xref: /openbmc/linux/mm/vmscan.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h>	/* for try_to_release_page(),
31 					buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57 
58 #include "internal.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62 
63 struct scan_control {
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	/* This context's GFP mask */
68 	gfp_t gfp_mask;
69 
70 	/* Allocation order */
71 	int order;
72 
73 	/*
74 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 	 * are scanned.
76 	 */
77 	nodemask_t	*nodemask;
78 
79 	/*
80 	 * The memory cgroup that hit its limit and as a result is the
81 	 * primary target of this reclaim invocation.
82 	 */
83 	struct mem_cgroup *target_mem_cgroup;
84 
85 	/* Scan (total_size >> priority) pages at once */
86 	int priority;
87 
88 	/* The highest zone to isolate pages for reclaim from */
89 	enum zone_type reclaim_idx;
90 
91 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 	unsigned int may_writepage:1;
93 
94 	/* Can mapped pages be reclaimed? */
95 	unsigned int may_unmap:1;
96 
97 	/* Can pages be swapped as part of reclaim? */
98 	unsigned int may_swap:1;
99 
100 	/*
101 	 * Cgroups are not reclaimed below their configured memory.low,
102 	 * unless we threaten to OOM. If any cgroups are skipped due to
103 	 * memory.low and nothing was reclaimed, go back for memory.low.
104 	 */
105 	unsigned int memcg_low_reclaim:1;
106 	unsigned int memcg_low_skipped:1;
107 
108 	unsigned int hibernation_mode:1;
109 
110 	/* One of the zones is ready for compaction */
111 	unsigned int compaction_ready:1;
112 
113 	/* Incremented by the number of inactive pages that were scanned */
114 	unsigned long nr_scanned;
115 
116 	/* Number of pages freed so far during a call to shrink_zones() */
117 	unsigned long nr_reclaimed;
118 };
119 
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)			\
122 	do {								\
123 		if ((_page)->lru.prev != _base) {			\
124 			struct page *prev;				\
125 									\
126 			prev = lru_to_page(&(_page->lru));		\
127 			prefetch(&prev->_field);			\
128 		}							\
129 	} while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133 
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)			\
136 	do {								\
137 		if ((_page)->lru.prev != _base) {			\
138 			struct page *prev;				\
139 									\
140 			prev = lru_to_page(&(_page->lru));		\
141 			prefetchw(&prev->_field);			\
142 		}							\
143 	} while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147 
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 /*
153  * The total number of pages which are beyond the high watermark within all
154  * zones.
155  */
156 unsigned long vm_total_pages;
157 
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160 
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 	return !sc->target_mem_cgroup;
165 }
166 
167 /**
168  * sane_reclaim - is the usual dirty throttling mechanism operational?
169  * @sc: scan_control in question
170  *
171  * The normal page dirty throttling mechanism in balance_dirty_pages() is
172  * completely broken with the legacy memcg and direct stalling in
173  * shrink_page_list() is used for throttling instead, which lacks all the
174  * niceties such as fairness, adaptive pausing, bandwidth proportional
175  * allocation and configurability.
176  *
177  * This function tests whether the vmscan currently in progress can assume
178  * that the normal dirty throttling mechanism is operational.
179  */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
183 
184 	if (!memcg)
185 		return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 		return true;
189 #endif
190 	return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 	return true;
196 }
197 
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 	return true;
201 }
202 #endif
203 
204 /*
205  * This misses isolated pages which are not accounted for to save counters.
206  * As the data only determines if reclaim or compaction continues, it is
207  * not expected that isolated pages will be a dominating factor.
208  */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 	unsigned long nr;
212 
213 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 	if (get_nr_swap_pages() > 0)
216 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218 
219 	return nr;
220 }
221 
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 	unsigned long nr;
225 
226 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 
230 	if (get_nr_swap_pages() > 0)
231 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 
235 	return nr;
236 }
237 
238 /**
239  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
240  * @lruvec: lru vector
241  * @lru: lru to use
242  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243  */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 	unsigned long lru_size;
247 	int zid;
248 
249 	if (!mem_cgroup_disabled())
250 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 	else
252 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253 
254 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 		unsigned long size;
257 
258 		if (!managed_zone(zone))
259 			continue;
260 
261 		if (!mem_cgroup_disabled())
262 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 		else
264 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 				       NR_ZONE_LRU_BASE + lru);
266 		lru_size -= min(size, lru_size);
267 	}
268 
269 	return lru_size;
270 
271 }
272 
273 /*
274  * Add a shrinker callback to be called from the vm.
275  */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 	size_t size = sizeof(*shrinker->nr_deferred);
279 
280 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 		size *= nr_node_ids;
282 
283 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 	if (!shrinker->nr_deferred)
285 		return -ENOMEM;
286 
287 	down_write(&shrinker_rwsem);
288 	list_add_tail(&shrinker->list, &shrinker_list);
289 	up_write(&shrinker_rwsem);
290 	return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293 
294 /*
295  * Remove one
296  */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 	down_write(&shrinker_rwsem);
300 	list_del(&shrinker->list);
301 	up_write(&shrinker_rwsem);
302 	kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305 
306 #define SHRINK_BATCH 128
307 
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 				    struct shrinker *shrinker,
310 				    unsigned long nr_scanned,
311 				    unsigned long nr_eligible)
312 {
313 	unsigned long freed = 0;
314 	unsigned long long delta;
315 	long total_scan;
316 	long freeable;
317 	long nr;
318 	long new_nr;
319 	int nid = shrinkctl->nid;
320 	long batch_size = shrinker->batch ? shrinker->batch
321 					  : SHRINK_BATCH;
322 	long scanned = 0, next_deferred;
323 
324 	freeable = shrinker->count_objects(shrinker, shrinkctl);
325 	if (freeable == 0)
326 		return 0;
327 
328 	/*
329 	 * copy the current shrinker scan count into a local variable
330 	 * and zero it so that other concurrent shrinker invocations
331 	 * don't also do this scanning work.
332 	 */
333 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334 
335 	total_scan = nr;
336 	delta = (4 * nr_scanned) / shrinker->seeks;
337 	delta *= freeable;
338 	do_div(delta, nr_eligible + 1);
339 	total_scan += delta;
340 	if (total_scan < 0) {
341 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 		       shrinker->scan_objects, total_scan);
343 		total_scan = freeable;
344 		next_deferred = nr;
345 	} else
346 		next_deferred = total_scan;
347 
348 	/*
349 	 * We need to avoid excessive windup on filesystem shrinkers
350 	 * due to large numbers of GFP_NOFS allocations causing the
351 	 * shrinkers to return -1 all the time. This results in a large
352 	 * nr being built up so when a shrink that can do some work
353 	 * comes along it empties the entire cache due to nr >>>
354 	 * freeable. This is bad for sustaining a working set in
355 	 * memory.
356 	 *
357 	 * Hence only allow the shrinker to scan the entire cache when
358 	 * a large delta change is calculated directly.
359 	 */
360 	if (delta < freeable / 4)
361 		total_scan = min(total_scan, freeable / 2);
362 
363 	/*
364 	 * Avoid risking looping forever due to too large nr value:
365 	 * never try to free more than twice the estimate number of
366 	 * freeable entries.
367 	 */
368 	if (total_scan > freeable * 2)
369 		total_scan = freeable * 2;
370 
371 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 				   nr_scanned, nr_eligible,
373 				   freeable, delta, total_scan);
374 
375 	/*
376 	 * Normally, we should not scan less than batch_size objects in one
377 	 * pass to avoid too frequent shrinker calls, but if the slab has less
378 	 * than batch_size objects in total and we are really tight on memory,
379 	 * we will try to reclaim all available objects, otherwise we can end
380 	 * up failing allocations although there are plenty of reclaimable
381 	 * objects spread over several slabs with usage less than the
382 	 * batch_size.
383 	 *
384 	 * We detect the "tight on memory" situations by looking at the total
385 	 * number of objects we want to scan (total_scan). If it is greater
386 	 * than the total number of objects on slab (freeable), we must be
387 	 * scanning at high prio and therefore should try to reclaim as much as
388 	 * possible.
389 	 */
390 	while (total_scan >= batch_size ||
391 	       total_scan >= freeable) {
392 		unsigned long ret;
393 		unsigned long nr_to_scan = min(batch_size, total_scan);
394 
395 		shrinkctl->nr_to_scan = nr_to_scan;
396 		ret = shrinker->scan_objects(shrinker, shrinkctl);
397 		if (ret == SHRINK_STOP)
398 			break;
399 		freed += ret;
400 
401 		count_vm_events(SLABS_SCANNED, nr_to_scan);
402 		total_scan -= nr_to_scan;
403 		scanned += nr_to_scan;
404 
405 		cond_resched();
406 	}
407 
408 	if (next_deferred >= scanned)
409 		next_deferred -= scanned;
410 	else
411 		next_deferred = 0;
412 	/*
413 	 * move the unused scan count back into the shrinker in a
414 	 * manner that handles concurrent updates. If we exhausted the
415 	 * scan, there is no need to do an update.
416 	 */
417 	if (next_deferred > 0)
418 		new_nr = atomic_long_add_return(next_deferred,
419 						&shrinker->nr_deferred[nid]);
420 	else
421 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422 
423 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 	return freed;
425 }
426 
427 /**
428  * shrink_slab - shrink slab caches
429  * @gfp_mask: allocation context
430  * @nid: node whose slab caches to target
431  * @memcg: memory cgroup whose slab caches to target
432  * @nr_scanned: pressure numerator
433  * @nr_eligible: pressure denominator
434  *
435  * Call the shrink functions to age shrinkable caches.
436  *
437  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438  * unaware shrinkers will receive a node id of 0 instead.
439  *
440  * @memcg specifies the memory cgroup to target. If it is not NULL,
441  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442  * objects from the memory cgroup specified. Otherwise, only unaware
443  * shrinkers are called.
444  *
445  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446  * the available objects should be scanned.  Page reclaim for example
447  * passes the number of pages scanned and the number of pages on the
448  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449  * when it encountered mapped pages.  The ratio is further biased by
450  * the ->seeks setting of the shrink function, which indicates the
451  * cost to recreate an object relative to that of an LRU page.
452  *
453  * Returns the number of reclaimed slab objects.
454  */
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 				 struct mem_cgroup *memcg,
457 				 unsigned long nr_scanned,
458 				 unsigned long nr_eligible)
459 {
460 	struct shrinker *shrinker;
461 	unsigned long freed = 0;
462 
463 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 		return 0;
465 
466 	if (nr_scanned == 0)
467 		nr_scanned = SWAP_CLUSTER_MAX;
468 
469 	if (!down_read_trylock(&shrinker_rwsem)) {
470 		/*
471 		 * If we would return 0, our callers would understand that we
472 		 * have nothing else to shrink and give up trying. By returning
473 		 * 1 we keep it going and assume we'll be able to shrink next
474 		 * time.
475 		 */
476 		freed = 1;
477 		goto out;
478 	}
479 
480 	list_for_each_entry(shrinker, &shrinker_list, list) {
481 		struct shrink_control sc = {
482 			.gfp_mask = gfp_mask,
483 			.nid = nid,
484 			.memcg = memcg,
485 		};
486 
487 		/*
488 		 * If kernel memory accounting is disabled, we ignore
489 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 		 * passing NULL for memcg.
491 		 */
492 		if (memcg_kmem_enabled() &&
493 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 			continue;
495 
496 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 			sc.nid = 0;
498 
499 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
500 	}
501 
502 	up_read(&shrinker_rwsem);
503 out:
504 	cond_resched();
505 	return freed;
506 }
507 
508 void drop_slab_node(int nid)
509 {
510 	unsigned long freed;
511 
512 	do {
513 		struct mem_cgroup *memcg = NULL;
514 
515 		freed = 0;
516 		do {
517 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 					     1000, 1000);
519 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 	} while (freed > 10);
521 }
522 
523 void drop_slab(void)
524 {
525 	int nid;
526 
527 	for_each_online_node(nid)
528 		drop_slab_node(nid);
529 }
530 
531 static inline int is_page_cache_freeable(struct page *page)
532 {
533 	/*
534 	 * A freeable page cache page is referenced only by the caller
535 	 * that isolated the page, the page cache radix tree and
536 	 * optional buffer heads at page->private.
537 	 */
538 	return page_count(page) - page_has_private(page) == 2;
539 }
540 
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 {
543 	if (current->flags & PF_SWAPWRITE)
544 		return 1;
545 	if (!inode_write_congested(inode))
546 		return 1;
547 	if (inode_to_bdi(inode) == current->backing_dev_info)
548 		return 1;
549 	return 0;
550 }
551 
552 /*
553  * We detected a synchronous write error writing a page out.  Probably
554  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
555  * fsync(), msync() or close().
556  *
557  * The tricky part is that after writepage we cannot touch the mapping: nothing
558  * prevents it from being freed up.  But we have a ref on the page and once
559  * that page is locked, the mapping is pinned.
560  *
561  * We're allowed to run sleeping lock_page() here because we know the caller has
562  * __GFP_FS.
563  */
564 static void handle_write_error(struct address_space *mapping,
565 				struct page *page, int error)
566 {
567 	lock_page(page);
568 	if (page_mapping(page) == mapping)
569 		mapping_set_error(mapping, error);
570 	unlock_page(page);
571 }
572 
573 /* possible outcome of pageout() */
574 typedef enum {
575 	/* failed to write page out, page is locked */
576 	PAGE_KEEP,
577 	/* move page to the active list, page is locked */
578 	PAGE_ACTIVATE,
579 	/* page has been sent to the disk successfully, page is unlocked */
580 	PAGE_SUCCESS,
581 	/* page is clean and locked */
582 	PAGE_CLEAN,
583 } pageout_t;
584 
585 /*
586  * pageout is called by shrink_page_list() for each dirty page.
587  * Calls ->writepage().
588  */
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 			 struct scan_control *sc)
591 {
592 	/*
593 	 * If the page is dirty, only perform writeback if that write
594 	 * will be non-blocking.  To prevent this allocation from being
595 	 * stalled by pagecache activity.  But note that there may be
596 	 * stalls if we need to run get_block().  We could test
597 	 * PagePrivate for that.
598 	 *
599 	 * If this process is currently in __generic_file_write_iter() against
600 	 * this page's queue, we can perform writeback even if that
601 	 * will block.
602 	 *
603 	 * If the page is swapcache, write it back even if that would
604 	 * block, for some throttling. This happens by accident, because
605 	 * swap_backing_dev_info is bust: it doesn't reflect the
606 	 * congestion state of the swapdevs.  Easy to fix, if needed.
607 	 */
608 	if (!is_page_cache_freeable(page))
609 		return PAGE_KEEP;
610 	if (!mapping) {
611 		/*
612 		 * Some data journaling orphaned pages can have
613 		 * page->mapping == NULL while being dirty with clean buffers.
