1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 unsigned int may_writepage:1; 88 89 /* Can mapped pages be reclaimed? */ 90 unsigned int may_unmap:1; 91 92 /* Can pages be swapped as part of reclaim? */ 93 unsigned int may_swap:1; 94 95 /* Can cgroups be reclaimed below their normal consumption range? */ 96 unsigned int may_thrash:1; 97 98 unsigned int hibernation_mode:1; 99 100 /* One of the zones is ready for compaction */ 101 unsigned int compaction_ready:1; 102 103 /* Incremented by the number of inactive pages that were scanned */ 104 unsigned long nr_scanned; 105 106 /* Number of pages freed so far during a call to shrink_zones() */ 107 unsigned long nr_reclaimed; 108 }; 109 110 #ifdef ARCH_HAS_PREFETCH 111 #define prefetch_prev_lru_page(_page, _base, _field) \ 112 do { \ 113 if ((_page)->lru.prev != _base) { \ 114 struct page *prev; \ 115 \ 116 prev = lru_to_page(&(_page->lru)); \ 117 prefetch(&prev->_field); \ 118 } \ 119 } while (0) 120 #else 121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 122 #endif 123 124 #ifdef ARCH_HAS_PREFETCHW 125 #define prefetchw_prev_lru_page(_page, _base, _field) \ 126 do { \ 127 if ((_page)->lru.prev != _base) { \ 128 struct page *prev; \ 129 \ 130 prev = lru_to_page(&(_page->lru)); \ 131 prefetchw(&prev->_field); \ 132 } \ 133 } while (0) 134 #else 135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 136 #endif 137 138 /* 139 * From 0 .. 100. Higher means more swappy. 140 */ 141 int vm_swappiness = 60; 142 /* 143 * The total number of pages which are beyond the high watermark within all 144 * zones. 145 */ 146 unsigned long vm_total_pages; 147 148 static LIST_HEAD(shrinker_list); 149 static DECLARE_RWSEM(shrinker_rwsem); 150 151 #ifdef CONFIG_MEMCG 152 static bool global_reclaim(struct scan_control *sc) 153 { 154 return !sc->target_mem_cgroup; 155 } 156 157 /** 158 * sane_reclaim - is the usual dirty throttling mechanism operational? 159 * @sc: scan_control in question 160 * 161 * The normal page dirty throttling mechanism in balance_dirty_pages() is 162 * completely broken with the legacy memcg and direct stalling in 163 * shrink_page_list() is used for throttling instead, which lacks all the 164 * niceties such as fairness, adaptive pausing, bandwidth proportional 165 * allocation and configurability. 166 * 167 * This function tests whether the vmscan currently in progress can assume 168 * that the normal dirty throttling mechanism is operational. 169 */ 170 static bool sane_reclaim(struct scan_control *sc) 171 { 172 struct mem_cgroup *memcg = sc->target_mem_cgroup; 173 174 if (!memcg) 175 return true; 176 #ifdef CONFIG_CGROUP_WRITEBACK 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 178 return true; 179 #endif 180 return false; 181 } 182 #else 183 static bool global_reclaim(struct scan_control *sc) 184 { 185 return true; 186 } 187 188 static bool sane_reclaim(struct scan_control *sc) 189 { 190 return true; 191 } 192 #endif 193 194 static unsigned long zone_reclaimable_pages(struct zone *zone) 195 { 196 unsigned long nr; 197 198 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 199 zone_page_state(zone, NR_INACTIVE_FILE) + 200 zone_page_state(zone, NR_ISOLATED_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 204 zone_page_state(zone, NR_INACTIVE_ANON) + 205 zone_page_state(zone, NR_ISOLATED_ANON); 206 207 return nr; 208 } 209 210 bool zone_reclaimable(struct zone *zone) 211 { 212 return zone_page_state(zone, NR_PAGES_SCANNED) < 213 zone_reclaimable_pages(zone) * 6; 214 } 215 216 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 217 { 218 if (!mem_cgroup_disabled()) 219 return mem_cgroup_get_lru_size(lruvec, lru); 220 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 222 } 223 224 /* 225 * Add a shrinker callback to be called from the vm. 226 */ 227 int register_shrinker(struct shrinker *shrinker) 228 { 229 size_t size = sizeof(*shrinker->nr_deferred); 230 231 /* 232 * If we only have one possible node in the system anyway, save 233 * ourselves the trouble and disable NUMA aware behavior. This way we 234 * will save memory and some small loop time later. 235 */ 236 if (nr_node_ids == 1) 237 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 238 239 if (shrinker->flags & SHRINKER_NUMA_AWARE) 240 size *= nr_node_ids; 241 242 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 243 if (!shrinker->nr_deferred) 244 return -ENOMEM; 245 246 down_write(&shrinker_rwsem); 247 list_add_tail(&shrinker->list, &shrinker_list); 248 up_write(&shrinker_rwsem); 249 return 0; 250 } 251 EXPORT_SYMBOL(register_shrinker); 252 253 /* 254 * Remove one 255 */ 256 void unregister_shrinker(struct shrinker *shrinker) 257 { 258 down_write(&shrinker_rwsem); 259 list_del(&shrinker->list); 260 up_write(&shrinker_rwsem); 261 kfree(shrinker->nr_deferred); 262 } 263 EXPORT_SYMBOL(unregister_shrinker); 264 265 #define SHRINK_BATCH 128 266 267 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 268 struct shrinker *shrinker, 269 unsigned long nr_scanned, 270 unsigned long nr_eligible) 271 { 272 unsigned long freed = 0; 273 unsigned long long delta; 274 long total_scan; 275 long freeable; 276 long nr; 277 long new_nr; 278 int nid = shrinkctl->nid; 279 long batch_size = shrinker->batch ? shrinker->batch 280 : SHRINK_BATCH; 281 282 freeable = shrinker->count_objects(shrinker, shrinkctl); 283 if (freeable == 0) 284 return 0; 285 286 /* 287 * copy the current shrinker scan count into a local variable 288 * and zero it so that other concurrent shrinker invocations 289 * don't also do this scanning work. 290 */ 291 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 292 293 total_scan = nr; 294 delta = (4 * nr_scanned) / shrinker->seeks; 295 delta *= freeable; 296 do_div(delta, nr_eligible + 1); 297 total_scan += delta; 298 if (total_scan < 0) { 299 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 300 shrinker->scan_objects, total_scan); 301 total_scan = freeable; 302 } 303 304 /* 305 * We need to avoid excessive windup on filesystem shrinkers 306 * due to large numbers of GFP_NOFS allocations causing the 307 * shrinkers to return -1 all the time. This results in a large 308 * nr being built up so when a shrink that can do some work 309 * comes along it empties the entire cache due to nr >>> 310 * freeable. This is bad for sustaining a working set in 311 * memory. 312 * 313 * Hence only allow the shrinker to scan the entire cache when 314 * a large delta change is calculated directly. 315 */ 316 if (delta < freeable / 4) 317 total_scan = min(total_scan, freeable / 2); 318 319 /* 320 * Avoid risking looping forever due to too large nr value: 321 * never try to free more than twice the estimate number of 322 * freeable entries. 323 */ 324 if (total_scan > freeable * 2) 325 total_scan = freeable * 2; 326 327 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 328 nr_scanned, nr_eligible, 329 freeable, delta, total_scan); 330 331 /* 332 * Normally, we should not scan less than batch_size objects in one 333 * pass to avoid too frequent shrinker calls, but if the slab has less 334 * than batch_size objects in total and we are really tight on memory, 335 * we will try to reclaim all available objects, otherwise we can end 336 * up failing allocations although there are plenty of reclaimable 337 * objects spread over several slabs with usage less than the 338 * batch_size. 339 * 340 * We detect the "tight on memory" situations by looking at the total 341 * number of objects we want to scan (total_scan). If it is greater 342 * than the total number of objects on slab (freeable), we must be 343 * scanning at high prio and therefore should try to reclaim as much as 344 * possible. 345 */ 346 while (total_scan >= batch_size || 347 total_scan >= freeable) { 348 unsigned long ret; 349 unsigned long nr_to_scan = min(batch_size, total_scan); 350 351 shrinkctl->nr_to_scan = nr_to_scan; 352 ret = shrinker->scan_objects(shrinker, shrinkctl); 353 if (ret == SHRINK_STOP) 354 break; 355 freed += ret; 356 357 count_vm_events(SLABS_SCANNED, nr_to_scan); 358 total_scan -= nr_to_scan; 359 360 cond_resched(); 361 } 362 363 /* 364 * move the unused scan count back into the shrinker in a 365 * manner that handles concurrent updates. If we exhausted the 366 * scan, there is no need to do an update. 367 */ 368 if (total_scan > 0) 369 new_nr = atomic_long_add_return(total_scan, 370 &shrinker->nr_deferred[nid]); 371 else 372 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 373 374 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 375 return freed; 376 } 377 378 /** 379 * shrink_slab - shrink slab caches 380 * @gfp_mask: allocation context 381 * @nid: node whose slab caches to target 382 * @memcg: memory cgroup whose slab caches to target 383 * @nr_scanned: pressure numerator 384 * @nr_eligible: pressure denominator 385 * 386 * Call the shrink functions to age shrinkable caches. 387 * 388 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 389 * unaware shrinkers will receive a node id of 0 instead. 390 * 391 * @memcg specifies the memory cgroup to target. If it is not NULL, 392 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 393 * objects from the memory cgroup specified. Otherwise all shrinkers 394 * are called, and memcg aware shrinkers are supposed to scan the 395 * global list then. 396 * 397 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 398 * the available objects should be scanned. Page reclaim for example 399 * passes the number of pages scanned and the number of pages on the 400 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 401 * when it encountered mapped pages. The ratio is further biased by 402 * the ->seeks setting of the shrink function, which indicates the 403 * cost to recreate an object relative to that of an LRU page. 404 * 405 * Returns the number of reclaimed slab objects. 406 */ 407 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 408 struct mem_cgroup *memcg, 409 unsigned long nr_scanned, 410 unsigned long nr_eligible) 411 { 412 struct shrinker *shrinker; 413 unsigned long freed = 0; 414 415 if (memcg && !memcg_kmem_online(memcg)) 416 return 0; 417 418 if (nr_scanned == 0) 419 nr_scanned = SWAP_CLUSTER_MAX; 420 421 if (!down_read_trylock(&shrinker_rwsem)) { 422 /* 423 * If we would return 0, our callers would understand that we 424 * have nothing else to shrink and give up trying. By returning 425 * 1 we keep it going and assume we'll be able to shrink next 426 * time. 427 */ 428 freed = 1; 429 goto out; 430 } 431 432 list_for_each_entry(shrinker, &shrinker_list, list) { 433 struct shrink_control sc = { 434 .gfp_mask = gfp_mask, 435 .nid = nid, 436 .memcg = memcg, 437 }; 438 439 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE)) 440 continue; 441 442 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 443 sc.nid = 0; 444 445 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 446 } 447 448 up_read(&shrinker_rwsem); 449 out: 450 cond_resched(); 451 return freed; 452 } 453 454 void drop_slab_node(int nid) 455 { 456 unsigned long freed; 457 458 do { 459 struct mem_cgroup *memcg = NULL; 460 461 freed = 0; 462 do { 463 freed += shrink_slab(GFP_KERNEL, nid, memcg, 464 1000, 1000); 465 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 466 } while (freed > 10); 467 } 468 469 void drop_slab(void) 470 { 471 int nid; 472 473 for_each_online_node(nid) 474 drop_slab_node(nid); 475 } 476 477 static inline int is_page_cache_freeable(struct page *page) 478 { 479 /* 480 * A freeable page cache page is referenced only by the caller 481 * that isolated the page, the page cache radix tree and 482 * optional buffer heads at page->private. 483 */ 484 return page_count(page) - page_has_private(page) == 2; 485 } 486 487 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 488 { 489 if (current->flags & PF_SWAPWRITE) 490 return 1; 491 if (!inode_write_congested(inode)) 492 return 1; 493 if (inode_to_bdi(inode) == current->backing_dev_info) 494 return 1; 495 return 0; 496 } 497 498 /* 499 * We detected a synchronous write error writing a page out. Probably 500 * -ENOSPC. We need to propagate that into the address_space for a subsequent 501 * fsync(), msync() or close(). 502 * 503 * The tricky part is that after writepage we cannot touch the mapping: nothing 504 * prevents it from being freed up. But we have a ref on the page and once 505 * that page is locked, the mapping is pinned. 506 * 507 * We're allowed to run sleeping lock_page() here because we know the caller has 508 * __GFP_FS. 509 */ 510 static void handle_write_error(struct address_space *mapping, 511 struct page *page, int error) 512 { 513 lock_page(page); 514 if (page_mapping(page) == mapping) 515 mapping_set_error(mapping, error); 516 unlock_page(page); 517 } 518 519 /* possible outcome of pageout() */ 520 typedef enum { 521 /* failed to write page out, page is locked */ 522 PAGE_KEEP, 523 /* move page to the active list, page is locked */ 524 PAGE_ACTIVATE, 525 /* page has been sent to the disk successfully, page is unlocked */ 526 PAGE_SUCCESS, 527 /* page is clean and locked */ 528 PAGE_CLEAN, 529 } pageout_t; 530 531 /* 532 * pageout is called by shrink_page_list() for each dirty page. 533 * Calls ->writepage(). 534 */ 535 static pageout_t pageout(struct page *page, struct address_space *mapping, 536 struct scan_control *sc) 537 { 538 /* 539 * If the page is dirty, only perform writeback if that write 540 * will be non-blocking. To prevent this allocation from being 541 * stalled by pagecache activity. But note that there may be 542 * stalls if we need to run get_block(). We could test 543 * PagePrivate for that. 544 * 545 * If this process is currently in __generic_file_write_iter() against 546 * this page's queue, we can perform writeback even if that 547 * will block. 548 * 549 * If the page is swapcache, write it back even if that would 550 * block, for some throttling. This happens by accident, because 551 * swap_backing_dev_info is bust: it doesn't reflect the 552 * congestion state of the swapdevs. Easy to fix, if needed. 553 */ 554 if (!is_page_cache_freeable(page)) 555 return PAGE_KEEP; 556 if (!mapping) { 557 /* 558 * Some data journaling orphaned pages can have 559 * page->mapping == NULL while being dirty with clean buffers. 560 */ 561 if (page_has_private(page)) { 562 if (try_to_free_buffers(page)) { 563 ClearPageDirty(page); 564 pr_info("%s: orphaned page\n", __func__); 565 return PAGE_CLEAN; 566 } 567 } 568 return PAGE_KEEP; 569 } 570 if (mapping->a_ops->writepage == NULL) 571 return PAGE_ACTIVATE; 572 if (!may_write_to_inode(mapping->host, sc)) 573 return PAGE_KEEP; 574 575 if (clear_page_dirty_for_io(page)) { 576 int res; 577 struct writeback_control wbc = { 578 .sync_mode = WB_SYNC_NONE, 579 .nr_to_write = SWAP_CLUSTER_MAX, 580 .range_start = 0, 581 .range_end = LLONG_MAX, 582 .for_reclaim = 1, 583 }; 584 585 SetPageReclaim(page); 586 res = mapping->a_ops->writepage(page, &wbc); 587 if (res < 0) 588 handle_write_error(mapping, page, res); 589 if (res == AOP_WRITEPAGE_ACTIVATE) { 590 ClearPageReclaim(page); 591 return PAGE_ACTIVATE; 592 } 593 594 if (!PageWriteback(page)) { 595 /* synchronous write or broken a_ops? */ 596 ClearPageReclaim(page); 597 } 598 trace_mm_vmscan_writepage(page); 599 inc_zone_page_state(page, NR_VMSCAN_WRITE); 600 return PAGE_SUCCESS; 601 } 602 603 return PAGE_CLEAN; 604 } 605 606 /* 607 * Same as remove_mapping, but if the page is removed from the mapping, it 608 * gets returned with a refcount of 0. 