xref: /openbmc/linux/mm/vmscan.c (revision b34081f1)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 struct scan_control {
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Number of pages freed so far during a call to shrink_zones() */
62 	unsigned long nr_reclaimed;
63 
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	unsigned long hibernation_mode;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can mapped pages be reclaimed? */
75 	int may_unmap;
76 
77 	/* Can pages be swapped as part of reclaim? */
78 	int may_swap;
79 
80 	int order;
81 
82 	/* Scan (total_size >> priority) pages at once */
83 	int priority;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 	 * are scanned.
94 	 */
95 	nodemask_t	*nodemask;
96 };
97 
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetch(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetchw(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
133 
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136 
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 	return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 	return true;
146 }
147 #endif
148 
149 unsigned long zone_reclaimable_pages(struct zone *zone)
150 {
151 	int nr;
152 
153 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
154 	     zone_page_state(zone, NR_INACTIVE_FILE);
155 
156 	if (get_nr_swap_pages() > 0)
157 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
158 		      zone_page_state(zone, NR_INACTIVE_ANON);
159 
160 	return nr;
161 }
162 
163 bool zone_reclaimable(struct zone *zone)
164 {
165 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
166 }
167 
168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
169 {
170 	if (!mem_cgroup_disabled())
171 		return mem_cgroup_get_lru_size(lruvec, lru);
172 
173 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
174 }
175 
176 /*
177  * Add a shrinker callback to be called from the vm
178  */
179 void register_shrinker(struct shrinker *shrinker)
180 {
181 	atomic_long_set(&shrinker->nr_in_batch, 0);
182 	down_write(&shrinker_rwsem);
183 	list_add_tail(&shrinker->list, &shrinker_list);
184 	up_write(&shrinker_rwsem);
185 }
186 EXPORT_SYMBOL(register_shrinker);
187 
188 /*
189  * Remove one
190  */
191 void unregister_shrinker(struct shrinker *shrinker)
192 {
193 	down_write(&shrinker_rwsem);
194 	list_del(&shrinker->list);
195 	up_write(&shrinker_rwsem);
196 }
197 EXPORT_SYMBOL(unregister_shrinker);
198 
199 static inline int do_shrinker_shrink(struct shrinker *shrinker,
200 				     struct shrink_control *sc,
201 				     unsigned long nr_to_scan)
202 {
203 	sc->nr_to_scan = nr_to_scan;
204 	return (*shrinker->shrink)(shrinker, sc);
205 }
206 
207 #define SHRINK_BATCH 128
208 /*
209  * Call the shrink functions to age shrinkable caches
210  *
211  * Here we assume it costs one seek to replace a lru page and that it also
212  * takes a seek to recreate a cache object.  With this in mind we age equal
213  * percentages of the lru and ageable caches.  This should balance the seeks
214  * generated by these structures.
215  *
216  * If the vm encountered mapped pages on the LRU it increase the pressure on
217  * slab to avoid swapping.
218  *
219  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
220  *
221  * `lru_pages' represents the number of on-LRU pages in all the zones which
222  * are eligible for the caller's allocation attempt.  It is used for balancing
223  * slab reclaim versus page reclaim.
224  *
225  * Returns the number of slab objects which we shrunk.
226  */
227 unsigned long shrink_slab(struct shrink_control *shrink,
228 			  unsigned long nr_pages_scanned,
229 			  unsigned long lru_pages)
230 {
231 	struct shrinker *shrinker;
232 	unsigned long ret = 0;
233 
234 	if (nr_pages_scanned == 0)
235 		nr_pages_scanned = SWAP_CLUSTER_MAX;
236 
237 	if (!down_read_trylock(&shrinker_rwsem)) {
238 		/* Assume we'll be able to shrink next time */
239 		ret = 1;
240 		goto out;
241 	}
242 
243 	list_for_each_entry(shrinker, &shrinker_list, list) {
244 		unsigned long long delta;
245 		long total_scan;
246 		long max_pass;
247 		int shrink_ret = 0;
248 		long nr;
249 		long new_nr;
250 		long batch_size = shrinker->batch ? shrinker->batch
251 						  : SHRINK_BATCH;
252 
253 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
254 		if (max_pass <= 0)
255 			continue;
256 
257 		/*
258 		 * copy the current shrinker scan count into a local variable
259 		 * and zero it so that other concurrent shrinker invocations
260 		 * don't also do this scanning work.
261 		 */
262 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
263 
264 		total_scan = nr;
265 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
266 		delta *= max_pass;
267 		do_div(delta, lru_pages + 1);
268 		total_scan += delta;
269 		if (total_scan < 0) {
270 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
271 			       "delete nr=%ld\n",
272 			       shrinker->shrink, total_scan);
273 			total_scan = max_pass;
274 		}
275 
276 		/*
277 		 * We need to avoid excessive windup on filesystem shrinkers
278 		 * due to large numbers of GFP_NOFS allocations causing the
279 		 * shrinkers to return -1 all the time. This results in a large
280 		 * nr being built up so when a shrink that can do some work
281 		 * comes along it empties the entire cache due to nr >>>
282 		 * max_pass.  This is bad for sustaining a working set in
283 		 * memory.
284 		 *
285 		 * Hence only allow the shrinker to scan the entire cache when
286 		 * a large delta change is calculated directly.
287 		 */
288 		if (delta < max_pass / 4)
289 			total_scan = min(total_scan, max_pass / 2);
290 
291 		/*
292 		 * Avoid risking looping forever due to too large nr value:
293 		 * never try to free more than twice the estimate number of
294 		 * freeable entries.
295 		 */
296 		if (total_scan > max_pass * 2)
297 			total_scan = max_pass * 2;
298 
299 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
300 					nr_pages_scanned, lru_pages,
301 					max_pass, delta, total_scan);
302 
303 		while (total_scan >= batch_size) {
304 			int nr_before;
305 
306 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
307 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
308 							batch_size);
309 			if (shrink_ret == -1)
310 				break;
311 			if (shrink_ret < nr_before)
312 				ret += nr_before - shrink_ret;
313 			count_vm_events(SLABS_SCANNED, batch_size);
314 			total_scan -= batch_size;
315 
316 			cond_resched();
317 		}
318 
319 		/*
320 		 * move the unused scan count back into the shrinker in a
321 		 * manner that handles concurrent updates. If we exhausted the
322 		 * scan, there is no need to do an update.
323 		 */
324 		if (total_scan > 0)
325 			new_nr = atomic_long_add_return(total_scan,
326 					&shrinker->nr_in_batch);
327 		else
328 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
329 
330 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
331 	}
332 	up_read(&shrinker_rwsem);
333 out:
334 	cond_resched();
335 	return ret;
336 }
337 
338 static inline int is_page_cache_freeable(struct page *page)
339 {
340 	/*
341 	 * A freeable page cache page is referenced only by the caller
342 	 * that isolated the page, the page cache radix tree and
343 	 * optional buffer heads at page->private.
344 	 */
345 	return page_count(page) - page_has_private(page) == 2;
346 }
347 
348 static int may_write_to_queue(struct backing_dev_info *bdi,
349 			      struct scan_control *sc)
350 {
351 	if (current->flags & PF_SWAPWRITE)
352 		return 1;
353 	if (!bdi_write_congested(bdi))
354 		return 1;
355 	if (bdi == current->backing_dev_info)
356 		return 1;
357 	return 0;
358 }
359 
360 /*
361  * We detected a synchronous write error writing a page out.  Probably
362  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
363  * fsync(), msync() or close().
364  *
365  * The tricky part is that after writepage we cannot touch the mapping: nothing
366  * prevents it from being freed up.  But we have a ref on the page and once
367  * that page is locked, the mapping is pinned.
368  *
369  * We're allowed to run sleeping lock_page() here because we know the caller has
370  * __GFP_FS.
371  */
372 static void handle_write_error(struct address_space *mapping,
373 				struct page *page, int error)
374 {
375 	lock_page(page);
376 	if (page_mapping(page) == mapping)
377 		mapping_set_error(mapping, error);
378 	unlock_page(page);
379 }
380 
381 /* possible outcome of pageout() */
382 typedef enum {
383 	/* failed to write page out, page is locked */
384 	PAGE_KEEP,
385 	/* move page to the active list, page is locked */
386 	PAGE_ACTIVATE,
387 	/* page has been sent to the disk successfully, page is unlocked */
388 	PAGE_SUCCESS,
389 	/* page is clean and locked */
390 	PAGE_CLEAN,
391 } pageout_t;
392 
393 /*
394  * pageout is called by shrink_page_list() for each dirty page.
395  * Calls ->writepage().
396  */
397 static pageout_t pageout(struct page *page, struct address_space *mapping,
398 			 struct scan_control *sc)
399 {
400 	/*
401 	 * If the page is dirty, only perform writeback if that write
402 	 * will be non-blocking.  To prevent this allocation from being
403 	 * stalled by pagecache activity.  But note that there may be
404 	 * stalls if we need to run get_block().  We could test
405 	 * PagePrivate for that.
406 	 *
407 	 * If this process is currently in __generic_file_aio_write() against
408 	 * this page's queue, we can perform writeback even if that
409 	 * will block.
410 	 *
411 	 * If the page is swapcache, write it back even if that would
412 	 * block, for some throttling. This happens by accident, because
413 	 * swap_backing_dev_info is bust: it doesn't reflect the
414 	 * congestion state of the swapdevs.  Easy to fix, if needed.
415 	 */
416 	if (!is_page_cache_freeable(page))
417 		return PAGE_KEEP;
418 	if (!mapping) {
419 		/*
420 		 * Some data journaling orphaned pages can have
421 		 * page->mapping == NULL while being dirty with clean buffers.
422 		 */
423 		if (page_has_private(page)) {
424 			if (try_to_free_buffers(page)) {
425 				ClearPageDirty(page);
426 				printk("%s: orphaned page\n", __func__);
427 				return PAGE_CLEAN;
428 			}
429 		}
430 		return PAGE_KEEP;
431 	}
432 	if (mapping->a_ops->writepage == NULL)
433 		return PAGE_ACTIVATE;
434 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
435 		return PAGE_KEEP;
436 
437 	if (clear_page_dirty_for_io(page)) {
438 		int res;
439 		struct writeback_control wbc = {
440 			.sync_mode = WB_SYNC_NONE,
441 			.nr_to_write = SWAP_CLUSTER_MAX,
442 			.range_start = 0,
443 			.range_end = LLONG_MAX,
444 			.for_reclaim = 1,
445 		};
446 
447 		SetPageReclaim(page);
448 		res = mapping->a_ops->writepage(page, &wbc);
449 		if (res < 0)
450 			handle_write_error(mapping, page, res);
451 		if (res == AOP_WRITEPAGE_ACTIVATE) {
452 			ClearPageReclaim(page);
453 			return PAGE_ACTIVATE;
454 		}
455 
456 		if (!PageWriteback(page)) {
457 			/* synchronous write or broken a_ops? */
458 			ClearPageReclaim(page);
459 		}
460 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
461 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
462 		return PAGE_SUCCESS;
463 	}
464 
465 	return PAGE_CLEAN;
466 }
467 
468 /*
469  * Same as remove_mapping, but if the page is removed from the mapping, it
470  * gets returned with a refcount of 0.
471  */
472 static int __remove_mapping(struct address_space *mapping, struct page *page)
473 {
474 	BUG_ON(!PageLocked(page));
475 	BUG_ON(mapping != page_mapping(page));
476 
477 	spin_lock_irq(&mapping->tree_lock);
478 	/*
479 	 * The non racy check for a busy page.
480 	 *
481 	 * Must be careful with the order of the tests. When someone has
482 	 * a ref to the page, it may be possible that they dirty it then
483 	 * drop the reference. So if PageDirty is tested before page_count
484 	 * here, then the following race may occur:
485 	 *
486 	 * get_user_pages(&page);
487 	 * [user mapping goes away]
488 	 * write_to(page);
489 	 *				!PageDirty(page)    [good]
490 	 * SetPageDirty(page);
491 	 * put_page(page);
492 	 *				!page_count(page)   [good, discard it]
493 	 *
494 	 * [oops, our write_to data is lost]
495 	 *
496 	 * Reversing the order of the tests ensures such a situation cannot
497 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
498 	 * load is not satisfied before that of page->_count.
499 	 *
500 	 * Note that if SetPageDirty is always performed via set_page_dirty,
501 	 * and thus under tree_lock, then this ordering is not required.
502 	 */
503 	if (!page_freeze_refs(page, 2))
504 		goto cannot_free;
505 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
506 	if (unlikely(PageDirty(page))) {
507 		page_unfreeze_refs(page, 2);
508 		goto cannot_free;
509 	}
510 
511 	if (PageSwapCache(page)) {
512 		swp_entry_t swap = { .val = page_private(page) };
513 		__delete_from_swap_cache(page);
514 		spin_unlock_irq(&mapping->tree_lock);
515 		swapcache_free(swap, page);
516 	} else {
517 		void (*freepage)(struct page *);
518 
519 		freepage = mapping->a_ops->freepage;
520 
521 		__delete_from_page_cache(page);
522 		spin_unlock_irq(&mapping->tree_lock);
523 		mem_cgroup_uncharge_cache_page(page);
524 
525 		if (freepage != NULL)
526 			freepage(page);
527 	}
528 
529 	return 1;
530 
531 cannot_free:
532 	spin_unlock_irq(&mapping->tree_lock);
533 	return 0;
534 }
535 
536 /*
537  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
538  * someone else has a ref on the page, abort and return 0.  If it was
539  * successfully detached, return 1.  Assumes the caller has a single ref on
540  * this page.
541  */
542 int remove_mapping(struct address_space *mapping, struct page *page)
543 {
544 	if (__remove_mapping(mapping, page)) {
545 		/*
546 		 * Unfreezing the refcount with 1 rather than 2 effectively
547 		 * drops the pagecache ref for us without requiring another
548 		 * atomic operation.
549 		 */
550 		page_unfreeze_refs(page, 1);
551 		return 1;
552 	}
553 	return 0;
554 }
555 
556 /**
557  * putback_lru_page - put previously isolated page onto appropriate LRU list
558  * @page: page to be put back to appropriate lru list
559  *
560  * Add previously isolated @page to appropriate LRU list.
561  * Page may still be unevictable for other reasons.
562  *
563  * lru_lock must not be held, interrupts must be enabled.
564  */
565 void putback_lru_page(struct page *page)
566 {
567 	bool is_unevictable;
568 	int was_unevictable = PageUnevictable(page);
569 
570 	VM_BUG_ON(PageLRU(page));
571 
572 redo:
573 	ClearPageUnevictable(page);
574 
575 	if (page_evictable(page)) {
576 		/*
577 		 * For evictable pages, we can use the cache.
