xref: /openbmc/linux/mm/vmscan.c (revision 9efac679)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/* Can cgroups be reclaimed below their normal consumption range? */
99 	unsigned int may_thrash:1;
100 
101 	unsigned int hibernation_mode:1;
102 
103 	/* One of the zones is ready for compaction */
104 	unsigned int compaction_ready:1;
105 
106 	/* Incremented by the number of inactive pages that were scanned */
107 	unsigned long nr_scanned;
108 
109 	/* Number of pages freed so far during a call to shrink_zones() */
110 	unsigned long nr_reclaimed;
111 };
112 
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetch(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field)			\
129 	do {								\
130 		if ((_page)->lru.prev != _base) {			\
131 			struct page *prev;				\
132 									\
133 			prev = lru_to_page(&(_page->lru));		\
134 			prefetchw(&prev->_field);			\
135 		}							\
136 	} while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140 
141 /*
142  * From 0 .. 100.  Higher means more swappy.
143  */
144 int vm_swappiness = 60;
145 /*
146  * The total number of pages which are beyond the high watermark within all
147  * zones.
148  */
149 unsigned long vm_total_pages;
150 
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153 
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return !sc->target_mem_cgroup;
158 }
159 
160 /**
161  * sane_reclaim - is the usual dirty throttling mechanism operational?
162  * @sc: scan_control in question
163  *
164  * The normal page dirty throttling mechanism in balance_dirty_pages() is
165  * completely broken with the legacy memcg and direct stalling in
166  * shrink_page_list() is used for throttling instead, which lacks all the
167  * niceties such as fairness, adaptive pausing, bandwidth proportional
168  * allocation and configurability.
169  *
170  * This function tests whether the vmscan currently in progress can assume
171  * that the normal dirty throttling mechanism is operational.
172  */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
176 
177 	if (!memcg)
178 		return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 		return true;
182 #endif
183 	return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 	return true;
189 }
190 
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	return true;
194 }
195 #endif
196 
197 /*
198  * This misses isolated pages which are not accounted for to save counters.
199  * As the data only determines if reclaim or compaction continues, it is
200  * not expected that isolated pages will be a dominating factor.
201  */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 	unsigned long nr;
205 
206 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 	if (get_nr_swap_pages() > 0)
209 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211 
212 	return nr;
213 }
214 
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 	unsigned long nr;
218 
219 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 
223 	if (get_nr_swap_pages() > 0)
224 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 
228 	return nr;
229 }
230 
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 		pgdat_reclaimable_pages(pgdat) * 6;
235 }
236 
237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238 {
239 	if (!mem_cgroup_disabled())
240 		return mem_cgroup_get_lru_size(lruvec, lru);
241 
242 	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 }
244 
245 /*
246  * Add a shrinker callback to be called from the vm.
247  */
248 int register_shrinker(struct shrinker *shrinker)
249 {
250 	size_t size = sizeof(*shrinker->nr_deferred);
251 
252 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
253 		size *= nr_node_ids;
254 
255 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
256 	if (!shrinker->nr_deferred)
257 		return -ENOMEM;
258 
259 	down_write(&shrinker_rwsem);
260 	list_add_tail(&shrinker->list, &shrinker_list);
261 	up_write(&shrinker_rwsem);
262 	return 0;
263 }
264 EXPORT_SYMBOL(register_shrinker);
265 
266 /*
267  * Remove one
268  */
269 void unregister_shrinker(struct shrinker *shrinker)
270 {
271 	down_write(&shrinker_rwsem);
272 	list_del(&shrinker->list);
273 	up_write(&shrinker_rwsem);
274 	kfree(shrinker->nr_deferred);
275 }
276 EXPORT_SYMBOL(unregister_shrinker);
277 
278 #define SHRINK_BATCH 128
279 
280 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
281 				    struct shrinker *shrinker,
282 				    unsigned long nr_scanned,
283 				    unsigned long nr_eligible)
284 {
285 	unsigned long freed = 0;
286 	unsigned long long delta;
287 	long total_scan;
288 	long freeable;
289 	long nr;
290 	long new_nr;
291 	int nid = shrinkctl->nid;
292 	long batch_size = shrinker->batch ? shrinker->batch
293 					  : SHRINK_BATCH;
294 
295 	freeable = shrinker->count_objects(shrinker, shrinkctl);
296 	if (freeable == 0)
297 		return 0;
298 
299 	/*
300 	 * copy the current shrinker scan count into a local variable
301 	 * and zero it so that other concurrent shrinker invocations
302 	 * don't also do this scanning work.
303 	 */
304 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
305 
306 	total_scan = nr;
307 	delta = (4 * nr_scanned) / shrinker->seeks;
308 	delta *= freeable;
309 	do_div(delta, nr_eligible + 1);
310 	total_scan += delta;
311 	if (total_scan < 0) {
312 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
313 		       shrinker->scan_objects, total_scan);
314 		total_scan = freeable;
315 	}
316 
317 	/*
318 	 * We need to avoid excessive windup on filesystem shrinkers
319 	 * due to large numbers of GFP_NOFS allocations causing the
320 	 * shrinkers to return -1 all the time. This results in a large
321 	 * nr being built up so when a shrink that can do some work
322 	 * comes along it empties the entire cache due to nr >>>
323 	 * freeable. This is bad for sustaining a working set in
324 	 * memory.
325 	 *
326 	 * Hence only allow the shrinker to scan the entire cache when
327 	 * a large delta change is calculated directly.
328 	 */
329 	if (delta < freeable / 4)
330 		total_scan = min(total_scan, freeable / 2);
331 
332 	/*
333 	 * Avoid risking looping forever due to too large nr value:
334 	 * never try to free more than twice the estimate number of
335 	 * freeable entries.
336 	 */
337 	if (total_scan > freeable * 2)
338 		total_scan = freeable * 2;
339 
340 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
341 				   nr_scanned, nr_eligible,
342 				   freeable, delta, total_scan);
343 
344 	/*
345 	 * Normally, we should not scan less than batch_size objects in one
346 	 * pass to avoid too frequent shrinker calls, but if the slab has less
347 	 * than batch_size objects in total and we are really tight on memory,
348 	 * we will try to reclaim all available objects, otherwise we can end
349 	 * up failing allocations although there are plenty of reclaimable
350 	 * objects spread over several slabs with usage less than the
351 	 * batch_size.
352 	 *
353 	 * We detect the "tight on memory" situations by looking at the total
354 	 * number of objects we want to scan (total_scan). If it is greater
355 	 * than the total number of objects on slab (freeable), we must be
356 	 * scanning at high prio and therefore should try to reclaim as much as
357 	 * possible.
358 	 */
359 	while (total_scan >= batch_size ||
360 	       total_scan >= freeable) {
361 		unsigned long ret;
362 		unsigned long nr_to_scan = min(batch_size, total_scan);
363 
364 		shrinkctl->nr_to_scan = nr_to_scan;
365 		ret = shrinker->scan_objects(shrinker, shrinkctl);
366 		if (ret == SHRINK_STOP)
367 			break;
368 		freed += ret;
369 
370 		count_vm_events(SLABS_SCANNED, nr_to_scan);
371 		total_scan -= nr_to_scan;
372 
373 		cond_resched();
374 	}
375 
376 	/*
377 	 * move the unused scan count back into the shrinker in a
378 	 * manner that handles concurrent updates. If we exhausted the
379 	 * scan, there is no need to do an update.
380 	 */
381 	if (total_scan > 0)
382 		new_nr = atomic_long_add_return(total_scan,
383 						&shrinker->nr_deferred[nid]);
384 	else
385 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
386 
387 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
388 	return freed;
389 }
390 
391 /**
392  * shrink_slab - shrink slab caches
393  * @gfp_mask: allocation context
394  * @nid: node whose slab caches to target
395  * @memcg: memory cgroup whose slab caches to target
396  * @nr_scanned: pressure numerator
397  * @nr_eligible: pressure denominator
398  *
399  * Call the shrink functions to age shrinkable caches.
400  *
401  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
402  * unaware shrinkers will receive a node id of 0 instead.
403  *
404  * @memcg specifies the memory cgroup to target. If it is not NULL,
405  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
406  * objects from the memory cgroup specified. Otherwise, only unaware
407  * shrinkers are called.
408  *
409  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
410  * the available objects should be scanned.  Page reclaim for example
411  * passes the number of pages scanned and the number of pages on the
412  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
413  * when it encountered mapped pages.  The ratio is further biased by
414  * the ->seeks setting of the shrink function, which indicates the
415  * cost to recreate an object relative to that of an LRU page.
416  *
417  * Returns the number of reclaimed slab objects.
418  */
419 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
420 				 struct mem_cgroup *memcg,
421 				 unsigned long nr_scanned,
422 				 unsigned long nr_eligible)
423 {
424 	struct shrinker *shrinker;
425 	unsigned long freed = 0;
426 
427 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
428 		return 0;
429 
430 	if (nr_scanned == 0)
431 		nr_scanned = SWAP_CLUSTER_MAX;
432 
433 	if (!down_read_trylock(&shrinker_rwsem)) {
434 		/*
435 		 * If we would return 0, our callers would understand that we
436 		 * have nothing else to shrink and give up trying. By returning
437 		 * 1 we keep it going and assume we'll be able to shrink next
438 		 * time.
439 		 */
440 		freed = 1;
441 		goto out;
442 	}
443 
444 	list_for_each_entry(shrinker, &shrinker_list, list) {
445 		struct shrink_control sc = {
446 			.gfp_mask = gfp_mask,
447 			.nid = nid,
448 			.memcg = memcg,
449 		};
450 
451 		/*
452 		 * If kernel memory accounting is disabled, we ignore
453 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
454 		 * passing NULL for memcg.
455 		 */
456 		if (memcg_kmem_enabled() &&
457 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
458 			continue;
459 
460 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
461 			sc.nid = 0;
462 
463 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
464 	}
465 
466 	up_read(&shrinker_rwsem);
467 out:
468 	cond_resched();
469 	return freed;
470 }
471 
472 void drop_slab_node(int nid)
473 {
474 	unsigned long freed;
475 
476 	do {
477 		struct mem_cgroup *memcg = NULL;
478 
479 		freed = 0;
480 		do {
481 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
482 					     1000, 1000);
483 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
484 	} while (freed > 10);
485 }
486 
487 void drop_slab(void)
488 {
489 	int nid;
490 
491 	for_each_online_node(nid)
492 		drop_slab_node(nid);
493 }
494 
495 static inline int is_page_cache_freeable(struct page *page)
496 {
497 	/*
498 	 * A freeable page cache page is referenced only by the caller
499 	 * that isolated the page, the page cache radix tree and
500 	 * optional buffer heads at page->private.
501 	 */
502 	return page_count(page) - page_has_private(page) == 2;
503 }
504 
505 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
506 {
507 	if (current->flags & PF_SWAPWRITE)
508 		return 1;
509 	if (!inode_write_congested(inode))
510 		return 1;
511 	if (inode_to_bdi(inode) == current->backing_dev_info)
512 		return 1;
513 	return 0;
514 }
515 
516 /*
517  * We detected a synchronous write error writing a page out.  Probably
518  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
519  * fsync(), msync() or close().
520  *
521  * The tricky part is that after writepage we cannot touch the mapping: nothing
522  * prevents it from being freed up.  But we have a ref on the page and once
523  * that page is locked, the mapping is pinned.
524  *
525  * We're allowed to run sleeping lock_page() here because we know the caller has
526  * __GFP_FS.
527  */
528 static void handle_write_error(struct address_space *mapping,
529 				struct page *page, int error)
530 {
531 	lock_page(page);
532 	if (page_mapping(page) == mapping)
533 		mapping_set_error(mapping, error);
534 	unlock_page(page);
535 }
536 
537 /* possible outcome of pageout() */
538 typedef enum {
539 	/* failed to write page out, page is locked */
540 	PAGE_KEEP,
541 	/* move page to the active list, page is locked */
542 	PAGE_ACTIVATE,
543 	/* page has been sent to the disk successfully, page is unlocked */
544 	PAGE_SUCCESS,
545 	/* page is clean and locked */
546 	PAGE_CLEAN,
547 } pageout_t;
548 
549 /*
550  * pageout is called by shrink_page_list() for each dirty page.
551  * Calls ->writepage().
552  */
553 static pageout_t pageout(struct page *page, struct address_space *mapping,
554 			 struct scan_control *sc)
555 {
556 	/*
557 	 * If the page is dirty, only perform writeback if that write
558 	 * will be non-blocking.  To prevent this allocation from being
559 	 * stalled by pagecache activity.  But note that there may be
560 	 * stalls if we need to run get_block().  We could test
561 	 * PagePrivate for that.
562 	 *
563 	 * If this process is currently in __generic_file_write_iter() against
564 	 * this page's queue, we can perform writeback even if that
565 	 * will block.
566 	 *
567 	 * If the page is swapcache, write it back even if that would
568 	 * block, for some throttling. This happens by accident, because
569 	 * swap_backing_dev_info is bust: it doesn't reflect the
570 	 * congestion state of the swapdevs.  Easy to fix, if needed.
571 	 */
572 	if (!is_page_cache_freeable(page))
573 		return PAGE_KEEP;
574 	if (!mapping) {
575 		/*
576 		 * Some data journaling orphaned pages can have
577 		 * page->mapping == NULL while being dirty with clean buffers.
578 		 */
579 		if (page_has_private(page)) {
580 			if (try_to_free_buffers(page)) {
581 				ClearPageDirty(page);
582 				pr_info("%s: orphaned page\n", __func__);
583 				return PAGE_CLEAN;
584 			}
585 		}
586 		return PAGE_KEEP;
587 	}
588 	if (mapping->a_ops->writepage == NULL)
589 		return PAGE_ACTIVATE;
590 	if (!may_write_to_inode(mapping->host, sc))
591 		return PAGE_KEEP;
592 
593 	if (clear_page_dirty_for_io(page)) {
594 		int res;
595 		struct writeback_control wbc = {
596 			.sync_mode = WB_SYNC_NONE,
597 			.nr_to_write = SWAP_CLUSTER_MAX,
598 			.range_start = 0,
599 			.range_end = LLONG_MAX,
600 			.for_reclaim = 1,
601 		};
602 
603 		SetPageReclaim(page);
604 		res = mapping->a_ops->writepage(page, &wbc);
605 		if (res < 0)
606 			handle_write_error(mapping, page, res);
607 		if (res == AOP_WRITEPAGE_ACTIVATE) {
608 			ClearPageReclaim(page);
609 			return PAGE_ACTIVATE;
610 		}
611 
612 		if (!PageWriteback(page)) {
613 			/* synchronous write or broken a_ops? */
614 			ClearPageReclaim(page);
615 		}
616 		trace_mm_vmscan_writepage(page);
617 		inc_node_page_state(page, NR_VMSCAN_WRITE);
618 		return PAGE_SUCCESS;
619 	}
620 
621 	return PAGE_CLEAN;
622 }
623 
624 /*
625  * Same as remove_mapping, but if the page is removed from the mapping, it
626  * gets returned with a refcount of 0.
627  */
628 static int __remove_mapping(struct address_space *mapping, struct page *page,
629 			    bool reclaimed)
630 {
631 	unsigned long flags;
632 
633 	BUG_ON(!PageLocked(page));
634 	BUG_ON(mapping != page_mapping(page));
635 
636 	spin_lock_irqsave(&mapping->tree_lock, flags);
637 	/*
638 	 * The non racy check for a busy page.
