1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* This context's GFP mask */ 59 gfp_t gfp_mask; 60 61 int may_writepage; 62 63 /* Can mapped pages be reclaimed? */ 64 int may_unmap; 65 66 /* Can pages be swapped as part of reclaim? */ 67 int may_swap; 68 69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 70 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 71 * In this context, it doesn't matter that we scan the 72 * whole list at once. */ 73 int swap_cluster_max; 74 75 int swappiness; 76 77 int all_unreclaimable; 78 79 int order; 80 81 /* Which cgroup do we reclaim from */ 82 struct mem_cgroup *mem_cgroup; 83 84 /* 85 * Nodemask of nodes allowed by the caller. If NULL, all nodes 86 * are scanned. 87 */ 88 nodemask_t *nodemask; 89 90 /* Pluggable isolate pages callback */ 91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 92 unsigned long *scanned, int order, int mode, 93 struct zone *z, struct mem_cgroup *mem_cont, 94 int active, int file); 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 138 #else 139 #define scanning_global_lru(sc) (1) 140 #endif 141 142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 143 struct scan_control *sc) 144 { 145 if (!scanning_global_lru(sc)) 146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 147 148 return &zone->reclaim_stat; 149 } 150 151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc, 152 enum lru_list lru) 153 { 154 if (!scanning_global_lru(sc)) 155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 156 157 return zone_page_state(zone, NR_LRU_BASE + lru); 158 } 159 160 161 /* 162 * Add a shrinker callback to be called from the vm 163 */ 164 void register_shrinker(struct shrinker *shrinker) 165 { 166 shrinker->nr = 0; 167 down_write(&shrinker_rwsem); 168 list_add_tail(&shrinker->list, &shrinker_list); 169 up_write(&shrinker_rwsem); 170 } 171 EXPORT_SYMBOL(register_shrinker); 172 173 /* 174 * Remove one 175 */ 176 void unregister_shrinker(struct shrinker *shrinker) 177 { 178 down_write(&shrinker_rwsem); 179 list_del(&shrinker->list); 180 up_write(&shrinker_rwsem); 181 } 182 EXPORT_SYMBOL(unregister_shrinker); 183 184 #define SHRINK_BATCH 128 185 /* 186 * Call the shrink functions to age shrinkable caches 187 * 188 * Here we assume it costs one seek to replace a lru page and that it also 189 * takes a seek to recreate a cache object. With this in mind we age equal 190 * percentages of the lru and ageable caches. This should balance the seeks 191 * generated by these structures. 192 * 193 * If the vm encountered mapped pages on the LRU it increase the pressure on 194 * slab to avoid swapping. 195 * 196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 197 * 198 * `lru_pages' represents the number of on-LRU pages in all the zones which 199 * are eligible for the caller's allocation attempt. It is used for balancing 200 * slab reclaim versus page reclaim. 201 * 202 * Returns the number of slab objects which we shrunk. 203 */ 204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 205 unsigned long lru_pages) 206 { 207 struct shrinker *shrinker; 208 unsigned long ret = 0; 209 210 if (scanned == 0) 211 scanned = SWAP_CLUSTER_MAX; 212 213 if (!down_read_trylock(&shrinker_rwsem)) 214 return 1; /* Assume we'll be able to shrink next time */ 215 216 list_for_each_entry(shrinker, &shrinker_list, list) { 217 unsigned long long delta; 218 unsigned long total_scan; 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 220 221 delta = (4 * scanned) / shrinker->seeks; 222 delta *= max_pass; 223 do_div(delta, lru_pages + 1); 224 shrinker->nr += delta; 225 if (shrinker->nr < 0) { 226 printk(KERN_ERR "shrink_slab: %pF negative objects to " 227 "delete nr=%ld\n", 228 shrinker->shrink, shrinker->nr); 229 shrinker->nr = max_pass; 230 } 231 232 /* 233 * Avoid risking looping forever due to too large nr value: 234 * never try to free more than twice the estimate number of 235 * freeable entries. 236 */ 237 if (shrinker->nr > max_pass * 2) 238 shrinker->nr = max_pass * 2; 239 240 total_scan = shrinker->nr; 241 shrinker->nr = 0; 242 243 while (total_scan >= SHRINK_BATCH) { 244 long this_scan = SHRINK_BATCH; 245 int shrink_ret; 246 int nr_before; 247 248 nr_before = (*shrinker->shrink)(0, gfp_mask); 249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 250 if (shrink_ret == -1) 251 break; 252 if (shrink_ret < nr_before) 253 ret += nr_before - shrink_ret; 254 count_vm_events(SLABS_SCANNED, this_scan); 255 total_scan -= this_scan; 256 257 cond_resched(); 258 } 259 260 shrinker->nr += total_scan; 261 } 262 up_read(&shrinker_rwsem); 263 return ret; 264 } 265 266 /* Called without lock on whether page is mapped, so answer is unstable */ 267 static inline int page_mapping_inuse(struct page *page) 268 { 269 struct address_space *mapping; 270 271 /* Page is in somebody's page tables. */ 272 if (page_mapped(page)) 273 return 1; 274 275 /* Be more reluctant to reclaim swapcache than pagecache */ 276 if (PageSwapCache(page)) 277 return 1; 278 279 mapping = page_mapping(page); 280 if (!mapping) 281 return 0; 282 283 /* File is mmap'd by somebody? */ 284 return mapping_mapped(mapping); 285 } 286 287 static inline int is_page_cache_freeable(struct page *page) 288 { 289 return page_count(page) - !!page_has_private(page) == 2; 290 } 291 292 static int may_write_to_queue(struct backing_dev_info *bdi) 293 { 294 if (current->flags & PF_SWAPWRITE) 295 return 1; 296 if (!bdi_write_congested(bdi)) 297 return 1; 298 if (bdi == current->backing_dev_info) 299 return 1; 300 return 0; 301 } 302 303 /* 304 * We detected a synchronous write error writing a page out. Probably 305 * -ENOSPC. We need to propagate that into the address_space for a subsequent 306 * fsync(), msync() or close(). 307 * 308 * The tricky part is that after writepage we cannot touch the mapping: nothing 309 * prevents it from being freed up. But we have a ref on the page and once 310 * that page is locked, the mapping is pinned. 311 * 312 * We're allowed to run sleeping lock_page() here because we know the caller has 313 * __GFP_FS. 314 */ 315 static void handle_write_error(struct address_space *mapping, 316 struct page *page, int error) 317 { 318 lock_page(page); 319 if (page_mapping(page) == mapping) 320 mapping_set_error(mapping, error); 321 unlock_page(page); 322 } 323 324 /* Request for sync pageout. */ 325 enum pageout_io { 326 PAGEOUT_IO_ASYNC, 327 PAGEOUT_IO_SYNC, 328 }; 329 330 /* possible outcome of pageout() */ 331 typedef enum { 332 /* failed to write page out, page is locked */ 333 PAGE_KEEP, 334 /* move page to the active list, page is locked */ 335 PAGE_ACTIVATE, 336 /* page has been sent to the disk successfully, page is unlocked */ 337 PAGE_SUCCESS, 338 /* page is clean and locked */ 339 PAGE_CLEAN, 340 } pageout_t; 341 342 /* 343 * pageout is called by shrink_page_list() for each dirty page. 344 * Calls ->writepage(). 345 */ 346 static pageout_t pageout(struct page *page, struct address_space *mapping, 347 enum pageout_io sync_writeback) 348 { 349 /* 350 * If the page is dirty, only perform writeback if that write 351 * will be non-blocking. To prevent this allocation from being 352 * stalled by pagecache activity. But note that there may be 353 * stalls if we need to run get_block(). We could test 354 * PagePrivate for that. 355 * 356 * If this process is currently in generic_file_write() against 357 * this page's queue, we can perform writeback even if that 358 * will block. 359 * 360 * If the page is swapcache, write it back even if that would 361 * block, for some throttling. This happens by accident, because 362 * swap_backing_dev_info is bust: it doesn't reflect the 363 * congestion state of the swapdevs. Easy to fix, if needed. 364 * See swapfile.c:page_queue_congested(). 365 */ 366 if (!is_page_cache_freeable(page)) 367 return PAGE_KEEP; 368 if (!mapping) { 369 /* 370 * Some data journaling orphaned pages can have 371 * page->mapping == NULL while being dirty with clean buffers. 372 */ 373 if (page_has_private(page)) { 374 if (try_to_free_buffers(page)) { 375 ClearPageDirty(page); 376 printk("%s: orphaned page\n", __func__); 377 return PAGE_CLEAN; 378 } 379 } 380 return PAGE_KEEP; 381 } 382 if (mapping->a_ops->writepage == NULL) 383 return PAGE_ACTIVATE; 384 if (!may_write_to_queue(mapping->backing_dev_info)) 385 return PAGE_KEEP; 386 387 if (clear_page_dirty_for_io(page)) { 388 int res; 389 struct writeback_control wbc = { 390 .sync_mode = WB_SYNC_NONE, 391 .nr_to_write = SWAP_CLUSTER_MAX, 392 .range_start = 0, 393 .range_end = LLONG_MAX, 394 .nonblocking = 1, 395 .for_reclaim = 1, 396 }; 397 398 SetPageReclaim(page); 399 res = mapping->a_ops->writepage(page, &wbc); 400 if (res < 0) 401 handle_write_error(mapping, page, res); 402 if (res == AOP_WRITEPAGE_ACTIVATE) { 403 ClearPageReclaim(page); 404 return PAGE_ACTIVATE; 405 } 406 407 /* 408 * Wait on writeback if requested to. This happens when 409 * direct reclaiming a large contiguous area and the 410 * first attempt to free a range of pages fails. 411 */ 412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 413 wait_on_page_writeback(page); 414 415 if (!PageWriteback(page)) { 416 /* synchronous write or broken a_ops? */ 417 ClearPageReclaim(page); 418 } 419 inc_zone_page_state(page, NR_VMSCAN_WRITE); 420 return PAGE_SUCCESS; 421 } 422 423 return PAGE_CLEAN; 424 } 425 426 /* 427 * Same as remove_mapping, but if the page is removed from the mapping, it 428 * gets returned with a refcount of 0. 