578 		 * In event of a race, worst case is we end up with an
579 		 * unevictable page on [in]active list.
580 		 * We know how to handle that.
581 		 */
582 		is_unevictable = false;
583 		lru_cache_add(page);
584 	} else {
585 		/*
586 		 * Put unevictable pages directly on zone's unevictable
587 		 * list.
588 		 */
589 		is_unevictable = true;
590 		add_page_to_unevictable_list(page);
591 		/*
592 		 * When racing with an mlock or AS_UNEVICTABLE clearing
593 		 * (page is unlocked) make sure that if the other thread
594 		 * does not observe our setting of PG_lru and fails
595 		 * isolation/check_move_unevictable_pages,
596 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
597 		 * the page back to the evictable list.
598 		 *
599 		 * The other side is TestClearPageMlocked() or shmem_lock().
600 		 */
601 		smp_mb();
602 	}
603 
604 	/*
605 	 * page's status can change while we move it among lru. If an evictable
606 	 * page is on unevictable list, it never be freed. To avoid that,
607 	 * check after we added it to the list, again.
608 	 */
609 	if (is_unevictable && page_evictable(page)) {
610 		if (!isolate_lru_page(page)) {
611 			put_page(page);
612 			goto redo;
613 		}
614 		/* This means someone else dropped this page from LRU
615 		 * So, it will be freed or putback to LRU again. There is
616 		 * nothing to do here.
617 		 */
618 	}
619 
620 	if (was_unevictable && !is_unevictable)
621 		count_vm_event(UNEVICTABLE_PGRESCUED);
622 	else if (!was_unevictable && is_unevictable)
623 		count_vm_event(UNEVICTABLE_PGCULLED);
624 
625 	put_page(page);		/* drop ref from isolate */
626 }
627 
628 enum page_references {
629 	PAGEREF_RECLAIM,
630 	PAGEREF_RECLAIM_CLEAN,
631 	PAGEREF_KEEP,
632 	PAGEREF_ACTIVATE,
633 };
634 
635 static enum page_references page_check_references(struct page *page,
636 						  struct scan_control *sc)
637 {
638 	int referenced_ptes, referenced_page;
639 	unsigned long vm_flags;
640 
641 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
642 					  &vm_flags);
643 	referenced_page = TestClearPageReferenced(page);
644 
645 	/*
646 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
647 	 * move the page to the unevictable list.
648 	 */
649 	if (vm_flags & VM_LOCKED)
650 		return PAGEREF_RECLAIM;
651 
652 	if (referenced_ptes) {
653 		if (PageSwapBacked(page))
654 			return PAGEREF_ACTIVATE;
655 		/*
656 		 * All mapped pages start out with page table
657 		 * references from the instantiating fault, so we need
658 		 * to look twice if a mapped file page is used more
659 		 * than once.
660 		 *
661 		 * Mark it and spare it for another trip around the
662 		 * inactive list.  Another page table reference will
663 		 * lead to its activation.
664 		 *
665 		 * Note: the mark is set for activated pages as well
666 		 * so that recently deactivated but used pages are
667 		 * quickly recovered.
668 		 */
669 		SetPageReferenced(page);
670 
671 		if (referenced_page || referenced_ptes > 1)
672 			return PAGEREF_ACTIVATE;
673 
674 		/*
675 		 * Activate file-backed executable pages after first usage.
676 		 */
677 		if (vm_flags & VM_EXEC)
678 			return PAGEREF_ACTIVATE;
679 
680 		return PAGEREF_KEEP;
681 	}
682 
683 	/* Reclaim if clean, defer dirty pages to writeback */
684 	if (referenced_page && !PageSwapBacked(page))
685 		return PAGEREF_RECLAIM_CLEAN;
686 
687 	return PAGEREF_RECLAIM;
688 }
689 
690 /* Check if a page is dirty or under writeback */
691 static void page_check_dirty_writeback(struct page *page,
692 				       bool *dirty, bool *writeback)
693 {
694 	struct address_space *mapping;
695 
696 	/*
697 	 * Anonymous pages are not handled by flushers and must be written
698 	 * from reclaim context. Do not stall reclaim based on them
699 	 */
700 	if (!page_is_file_cache(page)) {
701 		*dirty = false;
702 		*writeback = false;
703 		return;
704 	}
705 
706 	/* By default assume that the page flags are accurate */
707 	*dirty = PageDirty(page);
708 	*writeback = PageWriteback(page);
709 
710 	/* Verify dirty/writeback state if the filesystem supports it */
711 	if (!page_has_private(page))
712 		return;
713 
714 	mapping = page_mapping(page);
715 	if (mapping && mapping->a_ops->is_dirty_writeback)
716 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
717 }
718 
719 /*
720  * shrink_page_list() returns the number of reclaimed pages
721  */
722 static unsigned long shrink_page_list(struct list_head *page_list,
723 				      struct zone *zone,
724 				      struct scan_control *sc,
725 				      enum ttu_flags ttu_flags,
726 				      unsigned long *ret_nr_dirty,
727 				      unsigned long *ret_nr_unqueued_dirty,
728 				      unsigned long *ret_nr_congested,
729 				      unsigned long *ret_nr_writeback,
730 				      unsigned long *ret_nr_immediate,
731 				      bool force_reclaim)
732 {
733 	LIST_HEAD(ret_pages);
734 	LIST_HEAD(free_pages);
735 	int pgactivate = 0;
736 	unsigned long nr_unqueued_dirty = 0;
737 	unsigned long nr_dirty = 0;
738 	unsigned long nr_congested = 0;
739 	unsigned long nr_reclaimed = 0;
740 	unsigned long nr_writeback = 0;
741 	unsigned long nr_immediate = 0;
742 
743 	cond_resched();
744 
745 	mem_cgroup_uncharge_start();
746 	while (!list_empty(page_list)) {
747 		struct address_space *mapping;
748 		struct page *page;
749 		int may_enter_fs;
750 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
751 		bool dirty, writeback;
752 
753 		cond_resched();
754 
755 		page = lru_to_page(page_list);
756 		list_del(&page->lru);
757 
758 		if (!trylock_page(page))
759 			goto keep;
760 
761 		VM_BUG_ON(PageActive(page));
762 		VM_BUG_ON(page_zone(page) != zone);
763 
764 		sc->nr_scanned++;
765 
766 		if (unlikely(!page_evictable(page)))
767 			goto cull_mlocked;
768 
769 		if (!sc->may_unmap && page_mapped(page))
770 			goto keep_locked;
771 
772 		/* Double the slab pressure for mapped and swapcache pages */
773 		if (page_mapped(page) || PageSwapCache(page))
774 			sc->nr_scanned++;
775 
776 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
777 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
778 
779 		/*
780 		 * The number of dirty pages determines if a zone is marked
781 		 * reclaim_congested which affects wait_iff_congested. kswapd
782 		 * will stall and start writing pages if the tail of the LRU
783 		 * is all dirty unqueued pages.
784 		 */
785 		page_check_dirty_writeback(page, &dirty, &writeback);
786 		if (dirty || writeback)
787 			nr_dirty++;
788 
789 		if (dirty && !writeback)
790 			nr_unqueued_dirty++;
791 
792 		/*
793 		 * Treat this page as congested if the underlying BDI is or if
794 		 * pages are cycling through the LRU so quickly that the
795 		 * pages marked for immediate reclaim are making it to the
796 		 * end of the LRU a second time.
797 		 */
798 		mapping = page_mapping(page);
799 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
800 		    (writeback && PageReclaim(page)))
801 			nr_congested++;
802 
803 		/*
804 		 * If a page at the tail of the LRU is under writeback, there
805 		 * are three cases to consider.
806 		 *
807 		 * 1) If reclaim is encountering an excessive number of pages
808 		 *    under writeback and this page is both under writeback and
809 		 *    PageReclaim then it indicates that pages are being queued
810 		 *    for IO but are being recycled through the LRU before the
811 		 *    IO can complete. Waiting on the page itself risks an
812 		 *    indefinite stall if it is impossible to writeback the
813 		 *    page due to IO error or disconnected storage so instead
814 		 *    note that the LRU is being scanned too quickly and the
815 		 *    caller can stall after page list has been processed.
816 		 *
817 		 * 2) Global reclaim encounters a page, memcg encounters a
818 		 *    page that is not marked for immediate reclaim or
819 		 *    the caller does not have __GFP_IO. In this case mark
820 		 *    the page for immediate reclaim and continue scanning.
821 		 *
822 		 *    __GFP_IO is checked  because a loop driver thread might
823 		 *    enter reclaim, and deadlock if it waits on a page for
824 		 *    which it is needed to do the write (loop masks off
825 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
826 		 *    would probably show more reasons.
827 		 *
828 		 *    Don't require __GFP_FS, since we're not going into the
829 		 *    FS, just waiting on its writeback completion. Worryingly,
830 		 *    ext4 gfs2 and xfs allocate pages with
831 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
832 		 *    may_enter_fs here is liable to OOM on them.
833 		 *
834 		 * 3) memcg encounters a page that is not already marked
835 		 *    PageReclaim. memcg does not have any dirty pages
836 		 *    throttling so we could easily OOM just because too many
837 		 *    pages are in writeback and there is nothing else to
838 		 *    reclaim. Wait for the writeback to complete.
839 		 */
840 		if (PageWriteback(page)) {
841 			/* Case 1 above */
842 			if (current_is_kswapd() &&
843 			    PageReclaim(page) &&
844 			    zone_is_reclaim_writeback(zone)) {
845 				nr_immediate++;
846 				goto keep_locked;
847 
848 			/* Case 2 above */
849 			} else if (global_reclaim(sc) ||
850 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
851 				/*
852 				 * This is slightly racy - end_page_writeback()
853 				 * might have just cleared PageReclaim, then
854 				 * setting PageReclaim here end up interpreted
855 				 * as PageReadahead - but that does not matter
856 				 * enough to care.  What we do want is for this
857 				 * page to have PageReclaim set next time memcg
858 				 * reclaim reaches the tests above, so it will
859 				 * then wait_on_page_writeback() to avoid OOM;
860 				 * and it's also appropriate in global reclaim.
861 				 */
862 				SetPageReclaim(page);
863 				nr_writeback++;
864 
865 				goto keep_locked;
866 
867 			/* Case 3 above */
868 			} else {
869 				wait_on_page_writeback(page);
870 			}
871 		}
872 
873 		if (!force_reclaim)
874 			references = page_check_references(page, sc);
875 
876 		switch (references) {
877 		case PAGEREF_ACTIVATE:
878 			goto activate_locked;
879 		case PAGEREF_KEEP:
880 			goto keep_locked;
881 		case PAGEREF_RECLAIM:
882 		case PAGEREF_RECLAIM_CLEAN:
883 			; /* try to reclaim the page below */
884 		}
885 
886 		/*
887 		 * Anonymous process memory has backing store?
888 		 * Try to allocate it some swap space here.
889 		 */
890 		if (PageAnon(page) && !PageSwapCache(page)) {
891 			if (!(sc->gfp_mask & __GFP_IO))
892 				goto keep_locked;
893 			if (!add_to_swap(page, page_list))
894 				goto activate_locked;
895 			may_enter_fs = 1;
896 
897 			/* Adding to swap updated mapping */
898 			mapping = page_mapping(page);
899 		}
900 
901 		/*
902 		 * The page is mapped into the page tables of one or more
903 		 * processes. Try to unmap it here.
904 		 */
905 		if (page_mapped(page) && mapping) {
906 			switch (try_to_unmap(page, ttu_flags)) {
907 			case SWAP_FAIL:
908 				goto activate_locked;
909 			case SWAP_AGAIN:
910 				goto keep_locked;
911 			case SWAP_MLOCK:
912 				goto cull_mlocked;
913 			case SWAP_SUCCESS:
914 				; /* try to free the page below */
915 			}
916 		}
917 
918 		if (PageDirty(page)) {
919 			/*
920 			 * Only kswapd can writeback filesystem pages to
921 			 * avoid risk of stack overflow but only writeback
922 			 * if many dirty pages have been encountered.
923 			 */
924 			if (page_is_file_cache(page) &&
925 					(!current_is_kswapd() ||
926 					 !zone_is_reclaim_dirty(zone))) {
927 				/*
928 				 * Immediately reclaim when written back.
929 				 * Similar in principal to deactivate_page()
930 				 * except we already have the page isolated
931 				 * and know it's dirty
932 				 */
933 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
934 				SetPageReclaim(page);
935 
936 				goto keep_locked;
937 			}
938 
939 			if (references == PAGEREF_RECLAIM_CLEAN)
940 				goto keep_locked;
941 			if (!may_enter_fs)
942 				goto keep_locked;
943 			if (!sc->may_writepage)
944 				goto keep_locked;
945 
946 			/* Page is dirty, try to write it out here */
947 			switch (pageout(page, mapping, sc)) {
948 			case PAGE_KEEP:
949 				goto keep_locked;
950 			case PAGE_ACTIVATE:
951 				goto activate_locked;
952 			case PAGE_SUCCESS:
953 				if (PageWriteback(page))
954 					goto keep;
955 				if (PageDirty(page))
956 					goto keep;
957 
958 				/*
959 				 * A synchronous write - probably a ramdisk.  Go
960 				 * ahead and try to reclaim the page.
961 				 */
962 				if (!trylock_page(page))
963 					goto keep;
964 				if (PageDirty(page) || PageWriteback(page))
965 					goto keep_locked;
966 				mapping = page_mapping(page);
967 			case PAGE_CLEAN:
968 				; /* try to free the page below */
969 			}
970 		}
971 
972 		/*
973 		 * If the page has buffers, try to free the buffer mappings
974 		 * associated with this page. If we succeed we try to free
975 		 * the page as well.
976 		 *
977 		 * We do this even if the page is PageDirty().
978 		 * try_to_release_page() does not perform I/O, but it is
979 		 * possible for a page to have PageDirty set, but it is actually
980 		 * clean (all its buffers are clean).  This happens if the
981 		 * buffers were written out directly, with submit_bh(). ext3
982 		 * will do this, as well as the blockdev mapping.
983 		 * try_to_release_page() will discover that cleanness and will
984 		 * drop the buffers and mark the page clean - it can be freed.
985 		 *
986 		 * Rarely, pages can have buffers and no ->mapping.  These are
987 		 * the pages which were not successfully invalidated in
988 		 * truncate_complete_page().  We try to drop those buffers here
989 		 * and if that worked, and the page is no longer mapped into
990 		 * process address space (page_count == 1) it can be freed.
991 		 * Otherwise, leave the page on the LRU so it is swappable.
992 		 */
993 		if (page_has_private(page)) {
994 			if (!try_to_release_page(page, sc->gfp_mask))
995 				goto activate_locked;
996 			if (!mapping && page_count(page) == 1) {
997 				unlock_page(page);
998 				if (put_page_testzero(page))
999 					goto free_it;
1000 				else {
1001 					/*
1002 					 * rare race with speculative reference.
