist; 2676 unsigned long nr_reclaimed; 2677 int nid; 2678 struct scan_control sc = { 2679 .may_writepage = !laptop_mode, 2680 .may_unmap = 1, 2681 .may_swap = !noswap, 2682 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2683 .order = 0, 2684 .priority = DEF_PRIORITY, 2685 .target_mem_cgroup = memcg, 2686 .nodemask = NULL, /* we don't care the placement */ 2687 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2688 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2689 }; 2690 2691 /* 2692 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2693 * take care of from where we get pages. So the node where we start the 2694 * scan does not need to be the current node. 2695 */ 2696 nid = mem_cgroup_select_victim_node(memcg); 2697 2698 zonelist = NODE_DATA(nid)->node_zonelists; 2699 2700 trace_mm_vmscan_memcg_reclaim_begin(0, 2701 sc.may_writepage, 2702 sc.gfp_mask); 2703 2704 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2705 2706 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2707 2708 return nr_reclaimed; 2709 } 2710 #endif 2711 2712 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2713 { 2714 struct mem_cgroup *memcg; 2715 2716 if (!total_swap_pages) 2717 return; 2718 2719 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2720 do { 2721 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2722 2723 if (inactive_anon_is_low(lruvec)) 2724 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2725 sc, LRU_ACTIVE_ANON); 2726 2727 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2728 } while (memcg); 2729 } 2730 2731 static bool zone_balanced(struct zone *zone, int order, 2732 unsigned long balance_gap, int classzone_idx) 2733 { 2734 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2735 balance_gap, classzone_idx, 0)) 2736 return false; 2737 2738 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2739 !compaction_suitable(zone, order)) 2740 return false; 2741 2742 return true; 2743 } 2744 2745 /* 2746 * pgdat_balanced() is used when checking if a node is balanced. 2747 * 2748 * For order-0, all zones must be balanced! 2749 * 2750 * For high-order allocations only zones that meet watermarks and are in a 2751 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2752 * total of balanced pages must be at least 25% of the zones allowed by 2753 * classzone_idx for the node to be considered balanced. Forcing all zones to 2754 * be balanced for high orders can cause excessive reclaim when there are 2755 * imbalanced zones. 2756 * The choice of 25% is due to 2757 * o a 16M DMA zone that is balanced will not balance a zone on any 2758 * reasonable sized machine 2759 * o On all other machines, the top zone must be at least a reasonable 2760 * percentage of the middle zones. For example, on 32-bit x86, highmem 2761 * would need to be at least 256M for it to be balance a whole node. 2762 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2763 * to balance a node on its own. These seemed like reasonable ratios. 2764 */ 2765 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2766 { 2767 unsigned long managed_pages = 0; 2768 unsigned long balanced_pages = 0; 2769 int i; 2770 2771 /* Check the watermark levels */ 2772 for (i = 0; i <= classzone_idx; i++) { 2773 struct zone *zone = pgdat->node_zones + i; 2774 2775 if (!populated_zone(zone)) 2776 continue; 2777 2778 managed_pages += zone->managed_pages; 2779 2780 /* 2781 * A special case here: 2782 * 2783 * balance_pgdat() skips over all_unreclaimable after 2784 * DEF_PRIORITY. Effectively, it considers them balanced so 2785 * they must be considered balanced here as well! 2786 */ 2787 if (!zone_reclaimable(zone)) { 2788 balanced_pages += zone->managed_pages; 2789 continue; 2790 } 2791 2792 if (zone_balanced(zone, order, 0, i)) 2793 balanced_pages += zone->managed_pages; 2794 else if (!order) 2795 return false; 2796 } 2797 2798 if (order) 2799 return balanced_pages >= (managed_pages >> 2); 2800 else 2801 return true; 2802 } 2803 2804 /* 2805 * Prepare kswapd for sleeping. This verifies that there are no processes 2806 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2807 * 2808 * Returns true if kswapd is ready to sleep 2809 */ 2810 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2811 int classzone_idx) 2812 { 2813 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2814 if (remaining) 2815 return false; 2816 2817 /* 2818 * There is a potential race between when kswapd checks its watermarks 2819 * and a process gets throttled. There is also a potential race if 2820 * processes get throttled, kswapd wakes, a large process exits therby 2821 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2822 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2823 * so wake them now if necessary. If necessary, processes will wake 2824 * kswapd and get throttled again 2825 */ 2826 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2827 wake_up(&pgdat->pfmemalloc_wait); 2828 return false; 2829 } 2830 2831 return pgdat_balanced(pgdat, order, classzone_idx); 2832 } 2833 2834 /* 2835 * kswapd shrinks the zone by the number of pages required to reach 2836 * the high watermark. 2837 * 2838 * Returns true if kswapd scanned at least the requested number of pages to 2839 * reclaim or if the lack of progress was due to pages under writeback. 2840 * This is used to determine if the scanning priority needs to be raised. 2841 */ 2842 static bool kswapd_shrink_zone(struct zone *zone, 2843 int classzone_idx, 2844 struct scan_control *sc, 2845 unsigned long lru_pages, 2846 unsigned long *nr_attempted) 2847 { 2848 int testorder = sc->order; 2849 unsigned long balance_gap; 2850 struct reclaim_state *reclaim_state = current->reclaim_state; 2851 struct shrink_control shrink = { 2852 .gfp_mask = sc->gfp_mask, 2853 }; 2854 bool lowmem_pressure; 2855 2856 /* Reclaim above the high watermark. */ 2857 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2858 2859 /* 2860 * Kswapd reclaims only single pages with compaction enabled. Trying 2861 * too hard to reclaim until contiguous free pages have become 2862 * available can hurt performance by evicting too much useful data 2863 * from memory. Do not reclaim more than needed for compaction. 2864 */ 2865 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2866 compaction_suitable(zone, sc->order) != 2867 COMPACT_SKIPPED) 2868 testorder = 0; 2869 2870 /* 2871 * We put equal pressure on every zone, unless one zone has way too 2872 * many pages free already. The "too many pages" is defined as the 2873 * high wmark plus a "gap" where the gap is either the low 2874 * watermark or 1% of the zone, whichever is smaller. 2875 */ 2876 balance_gap = min(low_wmark_pages(zone), 2877 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2878 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2879 2880 /* 2881 * If there is no low memory pressure or the zone is balanced then no 2882 * reclaim is necessary 2883 */ 2884 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2885 if (!lowmem_pressure && zone_balanced(zone, testorder, 2886 balance_gap, classzone_idx)) 2887 return true; 2888 2889 shrink_zone(zone, sc); 2890 nodes_clear(shrink.nodes_to_scan); 2891 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2892 2893 reclaim_state->reclaimed_slab = 0; 2894 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2895 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2896 2897 /* Account for the number of pages attempted to reclaim */ 2898 *nr_attempted += sc->nr_to_reclaim; 2899 2900 zone_clear_flag(zone, ZONE_WRITEBACK); 2901 2902 /* 2903 * If a zone reaches its high watermark, consider it to be no longer 2904 * congested. It's possible there are dirty pages backed by congested 2905 * BDIs but as pressure is relieved, speculatively avoid congestion 2906 * waits. 2907 */ 2908 if (zone_reclaimable(zone) && 2909 zone_balanced(zone, testorder, 0, classzone_idx)) { 2910 zone_clear_flag(zone, ZONE_CONGESTED); 2911 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2912 } 2913 2914 return sc->nr_scanned >= sc->nr_to_reclaim; 2915 } 2916 2917 /* 2918 * For kswapd, balance_pgdat() will work across all this node's zones until 2919 * they are all at high_wmark_pages(zone). 2920 * 2921 * Returns the final order kswapd was reclaiming at 2922 * 2923 * There is special handling here for zones which are full of pinned pages. 