609 */ 610 static int __remove_mapping(struct address_space *mapping, struct page *page, 611 bool reclaimed) 612 { 613 unsigned long flags; 614 struct mem_cgroup *memcg; 615 616 BUG_ON(!PageLocked(page)); 617 BUG_ON(mapping != page_mapping(page)); 618 619 memcg = mem_cgroup_begin_page_stat(page); 620 spin_lock_irqsave(&mapping->tree_lock, flags); 621 /* 622 * The non racy check for a busy page. 623 * 624 * Must be careful with the order of the tests. When someone has 625 * a ref to the page, it may be possible that they dirty it then 626 * drop the reference. So if PageDirty is tested before page_count 627 * here, then the following race may occur: 628 * 629 * get_user_pages(&page); 630 * [user mapping goes away] 631 * write_to(page); 632 * !PageDirty(page) [good] 633 * SetPageDirty(page); 634 * put_page(page); 635 * !page_count(page) [good, discard it] 636 * 637 * [oops, our write_to data is lost] 638 * 639 * Reversing the order of the tests ensures such a situation cannot 640 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 641 * load is not satisfied before that of page->_count. 642 * 643 * Note that if SetPageDirty is always performed via set_page_dirty, 644 * and thus under tree_lock, then this ordering is not required. 645 */ 646 if (!page_freeze_refs(page, 2)) 647 goto cannot_free; 648 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 649 if (unlikely(PageDirty(page))) { 650 page_unfreeze_refs(page, 2); 651 goto cannot_free; 652 } 653 654 if (PageSwapCache(page)) { 655 swp_entry_t swap = { .val = page_private(page) }; 656 mem_cgroup_swapout(page, swap); 657 __delete_from_swap_cache(page); 658 spin_unlock_irqrestore(&mapping->tree_lock, flags); 659 mem_cgroup_end_page_stat(memcg); 660 swapcache_free(swap); 661 } else { 662 void (*freepage)(struct page *); 663 void *shadow = NULL; 664 665 freepage = mapping->a_ops->freepage; 666 /* 667 * Remember a shadow entry for reclaimed file cache in 668 * order to detect refaults, thus thrashing, later on. 669 * 670 * But don't store shadows in an address space that is 671 * already exiting. This is not just an optizimation, 672 * inode reclaim needs to empty out the radix tree or 673 * the nodes are lost. Don't plant shadows behind its 674 * back. 675 * 676 * We also don't store shadows for DAX mappings because the 677 * only page cache pages found in these are zero pages 678 * covering holes, and because we don't want to mix DAX 679 * exceptional entries and shadow exceptional entries in the 680 * same page_tree. 681 */ 682 if (reclaimed && page_is_file_cache(page) && 683 !mapping_exiting(mapping) && !dax_mapping(mapping)) 684 shadow = workingset_eviction(mapping, page); 685 __delete_from_page_cache(page, shadow, memcg); 686 spin_unlock_irqrestore(&mapping->tree_lock, flags); 687 mem_cgroup_end_page_stat(memcg); 688 689 if (freepage != NULL) 690 freepage(page); 691 } 692 693 return 1; 694 695 cannot_free: 696 spin_unlock_irqrestore(&mapping->tree_lock, flags); 697 mem_cgroup_end_page_stat(memcg); 698 return 0; 699 } 700 701 /* 702 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 703 * someone else has a ref on the page, abort and return 0. If it was 704 * successfully detached, return 1. Assumes the caller has a single ref on 705 * this page. 706 */ 707 int remove_mapping(struct address_space *mapping, struct page *page) 708 { 709 if (__remove_mapping(mapping, page, false)) { 710 /* 711 * Unfreezing the refcount with 1 rather than 2 effectively 712 * drops the pagecache ref for us without requiring another 713 * atomic operation. 714 */ 715 page_unfreeze_refs(page, 1); 716 return 1; 717 } 718 return 0; 719 } 720 721 /** 722 * putback_lru_page - put previously isolated page onto appropriate LRU list 723 * @page: page to be put back to appropriate lru list 724 * 725 * Add previously isolated @page to appropriate LRU list. 726 * Page may still be unevictable for other reasons. 727 * 728 * lru_lock must not be held, interrupts must be enabled. 729 */ 730 void putback_lru_page(struct page *page) 731 { 732 bool is_unevictable; 733 int was_unevictable = PageUnevictable(page); 734 735 VM_BUG_ON_PAGE(PageLRU(page), page); 736 737 redo: 738 ClearPageUnevictable(page); 739 740 if (page_evictable(page)) { 741 /* 742 * For evictable pages, we can use the cache. 743 * In event of a race, worst case is we end up with an 744 * unevictable page on [in]active list. 745 * We know how to handle that. 746 */ 747 is_unevictable = false; 748 lru_cache_add(page); 749 } else { 750 /* 751 * Put unevictable pages directly on zone's unevictable 752 * list. 753 */ 754 is_unevictable = true; 755 add_page_to_unevictable_list(page); 756 /* 757 * When racing with an mlock or AS_UNEVICTABLE clearing 758 * (page is unlocked) make sure that if the other thread 759 * does not observe our setting of PG_lru and fails 760 * isolation/check_move_unevictable_pages, 761 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 762 * the page back to the evictable list. 763 * 764 * The other side is TestClearPageMlocked() or shmem_lock(). 765 */ 766 smp_mb(); 767 } 768 769 /* 770 * page's status can change while we move it among lru. If an evictable 771 * page is on unevictable list, it never be freed. To avoid that, 772 * check after we added it to the list, again. 773 */ 774 if (is_unevictable && page_evictable(page)) { 775 if (!isolate_lru_page(page)) { 776 put_page(page); 777 goto redo; 778 } 779 /* This means someone else dropped this page from LRU 780 * So, it will be freed or putback to LRU again. There is 781 * nothing to do here. 782 */ 783 } 784 785 if (was_unevictable && !is_unevictable) 786 count_vm_event(UNEVICTABLE_PGRESCUED); 787 else if (!was_unevictable && is_unevictable) 788 count_vm_event(UNEVICTABLE_PGCULLED); 789 790 put_page(page); /* drop ref from isolate */ 791 } 792 793 enum page_references { 794 PAGEREF_RECLAIM, 795 PAGEREF_RECLAIM_CLEAN, 796 PAGEREF_KEEP, 797 PAGEREF_ACTIVATE, 798 }; 799 800 static enum page_references page_check_references(struct page *page, 801 struct scan_control *sc) 802 { 803 int referenced_ptes, referenced_page; 804 unsigned long vm_flags; 805 806 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 807 &vm_flags); 808 referenced_page = TestClearPageReferenced(page); 809 810 /* 811 * Mlock lost the isolation race with us. Let try_to_unmap() 812 * move the page to the unevictable list. 813 */ 814 if (vm_flags & VM_LOCKED) 815 return PAGEREF_RECLAIM; 816 817 if (referenced_ptes) { 818 if (PageSwapBacked(page)) 819 return PAGEREF_ACTIVATE; 820 /* 821 * All mapped pages start out with page table 822 * references from the instantiating fault, so we need 823 * to look twice if a mapped file page is used more 824 * than once. 825 * 826 * Mark it and spare it for another trip around the 827 * inactive list. Another page table reference will 828 * lead to its activation. 829 * 830 * Note: the mark is set for activated pages as well 831 * so that recently deactivated but used pages are 832 * quickly recovered. 833 */ 834 SetPageReferenced(page); 835 836 if (referenced_page || referenced_ptes > 1) 837 return PAGEREF_ACTIVATE; 838 839 /* 840 * Activate file-backed executable pages after first usage. 841 */ 842 if (vm_flags & VM_EXEC) 843 return PAGEREF_ACTIVATE; 844 845 return PAGEREF_KEEP; 846 } 847 848 /* Reclaim if clean, defer dirty pages to writeback */ 849 if (referenced_page && !PageSwapBacked(page)) 850 return PAGEREF_RECLAIM_CLEAN; 851 852 return PAGEREF_RECLAIM; 853 } 854 855 /* Check if a page is dirty or under writeback */ 856 static void page_check_dirty_writeback(struct page *page, 857 bool *dirty, bool *writeback) 858 { 859 struct address_space *mapping; 860 861 /* 862 * Anonymous pages are not handled by flushers and must be written 863 * from reclaim context. Do not stall reclaim based on them 864 */ 865 if (!page_is_file_cache(page)) { 866 *dirty = false; 867 *writeback = false; 868 return; 869 } 870 871 /* By default assume that the page flags are accurate */ 872 *dirty = PageDirty(page); 873 *writeback = PageWriteback(page); 874 875 /* Verify dirty/writeback state if the filesystem supports it */ 876 if (!page_has_private(page)) 877 return; 878 879 mapping = page_mapping(page); 880 if (mapping && mapping->a_ops->is_dirty_writeback) 881 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 882 } 883 884 /* 885 * shrink_page_list() returns the number of reclaimed pages 886 */ 887 static unsigned long shrink_page_list(struct list_head *page_list, 888 struct zone *zone, 889 struct scan_control *sc, 890 enum ttu_flags ttu_flags, 891 unsigned long *ret_nr_dirty, 892 unsigned long *ret_nr_unqueued_dirty, 893 unsigned long *ret_nr_congested, 894 unsigned long *ret_nr_writeback, 895 unsigned long *ret_nr_immediate, 896 bool force_reclaim) 897 { 898 LIST_HEAD(ret_pages); 899 LIST_HEAD(free_pages); 900 int pgactivate = 0; 901 unsigned long nr_unqueued_dirty = 0; 902 unsigned long nr_dirty = 0; 903 unsigned long nr_congested = 0; 904 unsigned long nr_reclaimed = 0; 905 unsigned long nr_writeback = 0; 906 unsigned long nr_immediate = 0; 907 908 cond_resched(); 909 910 while (!list_empty(page_list)) { 911 struct address_space *mapping; 912 struct page *page; 913 int may_enter_fs; 914 enum page_references references = PAGEREF_RECLAIM_CLEAN; 915 bool dirty, writeback; 916 bool lazyfree = false; 917 int ret = SWAP_SUCCESS; 918 919 cond_resched(); 920 921 page = lru_to_page(page_list); 922 list_del(&page->lru); 923 924 if (!trylock_page(page)) 925 goto keep; 926 927 VM_BUG_ON_PAGE(PageActive(page), page); 928 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 929 930 sc->nr_scanned++; 931 932 if (unlikely(!page_evictable(page))) 933 goto cull_mlocked; 934 935 if (!sc->may_unmap && page_mapped(page)) 936 goto keep_locked; 937 938 /* Double the slab pressure for mapped and swapcache pages */ 939 if (page_mapped(page) || PageSwapCache(page)) 940 sc->nr_scanned++; 941 942 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 943 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 944 945 /* 946 * The number of dirty pages determines if a zone is marked 947 * reclaim_congested which affects wait_iff_congested. kswapd 948 * will stall and start writing pages if the tail of the LRU 949 * is all dirty unqueued pages. 950 */ 951 page_check_dirty_writeback(page, &dirty, &writeback); 952 if (dirty || writeback) 953 nr_dirty++; 954 955 if (dirty && !writeback) 956 nr_unqueued_dirty++; 957 958 /* 959 * Treat this page as congested if the underlying BDI is or if 960 * pages are cycling through the LRU so quickly that the 961 * pages marked for immediate reclaim are making it to the 962 * end of the LRU a second time. 963 */ 964 mapping = page_mapping(page); 965 if (((dirty || writeback) && mapping && 966 inode_write_congested(mapping->host)) || 967 (writeback && PageReclaim(page))) 968 nr_congested++; 969 970 /* 971 * If a page at the tail of the LRU is under writeback, there 972 * are three cases to consider. 973 * 974 * 1) If reclaim is encountering an excessive number of pages 975 * under writeback and this page is both under writeback and 976 * PageReclaim then it indicates that pages are being queued 977 * for IO but are being recycled through the LRU before the 978 * IO can complete. Waiting on the page itself risks an 979 * indefinite stall if it is impossible to writeback the 980 * page due to IO error or disconnected storage so instead 981 * note that the LRU is being scanned too quickly and the 982 * caller can stall after page list has been processed. 983 * 984 * 2) Global or new memcg reclaim encounters a page that is 985 * not marked for immediate reclaim, or the caller does not 986 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 987 * not to fs). In this case mark the page for immediate 988 * reclaim and continue scanning. 989 * 990 * Require may_enter_fs because we would wait on fs, which 991 * may not have submitted IO yet. And the loop driver might 992 * enter reclaim, and deadlock if it waits on a page for 993 * which it is needed to do the write (loop masks off 994 * __GFP_IO|__GFP_FS for this reason); but more thought 995 * would probably show more reasons. 996 * 997 * 3) Legacy memcg encounters a page that is already marked 998 * PageReclaim. memcg does not have any dirty pages 999 * throttling so we could easily OOM just because too many 1000 * pages are in writeback and there is nothing else to 1001 * reclaim. Wait for the writeback to complete. 1002 */ 1003 if (PageWriteback(page)) { 1004 /* Case 1 above */ 1005 if (current_is_kswapd() && 1006 PageReclaim(page) && 1007 test_bit(ZONE_WRITEBACK, &zone->flags)) { 1008 nr_immediate++; 1009 goto keep_locked; 1010 1011 /* Case 2 above */ 1012 } else if (sane_reclaim(sc) || 1013 !PageReclaim(page) || !may_enter_fs) { 1014 /* 1015 * This is slightly racy - end_page_writeback() 1016 * might have just cleared PageReclaim, then 1017 * setting PageReclaim here end up interpreted 1018 * as PageReadahead - but that does not matter 1019 * enough to care. What we do want is for this 1020 * page to have PageReclaim set next time memcg 1021 * reclaim reaches the tests above, so it will 1022 * then wait_on_page_writeback() to avoid OOM; 1023 * and it's also appropriate in global reclaim. 1024 */ 1025 SetPageReclaim(page); 1026 nr_writeback++; 1027 goto keep_locked; 1028 1029 /* Case 3 above */ 1030 } else { 1031 unlock_page(page); 1032 wait_on_page_writeback(page); 1033 /* then go back and try same page again */ 1034 list_add_tail(&page->lru, page_list); 1035 continue; 1036 } 1037 } 1038 1039 if (!force_reclaim) 1040 references = page_check_references(page, sc); 1041 1042 switch (references) { 1043 case PAGEREF_ACTIVATE: 1044 goto activate_locked; 1045 case PAGEREF_KEEP: 1046 goto keep_locked; 1047 case PAGEREF_RECLAIM: 1048 case PAGEREF_RECLAIM_CLEAN: 1049 ; /* try to reclaim the page below */ 1050 } 1051 1052 /* 1053 * Anonymous process memory has backing store? 1054 * Try to allocate it some swap space here. 1055 */ 1056 if (PageAnon(page) && !PageSwapCache(page)) { 1057 if (!(sc->gfp_mask & __GFP_IO)) 1058 goto keep_locked; 1059 if (!add_to_swap(page, page_list)) 1060 goto activate_locked; 1061 lazyfree = true; 1062 may_enter_fs = 1; 1063 1064 /* Adding to swap updated mapping */ 1065 mapping = page_mapping(page); 1066 } 1067 1068 /* 1069 * The page is mapped into the page tables of one or more 1070 * processes. Try to unmap it here. 1071 */ 1072 if (page_mapped(page) && mapping) { 1073 switch (ret = try_to_unmap(page, lazyfree ? 1074 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1075 (ttu_flags | TTU_BATCH_FLUSH))) { 1076 case SWAP_FAIL: 1077 goto activate_locked; 1078 case SWAP_AGAIN: 1079 goto keep_locked; 1080 case SWAP_MLOCK: 1081 goto cull_mlocked; 1082 case SWAP_LZFREE: 1083 goto lazyfree; 1084 case SWAP_SUCCESS: 1085 ; /* try to free the page below */ 1086 } 1087 } 1088 1089 if (PageDirty(page)) { 1090 /* 1091 * Only kswapd can writeback filesystem pages to 1092 * avoid risk of stack overflow but only writeback 1093 * if many dirty pages have been encountered. 