1003 					 * the speculative reference will free
1004 					 * this page shortly, so we may
1005 					 * increment nr_reclaimed here (and
1006 					 * leave it off the LRU).
1007 					 */
1008 					nr_reclaimed++;
1009 					continue;
1010 				}
1011 			}
1012 		}
1013 
1014 		if (!mapping || !__remove_mapping(mapping, page))
1015 			goto keep_locked;
1016 
1017 		/*
1018 		 * At this point, we have no other references and there is
1019 		 * no way to pick any more up (removed from LRU, removed
1020 		 * from pagecache). Can use non-atomic bitops now (and
1021 		 * we obviously don't have to worry about waking up a process
1022 		 * waiting on the page lock, because there are no references.
1023 		 */
1024 		__clear_page_locked(page);
1025 free_it:
1026 		nr_reclaimed++;
1027 
1028 		/*
1029 		 * Is there need to periodically free_page_list? It would
1030 		 * appear not as the counts should be low
1031 		 */
1032 		list_add(&page->lru, &free_pages);
1033 		continue;
1034 
1035 cull_mlocked:
1036 		if (PageSwapCache(page))
1037 			try_to_free_swap(page);
1038 		unlock_page(page);
1039 		putback_lru_page(page);
1040 		continue;
1041 
1042 activate_locked:
1043 		/* Not a candidate for swapping, so reclaim swap space. */
1044 		if (PageSwapCache(page) && vm_swap_full())
1045 			try_to_free_swap(page);
1046 		VM_BUG_ON(PageActive(page));
1047 		SetPageActive(page);
1048 		pgactivate++;
1049 keep_locked:
1050 		unlock_page(page);
1051 keep:
1052 		list_add(&page->lru, &ret_pages);
1053 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1054 	}
1055 
1056 	free_hot_cold_page_list(&free_pages, 1);
1057 
1058 	list_splice(&ret_pages, page_list);
1059 	count_vm_events(PGACTIVATE, pgactivate);
1060 	mem_cgroup_uncharge_end();
1061 	*ret_nr_dirty += nr_dirty;
1062 	*ret_nr_congested += nr_congested;
1063 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1064 	*ret_nr_writeback += nr_writeback;
1065 	*ret_nr_immediate += nr_immediate;
1066 	return nr_reclaimed;
1067 }
1068 
1069 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1070 					    struct list_head *page_list)
1071 {
1072 	struct scan_control sc = {
1073 		.gfp_mask = GFP_KERNEL,
1074 		.priority = DEF_PRIORITY,
1075 		.may_unmap = 1,
1076 	};
1077 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1078 	struct page *page, *next;
1079 	LIST_HEAD(clean_pages);
1080 
1081 	list_for_each_entry_safe(page, next, page_list, lru) {
1082 		if (page_is_file_cache(page) && !PageDirty(page)) {
1083 			ClearPageActive(page);
1084 			list_move(&page->lru, &clean_pages);
1085 		}
1086 	}
1087 
1088 	ret = shrink_page_list(&clean_pages, zone, &sc,
1089 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1090 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1091 	list_splice(&clean_pages, page_list);
1092 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1093 	return ret;
1094 }
1095 
1096 /*
1097  * Attempt to remove the specified page from its LRU.  Only take this page
1098  * if it is of the appropriate PageActive status.  Pages which are being
1099  * freed elsewhere are also ignored.
1100  *
1101  * page:	page to consider
1102  * mode:	one of the LRU isolation modes defined above
1103  *
1104  * returns 0 on success, -ve errno on failure.
1105  */
1106 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1107 {
1108 	int ret = -EINVAL;
1109 
1110 	/* Only take pages on the LRU. */
1111 	if (!PageLRU(page))
1112 		return ret;
1113 
1114 	/* Compaction should not handle unevictable pages but CMA can do so */
1115 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1116 		return ret;
1117 
1118 	ret = -EBUSY;
1119 
1120 	/*
1121 	 * To minimise LRU disruption, the caller can indicate that it only
1122 	 * wants to isolate pages it will be able to operate on without
1123 	 * blocking - clean pages for the most part.
1124 	 *
1125 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1126 	 * is used by reclaim when it is cannot write to backing storage
1127 	 *
1128 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1129 	 * that it is possible to migrate without blocking
1130 	 */
1131 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1132 		/* All the caller can do on PageWriteback is block */
1133 		if (PageWriteback(page))
1134 			return ret;
1135 
1136 		if (PageDirty(page)) {
1137 			struct address_space *mapping;
1138 
1139 			/* ISOLATE_CLEAN means only clean pages */
1140 			if (mode & ISOLATE_CLEAN)
1141 				return ret;
1142 
1143 			/*
1144 			 * Only pages without mappings or that have a
1145 			 * ->migratepage callback are possible to migrate
1146 			 * without blocking
1147 			 */
1148 			mapping = page_mapping(page);
1149 			if (mapping && !mapping->a_ops->migratepage)
1150 				return ret;
1151 		}
1152 	}
1153 
1154 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1155 		return ret;
1156 
1157 	if (likely(get_page_unless_zero(page))) {
1158 		/*
1159 		 * Be careful not to clear PageLRU until after we're
1160 		 * sure the page is not being freed elsewhere -- the
1161 		 * page release code relies on it.
1162 		 */
1163 		ClearPageLRU(page);
1164 		ret = 0;
1165 	}
1166 
1167 	return ret;
1168 }
1169 
1170 /*
1171  * zone->lru_lock is heavily contended.  Some of the functions that
1172  * shrink the lists perform better by taking out a batch of pages
1173  * and working on them outside the LRU lock.
1174  *
1175  * For pagecache intensive workloads, this function is the hottest
1176  * spot in the kernel (apart from copy_*_user functions).
1177  *
1178  * Appropriate locks must be held before calling this function.
1179  *
1180  * @nr_to_scan:	The number of pages to look through on the list.
1181  * @lruvec:	The LRU vector to pull pages from.
1182  * @dst:	The temp list to put pages on to.
1183  * @nr_scanned:	The number of pages that were scanned.
1184  * @sc:		The scan_control struct for this reclaim session
1185  * @mode:	One of the LRU isolation modes
1186  * @lru:	LRU list id for isolating
1187  *
1188  * returns how many pages were moved onto *@dst.
1189  */
1190 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1191 		struct lruvec *lruvec, struct list_head *dst,
1192 		unsigned long *nr_scanned, struct scan_control *sc,
1193 		isolate_mode_t mode, enum lru_list lru)
1194 {
1195 	struct list_head *src = &lruvec->lists[lru];
1196 	unsigned long nr_taken = 0;
1197 	unsigned long scan;
1198 
1199 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1200 		struct page *page;
1201 		int nr_pages;
1202 
1203 		page = lru_to_page(src);
1204 		prefetchw_prev_lru_page(page, src, flags);
1205 
1206 		VM_BUG_ON(!PageLRU(page));
1207 
1208 		switch (__isolate_lru_page(page, mode)) {
1209 		case 0:
1210 			nr_pages = hpage_nr_pages(page);
1211 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1212 			list_move(&page->lru, dst);
1213 			nr_taken += nr_pages;
1214 			break;
1215 
1216 		case -EBUSY:
1217 			/* else it is being freed elsewhere */
1218 			list_move(&page->lru, src);
1219 			continue;
1220 
1221 		default:
1222 			BUG();
1223 		}
1224 	}
1225 
1226 	*nr_scanned = scan;
1227 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1228 				    nr_taken, mode, is_file_lru(lru));
1229 	return nr_taken;
1230 }
1231 
1232 /**
1233  * isolate_lru_page - tries to isolate a page from its LRU list
1234  * @page: page to isolate from its LRU list
1235  *
1236  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1237  * vmstat statistic corresponding to whatever LRU list the page was on.
1238  *
1239  * Returns 0 if the page was removed from an LRU list.
1240  * Returns -EBUSY if the page was not on an LRU list.
1241  *
1242  * The returned page will have PageLRU() cleared.  If it was found on
1243  * the active list, it will have PageActive set.  If it was found on
1244  * the unevictable list, it will have the PageUnevictable bit set. That flag
1245  * may need to be cleared by the caller before letting the page go.
1246  *
1247  * The vmstat statistic corresponding to the list on which the page was
1248  * found will be decremented.
1249  *
1250  * Restrictions:
1251  * (1) Must be called with an elevated refcount on the page. This is a
1252  *     fundamentnal difference from isolate_lru_pages (which is called
1253  *     without a stable reference).
1254  * (2) the lru_lock must not be held.
1255  * (3) interrupts must be enabled.
1256  */
1257 int isolate_lru_page(struct page *page)
1258 {
1259 	int ret = -EBUSY;
1260 
1261 	VM_BUG_ON(!page_count(page));
1262 
1263 	if (PageLRU(page)) {
1264 		struct zone *zone = page_zone(page);
1265 		struct lruvec *lruvec;
1266 
1267 		spin_lock_irq(&zone->lru_lock);
1268 		lruvec = mem_cgroup_page_lruvec(page, zone);
1269 		if (PageLRU(page)) {
1270 			int lru = page_lru(page);
1271 			get_page(page);
1272 			ClearPageLRU(page);
1273 			del_page_from_lru_list(page, lruvec, lru);
1274 			ret = 0;
1275 		}
1276 		spin_unlock_irq(&zone->lru_lock);
1277 	}
1278 	return ret;
1279 }
1280 
1281 /*
1282  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1283  * then get resheduled. When there are massive number of tasks doing page
1284  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1285  * the LRU list will go small and be scanned faster than necessary, leading to
1286  * unnecessary swapping, thrashing and OOM.
1287  */
1288 static int too_many_isolated(struct zone *zone, int file,
1289 		struct scan_control *sc)
1290 {
1291 	unsigned long inactive, isolated;
1292 
1293 	if (current_is_kswapd())
1294 		return 0;
1295 
1296 	if (!global_reclaim(sc))
1297 		return 0;
1298 
1299 	if (file) {
1300 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1301 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1302 	} else {
1303 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1304 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1305 	}
1306 
1307 	/*
1308 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1309 	 * won't get blocked by normal direct-reclaimers, forming a circular
1310 	 * deadlock.
1311 	 */
1312 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1313 		inactive >>= 3;
1314 
1315 	return isolated > inactive;
1316 }
1317 
1318 static noinline_for_stack void
1319 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1320 {
1321 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1322 	struct zone *zone = lruvec_zone(lruvec);
1323 	LIST_HEAD(pages_to_free);
1324 
1325 	/*
1326 	 * Put back any unfreeable pages.
1327 	 */
1328 	while (!list_empty(page_list)) {
1329 		struct page *page = lru_to_page(page_list);
1330 		int lru;
1331 
1332 		VM_BUG_ON(PageLRU(page));
1333 		list_del(&page->lru);
1334 		if (unlikely(!page_evictable(page))) {
1335 			spin_unlock_irq(&zone->lru_lock);
1336 			putback_lru_page(page);
1337 			spin_lock_irq(&zone->lru_lock);
1338 			continue;
1339 		}
1340 
1341 		lruvec = mem_cgroup_page_lruvec(page, zone);
1342 
1343 		SetPageLRU(page);
1344 		lru = page_lru(page);
1345 		add_page_to_lru_list(page, lruvec, lru);
1346 
1347 		if (is_active_lru(lru)) {
1348 			int file = is_file_lru(lru);
1349 			int numpages = hpage_nr_pages(page);
1350 			reclaim_stat->recent_rotated[file] += numpages;
1351 		}
1352 		if (put_page_testzero(page)) {
1353 			__ClearPageLRU(page);
1354 			__ClearPageActive(page);
1355 			del_page_from_lru_list(page, lruvec, lru);
1356 
1357 			if (unlikely(PageCompound(page))) {
1358 				spin_unlock_irq(&zone->lru_lock);
1359 				(*get_compound_page_dtor(page))(page);
1360 				spin_lock_irq(&zone->lru_lock);
1361 			} else
1362 				list_add(&page->lru, &pages_to_free);
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * To save our caller's stack, now use input list for pages to free.
1368 	 */
1369 	list_splice(&pages_to_free, page_list);
1370 }
1371 
1372 /*
1373  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1374  * of reclaimed pages
1375  */
1376 static noinline_for_stack unsigned long
1377 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1378 		     struct scan_control *sc, enum lru_list lru)
1379 {
1380 	LIST_HEAD(page_list);
1381 	unsigned long nr_scanned;
1382 	unsigned long nr_reclaimed = 0;
1383 	unsigned long nr_taken;
1384 	unsigned long nr_dirty = 0;
1385 	unsigned long nr_congested = 0;
1386 	unsigned long nr_unqueued_dirty = 0;
1387 	unsigned long nr_writeback = 0;
1388 	unsigned long nr_immediate = 0;
1389 	isolate_mode_t isolate_mode = 0;
1390 	int file = is_file_lru(lru);
1391 	struct zone *zone = lruvec_zone(lruvec);
1392 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1393 
1394 	while (unlikely(too_many_isolated(zone, file, sc))) {
1395 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1396 
1397 		/* We are about to die and free our memory. Return now. */
1398 		if (fatal_signal_pending(current))
1399 			return SWAP_CLUSTER_MAX;
1400 	}
1401 
1402 	lru_add_drain();
1403 
1404 	if (!sc->may_unmap)
1405 		isolate_mode |= ISOLATE_UNMAPPED;
1406 	if (!sc->may_writepage)
1407 		isolate_mode |= ISOLATE_CLEAN;
1408 
1409 	spin_lock_irq(&zone->lru_lock);
1410 
1411 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1412 				     &nr_scanned, sc, isolate_mode, lru);
1413 
1414 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1415 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1416 
1417 	if (global_reclaim(sc)) {
1418 		zone->pages_scanned += nr_scanned;
1419 		if (current_is_kswapd())
1420 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1421 		else
1422 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1423 	}
1424 	spin_unlock_irq(&zone->lru_lock);
1425 
1426 	if (nr_taken == 0)
1427 		return 0;
1428 
1429 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1430 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1431 				&nr_writeback, &nr_immediate,
1432 				false);
1433 
1434 	spin_lock_irq(&zone->lru_lock);
1435 
1436 	reclaim_stat->recent_scanned[file] += nr_taken;
1437 
1438 	if (global_reclaim(sc)) {
1439 		if (current_is_kswapd())
1440 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1441 					       nr_reclaimed);
1442 		else
1443 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1444 					       nr_reclaimed);
1445 	}
1446 
1447 	putback_inactive_pages(lruvec, &page_list);
1448 
1449 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1450 
1451 	spin_unlock_irq(&zone->lru_lock);
1452 
1453 	free_hot_cold_page_list(&page_list, 1);
1454 
1455 	/*
1456 	 * If reclaim is isolating dirty pages under writeback, it implies
1457 	 * that the long-lived page allocation rate is exceeding the page
1458 	 * laundering rate. Either the global limits are not being effective
1459 	 * at throttling processes due to the page distribution throughout
1460 	 * zones or there is heavy usage of a slow backing device. The
1461 	 * only option is to throttle from reclaim context which is not ideal
1462 	 * as there is no guarantee the dirtying process is throttled in the
1463 	 * same way balance_dirty_pages() manages.