614 		 */
615 		if (page_has_private(page)) {
616 			if (try_to_free_buffers(page)) {
617 				ClearPageDirty(page);
618 				pr_info("%s: orphaned page\n", __func__);
619 				return PAGE_CLEAN;
620 			}
621 		}
622 		return PAGE_KEEP;
623 	}
624 	if (mapping->a_ops->writepage == NULL)
625 		return PAGE_ACTIVATE;
626 	if (!may_write_to_inode(mapping->host, sc))
627 		return PAGE_KEEP;
628 
629 	if (clear_page_dirty_for_io(page)) {
630 		int res;
631 		struct writeback_control wbc = {
632 			.sync_mode = WB_SYNC_NONE,
633 			.nr_to_write = SWAP_CLUSTER_MAX,
634 			.range_start = 0,
635 			.range_end = LLONG_MAX,
636 			.for_reclaim = 1,
637 		};
638 
639 		SetPageReclaim(page);
640 		res = mapping->a_ops->writepage(page, &wbc);
641 		if (res < 0)
642 			handle_write_error(mapping, page, res);
643 		if (res == AOP_WRITEPAGE_ACTIVATE) {
644 			ClearPageReclaim(page);
645 			return PAGE_ACTIVATE;
646 		}
647 
648 		if (!PageWriteback(page)) {
649 			/* synchronous write or broken a_ops? */
650 			ClearPageReclaim(page);
651 		}
652 		trace_mm_vmscan_writepage(page);
653 		inc_node_page_state(page, NR_VMSCAN_WRITE);
654 		return PAGE_SUCCESS;
655 	}
656 
657 	return PAGE_CLEAN;
658 }
659 
660 /*
661  * Same as remove_mapping, but if the page is removed from the mapping, it
662  * gets returned with a refcount of 0.
663  */
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 			    bool reclaimed)
666 {
667 	unsigned long flags;
668 
669 	BUG_ON(!PageLocked(page));
670 	BUG_ON(mapping != page_mapping(page));
671 
672 	spin_lock_irqsave(&mapping->tree_lock, flags);
673 	/*
674 	 * The non racy check for a busy page.
675 	 *
676 	 * Must be careful with the order of the tests. When someone has
677 	 * a ref to the page, it may be possible that they dirty it then
678 	 * drop the reference. So if PageDirty is tested before page_count
679 	 * here, then the following race may occur:
680 	 *
681 	 * get_user_pages(&page);
682 	 * [user mapping goes away]
683 	 * write_to(page);
684 	 *				!PageDirty(page)    [good]
685 	 * SetPageDirty(page);
686 	 * put_page(page);
687 	 *				!page_count(page)   [good, discard it]
688 	 *
689 	 * [oops, our write_to data is lost]
690 	 *
691 	 * Reversing the order of the tests ensures such a situation cannot
692 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 	 * load is not satisfied before that of page->_refcount.
694 	 *
695 	 * Note that if SetPageDirty is always performed via set_page_dirty,
696 	 * and thus under tree_lock, then this ordering is not required.
697 	 */
698 	if (!page_ref_freeze(page, 2))
699 		goto cannot_free;
700 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 	if (unlikely(PageDirty(page))) {
702 		page_ref_unfreeze(page, 2);
703 		goto cannot_free;
704 	}
705 
706 	if (PageSwapCache(page)) {
707 		swp_entry_t swap = { .val = page_private(page) };
708 		mem_cgroup_swapout(page, swap);
709 		__delete_from_swap_cache(page);
710 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 		swapcache_free(swap);
712 	} else {
713 		void (*freepage)(struct page *);
714 		void *shadow = NULL;
715 
716 		freepage = mapping->a_ops->freepage;
717 		/*
718 		 * Remember a shadow entry for reclaimed file cache in
719 		 * order to detect refaults, thus thrashing, later on.
720 		 *
721 		 * But don't store shadows in an address space that is
722 		 * already exiting.  This is not just an optizimation,
723 		 * inode reclaim needs to empty out the radix tree or
724 		 * the nodes are lost.  Don't plant shadows behind its
725 		 * back.
726 		 *
727 		 * We also don't store shadows for DAX mappings because the
728 		 * only page cache pages found in these are zero pages
729 		 * covering holes, and because we don't want to mix DAX
730 		 * exceptional entries and shadow exceptional entries in the
731 		 * same page_tree.
732 		 */
733 		if (reclaimed && page_is_file_cache(page) &&
734 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735 			shadow = workingset_eviction(mapping, page);
736 		__delete_from_page_cache(page, shadow);
737 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 
739 		if (freepage != NULL)
740 			freepage(page);
741 	}
742 
743 	return 1;
744 
745 cannot_free:
746 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 	return 0;
748 }
749 
750 /*
751  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
752  * someone else has a ref on the page, abort and return 0.  If it was
753  * successfully detached, return 1.  Assumes the caller has a single ref on
754  * this page.
755  */
756 int remove_mapping(struct address_space *mapping, struct page *page)
757 {
758 	if (__remove_mapping(mapping, page, false)) {
759 		/*
760 		 * Unfreezing the refcount with 1 rather than 2 effectively
761 		 * drops the pagecache ref for us without requiring another
762 		 * atomic operation.
763 		 */
764 		page_ref_unfreeze(page, 1);
765 		return 1;
766 	}
767 	return 0;
768 }
769 
770 /**
771  * putback_lru_page - put previously isolated page onto appropriate LRU list
772  * @page: page to be put back to appropriate lru list
773  *
774  * Add previously isolated @page to appropriate LRU list.
775  * Page may still be unevictable for other reasons.
776  *
777  * lru_lock must not be held, interrupts must be enabled.
778  */
779 void putback_lru_page(struct page *page)
780 {
781 	bool is_unevictable;
782 	int was_unevictable = PageUnevictable(page);
783 
784 	VM_BUG_ON_PAGE(PageLRU(page), page);
785 
786 redo:
787 	ClearPageUnevictable(page);
788 
789 	if (page_evictable(page)) {
790 		/*
791 		 * For evictable pages, we can use the cache.
792 		 * In event of a race, worst case is we end up with an
793 		 * unevictable page on [in]active list.
794 		 * We know how to handle that.
795 		 */
796 		is_unevictable = false;
797 		lru_cache_add(page);
798 	} else {
799 		/*
800 		 * Put unevictable pages directly on zone's unevictable
801 		 * list.
802 		 */
803 		is_unevictable = true;
804 		add_page_to_unevictable_list(page);
805 		/*
806 		 * When racing with an mlock or AS_UNEVICTABLE clearing
807 		 * (page is unlocked) make sure that if the other thread
808 		 * does not observe our setting of PG_lru and fails
809 		 * isolation/check_move_unevictable_pages,
810 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 		 * the page back to the evictable list.
812 		 *
813 		 * The other side is TestClearPageMlocked() or shmem_lock().
814 		 */
815 		smp_mb();
816 	}
817 
818 	/*
819 	 * page's status can change while we move it among lru. If an evictable
820 	 * page is on unevictable list, it never be freed. To avoid that,
821 	 * check after we added it to the list, again.
822 	 */
823 	if (is_unevictable && page_evictable(page)) {
824 		if (!isolate_lru_page(page)) {
825 			put_page(page);
826 			goto redo;
827 		}
828 		/* This means someone else dropped this page from LRU
829 		 * So, it will be freed or putback to LRU again. There is
830 		 * nothing to do here.
831 		 */
832 	}
833 
834 	if (was_unevictable && !is_unevictable)
835 		count_vm_event(UNEVICTABLE_PGRESCUED);
836 	else if (!was_unevictable && is_unevictable)
837 		count_vm_event(UNEVICTABLE_PGCULLED);
838 
839 	put_page(page);		/* drop ref from isolate */
840 }
841 
842 enum page_references {
843 	PAGEREF_RECLAIM,
844 	PAGEREF_RECLAIM_CLEAN,
845 	PAGEREF_KEEP,
846 	PAGEREF_ACTIVATE,
847 };
848 
849 static enum page_references page_check_references(struct page *page,
850 						  struct scan_control *sc)
851 {
852 	int referenced_ptes, referenced_page;
853 	unsigned long vm_flags;
854 
855 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 					  &vm_flags);
857 	referenced_page = TestClearPageReferenced(page);
858 
859 	/*
860 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
861 	 * move the page to the unevictable list.
862 	 */
863 	if (vm_flags & VM_LOCKED)
864 		return PAGEREF_RECLAIM;
865 
866 	if (referenced_ptes) {
867 		if (PageSwapBacked(page))
868 			return PAGEREF_ACTIVATE;
869 		/*
870 		 * All mapped pages start out with page table
871 		 * references from the instantiating fault, so we need
872 		 * to look twice if a mapped file page is used more
873 		 * than once.
874 		 *
875 		 * Mark it and spare it for another trip around the
876 		 * inactive list.  Another page table reference will
877 		 * lead to its activation.
878 		 *
879 		 * Note: the mark is set for activated pages as well
880 		 * so that recently deactivated but used pages are
881 		 * quickly recovered.
882 		 */
883 		SetPageReferenced(page);
884 
885 		if (referenced_page || referenced_ptes > 1)
886 			return PAGEREF_ACTIVATE;
887 
888 		/*
889 		 * Activate file-backed executable pages after first usage.
890 		 */
891 		if (vm_flags & VM_EXEC)
892 			return PAGEREF_ACTIVATE;
893 
894 		return PAGEREF_KEEP;
895 	}
896 
897 	/* Reclaim if clean, defer dirty pages to writeback */
898 	if (referenced_page && !PageSwapBacked(page))
899 		return PAGEREF_RECLAIM_CLEAN;
900 
901 	return PAGEREF_RECLAIM;
902 }
903 
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 				       bool *dirty, bool *writeback)
907 {
908 	struct address_space *mapping;
909 
910 	/*
911 	 * Anonymous pages are not handled by flushers and must be written
912 	 * from reclaim context. Do not stall reclaim based on them
913 	 */
914 	if (!page_is_file_cache(page) ||
915 	    (PageAnon(page) && !PageSwapBacked(page))) {
916 		*dirty = false;
917 		*writeback = false;
918 		return;
919 	}
920 
921 	/* By default assume that the page flags are accurate */
922 	*dirty = PageDirty(page);
923 	*writeback = PageWriteback(page);
924 
925 	/* Verify dirty/writeback state if the filesystem supports it */
926 	if (!page_has_private(page))
927 		return;
928 
929 	mapping = page_mapping(page);
930 	if (mapping && mapping->a_ops->is_dirty_writeback)
931 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 }
933 
934 struct reclaim_stat {
935 	unsigned nr_dirty;
936 	unsigned nr_unqueued_dirty;
937 	unsigned nr_congested;
938 	unsigned nr_writeback;
939 	unsigned nr_immediate;
940 	unsigned nr_activate;
941 	unsigned nr_ref_keep;
942 	unsigned nr_unmap_fail;
943 };
944 
945 /*
946  * shrink_page_list() returns the number of reclaimed pages
947  */
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 				      struct pglist_data *pgdat,
950 				      struct scan_control *sc,
951 				      enum ttu_flags ttu_flags,
952 				      struct reclaim_stat *stat,
953 				      bool force_reclaim)
954 {
955 	LIST_HEAD(ret_pages);
956 	LIST_HEAD(free_pages);
957 	int pgactivate = 0;
958 	unsigned nr_unqueued_dirty = 0;
959 	unsigned nr_dirty = 0;
960 	unsigned nr_congested = 0;
961 	unsigned nr_reclaimed = 0;
962 	unsigned nr_writeback = 0;
963 	unsigned nr_immediate = 0;
964 	unsigned nr_ref_keep = 0;
965 	unsigned nr_unmap_fail = 0;
966 
967 	cond_resched();
968 
969 	while (!list_empty(page_list)) {
970 		struct address_space *mapping;
971 		struct page *page;
972 		int may_enter_fs;
973 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 		bool dirty, writeback;
975 
976 		cond_resched();
977 
978 		page = lru_to_page(page_list);
979 		list_del(&page->lru);
980 
981 		if (!trylock_page(page))
982 			goto keep;
983 
984 		VM_BUG_ON_PAGE(PageActive(page), page);
985 
986 		sc->nr_scanned++;
987 
988 		if (unlikely(!page_evictable(page)))
989 			goto activate_locked;
990 
991 		if (!sc->may_unmap && page_mapped(page))
992 			goto keep_locked;
993 
994 		/* Double the slab pressure for mapped and swapcache pages */
995 		if ((page_mapped(page) || PageSwapCache(page)) &&
996 		    !(PageAnon(page) && !PageSwapBacked(page)))
997 			sc->nr_scanned++;
998 
999 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001 
1002 		/*
1003 		 * The number of dirty pages determines if a zone is marked
1004 		 * reclaim_congested which affects wait_iff_congested. kswapd
1005 		 * will stall and start writing pages if the tail of the LRU
1006 		 * is all dirty unqueued pages.
1007 		 */
1008 		page_check_dirty_writeback(page, &dirty, &writeback);
1009 		if (dirty || writeback)
1010 			nr_dirty++;
1011 
1012 		if (dirty && !writeback)
1013 			nr_unqueued_dirty++;
1014 
1015 		/*
1016 		 * Treat this page as congested if the underlying BDI is or if
1017 		 * pages are cycling through the LRU so quickly that the
1018 		 * pages marked for immediate reclaim are making it to the
1019 		 * end of the LRU a second time.
1020 		 */
1021 		mapping = page_mapping(page);
1022 		if (((dirty || writeback) && mapping &&
1023 		     inode_write_congested(mapping->host)) ||
1024 		    (writeback && PageReclaim(page)))
1025 			nr_congested++;
1026 
1027 		/*
1028 		 * If a page at the tail of the LRU is under writeback, there
1029 		 * are three cases to consider.
1030 		 *
1031 		 * 1) If reclaim is encountering an excessive number of pages
1032 		 *    under writeback and this page is both under writeback and
1033 		 *    PageReclaim then it indicates that pages are being queued
1034 		 *    for IO but are being recycled through the LRU before the
1035 		 *    IO can complete. Waiting on the page itself risks an
1036 		 *    indefinite stall if it is impossible to writeback the
1037 		 *    page due to IO error or disconnected storage so instead
1038 		 *    note that the LRU is being scanned too quickly and the
1039 		 *    caller can stall after page list has been processed.
1040 		 *
1041 		 * 2) Global or new memcg reclaim encounters a page that is
1042 		 *    not marked for immediate reclaim, or the caller does not
1043 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 		 *    not to fs). In this case mark the page for immediate
1045 		 *    reclaim and continue scanning.
1046 		 *
1047 		 *    Require may_enter_fs because we would wait on fs, which
1048 		 *    may not have submitted IO yet. And the loop driver might
1049 		 *    enter reclaim, and deadlock if it waits on a page for
1050 		 *    which it is needed to do the write (loop masks off
1051 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1052 		 *    would probably show more reasons.
1053 		 *
1054 		 * 3) Legacy memcg encounters a page that is already marked
1055 		 *    PageReclaim. memcg does not have any dirty pages
1056 		 *    throttling so we could easily OOM just because too many
1057 		 *    pages are in writeback and there is nothing else to
1058 		 *    reclaim. Wait for the writeback to complete.
1059 		 *
1060 		 * In cases 1) and 2) we activate the pages to get them out of
1061 		 * the way while we continue scanning for clean pages on the
1062 		 * inactive list and refilling from the active list. The
1063 		 * observation here is that waiting for disk writes is more
1064 		 * expensive than potentially causing reloads down the line.
1065 		 * Since they're marked for immediate reclaim, they won't put
1066 		 * memory pressure on the cache working set any longer than it
1067 		 * takes to write them to disk.