429 */ 430 static int __remove_mapping(struct address_space *mapping, struct page *page) 431 { 432 BUG_ON(!PageLocked(page)); 433 BUG_ON(mapping != page_mapping(page)); 434 435 spin_lock_irq(&mapping->tree_lock); 436 /* 437 * The non racy check for a busy page. 438 * 439 * Must be careful with the order of the tests. When someone has 440 * a ref to the page, it may be possible that they dirty it then 441 * drop the reference. So if PageDirty is tested before page_count 442 * here, then the following race may occur: 443 * 444 * get_user_pages(&page); 445 * [user mapping goes away] 446 * write_to(page); 447 * !PageDirty(page) [good] 448 * SetPageDirty(page); 449 * put_page(page); 450 * !page_count(page) [good, discard it] 451 * 452 * [oops, our write_to data is lost] 453 * 454 * Reversing the order of the tests ensures such a situation cannot 455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 456 * load is not satisfied before that of page->_count. 457 * 458 * Note that if SetPageDirty is always performed via set_page_dirty, 459 * and thus under tree_lock, then this ordering is not required. 460 */ 461 if (!page_freeze_refs(page, 2)) 462 goto cannot_free; 463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 464 if (unlikely(PageDirty(page))) { 465 page_unfreeze_refs(page, 2); 466 goto cannot_free; 467 } 468 469 if (PageSwapCache(page)) { 470 swp_entry_t swap = { .val = page_private(page) }; 471 __delete_from_swap_cache(page); 472 spin_unlock_irq(&mapping->tree_lock); 473 swap_free(swap); 474 } else { 475 __remove_from_page_cache(page); 476 spin_unlock_irq(&mapping->tree_lock); 477 } 478 479 return 1; 480 481 cannot_free: 482 spin_unlock_irq(&mapping->tree_lock); 483 return 0; 484 } 485 486 /* 487 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 488 * someone else has a ref on the page, abort and return 0. If it was 489 * successfully detached, return 1. Assumes the caller has a single ref on 490 * this page. 491 */ 492 int remove_mapping(struct address_space *mapping, struct page *page) 493 { 494 if (__remove_mapping(mapping, page)) { 495 /* 496 * Unfreezing the refcount with 1 rather than 2 effectively 497 * drops the pagecache ref for us without requiring another 498 * atomic operation. 499 */ 500 page_unfreeze_refs(page, 1); 501 return 1; 502 } 503 return 0; 504 } 505 506 /** 507 * putback_lru_page - put previously isolated page onto appropriate LRU list 508 * @page: page to be put back to appropriate lru list 509 * 510 * Add previously isolated @page to appropriate LRU list. 511 * Page may still be unevictable for other reasons. 512 * 513 * lru_lock must not be held, interrupts must be enabled. 514 */ 515 #ifdef CONFIG_UNEVICTABLE_LRU 516 void putback_lru_page(struct page *page) 517 { 518 int lru; 519 int active = !!TestClearPageActive(page); 520 int was_unevictable = PageUnevictable(page); 521 522 VM_BUG_ON(PageLRU(page)); 523 524 redo: 525 ClearPageUnevictable(page); 526 527 if (page_evictable(page, NULL)) { 528 /* 529 * For evictable pages, we can use the cache. 530 * In event of a race, worst case is we end up with an 531 * unevictable page on [in]active list. 532 * We know how to handle that. 533 */ 534 lru = active + page_is_file_cache(page); 535 lru_cache_add_lru(page, lru); 536 } else { 537 /* 538 * Put unevictable pages directly on zone's unevictable 539 * list. 540 */ 541 lru = LRU_UNEVICTABLE; 542 add_page_to_unevictable_list(page); 543 } 544 545 /* 546 * page's status can change while we move it among lru. If an evictable 547 * page is on unevictable list, it never be freed. To avoid that, 548 * check after we added it to the list, again. 549 */ 550 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 551 if (!isolate_lru_page(page)) { 552 put_page(page); 553 goto redo; 554 } 555 /* This means someone else dropped this page from LRU 556 * So, it will be freed or putback to LRU again. There is 557 * nothing to do here. 558 */ 559 } 560 561 if (was_unevictable && lru != LRU_UNEVICTABLE) 562 count_vm_event(UNEVICTABLE_PGRESCUED); 563 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 564 count_vm_event(UNEVICTABLE_PGCULLED); 565 566 put_page(page); /* drop ref from isolate */ 567 } 568 569 #else /* CONFIG_UNEVICTABLE_LRU */ 570 571 void putback_lru_page(struct page *page) 572 { 573 int lru; 574 VM_BUG_ON(PageLRU(page)); 575 576 lru = !!TestClearPageActive(page) + page_is_file_cache(page); 577 lru_cache_add_lru(page, lru); 578 put_page(page); 579 } 580 #endif /* CONFIG_UNEVICTABLE_LRU */ 581 582 583 /* 584 * shrink_page_list() returns the number of reclaimed pages 585 */ 586 static unsigned long shrink_page_list(struct list_head *page_list, 587 struct scan_control *sc, 588 enum pageout_io sync_writeback) 589 { 590 LIST_HEAD(ret_pages); 591 struct pagevec freed_pvec; 592 int pgactivate = 0; 593 unsigned long nr_reclaimed = 0; 594 595 cond_resched(); 596 597 pagevec_init(&freed_pvec, 1); 598 while (!list_empty(page_list)) { 599 struct address_space *mapping; 600 struct page *page; 601 int may_enter_fs; 602 int referenced; 603 604 cond_resched(); 605 606 page = lru_to_page(page_list); 607 list_del(&page->lru); 608 609 if (!trylock_page(page)) 610 goto keep; 611 612 VM_BUG_ON(PageActive(page)); 613 614 sc->nr_scanned++; 615 616 if (unlikely(!page_evictable(page, NULL))) 617 goto cull_mlocked; 618 619 if (!sc->may_unmap && page_mapped(page)) 620 goto keep_locked; 621 622 /* Double the slab pressure for mapped and swapcache pages */ 623 if (page_mapped(page) || PageSwapCache(page)) 624 sc->nr_scanned++; 625 626 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 627 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 628 629 if (PageWriteback(page)) { 630 /* 631 * Synchronous reclaim is performed in two passes, 632 * first an asynchronous pass over the list to 633 * start parallel writeback, and a second synchronous 634 * pass to wait for the IO to complete. Wait here 635 * for any page for which writeback has already 636 * started. 637 */ 638 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 639 wait_on_page_writeback(page); 640 else 641 goto keep_locked; 642 } 643 644 referenced = page_referenced(page, 1, sc->mem_cgroup); 645 /* In active use or really unfreeable? Activate it. */ 646 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 647 referenced && page_mapping_inuse(page)) 648 goto activate_locked; 649 650 /* 651 * Anonymous process memory has backing store? 652 * Try to allocate it some swap space here. 653 */ 654 if (PageAnon(page) && !PageSwapCache(page)) { 655 if (!(sc->gfp_mask & __GFP_IO)) 656 goto keep_locked; 657 if (!add_to_swap(page)) 658 goto activate_locked; 659 may_enter_fs = 1; 660 } 661 662 mapping = page_mapping(page); 663 664 /* 665 * The page is mapped into the page tables of one or more 666 * processes. Try to unmap it here. 667 */ 668 if (page_mapped(page) && mapping) { 669 switch (try_to_unmap(page, 0)) { 670 case SWAP_FAIL: 671 goto activate_locked; 672 case SWAP_AGAIN: 673 goto keep_locked; 674 case SWAP_MLOCK: 675 goto cull_mlocked; 676 case SWAP_SUCCESS: 677 ; /* try to free the page below */ 678 } 679 } 680 681 if (PageDirty(page)) { 682 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 683 goto keep_locked; 684 if (!may_enter_fs) 685 goto keep_locked; 686 if (!sc->may_writepage) 687 goto keep_locked; 688 689 /* Page is dirty, try to write it out here */ 690 switch (pageout(page, mapping, sync_writeback)) { 691 case PAGE_KEEP: 692 goto keep_locked; 693 case PAGE_ACTIVATE: 694 goto activate_locked; 695 case PAGE_SUCCESS: 696 if (PageWriteback(page) || PageDirty(page)) 697 goto keep; 698 /* 699 * A synchronous write - probably a ramdisk. Go 700 * ahead and try to reclaim the page. 701 */ 702 if (!trylock_page(page)) 703 goto keep; 704 if (PageDirty(page) || PageWriteback(page)) 705 goto keep_locked; 706 mapping = page_mapping(page); 707 case PAGE_CLEAN: 708 ; /* try to free the page below */ 709 } 710 } 711 712 /* 713 * If the page has buffers, try to free the buffer mappings 714 * associated with this page. If we succeed we try to free 715 * the page as well. 716 * 717 * We do this even if the page is PageDirty(). 718 * try_to_release_page() does not perform I/O, but it is 719 * possible for a page to have PageDirty set, but it is actually 720 * clean (all its buffers are clean). This happens if the 721 * buffers were written out directly, with submit_bh(). ext3 722 * will do this, as well as the blockdev mapping. 723 * try_to_release_page() will discover that cleanness and will 724 * drop the buffers and mark the page clean - it can be freed. 725 * 726 * Rarely, pages can have buffers and no ->mapping. These are 727 * the pages which were not successfully invalidated in 728 * truncate_complete_page(). We try to drop those buffers here 729 * and if that worked, and the page is no longer mapped into 730 * process address space (page_count == 1) it can be freed. 731 * Otherwise, leave the page on the LRU so it is swappable. 732 */ 733 if (page_has_private(page)) { 734 if (!try_to_release_page(page, sc->gfp_mask)) 735 goto activate_locked; 736 if (!mapping && page_count(page) == 1) { 737 unlock_page(page); 738 if (put_page_testzero(page)) 739 goto free_it; 740 else { 741 /* 742 * rare race with speculative reference. 743 * the speculative reference will free 744 * this page shortly, so we may 745 * increment nr_reclaimed here (and 746 * leave it off the LRU). 747 */ 748 nr_reclaimed++; 749 continue; 750 } 751 } 752 } 753 754 if (!mapping || !__remove_mapping(mapping, page)) 755 goto keep_locked; 756 757 /* 758 * At this point, we have no other references and there is 759 * no way to pick any more up (removed from LRU, removed 760 * from pagecache). Can use non-atomic bitops now (and 761 * we obviously don't have to worry about waking up a process 762 * waiting on the page lock, because there are no references. 