1464 	 *
1465 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1466 	 * of pages under pages flagged for immediate reclaim and stall if any
1467 	 * are encountered in the nr_immediate check below.
1468 	 */
1469 	if (nr_writeback && nr_writeback == nr_taken)
1470 		zone_set_flag(zone, ZONE_WRITEBACK);
1471 
1472 	/*
1473 	 * memcg will stall in page writeback so only consider forcibly
1474 	 * stalling for global reclaim
1475 	 */
1476 	if (global_reclaim(sc)) {
1477 		/*
1478 		 * Tag a zone as congested if all the dirty pages scanned were
1479 		 * backed by a congested BDI and wait_iff_congested will stall.
1480 		 */
1481 		if (nr_dirty && nr_dirty == nr_congested)
1482 			zone_set_flag(zone, ZONE_CONGESTED);
1483 
1484 		/*
1485 		 * If dirty pages are scanned that are not queued for IO, it
1486 		 * implies that flushers are not keeping up. In this case, flag
1487 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1488 		 * pages from reclaim context. It will forcibly stall in the
1489 		 * next check.
1490 		 */
1491 		if (nr_unqueued_dirty == nr_taken)
1492 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1493 
1494 		/*
1495 		 * In addition, if kswapd scans pages marked marked for
1496 		 * immediate reclaim and under writeback (nr_immediate), it
1497 		 * implies that pages are cycling through the LRU faster than
1498 		 * they are written so also forcibly stall.
1499 		 */
1500 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1501 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1502 	}
1503 
1504 	/*
1505 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1506 	 * is congested. Allow kswapd to continue until it starts encountering
1507 	 * unqueued dirty pages or cycling through the LRU too quickly.
1508 	 */
1509 	if (!sc->hibernation_mode && !current_is_kswapd())
1510 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1511 
1512 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1513 		zone_idx(zone),
1514 		nr_scanned, nr_reclaimed,
1515 		sc->priority,
1516 		trace_shrink_flags(file));
1517 	return nr_reclaimed;
1518 }
1519 
1520 /*
1521  * This moves pages from the active list to the inactive list.
1522  *
1523  * We move them the other way if the page is referenced by one or more
1524  * processes, from rmap.
1525  *
1526  * If the pages are mostly unmapped, the processing is fast and it is
1527  * appropriate to hold zone->lru_lock across the whole operation.  But if
1528  * the pages are mapped, the processing is slow (page_referenced()) so we
1529  * should drop zone->lru_lock around each page.  It's impossible to balance
1530  * this, so instead we remove the pages from the LRU while processing them.
1531  * It is safe to rely on PG_active against the non-LRU pages in here because
1532  * nobody will play with that bit on a non-LRU page.
1533  *
1534  * The downside is that we have to touch page->_count against each page.
1535  * But we had to alter page->flags anyway.
1536  */
1537 
1538 static void move_active_pages_to_lru(struct lruvec *lruvec,
1539 				     struct list_head *list,
1540 				     struct list_head *pages_to_free,
1541 				     enum lru_list lru)
1542 {
1543 	struct zone *zone = lruvec_zone(lruvec);
1544 	unsigned long pgmoved = 0;
1545 	struct page *page;
1546 	int nr_pages;
1547 
1548 	while (!list_empty(list)) {
1549 		page = lru_to_page(list);
1550 		lruvec = mem_cgroup_page_lruvec(page, zone);
1551 
1552 		VM_BUG_ON(PageLRU(page));
1553 		SetPageLRU(page);
1554 
1555 		nr_pages = hpage_nr_pages(page);
1556 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1557 		list_move(&page->lru, &lruvec->lists[lru]);
1558 		pgmoved += nr_pages;
1559 
1560 		if (put_page_testzero(page)) {
1561 			__ClearPageLRU(page);
1562 			__ClearPageActive(page);
1563 			del_page_from_lru_list(page, lruvec, lru);
1564 
1565 			if (unlikely(PageCompound(page))) {
1566 				spin_unlock_irq(&zone->lru_lock);
1567 				(*get_compound_page_dtor(page))(page);
1568 				spin_lock_irq(&zone->lru_lock);
1569 			} else
1570 				list_add(&page->lru, pages_to_free);
1571 		}
1572 	}
1573 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1574 	if (!is_active_lru(lru))
1575 		__count_vm_events(PGDEACTIVATE, pgmoved);
1576 }
1577 
1578 static void shrink_active_list(unsigned long nr_to_scan,
1579 			       struct lruvec *lruvec,
1580 			       struct scan_control *sc,
1581 			       enum lru_list lru)
1582 {
1583 	unsigned long nr_taken;
1584 	unsigned long nr_scanned;
1585 	unsigned long vm_flags;
1586 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1587 	LIST_HEAD(l_active);
1588 	LIST_HEAD(l_inactive);
1589 	struct page *page;
1590 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1591 	unsigned long nr_rotated = 0;
1592 	isolate_mode_t isolate_mode = 0;
1593 	int file = is_file_lru(lru);
1594 	struct zone *zone = lruvec_zone(lruvec);
1595 
1596 	lru_add_drain();
1597 
1598 	if (!sc->may_unmap)
1599 		isolate_mode |= ISOLATE_UNMAPPED;
1600 	if (!sc->may_writepage)
1601 		isolate_mode |= ISOLATE_CLEAN;
1602 
1603 	spin_lock_irq(&zone->lru_lock);
1604 
1605 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1606 				     &nr_scanned, sc, isolate_mode, lru);
1607 	if (global_reclaim(sc))
1608 		zone->pages_scanned += nr_scanned;
1609 
1610 	reclaim_stat->recent_scanned[file] += nr_taken;
1611 
1612 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1613 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1614 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1615 	spin_unlock_irq(&zone->lru_lock);
1616 
1617 	while (!list_empty(&l_hold)) {
1618 		cond_resched();
1619 		page = lru_to_page(&l_hold);
1620 		list_del(&page->lru);
1621 
1622 		if (unlikely(!page_evictable(page))) {
1623 			putback_lru_page(page);
1624 			continue;
1625 		}
1626 
1627 		if (unlikely(buffer_heads_over_limit)) {
1628 			if (page_has_private(page) && trylock_page(page)) {
1629 				if (page_has_private(page))
1630 					try_to_release_page(page, 0);
1631 				unlock_page(page);
1632 			}
1633 		}
1634 
1635 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1636 				    &vm_flags)) {
1637 			nr_rotated += hpage_nr_pages(page);
1638 			/*
1639 			 * Identify referenced, file-backed active pages and
1640 			 * give them one more trip around the active list. So
1641 			 * that executable code get better chances to stay in
1642 			 * memory under moderate memory pressure.  Anon pages
1643 			 * are not likely to be evicted by use-once streaming
1644 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1645 			 * so we ignore them here.
1646 			 */
1647 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1648 				list_add(&page->lru, &l_active);
1649 				continue;
1650 			}
1651 		}
1652 
1653 		ClearPageActive(page);	/* we are de-activating */
1654 		list_add(&page->lru, &l_inactive);
1655 	}
1656 
1657 	/*
1658 	 * Move pages back to the lru list.
1659 	 */
1660 	spin_lock_irq(&zone->lru_lock);
1661 	/*
1662 	 * Count referenced pages from currently used mappings as rotated,
1663 	 * even though only some of them are actually re-activated.  This
1664 	 * helps balance scan pressure between file and anonymous pages in
1665 	 * get_scan_ratio.
1666 	 */
1667 	reclaim_stat->recent_rotated[file] += nr_rotated;
1668 
1669 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1670 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1671 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1672 	spin_unlock_irq(&zone->lru_lock);
1673 
1674 	free_hot_cold_page_list(&l_hold, 1);
1675 }
1676 
1677 #ifdef CONFIG_SWAP
1678 static int inactive_anon_is_low_global(struct zone *zone)
1679 {
1680 	unsigned long active, inactive;
1681 
1682 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1683 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1684 
1685 	if (inactive * zone->inactive_ratio < active)
1686 		return 1;
1687 
1688 	return 0;
1689 }
1690 
1691 /**
1692  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1693  * @lruvec: LRU vector to check
1694  *
1695  * Returns true if the zone does not have enough inactive anon pages,
1696  * meaning some active anon pages need to be deactivated.
1697  */
1698 static int inactive_anon_is_low(struct lruvec *lruvec)
1699 {
1700 	/*
1701 	 * If we don't have swap space, anonymous page deactivation
1702 	 * is pointless.
1703 	 */
1704 	if (!total_swap_pages)
1705 		return 0;
1706 
1707 	if (!mem_cgroup_disabled())
1708 		return mem_cgroup_inactive_anon_is_low(lruvec);
1709 
1710 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1711 }
1712 #else
1713 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1714 {
1715 	return 0;
1716 }
1717 #endif
1718 
1719 /**
1720  * inactive_file_is_low - check if file pages need to be deactivated
1721  * @lruvec: LRU vector to check
1722  *
1723  * When the system is doing streaming IO, memory pressure here
1724  * ensures that active file pages get deactivated, until more
1725  * than half of the file pages are on the inactive list.
1726  *
1727  * Once we get to that situation, protect the system's working
1728  * set from being evicted by disabling active file page aging.
1729  *
1730  * This uses a different ratio than the anonymous pages, because
1731  * the page cache uses a use-once replacement algorithm.
1732  */
1733 static int inactive_file_is_low(struct lruvec *lruvec)
1734 {
1735 	unsigned long inactive;
1736 	unsigned long active;
1737 
1738 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1739 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1740 
1741 	return active > inactive;
1742 }
1743 
1744 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1745 {
1746 	if (is_file_lru(lru))
1747 		return inactive_file_is_low(lruvec);
1748 	else
1749 		return inactive_anon_is_low(lruvec);
1750 }
1751 
1752 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1753 				 struct lruvec *lruvec, struct scan_control *sc)
1754 {
1755 	if (is_active_lru(lru)) {
1756 		if (inactive_list_is_low(lruvec, lru))
1757 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1758 		return 0;
1759 	}
1760 
1761 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1762 }
1763 
1764 static int vmscan_swappiness(struct scan_control *sc)
1765 {
1766 	if (global_reclaim(sc))
1767 		return vm_swappiness;
1768 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1769 }
1770 
1771 enum scan_balance {
1772 	SCAN_EQUAL,
1773 	SCAN_FRACT,
1774 	SCAN_ANON,
1775 	SCAN_FILE,
1776 };
1777 
1778 /*
1779  * Determine how aggressively the anon and file LRU lists should be
1780  * scanned.  The relative value of each set of LRU lists is determined
1781  * by looking at the fraction of the pages scanned we did rotate back
1782  * onto the active list instead of evict.
1783  *
1784  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1785  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1786  */
1787 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1788 			   unsigned long *nr)
1789 {
1790 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1791 	u64 fraction[2];
1792 	u64 denominator = 0;	/* gcc */
1793 	struct zone *zone = lruvec_zone(lruvec);
1794 	unsigned long anon_prio, file_prio;
1795 	enum scan_balance scan_balance;
1796 	unsigned long anon, file, free;
1797 	bool force_scan = false;
1798 	unsigned long ap, fp;
1799 	enum lru_list lru;
1800 
1801 	/*
1802 	 * If the zone or memcg is small, nr[l] can be 0.  This
1803 	 * results in no scanning on this priority and a potential
1804 	 * priority drop.  Global direct reclaim can go to the next
1805 	 * zone and tends to have no problems. Global kswapd is for
1806 	 * zone balancing and it needs to scan a minimum amount. When
1807 	 * reclaiming for a memcg, a priority drop can cause high
1808 	 * latencies, so it's better to scan a minimum amount there as
1809 	 * well.
1810 	 */
1811 	if (current_is_kswapd() && !zone_reclaimable(zone))
1812 		force_scan = true;
1813 	if (!global_reclaim(sc))
1814 		force_scan = true;
1815 
1816 	/* If we have no swap space, do not bother scanning anon pages. */
1817 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1818 		scan_balance = SCAN_FILE;
1819 		goto out;
1820 	}
1821 
1822 	/*
1823 	 * Global reclaim will swap to prevent OOM even with no
1824 	 * swappiness, but memcg users want to use this knob to
1825 	 * disable swapping for individual groups completely when
1826 	 * using the memory controller's swap limit feature would be
1827 	 * too expensive.
1828 	 */
1829 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1830 		scan_balance = SCAN_FILE;
1831 		goto out;
1832 	}
1833 
1834 	/*
1835 	 * Do not apply any pressure balancing cleverness when the
1836 	 * system is close to OOM, scan both anon and file equally
1837 	 * (unless the swappiness setting disagrees with swapping).
1838 	 */
1839 	if (!sc->priority && vmscan_swappiness(sc)) {
1840 		scan_balance = SCAN_EQUAL;
1841 		goto out;
1842 	}
1843 
1844 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1845 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1846 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1847 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1848 
1849 	/*
1850 	 * If it's foreseeable that reclaiming the file cache won't be
1851 	 * enough to get the zone back into a desirable shape, we have
1852 	 * to swap.  Better start now and leave the - probably heavily
1853 	 * thrashing - remaining file pages alone.
1854 	 */
1855 	if (global_reclaim(sc)) {
1856 		free = zone_page_state(zone, NR_FREE_PAGES);
1857 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1858 			scan_balance = SCAN_ANON;
1859 			goto out;
1860 		}
1861 	}
1862 
1863 	/*
1864 	 * There is enough inactive page cache, do not reclaim
1865 	 * anything from the anonymous working set right now.
1866 	 */
1867 	if (!inactive_file_is_low(lruvec)) {
1868 		scan_balance = SCAN_FILE;
1869 		goto out;
1870 	}
1871 
1872 	scan_balance = SCAN_FRACT;
1873 
1874 	/*
1875 	 * With swappiness at 100, anonymous and file have the same priority.
1876 	 * This scanning priority is essentially the inverse of IO cost.
1877 	 */
1878 	anon_prio = vmscan_swappiness(sc);
1879 	file_prio = 200 - anon_prio;
1880 
1881 	/*
1882 	 * OK, so we have swap space and a fair amount of page cache
1883 	 * pages.  We use the recently rotated / recently scanned
1884 	 * ratios to determine how valuable each cache is.
