xref: /openbmc/linux/mm/vmscan.c (revision ad10c920)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64 #include <linux/sched/sysctl.h>
65 
66 #include "internal.h"
67 #include "swap.h"
68 
69 #define CREATE_TRACE_POINTS
70 #include <trace/events/vmscan.h>
71 
72 struct scan_control {
73 	/* How many pages shrink_list() should reclaim */
74 	unsigned long nr_to_reclaim;
75 
76 	/*
77 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 	 * are scanned.
79 	 */
80 	nodemask_t	*nodemask;
81 
82 	/*
83 	 * The memory cgroup that hit its limit and as a result is the
84 	 * primary target of this reclaim invocation.
85 	 */
86 	struct mem_cgroup *target_mem_cgroup;
87 
88 	/*
89 	 * Scan pressure balancing between anon and file LRUs
90 	 */
91 	unsigned long	anon_cost;
92 	unsigned long	file_cost;
93 
94 	/* Can active folios be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 	unsigned int may_deactivate:2;
98 	unsigned int force_deactivate:1;
99 	unsigned int skipped_deactivate:1;
100 
101 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
102 	unsigned int may_writepage:1;
103 
104 	/* Can mapped folios be reclaimed? */
105 	unsigned int may_unmap:1;
106 
107 	/* Can folios be swapped as part of reclaim? */
108 	unsigned int may_swap:1;
109 
110 	/* Proactive reclaim invoked by userspace through memory.reclaim */
111 	unsigned int proactive:1;
112 
113 	/*
114 	 * Cgroup memory below memory.low is protected as long as we
115 	 * don't threaten to OOM. If any cgroup is reclaimed at
116 	 * reduced force or passed over entirely due to its memory.low
117 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 	 * result, then go back for one more cycle that reclaims the protected
119 	 * memory (memcg_low_reclaim) to avert OOM.
120 	 */
121 	unsigned int memcg_low_reclaim:1;
122 	unsigned int memcg_low_skipped:1;
123 
124 	unsigned int hibernation_mode:1;
125 
126 	/* One of the zones is ready for compaction */
127 	unsigned int compaction_ready:1;
128 
129 	/* There is easily reclaimable cold cache in the current node */
130 	unsigned int cache_trim_mode:1;
131 
132 	/* The file folios on the current node are dangerously low */
133 	unsigned int file_is_tiny:1;
134 
135 	/* Always discard instead of demoting to lower tier memory */
136 	unsigned int no_demotion:1;
137 
138 #ifdef CONFIG_LRU_GEN
139 	/* help kswapd make better choices among multiple memcgs */
140 	unsigned int memcgs_need_aging:1;
141 	unsigned long last_reclaimed;
142 #endif
143 
144 	/* Allocation order */
145 	s8 order;
146 
147 	/* Scan (total_size >> priority) pages at once */
148 	s8 priority;
149 
150 	/* The highest zone to isolate folios for reclaim from */
151 	s8 reclaim_idx;
152 
153 	/* This context's GFP mask */
154 	gfp_t gfp_mask;
155 
156 	/* Incremented by the number of inactive pages that were scanned */
157 	unsigned long nr_scanned;
158 
159 	/* Number of pages freed so far during a call to shrink_zones() */
160 	unsigned long nr_reclaimed;
161 
162 	struct {
163 		unsigned int dirty;
164 		unsigned int unqueued_dirty;
165 		unsigned int congested;
166 		unsigned int writeback;
167 		unsigned int immediate;
168 		unsigned int file_taken;
169 		unsigned int taken;
170 	} nr;
171 
172 	/* for recording the reclaimed slab by now */
173 	struct reclaim_state reclaim_state;
174 };
175 
176 #ifdef ARCH_HAS_PREFETCHW
177 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
178 	do {								\
179 		if ((_folio)->lru.prev != _base) {			\
180 			struct folio *prev;				\
181 									\
182 			prev = lru_to_folio(&(_folio->lru));		\
183 			prefetchw(&prev->_field);			\
184 		}							\
185 	} while (0)
186 #else
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 #endif
189 
190 /*
191  * From 0 .. 200.  Higher means more swappy.
192  */
193 int vm_swappiness = 60;
194 
195 static void set_task_reclaim_state(struct task_struct *task,
196 				   struct reclaim_state *rs)
197 {
198 	/* Check for an overwrite */
199 	WARN_ON_ONCE(rs && task->reclaim_state);
200 
201 	/* Check for the nulling of an already-nulled member */
202 	WARN_ON_ONCE(!rs && !task->reclaim_state);
203 
204 	task->reclaim_state = rs;
205 }
206 
207 LIST_HEAD(shrinker_list);
208 DECLARE_RWSEM(shrinker_rwsem);
209 
210 #ifdef CONFIG_MEMCG
211 static int shrinker_nr_max;
212 
213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
214 static inline int shrinker_map_size(int nr_items)
215 {
216 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
217 }
218 
219 static inline int shrinker_defer_size(int nr_items)
220 {
221 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
222 }
223 
224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
225 						     int nid)
226 {
227 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 					 lockdep_is_held(&shrinker_rwsem));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size)
234 {
235 	struct shrinker_info *new, *old;
236 	struct mem_cgroup_per_node *pn;
237 	int nid;
238 	int size = map_size + defer_size;
239 
240 	for_each_node(nid) {
241 		pn = memcg->nodeinfo[nid];
242 		old = shrinker_info_protected(memcg, nid);
243 		/* Not yet online memcg */
244 		if (!old)
245 			return 0;
246 
247 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
248 		if (!new)
249 			return -ENOMEM;
250 
251 		new->nr_deferred = (atomic_long_t *)(new + 1);
252 		new->map = (void *)new->nr_deferred + defer_size;
253 
254 		/* map: set all old bits, clear all new bits */
255 		memset(new->map, (int)0xff, old_map_size);
256 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 		/* nr_deferred: copy old values, clear all new values */
258 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 		memset((void *)new->nr_deferred + old_defer_size, 0,
260 		       defer_size - old_defer_size);
261 
262 		rcu_assign_pointer(pn->shrinker_info, new);
263 		kvfree_rcu(old, rcu);
264 	}
265 
266 	return 0;
267 }
268 
269 void free_shrinker_info(struct mem_cgroup *memcg)
270 {
271 	struct mem_cgroup_per_node *pn;
272 	struct shrinker_info *info;
273 	int nid;
274 
275 	for_each_node(nid) {
276 		pn = memcg->nodeinfo[nid];
277 		info = rcu_dereference_protected(pn->shrinker_info, true);
278 		kvfree(info);
279 		rcu_assign_pointer(pn->shrinker_info, NULL);
280 	}
281 }
282 
283 int alloc_shrinker_info(struct mem_cgroup *memcg)
284 {
285 	struct shrinker_info *info;
286 	int nid, size, ret = 0;
287 	int map_size, defer_size = 0;
288 
289 	down_write(&shrinker_rwsem);
290 	map_size = shrinker_map_size(shrinker_nr_max);
291 	defer_size = shrinker_defer_size(shrinker_nr_max);
292 	size = map_size + defer_size;
293 	for_each_node(nid) {
294 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
295 		if (!info) {
296 			free_shrinker_info(memcg);
297 			ret = -ENOMEM;
298 			break;
299 		}
300 		info->nr_deferred = (atomic_long_t *)(info + 1);
301 		info->map = (void *)info->nr_deferred + defer_size;
302 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
303 	}
304 	up_write(&shrinker_rwsem);
305 
306 	return ret;
307 }
308 
309 static inline bool need_expand(int nr_max)
310 {
311 	return round_up(nr_max, BITS_PER_LONG) >
312 	       round_up(shrinker_nr_max, BITS_PER_LONG);
313 }
314 
315 static int expand_shrinker_info(int new_id)
316 {
317 	int ret = 0;
318 	int new_nr_max = new_id + 1;
319 	int map_size, defer_size = 0;
320 	int old_map_size, old_defer_size = 0;
321 	struct mem_cgroup *memcg;
322 
323 	if (!need_expand(new_nr_max))
324 		goto out;
325 
326 	if (!root_mem_cgroup)
327 		goto out;
328 
329 	lockdep_assert_held(&shrinker_rwsem);
330 
331 	map_size = shrinker_map_size(new_nr_max);
332 	defer_size = shrinker_defer_size(new_nr_max);
333 	old_map_size = shrinker_map_size(shrinker_nr_max);
334 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
335 
336 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
337 	do {
338 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 					       old_map_size, old_defer_size);
340 		if (ret) {
341 			mem_cgroup_iter_break(NULL, memcg);
342 			goto out;
343 		}
344 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
345 out:
346 	if (!ret)
347 		shrinker_nr_max = new_nr_max;
348 
349 	return ret;
350 }
351 
352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 {
354 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
355 		struct shrinker_info *info;
356 
357 		rcu_read_lock();
358 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
359 		/* Pairs with smp mb in shrink_slab() */
360 		smp_mb__before_atomic();
361 		set_bit(shrinker_id, info->map);
362 		rcu_read_unlock();
363 	}
364 }
365 
366 static DEFINE_IDR(shrinker_idr);
367 
368 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
369 {
370 	int id, ret = -ENOMEM;
371 
372 	if (mem_cgroup_disabled())
373 		return -ENOSYS;
374 
375 	down_write(&shrinker_rwsem);
376 	/* This may call shrinker, so it must use down_read_trylock() */
377 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
378 	if (id < 0)
379 		goto unlock;
380 
381 	if (id >= shrinker_nr_max) {
382 		if (expand_shrinker_info(id)) {
383 			idr_remove(&shrinker_idr, id);
384 			goto unlock;
385 		}
386 	}
387 	shrinker->id = id;
388 	ret = 0;
389 unlock:
390 	up_write(&shrinker_rwsem);
391 	return ret;
392 }
393 
394 static void unregister_memcg_shrinker(struct shrinker *shrinker)
395 {
396 	int id = shrinker->id;
397 
398 	BUG_ON(id < 0);
399 
400 	lockdep_assert_held(&shrinker_rwsem);
401 
402 	idr_remove(&shrinker_idr, id);
403 }
404 
405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 				   struct mem_cgroup *memcg)
407 {
408 	struct shrinker_info *info;
409 
410 	info = shrinker_info_protected(memcg, nid);
411 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
412 }
413 
414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 				  struct mem_cgroup *memcg)
416 {
417 	struct shrinker_info *info;
418 
419 	info = shrinker_info_protected(memcg, nid);
420 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
421 }
422 
423 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
424 {
425 	int i, nid;
426 	long nr;
427 	struct mem_cgroup *parent;
428 	struct shrinker_info *child_info, *parent_info;
429 
430 	parent = parent_mem_cgroup(memcg);
431 	if (!parent)
432 		parent = root_mem_cgroup;
433 
434 	/* Prevent from concurrent shrinker_info expand */
435 	down_read(&shrinker_rwsem);
436 	for_each_node(nid) {
437 		child_info = shrinker_info_protected(memcg, nid);
438 		parent_info = shrinker_info_protected(parent, nid);
439 		for (i = 0; i < shrinker_nr_max; i++) {
440 			nr = atomic_long_read(&child_info->nr_deferred[i]);
441 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
442 		}
443 	}
444 	up_read(&shrinker_rwsem);
445 }
446 
447 static bool cgroup_reclaim(struct scan_control *sc)
448 {
449 	return sc->target_mem_cgroup;
450 }
451 
452 /**
453  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
454  * @sc: scan_control in question
455  *
456  * The normal page dirty throttling mechanism in balance_dirty_pages() is
457  * completely broken with the legacy memcg and direct stalling in
458  * shrink_folio_list() is used for throttling instead, which lacks all the
459  * niceties such as fairness, adaptive pausing, bandwidth proportional
460  * allocation and configurability.
461  *
462  * This function tests whether the vmscan currently in progress can assume
463  * that the normal dirty throttling mechanism is operational.
464  */
465 static bool writeback_throttling_sane(struct scan_control *sc)
466 {
467 	if (!cgroup_reclaim(sc))
468 		return true;
469 #ifdef CONFIG_CGROUP_WRITEBACK
470 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
471 		return true;
472 #endif
473 	return false;
474 }
475 #else
476 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
477 {
478 	return -ENOSYS;
479 }
480 
481 static void unregister_memcg_shrinker(struct shrinker *shrinker)
482 {
483 }
484 
485 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
486 				   struct mem_cgroup *memcg)
487 {
488 	return 0;
489 }
490 
491 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
492 				  struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static bool cgroup_reclaim(struct scan_control *sc)
498 {
499 	return false;
500 }
501 
502 static bool writeback_throttling_sane(struct scan_control *sc)
503 {
504 	return true;
505 }
506 #endif
507 
508 static long xchg_nr_deferred(struct shrinker *shrinker,
509 			     struct shrink_control *sc)
510 {
511 	int nid = sc->nid;
512 
513 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
514 		nid = 0;
515 
516 	if (sc->memcg &&
517 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
518 		return xchg_nr_deferred_memcg(nid, shrinker,
519 					      sc->memcg);
520 
521 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
522 }
523 
524 
525 static long add_nr_deferred(long nr, struct shrinker *shrinker,
526 			    struct shrink_control *sc)
527 {
528 	int nid = sc->nid;
529 
530 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
531 		nid = 0;
532 
533 	if (sc->memcg &&
534 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
535 		return add_nr_deferred_memcg(nr, nid, shrinker,
536 					     sc->memcg);
537 
538 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
539 }
540 
541 static bool can_demote(int nid, struct scan_control *sc)
542 {
543 	if (!numa_demotion_enabled)
544 		return false;
545 	if (sc && sc->no_demotion)
546 		return false;
547 	if (next_demotion_node(nid) == NUMA_NO_NODE)
548 		return false;
549 
550 	return true;
551 }
552 
553 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
554 					  int nid,
555 					  struct scan_control *sc)
556 {
557 	if (memcg == NULL) {
558 		/*
559 		 * For non-memcg reclaim, is there
560 		 * space in any swap device?
561 		 */
562 		if (get_nr_swap_pages() > 0)
563 			return true;
564 	} else {
565 		/* Is the memcg below its swap limit? */
566 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
567 			return true;
568 	}
569 
570 	/*
571 	 * The page can not be swapped.
572 	 *
573 	 * Can it be reclaimed from this node via demotion?
574 	 */
575 	return can_demote(nid, sc);
576 }
577 
578 /*
579  * This misses isolated folios which are not accounted for to save counters.
580  * As the data only determines if reclaim or compaction continues, it is
581  * not expected that isolated folios will be a dominating factor.
582  */
583 unsigned long zone_reclaimable_pages(struct zone *zone)
584 {
585 	unsigned long nr;
586 
587 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
588 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
589 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
590 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
591 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
592 
593 	return nr;
594 }
595 
596 /**
597  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
598  * @lruvec: lru vector
599  * @lru: lru to use
600  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
601  */
602 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
603 				     int zone_idx)
604 {
605 	unsigned long size = 0;
606 	int zid;
607 
608 	for (zid = 0; zid <= zone_idx; zid++) {
609 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
610 
611 		if (!managed_zone(zone))
612 			continue;
613 
614 		if (!mem_cgroup_disabled())
615 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
616 		else
617 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
618 	}
619 	return size;
620 }
621 
622 /*
623  * Add a shrinker callback to be called from the vm.
624  */
625 static int __prealloc_shrinker(struct shrinker *shrinker)
626 {
627 	unsigned int size;
628 	int err;
629 
630 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
631 		err = prealloc_memcg_shrinker(shrinker);
632 		if (err != -ENOSYS)
633 			return err;
634 
635 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
636 	}
637 
638 	size = sizeof(*shrinker->nr_deferred);
639 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
640 		size *= nr_node_ids;
641 
642 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
643 	if (!shrinker->nr_deferred)
644 		return -ENOMEM;
645 
646 	return 0;
647 }
648 
649 #ifdef CONFIG_SHRINKER_DEBUG
650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
651 {
652 	va_list ap;
653 	int err;
654 
655 	va_start(ap, fmt);
656 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
657 	va_end(ap);
658 	if (!shrinker->name)
659 		return -ENOMEM;
660 
661 	err = __prealloc_shrinker(shrinker);
662 	if (err) {
663 		kfree_const(shrinker->name);
664 		shrinker->name = NULL;
665 	}
666 
667 	return err;
668 }
669 #else
670 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
671 {
672 	return __prealloc_shrinker(shrinker);
673 }
674 #endif
675 
676 void free_prealloced_shrinker(struct shrinker *shrinker)
677 {
678 #ifdef CONFIG_SHRINKER_DEBUG
679 	kfree_const(shrinker->name);
680 	shrinker->name = NULL;
681 #endif
682 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
683 		down_write(&shrinker_rwsem);
684 		unregister_memcg_shrinker(shrinker);
685 		up_write(&shrinker_rwsem);
686 		return;
687 	}
688 
689 	kfree(shrinker->nr_deferred);
690 	shrinker->nr_deferred = NULL;
691 }
692 
693 void register_shrinker_prepared(struct shrinker *shrinker)
694 {
695 	down_write(&shrinker_rwsem);
696 	list_add_tail(&shrinker->list, &shrinker_list);
697 	shrinker->flags |= SHRINKER_REGISTERED;
698 	shrinker_debugfs_add(shrinker);
699 	up_write(&shrinker_rwsem);
700 }
701 
702 static int __register_shrinker(struct shrinker *shrinker)
703 {
704 	int err = __prealloc_shrinker(shrinker);
705 
706 	if (err)
707 		return err;
708 	register_shrinker_prepared(shrinker);
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __register_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 	return err;
730 }
731 #else
732 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
733 {
734 	return __register_shrinker(shrinker);
735 }
736 #endif
737 EXPORT_SYMBOL(register_shrinker);
738 
739 /*
740  * Remove one
741  */
742 void unregister_shrinker(struct shrinker *shrinker)
743 {
744 	if (!(shrinker->flags & SHRINKER_REGISTERED))
745 		return;
746 
747 	down_write(&shrinker_rwsem);
748 	list_del(&shrinker->list);
749 	shrinker->flags &= ~SHRINKER_REGISTERED;
750 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
751 		unregister_memcg_shrinker(shrinker);
752 	shrinker_debugfs_remove(shrinker);
753 	up_write(&shrinker_rwsem);
754 
755 	kfree(shrinker->nr_deferred);
756 	shrinker->nr_deferred = NULL;
757 }
758 EXPORT_SYMBOL(unregister_shrinker);
759 
760 /**
761  * synchronize_shrinkers - Wait for all running shrinkers to complete.
762  *
763  * This is equivalent to calling unregister_shrink() and register_shrinker(),
764  * but atomically and with less overhead. This is useful to guarantee that all
765  * shrinker invocations have seen an update, before freeing memory, similar to
766  * rcu.
767  */
768 void synchronize_shrinkers(void)
769 {
770 	down_write(&shrinker_rwsem);
771 	up_write(&shrinker_rwsem);
772 }
773 EXPORT_SYMBOL(synchronize_shrinkers);
774 
775 #define SHRINK_BATCH 128
776 
777 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
778 				    struct shrinker *shrinker, int priority)
779 {
780 	unsigned long freed = 0;
781 	unsigned long long delta;
782 	long total_scan;
783 	long freeable;
784 	long nr;
785 	long new_nr;
786 	long batch_size = shrinker->batch ? shrinker->batch
787 					  : SHRINK_BATCH;
788 	long scanned = 0, next_deferred;
789 
790 	freeable = shrinker->count_objects(shrinker, shrinkctl);
791 	if (freeable == 0 || freeable == SHRINK_EMPTY)
792 		return freeable;
793 
794 	/*
795 	 * copy the current shrinker scan count into a local variable
796 	 * and zero it so that other concurrent shrinker invocations
797 	 * don't also do this scanning work.
798 	 */
799 	nr = xchg_nr_deferred(shrinker, shrinkctl);
800 
801 	if (shrinker->seeks) {
802 		delta = freeable >> priority;
803 		delta *= 4;
804 		do_div(delta, shrinker->seeks);
805 	} else {
806 		/*
807 		 * These objects don't require any IO to create. Trim
808 		 * them aggressively under memory pressure to keep
809 		 * them from causing refetches in the IO caches.
810 		 */
811 		delta = freeable / 2;
812 	}
813 
814 	total_scan = nr >> priority;
815 	total_scan += delta;
816 	total_scan = min(total_scan, (2 * freeable));
817 
818 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
819 				   freeable, delta, total_scan, priority);
820 
821 	/*
822 	 * Normally, we should not scan less than batch_size objects in one
823 	 * pass to avoid too frequent shrinker calls, but if the slab has less
824 	 * than batch_size objects in total and we are really tight on memory,
825 	 * we will try to reclaim all available objects, otherwise we can end
826 	 * up failing allocations although there are plenty of reclaimable
827 	 * objects spread over several slabs with usage less than the
828 	 * batch_size.
829 	 *
830 	 * We detect the "tight on memory" situations by looking at the total
831 	 * number of objects we want to scan (total_scan). If it is greater
832 	 * than the total number of objects on slab (freeable), we must be
833 	 * scanning at high prio and therefore should try to reclaim as much as
834 	 * possible.
835 	 */
836 	while (total_scan >= batch_size ||
837 	       total_scan >= freeable) {
838 		unsigned long ret;
839 		unsigned long nr_to_scan = min(batch_size, total_scan);
840 
841 		shrinkctl->nr_to_scan = nr_to_scan;
842 		shrinkctl->nr_scanned = nr_to_scan;
843 		ret = shrinker->scan_objects(shrinker, shrinkctl);
844 		if (ret == SHRINK_STOP)
845 			break;
846 		freed += ret;
847 
848 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
849 		total_scan -= shrinkctl->nr_scanned;
850 		scanned += shrinkctl->nr_scanned;
851 
852 		cond_resched();
853 	}
854 
855 	/*
856 	 * The deferred work is increased by any new work (delta) that wasn't
857 	 * done, decreased by old deferred work that was done now.
858 	 *
859 	 * And it is capped to two times of the freeable items.
860 	 */
861 	next_deferred = max_t(long, (nr + delta - scanned), 0);
862 	next_deferred = min(next_deferred, (2 * freeable));
863 
864 	/*
865 	 * move the unused scan count back into the shrinker in a
866 	 * manner that handles concurrent updates.
867 	 */
868 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
869 
870 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
871 	return freed;
872 }
873 
874 #ifdef CONFIG_MEMCG
875 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
876 			struct mem_cgroup *memcg, int priority)
877 {
878 	struct shrinker_info *info;
879 	unsigned long ret, freed = 0;
880 	int i;
881 
882 	if (!mem_cgroup_online(memcg))
883 		return 0;
884 
885 	if (!down_read_trylock(&shrinker_rwsem))
886 		return 0;
887 
888 	info = shrinker_info_protected(memcg, nid);
889 	if (unlikely(!info))
890 		goto unlock;
891 
892 	for_each_set_bit(i, info->map, shrinker_nr_max) {
893 		struct shrink_control sc = {
894 			.gfp_mask = gfp_mask,
895 			.nid = nid,
896 			.memcg = memcg,
897 		};
898 		struct shrinker *shrinker;
899 
900 		shrinker = idr_find(&shrinker_idr, i);
901 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
902 			if (!shrinker)
903 				clear_bit(i, info->map);
904 			continue;
905 		}
906 
907 		/* Call non-slab shrinkers even though kmem is disabled */
908 		if (!memcg_kmem_enabled() &&
909 		    !(shrinker->flags & SHRINKER_NONSLAB))
910 			continue;
911 
912 		ret = do_shrink_slab(&sc, shrinker, priority);
913 		if (ret == SHRINK_EMPTY) {
914 			clear_bit(i, info->map);
915 			/*
916 			 * After the shrinker reported that it had no objects to
917 			 * free, but before we cleared the corresponding bit in
918 			 * the memcg shrinker map, a new object might have been
919 			 * added. To make sure, we have the bit set in this
920 			 * case, we invoke the shrinker one more time and reset
921 			 * the bit if it reports that it is not empty anymore.
922 			 * The memory barrier here pairs with the barrier in
923 			 * set_shrinker_bit():
924 			 *
925 			 * list_lru_add()     shrink_slab_memcg()
926 			 *   list_add_tail()    clear_bit()
927 			 *   <MB>               <MB>
928 			 *   set_bit()          do_shrink_slab()
929 			 */
930 			smp_mb__after_atomic();
931 			ret = do_shrink_slab(&sc, shrinker, priority);
932 			if (ret == SHRINK_EMPTY)
933 				ret = 0;
934 			else
935 				set_shrinker_bit(memcg, nid, i);
936 		}
937 		freed += ret;
938 
939 		if (rwsem_is_contended(&shrinker_rwsem)) {
940 			freed = freed ? : 1;
941 			break;
942 		}
943 	}
944 unlock:
945 	up_read(&shrinker_rwsem);
946 	return freed;
947 }
948 #else /* CONFIG_MEMCG */
949 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
950 			struct mem_cgroup *memcg, int priority)
951 {
952 	return 0;
953 }
954 #endif /* CONFIG_MEMCG */
955 
956 /**
957  * shrink_slab - shrink slab caches
958  * @gfp_mask: allocation context
959  * @nid: node whose slab caches to target
960  * @memcg: memory cgroup whose slab caches to target
961  * @priority: the reclaim priority
962  *
963  * Call the shrink functions to age shrinkable caches.
964  *
965  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
966  * unaware shrinkers will receive a node id of 0 instead.
967  *
968  * @memcg specifies the memory cgroup to target. Unaware shrinkers
969  * are called only if it is the root cgroup.
970  *
971  * @priority is sc->priority, we take the number of objects and >> by priority
972  * in order to get the scan target.
973  *
974  * Returns the number of reclaimed slab objects.
975  */
976 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
977 				 struct mem_cgroup *memcg,
978 				 int priority)
979 {
980 	unsigned long ret, freed = 0;
981 	struct shrinker *shrinker;
982 
983 	/*
984 	 * The root memcg might be allocated even though memcg is disabled
985 	 * via "cgroup_disable=memory" boot parameter.  This could make
986 	 * mem_cgroup_is_root() return false, then just run memcg slab
987 	 * shrink, but skip global shrink.  This may result in premature
988 	 * oom.
989 	 */
990 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
991 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
992 
993 	if (!down_read_trylock(&shrinker_rwsem))
994 		goto out;
995 
996 	list_for_each_entry(shrinker, &shrinker_list, list) {
997 		struct shrink_control sc = {
998 			.gfp_mask = gfp_mask,
999 			.nid = nid,
1000 			.memcg = memcg,
1001 		};
1002 
1003 		ret = do_shrink_slab(&sc, shrinker, priority);
1004 		if (ret == SHRINK_EMPTY)
1005 			ret = 0;
1006 		freed += ret;
1007 		/*
1008 		 * Bail out if someone want to register a new shrinker to
1009 		 * prevent the registration from being stalled for long periods
1010 		 * by parallel ongoing shrinking.
1011 		 */
1012 		if (rwsem_is_contended(&shrinker_rwsem)) {
1013 			freed = freed ? : 1;
1014 			break;
1015 		}
1016 	}
1017 
1018 	up_read(&shrinker_rwsem);
1019 out:
1020 	cond_resched();
1021 	return freed;
1022 }
1023 
1024 static unsigned long drop_slab_node(int nid)
1025 {
1026 	unsigned long freed = 0;
1027 	struct mem_cgroup *memcg = NULL;
1028 
1029 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1030 	do {
1031 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1032 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1033 
1034 	return freed;
1035 }
1036 
1037 void drop_slab(void)
1038 {
1039 	int nid;
1040 	int shift = 0;
1041 	unsigned long freed;
1042 
1043 	do {
1044 		freed = 0;
1045 		for_each_online_node(nid) {
1046 			if (fatal_signal_pending(current))
1047 				return;
1048 
1049 			freed += drop_slab_node(nid);
1050 		}
1051 	} while ((freed >> shift++) > 1);
1052 }
1053 
1054 static int reclaimer_offset(void)
1055 {
1056 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1057 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1058 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1059 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1060 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1061 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1062 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1063 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1064 
1065 	if (current_is_kswapd())
1066 		return 0;
1067 	if (current_is_khugepaged())
1068 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1069 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1070 }
1071 
1072 static inline int is_page_cache_freeable(struct folio *folio)
1073 {
1074 	/*
1075 	 * A freeable page cache folio is referenced only by the caller
1076 	 * that isolated the folio, the page cache and optional filesystem
1077 	 * private data at folio->private.
1078 	 */
1079 	return folio_ref_count(folio) - folio_test_private(folio) ==
1080 		1 + folio_nr_pages(folio);
1081 }
1082 
1083 /*
1084  * We detected a synchronous write error writing a folio out.  Probably
1085  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1086  * fsync(), msync() or close().
1087  *
1088  * The tricky part is that after writepage we cannot touch the mapping: nothing
1089  * prevents it from being freed up.  But we have a ref on the folio and once
1090  * that folio is locked, the mapping is pinned.