763 */ 764 __clear_page_locked(page); 765 free_it: 766 nr_reclaimed++; 767 if (!pagevec_add(&freed_pvec, page)) { 768 __pagevec_free(&freed_pvec); 769 pagevec_reinit(&freed_pvec); 770 } 771 continue; 772 773 cull_mlocked: 774 if (PageSwapCache(page)) 775 try_to_free_swap(page); 776 unlock_page(page); 777 putback_lru_page(page); 778 continue; 779 780 activate_locked: 781 /* Not a candidate for swapping, so reclaim swap space. */ 782 if (PageSwapCache(page) && vm_swap_full()) 783 try_to_free_swap(page); 784 VM_BUG_ON(PageActive(page)); 785 SetPageActive(page); 786 pgactivate++; 787 keep_locked: 788 unlock_page(page); 789 keep: 790 list_add(&page->lru, &ret_pages); 791 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 792 } 793 list_splice(&ret_pages, page_list); 794 if (pagevec_count(&freed_pvec)) 795 __pagevec_free(&freed_pvec); 796 count_vm_events(PGACTIVATE, pgactivate); 797 return nr_reclaimed; 798 } 799 800 /* LRU Isolation modes. */ 801 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 802 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 803 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 804 805 /* 806 * Attempt to remove the specified page from its LRU. Only take this page 807 * if it is of the appropriate PageActive status. Pages which are being 808 * freed elsewhere are also ignored. 809 * 810 * page: page to consider 811 * mode: one of the LRU isolation modes defined above 812 * 813 * returns 0 on success, -ve errno on failure. 814 */ 815 int __isolate_lru_page(struct page *page, int mode, int file) 816 { 817 int ret = -EINVAL; 818 819 /* Only take pages on the LRU. */ 820 if (!PageLRU(page)) 821 return ret; 822 823 /* 824 * When checking the active state, we need to be sure we are 825 * dealing with comparible boolean values. Take the logical not 826 * of each. 827 */ 828 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 829 return ret; 830 831 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) 832 return ret; 833 834 /* 835 * When this function is being called for lumpy reclaim, we 836 * initially look into all LRU pages, active, inactive and 837 * unevictable; only give shrink_page_list evictable pages. 838 */ 839 if (PageUnevictable(page)) 840 return ret; 841 842 ret = -EBUSY; 843 844 if (likely(get_page_unless_zero(page))) { 845 /* 846 * Be careful not to clear PageLRU until after we're 847 * sure the page is not being freed elsewhere -- the 848 * page release code relies on it. 849 */ 850 ClearPageLRU(page); 851 ret = 0; 852 mem_cgroup_del_lru(page); 853 } 854 855 return ret; 856 } 857 858 /* 859 * zone->lru_lock is heavily contended. Some of the functions that 860 * shrink the lists perform better by taking out a batch of pages 861 * and working on them outside the LRU lock. 862 * 863 * For pagecache intensive workloads, this function is the hottest 864 * spot in the kernel (apart from copy_*_user functions). 865 * 866 * Appropriate locks must be held before calling this function. 867 * 868 * @nr_to_scan: The number of pages to look through on the list. 869 * @src: The LRU list to pull pages off. 870 * @dst: The temp list to put pages on to. 871 * @scanned: The number of pages that were scanned. 872 * @order: The caller's attempted allocation order 873 * @mode: One of the LRU isolation modes 874 * @file: True [1] if isolating file [!anon] pages 875 * 876 * returns how many pages were moved onto *@dst. 877 */ 878 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 879 struct list_head *src, struct list_head *dst, 880 unsigned long *scanned, int order, int mode, int file) 881 { 882 unsigned long nr_taken = 0; 883 unsigned long scan; 884 885 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 886 struct page *page; 887 unsigned long pfn; 888 unsigned long end_pfn; 889 unsigned long page_pfn; 890 int zone_id; 891 892 page = lru_to_page(src); 893 prefetchw_prev_lru_page(page, src, flags); 894 895 VM_BUG_ON(!PageLRU(page)); 896 897 switch (__isolate_lru_page(page, mode, file)) { 898 case 0: 899 list_move(&page->lru, dst); 900 nr_taken++; 901 break; 902 903 case -EBUSY: 904 /* else it is being freed elsewhere */ 905 list_move(&page->lru, src); 906 continue; 907 908 default: 909 BUG(); 910 } 911 912 if (!order) 913 continue; 914 915 /* 916 * Attempt to take all pages in the order aligned region 917 * surrounding the tag page. Only take those pages of 918 * the same active state as that tag page. We may safely 919 * round the target page pfn down to the requested order 920 * as the mem_map is guarenteed valid out to MAX_ORDER, 921 * where that page is in a different zone we will detect 922 * it from its zone id and abort this block scan. 923 */ 924 zone_id = page_zone_id(page); 925 page_pfn = page_to_pfn(page); 926 pfn = page_pfn & ~((1 << order) - 1); 927 end_pfn = pfn + (1 << order); 928 for (; pfn < end_pfn; pfn++) { 929 struct page *cursor_page; 930 931 /* The target page is in the block, ignore it. */ 932 if (unlikely(pfn == page_pfn)) 933 continue; 934 935 /* Avoid holes within the zone. */ 936 if (unlikely(!pfn_valid_within(pfn))) 937 break; 938 939 cursor_page = pfn_to_page(pfn); 940 941 /* Check that we have not crossed a zone boundary. */ 942 if (unlikely(page_zone_id(cursor_page) != zone_id)) 943 continue; 944 switch (__isolate_lru_page(cursor_page, mode, file)) { 945 case 0: 946 list_move(&cursor_page->lru, dst); 947 nr_taken++; 948 scan++; 949 break; 950 951 case -EBUSY: 952 /* else it is being freed elsewhere */ 953 list_move(&cursor_page->lru, src); 954 default: 955 break; /* ! on LRU or wrong list */ 956 } 957 } 958 } 959 960 *scanned = scan; 961 return nr_taken; 962 } 963 964 static unsigned long isolate_pages_global(unsigned long nr, 965 struct list_head *dst, 966 unsigned long *scanned, int order, 967 int mode, struct zone *z, 968 struct mem_cgroup *mem_cont, 969 int active, int file) 970 { 971 int lru = LRU_BASE; 972 if (active) 973 lru += LRU_ACTIVE; 974 if (file) 975 lru += LRU_FILE; 976 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 977 mode, !!file); 978 } 979 980 /* 981 * clear_active_flags() is a helper for shrink_active_list(), clearing 982 * any active bits from the pages in the list. 983 */ 984 static unsigned long clear_active_flags(struct list_head *page_list, 985 unsigned int *count) 986 { 987 int nr_active = 0; 988 int lru; 989 struct page *page; 990 991 list_for_each_entry(page, page_list, lru) { 992 lru = page_is_file_cache(page); 993 if (PageActive(page)) { 994 lru += LRU_ACTIVE; 995 ClearPageActive(page); 996 nr_active++; 997 } 998 count[lru]++; 999 } 1000 1001 return nr_active; 1002 } 1003 1004 /** 1005 * isolate_lru_page - tries to isolate a page from its LRU list 1006 * @page: page to isolate from its LRU list 1007 * 1008 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1009 * vmstat statistic corresponding to whatever LRU list the page was on. 1010 * 1011 * Returns 0 if the page was removed from an LRU list. 1012 * Returns -EBUSY if the page was not on an LRU list. 1013 * 1014 * The returned page will have PageLRU() cleared. If it was found on 1015 * the active list, it will have PageActive set. If it was found on 1016 * the unevictable list, it will have the PageUnevictable bit set. That flag 1017 * may need to be cleared by the caller before letting the page go. 1018 * 1019 * The vmstat statistic corresponding to the list on which the page was 1020 * found will be decremented. 1021 * 1022 * Restrictions: 1023 * (1) Must be called with an elevated refcount on the page. This is a 1024 * fundamentnal difference from isolate_lru_pages (which is called 1025 * without a stable reference). 1026 * (2) the lru_lock must not be held. 1027 * (3) interrupts must be enabled. 1028 */ 1029 int isolate_lru_page(struct page *page) 1030 { 1031 int ret = -EBUSY; 1032 1033 if (PageLRU(page)) { 1034 struct zone *zone = page_zone(page); 1035 1036 spin_lock_irq(&zone->lru_lock); 1037 if (PageLRU(page) && get_page_unless_zero(page)) { 1038 int lru = page_lru(page); 1039 ret = 0; 1040 ClearPageLRU(page); 1041 1042 del_page_from_lru_list(zone, page, lru); 1043 } 1044 spin_unlock_irq(&zone->lru_lock); 1045 } 1046 return ret; 1047 } 1048 1049 /* 1050 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1051 * of reclaimed pages 1052 */ 1053 static unsigned long shrink_inactive_list(unsigned long max_scan, 1054 struct zone *zone, struct scan_control *sc, 1055 int priority, int file) 1056 { 1057 LIST_HEAD(page_list); 1058 struct pagevec pvec; 1059 unsigned long nr_scanned = 0; 1060 unsigned long nr_reclaimed = 0; 1061 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1062 1063 pagevec_init(&pvec, 1); 1064 1065 lru_add_drain(); 1066 spin_lock_irq(&zone->lru_lock); 1067 do { 1068 struct page *page; 1069 unsigned long nr_taken; 1070 unsigned long nr_scan; 1071 unsigned long nr_freed; 1072 unsigned long nr_active; 1073 unsigned int count[NR_LRU_LISTS] = { 0, }; 1074 int mode = ISOLATE_INACTIVE; 1075 1076 /* 1077 * If we need a large contiguous chunk of memory, or have 1078 * trouble getting a small set of contiguous pages, we 1079 * will reclaim both active and inactive pages. 1080 * 1081 * We use the same threshold as pageout congestion_wait below. 