1094 */ 1095 if (page_is_file_cache(page) && 1096 (!current_is_kswapd() || 1097 !test_bit(ZONE_DIRTY, &zone->flags))) { 1098 /* 1099 * Immediately reclaim when written back. 1100 * Similar in principal to deactivate_page() 1101 * except we already have the page isolated 1102 * and know it's dirty 1103 */ 1104 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1105 SetPageReclaim(page); 1106 1107 goto keep_locked; 1108 } 1109 1110 if (references == PAGEREF_RECLAIM_CLEAN) 1111 goto keep_locked; 1112 if (!may_enter_fs) 1113 goto keep_locked; 1114 if (!sc->may_writepage) 1115 goto keep_locked; 1116 1117 /* 1118 * Page is dirty. Flush the TLB if a writable entry 1119 * potentially exists to avoid CPU writes after IO 1120 * starts and then write it out here. 1121 */ 1122 try_to_unmap_flush_dirty(); 1123 switch (pageout(page, mapping, sc)) { 1124 case PAGE_KEEP: 1125 goto keep_locked; 1126 case PAGE_ACTIVATE: 1127 goto activate_locked; 1128 case PAGE_SUCCESS: 1129 if (PageWriteback(page)) 1130 goto keep; 1131 if (PageDirty(page)) 1132 goto keep; 1133 1134 /* 1135 * A synchronous write - probably a ramdisk. Go 1136 * ahead and try to reclaim the page. 1137 */ 1138 if (!trylock_page(page)) 1139 goto keep; 1140 if (PageDirty(page) || PageWriteback(page)) 1141 goto keep_locked; 1142 mapping = page_mapping(page); 1143 case PAGE_CLEAN: 1144 ; /* try to free the page below */ 1145 } 1146 } 1147 1148 /* 1149 * If the page has buffers, try to free the buffer mappings 1150 * associated with this page. If we succeed we try to free 1151 * the page as well. 1152 * 1153 * We do this even if the page is PageDirty(). 1154 * try_to_release_page() does not perform I/O, but it is 1155 * possible for a page to have PageDirty set, but it is actually 1156 * clean (all its buffers are clean). This happens if the 1157 * buffers were written out directly, with submit_bh(). ext3 1158 * will do this, as well as the blockdev mapping. 1159 * try_to_release_page() will discover that cleanness and will 1160 * drop the buffers and mark the page clean - it can be freed. 1161 * 1162 * Rarely, pages can have buffers and no ->mapping. These are 1163 * the pages which were not successfully invalidated in 1164 * truncate_complete_page(). We try to drop those buffers here 1165 * and if that worked, and the page is no longer mapped into 1166 * process address space (page_count == 1) it can be freed. 1167 * Otherwise, leave the page on the LRU so it is swappable. 1168 */ 1169 if (page_has_private(page)) { 1170 if (!try_to_release_page(page, sc->gfp_mask)) 1171 goto activate_locked; 1172 if (!mapping && page_count(page) == 1) { 1173 unlock_page(page); 1174 if (put_page_testzero(page)) 1175 goto free_it; 1176 else { 1177 /* 1178 * rare race with speculative reference. 1179 * the speculative reference will free 1180 * this page shortly, so we may 1181 * increment nr_reclaimed here (and 1182 * leave it off the LRU). 1183 */ 1184 nr_reclaimed++; 1185 continue; 1186 } 1187 } 1188 } 1189 1190 lazyfree: 1191 if (!mapping || !__remove_mapping(mapping, page, true)) 1192 goto keep_locked; 1193 1194 /* 1195 * At this point, we have no other references and there is 1196 * no way to pick any more up (removed from LRU, removed 1197 * from pagecache). Can use non-atomic bitops now (and 1198 * we obviously don't have to worry about waking up a process 1199 * waiting on the page lock, because there are no references. 1200 */ 1201 __ClearPageLocked(page); 1202 free_it: 1203 if (ret == SWAP_LZFREE) 1204 count_vm_event(PGLAZYFREED); 1205 1206 nr_reclaimed++; 1207 1208 /* 1209 * Is there need to periodically free_page_list? It would 1210 * appear not as the counts should be low 1211 */ 1212 list_add(&page->lru, &free_pages); 1213 continue; 1214 1215 cull_mlocked: 1216 if (PageSwapCache(page)) 1217 try_to_free_swap(page); 1218 unlock_page(page); 1219 list_add(&page->lru, &ret_pages); 1220 continue; 1221 1222 activate_locked: 1223 /* Not a candidate for swapping, so reclaim swap space. */ 1224 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1225 try_to_free_swap(page); 1226 VM_BUG_ON_PAGE(PageActive(page), page); 1227 SetPageActive(page); 1228 pgactivate++; 1229 keep_locked: 1230 unlock_page(page); 1231 keep: 1232 list_add(&page->lru, &ret_pages); 1233 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1234 } 1235 1236 mem_cgroup_uncharge_list(&free_pages); 1237 try_to_unmap_flush(); 1238 free_hot_cold_page_list(&free_pages, true); 1239 1240 list_splice(&ret_pages, page_list); 1241 count_vm_events(PGACTIVATE, pgactivate); 1242 1243 *ret_nr_dirty += nr_dirty; 1244 *ret_nr_congested += nr_congested; 1245 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1246 *ret_nr_writeback += nr_writeback; 1247 *ret_nr_immediate += nr_immediate; 1248 return nr_reclaimed; 1249 } 1250 1251 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1252 struct list_head *page_list) 1253 { 1254 struct scan_control sc = { 1255 .gfp_mask = GFP_KERNEL, 1256 .priority = DEF_PRIORITY, 1257 .may_unmap = 1, 1258 }; 1259 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1260 struct page *page, *next; 1261 LIST_HEAD(clean_pages); 1262 1263 list_for_each_entry_safe(page, next, page_list, lru) { 1264 if (page_is_file_cache(page) && !PageDirty(page) && 1265 !isolated_balloon_page(page)) { 1266 ClearPageActive(page); 1267 list_move(&page->lru, &clean_pages); 1268 } 1269 } 1270 1271 ret = shrink_page_list(&clean_pages, zone, &sc, 1272 TTU_UNMAP|TTU_IGNORE_ACCESS, 1273 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1274 list_splice(&clean_pages, page_list); 1275 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1276 return ret; 1277 } 1278 1279 /* 1280 * Attempt to remove the specified page from its LRU. Only take this page 1281 * if it is of the appropriate PageActive status. Pages which are being 1282 * freed elsewhere are also ignored. 1283 * 1284 * page: page to consider 1285 * mode: one of the LRU isolation modes defined above 1286 * 1287 * returns 0 on success, -ve errno on failure. 1288 */ 1289 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1290 { 1291 int ret = -EINVAL; 1292 1293 /* Only take pages on the LRU. */ 1294 if (!PageLRU(page)) 1295 return ret; 1296 1297 /* Compaction should not handle unevictable pages but CMA can do so */ 1298 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1299 return ret; 1300 1301 ret = -EBUSY; 1302 1303 /* 1304 * To minimise LRU disruption, the caller can indicate that it only 1305 * wants to isolate pages it will be able to operate on without 1306 * blocking - clean pages for the most part. 1307 * 1308 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1309 * is used by reclaim when it is cannot write to backing storage 1310 * 1311 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1312 * that it is possible to migrate without blocking 1313 */ 1314 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1315 /* All the caller can do on PageWriteback is block */ 1316 if (PageWriteback(page)) 1317 return ret; 1318 1319 if (PageDirty(page)) { 1320 struct address_space *mapping; 1321 1322 /* ISOLATE_CLEAN means only clean pages */ 1323 if (mode & ISOLATE_CLEAN) 1324 return ret; 1325 1326 /* 1327 * Only pages without mappings or that have a 1328 * ->migratepage callback are possible to migrate 1329 * without blocking 1330 */ 1331 mapping = page_mapping(page); 1332 if (mapping && !mapping->a_ops->migratepage) 1333 return ret; 1334 } 1335 } 1336 1337 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1338 return ret; 1339 1340 if (likely(get_page_unless_zero(page))) { 1341 /* 1342 * Be careful not to clear PageLRU until after we're 1343 * sure the page is not being freed elsewhere -- the 1344 * page release code relies on it. 1345 */ 1346 ClearPageLRU(page); 1347 ret = 0; 1348 } 1349 1350 return ret; 1351 } 1352 1353 /* 1354 * zone->lru_lock is heavily contended. Some of the functions that 1355 * shrink the lists perform better by taking out a batch of pages 1356 * and working on them outside the LRU lock. 1357 * 1358 * For pagecache intensive workloads, this function is the hottest 1359 * spot in the kernel (apart from copy_*_user functions). 1360 * 1361 * Appropriate locks must be held before calling this function. 1362 * 1363 * @nr_to_scan: The number of pages to look through on the list. 1364 * @lruvec: The LRU vector to pull pages from. 1365 * @dst: The temp list to put pages on to. 1366 * @nr_scanned: The number of pages that were scanned. 1367 * @sc: The scan_control struct for this reclaim session 1368 * @mode: One of the LRU isolation modes 1369 * @lru: LRU list id for isolating 1370 * 1371 * returns how many pages were moved onto *@dst. 1372 */ 1373 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1374 struct lruvec *lruvec, struct list_head *dst, 1375 unsigned long *nr_scanned, struct scan_control *sc, 1376 isolate_mode_t mode, enum lru_list lru) 1377 { 1378 struct list_head *src = &lruvec->lists[lru]; 1379 unsigned long nr_taken = 0; 1380 unsigned long scan; 1381 1382 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1383 !list_empty(src); scan++) { 1384 struct page *page; 1385 int nr_pages; 1386 1387 page = lru_to_page(src); 1388 prefetchw_prev_lru_page(page, src, flags); 1389 1390 VM_BUG_ON_PAGE(!PageLRU(page), page); 1391 1392 switch (__isolate_lru_page(page, mode)) { 1393 case 0: 1394 nr_pages = hpage_nr_pages(page); 1395 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1396 list_move(&page->lru, dst); 1397 nr_taken += nr_pages; 1398 break; 1399 1400 case -EBUSY: 1401 /* else it is being freed elsewhere */ 1402 list_move(&page->lru, src); 1403 continue; 1404 1405 default: 1406 BUG(); 1407 } 1408 } 1409 1410 *nr_scanned = scan; 1411 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1412 nr_taken, mode, is_file_lru(lru)); 1413 return nr_taken; 1414 } 1415 1416 /** 1417 * isolate_lru_page - tries to isolate a page from its LRU list 1418 * @page: page to isolate from its LRU list 1419 * 1420 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1421 * vmstat statistic corresponding to whatever LRU list the page was on. 1422 * 1423 * Returns 0 if the page was removed from an LRU list. 1424 * Returns -EBUSY if the page was not on an LRU list. 1425 * 1426 * The returned page will have PageLRU() cleared. If it was found on 1427 * the active list, it will have PageActive set. If it was found on 1428 * the unevictable list, it will have the PageUnevictable bit set. That flag 1429 * may need to be cleared by the caller before letting the page go. 1430 * 1431 * The vmstat statistic corresponding to the list on which the page was 1432 * found will be decremented. 1433 * 1434 * Restrictions: 1435 * (1) Must be called with an elevated refcount on the page. This is a 1436 * fundamentnal difference from isolate_lru_pages (which is called 1437 * without a stable reference). 1438 * (2) the lru_lock must not be held. 1439 * (3) interrupts must be enabled. 1440 */ 1441 int isolate_lru_page(struct page *page) 1442 { 1443 int ret = -EBUSY; 1444 1445 VM_BUG_ON_PAGE(!page_count(page), page); 1446 VM_BUG_ON_PAGE(PageTail(page), page); 1447 1448 if (PageLRU(page)) { 1449 struct zone *zone = page_zone(page); 1450 struct lruvec *lruvec; 1451 1452 spin_lock_irq(&zone->lru_lock); 1453 lruvec = mem_cgroup_page_lruvec(page, zone); 1454 if (PageLRU(page)) { 1455 int lru = page_lru(page); 1456 get_page(page); 1457 ClearPageLRU(page); 1458 del_page_from_lru_list(page, lruvec, lru); 1459 ret = 0; 1460 } 1461 spin_unlock_irq(&zone->lru_lock); 1462 } 1463 return ret; 1464 } 1465 1466 /* 1467 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1468 * then get resheduled. When there are massive number of tasks doing page 1469 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1470 * the LRU list will go small and be scanned faster than necessary, leading to 1471 * unnecessary swapping, thrashing and OOM. 1472 */ 1473 static int too_many_isolated(struct zone *zone, int file, 1474 struct scan_control *sc) 1475 { 1476 unsigned long inactive, isolated; 1477 1478 if (current_is_kswapd()) 1479 return 0; 1480 1481 if (!sane_reclaim(sc)) 1482 return 0; 1483 1484 if (file) { 1485 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1486 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1487 } else { 1488 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1489 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1490 } 1491 1492 /* 1493 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1494 * won't get blocked by normal direct-reclaimers, forming a circular 1495 * deadlock. 1496 */ 1497 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1498 inactive >>= 3; 1499 1500 return isolated > inactive; 1501 } 1502 1503 static noinline_for_stack void 1504 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1505 { 1506 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1507 struct zone *zone = lruvec_zone(lruvec); 1508 LIST_HEAD(pages_to_free); 1509 1510 /* 1511 * Put back any unfreeable pages. 1512 */ 1513 while (!list_empty(page_list)) { 1514 struct page *page = lru_to_page(page_list); 1515 int lru; 1516 1517 VM_BUG_ON_PAGE(PageLRU(page), page); 1518 list_del(&page->lru); 1519 if (unlikely(!page_evictable(page))) { 1520 spin_unlock_irq(&zone->lru_lock); 1521 putback_lru_page(page); 1522 spin_lock_irq(&zone->lru_lock); 1523 continue; 1524 } 1525 1526 lruvec = mem_cgroup_page_lruvec(page, zone); 1527 1528 SetPageLRU(page); 1529 lru = page_lru(page); 1530 add_page_to_lru_list(page, lruvec, lru); 1531 1532 if (is_active_lru(lru)) { 1533 int file = is_file_lru(lru); 1534 int numpages = hpage_nr_pages(page); 1535 reclaim_stat->recent_rotated[file] += numpages; 1536 } 1537 if (put_page_testzero(page)) { 1538 __ClearPageLRU(page); 1539 __ClearPageActive(page); 1540 del_page_from_lru_list(page, lruvec, lru); 1541 1542 if (unlikely(PageCompound(page))) { 1543 spin_unlock_irq(&zone->lru_lock); 1544 mem_cgroup_uncharge(page); 1545 (*get_compound_page_dtor(page))(page); 1546 spin_lock_irq(&zone->lru_lock); 1547 } else 1548 list_add(&page->lru, &pages_to_free); 1549 } 1550 } 1551 1552 /* 1553 * To save our caller's stack, now use input list for pages to free. 1554 */ 1555 list_splice(&pages_to_free, page_list); 1556 } 1557 1558 /* 1559 * If a kernel thread (such as nfsd for loop-back mounts) services 1560 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1561 * In that case we should only throttle if the backing device it is 1562 * writing to is congested. In other cases it is safe to throttle. 1563 */ 1564 static int current_may_throttle(void) 1565 { 1566 return !