2924 * This can happen if the pages are all mlocked, or if they are all used by 2925 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2926 * What we do is to detect the case where all pages in the zone have been 2927 * scanned twice and there has been zero successful reclaim. Mark the zone as 2928 * dead and from now on, only perform a short scan. Basically we're polling 2929 * the zone for when the problem goes away. 2930 * 2931 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2932 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2933 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2934 * lower zones regardless of the number of free pages in the lower zones. This 2935 * interoperates with the page allocator fallback scheme to ensure that aging 2936 * of pages is balanced across the zones. 2937 */ 2938 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2939 int *classzone_idx) 2940 { 2941 int i; 2942 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2943 unsigned long nr_soft_reclaimed; 2944 unsigned long nr_soft_scanned; 2945 struct scan_control sc = { 2946 .gfp_mask = GFP_KERNEL, 2947 .priority = DEF_PRIORITY, 2948 .may_unmap = 1, 2949 .may_swap = 1, 2950 .may_writepage = !laptop_mode, 2951 .order = order, 2952 .target_mem_cgroup = NULL, 2953 }; 2954 count_vm_event(PAGEOUTRUN); 2955 2956 do { 2957 unsigned long lru_pages = 0; 2958 unsigned long nr_attempted = 0; 2959 bool raise_priority = true; 2960 bool pgdat_needs_compaction = (order > 0); 2961 2962 sc.nr_reclaimed = 0; 2963 2964 /* 2965 * Scan in the highmem->dma direction for the highest 2966 * zone which needs scanning 2967 */ 2968 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2969 struct zone *zone = pgdat->node_zones + i; 2970 2971 if (!populated_zone(zone)) 2972 continue; 2973 2974 if (sc.priority != DEF_PRIORITY && 2975 !zone_reclaimable(zone)) 2976 continue; 2977 2978 /* 2979 * Do some background aging of the anon list, to give 2980 * pages a chance to be referenced before reclaiming. 2981 */ 2982 age_active_anon(zone, &sc); 2983 2984 /* 2985 * If the number of buffer_heads in the machine 2986 * exceeds the maximum allowed level and this node 2987 * has a highmem zone, force kswapd to reclaim from 2988 * it to relieve lowmem pressure. 2989 */ 2990 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2991 end_zone = i; 2992 break; 2993 } 2994 2995 if (!zone_balanced(zone, order, 0, 0)) { 2996 end_zone = i; 2997 break; 2998 } else { 2999 /* 3000 * If balanced, clear the dirty and congested 3001 * flags 3002 */ 3003 zone_clear_flag(zone, ZONE_CONGESTED); 3004 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 3005 } 3006 } 3007 3008 if (i < 0) 3009 goto out; 3010 3011 for (i = 0; i <= end_zone; i++) { 3012 struct zone *zone = pgdat->node_zones + i; 3013 3014 if (!populated_zone(zone)) 3015 continue; 3016 3017 lru_pages += zone_reclaimable_pages(zone); 3018 3019 /* 3020 * If any zone is currently balanced then kswapd will 3021 * not call compaction as it is expected that the 3022 * necessary pages are already available. 3023 */ 3024 if (pgdat_needs_compaction && 3025 zone_watermark_ok(zone, order, 3026 low_wmark_pages(zone), 3027 *classzone_idx, 0)) 3028 pgdat_needs_compaction = false; 3029 } 3030 3031 /* 3032 * If we're getting trouble reclaiming, start doing writepage 3033 * even in laptop mode. 3034 */ 3035 if (sc.priority < DEF_PRIORITY - 2) 3036 sc.may_writepage = 1; 3037 3038 /* 3039 * Now scan the zone in the dma->highmem direction, stopping 3040 * at the last zone which needs scanning. 3041 * 3042 * We do this because the page allocator works in the opposite 3043 * direction. This prevents the page allocator from allocating 3044 * pages behind kswapd's direction of progress, which would 3045 * cause too much scanning of the lower zones. 3046 */ 3047 for (i = 0; i <= end_zone; i++) { 3048 struct zone *zone = pgdat->node_zones + i; 3049 3050 if (!populated_zone(zone)) 3051 continue; 3052 3053 if (sc.priority != DEF_PRIORITY && 3054 !zone_reclaimable(zone)) 3055 continue; 3056 3057 sc.nr_scanned = 0; 3058 3059 nr_soft_scanned = 0; 3060 /* 3061 * Call soft limit reclaim before calling shrink_zone. 3062 */ 3063 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3064 order, sc.gfp_mask, 3065 &nr_soft_scanned); 3066 sc.nr_reclaimed += nr_soft_reclaimed; 3067 3068 /* 3069 * There should be no need to raise the scanning 3070 * priority if enough pages are already being scanned 3071 * that that high watermark would be met at 100% 3072 * efficiency. 