1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/vmscan.h> 56 57 struct scan_control { 58 /* Incremented by the number of inactive pages that were scanned */ 59 unsigned long nr_scanned; 60 61 /* Number of pages freed so far during a call to shrink_zones() */ 62 unsigned long nr_reclaimed; 63 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 unsigned long hibernation_mode; 68 69 /* This context's GFP mask */ 70 gfp_t gfp_mask; 71 72 int may_writepage; 73 74 /* Can mapped pages be reclaimed? */ 75 int may_unmap; 76 77 /* Can pages be swapped as part of reclaim? */ 78 int may_swap; 79 80 int order; 81 82 /* Scan (total_size >> priority) pages at once */ 83 int priority; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Nodemask of nodes allowed by the caller. If NULL, all nodes 93 * are scanned. 94 */ 95 nodemask_t *nodemask; 96 }; 97 98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 99 100 #ifdef ARCH_HAS_PREFETCH 101 #define prefetch_prev_lru_page(_page, _base, _field) \ 102 do { \ 103 if ((_page)->lru.prev != _base) { \ 104 struct page *prev; \ 105 \ 106 prev = lru_to_page(&(_page->lru)); \ 107 prefetch(&prev->_field); \ 108 } \ 109 } while (0) 110 #else 111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 112 #endif 113 114 #ifdef ARCH_HAS_PREFETCHW 115 #define prefetchw_prev_lru_page(_page, _base, _field) \ 116 do { \ 117 if ((_page)->lru.prev != _base) { \ 118 struct page *prev; \ 119 \ 120 prev = lru_to_page(&(_page->lru)); \ 121 prefetchw(&prev->_field); \ 122 } \ 123 } while (0) 124 #else 125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 126 #endif 127 128 /* 129 * From 0 .. 100. Higher means more swappy. 130 */ 131 int vm_swappiness = 60; 132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 133 134 static LIST_HEAD(shrinker_list); 135 static DECLARE_RWSEM(shrinker_rwsem); 136 137 #ifdef CONFIG_MEMCG 138 static bool global_reclaim(struct scan_control *sc) 139 { 140 return !sc->target_mem_cgroup; 141 } 142 #else 143 static bool global_reclaim(struct scan_control *sc) 144 { 145 return true; 146 } 147 #endif 148 149 unsigned long zone_reclaimable_pages(struct zone *zone) 150 { 151 int nr; 152 153 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 154 zone_page_state(zone, NR_INACTIVE_FILE); 155 156 if (get_nr_swap_pages() > 0) 157 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 158 zone_page_state(zone, NR_INACTIVE_ANON); 159 160 return nr; 161 } 162 163 bool zone_reclaimable(struct zone *zone) 164 { 165 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 166 } 167 168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 169 { 170 if (!mem_cgroup_disabled()) 171 return mem_cgroup_get_lru_size(lruvec, lru); 172 173 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 174 } 175 176 /* 177 * Add a shrinker callback to be called from the vm 178 */ 179 void register_shrinker(struct shrinker *shrinker) 180 { 181 atomic_long_set(&shrinker->nr_in_batch, 0); 182 down_write(&shrinker_rwsem); 183 list_add_tail(&shrinker->list, &shrinker_list); 184 up_write(&shrinker_rwsem); 185 } 186 EXPORT_SYMBOL(register_shrinker); 187 188 /* 189 * Remove one 190 */ 191 void unregister_shrinker(struct shrinker *shrinker) 192 { 193 down_write(&shrinker_rwsem); 194 list_del(&shrinker->list); 195 up_write(&shrinker_rwsem); 196 } 197 EXPORT_SYMBOL(unregister_shrinker); 198 199 static inline int do_shrinker_shrink(struct shrinker *shrinker, 200 struct shrink_control *sc, 201 unsigned long nr_to_scan) 202 { 203 sc->nr_to_scan = nr_to_scan; 204 return (*shrinker->shrink)(shrinker, sc); 205 } 206 207 #define SHRINK_BATCH 128 208 /* 209 * Call the shrink functions to age shrinkable caches 210 * 211 * Here we assume it costs one seek to replace a lru page and that it also 212 * takes a seek to recreate a cache object. With this in mind we age equal 213 * percentages of the lru and ageable caches. This should balance the seeks 214 * generated by these structures. 215 * 216 * If the vm encountered mapped pages on the LRU it increase the pressure on 217 * slab to avoid swapping. 218 * 219 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 220 * 221 * `lru_pages' represents the number of on-LRU pages in all the zones which 222 * are eligible for the caller's allocation attempt. It is used for balancing 223 * slab reclaim versus page reclaim. 224 * 225 * Returns the number of slab objects which we shrunk. 226 */ 227 unsigned long shrink_slab(struct shrink_control *shrink, 228 unsigned long nr_pages_scanned, 229 unsigned long lru_pages) 230 { 231 struct shrinker *shrinker; 232 unsigned long ret = 0; 233 234 if (nr_pages_scanned == 0) 235 nr_pages_scanned = SWAP_CLUSTER_MAX; 236 237 if (!down_read_trylock(&shrinker_rwsem)) { 238 /* Assume we'll be able to shrink next time */ 239 ret = 1; 240 goto out; 241 } 242 243 list_for_each_entry(shrinker, &shrinker_list, list) { 244 unsigned long long delta; 245 long total_scan; 246 long max_pass; 247 int shrink_ret = 0; 248 long nr; 249 long new_nr; 250 long batch_size = shrinker->batch ? shrinker->batch 251 : SHRINK_BATCH; 252 253 max_pass = do_shrinker_shrink(shrinker, shrink, 0); 254 if (max_pass <= 0) 255 continue; 256 257 /* 258 * copy the current shrinker scan count into a local variable 259 * and zero it so that other concurrent shrinker invocations 260 * don't also do this scanning work. 261 */ 262 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); 263 264 total_scan = nr; 265 delta = (4 * nr_pages_scanned) / shrinker->seeks; 266 delta *= max_pass; 267 do_div(delta, lru_pages + 1); 268 total_scan += delta; 269 if (total_scan < 0) { 270 printk(KERN_ERR "shrink_slab: %pF negative objects to " 271 "delete nr=%ld\n", 272 shrinker->shrink, total_scan); 273 total_scan = max_pass; 274 } 275 276 /* 277 * We need to avoid excessive windup on filesystem shrinkers 278 * due to large numbers of GFP_NOFS allocations causing the 279 * shrinkers to return -1 all the time. This results in a large 280 * nr being built up so when a shrink that can do some work 281 * comes along it empties the entire cache due to nr >>> 282 * max_pass. This is bad for sustaining a working set in 283 * memory. 284 * 285 * Hence only allow the shrinker to scan the entire cache when 286 * a large delta change is calculated directly. 287 */ 288 if (delta < max_pass / 4) 289 total_scan = min(total_scan, max_pass / 2); 290 291 /* 292 * Avoid risking looping forever due to too large nr value: 293 * never try to free more than twice the estimate number of 294 * freeable entries. 295 */ 296 if (total_scan > max_pass * 2) 297 total_scan = max_pass * 2; 298 299 trace_mm_shrink_slab_start(shrinker, shrink, nr, 300 nr_pages_scanned, lru_pages, 301 max_pass, delta, total_scan); 302 303 while (total_scan >= batch_size) { 304 int nr_before; 305 306 nr_before = do_shrinker_shrink(shrinker, shrink, 0); 307 shrink_ret = do_shrinker_shrink(shrinker, shrink, 308 batch_size); 309 if (shrink_ret == -1) 310 break; 311 if (shrink_ret < nr_before) 312 ret += nr_before - shrink_ret; 313 count_vm_events(SLABS_SCANNED, batch_size); 314 total_scan -= batch_size; 315 316 cond_resched(); 317 } 318 319 /* 320 * move the unused scan count back into the shrinker in a 321 * manner that handles concurrent updates. If we exhausted the 322 * scan, there is no need to do an update. 323 */ 324 if (total_scan > 0) 325 new_nr = atomic_long_add_return(total_scan, 326 &shrinker->nr_in_batch); 327 else 328 new_nr = atomic_long_read(&shrinker->nr_in_batch); 329 330 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); 331 } 332 up_read(&shrinker_rwsem); 333 out: 334 cond_resched(); 335 return ret; 336 } 337 338 static inline int is_page_cache_freeable(struct page *page) 339 { 340 /* 341 * A freeable page cache page is referenced only by the caller 342 * that isolated the page, the page cache radix tree and 343 * optional buffer heads at page->private. 344 */ 345 return page_count(page) - page_has_private(page) == 2; 346 } 347 348 static int may_write_to_queue(struct backing_dev_info *bdi, 349 struct scan_control *sc) 350 { 351 if (current->flags & PF_SWAPWRITE) 352 return 1; 353 if (!bdi_write_congested(bdi)) 354 return 1; 355 if (bdi == current->backing_dev_info) 356 return 1; 357 return 0; 358 } 359 360 /* 361 * We detected a synchronous write error writing a page out. Probably 362 * -ENOSPC. We need to propagate that into the address_space for a subsequent 363 * fsync(), msync() or close(). 364 * 365 * The tricky part is that after writepage we cannot touch the mapping: nothing 366 * prevents it from being freed up. But we have a ref on the page and once 367 * that page is locked, the mapping is pinned. 368 * 369 * We're allowed to run sleeping lock_page() here because we know the caller has 370 * __GFP_FS. 371 */ 372 static void handle_write_error(struct address_space *mapping, 373 struct page *page, int error) 374 { 375 lock_page(page); 376 if (page_mapping(page) == mapping) 377 mapping_set_error(mapping, error); 378 unlock_page(page); 379 } 380 381 /* possible outcome of pageout() */ 382 typedef enum { 383 /* failed to write page out, page is locked */ 384 PAGE_KEEP, 385 /* move page to the active list, page is locked */ 386 PAGE_ACTIVATE, 387 /* page has been sent to the disk successfully, page is unlocked */ 388 PAGE_SUCCESS, 389 /* page is clean and locked */ 390 PAGE_CLEAN, 391 } pageout_t; 392 393 /* 394 * pageout is called by shrink_page_list() for each dirty page. 395 * Calls ->writepage(). 396 */ 397 static pageout_t pageout(struct page *page, struct address_space *mapping, 398 struct scan_control *sc) 399 { 400 /* 401 * If the page is dirty, only perform writeback if that write 402 * will be non-blocking. To prevent this allocation from being 403 * stalled by pagecache activity. But note that there may be 404 * stalls if we need to run get_block(). We could test 405 * PagePrivate for that. 406 * 407 * If this process is currently in __generic_file_aio_write() against 408 * this page's queue, we can perform writeback even if that 409 * will block. 410 * 411 * If the page is swapcache, write it back even if that would 412 * block, for some throttling. This happens by accident, because 413 * swap_backing_dev_info is bust: it doesn't reflect the 414 * congestion state of the swapdevs. Easy to fix, if needed. 415 */ 416 if (!is_page_cache_freeable(page)) 417 return PAGE_KEEP; 418 if (!mapping) { 419 /* 420 * Some data journaling orphaned pages can have 421 * page->mapping == NULL while being dirty with clean buffers. 422 */ 423 if (page_has_private(page)) { 424 if (try_to_free_buffers(page)) { 425 ClearPageDirty(page); 426 printk("%s: orphaned page\n", __func__); 427 return PAGE_CLEAN; 428 } 429 } 430 return PAGE_KEEP; 431 } 432 if (mapping->a_ops->writepage == NULL) 433 return PAGE_ACTIVATE; 434 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 435 return PAGE_KEEP; 436 437 if (clear_page_dirty_for_io(page)) { 438 int res; 439 struct writeback_control wbc = { 440 .sync_mode = WB_SYNC_NONE, 441 .nr_to_write = SWAP_CLUSTER_MAX, 442 .range_start = 0, 443 .range_end = LLONG_MAX, 444 .for_reclaim = 1, 445 }; 446 447 SetPageReclaim(page); 448 res = mapping->a_ops->writepage(page, &wbc); 449 if (res < 0) 450 handle_write_error(mapping, page, res); 451 if (res == AOP_WRITEPAGE_ACTIVATE) { 452 ClearPageReclaim(page); 453 return PAGE_ACTIVATE; 454 } 455 456 if (!PageWriteback(page)) { 457 /* synchronous write or broken a_ops? */ 458 ClearPageReclaim(page); 459 } 460 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 461 inc_zone_page_state(page, NR_VMSCAN_WRITE); 462 return PAGE_SUCCESS; 463 } 464 465 return PAGE_CLEAN; 466 } 467 468 /* 469 * Same as remove_mapping, but if the page is removed from the mapping, it 470 * gets returned with a refcount of 0. 471 */ 472 static int __remove_mapping(struct address_space *mapping, struct page *page) 473 { 474 BUG_ON(!PageLocked(page)); 475 BUG_ON(mapping != page_mapping(page)); 476 477 spin_lock_irq(&mapping->tree_lock); 478 /* 479 * The non racy check for a busy page. 480 * 481 * Must be careful with the order of the tests. When someone has 482 * a ref to the page, it may be possible that they dirty it then 483 * drop the reference. So if PageDirty is tested before page_count 484 * here, then the following race may occur: 485 * 486 * get_user_pages(&page); 487 * [user mapping goes away] 488 * write_to(page); 489 * !PageDirty(page) [good] 490 * SetPageDirty(page); 491 * put_page(page); 492 * !page_count(page) [good, discard it] 493 * 494 * [oops, our write_to data is lost] 495 * 496 * Reversing the order of the tests ensures such a situation cannot 497 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 498 * load is not satisfied before that of page->_count. 499 * 500 * Note that if SetPageDirty is always performed via set_page_dirty, 501 * and thus under tree_lock, then this ordering is not required. 502 */ 503 if (!page_freeze_refs(page, 2)) 504 goto cannot_free; 505 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 506 if (unlikely(PageDirty(page))) { 507 page_unfreeze_refs(page, 2); 508 goto cannot_free; 509 } 510 511 if (PageSwapCache(page)) { 512 swp_entry_t swap = { .val = page_private(page) }; 513 __delete_from_swap_cache(page); 514 spin_unlock_irq(&mapping->tree_lock); 515 swapcache_free(swap, page); 516 } else { 517 void (*freepage)(struct page *); 518 519 freepage = mapping->a_ops->freepage; 520 521 __delete_from_page_cache(page); 522 spin_unlock_irq(&mapping->tree_lock); 523 mem_cgroup_uncharge_cache_page(page); 524 525 if (freepage != NULL) 526 freepage(page); 527 } 528 529 return 1; 530 531 cannot_free: 532 spin_unlock_irq(&mapping->tree_lock); 533 return 0; 534 } 535 536 /* 537 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 538 * someone else has a ref on the page, abort and return 0. If it was 539 * successfully detached, return 1. Assumes the caller has a single ref on 540 * this page. 541 */ 542 int remove_mapping(struct address_space *mapping, struct page *page) 543 { 544 if (__remove_mapping(mapping, page)) { 545 /* 546 * Unfreezing the refcount with 1 rather than 2 effectively 547 * drops the pagecache ref for us without requiring another 548 * atomic operation. 