639 	 *
640 	 * Must be careful with the order of the tests. When someone has
641 	 * a ref to the page, it may be possible that they dirty it then
642 	 * drop the reference. So if PageDirty is tested before page_count
643 	 * here, then the following race may occur:
644 	 *
645 	 * get_user_pages(&page);
646 	 * [user mapping goes away]
647 	 * write_to(page);
648 	 *				!PageDirty(page)    [good]
649 	 * SetPageDirty(page);
650 	 * put_page(page);
651 	 *				!page_count(page)   [good, discard it]
652 	 *
653 	 * [oops, our write_to data is lost]
654 	 *
655 	 * Reversing the order of the tests ensures such a situation cannot
656 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
657 	 * load is not satisfied before that of page->_refcount.
658 	 *
659 	 * Note that if SetPageDirty is always performed via set_page_dirty,
660 	 * and thus under tree_lock, then this ordering is not required.
661 	 */
662 	if (!page_ref_freeze(page, 2))
663 		goto cannot_free;
664 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
665 	if (unlikely(PageDirty(page))) {
666 		page_ref_unfreeze(page, 2);
667 		goto cannot_free;
668 	}
669 
670 	if (PageSwapCache(page)) {
671 		swp_entry_t swap = { .val = page_private(page) };
672 		mem_cgroup_swapout(page, swap);
673 		__delete_from_swap_cache(page);
674 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
675 		swapcache_free(swap);
676 	} else {
677 		void (*freepage)(struct page *);
678 		void *shadow = NULL;
679 
680 		freepage = mapping->a_ops->freepage;
681 		/*
682 		 * Remember a shadow entry for reclaimed file cache in
683 		 * order to detect refaults, thus thrashing, later on.
684 		 *
685 		 * But don't store shadows in an address space that is
686 		 * already exiting.  This is not just an optizimation,
687 		 * inode reclaim needs to empty out the radix tree or
688 		 * the nodes are lost.  Don't plant shadows behind its
689 		 * back.
690 		 *
691 		 * We also don't store shadows for DAX mappings because the
692 		 * only page cache pages found in these are zero pages
693 		 * covering holes, and because we don't want to mix DAX
694 		 * exceptional entries and shadow exceptional entries in the
695 		 * same page_tree.
696 		 */
697 		if (reclaimed && page_is_file_cache(page) &&
698 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
699 			shadow = workingset_eviction(mapping, page);
700 		__delete_from_page_cache(page, shadow);
701 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
702 
703 		if (freepage != NULL)
704 			freepage(page);
705 	}
706 
707 	return 1;
708 
709 cannot_free:
710 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 	return 0;
712 }
713 
714 /*
715  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
716  * someone else has a ref on the page, abort and return 0.  If it was
717  * successfully detached, return 1.  Assumes the caller has a single ref on
718  * this page.
719  */
720 int remove_mapping(struct address_space *mapping, struct page *page)
721 {
722 	if (__remove_mapping(mapping, page, false)) {
723 		/*
724 		 * Unfreezing the refcount with 1 rather than 2 effectively
725 		 * drops the pagecache ref for us without requiring another
726 		 * atomic operation.
727 		 */
728 		page_ref_unfreeze(page, 1);
729 		return 1;
730 	}
731 	return 0;
732 }
733 
734 /**
735  * putback_lru_page - put previously isolated page onto appropriate LRU list
736  * @page: page to be put back to appropriate lru list
737  *
738  * Add previously isolated @page to appropriate LRU list.
739  * Page may still be unevictable for other reasons.
740  *
741  * lru_lock must not be held, interrupts must be enabled.
742  */
743 void putback_lru_page(struct page *page)
744 {
745 	bool is_unevictable;
746 	int was_unevictable = PageUnevictable(page);
747 
748 	VM_BUG_ON_PAGE(PageLRU(page), page);
749 
750 redo:
751 	ClearPageUnevictable(page);
752 
753 	if (page_evictable(page)) {
754 		/*
755 		 * For evictable pages, we can use the cache.
756 		 * In event of a race, worst case is we end up with an
757 		 * unevictable page on [in]active list.
758 		 * We know how to handle that.
759 		 */
760 		is_unevictable = false;
761 		lru_cache_add(page);
762 	} else {
763 		/*
764 		 * Put unevictable pages directly on zone's unevictable
765 		 * list.
766 		 */
767 		is_unevictable = true;
768 		add_page_to_unevictable_list(page);
769 		/*
770 		 * When racing with an mlock or AS_UNEVICTABLE clearing
771 		 * (page is unlocked) make sure that if the other thread
772 		 * does not observe our setting of PG_lru and fails
773 		 * isolation/check_move_unevictable_pages,
774 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
775 		 * the page back to the evictable list.
776 		 *
777 		 * The other side is TestClearPageMlocked() or shmem_lock().
778 		 */
779 		smp_mb();
780 	}
781 
782 	/*
783 	 * page's status can change while we move it among lru. If an evictable
784 	 * page is on unevictable list, it never be freed. To avoid that,
785 	 * check after we added it to the list, again.
786 	 */
787 	if (is_unevictable && page_evictable(page)) {
788 		if (!isolate_lru_page(page)) {
789 			put_page(page);
790 			goto redo;
791 		}
792 		/* This means someone else dropped this page from LRU
793 		 * So, it will be freed or putback to LRU again. There is
794 		 * nothing to do here.
795 		 */
796 	}
797 
798 	if (was_unevictable && !is_unevictable)
799 		count_vm_event(UNEVICTABLE_PGRESCUED);
800 	else if (!was_unevictable && is_unevictable)
801 		count_vm_event(UNEVICTABLE_PGCULLED);
802 
803 	put_page(page);		/* drop ref from isolate */
804 }
805 
806 enum page_references {
807 	PAGEREF_RECLAIM,
808 	PAGEREF_RECLAIM_CLEAN,
809 	PAGEREF_KEEP,
810 	PAGEREF_ACTIVATE,
811 };
812 
813 static enum page_references page_check_references(struct page *page,
814 						  struct scan_control *sc)
815 {
816 	int referenced_ptes, referenced_page;
817 	unsigned long vm_flags;
818 
819 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
820 					  &vm_flags);
821 	referenced_page = TestClearPageReferenced(page);
822 
823 	/*
824 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
825 	 * move the page to the unevictable list.
826 	 */
827 	if (vm_flags & VM_LOCKED)
828 		return PAGEREF_RECLAIM;
829 
830 	if (referenced_ptes) {
831 		if (PageSwapBacked(page))
832 			return PAGEREF_ACTIVATE;
833 		/*
834 		 * All mapped pages start out with page table
835 		 * references from the instantiating fault, so we need
836 		 * to look twice if a mapped file page is used more
837 		 * than once.
838 		 *
839 		 * Mark it and spare it for another trip around the
840 		 * inactive list.  Another page table reference will
841 		 * lead to its activation.
842 		 *
843 		 * Note: the mark is set for activated pages as well
844 		 * so that recently deactivated but used pages are
845 		 * quickly recovered.
846 		 */
847 		SetPageReferenced(page);
848 
849 		if (referenced_page || referenced_ptes > 1)
850 			return PAGEREF_ACTIVATE;
851 
852 		/*
853 		 * Activate file-backed executable pages after first usage.
854 		 */
855 		if (vm_flags & VM_EXEC)
856 			return PAGEREF_ACTIVATE;
857 
858 		return PAGEREF_KEEP;
859 	}
860 
861 	/* Reclaim if clean, defer dirty pages to writeback */
862 	if (referenced_page && !PageSwapBacked(page))
863 		return PAGEREF_RECLAIM_CLEAN;
864 
865 	return PAGEREF_RECLAIM;
866 }
867 
868 /* Check if a page is dirty or under writeback */
869 static void page_check_dirty_writeback(struct page *page,
870 				       bool *dirty, bool *writeback)
871 {
872 	struct address_space *mapping;
873 
874 	/*
875 	 * Anonymous pages are not handled by flushers and must be written
876 	 * from reclaim context. Do not stall reclaim based on them
877 	 */
878 	if (!page_is_file_cache(page)) {
879 		*dirty = false;
880 		*writeback = false;
881 		return;
882 	}
883 
884 	/* By default assume that the page flags are accurate */
885 	*dirty = PageDirty(page);
886 	*writeback = PageWriteback(page);
887 
888 	/* Verify dirty/writeback state if the filesystem supports it */
889 	if (!page_has_private(page))
890 		return;
891 
892 	mapping = page_mapping(page);
893 	if (mapping && mapping->a_ops->is_dirty_writeback)
894 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
895 }
896 
897 /*
898  * shrink_page_list() returns the number of reclaimed pages
899  */
900 static unsigned long shrink_page_list(struct list_head *page_list,
901 				      struct pglist_data *pgdat,
902 				      struct scan_control *sc,
903 				      enum ttu_flags ttu_flags,
904 				      unsigned long *ret_nr_dirty,
905 				      unsigned long *ret_nr_unqueued_dirty,
906 				      unsigned long *ret_nr_congested,
907 				      unsigned long *ret_nr_writeback,
908 				      unsigned long *ret_nr_immediate,
909 				      bool force_reclaim)
910 {
911 	LIST_HEAD(ret_pages);
912 	LIST_HEAD(free_pages);
913 	int pgactivate = 0;
914 	unsigned long nr_unqueued_dirty = 0;
915 	unsigned long nr_dirty = 0;
916 	unsigned long nr_congested = 0;
917 	unsigned long nr_reclaimed = 0;
918 	unsigned long nr_writeback = 0;
919 	unsigned long nr_immediate = 0;
920 
921 	cond_resched();
922 
923 	while (!list_empty(page_list)) {
924 		struct address_space *mapping;
925 		struct page *page;
926 		int may_enter_fs;
927 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
928 		bool dirty, writeback;
929 		bool lazyfree = false;
930 		int ret = SWAP_SUCCESS;
931 
932 		cond_resched();
933 
934 		page = lru_to_page(page_list);
935 		list_del(&page->lru);
936 
937 		if (!trylock_page(page))
938 			goto keep;
939 
940 		VM_BUG_ON_PAGE(PageActive(page), page);
941 
942 		sc->nr_scanned++;
943 
944 		if (unlikely(!page_evictable(page)))
945 			goto cull_mlocked;
946 
947 		if (!sc->may_unmap && page_mapped(page))
948 			goto keep_locked;
949 
950 		/* Double the slab pressure for mapped and swapcache pages */
951 		if (page_mapped(page) || PageSwapCache(page))
952 			sc->nr_scanned++;
953 
954 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
955 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
956 
957 		/*
958 		 * The number of dirty pages determines if a zone is marked
959 		 * reclaim_congested which affects wait_iff_congested. kswapd
960 		 * will stall and start writing pages if the tail of the LRU
961 		 * is all dirty unqueued pages.
962 		 */
963 		page_check_dirty_writeback(page, &dirty, &writeback);
964 		if (dirty || writeback)
965 			nr_dirty++;
966 
967 		if (dirty && !writeback)
968 			nr_unqueued_dirty++;
969 
970 		/*
971 		 * Treat this page as congested if the underlying BDI is or if
972 		 * pages are cycling through the LRU so quickly that the
973 		 * pages marked for immediate reclaim are making it to the
974 		 * end of the LRU a second time.
975 		 */
976 		mapping = page_mapping(page);
977 		if (((dirty || writeback) && mapping &&
978 		     inode_write_congested(mapping->host)) ||
979 		    (writeback && PageReclaim(page)))
980 			nr_congested++;
981 
982 		/*
983 		 * If a page at the tail of the LRU is under writeback, there
984 		 * are three cases to consider.
985 		 *
986 		 * 1) If reclaim is encountering an excessive number of pages
987 		 *    under writeback and this page is both under writeback and
988 		 *    PageReclaim then it indicates that pages are being queued
989 		 *    for IO but are being recycled through the LRU before the
990 		 *    IO can complete. Waiting on the page itself risks an
991 		 *    indefinite stall if it is impossible to writeback the
992 		 *    page due to IO error or disconnected storage so instead
993 		 *    note that the LRU is being scanned too quickly and the
994 		 *    caller can stall after page list has been processed.
995 		 *
996 		 * 2) Global or new memcg reclaim encounters a page that is
997 		 *    not marked for immediate reclaim, or the caller does not
998 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
999 		 *    not to fs). In this case mark the page for immediate
1000 		 *    reclaim and continue scanning.
1001 		 *
1002 		 *    Require may_enter_fs because we would wait on fs, which
1003 		 *    may not have submitted IO yet. And the loop driver might
1004 		 *    enter reclaim, and deadlock if it waits on a page for
1005 		 *    which it is needed to do the write (loop masks off
1006 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1007 		 *    would probably show more reasons.
1008 		 *
1009 		 * 3) Legacy memcg encounters a page that is already marked
1010 		 *    PageReclaim. memcg does not have any dirty pages
1011 		 *    throttling so we could easily OOM just because too many
1012 		 *    pages are in writeback and there is nothing else to
1013 		 *    reclaim. Wait for the writeback to complete.
1014 		 */
1015 		if (PageWriteback(page)) {
1016 			/* Case 1 above */
1017 			if (current_is_kswapd() &&
1018 			    PageReclaim(page) &&
1019 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1020 				nr_immediate++;
1021 				goto keep_locked;
1022 
1023 			/* Case 2 above */
1024 			} else if (sane_reclaim(sc) ||
1025 			    !PageReclaim(page) || !may_enter_fs) {
1026 				/*
1027 				 * This is slightly racy - end_page_writeback()
1028 				 * might have just cleared PageReclaim, then
1029 				 * setting PageReclaim here end up interpreted
1030 				 * as PageReadahead - but that does not matter
1031 				 * enough to care.  What we do want is for this
1032 				 * page to have PageReclaim set next time memcg
1033 				 * reclaim reaches the tests above, so it will
1034 				 * then wait_on_page_writeback() to avoid OOM;
1035 				 * and it's also appropriate in global reclaim.
1036 				 */
1037 				SetPageReclaim(page);
1038 				nr_writeback++;
1039 				goto keep_locked;
1040 
1041 			/* Case 3 above */
1042 			} else {
1043 				unlock_page(page);
1044 				wait_on_page_writeback(page);
1045 				/* then go back and try same page again */
1046 				list_add_tail(&page->lru, page_list);
1047 				continue;
1048 			}
1049 		}
1050 
1051 		if (!force_reclaim)
1052 			references = page_check_references(page, sc);
1053 
1054 		switch (references) {
1055 		case PAGEREF_ACTIVATE:
1056 			goto activate_locked;
1057 		case PAGEREF_KEEP:
1058 			goto keep_locked;
1059 		case PAGEREF_RECLAIM:
1060 		case PAGEREF_RECLAIM_CLEAN:
1061 			; /* try to reclaim the page below */
1062 		}
1063 
1064 		/*
1065 		 * Anonymous process memory has backing store?
1066 		 * Try to allocate it some swap space here.