3073 */ 3074 if (kswapd_shrink_zone(zone, end_zone, &sc, 3075 lru_pages, &nr_attempted)) 3076 raise_priority = false; 3077 } 3078 3079 /* 3080 * If the low watermark is met there is no need for processes 3081 * to be throttled on pfmemalloc_wait as they should not be 3082 * able to safely make forward progress. Wake them 3083 */ 3084 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3085 pfmemalloc_watermark_ok(pgdat)) 3086 wake_up(&pgdat->pfmemalloc_wait); 3087 3088 /* 3089 * Fragmentation may mean that the system cannot be rebalanced 3090 * for high-order allocations in all zones. If twice the 3091 * allocation size has been reclaimed and the zones are still 3092 * not balanced then recheck the watermarks at order-0 to 3093 * prevent kswapd reclaiming excessively. Assume that a 3094 * process requested a high-order can direct reclaim/compact. 3095 */ 3096 if (order && sc.nr_reclaimed >= 2UL << order) 3097 order = sc.order = 0; 3098 3099 /* Check if kswapd should be suspending */ 3100 if (try_to_freeze() || kthread_should_stop()) 3101 break; 3102 3103 /* 3104 * Compact if necessary and kswapd is reclaiming at least the 3105 * high watermark number of pages as requsted 3106 */ 3107 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3108 compact_pgdat(pgdat, order); 3109 3110 /* 3111 * Raise priority if scanning rate is too low or there was no 3112 * progress in reclaiming pages 3113 */ 3114 if (raise_priority || !sc.nr_reclaimed) 3115 sc.priority--; 3116 } while (sc.priority >= 1 && 3117 !pgdat_balanced(pgdat, order, *classzone_idx)); 3118 3119 out: 3120 /* 3121 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3122 * makes a decision on the order we were last reclaiming at. However, 3123 * if another caller entered the allocator slow path while kswapd 3124 * was awake, order will remain at the higher level 3125 */ 3126 *classzone_idx = end_zone; 3127 return order; 3128 } 3129 3130 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3131 { 3132 long remaining = 0; 3133 DEFINE_WAIT(wait); 3134 3135 if (freezing(current) || kthread_should_stop()) 3136 return; 3137 3138 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3139 3140 /* Try to sleep for a short interval */ 3141 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3142 remaining = schedule_timeout(HZ/10); 3143 finish_wait(&pgdat->kswapd_wait, &wait); 3144 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3145 } 3146 3147 /* 3148 * After a short sleep, check if it was a premature sleep. If not, then 3149 * go fully to sleep until explicitly woken up. 3150 */ 3151 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3152 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3153 3154 /* 3155 * vmstat counters are not perfectly accurate and the estimated 3156 * value for counters such as NR_FREE_PAGES can deviate from the 3157 * true value by nr_online_cpus * threshold. To avoid the zone 3158 * watermarks being breached while under pressure, we reduce the 3159 * per-cpu vmstat threshold while kswapd is awake and restore 3160 * them before going back to sleep. 3161 */ 3162 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3163 3164 /* 3165 * Compaction records what page blocks it recently failed to 3166 * isolate pages from and skips them in the future scanning. 3167 * When kswapd is going to sleep, it is reasonable to assume 3168 * that pages and compaction may succeed so reset the cache. 3169 */ 3170 reset_isolation_suitable(pgdat); 3171 3172 if (!kthread_should_stop()) 3173 schedule(); 3174 3175 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3176 } else { 3177 if (remaining) 3178 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3179 else 3180 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3181 } 3182 finish_wait(&pgdat->kswapd_wait, &wait); 3183 } 3184 3185 /* 3186 * The background pageout daemon, started as a kernel thread 3187 * from the init process. 3188 * 3189 * This basically trickles out pages so that we have _some_ 3190 * free memory available even if there is no other activity 3191 * that frees anything up. This is needed for things like routing 3192 * etc, where we otherwise might have all activity going on in 3193 * asynchronous contexts that cannot page things out. 3194 * 3195 * If there are applications that are active memory-allocators 3196 * (most normal use), this basically shouldn't matter. 