1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 /* Allocation order */ 72 int order; 73 74 /* 75 * Nodemask of nodes allowed by the caller. If NULL, all nodes 76 * are scanned. 77 */ 78 nodemask_t *nodemask; 79 80 /* 81 * The memory cgroup that hit its limit and as a result is the 82 * primary target of this reclaim invocation. 83 */ 84 struct mem_cgroup *target_mem_cgroup; 85 86 /* Scan (total_size >> priority) pages at once */ 87 int priority; 88 89 /* The highest zone to isolate pages for reclaim from */ 90 enum zone_type reclaim_idx; 91 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 93 unsigned int may_writepage:1; 94 95 /* Can mapped pages be reclaimed? */ 96 unsigned int may_unmap:1; 97 98 /* Can pages be swapped as part of reclaim? */ 99 unsigned int may_swap:1; 100 101 /* 102 * Cgroups are not reclaimed below their configured memory.low, 103 * unless we threaten to OOM. If any cgroups are skipped due to 104 * memory.low and nothing was reclaimed, go back for memory.low. 105 */ 106 unsigned int memcg_low_reclaim:1; 107 unsigned int memcg_low_skipped:1; 108 109 unsigned int hibernation_mode:1; 110 111 /* One of the zones is ready for compaction */ 112 unsigned int compaction_ready:1; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 }; 120 121 #ifdef ARCH_HAS_PREFETCH 122 #define prefetch_prev_lru_page(_page, _base, _field) \ 123 do { \ 124 if ((_page)->lru.prev != _base) { \ 125 struct page *prev; \ 126 \ 127 prev = lru_to_page(&(_page->lru)); \ 128 prefetch(&prev->_field); \ 129 } \ 130 } while (0) 131 #else 132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 133 #endif 134 135 #ifdef ARCH_HAS_PREFETCHW 136 #define prefetchw_prev_lru_page(_page, _base, _field) \ 137 do { \ 138 if ((_page)->lru.prev != _base) { \ 139 struct page *prev; \ 140 \ 141 prev = lru_to_page(&(_page->lru)); \ 142 prefetchw(&prev->_field); \ 143 } \ 144 } while (0) 145 #else 146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 147 #endif 148 149 /* 150 * From 0 .. 100. Higher means more swappy. 151 */ 152 int vm_swappiness = 60; 153 /* 154 * The total number of pages which are beyond the high watermark within all 155 * zones. 156 */ 157 unsigned long vm_total_pages; 158 159 static LIST_HEAD(shrinker_list); 160 static DECLARE_RWSEM(shrinker_rwsem); 161 162 #ifdef CONFIG_MEMCG 163 static bool global_reclaim(struct scan_control *sc) 164 { 165 return !sc->target_mem_cgroup; 166 } 167 168 /** 169 * sane_reclaim - is the usual dirty throttling mechanism operational? 170 * @sc: scan_control in question 171 * 172 * The normal page dirty throttling mechanism in balance_dirty_pages() is 173 * completely broken with the legacy memcg and direct stalling in 174 * shrink_page_list() is used for throttling instead, which lacks all the 175 * niceties such as fairness, adaptive pausing, bandwidth proportional 176 * allocation and configurability. 177 * 178 * This function tests whether the vmscan currently in progress can assume 179 * that the normal dirty throttling mechanism is operational. 180 */ 181 static bool sane_reclaim(struct scan_control *sc) 182 { 183 struct mem_cgroup *memcg = sc->target_mem_cgroup; 184 185 if (!memcg) 186 return true; 187 #ifdef CONFIG_CGROUP_WRITEBACK 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 189 return true; 190 #endif 191 return false; 192 } 193 #else 194 static bool global_reclaim(struct scan_control *sc) 195 { 196 return true; 197 } 198 199 static bool sane_reclaim(struct scan_control *sc) 200 { 201 return true; 202 } 203 #endif 204 205 /* 206 * This misses isolated pages which are not accounted for to save counters. 207 * As the data only determines if reclaim or compaction continues, it is 208 * not expected that isolated pages will be a dominating factor. 209 */ 210 unsigned long zone_reclaimable_pages(struct zone *zone) 211 { 212 unsigned long nr; 213 214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 216 if (get_nr_swap_pages() > 0) 217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 219 220 return nr; 221 } 222 223 /** 224 * lruvec_lru_size - Returns the number of pages on the given LRU list. 225 * @lruvec: lru vector 226 * @lru: lru to use 227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 228 */ 229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 230 { 231 unsigned long lru_size; 232 int zid; 233 234 if (!mem_cgroup_disabled()) 235 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 236 else 237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 238 239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 241 unsigned long size; 242 243 if (!managed_zone(zone)) 244 continue; 245 246 if (!mem_cgroup_disabled()) 247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 248 else 249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 250 NR_ZONE_LRU_BASE + lru); 251 lru_size -= min(size, lru_size); 252 } 253 254 return lru_size; 255 256 } 257 258 /* 259 * Add a shrinker callback to be called from the vm. 260 */ 261 int register_shrinker(struct shrinker *shrinker) 262 { 263 size_t size = sizeof(*shrinker->nr_deferred); 264 265 if (shrinker->flags & SHRINKER_NUMA_AWARE) 266 size *= nr_node_ids; 267 268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 269 if (!shrinker->nr_deferred) 270 return -ENOMEM; 271 272 down_write(&shrinker_rwsem); 273 list_add_tail(&shrinker->list, &shrinker_list); 274 up_write(&shrinker_rwsem); 275 return 0; 276 } 277 EXPORT_SYMBOL(register_shrinker); 278 279 /* 280 * Remove one 281 */ 282 void unregister_shrinker(struct shrinker *shrinker) 283 { 284 if (!shrinker->nr_deferred) 285 return; 286 down_write(&shrinker_rwsem); 287 list_del(&shrinker->list); 288 up_write(&shrinker_rwsem); 289 kfree(shrinker->nr_deferred); 290 shrinker->nr_deferred = NULL; 291 } 292 EXPORT_SYMBOL(unregister_shrinker); 293 294 #define SHRINK_BATCH 128 295 296 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 297 struct shrinker *shrinker, int priority) 298 { 299 unsigned long freed = 0; 300 unsigned long long delta; 301 long total_scan; 302 long freeable; 303 long nr; 304 long new_nr; 305 int nid = shrinkctl->nid; 306 long batch_size = shrinker->batch ? shrinker->batch 307 : SHRINK_BATCH; 308 long scanned = 0, next_deferred; 309 310 freeable = shrinker->count_objects(shrinker, shrinkctl); 311 if (freeable == 0) 312 return 0; 313 314 /* 315 * copy the current shrinker scan count into a local variable 316 * and zero it so that other concurrent shrinker invocations 317 * don't also do this scanning work. 318 */ 319 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 320 321 total_scan = nr; 322 delta = freeable >> priority; 323 delta *= 4; 324 do_div(delta, shrinker->seeks); 325 total_scan += delta; 326 if (total_scan < 0) { 327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 328 shrinker->scan_objects, total_scan); 329 total_scan = freeable; 330 next_deferred = nr; 331 } else 332 next_deferred = total_scan; 333 334 /* 335 * We need to avoid excessive windup on filesystem shrinkers 336 * due to large numbers of GFP_NOFS allocations causing the 337 * shrinkers to return -1 all the time. This results in a large 338 * nr being built up so when a shrink that can do some work 339 * comes along it empties the entire cache due to nr >>> 340 * freeable. This is bad for sustaining a working set in 341 * memory. 342 * 343 * Hence only allow the shrinker to scan the entire cache when 344 * a large delta change is calculated directly. 345 */ 346 if (delta < freeable / 4) 347 total_scan = min(total_scan, freeable / 2); 348 349 /* 350 * Avoid risking looping forever due to too large nr value: 351 * never try to free more than twice the estimate number of 352 * freeable entries. 353 */ 354 if (total_scan > freeable * 2) 355 total_scan = freeable * 2; 356 357 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 358 freeable, delta, total_scan, priority); 359 360 /* 361 * Normally, we should not scan less than batch_size objects in one 362 * pass to avoid too frequent shrinker calls, but if the slab has less 363 * than batch_size objects in total and we are really tight on memory, 364 * we will try to reclaim all available objects, otherwise we can end 365 * up failing allocations although there are plenty of reclaimable 366 * objects spread over several slabs with usage less than the 367 * batch_size. 368 * 369 * We detect the "tight on memory" situations by looking at the total 370 * number of objects we want to scan (total_scan). If it is greater 371 * than the total number of objects on slab (freeable), we must be 372 * scanning at high prio and therefore should try to reclaim as much as 373 * possible. 374 */ 375 while (total_scan >= batch_size || 376 total_scan >= freeable) { 377 unsigned long ret; 378 unsigned long nr_to_scan = min(batch_size, total_scan); 379 380 shrinkctl->nr_to_scan = nr_to_scan; 381 shrinkctl->nr_scanned = nr_to_scan; 382 ret = shrinker->scan_objects(shrinker, shrinkctl); 383 if (ret == SHRINK_STOP) 384 break; 385 freed += ret; 386 387 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 388 total_scan -= shrinkctl->nr_scanned; 389 scanned += shrinkctl->nr_scanned; 390 391 cond_resched(); 392 } 393 394 if (next_deferred >= scanned) 395 next_deferred -= scanned; 396 else 397 next_deferred = 0; 398 /* 399 * move the unused scan count back into the shrinker in a 400 * manner that handles concurrent updates. If we exhausted the 401 * scan, there is no need to do an update. 402 */ 403 if (next_deferred > 0) 404 new_nr = atomic_long_add_return(next_deferred, 405 &shrinker->nr_deferred[nid]); 406 else 407 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 408 409 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 410 return freed; 411 } 412 413 /** 414 * shrink_slab - shrink slab caches 415 * @gfp_mask: allocation context 416 * @nid: node whose slab caches to target 417 * @memcg: memory cgroup whose slab caches to target 418 * @priority: the reclaim priority 419 * 420 * Call the shrink functions to age shrinkable caches. 421 * 422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 423 * unaware shrinkers will receive a node id of 0 instead. 424 * 425 * @memcg specifies the memory cgroup to target. If it is not NULL, 426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 427 * objects from the memory cgroup specified. Otherwise, only unaware 428 * shrinkers are called. 429 * 430 * @priority is sc->priority, we take the number of objects and >> by priority 431 * in order to get the scan target. 432 * 433 * Returns the number of reclaimed slab objects. 434 */ 435 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 436 struct mem_cgroup *memcg, 437 int priority) 438 { 439 struct shrinker *shrinker; 440 unsigned long freed = 0; 441 442 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 443 return 0; 444 445 if (!down_read_trylock(&shrinker_rwsem)) { 446 /* 447 * If we would return 0, our callers would understand that we 448 * have nothing else to shrink and give up trying. By returning 449 * 1 we keep it going and assume we'll be able to shrink next 450 * time. 451 */ 452 freed = 1; 453 goto out; 454 } 455 456 list_for_each_entry(shrinker, &shrinker_list, list) { 457 struct shrink_control sc = { 458 .gfp_mask = gfp_mask, 459 .nid = nid, 460 .memcg = memcg, 461 }; 462 463 /* 464 * If kernel memory accounting is disabled, we ignore 465 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 466 * passing NULL for memcg. 467 */ 468 if (memcg_kmem_enabled() && 469 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 470 continue; 471 472 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 473 sc.nid = 0; 474 475 freed += do_shrink_slab(&sc, shrinker, priority); 476 /* 477 * Bail out if someone want to register a new shrinker to 478 * prevent the regsitration from being stalled for long periods 479 * by parallel ongoing shrinking. 480 */ 481 if (rwsem_is_contended(&shrinker_rwsem)) { 482 freed = freed ? : 1; 483 break; 484 } 485 } 486 487 up_read(&shrinker_rwsem); 488 out: 489 cond_resched(); 490 return freed; 491 } 492 493 void drop_slab_node(int nid) 494 { 495 unsigned long freed; 496 497 do { 498 struct mem_cgroup *memcg = NULL; 499 500 freed = 0; 501 do { 502 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 503 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 504 } while (freed > 10); 505 } 506 507 void drop_slab(void) 508 { 509 int nid; 510 511 for_each_online_node(nid) 512 drop_slab_node(nid); 513 } 514 515 static inline int is_page_cache_freeable(struct page *page) 516 { 517 /* 518 * A freeable page cache page is referenced only by the caller 519 * that isolated the page, the page cache radix tree and 520 * optional buffer heads at page->private. 521 */ 522 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 523 HPAGE_PMD_NR : 1; 524 return page_count(page) - page_has_private(page) == 1 + radix_pins; 525 } 526 527 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 528 { 529 if (current->flags & PF_SWAPWRITE) 530 return 1; 531 if (!inode_write_congested(inode)) 532 return 1; 533 if (inode_to_bdi(inode) == current->backing_dev_info) 534 return 1; 535 return 0; 536 } 537 538 /* 539 * We detected a synchronous write error writing a page out. Probably 540 * -ENOSPC. We need to propagate that into the address_space for a subsequent 541 * fsync(), msync() or close(). 542 * 543 * The tricky part is that after writepage we cannot touch the mapping: nothing 544 * prevents it from being freed up. But we have a ref on the page and once 545 * that page is locked, the mapping is pinned. 546 * 547 * We're allowed to run sleeping lock_page() here because we know the caller has 548 * __GFP_FS. 549 */ 550 static void handle_write_error(struct address_space *mapping, 551 struct page *page, int error) 552 { 553 lock_page(page); 554 if (page_mapping(page) == mapping) 555 mapping_set_error(mapping, error); 556 unlock_page(page); 557 } 558 559 /* possible outcome of pageout() */ 560 typedef enum { 561 /* failed to write page out, page is locked */ 562 PAGE_KEEP, 563 /* move page to the active list, page is locked */ 564 PAGE_ACTIVATE, 565 /* page has been sent to the disk successfully, page is unlocked */ 566 PAGE_SUCCESS, 567 /* page is clean and locked */ 568 PAGE_CLEAN, 569 } pageout_t; 570 571 /* 572 * pageout is called by shrink_page_list() for each dirty page. 573 * Calls ->writepage(). 574 */ 575 static pageout_t pageout(struct page *page, struct address_space *mapping, 576 struct scan_control *sc) 577 { 578 /* 579 * If the page is dirty, only perform writeback if that write 580 * will be non-blocking. To prevent this allocation from being 581 * stalled by pagecache activity. But note that there may be 582 * stalls if we need to run get_block(). We could test 583 * PagePrivate for that. 584 * 585 * If this process is currently in __generic_file_write_iter() against 586 * this page's queue, we can perform writeback even if that 587 * will block. 588 * 589 * If the page is swapcache, write it back even if that would 590 * block, for some throttling. This happens by accident, because 591 * swap_backing_dev_info is bust: it doesn't reflect the 592 * congestion state of the swapdevs. Easy to fix, if needed. 