549 */ 550 page_unfreeze_refs(page, 1); 551 return 1; 552 } 553 return 0; 554 } 555 556 /** 557 * putback_lru_page - put previously isolated page onto appropriate LRU list 558 * @page: page to be put back to appropriate lru list 559 * 560 * Add previously isolated @page to appropriate LRU list. 561 * Page may still be unevictable for other reasons. 562 * 563 * lru_lock must not be held, interrupts must be enabled. 564 */ 565 void putback_lru_page(struct page *page) 566 { 567 bool is_unevictable; 568 int was_unevictable = PageUnevictable(page); 569 570 VM_BUG_ON(PageLRU(page)); 571 572 redo: 573 ClearPageUnevictable(page); 574 575 if (page_evictable(page)) { 576 /* 577 * For evictable pages, we can use the cache. 578 * In event of a race, worst case is we end up with an 579 * unevictable page on [in]active list. 580 * We know how to handle that. 581 */ 582 is_unevictable = false; 583 lru_cache_add(page); 584 } else { 585 /* 586 * Put unevictable pages directly on zone's unevictable 587 * list. 588 */ 589 is_unevictable = true; 590 add_page_to_unevictable_list(page); 591 /* 592 * When racing with an mlock or AS_UNEVICTABLE clearing 593 * (page is unlocked) make sure that if the other thread 594 * does not observe our setting of PG_lru and fails 595 * isolation/check_move_unevictable_pages, 596 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 597 * the page back to the evictable list. 598 * 599 * The other side is TestClearPageMlocked() or shmem_lock(). 600 */ 601 smp_mb(); 602 } 603 604 /* 605 * page's status can change while we move it among lru. If an evictable 606 * page is on unevictable list, it never be freed. To avoid that, 607 * check after we added it to the list, again. 608 */ 609 if (is_unevictable && page_evictable(page)) { 610 if (!isolate_lru_page(page)) { 611 put_page(page); 612 goto redo; 613 } 614 /* This means someone else dropped this page from LRU 615 * So, it will be freed or putback to LRU again. There is 616 * nothing to do here. 617 */ 618 } 619 620 if (was_unevictable && !is_unevictable) 621 count_vm_event(UNEVICTABLE_PGRESCUED); 622 else if (!was_unevictable && is_unevictable) 623 count_vm_event(UNEVICTABLE_PGCULLED); 624 625 put_page(page); /* drop ref from isolate */ 626 } 627 628 enum page_references { 629 PAGEREF_RECLAIM, 630 PAGEREF_RECLAIM_CLEAN, 631 PAGEREF_KEEP, 632 PAGEREF_ACTIVATE, 633 }; 634 635 static enum page_references page_check_references(struct page *page, 636 struct scan_control *sc) 637 { 638 int referenced_ptes, referenced_page; 639 unsigned long vm_flags; 640 641 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 642 &vm_flags); 643 referenced_page = TestClearPageReferenced(page); 644 645 /* 646 * Mlock lost the isolation race with us. Let try_to_unmap() 647 * move the page to the unevictable list. 648 */ 649 if (vm_flags & VM_LOCKED) 650 return PAGEREF_RECLAIM; 651 652 if (referenced_ptes) { 653 if (PageSwapBacked(page)) 654 return PAGEREF_ACTIVATE; 655 /* 656 * All mapped pages start out with page table 657 * references from the instantiating fault, so we need 658 * to look twice if a mapped file page is used more 659 * than once. 660 * 661 * Mark it and spare it for another trip around the 662 * inactive list. Another page table reference will 663 * lead to its activation. 664 * 665 * Note: the mark is set for activated pages as well 666 * so that recently deactivated but used pages are 667 * quickly recovered. 668 */ 669 SetPageReferenced(page); 670 671 if (referenced_page || referenced_ptes > 1) 672 return PAGEREF_ACTIVATE; 673 674 /* 675 * Activate file-backed executable pages after first usage. 676 */ 677 if (vm_flags & VM_EXEC) 678 return PAGEREF_ACTIVATE; 679 680 return PAGEREF_KEEP; 681 } 682 683 /* Reclaim if clean, defer dirty pages to writeback */ 684 if (referenced_page && !PageSwapBacked(page)) 685 return PAGEREF_RECLAIM_CLEAN; 686 687 return PAGEREF_RECLAIM; 688 } 689 690 /* Check if a page is dirty or under writeback */ 691 static void page_check_dirty_writeback(struct page *page, 692 bool *dirty, bool *writeback) 693 { 694 struct address_space *mapping; 695 696 /* 697 * Anonymous pages are not handled by flushers and must be written 698 * from reclaim context. Do not stall reclaim based on them 699 */ 700 if (!page_is_file_cache(page)) { 701 *dirty = false; 702 *writeback = false; 703 return; 704 } 705 706 /* By default assume that the page flags are accurate */ 707 *dirty = PageDirty(page); 708 *writeback = PageWriteback(page); 709 710 /* Verify dirty/writeback state if the filesystem supports it */ 711 if (!page_has_private(page)) 712 return; 713 714 mapping = page_mapping(page); 715 if (mapping && mapping->a_ops->is_dirty_writeback) 716 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 717 } 718 719 /* 720 * shrink_page_list() returns the number of reclaimed pages 721 */ 722 static unsigned long shrink_page_list(struct list_head *page_list, 723 struct zone *zone, 724 struct scan_control *sc, 725 enum ttu_flags ttu_flags, 726 unsigned long *ret_nr_dirty, 727 unsigned long *ret_nr_unqueued_dirty, 728 unsigned long *ret_nr_congested, 729 unsigned long *ret_nr_writeback, 730 unsigned long *ret_nr_immediate, 731 bool force_reclaim) 732 { 733 LIST_HEAD(ret_pages); 734 LIST_HEAD(free_pages); 735 int pgactivate = 0; 736 unsigned long nr_unqueued_dirty = 0; 737 unsigned long nr_dirty = 0; 738 unsigned long nr_congested = 0; 739 unsigned long nr_reclaimed = 0; 740 unsigned long nr_writeback = 0; 741 unsigned long nr_immediate = 0; 742 743 cond_resched(); 744 745 mem_cgroup_uncharge_start(); 746 while (!list_empty(page_list)) { 747 struct address_space *mapping; 748 struct page *page; 749 int may_enter_fs; 750 enum page_references references = PAGEREF_RECLAIM_CLEAN; 751 bool dirty, writeback; 752 753 cond_resched(); 754 755 page = lru_to_page(page_list); 756 list_del(&page->lru); 757 758 if (!trylock_page(page)) 759 goto keep; 760 761 VM_BUG_ON(PageActive(page)); 762 VM_BUG_ON(page_zone(page) != zone); 763 764 sc->nr_scanned++; 765 766 if (unlikely(!page_evictable(page))) 767 goto cull_mlocked; 768 769 if (!sc->may_unmap && page_mapped(page)) 770 goto keep_locked; 771 772 /* Double the slab pressure for mapped and swapcache pages */ 773 if (page_mapped(page) || PageSwapCache(page)) 774 sc->nr_scanned++; 775 776 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 777 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 778 779 /* 780 * The number of dirty pages determines if a zone is marked 781 * reclaim_congested which affects wait_iff_congested. kswapd 782 * will stall and start writing pages if the tail of the LRU 783 * is all dirty unqueued pages. 784 */ 785 page_check_dirty_writeback(page, &dirty, &writeback); 786 if (dirty || writeback) 787 nr_dirty++; 788 789 if (dirty && !writeback) 790 nr_unqueued_dirty++; 791 792 /* 793 * Treat this page as congested if the underlying BDI is or if 794 * pages are cycling through the LRU so quickly that the 795 * pages marked for immediate reclaim are making it to the 796 * end of the LRU a second time. 797 */ 798 mapping = page_mapping(page); 799 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 800 (writeback && PageReclaim(page))) 801 nr_congested++; 802 803 /* 804 * If a page at the tail of the LRU is under writeback, there 805 * are three cases to consider. 806 * 807 * 1) If reclaim is encountering an excessive number of pages 808 * under writeback and this page is both under writeback and 809 * PageReclaim then it indicates that pages are being queued 810 * for IO but are being recycled through the LRU before the 811 * IO can complete. Waiting on the page itself risks an 812 * indefinite stall if it is impossible to writeback the 813 * page due to IO error or disconnected storage so instead 814 * note that the LRU is being scanned too quickly and the 815 * caller can stall after page list has been processed. 816 * 817 * 2) Global reclaim encounters a page, memcg encounters a 818 * page that is not marked for immediate reclaim or 819 * the caller does not have __GFP_IO. In this case mark 820 * the page for immediate reclaim and continue scanning. 821 * 822 * __GFP_IO is checked because a loop driver thread might 823 * enter reclaim, and deadlock if it waits on a page for 824 * which it is needed to do the write (loop masks off 825 * __GFP_IO|__GFP_FS for this reason); but more thought 826 * would probably show more reasons. 827 * 828 * Don't require __GFP_FS, since we're not going into the 829 * FS, just waiting on its writeback completion. Worryingly, 830 * ext4 gfs2 and xfs allocate pages with 831 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 832 * may_enter_fs here is liable to OOM on them. 833 * 834 * 3) memcg encounters a page that is not already marked 835 * PageReclaim. memcg does not have any dirty pages 836 * throttling so we could easily OOM just because too many 837 * pages are in writeback and there is nothing else to 838 * reclaim. Wait for the writeback to complete. 839 */ 840 if (PageWriteback(page)) { 841 /* Case 1 above */ 842 if (current_is_kswapd() && 843 PageReclaim(page) && 844 zone_is_reclaim_writeback(zone)) { 845 nr_immediate++; 846 goto keep_locked; 847 848 /* Case 2 above */ 849 } else if (global_reclaim(sc) || 850 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 851 /* 852 * This is slightly racy - end_page_writeback() 853 * might have just cleared PageReclaim, then 854 * setting PageReclaim here end up interpreted 855 * as PageReadahead - but that does not matter 856 * enough to care. What we do want is for this 857 * page to have PageReclaim set next time memcg 858 * reclaim reaches the tests above, so it will 859 * then wait_on_page_writeback() to avoid OOM; 860 * and it's also appropriate in global reclaim. 861 */ 862 SetPageReclaim(page); 863 nr_writeback++; 864 865 goto keep_locked; 866 867 /* Case 3 above */ 868 } else { 869 wait_on_page_writeback(page); 870 } 871 } 872 873 if (!force_reclaim) 874 references = page_check_references(page, sc); 875 876 switch (references) { 877 case PAGEREF_ACTIVATE: 878 goto activate_locked; 879 case PAGEREF_KEEP: 880 goto keep_locked; 881 case PAGEREF_RECLAIM: 882 case PAGEREF_RECLAIM_CLEAN: 883 ; /* try to reclaim the page below */ 884 } 885 886 /* 887 * Anonymous process memory has backing store? 888 * Try to allocate it some swap space here. 889 */ 890 if (PageAnon(page) && !PageSwapCache(page)) { 891 if (!(sc->gfp_mask & __GFP_IO)) 892 goto keep_locked; 893 if (!add_to_swap(page, page_list)) 894 goto activate_locked; 895 may_enter_fs = 1; 896 897 /* Adding to swap updated mapping */ 898 mapping = page_mapping(page); 899 } 900 901 /* 902 * The page is mapped into the page tables of one or more 903 * processes. Try to unmap it here. 904 */ 905 if (page_mapped(page) && mapping) { 906 switch (try_to_unmap(page, ttu_flags)) { 907 case SWAP_FAIL: 908 goto activate_locked; 909 case SWAP_AGAIN: 910 goto keep_locked; 911 case SWAP_MLOCK: 912 goto cull_mlocked; 913 case SWAP_SUCCESS: 914 ; /* try to free the page below */ 915 } 916 } 917 918 if (PageDirty(page)) { 919 /* 920 * Only kswapd can writeback filesystem pages to 921 * avoid risk of stack overflow but only writeback 922 * if many dirty pages have been encountered. 923 */ 924 if (page_is_file_cache(page) && 925 (!current_is_kswapd() || 926 !zone_is_reclaim_dirty(zone))) { 927 /* 928 * Immediately reclaim when written back. 929 * Similar in principal to deactivate_page() 930 * except we already have the page isolated 931 * and know it's dirty 932 */ 933 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 934 SetPageReclaim(page); 935 936 goto keep_locked; 937 } 938 939 if (references == PAGEREF_RECLAIM_CLEAN) 940 goto keep_locked; 941 if (!may_enter_fs) 942 goto keep_locked; 943 if (!sc->may_writepage) 944 goto keep_locked; 945 946 /* Page is dirty, try to write it out here */ 947 switch (pageout(page, mapping, sc)) { 948 case PAGE_KEEP: 949 goto keep_locked; 950 case PAGE_ACTIVATE: 951 goto activate_locked; 952 case PAGE_SUCCESS: 953 if (PageWriteback(page)) 954 goto keep; 955 if (PageDirty(page)) 956 goto keep; 957 958 /* 959 * A synchronous write - probably a ramdisk. Go 960 * ahead and try to reclaim the page. 961 */ 962 if (!trylock_page(page)) 963 goto keep; 964 if (PageDirty(page) || PageWriteback(page)) 965 goto keep_locked; 966 mapping = page_mapping(page); 967 case PAGE_CLEAN: 968 ; /* try to free the page below */ 969 } 970 } 971 972 /* 973 * If the page has buffers, try to free the buffer mappings 974 * associated with this page. If we succeed we try to free 975 * the page as well. 976 * 977 * We do this even if the page is PageDirty(). 978 * try_to_release_page() does not perform I/O, but it is 979 * possible for a page to have PageDirty set, but it is actually 980 * clean (all its buffers are clean). This happens if the 981 * buffers were written out directly, with submit_bh(). ext3 982 * will do this, as well as the blockdev mapping. 983 * try_to_release_page() will discover that cleanness and will 984 * drop the buffers and mark the page clean - it can be freed. 985 * 986 * Rarely, pages can have buffers and no ->mapping. These are 987 * the pages which were not successfully invalidated in 988 * truncate_complete_page(). We try to drop those buffers here 989 * and if that worked, and the page is no longer mapped into 990 * process address space (page_count == 1) it can be freed. 991 * Otherwise, leave the page on the LRU so it is swappable. 992 */ 993 if (page_has_private(page)) { 994 if (!try_to_release_page(page, sc->gfp_mask)) 995 goto activate_locked; 996 if (!mapping && page_count(page) == 1) { 997 unlock_page(page); 998 if (put_page_testzero(page)) 999 goto free_it; 1000 else { 1001 /* 1002 * rare race with speculative reference. 1003 * the speculative reference will free 1004 * this page shortly, so we may 1005 * increment nr_reclaimed here (and 1006 * leave it off the LRU). 1007 */ 1008 nr_reclaimed++; 1009 continue; 1010 } 1011 } 1012 } 1013 1014 if (!mapping || !__remove_mapping(mapping, page)) 1015 goto keep_locked; 1016 1017 /* 1018 * At this point, we have no other references and there is 1019 * no way to pick any more up (removed from LRU, removed 1020 * from pagecache). Can use non-atomic bitops now (and 1021 * we obviously don't have to worry about waking up a process 1022 * waiting on the page lock, because there are no references. 