1091  *
1092  * We're allowed to run sleeping folio_lock() here because we know the caller has
1093  * __GFP_FS.
1094  */
1095 static void handle_write_error(struct address_space *mapping,
1096 				struct folio *folio, int error)
1097 {
1098 	folio_lock(folio);
1099 	if (folio_mapping(folio) == mapping)
1100 		mapping_set_error(mapping, error);
1101 	folio_unlock(folio);
1102 }
1103 
1104 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1105 {
1106 	int reclaimable = 0, write_pending = 0;
1107 	int i;
1108 
1109 	/*
1110 	 * If kswapd is disabled, reschedule if necessary but do not
1111 	 * throttle as the system is likely near OOM.
1112 	 */
1113 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1114 		return true;
1115 
1116 	/*
1117 	 * If there are a lot of dirty/writeback folios then do not
1118 	 * throttle as throttling will occur when the folios cycle
1119 	 * towards the end of the LRU if still under writeback.
1120 	 */
1121 	for (i = 0; i < MAX_NR_ZONES; i++) {
1122 		struct zone *zone = pgdat->node_zones + i;
1123 
1124 		if (!managed_zone(zone))
1125 			continue;
1126 
1127 		reclaimable += zone_reclaimable_pages(zone);
1128 		write_pending += zone_page_state_snapshot(zone,
1129 						  NR_ZONE_WRITE_PENDING);
1130 	}
1131 	if (2 * write_pending <= reclaimable)
1132 		return true;
1133 
1134 	return false;
1135 }
1136 
1137 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1138 {
1139 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1140 	long timeout, ret;
1141 	DEFINE_WAIT(wait);
1142 
1143 	/*
1144 	 * Do not throttle IO workers, kthreads other than kswapd or
1145 	 * workqueues. They may be required for reclaim to make
1146 	 * forward progress (e.g. journalling workqueues or kthreads).
1147 	 */
1148 	if (!current_is_kswapd() &&
1149 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1150 		cond_resched();
1151 		return;
1152 	}
1153 
1154 	/*
1155 	 * These figures are pulled out of thin air.
1156 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1157 	 * parallel reclaimers which is a short-lived event so the timeout is
1158 	 * short. Failing to make progress or waiting on writeback are
1159 	 * potentially long-lived events so use a longer timeout. This is shaky
1160 	 * logic as a failure to make progress could be due to anything from
1161 	 * writeback to a slow device to excessive referenced folios at the tail
1162 	 * of the inactive LRU.
1163 	 */
1164 	switch(reason) {
1165 	case VMSCAN_THROTTLE_WRITEBACK:
1166 		timeout = HZ/10;
1167 
1168 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1169 			WRITE_ONCE(pgdat->nr_reclaim_start,
1170 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1171 		}
1172 
1173 		break;
1174 	case VMSCAN_THROTTLE_CONGESTED:
1175 		fallthrough;
1176 	case VMSCAN_THROTTLE_NOPROGRESS:
1177 		if (skip_throttle_noprogress(pgdat)) {
1178 			cond_resched();
1179 			return;
1180 		}
1181 
1182 		timeout = 1;
1183 
1184 		break;
1185 	case VMSCAN_THROTTLE_ISOLATED:
1186 		timeout = HZ/50;
1187 		break;
1188 	default:
1189 		WARN_ON_ONCE(1);
1190 		timeout = HZ;
1191 		break;
1192 	}
1193 
1194 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1195 	ret = schedule_timeout(timeout);
1196 	finish_wait(wqh, &wait);
1197 
1198 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1199 		atomic_dec(&pgdat->nr_writeback_throttled);
1200 
1201 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1202 				jiffies_to_usecs(timeout - ret),
1203 				reason);
1204 }
1205 
1206 /*
1207  * Account for folios written if tasks are throttled waiting on dirty
1208  * folios to clean. If enough folios have been cleaned since throttling
1209  * started then wakeup the throttled tasks.
1210  */
1211 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1212 							int nr_throttled)
1213 {
1214 	unsigned long nr_written;
1215 
1216 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1217 
1218 	/*
1219 	 * This is an inaccurate read as the per-cpu deltas may not
1220 	 * be synchronised. However, given that the system is
1221 	 * writeback throttled, it is not worth taking the penalty
1222 	 * of getting an accurate count. At worst, the throttle
1223 	 * timeout guarantees forward progress.
1224 	 */
1225 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1226 		READ_ONCE(pgdat->nr_reclaim_start);
1227 
1228 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1229 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1230 }
1231 
1232 /* possible outcome of pageout() */
1233 typedef enum {
1234 	/* failed to write folio out, folio is locked */
1235 	PAGE_KEEP,
1236 	/* move folio to the active list, folio is locked */
1237 	PAGE_ACTIVATE,
1238 	/* folio has been sent to the disk successfully, folio is unlocked */
1239 	PAGE_SUCCESS,
1240 	/* folio is clean and locked */
1241 	PAGE_CLEAN,
1242 } pageout_t;
1243 
1244 /*
1245  * pageout is called by shrink_folio_list() for each dirty folio.
1246  * Calls ->writepage().
1247  */
1248 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1249 			 struct swap_iocb **plug)
1250 {
1251 	/*
1252 	 * If the folio is dirty, only perform writeback if that write
1253 	 * will be non-blocking.  To prevent this allocation from being
1254 	 * stalled by pagecache activity.  But note that there may be
1255 	 * stalls if we need to run get_block().  We could test
1256 	 * PagePrivate for that.
1257 	 *
1258 	 * If this process is currently in __generic_file_write_iter() against
1259 	 * this folio's queue, we can perform writeback even if that
1260 	 * will block.
1261 	 *
1262 	 * If the folio is swapcache, write it back even if that would
1263 	 * block, for some throttling. This happens by accident, because
1264 	 * swap_backing_dev_info is bust: it doesn't reflect the
1265 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1266 	 */
1267 	if (!is_page_cache_freeable(folio))
1268 		return PAGE_KEEP;
1269 	if (!mapping) {
1270 		/*
1271 		 * Some data journaling orphaned folios can have
1272 		 * folio->mapping == NULL while being dirty with clean buffers.
1273 		 */
1274 		if (folio_test_private(folio)) {
1275 			if (try_to_free_buffers(folio)) {
1276 				folio_clear_dirty(folio);
1277 				pr_info("%s: orphaned folio\n", __func__);
1278 				return PAGE_CLEAN;
1279 			}
1280 		}
1281 		return PAGE_KEEP;
1282 	}
1283 	if (mapping->a_ops->writepage == NULL)
1284 		return PAGE_ACTIVATE;
1285 
1286 	if (folio_clear_dirty_for_io(folio)) {
1287 		int res;
1288 		struct writeback_control wbc = {
1289 			.sync_mode = WB_SYNC_NONE,
1290 			.nr_to_write = SWAP_CLUSTER_MAX,
1291 			.range_start = 0,
1292 			.range_end = LLONG_MAX,
1293 			.for_reclaim = 1,
1294 			.swap_plug = plug,
1295 		};
1296 
1297 		folio_set_reclaim(folio);
1298 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1299 		if (res < 0)
1300 			handle_write_error(mapping, folio, res);
1301 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1302 			folio_clear_reclaim(folio);
1303 			return PAGE_ACTIVATE;
1304 		}
1305 
1306 		if (!folio_test_writeback(folio)) {
1307 			/* synchronous write or broken a_ops? */
1308 			folio_clear_reclaim(folio);
1309 		}
1310 		trace_mm_vmscan_write_folio(folio);
1311 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1312 		return PAGE_SUCCESS;
1313 	}
1314 
1315 	return PAGE_CLEAN;
1316 }
1317 
1318 /*
1319  * Same as remove_mapping, but if the folio is removed from the mapping, it
1320  * gets returned with a refcount of 0.
1321  */
1322 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1323 			    bool reclaimed, struct mem_cgroup *target_memcg)
1324 {
1325 	int refcount;
1326 	void *shadow = NULL;
1327 
1328 	BUG_ON(!folio_test_locked(folio));
1329 	BUG_ON(mapping != folio_mapping(folio));
1330 
1331 	if (!folio_test_swapcache(folio))
1332 		spin_lock(&mapping->host->i_lock);
1333 	xa_lock_irq(&mapping->i_pages);
1334 	/*
1335 	 * The non racy check for a busy folio.
1336 	 *
1337 	 * Must be careful with the order of the tests. When someone has
1338 	 * a ref to the folio, it may be possible that they dirty it then
1339 	 * drop the reference. So if the dirty flag is tested before the
1340 	 * refcount here, then the following race may occur:
1341 	 *
1342 	 * get_user_pages(&page);
1343 	 * [user mapping goes away]
1344 	 * write_to(page);
1345 	 *				!folio_test_dirty(folio)    [good]
1346 	 * folio_set_dirty(folio);
1347 	 * folio_put(folio);
1348 	 *				!refcount(folio)   [good, discard it]
1349 	 *
1350 	 * [oops, our write_to data is lost]
1351 	 *
1352 	 * Reversing the order of the tests ensures such a situation cannot
1353 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1354 	 * load is not satisfied before that of folio->_refcount.
1355 	 *
1356 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1357 	 * and thus under the i_pages lock, then this ordering is not required.
1358 	 */
1359 	refcount = 1 + folio_nr_pages(folio);
1360 	if (!folio_ref_freeze(folio, refcount))
1361 		goto cannot_free;
1362 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1363 	if (unlikely(folio_test_dirty(folio))) {
1364 		folio_ref_unfreeze(folio, refcount);
1365 		goto cannot_free;
1366 	}
1367 
1368 	if (folio_test_swapcache(folio)) {
1369 		swp_entry_t swap = folio_swap_entry(folio);
1370 
1371 		if (reclaimed && !mapping_exiting(mapping))
1372 			shadow = workingset_eviction(folio, target_memcg);
1373 		__delete_from_swap_cache(folio, swap, shadow);
1374 		mem_cgroup_swapout(folio, swap);
1375 		xa_unlock_irq(&mapping->i_pages);
1376 		put_swap_folio(folio, swap);
1377 	} else {
1378 		void (*free_folio)(struct folio *);
1379 
1380 		free_folio = mapping->a_ops->free_folio;
1381 		/*
1382 		 * Remember a shadow entry for reclaimed file cache in
1383 		 * order to detect refaults, thus thrashing, later on.
1384 		 *
1385 		 * But don't store shadows in an address space that is
1386 		 * already exiting.  This is not just an optimization,
1387 		 * inode reclaim needs to empty out the radix tree or
1388 		 * the nodes are lost.  Don't plant shadows behind its
1389 		 * back.
1390 		 *
1391 		 * We also don't store shadows for DAX mappings because the
1392 		 * only page cache folios found in these are zero pages
1393 		 * covering holes, and because we don't want to mix DAX
1394 		 * exceptional entries and shadow exceptional entries in the
1395 		 * same address_space.
1396 		 */
1397 		if (reclaimed && folio_is_file_lru(folio) &&
1398 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1399 			shadow = workingset_eviction(folio, target_memcg);
1400 		__filemap_remove_folio(folio, shadow);
1401 		xa_unlock_irq(&mapping->i_pages);
1402 		if (mapping_shrinkable(mapping))
1403 			inode_add_lru(mapping->host);
1404 		spin_unlock(&mapping->host->i_lock);
1405 
1406 		if (free_folio)
1407 			free_folio(folio);
1408 	}
1409 
1410 	return 1;
1411 
1412 cannot_free:
1413 	xa_unlock_irq(&mapping->i_pages);
1414 	if (!folio_test_swapcache(folio))
1415 		spin_unlock(&mapping->host->i_lock);
1416 	return 0;
1417 }
1418 
1419 /**
1420  * remove_mapping() - Attempt to remove a folio from its mapping.
1421  * @mapping: The address space.
1422  * @folio: The folio to remove.
1423  *
1424  * If the folio is dirty, under writeback or if someone else has a ref
1425  * on it, removal will fail.
1426  * Return: The number of pages removed from the mapping.  0 if the folio
1427  * could not be removed.
1428  * Context: The caller should have a single refcount on the folio and
1429  * hold its lock.
1430  */
1431 long remove_mapping(struct address_space *mapping, struct folio *folio)
1432 {
1433 	if (__remove_mapping(mapping, folio, false, NULL)) {
1434 		/*
1435 		 * Unfreezing the refcount with 1 effectively
1436 		 * drops the pagecache ref for us without requiring another
1437 		 * atomic operation.
1438 		 */
1439 		folio_ref_unfreeze(folio, 1);
1440 		return folio_nr_pages(folio);
1441 	}
1442 	return 0;
1443 }
1444 
1445 /**
1446  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1447  * @folio: Folio to be returned to an LRU list.
1448  *
1449  * Add previously isolated @folio to appropriate LRU list.
1450  * The folio may still be unevictable for other reasons.
1451  *
1452  * Context: lru_lock must not be held, interrupts must be enabled.
1453  */
1454 void folio_putback_lru(struct folio *folio)
1455 {
1456 	folio_add_lru(folio);
1457 	folio_put(folio);		/* drop ref from isolate */
1458 }
1459 
1460 enum folio_references {
1461 	FOLIOREF_RECLAIM,
1462 	FOLIOREF_RECLAIM_CLEAN,
1463 	FOLIOREF_KEEP,
1464 	FOLIOREF_ACTIVATE,
1465 };
1466 
1467 static enum folio_references folio_check_references(struct folio *folio,
1468 						  struct scan_control *sc)
1469 {
1470 	int referenced_ptes, referenced_folio;
1471 	unsigned long vm_flags;
1472 
1473 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1474 					   &vm_flags);
1475 	referenced_folio = folio_test_clear_referenced(folio);
1476 
1477 	/*
1478 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1479 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1480 	 */
1481 	if (vm_flags & VM_LOCKED)
1482 		return FOLIOREF_ACTIVATE;
1483 
1484 	/* rmap lock contention: rotate */
1485 	if (referenced_ptes == -1)
1486 		return FOLIOREF_KEEP;
1487 
1488 	if (referenced_ptes) {
1489 		/*
1490 		 * All mapped folios start out with page table
1491 		 * references from the instantiating fault, so we need
1492 		 * to look twice if a mapped file/anon folio is used more
1493 		 * than once.
1494 		 *
1495 		 * Mark it and spare it for another trip around the
1496 		 * inactive list.  Another page table reference will
1497 		 * lead to its activation.
1498 		 *
1499 		 * Note: the mark is set for activated folios as well
1500 		 * so that recently deactivated but used folios are
1501 		 * quickly recovered.
1502 		 */
1503 		folio_set_referenced(folio);
1504 
1505 		if (referenced_folio || referenced_ptes > 1)
1506 			return FOLIOREF_ACTIVATE;
1507 
1508 		/*
1509 		 * Activate file-backed executable folios after first usage.
1510 		 */
1511 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1512 			return FOLIOREF_ACTIVATE;
1513 
1514 		return FOLIOREF_KEEP;
1515 	}
1516 
1517 	/* Reclaim if clean, defer dirty folios to writeback */
1518 	if (referenced_folio && folio_is_file_lru(folio))
1519 		return FOLIOREF_RECLAIM_CLEAN;
1520 
1521 	return FOLIOREF_RECLAIM;
1522 }
1523 
1524 /* Check if a folio is dirty or under writeback */
1525 static void folio_check_dirty_writeback(struct folio *folio,
1526 				       bool *dirty, bool *writeback)
1527 {
1528 	struct address_space *mapping;
1529 
1530 	/*
1531 	 * Anonymous folios are not handled by flushers and must be written
1532 	 * from reclaim context. Do not stall reclaim based on them.
1533 	 * MADV_FREE anonymous folios are put into inactive file list too.
1534 	 * They could be mistakenly treated as file lru. So further anon
1535 	 * test is needed.
1536 	 */
1537 	if (!folio_is_file_lru(folio) ||
1538 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1539 		*dirty = false;
1540 		*writeback = false;
1541 		return;
1542 	}
1543 
1544 	/* By default assume that the folio flags are accurate */
1545 	*dirty = folio_test_dirty(folio);
1546 	*writeback = folio_test_writeback(folio);
1547 
1548 	/* Verify dirty/writeback state if the filesystem supports it */
1549 	if (!folio_test_private(folio))
1550 		return;
1551 
1552 	mapping = folio_mapping(folio);
1553 	if (mapping && mapping->a_ops->is_dirty_writeback)
1554 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1555 }
1556 
1557 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1558 {
1559 	struct page *target_page;
1560 	nodemask_t *allowed_mask;
1561 	struct migration_target_control *mtc;
1562 
1563 	mtc = (struct migration_target_control *)private;
1564 
1565 	allowed_mask = mtc->nmask;
1566 	/*
1567 	 * make sure we allocate from the target node first also trying to
1568 	 * demote or reclaim pages from the target node via kswapd if we are
1569 	 * low on free memory on target node. If we don't do this and if
1570 	 * we have free memory on the slower(lower) memtier, we would start
1571 	 * allocating pages from slower(lower) memory tiers without even forcing
1572 	 * a demotion of cold pages from the target memtier. This can result
1573 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1574 	 */
1575 	mtc->nmask = NULL;
1576 	mtc->gfp_mask |= __GFP_THISNODE;
1577 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1578 	if (target_page)
1579 		return target_page;
1580 
1581 	mtc->gfp_mask &= ~__GFP_THISNODE;
1582 	mtc->nmask = allowed_mask;
1583 
1584 	return alloc_migration_target(page, (unsigned long)mtc);
1585 }
1586 
1587 /*
1588  * Take folios on @demote_folios and attempt to demote them to another node.
1589  * Folios which are not demoted are left on @demote_folios.
1590  */
1591 static unsigned int demote_folio_list(struct list_head *demote_folios,
1592 				     struct pglist_data *pgdat)
1593 {
1594 	int target_nid = next_demotion_node(pgdat->node_id);
1595 	unsigned int nr_succeeded;
1596 	nodemask_t allowed_mask;
1597 
1598 	struct migration_target_control mtc = {
1599 		/*
1600 		 * Allocate from 'node', or fail quickly and quietly.
1601 		 * When this happens, 'page' will likely just be discarded
1602 		 * instead of migrated.
1603 		 */
1604 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1605 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1606 		.nid = target_nid,
1607 		.nmask = &allowed_mask
1608 	};
1609 
1610 	if (list_empty(demote_folios))
1611 		return 0;
1612 
1613 	if (target_nid == NUMA_NO_NODE)
1614 		return 0;
1615 
1616 	node_get_allowed_targets(pgdat, &allowed_mask);
1617 
1618 	/* Demotion ignores all cpuset and mempolicy settings */
1619 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1620 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1621 		      &nr_succeeded);
1622 
1623 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1624 
1625 	return nr_succeeded;
1626 }
1627 
1628 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1629 {
1630 	if (gfp_mask & __GFP_FS)
1631 		return true;
1632 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1633 		return false;
1634 	/*
1635 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1636 	 * providing this isn't SWP_FS_OPS.
1637 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1638 	 * but that will never affect SWP_FS_OPS, so the data_race
1639 	 * is safe.
1640 	 */
1641 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1642 }
1643 
1644 /*
1645  * shrink_folio_list() returns the number of reclaimed pages
1646  */
1647 static unsigned int shrink_folio_list(struct list_head *folio_list,
1648 		struct pglist_data *pgdat, struct scan_control *sc,
1649 		struct reclaim_stat *stat, bool ignore_references)
1650 {
1651 	LIST_HEAD(ret_folios);
1652 	LIST_HEAD(free_folios);
1653 	LIST_HEAD(demote_folios);
1654 	unsigned int nr_reclaimed = 0;
1655 	unsigned int pgactivate = 0;
1656 	bool do_demote_pass;
1657 	struct swap_iocb *plug = NULL;
1658 
1659 	memset(stat, 0, sizeof(*stat));
1660 	cond_resched();
1661 	do_demote_pass = can_demote(pgdat->node_id, sc);
1662 
1663 retry:
1664 	while (!list_empty(folio_list)) {
1665 		struct address_space *mapping;
1666 		struct folio *folio;
1667 		enum folio_references references = FOLIOREF_RECLAIM;
1668 		bool dirty, writeback;
1669 		unsigned int nr_pages;
1670 
1671 		cond_resched();
1672 
1673 		folio = lru_to_folio(folio_list);
1674 		list_del(&folio->lru);
1675 
1676 		if (!folio_trylock(folio))
1677 			goto keep;
1678 
1679 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1680 
1681 		nr_pages = folio_nr_pages(folio);
1682 
1683 		/* Account the number of base pages */
1684 		sc->nr_scanned += nr_pages;
1685 
1686 		if (unlikely(!folio_evictable(folio)))
1687 			goto activate_locked;
1688 
1689 		if (!sc->may_unmap && folio_mapped(folio))
1690 			goto keep_locked;
1691 
1692 		/* folio_update_gen() tried to promote this page? */
1693 		if (lru_gen_enabled() && !ignore_references &&
1694 		    folio_mapped(folio) && folio_test_referenced(folio))
1695 			goto keep_locked;
1696 
1697 		/*
1698 		 * The number of dirty pages determines if a node is marked
1699 		 * reclaim_congested. kswapd will stall and start writing
1700 		 * folios if the tail of the LRU is all dirty unqueued folios.
1701 		 */
1702 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1703 		if (dirty || writeback)
1704 			stat->nr_dirty += nr_pages;
1705 
1706 		if (dirty && !writeback)
1707 			stat->nr_unqueued_dirty += nr_pages;
1708 
1709 		/*
1710 		 * Treat this folio as congested if folios are cycling
1711 		 * through the LRU so quickly that the folios marked
1712 		 * for immediate reclaim are making it to the end of
1713 		 * the LRU a second time.
1714 		 */
1715 		if (writeback && folio_test_reclaim(folio))
1716 			stat->nr_congested += nr_pages;
1717 
1718 		/*
1719 		 * If a folio at the tail of the LRU is under writeback, there
1720 		 * are three cases to consider.
1721 		 *
1722 		 * 1) If reclaim is encountering an excessive number
1723 		 *    of folios under writeback and this folio has both
1724 		 *    the writeback and reclaim flags set, then it
1725 		 *    indicates that folios are being queued for I/O but
1726 		 *    are being recycled through the LRU before the I/O
1727 		 *    can complete. Waiting on the folio itself risks an
1728 		 *    indefinite stall if it is impossible to writeback
1729 		 *    the folio due to I/O error or disconnected storage
1730 		 *    so instead note that the LRU is being scanned too
1731 		 *    quickly and the caller can stall after the folio
1732 		 *    list has been processed.
1733 		 *
1734 		 * 2) Global or new memcg reclaim encounters a folio that is
1735 		 *    not marked for immediate reclaim, or the caller does not
1736 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1737 		 *    not to fs). In this case mark the folio for immediate
1738 		 *    reclaim and continue scanning.
1739 		 *
1740 		 *    Require may_enter_fs() because we would wait on fs, which
1741 		 *    may not have submitted I/O yet. And the loop driver might
1742 		 *    enter reclaim, and deadlock if it waits on a folio for
1743 		 *    which it is needed to do the write (loop masks off
1744 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1745 		 *    would probably show more reasons.
1746 		 *
1747 		 * 3) Legacy memcg encounters a folio that already has the
1748 		 *    reclaim flag set. memcg does not have any dirty folio
1749 		 *    throttling so we could easily OOM just because too many
1750 		 *    folios are in writeback and there is nothing else to
1751 		 *    reclaim. Wait for the writeback to complete.
1752 		 *
1753 		 * In cases 1) and 2) we activate the folios to get them out of
1754 		 * the way while we continue scanning for clean folios on the
1755 		 * inactive list and refilling from the active list. The
1756 		 * observation here is that waiting for disk writes is more
1757 		 * expensive than potentially causing reloads down the line.
1758 		 * Since they're marked for immediate reclaim, they won't put
1759 		 * memory pressure on the cache working set any longer than it
1760 		 * takes to write them to disk.
1761 		 */
1762 		if (folio_test_writeback(folio)) {
1763 			/* Case 1 above */
1764 			if (current_is_kswapd() &&
1765 			    folio_test_reclaim(folio) &&
1766 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1767 				stat->nr_immediate += nr_pages;
1768 				goto activate_locked;
1769 
1770 			/* Case 2 above */
1771 			} else if (writeback_throttling_sane(sc) ||
1772 			    !folio_test_reclaim(folio) ||
1773 			    !may_enter_fs(folio, sc->gfp_mask)) {
1774 				/*
1775 				 * This is slightly racy -
1776 				 * folio_end_writeback() might have
1777 				 * just cleared the reclaim flag, then
1778 				 * setting the reclaim flag here ends up
1779 				 * interpreted as the readahead flag - but
1780 				 * that does not matter enough to care.
1781 				 * What we do want is for this folio to
1782 				 * have the reclaim flag set next time
1783 				 * memcg reclaim reaches the tests above,
1784 				 * so it will then wait for writeback to
1785 				 * avoid OOM; and it's also appropriate
1786 				 * in global reclaim.
1787 				 */
1788 				folio_set_reclaim(folio);
1789 				stat->nr_writeback += nr_pages;
1790 				goto activate_locked;
1791 
1792 			/* Case 3 above */
1793 			} else {
1794 				folio_unlock(folio);
1795 				folio_wait_writeback(folio);
1796 				/* then go back and try same folio again */
1797 				list_add_tail(&folio->lru, folio_list);
1798 				continue;
1799 			}
1800 		}
1801 
1802 		if (!ignore_references)
1803 			references = folio_check_references(folio, sc);
1804 
1805 		switch (references) {
1806 		case FOLIOREF_ACTIVATE:
1807 			goto activate_locked;
1808 		case FOLIOREF_KEEP:
1809 			stat->nr_ref_keep += nr_pages;
1810 			goto keep_locked;
1811 		case FOLIOREF_RECLAIM:
1812 		case FOLIOREF_RECLAIM_CLEAN:
1813 			; /* try to reclaim the folio below */
1814 		}
1815 
1816 		/*
1817 		 * Before reclaiming the folio, try to relocate
1818 		 * its contents to another node.
1819 		 */
1820 		if (do_demote_pass &&
1821 		    (thp_migration_supported() || !folio_test_large(folio))) {
1822 			list_add(&folio->lru, &demote_folios);
1823 			folio_unlock(folio);
1824 			continue;
1825 		}
1826 
1827 		/*
1828 		 * Anonymous process memory has backing store?
1829 		 * Try to allocate it some swap space here.
1830 		 * Lazyfree folio could be freed directly
1831 		 */
1832 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1833 			if (!folio_test_swapcache(folio)) {
1834 				if (!(sc->gfp_mask & __GFP_IO))
1835 					goto keep_locked;
1836 				if (folio_maybe_dma_pinned(folio))
1837 					goto keep_locked;
1838 				if (folio_test_large(folio)) {
1839 					/* cannot split folio, skip it */
1840 					if (!can_split_folio(folio, NULL))
1841 						goto activate_locked;
1842 					/*
1843 					 * Split folios without a PMD map right
1844 					 * away. Chances are some or all of the
1845 					 * tail pages can be freed without IO.
1846 					 */
1847 					if (!folio_entire_mapcount(folio) &&
1848 					    split_folio_to_list(folio,
1849 								folio_list))
1850 						goto activate_locked;
1851 				}
1852 				if (!add_to_swap(folio)) {
1853 					if (!folio_test_large(folio))
1854 						goto activate_locked_split;
1855 					/* Fallback to swap normal pages */
1856 					if (split_folio_to_list(folio,
1857 								folio_list))
1858 						goto activate_locked;
1859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1860 					count_vm_event(THP_SWPOUT_FALLBACK);
1861 #endif
1862 					if (!add_to_swap(folio))
1863 						goto activate_locked_split;
1864 				}
1865 			}
1866 		} else if (folio_test_swapbacked(folio) &&
1867 			   folio_test_large(folio)) {
1868 			/* Split shmem folio */
1869 			if (split_folio_to_list(folio, folio_list))
1870 				goto keep_locked;
1871 		}
1872 
1873 		/*
1874 		 * If the folio was split above, the tail pages will make
1875 		 * their own pass through this function and be accounted
1876 		 * then.
1877 		 */
1878 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1879 			sc->nr_scanned -= (nr_pages - 1);
1880 			nr_pages = 1;
1881 		}
1882 
1883 		/*
1884 		 * The folio is mapped into the page tables of one or more
1885 		 * processes. Try to unmap it here.