1068 		 */
1069 		if (PageWriteback(page)) {
1070 			/* Case 1 above */
1071 			if (current_is_kswapd() &&
1072 			    PageReclaim(page) &&
1073 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074 				nr_immediate++;
1075 				goto activate_locked;
1076 
1077 			/* Case 2 above */
1078 			} else if (sane_reclaim(sc) ||
1079 			    !PageReclaim(page) || !may_enter_fs) {
1080 				/*
1081 				 * This is slightly racy - end_page_writeback()
1082 				 * might have just cleared PageReclaim, then
1083 				 * setting PageReclaim here end up interpreted
1084 				 * as PageReadahead - but that does not matter
1085 				 * enough to care.  What we do want is for this
1086 				 * page to have PageReclaim set next time memcg
1087 				 * reclaim reaches the tests above, so it will
1088 				 * then wait_on_page_writeback() to avoid OOM;
1089 				 * and it's also appropriate in global reclaim.
1090 				 */
1091 				SetPageReclaim(page);
1092 				nr_writeback++;
1093 				goto activate_locked;
1094 
1095 			/* Case 3 above */
1096 			} else {
1097 				unlock_page(page);
1098 				wait_on_page_writeback(page);
1099 				/* then go back and try same page again */
1100 				list_add_tail(&page->lru, page_list);
1101 				continue;
1102 			}
1103 		}
1104 
1105 		if (!force_reclaim)
1106 			references = page_check_references(page, sc);
1107 
1108 		switch (references) {
1109 		case PAGEREF_ACTIVATE:
1110 			goto activate_locked;
1111 		case PAGEREF_KEEP:
1112 			nr_ref_keep++;
1113 			goto keep_locked;
1114 		case PAGEREF_RECLAIM:
1115 		case PAGEREF_RECLAIM_CLEAN:
1116 			; /* try to reclaim the page below */
1117 		}
1118 
1119 		/*
1120 		 * Anonymous process memory has backing store?
1121 		 * Try to allocate it some swap space here.
1122 		 * Lazyfree page could be freed directly
1123 		 */
1124 		if (PageAnon(page) && PageSwapBacked(page) &&
1125 		    !PageSwapCache(page)) {
1126 			if (!(sc->gfp_mask & __GFP_IO))
1127 				goto keep_locked;
1128 			if (!add_to_swap(page, page_list))
1129 				goto activate_locked;
1130 			may_enter_fs = 1;
1131 
1132 			/* Adding to swap updated mapping */
1133 			mapping = page_mapping(page);
1134 		} else if (unlikely(PageTransHuge(page))) {
1135 			/* Split file THP */
1136 			if (split_huge_page_to_list(page, page_list))
1137 				goto keep_locked;
1138 		}
1139 
1140 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1141 
1142 		/*
1143 		 * The page is mapped into the page tables of one or more
1144 		 * processes. Try to unmap it here.
1145 		 */
1146 		if (page_mapped(page)) {
1147 			if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1148 				nr_unmap_fail++;
1149 				goto activate_locked;
1150 			}
1151 		}
1152 
1153 		if (PageDirty(page)) {
1154 			/*
1155 			 * Only kswapd can writeback filesystem pages
1156 			 * to avoid risk of stack overflow. But avoid
1157 			 * injecting inefficient single-page IO into
1158 			 * flusher writeback as much as possible: only
1159 			 * write pages when we've encountered many
1160 			 * dirty pages, and when we've already scanned
1161 			 * the rest of the LRU for clean pages and see
1162 			 * the same dirty pages again (PageReclaim).
1163 			 */
1164 			if (page_is_file_cache(page) &&
1165 			    (!current_is_kswapd() || !PageReclaim(page) ||
1166 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1167 				/*
1168 				 * Immediately reclaim when written back.
1169 				 * Similar in principal to deactivate_page()
1170 				 * except we already have the page isolated
1171 				 * and know it's dirty
1172 				 */
1173 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1174 				SetPageReclaim(page);
1175 
1176 				goto activate_locked;
1177 			}
1178 
1179 			if (references == PAGEREF_RECLAIM_CLEAN)
1180 				goto keep_locked;
1181 			if (!may_enter_fs)
1182 				goto keep_locked;
1183 			if (!sc->may_writepage)
1184 				goto keep_locked;
1185 
1186 			/*
1187 			 * Page is dirty. Flush the TLB if a writable entry
1188 			 * potentially exists to avoid CPU writes after IO
1189 			 * starts and then write it out here.
1190 			 */
1191 			try_to_unmap_flush_dirty();
1192 			switch (pageout(page, mapping, sc)) {
1193 			case PAGE_KEEP:
1194 				goto keep_locked;
1195 			case PAGE_ACTIVATE:
1196 				goto activate_locked;
1197 			case PAGE_SUCCESS:
1198 				if (PageWriteback(page))
1199 					goto keep;
1200 				if (PageDirty(page))
1201 					goto keep;
1202 
1203 				/*
1204 				 * A synchronous write - probably a ramdisk.  Go
1205 				 * ahead and try to reclaim the page.
1206 				 */
1207 				if (!trylock_page(page))
1208 					goto keep;
1209 				if (PageDirty(page) || PageWriteback(page))
1210 					goto keep_locked;
1211 				mapping = page_mapping(page);
1212 			case PAGE_CLEAN:
1213 				; /* try to free the page below */
1214 			}
1215 		}
1216 
1217 		/*
1218 		 * If the page has buffers, try to free the buffer mappings
1219 		 * associated with this page. If we succeed we try to free
1220 		 * the page as well.
1221 		 *
1222 		 * We do this even if the page is PageDirty().
1223 		 * try_to_release_page() does not perform I/O, but it is
1224 		 * possible for a page to have PageDirty set, but it is actually
1225 		 * clean (all its buffers are clean).  This happens if the
1226 		 * buffers were written out directly, with submit_bh(). ext3
1227 		 * will do this, as well as the blockdev mapping.
1228 		 * try_to_release_page() will discover that cleanness and will
1229 		 * drop the buffers and mark the page clean - it can be freed.
1230 		 *
1231 		 * Rarely, pages can have buffers and no ->mapping.  These are
1232 		 * the pages which were not successfully invalidated in
1233 		 * truncate_complete_page().  We try to drop those buffers here
1234 		 * and if that worked, and the page is no longer mapped into
1235 		 * process address space (page_count == 1) it can be freed.
1236 		 * Otherwise, leave the page on the LRU so it is swappable.
1237 		 */
1238 		if (page_has_private(page)) {
1239 			if (!try_to_release_page(page, sc->gfp_mask))
1240 				goto activate_locked;
1241 			if (!mapping && page_count(page) == 1) {
1242 				unlock_page(page);
1243 				if (put_page_testzero(page))
1244 					goto free_it;
1245 				else {
1246 					/*
1247 					 * rare race with speculative reference.
1248 					 * the speculative reference will free
1249 					 * this page shortly, so we may
1250 					 * increment nr_reclaimed here (and
1251 					 * leave it off the LRU).
1252 					 */
1253 					nr_reclaimed++;
1254 					continue;
1255 				}
1256 			}
1257 		}
1258 
1259 		if (PageAnon(page) && !PageSwapBacked(page)) {
1260 			/* follow __remove_mapping for reference */
1261 			if (!page_ref_freeze(page, 1))
1262 				goto keep_locked;
1263 			if (PageDirty(page)) {
1264 				page_ref_unfreeze(page, 1);
1265 				goto keep_locked;
1266 			}
1267 
1268 			count_vm_event(PGLAZYFREED);
1269 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1270 			goto keep_locked;
1271 		/*
1272 		 * At this point, we have no other references and there is
1273 		 * no way to pick any more up (removed from LRU, removed
1274 		 * from pagecache). Can use non-atomic bitops now (and
1275 		 * we obviously don't have to worry about waking up a process
1276 		 * waiting on the page lock, because there are no references.
1277 		 */
1278 		__ClearPageLocked(page);
1279 free_it:
1280 		nr_reclaimed++;
1281 
1282 		/*
1283 		 * Is there need to periodically free_page_list? It would
1284 		 * appear not as the counts should be low
1285 		 */
1286 		list_add(&page->lru, &free_pages);
1287 		continue;
1288 
1289 activate_locked:
1290 		/* Not a candidate for swapping, so reclaim swap space. */
1291 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1292 						PageMlocked(page)))
1293 			try_to_free_swap(page);
1294 		VM_BUG_ON_PAGE(PageActive(page), page);
1295 		if (!PageMlocked(page)) {
1296 			SetPageActive(page);
1297 			pgactivate++;
1298 		}
1299 keep_locked:
1300 		unlock_page(page);
1301 keep:
1302 		list_add(&page->lru, &ret_pages);
1303 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1304 	}
1305 
1306 	mem_cgroup_uncharge_list(&free_pages);
1307 	try_to_unmap_flush();
1308 	free_hot_cold_page_list(&free_pages, true);
1309 
1310 	list_splice(&ret_pages, page_list);
1311 	count_vm_events(PGACTIVATE, pgactivate);
1312 
1313 	if (stat) {
1314 		stat->nr_dirty = nr_dirty;
1315 		stat->nr_congested = nr_congested;
1316 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1317 		stat->nr_writeback = nr_writeback;
1318 		stat->nr_immediate = nr_immediate;
1319 		stat->nr_activate = pgactivate;
1320 		stat->nr_ref_keep = nr_ref_keep;
1321 		stat->nr_unmap_fail = nr_unmap_fail;
1322 	}
1323 	return nr_reclaimed;
1324 }
1325 
1326 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1327 					    struct list_head *page_list)
1328 {
1329 	struct scan_control sc = {
1330 		.gfp_mask = GFP_KERNEL,
1331 		.priority = DEF_PRIORITY,
1332 		.may_unmap = 1,
1333 	};
1334 	unsigned long ret;
1335 	struct page *page, *next;
1336 	LIST_HEAD(clean_pages);
1337 
1338 	list_for_each_entry_safe(page, next, page_list, lru) {
1339 		if (page_is_file_cache(page) && !PageDirty(page) &&
1340 		    !__PageMovable(page)) {
1341 			ClearPageActive(page);
1342 			list_move(&page->lru, &clean_pages);
1343 		}
1344 	}
1345 
1346 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1347 			TTU_IGNORE_ACCESS, NULL, true);
1348 	list_splice(&clean_pages, page_list);
1349 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1350 	return ret;
1351 }
1352 
1353 /*
1354  * Attempt to remove the specified page from its LRU.  Only take this page
1355  * if it is of the appropriate PageActive status.  Pages which are being
1356  * freed elsewhere are also ignored.
1357  *
1358  * page:	page to consider
1359  * mode:	one of the LRU isolation modes defined above
1360  *
1361  * returns 0 on success, -ve errno on failure.
1362  */
1363 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1364 {
1365 	int ret = -EINVAL;
1366 
1367 	/* Only take pages on the LRU. */
1368 	if (!PageLRU(page))
1369 		return ret;
1370 
1371 	/* Compaction should not handle unevictable pages but CMA can do so */
1372 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1373 		return ret;
1374 
1375 	ret = -EBUSY;
1376 
1377 	/*
1378 	 * To minimise LRU disruption, the caller can indicate that it only
1379 	 * wants to isolate pages it will be able to operate on without
1380 	 * blocking - clean pages for the most part.
1381 	 *
1382 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1383 	 * that it is possible to migrate without blocking
1384 	 */
1385 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1386 		/* All the caller can do on PageWriteback is block */
1387 		if (PageWriteback(page))
1388 			return ret;
1389 
1390 		if (PageDirty(page)) {
1391 			struct address_space *mapping;
1392 
1393 			/*
1394 			 * Only pages without mappings or that have a
1395 			 * ->migratepage callback are possible to migrate
1396 			 * without blocking
1397 			 */
1398 			mapping = page_mapping(page);
1399 			if (mapping && !mapping->a_ops->migratepage)
1400 				return ret;
1401 		}
1402 	}
1403 
1404 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1405 		return ret;
1406 
1407 	if (likely(get_page_unless_zero(page))) {
1408 		/*
1409 		 * Be careful not to clear PageLRU until after we're
1410 		 * sure the page is not being freed elsewhere -- the
1411 		 * page release code relies on it.
1412 		 */
1413 		ClearPageLRU(page);
1414 		ret = 0;
1415 	}
1416 
1417 	return ret;
1418 }
1419 
1420 
1421 /*
1422  * Update LRU sizes after isolating pages. The LRU size updates must
1423  * be complete before mem_cgroup_update_lru_size due to a santity check.
1424  */
1425 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1426 			enum lru_list lru, unsigned long *nr_zone_taken)
1427 {
1428 	int zid;
1429 
1430 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1431 		if (!nr_zone_taken[zid])
1432 			continue;
1433 
1434 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1435 #ifdef CONFIG_MEMCG
1436 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1437 #endif
1438 	}
1439 
1440 }
1441 
1442 /*
1443  * zone_lru_lock is heavily contended.  Some of the functions that
1444  * shrink the lists perform better by taking out a batch of pages
1445  * and working on them outside the LRU lock.
1446  *
1447  * For pagecache intensive workloads, this function is the hottest
1448  * spot in the kernel (apart from copy_*_user functions).
1449  *
1450  * Appropriate locks must be held before calling this function.
1451  *
1452  * @nr_to_scan:	The number of eligible pages to look through on the list.
1453  * @lruvec:	The LRU vector to pull pages from.
1454  * @dst:	The temp list to put pages on to.
1455  * @nr_scanned:	The number of pages that were scanned.
1456  * @sc:		The scan_control struct for this reclaim session
1457  * @mode:	One of the LRU isolation modes
1458  * @lru:	LRU list id for isolating
1459  *
1460  * returns how many pages were moved onto *@dst.
1461  */
1462 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1463 		struct lruvec *lruvec, struct list_head *dst,
1464 		unsigned long *nr_scanned, struct scan_control *sc,
1465 		isolate_mode_t mode, enum lru_list lru)
1466 {
1467 	struct list_head *src = &lruvec->lists[lru];
1468 	unsigned long nr_taken = 0;
1469 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1470 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1471 	unsigned long skipped = 0;
1472 	unsigned long scan, total_scan, nr_pages;
1473 	LIST_HEAD(pages_skipped);
1474 
1475 	scan = 0;
1476 	for (total_scan = 0;
1477 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1478 	     total_scan++) {
1479 		struct page *page;
1480 
1481 		page = lru_to_page(src);
1482 		prefetchw_prev_lru_page(page, src, flags);
1483 
1484 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1485 
1486 		if (page_zonenum(page) > sc->reclaim_idx) {
1487 			list_move(&page->lru, &pages_skipped);
1488 			nr_skipped[page_zonenum(page)]++;
1489 			continue;
1490 		}
1491 
1492 		/*
1493 		 * Do not count skipped pages because that makes the function
1494 		 * return with no isolated pages if the LRU mostly contains
1495 		 * ineligible pages.  This causes the VM to not reclaim any
1496 		 * pages, triggering a premature OOM.
1497 		 */
1498 		scan++;
1499 		switch (__isolate_lru_page(page, mode)) {
1500 		case 0:
1501 			nr_pages = hpage_nr_pages(page);
1502 			nr_taken += nr_pages;
1503 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1504 			list_move(&page->lru, dst);
1505 			break;
1506 
1507 		case -EBUSY:
1508 			/* else it is being freed elsewhere */
1509 			list_move(&page->lru, src);
1510 			continue;
1511 
1512 		default:
1513 			BUG();
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * Splice any skipped pages to the start of the LRU list. Note that
1519 	 * this disrupts the LRU order when reclaiming for lower zones but
1520 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1521 	 * scanning would soon rescan the same pages to skip and put the
1522 	 * system at risk of premature OOM.