1067 		 */
1068 		if (PageAnon(page) && !PageSwapCache(page)) {
1069 			if (!(sc->gfp_mask & __GFP_IO))
1070 				goto keep_locked;
1071 			if (!add_to_swap(page, page_list))
1072 				goto activate_locked;
1073 			lazyfree = true;
1074 			may_enter_fs = 1;
1075 
1076 			/* Adding to swap updated mapping */
1077 			mapping = page_mapping(page);
1078 		} else if (unlikely(PageTransHuge(page))) {
1079 			/* Split file THP */
1080 			if (split_huge_page_to_list(page, page_list))
1081 				goto keep_locked;
1082 		}
1083 
1084 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1085 
1086 		/*
1087 		 * The page is mapped into the page tables of one or more
1088 		 * processes. Try to unmap it here.
1089 		 */
1090 		if (page_mapped(page) && mapping) {
1091 			switch (ret = try_to_unmap(page, lazyfree ?
1092 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1093 				(ttu_flags | TTU_BATCH_FLUSH))) {
1094 			case SWAP_FAIL:
1095 				goto activate_locked;
1096 			case SWAP_AGAIN:
1097 				goto keep_locked;
1098 			case SWAP_MLOCK:
1099 				goto cull_mlocked;
1100 			case SWAP_LZFREE:
1101 				goto lazyfree;
1102 			case SWAP_SUCCESS:
1103 				; /* try to free the page below */
1104 			}
1105 		}
1106 
1107 		if (PageDirty(page)) {
1108 			/*
1109 			 * Only kswapd can writeback filesystem pages to
1110 			 * avoid risk of stack overflow but only writeback
1111 			 * if many dirty pages have been encountered.
1112 			 */
1113 			if (page_is_file_cache(page) &&
1114 					(!current_is_kswapd() ||
1115 					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1116 				/*
1117 				 * Immediately reclaim when written back.
1118 				 * Similar in principal to deactivate_page()
1119 				 * except we already have the page isolated
1120 				 * and know it's dirty
1121 				 */
1122 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1123 				SetPageReclaim(page);
1124 
1125 				goto keep_locked;
1126 			}
1127 
1128 			if (references == PAGEREF_RECLAIM_CLEAN)
1129 				goto keep_locked;
1130 			if (!may_enter_fs)
1131 				goto keep_locked;
1132 			if (!sc->may_writepage)
1133 				goto keep_locked;
1134 
1135 			/*
1136 			 * Page is dirty. Flush the TLB if a writable entry
1137 			 * potentially exists to avoid CPU writes after IO
1138 			 * starts and then write it out here.
1139 			 */
1140 			try_to_unmap_flush_dirty();
1141 			switch (pageout(page, mapping, sc)) {
1142 			case PAGE_KEEP:
1143 				goto keep_locked;
1144 			case PAGE_ACTIVATE:
1145 				goto activate_locked;
1146 			case PAGE_SUCCESS:
1147 				if (PageWriteback(page))
1148 					goto keep;
1149 				if (PageDirty(page))
1150 					goto keep;
1151 
1152 				/*
1153 				 * A synchronous write - probably a ramdisk.  Go
1154 				 * ahead and try to reclaim the page.
1155 				 */
1156 				if (!trylock_page(page))
1157 					goto keep;
1158 				if (PageDirty(page) || PageWriteback(page))
1159 					goto keep_locked;
1160 				mapping = page_mapping(page);
1161 			case PAGE_CLEAN:
1162 				; /* try to free the page below */
1163 			}
1164 		}
1165 
1166 		/*
1167 		 * If the page has buffers, try to free the buffer mappings
1168 		 * associated with this page. If we succeed we try to free
1169 		 * the page as well.
1170 		 *
1171 		 * We do this even if the page is PageDirty().
1172 		 * try_to_release_page() does not perform I/O, but it is
1173 		 * possible for a page to have PageDirty set, but it is actually
1174 		 * clean (all its buffers are clean).  This happens if the
1175 		 * buffers were written out directly, with submit_bh(). ext3
1176 		 * will do this, as well as the blockdev mapping.
1177 		 * try_to_release_page() will discover that cleanness and will
1178 		 * drop the buffers and mark the page clean - it can be freed.
1179 		 *
1180 		 * Rarely, pages can have buffers and no ->mapping.  These are
1181 		 * the pages which were not successfully invalidated in
1182 		 * truncate_complete_page().  We try to drop those buffers here
1183 		 * and if that worked, and the page is no longer mapped into
1184 		 * process address space (page_count == 1) it can be freed.
1185 		 * Otherwise, leave the page on the LRU so it is swappable.
1186 		 */
1187 		if (page_has_private(page)) {
1188 			if (!try_to_release_page(page, sc->gfp_mask))
1189 				goto activate_locked;
1190 			if (!mapping && page_count(page) == 1) {
1191 				unlock_page(page);
1192 				if (put_page_testzero(page))
1193 					goto free_it;
1194 				else {
1195 					/*
1196 					 * rare race with speculative reference.
1197 					 * the speculative reference will free
1198 					 * this page shortly, so we may
1199 					 * increment nr_reclaimed here (and
1200 					 * leave it off the LRU).
1201 					 */
1202 					nr_reclaimed++;
1203 					continue;
1204 				}
1205 			}
1206 		}
1207 
1208 lazyfree:
1209 		if (!mapping || !__remove_mapping(mapping, page, true))
1210 			goto keep_locked;
1211 
1212 		/*
1213 		 * At this point, we have no other references and there is
1214 		 * no way to pick any more up (removed from LRU, removed
1215 		 * from pagecache). Can use non-atomic bitops now (and
1216 		 * we obviously don't have to worry about waking up a process
1217 		 * waiting on the page lock, because there are no references.
1218 		 */
1219 		__ClearPageLocked(page);
1220 free_it:
1221 		if (ret == SWAP_LZFREE)
1222 			count_vm_event(PGLAZYFREED);
1223 
1224 		nr_reclaimed++;
1225 
1226 		/*
1227 		 * Is there need to periodically free_page_list? It would
1228 		 * appear not as the counts should be low
1229 		 */
1230 		list_add(&page->lru, &free_pages);
1231 		continue;
1232 
1233 cull_mlocked:
1234 		if (PageSwapCache(page))
1235 			try_to_free_swap(page);
1236 		unlock_page(page);
1237 		list_add(&page->lru, &ret_pages);
1238 		continue;
1239 
1240 activate_locked:
1241 		/* Not a candidate for swapping, so reclaim swap space. */
1242 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1243 			try_to_free_swap(page);
1244 		VM_BUG_ON_PAGE(PageActive(page), page);
1245 		SetPageActive(page);
1246 		pgactivate++;
1247 keep_locked:
1248 		unlock_page(page);
1249 keep:
1250 		list_add(&page->lru, &ret_pages);
1251 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1252 	}
1253 
1254 	mem_cgroup_uncharge_list(&free_pages);
1255 	try_to_unmap_flush();
1256 	free_hot_cold_page_list(&free_pages, true);
1257 
1258 	list_splice(&ret_pages, page_list);
1259 	count_vm_events(PGACTIVATE, pgactivate);
1260 
1261 	*ret_nr_dirty += nr_dirty;
1262 	*ret_nr_congested += nr_congested;
1263 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1264 	*ret_nr_writeback += nr_writeback;
1265 	*ret_nr_immediate += nr_immediate;
1266 	return nr_reclaimed;
1267 }
1268 
1269 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1270 					    struct list_head *page_list)
1271 {
1272 	struct scan_control sc = {
1273 		.gfp_mask = GFP_KERNEL,
1274 		.priority = DEF_PRIORITY,
1275 		.may_unmap = 1,
1276 	};
1277 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1278 	struct page *page, *next;
1279 	LIST_HEAD(clean_pages);
1280 
1281 	list_for_each_entry_safe(page, next, page_list, lru) {
1282 		if (page_is_file_cache(page) && !PageDirty(page) &&
1283 		    !__PageMovable(page)) {
1284 			ClearPageActive(page);
1285 			list_move(&page->lru, &clean_pages);
1286 		}
1287 	}
1288 
1289 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1290 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1291 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1292 	list_splice(&clean_pages, page_list);
1293 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1294 	return ret;
1295 }
1296 
1297 /*
1298  * Attempt to remove the specified page from its LRU.  Only take this page
1299  * if it is of the appropriate PageActive status.  Pages which are being
1300  * freed elsewhere are also ignored.
1301  *
1302  * page:	page to consider
1303  * mode:	one of the LRU isolation modes defined above
1304  *
1305  * returns 0 on success, -ve errno on failure.
1306  */
1307 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1308 {
1309 	int ret = -EINVAL;
1310 
1311 	/* Only take pages on the LRU. */
1312 	if (!PageLRU(page))
1313 		return ret;
1314 
1315 	/* Compaction should not handle unevictable pages but CMA can do so */
1316 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1317 		return ret;
1318 
1319 	ret = -EBUSY;
1320 
1321 	/*
1322 	 * To minimise LRU disruption, the caller can indicate that it only
1323 	 * wants to isolate pages it will be able to operate on without
1324 	 * blocking - clean pages for the most part.
1325 	 *
1326 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1327 	 * is used by reclaim when it is cannot write to backing storage
1328 	 *
1329 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1330 	 * that it is possible to migrate without blocking
1331 	 */
1332 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1333 		/* All the caller can do on PageWriteback is block */
1334 		if (PageWriteback(page))
1335 			return ret;
1336 
1337 		if (PageDirty(page)) {
1338 			struct address_space *mapping;
1339 
1340 			/* ISOLATE_CLEAN means only clean pages */
1341 			if (mode & ISOLATE_CLEAN)
1342 				return ret;
1343 
1344 			/*
1345 			 * Only pages without mappings or that have a
1346 			 * ->migratepage callback are possible to migrate
1347 			 * without blocking
1348 			 */
1349 			mapping = page_mapping(page);
1350 			if (mapping && !mapping->a_ops->migratepage)
1351 				return ret;
1352 		}
1353 	}
1354 
1355 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1356 		return ret;
1357 
1358 	if (likely(get_page_unless_zero(page))) {
1359 		/*
1360 		 * Be careful not to clear PageLRU until after we're
1361 		 * sure the page is not being freed elsewhere -- the
1362 		 * page release code relies on it.
1363 		 */
1364 		ClearPageLRU(page);
1365 		ret = 0;
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 
1372 /*
1373  * Update LRU sizes after isolating pages. The LRU size updates must
1374  * be complete before mem_cgroup_update_lru_size due to a santity check.
1375  */
1376 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1377 			enum lru_list lru, unsigned long *nr_zone_taken,
1378 			unsigned long nr_taken)
1379 {
1380 	int zid;
1381 
1382 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1383 		if (!nr_zone_taken[zid])
1384 			continue;
1385 
1386 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1387 	}
1388 
1389 #ifdef CONFIG_MEMCG
1390 	mem_cgroup_update_lru_size(lruvec, lru, -nr_taken);
1391 #endif
1392 }
1393 
1394 /*
1395  * zone_lru_lock is heavily contended.  Some of the functions that
1396  * shrink the lists perform better by taking out a batch of pages
1397  * and working on them outside the LRU lock.
1398  *
1399  * For pagecache intensive workloads, this function is the hottest
1400  * spot in the kernel (apart from copy_*_user functions).
1401  *
1402  * Appropriate locks must be held before calling this function.
1403  *
1404  * @nr_to_scan:	The number of pages to look through on the list.
1405  * @lruvec:	The LRU vector to pull pages from.
1406  * @dst:	The temp list to put pages on to.
1407  * @nr_scanned:	The number of pages that were scanned.
1408  * @sc:		The scan_control struct for this reclaim session
1409  * @mode:	One of the LRU isolation modes
1410  * @lru:	LRU list id for isolating
1411  *
1412  * returns how many pages were moved onto *@dst.
1413  */
1414 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1415 		struct lruvec *lruvec, struct list_head *dst,
1416 		unsigned long *nr_scanned, struct scan_control *sc,
1417 		isolate_mode_t mode, enum lru_list lru)
1418 {
1419 	struct list_head *src = &lruvec->lists[lru];
1420 	unsigned long nr_taken = 0;
1421 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1422 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1423 	unsigned long scan, nr_pages;
1424 	LIST_HEAD(pages_skipped);
1425 
1426 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1427 					!list_empty(src);) {
1428 		struct page *page;
1429 
1430 		page = lru_to_page(src);
1431 		prefetchw_prev_lru_page(page, src, flags);
1432 
1433 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1434 
1435 		if (page_zonenum(page) > sc->reclaim_idx) {
1436 			list_move(&page->lru, &pages_skipped);
1437 			nr_skipped[page_zonenum(page)]++;
1438 			continue;
1439 		}
1440 
1441 		/*
1442 		 * Account for scanned and skipped separetly to avoid the pgdat
1443 		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1444 		 */
1445 		scan++;
1446 
1447 		switch (__isolate_lru_page(page, mode)) {
1448 		case 0:
1449 			nr_pages = hpage_nr_pages(page);
1450 			nr_taken += nr_pages;
1451 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1452 			list_move(&page->lru, dst);
1453 			break;
1454 
1455 		case -EBUSY:
1456 			/* else it is being freed elsewhere */
1457 			list_move(&page->lru, src);
1458 			continue;
1459 
1460 		default:
1461 			BUG();
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * Splice any skipped pages to the start of the LRU list. Note that
1467 	 * this disrupts the LRU order when reclaiming for lower zones but
1468 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1469 	 * scanning would soon rescan the same pages to skip and put the
1470 	 * system at risk of premature OOM.
1471 	 */
1472 	if (!list_empty(&pages_skipped)) {
1473 		int zid;
1474 		unsigned long total_skipped = 0;
1475 
1476 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1477 			if (!nr_skipped[zid])
1478 				continue;
1479 
1480 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1481 			total_skipped += nr_skipped[zid];
1482 		}
1483 
1484 		/*
1485 		 * Account skipped pages as a partial scan as the pgdat may be
1486 		 * close to unreclaimable. If the LRU list is empty, account
1487 		 * skipped pages as a full scan.
1488 		 */
1489 		scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1490 
1491 		list_splice(&pages_skipped, src);
1492 	}
1493 	*nr_scanned = scan;
1494 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1495 				    nr_taken, mode, is_file_lru(lru));
1496 	update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken);
1497 	return nr_taken;
1498 }
1499 
1500 /**
1501  * isolate_lru_page - tries to isolate a page from its LRU list
1502  * @page: page to isolate from its LRU list
1503  *
1504  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1505  * vmstat statistic corresponding to whatever LRU list the page was on.
1506  *
1507  * Returns 0 if the page was removed from an LRU list.
1508  * Returns -EBUSY if the page was not on an LRU list.
1509  *
1510  * The returned page will have PageLRU() cleared.  If it was found on
1511  * the active list, it will have PageActive set.  If it was found on
1512  * the unevictable list, it will have the PageUnevictable bit set. That flag
1513  * may need to be cleared by the caller before letting the page go.
1514  *
1515  * The vmstat statistic corresponding to the list on which the page was
1516  * found will be decremented.
1517  *
1518  * Restrictions:
1519  * (1) Must be called with an elevated refcount on the page. This is a
1520  *     fundamentnal difference from isolate_lru_pages (which is called
1521  *     without a stable reference).
1522  * (2) the lru_lock must not be held.
1523  * (3) interrupts must be enabled.