3197 */ 3198 static int kswapd(void *p) 3199 { 3200 unsigned long order, new_order; 3201 unsigned balanced_order; 3202 int classzone_idx, new_classzone_idx; 3203 int balanced_classzone_idx; 3204 pg_data_t *pgdat = (pg_data_t*)p; 3205 struct task_struct *tsk = current; 3206 3207 struct reclaim_state reclaim_state = { 3208 .reclaimed_slab = 0, 3209 }; 3210 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3211 3212 lockdep_set_current_reclaim_state(GFP_KERNEL); 3213 3214 if (!cpumask_empty(cpumask)) 3215 set_cpus_allowed_ptr(tsk, cpumask); 3216 current->reclaim_state = &reclaim_state; 3217 3218 /* 3219 * Tell the memory management that we're a "memory allocator", 3220 * and that if we need more memory we should get access to it 3221 * regardless (see "__alloc_pages()"). "kswapd" should 3222 * never get caught in the normal page freeing logic. 3223 * 3224 * (Kswapd normally doesn't need memory anyway, but sometimes 3225 * you need a small amount of memory in order to be able to 3226 * page out something else, and this flag essentially protects 3227 * us from recursively trying to free more memory as we're 3228 * trying to free the first piece of memory in the first place). 3229 */ 3230 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3231 set_freezable(); 3232 3233 order = new_order = 0; 3234 balanced_order = 0; 3235 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3236 balanced_classzone_idx = classzone_idx; 3237 for ( ; ; ) { 3238 bool ret; 3239 3240 /* 3241 * If the last balance_pgdat was unsuccessful it's unlikely a 3242 * new request of a similar or harder type will succeed soon 3243 * so consider going to sleep on the basis we reclaimed at 3244 */ 3245 if (balanced_classzone_idx >= new_classzone_idx && 3246 balanced_order == new_order) { 3247 new_order = pgdat->kswapd_max_order; 3248 new_classzone_idx = pgdat->classzone_idx; 3249 pgdat->kswapd_max_order = 0; 3250 pgdat->classzone_idx = pgdat->nr_zones - 1; 3251 } 3252 3253 if (order < new_order || classzone_idx > new_classzone_idx) { 3254 /* 3255 * Don't sleep if someone wants a larger 'order' 3256 * allocation or has tigher zone constraints 3257 */ 3258 order = new_order; 3259 classzone_idx = new_classzone_idx; 3260 } else { 3261 kswapd_try_to_sleep(pgdat, balanced_order, 3262 balanced_classzone_idx); 3263 order = pgdat->kswapd_max_order; 3264 classzone_idx = pgdat->classzone_idx; 3265 new_order = order; 3266 new_classzone_idx = classzone_idx; 3267 pgdat->kswapd_max_order = 0; 3268 pgdat->classzone_idx = pgdat->nr_zones - 1; 3269 } 3270 3271 ret = try_to_freeze(); 3272 if (kthread_should_stop()) 3273 break; 3274 3275 /* 3276 * We can speed up thawing tasks if we don't call balance_pgdat 3277 * after returning from the refrigerator 3278 */ 3279 if (!ret) { 3280 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3281 balanced_classzone_idx = classzone_idx; 3282 balanced_order = balance_pgdat(pgdat, order, 3283 &balanced_classzone_idx); 3284 } 3285 } 3286 3287 current->reclaim_state = NULL; 3288 return 0; 3289 } 3290 3291 /* 3292 * A zone is low on free memory, so wake its kswapd task to service it. 3293 */ 3294 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3295 { 3296 pg_data_t *pgdat; 3297 3298 if (!populated_zone(zone)) 3299 return; 3300 3301 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3302 return; 3303 pgdat = zone->zone_pgdat; 3304 if (pgdat->kswapd_max_order < order) { 3305 pgdat->kswapd_max_order = order; 3306 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3307 } 3308 if (!waitqueue_active(&pgdat->kswapd_wait)) 3309 return; 3310 if (zone_balanced(zone, order, 0, 0)) 3311 return; 3312 3313 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3314 wake_up_interruptible(&pgdat->kswapd_wait); 3315 } 3316 3317 #ifdef CONFIG_HIBERNATION 3318 /* 3319 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3320 * freed pages. 3321 * 3322 * Rather than trying to age LRUs the aim is to preserve the overall 3323 * LRU order by reclaiming preferentially 3324 * inactive > active > active referenced > active mapped 3325 */ 3326 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3327 { 3328 struct reclaim_state reclaim_state; 3329 struct scan_control sc = { 3330 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3331 .may_swap = 1, 3332 .may_unmap = 1, 3333 .may_writepage = 1, 3334 .nr_to_reclaim = nr_to_reclaim, 3335 .hibernation_mode = 1, 3336 .order = 0, 3337 .priority = DEF_PRIORITY, 3338 }; 3339 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3340 struct task_struct *p = current; 3341 unsigned long nr_reclaimed; 3342 3343 p->flags |= PF_MEMALLOC; 3344 lockdep_set_current_reclaim_state(sc.gfp_mask); 3345 reclaim_state.reclaimed_slab = 0; 3346 p->reclaim_state = &reclaim_state; 3347 3348 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3349 3350 p->reclaim_state = NULL; 3351 lockdep_clear_current_reclaim_state(); 3352 p->flags &= ~PF_MEMALLOC; 3353 3354 return nr_reclaimed; 3355 } 3356 #endif /* CONFIG_HIBERNATION */ 3357 3358 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3359 not required for correctness. So if the last cpu in a node goes 3360 away, we get changed to run anywhere: as the first one comes back, 3361 restore their cpu bindings. */ 3362 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3363 void *hcpu) 3364 { 3365 int nid; 3366 3367 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3368 for_each_node_state(nid, N_MEMORY) { 3369 pg_data_t *pgdat = NODE_DATA(nid); 3370 const struct cpumask *mask; 3371 3372 mask = cpumask_of_node(pgdat->node_id); 3373 3374 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3375 /* One of our CPUs online: restore mask */ 3376 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3377 } 3378 } 3379 return NOTIFY_OK; 3380 } 3381 3382 /* 3383 * This kswapd start function will be called by init and node-hot-add. 3384 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3385 */ 3386 int kswapd_run(int nid) 3387 { 3388 pg_data_t *pgdat = NODE_DATA(nid); 3389 int ret = 0; 3390 3391 if (pgdat->kswapd) 3392 return 0; 3393 3394 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3395 if (IS_ERR(pgdat->kswapd)) { 3396 /* failure at boot is fatal */ 3397 BUG_ON(system_state == SYSTEM_BOOTING); 3398 pr_err("Failed to start kswapd on node %d\n", nid); 3399 ret = PTR_ERR(pgdat->kswapd); 3400 pgdat->kswapd = NULL; 3401 } 3402 return ret; 3403 } 3404 3405 /* 3406 * Called by memory hotplug when all memory in a node is offlined. Caller must 3407 * hold lock_memory_hotplug(). 3408 */ 3409 void kswapd_stop(int nid) 3410 { 3411 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3412 3413 if (kswapd) { 3414 kthread_stop(kswapd); 3415 NODE_DATA(nid)->kswapd = NULL; 3416 } 3417 } 3418 3419 static int __init kswapd_init(void) 3420 { 3421 int nid; 3422 3423 swap_setup(); 3424 for_each_node_state(nid, N_MEMORY) 3425 kswapd_run(nid); 3426 hotcpu_notifier(cpu_callback, 0); 3427 return 0; 3428 } 3429 3430 module_init(kswapd_init) 3431 3432 #ifdef CONFIG_NUMA 3433 /* 3434 * Zone reclaim mode 3435 * 3436 * If non-zero call zone_reclaim when the number of free pages falls below 3437 * the watermarks. 3438 */ 3439 int zone_reclaim_mode __read_mostly; 3440 3441 #define RECLAIM_OFF 0 3442 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3443 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3444 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3445 3446 /* 3447 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3448 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3449 * a zone. 3450 */ 3451 #define ZONE_RECLAIM_PRIORITY 4 3452 3453 /* 3454 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3455 * occur. 3456 */ 3457 int sysctl_min_unmapped_ratio = 1; 3458 3459 /* 3460 * If the number of slab pages in a zone grows beyond this percentage then 3461 * slab reclaim needs to occur. 3462 */ 3463 int sysctl_min_slab_ratio = 5; 3464 3465 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3466 { 3467 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3468 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3469 zone_page_state(zone, NR_ACTIVE_FILE); 3470 3471 /* 3472 * It's possible for there to be more file mapped pages than 3473 * accounted for by the pages on the file LRU lists because 3474 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3475 */ 3476 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3477 } 3478 3479 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3480 static long zone_pagecache_reclaimable(struct zone *zone) 3481 { 3482 long nr_pagecache_reclaimable; 3483 long delta = 0; 3484 3485 /* 3486 * If RECLAIM_SWAP is set, then all file pages are considered 3487 * potentially reclaimable. Otherwise, we have to worry about 3488 * pages like swapcache and zone_unmapped_file_pages() provides 3489 * a better estimate 3490 */ 3491 if (zone_reclaim_mode & RECLAIM_SWAP) 3492 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3493 else 3494 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3495 3496 /* If we can't clean pages, remove dirty pages from consideration */ 3497 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3498 delta += zone_page_state(zone, NR_FILE_DIRTY); 3499 3500 /* Watch for any possible underflows due to delta */ 3501 if (unlikely(delta > nr_pagecache_reclaimable)) 3502 delta = nr_pagecache_reclaimable; 3503 3504 return nr_pagecache_reclaimable - delta; 3505 } 3506 3507 /* 3508 * Try to free up some pages from this zone through reclaim. 