1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 /* Allocation order */ 72 int order; 73 74 /* 75 * Nodemask of nodes allowed by the caller. If NULL, all nodes 76 * are scanned. 77 */ 78 nodemask_t *nodemask; 79 80 /* 81 * The memory cgroup that hit its limit and as a result is the 82 * primary target of this reclaim invocation. 83 */ 84 struct mem_cgroup *target_mem_cgroup; 85 86 /* Scan (total_size >> priority) pages at once */ 87 int priority; 88 89 /* The highest zone to isolate pages for reclaim from */ 90 enum zone_type reclaim_idx; 91 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 93 unsigned int may_writepage:1; 94 95 /* Can mapped pages be reclaimed? */ 96 unsigned int may_unmap:1; 97 98 /* Can pages be swapped as part of reclaim? */ 99 unsigned int may_swap:1; 100 101 /* 102 * Cgroups are not reclaimed below their configured memory.low, 103 * unless we threaten to OOM. If any cgroups are skipped due to 104 * memory.low and nothing was reclaimed, go back for memory.low. 105 */ 106 unsigned int memcg_low_reclaim:1; 107 unsigned int memcg_low_skipped:1; 108 109 unsigned int hibernation_mode:1; 110 111 /* One of the zones is ready for compaction */ 112 unsigned int compaction_ready:1; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 120 struct { 121 unsigned int dirty; 122 unsigned int unqueued_dirty; 123 unsigned int congested; 124 unsigned int writeback; 125 unsigned int immediate; 126 unsigned int file_taken; 127 unsigned int taken; 128 } nr; 129 }; 130 131 #ifdef ARCH_HAS_PREFETCH 132 #define prefetch_prev_lru_page(_page, _base, _field) \ 133 do { \ 134 if ((_page)->lru.prev != _base) { \ 135 struct page *prev; \ 136 \ 137 prev = lru_to_page(&(_page->lru)); \ 138 prefetch(&prev->_field); \ 139 } \ 140 } while (0) 141 #else 142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 143 #endif 144 145 #ifdef ARCH_HAS_PREFETCHW 146 #define prefetchw_prev_lru_page(_page, _base, _field) \ 147 do { \ 148 if ((_page)->lru.prev != _base) { \ 149 struct page *prev; \ 150 \ 151 prev = lru_to_page(&(_page->lru)); \ 152 prefetchw(&prev->_field); \ 153 } \ 154 } while (0) 155 #else 156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 157 #endif 158 159 /* 160 * From 0 .. 100. Higher means more swappy. 161 */ 162 int vm_swappiness = 60; 163 /* 164 * The total number of pages which are beyond the high watermark within all 165 * zones. 166 */ 167 unsigned long vm_total_pages; 168 169 static LIST_HEAD(shrinker_list); 170 static DECLARE_RWSEM(shrinker_rwsem); 171 172 #ifdef CONFIG_MEMCG 173 static bool global_reclaim(struct scan_control *sc) 174 { 175 return !sc->target_mem_cgroup; 176 } 177 178 /** 179 * sane_reclaim - is the usual dirty throttling mechanism operational? 180 * @sc: scan_control in question 181 * 182 * The normal page dirty throttling mechanism in balance_dirty_pages() is 183 * completely broken with the legacy memcg and direct stalling in 184 * shrink_page_list() is used for throttling instead, which lacks all the 185 * niceties such as fairness, adaptive pausing, bandwidth proportional 186 * allocation and configurability. 187 * 188 * This function tests whether the vmscan currently in progress can assume 189 * that the normal dirty throttling mechanism is operational. 190 */ 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 struct mem_cgroup *memcg = sc->target_mem_cgroup; 194 195 if (!memcg) 196 return true; 197 #ifdef CONFIG_CGROUP_WRITEBACK 198 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 199 return true; 200 #endif 201 return false; 202 } 203 204 static void set_memcg_congestion(pg_data_t *pgdat, 205 struct mem_cgroup *memcg, 206 bool congested) 207 { 208 struct mem_cgroup_per_node *mn; 209 210 if (!memcg) 211 return; 212 213 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 214 WRITE_ONCE(mn->congested, congested); 215 } 216 217 static bool memcg_congested(pg_data_t *pgdat, 218 struct mem_cgroup *memcg) 219 { 220 struct mem_cgroup_per_node *mn; 221 222 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 223 return READ_ONCE(mn->congested); 224 225 } 226 #else 227 static bool global_reclaim(struct scan_control *sc) 228 { 229 return true; 230 } 231 232 static bool sane_reclaim(struct scan_control *sc) 233 { 234 return true; 235 } 236 237 static inline void set_memcg_congestion(struct pglist_data *pgdat, 238 struct mem_cgroup *memcg, bool congested) 239 { 240 } 241 242 static inline bool memcg_congested(struct pglist_data *pgdat, 243 struct mem_cgroup *memcg) 244 { 245 return false; 246 247 } 248 #endif 249 250 /* 251 * This misses isolated pages which are not accounted for to save counters. 252 * As the data only determines if reclaim or compaction continues, it is 253 * not expected that isolated pages will be a dominating factor. 254 */ 255 unsigned long zone_reclaimable_pages(struct zone *zone) 256 { 257 unsigned long nr; 258 259 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 260 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 261 if (get_nr_swap_pages() > 0) 262 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 263 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 264 265 return nr; 266 } 267 268 /** 269 * lruvec_lru_size - Returns the number of pages on the given LRU list. 270 * @lruvec: lru vector 271 * @lru: lru to use 272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 273 */ 274 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 275 { 276 unsigned long lru_size; 277 int zid; 278 279 if (!mem_cgroup_disabled()) 280 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 281 else 282 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 283 284 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 285 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 286 unsigned long size; 287 288 if (!managed_zone(zone)) 289 continue; 290 291 if (!mem_cgroup_disabled()) 292 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 293 else 294 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 295 NR_ZONE_LRU_BASE + lru); 296 lru_size -= min(size, lru_size); 297 } 298 299 return lru_size; 300 301 } 302 303 /* 304 * Add a shrinker callback to be called from the vm. 305 */ 306 int register_shrinker(struct shrinker *shrinker) 307 { 308 size_t size = sizeof(*shrinker->nr_deferred); 309 310 if (shrinker->flags & SHRINKER_NUMA_AWARE) 311 size *= nr_node_ids; 312 313 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 314 if (!shrinker->nr_deferred) 315 return -ENOMEM; 316 317 down_write(&shrinker_rwsem); 318 list_add_tail(&shrinker->list, &shrinker_list); 319 up_write(&shrinker_rwsem); 320 return 0; 321 } 322 EXPORT_SYMBOL(register_shrinker); 323 324 /* 325 * Remove one 326 */ 327 void unregister_shrinker(struct shrinker *shrinker) 328 { 329 if (!shrinker->nr_deferred) 330 return; 331 down_write(&shrinker_rwsem); 332 list_del(&shrinker->list); 333 up_write(&shrinker_rwsem); 334 kfree(shrinker->nr_deferred); 335 shrinker->nr_deferred = NULL; 336 } 337 EXPORT_SYMBOL(unregister_shrinker); 338 339 #define SHRINK_BATCH 128 340 341 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 342 struct shrinker *shrinker, int priority) 343 { 344 unsigned long freed = 0; 345 unsigned long long delta; 346 long total_scan; 347 long freeable; 348 long nr; 349 long new_nr; 350 int nid = shrinkctl->nid; 351 long batch_size = shrinker->batch ? shrinker->batch 352 : SHRINK_BATCH; 353 long scanned = 0, next_deferred; 354 355 freeable = shrinker->count_objects(shrinker, shrinkctl); 356 if (freeable == 0) 357 return 0; 358 359 /* 360 * copy the current shrinker scan count into a local variable 361 * and zero it so that other concurrent shrinker invocations 362 * don't also do this scanning work. 363 */ 364 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 365 366 total_scan = nr; 367 delta = freeable >> priority; 368 delta *= 4; 369 do_div(delta, shrinker->seeks); 370 total_scan += delta; 371 if (total_scan < 0) { 372 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 373 shrinker->scan_objects, total_scan); 374 total_scan = freeable; 375 next_deferred = nr; 376 } else 377 next_deferred = total_scan; 378 379 /* 380 * We need to avoid excessive windup on filesystem shrinkers 381 * due to large numbers of GFP_NOFS allocations causing the 382 * shrinkers to return -1 all the time. This results in a large 383 * nr being built up so when a shrink that can do some work 384 * comes along it empties the entire cache due to nr >>> 385 * freeable. This is bad for sustaining a working set in 386 * memory. 387 * 388 * Hence only allow the shrinker to scan the entire cache when 389 * a large delta change is calculated directly. 390 */ 391 if (delta < freeable / 4) 392 total_scan = min(total_scan, freeable / 2); 393 394 /* 395 * Avoid risking looping forever due to too large nr value: 396 * never try to free more than twice the estimate number of 397 * freeable entries. 398 */ 399 if (total_scan > freeable * 2) 400 total_scan = freeable * 2; 401 402 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 403 freeable, delta, total_scan, priority); 404 405 /* 406 * Normally, we should not scan less than batch_size objects in one 407 * pass to avoid too frequent shrinker calls, but if the slab has less 408 * than batch_size objects in total and we are really tight on memory, 409 * we will try to reclaim all available objects, otherwise we can end 410 * up failing allocations although there are plenty of reclaimable 411 * objects spread over several slabs with usage less than the 412 * batch_size. 413 * 414 * We detect the "tight on memory" situations by looking at the total 415 * number of objects we want to scan (total_scan). If it is greater 416 * than the total number of objects on slab (freeable), we must be 417 * scanning at high prio and therefore should try to reclaim as much as 418 * possible. 419 */ 420 while (total_scan >= batch_size || 421 total_scan >= freeable) { 422 unsigned long ret; 423 unsigned long nr_to_scan = min(batch_size, total_scan); 424 425 shrinkctl->nr_to_scan = nr_to_scan; 426 shrinkctl->nr_scanned = nr_to_scan; 427 ret = shrinker->scan_objects(shrinker, shrinkctl); 428 if (ret == SHRINK_STOP) 429 break; 430 freed += ret; 431 432 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 433 total_scan -= shrinkctl->nr_scanned; 434 scanned += shrinkctl->nr_scanned; 435 436 cond_resched(); 437 } 438 439 if (next_deferred >= scanned) 440 next_deferred -= scanned; 441 else 442 next_deferred = 0; 443 /* 444 * move the unused scan count back into the shrinker in a 445 * manner that handles concurrent updates. If we exhausted the 446 * scan, there is no need to do an update. 447 */ 448 if (next_deferred > 0) 449 new_nr = atomic_long_add_return(next_deferred, 450 &shrinker->nr_deferred[nid]); 451 else 452 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 453 454 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 455 return freed; 456 } 457 458 /** 459 * shrink_slab - shrink slab caches 460 * @gfp_mask: allocation context 461 * @nid: node whose slab caches to target 462 * @memcg: memory cgroup whose slab caches to target 463 * @priority: the reclaim priority 464 * 465 * Call the shrink functions to age shrinkable caches. 466 * 467 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 468 * unaware shrinkers will receive a node id of 0 instead. 469 * 470 * @memcg specifies the memory cgroup to target. If it is not NULL, 471 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 472 * objects from the memory cgroup specified. Otherwise, only unaware 473 * shrinkers are called. 474 * 475 * @priority is sc->priority, we take the number of objects and >> by priority 476 * in order to get the scan target. 477 * 478 * Returns the number of reclaimed slab objects. 479 */ 480 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 481 struct mem_cgroup *memcg, 482 int priority) 483 { 484 struct shrinker *shrinker; 485 unsigned long freed = 0; 486 487 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 488 return 0; 489 490 if (!down_read_trylock(&shrinker_rwsem)) 491 goto out; 492 493 list_for_each_entry(shrinker, &shrinker_list, list) { 494 struct shrink_control sc = { 495 .gfp_mask = gfp_mask, 496 .nid = nid, 497 .memcg = memcg, 498 }; 499 500 /* 501 * If kernel memory accounting is disabled, we ignore 502 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 503 * passing NULL for memcg. 504 */ 505 if (memcg_kmem_enabled() && 506 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 507 continue; 508 509 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 510 sc.nid = 0; 511 512 freed += do_shrink_slab(&sc, shrinker, priority); 513 /* 514 * Bail out if someone want to register a new shrinker to 515 * prevent the regsitration from being stalled for long periods 516 * by parallel ongoing shrinking. 517 */ 518 if (rwsem_is_contended(&shrinker_rwsem)) { 519 freed = freed ? : 1; 520 break; 521 } 522 } 523 524 up_read(&shrinker_rwsem); 525 out: 526 cond_resched(); 527 return freed; 528 } 529 530 void drop_slab_node(int nid) 531 { 532 unsigned long freed; 533 534 do { 535 struct mem_cgroup *memcg = NULL; 536 537 freed = 0; 538 do { 539 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 540 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 541 } while (freed > 10); 542 } 543 544 void drop_slab(void) 545 { 546 int nid; 547 548 for_each_online_node(nid) 549 drop_slab_node(nid); 550 } 551 552 static inline int is_page_cache_freeable(struct page *page) 553 { 554 /* 555 * A freeable page cache page is referenced only by the caller 556 * that isolated the page, the page cache radix tree and 557 * optional buffer heads at page->private. 