(current->flags & PF_LESS_THROTTLE) || 1567 current->backing_dev_info == NULL || 1568 bdi_write_congested(current->backing_dev_info); 1569 } 1570 1571 /* 1572 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1573 * of reclaimed pages 1574 */ 1575 static noinline_for_stack unsigned long 1576 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1577 struct scan_control *sc, enum lru_list lru) 1578 { 1579 LIST_HEAD(page_list); 1580 unsigned long nr_scanned; 1581 unsigned long nr_reclaimed = 0; 1582 unsigned long nr_taken; 1583 unsigned long nr_dirty = 0; 1584 unsigned long nr_congested = 0; 1585 unsigned long nr_unqueued_dirty = 0; 1586 unsigned long nr_writeback = 0; 1587 unsigned long nr_immediate = 0; 1588 isolate_mode_t isolate_mode = 0; 1589 int file = is_file_lru(lru); 1590 struct zone *zone = lruvec_zone(lruvec); 1591 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1592 1593 while (unlikely(too_many_isolated(zone, file, sc))) { 1594 congestion_wait(BLK_RW_ASYNC, HZ/10); 1595 1596 /* We are about to die and free our memory. Return now. */ 1597 if (fatal_signal_pending(current)) 1598 return SWAP_CLUSTER_MAX; 1599 } 1600 1601 lru_add_drain(); 1602 1603 if (!sc->may_unmap) 1604 isolate_mode |= ISOLATE_UNMAPPED; 1605 if (!sc->may_writepage) 1606 isolate_mode |= ISOLATE_CLEAN; 1607 1608 spin_lock_irq(&zone->lru_lock); 1609 1610 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1611 &nr_scanned, sc, isolate_mode, lru); 1612 1613 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1614 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1615 1616 if (global_reclaim(sc)) { 1617 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1618 if (current_is_kswapd()) 1619 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1620 else 1621 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1622 } 1623 spin_unlock_irq(&zone->lru_lock); 1624 1625 if (nr_taken == 0) 1626 return 0; 1627 1628 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1629 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1630 &nr_writeback, &nr_immediate, 1631 false); 1632 1633 spin_lock_irq(&zone->lru_lock); 1634 1635 reclaim_stat->recent_scanned[file] += nr_taken; 1636 1637 if (global_reclaim(sc)) { 1638 if (current_is_kswapd()) 1639 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1640 nr_reclaimed); 1641 else 1642 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1643 nr_reclaimed); 1644 } 1645 1646 putback_inactive_pages(lruvec, &page_list); 1647 1648 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1649 1650 spin_unlock_irq(&zone->lru_lock); 1651 1652 mem_cgroup_uncharge_list(&page_list); 1653 free_hot_cold_page_list(&page_list, true); 1654 1655 /* 1656 * If reclaim is isolating dirty pages under writeback, it implies 1657 * that the long-lived page allocation rate is exceeding the page 1658 * laundering rate. Either the global limits are not being effective 1659 * at throttling processes due to the page distribution throughout 1660 * zones or there is heavy usage of a slow backing device. The 1661 * only option is to throttle from reclaim context which is not ideal 1662 * as there is no guarantee the dirtying process is throttled in the 1663 * same way balance_dirty_pages() manages. 1664 * 1665 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1666 * of pages under pages flagged for immediate reclaim and stall if any 1667 * are encountered in the nr_immediate check below. 1668 */ 1669 if (nr_writeback && nr_writeback == nr_taken) 1670 set_bit(ZONE_WRITEBACK, &zone->flags); 1671 1672 /* 1673 * Legacy memcg will stall in page writeback so avoid forcibly 1674 * stalling here. 1675 */ 1676 if (sane_reclaim(sc)) { 1677 /* 1678 * Tag a zone as congested if all the dirty pages scanned were 1679 * backed by a congested BDI and wait_iff_congested will stall. 1680 */ 1681 if (nr_dirty && nr_dirty == nr_congested) 1682 set_bit(ZONE_CONGESTED, &zone->flags); 1683 1684 /* 1685 * If dirty pages are scanned that are not queued for IO, it 1686 * implies that flushers are not keeping up. In this case, flag 1687 * the zone ZONE_DIRTY and kswapd will start writing pages from 1688 * reclaim context. 1689 */ 1690 if (nr_unqueued_dirty == nr_taken) 1691 set_bit(ZONE_DIRTY, &zone->flags); 1692 1693 /* 1694 * If kswapd scans pages marked marked for immediate 1695 * reclaim and under writeback (nr_immediate), it implies 1696 * that pages are cycling through the LRU faster than 1697 * they are written so also forcibly stall. 1698 */ 1699 if (nr_immediate && current_may_throttle()) 1700 congestion_wait(BLK_RW_ASYNC, HZ/10); 1701 } 1702 1703 /* 1704 * Stall direct reclaim for IO completions if underlying BDIs or zone 1705 * is congested. Allow kswapd to continue until it starts encountering 1706 * unqueued dirty pages or cycling through the LRU too quickly. 1707 */ 1708 if (!sc->hibernation_mode && !current_is_kswapd() && 1709 current_may_throttle()) 1710 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1711 1712 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed, 1713 sc->priority, file); 1714 return nr_reclaimed; 1715 } 1716 1717 /* 1718 * This moves pages from the active list to the inactive list. 1719 * 1720 * We move them the other way if the page is referenced by one or more 1721 * processes, from rmap. 1722 * 1723 * If the pages are mostly unmapped, the processing is fast and it is 1724 * appropriate to hold zone->lru_lock across the whole operation. But if 1725 * the pages are mapped, the processing is slow (page_referenced()) so we 1726 * should drop zone->lru_lock around each page. It's impossible to balance 1727 * this, so instead we remove the pages from the LRU while processing them. 1728 * It is safe to rely on PG_active against the non-LRU pages in here because 1729 * nobody will play with that bit on a non-LRU page. 1730 * 1731 * The downside is that we have to touch page->_count against each page. 1732 * But we had to alter page->flags anyway. 1733 */ 1734 1735 static void move_active_pages_to_lru(struct lruvec *lruvec, 1736 struct list_head *list, 1737 struct list_head *pages_to_free, 1738 enum lru_list lru) 1739 { 1740 struct zone *zone = lruvec_zone(lruvec); 1741 unsigned long pgmoved = 0; 1742 struct page *page; 1743 int nr_pages; 1744 1745 while (!list_empty(list)) { 1746 page = lru_to_page(list); 1747 lruvec = mem_cgroup_page_lruvec(page, zone); 1748 1749 VM_BUG_ON_PAGE(PageLRU(page), page); 1750 SetPageLRU(page); 1751 1752 nr_pages = hpage_nr_pages(page); 1753 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1754 list_move(&page->lru, &lruvec->lists[lru]); 1755 pgmoved += nr_pages; 1756 1757 if (put_page_testzero(page)) { 1758 __ClearPageLRU(page); 1759 __ClearPageActive(page); 1760 del_page_from_lru_list(page, lruvec, lru); 1761 1762 if (unlikely(PageCompound(page))) { 1763 spin_unlock_irq(&zone->lru_lock); 1764 mem_cgroup_uncharge(page); 1765 (*get_compound_page_dtor(page))(page); 1766 spin_lock_irq(&zone->lru_lock); 1767 } else 1768 list_add(&page->lru, pages_to_free); 1769 } 1770 } 1771 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1772 if (!is_active_lru(lru)) 1773 __count_vm_events(PGDEACTIVATE, pgmoved); 1774 } 1775 1776 static void shrink_active_list(unsigned long nr_to_scan, 1777 struct lruvec *lruvec, 1778 struct scan_control *sc, 1779 enum lru_list lru) 1780 { 1781 unsigned long nr_taken; 1782 unsigned long nr_scanned; 1783 unsigned long vm_flags; 1784 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1785 LIST_HEAD(l_active); 1786 LIST_HEAD(l_inactive); 1787 struct page *page; 1788 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1789 unsigned long nr_rotated = 0; 1790 isolate_mode_t isolate_mode = 0; 1791 int file = is_file_lru(lru); 1792 struct zone *zone = lruvec_zone(lruvec); 1793 1794 lru_add_drain(); 1795 1796 if (!sc->may_unmap) 1797 isolate_mode |= ISOLATE_UNMAPPED; 1798 if (!sc->may_writepage) 1799 isolate_mode |= ISOLATE_CLEAN; 1800 1801 spin_lock_irq(&zone->lru_lock); 1802 1803 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1804 &nr_scanned, sc, isolate_mode, lru); 1805 if (global_reclaim(sc)) 1806 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1807 1808 reclaim_stat->recent_scanned[file] += nr_taken; 1809 1810 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1811 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1812 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1813 spin_unlock_irq(&zone->lru_lock); 1814 1815 while (!list_empty(&l_hold)) { 1816 cond_resched(); 1817 page = lru_to_page(&l_hold); 1818 list_del(&page->lru); 1819 1820 if (unlikely(!page_evictable(page))) { 1821 putback_lru_page(page); 1822 continue; 1823 } 1824 1825 if (unlikely(buffer_heads_over_limit)) { 1826 if (page_has_private(page) && trylock_page(page)) { 1827 if (page_has_private(page)) 1828 try_to_release_page(page, 0); 1829 unlock_page(page); 1830 } 1831 } 1832 1833 if (page_referenced(page, 0, sc->target_mem_cgroup, 1834 &vm_flags)) { 1835 nr_rotated += hpage_nr_pages(page); 1836 /* 1837 * Identify referenced, file-backed active pages and 1838 * give them one more trip around the active list. So 1839 * that executable code get better chances to stay in 1840 * memory under moderate memory pressure. Anon pages 1841 * are not likely to be evicted by use-once streaming 1842 * IO, plus JVM can create lots of anon VM_EXEC pages, 1843 * so we ignore them here. 1844 */ 1845 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1846 list_add(&page->lru, &l_active); 1847 continue; 1848 } 1849 } 1850 1851 ClearPageActive(page); /* we are de-activating */ 1852 list_add(&page->lru, &l_inactive); 1853 } 1854 1855 /* 1856 * Move pages back to the lru list. 1857 */ 1858 spin_lock_irq(&zone->lru_lock); 1859 /* 1860 * Count referenced pages from currently used mappings as rotated, 1861 * even though only some of them are actually re-activated. This 1862 * helps balance scan pressure between file and anonymous pages in 1863 * get_scan_count. 1864 */ 1865 reclaim_stat->recent_rotated[file] += nr_rotated; 1866 1867 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1868 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1869 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1870 spin_unlock_irq(&zone->lru_lock); 1871 1872 mem_cgroup_uncharge_list(&l_hold); 1873 free_hot_cold_page_list(&l_hold, true); 1874 } 1875 1876 #ifdef CONFIG_SWAP 1877 static bool inactive_anon_is_low_global(struct zone *zone) 1878 { 1879 unsigned long active, inactive; 1880 1881 active = zone_page_state(zone, NR_ACTIVE_ANON); 1882 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1883 1884 return inactive * zone->inactive_ratio < active; 1885 } 1886 1887 /** 1888 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1889 * @lruvec: LRU vector to check 1890 * 1891 * Returns true if the zone does not have enough inactive anon pages, 1892 * meaning some active anon pages need to be deactivated. 1893 */ 1894 static bool inactive_anon_is_low(struct lruvec *lruvec) 1895 { 1896 /* 1897 * If we don't have swap space, anonymous page deactivation 1898 * is pointless. 1899 */ 1900 if (!total_swap_pages) 1901 return false; 1902 1903 if (!mem_cgroup_disabled()) 1904 return mem_cgroup_inactive_anon_is_low(lruvec); 1905 1906 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1907 } 1908 #else 1909 static inline bool inactive_anon_is_low(struct lruvec *lruvec) 1910 { 1911 return false; 1912 } 1913 #endif 1914 1915 /** 1916 * inactive_file_is_low - check if file pages need to be deactivated 1917 * @lruvec: LRU vector to check 1918 * 1919 * When the system is doing streaming IO, memory pressure here 1920 * ensures that active file pages get deactivated, until more 1921 * than half of the file pages are on the inactive list. 1922 * 1923 * Once we get to that situation, protect the system's working 1924 * set from being evicted by disabling active file page aging. 1925 * 1926 * This uses a different ratio than the anonymous pages, because 1927 * the page cache uses a use-once replacement algorithm. 1928 */ 1929 static bool inactive_file_is_low(struct lruvec *lruvec) 1930 { 1931 unsigned long inactive; 1932 unsigned long active; 1933 1934 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1935 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1936 1937 return active > inactive; 1938 } 1939 1940 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1941 { 1942 if (is_file_lru(lru)) 1943 return inactive_file_is_low(lruvec); 1944 else 1945 return inactive_anon_is_low(lruvec); 1946 } 1947 1948 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1949 struct lruvec *lruvec, struct scan_control *sc) 1950 { 1951 if (is_active_lru(lru)) { 1952 if (inactive_list_is_low(lruvec, lru)) 1953 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1954 return 0; 1955 } 1956 1957 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1958 } 1959 1960 enum scan_balance { 1961 SCAN_EQUAL, 1962 SCAN_FRACT, 1963 SCAN_ANON, 1964 SCAN_FILE, 1965 }; 1966 1967 /* 1968 * Determine how aggressively the anon and file LRU lists should be 1969 * scanned. The relative value of each set of LRU lists is determined 1970 * by looking at the fraction of the pages scanned we did rotate back 1971 * onto the active list instead of evict. 1972 * 1973 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1974 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1975 */ 1976 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 1977 struct scan_control *sc, unsigned long *nr, 1978 unsigned long *lru_pages) 1979 { 1980 int swappiness = mem_cgroup_swappiness(memcg); 1981 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1982 u64 fraction[2]; 1983 u64 denominator = 0; /* gcc */ 1984 struct zone *zone = lruvec_zone(lruvec); 1985 unsigned long anon_prio, file_prio; 1986 enum scan_balance scan_balance; 1987 unsigned long anon, file; 1988 bool force_scan = false; 1989 unsigned long ap, fp; 1990 enum lru_list lru; 1991 bool some_scanned; 1992 int pass; 1993 1994 /* 1995 * If the zone or memcg is small, nr[l] can be 0. This 1996 * results in no scanning on this priority and a potential 1997 * priority drop. Global direct reclaim can go to the next 1998 * zone and tends to have no problems. Global kswapd is for 1999 * zone balancing and it needs to scan a minimum amount. When 2000 * reclaiming for a memcg, a priority drop can cause high 2001 * latencies, so it's better to scan a minimum amount there as 2002 * well. 2003 */ 2004 if (current_is_kswapd()) { 2005 if (!zone_reclaimable(zone)) 2006 force_scan = true; 2007 if (!mem_cgroup_online(memcg)) 2008 force_scan = true; 2009 } 2010 if (!global_reclaim(sc)) 2011 force_scan = true; 2012 2013 /* If we have no swap space, do not bother scanning anon pages. */ 2014 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2015 scan_balance = SCAN_FILE; 2016 goto out; 2017 } 2018 2019 /* 2020 * Global reclaim will swap to prevent OOM even with no 2021 * swappiness, but memcg users want to use this knob to 2022 * disable swapping for individual groups completely when 2023 * using the memory controller's swap limit feature would be 2024 * too expensive. 2025 */ 2026 if (!global_reclaim(sc) && !swappiness) { 2027 scan_balance = SCAN_FILE; 2028 goto out; 2029 } 2030 2031 /* 2032 * Do not apply any pressure balancing cleverness when the 2033 * system is close to OOM, scan both anon and file equally 2034 * (unless the swappiness setting disagrees with swapping). 