1885 	 *
1886 	 * Because workloads change over time (and to avoid overflow)
1887 	 * we keep these statistics as a floating average, which ends
1888 	 * up weighing recent references more than old ones.
1889 	 *
1890 	 * anon in [0], file in [1]
1891 	 */
1892 	spin_lock_irq(&zone->lru_lock);
1893 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1894 		reclaim_stat->recent_scanned[0] /= 2;
1895 		reclaim_stat->recent_rotated[0] /= 2;
1896 	}
1897 
1898 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1899 		reclaim_stat->recent_scanned[1] /= 2;
1900 		reclaim_stat->recent_rotated[1] /= 2;
1901 	}
1902 
1903 	/*
1904 	 * The amount of pressure on anon vs file pages is inversely
1905 	 * proportional to the fraction of recently scanned pages on
1906 	 * each list that were recently referenced and in active use.
1907 	 */
1908 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1909 	ap /= reclaim_stat->recent_rotated[0] + 1;
1910 
1911 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1912 	fp /= reclaim_stat->recent_rotated[1] + 1;
1913 	spin_unlock_irq(&zone->lru_lock);
1914 
1915 	fraction[0] = ap;
1916 	fraction[1] = fp;
1917 	denominator = ap + fp + 1;
1918 out:
1919 	for_each_evictable_lru(lru) {
1920 		int file = is_file_lru(lru);
1921 		unsigned long size;
1922 		unsigned long scan;
1923 
1924 		size = get_lru_size(lruvec, lru);
1925 		scan = size >> sc->priority;
1926 
1927 		if (!scan && force_scan)
1928 			scan = min(size, SWAP_CLUSTER_MAX);
1929 
1930 		switch (scan_balance) {
1931 		case SCAN_EQUAL:
1932 			/* Scan lists relative to size */
1933 			break;
1934 		case SCAN_FRACT:
1935 			/*
1936 			 * Scan types proportional to swappiness and
1937 			 * their relative recent reclaim efficiency.
1938 			 */
1939 			scan = div64_u64(scan * fraction[file], denominator);
1940 			break;
1941 		case SCAN_FILE:
1942 		case SCAN_ANON:
1943 			/* Scan one type exclusively */
1944 			if ((scan_balance == SCAN_FILE) != file)
1945 				scan = 0;
1946 			break;
1947 		default:
1948 			/* Look ma, no brain */
1949 			BUG();
1950 		}
1951 		nr[lru] = scan;
1952 	}
1953 }
1954 
1955 /*
1956  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1957  */
1958 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1959 {
1960 	unsigned long nr[NR_LRU_LISTS];
1961 	unsigned long targets[NR_LRU_LISTS];
1962 	unsigned long nr_to_scan;
1963 	enum lru_list lru;
1964 	unsigned long nr_reclaimed = 0;
1965 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1966 	struct blk_plug plug;
1967 	bool scan_adjusted = false;
1968 
1969 	get_scan_count(lruvec, sc, nr);
1970 
1971 	/* Record the original scan target for proportional adjustments later */
1972 	memcpy(targets, nr, sizeof(nr));
1973 
1974 	blk_start_plug(&plug);
1975 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1976 					nr[LRU_INACTIVE_FILE]) {
1977 		unsigned long nr_anon, nr_file, percentage;
1978 		unsigned long nr_scanned;
1979 
1980 		for_each_evictable_lru(lru) {
1981 			if (nr[lru]) {
1982 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1983 				nr[lru] -= nr_to_scan;
1984 
1985 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1986 							    lruvec, sc);
1987 			}
1988 		}
1989 
1990 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1991 			continue;
1992 
1993 		/*
1994 		 * For global direct reclaim, reclaim only the number of pages
1995 		 * requested. Less care is taken to scan proportionally as it
1996 		 * is more important to minimise direct reclaim stall latency
1997 		 * than it is to properly age the LRU lists.
1998 		 */
1999 		if (global_reclaim(sc) && !current_is_kswapd())
2000 			break;
2001 
2002 		/*
2003 		 * For kswapd and memcg, reclaim at least the number of pages
2004 		 * requested. Ensure that the anon and file LRUs shrink
2005 		 * proportionally what was requested by get_scan_count(). We
2006 		 * stop reclaiming one LRU and reduce the amount scanning
2007 		 * proportional to the original scan target.
2008 		 */
2009 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2010 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2011 
2012 		if (nr_file > nr_anon) {
2013 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2014 						targets[LRU_ACTIVE_ANON] + 1;
2015 			lru = LRU_BASE;
2016 			percentage = nr_anon * 100 / scan_target;
2017 		} else {
2018 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2019 						targets[LRU_ACTIVE_FILE] + 1;
2020 			lru = LRU_FILE;
2021 			percentage = nr_file * 100 / scan_target;
2022 		}
2023 
2024 		/* Stop scanning the smaller of the LRU */
2025 		nr[lru] = 0;
2026 		nr[lru + LRU_ACTIVE] = 0;
2027 
2028 		/*
2029 		 * Recalculate the other LRU scan count based on its original
2030 		 * scan target and the percentage scanning already complete
2031 		 */
2032 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2033 		nr_scanned = targets[lru] - nr[lru];
2034 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2035 		nr[lru] -= min(nr[lru], nr_scanned);
2036 
2037 		lru += LRU_ACTIVE;
2038 		nr_scanned = targets[lru] - nr[lru];
2039 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2040 		nr[lru] -= min(nr[lru], nr_scanned);
2041 
2042 		scan_adjusted = true;
2043 	}
2044 	blk_finish_plug(&plug);
2045 	sc->nr_reclaimed += nr_reclaimed;
2046 
2047 	/*
2048 	 * Even if we did not try to evict anon pages at all, we want to
2049 	 * rebalance the anon lru active/inactive ratio.
2050 	 */
2051 	if (inactive_anon_is_low(lruvec))
2052 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2053 				   sc, LRU_ACTIVE_ANON);
2054 
2055 	throttle_vm_writeout(sc->gfp_mask);
2056 }
2057 
2058 /* Use reclaim/compaction for costly allocs or under memory pressure */
2059 static bool in_reclaim_compaction(struct scan_control *sc)
2060 {
2061 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2062 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2063 			 sc->priority < DEF_PRIORITY - 2))
2064 		return true;
2065 
2066 	return false;
2067 }
2068 
2069 /*
2070  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2071  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2072  * true if more pages should be reclaimed such that when the page allocator
2073  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2074  * It will give up earlier than that if there is difficulty reclaiming pages.
2075  */
2076 static inline bool should_continue_reclaim(struct zone *zone,
2077 					unsigned long nr_reclaimed,
2078 					unsigned long nr_scanned,
2079 					struct scan_control *sc)
2080 {
2081 	unsigned long pages_for_compaction;
2082 	unsigned long inactive_lru_pages;
2083 
2084 	/* If not in reclaim/compaction mode, stop */
2085 	if (!in_reclaim_compaction(sc))
2086 		return false;
2087 
2088 	/* Consider stopping depending on scan and reclaim activity */
2089 	if (sc->gfp_mask & __GFP_REPEAT) {
2090 		/*
2091 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2092 		 * full LRU list has been scanned and we are still failing
2093 		 * to reclaim pages. This full LRU scan is potentially
2094 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2095 		 */
2096 		if (!nr_reclaimed && !nr_scanned)
2097 			return false;
2098 	} else {
2099 		/*
2100 		 * For non-__GFP_REPEAT allocations which can presumably
2101 		 * fail without consequence, stop if we failed to reclaim
2102 		 * any pages from the last SWAP_CLUSTER_MAX number of
2103 		 * pages that were scanned. This will return to the
2104 		 * caller faster at the risk reclaim/compaction and
2105 		 * the resulting allocation attempt fails
2106 		 */
2107 		if (!nr_reclaimed)
2108 			return false;
2109 	}
2110 
2111 	/*
2112 	 * If we have not reclaimed enough pages for compaction and the
2113 	 * inactive lists are large enough, continue reclaiming
2114 	 */
2115 	pages_for_compaction = (2UL << sc->order);
2116 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2117 	if (get_nr_swap_pages() > 0)
2118 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2119 	if (sc->nr_reclaimed < pages_for_compaction &&
2120 			inactive_lru_pages > pages_for_compaction)
2121 		return true;
2122 
2123 	/* If compaction would go ahead or the allocation would succeed, stop */
2124 	switch (compaction_suitable(zone, sc->order)) {
2125 	case COMPACT_PARTIAL:
2126 	case COMPACT_CONTINUE:
2127 		return false;
2128 	default:
2129 		return true;
2130 	}
2131 }
2132 
2133 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2134 {
2135 	unsigned long nr_reclaimed, nr_scanned;
2136 
2137 	do {
2138 		struct mem_cgroup *root = sc->target_mem_cgroup;
2139 		struct mem_cgroup_reclaim_cookie reclaim = {
2140 			.zone = zone,
2141 			.priority = sc->priority,
2142 		};
2143 		struct mem_cgroup *memcg;
2144 
2145 		nr_reclaimed = sc->nr_reclaimed;
2146 		nr_scanned = sc->nr_scanned;
2147 
2148 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2149 		do {
2150 			struct lruvec *lruvec;
2151 
2152 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2153 
2154 			shrink_lruvec(lruvec, sc);
2155 
2156 			/*
2157 			 * Direct reclaim and kswapd have to scan all memory
2158 			 * cgroups to fulfill the overall scan target for the
2159 			 * zone.
2160 			 *
2161 			 * Limit reclaim, on the other hand, only cares about
2162 			 * nr_to_reclaim pages to be reclaimed and it will
2163 			 * retry with decreasing priority if one round over the
2164 			 * whole hierarchy is not sufficient.
2165 			 */
2166 			if (!global_reclaim(sc) &&
2167 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2168 				mem_cgroup_iter_break(root, memcg);
2169 				break;
2170 			}
2171 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2172 		} while (memcg);
2173 
2174 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2175 			   sc->nr_scanned - nr_scanned,
2176 			   sc->nr_reclaimed - nr_reclaimed);
2177 
2178 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2179 					 sc->nr_scanned - nr_scanned, sc));
2180 }
2181 
2182 /* Returns true if compaction should go ahead for a high-order request */
2183 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2184 {
2185 	unsigned long balance_gap, watermark;
2186 	bool watermark_ok;
2187 
2188 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2189 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2190 		return false;
2191 
2192 	/*
2193 	 * Compaction takes time to run and there are potentially other
2194 	 * callers using the pages just freed. Continue reclaiming until
2195 	 * there is a buffer of free pages available to give compaction
2196 	 * a reasonable chance of completing and allocating the page
2197 	 */
2198 	balance_gap = min(low_wmark_pages(zone),
2199 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2200 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2201 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2202 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2203 
2204 	/*
2205 	 * If compaction is deferred, reclaim up to a point where
2206 	 * compaction will have a chance of success when re-enabled
2207 	 */
2208 	if (compaction_deferred(zone, sc->order))
2209 		return watermark_ok;
2210 
2211 	/* If compaction is not ready to start, keep reclaiming */
2212 	if (!compaction_suitable(zone, sc->order))
2213 		return false;
2214 
2215 	return watermark_ok;
2216 }
2217 
2218 /*
2219  * This is the direct reclaim path, for page-allocating processes.  We only
2220  * try to reclaim pages from zones which will satisfy the caller's allocation
2221  * request.
2222  *
2223  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2224  * Because:
2225  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2226  *    allocation or
2227  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2228  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2229  *    zone defense algorithm.
2230  *
2231  * If a zone is deemed to be full of pinned pages then just give it a light
2232  * scan then give up on it.
2233  *
2234  * This function returns true if a zone is being reclaimed for a costly
2235  * high-order allocation and compaction is ready to begin. This indicates to
2236  * the caller that it should consider retrying the allocation instead of
2237  * further reclaim.
2238  */
2239 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2240 {
2241 	struct zoneref *z;
2242 	struct zone *zone;
2243 	unsigned long nr_soft_reclaimed;
2244 	unsigned long nr_soft_scanned;
2245 	bool aborted_reclaim = false;
2246 
2247 	/*
2248 	 * If the number of buffer_heads in the machine exceeds the maximum
2249 	 * allowed level, force direct reclaim to scan the highmem zone as
2250 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2251 	 */
2252 	if (buffer_heads_over_limit)
2253 		sc->gfp_mask |= __GFP_HIGHMEM;
2254 
2255 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2256 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2257 		if (!populated_zone(zone))
2258 			continue;
2259 		/*
2260 		 * Take care memory controller reclaiming has small influence
2261 		 * to global LRU.
2262 		 */
2263 		if (global_reclaim(sc)) {
2264 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2265 				continue;
2266 			if (sc->priority != DEF_PRIORITY &&
2267 			    !zone_reclaimable(zone))
2268 				continue;	/* Let kswapd poll it */
2269 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2270 				/*
2271 				 * If we already have plenty of memory free for
2272 				 * compaction in this zone, don't free any more.
2273 				 * Even though compaction is invoked for any
2274 				 * non-zero order, only frequent costly order
2275 				 * reclamation is disruptive enough to become a
2276 				 * noticeable problem, like transparent huge
2277 				 * page allocations.
2278 				 */
2279 				if (compaction_ready(zone, sc)) {
2280 					aborted_reclaim = true;
2281 					continue;
2282 				}
2283 			}
2284 			/*
2285 			 * This steals pages from memory cgroups over softlimit
2286 			 * and returns the number of reclaimed pages and
2287 			 * scanned pages. This works for global memory pressure
2288 			 * and balancing, not for a memcg's limit.
2289 			 */
2290 			nr_soft_scanned = 0;
2291 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2292 						sc->order, sc->gfp_mask,
2293 						&nr_soft_scanned);
2294 			sc->nr_reclaimed += nr_soft_reclaimed;
2295 			sc->nr_scanned += nr_soft_scanned;
2296 			/* need some check for avoid more shrink_zone() */
2297 		}
2298 
2299 		shrink_zone(zone, sc);
2300 	}
2301 
2302 	return aborted_reclaim;
2303 }
2304 
2305 /* All zones in zonelist are unreclaimable? */
2306 static bool all_unreclaimable(struct zonelist *zonelist,
2307 		struct scan_control *sc)
2308 {
2309 	struct zoneref *z;
2310 	struct zone *zone;
2311 
2312 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2313 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2314 		if (!populated_zone(zone))
2315 			continue;
2316 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2317 			continue;
2318 		if (zone_reclaimable(zone))
2319 			return false;
2320 	}
2321 
2322 	return true;
2323 }
2324 
2325 /*
2326  * This is the main entry point to direct page reclaim.
2327  *
2328  * If a full scan of the inactive list fails to free enough memory then we
2329  * are "out of memory" and something needs to be killed.