558 */ 559 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 560 HPAGE_PMD_NR : 1; 561 return page_count(page) - page_has_private(page) == 1 + radix_pins; 562 } 563 564 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 565 { 566 if (current->flags & PF_SWAPWRITE) 567 return 1; 568 if (!inode_write_congested(inode)) 569 return 1; 570 if (inode_to_bdi(inode) == current->backing_dev_info) 571 return 1; 572 return 0; 573 } 574 575 /* 576 * We detected a synchronous write error writing a page out. Probably 577 * -ENOSPC. We need to propagate that into the address_space for a subsequent 578 * fsync(), msync() or close(). 579 * 580 * The tricky part is that after writepage we cannot touch the mapping: nothing 581 * prevents it from being freed up. But we have a ref on the page and once 582 * that page is locked, the mapping is pinned. 583 * 584 * We're allowed to run sleeping lock_page() here because we know the caller has 585 * __GFP_FS. 586 */ 587 static void handle_write_error(struct address_space *mapping, 588 struct page *page, int error) 589 { 590 lock_page(page); 591 if (page_mapping(page) == mapping) 592 mapping_set_error(mapping, error); 593 unlock_page(page); 594 } 595 596 /* possible outcome of pageout() */ 597 typedef enum { 598 /* failed to write page out, page is locked */ 599 PAGE_KEEP, 600 /* move page to the active list, page is locked */ 601 PAGE_ACTIVATE, 602 /* page has been sent to the disk successfully, page is unlocked */ 603 PAGE_SUCCESS, 604 /* page is clean and locked */ 605 PAGE_CLEAN, 606 } pageout_t; 607 608 /* 609 * pageout is called by shrink_page_list() for each dirty page. 610 * Calls ->writepage(). 611 */ 612 static pageout_t pageout(struct page *page, struct address_space *mapping, 613 struct scan_control *sc) 614 { 615 /* 616 * If the page is dirty, only perform writeback if that write 617 * will be non-blocking. To prevent this allocation from being 618 * stalled by pagecache activity. But note that there may be 619 * stalls if we need to run get_block(). We could test 620 * PagePrivate for that. 621 * 622 * If this process is currently in __generic_file_write_iter() against 623 * this page's queue, we can perform writeback even if that 624 * will block. 625 * 626 * If the page is swapcache, write it back even if that would 627 * block, for some throttling. This happens by accident, because 628 * swap_backing_dev_info is bust: it doesn't reflect the 629 * congestion state of the swapdevs. Easy to fix, if needed. 630 */ 631 if (!is_page_cache_freeable(page)) 632 return PAGE_KEEP; 633 if (!mapping) { 634 /* 635 * Some data journaling orphaned pages can have 636 * page->mapping == NULL while being dirty with clean buffers. 637 */ 638 if (page_has_private(page)) { 639 if (try_to_free_buffers(page)) { 640 ClearPageDirty(page); 641 pr_info("%s: orphaned page\n", __func__); 642 return PAGE_CLEAN; 643 } 644 } 645 return PAGE_KEEP; 646 } 647 if (mapping->a_ops->writepage == NULL) 648 return PAGE_ACTIVATE; 649 if (!may_write_to_inode(mapping->host, sc)) 650 return PAGE_KEEP; 651 652 if (clear_page_dirty_for_io(page)) { 653 int res; 654 struct writeback_control wbc = { 655 .sync_mode = WB_SYNC_NONE, 656 .nr_to_write = SWAP_CLUSTER_MAX, 657 .range_start = 0, 658 .range_end = LLONG_MAX, 659 .for_reclaim = 1, 660 }; 661 662 SetPageReclaim(page); 663 res = mapping->a_ops->writepage(page, &wbc); 664 if (res < 0) 665 handle_write_error(mapping, page, res); 666 if (res == AOP_WRITEPAGE_ACTIVATE) { 667 ClearPageReclaim(page); 668 return PAGE_ACTIVATE; 669 } 670 671 if (!PageWriteback(page)) { 672 /* synchronous write or broken a_ops? */ 673 ClearPageReclaim(page); 674 } 675 trace_mm_vmscan_writepage(page); 676 inc_node_page_state(page, NR_VMSCAN_WRITE); 677 return PAGE_SUCCESS; 678 } 679 680 return PAGE_CLEAN; 681 } 682 683 /* 684 * Same as remove_mapping, but if the page is removed from the mapping, it 685 * gets returned with a refcount of 0. 686 */ 687 static int __remove_mapping(struct address_space *mapping, struct page *page, 688 bool reclaimed) 689 { 690 unsigned long flags; 691 int refcount; 692 693 BUG_ON(!PageLocked(page)); 694 BUG_ON(mapping != page_mapping(page)); 695 696 xa_lock_irqsave(&mapping->i_pages, flags); 697 /* 698 * The non racy check for a busy page. 699 * 700 * Must be careful with the order of the tests. When someone has 701 * a ref to the page, it may be possible that they dirty it then 702 * drop the reference. So if PageDirty is tested before page_count 703 * here, then the following race may occur: 704 * 705 * get_user_pages(&page); 706 * [user mapping goes away] 707 * write_to(page); 708 * !PageDirty(page) [good] 709 * SetPageDirty(page); 710 * put_page(page); 711 * !page_count(page) [good, discard it] 712 * 713 * [oops, our write_to data is lost] 714 * 715 * Reversing the order of the tests ensures such a situation cannot 716 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 717 * load is not satisfied before that of page->_refcount. 718 * 719 * Note that if SetPageDirty is always performed via set_page_dirty, 720 * and thus under the i_pages lock, then this ordering is not required. 721 */ 722 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 723 refcount = 1 + HPAGE_PMD_NR; 724 else 725 refcount = 2; 726 if (!page_ref_freeze(page, refcount)) 727 goto cannot_free; 728 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 729 if (unlikely(PageDirty(page))) { 730 page_ref_unfreeze(page, refcount); 731 goto cannot_free; 732 } 733 734 if (PageSwapCache(page)) { 735 swp_entry_t swap = { .val = page_private(page) }; 736 mem_cgroup_swapout(page, swap); 737 __delete_from_swap_cache(page); 738 xa_unlock_irqrestore(&mapping->i_pages, flags); 739 put_swap_page(page, swap); 740 } else { 741 void (*freepage)(struct page *); 742 void *shadow = NULL; 743 744 freepage = mapping->a_ops->freepage; 745 /* 746 * Remember a shadow entry for reclaimed file cache in 747 * order to detect refaults, thus thrashing, later on. 748 * 749 * But don't store shadows in an address space that is 750 * already exiting. This is not just an optizimation, 751 * inode reclaim needs to empty out the radix tree or 752 * the nodes are lost. Don't plant shadows behind its 753 * back. 754 * 755 * We also don't store shadows for DAX mappings because the 756 * only page cache pages found in these are zero pages 757 * covering holes, and because we don't want to mix DAX 758 * exceptional entries and shadow exceptional entries in the 759 * same address_space. 760 */ 761 if (reclaimed && page_is_file_cache(page) && 762 !mapping_exiting(mapping) && !dax_mapping(mapping)) 763 shadow = workingset_eviction(mapping, page); 764 __delete_from_page_cache(page, shadow); 765 xa_unlock_irqrestore(&mapping->i_pages, flags); 766 767 if (freepage != NULL) 768 freepage(page); 769 } 770 771 return 1; 772 773 cannot_free: 774 xa_unlock_irqrestore(&mapping->i_pages, flags); 775 return 0; 776 } 777 778 /* 779 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 780 * someone else has a ref on the page, abort and return 0. If it was 781 * successfully detached, return 1. Assumes the caller has a single ref on 782 * this page. 783 */ 784 int remove_mapping(struct address_space *mapping, struct page *page) 785 { 786 if (__remove_mapping(mapping, page, false)) { 787 /* 788 * Unfreezing the refcount with 1 rather than 2 effectively 789 * drops the pagecache ref for us without requiring another 790 * atomic operation. 791 */ 792 page_ref_unfreeze(page, 1); 793 return 1; 794 } 795 return 0; 796 } 797 798 /** 799 * putback_lru_page - put previously isolated page onto appropriate LRU list 800 * @page: page to be put back to appropriate lru list 801 * 802 * Add previously isolated @page to appropriate LRU list. 803 * Page may still be unevictable for other reasons. 804 * 805 * lru_lock must not be held, interrupts must be enabled. 806 */ 807 void putback_lru_page(struct page *page) 808 { 809 lru_cache_add(page); 810 put_page(page); /* drop ref from isolate */ 811 } 812 813 enum page_references { 814 PAGEREF_RECLAIM, 815 PAGEREF_RECLAIM_CLEAN, 816 PAGEREF_KEEP, 817 PAGEREF_ACTIVATE, 818 }; 819 820 static enum page_references page_check_references(struct page *page, 821 struct scan_control *sc) 822 { 823 int referenced_ptes, referenced_page; 824 unsigned long vm_flags; 825 826 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 827 &vm_flags); 828 referenced_page = TestClearPageReferenced(page); 829 830 /* 831 * Mlock lost the isolation race with us. Let try_to_unmap() 832 * move the page to the unevictable list. 833 */ 834 if (vm_flags & VM_LOCKED) 835 return PAGEREF_RECLAIM; 836 837 if (referenced_ptes) { 838 if (PageSwapBacked(page)) 839 return PAGEREF_ACTIVATE; 840 /* 841 * All mapped pages start out with page table 842 * references from the instantiating fault, so we need 843 * to look twice if a mapped file page is used more 844 * than once. 845 * 846 * Mark it and spare it for another trip around the 847 * inactive list. Another page table reference will 848 * lead to its activation. 849 * 850 * Note: the mark is set for activated pages as well 851 * so that recently deactivated but used pages are 852 * quickly recovered. 853 */ 854 SetPageReferenced(page); 855 856 if (referenced_page || referenced_ptes > 1) 857 return PAGEREF_ACTIVATE; 858 859 /* 860 * Activate file-backed executable pages after first usage. 861 */ 862 if (vm_flags & VM_EXEC) 863 return PAGEREF_ACTIVATE; 864 865 return PAGEREF_KEEP; 866 } 867 868 /* Reclaim if clean, defer dirty pages to writeback */ 869 if (referenced_page && !PageSwapBacked(page)) 870 return PAGEREF_RECLAIM_CLEAN; 871 872 return PAGEREF_RECLAIM; 873 } 874 875 /* Check if a page is dirty or under writeback */ 876 static void page_check_dirty_writeback(struct page *page, 877 bool *dirty, bool *writeback) 878 { 879 struct address_space *mapping; 880 881 /* 882 * Anonymous pages are not handled by flushers and must be written 883 * from reclaim context. Do not stall reclaim based on them 884 */ 885 if (!page_is_file_cache(page) || 886 (PageAnon(page) && !PageSwapBacked(page))) { 887 *dirty = false; 888 *writeback = false; 889 return; 890 } 891 892 /* By default assume that the page flags are accurate */ 893 *dirty = PageDirty(page); 894 *writeback = PageWriteback(page); 895 896 /* Verify dirty/writeback state if the filesystem supports it */ 897 if (!page_has_private(page)) 898 return; 899 900 mapping = page_mapping(page); 901 if (mapping && mapping->a_ops->is_dirty_writeback) 902 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 903 } 904 905 /* 906 * shrink_page_list() returns the number of reclaimed pages 907 */ 908 static unsigned long shrink_page_list(struct list_head *page_list, 909 struct pglist_data *pgdat, 910 struct scan_control *sc, 911 enum ttu_flags ttu_flags, 912 struct reclaim_stat *stat, 913 bool force_reclaim) 914 { 915 LIST_HEAD(ret_pages); 916 LIST_HEAD(free_pages); 917 int pgactivate = 0; 918 unsigned nr_unqueued_dirty = 0; 919 unsigned nr_dirty = 0; 920 unsigned nr_congested = 0; 921 unsigned nr_reclaimed = 0; 922 unsigned nr_writeback = 0; 923 unsigned nr_immediate = 0; 924 unsigned nr_ref_keep = 0; 925 unsigned nr_unmap_fail = 0; 926 927 cond_resched(); 928 929 while (!list_empty(page_list)) { 930 struct address_space *mapping; 931 struct page *page; 932 int may_enter_fs; 933 enum page_references references = PAGEREF_RECLAIM_CLEAN; 934 bool dirty, writeback; 935 936 cond_resched(); 937 938 page = lru_to_page(page_list); 939 list_del(&page->lru); 940 941 if (!trylock_page(page)) 942 goto keep; 943 944 VM_BUG_ON_PAGE(PageActive(page), page); 945 946 sc->nr_scanned++; 947 948 if (unlikely(!page_evictable(page))) 949 goto activate_locked; 950 951 if (!sc->may_unmap && page_mapped(page)) 952 goto keep_locked; 953 954 /* Double the slab pressure for mapped and swapcache pages */ 955 if ((page_mapped(page) || PageSwapCache(page)) && 956 !(PageAnon(page) && !PageSwapBacked(page))) 957 sc->nr_scanned++; 958 959 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 960 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 961 962 /* 963 * The number of dirty pages determines if a node is marked 964 * reclaim_congested which affects wait_iff_congested. kswapd 965 * will stall and start writing pages if the tail of the LRU 966 * is all dirty unqueued pages. 967 */ 968 page_check_dirty_writeback(page, &dirty, &writeback); 969 if (dirty || writeback) 970 nr_dirty++; 971 972 if (dirty && !writeback) 973 nr_unqueued_dirty++; 974 975 /* 976 * Treat this page as congested if the underlying BDI is or if 977 * pages are cycling through the LRU so quickly that the 978 * pages marked for immediate reclaim are making it to the 979 * end of the LRU a second time. 980 */ 981 mapping = page_mapping(page); 982 if (((dirty || writeback) && mapping && 983 inode_write_congested(mapping->host)) || 984 (writeback && PageReclaim(page))) 985 nr_congested++; 986 987 /* 988 * If a page at the tail of the LRU is under writeback, there 989 * are three cases to consider. 