1023 */ 1024 __clear_page_locked(page); 1025 free_it: 1026 nr_reclaimed++; 1027 1028 /* 1029 * Is there need to periodically free_page_list? It would 1030 * appear not as the counts should be low 1031 */ 1032 list_add(&page->lru, &free_pages); 1033 continue; 1034 1035 cull_mlocked: 1036 if (PageSwapCache(page)) 1037 try_to_free_swap(page); 1038 unlock_page(page); 1039 putback_lru_page(page); 1040 continue; 1041 1042 activate_locked: 1043 /* Not a candidate for swapping, so reclaim swap space. */ 1044 if (PageSwapCache(page) && vm_swap_full()) 1045 try_to_free_swap(page); 1046 VM_BUG_ON(PageActive(page)); 1047 SetPageActive(page); 1048 pgactivate++; 1049 keep_locked: 1050 unlock_page(page); 1051 keep: 1052 list_add(&page->lru, &ret_pages); 1053 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 1054 } 1055 1056 free_hot_cold_page_list(&free_pages, 1); 1057 1058 list_splice(&ret_pages, page_list); 1059 count_vm_events(PGACTIVATE, pgactivate); 1060 mem_cgroup_uncharge_end(); 1061 *ret_nr_dirty += nr_dirty; 1062 *ret_nr_congested += nr_congested; 1063 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1064 *ret_nr_writeback += nr_writeback; 1065 *ret_nr_immediate += nr_immediate; 1066 return nr_reclaimed; 1067 } 1068 1069 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1070 struct list_head *page_list) 1071 { 1072 struct scan_control sc = { 1073 .gfp_mask = GFP_KERNEL, 1074 .priority = DEF_PRIORITY, 1075 .may_unmap = 1, 1076 }; 1077 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1078 struct page *page, *next; 1079 LIST_HEAD(clean_pages); 1080 1081 list_for_each_entry_safe(page, next, page_list, lru) { 1082 if (page_is_file_cache(page) && !PageDirty(page)) { 1083 ClearPageActive(page); 1084 list_move(&page->lru, &clean_pages); 1085 } 1086 } 1087 1088 ret = shrink_page_list(&clean_pages, zone, &sc, 1089 TTU_UNMAP|TTU_IGNORE_ACCESS, 1090 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1091 list_splice(&clean_pages, page_list); 1092 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1093 return ret; 1094 } 1095 1096 /* 1097 * Attempt to remove the specified page from its LRU. Only take this page 1098 * if it is of the appropriate PageActive status. Pages which are being 1099 * freed elsewhere are also ignored. 1100 * 1101 * page: page to consider 1102 * mode: one of the LRU isolation modes defined above 1103 * 1104 * returns 0 on success, -ve errno on failure. 1105 */ 1106 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1107 { 1108 int ret = -EINVAL; 1109 1110 /* Only take pages on the LRU. */ 1111 if (!PageLRU(page)) 1112 return ret; 1113 1114 /* Compaction should not handle unevictable pages but CMA can do so */ 1115 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1116 return ret; 1117 1118 ret = -EBUSY; 1119 1120 /* 1121 * To minimise LRU disruption, the caller can indicate that it only 1122 * wants to isolate pages it will be able to operate on without 1123 * blocking - clean pages for the most part. 1124 * 1125 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1126 * is used by reclaim when it is cannot write to backing storage 1127 * 1128 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1129 * that it is possible to migrate without blocking 1130 */ 1131 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1132 /* All the caller can do on PageWriteback is block */ 1133 if (PageWriteback(page)) 1134 return ret; 1135 1136 if (PageDirty(page)) { 1137 struct address_space *mapping; 1138 1139 /* ISOLATE_CLEAN means only clean pages */ 1140 if (mode & ISOLATE_CLEAN) 1141 return ret; 1142 1143 /* 1144 * Only pages without mappings or that have a 1145 * ->migratepage callback are possible to migrate 1146 * without blocking 1147 */ 1148 mapping = page_mapping(page); 1149 if (mapping && !mapping->a_ops->migratepage) 1150 return ret; 1151 } 1152 } 1153 1154 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1155 return ret; 1156 1157 if (likely(get_page_unless_zero(page))) { 1158 /* 1159 * Be careful not to clear PageLRU until after we're 1160 * sure the page is not being freed elsewhere -- the 1161 * page release code relies on it. 1162 */ 1163 ClearPageLRU(page); 1164 ret = 0; 1165 } 1166 1167 return ret; 1168 } 1169 1170 /* 1171 * zone->lru_lock is heavily contended. Some of the functions that 1172 * shrink the lists perform better by taking out a batch of pages 1173 * and working on them outside the LRU lock. 1174 * 1175 * For pagecache intensive workloads, this function is the hottest 1176 * spot in the kernel (apart from copy_*_user functions). 1177 * 1178 * Appropriate locks must be held before calling this function. 1179 * 1180 * @nr_to_scan: The number of pages to look through on the list. 1181 * @lruvec: The LRU vector to pull pages from. 1182 * @dst: The temp list to put pages on to. 1183 * @nr_scanned: The number of pages that were scanned. 1184 * @sc: The scan_control struct for this reclaim session 1185 * @mode: One of the LRU isolation modes 1186 * @lru: LRU list id for isolating 1187 * 1188 * returns how many pages were moved onto *@dst. 1189 */ 1190 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1191 struct lruvec *lruvec, struct list_head *dst, 1192 unsigned long *nr_scanned, struct scan_control *sc, 1193 isolate_mode_t mode, enum lru_list lru) 1194 { 1195 struct list_head *src = &lruvec->lists[lru]; 1196 unsigned long nr_taken = 0; 1197 unsigned long scan; 1198 1199 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1200 struct page *page; 1201 int nr_pages; 1202 1203 page = lru_to_page(src); 1204 prefetchw_prev_lru_page(page, src, flags); 1205 1206 VM_BUG_ON(!PageLRU(page)); 1207 1208 switch (__isolate_lru_page(page, mode)) { 1209 case 0: 1210 nr_pages = hpage_nr_pages(page); 1211 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1212 list_move(&page->lru, dst); 1213 nr_taken += nr_pages; 1214 break; 1215 1216 case -EBUSY: 1217 /* else it is being freed elsewhere */ 1218 list_move(&page->lru, src); 1219 continue; 1220 1221 default: 1222 BUG(); 1223 } 1224 } 1225 1226 *nr_scanned = scan; 1227 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1228 nr_taken, mode, is_file_lru(lru)); 1229 return nr_taken; 1230 } 1231 1232 /** 1233 * isolate_lru_page - tries to isolate a page from its LRU list 1234 * @page: page to isolate from its LRU list 1235 * 1236 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1237 * vmstat statistic corresponding to whatever LRU list the page was on. 1238 * 1239 * Returns 0 if the page was removed from an LRU list. 1240 * Returns -EBUSY if the page was not on an LRU list. 1241 * 1242 * The returned page will have PageLRU() cleared. If it was found on 1243 * the active list, it will have PageActive set. If it was found on 1244 * the unevictable list, it will have the PageUnevictable bit set. That flag 1245 * may need to be cleared by the caller before letting the page go. 1246 * 1247 * The vmstat statistic corresponding to the list on which the page was 1248 * found will be decremented. 1249 * 1250 * Restrictions: 1251 * (1) Must be called with an elevated refcount on the page. This is a 1252 * fundamentnal difference from isolate_lru_pages (which is called 1253 * without a stable reference). 1254 * (2) the lru_lock must not be held. 1255 * (3) interrupts must be enabled. 1256 */ 1257 int isolate_lru_page(struct page *page) 1258 { 1259 int ret = -EBUSY; 1260 1261 VM_BUG_ON(!page_count(page)); 1262 1263 if (PageLRU(page)) { 1264 struct zone *zone = page_zone(page); 1265 struct lruvec *lruvec; 1266 1267 spin_lock_irq(&zone->lru_lock); 1268 lruvec = mem_cgroup_page_lruvec(page, zone); 1269 if (PageLRU(page)) { 1270 int lru = page_lru(page); 1271 get_page(page); 1272 ClearPageLRU(page); 1273 del_page_from_lru_list(page, lruvec, lru); 1274 ret = 0; 1275 } 1276 spin_unlock_irq(&zone->lru_lock); 1277 } 1278 return ret; 1279 } 1280 1281 /* 1282 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1283 * then get resheduled. When there are massive number of tasks doing page 1284 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1285 * the LRU list will go small and be scanned faster than necessary, leading to 1286 * unnecessary swapping, thrashing and OOM. 1287 */ 1288 static int too_many_isolated(struct zone *zone, int file, 1289 struct scan_control *sc) 1290 { 1291 unsigned long inactive, isolated; 1292 1293 if (current_is_kswapd()) 1294 return 0; 1295 1296 if (!global_reclaim(sc)) 1297 return 0; 1298 1299 if (file) { 1300 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1301 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1302 } else { 1303 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1304 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1305 } 1306 1307 /* 1308 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1309 * won't get blocked by normal direct-reclaimers, forming a circular 1310 * deadlock. 1311 */ 1312 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1313 inactive >>= 3; 1314 1315 return isolated > inactive; 1316 } 1317 1318 static noinline_for_stack void 1319 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1320 { 1321 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1322 struct zone *zone = lruvec_zone(lruvec); 1323 LIST_HEAD(pages_to_free); 1324 1325 /* 1326 * Put back any unfreeable pages. 1327 */ 1328 while (!list_empty(page_list)) { 1329 struct page *page = lru_to_page(page_list); 1330 int lru; 1331 1332 VM_BUG_ON(PageLRU(page)); 1333 list_del(&page->lru); 1334 if (unlikely(!page_evictable(page))) { 1335 spin_unlock_irq(&zone->lru_lock); 1336 putback_lru_page(page); 1337 spin_lock_irq(&zone->lru_lock); 1338 continue; 1339 } 1340 1341 lruvec = mem_cgroup_page_lruvec(page, zone); 1342 1343 SetPageLRU(page); 1344 lru = page_lru(page); 1345 add_page_to_lru_list(page, lruvec, lru); 1346 1347 if (is_active_lru(lru)) { 1348 int file = is_file_lru(lru); 1349 int numpages = hpage_nr_pages(page); 1350 reclaim_stat->recent_rotated[file] += numpages; 1351 } 1352 if (put_page_testzero(page)) { 1353 __ClearPageLRU(page); 1354 __ClearPageActive(page); 1355 del_page_from_lru_list(page, lruvec, lru); 1356 1357 if (unlikely(PageCompound(page))) { 1358 spin_unlock_irq(&zone->lru_lock); 1359 (*get_compound_page_dtor(page))(page); 1360 spin_lock_irq(&zone->lru_lock); 1361 } else 1362 list_add(&page->lru, &pages_to_free); 1363 } 1364 } 1365 1366 /* 1367 * To save our caller's stack, now use input list for pages to free. 1368 */ 1369 list_splice(&pages_to_free, page_list); 1370 } 1371 1372 /* 1373 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1374 * of reclaimed pages 1375 */ 1376 static noinline_for_stack unsigned long 1377 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1378 struct scan_control *sc, enum lru_list lru) 1379 { 1380 LIST_HEAD(page_list); 1381 unsigned long nr_scanned; 1382 unsigned long nr_reclaimed = 0; 1383 unsigned long nr_taken; 1384 unsigned long nr_dirty = 0; 1385 unsigned long nr_congested = 0; 1386 unsigned long nr_unqueued_dirty = 0; 1387 unsigned long nr_writeback = 0; 1388 unsigned long nr_immediate = 0; 1389 isolate_mode_t isolate_mode = 0; 1390 int file = is_file_lru(lru); 1391 struct zone *zone = lruvec_zone(lruvec); 1392 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1393 1394 while (unlikely(too_many_isolated(zone, file, sc))) { 1395 congestion_wait(BLK_RW_ASYNC, HZ/10); 1396 1397 /* We are about to die and free our memory. Return now. */ 1398 if (fatal_signal_pending(current)) 1399 return SWAP_CLUSTER_MAX; 1400 } 1401 1402 lru_add_drain(); 1403 1404 if (!sc->may_unmap) 1405 isolate_mode |= ISOLATE_UNMAPPED; 1406 if (!sc->may_writepage) 1407 isolate_mode |= ISOLATE_CLEAN; 1408 1409 spin_lock_irq(&zone->lru_lock); 1410 1411 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1412 &nr_scanned, sc, isolate_mode, lru); 1413 1414 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1415 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1416 1417 if (global_reclaim(sc)) { 1418 zone->pages_scanned += nr_scanned; 1419 if (current_is_kswapd()) 1420 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1421 else 1422 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1423 } 1424 spin_unlock_irq(&zone->lru_lock); 1425 1426 if (nr_taken == 0) 1427 return 0; 1428 1429 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1430 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1431 &nr_writeback, &nr_immediate, 1432 false); 1433 1434 spin_lock_irq(&zone->lru_lock); 1435 1436 reclaim_stat->recent_scanned[file] += nr_taken; 1437 1438 if (global_reclaim(sc)) { 1439 if (current_is_kswapd()) 1440 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1441 nr_reclaimed); 1442 else 1443 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1444 nr_reclaimed); 1445 } 1446 1447 putback_inactive_pages(lruvec, &page_list); 1448 1449 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1450 1451 spin_unlock_irq(&zone->lru_lock); 1452 1453 free_hot_cold_page_list(&page_list, 1); 1454 1455 /* 1456 * If reclaim is isolating dirty pages under writeback, it implies 1457 * that the long-lived page allocation rate is exceeding the page 1458 * laundering rate. Either the global limits are not being effective 1459 * at throttling processes due to the page distribution throughout 1460 * zones or there is heavy usage of a slow backing device. The 1461 * only option is to throttle from reclaim context which is not ideal 1462 * as there is no guarantee the dirtying process is throttled in the 1463 * same way balance_dirty_pages() manages. 1464 * 1465 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1466 * of pages under pages flagged for immediate reclaim and stall if any 1467 * are encountered in the nr_immediate check below. 1468 */ 1469 if (nr_writeback && nr_writeback == nr_taken) 1470 zone_set_flag(zone, ZONE_WRITEBACK); 1471 1472 /* 1473 * memcg will stall in page writeback so only consider forcibly 1474 * stalling for global reclaim 1475 */ 1476 if (global_reclaim(sc)) { 1477 /* 1478 * Tag a zone as congested if all the dirty pages scanned were 1479 * backed by a congested BDI and wait_iff_congested will stall. 1480 */ 1481 if (nr_dirty && nr_dirty == nr_congested) 1482 zone_set_flag(zone, ZONE_CONGESTED); 1483 1484 /* 1485 * If dirty pages are scanned that are not queued for IO, it 1486 * implies that flushers are not keeping up. In this case, flag 1487 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1488 * pages from reclaim context. It will forcibly stall in the 1489 * next check. 