1524  */
1525 int isolate_lru_page(struct page *page)
1526 {
1527 	int ret = -EBUSY;
1528 
1529 	VM_BUG_ON_PAGE(!page_count(page), page);
1530 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1531 
1532 	if (PageLRU(page)) {
1533 		struct zone *zone = page_zone(page);
1534 		struct lruvec *lruvec;
1535 
1536 		spin_lock_irq(zone_lru_lock(zone));
1537 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1538 		if (PageLRU(page)) {
1539 			int lru = page_lru(page);
1540 			get_page(page);
1541 			ClearPageLRU(page);
1542 			del_page_from_lru_list(page, lruvec, lru);
1543 			ret = 0;
1544 		}
1545 		spin_unlock_irq(zone_lru_lock(zone));
1546 	}
1547 	return ret;
1548 }
1549 
1550 /*
1551  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1552  * then get resheduled. When there are massive number of tasks doing page
1553  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1554  * the LRU list will go small and be scanned faster than necessary, leading to
1555  * unnecessary swapping, thrashing and OOM.
1556  */
1557 static int too_many_isolated(struct pglist_data *pgdat, int file,
1558 		struct scan_control *sc)
1559 {
1560 	unsigned long inactive, isolated;
1561 
1562 	if (current_is_kswapd())
1563 		return 0;
1564 
1565 	if (!sane_reclaim(sc))
1566 		return 0;
1567 
1568 	if (file) {
1569 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1570 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1571 	} else {
1572 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1573 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1574 	}
1575 
1576 	/*
1577 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1578 	 * won't get blocked by normal direct-reclaimers, forming a circular
1579 	 * deadlock.
1580 	 */
1581 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1582 		inactive >>= 3;
1583 
1584 	return isolated > inactive;
1585 }
1586 
1587 static noinline_for_stack void
1588 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1589 {
1590 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1591 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1592 	LIST_HEAD(pages_to_free);
1593 
1594 	/*
1595 	 * Put back any unfreeable pages.
1596 	 */
1597 	while (!list_empty(page_list)) {
1598 		struct page *page = lru_to_page(page_list);
1599 		int lru;
1600 
1601 		VM_BUG_ON_PAGE(PageLRU(page), page);
1602 		list_del(&page->lru);
1603 		if (unlikely(!page_evictable(page))) {
1604 			spin_unlock_irq(&pgdat->lru_lock);
1605 			putback_lru_page(page);
1606 			spin_lock_irq(&pgdat->lru_lock);
1607 			continue;
1608 		}
1609 
1610 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1611 
1612 		SetPageLRU(page);
1613 		lru = page_lru(page);
1614 		add_page_to_lru_list(page, lruvec, lru);
1615 
1616 		if (is_active_lru(lru)) {
1617 			int file = is_file_lru(lru);
1618 			int numpages = hpage_nr_pages(page);
1619 			reclaim_stat->recent_rotated[file] += numpages;
1620 		}
1621 		if (put_page_testzero(page)) {
1622 			__ClearPageLRU(page);
1623 			__ClearPageActive(page);
1624 			del_page_from_lru_list(page, lruvec, lru);
1625 
1626 			if (unlikely(PageCompound(page))) {
1627 				spin_unlock_irq(&pgdat->lru_lock);
1628 				mem_cgroup_uncharge(page);
1629 				(*get_compound_page_dtor(page))(page);
1630 				spin_lock_irq(&pgdat->lru_lock);
1631 			} else
1632 				list_add(&page->lru, &pages_to_free);
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * To save our caller's stack, now use input list for pages to free.
1638 	 */
1639 	list_splice(&pages_to_free, page_list);
1640 }
1641 
1642 /*
1643  * If a kernel thread (such as nfsd for loop-back mounts) services
1644  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1645  * In that case we should only throttle if the backing device it is
1646  * writing to is congested.  In other cases it is safe to throttle.
1647  */
1648 static int current_may_throttle(void)
1649 {
1650 	return !(current->flags & PF_LESS_THROTTLE) ||
1651 		current->backing_dev_info == NULL ||
1652 		bdi_write_congested(current->backing_dev_info);
1653 }
1654 
1655 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1656 				struct scan_control *sc, enum lru_list lru)
1657 {
1658 	int zid;
1659 	struct zone *zone;
1660 	int file = is_file_lru(lru);
1661 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1662 
1663 	if (!global_reclaim(sc))
1664 		return true;
1665 
1666 	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1667 		zone = &pgdat->node_zones[zid];
1668 		if (!managed_zone(zone))
1669 			continue;
1670 
1671 		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1672 				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1673 			return true;
1674 	}
1675 
1676 	return false;
1677 }
1678 
1679 /*
1680  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1681  * of reclaimed pages
1682  */
1683 static noinline_for_stack unsigned long
1684 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1685 		     struct scan_control *sc, enum lru_list lru)
1686 {
1687 	LIST_HEAD(page_list);
1688 	unsigned long nr_scanned;
1689 	unsigned long nr_reclaimed = 0;
1690 	unsigned long nr_taken;
1691 	unsigned long nr_dirty = 0;
1692 	unsigned long nr_congested = 0;
1693 	unsigned long nr_unqueued_dirty = 0;
1694 	unsigned long nr_writeback = 0;
1695 	unsigned long nr_immediate = 0;
1696 	isolate_mode_t isolate_mode = 0;
1697 	int file = is_file_lru(lru);
1698 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1699 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1700 
1701 	if (!inactive_reclaimable_pages(lruvec, sc, lru))
1702 		return 0;
1703 
1704 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1705 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1706 
1707 		/* We are about to die and free our memory. Return now. */
1708 		if (fatal_signal_pending(current))
1709 			return SWAP_CLUSTER_MAX;
1710 	}
1711 
1712 	lru_add_drain();
1713 
1714 	if (!sc->may_unmap)
1715 		isolate_mode |= ISOLATE_UNMAPPED;
1716 	if (!sc->may_writepage)
1717 		isolate_mode |= ISOLATE_CLEAN;
1718 
1719 	spin_lock_irq(&pgdat->lru_lock);
1720 
1721 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1722 				     &nr_scanned, sc, isolate_mode, lru);
1723 
1724 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1725 	reclaim_stat->recent_scanned[file] += nr_taken;
1726 
1727 	if (global_reclaim(sc)) {
1728 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1729 		if (current_is_kswapd())
1730 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1731 		else
1732 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1733 	}
1734 	spin_unlock_irq(&pgdat->lru_lock);
1735 
1736 	if (nr_taken == 0)
1737 		return 0;
1738 
1739 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1740 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1741 				&nr_writeback, &nr_immediate,
1742 				false);
1743 
1744 	spin_lock_irq(&pgdat->lru_lock);
1745 
1746 	if (global_reclaim(sc)) {
1747 		if (current_is_kswapd())
1748 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1749 		else
1750 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1751 	}
1752 
1753 	putback_inactive_pages(lruvec, &page_list);
1754 
1755 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1756 
1757 	spin_unlock_irq(&pgdat->lru_lock);
1758 
1759 	mem_cgroup_uncharge_list(&page_list);
1760 	free_hot_cold_page_list(&page_list, true);
1761 
1762 	/*
1763 	 * If reclaim is isolating dirty pages under writeback, it implies
1764 	 * that the long-lived page allocation rate is exceeding the page
1765 	 * laundering rate. Either the global limits are not being effective
1766 	 * at throttling processes due to the page distribution throughout
1767 	 * zones or there is heavy usage of a slow backing device. The
1768 	 * only option is to throttle from reclaim context which is not ideal
1769 	 * as there is no guarantee the dirtying process is throttled in the
1770 	 * same way balance_dirty_pages() manages.
1771 	 *
1772 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1773 	 * of pages under pages flagged for immediate reclaim and stall if any
1774 	 * are encountered in the nr_immediate check below.
1775 	 */
1776 	if (nr_writeback && nr_writeback == nr_taken)
1777 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1778 
1779 	/*
1780 	 * Legacy memcg will stall in page writeback so avoid forcibly
1781 	 * stalling here.
1782 	 */
1783 	if (sane_reclaim(sc)) {
1784 		/*
1785 		 * Tag a zone as congested if all the dirty pages scanned were
1786 		 * backed by a congested BDI and wait_iff_congested will stall.
1787 		 */
1788 		if (nr_dirty && nr_dirty == nr_congested)
1789 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1790 
1791 		/*
1792 		 * If dirty pages are scanned that are not queued for IO, it
1793 		 * implies that flushers are not keeping up. In this case, flag
1794 		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1795 		 * reclaim context.
1796 		 */
1797 		if (nr_unqueued_dirty == nr_taken)
1798 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1799 
1800 		/*
1801 		 * If kswapd scans pages marked marked for immediate
1802 		 * reclaim and under writeback (nr_immediate), it implies
1803 		 * that pages are cycling through the LRU faster than
1804 		 * they are written so also forcibly stall.
1805 		 */
1806 		if (nr_immediate && current_may_throttle())
1807 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1808 	}
1809 
1810 	/*
1811 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1812 	 * is congested. Allow kswapd to continue until it starts encountering
1813 	 * unqueued dirty pages or cycling through the LRU too quickly.
1814 	 */
1815 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1816 	    current_may_throttle())
1817 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1818 
1819 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1820 			nr_scanned, nr_reclaimed,
1821 			sc->priority, file);
1822 	return nr_reclaimed;
1823 }
1824 
1825 /*
1826  * This moves pages from the active list to the inactive list.
1827  *
1828  * We move them the other way if the page is referenced by one or more
1829  * processes, from rmap.
1830  *
1831  * If the pages are mostly unmapped, the processing is fast and it is
1832  * appropriate to hold zone_lru_lock across the whole operation.  But if
1833  * the pages are mapped, the processing is slow (page_referenced()) so we
1834  * should drop zone_lru_lock around each page.  It's impossible to balance
1835  * this, so instead we remove the pages from the LRU while processing them.
1836  * It is safe to rely on PG_active against the non-LRU pages in here because
1837  * nobody will play with that bit on a non-LRU page.
1838  *
1839  * The downside is that we have to touch page->_refcount against each page.
1840  * But we had to alter page->flags anyway.
1841  */
1842 
1843 static void move_active_pages_to_lru(struct lruvec *lruvec,
1844 				     struct list_head *list,
1845 				     struct list_head *pages_to_free,
1846 				     enum lru_list lru)
1847 {
1848 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1849 	unsigned long pgmoved = 0;
1850 	struct page *page;
1851 	int nr_pages;
1852 
1853 	while (!list_empty(list)) {
1854 		page = lru_to_page(list);
1855 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1856 
1857 		VM_BUG_ON_PAGE(PageLRU(page), page);
1858 		SetPageLRU(page);
1859 
1860 		nr_pages = hpage_nr_pages(page);
1861 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1862 		list_move(&page->lru, &lruvec->lists[lru]);
1863 		pgmoved += nr_pages;
1864 
1865 		if (put_page_testzero(page)) {
1866 			__ClearPageLRU(page);
1867 			__ClearPageActive(page);
1868 			del_page_from_lru_list(page, lruvec, lru);
1869 
1870 			if (unlikely(PageCompound(page))) {
1871 				spin_unlock_irq(&pgdat->lru_lock);
1872 				mem_cgroup_uncharge(page);
1873 				(*get_compound_page_dtor(page))(page);
1874 				spin_lock_irq(&pgdat->lru_lock);
1875 			} else
1876 				list_add(&page->lru, pages_to_free);
1877 		}
1878 	}
1879 
1880 	if (!is_active_lru(lru))
1881 		__count_vm_events(PGDEACTIVATE, pgmoved);
1882 }
1883 
1884 static void shrink_active_list(unsigned long nr_to_scan,
1885 			       struct lruvec *lruvec,
1886 			       struct scan_control *sc,
1887 			       enum lru_list lru)
1888 {
1889 	unsigned long nr_taken;
1890 	unsigned long nr_scanned;
1891 	unsigned long vm_flags;
1892 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1893 	LIST_HEAD(l_active);
1894 	LIST_HEAD(l_inactive);
1895 	struct page *page;
1896 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1897 	unsigned long nr_rotated = 0;
1898 	isolate_mode_t isolate_mode = 0;
1899 	int file = is_file_lru(lru);
1900 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1901 
1902 	lru_add_drain();
1903 
1904 	if (!sc->may_unmap)
1905 		isolate_mode |= ISOLATE_UNMAPPED;
1906 	if (!sc->may_writepage)
1907 		isolate_mode |= ISOLATE_CLEAN;
1908 
1909 	spin_lock_irq(&pgdat->lru_lock);
1910 
1911 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1912 				     &nr_scanned, sc, isolate_mode, lru);
1913 
1914 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1915 	reclaim_stat->recent_scanned[file] += nr_taken;
1916 
1917 	if (global_reclaim(sc))
1918 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1919 	__count_vm_events(PGREFILL, nr_scanned);
1920 
1921 	spin_unlock_irq(&pgdat->lru_lock);
1922 
1923 	while (!list_empty(&l_hold)) {
1924 		cond_resched();
1925 		page = lru_to_page(&l_hold);
1926 		list_del(&page->lru);
1927 
1928 		if (unlikely(!page_evictable(page))) {
1929 			putback_lru_page(page);
1930 			continue;
1931 		}
1932 
1933 		if (unlikely(buffer_heads_over_limit)) {
1934 			if (page_has_private(page) && trylock_page(page)) {
1935 				if (page_has_private(page))
1936 					try_to_release_page(page, 0);
1937 				unlock_page(page);
1938 			}
1939 		}
1940 
1941 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1942 				    &vm_flags)) {
1943 			nr_rotated += hpage_nr_pages(page);
1944 			/*
1945 			 * Identify referenced, file-backed active pages and
1946 			 * give them one more trip around the active list. So
1947 			 * that executable code get better chances to stay in
1948 			 * memory under moderate memory pressure.  Anon pages
1949 			 * are not likely to be evicted by use-once streaming
1950 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1951 			 * so we ignore them here.
1952 			 */
1953 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1954 				list_add(&page->lru, &l_active);
1955 				continue;
1956 			}
1957 		}
1958 
1959 		ClearPageActive(page);	/* we are de-activating */
1960 		list_add(&page->lru, &l_inactive);
1961 	}
1962 
1963 	/*
1964 	 * Move pages back to the lru list.
1965 	 */
1966 	spin_lock_irq(&pgdat->lru_lock);
1967 	/*
1968 	 * Count referenced pages from currently used mappings as rotated,
1969 	 * even though only some of them are actually re-activated.  This
1970 	 * helps balance scan pressure between file and anonymous pages in
1971 	 * get_scan_count.
1972 	 */
1973 	reclaim_stat->recent_rotated[file] += nr_rotated;
1974 
1975 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1976 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1977 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1978 	spin_unlock_irq(&pgdat->lru_lock);
1979 
1980 	mem_cgroup_uncharge_list(&l_hold);
1981 	free_hot_cold_page_list(&l_hold, true);
1982 }
1983 
1984 /*
1985  * The inactive anon list should be small enough that the VM never has
1986  * to do too much work.
1987  *
1988  * The inactive file list should be small enough to leave most memory
1989  * to the established workingset on the scan-resistant active list,
1990  * but large enough to avoid thrashing the aggregate readahead window.
1991  *
1992  * Both inactive lists should also be large enough that each inactive
1993  * page has a chance to be referenced again before it is reclaimed.