990 * 991 * 1) If reclaim is encountering an excessive number of pages 992 * under writeback and this page is both under writeback and 993 * PageReclaim then it indicates that pages are being queued 994 * for IO but are being recycled through the LRU before the 995 * IO can complete. Waiting on the page itself risks an 996 * indefinite stall if it is impossible to writeback the 997 * page due to IO error or disconnected storage so instead 998 * note that the LRU is being scanned too quickly and the 999 * caller can stall after page list has been processed. 1000 * 1001 * 2) Global or new memcg reclaim encounters a page that is 1002 * not marked for immediate reclaim, or the caller does not 1003 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1004 * not to fs). In this case mark the page for immediate 1005 * reclaim and continue scanning. 1006 * 1007 * Require may_enter_fs because we would wait on fs, which 1008 * may not have submitted IO yet. And the loop driver might 1009 * enter reclaim, and deadlock if it waits on a page for 1010 * which it is needed to do the write (loop masks off 1011 * __GFP_IO|__GFP_FS for this reason); but more thought 1012 * would probably show more reasons. 1013 * 1014 * 3) Legacy memcg encounters a page that is already marked 1015 * PageReclaim. memcg does not have any dirty pages 1016 * throttling so we could easily OOM just because too many 1017 * pages are in writeback and there is nothing else to 1018 * reclaim. Wait for the writeback to complete. 1019 * 1020 * In cases 1) and 2) we activate the pages to get them out of 1021 * the way while we continue scanning for clean pages on the 1022 * inactive list and refilling from the active list. The 1023 * observation here is that waiting for disk writes is more 1024 * expensive than potentially causing reloads down the line. 1025 * Since they're marked for immediate reclaim, they won't put 1026 * memory pressure on the cache working set any longer than it 1027 * takes to write them to disk. 1028 */ 1029 if (PageWriteback(page)) { 1030 /* Case 1 above */ 1031 if (current_is_kswapd() && 1032 PageReclaim(page) && 1033 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1034 nr_immediate++; 1035 goto activate_locked; 1036 1037 /* Case 2 above */ 1038 } else if (sane_reclaim(sc) || 1039 !PageReclaim(page) || !may_enter_fs) { 1040 /* 1041 * This is slightly racy - end_page_writeback() 1042 * might have just cleared PageReclaim, then 1043 * setting PageReclaim here end up interpreted 1044 * as PageReadahead - but that does not matter 1045 * enough to care. What we do want is for this 1046 * page to have PageReclaim set next time memcg 1047 * reclaim reaches the tests above, so it will 1048 * then wait_on_page_writeback() to avoid OOM; 1049 * and it's also appropriate in global reclaim. 1050 */ 1051 SetPageReclaim(page); 1052 nr_writeback++; 1053 goto activate_locked; 1054 1055 /* Case 3 above */ 1056 } else { 1057 unlock_page(page); 1058 wait_on_page_writeback(page); 1059 /* then go back and try same page again */ 1060 list_add_tail(&page->lru, page_list); 1061 continue; 1062 } 1063 } 1064 1065 if (!force_reclaim) 1066 references = page_check_references(page, sc); 1067 1068 switch (references) { 1069 case PAGEREF_ACTIVATE: 1070 goto activate_locked; 1071 case PAGEREF_KEEP: 1072 nr_ref_keep++; 1073 goto keep_locked; 1074 case PAGEREF_RECLAIM: 1075 case PAGEREF_RECLAIM_CLEAN: 1076 ; /* try to reclaim the page below */ 1077 } 1078 1079 /* 1080 * Anonymous process memory has backing store? 1081 * Try to allocate it some swap space here. 1082 * Lazyfree page could be freed directly 1083 */ 1084 if (PageAnon(page) && PageSwapBacked(page)) { 1085 if (!PageSwapCache(page)) { 1086 if (!(sc->gfp_mask & __GFP_IO)) 1087 goto keep_locked; 1088 if (PageTransHuge(page)) { 1089 /* cannot split THP, skip it */ 1090 if (!can_split_huge_page(page, NULL)) 1091 goto activate_locked; 1092 /* 1093 * Split pages without a PMD map right 1094 * away. Chances are some or all of the 1095 * tail pages can be freed without IO. 1096 */ 1097 if (!compound_mapcount(page) && 1098 split_huge_page_to_list(page, 1099 page_list)) 1100 goto activate_locked; 1101 } 1102 if (!add_to_swap(page)) { 1103 if (!PageTransHuge(page)) 1104 goto activate_locked; 1105 /* Fallback to swap normal pages */ 1106 if (split_huge_page_to_list(page, 1107 page_list)) 1108 goto activate_locked; 1109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1110 count_vm_event(THP_SWPOUT_FALLBACK); 1111 #endif 1112 if (!add_to_swap(page)) 1113 goto activate_locked; 1114 } 1115 1116 may_enter_fs = 1; 1117 1118 /* Adding to swap updated mapping */ 1119 mapping = page_mapping(page); 1120 } 1121 } else if (unlikely(PageTransHuge(page))) { 1122 /* Split file THP */ 1123 if (split_huge_page_to_list(page, page_list)) 1124 goto keep_locked; 1125 } 1126 1127 /* 1128 * The page is mapped into the page tables of one or more 1129 * processes. Try to unmap it here. 1130 */ 1131 if (page_mapped(page)) { 1132 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1133 1134 if (unlikely(PageTransHuge(page))) 1135 flags |= TTU_SPLIT_HUGE_PMD; 1136 if (!try_to_unmap(page, flags)) { 1137 nr_unmap_fail++; 1138 goto activate_locked; 1139 } 1140 } 1141 1142 if (PageDirty(page)) { 1143 /* 1144 * Only kswapd can writeback filesystem pages 1145 * to avoid risk of stack overflow. But avoid 1146 * injecting inefficient single-page IO into 1147 * flusher writeback as much as possible: only 1148 * write pages when we've encountered many 1149 * dirty pages, and when we've already scanned 1150 * the rest of the LRU for clean pages and see 1151 * the same dirty pages again (PageReclaim). 1152 */ 1153 if (page_is_file_cache(page) && 1154 (!current_is_kswapd() || !PageReclaim(page) || 1155 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1156 /* 1157 * Immediately reclaim when written back. 1158 * Similar in principal to deactivate_page() 1159 * except we already have the page isolated 1160 * and know it's dirty 1161 */ 1162 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1163 SetPageReclaim(page); 1164 1165 goto activate_locked; 1166 } 1167 1168 if (references == PAGEREF_RECLAIM_CLEAN) 1169 goto keep_locked; 1170 if (!may_enter_fs) 1171 goto keep_locked; 1172 if (!sc->may_writepage) 1173 goto keep_locked; 1174 1175 /* 1176 * Page is dirty. Flush the TLB if a writable entry 1177 * potentially exists to avoid CPU writes after IO 1178 * starts and then write it out here. 1179 */ 1180 try_to_unmap_flush_dirty(); 1181 switch (pageout(page, mapping, sc)) { 1182 case PAGE_KEEP: 1183 goto keep_locked; 1184 case PAGE_ACTIVATE: 1185 goto activate_locked; 1186 case PAGE_SUCCESS: 1187 if (PageWriteback(page)) 1188 goto keep; 1189 if (PageDirty(page)) 1190 goto keep; 1191 1192 /* 1193 * A synchronous write - probably a ramdisk. Go 1194 * ahead and try to reclaim the page. 1195 */ 1196 if (!trylock_page(page)) 1197 goto keep; 1198 if (PageDirty(page) || PageWriteback(page)) 1199 goto keep_locked; 1200 mapping = page_mapping(page); 1201 case PAGE_CLEAN: 1202 ; /* try to free the page below */ 1203 } 1204 } 1205 1206 /* 1207 * If the page has buffers, try to free the buffer mappings 1208 * associated with this page. If we succeed we try to free 1209 * the page as well. 1210 * 1211 * We do this even if the page is PageDirty(). 1212 * try_to_release_page() does not perform I/O, but it is 1213 * possible for a page to have PageDirty set, but it is actually 1214 * clean (all its buffers are clean). This happens if the 1215 * buffers were written out directly, with submit_bh(). ext3 1216 * will do this, as well as the blockdev mapping. 1217 * try_to_release_page() will discover that cleanness and will 1218 * drop the buffers and mark the page clean - it can be freed. 1219 * 1220 * Rarely, pages can have buffers and no ->mapping. These are 1221 * the pages which were not successfully invalidated in 1222 * truncate_complete_page(). We try to drop those buffers here 1223 * and if that worked, and the page is no longer mapped into 1224 * process address space (page_count == 1) it can be freed. 1225 * Otherwise, leave the page on the LRU so it is swappable. 1226 */ 1227 if (page_has_private(page)) { 1228 if (!try_to_release_page(page, sc->gfp_mask)) 1229 goto activate_locked; 1230 if (!mapping && page_count(page) == 1) { 1231 unlock_page(page); 1232 if (put_page_testzero(page)) 1233 goto free_it; 1234 else { 1235 /* 1236 * rare race with speculative reference. 1237 * the speculative reference will free 1238 * this page shortly, so we may 1239 * increment nr_reclaimed here (and 1240 * leave it off the LRU). 1241 */ 1242 nr_reclaimed++; 1243 continue; 1244 } 1245 } 1246 } 1247 1248 if (PageAnon(page) && !PageSwapBacked(page)) { 1249 /* follow __remove_mapping for reference */ 1250 if (!page_ref_freeze(page, 1)) 1251 goto keep_locked; 1252 if (PageDirty(page)) { 1253 page_ref_unfreeze(page, 1); 1254 goto keep_locked; 1255 } 1256 1257 count_vm_event(PGLAZYFREED); 1258 count_memcg_page_event(page, PGLAZYFREED); 1259 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1260 goto keep_locked; 1261 /* 1262 * At this point, we have no other references and there is 1263 * no way to pick any more up (removed from LRU, removed 1264 * from pagecache). Can use non-atomic bitops now (and 1265 * we obviously don't have to worry about waking up a process 1266 * waiting on the page lock, because there are no references. 1267 */ 1268 __ClearPageLocked(page); 1269 free_it: 1270 nr_reclaimed++; 1271 1272 /* 1273 * Is there need to periodically free_page_list? It would 1274 * appear not as the counts should be low 1275 */ 1276 if (unlikely(PageTransHuge(page))) { 1277 mem_cgroup_uncharge(page); 1278 (*get_compound_page_dtor(page))(page); 1279 } else 1280 list_add(&page->lru, &free_pages); 1281 continue; 1282 1283 activate_locked: 1284 /* Not a candidate for swapping, so reclaim swap space. */ 1285 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1286 PageMlocked(page))) 1287 try_to_free_swap(page); 1288 VM_BUG_ON_PAGE(PageActive(page), page); 1289 if (!PageMlocked(page)) { 1290 SetPageActive(page); 1291 pgactivate++; 1292 count_memcg_page_event(page, PGACTIVATE); 1293 } 1294 keep_locked: 1295 unlock_page(page); 1296 keep: 1297 list_add(&page->lru, &ret_pages); 1298 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1299 } 1300 1301 mem_cgroup_uncharge_list(&free_pages); 1302 try_to_unmap_flush(); 1303 free_unref_page_list(&free_pages); 1304 1305 list_splice(&ret_pages, page_list); 1306 count_vm_events(PGACTIVATE, pgactivate); 1307 1308 if (stat) { 1309 stat->nr_dirty = nr_dirty; 1310 stat->nr_congested = nr_congested; 1311 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1312 stat->nr_writeback = nr_writeback; 1313 stat->nr_immediate = nr_immediate; 1314 stat->nr_activate = pgactivate; 1315 stat->nr_ref_keep = nr_ref_keep; 1316 stat->nr_unmap_fail = nr_unmap_fail; 1317 } 1318 return nr_reclaimed; 1319 } 1320 1321 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1322 struct list_head *page_list) 1323 { 1324 struct scan_control sc = { 1325 .gfp_mask = GFP_KERNEL, 1326 .priority = DEF_PRIORITY, 1327 .may_unmap = 1, 1328 }; 1329 unsigned long ret; 1330 struct page *page, *next; 1331 LIST_HEAD(clean_pages); 1332 1333 list_for_each_entry_safe(page, next, page_list, lru) { 1334 if (page_is_file_cache(page) && !PageDirty(page) && 1335 !__PageMovable(page)) { 1336 ClearPageActive(page); 1337 list_move(&page->lru, &clean_pages); 1338 } 1339 } 1340 1341 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1342 TTU_IGNORE_ACCESS, NULL, true); 1343 list_splice(&clean_pages, page_list); 1344 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1345 return ret; 1346 } 1347 1348 /* 1349 * Attempt to remove the specified page from its LRU. Only take this page 1350 * if it is of the appropriate PageActive status. Pages which are being 1351 * freed elsewhere are also ignored. 1352 * 1353 * page: page to consider 1354 * mode: one of the LRU isolation modes defined above 1355 * 1356 * returns 0 on success, -ve errno on failure. 1357 */ 1358 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1359 { 1360 int ret = -EINVAL; 1361 1362 /* Only take pages on the LRU. */ 1363 if (!PageLRU(page)) 1364 return ret; 1365 1366 /* Compaction should not handle unevictable pages but CMA can do so */ 1367 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1368 return ret; 1369 1370 ret = -EBUSY; 1371 1372 /* 1373 * To minimise LRU disruption, the caller can indicate that it only 1374 * wants to isolate pages it will be able to operate on without 1375 * blocking - clean pages for the most part. 1376 * 1377 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1378 * that it is possible to migrate without blocking 1379 */ 1380 if (mode & ISOLATE_ASYNC_MIGRATE) { 1381 /* All the caller can do on PageWriteback is block */ 1382 if (PageWriteback(page)) 1383 return ret; 1384 1385 if (PageDirty(page)) { 1386 struct address_space *mapping; 1387 bool migrate_dirty; 1388 1389 /* 1390 * Only pages without mappings or that have a 1391 * ->migratepage callback are possible to migrate 1392 * without blocking. However, we can be racing with 1393 * truncation so it's necessary to lock the page 1394 * to stabilise the mapping as truncation holds 1395 * the page lock until after the page is removed 1396 * from the page cache. 