2035 */ 2036 if (!sc->priority && swappiness) { 2037 scan_balance = SCAN_EQUAL; 2038 goto out; 2039 } 2040 2041 /* 2042 * Prevent the reclaimer from falling into the cache trap: as 2043 * cache pages start out inactive, every cache fault will tip 2044 * the scan balance towards the file LRU. And as the file LRU 2045 * shrinks, so does the window for rotation from references. 2046 * This means we have a runaway feedback loop where a tiny 2047 * thrashing file LRU becomes infinitely more attractive than 2048 * anon pages. Try to detect this based on file LRU size. 2049 */ 2050 if (global_reclaim(sc)) { 2051 unsigned long zonefile; 2052 unsigned long zonefree; 2053 2054 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2055 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2056 zone_page_state(zone, NR_INACTIVE_FILE); 2057 2058 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2059 scan_balance = SCAN_ANON; 2060 goto out; 2061 } 2062 } 2063 2064 /* 2065 * If there is enough inactive page cache, i.e. if the size of the 2066 * inactive list is greater than that of the active list *and* the 2067 * inactive list actually has some pages to scan on this priority, we 2068 * do not reclaim anything from the anonymous working set right now. 2069 * Without the second condition we could end up never scanning an 2070 * lruvec even if it has plenty of old anonymous pages unless the 2071 * system is under heavy pressure. 2072 */ 2073 if (!inactive_file_is_low(lruvec) && 2074 get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2075 scan_balance = SCAN_FILE; 2076 goto out; 2077 } 2078 2079 scan_balance = SCAN_FRACT; 2080 2081 /* 2082 * With swappiness at 100, anonymous and file have the same priority. 2083 * This scanning priority is essentially the inverse of IO cost. 2084 */ 2085 anon_prio = swappiness; 2086 file_prio = 200 - anon_prio; 2087 2088 /* 2089 * OK, so we have swap space and a fair amount of page cache 2090 * pages. We use the recently rotated / recently scanned 2091 * ratios to determine how valuable each cache is. 2092 * 2093 * Because workloads change over time (and to avoid overflow) 2094 * we keep these statistics as a floating average, which ends 2095 * up weighing recent references more than old ones. 2096 * 2097 * anon in [0], file in [1] 2098 */ 2099 2100 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 2101 get_lru_size(lruvec, LRU_INACTIVE_ANON); 2102 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 2103 get_lru_size(lruvec, LRU_INACTIVE_FILE); 2104 2105 spin_lock_irq(&zone->lru_lock); 2106 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2107 reclaim_stat->recent_scanned[0] /= 2; 2108 reclaim_stat->recent_rotated[0] /= 2; 2109 } 2110 2111 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2112 reclaim_stat->recent_scanned[1] /= 2; 2113 reclaim_stat->recent_rotated[1] /= 2; 2114 } 2115 2116 /* 2117 * The amount of pressure on anon vs file pages is inversely 2118 * proportional to the fraction of recently scanned pages on 2119 * each list that were recently referenced and in active use. 2120 */ 2121 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2122 ap /= reclaim_stat->recent_rotated[0] + 1; 2123 2124 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2125 fp /= reclaim_stat->recent_rotated[1] + 1; 2126 spin_unlock_irq(&zone->lru_lock); 2127 2128 fraction[0] = ap; 2129 fraction[1] = fp; 2130 denominator = ap + fp + 1; 2131 out: 2132 some_scanned = false; 2133 /* Only use force_scan on second pass. */ 2134 for (pass = 0; !some_scanned && pass < 2; pass++) { 2135 *lru_pages = 0; 2136 for_each_evictable_lru(lru) { 2137 int file = is_file_lru(lru); 2138 unsigned long size; 2139 unsigned long scan; 2140 2141 size = get_lru_size(lruvec, lru); 2142 scan = size >> sc->priority; 2143 2144 if (!scan && pass && force_scan) 2145 scan = min(size, SWAP_CLUSTER_MAX); 2146 2147 switch (scan_balance) { 2148 case SCAN_EQUAL: 2149 /* Scan lists relative to size */ 2150 break; 2151 case SCAN_FRACT: 2152 /* 2153 * Scan types proportional to swappiness and 2154 * their relative recent reclaim efficiency. 2155 */ 2156 scan = div64_u64(scan * fraction[file], 2157 denominator); 2158 break; 2159 case SCAN_FILE: 2160 case SCAN_ANON: 2161 /* Scan one type exclusively */ 2162 if ((scan_balance == SCAN_FILE) != file) { 2163 size = 0; 2164 scan = 0; 2165 } 2166 break; 2167 default: 2168 /* Look ma, no brain */ 2169 BUG(); 2170 } 2171 2172 *lru_pages += size; 2173 nr[lru] = scan; 2174 2175 /* 2176 * Skip the second pass and don't force_scan, 2177 * if we found something to scan. 2178 */ 2179 some_scanned |= !!scan; 2180 } 2181 } 2182 } 2183 2184 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2185 static void init_tlb_ubc(void) 2186 { 2187 /* 2188 * This deliberately does not clear the cpumask as it's expensive 2189 * and unnecessary. If there happens to be data in there then the 2190 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2191 * then will be cleared. 2192 */ 2193 current->tlb_ubc.flush_required = false; 2194 } 2195 #else 2196 static inline void init_tlb_ubc(void) 2197 { 2198 } 2199 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2200 2201 /* 2202 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2203 */ 2204 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg, 2205 struct scan_control *sc, unsigned long *lru_pages) 2206 { 2207 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2208 unsigned long nr[NR_LRU_LISTS]; 2209 unsigned long targets[NR_LRU_LISTS]; 2210 unsigned long nr_to_scan; 2211 enum lru_list lru; 2212 unsigned long nr_reclaimed = 0; 2213 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2214 struct blk_plug plug; 2215 bool scan_adjusted; 2216 2217 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2218 2219 /* Record the original scan target for proportional adjustments later */ 2220 memcpy(targets, nr, sizeof(nr)); 2221 2222 /* 2223 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2224 * event that can occur when there is little memory pressure e.g. 2225 * multiple streaming readers/writers. Hence, we do not abort scanning 2226 * when the requested number of pages are reclaimed when scanning at 2227 * DEF_PRIORITY on the assumption that the fact we are direct 2228 * reclaiming implies that kswapd is not keeping up and it is best to 2229 * do a batch of work at once. For memcg reclaim one check is made to 2230 * abort proportional reclaim if either the file or anon lru has already 2231 * dropped to zero at the first pass. 2232 */ 2233 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2234 sc->priority == DEF_PRIORITY); 2235 2236 init_tlb_ubc(); 2237 2238 blk_start_plug(&plug); 2239 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2240 nr[LRU_INACTIVE_FILE]) { 2241 unsigned long nr_anon, nr_file, percentage; 2242 unsigned long nr_scanned; 2243 2244 for_each_evictable_lru(lru) { 2245 if (nr[lru]) { 2246 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2247 nr[lru] -= nr_to_scan; 2248 2249 nr_reclaimed += shrink_list(lru, nr_to_scan, 2250 lruvec, sc); 2251 } 2252 } 2253 2254 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2255 continue; 2256 2257 /* 2258 * For kswapd and memcg, reclaim at least the number of pages 2259 * requested. Ensure that the anon and file LRUs are scanned 2260 * proportionally what was requested by get_scan_count(). We 2261 * stop reclaiming one LRU and reduce the amount scanning 2262 * proportional to the original scan target. 2263 */ 2264 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2265 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2266 2267 /* 2268 * It's just vindictive to attack the larger once the smaller 2269 * has gone to zero. And given the way we stop scanning the 2270 * smaller below, this makes sure that we only make one nudge 2271 * towards proportionality once we've got nr_to_reclaim. 2272 */ 2273 if (!nr_file || !nr_anon) 2274 break; 2275 2276 if (nr_file > nr_anon) { 2277 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2278 targets[LRU_ACTIVE_ANON] + 1; 2279 lru = LRU_BASE; 2280 percentage = nr_anon * 100 / scan_target; 2281 } else { 2282 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2283 targets[LRU_ACTIVE_FILE] + 1; 2284 lru = LRU_FILE; 2285 percentage = nr_file * 100 / scan_target; 2286 } 2287 2288 /* Stop scanning the smaller of the LRU */ 2289 nr[lru] = 0; 2290 nr[lru + LRU_ACTIVE] = 0; 2291 2292 /* 2293 * Recalculate the other LRU scan count based on its original 2294 * scan target and the percentage scanning already complete 2295 */ 2296 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2297 nr_scanned = targets[lru] - nr[lru]; 2298 nr[lru] = targets[lru] * (100 - percentage) / 100; 2299 nr[lru] -= min(nr[lru], nr_scanned); 2300 2301 lru += LRU_ACTIVE; 2302 nr_scanned = targets[lru] - nr[lru]; 2303 nr[lru] = targets[lru] * (100 - percentage) / 100; 2304 nr[lru] -= min(nr[lru], nr_scanned); 2305 2306 scan_adjusted = true; 2307 } 2308 blk_finish_plug(&plug); 2309 sc->nr_reclaimed += nr_reclaimed; 2310 2311 /* 2312 * Even if we did not try to evict anon pages at all, we want to 2313 * rebalance the anon lru active/inactive ratio. 2314 */ 2315 if (inactive_anon_is_low(lruvec)) 2316 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2317 sc, LRU_ACTIVE_ANON); 2318 2319 throttle_vm_writeout(sc->gfp_mask); 2320 } 2321 2322 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2323 static bool in_reclaim_compaction(struct scan_control *sc) 2324 { 2325 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2326 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2327 sc->priority < DEF_PRIORITY - 2)) 2328 return true; 2329 2330 return false; 2331 } 2332 2333 /* 2334 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2335 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2336 * true if more pages should be reclaimed such that when the page allocator 2337 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2338 * It will give up earlier than that if there is difficulty reclaiming pages. 2339 */ 2340 static inline bool should_continue_reclaim(struct zone *zone, 2341 unsigned long nr_reclaimed, 2342 unsigned long nr_scanned, 2343 struct scan_control *sc) 2344 { 2345 unsigned long pages_for_compaction; 2346 unsigned long inactive_lru_pages; 2347 2348 /* If not in reclaim/compaction mode, stop */ 2349 if (!in_reclaim_compaction(sc)) 2350 return false; 2351 2352 /* Consider stopping depending on scan and reclaim activity */ 2353 if (sc->gfp_mask & __GFP_REPEAT) { 2354 /* 2355 * For __GFP_REPEAT allocations, stop reclaiming if the 2356 * full LRU list has been scanned and we are still failing 2357 * to reclaim pages. This full LRU scan is potentially 2358 * expensive but a __GFP_REPEAT caller really wants to succeed 2359 */ 2360 if (!nr_reclaimed && !nr_scanned) 2361 return false; 2362 } else { 2363 /* 2364 * For non-__GFP_REPEAT allocations which can presumably 2365 * fail without consequence, stop if we failed to reclaim 2366 * any pages from the last SWAP_CLUSTER_MAX number of 2367 * pages that were scanned. This will return to the 2368 * caller faster at the risk reclaim/compaction and 2369 * the resulting allocation attempt fails 2370 */ 2371 if (!nr_reclaimed) 2372 return false; 2373 } 2374 2375 /* 2376 * If we have not reclaimed enough pages for compaction and the 2377 * inactive lists are large enough, continue reclaiming 2378 */ 2379 pages_for_compaction = (2UL << sc->order); 2380 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2381 if (get_nr_swap_pages() > 0) 2382 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2383 if (sc->nr_reclaimed < pages_for_compaction && 2384 inactive_lru_pages > pages_for_compaction) 2385 return true; 2386 2387 /* If compaction would go ahead or the allocation would succeed, stop */ 2388 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2389 case COMPACT_PARTIAL: 2390 case COMPACT_CONTINUE: 2391 return false; 2392 default: 2393 return true; 2394 } 2395 } 2396 2397 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2398 bool is_classzone) 2399 { 2400 struct reclaim_state *reclaim_state = current->reclaim_state; 2401 unsigned long nr_reclaimed, nr_scanned; 2402 bool reclaimable = false; 2403 2404 do { 2405 struct mem_cgroup *root = sc->target_mem_cgroup; 2406 struct mem_cgroup_reclaim_cookie reclaim = { 2407 .zone = zone, 2408 .priority = sc->priority, 2409 }; 2410 unsigned long zone_lru_pages = 0; 2411 struct mem_cgroup *memcg; 2412 2413 nr_reclaimed = sc->nr_reclaimed; 2414 nr_scanned = sc->nr_scanned; 2415 2416 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2417 do { 2418 unsigned long lru_pages; 2419 unsigned long reclaimed; 2420 unsigned long scanned; 2421 2422 if (mem_cgroup_low(root, memcg)) { 2423 if (!sc->may_thrash) 2424 continue; 2425 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2426 } 2427 2428 reclaimed = sc->nr_reclaimed; 2429 scanned = sc->nr_scanned; 2430 2431 shrink_zone_memcg(zone, memcg, sc, &lru_pages); 2432 zone_lru_pages += lru_pages; 2433 2434 if (memcg && is_classzone) 2435 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2436 memcg, sc->nr_scanned - scanned, 2437 lru_pages); 2438 2439 /* Record the group's reclaim efficiency */ 2440 vmpressure(sc->gfp_mask, memcg, false, 2441 sc->nr_scanned - scanned, 2442 sc->nr_reclaimed - reclaimed); 2443 2444 /* 2445 * Direct reclaim and kswapd have to scan all memory 2446 * cgroups to fulfill the overall scan target for the 2447 * zone. 2448 * 2449 * Limit reclaim, on the other hand, only cares about 2450 * nr_to_reclaim pages to be reclaimed and it will 2451 * retry with decreasing priority if one round over the 2452 * whole hierarchy is not sufficient. 2453 */ 2454 if (!global_reclaim(sc) && 2455 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2456 mem_cgroup_iter_break(root, memcg); 2457 break; 2458 } 2459 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2460 2461 /* 2462 * Shrink the slab caches in the same proportion that 2463 * the eligible LRU pages were scanned. 2464 */ 2465 if (global_reclaim(sc) && is_classzone) 2466 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2467 sc->nr_scanned - nr_scanned, 2468 zone_lru_pages); 2469 2470 if (reclaim_state) { 2471 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2472 reclaim_state->reclaimed_slab = 0; 2473 } 2474 2475 /* Record the subtree's reclaim efficiency */ 2476 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2477 sc->nr_scanned - nr_scanned, 2478 sc->nr_reclaimed - nr_reclaimed); 2479 2480 if (sc->nr_reclaimed - nr_reclaimed) 2481 reclaimable = true; 2482 2483 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2484 sc->nr_scanned - nr_scanned, sc)); 2485 2486 return reclaimable; 2487 } 2488 2489 /* 2490 * Returns true if compaction should go ahead for a high-order request, or 2491 * the high-order allocation would succeed without compaction. 