593 */ 594 if (!is_page_cache_freeable(page)) 595 return PAGE_KEEP; 596 if (!mapping) { 597 /* 598 * Some data journaling orphaned pages can have 599 * page->mapping == NULL while being dirty with clean buffers. 600 */ 601 if (page_has_private(page)) { 602 if (try_to_free_buffers(page)) { 603 ClearPageDirty(page); 604 pr_info("%s: orphaned page\n", __func__); 605 return PAGE_CLEAN; 606 } 607 } 608 return PAGE_KEEP; 609 } 610 if (mapping->a_ops->writepage == NULL) 611 return PAGE_ACTIVATE; 612 if (!may_write_to_inode(mapping->host, sc)) 613 return PAGE_KEEP; 614 615 if (clear_page_dirty_for_io(page)) { 616 int res; 617 struct writeback_control wbc = { 618 .sync_mode = WB_SYNC_NONE, 619 .nr_to_write = SWAP_CLUSTER_MAX, 620 .range_start = 0, 621 .range_end = LLONG_MAX, 622 .for_reclaim = 1, 623 }; 624 625 SetPageReclaim(page); 626 res = mapping->a_ops->writepage(page, &wbc); 627 if (res < 0) 628 handle_write_error(mapping, page, res); 629 if (res == AOP_WRITEPAGE_ACTIVATE) { 630 ClearPageReclaim(page); 631 return PAGE_ACTIVATE; 632 } 633 634 if (!PageWriteback(page)) { 635 /* synchronous write or broken a_ops? */ 636 ClearPageReclaim(page); 637 } 638 trace_mm_vmscan_writepage(page); 639 inc_node_page_state(page, NR_VMSCAN_WRITE); 640 return PAGE_SUCCESS; 641 } 642 643 return PAGE_CLEAN; 644 } 645 646 /* 647 * Same as remove_mapping, but if the page is removed from the mapping, it 648 * gets returned with a refcount of 0. 649 */ 650 static int __remove_mapping(struct address_space *mapping, struct page *page, 651 bool reclaimed) 652 { 653 unsigned long flags; 654 int refcount; 655 656 BUG_ON(!PageLocked(page)); 657 BUG_ON(mapping != page_mapping(page)); 658 659 spin_lock_irqsave(&mapping->tree_lock, flags); 660 /* 661 * The non racy check for a busy page. 662 * 663 * Must be careful with the order of the tests. When someone has 664 * a ref to the page, it may be possible that they dirty it then 665 * drop the reference. So if PageDirty is tested before page_count 666 * here, then the following race may occur: 667 * 668 * get_user_pages(&page); 669 * [user mapping goes away] 670 * write_to(page); 671 * !PageDirty(page) [good] 672 * SetPageDirty(page); 673 * put_page(page); 674 * !page_count(page) [good, discard it] 675 * 676 * [oops, our write_to data is lost] 677 * 678 * Reversing the order of the tests ensures such a situation cannot 679 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 680 * load is not satisfied before that of page->_refcount. 681 * 682 * Note that if SetPageDirty is always performed via set_page_dirty, 683 * and thus under tree_lock, then this ordering is not required. 684 */ 685 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 686 refcount = 1 + HPAGE_PMD_NR; 687 else 688 refcount = 2; 689 if (!page_ref_freeze(page, refcount)) 690 goto cannot_free; 691 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 692 if (unlikely(PageDirty(page))) { 693 page_ref_unfreeze(page, refcount); 694 goto cannot_free; 695 } 696 697 if (PageSwapCache(page)) { 698 swp_entry_t swap = { .val = page_private(page) }; 699 mem_cgroup_swapout(page, swap); 700 __delete_from_swap_cache(page); 701 spin_unlock_irqrestore(&mapping->tree_lock, flags); 702 put_swap_page(page, swap); 703 } else { 704 void (*freepage)(struct page *); 705 void *shadow = NULL; 706 707 freepage = mapping->a_ops->freepage; 708 /* 709 * Remember a shadow entry for reclaimed file cache in 710 * order to detect refaults, thus thrashing, later on. 711 * 712 * But don't store shadows in an address space that is 713 * already exiting. This is not just an optizimation, 714 * inode reclaim needs to empty out the radix tree or 715 * the nodes are lost. Don't plant shadows behind its 716 * back. 717 * 718 * We also don't store shadows for DAX mappings because the 719 * only page cache pages found in these are zero pages 720 * covering holes, and because we don't want to mix DAX 721 * exceptional entries and shadow exceptional entries in the 722 * same page_tree. 723 */ 724 if (reclaimed && page_is_file_cache(page) && 725 !mapping_exiting(mapping) && !dax_mapping(mapping)) 726 shadow = workingset_eviction(mapping, page); 727 __delete_from_page_cache(page, shadow); 728 spin_unlock_irqrestore(&mapping->tree_lock, flags); 729 730 if (freepage != NULL) 731 freepage(page); 732 } 733 734 return 1; 735 736 cannot_free: 737 spin_unlock_irqrestore(&mapping->tree_lock, flags); 738 return 0; 739 } 740 741 /* 742 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 743 * someone else has a ref on the page, abort and return 0. If it was 744 * successfully detached, return 1. Assumes the caller has a single ref on 745 * this page. 746 */ 747 int remove_mapping(struct address_space *mapping, struct page *page) 748 { 749 if (__remove_mapping(mapping, page, false)) { 750 /* 751 * Unfreezing the refcount with 1 rather than 2 effectively 752 * drops the pagecache ref for us without requiring another 753 * atomic operation. 754 */ 755 page_ref_unfreeze(page, 1); 756 return 1; 757 } 758 return 0; 759 } 760 761 /** 762 * putback_lru_page - put previously isolated page onto appropriate LRU list 763 * @page: page to be put back to appropriate lru list 764 * 765 * Add previously isolated @page to appropriate LRU list. 766 * Page may still be unevictable for other reasons. 767 * 768 * lru_lock must not be held, interrupts must be enabled. 769 */ 770 void putback_lru_page(struct page *page) 771 { 772 lru_cache_add(page); 773 put_page(page); /* drop ref from isolate */ 774 } 775 776 enum page_references { 777 PAGEREF_RECLAIM, 778 PAGEREF_RECLAIM_CLEAN, 779 PAGEREF_KEEP, 780 PAGEREF_ACTIVATE, 781 }; 782 783 static enum page_references page_check_references(struct page *page, 784 struct scan_control *sc) 785 { 786 int referenced_ptes, referenced_page; 787 unsigned long vm_flags; 788 789 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 790 &vm_flags); 791 referenced_page = TestClearPageReferenced(page); 792 793 /* 794 * Mlock lost the isolation race with us. Let try_to_unmap() 795 * move the page to the unevictable list. 796 */ 797 if (vm_flags & VM_LOCKED) 798 return PAGEREF_RECLAIM; 799 800 if (referenced_ptes) { 801 if (PageSwapBacked(page)) 802 return PAGEREF_ACTIVATE; 803 /* 804 * All mapped pages start out with page table 805 * references from the instantiating fault, so we need 806 * to look twice if a mapped file page is used more 807 * than once. 808 * 809 * Mark it and spare it for another trip around the 810 * inactive list. Another page table reference will 811 * lead to its activation. 812 * 813 * Note: the mark is set for activated pages as well 814 * so that recently deactivated but used pages are 815 * quickly recovered. 816 */ 817 SetPageReferenced(page); 818 819 if (referenced_page || referenced_ptes > 1) 820 return PAGEREF_ACTIVATE; 821 822 /* 823 * Activate file-backed executable pages after first usage. 824 */ 825 if (vm_flags & VM_EXEC) 826 return PAGEREF_ACTIVATE; 827 828 return PAGEREF_KEEP; 829 } 830 831 /* Reclaim if clean, defer dirty pages to writeback */ 832 if (referenced_page && !PageSwapBacked(page)) 833 return PAGEREF_RECLAIM_CLEAN; 834 835 return PAGEREF_RECLAIM; 836 } 837 838 /* Check if a page is dirty or under writeback */ 839 static void page_check_dirty_writeback(struct page *page, 840 bool *dirty, bool *writeback) 841 { 842 struct address_space *mapping; 843 844 /* 845 * Anonymous pages are not handled by flushers and must be written 846 * from reclaim context. Do not stall reclaim based on them 847 */ 848 if (!page_is_file_cache(page) || 849 (PageAnon(page) && !PageSwapBacked(page))) { 850 *dirty = false; 851 *writeback = false; 852 return; 853 } 854 855 /* By default assume that the page flags are accurate */ 856 *dirty = PageDirty(page); 857 *writeback = PageWriteback(page); 858 859 /* Verify dirty/writeback state if the filesystem supports it */ 860 if (!page_has_private(page)) 861 return; 862 863 mapping = page_mapping(page); 864 if (mapping && mapping->a_ops->is_dirty_writeback) 865 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 866 } 867 868 struct reclaim_stat { 869 unsigned nr_dirty; 870 unsigned nr_unqueued_dirty; 871 unsigned nr_congested; 872 unsigned nr_writeback; 873 unsigned nr_immediate; 874 unsigned nr_activate; 875 unsigned nr_ref_keep; 876 unsigned nr_unmap_fail; 877 }; 878 879 /* 880 * shrink_page_list() returns the number of reclaimed pages 881 */ 882 static unsigned long shrink_page_list(struct list_head *page_list, 883 struct pglist_data *pgdat, 884 struct scan_control *sc, 885 enum ttu_flags ttu_flags, 886 struct reclaim_stat *stat, 887 bool force_reclaim) 888 { 889 LIST_HEAD(ret_pages); 890 LIST_HEAD(free_pages); 891 int pgactivate = 0; 892 unsigned nr_unqueued_dirty = 0; 893 unsigned nr_dirty = 0; 894 unsigned nr_congested = 0; 895 unsigned nr_reclaimed = 0; 896 unsigned nr_writeback = 0; 897 unsigned nr_immediate = 0; 898 unsigned nr_ref_keep = 0; 899 unsigned nr_unmap_fail = 0; 900 901 cond_resched(); 902 903 while (!list_empty(page_list)) { 904 struct address_space *mapping; 905 struct page *page; 906 int may_enter_fs; 907 enum page_references references = PAGEREF_RECLAIM_CLEAN; 908 bool dirty, writeback; 909 910 cond_resched(); 911 912 page = lru_to_page(page_list); 913 list_del(&page->lru); 914 915 if (!trylock_page(page)) 916 goto keep; 917 918 VM_BUG_ON_PAGE(PageActive(page), page); 919 920 sc->nr_scanned++; 921 922 if (unlikely(!page_evictable(page))) 923 goto activate_locked; 924 925 if (!sc->may_unmap && page_mapped(page)) 926 goto keep_locked; 927 928 /* Double the slab pressure for mapped and swapcache pages */ 929 if ((page_mapped(page) || PageSwapCache(page)) && 930 !(PageAnon(page) && !PageSwapBacked(page))) 931 sc->nr_scanned++; 932 933 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 935 936 /* 937 * The number of dirty pages determines if a zone is marked 938 * reclaim_congested which affects wait_iff_congested. kswapd 939 * will stall and start writing pages if the tail of the LRU 940 * is all dirty unqueued pages. 941 */ 942 page_check_dirty_writeback(page, &dirty, &writeback); 943 if (dirty || writeback) 944 nr_dirty++; 945 946 if (dirty && !writeback) 947 nr_unqueued_dirty++; 948 949 /* 950 * Treat this page as congested if the underlying BDI is or if 951 * pages are cycling through the LRU so quickly that the 952 * pages marked for immediate reclaim are making it to the 953 * end of the LRU a second time. 954 */ 955 mapping = page_mapping(page); 956 if (((dirty || writeback) && mapping && 957 inode_write_congested(mapping->host)) || 958 (writeback && PageReclaim(page))) 959 nr_congested++; 960 961 /* 962 * If a page at the tail of the LRU is under writeback, there 963 * are three cases to consider. 964 * 965 * 1) If reclaim is encountering an excessive number of pages 966 * under writeback and this page is both under writeback and 967 * PageReclaim then it indicates that pages are being queued 968 * for IO but are being recycled through the LRU before the 969 * IO can complete. Waiting on the page itself risks an 970 * indefinite stall if it is impossible to writeback the 971 * page due to IO error or disconnected storage so instead 972 * note that the LRU is being scanned too quickly and the 973 * caller can stall after page list has been processed. 974 * 975 * 2) Global or new memcg reclaim encounters a page that is 976 * not marked for immediate reclaim, or the caller does not 977 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 978 * not to fs). In this case mark the page for immediate 979 * reclaim and continue scanning. 980 * 981 * Require may_enter_fs because we would wait on fs, which 982 * may not have submitted IO yet. And the loop driver might 983 * enter reclaim, and deadlock if it waits on a page for 984 * which it is needed to do the write (loop masks off 985 * __GFP_IO|__GFP_FS for this reason); but more thought 986 * would probably show more reasons. 987 * 988 * 3) Legacy memcg encounters a page that is already marked 989 * PageReclaim. memcg does not have any dirty pages 990 * throttling so we could easily OOM just because too many 991 * pages are in writeback and there is nothing else to 992 * reclaim. Wait for the writeback to complete. 993 * 994 * In cases 1) and 2) we activate the pages to get them out of 995 * the way while we continue scanning for clean pages on the 996 * inactive list and refilling from the active list. The 997 * observation here is that waiting for disk writes is more 998 * expensive than potentially causing reloads down the line. 999 * Since they're marked for immediate reclaim, they won't put 1000 * memory pressure on the cache working set any longer than it 1001 * takes to write them to disk. 1002 */ 1003 if (PageWriteback(page)) { 1004 /* Case 1 above */ 1005 if (current_is_kswapd() && 1006 PageReclaim(page) && 1007 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1008 nr_immediate++; 1009 goto activate_locked; 1010 1011 /* Case 2 above */ 1012 } else if (sane_reclaim(sc) || 1013 !PageReclaim(page) || !may_enter_fs) { 1014 /* 1015 * This is slightly racy - end_page_writeback() 1016 * might have just cleared PageReclaim, then 1017 * setting PageReclaim here end up interpreted 1018 * as PageReadahead - but that does not matter 1019 * enough to care. What we do want is for this 1020 * page to have PageReclaim set next time memcg 1021 * reclaim reaches the tests above, so it will 1022 * then wait_on_page_writeback() to avoid OOM; 1023 * and it's also appropriate in global reclaim. 1024 */ 1025 SetPageReclaim(page); 1026 nr_writeback++; 1027 goto activate_locked; 1028 1029 /* Case 3 above */ 1030 } else { 1031 unlock_page(page); 1032 wait_on_page_writeback(page); 1033 /* then go back and try same page again */ 1034 list_add_tail(&page->lru, page_list); 1035 continue; 1036 } 1037 } 1038 1039 if (!force_reclaim) 1040 references = page_check_references(page, sc); 1041 1042 switch (references) { 1043 case PAGEREF_ACTIVATE: 1044 goto activate_locked; 1045 case PAGEREF_KEEP: 1046 nr_ref_keep++; 1047 goto keep_locked; 1048 case PAGEREF_RECLAIM: 1049 case PAGEREF_RECLAIM_CLEAN: 1050 ; /* try to reclaim the page below */ 1051 } 1052 1053 /* 1054 * Anonymous process memory has backing store? 1055 * Try to allocate it some swap space here. 1056 * Lazyfree page could be freed directly 1057 */ 1058 if (PageAnon(page) && PageSwapBacked(page)) { 1059 if (!PageSwapCache(page)) { 1060 if (!