1082 */ 1083 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1084 mode = ISOLATE_BOTH; 1085 else if (sc->order && priority < DEF_PRIORITY - 2) 1086 mode = ISOLATE_BOTH; 1087 1088 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 1089 &page_list, &nr_scan, sc->order, mode, 1090 zone, sc->mem_cgroup, 0, file); 1091 nr_active = clear_active_flags(&page_list, count); 1092 __count_vm_events(PGDEACTIVATE, nr_active); 1093 1094 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1095 -count[LRU_ACTIVE_FILE]); 1096 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1097 -count[LRU_INACTIVE_FILE]); 1098 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1099 -count[LRU_ACTIVE_ANON]); 1100 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1101 -count[LRU_INACTIVE_ANON]); 1102 1103 if (scanning_global_lru(sc)) 1104 zone->pages_scanned += nr_scan; 1105 1106 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 1107 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 1108 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 1109 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 1110 1111 spin_unlock_irq(&zone->lru_lock); 1112 1113 nr_scanned += nr_scan; 1114 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1115 1116 /* 1117 * If we are direct reclaiming for contiguous pages and we do 1118 * not reclaim everything in the list, try again and wait 1119 * for IO to complete. This will stall high-order allocations 1120 * but that should be acceptable to the caller 1121 */ 1122 if (nr_freed < nr_taken && !current_is_kswapd() && 1123 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 1124 congestion_wait(WRITE, HZ/10); 1125 1126 /* 1127 * The attempt at page out may have made some 1128 * of the pages active, mark them inactive again. 1129 */ 1130 nr_active = clear_active_flags(&page_list, count); 1131 count_vm_events(PGDEACTIVATE, nr_active); 1132 1133 nr_freed += shrink_page_list(&page_list, sc, 1134 PAGEOUT_IO_SYNC); 1135 } 1136 1137 nr_reclaimed += nr_freed; 1138 local_irq_disable(); 1139 if (current_is_kswapd()) { 1140 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 1141 __count_vm_events(KSWAPD_STEAL, nr_freed); 1142 } else if (scanning_global_lru(sc)) 1143 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 1144 1145 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1146 1147 if (nr_taken == 0) 1148 goto done; 1149 1150 spin_lock(&zone->lru_lock); 1151 /* 1152 * Put back any unfreeable pages. 1153 */ 1154 while (!list_empty(&page_list)) { 1155 int lru; 1156 page = lru_to_page(&page_list); 1157 VM_BUG_ON(PageLRU(page)); 1158 list_del(&page->lru); 1159 if (unlikely(!page_evictable(page, NULL))) { 1160 spin_unlock_irq(&zone->lru_lock); 1161 putback_lru_page(page); 1162 spin_lock_irq(&zone->lru_lock); 1163 continue; 1164 } 1165 SetPageLRU(page); 1166 lru = page_lru(page); 1167 add_page_to_lru_list(zone, page, lru); 1168 if (PageActive(page)) { 1169 int file = !!page_is_file_cache(page); 1170 reclaim_stat->recent_rotated[file]++; 1171 } 1172 if (!pagevec_add(&pvec, page)) { 1173 spin_unlock_irq(&zone->lru_lock); 1174 __pagevec_release(&pvec); 1175 spin_lock_irq(&zone->lru_lock); 1176 } 1177 } 1178 } while (nr_scanned < max_scan); 1179 spin_unlock(&zone->lru_lock); 1180 done: 1181 local_irq_enable(); 1182 pagevec_release(&pvec); 1183 return nr_reclaimed; 1184 } 1185 1186 /* 1187 * We are about to scan this zone at a certain priority level. If that priority 1188 * level is smaller (ie: more urgent) than the previous priority, then note 1189 * that priority level within the zone. This is done so that when the next 1190 * process comes in to scan this zone, it will immediately start out at this 1191 * priority level rather than having to build up its own scanning priority. 1192 * Here, this priority affects only the reclaim-mapped threshold. 1193 */ 1194 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1195 { 1196 if (priority < zone->prev_priority) 1197 zone->prev_priority = priority; 1198 } 1199 1200 /* 1201 * This moves pages from the active list to the inactive list. 1202 * 1203 * We move them the other way if the page is referenced by one or more 1204 * processes, from rmap. 1205 * 1206 * If the pages are mostly unmapped, the processing is fast and it is 1207 * appropriate to hold zone->lru_lock across the whole operation. But if 1208 * the pages are mapped, the processing is slow (page_referenced()) so we 1209 * should drop zone->lru_lock around each page. It's impossible to balance 1210 * this, so instead we remove the pages from the LRU while processing them. 1211 * It is safe to rely on PG_active against the non-LRU pages in here because 1212 * nobody will play with that bit on a non-LRU page. 1213 * 1214 * The downside is that we have to touch page->_count against each page. 1215 * But we had to alter page->flags anyway. 1216 */ 1217 1218 1219 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1220 struct scan_control *sc, int priority, int file) 1221 { 1222 unsigned long pgmoved; 1223 int pgdeactivate = 0; 1224 unsigned long pgscanned; 1225 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1226 LIST_HEAD(l_inactive); 1227 struct page *page; 1228 struct pagevec pvec; 1229 enum lru_list lru; 1230 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1231 1232 lru_add_drain(); 1233 spin_lock_irq(&zone->lru_lock); 1234 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1235 ISOLATE_ACTIVE, zone, 1236 sc->mem_cgroup, 1, file); 1237 /* 1238 * zone->pages_scanned is used for detect zone's oom 1239 * mem_cgroup remembers nr_scan by itself. 1240 */ 1241 if (scanning_global_lru(sc)) { 1242 zone->pages_scanned += pgscanned; 1243 } 1244 reclaim_stat->recent_scanned[!!file] += pgmoved; 1245 1246 if (file) 1247 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); 1248 else 1249 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); 1250 spin_unlock_irq(&zone->lru_lock); 1251 1252 pgmoved = 0; 1253 while (!list_empty(&l_hold)) { 1254 cond_resched(); 1255 page = lru_to_page(&l_hold); 1256 list_del(&page->lru); 1257 1258 if (unlikely(!page_evictable(page, NULL))) { 1259 putback_lru_page(page); 1260 continue; 1261 } 1262 1263 /* page_referenced clears PageReferenced */ 1264 if (page_mapping_inuse(page) && 1265 page_referenced(page, 0, sc->mem_cgroup)) 1266 pgmoved++; 1267 1268 list_add(&page->lru, &l_inactive); 1269 } 1270 1271 /* 1272 * Move the pages to the [file or anon] inactive list. 1273 */ 1274 pagevec_init(&pvec, 1); 1275 lru = LRU_BASE + file * LRU_FILE; 1276 1277 spin_lock_irq(&zone->lru_lock); 1278 /* 1279 * Count referenced pages from currently used mappings as 1280 * rotated, even though they are moved to the inactive list. 1281 * This helps balance scan pressure between file and anonymous 1282 * pages in get_scan_ratio. 1283 */ 1284 reclaim_stat->recent_rotated[!!file] += pgmoved; 1285 1286 pgmoved = 0; 1287 while (!list_empty(&l_inactive)) { 1288 page = lru_to_page(&l_inactive); 1289 prefetchw_prev_lru_page(page, &l_inactive, flags); 1290 VM_BUG_ON(PageLRU(page)); 1291 SetPageLRU(page); 1292 VM_BUG_ON(!PageActive(page)); 1293 ClearPageActive(page); 1294 1295 list_move(&page->lru, &zone->lru[lru].list); 1296 mem_cgroup_add_lru_list(page, lru); 1297 pgmoved++; 1298 if (!pagevec_add(&pvec, page)) { 1299 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1300 spin_unlock_irq(&zone->lru_lock); 1301 pgdeactivate += pgmoved; 1302 pgmoved = 0; 1303 if (buffer_heads_over_limit) 1304 pagevec_strip(&pvec); 1305 __pagevec_release(&pvec); 1306 spin_lock_irq(&zone->lru_lock); 1307 } 1308 } 1309 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1310 pgdeactivate += pgmoved; 1311 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1312 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1313 spin_unlock_irq(&zone->lru_lock); 1314 if (buffer_heads_over_limit) 1315 pagevec_strip(&pvec); 1316 pagevec_release(&pvec); 1317 } 1318 1319 static int inactive_anon_is_low_global(struct zone *zone) 1320 { 1321 unsigned long active, inactive; 1322 1323 active = zone_page_state(zone, NR_ACTIVE_ANON); 1324 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1325 1326 if (inactive * zone->inactive_ratio < active) 1327 return 1; 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1334 * @zone: zone to check 1335 * @sc: scan control of this context 1336 * 1337 * Returns true if the zone does not have enough inactive anon pages, 1338 * meaning some active anon pages need to be deactivated. 1339 */ 1340 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1341 { 1342 int low; 1343 1344 if (scanning_global_lru(sc)) 1345 low = inactive_anon_is_low_global(zone); 1346 else 1347 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1348 return low; 1349 } 1350 1351 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1352 struct zone *zone, struct scan_control *sc, int priority) 1353 { 1354 int file = is_file_lru(lru); 1355 1356 if (lru == LRU_ACTIVE_FILE) { 1357 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1358 return 0; 1359 } 1360 1361 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) { 1362 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1363 return 0; 1364 } 1365 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1366 } 1367 1368 /* 1369 * Determine how aggressively the anon and file LRU lists should be 1370 * scanned. The relative value of each set of LRU lists is determined 1371 * by looking at the fraction of the pages scanned we did rotate back 1372 * onto the active list instead of evict. 1373 * 1374 * percent[0] specifies how much pressure to put on ram/swap backed 1375 * memory, while percent[1] determines pressure on the file LRUs. 1376 */ 1377 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1378 unsigned long *percent) 1379 { 1380 unsigned long anon, file, free; 1381 unsigned long anon_prio, file_prio; 1382 unsigned long ap, fp; 1383 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1384 1385 /* If we have no swap space, do not bother scanning anon pages. */ 1386 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1387 percent[0] = 0; 1388 percent[1] = 100; 1389 return; 1390 } 1391 1392 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) + 1393 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON); 1394 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) + 1395 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE); 1396 1397 if (scanning_global_lru(sc)) { 1398 free = zone_page_state(zone, NR_FREE_PAGES); 1399 /* If we have very few page cache pages, 1400 force-scan anon pages. */ 1401 if (unlikely(file + free <= zone->pages_high)) { 1402 percent[0] = 100; 1403 percent[1] = 0; 1404 return; 1405 } 1406 } 1407 1408 /* 1409 * OK, so we have swap space and a fair amount of page cache 1410 * pages. We use the recently rotated / recently scanned 1411 * ratios to determine how valuable each cache is. 1412 * 1413 * Because workloads change over time (and to avoid overflow) 1414 * we keep these statistics as a floating average, which ends 1415 * up weighing recent references more than old ones. 1416 * 1417 * anon in [0], file in [1] 1418 */ 1419 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1420 spin_lock_irq(&zone->lru_lock); 1421 reclaim_stat->recent_scanned[0] /= 2; 1422 reclaim_stat->recent_rotated[0] /= 2; 1423 spin_unlock_irq(&zone->lru_lock); 1424 } 1425 1426 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1427 spin_lock_irq(&zone->lru_lock); 1428 reclaim_stat->recent_scanned[1] /= 2; 1429 reclaim_stat->recent_rotated[1] /= 2; 1430 spin_unlock_irq(&zone->lru_lock); 1431 } 1432 1433 /* 1434 * With swappiness at 100, anonymous and file have the same priority. 