2492 */ 2493 static inline bool compaction_ready(struct zone *zone, int order) 2494 { 2495 unsigned long balance_gap, watermark; 2496 bool watermark_ok; 2497 2498 /* 2499 * Compaction takes time to run and there are potentially other 2500 * callers using the pages just freed. Continue reclaiming until 2501 * there is a buffer of free pages available to give compaction 2502 * a reasonable chance of completing and allocating the page 2503 */ 2504 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2505 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2506 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2507 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0); 2508 2509 /* 2510 * If compaction is deferred, reclaim up to a point where 2511 * compaction will have a chance of success when re-enabled 2512 */ 2513 if (compaction_deferred(zone, order)) 2514 return watermark_ok; 2515 2516 /* 2517 * If compaction is not ready to start and allocation is not likely 2518 * to succeed without it, then keep reclaiming. 2519 */ 2520 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2521 return false; 2522 2523 return watermark_ok; 2524 } 2525 2526 /* 2527 * This is the direct reclaim path, for page-allocating processes. We only 2528 * try to reclaim pages from zones which will satisfy the caller's allocation 2529 * request. 2530 * 2531 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2532 * Because: 2533 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2534 * allocation or 2535 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2536 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2537 * zone defense algorithm. 2538 * 2539 * If a zone is deemed to be full of pinned pages then just give it a light 2540 * scan then give up on it. 2541 * 2542 * Returns true if a zone was reclaimable. 2543 */ 2544 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2545 { 2546 struct zoneref *z; 2547 struct zone *zone; 2548 unsigned long nr_soft_reclaimed; 2549 unsigned long nr_soft_scanned; 2550 gfp_t orig_mask; 2551 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2552 bool reclaimable = false; 2553 2554 /* 2555 * If the number of buffer_heads in the machine exceeds the maximum 2556 * allowed level, force direct reclaim to scan the highmem zone as 2557 * highmem pages could be pinning lowmem pages storing buffer_heads 2558 */ 2559 orig_mask = sc->gfp_mask; 2560 if (buffer_heads_over_limit) 2561 sc->gfp_mask |= __GFP_HIGHMEM; 2562 2563 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2564 requested_highidx, sc->nodemask) { 2565 enum zone_type classzone_idx; 2566 2567 if (!populated_zone(zone)) 2568 continue; 2569 2570 classzone_idx = requested_highidx; 2571 while (!populated_zone(zone->zone_pgdat->node_zones + 2572 classzone_idx)) 2573 classzone_idx--; 2574 2575 /* 2576 * Take care memory controller reclaiming has small influence 2577 * to global LRU. 2578 */ 2579 if (global_reclaim(sc)) { 2580 if (!cpuset_zone_allowed(zone, 2581 GFP_KERNEL | __GFP_HARDWALL)) 2582 continue; 2583 2584 if (sc->priority != DEF_PRIORITY && 2585 !zone_reclaimable(zone)) 2586 continue; /* Let kswapd poll it */ 2587 2588 /* 2589 * If we already have plenty of memory free for 2590 * compaction in this zone, don't free any more. 2591 * Even though compaction is invoked for any 2592 * non-zero order, only frequent costly order 2593 * reclamation is disruptive enough to become a 2594 * noticeable problem, like transparent huge 2595 * page allocations. 2596 */ 2597 if (IS_ENABLED(CONFIG_COMPACTION) && 2598 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2599 zonelist_zone_idx(z) <= requested_highidx && 2600 compaction_ready(zone, sc->order)) { 2601 sc->compaction_ready = true; 2602 continue; 2603 } 2604 2605 /* 2606 * This steals pages from memory cgroups over softlimit 2607 * and returns the number of reclaimed pages and 2608 * scanned pages. This works for global memory pressure 2609 * and balancing, not for a memcg's limit. 2610 */ 2611 nr_soft_scanned = 0; 2612 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2613 sc->order, sc->gfp_mask, 2614 &nr_soft_scanned); 2615 sc->nr_reclaimed += nr_soft_reclaimed; 2616 sc->nr_scanned += nr_soft_scanned; 2617 if (nr_soft_reclaimed) 2618 reclaimable = true; 2619 /* need some check for avoid more shrink_zone() */ 2620 } 2621 2622 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2623 reclaimable = true; 2624 2625 if (global_reclaim(sc) && 2626 !reclaimable && zone_reclaimable(zone)) 2627 reclaimable = true; 2628 } 2629 2630 /* 2631 * Restore to original mask to avoid the impact on the caller if we 2632 * promoted it to __GFP_HIGHMEM. 2633 */ 2634 sc->gfp_mask = orig_mask; 2635 2636 return reclaimable; 2637 } 2638 2639 /* 2640 * This is the main entry point to direct page reclaim. 2641 * 2642 * If a full scan of the inactive list fails to free enough memory then we 2643 * are "out of memory" and something needs to be killed. 2644 * 2645 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2646 * high - the zone may be full of dirty or under-writeback pages, which this 2647 * caller can't do much about. We kick the writeback threads and take explicit 2648 * naps in the hope that some of these pages can be written. But if the 2649 * allocating task holds filesystem locks which prevent writeout this might not 2650 * work, and the allocation attempt will fail. 2651 * 2652 * returns: 0, if no pages reclaimed 2653 * else, the number of pages reclaimed 2654 */ 2655 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2656 struct scan_control *sc) 2657 { 2658 int initial_priority = sc->priority; 2659 unsigned long total_scanned = 0; 2660 unsigned long writeback_threshold; 2661 bool zones_reclaimable; 2662 retry: 2663 delayacct_freepages_start(); 2664 2665 if (global_reclaim(sc)) 2666 count_vm_event(ALLOCSTALL); 2667 2668 do { 2669 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2670 sc->priority); 2671 sc->nr_scanned = 0; 2672 zones_reclaimable = shrink_zones(zonelist, sc); 2673 2674 total_scanned += sc->nr_scanned; 2675 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2676 break; 2677 2678 if (sc->compaction_ready) 2679 break; 2680 2681 /* 2682 * If we're getting trouble reclaiming, start doing 2683 * writepage even in laptop mode. 2684 */ 2685 if (sc->priority < DEF_PRIORITY - 2) 2686 sc->may_writepage = 1; 2687 2688 /* 2689 * Try to write back as many pages as we just scanned. This 2690 * tends to cause slow streaming writers to write data to the 2691 * disk smoothly, at the dirtying rate, which is nice. But 2692 * that's undesirable in laptop mode, where we *want* lumpy 2693 * writeout. So in laptop mode, write out the whole world. 2694 */ 2695 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2696 if (total_scanned > writeback_threshold) { 2697 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2698 WB_REASON_TRY_TO_FREE_PAGES); 2699 sc->may_writepage = 1; 2700 } 2701 } while (--sc->priority >= 0); 2702 2703 delayacct_freepages_end(); 2704 2705 if (sc->nr_reclaimed) 2706 return sc->nr_reclaimed; 2707 2708 /* Aborted reclaim to try compaction? don't OOM, then */ 2709 if (sc->compaction_ready) 2710 return 1; 2711 2712 /* Untapped cgroup reserves? Don't OOM, retry. */ 2713 if (!sc->may_thrash) { 2714 sc->priority = initial_priority; 2715 sc->may_thrash = 1; 2716 goto retry; 2717 } 2718 2719 /* Any of the zones still reclaimable? Don't OOM. */ 2720 if (zones_reclaimable) 2721 return 1; 2722 2723 return 0; 2724 } 2725 2726 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2727 { 2728 struct zone *zone; 2729 unsigned long pfmemalloc_reserve = 0; 2730 unsigned long free_pages = 0; 2731 int i; 2732 bool wmark_ok; 2733 2734 for (i = 0; i <= ZONE_NORMAL; i++) { 2735 zone = &pgdat->node_zones[i]; 2736 if (!populated_zone(zone) || 2737 zone_reclaimable_pages(zone) == 0) 2738 continue; 2739 2740 pfmemalloc_reserve += min_wmark_pages(zone); 2741 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2742 } 2743 2744 /* If there are no reserves (unexpected config) then do not throttle */ 2745 if (!pfmemalloc_reserve) 2746 return true; 2747 2748 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2749 2750 /* kswapd must be awake if processes are being throttled */ 2751 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2752 pgdat->classzone_idx = min(pgdat->classzone_idx, 2753 (enum zone_type)ZONE_NORMAL); 2754 wake_up_interruptible(&pgdat->kswapd_wait); 2755 } 2756 2757 return wmark_ok; 2758 } 2759 2760 /* 2761 * Throttle direct reclaimers if backing storage is backed by the network 2762 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2763 * depleted. kswapd will continue to make progress and wake the processes 2764 * when the low watermark is reached. 2765 * 2766 * Returns true if a fatal signal was delivered during throttling. If this 2767 * happens, the page allocator should not consider triggering the OOM killer. 2768 */ 2769 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2770 nodemask_t *nodemask) 2771 { 2772 struct zoneref *z; 2773 struct zone *zone; 2774 pg_data_t *pgdat = NULL; 2775 2776 /* 2777 * Kernel threads should not be throttled as they may be indirectly 2778 * responsible for cleaning pages necessary for reclaim to make forward 2779 * progress. kjournald for example may enter direct reclaim while 2780 * committing a transaction where throttling it could forcing other 2781 * processes to block on log_wait_commit(). 2782 */ 2783 if (current->flags & PF_KTHREAD) 2784 goto out; 2785 2786 /* 2787 * If a fatal signal is pending, this process should not throttle. 2788 * It should return quickly so it can exit and free its memory 2789 */ 2790 if (fatal_signal_pending(current)) 2791 goto out; 2792 2793 /* 2794 * Check if the pfmemalloc reserves are ok by finding the first node 2795 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2796 * GFP_KERNEL will be required for allocating network buffers when 2797 * swapping over the network so ZONE_HIGHMEM is unusable. 2798 * 2799 * Throttling is based on the first usable node and throttled processes 2800 * wait on a queue until kswapd makes progress and wakes them. There 2801 * is an affinity then between processes waking up and where reclaim 2802 * progress has been made assuming the process wakes on the same node. 2803 * More importantly, processes running on remote nodes will not compete 2804 * for remote pfmemalloc reserves and processes on different nodes 2805 * should make reasonable progress. 2806 */ 2807 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2808 gfp_zone(gfp_mask), nodemask) { 2809 if (zone_idx(zone) > ZONE_NORMAL) 2810 continue; 2811 2812 /* Throttle based on the first usable node */ 2813 pgdat = zone->zone_pgdat; 2814 if (pfmemalloc_watermark_ok(pgdat)) 2815 goto out; 2816 break; 2817 } 2818 2819 /* If no zone was usable by the allocation flags then do not throttle */ 2820 if (!pgdat) 2821 goto out; 2822 2823 /* Account for the throttling */ 2824 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2825 2826 /* 2827 * If the caller cannot enter the filesystem, it's possible that it 2828 * is due to the caller holding an FS lock or performing a journal 2829 * transaction in the case of a filesystem like ext[3|4]. In this case, 2830 * it is not safe to block on pfmemalloc_wait as kswapd could be 2831 * blocked waiting on the same lock. Instead, throttle for up to a 2832 * second before continuing. 2833 */ 2834 if (!(gfp_mask & __GFP_FS)) { 2835 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2836 pfmemalloc_watermark_ok(pgdat), HZ); 2837 2838 goto check_pending; 2839 } 2840 2841 /* Throttle until kswapd wakes the process */ 2842 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2843 pfmemalloc_watermark_ok(pgdat)); 2844 2845 check_pending: 2846 if (fatal_signal_pending(current)) 2847 return true; 2848 2849 out: 2850 return false; 2851 } 2852 2853 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2854 gfp_t gfp_mask, nodemask_t *nodemask) 2855 { 2856 unsigned long nr_reclaimed; 2857 struct scan_control sc = { 2858 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2859 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2860 .order = order, 2861 .nodemask = nodemask, 2862 .priority = DEF_PRIORITY, 2863 .may_writepage = !laptop_mode, 2864 .may_unmap = 1, 2865 .may_swap = 1, 2866 }; 2867 2868 /* 2869 * Do not enter reclaim if fatal signal was delivered while throttled. 2870 * 1 is returned so that the page allocator does not OOM kill at this 2871 * point. 2872 */ 2873 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2874 return 1; 2875 2876 trace_mm_vmscan_direct_reclaim_begin(order, 2877 sc.may_writepage, 2878 gfp_mask); 2879 2880 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2881 2882 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2883 2884 return nr_reclaimed; 2885 } 2886 2887 #ifdef CONFIG_MEMCG 2888 2889 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2890 gfp_t gfp_mask, bool noswap, 2891 struct zone *zone, 2892 unsigned long *nr_scanned) 2893 { 2894 struct scan_control sc = { 2895 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2896 .target_mem_cgroup = memcg, 2897 .may_writepage = !laptop_mode, 2898 .may_unmap = 1, 2899 .may_swap = !noswap, 2900 }; 2901 unsigned long lru_pages; 2902 2903 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2904 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2905 2906 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2907 sc.may_writepage, 2908 sc.gfp_mask); 2909 2910 /* 2911 * NOTE: Although we can get the priority field, using it 2912 * here is not a good idea, since it limits the pages we can scan. 2913 * if we don't reclaim here, the shrink_zone from balance_pgdat 2914 * will pick up pages from other mem cgroup's as well. We hack 2915 * the priority and make it zero. 2916 */ 2917 shrink_zone_memcg(zone, memcg, &sc, &lru_pages); 2918 2919 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2920 2921 *nr_scanned = sc.nr_scanned; 2922 return sc.nr_reclaimed; 2923 } 2924 2925 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2926 unsigned long nr_pages, 2927 gfp_t gfp_mask, 2928 bool may_swap) 2929 { 2930 struct zonelist *zonelist; 2931 unsigned long nr_reclaimed; 2932 int nid; 2933 struct scan_control sc = { 2934 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2935 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2936 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2937 .target_mem_cgroup = memcg, 2938 .priority = DEF_PRIORITY, 2939 .may_writepage = !laptop_mode, 2940 .may_unmap = 1, 2941 .may_swap = may_swap, 2942 }; 2943 2944 /* 2945 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2946 * take care of from where we get pages. So the node where we start the 2947 * scan does not need to be the current node. 2948 */ 2949 nid = mem_cgroup_select_victim_node(memcg); 2950 2951 zonelist = NODE_DATA(nid)->node_zonelists; 2952 2953 trace_mm_vmscan_memcg_reclaim_begin(0, 2954 sc.may_writepage, 2955 sc.gfp_mask); 2956 2957 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2958 2959 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2960 2961 return nr_reclaimed; 2962 } 2963 #endif 2964 2965 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2966 { 2967 struct mem_cgroup *memcg; 2968 2969 if (!total_swap_pages) 2970 return; 2971 2972 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2973 do { 2974 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2975 2976 if (inactive_anon_is_low(lruvec)) 2977 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2978 sc, LRU_ACTIVE_ANON); 2979 2980 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2981 } while (memcg); 2982 } 2983 2984 static bool zone_balanced(struct zone *zone, int order, 2985 unsigned long balance_gap, int classzone_idx) 2986 { 2987 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2988 balance_gap, classzone_idx)) 2989 return false; 2990 2991 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2992 order, 0, classzone_idx) == COMPACT_SKIPPED) 2993 return false; 2994 2995 return true; 2996 } 2997 2998 /* 2999 * pgdat_balanced() is used when checking if a node is balanced. 