1523 	 */
1524 	if (!list_empty(&pages_skipped)) {
1525 		int zid;
1526 
1527 		list_splice(&pages_skipped, src);
1528 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1529 			if (!nr_skipped[zid])
1530 				continue;
1531 
1532 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1533 			skipped += nr_skipped[zid];
1534 		}
1535 	}
1536 	*nr_scanned = total_scan;
1537 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1538 				    total_scan, skipped, nr_taken, mode, lru);
1539 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1540 	return nr_taken;
1541 }
1542 
1543 /**
1544  * isolate_lru_page - tries to isolate a page from its LRU list
1545  * @page: page to isolate from its LRU list
1546  *
1547  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1548  * vmstat statistic corresponding to whatever LRU list the page was on.
1549  *
1550  * Returns 0 if the page was removed from an LRU list.
1551  * Returns -EBUSY if the page was not on an LRU list.
1552  *
1553  * The returned page will have PageLRU() cleared.  If it was found on
1554  * the active list, it will have PageActive set.  If it was found on
1555  * the unevictable list, it will have the PageUnevictable bit set. That flag
1556  * may need to be cleared by the caller before letting the page go.
1557  *
1558  * The vmstat statistic corresponding to the list on which the page was
1559  * found will be decremented.
1560  *
1561  * Restrictions:
1562  * (1) Must be called with an elevated refcount on the page. This is a
1563  *     fundamentnal difference from isolate_lru_pages (which is called
1564  *     without a stable reference).
1565  * (2) the lru_lock must not be held.
1566  * (3) interrupts must be enabled.
1567  */
1568 int isolate_lru_page(struct page *page)
1569 {
1570 	int ret = -EBUSY;
1571 
1572 	VM_BUG_ON_PAGE(!page_count(page), page);
1573 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1574 
1575 	if (PageLRU(page)) {
1576 		struct zone *zone = page_zone(page);
1577 		struct lruvec *lruvec;
1578 
1579 		spin_lock_irq(zone_lru_lock(zone));
1580 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1581 		if (PageLRU(page)) {
1582 			int lru = page_lru(page);
1583 			get_page(page);
1584 			ClearPageLRU(page);
1585 			del_page_from_lru_list(page, lruvec, lru);
1586 			ret = 0;
1587 		}
1588 		spin_unlock_irq(zone_lru_lock(zone));
1589 	}
1590 	return ret;
1591 }
1592 
1593 /*
1594  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1595  * then get resheduled. When there are massive number of tasks doing page
1596  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1597  * the LRU list will go small and be scanned faster than necessary, leading to
1598  * unnecessary swapping, thrashing and OOM.
1599  */
1600 static int too_many_isolated(struct pglist_data *pgdat, int file,
1601 		struct scan_control *sc)
1602 {
1603 	unsigned long inactive, isolated;
1604 
1605 	if (current_is_kswapd())
1606 		return 0;
1607 
1608 	if (!sane_reclaim(sc))
1609 		return 0;
1610 
1611 	if (file) {
1612 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1613 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1614 	} else {
1615 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1616 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1617 	}
1618 
1619 	/*
1620 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1621 	 * won't get blocked by normal direct-reclaimers, forming a circular
1622 	 * deadlock.
1623 	 */
1624 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1625 		inactive >>= 3;
1626 
1627 	return isolated > inactive;
1628 }
1629 
1630 static noinline_for_stack void
1631 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1632 {
1633 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1634 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1635 	LIST_HEAD(pages_to_free);
1636 
1637 	/*
1638 	 * Put back any unfreeable pages.
1639 	 */
1640 	while (!list_empty(page_list)) {
1641 		struct page *page = lru_to_page(page_list);
1642 		int lru;
1643 
1644 		VM_BUG_ON_PAGE(PageLRU(page), page);
1645 		list_del(&page->lru);
1646 		if (unlikely(!page_evictable(page))) {
1647 			spin_unlock_irq(&pgdat->lru_lock);
1648 			putback_lru_page(page);
1649 			spin_lock_irq(&pgdat->lru_lock);
1650 			continue;
1651 		}
1652 
1653 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1654 
1655 		SetPageLRU(page);
1656 		lru = page_lru(page);
1657 		add_page_to_lru_list(page, lruvec, lru);
1658 
1659 		if (is_active_lru(lru)) {
1660 			int file = is_file_lru(lru);
1661 			int numpages = hpage_nr_pages(page);
1662 			reclaim_stat->recent_rotated[file] += numpages;
1663 		}
1664 		if (put_page_testzero(page)) {
1665 			__ClearPageLRU(page);
1666 			__ClearPageActive(page);
1667 			del_page_from_lru_list(page, lruvec, lru);
1668 
1669 			if (unlikely(PageCompound(page))) {
1670 				spin_unlock_irq(&pgdat->lru_lock);
1671 				mem_cgroup_uncharge(page);
1672 				(*get_compound_page_dtor(page))(page);
1673 				spin_lock_irq(&pgdat->lru_lock);
1674 			} else
1675 				list_add(&page->lru, &pages_to_free);
1676 		}
1677 	}
1678 
1679 	/*
1680 	 * To save our caller's stack, now use input list for pages to free.
1681 	 */
1682 	list_splice(&pages_to_free, page_list);
1683 }
1684 
1685 /*
1686  * If a kernel thread (such as nfsd for loop-back mounts) services
1687  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1688  * In that case we should only throttle if the backing device it is
1689  * writing to is congested.  In other cases it is safe to throttle.
1690  */
1691 static int current_may_throttle(void)
1692 {
1693 	return !(current->flags & PF_LESS_THROTTLE) ||
1694 		current->backing_dev_info == NULL ||
1695 		bdi_write_congested(current->backing_dev_info);
1696 }
1697 
1698 /*
1699  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1700  * of reclaimed pages
1701  */
1702 static noinline_for_stack unsigned long
1703 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1704 		     struct scan_control *sc, enum lru_list lru)
1705 {
1706 	LIST_HEAD(page_list);
1707 	unsigned long nr_scanned;
1708 	unsigned long nr_reclaimed = 0;
1709 	unsigned long nr_taken;
1710 	struct reclaim_stat stat = {};
1711 	isolate_mode_t isolate_mode = 0;
1712 	int file = is_file_lru(lru);
1713 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1714 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1715 
1716 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1717 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1718 
1719 		/* We are about to die and free our memory. Return now. */
1720 		if (fatal_signal_pending(current))
1721 			return SWAP_CLUSTER_MAX;
1722 	}
1723 
1724 	lru_add_drain();
1725 
1726 	if (!sc->may_unmap)
1727 		isolate_mode |= ISOLATE_UNMAPPED;
1728 
1729 	spin_lock_irq(&pgdat->lru_lock);
1730 
1731 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1732 				     &nr_scanned, sc, isolate_mode, lru);
1733 
1734 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1735 	reclaim_stat->recent_scanned[file] += nr_taken;
1736 
1737 	if (global_reclaim(sc)) {
1738 		if (current_is_kswapd())
1739 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1740 		else
1741 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1742 	}
1743 	spin_unlock_irq(&pgdat->lru_lock);
1744 
1745 	if (nr_taken == 0)
1746 		return 0;
1747 
1748 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1749 				&stat, false);
1750 
1751 	spin_lock_irq(&pgdat->lru_lock);
1752 
1753 	if (global_reclaim(sc)) {
1754 		if (current_is_kswapd())
1755 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1756 		else
1757 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1758 	}
1759 
1760 	putback_inactive_pages(lruvec, &page_list);
1761 
1762 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1763 
1764 	spin_unlock_irq(&pgdat->lru_lock);
1765 
1766 	mem_cgroup_uncharge_list(&page_list);
1767 	free_hot_cold_page_list(&page_list, true);
1768 
1769 	/*
1770 	 * If reclaim is isolating dirty pages under writeback, it implies
1771 	 * that the long-lived page allocation rate is exceeding the page
1772 	 * laundering rate. Either the global limits are not being effective
1773 	 * at throttling processes due to the page distribution throughout
1774 	 * zones or there is heavy usage of a slow backing device. The
1775 	 * only option is to throttle from reclaim context which is not ideal
1776 	 * as there is no guarantee the dirtying process is throttled in the
1777 	 * same way balance_dirty_pages() manages.
1778 	 *
1779 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1780 	 * of pages under pages flagged for immediate reclaim and stall if any
1781 	 * are encountered in the nr_immediate check below.
1782 	 */
1783 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1784 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1785 
1786 	/*
1787 	 * Legacy memcg will stall in page writeback so avoid forcibly
1788 	 * stalling here.
1789 	 */
1790 	if (sane_reclaim(sc)) {
1791 		/*
1792 		 * Tag a zone as congested if all the dirty pages scanned were
1793 		 * backed by a congested BDI and wait_iff_congested will stall.
1794 		 */
1795 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1796 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1797 
1798 		/*
1799 		 * If dirty pages are scanned that are not queued for IO, it
1800 		 * implies that flushers are not doing their job. This can
1801 		 * happen when memory pressure pushes dirty pages to the end of
1802 		 * the LRU before the dirty limits are breached and the dirty
1803 		 * data has expired. It can also happen when the proportion of
1804 		 * dirty pages grows not through writes but through memory
1805 		 * pressure reclaiming all the clean cache. And in some cases,
1806 		 * the flushers simply cannot keep up with the allocation
1807 		 * rate. Nudge the flusher threads in case they are asleep, but
1808 		 * also allow kswapd to start writing pages during reclaim.
1809 		 */
1810 		if (stat.nr_unqueued_dirty == nr_taken) {
1811 			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1812 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1813 		}
1814 
1815 		/*
1816 		 * If kswapd scans pages marked marked for immediate
1817 		 * reclaim and under writeback (nr_immediate), it implies
1818 		 * that pages are cycling through the LRU faster than
1819 		 * they are written so also forcibly stall.
1820 		 */
1821 		if (stat.nr_immediate && current_may_throttle())
1822 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1823 	}
1824 
1825 	/*
1826 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1827 	 * is congested. Allow kswapd to continue until it starts encountering
1828 	 * unqueued dirty pages or cycling through the LRU too quickly.
1829 	 */
1830 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1831 	    current_may_throttle())
1832 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1833 
1834 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1835 			nr_scanned, nr_reclaimed,
1836 			stat.nr_dirty,  stat.nr_writeback,
1837 			stat.nr_congested, stat.nr_immediate,
1838 			stat.nr_activate, stat.nr_ref_keep,
1839 			stat.nr_unmap_fail,
1840 			sc->priority, file);
1841 	return nr_reclaimed;
1842 }
1843 
1844 /*
1845  * This moves pages from the active list to the inactive list.
1846  *
1847  * We move them the other way if the page is referenced by one or more
1848  * processes, from rmap.
1849  *
1850  * If the pages are mostly unmapped, the processing is fast and it is
1851  * appropriate to hold zone_lru_lock across the whole operation.  But if
1852  * the pages are mapped, the processing is slow (page_referenced()) so we
1853  * should drop zone_lru_lock around each page.  It's impossible to balance
1854  * this, so instead we remove the pages from the LRU while processing them.
1855  * It is safe to rely on PG_active against the non-LRU pages in here because
1856  * nobody will play with that bit on a non-LRU page.
1857  *
1858  * The downside is that we have to touch page->_refcount against each page.
1859  * But we had to alter page->flags anyway.
1860  *
1861  * Returns the number of pages moved to the given lru.
1862  */
1863 
1864 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1865 				     struct list_head *list,
1866 				     struct list_head *pages_to_free,
1867 				     enum lru_list lru)
1868 {
1869 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1870 	struct page *page;
1871 	int nr_pages;
1872 	int nr_moved = 0;
1873 
1874 	while (!list_empty(list)) {
1875 		page = lru_to_page(list);
1876 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1877 
1878 		VM_BUG_ON_PAGE(PageLRU(page), page);
1879 		SetPageLRU(page);
1880 
1881 		nr_pages = hpage_nr_pages(page);
1882 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1883 		list_move(&page->lru, &lruvec->lists[lru]);
1884 
1885 		if (put_page_testzero(page)) {
1886 			__ClearPageLRU(page);
1887 			__ClearPageActive(page);
1888 			del_page_from_lru_list(page, lruvec, lru);
1889 
1890 			if (unlikely(PageCompound(page))) {
1891 				spin_unlock_irq(&pgdat->lru_lock);
1892 				mem_cgroup_uncharge(page);
1893 				(*get_compound_page_dtor(page))(page);
1894 				spin_lock_irq(&pgdat->lru_lock);
1895 			} else
1896 				list_add(&page->lru, pages_to_free);
1897 		} else {
1898 			nr_moved += nr_pages;
1899 		}
1900 	}
1901 
1902 	if (!is_active_lru(lru))
1903 		__count_vm_events(PGDEACTIVATE, nr_moved);
1904 
1905 	return nr_moved;
1906 }
1907 
1908 static void shrink_active_list(unsigned long nr_to_scan,
1909 			       struct lruvec *lruvec,
1910 			       struct scan_control *sc,
1911 			       enum lru_list lru)
1912 {
1913 	unsigned long nr_taken;
1914 	unsigned long nr_scanned;
1915 	unsigned long vm_flags;
1916 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1917 	LIST_HEAD(l_active);
1918 	LIST_HEAD(l_inactive);
1919 	struct page *page;
1920 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1921 	unsigned nr_deactivate, nr_activate;
1922 	unsigned nr_rotated = 0;
1923 	isolate_mode_t isolate_mode = 0;
1924 	int file = is_file_lru(lru);
1925 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926 
1927 	lru_add_drain();
1928 
1929 	if (!sc->may_unmap)
1930 		isolate_mode |= ISOLATE_UNMAPPED;
1931 
1932 	spin_lock_irq(&pgdat->lru_lock);
1933 
1934 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1935 				     &nr_scanned, sc, isolate_mode, lru);
1936 
1937 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1938 	reclaim_stat->recent_scanned[file] += nr_taken;
1939 
1940 	__count_vm_events(PGREFILL, nr_scanned);
1941 
1942 	spin_unlock_irq(&pgdat->lru_lock);
1943 
1944 	while (!list_empty(&l_hold)) {
1945 		cond_resched();
1946 		page = lru_to_page(&l_hold);
1947 		list_del(&page->lru);
1948 
1949 		if (unlikely(!page_evictable(page))) {
1950 			putback_lru_page(page);
1951 			continue;
1952 		}
1953 
1954 		if (unlikely(buffer_heads_over_limit)) {
1955 			if (page_has_private(page) && trylock_page(page)) {
1956 				if (page_has_private(page))
1957 					try_to_release_page(page, 0);
1958 				unlock_page(page);
1959 			}
1960 		}
1961 
1962 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1963 				    &vm_flags)) {
1964 			nr_rotated += hpage_nr_pages(page);
1965 			/*
1966 			 * Identify referenced, file-backed active pages and
1967 			 * give them one more trip around the active list. So
1968 			 * that executable code get better chances to stay in
1969 			 * memory under moderate memory pressure.  Anon pages
1970 			 * are not likely to be evicted by use-once streaming
1971 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1972 			 * so we ignore them here.
1973 			 */
1974 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1975 				list_add(&page->lru, &l_active);
1976 				continue;
1977 			}
1978 		}
1979 
1980 		ClearPageActive(page);	/* we are de-activating */
1981 		list_add(&page->lru, &l_inactive);
1982 	}
1983 
1984 	/*
1985 	 * Move pages back to the lru list.