1886 		 */
1887 		if (folio_mapped(folio)) {
1888 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1889 			bool was_swapbacked = folio_test_swapbacked(folio);
1890 
1891 			if (folio_test_pmd_mappable(folio))
1892 				flags |= TTU_SPLIT_HUGE_PMD;
1893 
1894 			try_to_unmap(folio, flags);
1895 			if (folio_mapped(folio)) {
1896 				stat->nr_unmap_fail += nr_pages;
1897 				if (!was_swapbacked &&
1898 				    folio_test_swapbacked(folio))
1899 					stat->nr_lazyfree_fail += nr_pages;
1900 				goto activate_locked;
1901 			}
1902 		}
1903 
1904 		mapping = folio_mapping(folio);
1905 		if (folio_test_dirty(folio)) {
1906 			/*
1907 			 * Only kswapd can writeback filesystem folios
1908 			 * to avoid risk of stack overflow. But avoid
1909 			 * injecting inefficient single-folio I/O into
1910 			 * flusher writeback as much as possible: only
1911 			 * write folios when we've encountered many
1912 			 * dirty folios, and when we've already scanned
1913 			 * the rest of the LRU for clean folios and see
1914 			 * the same dirty folios again (with the reclaim
1915 			 * flag set).
1916 			 */
1917 			if (folio_is_file_lru(folio) &&
1918 			    (!current_is_kswapd() ||
1919 			     !folio_test_reclaim(folio) ||
1920 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1921 				/*
1922 				 * Immediately reclaim when written back.
1923 				 * Similar in principle to deactivate_page()
1924 				 * except we already have the folio isolated
1925 				 * and know it's dirty
1926 				 */
1927 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1928 						nr_pages);
1929 				folio_set_reclaim(folio);
1930 
1931 				goto activate_locked;
1932 			}
1933 
1934 			if (references == FOLIOREF_RECLAIM_CLEAN)
1935 				goto keep_locked;
1936 			if (!may_enter_fs(folio, sc->gfp_mask))
1937 				goto keep_locked;
1938 			if (!sc->may_writepage)
1939 				goto keep_locked;
1940 
1941 			/*
1942 			 * Folio is dirty. Flush the TLB if a writable entry
1943 			 * potentially exists to avoid CPU writes after I/O
1944 			 * starts and then write it out here.
1945 			 */
1946 			try_to_unmap_flush_dirty();
1947 			switch (pageout(folio, mapping, &plug)) {
1948 			case PAGE_KEEP:
1949 				goto keep_locked;
1950 			case PAGE_ACTIVATE:
1951 				goto activate_locked;
1952 			case PAGE_SUCCESS:
1953 				stat->nr_pageout += nr_pages;
1954 
1955 				if (folio_test_writeback(folio))
1956 					goto keep;
1957 				if (folio_test_dirty(folio))
1958 					goto keep;
1959 
1960 				/*
1961 				 * A synchronous write - probably a ramdisk.  Go
1962 				 * ahead and try to reclaim the folio.
1963 				 */
1964 				if (!folio_trylock(folio))
1965 					goto keep;
1966 				if (folio_test_dirty(folio) ||
1967 				    folio_test_writeback(folio))
1968 					goto keep_locked;
1969 				mapping = folio_mapping(folio);
1970 				fallthrough;
1971 			case PAGE_CLEAN:
1972 				; /* try to free the folio below */
1973 			}
1974 		}
1975 
1976 		/*
1977 		 * If the folio has buffers, try to free the buffer
1978 		 * mappings associated with this folio. If we succeed
1979 		 * we try to free the folio as well.
1980 		 *
1981 		 * We do this even if the folio is dirty.
1982 		 * filemap_release_folio() does not perform I/O, but it
1983 		 * is possible for a folio to have the dirty flag set,
1984 		 * but it is actually clean (all its buffers are clean).
1985 		 * This happens if the buffers were written out directly,
1986 		 * with submit_bh(). ext3 will do this, as well as
1987 		 * the blockdev mapping.  filemap_release_folio() will
1988 		 * discover that cleanness and will drop the buffers
1989 		 * and mark the folio clean - it can be freed.
1990 		 *
1991 		 * Rarely, folios can have buffers and no ->mapping.
1992 		 * These are the folios which were not successfully
1993 		 * invalidated in truncate_cleanup_folio().  We try to
1994 		 * drop those buffers here and if that worked, and the
1995 		 * folio is no longer mapped into process address space
1996 		 * (refcount == 1) it can be freed.  Otherwise, leave
1997 		 * the folio on the LRU so it is swappable.
1998 		 */
1999 		if (folio_has_private(folio)) {
2000 			if (!filemap_release_folio(folio, sc->gfp_mask))
2001 				goto activate_locked;
2002 			if (!mapping && folio_ref_count(folio) == 1) {
2003 				folio_unlock(folio);
2004 				if (folio_put_testzero(folio))
2005 					goto free_it;
2006 				else {
2007 					/*
2008 					 * rare race with speculative reference.
2009 					 * the speculative reference will free
2010 					 * this folio shortly, so we may
2011 					 * increment nr_reclaimed here (and
2012 					 * leave it off the LRU).
2013 					 */
2014 					nr_reclaimed += nr_pages;
2015 					continue;
2016 				}
2017 			}
2018 		}
2019 
2020 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2021 			/* follow __remove_mapping for reference */
2022 			if (!folio_ref_freeze(folio, 1))
2023 				goto keep_locked;
2024 			/*
2025 			 * The folio has only one reference left, which is
2026 			 * from the isolation. After the caller puts the
2027 			 * folio back on the lru and drops the reference, the
2028 			 * folio will be freed anyway. It doesn't matter
2029 			 * which lru it goes on. So we don't bother checking
2030 			 * the dirty flag here.
2031 			 */
2032 			count_vm_events(PGLAZYFREED, nr_pages);
2033 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2034 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2035 							 sc->target_mem_cgroup))
2036 			goto keep_locked;
2037 
2038 		folio_unlock(folio);
2039 free_it:
2040 		/*
2041 		 * Folio may get swapped out as a whole, need to account
2042 		 * all pages in it.
2043 		 */
2044 		nr_reclaimed += nr_pages;
2045 
2046 		/*
2047 		 * Is there need to periodically free_folio_list? It would
2048 		 * appear not as the counts should be low
2049 		 */
2050 		if (unlikely(folio_test_large(folio)))
2051 			destroy_large_folio(folio);
2052 		else
2053 			list_add(&folio->lru, &free_folios);
2054 		continue;
2055 
2056 activate_locked_split:
2057 		/*
2058 		 * The tail pages that are failed to add into swap cache
2059 		 * reach here.  Fixup nr_scanned and nr_pages.
2060 		 */
2061 		if (nr_pages > 1) {
2062 			sc->nr_scanned -= (nr_pages - 1);
2063 			nr_pages = 1;
2064 		}
2065 activate_locked:
2066 		/* Not a candidate for swapping, so reclaim swap space. */
2067 		if (folio_test_swapcache(folio) &&
2068 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2069 			folio_free_swap(folio);
2070 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2071 		if (!folio_test_mlocked(folio)) {
2072 			int type = folio_is_file_lru(folio);
2073 			folio_set_active(folio);
2074 			stat->nr_activate[type] += nr_pages;
2075 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2076 		}
2077 keep_locked:
2078 		folio_unlock(folio);
2079 keep:
2080 		list_add(&folio->lru, &ret_folios);
2081 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2082 				folio_test_unevictable(folio), folio);
2083 	}
2084 	/* 'folio_list' is always empty here */
2085 
2086 	/* Migrate folios selected for demotion */
2087 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2088 	/* Folios that could not be demoted are still in @demote_folios */
2089 	if (!list_empty(&demote_folios)) {
2090 		/* Folios which weren't demoted go back on @folio_list */
2091 		list_splice_init(&demote_folios, folio_list);
2092 
2093 		/*
2094 		 * goto retry to reclaim the undemoted folios in folio_list if
2095 		 * desired.
2096 		 *
2097 		 * Reclaiming directly from top tier nodes is not often desired
2098 		 * due to it breaking the LRU ordering: in general memory
2099 		 * should be reclaimed from lower tier nodes and demoted from
2100 		 * top tier nodes.
2101 		 *
2102 		 * However, disabling reclaim from top tier nodes entirely
2103 		 * would cause ooms in edge scenarios where lower tier memory
2104 		 * is unreclaimable for whatever reason, eg memory being
2105 		 * mlocked or too hot to reclaim. We can disable reclaim
2106 		 * from top tier nodes in proactive reclaim though as that is
2107 		 * not real memory pressure.
2108 		 */
2109 		if (!sc->proactive) {
2110 			do_demote_pass = false;
2111 			goto retry;
2112 		}
2113 	}
2114 
2115 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2116 
2117 	mem_cgroup_uncharge_list(&free_folios);
2118 	try_to_unmap_flush();
2119 	free_unref_page_list(&free_folios);
2120 
2121 	list_splice(&ret_folios, folio_list);
2122 	count_vm_events(PGACTIVATE, pgactivate);
2123 
2124 	if (plug)
2125 		swap_write_unplug(plug);
2126 	return nr_reclaimed;
2127 }
2128 
2129 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2130 					   struct list_head *folio_list)
2131 {
2132 	struct scan_control sc = {
2133 		.gfp_mask = GFP_KERNEL,
2134 		.may_unmap = 1,
2135 	};
2136 	struct reclaim_stat stat;
2137 	unsigned int nr_reclaimed;
2138 	struct folio *folio, *next;
2139 	LIST_HEAD(clean_folios);
2140 	unsigned int noreclaim_flag;
2141 
2142 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2143 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2144 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2145 		    !folio_test_unevictable(folio)) {
2146 			folio_clear_active(folio);
2147 			list_move(&folio->lru, &clean_folios);
2148 		}
2149 	}
2150 
2151 	/*
2152 	 * We should be safe here since we are only dealing with file pages and
2153 	 * we are not kswapd and therefore cannot write dirty file pages. But
2154 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2155 	 * change in the future.
2156 	 */
2157 	noreclaim_flag = memalloc_noreclaim_save();
2158 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2159 					&stat, true);
2160 	memalloc_noreclaim_restore(noreclaim_flag);
2161 
2162 	list_splice(&clean_folios, folio_list);
2163 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2164 			    -(long)nr_reclaimed);
2165 	/*
2166 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2167 	 * they will rotate back to anonymous LRU in the end if it failed to
2168 	 * discard so isolated count will be mismatched.
2169 	 * Compensate the isolated count for both LRU lists.
2170 	 */
2171 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2172 			    stat.nr_lazyfree_fail);
2173 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2174 			    -(long)stat.nr_lazyfree_fail);
2175 	return nr_reclaimed;
2176 }
2177 
2178 /*
2179  * Update LRU sizes after isolating pages. The LRU size updates must
2180  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2181  */
2182 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2183 			enum lru_list lru, unsigned long *nr_zone_taken)
2184 {
2185 	int zid;
2186 
2187 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2188 		if (!nr_zone_taken[zid])
2189 			continue;
2190 
2191 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2192 	}
2193 
2194 }
2195 
2196 /*
2197  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2198  *
2199  * lruvec->lru_lock is heavily contended.  Some of the functions that
2200  * shrink the lists perform better by taking out a batch of pages
2201  * and working on them outside the LRU lock.
2202  *
2203  * For pagecache intensive workloads, this function is the hottest
2204  * spot in the kernel (apart from copy_*_user functions).
2205  *
2206  * Lru_lock must be held before calling this function.
2207  *
2208  * @nr_to_scan:	The number of eligible pages to look through on the list.
2209  * @lruvec:	The LRU vector to pull pages from.
2210  * @dst:	The temp list to put pages on to.
2211  * @nr_scanned:	The number of pages that were scanned.
2212  * @sc:		The scan_control struct for this reclaim session
2213  * @lru:	LRU list id for isolating
2214  *
2215  * returns how many pages were moved onto *@dst.
2216  */
2217 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2218 		struct lruvec *lruvec, struct list_head *dst,
2219 		unsigned long *nr_scanned, struct scan_control *sc,
2220 		enum lru_list lru)
2221 {
2222 	struct list_head *src = &lruvec->lists[lru];
2223 	unsigned long nr_taken = 0;
2224 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2225 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2226 	unsigned long skipped = 0;
2227 	unsigned long scan, total_scan, nr_pages;
2228 	LIST_HEAD(folios_skipped);
2229 
2230 	total_scan = 0;
2231 	scan = 0;
2232 	while (scan < nr_to_scan && !list_empty(src)) {
2233 		struct list_head *move_to = src;
2234 		struct folio *folio;
2235 
2236 		folio = lru_to_folio(src);
2237 		prefetchw_prev_lru_folio(folio, src, flags);
2238 
2239 		nr_pages = folio_nr_pages(folio);
2240 		total_scan += nr_pages;
2241 
2242 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2243 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2244 			move_to = &folios_skipped;
2245 			goto move;
2246 		}
2247 
2248 		/*
2249 		 * Do not count skipped folios because that makes the function
2250 		 * return with no isolated folios if the LRU mostly contains
2251 		 * ineligible folios.  This causes the VM to not reclaim any
2252 		 * folios, triggering a premature OOM.
2253 		 * Account all pages in a folio.
2254 		 */
2255 		scan += nr_pages;
2256 
2257 		if (!folio_test_lru(folio))
2258 			goto move;
2259 		if (!sc->may_unmap && folio_mapped(folio))
2260 			goto move;
2261 
2262 		/*
2263 		 * Be careful not to clear the lru flag until after we're
2264 		 * sure the folio is not being freed elsewhere -- the
2265 		 * folio release code relies on it.
2266 		 */
2267 		if (unlikely(!folio_try_get(folio)))
2268 			goto move;
2269 
2270 		if (!folio_test_clear_lru(folio)) {
2271 			/* Another thread is already isolating this folio */
2272 			folio_put(folio);
2273 			goto move;
2274 		}
2275 
2276 		nr_taken += nr_pages;
2277 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2278 		move_to = dst;
2279 move:
2280 		list_move(&folio->lru, move_to);
2281 	}
2282 
2283 	/*
2284 	 * Splice any skipped folios to the start of the LRU list. Note that
2285 	 * this disrupts the LRU order when reclaiming for lower zones but
2286 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2287 	 * scanning would soon rescan the same folios to skip and waste lots
2288 	 * of cpu cycles.
2289 	 */
2290 	if (!list_empty(&folios_skipped)) {
2291 		int zid;
2292 
2293 		list_splice(&folios_skipped, src);
2294 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2295 			if (!nr_skipped[zid])
2296 				continue;
2297 
2298 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2299 			skipped += nr_skipped[zid];
2300 		}
2301 	}
2302 	*nr_scanned = total_scan;
2303 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2304 				    total_scan, skipped, nr_taken,
2305 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2306 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2307 	return nr_taken;
2308 }
2309 
2310 /**
2311  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2312  * @folio: Folio to isolate from its LRU list.
2313  *
2314  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2315  * corresponding to whatever LRU list the folio was on.
2316  *
2317  * The folio will have its LRU flag cleared.  If it was found on the
2318  * active list, it will have the Active flag set.  If it was found on the
2319  * unevictable list, it will have the Unevictable flag set.  These flags
2320  * may need to be cleared by the caller before letting the page go.
2321  *
2322  * Context:
2323  *
2324  * (1) Must be called with an elevated refcount on the folio. This is a
2325  *     fundamental difference from isolate_lru_folios() (which is called
2326  *     without a stable reference).
2327  * (2) The lru_lock must not be held.
2328  * (3) Interrupts must be enabled.
2329  *
2330  * Return: 0 if the folio was removed from an LRU list.
2331  * -EBUSY if the folio was not on an LRU list.
2332  */
2333 int folio_isolate_lru(struct folio *folio)
2334 {
2335 	int ret = -EBUSY;
2336 
2337 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2338 
2339 	if (folio_test_clear_lru(folio)) {
2340 		struct lruvec *lruvec;
2341 
2342 		folio_get(folio);
2343 		lruvec = folio_lruvec_lock_irq(folio);
2344 		lruvec_del_folio(lruvec, folio);
2345 		unlock_page_lruvec_irq(lruvec);
2346 		ret = 0;
2347 	}
2348 
2349 	return ret;
2350 }
2351 
2352 /*
2353  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2354  * then get rescheduled. When there are massive number of tasks doing page
2355  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2356  * the LRU list will go small and be scanned faster than necessary, leading to
2357  * unnecessary swapping, thrashing and OOM.
2358  */
2359 static int too_many_isolated(struct pglist_data *pgdat, int file,
2360 		struct scan_control *sc)
2361 {
2362 	unsigned long inactive, isolated;
2363 	bool too_many;
2364 
2365 	if (current_is_kswapd())
2366 		return 0;
2367 
2368 	if (!writeback_throttling_sane(sc))
2369 		return 0;
2370 
2371 	if (file) {
2372 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2373 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2374 	} else {
2375 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2376 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2377 	}
2378 
2379 	/*
2380 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2381 	 * won't get blocked by normal direct-reclaimers, forming a circular
2382 	 * deadlock.
2383 	 */
2384 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2385 		inactive >>= 3;
2386 
2387 	too_many = isolated > inactive;
2388 
2389 	/* Wake up tasks throttled due to too_many_isolated. */
2390 	if (!too_many)
2391 		wake_throttle_isolated(pgdat);
2392 
2393 	return too_many;
2394 }
2395 
2396 /*
2397  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2398  * On return, @list is reused as a list of folios to be freed by the caller.
2399  *
2400  * Returns the number of pages moved to the given lruvec.
2401  */
2402 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2403 		struct list_head *list)
2404 {
2405 	int nr_pages, nr_moved = 0;
2406 	LIST_HEAD(folios_to_free);
2407 
2408 	while (!list_empty(list)) {
2409 		struct folio *folio = lru_to_folio(list);
2410 
2411 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2412 		list_del(&folio->lru);
2413 		if (unlikely(!folio_evictable(folio))) {
2414 			spin_unlock_irq(&lruvec->lru_lock);
2415 			folio_putback_lru(folio);
2416 			spin_lock_irq(&lruvec->lru_lock);
2417 			continue;
2418 		}
2419 
2420 		/*
2421 		 * The folio_set_lru needs to be kept here for list integrity.
2422 		 * Otherwise:
2423 		 *   #0 move_folios_to_lru             #1 release_pages
2424 		 *   if (!folio_put_testzero())
2425 		 *				      if (folio_put_testzero())
2426 		 *				        !lru //skip lru_lock
2427 		 *     folio_set_lru()
2428 		 *     list_add(&folio->lru,)
2429 		 *                                        list_add(&folio->lru,)
2430 		 */
2431 		folio_set_lru(folio);
2432 
2433 		if (unlikely(folio_put_testzero(folio))) {
2434 			__folio_clear_lru_flags(folio);
2435 
2436 			if (unlikely(folio_test_large(folio))) {
2437 				spin_unlock_irq(&lruvec->lru_lock);
2438 				destroy_large_folio(folio);
2439 				spin_lock_irq(&lruvec->lru_lock);
2440 			} else
2441 				list_add(&folio->lru, &folios_to_free);
2442 
2443 			continue;
2444 		}
2445 
2446 		/*
2447 		 * All pages were isolated from the same lruvec (and isolation
2448 		 * inhibits memcg migration).
2449 		 */
2450 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2451 		lruvec_add_folio(lruvec, folio);
2452 		nr_pages = folio_nr_pages(folio);
2453 		nr_moved += nr_pages;
2454 		if (folio_test_active(folio))
2455 			workingset_age_nonresident(lruvec, nr_pages);
2456 	}
2457 
2458 	/*
2459 	 * To save our caller's stack, now use input list for pages to free.
2460 	 */
2461 	list_splice(&folios_to_free, list);
2462 
2463 	return nr_moved;
2464 }
2465 
2466 /*
2467  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2468  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2469  * we should not throttle.  Otherwise it is safe to do so.
2470  */
2471 static int current_may_throttle(void)
2472 {
2473 	return !(current->flags & PF_LOCAL_THROTTLE);
2474 }
2475 
2476 /*
2477  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2478  * of reclaimed pages
2479  */
2480 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2481 		struct lruvec *lruvec, struct scan_control *sc,
2482 		enum lru_list lru)
2483 {
2484 	LIST_HEAD(folio_list);
2485 	unsigned long nr_scanned;
2486 	unsigned int nr_reclaimed = 0;
2487 	unsigned long nr_taken;
2488 	struct reclaim_stat stat;
2489 	bool file = is_file_lru(lru);
2490 	enum vm_event_item item;
2491 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2492 	bool stalled = false;
2493 
2494 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2495 		if (stalled)
2496 			return 0;
2497 
2498 		/* wait a bit for the reclaimer. */
2499 		stalled = true;
2500 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2501 
2502 		/* We are about to die and free our memory. Return now. */
2503 		if (fatal_signal_pending(current))
2504 			return SWAP_CLUSTER_MAX;
2505 	}
2506 
2507 	lru_add_drain();
2508 
2509 	spin_lock_irq(&lruvec->lru_lock);
2510 
2511 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2512 				     &nr_scanned, sc, lru);
2513 
2514 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2515 	item = PGSCAN_KSWAPD + reclaimer_offset();
2516 	if (!cgroup_reclaim(sc))
2517 		__count_vm_events(item, nr_scanned);
2518 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2519 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2520 
2521 	spin_unlock_irq(&lruvec->lru_lock);
2522 
2523 	if (nr_taken == 0)
2524 		return 0;
2525 
2526 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2527 
2528 	spin_lock_irq(&lruvec->lru_lock);
2529 	move_folios_to_lru(lruvec, &folio_list);
2530 
2531 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2532 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2533 	if (!cgroup_reclaim(sc))
2534 		__count_vm_events(item, nr_reclaimed);
2535 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2536 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2537 	spin_unlock_irq(&lruvec->lru_lock);
2538 
2539 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2540 	mem_cgroup_uncharge_list(&folio_list);
2541 	free_unref_page_list(&folio_list);
2542 
2543 	/*
2544 	 * If dirty folios are scanned that are not queued for IO, it
2545 	 * implies that flushers are not doing their job. This can
2546 	 * happen when memory pressure pushes dirty folios to the end of
2547 	 * the LRU before the dirty limits are breached and the dirty
2548 	 * data has expired. It can also happen when the proportion of
2549 	 * dirty folios grows not through writes but through memory
2550 	 * pressure reclaiming all the clean cache. And in some cases,
2551 	 * the flushers simply cannot keep up with the allocation
2552 	 * rate. Nudge the flusher threads in case they are asleep.
2553 	 */
2554 	if (stat.nr_unqueued_dirty == nr_taken) {
2555 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2556 		/*
2557 		 * For cgroupv1 dirty throttling is achieved by waking up
2558 		 * the kernel flusher here and later waiting on folios
2559 		 * which are in writeback to finish (see shrink_folio_list()).
2560 		 *
2561 		 * Flusher may not be able to issue writeback quickly
2562 		 * enough for cgroupv1 writeback throttling to work
2563 		 * on a large system.
2564 		 */
2565 		if (!writeback_throttling_sane(sc))
2566 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2567 	}
2568 
2569 	sc->nr.dirty += stat.nr_dirty;
2570 	sc->nr.congested += stat.nr_congested;
2571 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2572 	sc->nr.writeback += stat.nr_writeback;
2573 	sc->nr.immediate += stat.nr_immediate;
2574 	sc->nr.taken += nr_taken;
2575 	if (file)
2576 		sc->nr.file_taken += nr_taken;
2577 
2578 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2579 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2580 	return nr_reclaimed;
2581 }
2582 
2583 /*
2584  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2585  *
2586  * We move them the other way if the folio is referenced by one or more
2587  * processes.
2588  *
2589  * If the folios are mostly unmapped, the processing is fast and it is
2590  * appropriate to hold lru_lock across the whole operation.  But if
2591  * the folios are mapped, the processing is slow (folio_referenced()), so
2592  * we should drop lru_lock around each folio.  It's impossible to balance
2593  * this, so instead we remove the folios from the LRU while processing them.
2594  * It is safe to rely on the active flag against the non-LRU folios in here
2595  * because nobody will play with that bit on a non-LRU folio.
2596  *
2597  * The downside is that we have to touch folio->_refcount against each folio.
2598  * But we had to alter folio->flags anyway.
2599  */
2600 static void shrink_active_list(unsigned long nr_to_scan,
2601 			       struct lruvec *lruvec,
2602 			       struct scan_control *sc,
2603 			       enum lru_list lru)
2604 {
2605 	unsigned long nr_taken;
2606 	unsigned long nr_scanned;
2607 	unsigned long vm_flags;
2608 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2609 	LIST_HEAD(l_active);
2610 	LIST_HEAD(l_inactive);
2611 	unsigned nr_deactivate, nr_activate;
2612 	unsigned nr_rotated = 0;
2613 	int file = is_file_lru(lru);
2614 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2615 
2616 	lru_add_drain();
2617 
2618 	spin_lock_irq(&lruvec->lru_lock);
2619 
2620 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2621 				     &nr_scanned, sc, lru);
2622 
2623 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2624 
2625 	if (!cgroup_reclaim(sc))
2626 		__count_vm_events(PGREFILL, nr_scanned);
2627 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2628 
2629 	spin_unlock_irq(&lruvec->lru_lock);
2630 
2631 	while (!list_empty(&l_hold)) {
2632 		struct folio *folio;
2633 
2634 		cond_resched();
2635 		folio = lru_to_folio(&l_hold);
2636 		list_del(&folio->lru);
2637 
2638 		if (unlikely(!folio_evictable(folio))) {
2639 			folio_putback_lru(folio);
2640 			continue;
2641 		}
2642 
2643 		if (unlikely(buffer_heads_over_limit)) {
2644 			if (folio_test_private(folio) && folio_trylock(folio)) {
2645 				if (folio_test_private(folio))
2646 					filemap_release_folio(folio, 0);
2647 				folio_unlock(folio);
2648 			}
2649 		}
2650 
2651 		/* Referenced or rmap lock contention: rotate */
2652 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2653 				     &vm_flags) != 0) {
2654 			/*
2655 			 * Identify referenced, file-backed active folios and
2656 			 * give them one more trip around the active list. So
2657 			 * that executable code get better chances to stay in
2658 			 * memory under moderate memory pressure.  Anon folios
2659 			 * are not likely to be evicted by use-once streaming
2660 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2661 			 * so we ignore them here.
2662 			 */
2663 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2664 				nr_rotated += folio_nr_pages(folio);
2665 				list_add(&folio->lru, &l_active);
2666 				continue;
2667 			}
2668 		}
2669 
2670 		folio_clear_active(folio);	/* we are de-activating */
2671 		folio_set_workingset(folio);
2672 		list_add(&folio->lru, &l_inactive);
2673 	}
2674 
2675 	/*
2676 	 * Move folios back to the lru list.
2677 	 */
2678 	spin_lock_irq(&lruvec->lru_lock);
2679 
2680 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2681 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2682 	/* Keep all free folios in l_active list */
2683 	list_splice(&l_inactive, &l_active);
2684 
2685 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2686 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2687 
2688 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2689 	spin_unlock_irq(&lruvec->lru_lock);
2690 
2691 	if (nr_rotated)
2692 		lru_note_cost(lruvec, file, 0, nr_rotated);
2693 	mem_cgroup_uncharge_list(&l_active);
2694 	free_unref_page_list(&l_active);
2695 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2696 			nr_deactivate, nr_rotated, sc->priority, file);
2697 }
2698 
2699 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2700 				      struct pglist_data *pgdat)
2701 {
2702 	struct reclaim_stat dummy_stat;
2703 	unsigned int nr_reclaimed;
2704 	struct folio *folio;
2705 	struct scan_control sc = {
2706 		.gfp_mask = GFP_KERNEL,
2707 		.may_writepage = 1,
2708 		.may_unmap = 1,
2709 		.may_swap = 1,
2710 		.no_demotion = 1,
2711 	};
2712 
2713 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2714 	while (!list_empty(folio_list)) {
2715 		folio = lru_to_folio(folio_list);
2716 		list_del(&folio->lru);
2717 		folio_putback_lru(folio);
2718 	}
2719 
2720 	return nr_reclaimed;
2721 }
2722 
2723 unsigned long reclaim_pages(struct list_head *folio_list)
2724 {
2725 	int nid;
2726 	unsigned int nr_reclaimed = 0;
2727 	LIST_HEAD(node_folio_list);
2728 	unsigned int noreclaim_flag;
2729 
2730 	if (list_empty(folio_list))
2731 		return nr_reclaimed;
2732 
2733 	noreclaim_flag = memalloc_noreclaim_save();
2734 
2735 	nid = folio_nid(lru_to_folio(folio_list));
2736 	do {
2737 		struct folio *folio = lru_to_folio(folio_list);
2738 
2739 		if (nid == folio_nid(folio)) {
2740 			folio_clear_active(folio);
2741 			list_move(&folio->lru, &node_folio_list);
2742 			continue;
2743 		}
2744 
2745 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2746 		nid = folio_nid(lru_to_folio(folio_list));
2747 	} while (!list_empty(folio_list));
2748 
2749 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2750 
2751 	memalloc_noreclaim_restore(noreclaim_flag);
2752 
2753 	return nr_reclaimed;
2754 }
2755 
2756 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2757 				 struct lruvec *lruvec, struct scan_control *sc)
2758 {
2759 	if (is_active_lru(lru)) {
2760 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2761 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2762 		else
2763 			sc->skipped_deactivate = 1;
2764 		return 0;
2765 	}
2766 
2767 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2768 }
2769 
2770 /*
2771  * The inactive anon list should be small enough that the VM never has
2772  * to do too much work.