3000 * 3001 * For order-0, all zones must be balanced! 3002 * 3003 * For high-order allocations only zones that meet watermarks and are in a 3004 * zone allowed by the callers classzone_idx are added to balanced_pages. The 3005 * total of balanced pages must be at least 25% of the zones allowed by 3006 * classzone_idx for the node to be considered balanced. Forcing all zones to 3007 * be balanced for high orders can cause excessive reclaim when there are 3008 * imbalanced zones. 3009 * The choice of 25% is due to 3010 * o a 16M DMA zone that is balanced will not balance a zone on any 3011 * reasonable sized machine 3012 * o On all other machines, the top zone must be at least a reasonable 3013 * percentage of the middle zones. For example, on 32-bit x86, highmem 3014 * would need to be at least 256M for it to be balance a whole node. 3015 * Similarly, on x86-64 the Normal zone would need to be at least 1G 3016 * to balance a node on its own. These seemed like reasonable ratios. 3017 */ 3018 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3019 { 3020 unsigned long managed_pages = 0; 3021 unsigned long balanced_pages = 0; 3022 int i; 3023 3024 /* Check the watermark levels */ 3025 for (i = 0; i <= classzone_idx; i++) { 3026 struct zone *zone = pgdat->node_zones + i; 3027 3028 if (!populated_zone(zone)) 3029 continue; 3030 3031 managed_pages += zone->managed_pages; 3032 3033 /* 3034 * A special case here: 3035 * 3036 * balance_pgdat() skips over all_unreclaimable after 3037 * DEF_PRIORITY. Effectively, it considers them balanced so 3038 * they must be considered balanced here as well! 3039 */ 3040 if (!zone_reclaimable(zone)) { 3041 balanced_pages += zone->managed_pages; 3042 continue; 3043 } 3044 3045 if (zone_balanced(zone, order, 0, i)) 3046 balanced_pages += zone->managed_pages; 3047 else if (!order) 3048 return false; 3049 } 3050 3051 if (order) 3052 return balanced_pages >= (managed_pages >> 2); 3053 else 3054 return true; 3055 } 3056 3057 /* 3058 * Prepare kswapd for sleeping. This verifies that there are no processes 3059 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3060 * 3061 * Returns true if kswapd is ready to sleep 3062 */ 3063 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3064 int classzone_idx) 3065 { 3066 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3067 if (remaining) 3068 return false; 3069 3070 /* 3071 * The throttled processes are normally woken up in balance_pgdat() as 3072 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3073 * race between when kswapd checks the watermarks and a process gets 3074 * throttled. There is also a potential race if processes get 3075 * throttled, kswapd wakes, a large process exits thereby balancing the 3076 * zones, which causes kswapd to exit balance_pgdat() before reaching 3077 * the wake up checks. If kswapd is going to sleep, no process should 3078 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3079 * the wake up is premature, processes will wake kswapd and get 3080 * throttled again. The difference from wake ups in balance_pgdat() is 3081 * that here we are under prepare_to_wait(). 3082 */ 3083 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3084 wake_up_all(&pgdat->pfmemalloc_wait); 3085 3086 return pgdat_balanced(pgdat, order, classzone_idx); 3087 } 3088 3089 /* 3090 * kswapd shrinks the zone by the number of pages required to reach 3091 * the high watermark. 3092 * 3093 * Returns true if kswapd scanned at least the requested number of pages to 3094 * reclaim or if the lack of progress was due to pages under writeback. 3095 * This is used to determine if the scanning priority needs to be raised. 3096 */ 3097 static bool kswapd_shrink_zone(struct zone *zone, 3098 int classzone_idx, 3099 struct scan_control *sc, 3100 unsigned long *nr_attempted) 3101 { 3102 int testorder = sc->order; 3103 unsigned long balance_gap; 3104 bool lowmem_pressure; 3105 3106 /* Reclaim above the high watermark. */ 3107 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3108 3109 /* 3110 * Kswapd reclaims only single pages with compaction enabled. Trying 3111 * too hard to reclaim until contiguous free pages have become 3112 * available can hurt performance by evicting too much useful data 3113 * from memory. Do not reclaim more than needed for compaction. 3114 */ 3115 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3116 compaction_suitable(zone, sc->order, 0, classzone_idx) 3117 != COMPACT_SKIPPED) 3118 testorder = 0; 3119 3120 /* 3121 * We put equal pressure on every zone, unless one zone has way too 3122 * many pages free already. The "too many pages" is defined as the 3123 * high wmark plus a "gap" where the gap is either the low 3124 * watermark or 1% of the zone, whichever is smaller. 3125 */ 3126 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3127 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3128 3129 /* 3130 * If there is no low memory pressure or the zone is balanced then no 3131 * reclaim is necessary 3132 */ 3133 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3134 if (!lowmem_pressure && zone_balanced(zone, testorder, 3135 balance_gap, classzone_idx)) 3136 return true; 3137 3138 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3139 3140 /* Account for the number of pages attempted to reclaim */ 3141 *nr_attempted += sc->nr_to_reclaim; 3142 3143 clear_bit(ZONE_WRITEBACK, &zone->flags); 3144 3145 /* 3146 * If a zone reaches its high watermark, consider it to be no longer 3147 * congested. It's possible there are dirty pages backed by congested 3148 * BDIs but as pressure is relieved, speculatively avoid congestion 3149 * waits. 3150 */ 3151 if (zone_reclaimable(zone) && 3152 zone_balanced(zone, testorder, 0, classzone_idx)) { 3153 clear_bit(ZONE_CONGESTED, &zone->flags); 3154 clear_bit(ZONE_DIRTY, &zone->flags); 3155 } 3156 3157 return sc->nr_scanned >= sc->nr_to_reclaim; 3158 } 3159 3160 /* 3161 * For kswapd, balance_pgdat() will work across all this node's zones until 3162 * they are all at high_wmark_pages(zone). 3163 * 3164 * Returns the final order kswapd was reclaiming at 3165 * 3166 * There is special handling here for zones which are full of pinned pages. 3167 * This can happen if the pages are all mlocked, or if they are all used by 3168 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3169 * What we do is to detect the case where all pages in the zone have been 3170 * scanned twice and there has been zero successful reclaim. Mark the zone as 3171 * dead and from now on, only perform a short scan. Basically we're polling 3172 * the zone for when the problem goes away. 3173 * 3174 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3175 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3176 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3177 * lower zones regardless of the number of free pages in the lower zones. This 3178 * interoperates with the page allocator fallback scheme to ensure that aging 3179 * of pages is balanced across the zones. 3180 */ 3181 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3182 int *classzone_idx) 3183 { 3184 int i; 3185 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3186 unsigned long nr_soft_reclaimed; 3187 unsigned long nr_soft_scanned; 3188 struct scan_control sc = { 3189 .gfp_mask = GFP_KERNEL, 3190 .order = order, 3191 .priority = DEF_PRIORITY, 3192 .may_writepage = !laptop_mode, 3193 .may_unmap = 1, 3194 .may_swap = 1, 3195 }; 3196 count_vm_event(PAGEOUTRUN); 3197 3198 do { 3199 unsigned long nr_attempted = 0; 3200 bool raise_priority = true; 3201 bool pgdat_needs_compaction = (order > 0); 3202 3203 sc.nr_reclaimed = 0; 3204 3205 /* 3206 * Scan in the highmem->dma direction for the highest 3207 * zone which needs scanning 3208 */ 3209 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3210 struct zone *zone = pgdat->node_zones + i; 3211 3212 if (!populated_zone(zone)) 3213 continue; 3214 3215 if (sc.priority != DEF_PRIORITY && 3216 !zone_reclaimable(zone)) 3217 continue; 3218 3219 /* 3220 * Do some background aging of the anon list, to give 3221 * pages a chance to be referenced before reclaiming. 3222 */ 3223 age_active_anon(zone, &sc); 3224 3225 /* 3226 * If the number of buffer_heads in the machine 3227 * exceeds the maximum allowed level and this node 3228 * has a highmem zone, force kswapd to reclaim from 3229 * it to relieve lowmem pressure. 3230 */ 3231 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3232 end_zone = i; 3233 break; 3234 } 3235 3236 if (!zone_balanced(zone, order, 0, 0)) { 3237 end_zone = i; 3238 break; 3239 } else { 3240 /* 3241 * If balanced, clear the dirty and congested 3242 * flags 3243 */ 3244 clear_bit(ZONE_CONGESTED, &zone->flags); 3245 clear_bit(ZONE_DIRTY, &zone->flags); 3246 } 3247 } 3248 3249 if (i < 0) 3250 goto out; 3251 3252 for (i = 0; i <= end_zone; i++) { 3253 struct zone *zone = pgdat->node_zones + i; 3254 3255 if (!populated_zone(zone)) 3256 continue; 3257 3258 /* 3259 * If any zone is currently balanced then kswapd will 3260 * not call compaction as it is expected that the 3261 * necessary pages are already available. 3262 */ 3263 if (pgdat_needs_compaction && 3264 zone_watermark_ok(zone, order, 3265 low_wmark_pages(zone), 3266 *classzone_idx, 0)) 3267 pgdat_needs_compaction = false; 3268 } 3269 3270 /* 3271 * If we're getting trouble reclaiming, start doing writepage 3272 * even in laptop mode. 3273 */ 3274 if (sc.priority < DEF_PRIORITY - 2) 3275 sc.may_writepage = 1; 3276 3277 /* 3278 * Now scan the zone in the dma->highmem direction, stopping 3279 * at the last zone which needs scanning. 3280 * 3281 * We do this because the page allocator works in the opposite 3282 * direction. This prevents the page allocator from allocating 3283 * pages behind kswapd's direction of progress, which would 3284 * cause too much scanning of the lower zones. 3285 */ 3286 for (i = 0; i <= end_zone; i++) { 3287 struct zone *zone = pgdat->node_zones + i; 3288 3289 if (!populated_zone(zone)) 3290 continue; 3291 3292 if (sc.priority != DEF_PRIORITY && 3293 !zone_reclaimable(zone)) 3294 continue; 3295 3296 sc.nr_scanned = 0; 3297 3298 nr_soft_scanned = 0; 3299 /* 3300 * Call soft limit reclaim before calling shrink_zone. 3301 */ 3302 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3303 order, sc.gfp_mask, 3304 &nr_soft_scanned); 3305 sc.nr_reclaimed += nr_soft_reclaimed; 3306 3307 /* 3308 * There should be no need to raise the scanning 3309 * priority if enough pages are already being scanned 3310 * that that high watermark would be met at 100% 3311 * efficiency. 3312 */ 3313 if (kswapd_shrink_zone(zone, end_zone, 3314 &sc, &nr_attempted)) 3315 raise_priority = false; 3316 } 3317 3318 /* 3319 * If the low watermark is met there is no need for processes 3320 * to be throttled on pfmemalloc_wait as they should not be 3321 * able to safely make forward progress. Wake them 3322 */ 3323 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3324 pfmemalloc_watermark_ok(pgdat)) 3325 wake_up_all(&pgdat->pfmemalloc_wait); 3326 3327 /* 3328 * Fragmentation may mean that the system cannot be rebalanced 3329 * for high-order allocations in all zones. If twice the 3330 * allocation size has been reclaimed and the zones are still 3331 * not balanced then recheck the watermarks at order-0 to 3332 * prevent kswapd reclaiming excessively. Assume that a 3333 * process requested a high-order can direct reclaim/compact. 3334 */ 3335 if (order && sc.nr_reclaimed >= 2UL << order) 3336 order = sc.order = 0; 3337 3338 /* Check if kswapd should be suspending */ 3339 if (try_to_freeze() || kthread_should_stop()) 3340 break; 3341 3342 /* 3343 * Compact if necessary and kswapd is reclaiming at least the 3344 * high watermark number of pages as requsted 3345 */ 3346 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3347 compact_pgdat(pgdat, order); 3348 3349 /* 3350 * Raise priority if scanning rate is too low or there was no 3351 * progress in reclaiming pages 3352 */ 3353 if (raise_priority || !sc.nr_reclaimed) 3354 sc.priority--; 3355 } while (sc.priority >= 1 && 3356 !pgdat_balanced(pgdat, order, *classzone_idx)); 3357 3358 out: 3359 /* 3360 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3361 * makes a decision on the order we were last reclaiming at. However, 3362 * if another caller entered the allocator slow path while kswapd 3363 * was awake, order will remain at the higher level 3364 */ 3365 *classzone_idx = end_zone; 3366 return order; 3367 } 3368 3369 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3370 { 3371 long remaining = 0; 3372 DEFINE_WAIT(wait); 3373 3374 if (freezing(current) || kthread_should_stop()) 3375 return; 3376 3377 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3378 3379 /* Try to sleep for a short interval */ 3380 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3381 remaining = schedule_timeout(HZ/10); 3382 finish_wait(&pgdat->kswapd_wait, &wait); 3383 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3384 } 3385 3386 /* 3387 * After a short sleep, check if it was a premature sleep. If not, then 3388 * go fully to sleep until explicitly woken up. 3389 */ 3390 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3391 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3392 3393 /* 3394 * vmstat counters are not perfectly accurate and the estimated 3395 * value for counters such as NR_FREE_PAGES can deviate from the 3396 * true value by nr_online_cpus * threshold. To avoid the zone 3397 * watermarks being breached while under pressure, we reduce the 3398 * per-cpu vmstat threshold while kswapd is awake and restore 3399 * them before going back to sleep. 3400 */ 3401 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3402 3403 /* 3404 * Compaction records what page blocks it recently failed to 3405 * isolate pages from and skips them in the future scanning. 3406 * When kswapd is going to sleep, it is reasonable to assume 3407 * that pages and compaction may succeed so reset the cache. 3408 */ 3409 reset_isolation_suitable(pgdat); 3410 3411 if (!kthread_should_stop()) 3412 schedule(); 3413 3414 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3415 } else { 3416 if (remaining) 3417 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3418 else 3419 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3420 } 3421 finish_wait(&pgdat->kswapd_wait, &wait); 3422 } 3423 3424 /* 3425 * The background pageout daemon, started as a kernel thread 3426 * from the init process. 