1986 	 */
1987 	spin_lock_irq(&pgdat->lru_lock);
1988 	/*
1989 	 * Count referenced pages from currently used mappings as rotated,
1990 	 * even though only some of them are actually re-activated.  This
1991 	 * helps balance scan pressure between file and anonymous pages in
1992 	 * get_scan_count.
1993 	 */
1994 	reclaim_stat->recent_rotated[file] += nr_rotated;
1995 
1996 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1997 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1998 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1999 	spin_unlock_irq(&pgdat->lru_lock);
2000 
2001 	mem_cgroup_uncharge_list(&l_hold);
2002 	free_hot_cold_page_list(&l_hold, true);
2003 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2004 			nr_deactivate, nr_rotated, sc->priority, file);
2005 }
2006 
2007 /*
2008  * The inactive anon list should be small enough that the VM never has
2009  * to do too much work.
2010  *
2011  * The inactive file list should be small enough to leave most memory
2012  * to the established workingset on the scan-resistant active list,
2013  * but large enough to avoid thrashing the aggregate readahead window.
2014  *
2015  * Both inactive lists should also be large enough that each inactive
2016  * page has a chance to be referenced again before it is reclaimed.
2017  *
2018  * If that fails and refaulting is observed, the inactive list grows.
2019  *
2020  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2021  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2022  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2023  *
2024  * total     target    max
2025  * memory    ratio     inactive
2026  * -------------------------------------
2027  *   10MB       1         5MB
2028  *  100MB       1        50MB
2029  *    1GB       3       250MB
2030  *   10GB      10       0.9GB
2031  *  100GB      31         3GB
2032  *    1TB     101        10GB
2033  *   10TB     320        32GB
2034  */
2035 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2036 				 struct mem_cgroup *memcg,
2037 				 struct scan_control *sc, bool actual_reclaim)
2038 {
2039 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2040 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2041 	enum lru_list inactive_lru = file * LRU_FILE;
2042 	unsigned long inactive, active;
2043 	unsigned long inactive_ratio;
2044 	unsigned long refaults;
2045 	unsigned long gb;
2046 
2047 	/*
2048 	 * If we don't have swap space, anonymous page deactivation
2049 	 * is pointless.
2050 	 */
2051 	if (!file && !total_swap_pages)
2052 		return false;
2053 
2054 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2055 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2056 
2057 	if (memcg)
2058 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2059 	else
2060 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2061 
2062 	/*
2063 	 * When refaults are being observed, it means a new workingset
2064 	 * is being established. Disable active list protection to get
2065 	 * rid of the stale workingset quickly.
2066 	 */
2067 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2068 		inactive_ratio = 0;
2069 	} else {
2070 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2071 		if (gb)
2072 			inactive_ratio = int_sqrt(10 * gb);
2073 		else
2074 			inactive_ratio = 1;
2075 	}
2076 
2077 	if (actual_reclaim)
2078 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2079 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081 			inactive_ratio, file);
2082 
2083 	return inactive * inactive_ratio < active;
2084 }
2085 
2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2088 				 struct scan_control *sc)
2089 {
2090 	if (is_active_lru(lru)) {
2091 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2092 					 memcg, sc, true))
2093 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2094 		return 0;
2095 	}
2096 
2097 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2098 }
2099 
2100 enum scan_balance {
2101 	SCAN_EQUAL,
2102 	SCAN_FRACT,
2103 	SCAN_ANON,
2104 	SCAN_FILE,
2105 };
2106 
2107 /*
2108  * Determine how aggressively the anon and file LRU lists should be
2109  * scanned.  The relative value of each set of LRU lists is determined
2110  * by looking at the fraction of the pages scanned we did rotate back
2111  * onto the active list instead of evict.
2112  *
2113  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2114  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2115  */
2116 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2117 			   struct scan_control *sc, unsigned long *nr,
2118 			   unsigned long *lru_pages)
2119 {
2120 	int swappiness = mem_cgroup_swappiness(memcg);
2121 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2122 	u64 fraction[2];
2123 	u64 denominator = 0;	/* gcc */
2124 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125 	unsigned long anon_prio, file_prio;
2126 	enum scan_balance scan_balance;
2127 	unsigned long anon, file;
2128 	unsigned long ap, fp;
2129 	enum lru_list lru;
2130 
2131 	/* If we have no swap space, do not bother scanning anon pages. */
2132 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2133 		scan_balance = SCAN_FILE;
2134 		goto out;
2135 	}
2136 
2137 	/*
2138 	 * Global reclaim will swap to prevent OOM even with no
2139 	 * swappiness, but memcg users want to use this knob to
2140 	 * disable swapping for individual groups completely when
2141 	 * using the memory controller's swap limit feature would be
2142 	 * too expensive.
2143 	 */
2144 	if (!global_reclaim(sc) && !swappiness) {
2145 		scan_balance = SCAN_FILE;
2146 		goto out;
2147 	}
2148 
2149 	/*
2150 	 * Do not apply any pressure balancing cleverness when the
2151 	 * system is close to OOM, scan both anon and file equally
2152 	 * (unless the swappiness setting disagrees with swapping).
2153 	 */
2154 	if (!sc->priority && swappiness) {
2155 		scan_balance = SCAN_EQUAL;
2156 		goto out;
2157 	}
2158 
2159 	/*
2160 	 * Prevent the reclaimer from falling into the cache trap: as
2161 	 * cache pages start out inactive, every cache fault will tip
2162 	 * the scan balance towards the file LRU.  And as the file LRU
2163 	 * shrinks, so does the window for rotation from references.
2164 	 * This means we have a runaway feedback loop where a tiny
2165 	 * thrashing file LRU becomes infinitely more attractive than
2166 	 * anon pages.  Try to detect this based on file LRU size.
2167 	 */
2168 	if (global_reclaim(sc)) {
2169 		unsigned long pgdatfile;
2170 		unsigned long pgdatfree;
2171 		int z;
2172 		unsigned long total_high_wmark = 0;
2173 
2174 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2175 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2176 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2177 
2178 		for (z = 0; z < MAX_NR_ZONES; z++) {
2179 			struct zone *zone = &pgdat->node_zones[z];
2180 			if (!managed_zone(zone))
2181 				continue;
2182 
2183 			total_high_wmark += high_wmark_pages(zone);
2184 		}
2185 
2186 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2187 			scan_balance = SCAN_ANON;
2188 			goto out;
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * If there is enough inactive page cache, i.e. if the size of the
2194 	 * inactive list is greater than that of the active list *and* the
2195 	 * inactive list actually has some pages to scan on this priority, we
2196 	 * do not reclaim anything from the anonymous working set right now.
2197 	 * Without the second condition we could end up never scanning an
2198 	 * lruvec even if it has plenty of old anonymous pages unless the
2199 	 * system is under heavy pressure.
2200 	 */
2201 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2202 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2203 		scan_balance = SCAN_FILE;
2204 		goto out;
2205 	}
2206 
2207 	scan_balance = SCAN_FRACT;
2208 
2209 	/*
2210 	 * With swappiness at 100, anonymous and file have the same priority.
2211 	 * This scanning priority is essentially the inverse of IO cost.
2212 	 */
2213 	anon_prio = swappiness;
2214 	file_prio = 200 - anon_prio;
2215 
2216 	/*
2217 	 * OK, so we have swap space and a fair amount of page cache
2218 	 * pages.  We use the recently rotated / recently scanned
2219 	 * ratios to determine how valuable each cache is.
2220 	 *
2221 	 * Because workloads change over time (and to avoid overflow)
2222 	 * we keep these statistics as a floating average, which ends
2223 	 * up weighing recent references more than old ones.
2224 	 *
2225 	 * anon in [0], file in [1]
2226 	 */
2227 
2228 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2229 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2230 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2231 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2232 
2233 	spin_lock_irq(&pgdat->lru_lock);
2234 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2235 		reclaim_stat->recent_scanned[0] /= 2;
2236 		reclaim_stat->recent_rotated[0] /= 2;
2237 	}
2238 
2239 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2240 		reclaim_stat->recent_scanned[1] /= 2;
2241 		reclaim_stat->recent_rotated[1] /= 2;
2242 	}
2243 
2244 	/*
2245 	 * The amount of pressure on anon vs file pages is inversely
2246 	 * proportional to the fraction of recently scanned pages on
2247 	 * each list that were recently referenced and in active use.
2248 	 */
2249 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2250 	ap /= reclaim_stat->recent_rotated[0] + 1;
2251 
2252 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2253 	fp /= reclaim_stat->recent_rotated[1] + 1;
2254 	spin_unlock_irq(&pgdat->lru_lock);
2255 
2256 	fraction[0] = ap;
2257 	fraction[1] = fp;
2258 	denominator = ap + fp + 1;
2259 out:
2260 	*lru_pages = 0;
2261 	for_each_evictable_lru(lru) {
2262 		int file = is_file_lru(lru);
2263 		unsigned long size;
2264 		unsigned long scan;
2265 
2266 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2267 		scan = size >> sc->priority;
2268 		/*
2269 		 * If the cgroup's already been deleted, make sure to
2270 		 * scrape out the remaining cache.
2271 		 */
2272 		if (!scan && !mem_cgroup_online(memcg))
2273 			scan = min(size, SWAP_CLUSTER_MAX);
2274 
2275 		switch (scan_balance) {
2276 		case SCAN_EQUAL:
2277 			/* Scan lists relative to size */
2278 			break;
2279 		case SCAN_FRACT:
2280 			/*
2281 			 * Scan types proportional to swappiness and
2282 			 * their relative recent reclaim efficiency.
2283 			 */
2284 			scan = div64_u64(scan * fraction[file],
2285 					 denominator);
2286 			break;
2287 		case SCAN_FILE:
2288 		case SCAN_ANON:
2289 			/* Scan one type exclusively */
2290 			if ((scan_balance == SCAN_FILE) != file) {
2291 				size = 0;
2292 				scan = 0;
2293 			}
2294 			break;
2295 		default:
2296 			/* Look ma, no brain */
2297 			BUG();
2298 		}
2299 
2300 		*lru_pages += size;
2301 		nr[lru] = scan;
2302 	}
2303 }
2304 
2305 /*
2306  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2307  */
2308 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2309 			      struct scan_control *sc, unsigned long *lru_pages)
2310 {
2311 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2312 	unsigned long nr[NR_LRU_LISTS];
2313 	unsigned long targets[NR_LRU_LISTS];
2314 	unsigned long nr_to_scan;
2315 	enum lru_list lru;
2316 	unsigned long nr_reclaimed = 0;
2317 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2318 	struct blk_plug plug;
2319 	bool scan_adjusted;
2320 
2321 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2322 
2323 	/* Record the original scan target for proportional adjustments later */
2324 	memcpy(targets, nr, sizeof(nr));
2325 
2326 	/*
2327 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2328 	 * event that can occur when there is little memory pressure e.g.
2329 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2330 	 * when the requested number of pages are reclaimed when scanning at
2331 	 * DEF_PRIORITY on the assumption that the fact we are direct
2332 	 * reclaiming implies that kswapd is not keeping up and it is best to
2333 	 * do a batch of work at once. For memcg reclaim one check is made to
2334 	 * abort proportional reclaim if either the file or anon lru has already
2335 	 * dropped to zero at the first pass.
2336 	 */
2337 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2338 			 sc->priority == DEF_PRIORITY);
2339 
2340 	blk_start_plug(&plug);
2341 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2342 					nr[LRU_INACTIVE_FILE]) {
2343 		unsigned long nr_anon, nr_file, percentage;
2344 		unsigned long nr_scanned;
2345 
2346 		for_each_evictable_lru(lru) {
2347 			if (nr[lru]) {
2348 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2349 				nr[lru] -= nr_to_scan;
2350 
2351 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2352 							    lruvec, memcg, sc);
2353 			}
2354 		}
2355 
2356 		cond_resched();
2357 
2358 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2359 			continue;
2360 
2361 		/*
2362 		 * For kswapd and memcg, reclaim at least the number of pages
2363 		 * requested. Ensure that the anon and file LRUs are scanned
2364 		 * proportionally what was requested by get_scan_count(). We
2365 		 * stop reclaiming one LRU and reduce the amount scanning
2366 		 * proportional to the original scan target.
2367 		 */
2368 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2369 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2370 
2371 		/*
2372 		 * It's just vindictive to attack the larger once the smaller
2373 		 * has gone to zero.  And given the way we stop scanning the
2374 		 * smaller below, this makes sure that we only make one nudge
2375 		 * towards proportionality once we've got nr_to_reclaim.
2376 		 */
2377 		if (!nr_file || !nr_anon)
2378 			break;
2379 
2380 		if (nr_file > nr_anon) {
2381 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2382 						targets[LRU_ACTIVE_ANON] + 1;
2383 			lru = LRU_BASE;
2384 			percentage = nr_anon * 100 / scan_target;
2385 		} else {
2386 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2387 						targets[LRU_ACTIVE_FILE] + 1;
2388 			lru = LRU_FILE;
2389 			percentage = nr_file * 100 / scan_target;
2390 		}
2391 
2392 		/* Stop scanning the smaller of the LRU */
2393 		nr[lru] = 0;
2394 		nr[lru + LRU_ACTIVE] = 0;
2395 
2396 		/*
2397 		 * Recalculate the other LRU scan count based on its original
2398 		 * scan target and the percentage scanning already complete
2399 		 */
2400 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2401 		nr_scanned = targets[lru] - nr[lru];
2402 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2403 		nr[lru] -= min(nr[lru], nr_scanned);
2404 
2405 		lru += LRU_ACTIVE;
2406 		nr_scanned = targets[lru] - nr[lru];
2407 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2408 		nr[lru] -= min(nr[lru], nr_scanned);
2409 
2410 		scan_adjusted = true;
2411 	}
2412 	blk_finish_plug(&plug);
2413 	sc->nr_reclaimed += nr_reclaimed;
2414 
2415 	/*
2416 	 * Even if we did not try to evict anon pages at all, we want to
2417 	 * rebalance the anon lru active/inactive ratio.
2418 	 */
2419 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2420 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2421 				   sc, LRU_ACTIVE_ANON);
2422 }
2423 
2424 /* Use reclaim/compaction for costly allocs or under memory pressure */
2425 static bool in_reclaim_compaction(struct scan_control *sc)
2426 {
2427 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2428 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2429 			 sc->priority < DEF_PRIORITY - 2))
2430 		return true;
2431 
2432 	return false;
2433 }
2434 
2435 /*
2436  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2437  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2438  * true if more pages should be reclaimed such that when the page allocator
2439  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2440  * It will give up earlier than that if there is difficulty reclaiming pages.