2773  *
2774  * The inactive file list should be small enough to leave most memory
2775  * to the established workingset on the scan-resistant active list,
2776  * but large enough to avoid thrashing the aggregate readahead window.
2777  *
2778  * Both inactive lists should also be large enough that each inactive
2779  * folio has a chance to be referenced again before it is reclaimed.
2780  *
2781  * If that fails and refaulting is observed, the inactive list grows.
2782  *
2783  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2784  * on this LRU, maintained by the pageout code. An inactive_ratio
2785  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2786  *
2787  * total     target    max
2788  * memory    ratio     inactive
2789  * -------------------------------------
2790  *   10MB       1         5MB
2791  *  100MB       1        50MB
2792  *    1GB       3       250MB
2793  *   10GB      10       0.9GB
2794  *  100GB      31         3GB
2795  *    1TB     101        10GB
2796  *   10TB     320        32GB
2797  */
2798 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2799 {
2800 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2801 	unsigned long inactive, active;
2802 	unsigned long inactive_ratio;
2803 	unsigned long gb;
2804 
2805 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2806 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2807 
2808 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2809 	if (gb)
2810 		inactive_ratio = int_sqrt(10 * gb);
2811 	else
2812 		inactive_ratio = 1;
2813 
2814 	return inactive * inactive_ratio < active;
2815 }
2816 
2817 enum scan_balance {
2818 	SCAN_EQUAL,
2819 	SCAN_FRACT,
2820 	SCAN_ANON,
2821 	SCAN_FILE,
2822 };
2823 
2824 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2825 {
2826 	unsigned long file;
2827 	struct lruvec *target_lruvec;
2828 
2829 	if (lru_gen_enabled())
2830 		return;
2831 
2832 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2833 
2834 	/*
2835 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2836 	 * lruvec stats for heuristics.
2837 	 */
2838 	mem_cgroup_flush_stats();
2839 
2840 	/*
2841 	 * Determine the scan balance between anon and file LRUs.
2842 	 */
2843 	spin_lock_irq(&target_lruvec->lru_lock);
2844 	sc->anon_cost = target_lruvec->anon_cost;
2845 	sc->file_cost = target_lruvec->file_cost;
2846 	spin_unlock_irq(&target_lruvec->lru_lock);
2847 
2848 	/*
2849 	 * Target desirable inactive:active list ratios for the anon
2850 	 * and file LRU lists.
2851 	 */
2852 	if (!sc->force_deactivate) {
2853 		unsigned long refaults;
2854 
2855 		/*
2856 		 * When refaults are being observed, it means a new
2857 		 * workingset is being established. Deactivate to get
2858 		 * rid of any stale active pages quickly.
2859 		 */
2860 		refaults = lruvec_page_state(target_lruvec,
2861 				WORKINGSET_ACTIVATE_ANON);
2862 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2863 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2864 			sc->may_deactivate |= DEACTIVATE_ANON;
2865 		else
2866 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2867 
2868 		refaults = lruvec_page_state(target_lruvec,
2869 				WORKINGSET_ACTIVATE_FILE);
2870 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2871 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2872 			sc->may_deactivate |= DEACTIVATE_FILE;
2873 		else
2874 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2875 	} else
2876 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2877 
2878 	/*
2879 	 * If we have plenty of inactive file pages that aren't
2880 	 * thrashing, try to reclaim those first before touching
2881 	 * anonymous pages.
2882 	 */
2883 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2884 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2885 		sc->cache_trim_mode = 1;
2886 	else
2887 		sc->cache_trim_mode = 0;
2888 
2889 	/*
2890 	 * Prevent the reclaimer from falling into the cache trap: as
2891 	 * cache pages start out inactive, every cache fault will tip
2892 	 * the scan balance towards the file LRU.  And as the file LRU
2893 	 * shrinks, so does the window for rotation from references.
2894 	 * This means we have a runaway feedback loop where a tiny
2895 	 * thrashing file LRU becomes infinitely more attractive than
2896 	 * anon pages.  Try to detect this based on file LRU size.
2897 	 */
2898 	if (!cgroup_reclaim(sc)) {
2899 		unsigned long total_high_wmark = 0;
2900 		unsigned long free, anon;
2901 		int z;
2902 
2903 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2904 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2905 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2906 
2907 		for (z = 0; z < MAX_NR_ZONES; z++) {
2908 			struct zone *zone = &pgdat->node_zones[z];
2909 
2910 			if (!managed_zone(zone))
2911 				continue;
2912 
2913 			total_high_wmark += high_wmark_pages(zone);
2914 		}
2915 
2916 		/*
2917 		 * Consider anon: if that's low too, this isn't a
2918 		 * runaway file reclaim problem, but rather just
2919 		 * extreme pressure. Reclaim as per usual then.
2920 		 */
2921 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2922 
2923 		sc->file_is_tiny =
2924 			file + free <= total_high_wmark &&
2925 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2926 			anon >> sc->priority;
2927 	}
2928 }
2929 
2930 /*
2931  * Determine how aggressively the anon and file LRU lists should be
2932  * scanned.
2933  *
2934  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2935  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2936  */
2937 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2938 			   unsigned long *nr)
2939 {
2940 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2941 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2942 	unsigned long anon_cost, file_cost, total_cost;
2943 	int swappiness = mem_cgroup_swappiness(memcg);
2944 	u64 fraction[ANON_AND_FILE];
2945 	u64 denominator = 0;	/* gcc */
2946 	enum scan_balance scan_balance;
2947 	unsigned long ap, fp;
2948 	enum lru_list lru;
2949 
2950 	/* If we have no swap space, do not bother scanning anon folios. */
2951 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2952 		scan_balance = SCAN_FILE;
2953 		goto out;
2954 	}
2955 
2956 	/*
2957 	 * Global reclaim will swap to prevent OOM even with no
2958 	 * swappiness, but memcg users want to use this knob to
2959 	 * disable swapping for individual groups completely when
2960 	 * using the memory controller's swap limit feature would be
2961 	 * too expensive.
2962 	 */
2963 	if (cgroup_reclaim(sc) && !swappiness) {
2964 		scan_balance = SCAN_FILE;
2965 		goto out;
2966 	}
2967 
2968 	/*
2969 	 * Do not apply any pressure balancing cleverness when the
2970 	 * system is close to OOM, scan both anon and file equally
2971 	 * (unless the swappiness setting disagrees with swapping).
2972 	 */
2973 	if (!sc->priority && swappiness) {
2974 		scan_balance = SCAN_EQUAL;
2975 		goto out;
2976 	}
2977 
2978 	/*
2979 	 * If the system is almost out of file pages, force-scan anon.
2980 	 */
2981 	if (sc->file_is_tiny) {
2982 		scan_balance = SCAN_ANON;
2983 		goto out;
2984 	}
2985 
2986 	/*
2987 	 * If there is enough inactive page cache, we do not reclaim
2988 	 * anything from the anonymous working right now.
2989 	 */
2990 	if (sc->cache_trim_mode) {
2991 		scan_balance = SCAN_FILE;
2992 		goto out;
2993 	}
2994 
2995 	scan_balance = SCAN_FRACT;
2996 	/*
2997 	 * Calculate the pressure balance between anon and file pages.
2998 	 *
2999 	 * The amount of pressure we put on each LRU is inversely
3000 	 * proportional to the cost of reclaiming each list, as
3001 	 * determined by the share of pages that are refaulting, times
3002 	 * the relative IO cost of bringing back a swapped out
3003 	 * anonymous page vs reloading a filesystem page (swappiness).
3004 	 *
3005 	 * Although we limit that influence to ensure no list gets
3006 	 * left behind completely: at least a third of the pressure is
3007 	 * applied, before swappiness.
3008 	 *
3009 	 * With swappiness at 100, anon and file have equal IO cost.
3010 	 */
3011 	total_cost = sc->anon_cost + sc->file_cost;
3012 	anon_cost = total_cost + sc->anon_cost;
3013 	file_cost = total_cost + sc->file_cost;
3014 	total_cost = anon_cost + file_cost;
3015 
3016 	ap = swappiness * (total_cost + 1);
3017 	ap /= anon_cost + 1;
3018 
3019 	fp = (200 - swappiness) * (total_cost + 1);
3020 	fp /= file_cost + 1;
3021 
3022 	fraction[0] = ap;
3023 	fraction[1] = fp;
3024 	denominator = ap + fp;
3025 out:
3026 	for_each_evictable_lru(lru) {
3027 		int file = is_file_lru(lru);
3028 		unsigned long lruvec_size;
3029 		unsigned long low, min;
3030 		unsigned long scan;
3031 
3032 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3033 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3034 				      &min, &low);
3035 
3036 		if (min || low) {
3037 			/*
3038 			 * Scale a cgroup's reclaim pressure by proportioning
3039 			 * its current usage to its memory.low or memory.min
3040 			 * setting.
3041 			 *
3042 			 * This is important, as otherwise scanning aggression
3043 			 * becomes extremely binary -- from nothing as we
3044 			 * approach the memory protection threshold, to totally
3045 			 * nominal as we exceed it.  This results in requiring
3046 			 * setting extremely liberal protection thresholds. It
3047 			 * also means we simply get no protection at all if we
3048 			 * set it too low, which is not ideal.
3049 			 *
3050 			 * If there is any protection in place, we reduce scan
3051 			 * pressure by how much of the total memory used is
3052 			 * within protection thresholds.
3053 			 *
3054 			 * There is one special case: in the first reclaim pass,
3055 			 * we skip over all groups that are within their low
3056 			 * protection. If that fails to reclaim enough pages to
3057 			 * satisfy the reclaim goal, we come back and override
3058 			 * the best-effort low protection. However, we still
3059 			 * ideally want to honor how well-behaved groups are in
3060 			 * that case instead of simply punishing them all
3061 			 * equally. As such, we reclaim them based on how much
3062 			 * memory they are using, reducing the scan pressure
3063 			 * again by how much of the total memory used is under
3064 			 * hard protection.
3065 			 */
3066 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3067 			unsigned long protection;
3068 
3069 			/* memory.low scaling, make sure we retry before OOM */
3070 			if (!sc->memcg_low_reclaim && low > min) {
3071 				protection = low;
3072 				sc->memcg_low_skipped = 1;
3073 			} else {
3074 				protection = min;
3075 			}
3076 
3077 			/* Avoid TOCTOU with earlier protection check */
3078 			cgroup_size = max(cgroup_size, protection);
3079 
3080 			scan = lruvec_size - lruvec_size * protection /
3081 				(cgroup_size + 1);
3082 
3083 			/*
3084 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3085 			 * reclaim moving forwards, avoiding decrementing
3086 			 * sc->priority further than desirable.
3087 			 */
3088 			scan = max(scan, SWAP_CLUSTER_MAX);
3089 		} else {
3090 			scan = lruvec_size;
3091 		}
3092 
3093 		scan >>= sc->priority;
3094 
3095 		/*
3096 		 * If the cgroup's already been deleted, make sure to
3097 		 * scrape out the remaining cache.
3098 		 */
3099 		if (!scan && !mem_cgroup_online(memcg))
3100 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3101 
3102 		switch (scan_balance) {
3103 		case SCAN_EQUAL:
3104 			/* Scan lists relative to size */
3105 			break;
3106 		case SCAN_FRACT:
3107 			/*
3108 			 * Scan types proportional to swappiness and
3109 			 * their relative recent reclaim efficiency.
3110 			 * Make sure we don't miss the last page on
3111 			 * the offlined memory cgroups because of a
3112 			 * round-off error.
3113 			 */
3114 			scan = mem_cgroup_online(memcg) ?
3115 			       div64_u64(scan * fraction[file], denominator) :
3116 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3117 						  denominator);
3118 			break;
3119 		case SCAN_FILE:
3120 		case SCAN_ANON:
3121 			/* Scan one type exclusively */
3122 			if ((scan_balance == SCAN_FILE) != file)
3123 				scan = 0;
3124 			break;
3125 		default:
3126 			/* Look ma, no brain */
3127 			BUG();
3128 		}
3129 
3130 		nr[lru] = scan;
3131 	}
3132 }
3133 
3134 /*
3135  * Anonymous LRU management is a waste if there is
3136  * ultimately no way to reclaim the memory.
3137  */
3138 static bool can_age_anon_pages(struct pglist_data *pgdat,
3139 			       struct scan_control *sc)
3140 {
3141 	/* Aging the anon LRU is valuable if swap is present: */
3142 	if (total_swap_pages > 0)
3143 		return true;
3144 
3145 	/* Also valuable if anon pages can be demoted: */
3146 	return can_demote(pgdat->node_id, sc);
3147 }
3148 
3149 #ifdef CONFIG_LRU_GEN
3150 
3151 #ifdef CONFIG_LRU_GEN_ENABLED
3152 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3153 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3154 #else
3155 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3156 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3157 #endif
3158 
3159 /******************************************************************************
3160  *                          shorthand helpers
3161  ******************************************************************************/
3162 
3163 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3164 
3165 #define DEFINE_MAX_SEQ(lruvec)						\
3166 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3167 
3168 #define DEFINE_MIN_SEQ(lruvec)						\
3169 	unsigned long min_seq[ANON_AND_FILE] = {			\
3170 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3171 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3172 	}
3173 
3174 #define for_each_gen_type_zone(gen, type, zone)				\
3175 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3176 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3177 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3178 
3179 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3180 {
3181 	struct pglist_data *pgdat = NODE_DATA(nid);
3182 
3183 #ifdef CONFIG_MEMCG
3184 	if (memcg) {
3185 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3186 
3187 		/* see the comment in mem_cgroup_lruvec() */
3188 		if (!lruvec->pgdat)
3189 			lruvec->pgdat = pgdat;
3190 
3191 		return lruvec;
3192 	}
3193 #endif
3194 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3195 
3196 	return &pgdat->__lruvec;
3197 }
3198 
3199 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3200 {
3201 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3202 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3203 
3204 	if (!can_demote(pgdat->node_id, sc) &&
3205 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3206 		return 0;
3207 
3208 	return mem_cgroup_swappiness(memcg);
3209 }
3210 
3211 static int get_nr_gens(struct lruvec *lruvec, int type)
3212 {
3213 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3214 }
3215 
3216 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3217 {
3218 	/* see the comment on lru_gen_struct */
3219 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3220 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3221 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3222 }
3223 
3224 /******************************************************************************
3225  *                          mm_struct list
3226  ******************************************************************************/
3227 
3228 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3229 {
3230 	static struct lru_gen_mm_list mm_list = {
3231 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3232 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3233 	};
3234 
3235 #ifdef CONFIG_MEMCG
3236 	if (memcg)
3237 		return &memcg->mm_list;
3238 #endif
3239 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3240 
3241 	return &mm_list;
3242 }
3243 
3244 void lru_gen_add_mm(struct mm_struct *mm)
3245 {
3246 	int nid;
3247 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3248 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3249 
3250 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3251 #ifdef CONFIG_MEMCG
3252 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3253 	mm->lru_gen.memcg = memcg;
3254 #endif
3255 	spin_lock(&mm_list->lock);
3256 
3257 	for_each_node_state(nid, N_MEMORY) {
3258 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3259 
3260 		/* the first addition since the last iteration */
3261 		if (lruvec->mm_state.tail == &mm_list->fifo)
3262 			lruvec->mm_state.tail = &mm->lru_gen.list;
3263 	}
3264 
3265 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3266 
3267 	spin_unlock(&mm_list->lock);
3268 }
3269 
3270 void lru_gen_del_mm(struct mm_struct *mm)
3271 {
3272 	int nid;
3273 	struct lru_gen_mm_list *mm_list;
3274 	struct mem_cgroup *memcg = NULL;
3275 
3276 	if (list_empty(&mm->lru_gen.list))
3277 		return;
3278 
3279 #ifdef CONFIG_MEMCG
3280 	memcg = mm->lru_gen.memcg;
3281 #endif
3282 	mm_list = get_mm_list(memcg);
3283 
3284 	spin_lock(&mm_list->lock);
3285 
3286 	for_each_node(nid) {
3287 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3288 
3289 		/* where the last iteration ended (exclusive) */
3290 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3291 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3292 
3293 		/* where the current iteration continues (inclusive) */
3294 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3295 			continue;
3296 
3297 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3298 		/* the deletion ends the current iteration */
3299 		if (lruvec->mm_state.head == &mm_list->fifo)
3300 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3301 	}
3302 
3303 	list_del_init(&mm->lru_gen.list);
3304 
3305 	spin_unlock(&mm_list->lock);
3306 
3307 #ifdef CONFIG_MEMCG
3308 	mem_cgroup_put(mm->lru_gen.memcg);
3309 	mm->lru_gen.memcg = NULL;
3310 #endif
3311 }
3312 
3313 #ifdef CONFIG_MEMCG
3314 void lru_gen_migrate_mm(struct mm_struct *mm)
3315 {
3316 	struct mem_cgroup *memcg;
3317 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3318 
3319 	VM_WARN_ON_ONCE(task->mm != mm);
3320 	lockdep_assert_held(&task->alloc_lock);
3321 
3322 	/* for mm_update_next_owner() */
3323 	if (mem_cgroup_disabled())
3324 		return;
3325 
3326 	/* migration can happen before addition */
3327 	if (!mm->lru_gen.memcg)
3328 		return;
3329 
3330 	rcu_read_lock();
3331 	memcg = mem_cgroup_from_task(task);
3332 	rcu_read_unlock();
3333 	if (memcg == mm->lru_gen.memcg)
3334 		return;
3335 
3336 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3337 
3338 	lru_gen_del_mm(mm);
3339 	lru_gen_add_mm(mm);
3340 }
3341 #endif
3342 
3343 /*
3344  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3345  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3346  * bits in a bitmap, k is the number of hash functions and n is the number of
3347  * inserted items.
3348  *
3349  * Page table walkers use one of the two filters to reduce their search space.
3350  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3351  * aging uses the double-buffering technique to flip to the other filter each
3352  * time it produces a new generation. For non-leaf entries that have enough
3353  * leaf entries, the aging carries them over to the next generation in
3354  * walk_pmd_range(); the eviction also report them when walking the rmap
3355  * in lru_gen_look_around().
3356  *
3357  * For future optimizations:
3358  * 1. It's not necessary to keep both filters all the time. The spare one can be
3359  *    freed after the RCU grace period and reallocated if needed again.
3360  * 2. And when reallocating, it's worth scaling its size according to the number
3361  *    of inserted entries in the other filter, to reduce the memory overhead on
3362  *    small systems and false positives on large systems.
3363  * 3. Jenkins' hash function is an alternative to Knuth's.
3364  */
3365 #define BLOOM_FILTER_SHIFT	15
3366 
3367 static inline int filter_gen_from_seq(unsigned long seq)
3368 {
3369 	return seq % NR_BLOOM_FILTERS;
3370 }
3371 
3372 static void get_item_key(void *item, int *key)
3373 {
3374 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3375 
3376 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3377 
3378 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3379 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3380 }
3381 
3382 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3383 {
3384 	unsigned long *filter;
3385 	int gen = filter_gen_from_seq(seq);
3386 
3387 	filter = lruvec->mm_state.filters[gen];
3388 	if (filter) {
3389 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3390 		return;
3391 	}
3392 
3393 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3394 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3395 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3396 }
3397 
3398 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3399 {
3400 	int key[2];
3401 	unsigned long *filter;
3402 	int gen = filter_gen_from_seq(seq);
3403 
3404 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3405 	if (!filter)
3406 		return;
3407 
3408 	get_item_key(item, key);
3409 
3410 	if (!test_bit(key[0], filter))
3411 		set_bit(key[0], filter);
3412 	if (!test_bit(key[1], filter))
3413 		set_bit(key[1], filter);
3414 }
3415 
3416 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3417 {
3418 	int key[2];
3419 	unsigned long *filter;
3420 	int gen = filter_gen_from_seq(seq);
3421 
3422 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3423 	if (!filter)
3424 		return true;
3425 
3426 	get_item_key(item, key);
3427 
3428 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3429 }
3430 
3431 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3432 {
3433 	int i;
3434 	int hist;
3435 
3436 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3437 
3438 	if (walk) {
3439 		hist = lru_hist_from_seq(walk->max_seq);
3440 
3441 		for (i = 0; i < NR_MM_STATS; i++) {
3442 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3443 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3444 			walk->mm_stats[i] = 0;
3445 		}
3446 	}
3447 
3448 	if (NR_HIST_GENS > 1 && last) {
3449 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3450 
3451 		for (i = 0; i < NR_MM_STATS; i++)
3452 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3453 	}
3454 }
3455 
3456 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3457 {
3458 	int type;
3459 	unsigned long size = 0;
3460 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3461 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3462 
3463 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3464 		return true;
3465 
3466 	clear_bit(key, &mm->lru_gen.bitmap);
3467 
3468 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3469 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3470 			       get_mm_counter(mm, MM_ANONPAGES) +
3471 			       get_mm_counter(mm, MM_SHMEMPAGES);
3472 	}
3473 
3474 	if (size < MIN_LRU_BATCH)
3475 		return true;
3476 
3477 	return !mmget_not_zero(mm);
3478 }
3479 
3480 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3481 			    struct mm_struct **iter)
3482 {
3483 	bool first = false;
3484 	bool last = true;
3485 	struct mm_struct *mm = NULL;
3486 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3487 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3488 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3489 
3490 	/*
3491 	 * There are four interesting cases for this page table walker:
3492 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3493 	 *    there is nothing left to do.
3494 	 * 2. It's the first of the current generation, and it needs to reset
3495 	 *    the Bloom filter for the next generation.
3496 	 * 3. It reaches the end of mm_list, and it needs to increment
3497 	 *    mm_state->seq; the iteration is done.
3498 	 * 4. It's the last of the current generation, and it needs to reset the
3499 	 *    mm stats counters for the next generation.
3500 	 */
3501 	spin_lock(&mm_list->lock);
3502 
3503 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3504 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3505 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3506 
3507 	if (walk->max_seq <= mm_state->seq) {
3508 		if (!*iter)
3509 			last = false;
3510 		goto done;
3511 	}
3512 
3513 	if (!mm_state->nr_walkers) {
3514 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3515 
3516 		mm_state->head = mm_list->fifo.next;
3517 		first = true;
3518 	}
3519 
3520 	while (!mm && mm_state->head != &mm_list->fifo) {
3521 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3522 
3523 		mm_state->head = mm_state->head->next;
3524 
3525 		/* force scan for those added after the last iteration */
3526 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3527 			mm_state->tail = mm_state->head;
3528 			walk->force_scan = true;
3529 		}
3530 
3531 		if (should_skip_mm(mm, walk))
3532 			mm = NULL;
3533 	}
3534 
3535 	if (mm_state->head == &mm_list->fifo)
3536 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3537 done:
3538 	if (*iter && !mm)
3539 		mm_state->nr_walkers--;
3540 	if (!*iter && mm)
3541 		mm_state->nr_walkers++;
3542 
3543 	if (mm_state->nr_walkers)
3544 		last = false;
3545 
3546 	if (*iter || last)
3547 		reset_mm_stats(lruvec, walk, last);
3548 
3549 	spin_unlock(&mm_list->lock);
3550 
3551 	if (mm && first)
3552 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3553 
3554 	if (*iter)
3555 		mmput_async(*iter);
3556 
3557 	*iter = mm;
3558 
3559 	return last;
3560 }
3561 
3562 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3563 {
3564 	bool success = false;
3565 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3566 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3567 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3568 
3569 	spin_lock(&mm_list->lock);
3570 
3571 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3572 
3573 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3574 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3575 
3576 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3577 		reset_mm_stats(lruvec, NULL, true);
3578 		success = true;
3579 	}
3580 
3581 	spin_unlock(&mm_list->lock);
3582 
3583 	return success;
3584 }
3585 
3586 /******************************************************************************
3587  *                          refault feedback loop
3588  ******************************************************************************/
3589 
3590 /*
3591  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3592  *
3593  * The P term is refaulted/(evicted+protected) from a tier in the generation
3594  * currently being evicted; the I term is the exponential moving average of the
3595  * P term over the generations previously evicted, using the smoothing factor
3596  * 1/2; the D term isn't supported.
3597  *
3598  * The setpoint (SP) is always the first tier of one type; the process variable
3599  * (PV) is either any tier of the other type or any other tier of the same
3600  * type.
3601  *
3602  * The error is the difference between the SP and the PV; the correction is to
3603  * turn off protection when SP>PV or turn on protection when SP<PV.
3604  *
3605  * For future optimizations:
3606  * 1. The D term may discount the other two terms over time so that long-lived
3607  *    generations can resist stale information.
3608  */
3609 struct ctrl_pos {
3610 	unsigned long refaulted;
3611 	unsigned long total;
3612 	int gain;
3613 };
3614 
3615 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3616 			  struct ctrl_pos *pos)
3617 {
3618 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3619 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3620 
3621 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3622 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3623 	pos->total = lrugen->avg_total[type][tier] +
3624 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3625 	if (tier)
3626 		pos->total += lrugen->protected[hist][type][tier - 1];
3627 	pos->gain = gain;
3628 }
3629 
3630 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3631 {
3632 	int hist, tier;
3633 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3634 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3635 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3636 
3637 	lockdep_assert_held(&lruvec->lru_lock);
3638 
3639 	if (!carryover && !clear)
3640 		return;
3641 
3642 	hist = lru_hist_from_seq(seq);
3643 
3644 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3645 		if (carryover) {
3646 			unsigned long sum;
3647 
3648 			sum = lrugen->avg_refaulted[type][tier] +
3649 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3650 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3651 
3652 			sum = lrugen->avg_total[type][tier] +
3653 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3654 			if (tier)
3655 				sum += lrugen->protected[hist][type][tier - 1];
3656 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3657 		}
3658 
3659 		if (clear) {
3660 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3661 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3662 			if (tier)
3663 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3664 		}
3665 	}
3666 }
3667 
3668 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3669 {
3670 	/*
3671 	 * Return true if the PV has a limited number of refaults or a lower
3672 	 * refaulted/total than the SP.
3673 	 */
3674 	return pv->refaulted < MIN_LRU_BATCH ||
3675 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3676 	       (sp->refaulted + 1) * pv->total * pv->gain;
3677 }
3678 
3679 /******************************************************************************
3680  *                          the aging
3681  ******************************************************************************/
3682 
3683 /* promote pages accessed through page tables */
3684 static int folio_update_gen(struct folio *folio, int gen)
3685 {
3686 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3687 
3688 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3689 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3690 
3691 	do {
3692 		/* lru_gen_del_folio() has isolated this page? */
3693 		if (!(old_flags & LRU_GEN_MASK)) {
3694 			/* for shrink_folio_list() */
3695 			new_flags = old_flags | BIT(PG_referenced);
3696 			continue;
3697 		}
3698 
3699 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3700 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3701 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3702 
3703 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3704 }
3705 
3706 /* protect pages accessed multiple times through file descriptors */
3707 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3708 {
3709 	int type = folio_is_file_lru(folio);
3710 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3711 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3712 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3713 
3714 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3715 
3716 	do {
3717 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3718 		/* folio_update_gen() has promoted this page? */
3719 		if (new_gen >= 0 && new_gen != old_gen)
3720 			return new_gen;
3721 
3722 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3723 
3724 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3725 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3726 		/* for folio_end_writeback() */
3727 		if (reclaiming)
3728 			new_flags |= BIT(PG_reclaim);
3729 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3730 
3731 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3732 
3733 	return new_gen;
3734 }
3735 
3736 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3737 			      int old_gen, int new_gen)
3738 {
3739 	int type = folio_is_file_lru(folio);
3740 	int zone = folio_zonenum(folio);
3741 	int delta = folio_nr_pages(folio);
3742 
3743 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3744 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3745 
3746 	walk->batched++;
3747 
3748 	walk->nr_pages[old_gen][type][zone] -= delta;
3749 	walk->nr_pages[new_gen][type][zone] += delta;
3750 }
3751 
3752 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3753 {
3754 	int gen, type, zone;
3755 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3756 
3757 	walk->batched = 0;
3758 
3759 	for_each_gen_type_zone(gen, type, zone) {
3760 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3761 		int delta = walk->nr_pages[gen][type][zone];
3762 
3763 		if (!delta)
3764 			continue;
3765 
3766 		walk->nr_pages[gen][type][zone] = 0;
3767 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3768 			   lrugen->nr_pages[gen][type][zone] + delta);
3769 
3770 		if (lru_gen_is_active(lruvec, gen))
3771 			lru += LRU_ACTIVE;
3772 		__update_lru_size(lruvec, lru, zone, delta);
3773 	}
3774 }
3775 
3776 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3777 {
3778 	struct address_space *mapping;
3779 	struct vm_area_struct *vma = args->vma;
3780 	struct lru_gen_mm_walk *walk = args->private;
3781 
3782 	if (!vma_is_accessible(vma))
3783 		return true;
3784 
3785 	if (is_vm_hugetlb_page(vma))
3786 		return true;
3787 
3788 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3789 		return true;
3790 
3791 	if (vma == get_gate_vma(vma->vm_mm))
3792 		return true;
3793 
3794 	if (vma_is_anonymous(vma))
3795 		return !walk->can_swap;
3796 
3797 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3798 		return true;
3799 
3800 	mapping = vma->vm_file->f_mapping;
3801 	if (mapping_unevictable(mapping))
3802 		return true;
3803 
3804 	if (shmem_mapping(mapping))
3805 		return !walk->can_swap;
3806 
3807 	/* to exclude special mappings like dax, etc. */
3808 	return !mapping->a_ops->read_folio;
3809 }
3810 
3811 /*
3812  * Some userspace memory allocators map many single-page VMAs. Instead of
3813  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3814  * table to reduce zigzags and improve cache performance.