2330  *
2331  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2332  * high - the zone may be full of dirty or under-writeback pages, which this
2333  * caller can't do much about.  We kick the writeback threads and take explicit
2334  * naps in the hope that some of these pages can be written.  But if the
2335  * allocating task holds filesystem locks which prevent writeout this might not
2336  * work, and the allocation attempt will fail.
2337  *
2338  * returns:	0, if no pages reclaimed
2339  * 		else, the number of pages reclaimed
2340  */
2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2342 					struct scan_control *sc,
2343 					struct shrink_control *shrink)
2344 {
2345 	unsigned long total_scanned = 0;
2346 	struct reclaim_state *reclaim_state = current->reclaim_state;
2347 	struct zoneref *z;
2348 	struct zone *zone;
2349 	unsigned long writeback_threshold;
2350 	bool aborted_reclaim;
2351 
2352 	delayacct_freepages_start();
2353 
2354 	if (global_reclaim(sc))
2355 		count_vm_event(ALLOCSTALL);
2356 
2357 	do {
2358 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2359 				sc->priority);
2360 		sc->nr_scanned = 0;
2361 		aborted_reclaim = shrink_zones(zonelist, sc);
2362 
2363 		/*
2364 		 * Don't shrink slabs when reclaiming memory from over limit
2365 		 * cgroups but do shrink slab at least once when aborting
2366 		 * reclaim for compaction to avoid unevenly scanning file/anon
2367 		 * LRU pages over slab pages.
2368 		 */
2369 		if (global_reclaim(sc)) {
2370 			unsigned long lru_pages = 0;
2371 			for_each_zone_zonelist(zone, z, zonelist,
2372 					gfp_zone(sc->gfp_mask)) {
2373 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2374 					continue;
2375 
2376 				lru_pages += zone_reclaimable_pages(zone);
2377 			}
2378 
2379 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2380 			if (reclaim_state) {
2381 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2382 				reclaim_state->reclaimed_slab = 0;
2383 			}
2384 		}
2385 		total_scanned += sc->nr_scanned;
2386 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2387 			goto out;
2388 
2389 		/*
2390 		 * If we're getting trouble reclaiming, start doing
2391 		 * writepage even in laptop mode.
2392 		 */
2393 		if (sc->priority < DEF_PRIORITY - 2)
2394 			sc->may_writepage = 1;
2395 
2396 		/*
2397 		 * Try to write back as many pages as we just scanned.  This
2398 		 * tends to cause slow streaming writers to write data to the
2399 		 * disk smoothly, at the dirtying rate, which is nice.   But
2400 		 * that's undesirable in laptop mode, where we *want* lumpy
2401 		 * writeout.  So in laptop mode, write out the whole world.
2402 		 */
2403 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2404 		if (total_scanned > writeback_threshold) {
2405 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2406 						WB_REASON_TRY_TO_FREE_PAGES);
2407 			sc->may_writepage = 1;
2408 		}
2409 	} while (--sc->priority >= 0 && !aborted_reclaim);
2410 
2411 out:
2412 	delayacct_freepages_end();
2413 
2414 	if (sc->nr_reclaimed)
2415 		return sc->nr_reclaimed;
2416 
2417 	/*
2418 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2419 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2420 	 * check.
2421 	 */
2422 	if (oom_killer_disabled)
2423 		return 0;
2424 
2425 	/* Aborted reclaim to try compaction? don't OOM, then */
2426 	if (aborted_reclaim)
2427 		return 1;
2428 
2429 	/* top priority shrink_zones still had more to do? don't OOM, then */
2430 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2431 		return 1;
2432 
2433 	return 0;
2434 }
2435 
2436 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2437 {
2438 	struct zone *zone;
2439 	unsigned long pfmemalloc_reserve = 0;
2440 	unsigned long free_pages = 0;
2441 	int i;
2442 	bool wmark_ok;
2443 
2444 	for (i = 0; i <= ZONE_NORMAL; i++) {
2445 		zone = &pgdat->node_zones[i];
2446 		pfmemalloc_reserve += min_wmark_pages(zone);
2447 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2448 	}
2449 
2450 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2451 
2452 	/* kswapd must be awake if processes are being throttled */
2453 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2454 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2455 						(enum zone_type)ZONE_NORMAL);
2456 		wake_up_interruptible(&pgdat->kswapd_wait);
2457 	}
2458 
2459 	return wmark_ok;
2460 }
2461 
2462 /*
2463  * Throttle direct reclaimers if backing storage is backed by the network
2464  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2465  * depleted. kswapd will continue to make progress and wake the processes
2466  * when the low watermark is reached.
2467  *
2468  * Returns true if a fatal signal was delivered during throttling. If this
2469  * happens, the page allocator should not consider triggering the OOM killer.
2470  */
2471 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2472 					nodemask_t *nodemask)
2473 {
2474 	struct zone *zone;
2475 	int high_zoneidx = gfp_zone(gfp_mask);
2476 	pg_data_t *pgdat;
2477 
2478 	/*
2479 	 * Kernel threads should not be throttled as they may be indirectly
2480 	 * responsible for cleaning pages necessary for reclaim to make forward
2481 	 * progress. kjournald for example may enter direct reclaim while
2482 	 * committing a transaction where throttling it could forcing other
2483 	 * processes to block on log_wait_commit().
2484 	 */
2485 	if (current->flags & PF_KTHREAD)
2486 		goto out;
2487 
2488 	/*
2489 	 * If a fatal signal is pending, this process should not throttle.
2490 	 * It should return quickly so it can exit and free its memory
2491 	 */
2492 	if (fatal_signal_pending(current))
2493 		goto out;
2494 
2495 	/* Check if the pfmemalloc reserves are ok */
2496 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2497 	pgdat = zone->zone_pgdat;
2498 	if (pfmemalloc_watermark_ok(pgdat))
2499 		goto out;
2500 
2501 	/* Account for the throttling */
2502 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2503 
2504 	/*
2505 	 * If the caller cannot enter the filesystem, it's possible that it
2506 	 * is due to the caller holding an FS lock or performing a journal
2507 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2508 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2509 	 * blocked waiting on the same lock. Instead, throttle for up to a
2510 	 * second before continuing.
2511 	 */
2512 	if (!(gfp_mask & __GFP_FS)) {
2513 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2514 			pfmemalloc_watermark_ok(pgdat), HZ);
2515 
2516 		goto check_pending;
2517 	}
2518 
2519 	/* Throttle until kswapd wakes the process */
2520 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2521 		pfmemalloc_watermark_ok(pgdat));
2522 
2523 check_pending:
2524 	if (fatal_signal_pending(current))
2525 		return true;
2526 
2527 out:
2528 	return false;
2529 }
2530 
2531 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2532 				gfp_t gfp_mask, nodemask_t *nodemask)
2533 {
2534 	unsigned long nr_reclaimed;
2535 	struct scan_control sc = {
2536 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2537 		.may_writepage = !laptop_mode,
2538 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2539 		.may_unmap = 1,
2540 		.may_swap = 1,
2541 		.order = order,
2542 		.priority = DEF_PRIORITY,
2543 		.target_mem_cgroup = NULL,
2544 		.nodemask = nodemask,
2545 	};
2546 	struct shrink_control shrink = {
2547 		.gfp_mask = sc.gfp_mask,
2548 	};
2549 
2550 	/*
2551 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2552 	 * 1 is returned so that the page allocator does not OOM kill at this
2553 	 * point.
2554 	 */
2555 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2556 		return 1;
2557 
2558 	trace_mm_vmscan_direct_reclaim_begin(order,
2559 				sc.may_writepage,
2560 				gfp_mask);
2561 
2562 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2563 
2564 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2565 
2566 	return nr_reclaimed;
2567 }
2568 
2569 #ifdef CONFIG_MEMCG
2570 
2571 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2572 						gfp_t gfp_mask, bool noswap,
2573 						struct zone *zone,
2574 						unsigned long *nr_scanned)
2575 {
2576 	struct scan_control sc = {
2577 		.nr_scanned = 0,
2578 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2579 		.may_writepage = !laptop_mode,
2580 		.may_unmap = 1,
2581 		.may_swap = !noswap,
2582 		.order = 0,
2583 		.priority = 0,
2584 		.target_mem_cgroup = memcg,
2585 	};
2586 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2587 
2588 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2589 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2590 
2591 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2592 						      sc.may_writepage,
2593 						      sc.gfp_mask);
2594 
2595 	/*
2596 	 * NOTE: Although we can get the priority field, using it
2597 	 * here is not a good idea, since it limits the pages we can scan.
2598 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2599 	 * will pick up pages from other mem cgroup's as well. We hack
2600 	 * the priority and make it zero.
2601 	 */
2602 	shrink_lruvec(lruvec, &sc);
2603 
2604 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2605 
2606 	*nr_scanned = sc.nr_scanned;
2607 	return sc.nr_reclaimed;
2608 }
2609 
2610 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2611 					   gfp_t gfp_mask,
2612 					   bool noswap)
2613 {
2614 	struct zonelist *zonelist;
2615 	unsigned long nr_reclaimed;
2616 	int nid;
2617 	struct scan_control sc = {
2618 		.may_writepage = !laptop_mode,
2619 		.may_unmap = 1,
2620 		.may_swap = !noswap,
2621 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2622 		.order = 0,
2623 		.priority = DEF_PRIORITY,
2624 		.target_mem_cgroup = memcg,
2625 		.nodemask = NULL, /* we don't care the placement */
2626 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2628 	};
2629 	struct shrink_control shrink = {
2630 		.gfp_mask = sc.gfp_mask,
2631 	};
2632 
2633 	/*
2634 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2635 	 * take care of from where we get pages. So the node where we start the
2636 	 * scan does not need to be the current node.
2637 	 */
2638 	nid = mem_cgroup_select_victim_node(memcg);
2639 
2640 	zonelist = NODE_DATA(nid)->node_zonelists;
2641 
2642 	trace_mm_vmscan_memcg_reclaim_begin(0,
2643 					    sc.may_writepage,
2644 					    sc.gfp_mask);
2645 
2646 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2647 
2648 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2649 
2650 	return nr_reclaimed;
2651 }
2652 #endif
2653 
2654 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2655 {
2656 	struct mem_cgroup *memcg;
2657 
2658 	if (!total_swap_pages)
2659 		return;
2660 
2661 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2662 	do {
2663 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2664 
2665 		if (inactive_anon_is_low(lruvec))
2666 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2667 					   sc, LRU_ACTIVE_ANON);
2668 
2669 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2670 	} while (memcg);
2671 }
2672 
2673 static bool zone_balanced(struct zone *zone, int order,
2674 			  unsigned long balance_gap, int classzone_idx)
2675 {
2676 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2677 				    balance_gap, classzone_idx, 0))
2678 		return false;
2679 
2680 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2681 	    !compaction_suitable(zone, order))
2682 		return false;
2683 
2684 	return true;
2685 }
2686 
2687 /*
2688  * pgdat_balanced() is used when checking if a node is balanced.
2689  *
2690  * For order-0, all zones must be balanced!
2691  *
2692  * For high-order allocations only zones that meet watermarks and are in a
2693  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2694  * total of balanced pages must be at least 25% of the zones allowed by
2695  * classzone_idx for the node to be considered balanced. Forcing all zones to
2696  * be balanced for high orders can cause excessive reclaim when there are
2697  * imbalanced zones.
2698  * The choice of 25% is due to
2699  *   o a 16M DMA zone that is balanced will not balance a zone on any
2700  *     reasonable sized machine
2701  *   o On all other machines, the top zone must be at least a reasonable
2702  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2703  *     would need to be at least 256M for it to be balance a whole node.
2704  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2705  *     to balance a node on its own. These seemed like reasonable ratios.
2706  */
2707 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2708 {
2709 	unsigned long managed_pages = 0;
2710 	unsigned long balanced_pages = 0;
2711 	int i;
2712 
2713 	/* Check the watermark levels */
2714 	for (i = 0; i <= classzone_idx; i++) {
2715 		struct zone *zone = pgdat->node_zones + i;
2716 
2717 		if (!populated_zone(zone))
2718 			continue;
2719 
2720 		managed_pages += zone->managed_pages;
2721 
2722 		/*
2723 		 * A special case here:
2724 		 *
2725 		 * balance_pgdat() skips over all_unreclaimable after
2726 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2727 		 * they must be considered balanced here as well!
2728 		 */
2729 		if (!zone_reclaimable(zone)) {
2730 			balanced_pages += zone->managed_pages;
2731 			continue;
2732 		}
2733 
2734 		if (zone_balanced(zone, order, 0, i))
2735 			balanced_pages += zone->managed_pages;
2736 		else if (!order)
2737 			return false;
2738 	}
2739 
2740 	if (order)
2741 		return balanced_pages >= (managed_pages >> 2);
2742 	else
2743 		return true;
2744 }
2745 
2746 /*
2747  * Prepare kswapd for sleeping. This verifies that there are no processes
2748  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2749  *
2750  * Returns true if kswapd is ready to sleep
2751  */
2752 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2753 					int classzone_idx)
2754 {
2755 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2756 	if (remaining)
2757 		return false;
2758 
2759 	/*
2760 	 * There is a potential race between when kswapd checks its watermarks
2761 	 * and a process gets throttled. There is also a potential race if
2762 	 * processes get throttled, kswapd wakes, a large process exits therby
2763 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2764 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2765 	 * so wake them now if necessary. If necessary, processes will wake
2766 	 * kswapd and get throttled again
2767 	 */
2768 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2769 		wake_up(&pgdat->pfmemalloc_wait);
2770 		return false;
2771 	}
2772 
2773 	return pgdat_balanced(pgdat, order, classzone_idx);
2774 }
2775 
2776 /*
2777  * kswapd shrinks the zone by the number of pages required to reach
2778  * the high watermark.
2779  *
2780  * Returns true if kswapd scanned at least the requested number of pages to
2781  * reclaim or if the lack of progress was due to pages under writeback.
2782  * This is used to determine if the scanning priority needs to be raised.
2783  */
2784 static bool kswapd_shrink_zone(struct zone *zone,
2785 			       int classzone_idx,
2786 			       struct scan_control *sc,
2787 			       unsigned long lru_pages,
2788 			       unsigned long *nr_attempted)
2789 {
2790 	int testorder = sc->order;
2791 	unsigned long balance_gap;
2792 	struct reclaim_state *reclaim_state = current->reclaim_state;
2793 	struct shrink_control shrink = {
2794 		.gfp_mask = sc->gfp_mask,
2795 	};
2796 	bool lowmem_pressure;
2797 
2798 	/* Reclaim above the high watermark. */
2799 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2800 
2801 	/*
2802 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2803 	 * too hard to reclaim until contiguous free pages have become
2804 	 * available can hurt performance by evicting too much useful data
2805 	 * from memory. Do not reclaim more than needed for compaction.