1435 * This scanning priority is essentially the inverse of IO cost. 1436 */ 1437 anon_prio = sc->swappiness; 1438 file_prio = 200 - sc->swappiness; 1439 1440 /* 1441 * The amount of pressure on anon vs file pages is inversely 1442 * proportional to the fraction of recently scanned pages on 1443 * each list that were recently referenced and in active use. 1444 */ 1445 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1446 ap /= reclaim_stat->recent_rotated[0] + 1; 1447 1448 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1449 fp /= reclaim_stat->recent_rotated[1] + 1; 1450 1451 /* Normalize to percentages */ 1452 percent[0] = 100 * ap / (ap + fp + 1); 1453 percent[1] = 100 - percent[0]; 1454 } 1455 1456 1457 /* 1458 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1459 */ 1460 static void shrink_zone(int priority, struct zone *zone, 1461 struct scan_control *sc) 1462 { 1463 unsigned long nr[NR_LRU_LISTS]; 1464 unsigned long nr_to_scan; 1465 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1466 enum lru_list l; 1467 unsigned long nr_reclaimed = sc->nr_reclaimed; 1468 unsigned long swap_cluster_max = sc->swap_cluster_max; 1469 1470 get_scan_ratio(zone, sc, percent); 1471 1472 for_each_evictable_lru(l) { 1473 int file = is_file_lru(l); 1474 unsigned long scan; 1475 1476 scan = zone_nr_pages(zone, sc, l); 1477 if (priority) { 1478 scan >>= priority; 1479 scan = (scan * percent[file]) / 100; 1480 } 1481 if (scanning_global_lru(sc)) { 1482 zone->lru[l].nr_scan += scan; 1483 nr[l] = zone->lru[l].nr_scan; 1484 if (nr[l] >= swap_cluster_max) 1485 zone->lru[l].nr_scan = 0; 1486 else 1487 nr[l] = 0; 1488 } else 1489 nr[l] = scan; 1490 } 1491 1492 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1493 nr[LRU_INACTIVE_FILE]) { 1494 for_each_evictable_lru(l) { 1495 if (nr[l]) { 1496 nr_to_scan = min(nr[l], swap_cluster_max); 1497 nr[l] -= nr_to_scan; 1498 1499 nr_reclaimed += shrink_list(l, nr_to_scan, 1500 zone, sc, priority); 1501 } 1502 } 1503 /* 1504 * On large memory systems, scan >> priority can become 1505 * really large. This is fine for the starting priority; 1506 * we want to put equal scanning pressure on each zone. 1507 * However, if the VM has a harder time of freeing pages, 1508 * with multiple processes reclaiming pages, the total 1509 * freeing target can get unreasonably large. 1510 */ 1511 if (nr_reclaimed > swap_cluster_max && 1512 priority < DEF_PRIORITY && !current_is_kswapd()) 1513 break; 1514 } 1515 1516 sc->nr_reclaimed = nr_reclaimed; 1517 1518 /* 1519 * Even if we did not try to evict anon pages at all, we want to 1520 * rebalance the anon lru active/inactive ratio. 1521 */ 1522 if (inactive_anon_is_low(zone, sc)) 1523 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1524 1525 throttle_vm_writeout(sc->gfp_mask); 1526 } 1527 1528 /* 1529 * This is the direct reclaim path, for page-allocating processes. We only 1530 * try to reclaim pages from zones which will satisfy the caller's allocation 1531 * request. 1532 * 1533 * We reclaim from a zone even if that zone is over pages_high. Because: 1534 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1535 * allocation or 1536 * b) The zones may be over pages_high but they must go *over* pages_high to 1537 * satisfy the `incremental min' zone defense algorithm. 1538 * 1539 * If a zone is deemed to be full of pinned pages then just give it a light 1540 * scan then give up on it. 1541 */ 1542 static void shrink_zones(int priority, struct zonelist *zonelist, 1543 struct scan_control *sc) 1544 { 1545 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1546 struct zoneref *z; 1547 struct zone *zone; 1548 1549 sc->all_unreclaimable = 1; 1550 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1551 sc->nodemask) { 1552 if (!populated_zone(zone)) 1553 continue; 1554 /* 1555 * Take care memory controller reclaiming has small influence 1556 * to global LRU. 1557 */ 1558 if (scanning_global_lru(sc)) { 1559 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1560 continue; 1561 note_zone_scanning_priority(zone, priority); 1562 1563 if (zone_is_all_unreclaimable(zone) && 1564 priority != DEF_PRIORITY) 1565 continue; /* Let kswapd poll it */ 1566 sc->all_unreclaimable = 0; 1567 } else { 1568 /* 1569 * Ignore cpuset limitation here. We just want to reduce 1570 * # of used pages by us regardless of memory shortage. 1571 */ 1572 sc->all_unreclaimable = 0; 1573 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1574 priority); 1575 } 1576 1577 shrink_zone(priority, zone, sc); 1578 } 1579 } 1580 1581 /* 1582 * This is the main entry point to direct page reclaim. 1583 * 1584 * If a full scan of the inactive list fails to free enough memory then we 1585 * are "out of memory" and something needs to be killed. 1586 * 1587 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1588 * high - the zone may be full of dirty or under-writeback pages, which this 1589 * caller can't do much about. We kick pdflush and take explicit naps in the 1590 * hope that some of these pages can be written. But if the allocating task 1591 * holds filesystem locks which prevent writeout this might not work, and the 1592 * allocation attempt will fail. 1593 * 1594 * returns: 0, if no pages reclaimed 1595 * else, the number of pages reclaimed 1596 */ 1597 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1598 struct scan_control *sc) 1599 { 1600 int priority; 1601 unsigned long ret = 0; 1602 unsigned long total_scanned = 0; 1603 struct reclaim_state *reclaim_state = current->reclaim_state; 1604 unsigned long lru_pages = 0; 1605 struct zoneref *z; 1606 struct zone *zone; 1607 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1608 1609 delayacct_freepages_start(); 1610 1611 if (scanning_global_lru(sc)) 1612 count_vm_event(ALLOCSTALL); 1613 /* 1614 * mem_cgroup will not do shrink_slab. 1615 */ 1616 if (scanning_global_lru(sc)) { 1617 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1618 1619 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1620 continue; 1621 1622 lru_pages += zone_lru_pages(zone); 1623 } 1624 } 1625 1626 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1627 sc->nr_scanned = 0; 1628 if (!priority) 1629 disable_swap_token(); 1630 shrink_zones(priority, zonelist, sc); 1631 /* 1632 * Don't shrink slabs when reclaiming memory from 1633 * over limit cgroups 1634 */ 1635 if (scanning_global_lru(sc)) { 1636 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1637 if (reclaim_state) { 1638 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1639 reclaim_state->reclaimed_slab = 0; 1640 } 1641 } 1642 total_scanned += sc->nr_scanned; 1643 if (sc->nr_reclaimed >= sc->swap_cluster_max) { 1644 ret = sc->nr_reclaimed; 1645 goto out; 1646 } 1647 1648 /* 1649 * Try to write back as many pages as we just scanned. This 1650 * tends to cause slow streaming writers to write data to the 1651 * disk smoothly, at the dirtying rate, which is nice. But 1652 * that's undesirable in laptop mode, where we *want* lumpy 1653 * writeout. So in laptop mode, write out the whole world. 1654 */ 1655 if (total_scanned > sc->swap_cluster_max + 1656 sc->swap_cluster_max / 2) { 1657 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1658 sc->may_writepage = 1; 1659 } 1660 1661 /* Take a nap, wait for some writeback to complete */ 1662 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1663 congestion_wait(WRITE, HZ/10); 1664 } 1665 /* top priority shrink_zones still had more to do? don't OOM, then */ 1666 if (!sc->all_unreclaimable && scanning_global_lru(sc)) 1667 ret = sc->nr_reclaimed; 1668 out: 1669 /* 1670 * Now that we've scanned all the zones at this priority level, note 1671 * that level within the zone so that the next thread which performs 1672 * scanning of this zone will immediately start out at this priority 1673 * level. This affects only the decision whether or not to bring 1674 * mapped pages onto the inactive list. 1675 */ 1676 if (priority < 0) 1677 priority = 0; 1678 1679 if (scanning_global_lru(sc)) { 1680 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1681 1682 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1683 continue; 1684 1685 zone->prev_priority = priority; 1686 } 1687 } else 1688 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1689 1690 delayacct_freepages_end(); 1691 1692 return ret; 1693 } 1694 1695 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1696 gfp_t gfp_mask, nodemask_t *nodemask) 1697 { 1698 struct scan_control sc = { 1699 .gfp_mask = gfp_mask, 1700 .may_writepage = !laptop_mode, 1701 .swap_cluster_max = SWAP_CLUSTER_MAX, 1702 .may_unmap = 1, 1703 .may_swap = 1, 1704 .swappiness = vm_swappiness, 1705 .order = order, 1706 .mem_cgroup = NULL, 1707 .isolate_pages = isolate_pages_global, 1708 .nodemask = nodemask, 1709 }; 1710 1711 return do_try_to_free_pages(zonelist, &sc); 1712 } 1713 1714 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1715 1716 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1717 gfp_t gfp_mask, 1718 bool noswap, 1719 unsigned int swappiness) 1720 { 1721 struct scan_control sc = { 1722 .may_writepage = !laptop_mode, 1723 .may_unmap = 1, 1724 .may_swap = !noswap, 1725 .swap_cluster_max = SWAP_CLUSTER_MAX, 1726 .swappiness = swappiness, 1727 .order = 0, 1728 .mem_cgroup = mem_cont, 1729 .isolate_pages = mem_cgroup_isolate_pages, 1730 .nodemask = NULL, /* we don't care the placement */ 1731 }; 1732 struct zonelist *zonelist; 1733 1734 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1735 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1736 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1737 return do_try_to_free_pages(zonelist, &sc); 1738 } 1739 #endif 1740 1741 /* 1742 * For kswapd, balance_pgdat() will work across all this node's zones until 1743 * they are all at pages_high. 1744 * 1745 * Returns the number of pages which were actually freed. 