(sc->gfp_mask & __GFP_IO)) 1061 goto keep_locked; 1062 if (PageTransHuge(page)) { 1063 /* cannot split THP, skip it */ 1064 if (!can_split_huge_page(page, NULL)) 1065 goto activate_locked; 1066 /* 1067 * Split pages without a PMD map right 1068 * away. Chances are some or all of the 1069 * tail pages can be freed without IO. 1070 */ 1071 if (!compound_mapcount(page) && 1072 split_huge_page_to_list(page, 1073 page_list)) 1074 goto activate_locked; 1075 } 1076 if (!add_to_swap(page)) { 1077 if (!PageTransHuge(page)) 1078 goto activate_locked; 1079 /* Fallback to swap normal pages */ 1080 if (split_huge_page_to_list(page, 1081 page_list)) 1082 goto activate_locked; 1083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1084 count_vm_event(THP_SWPOUT_FALLBACK); 1085 #endif 1086 if (!add_to_swap(page)) 1087 goto activate_locked; 1088 } 1089 1090 may_enter_fs = 1; 1091 1092 /* Adding to swap updated mapping */ 1093 mapping = page_mapping(page); 1094 } 1095 } else if (unlikely(PageTransHuge(page))) { 1096 /* Split file THP */ 1097 if (split_huge_page_to_list(page, page_list)) 1098 goto keep_locked; 1099 } 1100 1101 /* 1102 * The page is mapped into the page tables of one or more 1103 * processes. Try to unmap it here. 1104 */ 1105 if (page_mapped(page)) { 1106 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1107 1108 if (unlikely(PageTransHuge(page))) 1109 flags |= TTU_SPLIT_HUGE_PMD; 1110 if (!try_to_unmap(page, flags)) { 1111 nr_unmap_fail++; 1112 goto activate_locked; 1113 } 1114 } 1115 1116 if (PageDirty(page)) { 1117 /* 1118 * Only kswapd can writeback filesystem pages 1119 * to avoid risk of stack overflow. But avoid 1120 * injecting inefficient single-page IO into 1121 * flusher writeback as much as possible: only 1122 * write pages when we've encountered many 1123 * dirty pages, and when we've already scanned 1124 * the rest of the LRU for clean pages and see 1125 * the same dirty pages again (PageReclaim). 1126 */ 1127 if (page_is_file_cache(page) && 1128 (!current_is_kswapd() || !PageReclaim(page) || 1129 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1130 /* 1131 * Immediately reclaim when written back. 1132 * Similar in principal to deactivate_page() 1133 * except we already have the page isolated 1134 * and know it's dirty 1135 */ 1136 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1137 SetPageReclaim(page); 1138 1139 goto activate_locked; 1140 } 1141 1142 if (references == PAGEREF_RECLAIM_CLEAN) 1143 goto keep_locked; 1144 if (!may_enter_fs) 1145 goto keep_locked; 1146 if (!sc->may_writepage) 1147 goto keep_locked; 1148 1149 /* 1150 * Page is dirty. Flush the TLB if a writable entry 1151 * potentially exists to avoid CPU writes after IO 1152 * starts and then write it out here. 1153 */ 1154 try_to_unmap_flush_dirty(); 1155 switch (pageout(page, mapping, sc)) { 1156 case PAGE_KEEP: 1157 goto keep_locked; 1158 case PAGE_ACTIVATE: 1159 goto activate_locked; 1160 case PAGE_SUCCESS: 1161 if (PageWriteback(page)) 1162 goto keep; 1163 if (PageDirty(page)) 1164 goto keep; 1165 1166 /* 1167 * A synchronous write - probably a ramdisk. Go 1168 * ahead and try to reclaim the page. 1169 */ 1170 if (!trylock_page(page)) 1171 goto keep; 1172 if (PageDirty(page) || PageWriteback(page)) 1173 goto keep_locked; 1174 mapping = page_mapping(page); 1175 case PAGE_CLEAN: 1176 ; /* try to free the page below */ 1177 } 1178 } 1179 1180 /* 1181 * If the page has buffers, try to free the buffer mappings 1182 * associated with this page. If we succeed we try to free 1183 * the page as well. 1184 * 1185 * We do this even if the page is PageDirty(). 1186 * try_to_release_page() does not perform I/O, but it is 1187 * possible for a page to have PageDirty set, but it is actually 1188 * clean (all its buffers are clean). This happens if the 1189 * buffers were written out directly, with submit_bh(). ext3 1190 * will do this, as well as the blockdev mapping. 1191 * try_to_release_page() will discover that cleanness and will 1192 * drop the buffers and mark the page clean - it can be freed. 1193 * 1194 * Rarely, pages can have buffers and no ->mapping. These are 1195 * the pages which were not successfully invalidated in 1196 * truncate_complete_page(). We try to drop those buffers here 1197 * and if that worked, and the page is no longer mapped into 1198 * process address space (page_count == 1) it can be freed. 1199 * Otherwise, leave the page on the LRU so it is swappable. 1200 */ 1201 if (page_has_private(page)) { 1202 if (!try_to_release_page(page, sc->gfp_mask)) 1203 goto activate_locked; 1204 if (!mapping && page_count(page) == 1) { 1205 unlock_page(page); 1206 if (put_page_testzero(page)) 1207 goto free_it; 1208 else { 1209 /* 1210 * rare race with speculative reference. 1211 * the speculative reference will free 1212 * this page shortly, so we may 1213 * increment nr_reclaimed here (and 1214 * leave it off the LRU). 1215 */ 1216 nr_reclaimed++; 1217 continue; 1218 } 1219 } 1220 } 1221 1222 if (PageAnon(page) && !PageSwapBacked(page)) { 1223 /* follow __remove_mapping for reference */ 1224 if (!page_ref_freeze(page, 1)) 1225 goto keep_locked; 1226 if (PageDirty(page)) { 1227 page_ref_unfreeze(page, 1); 1228 goto keep_locked; 1229 } 1230 1231 count_vm_event(PGLAZYFREED); 1232 count_memcg_page_event(page, PGLAZYFREED); 1233 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1234 goto keep_locked; 1235 /* 1236 * At this point, we have no other references and there is 1237 * no way to pick any more up (removed from LRU, removed 1238 * from pagecache). Can use non-atomic bitops now (and 1239 * we obviously don't have to worry about waking up a process 1240 * waiting on the page lock, because there are no references. 1241 */ 1242 __ClearPageLocked(page); 1243 free_it: 1244 nr_reclaimed++; 1245 1246 /* 1247 * Is there need to periodically free_page_list? It would 1248 * appear not as the counts should be low 1249 */ 1250 if (unlikely(PageTransHuge(page))) { 1251 mem_cgroup_uncharge(page); 1252 (*get_compound_page_dtor(page))(page); 1253 } else 1254 list_add(&page->lru, &free_pages); 1255 continue; 1256 1257 activate_locked: 1258 /* Not a candidate for swapping, so reclaim swap space. */ 1259 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1260 PageMlocked(page))) 1261 try_to_free_swap(page); 1262 VM_BUG_ON_PAGE(PageActive(page), page); 1263 if (!PageMlocked(page)) { 1264 SetPageActive(page); 1265 pgactivate++; 1266 count_memcg_page_event(page, PGACTIVATE); 1267 } 1268 keep_locked: 1269 unlock_page(page); 1270 keep: 1271 list_add(&page->lru, &ret_pages); 1272 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1273 } 1274 1275 mem_cgroup_uncharge_list(&free_pages); 1276 try_to_unmap_flush(); 1277 free_unref_page_list(&free_pages); 1278 1279 list_splice(&ret_pages, page_list); 1280 count_vm_events(PGACTIVATE, pgactivate); 1281 1282 if (stat) { 1283 stat->nr_dirty = nr_dirty; 1284 stat->nr_congested = nr_congested; 1285 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1286 stat->nr_writeback = nr_writeback; 1287 stat->nr_immediate = nr_immediate; 1288 stat->nr_activate = pgactivate; 1289 stat->nr_ref_keep = nr_ref_keep; 1290 stat->nr_unmap_fail = nr_unmap_fail; 1291 } 1292 return nr_reclaimed; 1293 } 1294 1295 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1296 struct list_head *page_list) 1297 { 1298 struct scan_control sc = { 1299 .gfp_mask = GFP_KERNEL, 1300 .priority = DEF_PRIORITY, 1301 .may_unmap = 1, 1302 }; 1303 unsigned long ret; 1304 struct page *page, *next; 1305 LIST_HEAD(clean_pages); 1306 1307 list_for_each_entry_safe(page, next, page_list, lru) { 1308 if (page_is_file_cache(page) && !PageDirty(page) && 1309 !__PageMovable(page)) { 1310 ClearPageActive(page); 1311 list_move(&page->lru, &clean_pages); 1312 } 1313 } 1314 1315 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1316 TTU_IGNORE_ACCESS, NULL, true); 1317 list_splice(&clean_pages, page_list); 1318 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1319 return ret; 1320 } 1321 1322 /* 1323 * Attempt to remove the specified page from its LRU. Only take this page 1324 * if it is of the appropriate PageActive status. Pages which are being 1325 * freed elsewhere are also ignored. 1326 * 1327 * page: page to consider 1328 * mode: one of the LRU isolation modes defined above 1329 * 1330 * returns 0 on success, -ve errno on failure. 1331 */ 1332 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1333 { 1334 int ret = -EINVAL; 1335 1336 /* Only take pages on the LRU. */ 1337 if (!PageLRU(page)) 1338 return ret; 1339 1340 /* Compaction should not handle unevictable pages but CMA can do so */ 1341 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1342 return ret; 1343 1344 ret = -EBUSY; 1345 1346 /* 1347 * To minimise LRU disruption, the caller can indicate that it only 1348 * wants to isolate pages it will be able to operate on without 1349 * blocking - clean pages for the most part. 1350 * 1351 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1352 * that it is possible to migrate without blocking 1353 */ 1354 if (mode & ISOLATE_ASYNC_MIGRATE) { 1355 /* All the caller can do on PageWriteback is block */ 1356 if (PageWriteback(page)) 1357 return ret; 1358 1359 if (PageDirty(page)) { 1360 struct address_space *mapping; 1361 bool migrate_dirty; 1362 1363 /* 1364 * Only pages without mappings or that have a 1365 * ->migratepage callback are possible to migrate 1366 * without blocking. However, we can be racing with 1367 * truncation so it's necessary to lock the page 1368 * to stabilise the mapping as truncation holds 1369 * the page lock until after the page is removed 1370 * from the page cache. 1371 */ 1372 if (!trylock_page(page)) 1373 return ret; 1374 1375 mapping = page_mapping(page); 1376 migrate_dirty = mapping && mapping->a_ops->migratepage; 1377 unlock_page(page); 1378 if (!migrate_dirty) 1379 return ret; 1380 } 1381 } 1382 1383 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1384 return ret; 1385 1386 if (likely(get_page_unless_zero(page))) { 1387 /* 1388 * Be careful not to clear PageLRU until after we're 1389 * sure the page is not being freed elsewhere -- the 1390 * page release code relies on it. 1391 */ 1392 ClearPageLRU(page); 1393 ret = 0; 1394 } 1395 1396 return ret; 1397 } 1398 1399 1400 /* 1401 * Update LRU sizes after isolating pages. The LRU size updates must 1402 * be complete before mem_cgroup_update_lru_size due to a santity check. 1403 */ 1404 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1405 enum lru_list lru, unsigned long *nr_zone_taken) 1406 { 1407 int zid; 1408 1409 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1410 if (!nr_zone_taken[zid]) 1411 continue; 1412 1413 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1414 #ifdef CONFIG_MEMCG 1415 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1416 #endif 1417 } 1418 1419 } 1420 1421 /* 1422 * zone_lru_lock is heavily contended. Some of the functions that 1423 * shrink the lists perform better by taking out a batch of pages 1424 * and working on them outside the LRU lock. 1425 * 1426 * For pagecache intensive workloads, this function is the hottest 1427 * spot in the kernel (apart from copy_*_user functions). 1428 * 1429 * Appropriate locks must be held before calling this function. 1430 * 1431 * @nr_to_scan: The number of eligible pages to look through on the list. 1432 * @lruvec: The LRU vector to pull pages from. 1433 * @dst: The temp list to put pages on to. 1434 * @nr_scanned: The number of pages that were scanned. 1435 * @sc: The scan_control struct for this reclaim session 1436 * @mode: One of the LRU isolation modes 1437 * @lru: LRU list id for isolating 1438 * 1439 * returns how many pages were moved onto *@dst. 1440 */ 1441 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1442 struct lruvec *lruvec, struct list_head *dst, 1443 unsigned long *nr_scanned, struct scan_control *sc, 1444 isolate_mode_t mode, enum lru_list lru) 1445 { 1446 struct list_head *src = &lruvec->lists[lru]; 1447 unsigned long nr_taken = 0; 1448 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1449 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1450 unsigned long skipped = 0; 1451 unsigned long scan, total_scan, nr_pages; 1452 LIST_HEAD(pages_skipped); 1453 1454 scan = 0; 1455 for (total_scan = 0; 1456 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1457 total_scan++) { 1458 struct page *page; 1459 1460 page = lru_to_page(src); 1461 prefetchw_prev_lru_page(page, src, flags); 1462 1463 VM_BUG_ON_PAGE(!PageLRU(page), page); 1464 1465 if (page_zonenum(page) > sc->reclaim_idx) { 1466 list_move(&page->lru, &pages_skipped); 1467 nr_skipped[page_zonenum(page)]++; 1468 continue; 1469 } 1470 1471 /* 1472 * Do not count skipped pages because that makes the function 1473 * return with no isolated pages if the LRU mostly contains 1474 * ineligible pages. This causes the VM to not reclaim any 1475 * pages, triggering a premature OOM. 1476 */ 1477 scan++; 1478 switch (__isolate_lru_page(page, mode)) { 1479 case 0: 1480 nr_pages = hpage_nr_pages(page); 1481 nr_taken += nr_pages; 1482 nr_zone_taken[page_zonenum(page)] += nr_pages; 1483 list_move(&page->lru, dst); 1484 break; 1485 1486 case -EBUSY: 1487 /* else it is being freed elsewhere */ 1488 list_move(&page->lru, src); 1489 continue; 1490 1491 default: 1492 BUG(); 1493 } 1494 } 1495 1496 /* 1497 * Splice any skipped pages to the start of the LRU list. Note that 1498 * this disrupts the LRU order when reclaiming for lower zones but 1499 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1500 * scanning would soon rescan the same pages to skip and put the 1501 * system at risk of premature OOM. 1502 */ 1503 if (!list_empty(&pages_skipped)) { 1504 int zid; 1505 1506 list_splice(&pages_skipped, src); 1507 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1508 if (!nr_skipped[zid]) 1509 continue; 1510 1511 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1512 skipped += nr_skipped[zid]; 1513 } 1514 } 1515 *nr_scanned = total_scan; 1516 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1517 total_scan, skipped, nr_taken, mode, lru); 1518 update_lru_sizes(lruvec, lru, nr_zone_taken); 1519 return nr_taken; 1520 } 1521 1522 /** 1523 * isolate_lru_page - tries to isolate a page from its LRU list 1524 * @page: page to isolate from its LRU list 1525 * 1526 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1527 * vmstat statistic corresponding to whatever LRU list the page was on. 1528 * 1529 * Returns 0 if the page was removed from an LRU list. 1530 * Returns -EBUSY if the page was not on an LRU list. 1531 * 1532 * The returned page will have PageLRU() cleared. If it was found on 1533 * the active list, it will have PageActive set. If it was found on 1534 * the unevictable list, it will have the PageUnevictable bit set. That flag 1535 * may need to be cleared by the caller before letting the page go. 1536 * 1537 * The vmstat statistic corresponding to the list on which the page was 1538 * found will be decremented. 1539 * 1540 * Restrictions: 1541 * 1542 * (1) Must be called with an elevated refcount on the page. This is a 1543 * fundamentnal difference from isolate_lru_pages (which is called 1544 * without a stable reference). 1545 * (2) the lru_lock must not be held. 1546 * (3) interrupts must be enabled. 1547 */ 1548 int isolate_lru_page(struct page *page) 1549 { 1550 int ret = -EBUSY; 1551 1552 VM_BUG_ON_PAGE(!page_count(page), page); 1553 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1554 1555 if (PageLRU(page)) { 1556 struct zone *zone = page_zone(page); 1557 struct lruvec *lruvec; 1558 1559 spin_lock_irq(zone_lru_lock(zone)); 1560 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1561 if (PageLRU(page)) { 1562 int lru = page_lru(page); 1563 get_page(page); 1564 ClearPageLRU(page); 1565 del_page_from_lru_list(page, lruvec, lru); 1566 ret = 0; 1567 } 1568 spin_unlock_irq(zone_lru_lock(zone)); 1569 } 1570 return ret; 1571 } 1572 1573 /* 1574 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1575 * then get resheduled. When there are massive number of tasks doing page 1576 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1577 * the LRU list will go small and be scanned faster than necessary, leading to 1578 * unnecessary swapping, thrashing and OOM. 1579 */ 1580 static int too_many_isolated(struct pglist_data *pgdat, int file, 1581 struct scan_control *sc) 1582 { 1583 unsigned long inactive, isolated; 1584 1585 if (current_is_kswapd()) 1586 return 0; 1587 1588 if (!sane_reclaim(sc)) 1589 return 0; 1590 1591 if (file) { 1592 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1593 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1594 } else { 1595 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1596 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1597 } 1598 1599 /* 1600 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1601 * won't get blocked by normal direct-reclaimers, forming a circular 1602 * deadlock. 