2806 	 */
2807 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2808 			compaction_suitable(zone, sc->order) !=
2809 				COMPACT_SKIPPED)
2810 		testorder = 0;
2811 
2812 	/*
2813 	 * We put equal pressure on every zone, unless one zone has way too
2814 	 * many pages free already. The "too many pages" is defined as the
2815 	 * high wmark plus a "gap" where the gap is either the low
2816 	 * watermark or 1% of the zone, whichever is smaller.
2817 	 */
2818 	balance_gap = min(low_wmark_pages(zone),
2819 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2820 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2821 
2822 	/*
2823 	 * If there is no low memory pressure or the zone is balanced then no
2824 	 * reclaim is necessary
2825 	 */
2826 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2827 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2828 						balance_gap, classzone_idx))
2829 		return true;
2830 
2831 	shrink_zone(zone, sc);
2832 
2833 	reclaim_state->reclaimed_slab = 0;
2834 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2835 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2836 
2837 	/* Account for the number of pages attempted to reclaim */
2838 	*nr_attempted += sc->nr_to_reclaim;
2839 
2840 	zone_clear_flag(zone, ZONE_WRITEBACK);
2841 
2842 	/*
2843 	 * If a zone reaches its high watermark, consider it to be no longer
2844 	 * congested. It's possible there are dirty pages backed by congested
2845 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2846 	 * waits.
2847 	 */
2848 	if (zone_reclaimable(zone) &&
2849 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2850 		zone_clear_flag(zone, ZONE_CONGESTED);
2851 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2852 	}
2853 
2854 	return sc->nr_scanned >= sc->nr_to_reclaim;
2855 }
2856 
2857 /*
2858  * For kswapd, balance_pgdat() will work across all this node's zones until
2859  * they are all at high_wmark_pages(zone).
2860  *
2861  * Returns the final order kswapd was reclaiming at
2862  *
2863  * There is special handling here for zones which are full of pinned pages.
2864  * This can happen if the pages are all mlocked, or if they are all used by
2865  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2866  * What we do is to detect the case where all pages in the zone have been
2867  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2868  * dead and from now on, only perform a short scan.  Basically we're polling
2869  * the zone for when the problem goes away.
2870  *
2871  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2872  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2873  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2874  * lower zones regardless of the number of free pages in the lower zones. This
2875  * interoperates with the page allocator fallback scheme to ensure that aging
2876  * of pages is balanced across the zones.
2877  */
2878 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2879 							int *classzone_idx)
2880 {
2881 	int i;
2882 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2883 	unsigned long nr_soft_reclaimed;
2884 	unsigned long nr_soft_scanned;
2885 	struct scan_control sc = {
2886 		.gfp_mask = GFP_KERNEL,
2887 		.priority = DEF_PRIORITY,
2888 		.may_unmap = 1,
2889 		.may_swap = 1,
2890 		.may_writepage = !laptop_mode,
2891 		.order = order,
2892 		.target_mem_cgroup = NULL,
2893 	};
2894 	count_vm_event(PAGEOUTRUN);
2895 
2896 	do {
2897 		unsigned long lru_pages = 0;
2898 		unsigned long nr_attempted = 0;
2899 		bool raise_priority = true;
2900 		bool pgdat_needs_compaction = (order > 0);
2901 
2902 		sc.nr_reclaimed = 0;
2903 
2904 		/*
2905 		 * Scan in the highmem->dma direction for the highest
2906 		 * zone which needs scanning
2907 		 */
2908 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2909 			struct zone *zone = pgdat->node_zones + i;
2910 
2911 			if (!populated_zone(zone))
2912 				continue;
2913 
2914 			if (sc.priority != DEF_PRIORITY &&
2915 			    !zone_reclaimable(zone))
2916 				continue;
2917 
2918 			/*
2919 			 * Do some background aging of the anon list, to give
2920 			 * pages a chance to be referenced before reclaiming.
2921 			 */
2922 			age_active_anon(zone, &sc);
2923 
2924 			/*
2925 			 * If the number of buffer_heads in the machine
2926 			 * exceeds the maximum allowed level and this node
2927 			 * has a highmem zone, force kswapd to reclaim from
2928 			 * it to relieve lowmem pressure.
2929 			 */
2930 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2931 				end_zone = i;
2932 				break;
2933 			}
2934 
2935 			if (!zone_balanced(zone, order, 0, 0)) {
2936 				end_zone = i;
2937 				break;
2938 			} else {
2939 				/*
2940 				 * If balanced, clear the dirty and congested
2941 				 * flags
2942 				 */
2943 				zone_clear_flag(zone, ZONE_CONGESTED);
2944 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2945 			}
2946 		}
2947 
2948 		if (i < 0)
2949 			goto out;
2950 
2951 		for (i = 0; i <= end_zone; i++) {
2952 			struct zone *zone = pgdat->node_zones + i;
2953 
2954 			if (!populated_zone(zone))
2955 				continue;
2956 
2957 			lru_pages += zone_reclaimable_pages(zone);
2958 
2959 			/*
2960 			 * If any zone is currently balanced then kswapd will
2961 			 * not call compaction as it is expected that the
2962 			 * necessary pages are already available.
2963 			 */
2964 			if (pgdat_needs_compaction &&
2965 					zone_watermark_ok(zone, order,
2966 						low_wmark_pages(zone),
2967 						*classzone_idx, 0))
2968 				pgdat_needs_compaction = false;
2969 		}
2970 
2971 		/*
2972 		 * If we're getting trouble reclaiming, start doing writepage
2973 		 * even in laptop mode.
2974 		 */
2975 		if (sc.priority < DEF_PRIORITY - 2)
2976 			sc.may_writepage = 1;
2977 
2978 		/*
2979 		 * Now scan the zone in the dma->highmem direction, stopping
2980 		 * at the last zone which needs scanning.
2981 		 *
2982 		 * We do this because the page allocator works in the opposite
2983 		 * direction.  This prevents the page allocator from allocating
2984 		 * pages behind kswapd's direction of progress, which would
2985 		 * cause too much scanning of the lower zones.
2986 		 */
2987 		for (i = 0; i <= end_zone; i++) {
2988 			struct zone *zone = pgdat->node_zones + i;
2989 
2990 			if (!populated_zone(zone))
2991 				continue;
2992 
2993 			if (sc.priority != DEF_PRIORITY &&
2994 			    !zone_reclaimable(zone))
2995 				continue;
2996 
2997 			sc.nr_scanned = 0;
2998 
2999 			nr_soft_scanned = 0;
3000 			/*
3001 			 * Call soft limit reclaim before calling shrink_zone.
3002 			 */
3003 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3004 							order, sc.gfp_mask,
3005 							&nr_soft_scanned);
3006 			sc.nr_reclaimed += nr_soft_reclaimed;
3007 
3008 			/*
3009 			 * There should be no need to raise the scanning
3010 			 * priority if enough pages are already being scanned
3011 			 * that that high watermark would be met at 100%
3012 			 * efficiency.
3013 			 */
3014 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3015 					lru_pages, &nr_attempted))
3016 				raise_priority = false;
3017 		}
3018 
3019 		/*
3020 		 * If the low watermark is met there is no need for processes
3021 		 * to be throttled on pfmemalloc_wait as they should not be
3022 		 * able to safely make forward progress. Wake them
3023 		 */
3024 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3025 				pfmemalloc_watermark_ok(pgdat))
3026 			wake_up(&pgdat->pfmemalloc_wait);
3027 
3028 		/*
3029 		 * Fragmentation may mean that the system cannot be rebalanced
3030 		 * for high-order allocations in all zones. If twice the
3031 		 * allocation size has been reclaimed and the zones are still
3032 		 * not balanced then recheck the watermarks at order-0 to
3033 		 * prevent kswapd reclaiming excessively. Assume that a
3034 		 * process requested a high-order can direct reclaim/compact.
3035 		 */
3036 		if (order && sc.nr_reclaimed >= 2UL << order)
3037 			order = sc.order = 0;
3038 
3039 		/* Check if kswapd should be suspending */
3040 		if (try_to_freeze() || kthread_should_stop())
3041 			break;
3042 
3043 		/*
3044 		 * Compact if necessary and kswapd is reclaiming at least the
3045 		 * high watermark number of pages as requsted
3046 		 */
3047 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3048 			compact_pgdat(pgdat, order);
3049 
3050 		/*
3051 		 * Raise priority if scanning rate is too low or there was no
3052 		 * progress in reclaiming pages
3053 		 */
3054 		if (raise_priority || !sc.nr_reclaimed)
3055 			sc.priority--;
3056 	} while (sc.priority >= 1 &&
3057 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3058 
3059 out:
3060 	/*
3061 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3062 	 * makes a decision on the order we were last reclaiming at. However,
3063 	 * if another caller entered the allocator slow path while kswapd
3064 	 * was awake, order will remain at the higher level
3065 	 */
3066 	*classzone_idx = end_zone;
3067 	return order;
3068 }
3069 
3070 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3071 {
3072 	long remaining = 0;
3073 	DEFINE_WAIT(wait);
3074 
3075 	if (freezing(current) || kthread_should_stop())
3076 		return;
3077 
3078 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3079 
3080 	/* Try to sleep for a short interval */
3081 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3082 		remaining = schedule_timeout(HZ/10);
3083 		finish_wait(&pgdat->kswapd_wait, &wait);
3084 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3085 	}
3086 
3087 	/*
3088 	 * After a short sleep, check if it was a premature sleep. If not, then
3089 	 * go fully to sleep until explicitly woken up.
3090 	 */
3091 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3092 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3093 
3094 		/*
3095 		 * vmstat counters are not perfectly accurate and the estimated
3096 		 * value for counters such as NR_FREE_PAGES can deviate from the
3097 		 * true value by nr_online_cpus * threshold. To avoid the zone
3098 		 * watermarks being breached while under pressure, we reduce the
3099 		 * per-cpu vmstat threshold while kswapd is awake and restore
3100 		 * them before going back to sleep.
3101 		 */
3102 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3103 
3104 		/*
3105 		 * Compaction records what page blocks it recently failed to
3106 		 * isolate pages from and skips them in the future scanning.
3107 		 * When kswapd is going to sleep, it is reasonable to assume
3108 		 * that pages and compaction may succeed so reset the cache.
3109 		 */
3110 		reset_isolation_suitable(pgdat);
3111 
3112 		if (!kthread_should_stop())
3113 			schedule();
3114 
3115 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3116 	} else {
3117 		if (remaining)
3118 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3119 		else
3120 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3121 	}
3122 	finish_wait(&pgdat->kswapd_wait, &wait);
3123 }
3124 
3125 /*
3126  * The background pageout daemon, started as a kernel thread
3127  * from the init process.
3128  *
3129  * This basically trickles out pages so that we have _some_
3130  * free memory available even if there is no other activity
3131  * that frees anything up. This is needed for things like routing
3132  * etc, where we otherwise might have all activity going on in
3133  * asynchronous contexts that cannot page things out.
3134  *
3135  * If there are applications that are active memory-allocators
3136  * (most normal use), this basically shouldn't matter.
3137  */
3138 static int kswapd(void *p)
3139 {
3140 	unsigned long order, new_order;
3141 	unsigned balanced_order;
3142 	int classzone_idx, new_classzone_idx;
3143 	int balanced_classzone_idx;
3144 	pg_data_t *pgdat = (pg_data_t*)p;
3145 	struct task_struct *tsk = current;
3146 
3147 	struct reclaim_state reclaim_state = {
3148 		.reclaimed_slab = 0,
3149 	};
3150 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3151 
3152 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3153 
3154 	if (!cpumask_empty(cpumask))
3155 		set_cpus_allowed_ptr(tsk, cpumask);
3156 	current->reclaim_state = &reclaim_state;
3157 
3158 	/*
3159 	 * Tell the memory management that we're a "memory allocator",
3160 	 * and that if we need more memory we should get access to it
3161 	 * regardless (see "__alloc_pages()"). "kswapd" should
3162 	 * never get caught in the normal page freeing logic.
3163 	 *
3164 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3165 	 * you need a small amount of memory in order to be able to
3166 	 * page out something else, and this flag essentially protects
3167 	 * us from recursively trying to free more memory as we're
3168 	 * trying to free the first piece of memory in the first place).
3169 	 */
3170 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3171 	set_freezable();
3172 
3173 	order = new_order = 0;
3174 	balanced_order = 0;
3175 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3176 	balanced_classzone_idx = classzone_idx;
3177 	for ( ; ; ) {
3178 		bool ret;
3179 
3180 		/*
3181 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3182 		 * new request of a similar or harder type will succeed soon
3183 		 * so consider going to sleep on the basis we reclaimed at
3184 		 */
3185 		if (balanced_classzone_idx >= new_classzone_idx &&
3186 					balanced_order == new_order) {
3187 			new_order = pgdat->kswapd_max_order;
3188 			new_classzone_idx = pgdat->classzone_idx;
3189 			pgdat->kswapd_max_order =  0;
3190 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3191 		}
3192 
3193 		if (order < new_order || classzone_idx > new_classzone_idx) {
3194 			/*
3195 			 * Don't sleep if someone wants a larger 'order'
3196 			 * allocation or has tigher zone constraints
3197 			 */
3198 			order = new_order;
3199 			classzone_idx = new_classzone_idx;
3200 		} else {
3201 			kswapd_try_to_sleep(pgdat, balanced_order,
3202 						balanced_classzone_idx);
3203 			order = pgdat->kswapd_max_order;
3204 			classzone_idx = pgdat->classzone_idx;
3205 			new_order = order;
3206 			new_classzone_idx = classzone_idx;
3207 			pgdat->kswapd_max_order = 0;
3208 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3209 		}
3210 
3211 		ret = try_to_freeze();
3212 		if (kthread_should_stop())
3213 			break;
3214 
3215 		/*
3216 		 * We can speed up thawing tasks if we don't call balance_pgdat
3217 		 * after returning from the refrigerator
3218 		 */
3219 		if (!ret) {
3220 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3221 			balanced_classzone_idx = classzone_idx;
3222 			balanced_order = balance_pgdat(pgdat, order,
3223 						&balanced_classzone_idx);
3224 		}
3225 	}
3226 
3227 	current->reclaim_state = NULL;
3228 	return 0;
3229 }
3230 
3231 /*
3232  * A zone is low on free memory, so wake its kswapd task to service it.
3233  */
3234 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3235 {
3236 	pg_data_t *pgdat;
3237 
3238 	if (!populated_zone(zone))
3239 		return;
3240 
3241 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3242 		return;
3243 	pgdat = zone->zone_pgdat;
3244 	if (pgdat->kswapd_max_order < order) {
3245 		pgdat->kswapd_max_order = order;
3246 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3247 	}
3248 	if (!waitqueue_active(&pgdat->kswapd_wait))
3249 		return;
3250 	if (zone_balanced(zone, order, 0, 0))
3251 		return;
3252 
3253 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3254 	wake_up_interruptible(&pgdat->kswapd_wait);
3255 }
3256 
3257 /*
3258  * The reclaimable count would be mostly accurate.