1397 */ 1398 if (!trylock_page(page)) 1399 return ret; 1400 1401 mapping = page_mapping(page); 1402 migrate_dirty = mapping && mapping->a_ops->migratepage; 1403 unlock_page(page); 1404 if (!migrate_dirty) 1405 return ret; 1406 } 1407 } 1408 1409 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1410 return ret; 1411 1412 if (likely(get_page_unless_zero(page))) { 1413 /* 1414 * Be careful not to clear PageLRU until after we're 1415 * sure the page is not being freed elsewhere -- the 1416 * page release code relies on it. 1417 */ 1418 ClearPageLRU(page); 1419 ret = 0; 1420 } 1421 1422 return ret; 1423 } 1424 1425 1426 /* 1427 * Update LRU sizes after isolating pages. The LRU size updates must 1428 * be complete before mem_cgroup_update_lru_size due to a santity check. 1429 */ 1430 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1431 enum lru_list lru, unsigned long *nr_zone_taken) 1432 { 1433 int zid; 1434 1435 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1436 if (!nr_zone_taken[zid]) 1437 continue; 1438 1439 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1440 #ifdef CONFIG_MEMCG 1441 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1442 #endif 1443 } 1444 1445 } 1446 1447 /* 1448 * zone_lru_lock is heavily contended. Some of the functions that 1449 * shrink the lists perform better by taking out a batch of pages 1450 * and working on them outside the LRU lock. 1451 * 1452 * For pagecache intensive workloads, this function is the hottest 1453 * spot in the kernel (apart from copy_*_user functions). 1454 * 1455 * Appropriate locks must be held before calling this function. 1456 * 1457 * @nr_to_scan: The number of eligible pages to look through on the list. 1458 * @lruvec: The LRU vector to pull pages from. 1459 * @dst: The temp list to put pages on to. 1460 * @nr_scanned: The number of pages that were scanned. 1461 * @sc: The scan_control struct for this reclaim session 1462 * @mode: One of the LRU isolation modes 1463 * @lru: LRU list id for isolating 1464 * 1465 * returns how many pages were moved onto *@dst. 1466 */ 1467 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1468 struct lruvec *lruvec, struct list_head *dst, 1469 unsigned long *nr_scanned, struct scan_control *sc, 1470 isolate_mode_t mode, enum lru_list lru) 1471 { 1472 struct list_head *src = &lruvec->lists[lru]; 1473 unsigned long nr_taken = 0; 1474 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1475 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1476 unsigned long skipped = 0; 1477 unsigned long scan, total_scan, nr_pages; 1478 LIST_HEAD(pages_skipped); 1479 1480 scan = 0; 1481 for (total_scan = 0; 1482 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1483 total_scan++) { 1484 struct page *page; 1485 1486 page = lru_to_page(src); 1487 prefetchw_prev_lru_page(page, src, flags); 1488 1489 VM_BUG_ON_PAGE(!PageLRU(page), page); 1490 1491 if (page_zonenum(page) > sc->reclaim_idx) { 1492 list_move(&page->lru, &pages_skipped); 1493 nr_skipped[page_zonenum(page)]++; 1494 continue; 1495 } 1496 1497 /* 1498 * Do not count skipped pages because that makes the function 1499 * return with no isolated pages if the LRU mostly contains 1500 * ineligible pages. This causes the VM to not reclaim any 1501 * pages, triggering a premature OOM. 1502 */ 1503 scan++; 1504 switch (__isolate_lru_page(page, mode)) { 1505 case 0: 1506 nr_pages = hpage_nr_pages(page); 1507 nr_taken += nr_pages; 1508 nr_zone_taken[page_zonenum(page)] += nr_pages; 1509 list_move(&page->lru, dst); 1510 break; 1511 1512 case -EBUSY: 1513 /* else it is being freed elsewhere */ 1514 list_move(&page->lru, src); 1515 continue; 1516 1517 default: 1518 BUG(); 1519 } 1520 } 1521 1522 /* 1523 * Splice any skipped pages to the start of the LRU list. Note that 1524 * this disrupts the LRU order when reclaiming for lower zones but 1525 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1526 * scanning would soon rescan the same pages to skip and put the 1527 * system at risk of premature OOM. 1528 */ 1529 if (!list_empty(&pages_skipped)) { 1530 int zid; 1531 1532 list_splice(&pages_skipped, src); 1533 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1534 if (!nr_skipped[zid]) 1535 continue; 1536 1537 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1538 skipped += nr_skipped[zid]; 1539 } 1540 } 1541 *nr_scanned = total_scan; 1542 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1543 total_scan, skipped, nr_taken, mode, lru); 1544 update_lru_sizes(lruvec, lru, nr_zone_taken); 1545 return nr_taken; 1546 } 1547 1548 /** 1549 * isolate_lru_page - tries to isolate a page from its LRU list 1550 * @page: page to isolate from its LRU list 1551 * 1552 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1553 * vmstat statistic corresponding to whatever LRU list the page was on. 1554 * 1555 * Returns 0 if the page was removed from an LRU list. 1556 * Returns -EBUSY if the page was not on an LRU list. 1557 * 1558 * The returned page will have PageLRU() cleared. If it was found on 1559 * the active list, it will have PageActive set. If it was found on 1560 * the unevictable list, it will have the PageUnevictable bit set. That flag 1561 * may need to be cleared by the caller before letting the page go. 1562 * 1563 * The vmstat statistic corresponding to the list on which the page was 1564 * found will be decremented. 1565 * 1566 * Restrictions: 1567 * 1568 * (1) Must be called with an elevated refcount on the page. This is a 1569 * fundamentnal difference from isolate_lru_pages (which is called 1570 * without a stable reference). 1571 * (2) the lru_lock must not be held. 1572 * (3) interrupts must be enabled. 1573 */ 1574 int isolate_lru_page(struct page *page) 1575 { 1576 int ret = -EBUSY; 1577 1578 VM_BUG_ON_PAGE(!page_count(page), page); 1579 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1580 1581 if (PageLRU(page)) { 1582 struct zone *zone = page_zone(page); 1583 struct lruvec *lruvec; 1584 1585 spin_lock_irq(zone_lru_lock(zone)); 1586 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1587 if (PageLRU(page)) { 1588 int lru = page_lru(page); 1589 get_page(page); 1590 ClearPageLRU(page); 1591 del_page_from_lru_list(page, lruvec, lru); 1592 ret = 0; 1593 } 1594 spin_unlock_irq(zone_lru_lock(zone)); 1595 } 1596 return ret; 1597 } 1598 1599 /* 1600 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1601 * then get resheduled. When there are massive number of tasks doing page 1602 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1603 * the LRU list will go small and be scanned faster than necessary, leading to 1604 * unnecessary swapping, thrashing and OOM. 1605 */ 1606 static int too_many_isolated(struct pglist_data *pgdat, int file, 1607 struct scan_control *sc) 1608 { 1609 unsigned long inactive, isolated; 1610 1611 if (current_is_kswapd()) 1612 return 0; 1613 1614 if (!sane_reclaim(sc)) 1615 return 0; 1616 1617 if (file) { 1618 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1619 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1620 } else { 1621 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1622 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1623 } 1624 1625 /* 1626 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1627 * won't get blocked by normal direct-reclaimers, forming a circular 1628 * deadlock. 1629 */ 1630 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1631 inactive >>= 3; 1632 1633 return isolated > inactive; 1634 } 1635 1636 static noinline_for_stack void 1637 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1638 { 1639 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1640 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1641 LIST_HEAD(pages_to_free); 1642 1643 /* 1644 * Put back any unfreeable pages. 1645 */ 1646 while (!list_empty(page_list)) { 1647 struct page *page = lru_to_page(page_list); 1648 int lru; 1649 1650 VM_BUG_ON_PAGE(PageLRU(page), page); 1651 list_del(&page->lru); 1652 if (unlikely(!page_evictable(page))) { 1653 spin_unlock_irq(&pgdat->lru_lock); 1654 putback_lru_page(page); 1655 spin_lock_irq(&pgdat->lru_lock); 1656 continue; 1657 } 1658 1659 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1660 1661 SetPageLRU(page); 1662 lru = page_lru(page); 1663 add_page_to_lru_list(page, lruvec, lru); 1664 1665 if (is_active_lru(lru)) { 1666 int file = is_file_lru(lru); 1667 int numpages = hpage_nr_pages(page); 1668 reclaim_stat->recent_rotated[file] += numpages; 1669 } 1670 if (put_page_testzero(page)) { 1671 __ClearPageLRU(page); 1672 __ClearPageActive(page); 1673 del_page_from_lru_list(page, lruvec, lru); 1674 1675 if (unlikely(PageCompound(page))) { 1676 spin_unlock_irq(&pgdat->lru_lock); 1677 mem_cgroup_uncharge(page); 1678 (*get_compound_page_dtor(page))(page); 1679 spin_lock_irq(&pgdat->lru_lock); 1680 } else 1681 list_add(&page->lru, &pages_to_free); 1682 } 1683 } 1684 1685 /* 1686 * To save our caller's stack, now use input list for pages to free. 1687 */ 1688 list_splice(&pages_to_free, page_list); 1689 } 1690 1691 /* 1692 * If a kernel thread (such as nfsd for loop-back mounts) services 1693 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1694 * In that case we should only throttle if the backing device it is 1695 * writing to is congested. In other cases it is safe to throttle. 1696 */ 1697 static int current_may_throttle(void) 1698 { 1699 return !(current->flags & PF_LESS_THROTTLE) || 1700 current->backing_dev_info == NULL || 1701 bdi_write_congested(current->backing_dev_info); 1702 } 1703 1704 /* 1705 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1706 * of reclaimed pages 1707 */ 1708 static noinline_for_stack unsigned long 1709 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1710 struct scan_control *sc, enum lru_list lru) 1711 { 1712 LIST_HEAD(page_list); 1713 unsigned long nr_scanned; 1714 unsigned long nr_reclaimed = 0; 1715 unsigned long nr_taken; 1716 struct reclaim_stat stat = {}; 1717 isolate_mode_t isolate_mode = 0; 1718 int file = is_file_lru(lru); 1719 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1720 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1721 bool stalled = false; 1722 1723 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1724 if (stalled) 1725 return 0; 1726 1727 /* wait a bit for the reclaimer. */ 1728 msleep(100); 1729 stalled = true; 1730 1731 /* We are about to die and free our memory. Return now. */ 1732 if (fatal_signal_pending(current)) 1733 return SWAP_CLUSTER_MAX; 1734 } 1735 1736 lru_add_drain(); 1737 1738 if (!sc->may_unmap) 1739 isolate_mode |= ISOLATE_UNMAPPED; 1740 1741 spin_lock_irq(&pgdat->lru_lock); 1742 1743 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1744 &nr_scanned, sc, isolate_mode, lru); 1745 1746 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1747 reclaim_stat->recent_scanned[file] += nr_taken; 1748 1749 if (current_is_kswapd()) { 1750 if (global_reclaim(sc)) 1751 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1752 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1753 nr_scanned); 1754 } else { 1755 if (global_reclaim(sc)) 1756 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1757 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1758 nr_scanned); 1759 } 1760 spin_unlock_irq(&pgdat->lru_lock); 1761 1762 if (nr_taken == 0) 1763 return 0; 1764 1765 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1766 &stat, false); 1767 1768 spin_lock_irq(&pgdat->lru_lock); 1769 1770 if (current_is_kswapd()) { 1771 if (global_reclaim(sc)) 1772 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1773 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1774 nr_reclaimed); 1775 } else { 1776 if (global_reclaim(sc)) 1777 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1778 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1779 nr_reclaimed); 1780 } 1781 1782 putback_inactive_pages(lruvec, &page_list); 1783 1784 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1785 1786 spin_unlock_irq(&pgdat->lru_lock); 1787 1788 mem_cgroup_uncharge_list(&page_list); 1789 free_unref_page_list(&page_list); 1790 1791 /* 1792 * If dirty pages are scanned that are not queued for IO, it 1793 * implies that flushers are not doing their job. This can 1794 * happen when memory pressure pushes dirty pages to the end of 1795 * the LRU before the dirty limits are breached and the dirty 1796 * data has expired. It can also happen when the proportion of 1797 * dirty pages grows not through writes but through memory 1798 * pressure reclaiming all the clean cache. And in some cases, 1799 * the flushers simply cannot keep up with the allocation 1800 * rate. Nudge the flusher threads in case they are asleep. 