2441  */
2442 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2443 					unsigned long nr_reclaimed,
2444 					unsigned long nr_scanned,
2445 					struct scan_control *sc)
2446 {
2447 	unsigned long pages_for_compaction;
2448 	unsigned long inactive_lru_pages;
2449 	int z;
2450 
2451 	/* If not in reclaim/compaction mode, stop */
2452 	if (!in_reclaim_compaction(sc))
2453 		return false;
2454 
2455 	/* Consider stopping depending on scan and reclaim activity */
2456 	if (sc->gfp_mask & __GFP_REPEAT) {
2457 		/*
2458 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2459 		 * full LRU list has been scanned and we are still failing
2460 		 * to reclaim pages. This full LRU scan is potentially
2461 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2462 		 */
2463 		if (!nr_reclaimed && !nr_scanned)
2464 			return false;
2465 	} else {
2466 		/*
2467 		 * For non-__GFP_REPEAT allocations which can presumably
2468 		 * fail without consequence, stop if we failed to reclaim
2469 		 * any pages from the last SWAP_CLUSTER_MAX number of
2470 		 * pages that were scanned. This will return to the
2471 		 * caller faster at the risk reclaim/compaction and
2472 		 * the resulting allocation attempt fails
2473 		 */
2474 		if (!nr_reclaimed)
2475 			return false;
2476 	}
2477 
2478 	/*
2479 	 * If we have not reclaimed enough pages for compaction and the
2480 	 * inactive lists are large enough, continue reclaiming
2481 	 */
2482 	pages_for_compaction = compact_gap(sc->order);
2483 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2484 	if (get_nr_swap_pages() > 0)
2485 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2486 	if (sc->nr_reclaimed < pages_for_compaction &&
2487 			inactive_lru_pages > pages_for_compaction)
2488 		return true;
2489 
2490 	/* If compaction would go ahead or the allocation would succeed, stop */
2491 	for (z = 0; z <= sc->reclaim_idx; z++) {
2492 		struct zone *zone = &pgdat->node_zones[z];
2493 		if (!managed_zone(zone))
2494 			continue;
2495 
2496 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2497 		case COMPACT_SUCCESS:
2498 		case COMPACT_CONTINUE:
2499 			return false;
2500 		default:
2501 			/* check next zone */
2502 			;
2503 		}
2504 	}
2505 	return true;
2506 }
2507 
2508 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2509 {
2510 	struct reclaim_state *reclaim_state = current->reclaim_state;
2511 	unsigned long nr_reclaimed, nr_scanned;
2512 	bool reclaimable = false;
2513 
2514 	do {
2515 		struct mem_cgroup *root = sc->target_mem_cgroup;
2516 		struct mem_cgroup_reclaim_cookie reclaim = {
2517 			.pgdat = pgdat,
2518 			.priority = sc->priority,
2519 		};
2520 		unsigned long node_lru_pages = 0;
2521 		struct mem_cgroup *memcg;
2522 
2523 		nr_reclaimed = sc->nr_reclaimed;
2524 		nr_scanned = sc->nr_scanned;
2525 
2526 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2527 		do {
2528 			unsigned long lru_pages;
2529 			unsigned long reclaimed;
2530 			unsigned long scanned;
2531 
2532 			if (mem_cgroup_low(root, memcg)) {
2533 				if (!sc->memcg_low_reclaim) {
2534 					sc->memcg_low_skipped = 1;
2535 					continue;
2536 				}
2537 				mem_cgroup_event(memcg, MEMCG_LOW);
2538 			}
2539 
2540 			reclaimed = sc->nr_reclaimed;
2541 			scanned = sc->nr_scanned;
2542 
2543 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2544 			node_lru_pages += lru_pages;
2545 
2546 			if (memcg)
2547 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2548 					    memcg, sc->nr_scanned - scanned,
2549 					    lru_pages);
2550 
2551 			/* Record the group's reclaim efficiency */
2552 			vmpressure(sc->gfp_mask, memcg, false,
2553 				   sc->nr_scanned - scanned,
2554 				   sc->nr_reclaimed - reclaimed);
2555 
2556 			/*
2557 			 * Direct reclaim and kswapd have to scan all memory
2558 			 * cgroups to fulfill the overall scan target for the
2559 			 * node.
2560 			 *
2561 			 * Limit reclaim, on the other hand, only cares about
2562 			 * nr_to_reclaim pages to be reclaimed and it will
2563 			 * retry with decreasing priority if one round over the
2564 			 * whole hierarchy is not sufficient.
2565 			 */
2566 			if (!global_reclaim(sc) &&
2567 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2568 				mem_cgroup_iter_break(root, memcg);
2569 				break;
2570 			}
2571 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2572 
2573 		/*
2574 		 * Shrink the slab caches in the same proportion that
2575 		 * the eligible LRU pages were scanned.
2576 		 */
2577 		if (global_reclaim(sc))
2578 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2579 				    sc->nr_scanned - nr_scanned,
2580 				    node_lru_pages);
2581 
2582 		if (reclaim_state) {
2583 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2584 			reclaim_state->reclaimed_slab = 0;
2585 		}
2586 
2587 		/* Record the subtree's reclaim efficiency */
2588 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2589 			   sc->nr_scanned - nr_scanned,
2590 			   sc->nr_reclaimed - nr_reclaimed);
2591 
2592 		if (sc->nr_reclaimed - nr_reclaimed)
2593 			reclaimable = true;
2594 
2595 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2596 					 sc->nr_scanned - nr_scanned, sc));
2597 
2598 	/*
2599 	 * Kswapd gives up on balancing particular nodes after too
2600 	 * many failures to reclaim anything from them and goes to
2601 	 * sleep. On reclaim progress, reset the failure counter. A
2602 	 * successful direct reclaim run will revive a dormant kswapd.
2603 	 */
2604 	if (reclaimable)
2605 		pgdat->kswapd_failures = 0;
2606 
2607 	return reclaimable;
2608 }
2609 
2610 /*
2611  * Returns true if compaction should go ahead for a costly-order request, or
2612  * the allocation would already succeed without compaction. Return false if we
2613  * should reclaim first.
2614  */
2615 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2616 {
2617 	unsigned long watermark;
2618 	enum compact_result suitable;
2619 
2620 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2621 	if (suitable == COMPACT_SUCCESS)
2622 		/* Allocation should succeed already. Don't reclaim. */
2623 		return true;
2624 	if (suitable == COMPACT_SKIPPED)
2625 		/* Compaction cannot yet proceed. Do reclaim. */
2626 		return false;
2627 
2628 	/*
2629 	 * Compaction is already possible, but it takes time to run and there
2630 	 * are potentially other callers using the pages just freed. So proceed
2631 	 * with reclaim to make a buffer of free pages available to give
2632 	 * compaction a reasonable chance of completing and allocating the page.
2633 	 * Note that we won't actually reclaim the whole buffer in one attempt
2634 	 * as the target watermark in should_continue_reclaim() is lower. But if
2635 	 * we are already above the high+gap watermark, don't reclaim at all.
2636 	 */
2637 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2638 
2639 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2640 }
2641 
2642 /*
2643  * This is the direct reclaim path, for page-allocating processes.  We only
2644  * try to reclaim pages from zones which will satisfy the caller's allocation
2645  * request.
2646  *
2647  * If a zone is deemed to be full of pinned pages then just give it a light
2648  * scan then give up on it.
2649  */
2650 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2651 {
2652 	struct zoneref *z;
2653 	struct zone *zone;
2654 	unsigned long nr_soft_reclaimed;
2655 	unsigned long nr_soft_scanned;
2656 	gfp_t orig_mask;
2657 	pg_data_t *last_pgdat = NULL;
2658 
2659 	/*
2660 	 * If the number of buffer_heads in the machine exceeds the maximum
2661 	 * allowed level, force direct reclaim to scan the highmem zone as
2662 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2663 	 */
2664 	orig_mask = sc->gfp_mask;
2665 	if (buffer_heads_over_limit) {
2666 		sc->gfp_mask |= __GFP_HIGHMEM;
2667 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2668 	}
2669 
2670 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2671 					sc->reclaim_idx, sc->nodemask) {
2672 		/*
2673 		 * Take care memory controller reclaiming has small influence
2674 		 * to global LRU.
2675 		 */
2676 		if (global_reclaim(sc)) {
2677 			if (!cpuset_zone_allowed(zone,
2678 						 GFP_KERNEL | __GFP_HARDWALL))
2679 				continue;
2680 
2681 			/*
2682 			 * If we already have plenty of memory free for
2683 			 * compaction in this zone, don't free any more.
2684 			 * Even though compaction is invoked for any
2685 			 * non-zero order, only frequent costly order
2686 			 * reclamation is disruptive enough to become a
2687 			 * noticeable problem, like transparent huge
2688 			 * page allocations.
2689 			 */
2690 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2691 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2692 			    compaction_ready(zone, sc)) {
2693 				sc->compaction_ready = true;
2694 				continue;
2695 			}
2696 
2697 			/*
2698 			 * Shrink each node in the zonelist once. If the
2699 			 * zonelist is ordered by zone (not the default) then a
2700 			 * node may be shrunk multiple times but in that case
2701 			 * the user prefers lower zones being preserved.
2702 			 */
2703 			if (zone->zone_pgdat == last_pgdat)
2704 				continue;
2705 
2706 			/*
2707 			 * This steals pages from memory cgroups over softlimit
2708 			 * and returns the number of reclaimed pages and
2709 			 * scanned pages. This works for global memory pressure
2710 			 * and balancing, not for a memcg's limit.
2711 			 */
2712 			nr_soft_scanned = 0;
2713 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2714 						sc->order, sc->gfp_mask,
2715 						&nr_soft_scanned);
2716 			sc->nr_reclaimed += nr_soft_reclaimed;
2717 			sc->nr_scanned += nr_soft_scanned;
2718 			/* need some check for avoid more shrink_zone() */
2719 		}
2720 
2721 		/* See comment about same check for global reclaim above */
2722 		if (zone->zone_pgdat == last_pgdat)
2723 			continue;
2724 		last_pgdat = zone->zone_pgdat;
2725 		shrink_node(zone->zone_pgdat, sc);
2726 	}
2727 
2728 	/*
2729 	 * Restore to original mask to avoid the impact on the caller if we
2730 	 * promoted it to __GFP_HIGHMEM.
2731 	 */
2732 	sc->gfp_mask = orig_mask;
2733 }
2734 
2735 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2736 {
2737 	struct mem_cgroup *memcg;
2738 
2739 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2740 	do {
2741 		unsigned long refaults;
2742 		struct lruvec *lruvec;
2743 
2744 		if (memcg)
2745 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2746 		else
2747 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2748 
2749 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2750 		lruvec->refaults = refaults;
2751 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2752 }
2753 
2754 /*
2755  * This is the main entry point to direct page reclaim.
2756  *
2757  * If a full scan of the inactive list fails to free enough memory then we
2758  * are "out of memory" and something needs to be killed.
2759  *
2760  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2761  * high - the zone may be full of dirty or under-writeback pages, which this
2762  * caller can't do much about.  We kick the writeback threads and take explicit
2763  * naps in the hope that some of these pages can be written.  But if the
2764  * allocating task holds filesystem locks which prevent writeout this might not
2765  * work, and the allocation attempt will fail.
2766  *
2767  * returns:	0, if no pages reclaimed
2768  * 		else, the number of pages reclaimed
2769  */
2770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2771 					  struct scan_control *sc)
2772 {
2773 	int initial_priority = sc->priority;
2774 	pg_data_t *last_pgdat;
2775 	struct zoneref *z;
2776 	struct zone *zone;
2777 retry:
2778 	delayacct_freepages_start();
2779 
2780 	if (global_reclaim(sc))
2781 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2782 
2783 	do {
2784 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2785 				sc->priority);
2786 		sc->nr_scanned = 0;
2787 		shrink_zones(zonelist, sc);
2788 
2789 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2790 			break;
2791 
2792 		if (sc->compaction_ready)
2793 			break;
2794 
2795 		/*
2796 		 * If we're getting trouble reclaiming, start doing
2797 		 * writepage even in laptop mode.
2798 		 */
2799 		if (sc->priority < DEF_PRIORITY - 2)
2800 			sc->may_writepage = 1;
2801 	} while (--sc->priority >= 0);
2802 
2803 	last_pgdat = NULL;
2804 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2805 					sc->nodemask) {
2806 		if (zone->zone_pgdat == last_pgdat)
2807 			continue;
2808 		last_pgdat = zone->zone_pgdat;
2809 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2810 	}
2811 
2812 	delayacct_freepages_end();
2813 
2814 	if (sc->nr_reclaimed)
2815 		return sc->nr_reclaimed;
2816 
2817 	/* Aborted reclaim to try compaction? don't OOM, then */
2818 	if (sc->compaction_ready)
2819 		return 1;
2820 
2821 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2822 	if (sc->memcg_low_skipped) {
2823 		sc->priority = initial_priority;
2824 		sc->memcg_low_reclaim = 1;
2825 		sc->memcg_low_skipped = 0;
2826 		goto retry;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 static bool allow_direct_reclaim(pg_data_t *pgdat)
2833 {
2834 	struct zone *zone;
2835 	unsigned long pfmemalloc_reserve = 0;
2836 	unsigned long free_pages = 0;
2837 	int i;
2838 	bool wmark_ok;
2839 
2840 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2841 		return true;
2842 
2843 	for (i = 0; i <= ZONE_NORMAL; i++) {
2844 		zone = &pgdat->node_zones[i];
2845 		if (!managed_zone(zone))
2846 			continue;
2847 
2848 		if (!zone_reclaimable_pages(zone))
2849 			continue;
2850 
2851 		pfmemalloc_reserve += min_wmark_pages(zone);
2852 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2853 	}
2854 
2855 	/* If there are no reserves (unexpected config) then do not throttle */
2856 	if (!pfmemalloc_reserve)
2857 		return true;
2858 
2859 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2860 
2861 	/* kswapd must be awake if processes are being throttled */
2862 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2863 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2864 						(enum zone_type)ZONE_NORMAL);
2865 		wake_up_interruptible(&pgdat->kswapd_wait);
2866 	}
2867 
2868 	return wmark_ok;
2869 }
2870 
2871 /*
2872  * Throttle direct reclaimers if backing storage is backed by the network
2873  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2874  * depleted. kswapd will continue to make progress and wake the processes
2875  * when the low watermark is reached.
2876  *
2877  * Returns true if a fatal signal was delivered during throttling. If this
2878  * happens, the page allocator should not consider triggering the OOM killer.
2879  */
2880 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2881 					nodemask_t *nodemask)
2882 {
2883 	struct zoneref *z;
2884 	struct zone *zone;
2885 	pg_data_t *pgdat = NULL;
2886 
2887 	/*
2888 	 * Kernel threads should not be throttled as they may be indirectly
2889 	 * responsible for cleaning pages necessary for reclaim to make forward
2890 	 * progress. kjournald for example may enter direct reclaim while
2891 	 * committing a transaction where throttling it could forcing other
2892 	 * processes to block on log_wait_commit().
2893 	 */
2894 	if (current->flags & PF_KTHREAD)
2895 		goto out;
2896 
2897 	/*
2898 	 * If a fatal signal is pending, this process should not throttle.
2899 	 * It should return quickly so it can exit and free its memory
2900 	 */
2901 	if (fatal_signal_pending(current))
2902 		goto out;
2903 
2904 	/*
2905 	 * Check if the pfmemalloc reserves are ok by finding the first node
2906 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2907 	 * GFP_KERNEL will be required for allocating network buffers when
2908 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2909 	 *
2910 	 * Throttling is based on the first usable node and throttled processes
2911 	 * wait on a queue until kswapd makes progress and wakes them. There
2912 	 * is an affinity then between processes waking up and where reclaim
2913 	 * progress has been made assuming the process wakes on the same node.
2914 	 * More importantly, processes running on remote nodes will not compete
2915 	 * for remote pfmemalloc reserves and processes on different nodes
2916 	 * should make reasonable progress.