1994  *
1995  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1996  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1997  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1998  *
1999  * total     target    max
2000  * memory    ratio     inactive
2001  * -------------------------------------
2002  *   10MB       1         5MB
2003  *  100MB       1        50MB
2004  *    1GB       3       250MB
2005  *   10GB      10       0.9GB
2006  *  100GB      31         3GB
2007  *    1TB     101        10GB
2008  *   10TB     320        32GB
2009  */
2010 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2011 						struct scan_control *sc)
2012 {
2013 	unsigned long inactive_ratio;
2014 	unsigned long inactive;
2015 	unsigned long active;
2016 	unsigned long gb;
2017 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2018 	int zid;
2019 
2020 	/*
2021 	 * If we don't have swap space, anonymous page deactivation
2022 	 * is pointless.
2023 	 */
2024 	if (!file && !total_swap_pages)
2025 		return false;
2026 
2027 	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
2028 	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2029 
2030 	/*
2031 	 * For zone-constrained allocations, it is necessary to check if
2032 	 * deactivations are required for lowmem to be reclaimed. This
2033 	 * calculates the inactive/active pages available in eligible zones.
2034 	 */
2035 	for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
2036 		struct zone *zone = &pgdat->node_zones[zid];
2037 		unsigned long inactive_zone, active_zone;
2038 
2039 		if (!managed_zone(zone))
2040 			continue;
2041 
2042 		inactive_zone = zone_page_state(zone,
2043 				NR_ZONE_LRU_BASE + (file * LRU_FILE));
2044 		active_zone = zone_page_state(zone,
2045 				NR_ZONE_LRU_BASE + (file * LRU_FILE) + LRU_ACTIVE);
2046 
2047 		inactive -= min(inactive, inactive_zone);
2048 		active -= min(active, active_zone);
2049 	}
2050 
2051 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2052 	if (gb)
2053 		inactive_ratio = int_sqrt(10 * gb);
2054 	else
2055 		inactive_ratio = 1;
2056 
2057 	return inactive * inactive_ratio < active;
2058 }
2059 
2060 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2061 				 struct lruvec *lruvec, struct scan_control *sc)
2062 {
2063 	if (is_active_lru(lru)) {
2064 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2065 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2066 		return 0;
2067 	}
2068 
2069 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2070 }
2071 
2072 enum scan_balance {
2073 	SCAN_EQUAL,
2074 	SCAN_FRACT,
2075 	SCAN_ANON,
2076 	SCAN_FILE,
2077 };
2078 
2079 /*
2080  * Determine how aggressively the anon and file LRU lists should be
2081  * scanned.  The relative value of each set of LRU lists is determined
2082  * by looking at the fraction of the pages scanned we did rotate back
2083  * onto the active list instead of evict.
2084  *
2085  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2086  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2087  */
2088 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2089 			   struct scan_control *sc, unsigned long *nr,
2090 			   unsigned long *lru_pages)
2091 {
2092 	int swappiness = mem_cgroup_swappiness(memcg);
2093 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2094 	u64 fraction[2];
2095 	u64 denominator = 0;	/* gcc */
2096 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2097 	unsigned long anon_prio, file_prio;
2098 	enum scan_balance scan_balance;
2099 	unsigned long anon, file;
2100 	bool force_scan = false;
2101 	unsigned long ap, fp;
2102 	enum lru_list lru;
2103 	bool some_scanned;
2104 	int pass;
2105 
2106 	/*
2107 	 * If the zone or memcg is small, nr[l] can be 0.  This
2108 	 * results in no scanning on this priority and a potential
2109 	 * priority drop.  Global direct reclaim can go to the next
2110 	 * zone and tends to have no problems. Global kswapd is for
2111 	 * zone balancing and it needs to scan a minimum amount. When
2112 	 * reclaiming for a memcg, a priority drop can cause high
2113 	 * latencies, so it's better to scan a minimum amount there as
2114 	 * well.
2115 	 */
2116 	if (current_is_kswapd()) {
2117 		if (!pgdat_reclaimable(pgdat))
2118 			force_scan = true;
2119 		if (!mem_cgroup_online(memcg))
2120 			force_scan = true;
2121 	}
2122 	if (!global_reclaim(sc))
2123 		force_scan = true;
2124 
2125 	/* If we have no swap space, do not bother scanning anon pages. */
2126 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2127 		scan_balance = SCAN_FILE;
2128 		goto out;
2129 	}
2130 
2131 	/*
2132 	 * Global reclaim will swap to prevent OOM even with no
2133 	 * swappiness, but memcg users want to use this knob to
2134 	 * disable swapping for individual groups completely when
2135 	 * using the memory controller's swap limit feature would be
2136 	 * too expensive.
2137 	 */
2138 	if (!global_reclaim(sc) && !swappiness) {
2139 		scan_balance = SCAN_FILE;
2140 		goto out;
2141 	}
2142 
2143 	/*
2144 	 * Do not apply any pressure balancing cleverness when the
2145 	 * system is close to OOM, scan both anon and file equally
2146 	 * (unless the swappiness setting disagrees with swapping).
2147 	 */
2148 	if (!sc->priority && swappiness) {
2149 		scan_balance = SCAN_EQUAL;
2150 		goto out;
2151 	}
2152 
2153 	/*
2154 	 * Prevent the reclaimer from falling into the cache trap: as
2155 	 * cache pages start out inactive, every cache fault will tip
2156 	 * the scan balance towards the file LRU.  And as the file LRU
2157 	 * shrinks, so does the window for rotation from references.
2158 	 * This means we have a runaway feedback loop where a tiny
2159 	 * thrashing file LRU becomes infinitely more attractive than
2160 	 * anon pages.  Try to detect this based on file LRU size.
2161 	 */
2162 	if (global_reclaim(sc)) {
2163 		unsigned long pgdatfile;
2164 		unsigned long pgdatfree;
2165 		int z;
2166 		unsigned long total_high_wmark = 0;
2167 
2168 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2169 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2170 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2171 
2172 		for (z = 0; z < MAX_NR_ZONES; z++) {
2173 			struct zone *zone = &pgdat->node_zones[z];
2174 			if (!managed_zone(zone))
2175 				continue;
2176 
2177 			total_high_wmark += high_wmark_pages(zone);
2178 		}
2179 
2180 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2181 			scan_balance = SCAN_ANON;
2182 			goto out;
2183 		}
2184 	}
2185 
2186 	/*
2187 	 * If there is enough inactive page cache, i.e. if the size of the
2188 	 * inactive list is greater than that of the active list *and* the
2189 	 * inactive list actually has some pages to scan on this priority, we
2190 	 * do not reclaim anything from the anonymous working set right now.
2191 	 * Without the second condition we could end up never scanning an
2192 	 * lruvec even if it has plenty of old anonymous pages unless the
2193 	 * system is under heavy pressure.
2194 	 */
2195 	if (!inactive_list_is_low(lruvec, true, sc) &&
2196 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2197 		scan_balance = SCAN_FILE;
2198 		goto out;
2199 	}
2200 
2201 	scan_balance = SCAN_FRACT;
2202 
2203 	/*
2204 	 * With swappiness at 100, anonymous and file have the same priority.
2205 	 * This scanning priority is essentially the inverse of IO cost.
2206 	 */
2207 	anon_prio = swappiness;
2208 	file_prio = 200 - anon_prio;
2209 
2210 	/*
2211 	 * OK, so we have swap space and a fair amount of page cache
2212 	 * pages.  We use the recently rotated / recently scanned
2213 	 * ratios to determine how valuable each cache is.
2214 	 *
2215 	 * Because workloads change over time (and to avoid overflow)
2216 	 * we keep these statistics as a floating average, which ends
2217 	 * up weighing recent references more than old ones.
2218 	 *
2219 	 * anon in [0], file in [1]
2220 	 */
2221 
2222 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2223 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2224 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2225 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2226 
2227 	spin_lock_irq(&pgdat->lru_lock);
2228 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2229 		reclaim_stat->recent_scanned[0] /= 2;
2230 		reclaim_stat->recent_rotated[0] /= 2;
2231 	}
2232 
2233 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2234 		reclaim_stat->recent_scanned[1] /= 2;
2235 		reclaim_stat->recent_rotated[1] /= 2;
2236 	}
2237 
2238 	/*
2239 	 * The amount of pressure on anon vs file pages is inversely
2240 	 * proportional to the fraction of recently scanned pages on
2241 	 * each list that were recently referenced and in active use.
2242 	 */
2243 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2244 	ap /= reclaim_stat->recent_rotated[0] + 1;
2245 
2246 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2247 	fp /= reclaim_stat->recent_rotated[1] + 1;
2248 	spin_unlock_irq(&pgdat->lru_lock);
2249 
2250 	fraction[0] = ap;
2251 	fraction[1] = fp;
2252 	denominator = ap + fp + 1;
2253 out:
2254 	some_scanned = false;
2255 	/* Only use force_scan on second pass. */
2256 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2257 		*lru_pages = 0;
2258 		for_each_evictable_lru(lru) {
2259 			int file = is_file_lru(lru);
2260 			unsigned long size;
2261 			unsigned long scan;
2262 
2263 			size = lruvec_lru_size(lruvec, lru);
2264 			scan = size >> sc->priority;
2265 
2266 			if (!scan && pass && force_scan)
2267 				scan = min(size, SWAP_CLUSTER_MAX);
2268 
2269 			switch (scan_balance) {
2270 			case SCAN_EQUAL:
2271 				/* Scan lists relative to size */
2272 				break;
2273 			case SCAN_FRACT:
2274 				/*
2275 				 * Scan types proportional to swappiness and
2276 				 * their relative recent reclaim efficiency.
2277 				 */
2278 				scan = div64_u64(scan * fraction[file],
2279 							denominator);
2280 				break;
2281 			case SCAN_FILE:
2282 			case SCAN_ANON:
2283 				/* Scan one type exclusively */
2284 				if ((scan_balance == SCAN_FILE) != file) {
2285 					size = 0;
2286 					scan = 0;
2287 				}
2288 				break;
2289 			default:
2290 				/* Look ma, no brain */
2291 				BUG();
2292 			}
2293 
2294 			*lru_pages += size;
2295 			nr[lru] = scan;
2296 
2297 			/*
2298 			 * Skip the second pass and don't force_scan,
2299 			 * if we found something to scan.
2300 			 */
2301 			some_scanned |= !!scan;
2302 		}
2303 	}
2304 }
2305 
2306 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2307 static void init_tlb_ubc(void)
2308 {
2309 	/*
2310 	 * This deliberately does not clear the cpumask as it's expensive
2311 	 * and unnecessary. If there happens to be data in there then the
2312 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2313 	 * then will be cleared.
2314 	 */
2315 	current->tlb_ubc.flush_required = false;
2316 }
2317 #else
2318 static inline void init_tlb_ubc(void)
2319 {
2320 }
2321 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2322 
2323 /*
2324  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2325  */
2326 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2327 			      struct scan_control *sc, unsigned long *lru_pages)
2328 {
2329 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2330 	unsigned long nr[NR_LRU_LISTS];
2331 	unsigned long targets[NR_LRU_LISTS];
2332 	unsigned long nr_to_scan;
2333 	enum lru_list lru;
2334 	unsigned long nr_reclaimed = 0;
2335 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2336 	struct blk_plug plug;
2337 	bool scan_adjusted;
2338 
2339 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2340 
2341 	/* Record the original scan target for proportional adjustments later */
2342 	memcpy(targets, nr, sizeof(nr));
2343 
2344 	/*
2345 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2346 	 * event that can occur when there is little memory pressure e.g.
2347 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2348 	 * when the requested number of pages are reclaimed when scanning at
2349 	 * DEF_PRIORITY on the assumption that the fact we are direct
2350 	 * reclaiming implies that kswapd is not keeping up and it is best to
2351 	 * do a batch of work at once. For memcg reclaim one check is made to
2352 	 * abort proportional reclaim if either the file or anon lru has already
2353 	 * dropped to zero at the first pass.
2354 	 */
2355 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2356 			 sc->priority == DEF_PRIORITY);
2357 
2358 	init_tlb_ubc();
2359 
2360 	blk_start_plug(&plug);
2361 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2362 					nr[LRU_INACTIVE_FILE]) {
2363 		unsigned long nr_anon, nr_file, percentage;
2364 		unsigned long nr_scanned;
2365 
2366 		for_each_evictable_lru(lru) {
2367 			if (nr[lru]) {
2368 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2369 				nr[lru] -= nr_to_scan;
2370 
2371 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2372 							    lruvec, sc);
2373 			}
2374 		}
2375 
2376 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2377 			continue;
2378 
2379 		/*
2380 		 * For kswapd and memcg, reclaim at least the number of pages
2381 		 * requested. Ensure that the anon and file LRUs are scanned
2382 		 * proportionally what was requested by get_scan_count(). We
2383 		 * stop reclaiming one LRU and reduce the amount scanning
2384 		 * proportional to the original scan target.
2385 		 */
2386 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2387 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2388 
2389 		/*
2390 		 * It's just vindictive to attack the larger once the smaller
2391 		 * has gone to zero.  And given the way we stop scanning the
2392 		 * smaller below, this makes sure that we only make one nudge
2393 		 * towards proportionality once we've got nr_to_reclaim.
2394 		 */
2395 		if (!nr_file || !nr_anon)
2396 			break;
2397 
2398 		if (nr_file > nr_anon) {
2399 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2400 						targets[LRU_ACTIVE_ANON] + 1;
2401 			lru = LRU_BASE;
2402 			percentage = nr_anon * 100 / scan_target;
2403 		} else {
2404 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2405 						targets[LRU_ACTIVE_FILE] + 1;
2406 			lru = LRU_FILE;
2407 			percentage = nr_file * 100 / scan_target;
2408 		}
2409 
2410 		/* Stop scanning the smaller of the LRU */
2411 		nr[lru] = 0;
2412 		nr[lru + LRU_ACTIVE] = 0;
2413 
2414 		/*
2415 		 * Recalculate the other LRU scan count based on its original
2416 		 * scan target and the percentage scanning already complete
2417 		 */
2418 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2419 		nr_scanned = targets[lru] - nr[lru];
2420 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2421 		nr[lru] -= min(nr[lru], nr_scanned);
2422 
2423 		lru += LRU_ACTIVE;
2424 		nr_scanned = targets[lru] - nr[lru];
2425 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2426 		nr[lru] -= min(nr[lru], nr_scanned);
2427 
2428 		scan_adjusted = true;
2429 	}
2430 	blk_finish_plug(&plug);
2431 	sc->nr_reclaimed += nr_reclaimed;
2432 
2433 	/*
2434 	 * Even if we did not try to evict anon pages at all, we want to
2435 	 * rebalance the anon lru active/inactive ratio.
2436 	 */
2437 	if (inactive_list_is_low(lruvec, false, sc))
2438 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2439 				   sc, LRU_ACTIVE_ANON);
2440 
2441 	throttle_vm_writeout(sc->gfp_mask);
2442 }
2443 
2444 /* Use reclaim/compaction for costly allocs or under memory pressure */
2445 static bool in_reclaim_compaction(struct scan_control *sc)
2446 {
2447 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2448 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2449 			 sc->priority < DEF_PRIORITY - 2))
2450 		return true;
2451 
2452 	return false;
2453 }
2454 
2455 /*
2456  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2457  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2458  * true if more pages should be reclaimed such that when the page allocator
2459  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2460  * It will give up earlier than that if there is difficulty reclaiming pages.