1801 */ 1802 if (stat.nr_unqueued_dirty == nr_taken) 1803 wakeup_flusher_threads(WB_REASON_VMSCAN); 1804 1805 sc->nr.dirty += stat.nr_dirty; 1806 sc->nr.congested += stat.nr_congested; 1807 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1808 sc->nr.writeback += stat.nr_writeback; 1809 sc->nr.immediate += stat.nr_immediate; 1810 sc->nr.taken += nr_taken; 1811 if (file) 1812 sc->nr.file_taken += nr_taken; 1813 1814 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1815 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1816 return nr_reclaimed; 1817 } 1818 1819 /* 1820 * This moves pages from the active list to the inactive list. 1821 * 1822 * We move them the other way if the page is referenced by one or more 1823 * processes, from rmap. 1824 * 1825 * If the pages are mostly unmapped, the processing is fast and it is 1826 * appropriate to hold zone_lru_lock across the whole operation. But if 1827 * the pages are mapped, the processing is slow (page_referenced()) so we 1828 * should drop zone_lru_lock around each page. It's impossible to balance 1829 * this, so instead we remove the pages from the LRU while processing them. 1830 * It is safe to rely on PG_active against the non-LRU pages in here because 1831 * nobody will play with that bit on a non-LRU page. 1832 * 1833 * The downside is that we have to touch page->_refcount against each page. 1834 * But we had to alter page->flags anyway. 1835 * 1836 * Returns the number of pages moved to the given lru. 1837 */ 1838 1839 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1840 struct list_head *list, 1841 struct list_head *pages_to_free, 1842 enum lru_list lru) 1843 { 1844 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1845 struct page *page; 1846 int nr_pages; 1847 int nr_moved = 0; 1848 1849 while (!list_empty(list)) { 1850 page = lru_to_page(list); 1851 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1852 1853 VM_BUG_ON_PAGE(PageLRU(page), page); 1854 SetPageLRU(page); 1855 1856 nr_pages = hpage_nr_pages(page); 1857 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1858 list_move(&page->lru, &lruvec->lists[lru]); 1859 1860 if (put_page_testzero(page)) { 1861 __ClearPageLRU(page); 1862 __ClearPageActive(page); 1863 del_page_from_lru_list(page, lruvec, lru); 1864 1865 if (unlikely(PageCompound(page))) { 1866 spin_unlock_irq(&pgdat->lru_lock); 1867 mem_cgroup_uncharge(page); 1868 (*get_compound_page_dtor(page))(page); 1869 spin_lock_irq(&pgdat->lru_lock); 1870 } else 1871 list_add(&page->lru, pages_to_free); 1872 } else { 1873 nr_moved += nr_pages; 1874 } 1875 } 1876 1877 if (!is_active_lru(lru)) { 1878 __count_vm_events(PGDEACTIVATE, nr_moved); 1879 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 1880 nr_moved); 1881 } 1882 1883 return nr_moved; 1884 } 1885 1886 static void shrink_active_list(unsigned long nr_to_scan, 1887 struct lruvec *lruvec, 1888 struct scan_control *sc, 1889 enum lru_list lru) 1890 { 1891 unsigned long nr_taken; 1892 unsigned long nr_scanned; 1893 unsigned long vm_flags; 1894 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1895 LIST_HEAD(l_active); 1896 LIST_HEAD(l_inactive); 1897 struct page *page; 1898 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1899 unsigned nr_deactivate, nr_activate; 1900 unsigned nr_rotated = 0; 1901 isolate_mode_t isolate_mode = 0; 1902 int file = is_file_lru(lru); 1903 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1904 1905 lru_add_drain(); 1906 1907 if (!sc->may_unmap) 1908 isolate_mode |= ISOLATE_UNMAPPED; 1909 1910 spin_lock_irq(&pgdat->lru_lock); 1911 1912 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1913 &nr_scanned, sc, isolate_mode, lru); 1914 1915 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1916 reclaim_stat->recent_scanned[file] += nr_taken; 1917 1918 __count_vm_events(PGREFILL, nr_scanned); 1919 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 1920 1921 spin_unlock_irq(&pgdat->lru_lock); 1922 1923 while (!list_empty(&l_hold)) { 1924 cond_resched(); 1925 page = lru_to_page(&l_hold); 1926 list_del(&page->lru); 1927 1928 if (unlikely(!page_evictable(page))) { 1929 putback_lru_page(page); 1930 continue; 1931 } 1932 1933 if (unlikely(buffer_heads_over_limit)) { 1934 if (page_has_private(page) && trylock_page(page)) { 1935 if (page_has_private(page)) 1936 try_to_release_page(page, 0); 1937 unlock_page(page); 1938 } 1939 } 1940 1941 if (page_referenced(page, 0, sc->target_mem_cgroup, 1942 &vm_flags)) { 1943 nr_rotated += hpage_nr_pages(page); 1944 /* 1945 * Identify referenced, file-backed active pages and 1946 * give them one more trip around the active list. So 1947 * that executable code get better chances to stay in 1948 * memory under moderate memory pressure. Anon pages 1949 * are not likely to be evicted by use-once streaming 1950 * IO, plus JVM can create lots of anon VM_EXEC pages, 1951 * so we ignore them here. 1952 */ 1953 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1954 list_add(&page->lru, &l_active); 1955 continue; 1956 } 1957 } 1958 1959 ClearPageActive(page); /* we are de-activating */ 1960 list_add(&page->lru, &l_inactive); 1961 } 1962 1963 /* 1964 * Move pages back to the lru list. 1965 */ 1966 spin_lock_irq(&pgdat->lru_lock); 1967 /* 1968 * Count referenced pages from currently used mappings as rotated, 1969 * even though only some of them are actually re-activated. This 1970 * helps balance scan pressure between file and anonymous pages in 1971 * get_scan_count. 1972 */ 1973 reclaim_stat->recent_rotated[file] += nr_rotated; 1974 1975 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1976 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1977 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1978 spin_unlock_irq(&pgdat->lru_lock); 1979 1980 mem_cgroup_uncharge_list(&l_hold); 1981 free_unref_page_list(&l_hold); 1982 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 1983 nr_deactivate, nr_rotated, sc->priority, file); 1984 } 1985 1986 /* 1987 * The inactive anon list should be small enough that the VM never has 1988 * to do too much work. 1989 * 1990 * The inactive file list should be small enough to leave most memory 1991 * to the established workingset on the scan-resistant active list, 1992 * but large enough to avoid thrashing the aggregate readahead window. 1993 * 1994 * Both inactive lists should also be large enough that each inactive 1995 * page has a chance to be referenced again before it is reclaimed. 1996 * 1997 * If that fails and refaulting is observed, the inactive list grows. 1998 * 1999 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2000 * on this LRU, maintained by the pageout code. An inactive_ratio 2001 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2002 * 2003 * total target max 2004 * memory ratio inactive 2005 * ------------------------------------- 2006 * 10MB 1 5MB 2007 * 100MB 1 50MB 2008 * 1GB 3 250MB 2009 * 10GB 10 0.9GB 2010 * 100GB 31 3GB 2011 * 1TB 101 10GB 2012 * 10TB 320 32GB 2013 */ 2014 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2015 struct mem_cgroup *memcg, 2016 struct scan_control *sc, bool actual_reclaim) 2017 { 2018 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2019 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2020 enum lru_list inactive_lru = file * LRU_FILE; 2021 unsigned long inactive, active; 2022 unsigned long inactive_ratio; 2023 unsigned long refaults; 2024 unsigned long gb; 2025 2026 /* 2027 * If we don't have swap space, anonymous page deactivation 2028 * is pointless. 2029 */ 2030 if (!file && !total_swap_pages) 2031 return false; 2032 2033 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2034 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2035 2036 if (memcg) 2037 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2038 else 2039 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2040 2041 /* 2042 * When refaults are being observed, it means a new workingset 2043 * is being established. Disable active list protection to get 2044 * rid of the stale workingset quickly. 2045 */ 2046 if (file && actual_reclaim && lruvec->refaults != refaults) { 2047 inactive_ratio = 0; 2048 } else { 2049 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2050 if (gb) 2051 inactive_ratio = int_sqrt(10 * gb); 2052 else 2053 inactive_ratio = 1; 2054 } 2055 2056 if (actual_reclaim) 2057 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2058 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2059 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2060 inactive_ratio, file); 2061 2062 return inactive * inactive_ratio < active; 2063 } 2064 2065 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2066 struct lruvec *lruvec, struct mem_cgroup *memcg, 2067 struct scan_control *sc) 2068 { 2069 if (is_active_lru(lru)) { 2070 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2071 memcg, sc, true)) 2072 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2073 return 0; 2074 } 2075 2076 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2077 } 2078 2079 enum scan_balance { 2080 SCAN_EQUAL, 2081 SCAN_FRACT, 2082 SCAN_ANON, 2083 SCAN_FILE, 2084 }; 2085 2086 /* 2087 * Determine how aggressively the anon and file LRU lists should be 2088 * scanned. The relative value of each set of LRU lists is determined 2089 * by looking at the fraction of the pages scanned we did rotate back 2090 * onto the active list instead of evict. 2091 * 2092 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2093 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2094 */ 2095 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2096 struct scan_control *sc, unsigned long *nr, 2097 unsigned long *lru_pages) 2098 { 2099 int swappiness = mem_cgroup_swappiness(memcg); 2100 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2101 u64 fraction[2]; 2102 u64 denominator = 0; /* gcc */ 2103 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2104 unsigned long anon_prio, file_prio; 2105 enum scan_balance scan_balance; 2106 unsigned long anon, file; 2107 unsigned long ap, fp; 2108 enum lru_list lru; 2109 2110 /* If we have no swap space, do not bother scanning anon pages. */ 2111 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2112 scan_balance = SCAN_FILE; 2113 goto out; 2114 } 2115 2116 /* 2117 * Global reclaim will swap to prevent OOM even with no 2118 * swappiness, but memcg users want to use this knob to 2119 * disable swapping for individual groups completely when 2120 * using the memory controller's swap limit feature would be 2121 * too expensive. 2122 */ 2123 if (!global_reclaim(sc) && !swappiness) { 2124 scan_balance = SCAN_FILE; 2125 goto out; 2126 } 2127 2128 /* 2129 * Do not apply any pressure balancing cleverness when the 2130 * system is close to OOM, scan both anon and file equally 2131 * (unless the swappiness setting disagrees with swapping). 2132 */ 2133 if (!sc->priority && swappiness) { 2134 scan_balance = SCAN_EQUAL; 2135 goto out; 2136 } 2137 2138 /* 2139 * Prevent the reclaimer from falling into the cache trap: as 2140 * cache pages start out inactive, every cache fault will tip 2141 * the scan balance towards the file LRU. And as the file LRU 2142 * shrinks, so does the window for rotation from references. 2143 * This means we have a runaway feedback loop where a tiny 2144 * thrashing file LRU becomes infinitely more attractive than 2145 * anon pages. Try to detect this based on file LRU size. 2146 */ 2147 if (global_reclaim(sc)) { 2148 unsigned long pgdatfile; 2149 unsigned long pgdatfree; 2150 int z; 2151 unsigned long total_high_wmark = 0; 2152 2153 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2154 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2155 node_page_state(pgdat, NR_INACTIVE_FILE); 2156 2157 for (z = 0; z < MAX_NR_ZONES; z++) { 2158 struct zone *zone = &pgdat->node_zones[z]; 2159 if (!managed_zone(zone)) 2160 continue; 2161 2162 total_high_wmark += high_wmark_pages(zone); 2163 } 2164 2165 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2166 /* 2167 * Force SCAN_ANON if there are enough inactive 2168 * anonymous pages on the LRU in eligible zones. 2169 * Otherwise, the small LRU gets thrashed. 2170 */ 2171 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2172 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2173 >> sc->priority) { 2174 scan_balance = SCAN_ANON; 2175 goto out; 2176 } 2177 } 2178 } 2179 2180 /* 2181 * If there is enough inactive page cache, i.e. if the size of the 2182 * inactive list is greater than that of the active list *and* the 2183 * inactive list actually has some pages to scan on this priority, we 2184 * do not reclaim anything from the anonymous working set right now. 2185 * Without the second condition we could end up never scanning an 2186 * lruvec even if it has plenty of old anonymous pages unless the 2187 * system is under heavy pressure. 2188 */ 2189 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2190 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2191 scan_balance = SCAN_FILE; 2192 goto out; 2193 } 2194 2195 scan_balance = SCAN_FRACT; 2196 2197 /* 2198 * With swappiness at 100, anonymous and file have the same priority. 