2917 	 */
2918 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2919 					gfp_zone(gfp_mask), nodemask) {
2920 		if (zone_idx(zone) > ZONE_NORMAL)
2921 			continue;
2922 
2923 		/* Throttle based on the first usable node */
2924 		pgdat = zone->zone_pgdat;
2925 		if (allow_direct_reclaim(pgdat))
2926 			goto out;
2927 		break;
2928 	}
2929 
2930 	/* If no zone was usable by the allocation flags then do not throttle */
2931 	if (!pgdat)
2932 		goto out;
2933 
2934 	/* Account for the throttling */
2935 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2936 
2937 	/*
2938 	 * If the caller cannot enter the filesystem, it's possible that it
2939 	 * is due to the caller holding an FS lock or performing a journal
2940 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2941 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2942 	 * blocked waiting on the same lock. Instead, throttle for up to a
2943 	 * second before continuing.
2944 	 */
2945 	if (!(gfp_mask & __GFP_FS)) {
2946 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2947 			allow_direct_reclaim(pgdat), HZ);
2948 
2949 		goto check_pending;
2950 	}
2951 
2952 	/* Throttle until kswapd wakes the process */
2953 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2954 		allow_direct_reclaim(pgdat));
2955 
2956 check_pending:
2957 	if (fatal_signal_pending(current))
2958 		return true;
2959 
2960 out:
2961 	return false;
2962 }
2963 
2964 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2965 				gfp_t gfp_mask, nodemask_t *nodemask)
2966 {
2967 	unsigned long nr_reclaimed;
2968 	struct scan_control sc = {
2969 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2970 		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2971 		.reclaim_idx = gfp_zone(gfp_mask),
2972 		.order = order,
2973 		.nodemask = nodemask,
2974 		.priority = DEF_PRIORITY,
2975 		.may_writepage = !laptop_mode,
2976 		.may_unmap = 1,
2977 		.may_swap = 1,
2978 	};
2979 
2980 	/*
2981 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2982 	 * 1 is returned so that the page allocator does not OOM kill at this
2983 	 * point.
2984 	 */
2985 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2986 		return 1;
2987 
2988 	trace_mm_vmscan_direct_reclaim_begin(order,
2989 				sc.may_writepage,
2990 				gfp_mask,
2991 				sc.reclaim_idx);
2992 
2993 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2994 
2995 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2996 
2997 	return nr_reclaimed;
2998 }
2999 
3000 #ifdef CONFIG_MEMCG
3001 
3002 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3003 						gfp_t gfp_mask, bool noswap,
3004 						pg_data_t *pgdat,
3005 						unsigned long *nr_scanned)
3006 {
3007 	struct scan_control sc = {
3008 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3009 		.target_mem_cgroup = memcg,
3010 		.may_writepage = !laptop_mode,
3011 		.may_unmap = 1,
3012 		.reclaim_idx = MAX_NR_ZONES - 1,
3013 		.may_swap = !noswap,
3014 	};
3015 	unsigned long lru_pages;
3016 
3017 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3018 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3019 
3020 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3021 						      sc.may_writepage,
3022 						      sc.gfp_mask,
3023 						      sc.reclaim_idx);
3024 
3025 	/*
3026 	 * NOTE: Although we can get the priority field, using it
3027 	 * here is not a good idea, since it limits the pages we can scan.
3028 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3029 	 * will pick up pages from other mem cgroup's as well. We hack
3030 	 * the priority and make it zero.
3031 	 */
3032 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3033 
3034 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3035 
3036 	*nr_scanned = sc.nr_scanned;
3037 	return sc.nr_reclaimed;
3038 }
3039 
3040 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3041 					   unsigned long nr_pages,
3042 					   gfp_t gfp_mask,
3043 					   bool may_swap)
3044 {
3045 	struct zonelist *zonelist;
3046 	unsigned long nr_reclaimed;
3047 	int nid;
3048 	unsigned int noreclaim_flag;
3049 	struct scan_control sc = {
3050 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3051 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3052 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3053 		.reclaim_idx = MAX_NR_ZONES - 1,
3054 		.target_mem_cgroup = memcg,
3055 		.priority = DEF_PRIORITY,
3056 		.may_writepage = !laptop_mode,
3057 		.may_unmap = 1,
3058 		.may_swap = may_swap,
3059 	};
3060 
3061 	/*
3062 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3063 	 * take care of from where we get pages. So the node where we start the
3064 	 * scan does not need to be the current node.
3065 	 */
3066 	nid = mem_cgroup_select_victim_node(memcg);
3067 
3068 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3069 
3070 	trace_mm_vmscan_memcg_reclaim_begin(0,
3071 					    sc.may_writepage,
3072 					    sc.gfp_mask,
3073 					    sc.reclaim_idx);
3074 
3075 	noreclaim_flag = memalloc_noreclaim_save();
3076 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3077 	memalloc_noreclaim_restore(noreclaim_flag);
3078 
3079 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3080 
3081 	return nr_reclaimed;
3082 }
3083 #endif
3084 
3085 static void age_active_anon(struct pglist_data *pgdat,
3086 				struct scan_control *sc)
3087 {
3088 	struct mem_cgroup *memcg;
3089 
3090 	if (!total_swap_pages)
3091 		return;
3092 
3093 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3094 	do {
3095 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3096 
3097 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3098 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3099 					   sc, LRU_ACTIVE_ANON);
3100 
3101 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3102 	} while (memcg);
3103 }
3104 
3105 /*
3106  * Returns true if there is an eligible zone balanced for the request order
3107  * and classzone_idx
3108  */
3109 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3110 {
3111 	int i;
3112 	unsigned long mark = -1;
3113 	struct zone *zone;
3114 
3115 	for (i = 0; i <= classzone_idx; i++) {
3116 		zone = pgdat->node_zones + i;
3117 
3118 		if (!managed_zone(zone))
3119 			continue;
3120 
3121 		mark = high_wmark_pages(zone);
3122 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3123 			return true;
3124 	}
3125 
3126 	/*
3127 	 * If a node has no populated zone within classzone_idx, it does not
3128 	 * need balancing by definition. This can happen if a zone-restricted
3129 	 * allocation tries to wake a remote kswapd.
3130 	 */
3131 	if (mark == -1)
3132 		return true;
3133 
3134 	return false;
3135 }
3136 
3137 /* Clear pgdat state for congested, dirty or under writeback. */
3138 static void clear_pgdat_congested(pg_data_t *pgdat)
3139 {
3140 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3141 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3142 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3143 }
3144 
3145 /*
3146  * Prepare kswapd for sleeping. This verifies that there are no processes
3147  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3148  *
3149  * Returns true if kswapd is ready to sleep
3150  */
3151 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3152 {
3153 	/*
3154 	 * The throttled processes are normally woken up in balance_pgdat() as
3155 	 * soon as allow_direct_reclaim() is true. But there is a potential
3156 	 * race between when kswapd checks the watermarks and a process gets
3157 	 * throttled. There is also a potential race if processes get
3158 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3159 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3160 	 * the wake up checks. If kswapd is going to sleep, no process should
3161 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3162 	 * the wake up is premature, processes will wake kswapd and get
3163 	 * throttled again. The difference from wake ups in balance_pgdat() is
3164 	 * that here we are under prepare_to_wait().
3165 	 */
3166 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3167 		wake_up_all(&pgdat->pfmemalloc_wait);
3168 
3169 	/* Hopeless node, leave it to direct reclaim */
3170 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3171 		return true;
3172 
3173 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3174 		clear_pgdat_congested(pgdat);
3175 		return true;
3176 	}
3177 
3178 	return false;
3179 }
3180 
3181 /*
3182  * kswapd shrinks a node of pages that are at or below the highest usable
3183  * zone that is currently unbalanced.
3184  *
3185  * Returns true if kswapd scanned at least the requested number of pages to
3186  * reclaim or if the lack of progress was due to pages under writeback.
3187  * This is used to determine if the scanning priority needs to be raised.
3188  */
3189 static bool kswapd_shrink_node(pg_data_t *pgdat,
3190 			       struct scan_control *sc)
3191 {
3192 	struct zone *zone;
3193 	int z;
3194 
3195 	/* Reclaim a number of pages proportional to the number of zones */
3196 	sc->nr_to_reclaim = 0;
3197 	for (z = 0; z <= sc->reclaim_idx; z++) {
3198 		zone = pgdat->node_zones + z;
3199 		if (!managed_zone(zone))
3200 			continue;
3201 
3202 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3203 	}
3204 
3205 	/*
3206 	 * Historically care was taken to put equal pressure on all zones but
3207 	 * now pressure is applied based on node LRU order.
3208 	 */
3209 	shrink_node(pgdat, sc);
3210 
3211 	/*
3212 	 * Fragmentation may mean that the system cannot be rebalanced for
3213 	 * high-order allocations. If twice the allocation size has been
3214 	 * reclaimed then recheck watermarks only at order-0 to prevent
3215 	 * excessive reclaim. Assume that a process requested a high-order
3216 	 * can direct reclaim/compact.
3217 	 */
3218 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3219 		sc->order = 0;
3220 
3221 	return sc->nr_scanned >= sc->nr_to_reclaim;
3222 }
3223 
3224 /*
3225  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3226  * that are eligible for use by the caller until at least one zone is
3227  * balanced.
3228  *
3229  * Returns the order kswapd finished reclaiming at.
3230  *
3231  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3232  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3233  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3234  * or lower is eligible for reclaim until at least one usable zone is
3235  * balanced.
3236  */
3237 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3238 {
3239 	int i;
3240 	unsigned long nr_soft_reclaimed;
3241 	unsigned long nr_soft_scanned;
3242 	struct zone *zone;
3243 	struct scan_control sc = {
3244 		.gfp_mask = GFP_KERNEL,
3245 		.order = order,
3246 		.priority = DEF_PRIORITY,
3247 		.may_writepage = !laptop_mode,
3248 		.may_unmap = 1,
3249 		.may_swap = 1,
3250 	};
3251 	count_vm_event(PAGEOUTRUN);
3252 
3253 	do {
3254 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3255 		bool raise_priority = true;
3256 
3257 		sc.reclaim_idx = classzone_idx;
3258 
3259 		/*
3260 		 * If the number of buffer_heads exceeds the maximum allowed
3261 		 * then consider reclaiming from all zones. This has a dual
3262 		 * purpose -- on 64-bit systems it is expected that
3263 		 * buffer_heads are stripped during active rotation. On 32-bit
3264 		 * systems, highmem pages can pin lowmem memory and shrinking
3265 		 * buffers can relieve lowmem pressure. Reclaim may still not
3266 		 * go ahead if all eligible zones for the original allocation
3267 		 * request are balanced to avoid excessive reclaim from kswapd.
3268 		 */
3269 		if (buffer_heads_over_limit) {
3270 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3271 				zone = pgdat->node_zones + i;
3272 				if (!managed_zone(zone))
3273 					continue;
3274 
3275 				sc.reclaim_idx = i;
3276 				break;
3277 			}
3278 		}
3279 
3280 		/*
3281 		 * Only reclaim if there are no eligible zones. Note that
3282 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3283 		 * have adjusted it.
3284 		 */
3285 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3286 			goto out;
3287 
3288 		/*
3289 		 * Do some background aging of the anon list, to give
3290 		 * pages a chance to be referenced before reclaiming. All
3291 		 * pages are rotated regardless of classzone as this is
3292 		 * about consistent aging.
3293 		 */
3294 		age_active_anon(pgdat, &sc);
3295 
3296 		/*
3297 		 * If we're getting trouble reclaiming, start doing writepage
3298 		 * even in laptop mode.
3299 		 */
3300 		if (sc.priority < DEF_PRIORITY - 2)
3301 			sc.may_writepage = 1;
3302 
3303 		/* Call soft limit reclaim before calling shrink_node. */
3304 		sc.nr_scanned = 0;
3305 		nr_soft_scanned = 0;
3306 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3307 						sc.gfp_mask, &nr_soft_scanned);
3308 		sc.nr_reclaimed += nr_soft_reclaimed;
3309 
3310 		/*
3311 		 * There should be no need to raise the scanning priority if
3312 		 * enough pages are already being scanned that that high
3313 		 * watermark would be met at 100% efficiency.
3314 		 */
3315 		if (kswapd_shrink_node(pgdat, &sc))
3316 			raise_priority = false;
3317 
3318 		/*
3319 		 * If the low watermark is met there is no need for processes
3320 		 * to be throttled on pfmemalloc_wait as they should not be
3321 		 * able to safely make forward progress. Wake them
3322 		 */
3323 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3324 				allow_direct_reclaim(pgdat))
3325 			wake_up_all(&pgdat->pfmemalloc_wait);
3326 
3327 		/* Check if kswapd should be suspending */
3328 		if (try_to_freeze() || kthread_should_stop())
3329 			break;
3330 
3331 		/*
3332 		 * Raise priority if scanning rate is too low or there was no
3333 		 * progress in reclaiming pages
3334 		 */
3335 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3336 		if (raise_priority || !nr_reclaimed)
3337 			sc.priority--;
3338 	} while (sc.priority >= 1);
3339 
3340 	if (!sc.nr_reclaimed)
3341 		pgdat->kswapd_failures++;
3342 
3343 out:
3344 	snapshot_refaults(NULL, pgdat);
3345 	/*
3346 	 * Return the order kswapd stopped reclaiming at as
3347 	 * prepare_kswapd_sleep() takes it into account. If another caller
3348 	 * entered the allocator slow path while kswapd was awake, order will
3349 	 * remain at the higher level.
3350 	 */
3351 	return sc.order;
3352 }
3353 
3354 /*
3355  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3356  * allocation request woke kswapd for. When kswapd has not woken recently,
3357  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3358  * given classzone and returns it or the highest classzone index kswapd
3359  * was recently woke for.
3360  */
3361 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3362 					   enum zone_type classzone_idx)
3363 {
3364 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3365 		return classzone_idx;
3366 
3367 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3368 }
3369 
3370 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3371 				unsigned int classzone_idx)
3372 {
3373 	long remaining = 0;
3374 	DEFINE_WAIT(wait);
3375 
3376 	if (freezing(current) || kthread_should_stop())
3377 		return;
3378 
3379 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3380 
3381 	/*
3382 	 * Try to sleep for a short interval. Note that kcompactd will only be
3383 	 * woken if it is possible to sleep for a short interval. This is
3384 	 * deliberate on the assumption that if reclaim cannot keep an
3385 	 * eligible zone balanced that it's also unlikely that compaction will
3386 	 * succeed.
3387 	 */
3388 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3389 		/*
3390 		 * Compaction records what page blocks it recently failed to
3391 		 * isolate pages from and skips them in the future scanning.
3392 		 * When kswapd is going to sleep, it is reasonable to assume
3393 		 * that pages and compaction may succeed so reset the cache.
3394 		 */
3395 		reset_isolation_suitable(pgdat);
3396 
3397 		/*
3398 		 * We have freed the memory, now we should compact it to make
3399 		 * allocation of the requested order possible.
3400 		 */
3401 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3402 
3403 		remaining = schedule_timeout(HZ/10);
3404 
3405 		/*
3406 		 * If woken prematurely then reset kswapd_classzone_idx and
3407 		 * order. The values will either be from a wakeup request or
3408 		 * the previous request that slept prematurely.
3409 		 */
3410 		if (remaining) {
3411 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3412 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3413 		}
3414 
3415 		finish_wait(&pgdat->kswapd_wait, &wait);
3416 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3417 	}
3418 
3419 	/*
3420 	 * After a short sleep, check if it was a premature sleep. If not, then
3421 	 * go fully to sleep until explicitly woken up.