3815  */
3816 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3817 			 unsigned long *vm_start, unsigned long *vm_end)
3818 {
3819 	unsigned long start = round_up(*vm_end, size);
3820 	unsigned long end = (start | ~mask) + 1;
3821 	VMA_ITERATOR(vmi, args->mm, start);
3822 
3823 	VM_WARN_ON_ONCE(mask & size);
3824 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3825 
3826 	for_each_vma(vmi, args->vma) {
3827 		if (end && end <= args->vma->vm_start)
3828 			return false;
3829 
3830 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3831 			continue;
3832 
3833 		*vm_start = max(start, args->vma->vm_start);
3834 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3835 
3836 		return true;
3837 	}
3838 
3839 	return false;
3840 }
3841 
3842 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3843 {
3844 	unsigned long pfn = pte_pfn(pte);
3845 
3846 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3847 
3848 	if (!pte_present(pte) || is_zero_pfn(pfn))
3849 		return -1;
3850 
3851 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3852 		return -1;
3853 
3854 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3855 		return -1;
3856 
3857 	return pfn;
3858 }
3859 
3860 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3861 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3862 {
3863 	unsigned long pfn = pmd_pfn(pmd);
3864 
3865 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3866 
3867 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3868 		return -1;
3869 
3870 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3871 		return -1;
3872 
3873 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3874 		return -1;
3875 
3876 	return pfn;
3877 }
3878 #endif
3879 
3880 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3881 				   struct pglist_data *pgdat, bool can_swap)
3882 {
3883 	struct folio *folio;
3884 
3885 	/* try to avoid unnecessary memory loads */
3886 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3887 		return NULL;
3888 
3889 	folio = pfn_folio(pfn);
3890 	if (folio_nid(folio) != pgdat->node_id)
3891 		return NULL;
3892 
3893 	if (folio_memcg_rcu(folio) != memcg)
3894 		return NULL;
3895 
3896 	/* file VMAs can contain anon pages from COW */
3897 	if (!folio_is_file_lru(folio) && !can_swap)
3898 		return NULL;
3899 
3900 	return folio;
3901 }
3902 
3903 static bool suitable_to_scan(int total, int young)
3904 {
3905 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3906 
3907 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3908 	return young * n >= total;
3909 }
3910 
3911 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3912 			   struct mm_walk *args)
3913 {
3914 	int i;
3915 	pte_t *pte;
3916 	spinlock_t *ptl;
3917 	unsigned long addr;
3918 	int total = 0;
3919 	int young = 0;
3920 	struct lru_gen_mm_walk *walk = args->private;
3921 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3922 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3923 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3924 
3925 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3926 
3927 	ptl = pte_lockptr(args->mm, pmd);
3928 	if (!spin_trylock(ptl))
3929 		return false;
3930 
3931 	arch_enter_lazy_mmu_mode();
3932 
3933 	pte = pte_offset_map(pmd, start & PMD_MASK);
3934 restart:
3935 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3936 		unsigned long pfn;
3937 		struct folio *folio;
3938 
3939 		total++;
3940 		walk->mm_stats[MM_LEAF_TOTAL]++;
3941 
3942 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3943 		if (pfn == -1)
3944 			continue;
3945 
3946 		if (!pte_young(pte[i])) {
3947 			walk->mm_stats[MM_LEAF_OLD]++;
3948 			continue;
3949 		}
3950 
3951 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3952 		if (!folio)
3953 			continue;
3954 
3955 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3956 			VM_WARN_ON_ONCE(true);
3957 
3958 		young++;
3959 		walk->mm_stats[MM_LEAF_YOUNG]++;
3960 
3961 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3962 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3963 		      !folio_test_swapcache(folio)))
3964 			folio_mark_dirty(folio);
3965 
3966 		old_gen = folio_update_gen(folio, new_gen);
3967 		if (old_gen >= 0 && old_gen != new_gen)
3968 			update_batch_size(walk, folio, old_gen, new_gen);
3969 	}
3970 
3971 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3972 		goto restart;
3973 
3974 	pte_unmap(pte);
3975 
3976 	arch_leave_lazy_mmu_mode();
3977 	spin_unlock(ptl);
3978 
3979 	return suitable_to_scan(total, young);
3980 }
3981 
3982 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3983 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3984 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3985 {
3986 	int i;
3987 	pmd_t *pmd;
3988 	spinlock_t *ptl;
3989 	struct lru_gen_mm_walk *walk = args->private;
3990 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3991 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3992 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3993 
3994 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3995 
3996 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3997 	if (*start == -1) {
3998 		*start = next;
3999 		return;
4000 	}
4001 
4002 	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4003 	if (i && i <= MIN_LRU_BATCH) {
4004 		__set_bit(i - 1, bitmap);
4005 		return;
4006 	}
4007 
4008 	pmd = pmd_offset(pud, *start);
4009 
4010 	ptl = pmd_lockptr(args->mm, pmd);
4011 	if (!spin_trylock(ptl))
4012 		goto done;
4013 
4014 	arch_enter_lazy_mmu_mode();
4015 
4016 	do {
4017 		unsigned long pfn;
4018 		struct folio *folio;
4019 		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4020 
4021 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4022 		if (pfn == -1)
4023 			goto next;
4024 
4025 		if (!pmd_trans_huge(pmd[i])) {
4026 			if (arch_has_hw_nonleaf_pmd_young() &&
4027 			    get_cap(LRU_GEN_NONLEAF_YOUNG))
4028 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4029 			goto next;
4030 		}
4031 
4032 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4033 		if (!folio)
4034 			goto next;
4035 
4036 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4037 			goto next;
4038 
4039 		walk->mm_stats[MM_LEAF_YOUNG]++;
4040 
4041 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4042 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4043 		      !folio_test_swapcache(folio)))
4044 			folio_mark_dirty(folio);
4045 
4046 		old_gen = folio_update_gen(folio, new_gen);
4047 		if (old_gen >= 0 && old_gen != new_gen)
4048 			update_batch_size(walk, folio, old_gen, new_gen);
4049 next:
4050 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4051 	} while (i <= MIN_LRU_BATCH);
4052 
4053 	arch_leave_lazy_mmu_mode();
4054 	spin_unlock(ptl);
4055 done:
4056 	*start = -1;
4057 	bitmap_zero(bitmap, MIN_LRU_BATCH);
4058 }
4059 #else
4060 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4061 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4062 {
4063 }
4064 #endif
4065 
4066 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4067 			   struct mm_walk *args)
4068 {
4069 	int i;
4070 	pmd_t *pmd;
4071 	unsigned long next;
4072 	unsigned long addr;
4073 	struct vm_area_struct *vma;
4074 	unsigned long pos = -1;
4075 	struct lru_gen_mm_walk *walk = args->private;
4076 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4077 
4078 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4079 
4080 	/*
4081 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4082 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4083 	 * the PMD lock to clear the accessed bit in PMD entries.
4084 	 */
4085 	pmd = pmd_offset(pud, start & PUD_MASK);
4086 restart:
4087 	/* walk_pte_range() may call get_next_vma() */
4088 	vma = args->vma;
4089 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4090 		pmd_t val = pmdp_get_lockless(pmd + i);
4091 
4092 		next = pmd_addr_end(addr, end);
4093 
4094 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4095 			walk->mm_stats[MM_LEAF_TOTAL]++;
4096 			continue;
4097 		}
4098 
4099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4100 		if (pmd_trans_huge(val)) {
4101 			unsigned long pfn = pmd_pfn(val);
4102 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4103 
4104 			walk->mm_stats[MM_LEAF_TOTAL]++;
4105 
4106 			if (!pmd_young(val)) {
4107 				walk->mm_stats[MM_LEAF_OLD]++;
4108 				continue;
4109 			}
4110 
4111 			/* try to avoid unnecessary memory loads */
4112 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4113 				continue;
4114 
4115 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4116 			continue;
4117 		}
4118 #endif
4119 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4120 
4121 		if (arch_has_hw_nonleaf_pmd_young() &&
4122 		    get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4123 			if (!pmd_young(val))
4124 				continue;
4125 
4126 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4127 		}
4128 
4129 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4130 			continue;
4131 
4132 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4133 
4134 		if (!walk_pte_range(&val, addr, next, args))
4135 			continue;
4136 
4137 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4138 
4139 		/* carry over to the next generation */
4140 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4141 	}
4142 
4143 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4144 
4145 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4146 		goto restart;
4147 }
4148 
4149 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4150 			  struct mm_walk *args)
4151 {
4152 	int i;
4153 	pud_t *pud;
4154 	unsigned long addr;
4155 	unsigned long next;
4156 	struct lru_gen_mm_walk *walk = args->private;
4157 
4158 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4159 
4160 	pud = pud_offset(p4d, start & P4D_MASK);
4161 restart:
4162 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4163 		pud_t val = READ_ONCE(pud[i]);
4164 
4165 		next = pud_addr_end(addr, end);
4166 
4167 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4168 			continue;
4169 
4170 		walk_pmd_range(&val, addr, next, args);
4171 
4172 		/* a racy check to curtail the waiting time */
4173 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4174 			return 1;
4175 
4176 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4177 			end = (addr | ~PUD_MASK) + 1;
4178 			goto done;
4179 		}
4180 	}
4181 
4182 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4183 		goto restart;
4184 
4185 	end = round_up(end, P4D_SIZE);
4186 done:
4187 	if (!end || !args->vma)
4188 		return 1;
4189 
4190 	walk->next_addr = max(end, args->vma->vm_start);
4191 
4192 	return -EAGAIN;
4193 }
4194 
4195 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4196 {
4197 	static const struct mm_walk_ops mm_walk_ops = {
4198 		.test_walk = should_skip_vma,
4199 		.p4d_entry = walk_pud_range,
4200 	};
4201 
4202 	int err;
4203 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4204 
4205 	walk->next_addr = FIRST_USER_ADDRESS;
4206 
4207 	do {
4208 		err = -EBUSY;
4209 
4210 		/* folio_update_gen() requires stable folio_memcg() */
4211 		if (!mem_cgroup_trylock_pages(memcg))
4212 			break;
4213 
4214 		/* the caller might be holding the lock for write */
4215 		if (mmap_read_trylock(mm)) {
4216 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4217 
4218 			mmap_read_unlock(mm);
4219 		}
4220 
4221 		mem_cgroup_unlock_pages();
4222 
4223 		if (walk->batched) {
4224 			spin_lock_irq(&lruvec->lru_lock);
4225 			reset_batch_size(lruvec, walk);
4226 			spin_unlock_irq(&lruvec->lru_lock);
4227 		}
4228 
4229 		cond_resched();
4230 	} while (err == -EAGAIN);
4231 }
4232 
4233 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4234 {
4235 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4236 
4237 	if (pgdat && current_is_kswapd()) {
4238 		VM_WARN_ON_ONCE(walk);
4239 
4240 		walk = &pgdat->mm_walk;
4241 	} else if (!pgdat && !walk) {
4242 		VM_WARN_ON_ONCE(current_is_kswapd());
4243 
4244 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4245 	}
4246 
4247 	current->reclaim_state->mm_walk = walk;
4248 
4249 	return walk;
4250 }
4251 
4252 static void clear_mm_walk(void)
4253 {
4254 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4255 
4256 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4257 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4258 
4259 	current->reclaim_state->mm_walk = NULL;
4260 
4261 	if (!current_is_kswapd())
4262 		kfree(walk);
4263 }
4264 
4265 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4266 {
4267 	int zone;
4268 	int remaining = MAX_LRU_BATCH;
4269 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4270 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4271 
4272 	if (type == LRU_GEN_ANON && !can_swap)
4273 		goto done;
4274 
4275 	/* prevent cold/hot inversion if force_scan is true */
4276 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4277 		struct list_head *head = &lrugen->lists[old_gen][type][zone];
4278 
4279 		while (!list_empty(head)) {
4280 			struct folio *folio = lru_to_folio(head);
4281 
4282 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4283 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4284 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4285 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4286 
4287 			new_gen = folio_inc_gen(lruvec, folio, false);
4288 			list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4289 
4290 			if (!--remaining)
4291 				return false;
4292 		}
4293 	}
4294 done:
4295 	reset_ctrl_pos(lruvec, type, true);
4296 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4297 
4298 	return true;
4299 }
4300 
4301 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4302 {
4303 	int gen, type, zone;
4304 	bool success = false;
4305 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4306 	DEFINE_MIN_SEQ(lruvec);
4307 
4308 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4309 
4310 	/* find the oldest populated generation */
4311 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4312 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4313 			gen = lru_gen_from_seq(min_seq[type]);
4314 
4315 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4316 				if (!list_empty(&lrugen->lists[gen][type][zone]))
4317 					goto next;
4318 			}
4319 
4320 			min_seq[type]++;
4321 		}
4322 next:
4323 		;
4324 	}
4325 
4326 	/* see the comment on lru_gen_struct */
4327 	if (can_swap) {
4328 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4329 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4330 	}
4331 
4332 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4333 		if (min_seq[type] == lrugen->min_seq[type])
4334 			continue;
4335 
4336 		reset_ctrl_pos(lruvec, type, true);
4337 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4338 		success = true;
4339 	}
4340 
4341 	return success;
4342 }
4343 
4344 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4345 {
4346 	int prev, next;
4347 	int type, zone;
4348 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4349 
4350 	spin_lock_irq(&lruvec->lru_lock);
4351 
4352 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4353 
4354 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4355 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4356 			continue;
4357 
4358 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4359 
4360 		while (!inc_min_seq(lruvec, type, can_swap)) {
4361 			spin_unlock_irq(&lruvec->lru_lock);
4362 			cond_resched();
4363 			spin_lock_irq(&lruvec->lru_lock);
4364 		}
4365 	}
4366 
4367 	/*
4368 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4369 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4370 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4371 	 * overlap, cold/hot inversion happens.
4372 	 */
4373 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4374 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4375 
4376 	for (type = 0; type < ANON_AND_FILE; type++) {
4377 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4378 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4379 			long delta = lrugen->nr_pages[prev][type][zone] -
4380 				     lrugen->nr_pages[next][type][zone];
4381 
4382 			if (!delta)
4383 				continue;
4384 
4385 			__update_lru_size(lruvec, lru, zone, delta);
4386 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4387 		}
4388 	}
4389 
4390 	for (type = 0; type < ANON_AND_FILE; type++)
4391 		reset_ctrl_pos(lruvec, type, false);
4392 
4393 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4394 	/* make sure preceding modifications appear */
4395 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4396 
4397 	spin_unlock_irq(&lruvec->lru_lock);
4398 }
4399 
4400 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4401 			       struct scan_control *sc, bool can_swap, bool force_scan)
4402 {
4403 	bool success;
4404 	struct lru_gen_mm_walk *walk;
4405 	struct mm_struct *mm = NULL;
4406 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4407 
4408 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4409 
4410 	/* see the comment in iterate_mm_list() */
4411 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4412 		success = false;
4413 		goto done;
4414 	}
4415 
4416 	/*
4417 	 * If the hardware doesn't automatically set the accessed bit, fallback
4418 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4419 	 * handful of PTEs. Spreading the work out over a period of time usually
4420 	 * is less efficient, but it avoids bursty page faults.
4421 	 */
4422 	if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4423 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4424 		goto done;
4425 	}
4426 
4427 	walk = set_mm_walk(NULL);
4428 	if (!walk) {
4429 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4430 		goto done;
4431 	}
4432 
4433 	walk->lruvec = lruvec;
4434 	walk->max_seq = max_seq;
4435 	walk->can_swap = can_swap;
4436 	walk->force_scan = force_scan;
4437 
4438 	do {
4439 		success = iterate_mm_list(lruvec, walk, &mm);
4440 		if (mm)
4441 			walk_mm(lruvec, mm, walk);
4442 
4443 		cond_resched();
4444 	} while (mm);
4445 done:
4446 	if (!success) {
4447 		if (sc->priority <= DEF_PRIORITY - 2)
4448 			wait_event_killable(lruvec->mm_state.wait,
4449 					    max_seq < READ_ONCE(lrugen->max_seq));
4450 
4451 		return max_seq < READ_ONCE(lrugen->max_seq);
4452 	}
4453 
4454 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4455 
4456 	inc_max_seq(lruvec, can_swap, force_scan);
4457 	/* either this sees any waiters or they will see updated max_seq */
4458 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4459 		wake_up_all(&lruvec->mm_state.wait);
4460 
4461 	return true;
4462 }
4463 
4464 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4465 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4466 {
4467 	int gen, type, zone;
4468 	unsigned long old = 0;
4469 	unsigned long young = 0;
4470 	unsigned long total = 0;
4471 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4472 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4473 
4474 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4475 		unsigned long seq;
4476 
4477 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4478 			unsigned long size = 0;
4479 
4480 			gen = lru_gen_from_seq(seq);
4481 
4482 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4483 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4484 
4485 			total += size;
4486 			if (seq == max_seq)
4487 				young += size;
4488 			else if (seq + MIN_NR_GENS == max_seq)
4489 				old += size;
4490 		}
4491 	}
4492 
4493 	/* try to scrape all its memory if this memcg was deleted */
4494 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4495 
4496 	/*
4497 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4498 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4499 	 * ideal number of generations is MIN_NR_GENS+1.
4500 	 */
4501 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4502 		return true;
4503 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4504 		return false;
4505 
4506 	/*
4507 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4508 	 * of the total number of pages for each generation. A reasonable range
4509 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4510 	 * aging cares about the upper bound of hot pages, while the eviction
4511 	 * cares about the lower bound of cold pages.
4512 	 */
4513 	if (young * MIN_NR_GENS > total)
4514 		return true;
4515 	if (old * (MIN_NR_GENS + 2) < total)
4516 		return true;
4517 
4518 	return false;
4519 }
4520 
4521 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4522 {
4523 	bool need_aging;
4524 	unsigned long nr_to_scan;
4525 	int swappiness = get_swappiness(lruvec, sc);
4526 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4527 	DEFINE_MAX_SEQ(lruvec);
4528 	DEFINE_MIN_SEQ(lruvec);
4529 
4530 	VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4531 
4532 	mem_cgroup_calculate_protection(NULL, memcg);
4533 
4534 	if (mem_cgroup_below_min(NULL, memcg))
4535 		return false;
4536 
4537 	need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4538 
4539 	if (min_ttl) {
4540 		int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4541 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4542 
4543 		if (time_is_after_jiffies(birth + min_ttl))
4544 			return false;
4545 
4546 		/* the size is likely too small to be helpful */
4547 		if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4548 			return false;
4549 	}
4550 
4551 	if (need_aging)
4552 		try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4553 
4554 	return true;
4555 }
4556 
4557 /* to protect the working set of the last N jiffies */
4558 static unsigned long lru_gen_min_ttl __read_mostly;
4559 
4560 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4561 {
4562 	struct mem_cgroup *memcg;
4563 	bool success = false;
4564 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4565 
4566 	VM_WARN_ON_ONCE(!current_is_kswapd());
4567 
4568 	sc->last_reclaimed = sc->nr_reclaimed;
4569 
4570 	/*
4571 	 * To reduce the chance of going into the aging path, which can be
4572 	 * costly, optimistically skip it if the flag below was cleared in the
4573 	 * eviction path. This improves the overall performance when multiple
4574 	 * memcgs are available.
4575 	 */
4576 	if (!sc->memcgs_need_aging) {
4577 		sc->memcgs_need_aging = true;
4578 		return;
4579 	}
4580 
4581 	set_mm_walk(pgdat);
4582 
4583 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4584 	do {
4585 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4586 
4587 		if (age_lruvec(lruvec, sc, min_ttl))
4588 			success = true;
4589 
4590 		cond_resched();
4591 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4592 
4593 	clear_mm_walk();
4594 
4595 	/* check the order to exclude compaction-induced reclaim */
4596 	if (success || !min_ttl || sc->order)
4597 		return;
4598 
4599 	/*
4600 	 * The main goal is to OOM kill if every generation from all memcgs is
4601 	 * younger than min_ttl. However, another possibility is all memcgs are
4602 	 * either below min or empty.
4603 	 */
4604 	if (mutex_trylock(&oom_lock)) {
4605 		struct oom_control oc = {
4606 			.gfp_mask = sc->gfp_mask,
4607 		};
4608 
4609 		out_of_memory(&oc);
4610 
4611 		mutex_unlock(&oom_lock);
4612 	}
4613 }
4614 
4615 /*
4616  * This function exploits spatial locality when shrink_folio_list() walks the
4617  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4618  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4619  * the PTE table to the Bloom filter. This forms a feedback loop between the
4620  * eviction and the aging.
4621  */
4622 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4623 {
4624 	int i;
4625 	pte_t *pte;
4626 	unsigned long start;
4627 	unsigned long end;
4628 	unsigned long addr;
4629 	struct lru_gen_mm_walk *walk;
4630 	int young = 0;
4631 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4632 	struct folio *folio = pfn_folio(pvmw->pfn);
4633 	struct mem_cgroup *memcg = folio_memcg(folio);
4634 	struct pglist_data *pgdat = folio_pgdat(folio);
4635 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4636 	DEFINE_MAX_SEQ(lruvec);
4637 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4638 
4639 	lockdep_assert_held(pvmw->ptl);
4640 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4641 
4642 	if (spin_is_contended(pvmw->ptl))
4643 		return;
4644 
4645 	/* avoid taking the LRU lock under the PTL when possible */
4646 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4647 
4648 	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4649 	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4650 
4651 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4652 		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4653 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4654 		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4655 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4656 		else {
4657 			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4658 			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4659 		}
4660 	}
4661 
4662 	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4663 
4664 	rcu_read_lock();
4665 	arch_enter_lazy_mmu_mode();
4666 
4667 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4668 		unsigned long pfn;
4669 
4670 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4671 		if (pfn == -1)
4672 			continue;
4673 
4674 		if (!pte_young(pte[i]))
4675 			continue;
4676 
4677 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4678 		if (!folio)
4679 			continue;
4680 
4681 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4682 			VM_WARN_ON_ONCE(true);
4683 
4684 		young++;
4685 
4686 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4687 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4688 		      !folio_test_swapcache(folio)))
4689 			folio_mark_dirty(folio);
4690 
4691 		old_gen = folio_lru_gen(folio);
4692 		if (old_gen < 0)
4693 			folio_set_referenced(folio);
4694 		else if (old_gen != new_gen)
4695 			__set_bit(i, bitmap);
4696 	}
4697 
4698 	arch_leave_lazy_mmu_mode();
4699 	rcu_read_unlock();
4700 
4701 	/* feedback from rmap walkers to page table walkers */
4702 	if (suitable_to_scan(i, young))
4703 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4704 
4705 	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4706 		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4707 			folio = pfn_folio(pte_pfn(pte[i]));
4708 			folio_activate(folio);
4709 		}
4710 		return;
4711 	}
4712 
4713 	/* folio_update_gen() requires stable folio_memcg() */
4714 	if (!mem_cgroup_trylock_pages(memcg))
4715 		return;
4716 
4717 	if (!walk) {
4718 		spin_lock_irq(&lruvec->lru_lock);
4719 		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4720 	}
4721 
4722 	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4723 		folio = pfn_folio(pte_pfn(pte[i]));
4724 		if (folio_memcg_rcu(folio) != memcg)
4725 			continue;
4726 
4727 		old_gen = folio_update_gen(folio, new_gen);
4728 		if (old_gen < 0 || old_gen == new_gen)
4729 			continue;
4730 
4731 		if (walk)
4732 			update_batch_size(walk, folio, old_gen, new_gen);
4733 		else
4734 			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4735 	}
4736 
4737 	if (!walk)
4738 		spin_unlock_irq(&lruvec->lru_lock);
4739 
4740 	mem_cgroup_unlock_pages();
4741 }
4742 
4743 /******************************************************************************
4744  *                          the eviction
4745  ******************************************************************************/
4746 
4747 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4748 {
4749 	bool success;
4750 	int gen = folio_lru_gen(folio);
4751 	int type = folio_is_file_lru(folio);
4752 	int zone = folio_zonenum(folio);
4753 	int delta = folio_nr_pages(folio);
4754 	int refs = folio_lru_refs(folio);
4755 	int tier = lru_tier_from_refs(refs);
4756 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4757 
4758 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4759 
4760 	/* unevictable */
4761 	if (!folio_evictable(folio)) {
4762 		success = lru_gen_del_folio(lruvec, folio, true);
4763 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4764 		folio_set_unevictable(folio);
4765 		lruvec_add_folio(lruvec, folio);
4766 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4767 		return true;
4768 	}
4769 
4770 	/* dirty lazyfree */
4771 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4772 		success = lru_gen_del_folio(lruvec, folio, true);
4773 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4774 		folio_set_swapbacked(folio);
4775 		lruvec_add_folio_tail(lruvec, folio);
4776 		return true;
4777 	}
4778 
4779 	/* promoted */
4780 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4781 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4782 		return true;
4783 	}
4784 
4785 	/* protected */
4786 	if (tier > tier_idx) {
4787 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4788 
4789 		gen = folio_inc_gen(lruvec, folio, false);
4790 		list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4791 
4792 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4793 			   lrugen->protected[hist][type][tier - 1] + delta);
4794 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4795 		return true;
4796 	}
4797 
4798 	/* waiting for writeback */
4799 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4800 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4801 		gen = folio_inc_gen(lruvec, folio, true);
4802 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4803 		return true;
4804 	}
4805 
4806 	return false;
4807 }
4808 
4809 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4810 {
4811 	bool success;
4812 
4813 	/* unmapping inhibited */
4814 	if (!sc->may_unmap && folio_mapped(folio))
4815 		return false;
4816 
4817 	/* swapping inhibited */
4818 	if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4819 	    (folio_test_dirty(folio) ||
4820 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4821 		return false;
4822 
4823 	/* raced with release_pages() */
4824 	if (!folio_try_get(folio))
4825 		return false;
4826 
4827 	/* raced with another isolation */
4828 	if (!folio_test_clear_lru(folio)) {
4829 		folio_put(folio);
4830 		return false;
4831 	}
4832 
4833 	/* see the comment on MAX_NR_TIERS */
4834 	if (!folio_test_referenced(folio))
4835 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4836 
4837 	/* for shrink_folio_list() */
4838 	folio_clear_reclaim(folio);
4839 	folio_clear_referenced(folio);
4840 
4841 	success = lru_gen_del_folio(lruvec, folio, true);
4842 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4843 
4844 	return true;
4845 }
4846 
4847 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4848 		       int type, int tier, struct list_head *list)
4849 {
4850 	int gen, zone;
4851 	enum vm_event_item item;
4852 	int sorted = 0;
4853 	int scanned = 0;
4854 	int isolated = 0;
4855 	int remaining = MAX_LRU_BATCH;
4856 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4857 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4858 
4859 	VM_WARN_ON_ONCE(!list_empty(list));
4860 
4861 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4862 		return 0;
4863 
4864 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4865 
4866 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4867 		LIST_HEAD(moved);
4868 		int skipped = 0;
4869 		struct list_head *head = &lrugen->lists[gen][type][zone];
4870 
4871 		while (!list_empty(head)) {
4872 			struct folio *folio = lru_to_folio(head);
4873 			int delta = folio_nr_pages(folio);
4874 
4875 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4876 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4877 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4878 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4879 
4880 			scanned += delta;
4881 
4882 			if (sort_folio(lruvec, folio, tier))
4883 				sorted += delta;
4884 			else if (isolate_folio(lruvec, folio, sc)) {
4885 				list_add(&folio->lru, list);
4886 				isolated += delta;
4887 			} else {
4888 				list_move(&folio->lru, &moved);
4889 				skipped += delta;
4890 			}
4891 
4892 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4893 				break;
4894 		}
4895 
4896 		if (skipped) {
4897 			list_splice(&moved, head);
4898 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4899 		}
4900 
4901 		if (!remaining || isolated >= MIN_LRU_BATCH)
4902 			break;
4903 	}
4904 
4905 	item = PGSCAN_KSWAPD + reclaimer_offset();
4906 	if (!cgroup_reclaim(sc)) {
4907 		__count_vm_events(item, isolated);
4908 		__count_vm_events(PGREFILL, sorted);
4909 	}
4910 	__count_memcg_events(memcg, item, isolated);
4911 	__count_memcg_events(memcg, PGREFILL, sorted);
4912 	__count_vm_events(PGSCAN_ANON + type, isolated);
4913 
4914 	/*
4915 	 * There might not be eligible pages due to reclaim_idx, may_unmap and
4916 	 * may_writepage. Check the remaining to prevent livelock if it's not
4917 	 * making progress.