2199 * This scanning priority is essentially the inverse of IO cost. 2200 */ 2201 anon_prio = swappiness; 2202 file_prio = 200 - anon_prio; 2203 2204 /* 2205 * OK, so we have swap space and a fair amount of page cache 2206 * pages. We use the recently rotated / recently scanned 2207 * ratios to determine how valuable each cache is. 2208 * 2209 * Because workloads change over time (and to avoid overflow) 2210 * we keep these statistics as a floating average, which ends 2211 * up weighing recent references more than old ones. 2212 * 2213 * anon in [0], file in [1] 2214 */ 2215 2216 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2217 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2218 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2219 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2220 2221 spin_lock_irq(&pgdat->lru_lock); 2222 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2223 reclaim_stat->recent_scanned[0] /= 2; 2224 reclaim_stat->recent_rotated[0] /= 2; 2225 } 2226 2227 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2228 reclaim_stat->recent_scanned[1] /= 2; 2229 reclaim_stat->recent_rotated[1] /= 2; 2230 } 2231 2232 /* 2233 * The amount of pressure on anon vs file pages is inversely 2234 * proportional to the fraction of recently scanned pages on 2235 * each list that were recently referenced and in active use. 2236 */ 2237 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2238 ap /= reclaim_stat->recent_rotated[0] + 1; 2239 2240 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2241 fp /= reclaim_stat->recent_rotated[1] + 1; 2242 spin_unlock_irq(&pgdat->lru_lock); 2243 2244 fraction[0] = ap; 2245 fraction[1] = fp; 2246 denominator = ap + fp + 1; 2247 out: 2248 *lru_pages = 0; 2249 for_each_evictable_lru(lru) { 2250 int file = is_file_lru(lru); 2251 unsigned long size; 2252 unsigned long scan; 2253 2254 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2255 scan = size >> sc->priority; 2256 /* 2257 * If the cgroup's already been deleted, make sure to 2258 * scrape out the remaining cache. 2259 */ 2260 if (!scan && !mem_cgroup_online(memcg)) 2261 scan = min(size, SWAP_CLUSTER_MAX); 2262 2263 switch (scan_balance) { 2264 case SCAN_EQUAL: 2265 /* Scan lists relative to size */ 2266 break; 2267 case SCAN_FRACT: 2268 /* 2269 * Scan types proportional to swappiness and 2270 * their relative recent reclaim efficiency. 2271 */ 2272 scan = div64_u64(scan * fraction[file], 2273 denominator); 2274 break; 2275 case SCAN_FILE: 2276 case SCAN_ANON: 2277 /* Scan one type exclusively */ 2278 if ((scan_balance == SCAN_FILE) != file) { 2279 size = 0; 2280 scan = 0; 2281 } 2282 break; 2283 default: 2284 /* Look ma, no brain */ 2285 BUG(); 2286 } 2287 2288 *lru_pages += size; 2289 nr[lru] = scan; 2290 } 2291 } 2292 2293 /* 2294 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2295 */ 2296 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2297 struct scan_control *sc, unsigned long *lru_pages) 2298 { 2299 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2300 unsigned long nr[NR_LRU_LISTS]; 2301 unsigned long targets[NR_LRU_LISTS]; 2302 unsigned long nr_to_scan; 2303 enum lru_list lru; 2304 unsigned long nr_reclaimed = 0; 2305 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2306 struct blk_plug plug; 2307 bool scan_adjusted; 2308 2309 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2310 2311 /* Record the original scan target for proportional adjustments later */ 2312 memcpy(targets, nr, sizeof(nr)); 2313 2314 /* 2315 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2316 * event that can occur when there is little memory pressure e.g. 2317 * multiple streaming readers/writers. Hence, we do not abort scanning 2318 * when the requested number of pages are reclaimed when scanning at 2319 * DEF_PRIORITY on the assumption that the fact we are direct 2320 * reclaiming implies that kswapd is not keeping up and it is best to 2321 * do a batch of work at once. For memcg reclaim one check is made to 2322 * abort proportional reclaim if either the file or anon lru has already 2323 * dropped to zero at the first pass. 2324 */ 2325 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2326 sc->priority == DEF_PRIORITY); 2327 2328 blk_start_plug(&plug); 2329 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2330 nr[LRU_INACTIVE_FILE]) { 2331 unsigned long nr_anon, nr_file, percentage; 2332 unsigned long nr_scanned; 2333 2334 for_each_evictable_lru(lru) { 2335 if (nr[lru]) { 2336 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2337 nr[lru] -= nr_to_scan; 2338 2339 nr_reclaimed += shrink_list(lru, nr_to_scan, 2340 lruvec, memcg, sc); 2341 } 2342 } 2343 2344 cond_resched(); 2345 2346 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2347 continue; 2348 2349 /* 2350 * For kswapd and memcg, reclaim at least the number of pages 2351 * requested. Ensure that the anon and file LRUs are scanned 2352 * proportionally what was requested by get_scan_count(). We 2353 * stop reclaiming one LRU and reduce the amount scanning 2354 * proportional to the original scan target. 2355 */ 2356 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2357 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2358 2359 /* 2360 * It's just vindictive to attack the larger once the smaller 2361 * has gone to zero. And given the way we stop scanning the 2362 * smaller below, this makes sure that we only make one nudge 2363 * towards proportionality once we've got nr_to_reclaim. 2364 */ 2365 if (!nr_file || !nr_anon) 2366 break; 2367 2368 if (nr_file > nr_anon) { 2369 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2370 targets[LRU_ACTIVE_ANON] + 1; 2371 lru = LRU_BASE; 2372 percentage = nr_anon * 100 / scan_target; 2373 } else { 2374 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2375 targets[LRU_ACTIVE_FILE] + 1; 2376 lru = LRU_FILE; 2377 percentage = nr_file * 100 / scan_target; 2378 } 2379 2380 /* Stop scanning the smaller of the LRU */ 2381 nr[lru] = 0; 2382 nr[lru + LRU_ACTIVE] = 0; 2383 2384 /* 2385 * Recalculate the other LRU scan count based on its original 2386 * scan target and the percentage scanning already complete 2387 */ 2388 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2389 nr_scanned = targets[lru] - nr[lru]; 2390 nr[lru] = targets[lru] * (100 - percentage) / 100; 2391 nr[lru] -= min(nr[lru], nr_scanned); 2392 2393 lru += LRU_ACTIVE; 2394 nr_scanned = targets[lru] - nr[lru]; 2395 nr[lru] = targets[lru] * (100 - percentage) / 100; 2396 nr[lru] -= min(nr[lru], nr_scanned); 2397 2398 scan_adjusted = true; 2399 } 2400 blk_finish_plug(&plug); 2401 sc->nr_reclaimed += nr_reclaimed; 2402 2403 /* 2404 * Even if we did not try to evict anon pages at all, we want to 2405 * rebalance the anon lru active/inactive ratio. 2406 */ 2407 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2408 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2409 sc, LRU_ACTIVE_ANON); 2410 } 2411 2412 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2413 static bool in_reclaim_compaction(struct scan_control *sc) 2414 { 2415 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2416 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2417 sc->priority < DEF_PRIORITY - 2)) 2418 return true; 2419 2420 return false; 2421 } 2422 2423 /* 2424 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2425 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2426 * true if more pages should be reclaimed such that when the page allocator 2427 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2428 * It will give up earlier than that if there is difficulty reclaiming pages. 2429 */ 2430 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2431 unsigned long nr_reclaimed, 2432 unsigned long nr_scanned, 2433 struct scan_control *sc) 2434 { 2435 unsigned long pages_for_compaction; 2436 unsigned long inactive_lru_pages; 2437 int z; 2438 2439 /* If not in reclaim/compaction mode, stop */ 2440 if (!in_reclaim_compaction(sc)) 2441 return false; 2442 2443 /* Consider stopping depending on scan and reclaim activity */ 2444 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2445 /* 2446 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2447 * full LRU list has been scanned and we are still failing 2448 * to reclaim pages. This full LRU scan is potentially 2449 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2450 */ 2451 if (!nr_reclaimed && !nr_scanned) 2452 return false; 2453 } else { 2454 /* 2455 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2456 * fail without consequence, stop if we failed to reclaim 2457 * any pages from the last SWAP_CLUSTER_MAX number of 2458 * pages that were scanned. This will return to the 2459 * caller faster at the risk reclaim/compaction and 2460 * the resulting allocation attempt fails 2461 */ 2462 if (!nr_reclaimed) 2463 return false; 2464 } 2465 2466 /* 2467 * If we have not reclaimed enough pages for compaction and the 2468 * inactive lists are large enough, continue reclaiming 2469 */ 2470 pages_for_compaction = compact_gap(sc->order); 2471 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2472 if (get_nr_swap_pages() > 0) 2473 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2474 if (sc->nr_reclaimed < pages_for_compaction && 2475 inactive_lru_pages > pages_for_compaction) 2476 return true; 2477 2478 /* If compaction would go ahead or the allocation would succeed, stop */ 2479 for (z = 0; z <= sc->reclaim_idx; z++) { 2480 struct zone *zone = &pgdat->node_zones[z]; 2481 if (!managed_zone(zone)) 2482 continue; 2483 2484 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2485 case COMPACT_SUCCESS: 2486 case COMPACT_CONTINUE: 2487 return false; 2488 default: 2489 /* check next zone */ 2490 ; 2491 } 2492 } 2493 return true; 2494 } 2495 2496 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2497 { 2498 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2499 (memcg && memcg_congested(pgdat, memcg)); 2500 } 2501 2502 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2503 { 2504 struct reclaim_state *reclaim_state = current->reclaim_state; 2505 unsigned long nr_reclaimed, nr_scanned; 2506 bool reclaimable = false; 2507 2508 do { 2509 struct mem_cgroup *root = sc->target_mem_cgroup; 2510 struct mem_cgroup_reclaim_cookie reclaim = { 2511 .pgdat = pgdat, 2512 .priority = sc->priority, 2513 }; 2514 unsigned long node_lru_pages = 0; 2515 struct mem_cgroup *memcg; 2516 2517 memset(&sc->nr, 0, sizeof(sc->nr)); 2518 2519 nr_reclaimed = sc->nr_reclaimed; 2520 nr_scanned = sc->nr_scanned; 2521 2522 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2523 do { 2524 unsigned long lru_pages; 2525 unsigned long reclaimed; 2526 unsigned long scanned; 2527 2528 if (mem_cgroup_low(root, memcg)) { 2529 if (!sc->memcg_low_reclaim) { 2530 sc->memcg_low_skipped = 1; 2531 continue; 2532 } 2533 memcg_memory_event(memcg, MEMCG_LOW); 2534 } 2535 2536 reclaimed = sc->nr_reclaimed; 2537 scanned = sc->nr_scanned; 2538 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2539 node_lru_pages += lru_pages; 2540 2541 if (memcg) 2542 shrink_slab(sc->gfp_mask, pgdat->node_id, 2543 memcg, sc->priority); 2544 2545 /* Record the group's reclaim efficiency */ 2546 vmpressure(sc->gfp_mask, memcg, false, 2547 sc->nr_scanned - scanned, 2548 sc->nr_reclaimed - reclaimed); 2549 2550 /* 2551 * Direct reclaim and kswapd have to scan all memory 2552 * cgroups to fulfill the overall scan target for the 2553 * node. 2554 * 2555 * Limit reclaim, on the other hand, only cares about 2556 * nr_to_reclaim pages to be reclaimed and it will 2557 * retry with decreasing priority if one round over the 2558 * whole hierarchy is not sufficient. 2559 */ 2560 if (!global_reclaim(sc) && 2561 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2562 mem_cgroup_iter_break(root, memcg); 2563 break; 2564 } 2565 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2566 2567 if (global_reclaim(sc)) 2568 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2569 sc->priority); 2570 2571 if (reclaim_state) { 2572 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2573 reclaim_state->reclaimed_slab = 0; 2574 } 2575 2576 /* Record the subtree's reclaim efficiency */ 2577 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2578 sc->nr_scanned - nr_scanned, 2579 sc->nr_reclaimed - nr_reclaimed); 2580 2581 if (sc->nr_reclaimed - nr_reclaimed) 2582 reclaimable = true; 2583 2584 if (current_is_kswapd()) { 2585 /* 2586 * If reclaim is isolating dirty pages under writeback, 2587 * it implies that the long-lived page allocation rate 2588 * is exceeding the page laundering rate. Either the 2589 * global limits are not being effective at throttling 2590 * processes due to the page distribution throughout 2591 * zones or there is heavy usage of a slow backing 2592 * device. The only option is to throttle from reclaim 2593 * context which is not ideal as there is no guarantee 2594 * the dirtying process is throttled in the same way 2595 * balance_dirty_pages() manages. 2596 * 2597 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2598 * count the number of pages under pages flagged for 2599 * immediate reclaim and stall if any are encountered 2600 * in the nr_immediate check below. 2601 */ 2602 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2603 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2604 2605 /* 2606 * Tag a node as congested if all the dirty pages 2607 * scanned were backed by a congested BDI and 2608 * wait_iff_congested will stall. 2609 */ 2610 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2611 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2612 2613 /* Allow kswapd to start writing pages during reclaim.*/ 2614 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2615 set_bit(PGDAT_DIRTY, &pgdat->flags); 2616 2617 /* 2618 * If kswapd scans pages marked marked for immediate 2619 * reclaim and under writeback (nr_immediate), it 2620 * implies that pages are cycling through the LRU 2621 * faster than they are written so also forcibly stall. 2622 */ 2623 if (sc->nr.immediate) 2624 congestion_wait(BLK_RW_ASYNC, HZ/10); 2625 } 2626 2627 /* 2628 * Legacy memcg will stall in page writeback so avoid forcibly 2629 * stalling in wait_iff_congested(). 