1490 */ 1491 if (nr_unqueued_dirty == nr_taken) 1492 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1493 1494 /* 1495 * In addition, if kswapd scans pages marked marked for 1496 * immediate reclaim and under writeback (nr_immediate), it 1497 * implies that pages are cycling through the LRU faster than 1498 * they are written so also forcibly stall. 1499 */ 1500 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1501 congestion_wait(BLK_RW_ASYNC, HZ/10); 1502 } 1503 1504 /* 1505 * Stall direct reclaim for IO completions if underlying BDIs or zone 1506 * is congested. Allow kswapd to continue until it starts encountering 1507 * unqueued dirty pages or cycling through the LRU too quickly. 1508 */ 1509 if (!sc->hibernation_mode && !current_is_kswapd()) 1510 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1511 1512 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1513 zone_idx(zone), 1514 nr_scanned, nr_reclaimed, 1515 sc->priority, 1516 trace_shrink_flags(file)); 1517 return nr_reclaimed; 1518 } 1519 1520 /* 1521 * This moves pages from the active list to the inactive list. 1522 * 1523 * We move them the other way if the page is referenced by one or more 1524 * processes, from rmap. 1525 * 1526 * If the pages are mostly unmapped, the processing is fast and it is 1527 * appropriate to hold zone->lru_lock across the whole operation. But if 1528 * the pages are mapped, the processing is slow (page_referenced()) so we 1529 * should drop zone->lru_lock around each page. It's impossible to balance 1530 * this, so instead we remove the pages from the LRU while processing them. 1531 * It is safe to rely on PG_active against the non-LRU pages in here because 1532 * nobody will play with that bit on a non-LRU page. 1533 * 1534 * The downside is that we have to touch page->_count against each page. 1535 * But we had to alter page->flags anyway. 1536 */ 1537 1538 static void move_active_pages_to_lru(struct lruvec *lruvec, 1539 struct list_head *list, 1540 struct list_head *pages_to_free, 1541 enum lru_list lru) 1542 { 1543 struct zone *zone = lruvec_zone(lruvec); 1544 unsigned long pgmoved = 0; 1545 struct page *page; 1546 int nr_pages; 1547 1548 while (!list_empty(list)) { 1549 page = lru_to_page(list); 1550 lruvec = mem_cgroup_page_lruvec(page, zone); 1551 1552 VM_BUG_ON(PageLRU(page)); 1553 SetPageLRU(page); 1554 1555 nr_pages = hpage_nr_pages(page); 1556 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1557 list_move(&page->lru, &lruvec->lists[lru]); 1558 pgmoved += nr_pages; 1559 1560 if (put_page_testzero(page)) { 1561 __ClearPageLRU(page); 1562 __ClearPageActive(page); 1563 del_page_from_lru_list(page, lruvec, lru); 1564 1565 if (unlikely(PageCompound(page))) { 1566 spin_unlock_irq(&zone->lru_lock); 1567 (*get_compound_page_dtor(page))(page); 1568 spin_lock_irq(&zone->lru_lock); 1569 } else 1570 list_add(&page->lru, pages_to_free); 1571 } 1572 } 1573 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1574 if (!is_active_lru(lru)) 1575 __count_vm_events(PGDEACTIVATE, pgmoved); 1576 } 1577 1578 static void shrink_active_list(unsigned long nr_to_scan, 1579 struct lruvec *lruvec, 1580 struct scan_control *sc, 1581 enum lru_list lru) 1582 { 1583 unsigned long nr_taken; 1584 unsigned long nr_scanned; 1585 unsigned long vm_flags; 1586 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1587 LIST_HEAD(l_active); 1588 LIST_HEAD(l_inactive); 1589 struct page *page; 1590 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1591 unsigned long nr_rotated = 0; 1592 isolate_mode_t isolate_mode = 0; 1593 int file = is_file_lru(lru); 1594 struct zone *zone = lruvec_zone(lruvec); 1595 1596 lru_add_drain(); 1597 1598 if (!sc->may_unmap) 1599 isolate_mode |= ISOLATE_UNMAPPED; 1600 if (!sc->may_writepage) 1601 isolate_mode |= ISOLATE_CLEAN; 1602 1603 spin_lock_irq(&zone->lru_lock); 1604 1605 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1606 &nr_scanned, sc, isolate_mode, lru); 1607 if (global_reclaim(sc)) 1608 zone->pages_scanned += nr_scanned; 1609 1610 reclaim_stat->recent_scanned[file] += nr_taken; 1611 1612 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1613 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1614 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1615 spin_unlock_irq(&zone->lru_lock); 1616 1617 while (!list_empty(&l_hold)) { 1618 cond_resched(); 1619 page = lru_to_page(&l_hold); 1620 list_del(&page->lru); 1621 1622 if (unlikely(!page_evictable(page))) { 1623 putback_lru_page(page); 1624 continue; 1625 } 1626 1627 if (unlikely(buffer_heads_over_limit)) { 1628 if (page_has_private(page) && trylock_page(page)) { 1629 if (page_has_private(page)) 1630 try_to_release_page(page, 0); 1631 unlock_page(page); 1632 } 1633 } 1634 1635 if (page_referenced(page, 0, sc->target_mem_cgroup, 1636 &vm_flags)) { 1637 nr_rotated += hpage_nr_pages(page); 1638 /* 1639 * Identify referenced, file-backed active pages and 1640 * give them one more trip around the active list. So 1641 * that executable code get better chances to stay in 1642 * memory under moderate memory pressure. Anon pages 1643 * are not likely to be evicted by use-once streaming 1644 * IO, plus JVM can create lots of anon VM_EXEC pages, 1645 * so we ignore them here. 1646 */ 1647 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1648 list_add(&page->lru, &l_active); 1649 continue; 1650 } 1651 } 1652 1653 ClearPageActive(page); /* we are de-activating */ 1654 list_add(&page->lru, &l_inactive); 1655 } 1656 1657 /* 1658 * Move pages back to the lru list. 1659 */ 1660 spin_lock_irq(&zone->lru_lock); 1661 /* 1662 * Count referenced pages from currently used mappings as rotated, 1663 * even though only some of them are actually re-activated. This 1664 * helps balance scan pressure between file and anonymous pages in 1665 * get_scan_ratio. 1666 */ 1667 reclaim_stat->recent_rotated[file] += nr_rotated; 1668 1669 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1670 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1671 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1672 spin_unlock_irq(&zone->lru_lock); 1673 1674 free_hot_cold_page_list(&l_hold, 1); 1675 } 1676 1677 #ifdef CONFIG_SWAP 1678 static int inactive_anon_is_low_global(struct zone *zone) 1679 { 1680 unsigned long active, inactive; 1681 1682 active = zone_page_state(zone, NR_ACTIVE_ANON); 1683 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1684 1685 if (inactive * zone->inactive_ratio < active) 1686 return 1; 1687 1688 return 0; 1689 } 1690 1691 /** 1692 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1693 * @lruvec: LRU vector to check 1694 * 1695 * Returns true if the zone does not have enough inactive anon pages, 1696 * meaning some active anon pages need to be deactivated. 1697 */ 1698 static int inactive_anon_is_low(struct lruvec *lruvec) 1699 { 1700 /* 1701 * If we don't have swap space, anonymous page deactivation 1702 * is pointless. 1703 */ 1704 if (!total_swap_pages) 1705 return 0; 1706 1707 if (!mem_cgroup_disabled()) 1708 return mem_cgroup_inactive_anon_is_low(lruvec); 1709 1710 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1711 } 1712 #else 1713 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1714 { 1715 return 0; 1716 } 1717 #endif 1718 1719 /** 1720 * inactive_file_is_low - check if file pages need to be deactivated 1721 * @lruvec: LRU vector to check 1722 * 1723 * When the system is doing streaming IO, memory pressure here 1724 * ensures that active file pages get deactivated, until more 1725 * than half of the file pages are on the inactive list. 1726 * 1727 * Once we get to that situation, protect the system's working 1728 * set from being evicted by disabling active file page aging. 1729 * 1730 * This uses a different ratio than the anonymous pages, because 1731 * the page cache uses a use-once replacement algorithm. 1732 */ 1733 static int inactive_file_is_low(struct lruvec *lruvec) 1734 { 1735 unsigned long inactive; 1736 unsigned long active; 1737 1738 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1739 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1740 1741 return active > inactive; 1742 } 1743 1744 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1745 { 1746 if (is_file_lru(lru)) 1747 return inactive_file_is_low(lruvec); 1748 else 1749 return inactive_anon_is_low(lruvec); 1750 } 1751 1752 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1753 struct lruvec *lruvec, struct scan_control *sc) 1754 { 1755 if (is_active_lru(lru)) { 1756 if (inactive_list_is_low(lruvec, lru)) 1757 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1758 return 0; 1759 } 1760 1761 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1762 } 1763 1764 static int vmscan_swappiness(struct scan_control *sc) 1765 { 1766 if (global_reclaim(sc)) 1767 return vm_swappiness; 1768 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1769 } 1770 1771 enum scan_balance { 1772 SCAN_EQUAL, 1773 SCAN_FRACT, 1774 SCAN_ANON, 1775 SCAN_FILE, 1776 }; 1777 1778 /* 1779 * Determine how aggressively the anon and file LRU lists should be 1780 * scanned. The relative value of each set of LRU lists is determined 1781 * by looking at the fraction of the pages scanned we did rotate back 1782 * onto the active list instead of evict. 1783 * 1784 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1785 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1786 */ 1787 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1788 unsigned long *nr) 1789 { 1790 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1791 u64 fraction[2]; 1792 u64 denominator = 0; /* gcc */ 1793 struct zone *zone = lruvec_zone(lruvec); 1794 unsigned long anon_prio, file_prio; 1795 enum scan_balance scan_balance; 1796 unsigned long anon, file, free; 1797 bool force_scan = false; 1798 unsigned long ap, fp; 1799 enum lru_list lru; 1800 1801 /* 1802 * If the zone or memcg is small, nr[l] can be 0. This 1803 * results in no scanning on this priority and a potential 1804 * priority drop. Global direct reclaim can go to the next 1805 * zone and tends to have no problems. Global kswapd is for 1806 * zone balancing and it needs to scan a minimum amount. When 1807 * reclaiming for a memcg, a priority drop can cause high 1808 * latencies, so it's better to scan a minimum amount there as 1809 * well. 1810 */ 1811 if (current_is_kswapd() && !zone_reclaimable(zone)) 1812 force_scan = true; 1813 if (!global_reclaim(sc)) 1814 force_scan = true; 1815 1816 /* If we have no swap space, do not bother scanning anon pages. */ 1817 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1818 scan_balance = SCAN_FILE; 1819 goto out; 1820 } 1821 1822 /* 1823 * Global reclaim will swap to prevent OOM even with no 1824 * swappiness, but memcg users want to use this knob to 1825 * disable swapping for individual groups completely when 1826 * using the memory controller's swap limit feature would be 1827 * too expensive. 1828 */ 1829 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1830 scan_balance = SCAN_FILE; 1831 goto out; 1832 } 1833 1834 /* 1835 * Do not apply any pressure balancing cleverness when the 1836 * system is close to OOM, scan both anon and file equally 1837 * (unless the swappiness setting disagrees with swapping). 1838 */ 1839 if (!sc->priority && vmscan_swappiness(sc)) { 1840 scan_balance = SCAN_EQUAL; 1841 goto out; 1842 } 1843 1844 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1845 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1846 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1847 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1848 1849 /* 1850 * If it's foreseeable that reclaiming the file cache won't be 1851 * enough to get the zone back into a desirable shape, we have 1852 * to swap. Better start now and leave the - probably heavily 1853 * thrashing - remaining file pages alone. 1854 */ 1855 if (global_reclaim(sc)) { 1856 free = zone_page_state(zone, NR_FREE_PAGES); 1857 if (unlikely(file + free <= high_wmark_pages(zone))) { 1858 scan_balance = SCAN_ANON; 1859 goto out; 1860 } 1861 } 1862 1863 /* 1864 * There is enough inactive page cache, do not reclaim 1865 * anything from the anonymous working set right now. 1866 */ 1867 if (!inactive_file_is_low(lruvec)) { 1868 scan_balance = SCAN_FILE; 1869 goto out; 1870 } 1871 1872 scan_balance = SCAN_FRACT; 1873 1874 /* 1875 * With swappiness at 100, anonymous and file have the same priority. 1876 * This scanning priority is essentially the inverse of IO cost. 1877 */ 1878 anon_prio = vmscan_swappiness(sc); 1879 file_prio = 200 - anon_prio; 1880 1881 /* 1882 * OK, so we have swap space and a fair amount of page cache 1883 * pages. We use the recently rotated / recently scanned 1884 * ratios to determine how valuable each cache is. 1885 * 1886 * Because workloads change over time (and to avoid overflow) 1887 * we keep these statistics as a floating average, which ends 1888 * up weighing recent references more than old ones. 1889 * 1890 * anon in [0], file in [1] 1891 */ 1892 spin_lock_irq(&zone->lru_lock); 1893 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1894 reclaim_stat->recent_scanned[0] /= 2; 1895 reclaim_stat->recent_rotated[0] /= 2; 1896 } 1897 1898 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1899 reclaim_stat->recent_scanned[1] /= 2; 1900 reclaim_stat->recent_rotated[1] /= 2; 1901 } 1902 1903 /* 1904 * The amount of pressure on anon vs file pages is inversely 1905 * proportional to the fraction of recently scanned pages on 1906 * each list that were recently referenced and in active use. 1907 */ 1908 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1909 ap /= reclaim_stat->recent_rotated[0] + 1; 1910 1911 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1912 fp /= reclaim_stat->recent_rotated[1] + 1; 1913 spin_unlock_irq(&zone->lru_lock); 1914 1915 fraction[0] = ap; 1916 fraction[1] = fp; 1917 denominator = ap + fp + 1; 1918 out: 1919 for_each_evictable_lru(lru) { 1920 int file = is_file_lru(lru); 1921 unsigned long size; 1922 unsigned long scan; 1923 1924 size = get_lru_size(lruvec, lru); 1925 scan = size >> sc->priority; 1926 1927 if (!scan && force_scan) 1928 scan = min(size, SWAP_CLUSTER_MAX); 1929 1930 switch (scan_balance) { 1931 case SCAN_EQUAL: 1932 /* Scan lists relative to size */ 1933 break; 1934 case SCAN_FRACT: 1935 /* 1936 * Scan types proportional to swappiness and 1937 * their relative recent reclaim efficiency. 