3427 * 3428 * This basically trickles out pages so that we have _some_ 3429 * free memory available even if there is no other activity 3430 * that frees anything up. This is needed for things like routing 3431 * etc, where we otherwise might have all activity going on in 3432 * asynchronous contexts that cannot page things out. 3433 * 3434 * If there are applications that are active memory-allocators 3435 * (most normal use), this basically shouldn't matter. 3436 */ 3437 static int kswapd(void *p) 3438 { 3439 unsigned long order, new_order; 3440 unsigned balanced_order; 3441 int classzone_idx, new_classzone_idx; 3442 int balanced_classzone_idx; 3443 pg_data_t *pgdat = (pg_data_t*)p; 3444 struct task_struct *tsk = current; 3445 3446 struct reclaim_state reclaim_state = { 3447 .reclaimed_slab = 0, 3448 }; 3449 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3450 3451 lockdep_set_current_reclaim_state(GFP_KERNEL); 3452 3453 if (!cpumask_empty(cpumask)) 3454 set_cpus_allowed_ptr(tsk, cpumask); 3455 current->reclaim_state = &reclaim_state; 3456 3457 /* 3458 * Tell the memory management that we're a "memory allocator", 3459 * and that if we need more memory we should get access to it 3460 * regardless (see "__alloc_pages()"). "kswapd" should 3461 * never get caught in the normal page freeing logic. 3462 * 3463 * (Kswapd normally doesn't need memory anyway, but sometimes 3464 * you need a small amount of memory in order to be able to 3465 * page out something else, and this flag essentially protects 3466 * us from recursively trying to free more memory as we're 3467 * trying to free the first piece of memory in the first place). 3468 */ 3469 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3470 set_freezable(); 3471 3472 order = new_order = 0; 3473 balanced_order = 0; 3474 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3475 balanced_classzone_idx = classzone_idx; 3476 for ( ; ; ) { 3477 bool ret; 3478 3479 /* 3480 * If the last balance_pgdat was unsuccessful it's unlikely a 3481 * new request of a similar or harder type will succeed soon 3482 * so consider going to sleep on the basis we reclaimed at 3483 */ 3484 if (balanced_classzone_idx >= new_classzone_idx && 3485 balanced_order == new_order) { 3486 new_order = pgdat->kswapd_max_order; 3487 new_classzone_idx = pgdat->classzone_idx; 3488 pgdat->kswapd_max_order = 0; 3489 pgdat->classzone_idx = pgdat->nr_zones - 1; 3490 } 3491 3492 if (order < new_order || classzone_idx > new_classzone_idx) { 3493 /* 3494 * Don't sleep if someone wants a larger 'order' 3495 * allocation or has tigher zone constraints 3496 */ 3497 order = new_order; 3498 classzone_idx = new_classzone_idx; 3499 } else { 3500 kswapd_try_to_sleep(pgdat, balanced_order, 3501 balanced_classzone_idx); 3502 order = pgdat->kswapd_max_order; 3503 classzone_idx = pgdat->classzone_idx; 3504 new_order = order; 3505 new_classzone_idx = classzone_idx; 3506 pgdat->kswapd_max_order = 0; 3507 pgdat->classzone_idx = pgdat->nr_zones - 1; 3508 } 3509 3510 ret = try_to_freeze(); 3511 if (kthread_should_stop()) 3512 break; 3513 3514 /* 3515 * We can speed up thawing tasks if we don't call balance_pgdat 3516 * after returning from the refrigerator 3517 */ 3518 if (!ret) { 3519 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3520 balanced_classzone_idx = classzone_idx; 3521 balanced_order = balance_pgdat(pgdat, order, 3522 &balanced_classzone_idx); 3523 } 3524 } 3525 3526 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3527 current->reclaim_state = NULL; 3528 lockdep_clear_current_reclaim_state(); 3529 3530 return 0; 3531 } 3532 3533 /* 3534 * A zone is low on free memory, so wake its kswapd task to service it. 3535 */ 3536 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3537 { 3538 pg_data_t *pgdat; 3539 3540 if (!populated_zone(zone)) 3541 return; 3542 3543 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3544 return; 3545 pgdat = zone->zone_pgdat; 3546 if (pgdat->kswapd_max_order < order) { 3547 pgdat->kswapd_max_order = order; 3548 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3549 } 3550 if (!waitqueue_active(&pgdat->kswapd_wait)) 3551 return; 3552 if (zone_balanced(zone, order, 0, 0)) 3553 return; 3554 3555 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3556 wake_up_interruptible(&pgdat->kswapd_wait); 3557 } 3558 3559 #ifdef CONFIG_HIBERNATION 3560 /* 3561 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3562 * freed pages. 3563 * 3564 * Rather than trying to age LRUs the aim is to preserve the overall 3565 * LRU order by reclaiming preferentially 3566 * inactive > active > active referenced > active mapped 3567 */ 3568 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3569 { 3570 struct reclaim_state reclaim_state; 3571 struct scan_control sc = { 3572 .nr_to_reclaim = nr_to_reclaim, 3573 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3574 .priority = DEF_PRIORITY, 3575 .may_writepage = 1, 3576 .may_unmap = 1, 3577 .may_swap = 1, 3578 .hibernation_mode = 1, 3579 }; 3580 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3581 struct task_struct *p = current; 3582 unsigned long nr_reclaimed; 3583 3584 p->flags |= PF_MEMALLOC; 3585 lockdep_set_current_reclaim_state(sc.gfp_mask); 3586 reclaim_state.reclaimed_slab = 0; 3587 p->reclaim_state = &reclaim_state; 3588 3589 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3590 3591 p->reclaim_state = NULL; 3592 lockdep_clear_current_reclaim_state(); 3593 p->flags &= ~PF_MEMALLOC; 3594 3595 return nr_reclaimed; 3596 } 3597 #endif /* CONFIG_HIBERNATION */ 3598 3599 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3600 not required for correctness. So if the last cpu in a node goes 3601 away, we get changed to run anywhere: as the first one comes back, 3602 restore their cpu bindings. */ 3603 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3604 void *hcpu) 3605 { 3606 int nid; 3607 3608 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3609 for_each_node_state(nid, N_MEMORY) { 3610 pg_data_t *pgdat = NODE_DATA(nid); 3611 const struct cpumask *mask; 3612 3613 mask = cpumask_of_node(pgdat->node_id); 3614 3615 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3616 /* One of our CPUs online: restore mask */ 3617 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3618 } 3619 } 3620 return NOTIFY_OK; 3621 } 3622 3623 /* 3624 * This kswapd start function will be called by init and node-hot-add. 3625 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3626 */ 3627 int kswapd_run(int nid) 3628 { 3629 pg_data_t *pgdat = NODE_DATA(nid); 3630 int ret = 0; 3631 3632 if (pgdat->kswapd) 3633 return 0; 3634 3635 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3636 if (IS_ERR(pgdat->kswapd)) { 3637 /* failure at boot is fatal */ 3638 BUG_ON(system_state == SYSTEM_BOOTING); 3639 pr_err("Failed to start kswapd on node %d\n", nid); 3640 ret = PTR_ERR(pgdat->kswapd); 3641 pgdat->kswapd = NULL; 3642 } 3643 return ret; 3644 } 3645 3646 /* 3647 * Called by memory hotplug when all memory in a node is offlined. Caller must 3648 * hold mem_hotplug_begin/end(). 3649 */ 3650 void kswapd_stop(int nid) 3651 { 3652 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3653 3654 if (kswapd) { 3655 kthread_stop(kswapd); 3656 NODE_DATA(nid)->kswapd = NULL; 3657 } 3658 } 3659 3660 static int __init kswapd_init(void) 3661 { 3662 int nid; 3663 3664 swap_setup(); 3665 for_each_node_state(nid, N_MEMORY) 3666 kswapd_run(nid); 3667 hotcpu_notifier(cpu_callback, 0); 3668 return 0; 3669 } 3670 3671 module_init(kswapd_init) 3672 3673 #ifdef CONFIG_NUMA 3674 /* 3675 * Zone reclaim mode 3676 * 3677 * If non-zero call zone_reclaim when the number of free pages falls below 3678 * the watermarks. 3679 */ 3680 int zone_reclaim_mode __read_mostly; 3681 3682 #define RECLAIM_OFF 0 3683 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3684 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3685 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3686 3687 /* 3688 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3689 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3690 * a zone. 3691 */ 3692 #define ZONE_RECLAIM_PRIORITY 4 3693 3694 /* 3695 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3696 * occur. 3697 */ 3698 int sysctl_min_unmapped_ratio = 1; 3699 3700 /* 3701 * If the number of slab pages in a zone grows beyond this percentage then 3702 * slab reclaim needs to occur. 3703 */ 3704 int sysctl_min_slab_ratio = 5; 3705 3706 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3707 { 3708 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3709 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3710 zone_page_state(zone, NR_ACTIVE_FILE); 3711 3712 /* 3713 * It's possible for there to be more file mapped pages than 3714 * accounted for by the pages on the file LRU lists because 3715 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3716 */ 3717 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3718 } 3719 3720 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3721 static unsigned long zone_pagecache_reclaimable(struct zone *zone) 3722 { 3723 unsigned long nr_pagecache_reclaimable; 3724 unsigned long delta = 0; 3725 3726 /* 3727 * If RECLAIM_UNMAP is set, then all file pages are considered 3728 * potentially reclaimable. Otherwise, we have to worry about 3729 * pages like swapcache and zone_unmapped_file_pages() provides 3730 * a better estimate 3731 */ 3732 if (zone_reclaim_mode & RECLAIM_UNMAP) 3733 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3734 else 3735 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3736 3737 /* If we can't clean pages, remove dirty pages from consideration */ 3738 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3739 delta += zone_page_state(zone, NR_FILE_DIRTY); 3740 3741 /* Watch for any possible underflows due to delta */ 3742 if (unlikely(delta > nr_pagecache_reclaimable)) 3743 delta = nr_pagecache_reclaimable; 3744 3745 return nr_pagecache_reclaimable - delta; 3746 } 3747 3748 /* 3749 * Try to free up some pages from this zone through reclaim. 3750 */ 3751 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3752 { 3753 /* Minimum pages needed in order to stay on node */ 3754 const unsigned long nr_pages = 1 << order; 3755 struct task_struct *p = current; 3756 struct reclaim_state reclaim_state; 3757 struct scan_control sc = { 3758 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3759 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3760 .order = order, 3761 .priority = ZONE_RECLAIM_PRIORITY, 3762 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3763 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3764 .may_swap = 1, 3765 }; 3766 3767 cond_resched(); 3768 /* 3769 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3770 * and we also need to be able to write out pages for RECLAIM_WRITE 3771 * and RECLAIM_UNMAP. 3772 */ 3773 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3774 lockdep_set_current_reclaim_state(gfp_mask); 3775 reclaim_state.reclaimed_slab = 0; 3776 p->reclaim_state = &reclaim_state; 3777 3778 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3779 /* 3780 * Free memory by calling shrink zone with increasing 3781 * priorities until we have enough memory freed. 3782 */ 3783 do { 3784 shrink_zone(zone, &sc, true); 3785 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3786 } 3787 3788 p->reclaim_state = NULL; 3789 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3790 lockdep_clear_current_reclaim_state(); 3791 return sc.nr_reclaimed >= nr_pages; 3792 } 3793 3794 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3795 { 3796 int node_id; 3797 int ret; 3798 3799 /* 3800 * Zone reclaim reclaims unmapped file backed pages and 3801 * slab pages if we are over the defined limits. 3802 * 3803 * A small portion of unmapped file backed pages is needed for 3804 * file I/O otherwise pages read by file I/O will be immediately 3805 * thrown out if the zone is overallocated. So we do not reclaim 3806 * if less than a specified percentage of the zone is used by 3807 * unmapped file backed pages. 3808 */ 3809 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3810 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3811 return ZONE_RECLAIM_FULL; 3812 3813 if (!zone_reclaimable(zone)) 3814 return ZONE_RECLAIM_FULL; 3815 3816 /* 3817 * Do not scan if the allocation should not be delayed. 3818 */ 3819 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3820 return ZONE_RECLAIM_NOSCAN; 3821 3822 /* 3823 * Only run zone reclaim on the local zone or on zones that do not 3824 * have associated processors. This will favor the local processor 3825 * over remote processors and spread off node memory allocations 3826 * as wide as possible. 3827 */ 3828 node_id = zone_to_nid(zone); 3829 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3830 return ZONE_RECLAIM_NOSCAN; 3831 3832 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3833 return ZONE_RECLAIM_NOSCAN; 3834 3835 ret = __zone_reclaim(zone, gfp_mask, order); 3836 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3837 3838 if (!ret) 3839 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3840 3841 return ret; 3842 } 3843 #endif 3844 3845 /* 3846 * page_evictable - test whether a page is evictable 3847 * @page: the page to test 3848 * 3849 * Test whether page is evictable--i.e., should be placed on active/inactive 3850 * lists vs unevictable list. 3851 * 3852 * Reasons page might not be evictable: 3853 * (1) page's mapping marked unevictable 3854 * (2) page is part of an mlocked VMA 3855 * 3856 */ 3857 int page_evictable(struct page *page) 3858 { 3859 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3860 } 3861 3862 #ifdef CONFIG_SHMEM 3863 /** 3864 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3865 * @pages: array of pages to check 3866 * @nr_pages: number of pages to check 3867 * 3868 * Checks pages for evictability and moves them to the appropriate lru list. 3869 * 3870 * This function is only used for SysV IPC SHM_UNLOCK. 3871 */ 3872 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3873 { 3874 struct lruvec *lruvec; 3875 struct zone *zone = NULL; 3876 int pgscanned = 0; 3877 int pgrescued = 0; 3878 int i; 3879 3880 for (i = 0; i < nr_pages; i++) { 3881 struct page *page = pages[i]; 3882 struct zone *pagezone; 3883 3884 pgscanned++; 3885 pagezone = page_zone(page); 3886 if (pagezone != zone) { 3887 if (zone) 3888 spin_unlock_irq(&zone->lru_lock); 3889 zone = pagezone; 3890 spin_lock_irq(&zone->lru_lock); 3891 } 3892 lruvec = mem_cgroup_page_lruvec(page, zone); 3893 3894 if (!PageLRU(page) || !PageUnevictable(page)) 3895 continue; 3896 3897 if (page_evictable(page)) { 3898 enum lru_list lru = page_lru_base_type(page); 3899 3900 VM_BUG_ON_PAGE(PageActive(page), page); 3901 ClearPageUnevictable(page); 3902 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3903 add_page_to_lru_list(page, lruvec, lru); 3904 pgrescued++; 3905 } 3906 } 3907 3908 if (zone) { 3909 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3910 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3911 spin_unlock_irq(&zone->lru_lock); 3912 } 3913 } 3914 #endif /* CONFIG_SHMEM */ 3915