2630 */ 2631 if (!global_reclaim(sc) && sane_reclaim(sc) && 2632 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2633 set_memcg_congestion(pgdat, root, true); 2634 2635 /* 2636 * Stall direct reclaim for IO completions if underlying BDIs 2637 * and node is congested. Allow kswapd to continue until it 2638 * starts encountering unqueued dirty pages or cycling through 2639 * the LRU too quickly. 2640 */ 2641 if (!sc->hibernation_mode && !current_is_kswapd() && 2642 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2643 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2644 2645 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2646 sc->nr_scanned - nr_scanned, sc)); 2647 2648 /* 2649 * Kswapd gives up on balancing particular nodes after too 2650 * many failures to reclaim anything from them and goes to 2651 * sleep. On reclaim progress, reset the failure counter. A 2652 * successful direct reclaim run will revive a dormant kswapd. 2653 */ 2654 if (reclaimable) 2655 pgdat->kswapd_failures = 0; 2656 2657 return reclaimable; 2658 } 2659 2660 /* 2661 * Returns true if compaction should go ahead for a costly-order request, or 2662 * the allocation would already succeed without compaction. Return false if we 2663 * should reclaim first. 2664 */ 2665 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2666 { 2667 unsigned long watermark; 2668 enum compact_result suitable; 2669 2670 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2671 if (suitable == COMPACT_SUCCESS) 2672 /* Allocation should succeed already. Don't reclaim. */ 2673 return true; 2674 if (suitable == COMPACT_SKIPPED) 2675 /* Compaction cannot yet proceed. Do reclaim. */ 2676 return false; 2677 2678 /* 2679 * Compaction is already possible, but it takes time to run and there 2680 * are potentially other callers using the pages just freed. So proceed 2681 * with reclaim to make a buffer of free pages available to give 2682 * compaction a reasonable chance of completing and allocating the page. 2683 * Note that we won't actually reclaim the whole buffer in one attempt 2684 * as the target watermark in should_continue_reclaim() is lower. But if 2685 * we are already above the high+gap watermark, don't reclaim at all. 2686 */ 2687 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2688 2689 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2690 } 2691 2692 /* 2693 * This is the direct reclaim path, for page-allocating processes. We only 2694 * try to reclaim pages from zones which will satisfy the caller's allocation 2695 * request. 2696 * 2697 * If a zone is deemed to be full of pinned pages then just give it a light 2698 * scan then give up on it. 2699 */ 2700 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2701 { 2702 struct zoneref *z; 2703 struct zone *zone; 2704 unsigned long nr_soft_reclaimed; 2705 unsigned long nr_soft_scanned; 2706 gfp_t orig_mask; 2707 pg_data_t *last_pgdat = NULL; 2708 2709 /* 2710 * If the number of buffer_heads in the machine exceeds the maximum 2711 * allowed level, force direct reclaim to scan the highmem zone as 2712 * highmem pages could be pinning lowmem pages storing buffer_heads 2713 */ 2714 orig_mask = sc->gfp_mask; 2715 if (buffer_heads_over_limit) { 2716 sc->gfp_mask |= __GFP_HIGHMEM; 2717 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2718 } 2719 2720 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2721 sc->reclaim_idx, sc->nodemask) { 2722 /* 2723 * Take care memory controller reclaiming has small influence 2724 * to global LRU. 2725 */ 2726 if (global_reclaim(sc)) { 2727 if (!cpuset_zone_allowed(zone, 2728 GFP_KERNEL | __GFP_HARDWALL)) 2729 continue; 2730 2731 /* 2732 * If we already have plenty of memory free for 2733 * compaction in this zone, don't free any more. 2734 * Even though compaction is invoked for any 2735 * non-zero order, only frequent costly order 2736 * reclamation is disruptive enough to become a 2737 * noticeable problem, like transparent huge 2738 * page allocations. 2739 */ 2740 if (IS_ENABLED(CONFIG_COMPACTION) && 2741 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2742 compaction_ready(zone, sc)) { 2743 sc->compaction_ready = true; 2744 continue; 2745 } 2746 2747 /* 2748 * Shrink each node in the zonelist once. If the 2749 * zonelist is ordered by zone (not the default) then a 2750 * node may be shrunk multiple times but in that case 2751 * the user prefers lower zones being preserved. 2752 */ 2753 if (zone->zone_pgdat == last_pgdat) 2754 continue; 2755 2756 /* 2757 * This steals pages from memory cgroups over softlimit 2758 * and returns the number of reclaimed pages and 2759 * scanned pages. This works for global memory pressure 2760 * and balancing, not for a memcg's limit. 2761 */ 2762 nr_soft_scanned = 0; 2763 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2764 sc->order, sc->gfp_mask, 2765 &nr_soft_scanned); 2766 sc->nr_reclaimed += nr_soft_reclaimed; 2767 sc->nr_scanned += nr_soft_scanned; 2768 /* need some check for avoid more shrink_zone() */ 2769 } 2770 2771 /* See comment about same check for global reclaim above */ 2772 if (zone->zone_pgdat == last_pgdat) 2773 continue; 2774 last_pgdat = zone->zone_pgdat; 2775 shrink_node(zone->zone_pgdat, sc); 2776 } 2777 2778 /* 2779 * Restore to original mask to avoid the impact on the caller if we 2780 * promoted it to __GFP_HIGHMEM. 2781 */ 2782 sc->gfp_mask = orig_mask; 2783 } 2784 2785 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2786 { 2787 struct mem_cgroup *memcg; 2788 2789 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2790 do { 2791 unsigned long refaults; 2792 struct lruvec *lruvec; 2793 2794 if (memcg) 2795 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2796 else 2797 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2798 2799 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2800 lruvec->refaults = refaults; 2801 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2802 } 2803 2804 /* 2805 * This is the main entry point to direct page reclaim. 2806 * 2807 * If a full scan of the inactive list fails to free enough memory then we 2808 * are "out of memory" and something needs to be killed. 2809 * 2810 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2811 * high - the zone may be full of dirty or under-writeback pages, which this 2812 * caller can't do much about. We kick the writeback threads and take explicit 2813 * naps in the hope that some of these pages can be written. But if the 2814 * allocating task holds filesystem locks which prevent writeout this might not 2815 * work, and the allocation attempt will fail. 2816 * 2817 * returns: 0, if no pages reclaimed 2818 * else, the number of pages reclaimed 2819 */ 2820 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2821 struct scan_control *sc) 2822 { 2823 int initial_priority = sc->priority; 2824 pg_data_t *last_pgdat; 2825 struct zoneref *z; 2826 struct zone *zone; 2827 retry: 2828 delayacct_freepages_start(); 2829 2830 if (global_reclaim(sc)) 2831 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2832 2833 do { 2834 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2835 sc->priority); 2836 sc->nr_scanned = 0; 2837 shrink_zones(zonelist, sc); 2838 2839 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2840 break; 2841 2842 if (sc->compaction_ready) 2843 break; 2844 2845 /* 2846 * If we're getting trouble reclaiming, start doing 2847 * writepage even in laptop mode. 2848 */ 2849 if (sc->priority < DEF_PRIORITY - 2) 2850 sc->may_writepage = 1; 2851 } while (--sc->priority >= 0); 2852 2853 last_pgdat = NULL; 2854 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2855 sc->nodemask) { 2856 if (zone->zone_pgdat == last_pgdat) 2857 continue; 2858 last_pgdat = zone->zone_pgdat; 2859 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2860 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 2861 } 2862 2863 delayacct_freepages_end(); 2864 2865 if (sc->nr_reclaimed) 2866 return sc->nr_reclaimed; 2867 2868 /* Aborted reclaim to try compaction? don't OOM, then */ 2869 if (sc->compaction_ready) 2870 return 1; 2871 2872 /* Untapped cgroup reserves? Don't OOM, retry. */ 2873 if (sc->memcg_low_skipped) { 2874 sc->priority = initial_priority; 2875 sc->memcg_low_reclaim = 1; 2876 sc->memcg_low_skipped = 0; 2877 goto retry; 2878 } 2879 2880 return 0; 2881 } 2882 2883 static bool allow_direct_reclaim(pg_data_t *pgdat) 2884 { 2885 struct zone *zone; 2886 unsigned long pfmemalloc_reserve = 0; 2887 unsigned long free_pages = 0; 2888 int i; 2889 bool wmark_ok; 2890 2891 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2892 return true; 2893 2894 for (i = 0; i <= ZONE_NORMAL; i++) { 2895 zone = &pgdat->node_zones[i]; 2896 if (!managed_zone(zone)) 2897 continue; 2898 2899 if (!zone_reclaimable_pages(zone)) 2900 continue; 2901 2902 pfmemalloc_reserve += min_wmark_pages(zone); 2903 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2904 } 2905 2906 /* If there are no reserves (unexpected config) then do not throttle */ 2907 if (!pfmemalloc_reserve) 2908 return true; 2909 2910 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2911 2912 /* kswapd must be awake if processes are being throttled */ 2913 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2914 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2915 (enum zone_type)ZONE_NORMAL); 2916 wake_up_interruptible(&pgdat->kswapd_wait); 2917 } 2918 2919 return wmark_ok; 2920 } 2921 2922 /* 2923 * Throttle direct reclaimers if backing storage is backed by the network 2924 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2925 * depleted. kswapd will continue to make progress and wake the processes 2926 * when the low watermark is reached. 2927 * 2928 * Returns true if a fatal signal was delivered during throttling. If this 2929 * happens, the page allocator should not consider triggering the OOM killer. 2930 */ 2931 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2932 nodemask_t *nodemask) 2933 { 2934 struct zoneref *z; 2935 struct zone *zone; 2936 pg_data_t *pgdat = NULL; 2937 2938 /* 2939 * Kernel threads should not be throttled as they may be indirectly 2940 * responsible for cleaning pages necessary for reclaim to make forward 2941 * progress. kjournald for example may enter direct reclaim while 2942 * committing a transaction where throttling it could forcing other 2943 * processes to block on log_wait_commit(). 2944 */ 2945 if (current->flags & PF_KTHREAD) 2946 goto out; 2947 2948 /* 2949 * If a fatal signal is pending, this process should not throttle. 2950 * It should return quickly so it can exit and free its memory 2951 */ 2952 if (fatal_signal_pending(current)) 2953 goto out; 2954 2955 /* 2956 * Check if the pfmemalloc reserves are ok by finding the first node 2957 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2958 * GFP_KERNEL will be required for allocating network buffers when 2959 * swapping over the network so ZONE_HIGHMEM is unusable. 2960 * 2961 * Throttling is based on the first usable node and throttled processes 2962 * wait on a queue until kswapd makes progress and wakes them. There 2963 * is an affinity then between processes waking up and where reclaim 2964 * progress has been made assuming the process wakes on the same node. 2965 * More importantly, processes running on remote nodes will not compete 2966 * for remote pfmemalloc reserves and processes on different nodes 2967 * should make reasonable progress. 2968 */ 2969 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2970 gfp_zone(gfp_mask), nodemask) { 2971 if (zone_idx(zone) > ZONE_NORMAL) 2972 continue; 2973 2974 /* Throttle based on the first usable node */ 2975 pgdat = zone->zone_pgdat; 2976 if (allow_direct_reclaim(pgdat)) 2977 goto out; 2978 break; 2979 } 2980 2981 /* If no zone was usable by the allocation flags then do not throttle */ 2982 if (!pgdat) 2983 goto out; 2984 2985 /* Account for the throttling */ 2986 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2987 2988 /* 2989 * If the caller cannot enter the filesystem, it's possible that it 2990 * is due to the caller holding an FS lock or performing a journal 2991 * transaction in the case of a filesystem like ext[3|4]. In this case, 2992 * it is not safe to block on pfmemalloc_wait as kswapd could be 2993 * blocked waiting on the same lock. Instead, throttle for up to a 2994 * second before continuing. 2995 */ 2996 if (!(gfp_mask & __GFP_FS)) { 2997 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2998 allow_direct_reclaim(pgdat), HZ); 2999 3000 goto check_pending; 3001 } 3002 3003 /* Throttle until kswapd wakes the process */ 3004 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3005 allow_direct_reclaim(pgdat)); 3006 3007 check_pending: 3008 if (fatal_signal_pending(current)) 3009 return true; 3010 3011 out: 3012 return false; 3013 } 3014 3015 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3016 gfp_t gfp_mask, nodemask_t *nodemask) 3017 { 3018 unsigned long nr_reclaimed; 3019 struct scan_control sc = { 3020 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3021 .gfp_mask = current_gfp_context(gfp_mask), 3022 .reclaim_idx = gfp_zone(gfp_mask), 3023 .order = order, 3024 .nodemask = nodemask, 3025 .priority = DEF_PRIORITY, 3026 .may_writepage = !laptop_mode, 3027 .may_unmap = 1, 3028 .may_swap = 1, 3029 }; 3030 3031 /* 3032 * Do not enter reclaim if fatal signal was delivered while throttled. 