4918 	 */
4919 	return isolated || !remaining ? scanned : 0;
4920 }
4921 
4922 static int get_tier_idx(struct lruvec *lruvec, int type)
4923 {
4924 	int tier;
4925 	struct ctrl_pos sp, pv;
4926 
4927 	/*
4928 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4929 	 * This value is chosen because any other tier would have at least twice
4930 	 * as many refaults as the first tier.
4931 	 */
4932 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4933 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4934 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4935 		if (!positive_ctrl_err(&sp, &pv))
4936 			break;
4937 	}
4938 
4939 	return tier - 1;
4940 }
4941 
4942 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4943 {
4944 	int type, tier;
4945 	struct ctrl_pos sp, pv;
4946 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4947 
4948 	/*
4949 	 * Compare the first tier of anon with that of file to determine which
4950 	 * type to scan. Also need to compare other tiers of the selected type
4951 	 * with the first tier of the other type to determine the last tier (of
4952 	 * the selected type) to evict.
4953 	 */
4954 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4955 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4956 	type = positive_ctrl_err(&sp, &pv);
4957 
4958 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4959 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4960 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4961 		if (!positive_ctrl_err(&sp, &pv))
4962 			break;
4963 	}
4964 
4965 	*tier_idx = tier - 1;
4966 
4967 	return type;
4968 }
4969 
4970 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4971 			  int *type_scanned, struct list_head *list)
4972 {
4973 	int i;
4974 	int type;
4975 	int scanned;
4976 	int tier = -1;
4977 	DEFINE_MIN_SEQ(lruvec);
4978 
4979 	/*
4980 	 * Try to make the obvious choice first. When anon and file are both
4981 	 * available from the same generation, interpret swappiness 1 as file
4982 	 * first and 200 as anon first.
4983 	 */
4984 	if (!swappiness)
4985 		type = LRU_GEN_FILE;
4986 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4987 		type = LRU_GEN_ANON;
4988 	else if (swappiness == 1)
4989 		type = LRU_GEN_FILE;
4990 	else if (swappiness == 200)
4991 		type = LRU_GEN_ANON;
4992 	else
4993 		type = get_type_to_scan(lruvec, swappiness, &tier);
4994 
4995 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4996 		if (tier < 0)
4997 			tier = get_tier_idx(lruvec, type);
4998 
4999 		scanned = scan_folios(lruvec, sc, type, tier, list);
5000 		if (scanned)
5001 			break;
5002 
5003 		type = !type;
5004 		tier = -1;
5005 	}
5006 
5007 	*type_scanned = type;
5008 
5009 	return scanned;
5010 }
5011 
5012 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5013 			bool *need_swapping)
5014 {
5015 	int type;
5016 	int scanned;
5017 	int reclaimed;
5018 	LIST_HEAD(list);
5019 	LIST_HEAD(clean);
5020 	struct folio *folio;
5021 	struct folio *next;
5022 	enum vm_event_item item;
5023 	struct reclaim_stat stat;
5024 	struct lru_gen_mm_walk *walk;
5025 	bool skip_retry = false;
5026 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5027 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5028 
5029 	spin_lock_irq(&lruvec->lru_lock);
5030 
5031 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5032 
5033 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5034 
5035 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5036 		scanned = 0;
5037 
5038 	spin_unlock_irq(&lruvec->lru_lock);
5039 
5040 	if (list_empty(&list))
5041 		return scanned;
5042 retry:
5043 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5044 	sc->nr_reclaimed += reclaimed;
5045 
5046 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5047 		if (!folio_evictable(folio)) {
5048 			list_del(&folio->lru);
5049 			folio_putback_lru(folio);
5050 			continue;
5051 		}
5052 
5053 		if (folio_test_reclaim(folio) &&
5054 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5055 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5056 			if (folio_test_workingset(folio))
5057 				folio_set_referenced(folio);
5058 			continue;
5059 		}
5060 
5061 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5062 		    folio_mapped(folio) || folio_test_locked(folio) ||
5063 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5064 			/* don't add rejected folios to the oldest generation */
5065 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5066 				      BIT(PG_active));
5067 			continue;
5068 		}
5069 
5070 		/* retry folios that may have missed folio_rotate_reclaimable() */
5071 		list_move(&folio->lru, &clean);
5072 		sc->nr_scanned -= folio_nr_pages(folio);
5073 	}
5074 
5075 	spin_lock_irq(&lruvec->lru_lock);
5076 
5077 	move_folios_to_lru(lruvec, &list);
5078 
5079 	walk = current->reclaim_state->mm_walk;
5080 	if (walk && walk->batched)
5081 		reset_batch_size(lruvec, walk);
5082 
5083 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5084 	if (!cgroup_reclaim(sc))
5085 		__count_vm_events(item, reclaimed);
5086 	__count_memcg_events(memcg, item, reclaimed);
5087 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5088 
5089 	spin_unlock_irq(&lruvec->lru_lock);
5090 
5091 	mem_cgroup_uncharge_list(&list);
5092 	free_unref_page_list(&list);
5093 
5094 	INIT_LIST_HEAD(&list);
5095 	list_splice_init(&clean, &list);
5096 
5097 	if (!list_empty(&list)) {
5098 		skip_retry = true;
5099 		goto retry;
5100 	}
5101 
5102 	if (need_swapping && type == LRU_GEN_ANON)
5103 		*need_swapping = true;
5104 
5105 	return scanned;
5106 }
5107 
5108 /*
5109  * For future optimizations:
5110  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5111  *    reclaim.
5112  */
5113 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5114 				    bool can_swap, bool *need_aging)
5115 {
5116 	unsigned long nr_to_scan;
5117 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5118 	DEFINE_MAX_SEQ(lruvec);
5119 	DEFINE_MIN_SEQ(lruvec);
5120 
5121 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) ||
5122 	    (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) &&
5123 	     !sc->memcg_low_reclaim))
5124 		return 0;
5125 
5126 	*need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5127 	if (!*need_aging)
5128 		return nr_to_scan;
5129 
5130 	/* skip the aging path at the default priority */
5131 	if (sc->priority == DEF_PRIORITY)
5132 		goto done;
5133 
5134 	/* leave the work to lru_gen_age_node() */
5135 	if (current_is_kswapd())
5136 		return 0;
5137 
5138 	if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5139 		return nr_to_scan;
5140 done:
5141 	return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5142 }
5143 
5144 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5145 			      struct scan_control *sc, bool need_swapping)
5146 {
5147 	int i;
5148 	DEFINE_MAX_SEQ(lruvec);
5149 
5150 	if (!current_is_kswapd()) {
5151 		/* age each memcg at most once to ensure fairness */
5152 		if (max_seq - seq > 1)
5153 			return true;
5154 
5155 		/* over-swapping can increase allocation latency */
5156 		if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5157 			return true;
5158 
5159 		/* give this thread a chance to exit and free its memory */
5160 		if (fatal_signal_pending(current)) {
5161 			sc->nr_reclaimed += MIN_LRU_BATCH;
5162 			return true;
5163 		}
5164 
5165 		if (cgroup_reclaim(sc))
5166 			return false;
5167 	} else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5168 		return false;
5169 
5170 	/* keep scanning at low priorities to ensure fairness */
5171 	if (sc->priority > DEF_PRIORITY - 2)
5172 		return false;
5173 
5174 	/*
5175 	 * A minimum amount of work was done under global memory pressure. For
5176 	 * kswapd, it may be overshooting. For direct reclaim, the allocation
5177 	 * may succeed if all suitable zones are somewhat safe. In either case,
5178 	 * it's better to stop now, and restart later if necessary.
5179 	 */
5180 	for (i = 0; i <= sc->reclaim_idx; i++) {
5181 		unsigned long wmark;
5182 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5183 
5184 		if (!managed_zone(zone))
5185 			continue;
5186 
5187 		wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5188 		if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5189 			return false;
5190 	}
5191 
5192 	sc->nr_reclaimed += MIN_LRU_BATCH;
5193 
5194 	return true;
5195 }
5196 
5197 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5198 {
5199 	struct blk_plug plug;
5200 	bool need_aging = false;
5201 	bool need_swapping = false;
5202 	unsigned long scanned = 0;
5203 	unsigned long reclaimed = sc->nr_reclaimed;
5204 	DEFINE_MAX_SEQ(lruvec);
5205 
5206 	lru_add_drain();
5207 
5208 	blk_start_plug(&plug);
5209 
5210 	set_mm_walk(lruvec_pgdat(lruvec));
5211 
5212 	while (true) {
5213 		int delta;
5214 		int swappiness;
5215 		unsigned long nr_to_scan;
5216 
5217 		if (sc->may_swap)
5218 			swappiness = get_swappiness(lruvec, sc);
5219 		else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5220 			swappiness = 1;
5221 		else
5222 			swappiness = 0;
5223 
5224 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5225 		if (!nr_to_scan)
5226 			goto done;
5227 
5228 		delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
5229 		if (!delta)
5230 			goto done;
5231 
5232 		scanned += delta;
5233 		if (scanned >= nr_to_scan)
5234 			break;
5235 
5236 		if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5237 			break;
5238 
5239 		cond_resched();
5240 	}
5241 
5242 	/* see the comment in lru_gen_age_node() */
5243 	if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5244 		sc->memcgs_need_aging = false;
5245 done:
5246 	clear_mm_walk();
5247 
5248 	blk_finish_plug(&plug);
5249 }
5250 
5251 /******************************************************************************
5252  *                          state change
5253  ******************************************************************************/
5254 
5255 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5256 {
5257 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5258 
5259 	if (lrugen->enabled) {
5260 		enum lru_list lru;
5261 
5262 		for_each_evictable_lru(lru) {
5263 			if (!list_empty(&lruvec->lists[lru]))
5264 				return false;
5265 		}
5266 	} else {
5267 		int gen, type, zone;
5268 
5269 		for_each_gen_type_zone(gen, type, zone) {
5270 			if (!list_empty(&lrugen->lists[gen][type][zone]))
5271 				return false;
5272 		}
5273 	}
5274 
5275 	return true;
5276 }
5277 
5278 static bool fill_evictable(struct lruvec *lruvec)
5279 {
5280 	enum lru_list lru;
5281 	int remaining = MAX_LRU_BATCH;
5282 
5283 	for_each_evictable_lru(lru) {
5284 		int type = is_file_lru(lru);
5285 		bool active = is_active_lru(lru);
5286 		struct list_head *head = &lruvec->lists[lru];
5287 
5288 		while (!list_empty(head)) {
5289 			bool success;
5290 			struct folio *folio = lru_to_folio(head);
5291 
5292 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5293 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5294 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5295 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5296 
5297 			lruvec_del_folio(lruvec, folio);
5298 			success = lru_gen_add_folio(lruvec, folio, false);
5299 			VM_WARN_ON_ONCE(!success);
5300 
5301 			if (!--remaining)
5302 				return false;
5303 		}
5304 	}
5305 
5306 	return true;
5307 }
5308 
5309 static bool drain_evictable(struct lruvec *lruvec)
5310 {
5311 	int gen, type, zone;
5312 	int remaining = MAX_LRU_BATCH;
5313 
5314 	for_each_gen_type_zone(gen, type, zone) {
5315 		struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5316 
5317 		while (!list_empty(head)) {
5318 			bool success;
5319 			struct folio *folio = lru_to_folio(head);
5320 
5321 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5322 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5323 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5324 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5325 
5326 			success = lru_gen_del_folio(lruvec, folio, false);
5327 			VM_WARN_ON_ONCE(!success);
5328 			lruvec_add_folio(lruvec, folio);
5329 
5330 			if (!--remaining)
5331 				return false;
5332 		}
5333 	}
5334 
5335 	return true;
5336 }
5337 
5338 static void lru_gen_change_state(bool enabled)
5339 {
5340 	static DEFINE_MUTEX(state_mutex);
5341 
5342 	struct mem_cgroup *memcg;
5343 
5344 	cgroup_lock();
5345 	cpus_read_lock();
5346 	get_online_mems();
5347 	mutex_lock(&state_mutex);
5348 
5349 	if (enabled == lru_gen_enabled())
5350 		goto unlock;
5351 
5352 	if (enabled)
5353 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5354 	else
5355 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5356 
5357 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5358 	do {
5359 		int nid;
5360 
5361 		for_each_node(nid) {
5362 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5363 
5364 			spin_lock_irq(&lruvec->lru_lock);
5365 
5366 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5367 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5368 
5369 			lruvec->lrugen.enabled = enabled;
5370 
5371 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5372 				spin_unlock_irq(&lruvec->lru_lock);
5373 				cond_resched();
5374 				spin_lock_irq(&lruvec->lru_lock);
5375 			}
5376 
5377 			spin_unlock_irq(&lruvec->lru_lock);
5378 		}
5379 
5380 		cond_resched();
5381 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5382 unlock:
5383 	mutex_unlock(&state_mutex);
5384 	put_online_mems();
5385 	cpus_read_unlock();
5386 	cgroup_unlock();
5387 }
5388 
5389 /******************************************************************************
5390  *                          sysfs interface
5391  ******************************************************************************/
5392 
5393 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5394 {
5395 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5396 }
5397 
5398 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5399 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5400 			     const char *buf, size_t len)
5401 {
5402 	unsigned int msecs;
5403 
5404 	if (kstrtouint(buf, 0, &msecs))
5405 		return -EINVAL;
5406 
5407 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5408 
5409 	return len;
5410 }
5411 
5412 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5413 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5414 );
5415 
5416 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5417 {
5418 	unsigned int caps = 0;
5419 
5420 	if (get_cap(LRU_GEN_CORE))
5421 		caps |= BIT(LRU_GEN_CORE);
5422 
5423 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5424 		caps |= BIT(LRU_GEN_MM_WALK);
5425 
5426 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5427 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5428 
5429 	return sysfs_emit(buf, "0x%04x\n", caps);
5430 }
5431 
5432 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5433 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5434 			     const char *buf, size_t len)
5435 {
5436 	int i;
5437 	unsigned int caps;
5438 
5439 	if (tolower(*buf) == 'n')
5440 		caps = 0;
5441 	else if (tolower(*buf) == 'y')
5442 		caps = -1;
5443 	else if (kstrtouint(buf, 0, &caps))
5444 		return -EINVAL;
5445 
5446 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5447 		bool enabled = caps & BIT(i);
5448 
5449 		if (i == LRU_GEN_CORE)
5450 			lru_gen_change_state(enabled);
5451 		else if (enabled)
5452 			static_branch_enable(&lru_gen_caps[i]);
5453 		else
5454 			static_branch_disable(&lru_gen_caps[i]);
5455 	}
5456 
5457 	return len;
5458 }
5459 
5460 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5461 	enabled, 0644, show_enabled, store_enabled
5462 );
5463 
5464 static struct attribute *lru_gen_attrs[] = {
5465 	&lru_gen_min_ttl_attr.attr,
5466 	&lru_gen_enabled_attr.attr,
5467 	NULL
5468 };
5469 
5470 static struct attribute_group lru_gen_attr_group = {
5471 	.name = "lru_gen",
5472 	.attrs = lru_gen_attrs,
5473 };
5474 
5475 /******************************************************************************
5476  *                          debugfs interface
5477  ******************************************************************************/
5478 
5479 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5480 {
5481 	struct mem_cgroup *memcg;
5482 	loff_t nr_to_skip = *pos;
5483 
5484 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5485 	if (!m->private)
5486 		return ERR_PTR(-ENOMEM);
5487 
5488 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5489 	do {
5490 		int nid;
5491 
5492 		for_each_node_state(nid, N_MEMORY) {
5493 			if (!nr_to_skip--)
5494 				return get_lruvec(memcg, nid);
5495 		}
5496 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5497 
5498 	return NULL;
5499 }
5500 
5501 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5502 {
5503 	if (!IS_ERR_OR_NULL(v))
5504 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5505 
5506 	kvfree(m->private);
5507 	m->private = NULL;
5508 }
5509 
5510 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5511 {
5512 	int nid = lruvec_pgdat(v)->node_id;
5513 	struct mem_cgroup *memcg = lruvec_memcg(v);
5514 
5515 	++*pos;
5516 
5517 	nid = next_memory_node(nid);
5518 	if (nid == MAX_NUMNODES) {
5519 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5520 		if (!memcg)
5521 			return NULL;
5522 
5523 		nid = first_memory_node;
5524 	}
5525 
5526 	return get_lruvec(memcg, nid);
5527 }
5528 
5529 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5530 				  unsigned long max_seq, unsigned long *min_seq,
5531 				  unsigned long seq)
5532 {
5533 	int i;
5534 	int type, tier;
5535 	int hist = lru_hist_from_seq(seq);
5536 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5537 
5538 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5539 		seq_printf(m, "            %10d", tier);
5540 		for (type = 0; type < ANON_AND_FILE; type++) {
5541 			const char *s = "   ";
5542 			unsigned long n[3] = {};
5543 
5544 			if (seq == max_seq) {
5545 				s = "RT ";
5546 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5547 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5548 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5549 				s = "rep";
5550 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5551 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5552 				if (tier)
5553 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5554 			}
5555 
5556 			for (i = 0; i < 3; i++)
5557 				seq_printf(m, " %10lu%c", n[i], s[i]);
5558 		}
5559 		seq_putc(m, '\n');
5560 	}
5561 
5562 	seq_puts(m, "                      ");
5563 	for (i = 0; i < NR_MM_STATS; i++) {
5564 		const char *s = "      ";
5565 		unsigned long n = 0;
5566 
5567 		if (seq == max_seq && NR_HIST_GENS == 1) {
5568 			s = "LOYNFA";
5569 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5570 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5571 			s = "loynfa";
5572 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5573 		}
5574 
5575 		seq_printf(m, " %10lu%c", n, s[i]);
5576 	}
5577 	seq_putc(m, '\n');
5578 }
5579 
5580 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5581 static int lru_gen_seq_show(struct seq_file *m, void *v)
5582 {
5583 	unsigned long seq;
5584 	bool full = !debugfs_real_fops(m->file)->write;
5585 	struct lruvec *lruvec = v;
5586 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5587 	int nid = lruvec_pgdat(lruvec)->node_id;
5588 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5589 	DEFINE_MAX_SEQ(lruvec);
5590 	DEFINE_MIN_SEQ(lruvec);
5591 
5592 	if (nid == first_memory_node) {
5593 		const char *path = memcg ? m->private : "";
5594 
5595 #ifdef CONFIG_MEMCG
5596 		if (memcg)
5597 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5598 #endif
5599 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5600 	}
5601 
5602 	seq_printf(m, " node %5d\n", nid);
5603 
5604 	if (!full)
5605 		seq = min_seq[LRU_GEN_ANON];
5606 	else if (max_seq >= MAX_NR_GENS)
5607 		seq = max_seq - MAX_NR_GENS + 1;
5608 	else
5609 		seq = 0;
5610 
5611 	for (; seq <= max_seq; seq++) {
5612 		int type, zone;
5613 		int gen = lru_gen_from_seq(seq);
5614 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5615 
5616 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5617 
5618 		for (type = 0; type < ANON_AND_FILE; type++) {
5619 			unsigned long size = 0;
5620 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5621 
5622 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5623 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5624 
5625 			seq_printf(m, " %10lu%c", size, mark);
5626 		}
5627 
5628 		seq_putc(m, '\n');
5629 
5630 		if (full)
5631 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5632 	}
5633 
5634 	return 0;
5635 }
5636 
5637 static const struct seq_operations lru_gen_seq_ops = {
5638 	.start = lru_gen_seq_start,
5639 	.stop = lru_gen_seq_stop,
5640 	.next = lru_gen_seq_next,
5641 	.show = lru_gen_seq_show,
5642 };
5643 
5644 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5645 		     bool can_swap, bool force_scan)
5646 {
5647 	DEFINE_MAX_SEQ(lruvec);
5648 	DEFINE_MIN_SEQ(lruvec);
5649 
5650 	if (seq < max_seq)
5651 		return 0;
5652 
5653 	if (seq > max_seq)
5654 		return -EINVAL;
5655 
5656 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5657 		return -ERANGE;
5658 
5659 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5660 
5661 	return 0;
5662 }
5663 
5664 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5665 			int swappiness, unsigned long nr_to_reclaim)
5666 {
5667 	DEFINE_MAX_SEQ(lruvec);
5668 
5669 	if (seq + MIN_NR_GENS > max_seq)
5670 		return -EINVAL;
5671 
5672 	sc->nr_reclaimed = 0;
5673 
5674 	while (!signal_pending(current)) {
5675 		DEFINE_MIN_SEQ(lruvec);
5676 
5677 		if (seq < min_seq[!swappiness])
5678 			return 0;
5679 
5680 		if (sc->nr_reclaimed >= nr_to_reclaim)
5681 			return 0;
5682 
5683 		if (!evict_folios(lruvec, sc, swappiness, NULL))
5684 			return 0;
5685 
5686 		cond_resched();
5687 	}
5688 
5689 	return -EINTR;
5690 }
5691 
5692 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5693 		   struct scan_control *sc, int swappiness, unsigned long opt)
5694 {
5695 	struct lruvec *lruvec;
5696 	int err = -EINVAL;
5697 	struct mem_cgroup *memcg = NULL;
5698 
5699 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5700 		return -EINVAL;
5701 
5702 	if (!mem_cgroup_disabled()) {
5703 		rcu_read_lock();
5704 		memcg = mem_cgroup_from_id(memcg_id);
5705 #ifdef CONFIG_MEMCG
5706 		if (memcg && !css_tryget(&memcg->css))
5707 			memcg = NULL;
5708 #endif
5709 		rcu_read_unlock();
5710 
5711 		if (!memcg)
5712 			return -EINVAL;
5713 	}
5714 
5715 	if (memcg_id != mem_cgroup_id(memcg))
5716 		goto done;
5717 
5718 	lruvec = get_lruvec(memcg, nid);
5719 
5720 	if (swappiness < 0)
5721 		swappiness = get_swappiness(lruvec, sc);
5722 	else if (swappiness > 200)
5723 		goto done;
5724 
5725 	switch (cmd) {
5726 	case '+':
5727 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5728 		break;
5729 	case '-':
5730 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5731 		break;
5732 	}
5733 done:
5734 	mem_cgroup_put(memcg);
5735 
5736 	return err;
5737 }
5738 
5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5740 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5741 				 size_t len, loff_t *pos)
5742 {
5743 	void *buf;
5744 	char *cur, *next;
5745 	unsigned int flags;
5746 	struct blk_plug plug;
5747 	int err = -EINVAL;
5748 	struct scan_control sc = {
5749 		.may_writepage = true,
5750 		.may_unmap = true,
5751 		.may_swap = true,
5752 		.reclaim_idx = MAX_NR_ZONES - 1,
5753 		.gfp_mask = GFP_KERNEL,
5754 	};
5755 
5756 	buf = kvmalloc(len + 1, GFP_KERNEL);
5757 	if (!buf)
5758 		return -ENOMEM;
5759 
5760 	if (copy_from_user(buf, src, len)) {
5761 		kvfree(buf);
5762 		return -EFAULT;
5763 	}
5764 
5765 	set_task_reclaim_state(current, &sc.reclaim_state);
5766 	flags = memalloc_noreclaim_save();
5767 	blk_start_plug(&plug);
5768 	if (!set_mm_walk(NULL)) {
5769 		err = -ENOMEM;
5770 		goto done;
5771 	}
5772 
5773 	next = buf;
5774 	next[len] = '\0';
5775 
5776 	while ((cur = strsep(&next, ",;\n"))) {
5777 		int n;
5778 		int end;
5779 		char cmd;
5780 		unsigned int memcg_id;
5781 		unsigned int nid;
5782 		unsigned long seq;
5783 		unsigned int swappiness = -1;
5784 		unsigned long opt = -1;
5785 
5786 		cur = skip_spaces(cur);
5787 		if (!*cur)
5788 			continue;
5789 
5790 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5791 			   &seq, &end, &swappiness, &end, &opt, &end);
5792 		if (n < 4 || cur[end]) {
5793 			err = -EINVAL;
5794 			break;
5795 		}
5796 
5797 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5798 		if (err)
5799 			break;
5800 	}
5801 done:
5802 	clear_mm_walk();
5803 	blk_finish_plug(&plug);
5804 	memalloc_noreclaim_restore(flags);
5805 	set_task_reclaim_state(current, NULL);
5806 
5807 	kvfree(buf);
5808 
5809 	return err ? : len;
5810 }
5811 
5812 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5813 {
5814 	return seq_open(file, &lru_gen_seq_ops);
5815 }
5816 
5817 static const struct file_operations lru_gen_rw_fops = {
5818 	.open = lru_gen_seq_open,
5819 	.read = seq_read,
5820 	.write = lru_gen_seq_write,
5821 	.llseek = seq_lseek,
5822 	.release = seq_release,
5823 };
5824 
5825 static const struct file_operations lru_gen_ro_fops = {
5826 	.open = lru_gen_seq_open,
5827 	.read = seq_read,
5828 	.llseek = seq_lseek,
5829 	.release = seq_release,
5830 };
5831 
5832 /******************************************************************************
5833  *                          initialization
5834  ******************************************************************************/
5835 
5836 void lru_gen_init_lruvec(struct lruvec *lruvec)
5837 {
5838 	int i;
5839 	int gen, type, zone;
5840 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5841 
5842 	lrugen->max_seq = MIN_NR_GENS + 1;
5843 	lrugen->enabled = lru_gen_enabled();
5844 
5845 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5846 		lrugen->timestamps[i] = jiffies;
5847 
5848 	for_each_gen_type_zone(gen, type, zone)
5849 		INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5850 
5851 	lruvec->mm_state.seq = MIN_NR_GENS;
5852 	init_waitqueue_head(&lruvec->mm_state.wait);
5853 }
5854 
5855 #ifdef CONFIG_MEMCG
5856 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5857 {
5858 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
5859 	spin_lock_init(&memcg->mm_list.lock);
5860 }
5861 
5862 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5863 {
5864 	int i;
5865 	int nid;
5866 
5867 	for_each_node(nid) {
5868 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5869 
5870 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5871 					   sizeof(lruvec->lrugen.nr_pages)));
5872 
5873 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5874 			bitmap_free(lruvec->mm_state.filters[i]);
5875 			lruvec->mm_state.filters[i] = NULL;
5876 		}
5877 	}
5878 }
5879 #endif
5880 
5881 static int __init init_lru_gen(void)
5882 {
5883 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5884 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5885 
5886 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5887 		pr_err("lru_gen: failed to create sysfs group\n");
5888 
5889 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5890 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5891 
5892 	return 0;
5893 };
5894 late_initcall(init_lru_gen);
5895 
5896 #else /* !CONFIG_LRU_GEN */
5897 
5898 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5899 {
5900 }
5901 
5902 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5903 {
5904 }
5905 
5906 #endif /* CONFIG_LRU_GEN */
5907 
5908 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5909 {
5910 	unsigned long nr[NR_LRU_LISTS];
5911 	unsigned long targets[NR_LRU_LISTS];
5912 	unsigned long nr_to_scan;
5913 	enum lru_list lru;
5914 	unsigned long nr_reclaimed = 0;
5915 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5916 	bool proportional_reclaim;
5917 	struct blk_plug plug;
5918 
5919 	if (lru_gen_enabled()) {
5920 		lru_gen_shrink_lruvec(lruvec, sc);
5921 		return;
5922 	}
5923 
5924 	get_scan_count(lruvec, sc, nr);
5925 
5926 	/* Record the original scan target for proportional adjustments later */
5927 	memcpy(targets, nr, sizeof(nr));
5928 
5929 	/*
5930 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5931 	 * event that can occur when there is little memory pressure e.g.
5932 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5933 	 * when the requested number of pages are reclaimed when scanning at
5934 	 * DEF_PRIORITY on the assumption that the fact we are direct
5935 	 * reclaiming implies that kswapd is not keeping up and it is best to
5936 	 * do a batch of work at once. For memcg reclaim one check is made to
5937 	 * abort proportional reclaim if either the file or anon lru has already
5938 	 * dropped to zero at the first pass.
5939 	 */
5940 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5941 				sc->priority == DEF_PRIORITY);
5942 
5943 	blk_start_plug(&plug);
5944 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5945 					nr[LRU_INACTIVE_FILE]) {
5946 		unsigned long nr_anon, nr_file, percentage;
5947 		unsigned long nr_scanned;
5948 
5949 		for_each_evictable_lru(lru) {
5950 			if (nr[lru]) {
5951 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5952 				nr[lru] -= nr_to_scan;
5953 
5954 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5955 							    lruvec, sc);
5956 			}
5957 		}
5958 
5959 		cond_resched();
5960 
5961 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5962 			continue;
5963 
5964 		/*
5965 		 * For kswapd and memcg, reclaim at least the number of pages
5966 		 * requested. Ensure that the anon and file LRUs are scanned
5967 		 * proportionally what was requested by get_scan_count(). We
5968 		 * stop reclaiming one LRU and reduce the amount scanning
5969 		 * proportional to the original scan target.