2461  */
2462 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2463 					unsigned long nr_reclaimed,
2464 					unsigned long nr_scanned,
2465 					struct scan_control *sc)
2466 {
2467 	unsigned long pages_for_compaction;
2468 	unsigned long inactive_lru_pages;
2469 	int z;
2470 
2471 	/* If not in reclaim/compaction mode, stop */
2472 	if (!in_reclaim_compaction(sc))
2473 		return false;
2474 
2475 	/* Consider stopping depending on scan and reclaim activity */
2476 	if (sc->gfp_mask & __GFP_REPEAT) {
2477 		/*
2478 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2479 		 * full LRU list has been scanned and we are still failing
2480 		 * to reclaim pages. This full LRU scan is potentially
2481 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2482 		 */
2483 		if (!nr_reclaimed && !nr_scanned)
2484 			return false;
2485 	} else {
2486 		/*
2487 		 * For non-__GFP_REPEAT allocations which can presumably
2488 		 * fail without consequence, stop if we failed to reclaim
2489 		 * any pages from the last SWAP_CLUSTER_MAX number of
2490 		 * pages that were scanned. This will return to the
2491 		 * caller faster at the risk reclaim/compaction and
2492 		 * the resulting allocation attempt fails
2493 		 */
2494 		if (!nr_reclaimed)
2495 			return false;
2496 	}
2497 
2498 	/*
2499 	 * If we have not reclaimed enough pages for compaction and the
2500 	 * inactive lists are large enough, continue reclaiming
2501 	 */
2502 	pages_for_compaction = (2UL << sc->order);
2503 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2504 	if (get_nr_swap_pages() > 0)
2505 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2506 	if (sc->nr_reclaimed < pages_for_compaction &&
2507 			inactive_lru_pages > pages_for_compaction)
2508 		return true;
2509 
2510 	/* If compaction would go ahead or the allocation would succeed, stop */
2511 	for (z = 0; z <= sc->reclaim_idx; z++) {
2512 		struct zone *zone = &pgdat->node_zones[z];
2513 		if (!managed_zone(zone))
2514 			continue;
2515 
2516 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2517 		case COMPACT_PARTIAL:
2518 		case COMPACT_CONTINUE:
2519 			return false;
2520 		default:
2521 			/* check next zone */
2522 			;
2523 		}
2524 	}
2525 	return true;
2526 }
2527 
2528 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2529 {
2530 	struct reclaim_state *reclaim_state = current->reclaim_state;
2531 	unsigned long nr_reclaimed, nr_scanned;
2532 	bool reclaimable = false;
2533 
2534 	do {
2535 		struct mem_cgroup *root = sc->target_mem_cgroup;
2536 		struct mem_cgroup_reclaim_cookie reclaim = {
2537 			.pgdat = pgdat,
2538 			.priority = sc->priority,
2539 		};
2540 		unsigned long node_lru_pages = 0;
2541 		struct mem_cgroup *memcg;
2542 
2543 		nr_reclaimed = sc->nr_reclaimed;
2544 		nr_scanned = sc->nr_scanned;
2545 
2546 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2547 		do {
2548 			unsigned long lru_pages;
2549 			unsigned long reclaimed;
2550 			unsigned long scanned;
2551 
2552 			if (mem_cgroup_low(root, memcg)) {
2553 				if (!sc->may_thrash)
2554 					continue;
2555 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2556 			}
2557 
2558 			reclaimed = sc->nr_reclaimed;
2559 			scanned = sc->nr_scanned;
2560 
2561 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2562 			node_lru_pages += lru_pages;
2563 
2564 			if (memcg)
2565 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2566 					    memcg, sc->nr_scanned - scanned,
2567 					    lru_pages);
2568 
2569 			/* Record the group's reclaim efficiency */
2570 			vmpressure(sc->gfp_mask, memcg, false,
2571 				   sc->nr_scanned - scanned,
2572 				   sc->nr_reclaimed - reclaimed);
2573 
2574 			/*
2575 			 * Direct reclaim and kswapd have to scan all memory
2576 			 * cgroups to fulfill the overall scan target for the
2577 			 * node.
2578 			 *
2579 			 * Limit reclaim, on the other hand, only cares about
2580 			 * nr_to_reclaim pages to be reclaimed and it will
2581 			 * retry with decreasing priority if one round over the
2582 			 * whole hierarchy is not sufficient.
2583 			 */
2584 			if (!global_reclaim(sc) &&
2585 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2586 				mem_cgroup_iter_break(root, memcg);
2587 				break;
2588 			}
2589 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2590 
2591 		/*
2592 		 * Shrink the slab caches in the same proportion that
2593 		 * the eligible LRU pages were scanned.
2594 		 */
2595 		if (global_reclaim(sc))
2596 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2597 				    sc->nr_scanned - nr_scanned,
2598 				    node_lru_pages);
2599 
2600 		if (reclaim_state) {
2601 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2602 			reclaim_state->reclaimed_slab = 0;
2603 		}
2604 
2605 		/* Record the subtree's reclaim efficiency */
2606 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2607 			   sc->nr_scanned - nr_scanned,
2608 			   sc->nr_reclaimed - nr_reclaimed);
2609 
2610 		if (sc->nr_reclaimed - nr_reclaimed)
2611 			reclaimable = true;
2612 
2613 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2614 					 sc->nr_scanned - nr_scanned, sc));
2615 
2616 	return reclaimable;
2617 }
2618 
2619 /*
2620  * Returns true if compaction should go ahead for a high-order request, or
2621  * the high-order allocation would succeed without compaction.
2622  */
2623 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2624 {
2625 	unsigned long watermark;
2626 	bool watermark_ok;
2627 
2628 	/*
2629 	 * Compaction takes time to run and there are potentially other
2630 	 * callers using the pages just freed. Continue reclaiming until
2631 	 * there is a buffer of free pages available to give compaction
2632 	 * a reasonable chance of completing and allocating the page
2633 	 */
2634 	watermark = high_wmark_pages(zone) + (2UL << sc->order);
2635 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2636 
2637 	/*
2638 	 * If compaction is deferred, reclaim up to a point where
2639 	 * compaction will have a chance of success when re-enabled
2640 	 */
2641 	if (compaction_deferred(zone, sc->order))
2642 		return watermark_ok;
2643 
2644 	/*
2645 	 * If compaction is not ready to start and allocation is not likely
2646 	 * to succeed without it, then keep reclaiming.
2647 	 */
2648 	if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
2649 		return false;
2650 
2651 	return watermark_ok;
2652 }
2653 
2654 /*
2655  * This is the direct reclaim path, for page-allocating processes.  We only
2656  * try to reclaim pages from zones which will satisfy the caller's allocation
2657  * request.
2658  *
2659  * If a zone is deemed to be full of pinned pages then just give it a light
2660  * scan then give up on it.
2661  */
2662 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2663 {
2664 	struct zoneref *z;
2665 	struct zone *zone;
2666 	unsigned long nr_soft_reclaimed;
2667 	unsigned long nr_soft_scanned;
2668 	gfp_t orig_mask;
2669 	pg_data_t *last_pgdat = NULL;
2670 
2671 	/*
2672 	 * If the number of buffer_heads in the machine exceeds the maximum
2673 	 * allowed level, force direct reclaim to scan the highmem zone as
2674 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2675 	 */
2676 	orig_mask = sc->gfp_mask;
2677 	if (buffer_heads_over_limit) {
2678 		sc->gfp_mask |= __GFP_HIGHMEM;
2679 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2680 	}
2681 
2682 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2683 					sc->reclaim_idx, sc->nodemask) {
2684 		/*
2685 		 * Take care memory controller reclaiming has small influence
2686 		 * to global LRU.
2687 		 */
2688 		if (global_reclaim(sc)) {
2689 			if (!cpuset_zone_allowed(zone,
2690 						 GFP_KERNEL | __GFP_HARDWALL))
2691 				continue;
2692 
2693 			if (sc->priority != DEF_PRIORITY &&
2694 			    !pgdat_reclaimable(zone->zone_pgdat))
2695 				continue;	/* Let kswapd poll it */
2696 
2697 			/*
2698 			 * If we already have plenty of memory free for
2699 			 * compaction in this zone, don't free any more.
2700 			 * Even though compaction is invoked for any
2701 			 * non-zero order, only frequent costly order
2702 			 * reclamation is disruptive enough to become a
2703 			 * noticeable problem, like transparent huge
2704 			 * page allocations.
2705 			 */
2706 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2707 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2708 			    compaction_ready(zone, sc)) {
2709 				sc->compaction_ready = true;
2710 				continue;
2711 			}
2712 
2713 			/*
2714 			 * Shrink each node in the zonelist once. If the
2715 			 * zonelist is ordered by zone (not the default) then a
2716 			 * node may be shrunk multiple times but in that case
2717 			 * the user prefers lower zones being preserved.
2718 			 */
2719 			if (zone->zone_pgdat == last_pgdat)
2720 				continue;
2721 
2722 			/*
2723 			 * This steals pages from memory cgroups over softlimit
2724 			 * and returns the number of reclaimed pages and
2725 			 * scanned pages. This works for global memory pressure
2726 			 * and balancing, not for a memcg's limit.
2727 			 */
2728 			nr_soft_scanned = 0;
2729 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2730 						sc->order, sc->gfp_mask,
2731 						&nr_soft_scanned);
2732 			sc->nr_reclaimed += nr_soft_reclaimed;
2733 			sc->nr_scanned += nr_soft_scanned;
2734 			/* need some check for avoid more shrink_zone() */
2735 		}
2736 
2737 		/* See comment about same check for global reclaim above */
2738 		if (zone->zone_pgdat == last_pgdat)
2739 			continue;
2740 		last_pgdat = zone->zone_pgdat;
2741 		shrink_node(zone->zone_pgdat, sc);
2742 	}
2743 
2744 	/*
2745 	 * Restore to original mask to avoid the impact on the caller if we
2746 	 * promoted it to __GFP_HIGHMEM.
2747 	 */
2748 	sc->gfp_mask = orig_mask;
2749 }
2750 
2751 /*
2752  * This is the main entry point to direct page reclaim.
2753  *
2754  * If a full scan of the inactive list fails to free enough memory then we
2755  * are "out of memory" and something needs to be killed.
2756  *
2757  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2758  * high - the zone may be full of dirty or under-writeback pages, which this
2759  * caller can't do much about.  We kick the writeback threads and take explicit
2760  * naps in the hope that some of these pages can be written.  But if the
2761  * allocating task holds filesystem locks which prevent writeout this might not
2762  * work, and the allocation attempt will fail.
2763  *
2764  * returns:	0, if no pages reclaimed
2765  * 		else, the number of pages reclaimed
2766  */
2767 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2768 					  struct scan_control *sc)
2769 {
2770 	int initial_priority = sc->priority;
2771 	unsigned long total_scanned = 0;
2772 	unsigned long writeback_threshold;
2773 retry:
2774 	delayacct_freepages_start();
2775 
2776 	if (global_reclaim(sc))
2777 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2778 
2779 	do {
2780 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2781 				sc->priority);
2782 		sc->nr_scanned = 0;
2783 		shrink_zones(zonelist, sc);
2784 
2785 		total_scanned += sc->nr_scanned;
2786 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2787 			break;
2788 
2789 		if (sc->compaction_ready)
2790 			break;
2791 
2792 		/*
2793 		 * If we're getting trouble reclaiming, start doing
2794 		 * writepage even in laptop mode.
2795 		 */
2796 		if (sc->priority < DEF_PRIORITY - 2)
2797 			sc->may_writepage = 1;
2798 
2799 		/*
2800 		 * Try to write back as many pages as we just scanned.  This
2801 		 * tends to cause slow streaming writers to write data to the
2802 		 * disk smoothly, at the dirtying rate, which is nice.   But
2803 		 * that's undesirable in laptop mode, where we *want* lumpy
2804 		 * writeout.  So in laptop mode, write out the whole world.
2805 		 */
2806 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2807 		if (total_scanned > writeback_threshold) {
2808 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2809 						WB_REASON_TRY_TO_FREE_PAGES);
2810 			sc->may_writepage = 1;
2811 		}
2812 	} while (--sc->priority >= 0);
2813 
2814 	delayacct_freepages_end();
2815 
2816 	if (sc->nr_reclaimed)
2817 		return sc->nr_reclaimed;
2818 
2819 	/* Aborted reclaim to try compaction? don't OOM, then */
2820 	if (sc->compaction_ready)
2821 		return 1;
2822 
2823 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2824 	if (!sc->may_thrash) {
2825 		sc->priority = initial_priority;
2826 		sc->may_thrash = 1;
2827 		goto retry;
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2834 {
2835 	struct zone *zone;
2836 	unsigned long pfmemalloc_reserve = 0;
2837 	unsigned long free_pages = 0;
2838 	int i;
2839 	bool wmark_ok;
2840 
2841 	for (i = 0; i <= ZONE_NORMAL; i++) {
2842 		zone = &pgdat->node_zones[i];
2843 		if (!managed_zone(zone) ||
2844 		    pgdat_reclaimable_pages(pgdat) == 0)
2845 			continue;
2846 
2847 		pfmemalloc_reserve += min_wmark_pages(zone);
2848 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2849 	}
2850 
2851 	/* If there are no reserves (unexpected config) then do not throttle */
2852 	if (!pfmemalloc_reserve)
2853 		return true;
2854 
2855 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2856 
2857 	/* kswapd must be awake if processes are being throttled */
2858 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2859 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2860 						(enum zone_type)ZONE_NORMAL);
2861 		wake_up_interruptible(&pgdat->kswapd_wait);
2862 	}
2863 
2864 	return wmark_ok;
2865 }
2866 
2867 /*
2868  * Throttle direct reclaimers if backing storage is backed by the network
2869  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2870  * depleted. kswapd will continue to make progress and wake the processes
2871  * when the low watermark is reached.
2872  *
2873  * Returns true if a fatal signal was delivered during throttling. If this
2874  * happens, the page allocator should not consider triggering the OOM killer.
2875  */
2876 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2877 					nodemask_t *nodemask)
2878 {
2879 	struct zoneref *z;
2880 	struct zone *zone;
2881 	pg_data_t *pgdat = NULL;
2882 
2883 	/*
2884 	 * Kernel threads should not be throttled as they may be indirectly
2885 	 * responsible for cleaning pages necessary for reclaim to make forward
2886 	 * progress. kjournald for example may enter direct reclaim while
2887 	 * committing a transaction where throttling it could forcing other
2888 	 * processes to block on log_wait_commit().
2889 	 */
2890 	if (current->flags & PF_KTHREAD)
2891 		goto out;
2892 
2893 	/*
2894 	 * If a fatal signal is pending, this process should not throttle.
2895 	 * It should return quickly so it can exit and free its memory
2896 	 */
2897 	if (fatal_signal_pending(current))
2898 		goto out;
2899 
2900 	/*
2901 	 * Check if the pfmemalloc reserves are ok by finding the first node
2902 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2903 	 * GFP_KERNEL will be required for allocating network buffers when
2904 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2905 	 *
2906 	 * Throttling is based on the first usable node and throttled processes
2907 	 * wait on a queue until kswapd makes progress and wakes them. There
2908 	 * is an affinity then between processes waking up and where reclaim
2909 	 * progress has been made assuming the process wakes on the same node.