1603 */ 1604 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1605 inactive >>= 3; 1606 1607 return isolated > inactive; 1608 } 1609 1610 static noinline_for_stack void 1611 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1612 { 1613 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1614 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1615 LIST_HEAD(pages_to_free); 1616 1617 /* 1618 * Put back any unfreeable pages. 1619 */ 1620 while (!list_empty(page_list)) { 1621 struct page *page = lru_to_page(page_list); 1622 int lru; 1623 1624 VM_BUG_ON_PAGE(PageLRU(page), page); 1625 list_del(&page->lru); 1626 if (unlikely(!page_evictable(page))) { 1627 spin_unlock_irq(&pgdat->lru_lock); 1628 putback_lru_page(page); 1629 spin_lock_irq(&pgdat->lru_lock); 1630 continue; 1631 } 1632 1633 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1634 1635 SetPageLRU(page); 1636 lru = page_lru(page); 1637 add_page_to_lru_list(page, lruvec, lru); 1638 1639 if (is_active_lru(lru)) { 1640 int file = is_file_lru(lru); 1641 int numpages = hpage_nr_pages(page); 1642 reclaim_stat->recent_rotated[file] += numpages; 1643 } 1644 if (put_page_testzero(page)) { 1645 __ClearPageLRU(page); 1646 __ClearPageActive(page); 1647 del_page_from_lru_list(page, lruvec, lru); 1648 1649 if (unlikely(PageCompound(page))) { 1650 spin_unlock_irq(&pgdat->lru_lock); 1651 mem_cgroup_uncharge(page); 1652 (*get_compound_page_dtor(page))(page); 1653 spin_lock_irq(&pgdat->lru_lock); 1654 } else 1655 list_add(&page->lru, &pages_to_free); 1656 } 1657 } 1658 1659 /* 1660 * To save our caller's stack, now use input list for pages to free. 1661 */ 1662 list_splice(&pages_to_free, page_list); 1663 } 1664 1665 /* 1666 * If a kernel thread (such as nfsd for loop-back mounts) services 1667 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1668 * In that case we should only throttle if the backing device it is 1669 * writing to is congested. In other cases it is safe to throttle. 1670 */ 1671 static int current_may_throttle(void) 1672 { 1673 return !(current->flags & PF_LESS_THROTTLE) || 1674 current->backing_dev_info == NULL || 1675 bdi_write_congested(current->backing_dev_info); 1676 } 1677 1678 /* 1679 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1680 * of reclaimed pages 1681 */ 1682 static noinline_for_stack unsigned long 1683 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1684 struct scan_control *sc, enum lru_list lru) 1685 { 1686 LIST_HEAD(page_list); 1687 unsigned long nr_scanned; 1688 unsigned long nr_reclaimed = 0; 1689 unsigned long nr_taken; 1690 struct reclaim_stat stat = {}; 1691 isolate_mode_t isolate_mode = 0; 1692 int file = is_file_lru(lru); 1693 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1694 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1695 bool stalled = false; 1696 1697 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1698 if (stalled) 1699 return 0; 1700 1701 /* wait a bit for the reclaimer. */ 1702 msleep(100); 1703 stalled = true; 1704 1705 /* We are about to die and free our memory. Return now. */ 1706 if (fatal_signal_pending(current)) 1707 return SWAP_CLUSTER_MAX; 1708 } 1709 1710 lru_add_drain(); 1711 1712 if (!sc->may_unmap) 1713 isolate_mode |= ISOLATE_UNMAPPED; 1714 1715 spin_lock_irq(&pgdat->lru_lock); 1716 1717 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1718 &nr_scanned, sc, isolate_mode, lru); 1719 1720 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1721 reclaim_stat->recent_scanned[file] += nr_taken; 1722 1723 if (current_is_kswapd()) { 1724 if (global_reclaim(sc)) 1725 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1726 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1727 nr_scanned); 1728 } else { 1729 if (global_reclaim(sc)) 1730 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1731 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1732 nr_scanned); 1733 } 1734 spin_unlock_irq(&pgdat->lru_lock); 1735 1736 if (nr_taken == 0) 1737 return 0; 1738 1739 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1740 &stat, false); 1741 1742 spin_lock_irq(&pgdat->lru_lock); 1743 1744 if (current_is_kswapd()) { 1745 if (global_reclaim(sc)) 1746 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1747 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1748 nr_reclaimed); 1749 } else { 1750 if (global_reclaim(sc)) 1751 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1752 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1753 nr_reclaimed); 1754 } 1755 1756 putback_inactive_pages(lruvec, &page_list); 1757 1758 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1759 1760 spin_unlock_irq(&pgdat->lru_lock); 1761 1762 mem_cgroup_uncharge_list(&page_list); 1763 free_unref_page_list(&page_list); 1764 1765 /* 1766 * If reclaim is isolating dirty pages under writeback, it implies 1767 * that the long-lived page allocation rate is exceeding the page 1768 * laundering rate. Either the global limits are not being effective 1769 * at throttling processes due to the page distribution throughout 1770 * zones or there is heavy usage of a slow backing device. The 1771 * only option is to throttle from reclaim context which is not ideal 1772 * as there is no guarantee the dirtying process is throttled in the 1773 * same way balance_dirty_pages() manages. 1774 * 1775 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1776 * of pages under pages flagged for immediate reclaim and stall if any 1777 * are encountered in the nr_immediate check below. 1778 */ 1779 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1780 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1781 1782 /* 1783 * If dirty pages are scanned that are not queued for IO, it 1784 * implies that flushers are not doing their job. This can 1785 * happen when memory pressure pushes dirty pages to the end of 1786 * the LRU before the dirty limits are breached and the dirty 1787 * data has expired. It can also happen when the proportion of 1788 * dirty pages grows not through writes but through memory 1789 * pressure reclaiming all the clean cache. And in some cases, 1790 * the flushers simply cannot keep up with the allocation 1791 * rate. Nudge the flusher threads in case they are asleep. 1792 */ 1793 if (stat.nr_unqueued_dirty == nr_taken) 1794 wakeup_flusher_threads(WB_REASON_VMSCAN); 1795 1796 /* 1797 * Legacy memcg will stall in page writeback so avoid forcibly 1798 * stalling here. 1799 */ 1800 if (sane_reclaim(sc)) { 1801 /* 1802 * Tag a zone as congested if all the dirty pages scanned were 1803 * backed by a congested BDI and wait_iff_congested will stall. 1804 */ 1805 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1806 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1807 1808 /* Allow kswapd to start writing pages during reclaim. */ 1809 if (stat.nr_unqueued_dirty == nr_taken) 1810 set_bit(PGDAT_DIRTY, &pgdat->flags); 1811 1812 /* 1813 * If kswapd scans pages marked marked for immediate 1814 * reclaim and under writeback (nr_immediate), it implies 1815 * that pages are cycling through the LRU faster than 1816 * they are written so also forcibly stall. 1817 */ 1818 if (stat.nr_immediate && current_may_throttle()) 1819 congestion_wait(BLK_RW_ASYNC, HZ/10); 1820 } 1821 1822 /* 1823 * Stall direct reclaim for IO completions if underlying BDIs or zone 1824 * is congested. Allow kswapd to continue until it starts encountering 1825 * unqueued dirty pages or cycling through the LRU too quickly. 1826 */ 1827 if (!sc->hibernation_mode && !current_is_kswapd() && 1828 current_may_throttle()) 1829 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1830 1831 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1832 nr_scanned, nr_reclaimed, 1833 stat.nr_dirty, stat.nr_writeback, 1834 stat.nr_congested, stat.nr_immediate, 1835 stat.nr_activate, stat.nr_ref_keep, 1836 stat.nr_unmap_fail, 1837 sc->priority, file); 1838 return nr_reclaimed; 1839 } 1840 1841 /* 1842 * This moves pages from the active list to the inactive list. 1843 * 1844 * We move them the other way if the page is referenced by one or more 1845 * processes, from rmap. 1846 * 1847 * If the pages are mostly unmapped, the processing is fast and it is 1848 * appropriate to hold zone_lru_lock across the whole operation. But if 1849 * the pages are mapped, the processing is slow (page_referenced()) so we 1850 * should drop zone_lru_lock around each page. It's impossible to balance 1851 * this, so instead we remove the pages from the LRU while processing them. 1852 * It is safe to rely on PG_active against the non-LRU pages in here because 1853 * nobody will play with that bit on a non-LRU page. 1854 * 1855 * The downside is that we have to touch page->_refcount against each page. 1856 * But we had to alter page->flags anyway. 1857 * 1858 * Returns the number of pages moved to the given lru. 1859 */ 1860 1861 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1862 struct list_head *list, 1863 struct list_head *pages_to_free, 1864 enum lru_list lru) 1865 { 1866 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1867 struct page *page; 1868 int nr_pages; 1869 int nr_moved = 0; 1870 1871 while (!list_empty(list)) { 1872 page = lru_to_page(list); 1873 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1874 1875 VM_BUG_ON_PAGE(PageLRU(page), page); 1876 SetPageLRU(page); 1877 1878 nr_pages = hpage_nr_pages(page); 1879 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1880 list_move(&page->lru, &lruvec->lists[lru]); 1881 1882 if (put_page_testzero(page)) { 1883 __ClearPageLRU(page); 1884 __ClearPageActive(page); 1885 del_page_from_lru_list(page, lruvec, lru); 1886 1887 if (unlikely(PageCompound(page))) { 1888 spin_unlock_irq(&pgdat->lru_lock); 1889 mem_cgroup_uncharge(page); 1890 (*get_compound_page_dtor(page))(page); 1891 spin_lock_irq(&pgdat->lru_lock); 1892 } else 1893 list_add(&page->lru, pages_to_free); 1894 } else { 1895 nr_moved += nr_pages; 1896 } 1897 } 1898 1899 if (!is_active_lru(lru)) { 1900 __count_vm_events(PGDEACTIVATE, nr_moved); 1901 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 1902 nr_moved); 1903 } 1904 1905 return nr_moved; 1906 } 1907 1908 static void shrink_active_list(unsigned long nr_to_scan, 1909 struct lruvec *lruvec, 1910 struct scan_control *sc, 1911 enum lru_list lru) 1912 { 1913 unsigned long nr_taken; 1914 unsigned long nr_scanned; 1915 unsigned long vm_flags; 1916 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1917 LIST_HEAD(l_active); 1918 LIST_HEAD(l_inactive); 1919 struct page *page; 1920 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1921 unsigned nr_deactivate, nr_activate; 1922 unsigned nr_rotated = 0; 1923 isolate_mode_t isolate_mode = 0; 1924 int file = is_file_lru(lru); 1925 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1926 1927 lru_add_drain(); 1928 1929 if (!sc->may_unmap) 1930 isolate_mode |= ISOLATE_UNMAPPED; 1931 1932 spin_lock_irq(&pgdat->lru_lock); 1933 1934 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1935 &nr_scanned, sc, isolate_mode, lru); 1936 1937 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1938 reclaim_stat->recent_scanned[file] += nr_taken; 1939 1940 __count_vm_events(PGREFILL, nr_scanned); 1941 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 1942 1943 spin_unlock_irq(&pgdat->lru_lock); 1944 1945 while (!list_empty(&l_hold)) { 1946 cond_resched(); 1947 page = lru_to_page(&l_hold); 1948 list_del(&page->lru); 1949 1950 if (unlikely(!page_evictable(page))) { 1951 putback_lru_page(page); 1952 continue; 1953 } 1954 1955 if (unlikely(buffer_heads_over_limit)) { 1956 if (page_has_private(page) && trylock_page(page)) { 1957 if (page_has_private(page)) 1958 try_to_release_page(page, 0); 1959 unlock_page(page); 1960 } 1961 } 1962 1963 if (page_referenced(page, 0, sc->target_mem_cgroup, 1964 &vm_flags)) { 1965 nr_rotated += hpage_nr_pages(page); 1966 /* 1967 * Identify referenced, file-backed active pages and 1968 * give them one more trip around the active list. So 1969 * that executable code get better chances to stay in 1970 * memory under moderate memory pressure. Anon pages 1971 * are not likely to be evicted by use-once streaming 1972 * IO, plus JVM can create lots of anon VM_EXEC pages, 1973 * so we ignore them here. 1974 */ 1975 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1976 list_add(&page->lru, &l_active); 1977 continue; 1978 } 1979 } 1980 1981 ClearPageActive(page); /* we are de-activating */ 1982 list_add(&page->lru, &l_inactive); 1983 } 1984 1985 /* 1986 * Move pages back to the lru list. 1987 */ 1988 spin_lock_irq(&pgdat->lru_lock); 1989 /* 1990 * Count referenced pages from currently used mappings as rotated, 1991 * even though only some of them are actually re-activated. This 1992 * helps balance scan pressure between file and anonymous pages in 1993 * get_scan_count. 1994 */ 1995 reclaim_stat->recent_rotated[file] += nr_rotated; 1996 1997 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1998 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1999 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2000 spin_unlock_irq(&pgdat->lru_lock); 2001 2002 mem_cgroup_uncharge_list(&l_hold); 2003 free_unref_page_list(&l_hold); 2004 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2005 nr_deactivate, nr_rotated, sc->priority, file); 2006 } 2007 2008 /* 2009 * The inactive anon list should be small enough that the VM never has 2010 * to do too much work. 2011 * 2012 * The inactive file list should be small enough to leave most memory 2013 * to the established workingset on the scan-resistant active list, 2014 * but large enough to avoid thrashing the aggregate readahead window. 2015 * 2016 * Both inactive lists should also be large enough that each inactive 2017 * page has a chance to be referenced again before it is reclaimed. 2018 * 2019 * If that fails and refaulting is observed, the inactive list grows. 2020 * 2021 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2022 * on this LRU, maintained by the pageout code. An inactive_ratio 2023 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2024 * 2025 * total target max 2026 * memory ratio inactive 2027 * ------------------------------------- 2028 * 10MB 1 5MB 2029 * 100MB 1 50MB 2030 * 1GB 3 250MB 2031 * 10GB 10 0.9GB 2032 * 100GB 31 3GB 2033 * 1TB 101 10GB 2034 * 10TB 320 32GB 2035 */ 2036 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2037 struct mem_cgroup *memcg, 2038 struct scan_control *sc, bool actual_reclaim) 2039 { 2040 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2041 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2042 enum lru_list inactive_lru = file * LRU_FILE; 2043 unsigned long inactive, active; 2044 unsigned long inactive_ratio; 2045 unsigned long refaults; 2046 unsigned long gb; 2047 2048 /* 2049 * If we don't have swap space, anonymous page deactivation 2050 * is pointless. 