5970 		 */
5971 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5972 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5973 
5974 		/*
5975 		 * It's just vindictive to attack the larger once the smaller
5976 		 * has gone to zero.  And given the way we stop scanning the
5977 		 * smaller below, this makes sure that we only make one nudge
5978 		 * towards proportionality once we've got nr_to_reclaim.
5979 		 */
5980 		if (!nr_file || !nr_anon)
5981 			break;
5982 
5983 		if (nr_file > nr_anon) {
5984 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5985 						targets[LRU_ACTIVE_ANON] + 1;
5986 			lru = LRU_BASE;
5987 			percentage = nr_anon * 100 / scan_target;
5988 		} else {
5989 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5990 						targets[LRU_ACTIVE_FILE] + 1;
5991 			lru = LRU_FILE;
5992 			percentage = nr_file * 100 / scan_target;
5993 		}
5994 
5995 		/* Stop scanning the smaller of the LRU */
5996 		nr[lru] = 0;
5997 		nr[lru + LRU_ACTIVE] = 0;
5998 
5999 		/*
6000 		 * Recalculate the other LRU scan count based on its original
6001 		 * scan target and the percentage scanning already complete
6002 		 */
6003 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6004 		nr_scanned = targets[lru] - nr[lru];
6005 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6006 		nr[lru] -= min(nr[lru], nr_scanned);
6007 
6008 		lru += LRU_ACTIVE;
6009 		nr_scanned = targets[lru] - nr[lru];
6010 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6011 		nr[lru] -= min(nr[lru], nr_scanned);
6012 	}
6013 	blk_finish_plug(&plug);
6014 	sc->nr_reclaimed += nr_reclaimed;
6015 
6016 	/*
6017 	 * Even if we did not try to evict anon pages at all, we want to
6018 	 * rebalance the anon lru active/inactive ratio.
6019 	 */
6020 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6021 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6022 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6023 				   sc, LRU_ACTIVE_ANON);
6024 }
6025 
6026 /* Use reclaim/compaction for costly allocs or under memory pressure */
6027 static bool in_reclaim_compaction(struct scan_control *sc)
6028 {
6029 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6030 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6031 			 sc->priority < DEF_PRIORITY - 2))
6032 		return true;
6033 
6034 	return false;
6035 }
6036 
6037 /*
6038  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6039  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6040  * true if more pages should be reclaimed such that when the page allocator
6041  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6042  * It will give up earlier than that if there is difficulty reclaiming pages.
6043  */
6044 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6045 					unsigned long nr_reclaimed,
6046 					struct scan_control *sc)
6047 {
6048 	unsigned long pages_for_compaction;
6049 	unsigned long inactive_lru_pages;
6050 	int z;
6051 
6052 	/* If not in reclaim/compaction mode, stop */
6053 	if (!in_reclaim_compaction(sc))
6054 		return false;
6055 
6056 	/*
6057 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6058 	 * number of pages that were scanned. This will return to the caller
6059 	 * with the risk reclaim/compaction and the resulting allocation attempt
6060 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6061 	 * allocations through requiring that the full LRU list has been scanned
6062 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6063 	 * scan, but that approximation was wrong, and there were corner cases
6064 	 * where always a non-zero amount of pages were scanned.
6065 	 */
6066 	if (!nr_reclaimed)
6067 		return false;
6068 
6069 	/* If compaction would go ahead or the allocation would succeed, stop */
6070 	for (z = 0; z <= sc->reclaim_idx; z++) {
6071 		struct zone *zone = &pgdat->node_zones[z];
6072 		if (!managed_zone(zone))
6073 			continue;
6074 
6075 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6076 		case COMPACT_SUCCESS:
6077 		case COMPACT_CONTINUE:
6078 			return false;
6079 		default:
6080 			/* check next zone */
6081 			;
6082 		}
6083 	}
6084 
6085 	/*
6086 	 * If we have not reclaimed enough pages for compaction and the
6087 	 * inactive lists are large enough, continue reclaiming
6088 	 */
6089 	pages_for_compaction = compact_gap(sc->order);
6090 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6091 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6092 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6093 
6094 	return inactive_lru_pages > pages_for_compaction;
6095 }
6096 
6097 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6098 {
6099 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6100 	struct mem_cgroup *memcg;
6101 
6102 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6103 	do {
6104 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6105 		unsigned long reclaimed;
6106 		unsigned long scanned;
6107 
6108 		/*
6109 		 * This loop can become CPU-bound when target memcgs
6110 		 * aren't eligible for reclaim - either because they
6111 		 * don't have any reclaimable pages, or because their
6112 		 * memory is explicitly protected. Avoid soft lockups.
6113 		 */
6114 		cond_resched();
6115 
6116 		mem_cgroup_calculate_protection(target_memcg, memcg);
6117 
6118 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6119 			/*
6120 			 * Hard protection.
6121 			 * If there is no reclaimable memory, OOM.
6122 			 */
6123 			continue;
6124 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6125 			/*
6126 			 * Soft protection.
6127 			 * Respect the protection only as long as
6128 			 * there is an unprotected supply
6129 			 * of reclaimable memory from other cgroups.
6130 			 */
6131 			if (!sc->memcg_low_reclaim) {
6132 				sc->memcg_low_skipped = 1;
6133 				continue;
6134 			}
6135 			memcg_memory_event(memcg, MEMCG_LOW);
6136 		}
6137 
6138 		reclaimed = sc->nr_reclaimed;
6139 		scanned = sc->nr_scanned;
6140 
6141 		shrink_lruvec(lruvec, sc);
6142 
6143 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6144 			    sc->priority);
6145 
6146 		/* Record the group's reclaim efficiency */
6147 		if (!sc->proactive)
6148 			vmpressure(sc->gfp_mask, memcg, false,
6149 				   sc->nr_scanned - scanned,
6150 				   sc->nr_reclaimed - reclaimed);
6151 
6152 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6153 }
6154 
6155 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6156 {
6157 	struct reclaim_state *reclaim_state = current->reclaim_state;
6158 	unsigned long nr_reclaimed, nr_scanned;
6159 	struct lruvec *target_lruvec;
6160 	bool reclaimable = false;
6161 
6162 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6163 
6164 again:
6165 	memset(&sc->nr, 0, sizeof(sc->nr));
6166 
6167 	nr_reclaimed = sc->nr_reclaimed;
6168 	nr_scanned = sc->nr_scanned;
6169 
6170 	prepare_scan_count(pgdat, sc);
6171 
6172 	shrink_node_memcgs(pgdat, sc);
6173 
6174 	if (reclaim_state) {
6175 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6176 		reclaim_state->reclaimed_slab = 0;
6177 	}
6178 
6179 	/* Record the subtree's reclaim efficiency */
6180 	if (!sc->proactive)
6181 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6182 			   sc->nr_scanned - nr_scanned,
6183 			   sc->nr_reclaimed - nr_reclaimed);
6184 
6185 	if (sc->nr_reclaimed - nr_reclaimed)
6186 		reclaimable = true;
6187 
6188 	if (current_is_kswapd()) {
6189 		/*
6190 		 * If reclaim is isolating dirty pages under writeback,
6191 		 * it implies that the long-lived page allocation rate
6192 		 * is exceeding the page laundering rate. Either the
6193 		 * global limits are not being effective at throttling
6194 		 * processes due to the page distribution throughout
6195 		 * zones or there is heavy usage of a slow backing
6196 		 * device. The only option is to throttle from reclaim
6197 		 * context which is not ideal as there is no guarantee
6198 		 * the dirtying process is throttled in the same way
6199 		 * balance_dirty_pages() manages.
6200 		 *
6201 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6202 		 * count the number of pages under pages flagged for
6203 		 * immediate reclaim and stall if any are encountered
6204 		 * in the nr_immediate check below.
6205 		 */
6206 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6207 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6208 
6209 		/* Allow kswapd to start writing pages during reclaim.*/
6210 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6211 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6212 
6213 		/*
6214 		 * If kswapd scans pages marked for immediate
6215 		 * reclaim and under writeback (nr_immediate), it
6216 		 * implies that pages are cycling through the LRU
6217 		 * faster than they are written so forcibly stall
6218 		 * until some pages complete writeback.
6219 		 */
6220 		if (sc->nr.immediate)
6221 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6222 	}
6223 
6224 	/*
6225 	 * Tag a node/memcg as congested if all the dirty pages were marked
6226 	 * for writeback and immediate reclaim (counted in nr.congested).
6227 	 *
6228 	 * Legacy memcg will stall in page writeback so avoid forcibly
6229 	 * stalling in reclaim_throttle().
6230 	 */
6231 	if ((current_is_kswapd() ||
6232 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6233 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6234 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6235 
6236 	/*
6237 	 * Stall direct reclaim for IO completions if the lruvec is
6238 	 * node is congested. Allow kswapd to continue until it
6239 	 * starts encountering unqueued dirty pages or cycling through
6240 	 * the LRU too quickly.
6241 	 */
6242 	if (!current_is_kswapd() && current_may_throttle() &&
6243 	    !sc->hibernation_mode &&
6244 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6245 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6246 
6247 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6248 				    sc))
6249 		goto again;
6250 
6251 	/*
6252 	 * Kswapd gives up on balancing particular nodes after too
6253 	 * many failures to reclaim anything from them and goes to
6254 	 * sleep. On reclaim progress, reset the failure counter. A
6255 	 * successful direct reclaim run will revive a dormant kswapd.
6256 	 */
6257 	if (reclaimable)
6258 		pgdat->kswapd_failures = 0;
6259 }
6260 
6261 /*
6262  * Returns true if compaction should go ahead for a costly-order request, or
6263  * the allocation would already succeed without compaction. Return false if we
6264  * should reclaim first.
6265  */
6266 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6267 {
6268 	unsigned long watermark;
6269 	enum compact_result suitable;
6270 
6271 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6272 	if (suitable == COMPACT_SUCCESS)
6273 		/* Allocation should succeed already. Don't reclaim. */
6274 		return true;
6275 	if (suitable == COMPACT_SKIPPED)
6276 		/* Compaction cannot yet proceed. Do reclaim. */
6277 		return false;
6278 
6279 	/*
6280 	 * Compaction is already possible, but it takes time to run and there
6281 	 * are potentially other callers using the pages just freed. So proceed
6282 	 * with reclaim to make a buffer of free pages available to give
6283 	 * compaction a reasonable chance of completing and allocating the page.
6284 	 * Note that we won't actually reclaim the whole buffer in one attempt
6285 	 * as the target watermark in should_continue_reclaim() is lower. But if
6286 	 * we are already above the high+gap watermark, don't reclaim at all.
6287 	 */
6288 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6289 
6290 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6291 }
6292 
6293 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6294 {
6295 	/*
6296 	 * If reclaim is making progress greater than 12% efficiency then
6297 	 * wake all the NOPROGRESS throttled tasks.
6298 	 */
6299 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6300 		wait_queue_head_t *wqh;
6301 
6302 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6303 		if (waitqueue_active(wqh))
6304 			wake_up(wqh);
6305 
6306 		return;
6307 	}
6308 
6309 	/*
6310 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6311 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6312 	 * under writeback and marked for immediate reclaim at the tail of the
6313 	 * LRU.
6314 	 */
6315 	if (current_is_kswapd() || cgroup_reclaim(sc))
6316 		return;
6317 
6318 	/* Throttle if making no progress at high prioities. */
6319 	if (sc->priority == 1 && !sc->nr_reclaimed)
6320 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6321 }
6322 
6323 /*
6324  * This is the direct reclaim path, for page-allocating processes.  We only
6325  * try to reclaim pages from zones which will satisfy the caller's allocation
6326  * request.
6327  *
6328  * If a zone is deemed to be full of pinned pages then just give it a light
6329  * scan then give up on it.
6330  */
6331 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6332 {
6333 	struct zoneref *z;
6334 	struct zone *zone;
6335 	unsigned long nr_soft_reclaimed;
6336 	unsigned long nr_soft_scanned;
6337 	gfp_t orig_mask;
6338 	pg_data_t *last_pgdat = NULL;
6339 	pg_data_t *first_pgdat = NULL;
6340 
6341 	/*
6342 	 * If the number of buffer_heads in the machine exceeds the maximum
6343 	 * allowed level, force direct reclaim to scan the highmem zone as
6344 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6345 	 */
6346 	orig_mask = sc->gfp_mask;
6347 	if (buffer_heads_over_limit) {
6348 		sc->gfp_mask |= __GFP_HIGHMEM;
6349 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6350 	}
6351 
6352 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6353 					sc->reclaim_idx, sc->nodemask) {
6354 		/*
6355 		 * Take care memory controller reclaiming has small influence
6356 		 * to global LRU.
6357 		 */
6358 		if (!cgroup_reclaim(sc)) {
6359 			if (!cpuset_zone_allowed(zone,
6360 						 GFP_KERNEL | __GFP_HARDWALL))
6361 				continue;
6362 
6363 			/*
6364 			 * If we already have plenty of memory free for
6365 			 * compaction in this zone, don't free any more.
6366 			 * Even though compaction is invoked for any
6367 			 * non-zero order, only frequent costly order
6368 			 * reclamation is disruptive enough to become a
6369 			 * noticeable problem, like transparent huge
6370 			 * page allocations.
6371 			 */
6372 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6373 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6374 			    compaction_ready(zone, sc)) {
6375 				sc->compaction_ready = true;
6376 				continue;
6377 			}
6378 
6379 			/*
6380 			 * Shrink each node in the zonelist once. If the
6381 			 * zonelist is ordered by zone (not the default) then a
6382 			 * node may be shrunk multiple times but in that case
6383 			 * the user prefers lower zones being preserved.
6384 			 */
6385 			if (zone->zone_pgdat == last_pgdat)
6386 				continue;
6387 
6388 			/*
6389 			 * This steals pages from memory cgroups over softlimit
6390 			 * and returns the number of reclaimed pages and
6391 			 * scanned pages. This works for global memory pressure
6392 			 * and balancing, not for a memcg's limit.
6393 			 */
6394 			nr_soft_scanned = 0;
6395 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6396 						sc->order, sc->gfp_mask,
6397 						&nr_soft_scanned);
6398 			sc->nr_reclaimed += nr_soft_reclaimed;
6399 			sc->nr_scanned += nr_soft_scanned;
6400 			/* need some check for avoid more shrink_zone() */
6401 		}
6402 
6403 		if (!first_pgdat)
6404 			first_pgdat = zone->zone_pgdat;
6405 
6406 		/* See comment about same check for global reclaim above */
6407 		if (zone->zone_pgdat == last_pgdat)
6408 			continue;
6409 		last_pgdat = zone->zone_pgdat;
6410 		shrink_node(zone->zone_pgdat, sc);
6411 	}
6412 
6413 	if (first_pgdat)
6414 		consider_reclaim_throttle(first_pgdat, sc);
6415 
6416 	/*
6417 	 * Restore to original mask to avoid the impact on the caller if we
6418 	 * promoted it to __GFP_HIGHMEM.
6419 	 */
6420 	sc->gfp_mask = orig_mask;
6421 }
6422 
6423 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6424 {
6425 	struct lruvec *target_lruvec;
6426 	unsigned long refaults;
6427 
6428 	if (lru_gen_enabled())
6429 		return;
6430 
6431 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6432 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6433 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6434 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6435 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6436 }
6437 
6438 /*
6439  * This is the main entry point to direct page reclaim.
6440  *
6441  * If a full scan of the inactive list fails to free enough memory then we
6442  * are "out of memory" and something needs to be killed.
6443  *
6444  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6445  * high - the zone may be full of dirty or under-writeback pages, which this
6446  * caller can't do much about.  We kick the writeback threads and take explicit
6447  * naps in the hope that some of these pages can be written.  But if the
6448  * allocating task holds filesystem locks which prevent writeout this might not
6449  * work, and the allocation attempt will fail.
6450  *
6451  * returns:	0, if no pages reclaimed
6452  * 		else, the number of pages reclaimed
6453  */
6454 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6455 					  struct scan_control *sc)
6456 {
6457 	int initial_priority = sc->priority;
6458 	pg_data_t *last_pgdat;
6459 	struct zoneref *z;
6460 	struct zone *zone;
6461 retry:
6462 	delayacct_freepages_start();
6463 
6464 	if (!cgroup_reclaim(sc))
6465 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6466 
6467 	do {
6468 		if (!sc->proactive)
6469 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6470 					sc->priority);
6471 		sc->nr_scanned = 0;
6472 		shrink_zones(zonelist, sc);
6473 
6474 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6475 			break;
6476 
6477 		if (sc->compaction_ready)
6478 			break;
6479 
6480 		/*
6481 		 * If we're getting trouble reclaiming, start doing
6482 		 * writepage even in laptop mode.
6483 		 */
6484 		if (sc->priority < DEF_PRIORITY - 2)
6485 			sc->may_writepage = 1;
6486 	} while (--sc->priority >= 0);
6487 
6488 	last_pgdat = NULL;
6489 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6490 					sc->nodemask) {
6491 		if (zone->zone_pgdat == last_pgdat)
6492 			continue;
6493 		last_pgdat = zone->zone_pgdat;
6494 
6495 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6496 
6497 		if (cgroup_reclaim(sc)) {
6498 			struct lruvec *lruvec;
6499 
6500 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6501 						   zone->zone_pgdat);
6502 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6503 		}
6504 	}
6505 
6506 	delayacct_freepages_end();
6507 
6508 	if (sc->nr_reclaimed)
6509 		return sc->nr_reclaimed;
6510 
6511 	/* Aborted reclaim to try compaction? don't OOM, then */
6512 	if (sc->compaction_ready)
6513 		return 1;
6514 
6515 	/*
6516 	 * We make inactive:active ratio decisions based on the node's
6517 	 * composition of memory, but a restrictive reclaim_idx or a
6518 	 * memory.low cgroup setting can exempt large amounts of
6519 	 * memory from reclaim. Neither of which are very common, so
6520 	 * instead of doing costly eligibility calculations of the
6521 	 * entire cgroup subtree up front, we assume the estimates are
6522 	 * good, and retry with forcible deactivation if that fails.
6523 	 */
6524 	if (sc->skipped_deactivate) {
6525 		sc->priority = initial_priority;
6526 		sc->force_deactivate = 1;
6527 		sc->skipped_deactivate = 0;
6528 		goto retry;
6529 	}
6530 
6531 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6532 	if (sc->memcg_low_skipped) {
6533 		sc->priority = initial_priority;
6534 		sc->force_deactivate = 0;
6535 		sc->memcg_low_reclaim = 1;
6536 		sc->memcg_low_skipped = 0;
6537 		goto retry;
6538 	}
6539 
6540 	return 0;
6541 }
6542 
6543 static bool allow_direct_reclaim(pg_data_t *pgdat)
6544 {
6545 	struct zone *zone;
6546 	unsigned long pfmemalloc_reserve = 0;
6547 	unsigned long free_pages = 0;
6548 	int i;
6549 	bool wmark_ok;
6550 
6551 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6552 		return true;
6553 
6554 	for (i = 0; i <= ZONE_NORMAL; i++) {
6555 		zone = &pgdat->node_zones[i];
6556 		if (!managed_zone(zone))
6557 			continue;
6558 
6559 		if (!zone_reclaimable_pages(zone))
6560 			continue;
6561 
6562 		pfmemalloc_reserve += min_wmark_pages(zone);
6563 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6564 	}
6565 
6566 	/* If there are no reserves (unexpected config) then do not throttle */
6567 	if (!pfmemalloc_reserve)
6568 		return true;
6569 
6570 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6571 
6572 	/* kswapd must be awake if processes are being throttled */
6573 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6574 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6575 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6576 
6577 		wake_up_interruptible(&pgdat->kswapd_wait);
6578 	}
6579 
6580 	return wmark_ok;
6581 }
6582 
6583 /*
6584  * Throttle direct reclaimers if backing storage is backed by the network
6585  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6586  * depleted. kswapd will continue to make progress and wake the processes
6587  * when the low watermark is reached.
6588  *
6589  * Returns true if a fatal signal was delivered during throttling. If this
6590  * happens, the page allocator should not consider triggering the OOM killer.
6591  */
6592 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6593 					nodemask_t *nodemask)
6594 {
6595 	struct zoneref *z;
6596 	struct zone *zone;
6597 	pg_data_t *pgdat = NULL;
6598 
6599 	/*
6600 	 * Kernel threads should not be throttled as they may be indirectly
6601 	 * responsible for cleaning pages necessary for reclaim to make forward
6602 	 * progress. kjournald for example may enter direct reclaim while
6603 	 * committing a transaction where throttling it could forcing other
6604 	 * processes to block on log_wait_commit().
6605 	 */
6606 	if (current->flags & PF_KTHREAD)
6607 		goto out;
6608 
6609 	/*
6610 	 * If a fatal signal is pending, this process should not throttle.
6611 	 * It should return quickly so it can exit and free its memory
6612 	 */
6613 	if (fatal_signal_pending(current))
6614 		goto out;
6615 
6616 	/*
6617 	 * Check if the pfmemalloc reserves are ok by finding the first node
6618 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6619 	 * GFP_KERNEL will be required for allocating network buffers when
6620 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6621 	 *
6622 	 * Throttling is based on the first usable node and throttled processes
6623 	 * wait on a queue until kswapd makes progress and wakes them. There
6624 	 * is an affinity then between processes waking up and where reclaim
6625 	 * progress has been made assuming the process wakes on the same node.
6626 	 * More importantly, processes running on remote nodes will not compete
6627 	 * for remote pfmemalloc reserves and processes on different nodes
6628 	 * should make reasonable progress.
6629 	 */
6630 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6631 					gfp_zone(gfp_mask), nodemask) {
6632 		if (zone_idx(zone) > ZONE_NORMAL)
6633 			continue;
6634 
6635 		/* Throttle based on the first usable node */
6636 		pgdat = zone->zone_pgdat;
6637 		if (allow_direct_reclaim(pgdat))
6638 			goto out;
6639 		break;
6640 	}
6641 
6642 	/* If no zone was usable by the allocation flags then do not throttle */
6643 	if (!pgdat)
6644 		goto out;
6645 
6646 	/* Account for the throttling */
6647 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6648 
6649 	/*
6650 	 * If the caller cannot enter the filesystem, it's possible that it
6651 	 * is due to the caller holding an FS lock or performing a journal
6652 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6653 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6654 	 * blocked waiting on the same lock. Instead, throttle for up to a
6655 	 * second before continuing.
6656 	 */
6657 	if (!(gfp_mask & __GFP_FS))
6658 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6659 			allow_direct_reclaim(pgdat), HZ);
6660 	else
6661 		/* Throttle until kswapd wakes the process */
6662 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6663 			allow_direct_reclaim(pgdat));
6664 
6665 	if (fatal_signal_pending(current))
6666 		return true;
6667 
6668 out:
6669 	return false;
6670 }
6671 
6672 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6673 				gfp_t gfp_mask, nodemask_t *nodemask)
6674 {
6675 	unsigned long nr_reclaimed;
6676 	struct scan_control sc = {
6677 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6678 		.gfp_mask = current_gfp_context(gfp_mask),
6679 		.reclaim_idx = gfp_zone(gfp_mask),
6680 		.order = order,
6681 		.nodemask = nodemask,
6682 		.priority = DEF_PRIORITY,
6683 		.may_writepage = !laptop_mode,
6684 		.may_unmap = 1,
6685 		.may_swap = 1,
6686 	};
6687 
6688 	/*
6689 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6690 	 * Confirm they are large enough for max values.
6691 	 */
6692 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6693 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6694 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6695 
6696 	/*
6697 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6698 	 * 1 is returned so that the page allocator does not OOM kill at this
6699 	 * point.
6700 	 */
6701 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6702 		return 1;
6703 
6704 	set_task_reclaim_state(current, &sc.reclaim_state);
6705 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6706 
6707 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6708 
6709 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6710 	set_task_reclaim_state(current, NULL);
6711 
6712 	return nr_reclaimed;
6713 }
6714 
6715 #ifdef CONFIG_MEMCG
6716 
6717 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6718 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6719 						gfp_t gfp_mask, bool noswap,
6720 						pg_data_t *pgdat,
6721 						unsigned long *nr_scanned)
6722 {
6723 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6724 	struct scan_control sc = {
6725 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6726 		.target_mem_cgroup = memcg,
6727 		.may_writepage = !laptop_mode,
6728 		.may_unmap = 1,
6729 		.reclaim_idx = MAX_NR_ZONES - 1,
6730 		.may_swap = !noswap,
6731 	};
6732 
6733 	WARN_ON_ONCE(!current->reclaim_state);
6734 
6735 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6736 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6737 
6738 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6739 						      sc.gfp_mask);
6740 
6741 	/*
6742 	 * NOTE: Although we can get the priority field, using it
6743 	 * here is not a good idea, since it limits the pages we can scan.
6744 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6745 	 * will pick up pages from other mem cgroup's as well. We hack
6746 	 * the priority and make it zero.
6747 	 */
6748 	shrink_lruvec(lruvec, &sc);
6749 
6750 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6751 
6752 	*nr_scanned = sc.nr_scanned;
6753 
6754 	return sc.nr_reclaimed;
6755 }
6756 
6757 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6758 					   unsigned long nr_pages,
6759 					   gfp_t gfp_mask,
6760 					   unsigned int reclaim_options)
6761 {
6762 	unsigned long nr_reclaimed;
6763 	unsigned int noreclaim_flag;
6764 	struct scan_control sc = {
6765 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6766 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6767 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6768 		.reclaim_idx = MAX_NR_ZONES - 1,
6769 		.target_mem_cgroup = memcg,
6770 		.priority = DEF_PRIORITY,
6771 		.may_writepage = !laptop_mode,
6772 		.may_unmap = 1,
6773 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6774 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6775 	};
6776 	/*
6777 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6778 	 * equal pressure on all the nodes. This is based on the assumption that
6779 	 * the reclaim does not bail out early.
6780 	 */
6781 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6782 
6783 	set_task_reclaim_state(current, &sc.reclaim_state);
6784 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6785 	noreclaim_flag = memalloc_noreclaim_save();
6786 
6787 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6788 
6789 	memalloc_noreclaim_restore(noreclaim_flag);
6790 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6791 	set_task_reclaim_state(current, NULL);
6792 
6793 	return nr_reclaimed;
6794 }
6795 #endif
6796 
6797 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6798 {
6799 	struct mem_cgroup *memcg;
6800 	struct lruvec *lruvec;
6801 
6802 	if (lru_gen_enabled()) {
6803 		lru_gen_age_node(pgdat, sc);
6804 		return;
6805 	}
6806 
6807 	if (!can_age_anon_pages(pgdat, sc))
6808 		return;
6809 
6810 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6811 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6812 		return;
6813 
6814 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6815 	do {
6816 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6817 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6818 				   sc, LRU_ACTIVE_ANON);
6819 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6820 	} while (memcg);
6821 }
6822 
6823 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6824 {
6825 	int i;
6826 	struct zone *zone;
6827 
6828 	/*
6829 	 * Check for watermark boosts top-down as the higher zones
6830 	 * are more likely to be boosted. Both watermarks and boosts
6831 	 * should not be checked at the same time as reclaim would
6832 	 * start prematurely when there is no boosting and a lower
6833 	 * zone is balanced.
6834 	 */
6835 	for (i = highest_zoneidx; i >= 0; i--) {
6836 		zone = pgdat->node_zones + i;
6837 		if (!managed_zone(zone))
6838 			continue;
6839 
6840 		if (zone->watermark_boost)
6841 			return true;
6842 	}
6843 
6844 	return false;
6845 }
6846 
6847 /*
6848  * Returns true if there is an eligible zone balanced for the request order
6849  * and highest_zoneidx
6850  */
6851 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6852 {
6853 	int i;
6854 	unsigned long mark = -1;
6855 	struct zone *zone;
6856 
6857 	/*
6858 	 * Check watermarks bottom-up as lower zones are more likely to
6859 	 * meet watermarks.
6860 	 */
6861 	for (i = 0; i <= highest_zoneidx; i++) {
6862 		zone = pgdat->node_zones + i;
6863 
6864 		if (!managed_zone(zone))
6865 			continue;
6866 
6867 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6868 			mark = wmark_pages(zone, WMARK_PROMO);
6869 		else
6870 			mark = high_wmark_pages(zone);
6871 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6872 			return true;
6873 	}
6874 
6875 	/*
6876 	 * If a node has no managed zone within highest_zoneidx, it does not
6877 	 * need balancing by definition. This can happen if a zone-restricted
6878 	 * allocation tries to wake a remote kswapd.