2910 	 * More importantly, processes running on remote nodes will not compete
2911 	 * for remote pfmemalloc reserves and processes on different nodes
2912 	 * should make reasonable progress.
2913 	 */
2914 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2915 					gfp_zone(gfp_mask), nodemask) {
2916 		if (zone_idx(zone) > ZONE_NORMAL)
2917 			continue;
2918 
2919 		/* Throttle based on the first usable node */
2920 		pgdat = zone->zone_pgdat;
2921 		if (pfmemalloc_watermark_ok(pgdat))
2922 			goto out;
2923 		break;
2924 	}
2925 
2926 	/* If no zone was usable by the allocation flags then do not throttle */
2927 	if (!pgdat)
2928 		goto out;
2929 
2930 	/* Account for the throttling */
2931 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2932 
2933 	/*
2934 	 * If the caller cannot enter the filesystem, it's possible that it
2935 	 * is due to the caller holding an FS lock or performing a journal
2936 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2937 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2938 	 * blocked waiting on the same lock. Instead, throttle for up to a
2939 	 * second before continuing.
2940 	 */
2941 	if (!(gfp_mask & __GFP_FS)) {
2942 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2943 			pfmemalloc_watermark_ok(pgdat), HZ);
2944 
2945 		goto check_pending;
2946 	}
2947 
2948 	/* Throttle until kswapd wakes the process */
2949 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2950 		pfmemalloc_watermark_ok(pgdat));
2951 
2952 check_pending:
2953 	if (fatal_signal_pending(current))
2954 		return true;
2955 
2956 out:
2957 	return false;
2958 }
2959 
2960 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2961 				gfp_t gfp_mask, nodemask_t *nodemask)
2962 {
2963 	unsigned long nr_reclaimed;
2964 	struct scan_control sc = {
2965 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2966 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2967 		.reclaim_idx = gfp_zone(gfp_mask),
2968 		.order = order,
2969 		.nodemask = nodemask,
2970 		.priority = DEF_PRIORITY,
2971 		.may_writepage = !laptop_mode,
2972 		.may_unmap = 1,
2973 		.may_swap = 1,
2974 	};
2975 
2976 	/*
2977 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2978 	 * 1 is returned so that the page allocator does not OOM kill at this
2979 	 * point.
2980 	 */
2981 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2982 		return 1;
2983 
2984 	trace_mm_vmscan_direct_reclaim_begin(order,
2985 				sc.may_writepage,
2986 				gfp_mask,
2987 				sc.reclaim_idx);
2988 
2989 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2990 
2991 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2992 
2993 	return nr_reclaimed;
2994 }
2995 
2996 #ifdef CONFIG_MEMCG
2997 
2998 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2999 						gfp_t gfp_mask, bool noswap,
3000 						pg_data_t *pgdat,
3001 						unsigned long *nr_scanned)
3002 {
3003 	struct scan_control sc = {
3004 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3005 		.target_mem_cgroup = memcg,
3006 		.may_writepage = !laptop_mode,
3007 		.may_unmap = 1,
3008 		.reclaim_idx = MAX_NR_ZONES - 1,
3009 		.may_swap = !noswap,
3010 	};
3011 	unsigned long lru_pages;
3012 
3013 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3014 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3015 
3016 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3017 						      sc.may_writepage,
3018 						      sc.gfp_mask,
3019 						      sc.reclaim_idx);
3020 
3021 	/*
3022 	 * NOTE: Although we can get the priority field, using it
3023 	 * here is not a good idea, since it limits the pages we can scan.
3024 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3025 	 * will pick up pages from other mem cgroup's as well. We hack
3026 	 * the priority and make it zero.
3027 	 */
3028 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3029 
3030 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3031 
3032 	*nr_scanned = sc.nr_scanned;
3033 	return sc.nr_reclaimed;
3034 }
3035 
3036 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3037 					   unsigned long nr_pages,
3038 					   gfp_t gfp_mask,
3039 					   bool may_swap)
3040 {
3041 	struct zonelist *zonelist;
3042 	unsigned long nr_reclaimed;
3043 	int nid;
3044 	struct scan_control sc = {
3045 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3046 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3047 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3048 		.reclaim_idx = MAX_NR_ZONES - 1,
3049 		.target_mem_cgroup = memcg,
3050 		.priority = DEF_PRIORITY,
3051 		.may_writepage = !laptop_mode,
3052 		.may_unmap = 1,
3053 		.may_swap = may_swap,
3054 	};
3055 
3056 	/*
3057 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3058 	 * take care of from where we get pages. So the node where we start the
3059 	 * scan does not need to be the current node.
3060 	 */
3061 	nid = mem_cgroup_select_victim_node(memcg);
3062 
3063 	zonelist = NODE_DATA(nid)->node_zonelists;
3064 
3065 	trace_mm_vmscan_memcg_reclaim_begin(0,
3066 					    sc.may_writepage,
3067 					    sc.gfp_mask,
3068 					    sc.reclaim_idx);
3069 
3070 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3071 
3072 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3073 
3074 	return nr_reclaimed;
3075 }
3076 #endif
3077 
3078 static void age_active_anon(struct pglist_data *pgdat,
3079 				struct scan_control *sc)
3080 {
3081 	struct mem_cgroup *memcg;
3082 
3083 	if (!total_swap_pages)
3084 		return;
3085 
3086 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3087 	do {
3088 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3089 
3090 		if (inactive_list_is_low(lruvec, false, sc))
3091 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3092 					   sc, LRU_ACTIVE_ANON);
3093 
3094 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3095 	} while (memcg);
3096 }
3097 
3098 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3099 {
3100 	unsigned long mark = high_wmark_pages(zone);
3101 
3102 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3103 		return false;
3104 
3105 	/*
3106 	 * If any eligible zone is balanced then the node is not considered
3107 	 * to be congested or dirty
3108 	 */
3109 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3110 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3111 
3112 	return true;
3113 }
3114 
3115 /*
3116  * Prepare kswapd for sleeping. This verifies that there are no processes
3117  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3118  *
3119  * Returns true if kswapd is ready to sleep
3120  */
3121 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3122 {
3123 	int i;
3124 
3125 	/*
3126 	 * The throttled processes are normally woken up in balance_pgdat() as
3127 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3128 	 * race between when kswapd checks the watermarks and a process gets
3129 	 * throttled. There is also a potential race if processes get
3130 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3131 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3132 	 * the wake up checks. If kswapd is going to sleep, no process should
3133 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3134 	 * the wake up is premature, processes will wake kswapd and get
3135 	 * throttled again. The difference from wake ups in balance_pgdat() is
3136 	 * that here we are under prepare_to_wait().
3137 	 */
3138 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3139 		wake_up_all(&pgdat->pfmemalloc_wait);
3140 
3141 	for (i = 0; i <= classzone_idx; i++) {
3142 		struct zone *zone = pgdat->node_zones + i;
3143 
3144 		if (!managed_zone(zone))
3145 			continue;
3146 
3147 		if (!zone_balanced(zone, order, classzone_idx))
3148 			return false;
3149 	}
3150 
3151 	return true;
3152 }
3153 
3154 /*
3155  * kswapd shrinks a node of pages that are at or below the highest usable
3156  * zone that is currently unbalanced.
3157  *
3158  * Returns true if kswapd scanned at least the requested number of pages to
3159  * reclaim or if the lack of progress was due to pages under writeback.
3160  * This is used to determine if the scanning priority needs to be raised.
3161  */
3162 static bool kswapd_shrink_node(pg_data_t *pgdat,
3163 			       struct scan_control *sc)
3164 {
3165 	struct zone *zone;
3166 	int z;
3167 
3168 	/* Reclaim a number of pages proportional to the number of zones */
3169 	sc->nr_to_reclaim = 0;
3170 	for (z = 0; z <= sc->reclaim_idx; z++) {
3171 		zone = pgdat->node_zones + z;
3172 		if (!managed_zone(zone))
3173 			continue;
3174 
3175 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3176 	}
3177 
3178 	/*
3179 	 * Historically care was taken to put equal pressure on all zones but
3180 	 * now pressure is applied based on node LRU order.
3181 	 */
3182 	shrink_node(pgdat, sc);
3183 
3184 	/*
3185 	 * Fragmentation may mean that the system cannot be rebalanced for
3186 	 * high-order allocations. If twice the allocation size has been
3187 	 * reclaimed then recheck watermarks only at order-0 to prevent
3188 	 * excessive reclaim. Assume that a process requested a high-order
3189 	 * can direct reclaim/compact.
3190 	 */
3191 	if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
3192 		sc->order = 0;
3193 
3194 	return sc->nr_scanned >= sc->nr_to_reclaim;
3195 }
3196 
3197 /*
3198  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3199  * that are eligible for use by the caller until at least one zone is
3200  * balanced.
3201  *
3202  * Returns the order kswapd finished reclaiming at.
3203  *
3204  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3205  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3206  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3207  * or lower is eligible for reclaim until at least one usable zone is
3208  * balanced.
3209  */
3210 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3211 {
3212 	int i;
3213 	unsigned long nr_soft_reclaimed;
3214 	unsigned long nr_soft_scanned;
3215 	struct zone *zone;
3216 	struct scan_control sc = {
3217 		.gfp_mask = GFP_KERNEL,
3218 		.order = order,
3219 		.priority = DEF_PRIORITY,
3220 		.may_writepage = !laptop_mode,
3221 		.may_unmap = 1,
3222 		.may_swap = 1,
3223 	};
3224 	count_vm_event(PAGEOUTRUN);
3225 
3226 	do {
3227 		bool raise_priority = true;
3228 
3229 		sc.nr_reclaimed = 0;
3230 		sc.reclaim_idx = classzone_idx;
3231 
3232 		/*
3233 		 * If the number of buffer_heads exceeds the maximum allowed
3234 		 * then consider reclaiming from all zones. This has a dual
3235 		 * purpose -- on 64-bit systems it is expected that
3236 		 * buffer_heads are stripped during active rotation. On 32-bit
3237 		 * systems, highmem pages can pin lowmem memory and shrinking
3238 		 * buffers can relieve lowmem pressure. Reclaim may still not
3239 		 * go ahead if all eligible zones for the original allocation
3240 		 * request are balanced to avoid excessive reclaim from kswapd.
3241 		 */
3242 		if (buffer_heads_over_limit) {
3243 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3244 				zone = pgdat->node_zones + i;
3245 				if (!managed_zone(zone))
3246 					continue;
3247 
3248 				sc.reclaim_idx = i;
3249 				break;
3250 			}
3251 		}
3252 
3253 		/*
3254 		 * Only reclaim if there are no eligible zones. Check from
3255 		 * high to low zone as allocations prefer higher zones.
3256 		 * Scanning from low to high zone would allow congestion to be
3257 		 * cleared during a very small window when a small low
3258 		 * zone was balanced even under extreme pressure when the
3259 		 * overall node may be congested. Note that sc.reclaim_idx
3260 		 * is not used as buffer_heads_over_limit may have adjusted
3261 		 * it.
3262 		 */
3263 		for (i = classzone_idx; i >= 0; i--) {
3264 			zone = pgdat->node_zones + i;
3265 			if (!managed_zone(zone))
3266 				continue;
3267 
3268 			if (zone_balanced(zone, sc.order, classzone_idx))
3269 				goto out;
3270 		}
3271 
3272 		/*
3273 		 * Do some background aging of the anon list, to give
3274 		 * pages a chance to be referenced before reclaiming. All
3275 		 * pages are rotated regardless of classzone as this is
3276 		 * about consistent aging.
3277 		 */
3278 		age_active_anon(pgdat, &sc);
3279 
3280 		/*
3281 		 * If we're getting trouble reclaiming, start doing writepage
3282 		 * even in laptop mode.
3283 		 */
3284 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3285 			sc.may_writepage = 1;
3286 
3287 		/* Call soft limit reclaim before calling shrink_node. */
3288 		sc.nr_scanned = 0;
3289 		nr_soft_scanned = 0;
3290 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3291 						sc.gfp_mask, &nr_soft_scanned);
3292 		sc.nr_reclaimed += nr_soft_reclaimed;
3293 
3294 		/*
3295 		 * There should be no need to raise the scanning priority if
3296 		 * enough pages are already being scanned that that high
3297 		 * watermark would be met at 100% efficiency.
3298 		 */
3299 		if (kswapd_shrink_node(pgdat, &sc))
3300 			raise_priority = false;
3301 
3302 		/*
3303 		 * If the low watermark is met there is no need for processes
3304 		 * to be throttled on pfmemalloc_wait as they should not be
3305 		 * able to safely make forward progress. Wake them
3306 		 */
3307 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3308 				pfmemalloc_watermark_ok(pgdat))
3309 			wake_up_all(&pgdat->pfmemalloc_wait);
3310 
3311 		/* Check if kswapd should be suspending */
3312 		if (try_to_freeze() || kthread_should_stop())
3313 			break;
3314 
3315 		/*
3316 		 * Raise priority if scanning rate is too low or there was no
3317 		 * progress in reclaiming pages
3318 		 */
3319 		if (raise_priority || !sc.nr_reclaimed)
3320 			sc.priority--;
3321 	} while (sc.priority >= 1);
3322 
3323 out:
3324 	/*
3325 	 * Return the order kswapd stopped reclaiming at as
3326 	 * prepare_kswapd_sleep() takes it into account. If another caller
3327 	 * entered the allocator slow path while kswapd was awake, order will
3328 	 * remain at the higher level.
3329 	 */
3330 	return sc.order;
3331 }
3332 
3333 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3334 				unsigned int classzone_idx)
3335 {
3336 	long remaining = 0;
3337 	DEFINE_WAIT(wait);
3338 
3339 	if (freezing(current) || kthread_should_stop())
3340 		return;
3341 
3342 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3343 
3344 	/* Try to sleep for a short interval */
3345 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3346 		/*
3347 		 * Compaction records what page blocks it recently failed to
3348 		 * isolate pages from and skips them in the future scanning.
3349 		 * When kswapd is going to sleep, it is reasonable to assume
3350 		 * that pages and compaction may succeed so reset the cache.
3351 		 */
3352 		reset_isolation_suitable(pgdat);
3353 
3354 		/*
3355 		 * We have freed the memory, now we should compact it to make
3356 		 * allocation of the requested order possible.
3357 		 */
3358 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3359 
3360 		remaining = schedule_timeout(HZ/10);
3361 
3362 		/*
3363 		 * If woken prematurely then reset kswapd_classzone_idx and
3364 		 * order. The values will either be from a wakeup request or
3365 		 * the previous request that slept prematurely.
3366 		 */
3367 		if (remaining) {
3368 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3369 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3370 		}
3371 
3372 		finish_wait(&pgdat->kswapd_wait, &wait);
3373 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3374 	}
3375 
3376 	/*
3377 	 * After a short sleep, check if it was a premature sleep. If not, then
3378 	 * go fully to sleep until explicitly woken up.
3379 	 */
3380 	if (!remaining &&
3381 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3382 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3383 
3384 		/*
3385 		 * vmstat counters are not perfectly accurate and the estimated
3386 		 * value for counters such as NR_FREE_PAGES can deviate from the
3387 		 * true value by nr_online_cpus * threshold. To avoid the zone
3388 		 * watermarks being breached while under pressure, we reduce the
3389 		 * per-cpu vmstat threshold while kswapd is awake and restore
3390 		 * them before going back to sleep.