1938 */ 1939 scan = div64_u64(scan * fraction[file], denominator); 1940 break; 1941 case SCAN_FILE: 1942 case SCAN_ANON: 1943 /* Scan one type exclusively */ 1944 if ((scan_balance == SCAN_FILE) != file) 1945 scan = 0; 1946 break; 1947 default: 1948 /* Look ma, no brain */ 1949 BUG(); 1950 } 1951 nr[lru] = scan; 1952 } 1953 } 1954 1955 /* 1956 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1957 */ 1958 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1959 { 1960 unsigned long nr[NR_LRU_LISTS]; 1961 unsigned long targets[NR_LRU_LISTS]; 1962 unsigned long nr_to_scan; 1963 enum lru_list lru; 1964 unsigned long nr_reclaimed = 0; 1965 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1966 struct blk_plug plug; 1967 bool scan_adjusted = false; 1968 1969 get_scan_count(lruvec, sc, nr); 1970 1971 /* Record the original scan target for proportional adjustments later */ 1972 memcpy(targets, nr, sizeof(nr)); 1973 1974 blk_start_plug(&plug); 1975 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1976 nr[LRU_INACTIVE_FILE]) { 1977 unsigned long nr_anon, nr_file, percentage; 1978 unsigned long nr_scanned; 1979 1980 for_each_evictable_lru(lru) { 1981 if (nr[lru]) { 1982 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 1983 nr[lru] -= nr_to_scan; 1984 1985 nr_reclaimed += shrink_list(lru, nr_to_scan, 1986 lruvec, sc); 1987 } 1988 } 1989 1990 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 1991 continue; 1992 1993 /* 1994 * For global direct reclaim, reclaim only the number of pages 1995 * requested. Less care is taken to scan proportionally as it 1996 * is more important to minimise direct reclaim stall latency 1997 * than it is to properly age the LRU lists. 1998 */ 1999 if (global_reclaim(sc) && !current_is_kswapd()) 2000 break; 2001 2002 /* 2003 * For kswapd and memcg, reclaim at least the number of pages 2004 * requested. Ensure that the anon and file LRUs shrink 2005 * proportionally what was requested by get_scan_count(). We 2006 * stop reclaiming one LRU and reduce the amount scanning 2007 * proportional to the original scan target. 2008 */ 2009 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2010 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2011 2012 if (nr_file > nr_anon) { 2013 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2014 targets[LRU_ACTIVE_ANON] + 1; 2015 lru = LRU_BASE; 2016 percentage = nr_anon * 100 / scan_target; 2017 } else { 2018 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2019 targets[LRU_ACTIVE_FILE] + 1; 2020 lru = LRU_FILE; 2021 percentage = nr_file * 100 / scan_target; 2022 } 2023 2024 /* Stop scanning the smaller of the LRU */ 2025 nr[lru] = 0; 2026 nr[lru + LRU_ACTIVE] = 0; 2027 2028 /* 2029 * Recalculate the other LRU scan count based on its original 2030 * scan target and the percentage scanning already complete 2031 */ 2032 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2033 nr_scanned = targets[lru] - nr[lru]; 2034 nr[lru] = targets[lru] * (100 - percentage) / 100; 2035 nr[lru] -= min(nr[lru], nr_scanned); 2036 2037 lru += LRU_ACTIVE; 2038 nr_scanned = targets[lru] - nr[lru]; 2039 nr[lru] = targets[lru] * (100 - percentage) / 100; 2040 nr[lru] -= min(nr[lru], nr_scanned); 2041 2042 scan_adjusted = true; 2043 } 2044 blk_finish_plug(&plug); 2045 sc->nr_reclaimed += nr_reclaimed; 2046 2047 /* 2048 * Even if we did not try to evict anon pages at all, we want to 2049 * rebalance the anon lru active/inactive ratio. 2050 */ 2051 if (inactive_anon_is_low(lruvec)) 2052 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2053 sc, LRU_ACTIVE_ANON); 2054 2055 throttle_vm_writeout(sc->gfp_mask); 2056 } 2057 2058 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2059 static bool in_reclaim_compaction(struct scan_control *sc) 2060 { 2061 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2062 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2063 sc->priority < DEF_PRIORITY - 2)) 2064 return true; 2065 2066 return false; 2067 } 2068 2069 /* 2070 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2071 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2072 * true if more pages should be reclaimed such that when the page allocator 2073 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2074 * It will give up earlier than that if there is difficulty reclaiming pages. 2075 */ 2076 static inline bool should_continue_reclaim(struct zone *zone, 2077 unsigned long nr_reclaimed, 2078 unsigned long nr_scanned, 2079 struct scan_control *sc) 2080 { 2081 unsigned long pages_for_compaction; 2082 unsigned long inactive_lru_pages; 2083 2084 /* If not in reclaim/compaction mode, stop */ 2085 if (!in_reclaim_compaction(sc)) 2086 return false; 2087 2088 /* Consider stopping depending on scan and reclaim activity */ 2089 if (sc->gfp_mask & __GFP_REPEAT) { 2090 /* 2091 * For __GFP_REPEAT allocations, stop reclaiming if the 2092 * full LRU list has been scanned and we are still failing 2093 * to reclaim pages. This full LRU scan is potentially 2094 * expensive but a __GFP_REPEAT caller really wants to succeed 2095 */ 2096 if (!nr_reclaimed && !nr_scanned) 2097 return false; 2098 } else { 2099 /* 2100 * For non-__GFP_REPEAT allocations which can presumably 2101 * fail without consequence, stop if we failed to reclaim 2102 * any pages from the last SWAP_CLUSTER_MAX number of 2103 * pages that were scanned. This will return to the 2104 * caller faster at the risk reclaim/compaction and 2105 * the resulting allocation attempt fails 2106 */ 2107 if (!nr_reclaimed) 2108 return false; 2109 } 2110 2111 /* 2112 * If we have not reclaimed enough pages for compaction and the 2113 * inactive lists are large enough, continue reclaiming 2114 */ 2115 pages_for_compaction = (2UL << sc->order); 2116 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2117 if (get_nr_swap_pages() > 0) 2118 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2119 if (sc->nr_reclaimed < pages_for_compaction && 2120 inactive_lru_pages > pages_for_compaction) 2121 return true; 2122 2123 /* If compaction would go ahead or the allocation would succeed, stop */ 2124 switch (compaction_suitable(zone, sc->order)) { 2125 case COMPACT_PARTIAL: 2126 case COMPACT_CONTINUE: 2127 return false; 2128 default: 2129 return true; 2130 } 2131 } 2132 2133 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2134 { 2135 unsigned long nr_reclaimed, nr_scanned; 2136 2137 do { 2138 struct mem_cgroup *root = sc->target_mem_cgroup; 2139 struct mem_cgroup_reclaim_cookie reclaim = { 2140 .zone = zone, 2141 .priority = sc->priority, 2142 }; 2143 struct mem_cgroup *memcg; 2144 2145 nr_reclaimed = sc->nr_reclaimed; 2146 nr_scanned = sc->nr_scanned; 2147 2148 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2149 do { 2150 struct lruvec *lruvec; 2151 2152 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2153 2154 shrink_lruvec(lruvec, sc); 2155 2156 /* 2157 * Direct reclaim and kswapd have to scan all memory 2158 * cgroups to fulfill the overall scan target for the 2159 * zone. 2160 * 2161 * Limit reclaim, on the other hand, only cares about 2162 * nr_to_reclaim pages to be reclaimed and it will 2163 * retry with decreasing priority if one round over the 2164 * whole hierarchy is not sufficient. 2165 */ 2166 if (!global_reclaim(sc) && 2167 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2168 mem_cgroup_iter_break(root, memcg); 2169 break; 2170 } 2171 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2172 } while (memcg); 2173 2174 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2175 sc->nr_scanned - nr_scanned, 2176 sc->nr_reclaimed - nr_reclaimed); 2177 2178 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2179 sc->nr_scanned - nr_scanned, sc)); 2180 } 2181 2182 /* Returns true if compaction should go ahead for a high-order request */ 2183 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2184 { 2185 unsigned long balance_gap, watermark; 2186 bool watermark_ok; 2187 2188 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2189 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2190 return false; 2191 2192 /* 2193 * Compaction takes time to run and there are potentially other 2194 * callers using the pages just freed. Continue reclaiming until 2195 * there is a buffer of free pages available to give compaction 2196 * a reasonable chance of completing and allocating the page 2197 */ 2198 balance_gap = min(low_wmark_pages(zone), 2199 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2200 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2201 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2202 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2203 2204 /* 2205 * If compaction is deferred, reclaim up to a point where 2206 * compaction will have a chance of success when re-enabled 2207 */ 2208 if (compaction_deferred(zone, sc->order)) 2209 return watermark_ok; 2210 2211 /* If compaction is not ready to start, keep reclaiming */ 2212 if (!compaction_suitable(zone, sc->order)) 2213 return false; 2214 2215 return watermark_ok; 2216 } 2217 2218 /* 2219 * This is the direct reclaim path, for page-allocating processes. We only 2220 * try to reclaim pages from zones which will satisfy the caller's allocation 2221 * request. 2222 * 2223 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2224 * Because: 2225 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2226 * allocation or 2227 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2228 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2229 * zone defense algorithm. 2230 * 2231 * If a zone is deemed to be full of pinned pages then just give it a light 2232 * scan then give up on it. 2233 * 2234 * This function returns true if a zone is being reclaimed for a costly 2235 * high-order allocation and compaction is ready to begin. This indicates to 2236 * the caller that it should consider retrying the allocation instead of 2237 * further reclaim. 2238 */ 2239 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2240 { 2241 struct zoneref *z; 2242 struct zone *zone; 2243 unsigned long nr_soft_reclaimed; 2244 unsigned long nr_soft_scanned; 2245 bool aborted_reclaim = false; 2246 2247 /* 2248 * If the number of buffer_heads in the machine exceeds the maximum 2249 * allowed level, force direct reclaim to scan the highmem zone as 2250 * highmem pages could be pinning lowmem pages storing buffer_heads 2251 */ 2252 if (buffer_heads_over_limit) 2253 sc->gfp_mask |= __GFP_HIGHMEM; 2254 2255 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2256 gfp_zone(sc->gfp_mask), sc->nodemask) { 2257 if (!populated_zone(zone)) 2258 continue; 2259 /* 2260 * Take care memory controller reclaiming has small influence 2261 * to global LRU. 2262 */ 2263 if (global_reclaim(sc)) { 2264 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2265 continue; 2266 if (sc->priority != DEF_PRIORITY && 2267 !zone_reclaimable(zone)) 2268 continue; /* Let kswapd poll it */ 2269 if (IS_ENABLED(CONFIG_COMPACTION)) { 2270 /* 2271 * If we already have plenty of memory free for 2272 * compaction in this zone, don't free any more. 2273 * Even though compaction is invoked for any 2274 * non-zero order, only frequent costly order 2275 * reclamation is disruptive enough to become a 2276 * noticeable problem, like transparent huge 2277 * page allocations. 2278 */ 2279 if (compaction_ready(zone, sc)) { 2280 aborted_reclaim = true; 2281 continue; 2282 } 2283 } 2284 /* 2285 * This steals pages from memory cgroups over softlimit 2286 * and returns the number of reclaimed pages and 2287 * scanned pages. This works for global memory pressure 2288 * and balancing, not for a memcg's limit. 2289 */ 2290 nr_soft_scanned = 0; 2291 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2292 sc->order, sc->gfp_mask, 2293 &nr_soft_scanned); 2294 sc->nr_reclaimed += nr_soft_reclaimed; 2295 sc->nr_scanned += nr_soft_scanned; 2296 /* need some check for avoid more shrink_zone() */ 2297 } 2298 2299 shrink_zone(zone, sc); 2300 } 2301 2302 return aborted_reclaim; 2303 } 2304 2305 /* All zones in zonelist are unreclaimable? */ 2306 static bool all_unreclaimable(struct zonelist *zonelist, 2307 struct scan_control *sc) 2308 { 2309 struct zoneref *z; 2310 struct zone *zone; 2311 2312 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2313 gfp_zone(sc->gfp_mask), sc->nodemask) { 2314 if (!populated_zone(zone)) 2315 continue; 2316 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2317 continue; 2318 if (zone_reclaimable(zone)) 2319 return false; 2320 } 2321 2322 return true; 2323 } 2324 2325 /* 2326 * This is the main entry point to direct page reclaim. 2327 * 2328 * If a full scan of the inactive list fails to free enough memory then we 2329 * are "out of memory" and something needs to be killed. 2330 * 2331 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2332 * high - the zone may be full of dirty or under-writeback pages, which this 2333 * caller can't do much about. We kick the writeback threads and take explicit 2334 * naps in the hope that some of these pages can be written. But if the 2335 * allocating task holds filesystem locks which prevent writeout this might not 2336 * work, and the allocation attempt will fail. 2337 * 2338 * returns: 0, if no pages reclaimed 2339 * else, the number of pages reclaimed 2340 */ 2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2342 struct scan_control *sc, 2343 struct shrink_control *shrink) 2344 { 2345 unsigned long total_scanned = 0; 2346 struct reclaim_state *reclaim_state = current->reclaim_state; 2347 struct zoneref *z; 2348 struct zone *zone; 2349 unsigned long writeback_threshold; 2350 bool aborted_reclaim; 2351 2352 delayacct_freepages_start(); 2353 2354 if (global_reclaim(sc)) 2355 count_vm_event(ALLOCSTALL); 2356 2357 do { 2358 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2359 sc->priority); 2360 sc->nr_scanned = 0; 2361 aborted_reclaim = shrink_zones(zonelist, sc); 2362 2363 /* 2364 * Don't shrink slabs when reclaiming memory from over limit 2365 * cgroups but do shrink slab at least once when aborting 2366 * reclaim for compaction to avoid unevenly scanning file/anon 2367 * LRU pages over slab pages. 