1746 * 1747 * There is special handling here for zones which are full of pinned pages. 1748 * This can happen if the pages are all mlocked, or if they are all used by 1749 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1750 * What we do is to detect the case where all pages in the zone have been 1751 * scanned twice and there has been zero successful reclaim. Mark the zone as 1752 * dead and from now on, only perform a short scan. Basically we're polling 1753 * the zone for when the problem goes away. 1754 * 1755 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1756 * zones which have free_pages > pages_high, but once a zone is found to have 1757 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1758 * of the number of free pages in the lower zones. This interoperates with 1759 * the page allocator fallback scheme to ensure that aging of pages is balanced 1760 * across the zones. 1761 */ 1762 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1763 { 1764 int all_zones_ok; 1765 int priority; 1766 int i; 1767 unsigned long total_scanned; 1768 struct reclaim_state *reclaim_state = current->reclaim_state; 1769 struct scan_control sc = { 1770 .gfp_mask = GFP_KERNEL, 1771 .may_unmap = 1, 1772 .may_swap = 1, 1773 .swap_cluster_max = SWAP_CLUSTER_MAX, 1774 .swappiness = vm_swappiness, 1775 .order = order, 1776 .mem_cgroup = NULL, 1777 .isolate_pages = isolate_pages_global, 1778 }; 1779 /* 1780 * temp_priority is used to remember the scanning priority at which 1781 * this zone was successfully refilled to free_pages == pages_high. 1782 */ 1783 int temp_priority[MAX_NR_ZONES]; 1784 1785 loop_again: 1786 total_scanned = 0; 1787 sc.nr_reclaimed = 0; 1788 sc.may_writepage = !laptop_mode; 1789 count_vm_event(PAGEOUTRUN); 1790 1791 for (i = 0; i < pgdat->nr_zones; i++) 1792 temp_priority[i] = DEF_PRIORITY; 1793 1794 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1795 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1796 unsigned long lru_pages = 0; 1797 1798 /* The swap token gets in the way of swapout... */ 1799 if (!priority) 1800 disable_swap_token(); 1801 1802 all_zones_ok = 1; 1803 1804 /* 1805 * Scan in the highmem->dma direction for the highest 1806 * zone which needs scanning 1807 */ 1808 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1809 struct zone *zone = pgdat->node_zones + i; 1810 1811 if (!populated_zone(zone)) 1812 continue; 1813 1814 if (zone_is_all_unreclaimable(zone) && 1815 priority != DEF_PRIORITY) 1816 continue; 1817 1818 /* 1819 * Do some background aging of the anon list, to give 1820 * pages a chance to be referenced before reclaiming. 1821 */ 1822 if (inactive_anon_is_low(zone, &sc)) 1823 shrink_active_list(SWAP_CLUSTER_MAX, zone, 1824 &sc, priority, 0); 1825 1826 if (!zone_watermark_ok(zone, order, zone->pages_high, 1827 0, 0)) { 1828 end_zone = i; 1829 break; 1830 } 1831 } 1832 if (i < 0) 1833 goto out; 1834 1835 for (i = 0; i <= end_zone; i++) { 1836 struct zone *zone = pgdat->node_zones + i; 1837 1838 lru_pages += zone_lru_pages(zone); 1839 } 1840 1841 /* 1842 * Now scan the zone in the dma->highmem direction, stopping 1843 * at the last zone which needs scanning. 1844 * 1845 * We do this because the page allocator works in the opposite 1846 * direction. This prevents the page allocator from allocating 1847 * pages behind kswapd's direction of progress, which would 1848 * cause too much scanning of the lower zones. 1849 */ 1850 for (i = 0; i <= end_zone; i++) { 1851 struct zone *zone = pgdat->node_zones + i; 1852 int nr_slab; 1853 1854 if (!populated_zone(zone)) 1855 continue; 1856 1857 if (zone_is_all_unreclaimable(zone) && 1858 priority != DEF_PRIORITY) 1859 continue; 1860 1861 if (!zone_watermark_ok(zone, order, zone->pages_high, 1862 end_zone, 0)) 1863 all_zones_ok = 0; 1864 temp_priority[i] = priority; 1865 sc.nr_scanned = 0; 1866 note_zone_scanning_priority(zone, priority); 1867 /* 1868 * We put equal pressure on every zone, unless one 1869 * zone has way too many pages free already. 1870 */ 1871 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1872 end_zone, 0)) 1873 shrink_zone(priority, zone, &sc); 1874 reclaim_state->reclaimed_slab = 0; 1875 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1876 lru_pages); 1877 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 1878 total_scanned += sc.nr_scanned; 1879 if (zone_is_all_unreclaimable(zone)) 1880 continue; 1881 if (nr_slab == 0 && zone->pages_scanned >= 1882 (zone_lru_pages(zone) * 6)) 1883 zone_set_flag(zone, 1884 ZONE_ALL_UNRECLAIMABLE); 1885 /* 1886 * If we've done a decent amount of scanning and 1887 * the reclaim ratio is low, start doing writepage 1888 * even in laptop mode 1889 */ 1890 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1891 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 1892 sc.may_writepage = 1; 1893 } 1894 if (all_zones_ok) 1895 break; /* kswapd: all done */ 1896 /* 1897 * OK, kswapd is getting into trouble. Take a nap, then take 1898 * another pass across the zones. 1899 */ 1900 if (total_scanned && priority < DEF_PRIORITY - 2) 1901 congestion_wait(WRITE, HZ/10); 1902 1903 /* 1904 * We do this so kswapd doesn't build up large priorities for 1905 * example when it is freeing in parallel with allocators. It 1906 * matches the direct reclaim path behaviour in terms of impact 1907 * on zone->*_priority. 1908 */ 1909 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 1910 break; 1911 } 1912 out: 1913 /* 1914 * Note within each zone the priority level at which this zone was 1915 * brought into a happy state. So that the next thread which scans this 1916 * zone will start out at that priority level. 1917 */ 1918 for (i = 0; i < pgdat->nr_zones; i++) { 1919 struct zone *zone = pgdat->node_zones + i; 1920 1921 zone->prev_priority = temp_priority[i]; 1922 } 1923 if (!all_zones_ok) { 1924 cond_resched(); 1925 1926 try_to_freeze(); 1927 1928 /* 1929 * Fragmentation may mean that the system cannot be 1930 * rebalanced for high-order allocations in all zones. 1931 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 1932 * it means the zones have been fully scanned and are still 1933 * not balanced. For high-order allocations, there is 1934 * little point trying all over again as kswapd may 1935 * infinite loop. 1936 * 1937 * Instead, recheck all watermarks at order-0 as they 1938 * are the most important. If watermarks are ok, kswapd will go 1939 * back to sleep. High-order users can still perform direct 1940 * reclaim if they wish. 1941 */ 1942 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 1943 order = sc.order = 0; 1944 1945 goto loop_again; 1946 } 1947 1948 return sc.nr_reclaimed; 1949 } 1950 1951 /* 1952 * The background pageout daemon, started as a kernel thread 1953 * from the init process. 1954 * 1955 * This basically trickles out pages so that we have _some_ 1956 * free memory available even if there is no other activity 1957 * that frees anything up. This is needed for things like routing 1958 * etc, where we otherwise might have all activity going on in 1959 * asynchronous contexts that cannot page things out. 1960 * 1961 * If there are applications that are active memory-allocators 1962 * (most normal use), this basically shouldn't matter. 1963 */ 1964 static int kswapd(void *p) 1965 { 1966 unsigned long order; 1967 pg_data_t *pgdat = (pg_data_t*)p; 1968 struct task_struct *tsk = current; 1969 DEFINE_WAIT(wait); 1970 struct reclaim_state reclaim_state = { 1971 .reclaimed_slab = 0, 1972 }; 1973 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1974 1975 lockdep_set_current_reclaim_state(GFP_KERNEL); 1976 1977 if (!cpumask_empty(cpumask)) 1978 set_cpus_allowed_ptr(tsk, cpumask); 1979 current->reclaim_state = &reclaim_state; 1980 1981 /* 1982 * Tell the memory management that we're a "memory allocator", 1983 * and that if we need more memory we should get access to it 1984 * regardless (see "__alloc_pages()"). "kswapd" should 1985 * never get caught in the normal page freeing logic. 1986 * 1987 * (Kswapd normally doesn't need memory anyway, but sometimes 1988 * you need a small amount of memory in order to be able to 1989 * page out something else, and this flag essentially protects 1990 * us from recursively trying to free more memory as we're 1991 * trying to free the first piece of memory in the first place). 