3259  * The less reclaimable pages may be
3260  * - mlocked pages, which will be moved to unevictable list when encountered
3261  * - mapped pages, which may require several travels to be reclaimed
3262  * - dirty pages, which is not "instantly" reclaimable
3263  */
3264 unsigned long global_reclaimable_pages(void)
3265 {
3266 	int nr;
3267 
3268 	nr = global_page_state(NR_ACTIVE_FILE) +
3269 	     global_page_state(NR_INACTIVE_FILE);
3270 
3271 	if (get_nr_swap_pages() > 0)
3272 		nr += global_page_state(NR_ACTIVE_ANON) +
3273 		      global_page_state(NR_INACTIVE_ANON);
3274 
3275 	return nr;
3276 }
3277 
3278 #ifdef CONFIG_HIBERNATION
3279 /*
3280  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3281  * freed pages.
3282  *
3283  * Rather than trying to age LRUs the aim is to preserve the overall
3284  * LRU order by reclaiming preferentially
3285  * inactive > active > active referenced > active mapped
3286  */
3287 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3288 {
3289 	struct reclaim_state reclaim_state;
3290 	struct scan_control sc = {
3291 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3292 		.may_swap = 1,
3293 		.may_unmap = 1,
3294 		.may_writepage = 1,
3295 		.nr_to_reclaim = nr_to_reclaim,
3296 		.hibernation_mode = 1,
3297 		.order = 0,
3298 		.priority = DEF_PRIORITY,
3299 	};
3300 	struct shrink_control shrink = {
3301 		.gfp_mask = sc.gfp_mask,
3302 	};
3303 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3304 	struct task_struct *p = current;
3305 	unsigned long nr_reclaimed;
3306 
3307 	p->flags |= PF_MEMALLOC;
3308 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3309 	reclaim_state.reclaimed_slab = 0;
3310 	p->reclaim_state = &reclaim_state;
3311 
3312 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3313 
3314 	p->reclaim_state = NULL;
3315 	lockdep_clear_current_reclaim_state();
3316 	p->flags &= ~PF_MEMALLOC;
3317 
3318 	return nr_reclaimed;
3319 }
3320 #endif /* CONFIG_HIBERNATION */
3321 
3322 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3323    not required for correctness.  So if the last cpu in a node goes
3324    away, we get changed to run anywhere: as the first one comes back,
3325    restore their cpu bindings. */
3326 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3327 			void *hcpu)
3328 {
3329 	int nid;
3330 
3331 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3332 		for_each_node_state(nid, N_MEMORY) {
3333 			pg_data_t *pgdat = NODE_DATA(nid);
3334 			const struct cpumask *mask;
3335 
3336 			mask = cpumask_of_node(pgdat->node_id);
3337 
3338 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3339 				/* One of our CPUs online: restore mask */
3340 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3341 		}
3342 	}
3343 	return NOTIFY_OK;
3344 }
3345 
3346 /*
3347  * This kswapd start function will be called by init and node-hot-add.
3348  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3349  */
3350 int kswapd_run(int nid)
3351 {
3352 	pg_data_t *pgdat = NODE_DATA(nid);
3353 	int ret = 0;
3354 
3355 	if (pgdat->kswapd)
3356 		return 0;
3357 
3358 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3359 	if (IS_ERR(pgdat->kswapd)) {
3360 		/* failure at boot is fatal */
3361 		BUG_ON(system_state == SYSTEM_BOOTING);
3362 		pr_err("Failed to start kswapd on node %d\n", nid);
3363 		ret = PTR_ERR(pgdat->kswapd);
3364 		pgdat->kswapd = NULL;
3365 	}
3366 	return ret;
3367 }
3368 
3369 /*
3370  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3371  * hold lock_memory_hotplug().
3372  */
3373 void kswapd_stop(int nid)
3374 {
3375 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3376 
3377 	if (kswapd) {
3378 		kthread_stop(kswapd);
3379 		NODE_DATA(nid)->kswapd = NULL;
3380 	}
3381 }
3382 
3383 static int __init kswapd_init(void)
3384 {
3385 	int nid;
3386 
3387 	swap_setup();
3388 	for_each_node_state(nid, N_MEMORY)
3389  		kswapd_run(nid);
3390 	hotcpu_notifier(cpu_callback, 0);
3391 	return 0;
3392 }
3393 
3394 module_init(kswapd_init)
3395 
3396 #ifdef CONFIG_NUMA
3397 /*
3398  * Zone reclaim mode
3399  *
3400  * If non-zero call zone_reclaim when the number of free pages falls below
3401  * the watermarks.
3402  */
3403 int zone_reclaim_mode __read_mostly;
3404 
3405 #define RECLAIM_OFF 0
3406 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3407 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3408 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3409 
3410 /*
3411  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3412  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3413  * a zone.
3414  */
3415 #define ZONE_RECLAIM_PRIORITY 4
3416 
3417 /*
3418  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3419  * occur.
3420  */
3421 int sysctl_min_unmapped_ratio = 1;
3422 
3423 /*
3424  * If the number of slab pages in a zone grows beyond this percentage then
3425  * slab reclaim needs to occur.
3426  */
3427 int sysctl_min_slab_ratio = 5;
3428 
3429 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3430 {
3431 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3432 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3433 		zone_page_state(zone, NR_ACTIVE_FILE);
3434 
3435 	/*
3436 	 * It's possible for there to be more file mapped pages than
3437 	 * accounted for by the pages on the file LRU lists because
3438 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3439 	 */
3440 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3441 }
3442 
3443 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3444 static long zone_pagecache_reclaimable(struct zone *zone)
3445 {
3446 	long nr_pagecache_reclaimable;
3447 	long delta = 0;
3448 
3449 	/*
3450 	 * If RECLAIM_SWAP is set, then all file pages are considered
3451 	 * potentially reclaimable. Otherwise, we have to worry about
3452 	 * pages like swapcache and zone_unmapped_file_pages() provides
3453 	 * a better estimate
3454 	 */
3455 	if (zone_reclaim_mode & RECLAIM_SWAP)
3456 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3457 	else
3458 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3459 
3460 	/* If we can't clean pages, remove dirty pages from consideration */
3461 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3462 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3463 
3464 	/* Watch for any possible underflows due to delta */
3465 	if (unlikely(delta > nr_pagecache_reclaimable))
3466 		delta = nr_pagecache_reclaimable;
3467 
3468 	return nr_pagecache_reclaimable - delta;
3469 }
3470 
3471 /*
3472  * Try to free up some pages from this zone through reclaim.
3473  */
3474 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3475 {
3476 	/* Minimum pages needed in order to stay on node */
3477 	const unsigned long nr_pages = 1 << order;
3478 	struct task_struct *p = current;
3479 	struct reclaim_state reclaim_state;
3480 	struct scan_control sc = {
3481 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3482 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3483 		.may_swap = 1,
3484 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3485 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3486 		.order = order,
3487 		.priority = ZONE_RECLAIM_PRIORITY,
3488 	};
3489 	struct shrink_control shrink = {
3490 		.gfp_mask = sc.gfp_mask,
3491 	};
3492 	unsigned long nr_slab_pages0, nr_slab_pages1;
3493 
3494 	cond_resched();
3495 	/*
3496 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3497 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3498 	 * and RECLAIM_SWAP.
3499 	 */
3500 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3501 	lockdep_set_current_reclaim_state(gfp_mask);
3502 	reclaim_state.reclaimed_slab = 0;
3503 	p->reclaim_state = &reclaim_state;
3504 
3505 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3506 		/*
3507 		 * Free memory by calling shrink zone with increasing
3508 		 * priorities until we have enough memory freed.
3509 		 */
3510 		do {
3511 			shrink_zone(zone, &sc);
3512 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3513 	}
3514 
3515 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3516 	if (nr_slab_pages0 > zone->min_slab_pages) {
3517 		/*
3518 		 * shrink_slab() does not currently allow us to determine how
3519 		 * many pages were freed in this zone. So we take the current
3520 		 * number of slab pages and shake the slab until it is reduced
3521 		 * by the same nr_pages that we used for reclaiming unmapped
3522 		 * pages.
3523 		 *
3524 		 * Note that shrink_slab will free memory on all zones and may
3525 		 * take a long time.
3526 		 */
3527 		for (;;) {
3528 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3529 
3530 			/* No reclaimable slab or very low memory pressure */
3531 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3532 				break;
3533 
3534 			/* Freed enough memory */
3535 			nr_slab_pages1 = zone_page_state(zone,
3536 							NR_SLAB_RECLAIMABLE);
3537 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3538 				break;
3539 		}
3540 
3541 		/*
3542 		 * Update nr_reclaimed by the number of slab pages we
3543 		 * reclaimed from this zone.
3544 		 */
3545 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3546 		if (nr_slab_pages1 < nr_slab_pages0)
3547 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3548 	}
3549 
3550 	p->reclaim_state = NULL;
3551 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3552 	lockdep_clear_current_reclaim_state();
3553 	return sc.nr_reclaimed >= nr_pages;
3554 }
3555 
3556 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3557 {
3558 	int node_id;
3559 	int ret;
3560 
3561 	/*
3562 	 * Zone reclaim reclaims unmapped file backed pages and
3563 	 * slab pages if we are over the defined limits.
3564 	 *
3565 	 * A small portion of unmapped file backed pages is needed for
3566 	 * file I/O otherwise pages read by file I/O will be immediately
3567 	 * thrown out if the zone is overallocated. So we do not reclaim
3568 	 * if less than a specified percentage of the zone is used by
3569 	 * unmapped file backed pages.
3570 	 */
3571 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3572 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3573 		return ZONE_RECLAIM_FULL;
3574 
3575 	if (!zone_reclaimable(zone))
3576 		return ZONE_RECLAIM_FULL;
3577 
3578 	/*
3579 	 * Do not scan if the allocation should not be delayed.
3580 	 */
3581 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3582 		return ZONE_RECLAIM_NOSCAN;
3583 
3584 	/*
3585 	 * Only run zone reclaim on the local zone or on zones that do not
3586 	 * have associated processors. This will favor the local processor
3587 	 * over remote processors and spread off node memory allocations
3588 	 * as wide as possible.
3589 	 */
3590 	node_id = zone_to_nid(zone);
3591 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3592 		return ZONE_RECLAIM_NOSCAN;
3593 
3594 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3595 		return ZONE_RECLAIM_NOSCAN;
3596 
3597 	ret = __zone_reclaim(zone, gfp_mask, order);
3598 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3599 
3600 	if (!ret)
3601 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3602 
3603 	return ret;
3604 }
3605 #endif
3606 
3607 /*
3608  * page_evictable - test whether a page is evictable
3609  * @page: the page to test
3610  *
3611  * Test whether page is evictable--i.e., should be placed on active/inactive
3612  * lists vs unevictable list.
3613  *
3614  * Reasons page might not be evictable:
3615  * (1) page's mapping marked unevictable
3616  * (2) page is part of an mlocked VMA
3617  *
3618  */
3619 int page_evictable(struct page *page)
3620 {
3621 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3622 }
3623 
3624 #ifdef CONFIG_SHMEM
3625 /**
3626  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3627  * @pages:	array of pages to check
3628  * @nr_pages:	number of pages to check
3629  *
3630  * Checks pages for evictability and moves them to the appropriate lru list.
3631  *
3632  * This function is only used for SysV IPC SHM_UNLOCK.
3633  */
3634 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3635 {
3636 	struct lruvec *lruvec;
3637 	struct zone *zone = NULL;
3638 	int pgscanned = 0;
3639 	int pgrescued = 0;
3640 	int i;
3641 
3642 	for (i = 0; i < nr_pages; i++) {
3643 		struct page *page = pages[i];
3644 		struct zone *pagezone;
3645 
3646 		pgscanned++;
3647 		pagezone = page_zone(page);
3648 		if (pagezone != zone) {
3649 			if (zone)
3650 				spin_unlock_irq(&zone->lru_lock);
3651 			zone = pagezone;
3652 			spin_lock_irq(&zone->lru_lock);
3653 		}
3654 		lruvec = mem_cgroup_page_lruvec(page, zone);
3655 
3656 		if (!PageLRU(page) || !PageUnevictable(page))
3657 			continue;
3658 
3659 		if (page_evictable(page)) {
3660 			enum lru_list lru = page_lru_base_type(page);
3661 
3662 			VM_BUG_ON(PageActive(page));
3663 			ClearPageUnevictable(page);
3664 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3665 			add_page_to_lru_list(page, lruvec, lru);
3666 			pgrescued++;
3667 		}
3668 	}
3669 
3670 	if (zone) {
3671 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3672 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3673 		spin_unlock_irq(&zone->lru_lock);
3674 	}
3675 }
3676 #endif /* CONFIG_SHMEM */
3677 
3678 static void warn_scan_unevictable_pages(void)
3679 {
3680 	printk_once(KERN_WARNING
3681 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3682 		    "disabled for lack of a legitimate use case.  If you have "
3683 		    "one, please send an email to linux-mm@kvack.org.\n",
3684 		    current->comm);
3685 }
3686 
3687 /*
3688  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3689  * all nodes' unevictable lists for evictable pages
3690  */
3691 unsigned long scan_unevictable_pages;
3692 
3693 int scan_unevictable_handler(struct ctl_table *table, int write,
3694 			   void __user *buffer,
3695 			   size_t *length, loff_t *ppos)
3696 {
3697 	warn_scan_unevictable_pages();
3698 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3699 	scan_unevictable_pages = 0;
3700 	return 0;
3701 }
3702 
3703 #ifdef CONFIG_NUMA
3704 /*
3705  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3706  * a specified node's per zone unevictable lists for evictable pages.
3707  */
3708 
3709 static ssize_t read_scan_unevictable_node(struct device *dev,
3710 					  struct device_attribute *attr,
3711 					  char *buf)
3712 {
3713 	warn_scan_unevictable_pages();
3714 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3715 }
3716 
3717 static ssize_t write_scan_unevictable_node(struct device *dev,
3718 					   struct device_attribute *attr,
3719 					const char *buf, size_t count)
3720 {
3721 	warn_scan_unevictable_pages();
3722 	return 1;
3723 }
3724 
3725 
3726 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3727 			read_scan_unevictable_node,
3728 			write_scan_unevictable_node);
3729 
3730 int scan_unevictable_register_node(struct node *node)
3731 {
3732 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3733 }
3734 
3735 void scan_unevictable_unregister_node(struct node *node)
3736 {
3737 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3738 }
3739 #endif
3740