3509 */ 3510 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3511 { 3512 /* Minimum pages needed in order to stay on node */ 3513 const unsigned long nr_pages = 1 << order; 3514 struct task_struct *p = current; 3515 struct reclaim_state reclaim_state; 3516 struct scan_control sc = { 3517 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3518 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3519 .may_swap = 1, 3520 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3521 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3522 .order = order, 3523 .priority = ZONE_RECLAIM_PRIORITY, 3524 }; 3525 struct shrink_control shrink = { 3526 .gfp_mask = sc.gfp_mask, 3527 }; 3528 unsigned long nr_slab_pages0, nr_slab_pages1; 3529 3530 cond_resched(); 3531 /* 3532 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3533 * and we also need to be able to write out pages for RECLAIM_WRITE 3534 * and RECLAIM_SWAP. 3535 */ 3536 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3537 lockdep_set_current_reclaim_state(gfp_mask); 3538 reclaim_state.reclaimed_slab = 0; 3539 p->reclaim_state = &reclaim_state; 3540 3541 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3542 /* 3543 * Free memory by calling shrink zone with increasing 3544 * priorities until we have enough memory freed. 3545 */ 3546 do { 3547 shrink_zone(zone, &sc); 3548 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3549 } 3550 3551 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3552 if (nr_slab_pages0 > zone->min_slab_pages) { 3553 /* 3554 * shrink_slab() does not currently allow us to determine how 3555 * many pages were freed in this zone. So we take the current 3556 * number of slab pages and shake the slab until it is reduced 3557 * by the same nr_pages that we used for reclaiming unmapped 3558 * pages. 3559 */ 3560 nodes_clear(shrink.nodes_to_scan); 3561 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3562 for (;;) { 3563 unsigned long lru_pages = zone_reclaimable_pages(zone); 3564 3565 /* No reclaimable slab or very low memory pressure */ 3566 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3567 break; 3568 3569 /* Freed enough memory */ 3570 nr_slab_pages1 = zone_page_state(zone, 3571 NR_SLAB_RECLAIMABLE); 3572 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3573 break; 3574 } 3575 3576 /* 3577 * Update nr_reclaimed by the number of slab pages we 3578 * reclaimed from this zone. 3579 */ 3580 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3581 if (nr_slab_pages1 < nr_slab_pages0) 3582 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3583 } 3584 3585 p->reclaim_state = NULL; 3586 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3587 lockdep_clear_current_reclaim_state(); 3588 return sc.nr_reclaimed >= nr_pages; 3589 } 3590 3591 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3592 { 3593 int node_id; 3594 int ret; 3595 3596 /* 3597 * Zone reclaim reclaims unmapped file backed pages and 3598 * slab pages if we are over the defined limits. 3599 * 3600 * A small portion of unmapped file backed pages is needed for 3601 * file I/O otherwise pages read by file I/O will be immediately 3602 * thrown out if the zone is overallocated. So we do not reclaim 3603 * if less than a specified percentage of the zone is used by 3604 * unmapped file backed pages. 3605 */ 3606 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3607 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3608 return ZONE_RECLAIM_FULL; 3609 3610 if (!zone_reclaimable(zone)) 3611 return ZONE_RECLAIM_FULL; 3612 3613 /* 3614 * Do not scan if the allocation should not be delayed. 3615 */ 3616 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3617 return ZONE_RECLAIM_NOSCAN; 3618 3619 /* 3620 * Only run zone reclaim on the local zone or on zones that do not 3621 * have associated processors. This will favor the local processor 3622 * over remote processors and spread off node memory allocations 3623 * as wide as possible. 