2368 */ 2369 if (global_reclaim(sc)) { 2370 unsigned long lru_pages = 0; 2371 for_each_zone_zonelist(zone, z, zonelist, 2372 gfp_zone(sc->gfp_mask)) { 2373 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2374 continue; 2375 2376 lru_pages += zone_reclaimable_pages(zone); 2377 } 2378 2379 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2380 if (reclaim_state) { 2381 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2382 reclaim_state->reclaimed_slab = 0; 2383 } 2384 } 2385 total_scanned += sc->nr_scanned; 2386 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2387 goto out; 2388 2389 /* 2390 * If we're getting trouble reclaiming, start doing 2391 * writepage even in laptop mode. 2392 */ 2393 if (sc->priority < DEF_PRIORITY - 2) 2394 sc->may_writepage = 1; 2395 2396 /* 2397 * Try to write back as many pages as we just scanned. This 2398 * tends to cause slow streaming writers to write data to the 2399 * disk smoothly, at the dirtying rate, which is nice. But 2400 * that's undesirable in laptop mode, where we *want* lumpy 2401 * writeout. So in laptop mode, write out the whole world. 2402 */ 2403 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2404 if (total_scanned > writeback_threshold) { 2405 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2406 WB_REASON_TRY_TO_FREE_PAGES); 2407 sc->may_writepage = 1; 2408 } 2409 } while (--sc->priority >= 0 && !aborted_reclaim); 2410 2411 out: 2412 delayacct_freepages_end(); 2413 2414 if (sc->nr_reclaimed) 2415 return sc->nr_reclaimed; 2416 2417 /* 2418 * As hibernation is going on, kswapd is freezed so that it can't mark 2419 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2420 * check. 2421 */ 2422 if (oom_killer_disabled) 2423 return 0; 2424 2425 /* Aborted reclaim to try compaction? don't OOM, then */ 2426 if (aborted_reclaim) 2427 return 1; 2428 2429 /* top priority shrink_zones still had more to do? don't OOM, then */ 2430 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2431 return 1; 2432 2433 return 0; 2434 } 2435 2436 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2437 { 2438 struct zone *zone; 2439 unsigned long pfmemalloc_reserve = 0; 2440 unsigned long free_pages = 0; 2441 int i; 2442 bool wmark_ok; 2443 2444 for (i = 0; i <= ZONE_NORMAL; i++) { 2445 zone = &pgdat->node_zones[i]; 2446 pfmemalloc_reserve += min_wmark_pages(zone); 2447 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2448 } 2449 2450 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2451 2452 /* kswapd must be awake if processes are being throttled */ 2453 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2454 pgdat->classzone_idx = min(pgdat->classzone_idx, 2455 (enum zone_type)ZONE_NORMAL); 2456 wake_up_interruptible(&pgdat->kswapd_wait); 2457 } 2458 2459 return wmark_ok; 2460 } 2461 2462 /* 2463 * Throttle direct reclaimers if backing storage is backed by the network 2464 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2465 * depleted. kswapd will continue to make progress and wake the processes 2466 * when the low watermark is reached. 2467 * 2468 * Returns true if a fatal signal was delivered during throttling. If this 2469 * happens, the page allocator should not consider triggering the OOM killer. 2470 */ 2471 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2472 nodemask_t *nodemask) 2473 { 2474 struct zone *zone; 2475 int high_zoneidx = gfp_zone(gfp_mask); 2476 pg_data_t *pgdat; 2477 2478 /* 2479 * Kernel threads should not be throttled as they may be indirectly 2480 * responsible for cleaning pages necessary for reclaim to make forward 2481 * progress. kjournald for example may enter direct reclaim while 2482 * committing a transaction where throttling it could forcing other 2483 * processes to block on log_wait_commit(). 2484 */ 2485 if (current->flags & PF_KTHREAD) 2486 goto out; 2487 2488 /* 2489 * If a fatal signal is pending, this process should not throttle. 2490 * It should return quickly so it can exit and free its memory 2491 */ 2492 if (fatal_signal_pending(current)) 2493 goto out; 2494 2495 /* Check if the pfmemalloc reserves are ok */ 2496 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2497 pgdat = zone->zone_pgdat; 2498 if (pfmemalloc_watermark_ok(pgdat)) 2499 goto out; 2500 2501 /* Account for the throttling */ 2502 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2503 2504 /* 2505 * If the caller cannot enter the filesystem, it's possible that it 2506 * is due to the caller holding an FS lock or performing a journal 2507 * transaction in the case of a filesystem like ext[3|4]. In this case, 2508 * it is not safe to block on pfmemalloc_wait as kswapd could be 2509 * blocked waiting on the same lock. Instead, throttle for up to a 2510 * second before continuing. 2511 */ 2512 if (!(gfp_mask & __GFP_FS)) { 2513 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2514 pfmemalloc_watermark_ok(pgdat), HZ); 2515 2516 goto check_pending; 2517 } 2518 2519 /* Throttle until kswapd wakes the process */ 2520 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2521 pfmemalloc_watermark_ok(pgdat)); 2522 2523 check_pending: 2524 if (fatal_signal_pending(current)) 2525 return true; 2526 2527 out: 2528 return false; 2529 } 2530 2531 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2532 gfp_t gfp_mask, nodemask_t *nodemask) 2533 { 2534 unsigned long nr_reclaimed; 2535 struct scan_control sc = { 2536 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2537 .may_writepage = !laptop_mode, 2538 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2539 .may_unmap = 1, 2540 .may_swap = 1, 2541 .order = order, 2542 .priority = DEF_PRIORITY, 2543 .target_mem_cgroup = NULL, 2544 .nodemask = nodemask, 2545 }; 2546 struct shrink_control shrink = { 2547 .gfp_mask = sc.gfp_mask, 2548 }; 2549 2550 /* 2551 * Do not enter reclaim if fatal signal was delivered while throttled. 2552 * 1 is returned so that the page allocator does not OOM kill at this 2553 * point. 2554 */ 2555 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2556 return 1; 2557 2558 trace_mm_vmscan_direct_reclaim_begin(order, 2559 sc.may_writepage, 2560 gfp_mask); 2561 2562 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2563 2564 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2565 2566 return nr_reclaimed; 2567 } 2568 2569 #ifdef CONFIG_MEMCG 2570 2571 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2572 gfp_t gfp_mask, bool noswap, 2573 struct zone *zone, 2574 unsigned long *nr_scanned) 2575 { 2576 struct scan_control sc = { 2577 .nr_scanned = 0, 2578 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2579 .may_writepage = !laptop_mode, 2580 .may_unmap = 1, 2581 .may_swap = !noswap, 2582 .order = 0, 2583 .priority = 0, 2584 .target_mem_cgroup = memcg, 2585 }; 2586 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2587 2588 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2589 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2590 2591 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2592 sc.may_writepage, 2593 sc.gfp_mask); 2594 2595 /* 2596 * NOTE: Although we can get the priority field, using it 2597 * here is not a good idea, since it limits the pages we can scan. 2598 * if we don't reclaim here, the shrink_zone from balance_pgdat 2599 * will pick up pages from other mem cgroup's as well. We hack 2600 * the priority and make it zero. 2601 */ 2602 shrink_lruvec(lruvec, &sc); 2603 2604 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2605 2606 *nr_scanned = sc.nr_scanned; 2607 return sc.nr_reclaimed; 2608 } 2609 2610 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2611 gfp_t gfp_mask, 2612 bool noswap) 2613 { 2614 struct zonelist *zonelist; 2615 unsigned long nr_reclaimed; 2616 int nid; 2617 struct scan_control sc = { 2618 .may_writepage = !laptop_mode, 2619 .may_unmap = 1, 2620 .may_swap = !noswap, 2621 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2622 .order = 0, 2623 .priority = DEF_PRIORITY, 2624 .target_mem_cgroup = memcg, 2625 .nodemask = NULL, /* we don't care the placement */ 2626 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2627 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2628 }; 2629 struct shrink_control shrink = { 2630 .gfp_mask = sc.gfp_mask, 2631 }; 2632 2633 /* 2634 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2635 * take care of from where we get pages. So the node where we start the 2636 * scan does not need to be the current node. 2637 */ 2638 nid = mem_cgroup_select_victim_node(memcg); 2639 2640 zonelist = NODE_DATA(nid)->node_zonelists; 2641 2642 trace_mm_vmscan_memcg_reclaim_begin(0, 2643 sc.may_writepage, 2644 sc.gfp_mask); 2645 2646 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2647 2648 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2649 2650 return nr_reclaimed; 2651 } 2652 #endif 2653 2654 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2655 { 2656 struct mem_cgroup *memcg; 2657 2658 if (!total_swap_pages) 2659 return; 2660 2661 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2662 do { 2663 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2664 2665 if (inactive_anon_is_low(lruvec)) 2666 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2667 sc, LRU_ACTIVE_ANON); 2668 2669 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2670 } while (memcg); 2671 } 2672 2673 static bool zone_balanced(struct zone *zone, int order, 2674 unsigned long balance_gap, int classzone_idx) 2675 { 2676 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2677 balance_gap, classzone_idx, 0)) 2678 return false; 2679 2680 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2681 !compaction_suitable(zone, order)) 2682 return false; 2683 2684 return true; 2685 } 2686 2687 /* 2688 * pgdat_balanced() is used when checking if a node is balanced. 2689 * 2690 * For order-0, all zones must be balanced! 2691 * 2692 * For high-order allocations only zones that meet watermarks and are in a 2693 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2694 * total of balanced pages must be at least 25% of the zones allowed by 2695 * classzone_idx for the node to be considered balanced. Forcing all zones to 2696 * be balanced for high orders can cause excessive reclaim when there are 2697 * imbalanced zones. 2698 * The choice of 25% is due to 2699 * o a 16M DMA zone that is balanced will not balance a zone on any 2700 * reasonable sized machine 2701 * o On all other machines, the top zone must be at least a reasonable 2702 * percentage of the middle zones. For example, on 32-bit x86, highmem 2703 * would need to be at least 256M for it to be balance a whole node. 2704 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2705 * to balance a node on its own. These seemed like reasonable ratios. 2706 */ 2707 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2708 { 2709 unsigned long managed_pages = 0; 2710 unsigned long balanced_pages = 0; 2711 int i; 2712 2713 /* Check the watermark levels */ 2714 for (i = 0; i <= classzone_idx; i++) { 2715 struct zone *zone = pgdat->node_zones + i; 2716 2717 if (!populated_zone(zone)) 2718 continue; 2719 2720 managed_pages += zone->managed_pages; 2721 2722 /* 2723 * A special case here: 2724 * 2725 * balance_pgdat() skips over all_unreclaimable after 2726 * DEF_PRIORITY. Effectively, it considers them balanced so 2727 * they must be considered balanced here as well! 2728 */ 2729 if (!zone_reclaimable(zone)) { 2730 balanced_pages += zone->managed_pages; 2731 continue; 2732 } 2733 2734 if (zone_balanced(zone, order, 0, i)) 2735 balanced_pages += zone->managed_pages; 2736 else if (!order) 2737 return false; 2738 } 2739 2740 if (order) 2741 return balanced_pages >= (managed_pages >> 2); 2742 else 2743 return true; 2744 } 2745 2746 /* 2747 * Prepare kswapd for sleeping. This verifies that there are no processes 2748 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2749 * 2750 * Returns true if kswapd is ready to sleep 2751 */ 2752 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2753 int classzone_idx) 2754 { 2755 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2756 if (remaining) 2757 return false; 2758 2759 /* 2760 * There is a potential race between when kswapd checks its watermarks 2761 * and a process gets throttled. There is also a potential race if 2762 * processes get throttled, kswapd wakes, a large process exits therby 2763 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2764 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2765 * so wake them now if necessary. If necessary, processes will wake 2766 * kswapd and get throttled again 2767 */ 2768 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2769 wake_up(&pgdat->pfmemalloc_wait); 2770 return false; 2771 } 2772 2773 return pgdat_balanced(pgdat, order, classzone_idx); 2774 } 2775 2776 /* 2777 * kswapd shrinks the zone by the number of pages required to reach 2778 * the high watermark. 2779 * 2780 * Returns true if kswapd scanned at least the requested number of pages to 2781 * reclaim or if the lack of progress was due to pages under writeback. 2782 * This is used to determine if the scanning priority needs to be raised. 2783 */ 2784 static bool kswapd_shrink_zone(struct zone *zone, 2785 int classzone_idx, 2786 struct scan_control *sc, 2787 unsigned long lru_pages, 2788 unsigned long *nr_attempted) 2789 { 2790 int testorder = sc->order; 2791 unsigned long balance_gap; 2792 struct reclaim_state *reclaim_state = current->reclaim_state; 2793 struct shrink_control shrink = { 2794 .gfp_mask = sc->gfp_mask, 2795 }; 2796 bool lowmem_pressure; 2797 2798 /* Reclaim above the high watermark. */ 2799 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2800 2801 /* 2802 * Kswapd reclaims only single pages with compaction enabled. Trying 2803 * too hard to reclaim until contiguous free pages have become 2804 * available can hurt performance by evicting too much useful data 2805 * from memory. Do not reclaim more than needed for compaction. 2806 */ 2807 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2808 compaction_suitable(zone, sc->order) != 2809 COMPACT_SKIPPED) 2810 testorder = 0; 2811 2812 /* 2813 * We put equal pressure on every zone, unless one zone has way too 2814 * many pages free already. The "too many pages" is defined as the 2815 * high wmark plus a "gap" where the gap is either the low 2816 * watermark or 1% of the zone, whichever is smaller. 