2051 */ 2052 if (!file && !total_swap_pages) 2053 return false; 2054 2055 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2056 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2057 2058 if (memcg) 2059 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2060 else 2061 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2062 2063 /* 2064 * When refaults are being observed, it means a new workingset 2065 * is being established. Disable active list protection to get 2066 * rid of the stale workingset quickly. 2067 */ 2068 if (file && actual_reclaim && lruvec->refaults != refaults) { 2069 inactive_ratio = 0; 2070 } else { 2071 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2072 if (gb) 2073 inactive_ratio = int_sqrt(10 * gb); 2074 else 2075 inactive_ratio = 1; 2076 } 2077 2078 if (actual_reclaim) 2079 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2080 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2081 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2082 inactive_ratio, file); 2083 2084 return inactive * inactive_ratio < active; 2085 } 2086 2087 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2088 struct lruvec *lruvec, struct mem_cgroup *memcg, 2089 struct scan_control *sc) 2090 { 2091 if (is_active_lru(lru)) { 2092 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2093 memcg, sc, true)) 2094 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2095 return 0; 2096 } 2097 2098 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2099 } 2100 2101 enum scan_balance { 2102 SCAN_EQUAL, 2103 SCAN_FRACT, 2104 SCAN_ANON, 2105 SCAN_FILE, 2106 }; 2107 2108 /* 2109 * Determine how aggressively the anon and file LRU lists should be 2110 * scanned. The relative value of each set of LRU lists is determined 2111 * by looking at the fraction of the pages scanned we did rotate back 2112 * onto the active list instead of evict. 2113 * 2114 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2115 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2116 */ 2117 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2118 struct scan_control *sc, unsigned long *nr, 2119 unsigned long *lru_pages) 2120 { 2121 int swappiness = mem_cgroup_swappiness(memcg); 2122 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2123 u64 fraction[2]; 2124 u64 denominator = 0; /* gcc */ 2125 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2126 unsigned long anon_prio, file_prio; 2127 enum scan_balance scan_balance; 2128 unsigned long anon, file; 2129 unsigned long ap, fp; 2130 enum lru_list lru; 2131 2132 /* If we have no swap space, do not bother scanning anon pages. */ 2133 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2134 scan_balance = SCAN_FILE; 2135 goto out; 2136 } 2137 2138 /* 2139 * Global reclaim will swap to prevent OOM even with no 2140 * swappiness, but memcg users want to use this knob to 2141 * disable swapping for individual groups completely when 2142 * using the memory controller's swap limit feature would be 2143 * too expensive. 2144 */ 2145 if (!global_reclaim(sc) && !swappiness) { 2146 scan_balance = SCAN_FILE; 2147 goto out; 2148 } 2149 2150 /* 2151 * Do not apply any pressure balancing cleverness when the 2152 * system is close to OOM, scan both anon and file equally 2153 * (unless the swappiness setting disagrees with swapping). 2154 */ 2155 if (!sc->priority && swappiness) { 2156 scan_balance = SCAN_EQUAL; 2157 goto out; 2158 } 2159 2160 /* 2161 * Prevent the reclaimer from falling into the cache trap: as 2162 * cache pages start out inactive, every cache fault will tip 2163 * the scan balance towards the file LRU. And as the file LRU 2164 * shrinks, so does the window for rotation from references. 2165 * This means we have a runaway feedback loop where a tiny 2166 * thrashing file LRU becomes infinitely more attractive than 2167 * anon pages. Try to detect this based on file LRU size. 2168 */ 2169 if (global_reclaim(sc)) { 2170 unsigned long pgdatfile; 2171 unsigned long pgdatfree; 2172 int z; 2173 unsigned long total_high_wmark = 0; 2174 2175 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2176 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2177 node_page_state(pgdat, NR_INACTIVE_FILE); 2178 2179 for (z = 0; z < MAX_NR_ZONES; z++) { 2180 struct zone *zone = &pgdat->node_zones[z]; 2181 if (!managed_zone(zone)) 2182 continue; 2183 2184 total_high_wmark += high_wmark_pages(zone); 2185 } 2186 2187 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2188 /* 2189 * Force SCAN_ANON if there are enough inactive 2190 * anonymous pages on the LRU in eligible zones. 2191 * Otherwise, the small LRU gets thrashed. 2192 */ 2193 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2194 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2195 >> sc->priority) { 2196 scan_balance = SCAN_ANON; 2197 goto out; 2198 } 2199 } 2200 } 2201 2202 /* 2203 * If there is enough inactive page cache, i.e. if the size of the 2204 * inactive list is greater than that of the active list *and* the 2205 * inactive list actually has some pages to scan on this priority, we 2206 * do not reclaim anything from the anonymous working set right now. 2207 * Without the second condition we could end up never scanning an 2208 * lruvec even if it has plenty of old anonymous pages unless the 2209 * system is under heavy pressure. 2210 */ 2211 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2212 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2213 scan_balance = SCAN_FILE; 2214 goto out; 2215 } 2216 2217 scan_balance = SCAN_FRACT; 2218 2219 /* 2220 * With swappiness at 100, anonymous and file have the same priority. 2221 * This scanning priority is essentially the inverse of IO cost. 2222 */ 2223 anon_prio = swappiness; 2224 file_prio = 200 - anon_prio; 2225 2226 /* 2227 * OK, so we have swap space and a fair amount of page cache 2228 * pages. We use the recently rotated / recently scanned 2229 * ratios to determine how valuable each cache is. 2230 * 2231 * Because workloads change over time (and to avoid overflow) 2232 * we keep these statistics as a floating average, which ends 2233 * up weighing recent references more than old ones. 2234 * 2235 * anon in [0], file in [1] 2236 */ 2237 2238 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2239 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2240 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2241 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2242 2243 spin_lock_irq(&pgdat->lru_lock); 2244 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2245 reclaim_stat->recent_scanned[0] /= 2; 2246 reclaim_stat->recent_rotated[0] /= 2; 2247 } 2248 2249 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2250 reclaim_stat->recent_scanned[1] /= 2; 2251 reclaim_stat->recent_rotated[1] /= 2; 2252 } 2253 2254 /* 2255 * The amount of pressure on anon vs file pages is inversely 2256 * proportional to the fraction of recently scanned pages on 2257 * each list that were recently referenced and in active use. 2258 */ 2259 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2260 ap /= reclaim_stat->recent_rotated[0] + 1; 2261 2262 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2263 fp /= reclaim_stat->recent_rotated[1] + 1; 2264 spin_unlock_irq(&pgdat->lru_lock); 2265 2266 fraction[0] = ap; 2267 fraction[1] = fp; 2268 denominator = ap + fp + 1; 2269 out: 2270 *lru_pages = 0; 2271 for_each_evictable_lru(lru) { 2272 int file = is_file_lru(lru); 2273 unsigned long size; 2274 unsigned long scan; 2275 2276 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2277 scan = size >> sc->priority; 2278 /* 2279 * If the cgroup's already been deleted, make sure to 2280 * scrape out the remaining cache. 2281 */ 2282 if (!scan && !mem_cgroup_online(memcg)) 2283 scan = min(size, SWAP_CLUSTER_MAX); 2284 2285 switch (scan_balance) { 2286 case SCAN_EQUAL: 2287 /* Scan lists relative to size */ 2288 break; 2289 case SCAN_FRACT: 2290 /* 2291 * Scan types proportional to swappiness and 2292 * their relative recent reclaim efficiency. 2293 */ 2294 scan = div64_u64(scan * fraction[file], 2295 denominator); 2296 break; 2297 case SCAN_FILE: 2298 case SCAN_ANON: 2299 /* Scan one type exclusively */ 2300 if ((scan_balance == SCAN_FILE) != file) { 2301 size = 0; 2302 scan = 0; 2303 } 2304 break; 2305 default: 2306 /* Look ma, no brain */ 2307 BUG(); 2308 } 2309 2310 *lru_pages += size; 2311 nr[lru] = scan; 2312 } 2313 } 2314 2315 /* 2316 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2317 */ 2318 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2319 struct scan_control *sc, unsigned long *lru_pages) 2320 { 2321 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2322 unsigned long nr[NR_LRU_LISTS]; 2323 unsigned long targets[NR_LRU_LISTS]; 2324 unsigned long nr_to_scan; 2325 enum lru_list lru; 2326 unsigned long nr_reclaimed = 0; 2327 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2328 struct blk_plug plug; 2329 bool scan_adjusted; 2330 2331 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2332 2333 /* Record the original scan target for proportional adjustments later */ 2334 memcpy(targets, nr, sizeof(nr)); 2335 2336 /* 2337 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2338 * event that can occur when there is little memory pressure e.g. 2339 * multiple streaming readers/writers. Hence, we do not abort scanning 2340 * when the requested number of pages are reclaimed when scanning at 2341 * DEF_PRIORITY on the assumption that the fact we are direct 2342 * reclaiming implies that kswapd is not keeping up and it is best to 2343 * do a batch of work at once. For memcg reclaim one check is made to 2344 * abort proportional reclaim if either the file or anon lru has already 2345 * dropped to zero at the first pass. 2346 */ 2347 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2348 sc->priority == DEF_PRIORITY); 2349 2350 blk_start_plug(&plug); 2351 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2352 nr[LRU_INACTIVE_FILE]) { 2353 unsigned long nr_anon, nr_file, percentage; 2354 unsigned long nr_scanned; 2355 2356 for_each_evictable_lru(lru) { 2357 if (nr[lru]) { 2358 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2359 nr[lru] -= nr_to_scan; 2360 2361 nr_reclaimed += shrink_list(lru, nr_to_scan, 2362 lruvec, memcg, sc); 2363 } 2364 } 2365 2366 cond_resched(); 2367 2368 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2369 continue; 2370 2371 /* 2372 * For kswapd and memcg, reclaim at least the number of pages 2373 * requested. Ensure that the anon and file LRUs are scanned 2374 * proportionally what was requested by get_scan_count(). We 2375 * stop reclaiming one LRU and reduce the amount scanning 2376 * proportional to the original scan target. 2377 */ 2378 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2379 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2380 2381 /* 2382 * It's just vindictive to attack the larger once the smaller 2383 * has gone to zero. And given the way we stop scanning the 2384 * smaller below, this makes sure that we only make one nudge 2385 * towards proportionality once we've got nr_to_reclaim. 2386 */ 2387 if (!nr_file || !nr_anon) 2388 break; 2389 2390 if (nr_file > nr_anon) { 2391 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2392 targets[LRU_ACTIVE_ANON] + 1; 2393 lru = LRU_BASE; 2394 percentage = nr_anon * 100 / scan_target; 2395 } else { 2396 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2397 targets[LRU_ACTIVE_FILE] + 1; 2398 lru = LRU_FILE; 2399 percentage = nr_file * 100 / scan_target; 2400 } 2401 2402 /* Stop scanning the smaller of the LRU */ 2403 nr[lru] = 0; 2404 nr[lru + LRU_ACTIVE] = 0; 2405 2406 /* 2407 * Recalculate the other LRU scan count based on its original 2408 * scan target and the percentage scanning already complete 2409 */ 2410 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2411 nr_scanned = targets[lru] - nr[lru]; 2412 nr[lru] = targets[lru] * (100 - percentage) / 100; 2413 nr[lru] -= min(nr[lru], nr_scanned); 2414 2415 lru += LRU_ACTIVE; 2416 nr_scanned = targets[lru] - nr[lru]; 2417 nr[lru] = targets[lru] * (100 - percentage) / 100; 2418 nr[lru] -= min(nr[lru], nr_scanned); 2419 2420 scan_adjusted = true; 2421 } 2422 blk_finish_plug(&plug); 2423 sc->nr_reclaimed += nr_reclaimed; 2424 2425 /* 2426 * Even if we did not try to evict anon pages at all, we want to 2427 * rebalance the anon lru active/inactive ratio. 2428 */ 2429 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2430 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2431 sc, LRU_ACTIVE_ANON); 2432 } 2433 2434 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2435 static bool in_reclaim_compaction(struct scan_control *sc) 2436 { 2437 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2438 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2439 sc->priority < DEF_PRIORITY - 2)) 2440 return true; 2441 2442 return false; 2443 } 2444 2445 /* 2446 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2447 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2448 * true if more pages should be reclaimed such that when the page allocator 2449 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2450 * It will give up earlier than that if there is difficulty reclaiming pages. 