3624 */ 3625 node_id = zone_to_nid(zone); 3626 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3627 return ZONE_RECLAIM_NOSCAN; 3628 3629 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3630 return ZONE_RECLAIM_NOSCAN; 3631 3632 ret = __zone_reclaim(zone, gfp_mask, order); 3633 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3634 3635 if (!ret) 3636 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3637 3638 return ret; 3639 } 3640 #endif 3641 3642 /* 3643 * page_evictable - test whether a page is evictable 3644 * @page: the page to test 3645 * 3646 * Test whether page is evictable--i.e., should be placed on active/inactive 3647 * lists vs unevictable list. 3648 * 3649 * Reasons page might not be evictable: 3650 * (1) page's mapping marked unevictable 3651 * (2) page is part of an mlocked VMA 3652 * 3653 */ 3654 int page_evictable(struct page *page) 3655 { 3656 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3657 } 3658 3659 #ifdef CONFIG_SHMEM 3660 /** 3661 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3662 * @pages: array of pages to check 3663 * @nr_pages: number of pages to check 3664 * 3665 * Checks pages for evictability and moves them to the appropriate lru list. 3666 * 3667 * This function is only used for SysV IPC SHM_UNLOCK. 3668 */ 3669 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3670 { 3671 struct lruvec *lruvec; 3672 struct zone *zone = NULL; 3673 int pgscanned = 0; 3674 int pgrescued = 0; 3675 int i; 3676 3677 for (i = 0; i < nr_pages; i++) { 3678 struct page *page = pages[i]; 3679 struct zone *pagezone; 3680 3681 pgscanned++; 3682 pagezone = page_zone(page); 3683 if (pagezone != zone) { 3684 if (zone) 3685 spin_unlock_irq(&zone->lru_lock); 3686 zone = pagezone; 3687 spin_lock_irq(&zone->lru_lock); 3688 } 3689 lruvec = mem_cgroup_page_lruvec(page, zone); 3690 3691 if (!PageLRU(page) || !PageUnevictable(page)) 3692 continue; 3693 3694 if (page_evictable(page)) { 3695 enum lru_list lru = page_lru_base_type(page); 3696 3697 VM_BUG_ON_PAGE(PageActive(page), page); 3698 ClearPageUnevictable(page); 3699 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3700 add_page_to_lru_list(page, lruvec, lru); 3701 pgrescued++; 3702 } 3703 } 3704 3705 if (zone) { 3706 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3707 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3708 spin_unlock_irq(&zone->lru_lock); 3709 } 3710 } 3711 #endif /* CONFIG_SHMEM */ 3712 3713 static void warn_scan_unevictable_pages(void) 3714 { 3715 printk_once(KERN_WARNING 3716 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3717 "disabled for lack of a legitimate use case. If you have " 3718 "one, please send an email to linux-mm@kvack.org.\n", 3719 current->comm); 3720 } 3721 3722 /* 3723 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3724 * all nodes' unevictable lists for evictable pages 3725 */ 3726 unsigned long scan_unevictable_pages; 3727 3728 int scan_unevictable_handler(struct ctl_table *table, int write, 3729 void __user *buffer, 3730 size_t *length, loff_t *ppos) 3731 { 3732 warn_scan_unevictable_pages(); 3733 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3734 scan_unevictable_pages = 0; 3735 return 0; 3736 } 3737 3738 #ifdef CONFIG_NUMA 3739 /* 3740 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3741 * a specified node's per zone unevictable lists for evictable pages. 3742 */ 3743 3744 static ssize_t read_scan_unevictable_node(struct device *dev, 3745 struct device_attribute *attr, 3746 char *buf) 3747 { 3748 warn_scan_unevictable_pages(); 3749 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3750 } 3751 3752 static ssize_t write_scan_unevictable_node(struct device *dev, 3753 struct device_attribute *attr, 3754 const char *buf, size_t count) 3755 { 3756 warn_scan_unevictable_pages(); 3757 return 1; 3758 } 3759 3760 3761 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3762 read_scan_unevictable_node, 3763 write_scan_unevictable_node); 3764 3765 int scan_unevictable_register_node(struct node *node) 3766 { 3767 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3768 } 3769 3770 void scan_unevictable_unregister_node(struct node *node) 3771 { 3772 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3773 } 3774 #endif 3775