1992 */ 1993 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1994 set_freezable(); 1995 1996 order = 0; 1997 for ( ; ; ) { 1998 unsigned long new_order; 1999 2000 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2001 new_order = pgdat->kswapd_max_order; 2002 pgdat->kswapd_max_order = 0; 2003 if (order < new_order) { 2004 /* 2005 * Don't sleep if someone wants a larger 'order' 2006 * allocation 2007 */ 2008 order = new_order; 2009 } else { 2010 if (!freezing(current)) 2011 schedule(); 2012 2013 order = pgdat->kswapd_max_order; 2014 } 2015 finish_wait(&pgdat->kswapd_wait, &wait); 2016 2017 if (!try_to_freeze()) { 2018 /* We can speed up thawing tasks if we don't call 2019 * balance_pgdat after returning from the refrigerator 2020 */ 2021 balance_pgdat(pgdat, order); 2022 } 2023 } 2024 return 0; 2025 } 2026 2027 /* 2028 * A zone is low on free memory, so wake its kswapd task to service it. 2029 */ 2030 void wakeup_kswapd(struct zone *zone, int order) 2031 { 2032 pg_data_t *pgdat; 2033 2034 if (!populated_zone(zone)) 2035 return; 2036 2037 pgdat = zone->zone_pgdat; 2038 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 2039 return; 2040 if (pgdat->kswapd_max_order < order) 2041 pgdat->kswapd_max_order = order; 2042 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2043 return; 2044 if (!waitqueue_active(&pgdat->kswapd_wait)) 2045 return; 2046 wake_up_interruptible(&pgdat->kswapd_wait); 2047 } 2048 2049 unsigned long global_lru_pages(void) 2050 { 2051 return global_page_state(NR_ACTIVE_ANON) 2052 + global_page_state(NR_ACTIVE_FILE) 2053 + global_page_state(NR_INACTIVE_ANON) 2054 + global_page_state(NR_INACTIVE_FILE); 2055 } 2056 2057 #ifdef CONFIG_PM 2058 /* 2059 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 2060 * from LRU lists system-wide, for given pass and priority. 2061 * 2062 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 2063 */ 2064 static void shrink_all_zones(unsigned long nr_pages, int prio, 2065 int pass, struct scan_control *sc) 2066 { 2067 struct zone *zone; 2068 unsigned long nr_reclaimed = 0; 2069 2070 for_each_populated_zone(zone) { 2071 enum lru_list l; 2072 2073 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 2074 continue; 2075 2076 for_each_evictable_lru(l) { 2077 enum zone_stat_item ls = NR_LRU_BASE + l; 2078 unsigned long lru_pages = zone_page_state(zone, ls); 2079 2080 /* For pass = 0, we don't shrink the active list */ 2081 if (pass == 0 && (l == LRU_ACTIVE_ANON || 2082 l == LRU_ACTIVE_FILE)) 2083 continue; 2084 2085 zone->lru[l].nr_scan += (lru_pages >> prio) + 1; 2086 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) { 2087 unsigned long nr_to_scan; 2088 2089 zone->lru[l].nr_scan = 0; 2090 nr_to_scan = min(nr_pages, lru_pages); 2091 nr_reclaimed += shrink_list(l, nr_to_scan, zone, 2092 sc, prio); 2093 if (nr_reclaimed >= nr_pages) { 2094 sc->nr_reclaimed += nr_reclaimed; 2095 return; 2096 } 2097 } 2098 } 2099 } 2100 sc->nr_reclaimed += nr_reclaimed; 2101 } 2102 2103 /* 2104 * Try to free `nr_pages' of memory, system-wide, and return the number of 2105 * freed pages. 2106 * 2107 * Rather than trying to age LRUs the aim is to preserve the overall 2108 * LRU order by reclaiming preferentially 2109 * inactive > active > active referenced > active mapped 2110 */ 2111 unsigned long shrink_all_memory(unsigned long nr_pages) 2112 { 2113 unsigned long lru_pages, nr_slab; 2114 int pass; 2115 struct reclaim_state reclaim_state; 2116 struct scan_control sc = { 2117 .gfp_mask = GFP_KERNEL, 2118 .may_unmap = 0, 2119 .may_writepage = 1, 2120 .isolate_pages = isolate_pages_global, 2121 .nr_reclaimed = 0, 2122 }; 2123 2124 current->reclaim_state = &reclaim_state; 2125 2126 lru_pages = global_lru_pages(); 2127 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 2128 /* If slab caches are huge, it's better to hit them first */ 2129 while (nr_slab >= lru_pages) { 2130 reclaim_state.reclaimed_slab = 0; 2131 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 2132 if (!reclaim_state.reclaimed_slab) 2133 break; 2134 2135 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2136 if (sc.nr_reclaimed >= nr_pages) 2137 goto out; 2138 2139 nr_slab -= reclaim_state.reclaimed_slab; 2140 } 2141 2142 /* 2143 * We try to shrink LRUs in 5 passes: 2144 * 0 = Reclaim from inactive_list only 2145 * 1 = Reclaim from active list but don't reclaim mapped 2146 * 2 = 2nd pass of type 1 2147 * 3 = Reclaim mapped (normal reclaim) 2148 * 4 = 2nd pass of type 3 2149 */ 2150 for (pass = 0; pass < 5; pass++) { 2151 int prio; 2152 2153 /* Force reclaiming mapped pages in the passes #3 and #4 */ 2154 if (pass > 2) 2155 sc.may_unmap = 1; 2156 2157 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 2158 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed; 2159 2160 sc.nr_scanned = 0; 2161 sc.swap_cluster_max = nr_to_scan; 2162 shrink_all_zones(nr_to_scan, prio, pass, &sc); 2163 if (sc.nr_reclaimed >= nr_pages) 2164 goto out; 2165 2166 reclaim_state.reclaimed_slab = 0; 2167 shrink_slab(sc.nr_scanned, sc.gfp_mask, 2168 global_lru_pages()); 2169 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2170 if (sc.nr_reclaimed >= nr_pages) 2171 goto out; 2172 2173 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 2174 congestion_wait(WRITE, HZ / 10); 2175 } 2176 } 2177 2178 /* 2179 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be 2180 * something in slab caches 2181 */ 2182 if (!sc.nr_reclaimed) { 2183 do { 2184 reclaim_state.reclaimed_slab = 0; 2185 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); 2186 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2187 } while (sc.nr_reclaimed < nr_pages && 2188 reclaim_state.reclaimed_slab > 0); 2189 } 2190 2191 2192 out: 2193 current->reclaim_state = NULL; 2194 2195 return sc.nr_reclaimed; 2196 } 2197 #endif 2198 2199 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2200 not required for correctness. So if the last cpu in a node goes 2201 away, we get changed to run anywhere: as the first one comes back, 2202 restore their cpu bindings. */ 2203 static int __devinit cpu_callback(struct notifier_block *nfb, 2204 unsigned long action, void *hcpu) 2205 { 2206 int nid; 2207 2208 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2209 for_each_node_state(nid, N_HIGH_MEMORY) { 2210 pg_data_t *pgdat = NODE_DATA(nid); 2211 const struct cpumask *mask; 2212 2213 mask = cpumask_of_node(pgdat->node_id); 2214 2215 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2216 /* One of our CPUs online: restore mask */ 2217 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2218 } 2219 } 2220 return NOTIFY_OK; 2221 } 2222 2223 /* 2224 * This kswapd start function will be called by init and node-hot-add. 2225 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2226 */ 2227 int kswapd_run(int nid) 2228 { 2229 pg_data_t *pgdat = NODE_DATA(nid); 2230 int ret = 0; 2231 2232 if (pgdat->kswapd) 2233 return 0; 2234 2235 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2236 if (IS_ERR(pgdat->kswapd)) { 2237 /* failure at boot is fatal */ 2238 BUG_ON(system_state == SYSTEM_BOOTING); 2239 printk("Failed to start kswapd on node %d\n",nid); 2240 ret = -1; 2241 } 2242 return ret; 2243 } 2244 2245 static int __init kswapd_init(void) 2246 { 2247 int nid; 2248 2249 swap_setup(); 2250 for_each_node_state(nid, N_HIGH_MEMORY) 2251 kswapd_run(nid); 2252 hotcpu_notifier(cpu_callback, 0); 2253 return 0; 2254 } 2255 2256 module_init(kswapd_init) 2257 2258 #ifdef CONFIG_NUMA 2259 /* 2260 * Zone reclaim mode 2261 * 2262 * If non-zero call zone_reclaim when the number of free pages falls below 2263 * the watermarks. 2264 */ 2265 int zone_reclaim_mode __read_mostly; 2266 2267 #define RECLAIM_OFF 0 2268 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2269 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2270 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2271 2272 /* 2273 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2274 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2275 * a zone. 2276 */ 2277 #define ZONE_RECLAIM_PRIORITY 4 2278 2279 /* 2280 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2281 * occur. 2282 */ 2283 int sysctl_min_unmapped_ratio = 1; 2284 2285 /* 2286 * If the number of slab pages in a zone grows beyond this percentage then 2287 * slab reclaim needs to occur. 2288 */ 2289 int sysctl_min_slab_ratio = 5; 2290 2291 /* 2292 * Try to free up some pages from this zone through reclaim. 2293 */ 2294 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2295 { 2296 /* Minimum pages needed in order to stay on node */ 2297 const unsigned long nr_pages = 1 << order; 2298 struct task_struct *p = current; 2299 struct reclaim_state reclaim_state; 2300 int priority; 2301 struct scan_control sc = { 2302 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2303 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2304 .may_swap = 1, 2305 .swap_cluster_max = max_t(unsigned long, nr_pages, 2306 SWAP_CLUSTER_MAX), 2307 .gfp_mask = gfp_mask, 2308 .swappiness = vm_swappiness, 2309 .order = order, 2310 .isolate_pages = isolate_pages_global, 2311 }; 2312 unsigned long slab_reclaimable; 2313 2314 disable_swap_token(); 2315 cond_resched(); 2316 /* 2317 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2318 * and we also need to be able to write out pages for RECLAIM_WRITE 2319 * and RECLAIM_SWAP. 2320 */ 2321 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2322 reclaim_state.reclaimed_slab = 0; 2323 p->reclaim_state = &reclaim_state; 2324 2325 if (zone_page_state(zone, NR_FILE_PAGES) - 2326 zone_page_state(zone, NR_FILE_MAPPED) > 2327 zone->min_unmapped_pages) { 2328 /* 2329 * Free memory by calling shrink zone with increasing 2330 * priorities until we have enough memory freed. 2331 */ 2332 priority = ZONE_RECLAIM_PRIORITY; 2333 do { 2334 note_zone_scanning_priority(zone, priority); 2335 shrink_zone(priority, zone, &sc); 2336 priority--; 2337 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2338 } 2339 2340 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2341 if (slab_reclaimable > zone->min_slab_pages) { 2342 /* 2343 * shrink_slab() does not currently allow us to determine how 2344 * many pages were freed in this zone. So we take the current 2345 * number of slab pages and shake the slab until it is reduced 2346 * by the same nr_pages that we used for reclaiming unmapped 2347 * pages. 