2451 */ 2452 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2453 unsigned long nr_reclaimed, 2454 unsigned long nr_scanned, 2455 struct scan_control *sc) 2456 { 2457 unsigned long pages_for_compaction; 2458 unsigned long inactive_lru_pages; 2459 int z; 2460 2461 /* If not in reclaim/compaction mode, stop */ 2462 if (!in_reclaim_compaction(sc)) 2463 return false; 2464 2465 /* Consider stopping depending on scan and reclaim activity */ 2466 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2467 /* 2468 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2469 * full LRU list has been scanned and we are still failing 2470 * to reclaim pages. This full LRU scan is potentially 2471 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2472 */ 2473 if (!nr_reclaimed && !nr_scanned) 2474 return false; 2475 } else { 2476 /* 2477 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2478 * fail without consequence, stop if we failed to reclaim 2479 * any pages from the last SWAP_CLUSTER_MAX number of 2480 * pages that were scanned. This will return to the 2481 * caller faster at the risk reclaim/compaction and 2482 * the resulting allocation attempt fails 2483 */ 2484 if (!nr_reclaimed) 2485 return false; 2486 } 2487 2488 /* 2489 * If we have not reclaimed enough pages for compaction and the 2490 * inactive lists are large enough, continue reclaiming 2491 */ 2492 pages_for_compaction = compact_gap(sc->order); 2493 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2494 if (get_nr_swap_pages() > 0) 2495 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2496 if (sc->nr_reclaimed < pages_for_compaction && 2497 inactive_lru_pages > pages_for_compaction) 2498 return true; 2499 2500 /* If compaction would go ahead or the allocation would succeed, stop */ 2501 for (z = 0; z <= sc->reclaim_idx; z++) { 2502 struct zone *zone = &pgdat->node_zones[z]; 2503 if (!managed_zone(zone)) 2504 continue; 2505 2506 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2507 case COMPACT_SUCCESS: 2508 case COMPACT_CONTINUE: 2509 return false; 2510 default: 2511 /* check next zone */ 2512 ; 2513 } 2514 } 2515 return true; 2516 } 2517 2518 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2519 { 2520 struct reclaim_state *reclaim_state = current->reclaim_state; 2521 unsigned long nr_reclaimed, nr_scanned; 2522 bool reclaimable = false; 2523 2524 do { 2525 struct mem_cgroup *root = sc->target_mem_cgroup; 2526 struct mem_cgroup_reclaim_cookie reclaim = { 2527 .pgdat = pgdat, 2528 .priority = sc->priority, 2529 }; 2530 unsigned long node_lru_pages = 0; 2531 struct mem_cgroup *memcg; 2532 2533 nr_reclaimed = sc->nr_reclaimed; 2534 nr_scanned = sc->nr_scanned; 2535 2536 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2537 do { 2538 unsigned long lru_pages; 2539 unsigned long reclaimed; 2540 unsigned long scanned; 2541 2542 if (mem_cgroup_low(root, memcg)) { 2543 if (!sc->memcg_low_reclaim) { 2544 sc->memcg_low_skipped = 1; 2545 continue; 2546 } 2547 mem_cgroup_event(memcg, MEMCG_LOW); 2548 } 2549 2550 reclaimed = sc->nr_reclaimed; 2551 scanned = sc->nr_scanned; 2552 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2553 node_lru_pages += lru_pages; 2554 2555 if (memcg) 2556 shrink_slab(sc->gfp_mask, pgdat->node_id, 2557 memcg, sc->priority); 2558 2559 /* Record the group's reclaim efficiency */ 2560 vmpressure(sc->gfp_mask, memcg, false, 2561 sc->nr_scanned - scanned, 2562 sc->nr_reclaimed - reclaimed); 2563 2564 /* 2565 * Direct reclaim and kswapd have to scan all memory 2566 * cgroups to fulfill the overall scan target for the 2567 * node. 2568 * 2569 * Limit reclaim, on the other hand, only cares about 2570 * nr_to_reclaim pages to be reclaimed and it will 2571 * retry with decreasing priority if one round over the 2572 * whole hierarchy is not sufficient. 2573 */ 2574 if (!global_reclaim(sc) && 2575 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2576 mem_cgroup_iter_break(root, memcg); 2577 break; 2578 } 2579 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2580 2581 if (global_reclaim(sc)) 2582 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2583 sc->priority); 2584 2585 if (reclaim_state) { 2586 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2587 reclaim_state->reclaimed_slab = 0; 2588 } 2589 2590 /* Record the subtree's reclaim efficiency */ 2591 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2592 sc->nr_scanned - nr_scanned, 2593 sc->nr_reclaimed - nr_reclaimed); 2594 2595 if (sc->nr_reclaimed - nr_reclaimed) 2596 reclaimable = true; 2597 2598 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2599 sc->nr_scanned - nr_scanned, sc)); 2600 2601 /* 2602 * Kswapd gives up on balancing particular nodes after too 2603 * many failures to reclaim anything from them and goes to 2604 * sleep. On reclaim progress, reset the failure counter. A 2605 * successful direct reclaim run will revive a dormant kswapd. 2606 */ 2607 if (reclaimable) 2608 pgdat->kswapd_failures = 0; 2609 2610 return reclaimable; 2611 } 2612 2613 /* 2614 * Returns true if compaction should go ahead for a costly-order request, or 2615 * the allocation would already succeed without compaction. Return false if we 2616 * should reclaim first. 2617 */ 2618 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2619 { 2620 unsigned long watermark; 2621 enum compact_result suitable; 2622 2623 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2624 if (suitable == COMPACT_SUCCESS) 2625 /* Allocation should succeed already. Don't reclaim. */ 2626 return true; 2627 if (suitable == COMPACT_SKIPPED) 2628 /* Compaction cannot yet proceed. Do reclaim. */ 2629 return false; 2630 2631 /* 2632 * Compaction is already possible, but it takes time to run and there 2633 * are potentially other callers using the pages just freed. So proceed 2634 * with reclaim to make a buffer of free pages available to give 2635 * compaction a reasonable chance of completing and allocating the page. 2636 * Note that we won't actually reclaim the whole buffer in one attempt 2637 * as the target watermark in should_continue_reclaim() is lower. But if 2638 * we are already above the high+gap watermark, don't reclaim at all. 2639 */ 2640 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2641 2642 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2643 } 2644 2645 /* 2646 * This is the direct reclaim path, for page-allocating processes. We only 2647 * try to reclaim pages from zones which will satisfy the caller's allocation 2648 * request. 2649 * 2650 * If a zone is deemed to be full of pinned pages then just give it a light 2651 * scan then give up on it. 2652 */ 2653 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2654 { 2655 struct zoneref *z; 2656 struct zone *zone; 2657 unsigned long nr_soft_reclaimed; 2658 unsigned long nr_soft_scanned; 2659 gfp_t orig_mask; 2660 pg_data_t *last_pgdat = NULL; 2661 2662 /* 2663 * If the number of buffer_heads in the machine exceeds the maximum 2664 * allowed level, force direct reclaim to scan the highmem zone as 2665 * highmem pages could be pinning lowmem pages storing buffer_heads 2666 */ 2667 orig_mask = sc->gfp_mask; 2668 if (buffer_heads_over_limit) { 2669 sc->gfp_mask |= __GFP_HIGHMEM; 2670 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2671 } 2672 2673 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2674 sc->reclaim_idx, sc->nodemask) { 2675 /* 2676 * Take care memory controller reclaiming has small influence 2677 * to global LRU. 2678 */ 2679 if (global_reclaim(sc)) { 2680 if (!cpuset_zone_allowed(zone, 2681 GFP_KERNEL | __GFP_HARDWALL)) 2682 continue; 2683 2684 /* 2685 * If we already have plenty of memory free for 2686 * compaction in this zone, don't free any more. 2687 * Even though compaction is invoked for any 2688 * non-zero order, only frequent costly order 2689 * reclamation is disruptive enough to become a 2690 * noticeable problem, like transparent huge 2691 * page allocations. 2692 */ 2693 if (IS_ENABLED(CONFIG_COMPACTION) && 2694 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2695 compaction_ready(zone, sc)) { 2696 sc->compaction_ready = true; 2697 continue; 2698 } 2699 2700 /* 2701 * Shrink each node in the zonelist once. If the 2702 * zonelist is ordered by zone (not the default) then a 2703 * node may be shrunk multiple times but in that case 2704 * the user prefers lower zones being preserved. 2705 */ 2706 if (zone->zone_pgdat == last_pgdat) 2707 continue; 2708 2709 /* 2710 * This steals pages from memory cgroups over softlimit 2711 * and returns the number of reclaimed pages and 2712 * scanned pages. This works for global memory pressure 2713 * and balancing, not for a memcg's limit. 2714 */ 2715 nr_soft_scanned = 0; 2716 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2717 sc->order, sc->gfp_mask, 2718 &nr_soft_scanned); 2719 sc->nr_reclaimed += nr_soft_reclaimed; 2720 sc->nr_scanned += nr_soft_scanned; 2721 /* need some check for avoid more shrink_zone() */ 2722 } 2723 2724 /* See comment about same check for global reclaim above */ 2725 if (zone->zone_pgdat == last_pgdat) 2726 continue; 2727 last_pgdat = zone->zone_pgdat; 2728 shrink_node(zone->zone_pgdat, sc); 2729 } 2730 2731 /* 2732 * Restore to original mask to avoid the impact on the caller if we 2733 * promoted it to __GFP_HIGHMEM. 2734 */ 2735 sc->gfp_mask = orig_mask; 2736 } 2737 2738 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2739 { 2740 struct mem_cgroup *memcg; 2741 2742 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2743 do { 2744 unsigned long refaults; 2745 struct lruvec *lruvec; 2746 2747 if (memcg) 2748 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2749 else 2750 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2751 2752 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2753 lruvec->refaults = refaults; 2754 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2755 } 2756 2757 /* 2758 * This is the main entry point to direct page reclaim. 2759 * 2760 * If a full scan of the inactive list fails to free enough memory then we 2761 * are "out of memory" and something needs to be killed. 2762 * 2763 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2764 * high - the zone may be full of dirty or under-writeback pages, which this 2765 * caller can't do much about. We kick the writeback threads and take explicit 2766 * naps in the hope that some of these pages can be written. But if the 2767 * allocating task holds filesystem locks which prevent writeout this might not 2768 * work, and the allocation attempt will fail. 2769 * 2770 * returns: 0, if no pages reclaimed 2771 * else, the number of pages reclaimed 2772 */ 2773 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2774 struct scan_control *sc) 2775 { 2776 int initial_priority = sc->priority; 2777 pg_data_t *last_pgdat; 2778 struct zoneref *z; 2779 struct zone *zone; 2780 retry: 2781 delayacct_freepages_start(); 2782 2783 if (global_reclaim(sc)) 2784 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2785 2786 do { 2787 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2788 sc->priority); 2789 sc->nr_scanned = 0; 2790 shrink_zones(zonelist, sc); 2791 2792 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2793 break; 2794 2795 if (sc->compaction_ready) 2796 break; 2797 2798 /* 2799 * If we're getting trouble reclaiming, start doing 2800 * writepage even in laptop mode. 2801 */ 2802 if (sc->priority < DEF_PRIORITY - 2) 2803 sc->may_writepage = 1; 2804 } while (--sc->priority >= 0); 2805 2806 last_pgdat = NULL; 2807 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2808 sc->nodemask) { 2809 if (zone->zone_pgdat == last_pgdat) 2810 continue; 2811 last_pgdat = zone->zone_pgdat; 2812 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2813 } 2814 2815 delayacct_freepages_end(); 2816 2817 if (sc->nr_reclaimed) 2818 return sc->nr_reclaimed; 2819 2820 /* Aborted reclaim to try compaction? don't OOM, then */ 2821 if (sc->compaction_ready) 2822 return 1; 2823 2824 /* Untapped cgroup reserves? Don't OOM, retry. */ 2825 if (sc->memcg_low_skipped) { 2826 sc->priority = initial_priority; 2827 sc->memcg_low_reclaim = 1; 2828 sc->memcg_low_skipped = 0; 2829 goto retry; 2830 } 2831 2832 return 0; 2833 } 2834 2835 static bool allow_direct_reclaim(pg_data_t *pgdat) 2836 { 2837 struct zone *zone; 2838 unsigned long pfmemalloc_reserve = 0; 2839 unsigned long free_pages = 0; 2840 int i; 2841 bool wmark_ok; 2842 2843 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2844 return true; 2845 2846 for (i = 0; i <= ZONE_NORMAL; i++) { 2847 zone = &pgdat->node_zones[i]; 2848 if (!managed_zone(zone)) 2849 continue; 2850 2851 if (!zone_reclaimable_pages(zone)) 2852 continue; 2853 2854 pfmemalloc_reserve += min_wmark_pages(zone); 2855 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2856 } 2857 2858 /* If there are no reserves (unexpected config) then do not throttle */ 2859 if (!pfmemalloc_reserve) 2860 return true; 2861 2862 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2863 2864 /* kswapd must be awake if processes are being throttled */ 2865 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2866 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2867 (enum zone_type)ZONE_NORMAL); 2868 wake_up_interruptible(&pgdat->kswapd_wait); 2869 } 2870 2871 return wmark_ok; 2872 } 2873 2874 /* 2875 * Throttle direct reclaimers if backing storage is backed by the network 2876 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2877 * depleted. kswapd will continue to make progress and wake the processes 2878 * when the low watermark is reached. 2879 * 2880 * Returns true if a fatal signal was delivered during throttling. If this 2881 * happens, the page allocator should not consider triggering the OOM killer. 2882 */ 2883 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2884 nodemask_t *nodemask) 2885 { 2886 struct zoneref *z; 2887 struct zone *zone; 2888 pg_data_t *pgdat = NULL; 2889 2890 /* 2891 * Kernel threads should not be throttled as they may be indirectly 2892 * responsible for cleaning pages necessary for reclaim to make forward 2893 * progress. kjournald for example may enter direct reclaim while 2894 * committing a transaction where throttling it could forcing other 2895 * processes to block on log_wait_commit(). 2896 */ 2897 if (current->flags & PF_KTHREAD) 2898 goto out; 2899 2900 /* 2901 * If a fatal signal is pending, this process should not throttle. 2902 * It should return quickly so it can exit and free its memory 2903 */ 2904 if (fatal_signal_pending(current)) 2905 goto out; 2906 2907 /* 2908 * Check if the pfmemalloc reserves are ok by finding the first node 2909 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2910 * GFP_KERNEL will be required for allocating network buffers when 2911 * swapping over the network so ZONE_HIGHMEM is unusable. 2912 * 2913 * Throttling is based on the first usable node and throttled processes 2914 * wait on a queue until kswapd makes progress and wakes them. There 2915 * is an affinity then between processes waking up and where reclaim 2916 * progress has been made assuming the process wakes on the same node. 2917 * More importantly, processes running on remote nodes will not compete 2918 * for remote pfmemalloc reserves and processes on different nodes 2919 * should make reasonable progress. 2920 */ 2921 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2922 gfp_zone(gfp_mask), nodemask) { 2923 if (zone_idx(zone) > ZONE_NORMAL) 2924 continue; 2925 2926 /* Throttle based on the first usable node */ 2927 pgdat = zone->zone_pgdat; 2928 if (allow_direct_reclaim(pgdat)) 2929 goto out; 2930 break; 2931 } 2932 2933 /* If no zone was usable by the allocation flags then do not throttle */ 2934 if (!pgdat) 2935 goto out; 2936 2937 /* Account for the throttling */ 2938 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2939 2940 /* 2941 * If the caller cannot enter the filesystem, it's possible that it 2942 * is due to the caller holding an FS lock or performing a journal 2943 * transaction in the case of a filesystem like ext[3|4]. In this case, 2944 * it is not safe to block on pfmemalloc_wait as kswapd could be 2945 * blocked waiting on the same lock. Instead, throttle for up to a 2946 * second before continuing. 2947 */ 2948 if (!(gfp_mask & __GFP_FS)) { 2949 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2950 allow_direct_reclaim(pgdat), HZ); 2951 2952 goto check_pending; 2953 } 2954 2955 /* Throttle until kswapd wakes the process */ 2956 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2957 allow_direct_reclaim(pgdat)); 2958 2959 check_pending: 2960 if (fatal_signal_pending(current)) 2961 return true; 2962 2963 out: 2964 return false; 2965 } 2966 2967 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2968 gfp_t gfp_mask, nodemask_t *nodemask) 2969 { 2970 unsigned long nr_reclaimed; 2971 struct scan_control sc = { 2972 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2973 .gfp_mask = current_gfp_context(gfp_mask), 2974 .reclaim_idx = gfp_zone(gfp_mask), 2975 .order = order, 2976 .nodemask = nodemask, 2977 .priority = DEF_PRIORITY, 2978 .may_writepage = !laptop_mode, 2979 .may_unmap = 1, 2980 .may_swap = 1, 2981 }; 2982 2983 /* 2984 * Do not enter reclaim if fatal signal was delivered while throttled. 