3391 		 */
3392 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3393 
3394 		if (!kthread_should_stop())
3395 			schedule();
3396 
3397 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3398 	} else {
3399 		if (remaining)
3400 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3401 		else
3402 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3403 	}
3404 	finish_wait(&pgdat->kswapd_wait, &wait);
3405 }
3406 
3407 /*
3408  * The background pageout daemon, started as a kernel thread
3409  * from the init process.
3410  *
3411  * This basically trickles out pages so that we have _some_
3412  * free memory available even if there is no other activity
3413  * that frees anything up. This is needed for things like routing
3414  * etc, where we otherwise might have all activity going on in
3415  * asynchronous contexts that cannot page things out.
3416  *
3417  * If there are applications that are active memory-allocators
3418  * (most normal use), this basically shouldn't matter.
3419  */
3420 static int kswapd(void *p)
3421 {
3422 	unsigned int alloc_order, reclaim_order, classzone_idx;
3423 	pg_data_t *pgdat = (pg_data_t*)p;
3424 	struct task_struct *tsk = current;
3425 
3426 	struct reclaim_state reclaim_state = {
3427 		.reclaimed_slab = 0,
3428 	};
3429 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3430 
3431 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3432 
3433 	if (!cpumask_empty(cpumask))
3434 		set_cpus_allowed_ptr(tsk, cpumask);
3435 	current->reclaim_state = &reclaim_state;
3436 
3437 	/*
3438 	 * Tell the memory management that we're a "memory allocator",
3439 	 * and that if we need more memory we should get access to it
3440 	 * regardless (see "__alloc_pages()"). "kswapd" should
3441 	 * never get caught in the normal page freeing logic.
3442 	 *
3443 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3444 	 * you need a small amount of memory in order to be able to
3445 	 * page out something else, and this flag essentially protects
3446 	 * us from recursively trying to free more memory as we're
3447 	 * trying to free the first piece of memory in the first place).
3448 	 */
3449 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3450 	set_freezable();
3451 
3452 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3453 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3454 	for ( ; ; ) {
3455 		bool ret;
3456 
3457 kswapd_try_sleep:
3458 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3459 					classzone_idx);
3460 
3461 		/* Read the new order and classzone_idx */
3462 		alloc_order = reclaim_order = pgdat->kswapd_order;
3463 		classzone_idx = pgdat->kswapd_classzone_idx;
3464 		pgdat->kswapd_order = 0;
3465 		pgdat->kswapd_classzone_idx = 0;
3466 
3467 		ret = try_to_freeze();
3468 		if (kthread_should_stop())
3469 			break;
3470 
3471 		/*
3472 		 * We can speed up thawing tasks if we don't call balance_pgdat
3473 		 * after returning from the refrigerator
3474 		 */
3475 		if (ret)
3476 			continue;
3477 
3478 		/*
3479 		 * Reclaim begins at the requested order but if a high-order
3480 		 * reclaim fails then kswapd falls back to reclaiming for
3481 		 * order-0. If that happens, kswapd will consider sleeping
3482 		 * for the order it finished reclaiming at (reclaim_order)
3483 		 * but kcompactd is woken to compact for the original
3484 		 * request (alloc_order).
3485 		 */
3486 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3487 						alloc_order);
3488 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3489 		if (reclaim_order < alloc_order)
3490 			goto kswapd_try_sleep;
3491 
3492 		alloc_order = reclaim_order = pgdat->kswapd_order;
3493 		classzone_idx = pgdat->kswapd_classzone_idx;
3494 	}
3495 
3496 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3497 	current->reclaim_state = NULL;
3498 	lockdep_clear_current_reclaim_state();
3499 
3500 	return 0;
3501 }
3502 
3503 /*
3504  * A zone is low on free memory, so wake its kswapd task to service it.
3505  */
3506 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3507 {
3508 	pg_data_t *pgdat;
3509 	int z;
3510 
3511 	if (!managed_zone(zone))
3512 		return;
3513 
3514 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3515 		return;
3516 	pgdat = zone->zone_pgdat;
3517 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3518 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3519 	if (!waitqueue_active(&pgdat->kswapd_wait))
3520 		return;
3521 
3522 	/* Only wake kswapd if all zones are unbalanced */
3523 	for (z = 0; z <= classzone_idx; z++) {
3524 		zone = pgdat->node_zones + z;
3525 		if (!managed_zone(zone))
3526 			continue;
3527 
3528 		if (zone_balanced(zone, order, classzone_idx))
3529 			return;
3530 	}
3531 
3532 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3533 	wake_up_interruptible(&pgdat->kswapd_wait);
3534 }
3535 
3536 #ifdef CONFIG_HIBERNATION
3537 /*
3538  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3539  * freed pages.
3540  *
3541  * Rather than trying to age LRUs the aim is to preserve the overall
3542  * LRU order by reclaiming preferentially
3543  * inactive > active > active referenced > active mapped
3544  */
3545 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3546 {
3547 	struct reclaim_state reclaim_state;
3548 	struct scan_control sc = {
3549 		.nr_to_reclaim = nr_to_reclaim,
3550 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3551 		.reclaim_idx = MAX_NR_ZONES - 1,
3552 		.priority = DEF_PRIORITY,
3553 		.may_writepage = 1,
3554 		.may_unmap = 1,
3555 		.may_swap = 1,
3556 		.hibernation_mode = 1,
3557 	};
3558 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3559 	struct task_struct *p = current;
3560 	unsigned long nr_reclaimed;
3561 
3562 	p->flags |= PF_MEMALLOC;
3563 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3564 	reclaim_state.reclaimed_slab = 0;
3565 	p->reclaim_state = &reclaim_state;
3566 
3567 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3568 
3569 	p->reclaim_state = NULL;
3570 	lockdep_clear_current_reclaim_state();
3571 	p->flags &= ~PF_MEMALLOC;
3572 
3573 	return nr_reclaimed;
3574 }
3575 #endif /* CONFIG_HIBERNATION */
3576 
3577 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3578    not required for correctness.  So if the last cpu in a node goes
3579    away, we get changed to run anywhere: as the first one comes back,
3580    restore their cpu bindings. */
3581 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3582 			void *hcpu)
3583 {
3584 	int nid;
3585 
3586 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3587 		for_each_node_state(nid, N_MEMORY) {
3588 			pg_data_t *pgdat = NODE_DATA(nid);
3589 			const struct cpumask *mask;
3590 
3591 			mask = cpumask_of_node(pgdat->node_id);
3592 
3593 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3594 				/* One of our CPUs online: restore mask */
3595 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3596 		}
3597 	}
3598 	return NOTIFY_OK;
3599 }
3600 
3601 /*
3602  * This kswapd start function will be called by init and node-hot-add.
3603  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3604  */
3605 int kswapd_run(int nid)
3606 {
3607 	pg_data_t *pgdat = NODE_DATA(nid);
3608 	int ret = 0;
3609 
3610 	if (pgdat->kswapd)
3611 		return 0;
3612 
3613 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3614 	if (IS_ERR(pgdat->kswapd)) {
3615 		/* failure at boot is fatal */
3616 		BUG_ON(system_state == SYSTEM_BOOTING);
3617 		pr_err("Failed to start kswapd on node %d\n", nid);
3618 		ret = PTR_ERR(pgdat->kswapd);
3619 		pgdat->kswapd = NULL;
3620 	}
3621 	return ret;
3622 }
3623 
3624 /*
3625  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3626  * hold mem_hotplug_begin/end().
3627  */
3628 void kswapd_stop(int nid)
3629 {
3630 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3631 
3632 	if (kswapd) {
3633 		kthread_stop(kswapd);
3634 		NODE_DATA(nid)->kswapd = NULL;
3635 	}
3636 }
3637 
3638 static int __init kswapd_init(void)
3639 {
3640 	int nid;
3641 
3642 	swap_setup();
3643 	for_each_node_state(nid, N_MEMORY)
3644  		kswapd_run(nid);
3645 	hotcpu_notifier(cpu_callback, 0);
3646 	return 0;
3647 }
3648 
3649 module_init(kswapd_init)
3650 
3651 #ifdef CONFIG_NUMA
3652 /*
3653  * Node reclaim mode
3654  *
3655  * If non-zero call node_reclaim when the number of free pages falls below
3656  * the watermarks.
3657  */
3658 int node_reclaim_mode __read_mostly;
3659 
3660 #define RECLAIM_OFF 0
3661 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3662 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3663 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3664 
3665 /*
3666  * Priority for NODE_RECLAIM. This determines the fraction of pages
3667  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3668  * a zone.
3669  */
3670 #define NODE_RECLAIM_PRIORITY 4
3671 
3672 /*
3673  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3674  * occur.
3675  */
3676 int sysctl_min_unmapped_ratio = 1;
3677 
3678 /*
3679  * If the number of slab pages in a zone grows beyond this percentage then
3680  * slab reclaim needs to occur.
3681  */
3682 int sysctl_min_slab_ratio = 5;
3683 
3684 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3685 {
3686 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3687 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3688 		node_page_state(pgdat, NR_ACTIVE_FILE);
3689 
3690 	/*
3691 	 * It's possible for there to be more file mapped pages than
3692 	 * accounted for by the pages on the file LRU lists because
3693 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3694 	 */
3695 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3696 }
3697 
3698 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3699 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3700 {
3701 	unsigned long nr_pagecache_reclaimable;
3702 	unsigned long delta = 0;
3703 
3704 	/*
3705 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3706 	 * potentially reclaimable. Otherwise, we have to worry about
3707 	 * pages like swapcache and node_unmapped_file_pages() provides
3708 	 * a better estimate
3709 	 */
3710 	if (node_reclaim_mode & RECLAIM_UNMAP)
3711 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3712 	else
3713 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3714 
3715 	/* If we can't clean pages, remove dirty pages from consideration */
3716 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3717 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3718 
3719 	/* Watch for any possible underflows due to delta */
3720 	if (unlikely(delta > nr_pagecache_reclaimable))
3721 		delta = nr_pagecache_reclaimable;
3722 
3723 	return nr_pagecache_reclaimable - delta;
3724 }
3725 
3726 /*
3727  * Try to free up some pages from this node through reclaim.
3728  */
3729 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3730 {
3731 	/* Minimum pages needed in order to stay on node */
3732 	const unsigned long nr_pages = 1 << order;
3733 	struct task_struct *p = current;
3734 	struct reclaim_state reclaim_state;
3735 	int classzone_idx = gfp_zone(gfp_mask);
3736 	struct scan_control sc = {
3737 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3738 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3739 		.order = order,
3740 		.priority = NODE_RECLAIM_PRIORITY,
3741 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3742 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3743 		.may_swap = 1,
3744 		.reclaim_idx = classzone_idx,
3745 	};
3746 
3747 	cond_resched();
3748 	/*
3749 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3750 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3751 	 * and RECLAIM_UNMAP.
3752 	 */
3753 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3754 	lockdep_set_current_reclaim_state(gfp_mask);
3755 	reclaim_state.reclaimed_slab = 0;
3756 	p->reclaim_state = &reclaim_state;
3757 
3758 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3759 		/*
3760 		 * Free memory by calling shrink zone with increasing
3761 		 * priorities until we have enough memory freed.
3762 		 */
3763 		do {
3764 			shrink_node(pgdat, &sc);
3765 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3766 	}
3767 
3768 	p->reclaim_state = NULL;
3769 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3770 	lockdep_clear_current_reclaim_state();
3771 	return sc.nr_reclaimed >= nr_pages;
3772 }
3773 
3774 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3775 {
3776 	int ret;
3777 
3778 	/*
3779 	 * Node reclaim reclaims unmapped file backed pages and
3780 	 * slab pages if we are over the defined limits.
3781 	 *
3782 	 * A small portion of unmapped file backed pages is needed for
3783 	 * file I/O otherwise pages read by file I/O will be immediately
3784 	 * thrown out if the node is overallocated. So we do not reclaim
3785 	 * if less than a specified percentage of the node is used by
3786 	 * unmapped file backed pages.
3787 	 */
3788 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3789 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3790 		return NODE_RECLAIM_FULL;
3791 
3792 	if (!pgdat_reclaimable(pgdat))
3793 		return NODE_RECLAIM_FULL;
3794 
3795 	/*
3796 	 * Do not scan if the allocation should not be delayed.
3797 	 */
3798 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3799 		return NODE_RECLAIM_NOSCAN;
3800 
3801 	/*
3802 	 * Only run node reclaim on the local node or on nodes that do not
3803 	 * have associated processors. This will favor the local processor
3804 	 * over remote processors and spread off node memory allocations
3805 	 * as wide as possible.
3806 	 */
3807 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3808 		return NODE_RECLAIM_NOSCAN;
3809 
3810 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3811 		return NODE_RECLAIM_NOSCAN;
3812 
3813 	ret = __node_reclaim(pgdat, gfp_mask, order);
3814 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3815 
3816 	if (!ret)
3817 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3818 
3819 	return ret;
3820 }
3821 #endif
3822 
3823 /*
3824  * page_evictable - test whether a page is evictable
3825  * @page: the page to test
3826  *
3827  * Test whether page is evictable--i.e., should be placed on active/inactive
3828  * lists vs unevictable list.
3829  *
3830  * Reasons page might not be evictable:
3831  * (1) page's mapping marked unevictable
3832  * (2) page is part of an mlocked VMA
3833  *
3834  */
3835 int page_evictable(struct page *page)
3836 {
3837 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3838 }
3839 
3840 #ifdef CONFIG_SHMEM
3841 /**
3842  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3843  * @pages:	array of pages to check
3844  * @nr_pages:	number of pages to check
3845  *
3846  * Checks pages for evictability and moves them to the appropriate lru list.
3847  *
3848  * This function is only used for SysV IPC SHM_UNLOCK.
3849  */
3850 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3851 {
3852 	struct lruvec *lruvec;
3853 	struct pglist_data *pgdat = NULL;
3854 	int pgscanned = 0;
3855 	int pgrescued = 0;
3856 	int i;
3857 
3858 	for (i = 0; i < nr_pages; i++) {
3859 		struct page *page = pages[i];
3860 		struct pglist_data *pagepgdat = page_pgdat(page);
3861 
3862 		pgscanned++;
3863 		if (pagepgdat != pgdat) {
3864 			if (pgdat)
3865 				spin_unlock_irq(&pgdat->lru_lock);
3866 			pgdat = pagepgdat;
3867 			spin_lock_irq(&pgdat->lru_lock);
3868 		}
3869 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3870 
3871 		if (!PageLRU(page) || !PageUnevictable(page))
3872 			continue;
3873 
3874 		if (page_evictable(page)) {
3875 			enum lru_list lru = page_lru_base_type(page);
3876 
3877 			VM_BUG_ON_PAGE(PageActive(page), page);
3878 			ClearPageUnevictable(page);
3879 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3880 			add_page_to_lru_list(page, lruvec, lru);
3881 			pgrescued++;
3882 		}
3883 	}
3884 
3885 	if (pgdat) {
3886 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3887 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3888 		spin_unlock_irq(&pgdat->lru_lock);
3889 	}
3890 }
3891 #endif /* CONFIG_SHMEM */
3892