2348 * 2349 * Note that shrink_slab will free memory on all zones and may 2350 * take a long time. 2351 */ 2352 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2353 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2354 slab_reclaimable - nr_pages) 2355 ; 2356 2357 /* 2358 * Update nr_reclaimed by the number of slab pages we 2359 * reclaimed from this zone. 2360 */ 2361 sc.nr_reclaimed += slab_reclaimable - 2362 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2363 } 2364 2365 p->reclaim_state = NULL; 2366 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2367 return sc.nr_reclaimed >= nr_pages; 2368 } 2369 2370 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2371 { 2372 int node_id; 2373 int ret; 2374 2375 /* 2376 * Zone reclaim reclaims unmapped file backed pages and 2377 * slab pages if we are over the defined limits. 2378 * 2379 * A small portion of unmapped file backed pages is needed for 2380 * file I/O otherwise pages read by file I/O will be immediately 2381 * thrown out if the zone is overallocated. So we do not reclaim 2382 * if less than a specified percentage of the zone is used by 2383 * unmapped file backed pages. 2384 */ 2385 if (zone_page_state(zone, NR_FILE_PAGES) - 2386 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 2387 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 2388 <= zone->min_slab_pages) 2389 return 0; 2390 2391 if (zone_is_all_unreclaimable(zone)) 2392 return 0; 2393 2394 /* 2395 * Do not scan if the allocation should not be delayed. 2396 */ 2397 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2398 return 0; 2399 2400 /* 2401 * Only run zone reclaim on the local zone or on zones that do not 2402 * have associated processors. This will favor the local processor 2403 * over remote processors and spread off node memory allocations 2404 * as wide as possible. 2405 */ 2406 node_id = zone_to_nid(zone); 2407 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2408 return 0; 2409 2410 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2411 return 0; 2412 ret = __zone_reclaim(zone, gfp_mask, order); 2413 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2414 2415 return ret; 2416 } 2417 #endif 2418 2419 #ifdef CONFIG_UNEVICTABLE_LRU 2420 /* 2421 * page_evictable - test whether a page is evictable 2422 * @page: the page to test 2423 * @vma: the VMA in which the page is or will be mapped, may be NULL 2424 * 2425 * Test whether page is evictable--i.e., should be placed on active/inactive 2426 * lists vs unevictable list. The vma argument is !NULL when called from the 2427 * fault path to determine how to instantate a new page. 2428 * 2429 * Reasons page might not be evictable: 2430 * (1) page's mapping marked unevictable 2431 * (2) page is part of an mlocked VMA 2432 * 2433 */ 2434 int page_evictable(struct page *page, struct vm_area_struct *vma) 2435 { 2436 2437 if (mapping_unevictable(page_mapping(page))) 2438 return 0; 2439 2440 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2441 return 0; 2442 2443 return 1; 2444 } 2445 2446 /** 2447 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2448 * @page: page to check evictability and move to appropriate lru list 2449 * @zone: zone page is in 2450 * 2451 * Checks a page for evictability and moves the page to the appropriate 2452 * zone lru list. 2453 * 2454 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2455 * have PageUnevictable set. 2456 */ 2457 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2458 { 2459 VM_BUG_ON(PageActive(page)); 2460 2461 retry: 2462 ClearPageUnevictable(page); 2463 if (page_evictable(page, NULL)) { 2464 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page); 2465 2466 __dec_zone_state(zone, NR_UNEVICTABLE); 2467 list_move(&page->lru, &zone->lru[l].list); 2468 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2469 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2470 __count_vm_event(UNEVICTABLE_PGRESCUED); 2471 } else { 2472 /* 2473 * rotate unevictable list 2474 */ 2475 SetPageUnevictable(page); 2476 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2477 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2478 if (page_evictable(page, NULL)) 2479 goto retry; 2480 } 2481 } 2482 2483 /** 2484 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2485 * @mapping: struct address_space to scan for evictable pages 2486 * 2487 * Scan all pages in mapping. Check unevictable pages for 2488 * evictability and move them to the appropriate zone lru list. 2489 */ 2490 void scan_mapping_unevictable_pages(struct address_space *mapping) 2491 { 2492 pgoff_t next = 0; 2493 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2494 PAGE_CACHE_SHIFT; 2495 struct zone *zone; 2496 struct pagevec pvec; 2497 2498 if (mapping->nrpages == 0) 2499 return; 2500 2501 pagevec_init(&pvec, 0); 2502 while (next < end && 2503 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2504 int i; 2505 int pg_scanned = 0; 2506 2507 zone = NULL; 2508 2509 for (i = 0; i < pagevec_count(&pvec); i++) { 2510 struct page *page = pvec.pages[i]; 2511 pgoff_t page_index = page->index; 2512 struct zone *pagezone = page_zone(page); 2513 2514 pg_scanned++; 2515 if (page_index > next) 2516 next = page_index; 2517 next++; 2518 2519 if (pagezone != zone) { 2520 if (zone) 2521 spin_unlock_irq(&zone->lru_lock); 2522 zone = pagezone; 2523 spin_lock_irq(&zone->lru_lock); 2524 } 2525 2526 if (PageLRU(page) && PageUnevictable(page)) 2527 check_move_unevictable_page(page, zone); 2528 } 2529 if (zone) 2530 spin_unlock_irq(&zone->lru_lock); 2531 pagevec_release(&pvec); 2532 2533 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2534 } 2535 2536 } 2537 2538 /** 2539 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2540 * @zone - zone of which to scan the unevictable list 2541 * 2542 * Scan @zone's unevictable LRU lists to check for pages that have become 2543 * evictable. Move those that have to @zone's inactive list where they 2544 * become candidates for reclaim, unless shrink_inactive_zone() decides 2545 * to reactivate them. Pages that are still unevictable are rotated 2546 * back onto @zone's unevictable list. 2547 */ 2548 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2549 static void scan_zone_unevictable_pages(struct zone *zone) 2550 { 2551 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2552 unsigned long scan; 2553 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2554 2555 while (nr_to_scan > 0) { 2556 unsigned long batch_size = min(nr_to_scan, 2557 SCAN_UNEVICTABLE_BATCH_SIZE); 2558 2559 spin_lock_irq(&zone->lru_lock); 2560 for (scan = 0; scan < batch_size; scan++) { 2561 struct page *page = lru_to_page(l_unevictable); 2562 2563 if (!trylock_page(page)) 2564 continue; 2565 2566 prefetchw_prev_lru_page(page, l_unevictable, flags); 2567 2568 if (likely(PageLRU(page) && PageUnevictable(page))) 2569 check_move_unevictable_page(page, zone); 2570 2571 unlock_page(page); 2572 } 2573 spin_unlock_irq(&zone->lru_lock); 2574 2575 nr_to_scan -= batch_size; 2576 } 2577 } 2578 2579 2580 /** 2581 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2582 * 2583 * A really big hammer: scan all zones' unevictable LRU lists to check for 2584 * pages that have become evictable. Move those back to the zones' 2585 * inactive list where they become candidates for reclaim. 2586 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2587 * and we add swap to the system. As such, it runs in the context of a task 2588 * that has possibly/probably made some previously unevictable pages 2589 * evictable. 2590 */ 2591 static void scan_all_zones_unevictable_pages(void) 2592 { 2593 struct zone *zone; 2594 2595 for_each_zone(zone) { 2596 scan_zone_unevictable_pages(zone); 2597 } 2598 } 2599 2600 /* 2601 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2602 * all nodes' unevictable lists for evictable pages 2603 */ 2604 unsigned long scan_unevictable_pages; 2605 2606 int scan_unevictable_handler(struct ctl_table *table, int write, 2607 struct file *file, void __user *buffer, 2608 size_t *length, loff_t *ppos) 2609 { 2610 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 2611 2612 if (write && *(unsigned long *)table->data) 2613 scan_all_zones_unevictable_pages(); 2614 2615 scan_unevictable_pages = 0; 2616 return 0; 2617 } 2618 2619 /* 2620 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2621 * a specified node's per zone unevictable lists for evictable pages. 2622 */ 2623 2624 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2625 struct sysdev_attribute *attr, 2626 char *buf) 2627 { 2628 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2629 } 2630 2631 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2632 struct sysdev_attribute *attr, 2633 const char *buf, size_t count) 2634 { 2635 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2636 struct zone *zone; 2637 unsigned long res; 2638 unsigned long req = strict_strtoul(buf, 10, &res); 2639 2640 if (!req) 2641 return 1; /* zero is no-op */ 2642 2643 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2644 if (!populated_zone(zone)) 2645 continue; 2646 scan_zone_unevictable_pages(zone); 2647 } 2648 return 1; 2649 } 2650 2651 2652 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2653 read_scan_unevictable_node, 2654 write_scan_unevictable_node); 2655 2656 int scan_unevictable_register_node(struct node *node) 2657 { 2658 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2659 } 2660 2661 void scan_unevictable_unregister_node(struct node *node) 2662 { 2663 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2664 } 2665 2666 #endif 2667