2817 */ 2818 balance_gap = min(low_wmark_pages(zone), 2819 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2820 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2821 2822 /* 2823 * If there is no low memory pressure or the zone is balanced then no 2824 * reclaim is necessary 2825 */ 2826 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2827 if (!lowmem_pressure && zone_balanced(zone, testorder, 2828 balance_gap, classzone_idx)) 2829 return true; 2830 2831 shrink_zone(zone, sc); 2832 2833 reclaim_state->reclaimed_slab = 0; 2834 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2835 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2836 2837 /* Account for the number of pages attempted to reclaim */ 2838 *nr_attempted += sc->nr_to_reclaim; 2839 2840 zone_clear_flag(zone, ZONE_WRITEBACK); 2841 2842 /* 2843 * If a zone reaches its high watermark, consider it to be no longer 2844 * congested. It's possible there are dirty pages backed by congested 2845 * BDIs but as pressure is relieved, speculatively avoid congestion 2846 * waits. 2847 */ 2848 if (zone_reclaimable(zone) && 2849 zone_balanced(zone, testorder, 0, classzone_idx)) { 2850 zone_clear_flag(zone, ZONE_CONGESTED); 2851 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2852 } 2853 2854 return sc->nr_scanned >= sc->nr_to_reclaim; 2855 } 2856 2857 /* 2858 * For kswapd, balance_pgdat() will work across all this node's zones until 2859 * they are all at high_wmark_pages(zone). 2860 * 2861 * Returns the final order kswapd was reclaiming at 2862 * 2863 * There is special handling here for zones which are full of pinned pages. 2864 * This can happen if the pages are all mlocked, or if they are all used by 2865 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2866 * What we do is to detect the case where all pages in the zone have been 2867 * scanned twice and there has been zero successful reclaim. Mark the zone as 2868 * dead and from now on, only perform a short scan. Basically we're polling 2869 * the zone for when the problem goes away. 2870 * 2871 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2872 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2873 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2874 * lower zones regardless of the number of free pages in the lower zones. This 2875 * interoperates with the page allocator fallback scheme to ensure that aging 2876 * of pages is balanced across the zones. 2877 */ 2878 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2879 int *classzone_idx) 2880 { 2881 int i; 2882 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2883 unsigned long nr_soft_reclaimed; 2884 unsigned long nr_soft_scanned; 2885 struct scan_control sc = { 2886 .gfp_mask = GFP_KERNEL, 2887 .priority = DEF_PRIORITY, 2888 .may_unmap = 1, 2889 .may_swap = 1, 2890 .may_writepage = !laptop_mode, 2891 .order = order, 2892 .target_mem_cgroup = NULL, 2893 }; 2894 count_vm_event(PAGEOUTRUN); 2895 2896 do { 2897 unsigned long lru_pages = 0; 2898 unsigned long nr_attempted = 0; 2899 bool raise_priority = true; 2900 bool pgdat_needs_compaction = (order > 0); 2901 2902 sc.nr_reclaimed = 0; 2903 2904 /* 2905 * Scan in the highmem->dma direction for the highest 2906 * zone which needs scanning 2907 */ 2908 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2909 struct zone *zone = pgdat->node_zones + i; 2910 2911 if (!populated_zone(zone)) 2912 continue; 2913 2914 if (sc.priority != DEF_PRIORITY && 2915 !zone_reclaimable(zone)) 2916 continue; 2917 2918 /* 2919 * Do some background aging of the anon list, to give 2920 * pages a chance to be referenced before reclaiming. 2921 */ 2922 age_active_anon(zone, &sc); 2923 2924 /* 2925 * If the number of buffer_heads in the machine 2926 * exceeds the maximum allowed level and this node 2927 * has a highmem zone, force kswapd to reclaim from 2928 * it to relieve lowmem pressure. 2929 */ 2930 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2931 end_zone = i; 2932 break; 2933 } 2934 2935 if (!zone_balanced(zone, order, 0, 0)) { 2936 end_zone = i; 2937 break; 2938 } else { 2939 /* 2940 * If balanced, clear the dirty and congested 2941 * flags 2942 */ 2943 zone_clear_flag(zone, ZONE_CONGESTED); 2944 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2945 } 2946 } 2947 2948 if (i < 0) 2949 goto out; 2950 2951 for (i = 0; i <= end_zone; i++) { 2952 struct zone *zone = pgdat->node_zones + i; 2953 2954 if (!populated_zone(zone)) 2955 continue; 2956 2957 lru_pages += zone_reclaimable_pages(zone); 2958 2959 /* 2960 * If any zone is currently balanced then kswapd will 2961 * not call compaction as it is expected that the 2962 * necessary pages are already available. 2963 */ 2964 if (pgdat_needs_compaction && 2965 zone_watermark_ok(zone, order, 2966 low_wmark_pages(zone), 2967 *classzone_idx, 0)) 2968 pgdat_needs_compaction = false; 2969 } 2970 2971 /* 2972 * If we're getting trouble reclaiming, start doing writepage 2973 * even in laptop mode. 2974 */ 2975 if (sc.priority < DEF_PRIORITY - 2) 2976 sc.may_writepage = 1; 2977 2978 /* 2979 * Now scan the zone in the dma->highmem direction, stopping 2980 * at the last zone which needs scanning. 2981 * 2982 * We do this because the page allocator works in the opposite 2983 * direction. This prevents the page allocator from allocating 2984 * pages behind kswapd's direction of progress, which would 2985 * cause too much scanning of the lower zones. 2986 */ 2987 for (i = 0; i <= end_zone; i++) { 2988 struct zone *zone = pgdat->node_zones + i; 2989 2990 if (!populated_zone(zone)) 2991 continue; 2992 2993 if (sc.priority != DEF_PRIORITY && 2994 !zone_reclaimable(zone)) 2995 continue; 2996 2997 sc.nr_scanned = 0; 2998 2999 nr_soft_scanned = 0; 3000 /* 3001 * Call soft limit reclaim before calling shrink_zone. 3002 */ 3003 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3004 order, sc.gfp_mask, 3005 &nr_soft_scanned); 3006 sc.nr_reclaimed += nr_soft_reclaimed; 3007 3008 /* 3009 * There should be no need to raise the scanning 3010 * priority if enough pages are already being scanned 3011 * that that high watermark would be met at 100% 3012 * efficiency. 3013 */ 3014 if (kswapd_shrink_zone(zone, end_zone, &sc, 3015 lru_pages, &nr_attempted)) 3016 raise_priority = false; 3017 } 3018 3019 /* 3020 * If the low watermark is met there is no need for processes 3021 * to be throttled on pfmemalloc_wait as they should not be 3022 * able to safely make forward progress. Wake them 3023 */ 3024 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3025 pfmemalloc_watermark_ok(pgdat)) 3026 wake_up(&pgdat->pfmemalloc_wait); 3027 3028 /* 3029 * Fragmentation may mean that the system cannot be rebalanced 3030 * for high-order allocations in all zones. If twice the 3031 * allocation size has been reclaimed and the zones are still 3032 * not balanced then recheck the watermarks at order-0 to 3033 * prevent kswapd reclaiming excessively. Assume that a 3034 * process requested a high-order can direct reclaim/compact. 3035 */ 3036 if (order && sc.nr_reclaimed >= 2UL << order) 3037 order = sc.order = 0; 3038 3039 /* Check if kswapd should be suspending */ 3040 if (try_to_freeze() || kthread_should_stop()) 3041 break; 3042 3043 /* 3044 * Compact if necessary and kswapd is reclaiming at least the 3045 * high watermark number of pages as requsted 3046 */ 3047 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3048 compact_pgdat(pgdat, order); 3049 3050 /* 3051 * Raise priority if scanning rate is too low or there was no 3052 * progress in reclaiming pages 3053 */ 3054 if (raise_priority || !sc.nr_reclaimed) 3055 sc.priority--; 3056 } while (sc.priority >= 1 && 3057 !pgdat_balanced(pgdat, order, *classzone_idx)); 3058 3059 out: 3060 /* 3061 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3062 * makes a decision on the order we were last reclaiming at. However, 3063 * if another caller entered the allocator slow path while kswapd 3064 * was awake, order will remain at the higher level 3065 */ 3066 *classzone_idx = end_zone; 3067 return order; 3068 } 3069 3070 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3071 { 3072 long remaining = 0; 3073 DEFINE_WAIT(wait); 3074 3075 if (freezing(current) || kthread_should_stop()) 3076 return; 3077 3078 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3079 3080 /* Try to sleep for a short interval */ 3081 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3082 remaining = schedule_timeout(HZ/10); 3083 finish_wait(&pgdat->kswapd_wait, &wait); 3084 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3085 } 3086 3087 /* 3088 * After a short sleep, check if it was a premature sleep. If not, then 3089 * go fully to sleep until explicitly woken up. 3090 */ 3091 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3092 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3093 3094 /* 3095 * vmstat counters are not perfectly accurate and the estimated 3096 * value for counters such as NR_FREE_PAGES can deviate from the 3097 * true value by nr_online_cpus * threshold. To avoid the zone 3098 * watermarks being breached while under pressure, we reduce the 3099 * per-cpu vmstat threshold while kswapd is awake and restore 3100 * them before going back to sleep. 3101 */ 3102 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3103 3104 /* 3105 * Compaction records what page blocks it recently failed to 3106 * isolate pages from and skips them in the future scanning. 3107 * When kswapd is going to sleep, it is reasonable to assume 3108 * that pages and compaction may succeed so reset the cache. 3109 */ 3110 reset_isolation_suitable(pgdat); 3111 3112 if (!kthread_should_stop()) 3113 schedule(); 3114 3115 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3116 } else { 3117 if (remaining) 3118 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3119 else 3120 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3121 } 3122 finish_wait(&pgdat->kswapd_wait, &wait); 3123 } 3124 3125 /* 3126 * The background pageout daemon, started as a kernel thread 3127 * from the init process. 3128 * 3129 * This basically trickles out pages so that we have _some_ 3130 * free memory available even if there is no other activity 3131 * that frees anything up. This is needed for things like routing 3132 * etc, where we otherwise might have all activity going on in 3133 * asynchronous contexts that cannot page things out. 3134 * 3135 * If there are applications that are active memory-allocators 3136 * (most normal use), this basically shouldn't matter. 3137 */ 3138 static int kswapd(void *p) 3139 { 3140 unsigned long order, new_order; 3141 unsigned balanced_order; 3142 int classzone_idx, new_classzone_idx; 3143 int balanced_classzone_idx; 3144 pg_data_t *pgdat = (pg_data_t*)p; 3145 struct task_struct *tsk = current; 3146 3147 struct reclaim_state reclaim_state = { 3148 .reclaimed_slab = 0, 3149 }; 3150 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3151 3152 lockdep_set_current_reclaim_state(GFP_KERNEL); 3153 3154 if (!cpumask_empty(cpumask)) 3155 set_cpus_allowed_ptr(tsk, cpumask); 3156 current->reclaim_state = &reclaim_state; 3157 3158 /* 3159 * Tell the memory management that we're a "memory allocator", 3160 * and that if we need more memory we should get access to it 3161 * regardless (see "__alloc_pages()"). "kswapd" should 3162 * never get caught in the normal page freeing logic. 3163 * 3164 * (Kswapd normally doesn't need memory anyway, but sometimes 3165 * you need a small amount of memory in order to be able to 3166 * page out something else, and this flag essentially protects 3167 * us from recursively trying to free more memory as we're 3168 * trying to free the first piece of memory in the first place). 3169 */ 3170 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3171 set_freezable(); 3172 3173 order = new_order = 0; 3174 balanced_order = 0; 3175 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3176 balanced_classzone_idx = classzone_idx; 3177 for ( ; ; ) { 3178 bool ret; 3179 3180 /* 3181 * If the last balance_pgdat was unsuccessful it's unlikely a 3182 * new request of a similar or harder type will succeed soon 3183 * so consider going to sleep on the basis we reclaimed at 3184 */ 3185 if (balanced_classzone_idx >= new_classzone_idx && 3186 balanced_order == new_order) { 3187 new_order = pgdat->kswapd_max_order; 3188 new_classzone_idx = pgdat->classzone_idx; 3189 pgdat->kswapd_max_order = 0; 3190 pgdat->classzone_idx = pgdat->nr_zones - 1; 3191 } 3192 3193 if (order < new_order || classzone_idx > new_classzone_idx) { 3194 /* 3195 * Don't sleep if someone wants a larger 'order' 3196 * allocation or has tigher zone constraints 3197 */ 3198 order = new_order; 3199 classzone_idx = new_classzone_idx; 3200 } else { 3201 kswapd_try_to_sleep(pgdat, balanced_order, 3202 balanced_classzone_idx); 3203 order = pgdat->kswapd_max_order; 3204 classzone_idx = pgdat->classzone_idx; 3205 new_order = order; 3206 new_classzone_idx = classzone_idx; 3207 pgdat->kswapd_max_order = 0; 3208 pgdat->classzone_idx = pgdat->nr_zones - 1; 3209 } 3210 3211 ret = try_to_freeze(); 3212 if (kthread_should_stop()) 3213 break; 3214 3215 /* 3216 * We can speed up thawing tasks if we don't call balance_pgdat 3217 * after returning from the refrigerator 3218 */ 3219 if (!ret) { 3220 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3221 balanced_classzone_idx = classzone_idx; 3222 balanced_order = balance_pgdat(pgdat, order, 3223 &balanced_classzone_idx); 3224 } 3225 } 3226 3227 current->reclaim_state = NULL; 3228 return 0; 3229 } 3230 3231 /* 3232 * A zone is low on free memory, so wake its kswapd task to service it. 3233 */ 3234 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3235 { 3236 pg_data_t *pgdat; 3237 3238 if (!populated_zone(zone)) 3239 return; 3240 3241 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3242 return; 3243 pgdat = zone->zone_pgdat; 3244 if (pgdat->kswapd_max_order < order) { 3245 pgdat->kswapd_max_order = order; 3246 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3247 } 3248 if (!waitqueue_active(&pgdat->kswapd_wait)) 3249 return; 3250 if (zone_balanced(zone, order, 0, 0)) 3251 return; 3252 3253 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3254 wake_up_interruptible(&pgdat->kswapd_wait); 3255 } 3256 3257 /* 3258 * The reclaimable count would be mostly accurate. 