2985 * 1 is returned so that the page allocator does not OOM kill at this 2986 * point. 2987 */ 2988 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 2989 return 1; 2990 2991 trace_mm_vmscan_direct_reclaim_begin(order, 2992 sc.may_writepage, 2993 sc.gfp_mask, 2994 sc.reclaim_idx); 2995 2996 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2997 2998 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2999 3000 return nr_reclaimed; 3001 } 3002 3003 #ifdef CONFIG_MEMCG 3004 3005 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3006 gfp_t gfp_mask, bool noswap, 3007 pg_data_t *pgdat, 3008 unsigned long *nr_scanned) 3009 { 3010 struct scan_control sc = { 3011 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3012 .target_mem_cgroup = memcg, 3013 .may_writepage = !laptop_mode, 3014 .may_unmap = 1, 3015 .reclaim_idx = MAX_NR_ZONES - 1, 3016 .may_swap = !noswap, 3017 }; 3018 unsigned long lru_pages; 3019 3020 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3021 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3022 3023 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3024 sc.may_writepage, 3025 sc.gfp_mask, 3026 sc.reclaim_idx); 3027 3028 /* 3029 * NOTE: Although we can get the priority field, using it 3030 * here is not a good idea, since it limits the pages we can scan. 3031 * if we don't reclaim here, the shrink_node from balance_pgdat 3032 * will pick up pages from other mem cgroup's as well. We hack 3033 * the priority and make it zero. 3034 */ 3035 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3036 3037 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3038 3039 *nr_scanned = sc.nr_scanned; 3040 return sc.nr_reclaimed; 3041 } 3042 3043 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3044 unsigned long nr_pages, 3045 gfp_t gfp_mask, 3046 bool may_swap) 3047 { 3048 struct zonelist *zonelist; 3049 unsigned long nr_reclaimed; 3050 int nid; 3051 unsigned int noreclaim_flag; 3052 struct scan_control sc = { 3053 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3054 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3055 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3056 .reclaim_idx = MAX_NR_ZONES - 1, 3057 .target_mem_cgroup = memcg, 3058 .priority = DEF_PRIORITY, 3059 .may_writepage = !laptop_mode, 3060 .may_unmap = 1, 3061 .may_swap = may_swap, 3062 }; 3063 3064 /* 3065 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3066 * take care of from where we get pages. So the node where we start the 3067 * scan does not need to be the current node. 3068 */ 3069 nid = mem_cgroup_select_victim_node(memcg); 3070 3071 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3072 3073 trace_mm_vmscan_memcg_reclaim_begin(0, 3074 sc.may_writepage, 3075 sc.gfp_mask, 3076 sc.reclaim_idx); 3077 3078 noreclaim_flag = memalloc_noreclaim_save(); 3079 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3080 memalloc_noreclaim_restore(noreclaim_flag); 3081 3082 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3083 3084 return nr_reclaimed; 3085 } 3086 #endif 3087 3088 static void age_active_anon(struct pglist_data *pgdat, 3089 struct scan_control *sc) 3090 { 3091 struct mem_cgroup *memcg; 3092 3093 if (!total_swap_pages) 3094 return; 3095 3096 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3097 do { 3098 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3099 3100 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3101 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3102 sc, LRU_ACTIVE_ANON); 3103 3104 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3105 } while (memcg); 3106 } 3107 3108 /* 3109 * Returns true if there is an eligible zone balanced for the request order 3110 * and classzone_idx 3111 */ 3112 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3113 { 3114 int i; 3115 unsigned long mark = -1; 3116 struct zone *zone; 3117 3118 for (i = 0; i <= classzone_idx; i++) { 3119 zone = pgdat->node_zones + i; 3120 3121 if (!managed_zone(zone)) 3122 continue; 3123 3124 mark = high_wmark_pages(zone); 3125 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3126 return true; 3127 } 3128 3129 /* 3130 * If a node has no populated zone within classzone_idx, it does not 3131 * need balancing by definition. This can happen if a zone-restricted 3132 * allocation tries to wake a remote kswapd. 3133 */ 3134 if (mark == -1) 3135 return true; 3136 3137 return false; 3138 } 3139 3140 /* Clear pgdat state for congested, dirty or under writeback. */ 3141 static void clear_pgdat_congested(pg_data_t *pgdat) 3142 { 3143 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3144 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3145 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3146 } 3147 3148 /* 3149 * Prepare kswapd for sleeping. This verifies that there are no processes 3150 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3151 * 3152 * Returns true if kswapd is ready to sleep 3153 */ 3154 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3155 { 3156 /* 3157 * The throttled processes are normally woken up in balance_pgdat() as 3158 * soon as allow_direct_reclaim() is true. But there is a potential 3159 * race between when kswapd checks the watermarks and a process gets 3160 * throttled. There is also a potential race if processes get 3161 * throttled, kswapd wakes, a large process exits thereby balancing the 3162 * zones, which causes kswapd to exit balance_pgdat() before reaching 3163 * the wake up checks. If kswapd is going to sleep, no process should 3164 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3165 * the wake up is premature, processes will wake kswapd and get 3166 * throttled again. The difference from wake ups in balance_pgdat() is 3167 * that here we are under prepare_to_wait(). 3168 */ 3169 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3170 wake_up_all(&pgdat->pfmemalloc_wait); 3171 3172 /* Hopeless node, leave it to direct reclaim */ 3173 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3174 return true; 3175 3176 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3177 clear_pgdat_congested(pgdat); 3178 return true; 3179 } 3180 3181 return false; 3182 } 3183 3184 /* 3185 * kswapd shrinks a node of pages that are at or below the highest usable 3186 * zone that is currently unbalanced. 3187 * 3188 * Returns true if kswapd scanned at least the requested number of pages to 3189 * reclaim or if the lack of progress was due to pages under writeback. 3190 * This is used to determine if the scanning priority needs to be raised. 3191 */ 3192 static bool kswapd_shrink_node(pg_data_t *pgdat, 3193 struct scan_control *sc) 3194 { 3195 struct zone *zone; 3196 int z; 3197 3198 /* Reclaim a number of pages proportional to the number of zones */ 3199 sc->nr_to_reclaim = 0; 3200 for (z = 0; z <= sc->reclaim_idx; z++) { 3201 zone = pgdat->node_zones + z; 3202 if (!managed_zone(zone)) 3203 continue; 3204 3205 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3206 } 3207 3208 /* 3209 * Historically care was taken to put equal pressure on all zones but 3210 * now pressure is applied based on node LRU order. 3211 */ 3212 shrink_node(pgdat, sc); 3213 3214 /* 3215 * Fragmentation may mean that the system cannot be rebalanced for 3216 * high-order allocations. If twice the allocation size has been 3217 * reclaimed then recheck watermarks only at order-0 to prevent 3218 * excessive reclaim. Assume that a process requested a high-order 3219 * can direct reclaim/compact. 3220 */ 3221 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3222 sc->order = 0; 3223 3224 return sc->nr_scanned >= sc->nr_to_reclaim; 3225 } 3226 3227 /* 3228 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3229 * that are eligible for use by the caller until at least one zone is 3230 * balanced. 3231 * 3232 * Returns the order kswapd finished reclaiming at. 3233 * 3234 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3235 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3236 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3237 * or lower is eligible for reclaim until at least one usable zone is 3238 * balanced. 3239 */ 3240 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3241 { 3242 int i; 3243 unsigned long nr_soft_reclaimed; 3244 unsigned long nr_soft_scanned; 3245 struct zone *zone; 3246 struct scan_control sc = { 3247 .gfp_mask = GFP_KERNEL, 3248 .order = order, 3249 .priority = DEF_PRIORITY, 3250 .may_writepage = !laptop_mode, 3251 .may_unmap = 1, 3252 .may_swap = 1, 3253 }; 3254 count_vm_event(PAGEOUTRUN); 3255 3256 do { 3257 unsigned long nr_reclaimed = sc.nr_reclaimed; 3258 bool raise_priority = true; 3259 3260 sc.reclaim_idx = classzone_idx; 3261 3262 /* 3263 * If the number of buffer_heads exceeds the maximum allowed 3264 * then consider reclaiming from all zones. This has a dual 3265 * purpose -- on 64-bit systems it is expected that 3266 * buffer_heads are stripped during active rotation. On 32-bit 3267 * systems, highmem pages can pin lowmem memory and shrinking 3268 * buffers can relieve lowmem pressure. Reclaim may still not 3269 * go ahead if all eligible zones for the original allocation 3270 * request are balanced to avoid excessive reclaim from kswapd. 3271 */ 3272 if (buffer_heads_over_limit) { 3273 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3274 zone = pgdat->node_zones + i; 3275 if (!managed_zone(zone)) 3276 continue; 3277 3278 sc.reclaim_idx = i; 3279 break; 3280 } 3281 } 3282 3283 /* 3284 * Only reclaim if there are no eligible zones. Note that 3285 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3286 * have adjusted it. 3287 */ 3288 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3289 goto out; 3290 3291 /* 3292 * Do some background aging of the anon list, to give 3293 * pages a chance to be referenced before reclaiming. All 3294 * pages are rotated regardless of classzone as this is 3295 * about consistent aging. 3296 */ 3297 age_active_anon(pgdat, &sc); 3298 3299 /* 3300 * If we're getting trouble reclaiming, start doing writepage 3301 * even in laptop mode. 3302 */ 3303 if (sc.priority < DEF_PRIORITY - 2) 3304 sc.may_writepage = 1; 3305 3306 /* Call soft limit reclaim before calling shrink_node. */ 3307 sc.nr_scanned = 0; 3308 nr_soft_scanned = 0; 3309 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3310 sc.gfp_mask, &nr_soft_scanned); 3311 sc.nr_reclaimed += nr_soft_reclaimed; 3312 3313 /* 3314 * There should be no need to raise the scanning priority if 3315 * enough pages are already being scanned that that high 3316 * watermark would be met at 100% efficiency. 3317 */ 3318 if (kswapd_shrink_node(pgdat, &sc)) 3319 raise_priority = false; 3320 3321 /* 3322 * If the low watermark is met there is no need for processes 3323 * to be throttled on pfmemalloc_wait as they should not be 3324 * able to safely make forward progress. Wake them 3325 */ 3326 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3327 allow_direct_reclaim(pgdat)) 3328 wake_up_all(&pgdat->pfmemalloc_wait); 3329 3330 /* Check if kswapd should be suspending */ 3331 if (try_to_freeze() || kthread_should_stop()) 3332 break; 3333 3334 /* 3335 * Raise priority if scanning rate is too low or there was no 3336 * progress in reclaiming pages 3337 */ 3338 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3339 if (raise_priority || !nr_reclaimed) 3340 sc.priority--; 3341 } while (sc.priority >= 1); 3342 3343 if (!sc.nr_reclaimed) 3344 pgdat->kswapd_failures++; 3345 3346 out: 3347 snapshot_refaults(NULL, pgdat); 3348 /* 3349 * Return the order kswapd stopped reclaiming at as 3350 * prepare_kswapd_sleep() takes it into account. If another caller 3351 * entered the allocator slow path while kswapd was awake, order will 3352 * remain at the higher level. 3353 */ 3354 return sc.order; 3355 } 3356 3357 /* 3358 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3359 * allocation request woke kswapd for. When kswapd has not woken recently, 3360 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3361 * given classzone and returns it or the highest classzone index kswapd 3362 * was recently woke for. 3363 */ 3364 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3365 enum zone_type classzone_idx) 3366 { 3367 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3368 return classzone_idx; 3369 3370 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3371 } 3372 3373 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3374 unsigned int classzone_idx) 3375 { 3376 long remaining = 0; 3377 DEFINE_WAIT(wait); 3378 3379 if (freezing(current) || kthread_should_stop()) 3380 return; 3381 3382 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3383 3384 /* 3385 * Try to sleep for a short interval. Note that kcompactd will only be 3386 * woken if it is possible to sleep for a short interval. This is 3387 * deliberate on the assumption that if reclaim cannot keep an 3388 * eligible zone balanced that it's also unlikely that compaction will 3389 * succeed. 3390 */ 3391 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3392 /* 3393 * Compaction records what page blocks it recently failed to 3394 * isolate pages from and skips them in the future scanning. 3395 * When kswapd is going to sleep, it is reasonable to assume 3396 * that pages and compaction may succeed so reset the cache. 3397 */ 3398 reset_isolation_suitable(pgdat); 3399 3400 /* 3401 * We have freed the memory, now we should compact it to make 3402 * allocation of the requested order possible. 3403 */ 3404 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3405 3406 remaining = schedule_timeout(HZ/10); 3407 3408 /* 3409 * If woken prematurely then reset kswapd_classzone_idx and 3410 * order. The values will either be from a wakeup request or 3411 * the previous request that slept prematurely. 3412 */ 3413 if (remaining) { 3414 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3415 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3416 } 3417 3418 finish_wait(&pgdat->kswapd_wait, &wait); 3419 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3420 } 3421 3422 /* 3423 * After a short sleep, check if it was a premature sleep. If not, then 3424 * go fully to sleep until explicitly woken up. 3425 */ 3426 if (!remaining && 3427 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3428 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3429 3430 /* 3431 * vmstat counters are not perfectly accurate and the estimated 3432 * value for counters such as NR_FREE_PAGES can deviate from the 3433 * true value by nr_online_cpus * threshold. To avoid the zone 3434 * watermarks being breached while under pressure, we reduce the 3435 * per-cpu vmstat threshold while kswapd is awake and restore 3436 * them before going back to sleep. 3437 */ 3438 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3439 3440 if (!kthread_should_stop()) 3441 schedule(); 3442 3443 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3444 } else { 3445 if (remaining) 3446 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3447 else 3448 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3449 } 3450 finish_wait(&pgdat->kswapd_wait, &wait); 3451 } 3452 3453 /* 3454 * The background pageout daemon, started as a kernel thread 3455 * from the init process. 