3422 	 */
3423 	if (!remaining &&
3424 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3425 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3426 
3427 		/*
3428 		 * vmstat counters are not perfectly accurate and the estimated
3429 		 * value for counters such as NR_FREE_PAGES can deviate from the
3430 		 * true value by nr_online_cpus * threshold. To avoid the zone
3431 		 * watermarks being breached while under pressure, we reduce the
3432 		 * per-cpu vmstat threshold while kswapd is awake and restore
3433 		 * them before going back to sleep.
3434 		 */
3435 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3436 
3437 		if (!kthread_should_stop())
3438 			schedule();
3439 
3440 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3441 	} else {
3442 		if (remaining)
3443 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3444 		else
3445 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3446 	}
3447 	finish_wait(&pgdat->kswapd_wait, &wait);
3448 }
3449 
3450 /*
3451  * The background pageout daemon, started as a kernel thread
3452  * from the init process.
3453  *
3454  * This basically trickles out pages so that we have _some_
3455  * free memory available even if there is no other activity
3456  * that frees anything up. This is needed for things like routing
3457  * etc, where we otherwise might have all activity going on in
3458  * asynchronous contexts that cannot page things out.
3459  *
3460  * If there are applications that are active memory-allocators
3461  * (most normal use), this basically shouldn't matter.
3462  */
3463 static int kswapd(void *p)
3464 {
3465 	unsigned int alloc_order, reclaim_order;
3466 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3467 	pg_data_t *pgdat = (pg_data_t*)p;
3468 	struct task_struct *tsk = current;
3469 
3470 	struct reclaim_state reclaim_state = {
3471 		.reclaimed_slab = 0,
3472 	};
3473 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3474 
3475 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3476 
3477 	if (!cpumask_empty(cpumask))
3478 		set_cpus_allowed_ptr(tsk, cpumask);
3479 	current->reclaim_state = &reclaim_state;
3480 
3481 	/*
3482 	 * Tell the memory management that we're a "memory allocator",
3483 	 * and that if we need more memory we should get access to it
3484 	 * regardless (see "__alloc_pages()"). "kswapd" should
3485 	 * never get caught in the normal page freeing logic.
3486 	 *
3487 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3488 	 * you need a small amount of memory in order to be able to
3489 	 * page out something else, and this flag essentially protects
3490 	 * us from recursively trying to free more memory as we're
3491 	 * trying to free the first piece of memory in the first place).
3492 	 */
3493 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3494 	set_freezable();
3495 
3496 	pgdat->kswapd_order = 0;
3497 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3498 	for ( ; ; ) {
3499 		bool ret;
3500 
3501 		alloc_order = reclaim_order = pgdat->kswapd_order;
3502 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3503 
3504 kswapd_try_sleep:
3505 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3506 					classzone_idx);
3507 
3508 		/* Read the new order and classzone_idx */
3509 		alloc_order = reclaim_order = pgdat->kswapd_order;
3510 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3511 		pgdat->kswapd_order = 0;
3512 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3513 
3514 		ret = try_to_freeze();
3515 		if (kthread_should_stop())
3516 			break;
3517 
3518 		/*
3519 		 * We can speed up thawing tasks if we don't call balance_pgdat
3520 		 * after returning from the refrigerator
3521 		 */
3522 		if (ret)
3523 			continue;
3524 
3525 		/*
3526 		 * Reclaim begins at the requested order but if a high-order
3527 		 * reclaim fails then kswapd falls back to reclaiming for
3528 		 * order-0. If that happens, kswapd will consider sleeping
3529 		 * for the order it finished reclaiming at (reclaim_order)
3530 		 * but kcompactd is woken to compact for the original
3531 		 * request (alloc_order).
3532 		 */
3533 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3534 						alloc_order);
3535 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3536 		if (reclaim_order < alloc_order)
3537 			goto kswapd_try_sleep;
3538 	}
3539 
3540 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3541 	current->reclaim_state = NULL;
3542 	lockdep_clear_current_reclaim_state();
3543 
3544 	return 0;
3545 }
3546 
3547 /*
3548  * A zone is low on free memory, so wake its kswapd task to service it.
3549  */
3550 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3551 {
3552 	pg_data_t *pgdat;
3553 
3554 	if (!managed_zone(zone))
3555 		return;
3556 
3557 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3558 		return;
3559 	pgdat = zone->zone_pgdat;
3560 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3561 							   classzone_idx);
3562 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3563 	if (!waitqueue_active(&pgdat->kswapd_wait))
3564 		return;
3565 
3566 	/* Hopeless node, leave it to direct reclaim */
3567 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3568 		return;
3569 
3570 	if (pgdat_balanced(pgdat, order, classzone_idx))
3571 		return;
3572 
3573 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3574 	wake_up_interruptible(&pgdat->kswapd_wait);
3575 }
3576 
3577 #ifdef CONFIG_HIBERNATION
3578 /*
3579  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3580  * freed pages.
3581  *
3582  * Rather than trying to age LRUs the aim is to preserve the overall
3583  * LRU order by reclaiming preferentially
3584  * inactive > active > active referenced > active mapped
3585  */
3586 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3587 {
3588 	struct reclaim_state reclaim_state;
3589 	struct scan_control sc = {
3590 		.nr_to_reclaim = nr_to_reclaim,
3591 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3592 		.reclaim_idx = MAX_NR_ZONES - 1,
3593 		.priority = DEF_PRIORITY,
3594 		.may_writepage = 1,
3595 		.may_unmap = 1,
3596 		.may_swap = 1,
3597 		.hibernation_mode = 1,
3598 	};
3599 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3600 	struct task_struct *p = current;
3601 	unsigned long nr_reclaimed;
3602 	unsigned int noreclaim_flag;
3603 
3604 	noreclaim_flag = memalloc_noreclaim_save();
3605 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3606 	reclaim_state.reclaimed_slab = 0;
3607 	p->reclaim_state = &reclaim_state;
3608 
3609 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3610 
3611 	p->reclaim_state = NULL;
3612 	lockdep_clear_current_reclaim_state();
3613 	memalloc_noreclaim_restore(noreclaim_flag);
3614 
3615 	return nr_reclaimed;
3616 }
3617 #endif /* CONFIG_HIBERNATION */
3618 
3619 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3620    not required for correctness.  So if the last cpu in a node goes
3621    away, we get changed to run anywhere: as the first one comes back,
3622    restore their cpu bindings. */
3623 static int kswapd_cpu_online(unsigned int cpu)
3624 {
3625 	int nid;
3626 
3627 	for_each_node_state(nid, N_MEMORY) {
3628 		pg_data_t *pgdat = NODE_DATA(nid);
3629 		const struct cpumask *mask;
3630 
3631 		mask = cpumask_of_node(pgdat->node_id);
3632 
3633 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3634 			/* One of our CPUs online: restore mask */
3635 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3636 	}
3637 	return 0;
3638 }
3639 
3640 /*
3641  * This kswapd start function will be called by init and node-hot-add.
3642  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3643  */
3644 int kswapd_run(int nid)
3645 {
3646 	pg_data_t *pgdat = NODE_DATA(nid);
3647 	int ret = 0;
3648 
3649 	if (pgdat->kswapd)
3650 		return 0;
3651 
3652 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3653 	if (IS_ERR(pgdat->kswapd)) {
3654 		/* failure at boot is fatal */
3655 		BUG_ON(system_state == SYSTEM_BOOTING);
3656 		pr_err("Failed to start kswapd on node %d\n", nid);
3657 		ret = PTR_ERR(pgdat->kswapd);
3658 		pgdat->kswapd = NULL;
3659 	}
3660 	return ret;
3661 }
3662 
3663 /*
3664  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3665  * hold mem_hotplug_begin/end().
3666  */
3667 void kswapd_stop(int nid)
3668 {
3669 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3670 
3671 	if (kswapd) {
3672 		kthread_stop(kswapd);
3673 		NODE_DATA(nid)->kswapd = NULL;
3674 	}
3675 }
3676 
3677 static int __init kswapd_init(void)
3678 {
3679 	int nid, ret;
3680 
3681 	swap_setup();
3682 	for_each_node_state(nid, N_MEMORY)
3683  		kswapd_run(nid);
3684 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3685 					"mm/vmscan:online", kswapd_cpu_online,
3686 					NULL);
3687 	WARN_ON(ret < 0);
3688 	return 0;
3689 }
3690 
3691 module_init(kswapd_init)
3692 
3693 #ifdef CONFIG_NUMA
3694 /*
3695  * Node reclaim mode
3696  *
3697  * If non-zero call node_reclaim when the number of free pages falls below
3698  * the watermarks.
3699  */
3700 int node_reclaim_mode __read_mostly;
3701 
3702 #define RECLAIM_OFF 0
3703 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3704 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3705 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3706 
3707 /*
3708  * Priority for NODE_RECLAIM. This determines the fraction of pages
3709  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3710  * a zone.
3711  */
3712 #define NODE_RECLAIM_PRIORITY 4
3713 
3714 /*
3715  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3716  * occur.
3717  */
3718 int sysctl_min_unmapped_ratio = 1;
3719 
3720 /*
3721  * If the number of slab pages in a zone grows beyond this percentage then
3722  * slab reclaim needs to occur.
3723  */
3724 int sysctl_min_slab_ratio = 5;
3725 
3726 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3727 {
3728 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3729 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3730 		node_page_state(pgdat, NR_ACTIVE_FILE);
3731 
3732 	/*
3733 	 * It's possible for there to be more file mapped pages than
3734 	 * accounted for by the pages on the file LRU lists because
3735 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3736 	 */
3737 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3738 }
3739 
3740 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3741 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3742 {
3743 	unsigned long nr_pagecache_reclaimable;
3744 	unsigned long delta = 0;
3745 
3746 	/*
3747 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3748 	 * potentially reclaimable. Otherwise, we have to worry about
3749 	 * pages like swapcache and node_unmapped_file_pages() provides
3750 	 * a better estimate
3751 	 */
3752 	if (node_reclaim_mode & RECLAIM_UNMAP)
3753 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3754 	else
3755 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3756 
3757 	/* If we can't clean pages, remove dirty pages from consideration */
3758 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3759 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3760 
3761 	/* Watch for any possible underflows due to delta */
3762 	if (unlikely(delta > nr_pagecache_reclaimable))
3763 		delta = nr_pagecache_reclaimable;
3764 
3765 	return nr_pagecache_reclaimable - delta;
3766 }
3767 
3768 /*
3769  * Try to free up some pages from this node through reclaim.
3770  */
3771 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3772 {
3773 	/* Minimum pages needed in order to stay on node */
3774 	const unsigned long nr_pages = 1 << order;
3775 	struct task_struct *p = current;
3776 	struct reclaim_state reclaim_state;
3777 	int classzone_idx = gfp_zone(gfp_mask);
3778 	unsigned int noreclaim_flag;
3779 	struct scan_control sc = {
3780 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3781 		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3782 		.order = order,
3783 		.priority = NODE_RECLAIM_PRIORITY,
3784 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3785 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3786 		.may_swap = 1,
3787 		.reclaim_idx = classzone_idx,
3788 	};
3789 
3790 	cond_resched();
3791 	/*
3792 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3793 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3794 	 * and RECLAIM_UNMAP.
3795 	 */
3796 	noreclaim_flag = memalloc_noreclaim_save();
3797 	p->flags |= PF_SWAPWRITE;
3798 	lockdep_set_current_reclaim_state(gfp_mask);
3799 	reclaim_state.reclaimed_slab = 0;
3800 	p->reclaim_state = &reclaim_state;
3801 
3802 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3803 		/*
3804 		 * Free memory by calling shrink zone with increasing
3805 		 * priorities until we have enough memory freed.
3806 		 */
3807 		do {
3808 			shrink_node(pgdat, &sc);
3809 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3810 	}
3811 
3812 	p->reclaim_state = NULL;
3813 	current->flags &= ~PF_SWAPWRITE;
3814 	memalloc_noreclaim_restore(noreclaim_flag);
3815 	lockdep_clear_current_reclaim_state();
3816 	return sc.nr_reclaimed >= nr_pages;
3817 }
3818 
3819 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3820 {
3821 	int ret;
3822 
3823 	/*
3824 	 * Node reclaim reclaims unmapped file backed pages and
3825 	 * slab pages if we are over the defined limits.
3826 	 *
3827 	 * A small portion of unmapped file backed pages is needed for
3828 	 * file I/O otherwise pages read by file I/O will be immediately
3829 	 * thrown out if the node is overallocated. So we do not reclaim
3830 	 * if less than a specified percentage of the node is used by
3831 	 * unmapped file backed pages.
3832 	 */
3833 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3834 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3835 		return NODE_RECLAIM_FULL;
3836 
3837 	/*
3838 	 * Do not scan if the allocation should not be delayed.
3839 	 */
3840 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3841 		return NODE_RECLAIM_NOSCAN;
3842 
3843 	/*
3844 	 * Only run node reclaim on the local node or on nodes that do not
3845 	 * have associated processors. This will favor the local processor
3846 	 * over remote processors and spread off node memory allocations
3847 	 * as wide as possible.
3848 	 */
3849 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3850 		return NODE_RECLAIM_NOSCAN;
3851 
3852 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3853 		return NODE_RECLAIM_NOSCAN;
3854 
3855 	ret = __node_reclaim(pgdat, gfp_mask, order);
3856 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3857 
3858 	if (!ret)
3859 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3860 
3861 	return ret;
3862 }
3863 #endif
3864 
3865 /*
3866  * page_evictable - test whether a page is evictable
3867  * @page: the page to test
3868  *
3869  * Test whether page is evictable--i.e., should be placed on active/inactive
3870  * lists vs unevictable list.
3871  *
3872  * Reasons page might not be evictable:
3873  * (1) page's mapping marked unevictable
3874  * (2) page is part of an mlocked VMA
3875  *
3876  */
3877 int page_evictable(struct page *page)
3878 {
3879 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3880 }
3881 
3882 #ifdef CONFIG_SHMEM
3883 /**
3884  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3885  * @pages:	array of pages to check
3886  * @nr_pages:	number of pages to check
3887  *
3888  * Checks pages for evictability and moves them to the appropriate lru list.
3889  *
3890  * This function is only used for SysV IPC SHM_UNLOCK.
3891  */
3892 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3893 {
3894 	struct lruvec *lruvec;
3895 	struct pglist_data *pgdat = NULL;
3896 	int pgscanned = 0;
3897 	int pgrescued = 0;
3898 	int i;
3899 
3900 	for (i = 0; i < nr_pages; i++) {
3901 		struct page *page = pages[i];
3902 		struct pglist_data *pagepgdat = page_pgdat(page);
3903 
3904 		pgscanned++;
3905 		if (pagepgdat != pgdat) {
3906 			if (pgdat)
3907 				spin_unlock_irq(&pgdat->lru_lock);
3908 			pgdat = pagepgdat;
3909 			spin_lock_irq(&pgdat->lru_lock);
3910 		}
3911 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3912 
3913 		if (!PageLRU(page) || !PageUnevictable(page))
3914 			continue;
3915 
3916 		if (page_evictable(page)) {
3917 			enum lru_list lru = page_lru_base_type(page);
3918 
3919 			VM_BUG_ON_PAGE(PageActive(page), page);
3920 			ClearPageUnevictable(page);
3921 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3922 			add_page_to_lru_list(page, lruvec, lru);
3923 			pgrescued++;
3924 		}
3925 	}
3926 
3927 	if (pgdat) {
3928 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3929 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3930 		spin_unlock_irq(&pgdat->lru_lock);
3931 	}
3932 }
3933 #endif /* CONFIG_SHMEM */
3934