3259 * The less reclaimable pages may be 3260 * - mlocked pages, which will be moved to unevictable list when encountered 3261 * - mapped pages, which may require several travels to be reclaimed 3262 * - dirty pages, which is not "instantly" reclaimable 3263 */ 3264 unsigned long global_reclaimable_pages(void) 3265 { 3266 int nr; 3267 3268 nr = global_page_state(NR_ACTIVE_FILE) + 3269 global_page_state(NR_INACTIVE_FILE); 3270 3271 if (get_nr_swap_pages() > 0) 3272 nr += global_page_state(NR_ACTIVE_ANON) + 3273 global_page_state(NR_INACTIVE_ANON); 3274 3275 return nr; 3276 } 3277 3278 #ifdef CONFIG_HIBERNATION 3279 /* 3280 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3281 * freed pages. 3282 * 3283 * Rather than trying to age LRUs the aim is to preserve the overall 3284 * LRU order by reclaiming preferentially 3285 * inactive > active > active referenced > active mapped 3286 */ 3287 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3288 { 3289 struct reclaim_state reclaim_state; 3290 struct scan_control sc = { 3291 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3292 .may_swap = 1, 3293 .may_unmap = 1, 3294 .may_writepage = 1, 3295 .nr_to_reclaim = nr_to_reclaim, 3296 .hibernation_mode = 1, 3297 .order = 0, 3298 .priority = DEF_PRIORITY, 3299 }; 3300 struct shrink_control shrink = { 3301 .gfp_mask = sc.gfp_mask, 3302 }; 3303 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3304 struct task_struct *p = current; 3305 unsigned long nr_reclaimed; 3306 3307 p->flags |= PF_MEMALLOC; 3308 lockdep_set_current_reclaim_state(sc.gfp_mask); 3309 reclaim_state.reclaimed_slab = 0; 3310 p->reclaim_state = &reclaim_state; 3311 3312 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3313 3314 p->reclaim_state = NULL; 3315 lockdep_clear_current_reclaim_state(); 3316 p->flags &= ~PF_MEMALLOC; 3317 3318 return nr_reclaimed; 3319 } 3320 #endif /* CONFIG_HIBERNATION */ 3321 3322 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3323 not required for correctness. So if the last cpu in a node goes 3324 away, we get changed to run anywhere: as the first one comes back, 3325 restore their cpu bindings. */ 3326 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3327 void *hcpu) 3328 { 3329 int nid; 3330 3331 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3332 for_each_node_state(nid, N_MEMORY) { 3333 pg_data_t *pgdat = NODE_DATA(nid); 3334 const struct cpumask *mask; 3335 3336 mask = cpumask_of_node(pgdat->node_id); 3337 3338 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3339 /* One of our CPUs online: restore mask */ 3340 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3341 } 3342 } 3343 return NOTIFY_OK; 3344 } 3345 3346 /* 3347 * This kswapd start function will be called by init and node-hot-add. 3348 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3349 */ 3350 int kswapd_run(int nid) 3351 { 3352 pg_data_t *pgdat = NODE_DATA(nid); 3353 int ret = 0; 3354 3355 if (pgdat->kswapd) 3356 return 0; 3357 3358 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3359 if (IS_ERR(pgdat->kswapd)) { 3360 /* failure at boot is fatal */ 3361 BUG_ON(system_state == SYSTEM_BOOTING); 3362 pr_err("Failed to start kswapd on node %d\n", nid); 3363 ret = PTR_ERR(pgdat->kswapd); 3364 pgdat->kswapd = NULL; 3365 } 3366 return ret; 3367 } 3368 3369 /* 3370 * Called by memory hotplug when all memory in a node is offlined. Caller must 3371 * hold lock_memory_hotplug(). 3372 */ 3373 void kswapd_stop(int nid) 3374 { 3375 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3376 3377 if (kswapd) { 3378 kthread_stop(kswapd); 3379 NODE_DATA(nid)->kswapd = NULL; 3380 } 3381 } 3382 3383 static int __init kswapd_init(void) 3384 { 3385 int nid; 3386 3387 swap_setup(); 3388 for_each_node_state(nid, N_MEMORY) 3389 kswapd_run(nid); 3390 hotcpu_notifier(cpu_callback, 0); 3391 return 0; 3392 } 3393 3394 module_init(kswapd_init) 3395 3396 #ifdef CONFIG_NUMA 3397 /* 3398 * Zone reclaim mode 3399 * 3400 * If non-zero call zone_reclaim when the number of free pages falls below 3401 * the watermarks. 3402 */ 3403 int zone_reclaim_mode __read_mostly; 3404 3405 #define RECLAIM_OFF 0 3406 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3407 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3408 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3409 3410 /* 3411 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3412 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3413 * a zone. 3414 */ 3415 #define ZONE_RECLAIM_PRIORITY 4 3416 3417 /* 3418 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3419 * occur. 3420 */ 3421 int sysctl_min_unmapped_ratio = 1; 3422 3423 /* 3424 * If the number of slab pages in a zone grows beyond this percentage then 3425 * slab reclaim needs to occur. 3426 */ 3427 int sysctl_min_slab_ratio = 5; 3428 3429 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3430 { 3431 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3432 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3433 zone_page_state(zone, NR_ACTIVE_FILE); 3434 3435 /* 3436 * It's possible for there to be more file mapped pages than 3437 * accounted for by the pages on the file LRU lists because 3438 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3439 */ 3440 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3441 } 3442 3443 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3444 static long zone_pagecache_reclaimable(struct zone *zone) 3445 { 3446 long nr_pagecache_reclaimable; 3447 long delta = 0; 3448 3449 /* 3450 * If RECLAIM_SWAP is set, then all file pages are considered 3451 * potentially reclaimable. Otherwise, we have to worry about 3452 * pages like swapcache and zone_unmapped_file_pages() provides 3453 * a better estimate 3454 */ 3455 if (zone_reclaim_mode & RECLAIM_SWAP) 3456 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3457 else 3458 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3459 3460 /* If we can't clean pages, remove dirty pages from consideration */ 3461 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3462 delta += zone_page_state(zone, NR_FILE_DIRTY); 3463 3464 /* Watch for any possible underflows due to delta */ 3465 if (unlikely(delta > nr_pagecache_reclaimable)) 3466 delta = nr_pagecache_reclaimable; 3467 3468 return nr_pagecache_reclaimable - delta; 3469 } 3470 3471 /* 3472 * Try to free up some pages from this zone through reclaim. 3473 */ 3474 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3475 { 3476 /* Minimum pages needed in order to stay on node */ 3477 const unsigned long nr_pages = 1 << order; 3478 struct task_struct *p = current; 3479 struct reclaim_state reclaim_state; 3480 struct scan_control sc = { 3481 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3482 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3483 .may_swap = 1, 3484 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3485 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3486 .order = order, 3487 .priority = ZONE_RECLAIM_PRIORITY, 3488 }; 3489 struct shrink_control shrink = { 3490 .gfp_mask = sc.gfp_mask, 3491 }; 3492 unsigned long nr_slab_pages0, nr_slab_pages1; 3493 3494 cond_resched(); 3495 /* 3496 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3497 * and we also need to be able to write out pages for RECLAIM_WRITE 3498 * and RECLAIM_SWAP. 3499 */ 3500 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3501 lockdep_set_current_reclaim_state(gfp_mask); 3502 reclaim_state.reclaimed_slab = 0; 3503 p->reclaim_state = &reclaim_state; 3504 3505 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3506 /* 3507 * Free memory by calling shrink zone with increasing 3508 * priorities until we have enough memory freed. 3509 */ 3510 do { 3511 shrink_zone(zone, &sc); 3512 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3513 } 3514 3515 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3516 if (nr_slab_pages0 > zone->min_slab_pages) { 3517 /* 3518 * shrink_slab() does not currently allow us to determine how 3519 * many pages were freed in this zone. So we take the current 3520 * number of slab pages and shake the slab until it is reduced 3521 * by the same nr_pages that we used for reclaiming unmapped 3522 * pages. 3523 * 3524 * Note that shrink_slab will free memory on all zones and may 3525 * take a long time. 3526 */ 3527 for (;;) { 3528 unsigned long lru_pages = zone_reclaimable_pages(zone); 3529 3530 /* No reclaimable slab or very low memory pressure */ 3531 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3532 break; 3533 3534 /* Freed enough memory */ 3535 nr_slab_pages1 = zone_page_state(zone, 3536 NR_SLAB_RECLAIMABLE); 3537 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3538 break; 3539 } 3540 3541 /* 3542 * Update nr_reclaimed by the number of slab pages we 3543 * reclaimed from this zone. 3544 */ 3545 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3546 if (nr_slab_pages1 < nr_slab_pages0) 3547 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3548 } 3549 3550 p->reclaim_state = NULL; 3551 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3552 lockdep_clear_current_reclaim_state(); 3553 return sc.nr_reclaimed >= nr_pages; 3554 } 3555 3556 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3557 { 3558 int node_id; 3559 int ret; 3560 3561 /* 3562 * Zone reclaim reclaims unmapped file backed pages and 3563 * slab pages if we are over the defined limits. 3564 * 3565 * A small portion of unmapped file backed pages is needed for 3566 * file I/O otherwise pages read by file I/O will be immediately 3567 * thrown out if the zone is overallocated. So we do not reclaim 3568 * if less than a specified percentage of the zone is used by 3569 * unmapped file backed pages. 3570 */ 3571 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3572 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3573 return ZONE_RECLAIM_FULL; 3574 3575 if (!zone_reclaimable(zone)) 3576 return ZONE_RECLAIM_FULL; 3577 3578 /* 3579 * Do not scan if the allocation should not be delayed. 3580 */ 3581 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3582 return ZONE_RECLAIM_NOSCAN; 3583 3584 /* 3585 * Only run zone reclaim on the local zone or on zones that do not 3586 * have associated processors. This will favor the local processor 3587 * over remote processors and spread off node memory allocations 3588 * as wide as possible. 3589 */ 3590 node_id = zone_to_nid(zone); 3591 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3592 return ZONE_RECLAIM_NOSCAN; 3593 3594 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3595 return ZONE_RECLAIM_NOSCAN; 3596 3597 ret = __zone_reclaim(zone, gfp_mask, order); 3598 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3599 3600 if (!ret) 3601 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3602 3603 return ret; 3604 } 3605 #endif 3606 3607 /* 3608 * page_evictable - test whether a page is evictable 3609 * @page: the page to test 3610 * 3611 * Test whether page is evictable--i.e., should be placed on active/inactive 3612 * lists vs unevictable list. 3613 * 3614 * Reasons page might not be evictable: 3615 * (1) page's mapping marked unevictable 3616 * (2) page is part of an mlocked VMA 3617 * 3618 */ 3619 int page_evictable(struct page *page) 3620 { 3621 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3622 } 3623 3624 #ifdef CONFIG_SHMEM 3625 /** 3626 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3627 * @pages: array of pages to check 3628 * @nr_pages: number of pages to check 3629 * 3630 * Checks pages for evictability and moves them to the appropriate lru list. 3631 * 3632 * This function is only used for SysV IPC SHM_UNLOCK. 3633 */ 3634 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3635 { 3636 struct lruvec *lruvec; 3637 struct zone *zone = NULL; 3638 int pgscanned = 0; 3639 int pgrescued = 0; 3640 int i; 3641 3642 for (i = 0; i < nr_pages; i++) { 3643 struct page *page = pages[i]; 3644 struct zone *pagezone; 3645 3646 pgscanned++; 3647 pagezone = page_zone(page); 3648 if (pagezone != zone) { 3649 if (zone) 3650 spin_unlock_irq(&zone->lru_lock); 3651 zone = pagezone; 3652 spin_lock_irq(&zone->lru_lock); 3653 } 3654 lruvec = mem_cgroup_page_lruvec(page, zone); 3655 3656 if (!PageLRU(page) || !PageUnevictable(page)) 3657 continue; 3658 3659 if (page_evictable(page)) { 3660 enum lru_list lru = page_lru_base_type(page); 3661 3662 VM_BUG_ON(PageActive(page)); 3663 ClearPageUnevictable(page); 3664 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3665 add_page_to_lru_list(page, lruvec, lru); 3666 pgrescued++; 3667 } 3668 } 3669 3670 if (zone) { 3671 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3672 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3673 spin_unlock_irq(&zone->lru_lock); 3674 } 3675 } 3676 #endif /* CONFIG_SHMEM */ 3677 3678 static void warn_scan_unevictable_pages(void) 3679 { 3680 printk_once(KERN_WARNING 3681 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3682 "disabled for lack of a legitimate use case. If you have " 3683 "one, please send an email to linux-mm@kvack.org.\n", 3684 current->comm); 3685 } 3686 3687 /* 3688 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3689 * all nodes' unevictable lists for evictable pages 3690 */ 3691 unsigned long scan_unevictable_pages; 3692 3693 int scan_unevictable_handler(struct ctl_table *table, int write, 3694 void __user *buffer, 3695 size_t *length, loff_t *ppos) 3696 { 3697 warn_scan_unevictable_pages(); 3698 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3699 scan_unevictable_pages = 0; 3700 return 0; 3701 } 3702 3703 #ifdef CONFIG_NUMA 3704 /* 3705 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3706 * a specified node's per zone unevictable lists for evictable pages. 3707 */ 3708 3709 static ssize_t read_scan_unevictable_node(struct device *dev, 3710 struct device_attribute *attr, 3711 char *buf) 3712 { 3713 warn_scan_unevictable_pages(); 3714 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3715 } 3716 3717 static ssize_t write_scan_unevictable_node(struct device *dev, 3718 struct device_attribute *attr, 3719 const char *buf, size_t count) 3720 { 3721 warn_scan_unevictable_pages(); 3722 return 1; 3723 } 3724 3725 3726 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3727 read_scan_unevictable_node, 3728 write_scan_unevictable_node); 3729 3730 int scan_unevictable_register_node(struct node *node) 3731 { 3732 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3733 } 3734 3735 void scan_unevictable_unregister_node(struct node *node) 3736 { 3737 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3738 } 3739 #endif 3740