3456 * 3457 * This basically trickles out pages so that we have _some_ 3458 * free memory available even if there is no other activity 3459 * that frees anything up. This is needed for things like routing 3460 * etc, where we otherwise might have all activity going on in 3461 * asynchronous contexts that cannot page things out. 3462 * 3463 * If there are applications that are active memory-allocators 3464 * (most normal use), this basically shouldn't matter. 3465 */ 3466 static int kswapd(void *p) 3467 { 3468 unsigned int alloc_order, reclaim_order; 3469 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3470 pg_data_t *pgdat = (pg_data_t*)p; 3471 struct task_struct *tsk = current; 3472 3473 struct reclaim_state reclaim_state = { 3474 .reclaimed_slab = 0, 3475 }; 3476 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3477 3478 if (!cpumask_empty(cpumask)) 3479 set_cpus_allowed_ptr(tsk, cpumask); 3480 current->reclaim_state = &reclaim_state; 3481 3482 /* 3483 * Tell the memory management that we're a "memory allocator", 3484 * and that if we need more memory we should get access to it 3485 * regardless (see "__alloc_pages()"). "kswapd" should 3486 * never get caught in the normal page freeing logic. 3487 * 3488 * (Kswapd normally doesn't need memory anyway, but sometimes 3489 * you need a small amount of memory in order to be able to 3490 * page out something else, and this flag essentially protects 3491 * us from recursively trying to free more memory as we're 3492 * trying to free the first piece of memory in the first place). 3493 */ 3494 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3495 set_freezable(); 3496 3497 pgdat->kswapd_order = 0; 3498 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3499 for ( ; ; ) { 3500 bool ret; 3501 3502 alloc_order = reclaim_order = pgdat->kswapd_order; 3503 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3504 3505 kswapd_try_sleep: 3506 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3507 classzone_idx); 3508 3509 /* Read the new order and classzone_idx */ 3510 alloc_order = reclaim_order = pgdat->kswapd_order; 3511 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3512 pgdat->kswapd_order = 0; 3513 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3514 3515 ret = try_to_freeze(); 3516 if (kthread_should_stop()) 3517 break; 3518 3519 /* 3520 * We can speed up thawing tasks if we don't call balance_pgdat 3521 * after returning from the refrigerator 3522 */ 3523 if (ret) 3524 continue; 3525 3526 /* 3527 * Reclaim begins at the requested order but if a high-order 3528 * reclaim fails then kswapd falls back to reclaiming for 3529 * order-0. If that happens, kswapd will consider sleeping 3530 * for the order it finished reclaiming at (reclaim_order) 3531 * but kcompactd is woken to compact for the original 3532 * request (alloc_order). 3533 */ 3534 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3535 alloc_order); 3536 fs_reclaim_acquire(GFP_KERNEL); 3537 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3538 fs_reclaim_release(GFP_KERNEL); 3539 if (reclaim_order < alloc_order) 3540 goto kswapd_try_sleep; 3541 } 3542 3543 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3544 current->reclaim_state = NULL; 3545 3546 return 0; 3547 } 3548 3549 /* 3550 * A zone is low on free memory, so wake its kswapd task to service it. 3551 */ 3552 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3553 { 3554 pg_data_t *pgdat; 3555 3556 if (!managed_zone(zone)) 3557 return; 3558 3559 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3560 return; 3561 pgdat = zone->zone_pgdat; 3562 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3563 classzone_idx); 3564 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3565 if (!waitqueue_active(&pgdat->kswapd_wait)) 3566 return; 3567 3568 /* Hopeless node, leave it to direct reclaim */ 3569 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3570 return; 3571 3572 if (pgdat_balanced(pgdat, order, classzone_idx)) 3573 return; 3574 3575 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order); 3576 wake_up_interruptible(&pgdat->kswapd_wait); 3577 } 3578 3579 #ifdef CONFIG_HIBERNATION 3580 /* 3581 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3582 * freed pages. 3583 * 3584 * Rather than trying to age LRUs the aim is to preserve the overall 3585 * LRU order by reclaiming preferentially 3586 * inactive > active > active referenced > active mapped 3587 */ 3588 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3589 { 3590 struct reclaim_state reclaim_state; 3591 struct scan_control sc = { 3592 .nr_to_reclaim = nr_to_reclaim, 3593 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3594 .reclaim_idx = MAX_NR_ZONES - 1, 3595 .priority = DEF_PRIORITY, 3596 .may_writepage = 1, 3597 .may_unmap = 1, 3598 .may_swap = 1, 3599 .hibernation_mode = 1, 3600 }; 3601 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3602 struct task_struct *p = current; 3603 unsigned long nr_reclaimed; 3604 unsigned int noreclaim_flag; 3605 3606 noreclaim_flag = memalloc_noreclaim_save(); 3607 fs_reclaim_acquire(sc.gfp_mask); 3608 reclaim_state.reclaimed_slab = 0; 3609 p->reclaim_state = &reclaim_state; 3610 3611 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3612 3613 p->reclaim_state = NULL; 3614 fs_reclaim_release(sc.gfp_mask); 3615 memalloc_noreclaim_restore(noreclaim_flag); 3616 3617 return nr_reclaimed; 3618 } 3619 #endif /* CONFIG_HIBERNATION */ 3620 3621 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3622 not required for correctness. So if the last cpu in a node goes 3623 away, we get changed to run anywhere: as the first one comes back, 3624 restore their cpu bindings. */ 3625 static int kswapd_cpu_online(unsigned int cpu) 3626 { 3627 int nid; 3628 3629 for_each_node_state(nid, N_MEMORY) { 3630 pg_data_t *pgdat = NODE_DATA(nid); 3631 const struct cpumask *mask; 3632 3633 mask = cpumask_of_node(pgdat->node_id); 3634 3635 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3636 /* One of our CPUs online: restore mask */ 3637 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3638 } 3639 return 0; 3640 } 3641 3642 /* 3643 * This kswapd start function will be called by init and node-hot-add. 3644 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3645 */ 3646 int kswapd_run(int nid) 3647 { 3648 pg_data_t *pgdat = NODE_DATA(nid); 3649 int ret = 0; 3650 3651 if (pgdat->kswapd) 3652 return 0; 3653 3654 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3655 if (IS_ERR(pgdat->kswapd)) { 3656 /* failure at boot is fatal */ 3657 BUG_ON(system_state < SYSTEM_RUNNING); 3658 pr_err("Failed to start kswapd on node %d\n", nid); 3659 ret = PTR_ERR(pgdat->kswapd); 3660 pgdat->kswapd = NULL; 3661 } 3662 return ret; 3663 } 3664 3665 /* 3666 * Called by memory hotplug when all memory in a node is offlined. Caller must 3667 * hold mem_hotplug_begin/end(). 3668 */ 3669 void kswapd_stop(int nid) 3670 { 3671 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3672 3673 if (kswapd) { 3674 kthread_stop(kswapd); 3675 NODE_DATA(nid)->kswapd = NULL; 3676 } 3677 } 3678 3679 static int __init kswapd_init(void) 3680 { 3681 int nid, ret; 3682 3683 swap_setup(); 3684 for_each_node_state(nid, N_MEMORY) 3685 kswapd_run(nid); 3686 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3687 "mm/vmscan:online", kswapd_cpu_online, 3688 NULL); 3689 WARN_ON(ret < 0); 3690 return 0; 3691 } 3692 3693 module_init(kswapd_init) 3694 3695 #ifdef CONFIG_NUMA 3696 /* 3697 * Node reclaim mode 3698 * 3699 * If non-zero call node_reclaim when the number of free pages falls below 3700 * the watermarks. 3701 */ 3702 int node_reclaim_mode __read_mostly; 3703 3704 #define RECLAIM_OFF 0 3705 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3706 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3707 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3708 3709 /* 3710 * Priority for NODE_RECLAIM. This determines the fraction of pages 3711 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3712 * a zone. 3713 */ 3714 #define NODE_RECLAIM_PRIORITY 4 3715 3716 /* 3717 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3718 * occur. 3719 */ 3720 int sysctl_min_unmapped_ratio = 1; 3721 3722 /* 3723 * If the number of slab pages in a zone grows beyond this percentage then 3724 * slab reclaim needs to occur. 3725 */ 3726 int sysctl_min_slab_ratio = 5; 3727 3728 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3729 { 3730 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3731 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3732 node_page_state(pgdat, NR_ACTIVE_FILE); 3733 3734 /* 3735 * It's possible for there to be more file mapped pages than 3736 * accounted for by the pages on the file LRU lists because 3737 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3738 */ 3739 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3740 } 3741 3742 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3743 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3744 { 3745 unsigned long nr_pagecache_reclaimable; 3746 unsigned long delta = 0; 3747 3748 /* 3749 * If RECLAIM_UNMAP is set, then all file pages are considered 3750 * potentially reclaimable. Otherwise, we have to worry about 3751 * pages like swapcache and node_unmapped_file_pages() provides 3752 * a better estimate 3753 */ 3754 if (node_reclaim_mode & RECLAIM_UNMAP) 3755 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3756 else 3757 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3758 3759 /* If we can't clean pages, remove dirty pages from consideration */ 3760 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3761 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3762 3763 /* Watch for any possible underflows due to delta */ 3764 if (unlikely(delta > nr_pagecache_reclaimable)) 3765 delta = nr_pagecache_reclaimable; 3766 3767 return nr_pagecache_reclaimable - delta; 3768 } 3769 3770 /* 3771 * Try to free up some pages from this node through reclaim. 3772 */ 3773 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3774 { 3775 /* Minimum pages needed in order to stay on node */ 3776 const unsigned long nr_pages = 1 << order; 3777 struct task_struct *p = current; 3778 struct reclaim_state reclaim_state; 3779 unsigned int noreclaim_flag; 3780 struct scan_control sc = { 3781 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3782 .gfp_mask = current_gfp_context(gfp_mask), 3783 .order = order, 3784 .priority = NODE_RECLAIM_PRIORITY, 3785 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3786 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3787 .may_swap = 1, 3788 .reclaim_idx = gfp_zone(gfp_mask), 3789 }; 3790 3791 cond_resched(); 3792 /* 3793 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3794 * and we also need to be able to write out pages for RECLAIM_WRITE 3795 * and RECLAIM_UNMAP. 3796 */ 3797 noreclaim_flag = memalloc_noreclaim_save(); 3798 p->flags |= PF_SWAPWRITE; 3799 fs_reclaim_acquire(sc.gfp_mask); 3800 reclaim_state.reclaimed_slab = 0; 3801 p->reclaim_state = &reclaim_state; 3802 3803 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3804 /* 3805 * Free memory by calling shrink zone with increasing 3806 * priorities until we have enough memory freed. 3807 */ 3808 do { 3809 shrink_node(pgdat, &sc); 3810 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3811 } 3812 3813 p->reclaim_state = NULL; 3814 fs_reclaim_release(gfp_mask); 3815 current->flags &= ~PF_SWAPWRITE; 3816 memalloc_noreclaim_restore(noreclaim_flag); 3817 return sc.nr_reclaimed >= nr_pages; 3818 } 3819 3820 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3821 { 3822 int ret; 3823 3824 /* 3825 * Node reclaim reclaims unmapped file backed pages and 3826 * slab pages if we are over the defined limits. 3827 * 3828 * A small portion of unmapped file backed pages is needed for 3829 * file I/O otherwise pages read by file I/O will be immediately 3830 * thrown out if the node is overallocated. So we do not reclaim 3831 * if less than a specified percentage of the node is used by 3832 * unmapped file backed pages. 3833 */ 3834 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3835 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3836 return NODE_RECLAIM_FULL; 3837 3838 /* 3839 * Do not scan if the allocation should not be delayed. 3840 */ 3841 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3842 return NODE_RECLAIM_NOSCAN; 3843 3844 /* 3845 * Only run node reclaim on the local node or on nodes that do not 3846 * have associated processors. This will favor the local processor 3847 * over remote processors and spread off node memory allocations 3848 * as wide as possible. 3849 */ 3850 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3851 return NODE_RECLAIM_NOSCAN; 3852 3853 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3854 return NODE_RECLAIM_NOSCAN; 3855 3856 ret = __node_reclaim(pgdat, gfp_mask, order); 3857 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3858 3859 if (!ret) 3860 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3861 3862 return ret; 3863 } 3864 #endif 3865 3866 /* 3867 * page_evictable - test whether a page is evictable 3868 * @page: the page to test 3869 * 3870 * Test whether page is evictable--i.e., should be placed on active/inactive 3871 * lists vs unevictable list. 3872 * 3873 * Reasons page might not be evictable: 3874 * (1) page's mapping marked unevictable 3875 * (2) page is part of an mlocked VMA 3876 * 3877 */ 3878 int page_evictable(struct page *page) 3879 { 3880 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3881 } 3882 3883 #ifdef CONFIG_SHMEM 3884 /** 3885 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3886 * @pages: array of pages to check 3887 * @nr_pages: number of pages to check 3888 * 3889 * Checks pages for evictability and moves them to the appropriate lru list. 3890 * 3891 * This function is only used for SysV IPC SHM_UNLOCK. 3892 */ 3893 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3894 { 3895 struct lruvec *lruvec; 3896 struct pglist_data *pgdat = NULL; 3897 int pgscanned = 0; 3898 int pgrescued = 0; 3899 int i; 3900 3901 for (i = 0; i < nr_pages; i++) { 3902 struct page *page = pages[i]; 3903 struct pglist_data *pagepgdat = page_pgdat(page); 3904 3905 pgscanned++; 3906 if (pagepgdat != pgdat) { 3907 if (pgdat) 3908 spin_unlock_irq(&pgdat->lru_lock); 3909 pgdat = pagepgdat; 3910 spin_lock_irq(&pgdat->lru_lock); 3911 } 3912 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3913 3914 if (!PageLRU(page) || !PageUnevictable(page)) 3915 continue; 3916 3917 if (page_evictable(page)) { 3918 enum lru_list lru = page_lru_base_type(page); 3919 3920 VM_BUG_ON_PAGE(PageActive(page), page); 3921 ClearPageUnevictable(page); 3922 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3923 add_page_to_lru_list(page, lruvec, lru); 3924 pgrescued++; 3925 } 3926 } 3927 3928 if (pgdat) { 3929 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3930 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3931 spin_unlock_irq(&pgdat->lru_lock); 3932 } 3933 } 3934 #endif /* CONFIG_SHMEM */ 3935