6879 	 */
6880 	if (mark == -1)
6881 		return true;
6882 
6883 	return false;
6884 }
6885 
6886 /* Clear pgdat state for congested, dirty or under writeback. */
6887 static void clear_pgdat_congested(pg_data_t *pgdat)
6888 {
6889 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6890 
6891 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6892 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6893 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6894 }
6895 
6896 /*
6897  * Prepare kswapd for sleeping. This verifies that there are no processes
6898  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6899  *
6900  * Returns true if kswapd is ready to sleep
6901  */
6902 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6903 				int highest_zoneidx)
6904 {
6905 	/*
6906 	 * The throttled processes are normally woken up in balance_pgdat() as
6907 	 * soon as allow_direct_reclaim() is true. But there is a potential
6908 	 * race between when kswapd checks the watermarks and a process gets
6909 	 * throttled. There is also a potential race if processes get
6910 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6911 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6912 	 * the wake up checks. If kswapd is going to sleep, no process should
6913 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6914 	 * the wake up is premature, processes will wake kswapd and get
6915 	 * throttled again. The difference from wake ups in balance_pgdat() is
6916 	 * that here we are under prepare_to_wait().
6917 	 */
6918 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6919 		wake_up_all(&pgdat->pfmemalloc_wait);
6920 
6921 	/* Hopeless node, leave it to direct reclaim */
6922 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6923 		return true;
6924 
6925 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6926 		clear_pgdat_congested(pgdat);
6927 		return true;
6928 	}
6929 
6930 	return false;
6931 }
6932 
6933 /*
6934  * kswapd shrinks a node of pages that are at or below the highest usable
6935  * zone that is currently unbalanced.
6936  *
6937  * Returns true if kswapd scanned at least the requested number of pages to
6938  * reclaim or if the lack of progress was due to pages under writeback.
6939  * This is used to determine if the scanning priority needs to be raised.
6940  */
6941 static bool kswapd_shrink_node(pg_data_t *pgdat,
6942 			       struct scan_control *sc)
6943 {
6944 	struct zone *zone;
6945 	int z;
6946 
6947 	/* Reclaim a number of pages proportional to the number of zones */
6948 	sc->nr_to_reclaim = 0;
6949 	for (z = 0; z <= sc->reclaim_idx; z++) {
6950 		zone = pgdat->node_zones + z;
6951 		if (!managed_zone(zone))
6952 			continue;
6953 
6954 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6955 	}
6956 
6957 	/*
6958 	 * Historically care was taken to put equal pressure on all zones but
6959 	 * now pressure is applied based on node LRU order.
6960 	 */
6961 	shrink_node(pgdat, sc);
6962 
6963 	/*
6964 	 * Fragmentation may mean that the system cannot be rebalanced for
6965 	 * high-order allocations. If twice the allocation size has been
6966 	 * reclaimed then recheck watermarks only at order-0 to prevent
6967 	 * excessive reclaim. Assume that a process requested a high-order
6968 	 * can direct reclaim/compact.
6969 	 */
6970 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6971 		sc->order = 0;
6972 
6973 	return sc->nr_scanned >= sc->nr_to_reclaim;
6974 }
6975 
6976 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6977 static inline void
6978 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6979 {
6980 	int i;
6981 	struct zone *zone;
6982 
6983 	for (i = 0; i <= highest_zoneidx; i++) {
6984 		zone = pgdat->node_zones + i;
6985 
6986 		if (!managed_zone(zone))
6987 			continue;
6988 
6989 		if (active)
6990 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6991 		else
6992 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6993 	}
6994 }
6995 
6996 static inline void
6997 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6998 {
6999 	update_reclaim_active(pgdat, highest_zoneidx, true);
7000 }
7001 
7002 static inline void
7003 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7004 {
7005 	update_reclaim_active(pgdat, highest_zoneidx, false);
7006 }
7007 
7008 /*
7009  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7010  * that are eligible for use by the caller until at least one zone is
7011  * balanced.
7012  *
7013  * Returns the order kswapd finished reclaiming at.
7014  *
7015  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7016  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7017  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7018  * or lower is eligible for reclaim until at least one usable zone is
7019  * balanced.
7020  */
7021 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7022 {
7023 	int i;
7024 	unsigned long nr_soft_reclaimed;
7025 	unsigned long nr_soft_scanned;
7026 	unsigned long pflags;
7027 	unsigned long nr_boost_reclaim;
7028 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7029 	bool boosted;
7030 	struct zone *zone;
7031 	struct scan_control sc = {
7032 		.gfp_mask = GFP_KERNEL,
7033 		.order = order,
7034 		.may_unmap = 1,
7035 	};
7036 
7037 	set_task_reclaim_state(current, &sc.reclaim_state);
7038 	psi_memstall_enter(&pflags);
7039 	__fs_reclaim_acquire(_THIS_IP_);
7040 
7041 	count_vm_event(PAGEOUTRUN);
7042 
7043 	/*
7044 	 * Account for the reclaim boost. Note that the zone boost is left in
7045 	 * place so that parallel allocations that are near the watermark will
7046 	 * stall or direct reclaim until kswapd is finished.
7047 	 */
7048 	nr_boost_reclaim = 0;
7049 	for (i = 0; i <= highest_zoneidx; i++) {
7050 		zone = pgdat->node_zones + i;
7051 		if (!managed_zone(zone))
7052 			continue;
7053 
7054 		nr_boost_reclaim += zone->watermark_boost;
7055 		zone_boosts[i] = zone->watermark_boost;
7056 	}
7057 	boosted = nr_boost_reclaim;
7058 
7059 restart:
7060 	set_reclaim_active(pgdat, highest_zoneidx);
7061 	sc.priority = DEF_PRIORITY;
7062 	do {
7063 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7064 		bool raise_priority = true;
7065 		bool balanced;
7066 		bool ret;
7067 
7068 		sc.reclaim_idx = highest_zoneidx;
7069 
7070 		/*
7071 		 * If the number of buffer_heads exceeds the maximum allowed
7072 		 * then consider reclaiming from all zones. This has a dual
7073 		 * purpose -- on 64-bit systems it is expected that
7074 		 * buffer_heads are stripped during active rotation. On 32-bit
7075 		 * systems, highmem pages can pin lowmem memory and shrinking
7076 		 * buffers can relieve lowmem pressure. Reclaim may still not
7077 		 * go ahead if all eligible zones for the original allocation
7078 		 * request are balanced to avoid excessive reclaim from kswapd.
7079 		 */
7080 		if (buffer_heads_over_limit) {
7081 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7082 				zone = pgdat->node_zones + i;
7083 				if (!managed_zone(zone))
7084 					continue;
7085 
7086 				sc.reclaim_idx = i;
7087 				break;
7088 			}
7089 		}
7090 
7091 		/*
7092 		 * If the pgdat is imbalanced then ignore boosting and preserve
7093 		 * the watermarks for a later time and restart. Note that the
7094 		 * zone watermarks will be still reset at the end of balancing
7095 		 * on the grounds that the normal reclaim should be enough to
7096 		 * re-evaluate if boosting is required when kswapd next wakes.
7097 		 */
7098 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7099 		if (!balanced && nr_boost_reclaim) {
7100 			nr_boost_reclaim = 0;
7101 			goto restart;
7102 		}
7103 
7104 		/*
7105 		 * If boosting is not active then only reclaim if there are no
7106 		 * eligible zones. Note that sc.reclaim_idx is not used as
7107 		 * buffer_heads_over_limit may have adjusted it.
7108 		 */
7109 		if (!nr_boost_reclaim && balanced)
7110 			goto out;
7111 
7112 		/* Limit the priority of boosting to avoid reclaim writeback */
7113 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7114 			raise_priority = false;
7115 
7116 		/*
7117 		 * Do not writeback or swap pages for boosted reclaim. The
7118 		 * intent is to relieve pressure not issue sub-optimal IO
7119 		 * from reclaim context. If no pages are reclaimed, the
7120 		 * reclaim will be aborted.
7121 		 */
7122 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7123 		sc.may_swap = !nr_boost_reclaim;
7124 
7125 		/*
7126 		 * Do some background aging, to give pages a chance to be
7127 		 * referenced before reclaiming. All pages are rotated
7128 		 * regardless of classzone as this is about consistent aging.
7129 		 */
7130 		kswapd_age_node(pgdat, &sc);
7131 
7132 		/*
7133 		 * If we're getting trouble reclaiming, start doing writepage
7134 		 * even in laptop mode.
7135 		 */
7136 		if (sc.priority < DEF_PRIORITY - 2)
7137 			sc.may_writepage = 1;
7138 
7139 		/* Call soft limit reclaim before calling shrink_node. */
7140 		sc.nr_scanned = 0;
7141 		nr_soft_scanned = 0;
7142 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7143 						sc.gfp_mask, &nr_soft_scanned);
7144 		sc.nr_reclaimed += nr_soft_reclaimed;
7145 
7146 		/*
7147 		 * There should be no need to raise the scanning priority if
7148 		 * enough pages are already being scanned that that high
7149 		 * watermark would be met at 100% efficiency.
7150 		 */
7151 		if (kswapd_shrink_node(pgdat, &sc))
7152 			raise_priority = false;
7153 
7154 		/*
7155 		 * If the low watermark is met there is no need for processes
7156 		 * to be throttled on pfmemalloc_wait as they should not be
7157 		 * able to safely make forward progress. Wake them
7158 		 */
7159 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7160 				allow_direct_reclaim(pgdat))
7161 			wake_up_all(&pgdat->pfmemalloc_wait);
7162 
7163 		/* Check if kswapd should be suspending */
7164 		__fs_reclaim_release(_THIS_IP_);
7165 		ret = try_to_freeze();
7166 		__fs_reclaim_acquire(_THIS_IP_);
7167 		if (ret || kthread_should_stop())
7168 			break;
7169 
7170 		/*
7171 		 * Raise priority if scanning rate is too low or there was no
7172 		 * progress in reclaiming pages
7173 		 */
7174 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7175 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7176 
7177 		/*
7178 		 * If reclaim made no progress for a boost, stop reclaim as
7179 		 * IO cannot be queued and it could be an infinite loop in
7180 		 * extreme circumstances.
7181 		 */
7182 		if (nr_boost_reclaim && !nr_reclaimed)
7183 			break;
7184 
7185 		if (raise_priority || !nr_reclaimed)
7186 			sc.priority--;
7187 	} while (sc.priority >= 1);
7188 
7189 	if (!sc.nr_reclaimed)
7190 		pgdat->kswapd_failures++;
7191 
7192 out:
7193 	clear_reclaim_active(pgdat, highest_zoneidx);
7194 
7195 	/* If reclaim was boosted, account for the reclaim done in this pass */
7196 	if (boosted) {
7197 		unsigned long flags;
7198 
7199 		for (i = 0; i <= highest_zoneidx; i++) {
7200 			if (!zone_boosts[i])
7201 				continue;
7202 
7203 			/* Increments are under the zone lock */
7204 			zone = pgdat->node_zones + i;
7205 			spin_lock_irqsave(&zone->lock, flags);
7206 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7207 			spin_unlock_irqrestore(&zone->lock, flags);
7208 		}
7209 
7210 		/*
7211 		 * As there is now likely space, wakeup kcompact to defragment
7212 		 * pageblocks.
7213 		 */
7214 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7215 	}
7216 
7217 	snapshot_refaults(NULL, pgdat);
7218 	__fs_reclaim_release(_THIS_IP_);
7219 	psi_memstall_leave(&pflags);
7220 	set_task_reclaim_state(current, NULL);
7221 
7222 	/*
7223 	 * Return the order kswapd stopped reclaiming at as
7224 	 * prepare_kswapd_sleep() takes it into account. If another caller
7225 	 * entered the allocator slow path while kswapd was awake, order will
7226 	 * remain at the higher level.
7227 	 */
7228 	return sc.order;
7229 }
7230 
7231 /*
7232  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7233  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7234  * not a valid index then either kswapd runs for first time or kswapd couldn't
7235  * sleep after previous reclaim attempt (node is still unbalanced). In that
7236  * case return the zone index of the previous kswapd reclaim cycle.
7237  */
7238 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7239 					   enum zone_type prev_highest_zoneidx)
7240 {
7241 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7242 
7243 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7244 }
7245 
7246 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7247 				unsigned int highest_zoneidx)
7248 {
7249 	long remaining = 0;
7250 	DEFINE_WAIT(wait);
7251 
7252 	if (freezing(current) || kthread_should_stop())
7253 		return;
7254 
7255 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7256 
7257 	/*
7258 	 * Try to sleep for a short interval. Note that kcompactd will only be
7259 	 * woken if it is possible to sleep for a short interval. This is
7260 	 * deliberate on the assumption that if reclaim cannot keep an
7261 	 * eligible zone balanced that it's also unlikely that compaction will
7262 	 * succeed.
7263 	 */
7264 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7265 		/*
7266 		 * Compaction records what page blocks it recently failed to
7267 		 * isolate pages from and skips them in the future scanning.
7268 		 * When kswapd is going to sleep, it is reasonable to assume
7269 		 * that pages and compaction may succeed so reset the cache.
7270 		 */
7271 		reset_isolation_suitable(pgdat);
7272 
7273 		/*
7274 		 * We have freed the memory, now we should compact it to make
7275 		 * allocation of the requested order possible.
7276 		 */
7277 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7278 
7279 		remaining = schedule_timeout(HZ/10);
7280 
7281 		/*
7282 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7283 		 * order. The values will either be from a wakeup request or
7284 		 * the previous request that slept prematurely.
7285 		 */
7286 		if (remaining) {
7287 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7288 					kswapd_highest_zoneidx(pgdat,
7289 							highest_zoneidx));
7290 
7291 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7292 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7293 		}
7294 
7295 		finish_wait(&pgdat->kswapd_wait, &wait);
7296 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7297 	}
7298 
7299 	/*
7300 	 * After a short sleep, check if it was a premature sleep. If not, then
7301 	 * go fully to sleep until explicitly woken up.
7302 	 */
7303 	if (!remaining &&
7304 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7305 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7306 
7307 		/*
7308 		 * vmstat counters are not perfectly accurate and the estimated
7309 		 * value for counters such as NR_FREE_PAGES can deviate from the
7310 		 * true value by nr_online_cpus * threshold. To avoid the zone
7311 		 * watermarks being breached while under pressure, we reduce the
7312 		 * per-cpu vmstat threshold while kswapd is awake and restore
7313 		 * them before going back to sleep.
7314 		 */
7315 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7316 
7317 		if (!kthread_should_stop())
7318 			schedule();
7319 
7320 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7321 	} else {
7322 		if (remaining)
7323 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7324 		else
7325 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7326 	}
7327 	finish_wait(&pgdat->kswapd_wait, &wait);
7328 }
7329 
7330 /*
7331  * The background pageout daemon, started as a kernel thread
7332  * from the init process.
7333  *
7334  * This basically trickles out pages so that we have _some_
7335  * free memory available even if there is no other activity
7336  * that frees anything up. This is needed for things like routing
7337  * etc, where we otherwise might have all activity going on in
7338  * asynchronous contexts that cannot page things out.
7339  *
7340  * If there are applications that are active memory-allocators
7341  * (most normal use), this basically shouldn't matter.
7342  */
7343 static int kswapd(void *p)
7344 {
7345 	unsigned int alloc_order, reclaim_order;
7346 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7347 	pg_data_t *pgdat = (pg_data_t *)p;
7348 	struct task_struct *tsk = current;
7349 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7350 
7351 	if (!cpumask_empty(cpumask))
7352 		set_cpus_allowed_ptr(tsk, cpumask);
7353 
7354 	/*
7355 	 * Tell the memory management that we're a "memory allocator",
7356 	 * and that if we need more memory we should get access to it
7357 	 * regardless (see "__alloc_pages()"). "kswapd" should
7358 	 * never get caught in the normal page freeing logic.
7359 	 *
7360 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7361 	 * you need a small amount of memory in order to be able to
7362 	 * page out something else, and this flag essentially protects
7363 	 * us from recursively trying to free more memory as we're
7364 	 * trying to free the first piece of memory in the first place).
7365 	 */
7366 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7367 	set_freezable();
7368 
7369 	WRITE_ONCE(pgdat->kswapd_order, 0);
7370 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7371 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7372 	for ( ; ; ) {
7373 		bool ret;
7374 
7375 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7376 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7377 							highest_zoneidx);
7378 
7379 kswapd_try_sleep:
7380 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7381 					highest_zoneidx);
7382 
7383 		/* Read the new order and highest_zoneidx */
7384 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7385 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7386 							highest_zoneidx);
7387 		WRITE_ONCE(pgdat->kswapd_order, 0);
7388 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7389 
7390 		ret = try_to_freeze();
7391 		if (kthread_should_stop())
7392 			break;
7393 
7394 		/*
7395 		 * We can speed up thawing tasks if we don't call balance_pgdat
7396 		 * after returning from the refrigerator
7397 		 */
7398 		if (ret)
7399 			continue;
7400 
7401 		/*
7402 		 * Reclaim begins at the requested order but if a high-order
7403 		 * reclaim fails then kswapd falls back to reclaiming for
7404 		 * order-0. If that happens, kswapd will consider sleeping
7405 		 * for the order it finished reclaiming at (reclaim_order)
7406 		 * but kcompactd is woken to compact for the original
7407 		 * request (alloc_order).
7408 		 */
7409 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7410 						alloc_order);
7411 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7412 						highest_zoneidx);
7413 		if (reclaim_order < alloc_order)
7414 			goto kswapd_try_sleep;
7415 	}
7416 
7417 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7418 
7419 	return 0;
7420 }
7421 
7422 /*
7423  * A zone is low on free memory or too fragmented for high-order memory.  If
7424  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7425  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7426  * has failed or is not needed, still wake up kcompactd if only compaction is
7427  * needed.
7428  */
7429 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7430 		   enum zone_type highest_zoneidx)
7431 {
7432 	pg_data_t *pgdat;
7433 	enum zone_type curr_idx;
7434 
7435 	if (!managed_zone(zone))
7436 		return;
7437 
7438 	if (!cpuset_zone_allowed(zone, gfp_flags))
7439 		return;
7440 
7441 	pgdat = zone->zone_pgdat;
7442 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7443 
7444 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7445 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7446 
7447 	if (READ_ONCE(pgdat->kswapd_order) < order)
7448 		WRITE_ONCE(pgdat->kswapd_order, order);
7449 
7450 	if (!waitqueue_active(&pgdat->kswapd_wait))
7451 		return;
7452 
7453 	/* Hopeless node, leave it to direct reclaim if possible */
7454 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7455 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7456 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7457 		/*
7458 		 * There may be plenty of free memory available, but it's too
7459 		 * fragmented for high-order allocations.  Wake up kcompactd
7460 		 * and rely on compaction_suitable() to determine if it's
7461 		 * needed.  If it fails, it will defer subsequent attempts to
7462 		 * ratelimit its work.
7463 		 */
7464 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7465 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7466 		return;
7467 	}
7468 
7469 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7470 				      gfp_flags);
7471 	wake_up_interruptible(&pgdat->kswapd_wait);
7472 }
7473 
7474 #ifdef CONFIG_HIBERNATION
7475 /*
7476  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7477  * freed pages.
7478  *
7479  * Rather than trying to age LRUs the aim is to preserve the overall
7480  * LRU order by reclaiming preferentially
7481  * inactive > active > active referenced > active mapped
7482  */
7483 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7484 {
7485 	struct scan_control sc = {
7486 		.nr_to_reclaim = nr_to_reclaim,
7487 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7488 		.reclaim_idx = MAX_NR_ZONES - 1,
7489 		.priority = DEF_PRIORITY,
7490 		.may_writepage = 1,
7491 		.may_unmap = 1,
7492 		.may_swap = 1,
7493 		.hibernation_mode = 1,
7494 	};
7495 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7496 	unsigned long nr_reclaimed;
7497 	unsigned int noreclaim_flag;
7498 
7499 	fs_reclaim_acquire(sc.gfp_mask);
7500 	noreclaim_flag = memalloc_noreclaim_save();
7501 	set_task_reclaim_state(current, &sc.reclaim_state);
7502 
7503 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7504 
7505 	set_task_reclaim_state(current, NULL);
7506 	memalloc_noreclaim_restore(noreclaim_flag);
7507 	fs_reclaim_release(sc.gfp_mask);
7508 
7509 	return nr_reclaimed;
7510 }
7511 #endif /* CONFIG_HIBERNATION */
7512 
7513 /*
7514  * This kswapd start function will be called by init and node-hot-add.
7515  */
7516 void kswapd_run(int nid)
7517 {
7518 	pg_data_t *pgdat = NODE_DATA(nid);
7519 
7520 	pgdat_kswapd_lock(pgdat);
7521 	if (!pgdat->kswapd) {
7522 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7523 		if (IS_ERR(pgdat->kswapd)) {
7524 			/* failure at boot is fatal */
7525 			BUG_ON(system_state < SYSTEM_RUNNING);
7526 			pr_err("Failed to start kswapd on node %d\n", nid);
7527 			pgdat->kswapd = NULL;
7528 		}
7529 	}
7530 	pgdat_kswapd_unlock(pgdat);
7531 }
7532 
7533 /*
7534  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7535  * be holding mem_hotplug_begin/done().
7536  */
7537 void kswapd_stop(int nid)
7538 {
7539 	pg_data_t *pgdat = NODE_DATA(nid);
7540 	struct task_struct *kswapd;
7541 
7542 	pgdat_kswapd_lock(pgdat);
7543 	kswapd = pgdat->kswapd;
7544 	if (kswapd) {
7545 		kthread_stop(kswapd);
7546 		pgdat->kswapd = NULL;
7547 	}
7548 	pgdat_kswapd_unlock(pgdat);
7549 }
7550 
7551 static int __init kswapd_init(void)
7552 {
7553 	int nid;
7554 
7555 	swap_setup();
7556 	for_each_node_state(nid, N_MEMORY)
7557  		kswapd_run(nid);
7558 	return 0;
7559 }
7560 
7561 module_init(kswapd_init)
7562 
7563 #ifdef CONFIG_NUMA
7564 /*
7565  * Node reclaim mode
7566  *
7567  * If non-zero call node_reclaim when the number of free pages falls below
7568  * the watermarks.
7569  */
7570 int node_reclaim_mode __read_mostly;
7571 
7572 /*
7573  * Priority for NODE_RECLAIM. This determines the fraction of pages
7574  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7575  * a zone.
7576  */
7577 #define NODE_RECLAIM_PRIORITY 4
7578 
7579 /*
7580  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7581  * occur.
7582  */
7583 int sysctl_min_unmapped_ratio = 1;
7584 
7585 /*
7586  * If the number of slab pages in a zone grows beyond this percentage then
7587  * slab reclaim needs to occur.
7588  */
7589 int sysctl_min_slab_ratio = 5;
7590 
7591 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7592 {
7593 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7594 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7595 		node_page_state(pgdat, NR_ACTIVE_FILE);
7596 
7597 	/*
7598 	 * It's possible for there to be more file mapped pages than
7599 	 * accounted for by the pages on the file LRU lists because
7600 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7601 	 */
7602 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7603 }
7604 
7605 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7606 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7607 {
7608 	unsigned long nr_pagecache_reclaimable;
7609 	unsigned long delta = 0;
7610 
7611 	/*
7612 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7613 	 * potentially reclaimable. Otherwise, we have to worry about
7614 	 * pages like swapcache and node_unmapped_file_pages() provides
7615 	 * a better estimate
7616 	 */
7617 	if (node_reclaim_mode & RECLAIM_UNMAP)
7618 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7619 	else
7620 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7621 
7622 	/* If we can't clean pages, remove dirty pages from consideration */
7623 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7624 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7625 
7626 	/* Watch for any possible underflows due to delta */
7627 	if (unlikely(delta > nr_pagecache_reclaimable))
7628 		delta = nr_pagecache_reclaimable;
7629 
7630 	return nr_pagecache_reclaimable - delta;
7631 }
7632 
7633 /*
7634  * Try to free up some pages from this node through reclaim.
7635  */
7636 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7637 {
7638 	/* Minimum pages needed in order to stay on node */
7639 	const unsigned long nr_pages = 1 << order;
7640 	struct task_struct *p = current;
7641 	unsigned int noreclaim_flag;
7642 	struct scan_control sc = {
7643 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7644 		.gfp_mask = current_gfp_context(gfp_mask),
7645 		.order = order,
7646 		.priority = NODE_RECLAIM_PRIORITY,
7647 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7648 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7649 		.may_swap = 1,
7650 		.reclaim_idx = gfp_zone(gfp_mask),
7651 	};
7652 	unsigned long pflags;
7653 
7654 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7655 					   sc.gfp_mask);
7656 
7657 	cond_resched();
7658 	psi_memstall_enter(&pflags);
7659 	fs_reclaim_acquire(sc.gfp_mask);
7660 	/*
7661 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7662 	 */
7663 	noreclaim_flag = memalloc_noreclaim_save();
7664 	set_task_reclaim_state(p, &sc.reclaim_state);
7665 
7666 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7667 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7668 		/*
7669 		 * Free memory by calling shrink node with increasing
7670 		 * priorities until we have enough memory freed.
7671 		 */
7672 		do {
7673 			shrink_node(pgdat, &sc);
7674 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7675 	}
7676 
7677 	set_task_reclaim_state(p, NULL);
7678 	memalloc_noreclaim_restore(noreclaim_flag);
7679 	fs_reclaim_release(sc.gfp_mask);
7680 	psi_memstall_leave(&pflags);
7681 
7682 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7683 
7684 	return sc.nr_reclaimed >= nr_pages;
7685 }
7686 
7687 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7688 {
7689 	int ret;
7690 
7691 	/*
7692 	 * Node reclaim reclaims unmapped file backed pages and
7693 	 * slab pages if we are over the defined limits.
7694 	 *
7695 	 * A small portion of unmapped file backed pages is needed for
7696 	 * file I/O otherwise pages read by file I/O will be immediately
7697 	 * thrown out if the node is overallocated. So we do not reclaim
7698 	 * if less than a specified percentage of the node is used by
7699 	 * unmapped file backed pages.
7700 	 */
7701 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7702 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7703 	    pgdat->min_slab_pages)
7704 		return NODE_RECLAIM_FULL;
7705 
7706 	/*
7707 	 * Do not scan if the allocation should not be delayed.
7708 	 */
7709 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7710 		return NODE_RECLAIM_NOSCAN;
7711 
7712 	/*
7713 	 * Only run node reclaim on the local node or on nodes that do not
7714 	 * have associated processors. This will favor the local processor
7715 	 * over remote processors and spread off node memory allocations
7716 	 * as wide as possible.
7717 	 */
7718 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7719 		return NODE_RECLAIM_NOSCAN;
7720 
7721 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7722 		return NODE_RECLAIM_NOSCAN;
7723 
7724 	ret = __node_reclaim(pgdat, gfp_mask, order);
7725 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7726 
7727 	if (!ret)
7728 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7729 
7730 	return ret;
7731 }
7732 #endif
7733 
7734 void check_move_unevictable_pages(struct pagevec *pvec)
7735 {
7736 	struct folio_batch fbatch;
7737 	unsigned i;
7738 
7739 	folio_batch_init(&fbatch);
7740 	for (i = 0; i < pvec->nr; i++) {
7741 		struct page *page = pvec->pages[i];
7742 
7743 		if (PageTransTail(page))
7744 			continue;
7745 		folio_batch_add(&fbatch, page_folio(page));
7746 	}
7747 	check_move_unevictable_folios(&fbatch);
7748 }
7749 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7750 
7751 /**
7752  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7753  * lru list
7754  * @fbatch: Batch of lru folios to check.
7755  *
7756  * Checks folios for evictability, if an evictable folio is in the unevictable
7757  * lru list, moves it to the appropriate evictable lru list. This function
7758  * should be only used for lru folios.
7759  */
7760 void check_move_unevictable_folios(struct folio_batch *fbatch)
7761 {
7762 	struct lruvec *lruvec = NULL;
7763 	int pgscanned = 0;
7764 	int pgrescued = 0;
7765 	int i;
7766 
7767 	for (i = 0; i < fbatch->nr; i++) {
7768 		struct folio *folio = fbatch->folios[i];
7769 		int nr_pages = folio_nr_pages(folio);
7770 
7771 		pgscanned += nr_pages;
7772 
7773 		/* block memcg migration while the folio moves between lrus */
7774 		if (!folio_test_clear_lru(folio))
7775 			continue;
7776 
7777 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7778 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7779 			lruvec_del_folio(lruvec, folio);
7780 			folio_clear_unevictable(folio);
7781 			lruvec_add_folio(lruvec, folio);
7782 			pgrescued += nr_pages;
7783 		}
7784 		folio_set_lru(folio);
7785 	}
7786 
7787 	if (lruvec) {
7788 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7789 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7790 		unlock_page_lruvec_irq(lruvec);
7791 	} else if (pgscanned) {
7792 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7793 	}
7794 }
7795 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7796