3033 * 1 is returned so that the page allocator does not OOM kill at this 3034 * point. 3035 */ 3036 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3037 return 1; 3038 3039 trace_mm_vmscan_direct_reclaim_begin(order, 3040 sc.may_writepage, 3041 sc.gfp_mask, 3042 sc.reclaim_idx); 3043 3044 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3045 3046 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3047 3048 return nr_reclaimed; 3049 } 3050 3051 #ifdef CONFIG_MEMCG 3052 3053 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3054 gfp_t gfp_mask, bool noswap, 3055 pg_data_t *pgdat, 3056 unsigned long *nr_scanned) 3057 { 3058 struct scan_control sc = { 3059 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3060 .target_mem_cgroup = memcg, 3061 .may_writepage = !laptop_mode, 3062 .may_unmap = 1, 3063 .reclaim_idx = MAX_NR_ZONES - 1, 3064 .may_swap = !noswap, 3065 }; 3066 unsigned long lru_pages; 3067 3068 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3069 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3070 3071 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3072 sc.may_writepage, 3073 sc.gfp_mask, 3074 sc.reclaim_idx); 3075 3076 /* 3077 * NOTE: Although we can get the priority field, using it 3078 * here is not a good idea, since it limits the pages we can scan. 3079 * if we don't reclaim here, the shrink_node from balance_pgdat 3080 * will pick up pages from other mem cgroup's as well. We hack 3081 * the priority and make it zero. 3082 */ 3083 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3084 3085 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3086 3087 *nr_scanned = sc.nr_scanned; 3088 return sc.nr_reclaimed; 3089 } 3090 3091 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3092 unsigned long nr_pages, 3093 gfp_t gfp_mask, 3094 bool may_swap) 3095 { 3096 struct zonelist *zonelist; 3097 unsigned long nr_reclaimed; 3098 int nid; 3099 unsigned int noreclaim_flag; 3100 struct scan_control sc = { 3101 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3102 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3103 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3104 .reclaim_idx = MAX_NR_ZONES - 1, 3105 .target_mem_cgroup = memcg, 3106 .priority = DEF_PRIORITY, 3107 .may_writepage = !laptop_mode, 3108 .may_unmap = 1, 3109 .may_swap = may_swap, 3110 }; 3111 3112 /* 3113 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3114 * take care of from where we get pages. So the node where we start the 3115 * scan does not need to be the current node. 3116 */ 3117 nid = mem_cgroup_select_victim_node(memcg); 3118 3119 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3120 3121 trace_mm_vmscan_memcg_reclaim_begin(0, 3122 sc.may_writepage, 3123 sc.gfp_mask, 3124 sc.reclaim_idx); 3125 3126 noreclaim_flag = memalloc_noreclaim_save(); 3127 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3128 memalloc_noreclaim_restore(noreclaim_flag); 3129 3130 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3131 3132 return nr_reclaimed; 3133 } 3134 #endif 3135 3136 static void age_active_anon(struct pglist_data *pgdat, 3137 struct scan_control *sc) 3138 { 3139 struct mem_cgroup *memcg; 3140 3141 if (!total_swap_pages) 3142 return; 3143 3144 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3145 do { 3146 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3147 3148 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3149 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3150 sc, LRU_ACTIVE_ANON); 3151 3152 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3153 } while (memcg); 3154 } 3155 3156 /* 3157 * Returns true if there is an eligible zone balanced for the request order 3158 * and classzone_idx 3159 */ 3160 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3161 { 3162 int i; 3163 unsigned long mark = -1; 3164 struct zone *zone; 3165 3166 for (i = 0; i <= classzone_idx; i++) { 3167 zone = pgdat->node_zones + i; 3168 3169 if (!managed_zone(zone)) 3170 continue; 3171 3172 mark = high_wmark_pages(zone); 3173 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3174 return true; 3175 } 3176 3177 /* 3178 * If a node has no populated zone within classzone_idx, it does not 3179 * need balancing by definition. This can happen if a zone-restricted 3180 * allocation tries to wake a remote kswapd. 3181 */ 3182 if (mark == -1) 3183 return true; 3184 3185 return false; 3186 } 3187 3188 /* Clear pgdat state for congested, dirty or under writeback. */ 3189 static void clear_pgdat_congested(pg_data_t *pgdat) 3190 { 3191 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3192 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3193 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3194 } 3195 3196 /* 3197 * Prepare kswapd for sleeping. This verifies that there are no processes 3198 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3199 * 3200 * Returns true if kswapd is ready to sleep 3201 */ 3202 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3203 { 3204 /* 3205 * The throttled processes are normally woken up in balance_pgdat() as 3206 * soon as allow_direct_reclaim() is true. But there is a potential 3207 * race between when kswapd checks the watermarks and a process gets 3208 * throttled. There is also a potential race if processes get 3209 * throttled, kswapd wakes, a large process exits thereby balancing the 3210 * zones, which causes kswapd to exit balance_pgdat() before reaching 3211 * the wake up checks. If kswapd is going to sleep, no process should 3212 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3213 * the wake up is premature, processes will wake kswapd and get 3214 * throttled again. The difference from wake ups in balance_pgdat() is 3215 * that here we are under prepare_to_wait(). 3216 */ 3217 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3218 wake_up_all(&pgdat->pfmemalloc_wait); 3219 3220 /* Hopeless node, leave it to direct reclaim */ 3221 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3222 return true; 3223 3224 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3225 clear_pgdat_congested(pgdat); 3226 return true; 3227 } 3228 3229 return false; 3230 } 3231 3232 /* 3233 * kswapd shrinks a node of pages that are at or below the highest usable 3234 * zone that is currently unbalanced. 3235 * 3236 * Returns true if kswapd scanned at least the requested number of pages to 3237 * reclaim or if the lack of progress was due to pages under writeback. 3238 * This is used to determine if the scanning priority needs to be raised. 3239 */ 3240 static bool kswapd_shrink_node(pg_data_t *pgdat, 3241 struct scan_control *sc) 3242 { 3243 struct zone *zone; 3244 int z; 3245 3246 /* Reclaim a number of pages proportional to the number of zones */ 3247 sc->nr_to_reclaim = 0; 3248 for (z = 0; z <= sc->reclaim_idx; z++) { 3249 zone = pgdat->node_zones + z; 3250 if (!managed_zone(zone)) 3251 continue; 3252 3253 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3254 } 3255 3256 /* 3257 * Historically care was taken to put equal pressure on all zones but 3258 * now pressure is applied based on node LRU order. 3259 */ 3260 shrink_node(pgdat, sc); 3261 3262 /* 3263 * Fragmentation may mean that the system cannot be rebalanced for 3264 * high-order allocations. If twice the allocation size has been 3265 * reclaimed then recheck watermarks only at order-0 to prevent 3266 * excessive reclaim. Assume that a process requested a high-order 3267 * can direct reclaim/compact. 3268 */ 3269 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3270 sc->order = 0; 3271 3272 return sc->nr_scanned >= sc->nr_to_reclaim; 3273 } 3274 3275 /* 3276 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3277 * that are eligible for use by the caller until at least one zone is 3278 * balanced. 3279 * 3280 * Returns the order kswapd finished reclaiming at. 3281 * 3282 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3283 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3284 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3285 * or lower is eligible for reclaim until at least one usable zone is 3286 * balanced. 3287 */ 3288 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3289 { 3290 int i; 3291 unsigned long nr_soft_reclaimed; 3292 unsigned long nr_soft_scanned; 3293 struct zone *zone; 3294 struct scan_control sc = { 3295 .gfp_mask = GFP_KERNEL, 3296 .order = order, 3297 .priority = DEF_PRIORITY, 3298 .may_writepage = !laptop_mode, 3299 .may_unmap = 1, 3300 .may_swap = 1, 3301 }; 3302 count_vm_event(PAGEOUTRUN); 3303 3304 do { 3305 unsigned long nr_reclaimed = sc.nr_reclaimed; 3306 bool raise_priority = true; 3307 3308 sc.reclaim_idx = classzone_idx; 3309 3310 /* 3311 * If the number of buffer_heads exceeds the maximum allowed 3312 * then consider reclaiming from all zones. This has a dual 3313 * purpose -- on 64-bit systems it is expected that 3314 * buffer_heads are stripped during active rotation. On 32-bit 3315 * systems, highmem pages can pin lowmem memory and shrinking 3316 * buffers can relieve lowmem pressure. Reclaim may still not 3317 * go ahead if all eligible zones for the original allocation 3318 * request are balanced to avoid excessive reclaim from kswapd. 3319 */ 3320 if (buffer_heads_over_limit) { 3321 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3322 zone = pgdat->node_zones + i; 3323 if (!managed_zone(zone)) 3324 continue; 3325 3326 sc.reclaim_idx = i; 3327 break; 3328 } 3329 } 3330 3331 /* 3332 * Only reclaim if there are no eligible zones. Note that 3333 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3334 * have adjusted it. 3335 */ 3336 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3337 goto out; 3338 3339 /* 3340 * Do some background aging of the anon list, to give 3341 * pages a chance to be referenced before reclaiming. All 3342 * pages are rotated regardless of classzone as this is 3343 * about consistent aging. 3344 */ 3345 age_active_anon(pgdat, &sc); 3346 3347 /* 3348 * If we're getting trouble reclaiming, start doing writepage 3349 * even in laptop mode. 3350 */ 3351 if (sc.priority < DEF_PRIORITY - 2) 3352 sc.may_writepage = 1; 3353 3354 /* Call soft limit reclaim before calling shrink_node. */ 3355 sc.nr_scanned = 0; 3356 nr_soft_scanned = 0; 3357 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3358 sc.gfp_mask, &nr_soft_scanned); 3359 sc.nr_reclaimed += nr_soft_reclaimed; 3360 3361 /* 3362 * There should be no need to raise the scanning priority if 3363 * enough pages are already being scanned that that high 3364 * watermark would be met at 100% efficiency. 3365 */ 3366 if (kswapd_shrink_node(pgdat, &sc)) 3367 raise_priority = false; 3368 3369 /* 3370 * If the low watermark is met there is no need for processes 3371 * to be throttled on pfmemalloc_wait as they should not be 3372 * able to safely make forward progress. Wake them 3373 */ 3374 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3375 allow_direct_reclaim(pgdat)) 3376 wake_up_all(&pgdat->pfmemalloc_wait); 3377 3378 /* Check if kswapd should be suspending */ 3379 if (try_to_freeze() || kthread_should_stop()) 3380 break; 3381 3382 /* 3383 * Raise priority if scanning rate is too low or there was no 3384 * progress in reclaiming pages 3385 */ 3386 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3387 if (raise_priority || !nr_reclaimed) 3388 sc.priority--; 3389 } while (sc.priority >= 1); 3390 3391 if (!sc.nr_reclaimed) 3392 pgdat->kswapd_failures++; 3393 3394 out: 3395 snapshot_refaults(NULL, pgdat); 3396 /* 3397 * Return the order kswapd stopped reclaiming at as 3398 * prepare_kswapd_sleep() takes it into account. If another caller 3399 * entered the allocator slow path while kswapd was awake, order will 3400 * remain at the higher level. 3401 */ 3402 return sc.order; 3403 } 3404 3405 /* 3406 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3407 * allocation request woke kswapd for. When kswapd has not woken recently, 3408 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3409 * given classzone and returns it or the highest classzone index kswapd 3410 * was recently woke for. 3411 */ 3412 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3413 enum zone_type classzone_idx) 3414 { 3415 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3416 return classzone_idx; 3417 3418 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3419 } 3420 3421 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3422 unsigned int classzone_idx) 3423 { 3424 long remaining = 0; 3425 DEFINE_WAIT(wait); 3426 3427 if (freezing(current) || kthread_should_stop()) 3428 return; 3429 3430 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3431 3432 /* 3433 * Try to sleep for a short interval. Note that kcompactd will only be 3434 * woken if it is possible to sleep for a short interval. This is 3435 * deliberate on the assumption that if reclaim cannot keep an 3436 * eligible zone balanced that it's also unlikely that compaction will 3437 * succeed. 3438 */ 3439 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3440 /* 3441 * Compaction records what page blocks it recently failed to 3442 * isolate pages from and skips them in the future scanning. 3443 * When kswapd is going to sleep, it is reasonable to assume 3444 * that pages and compaction may succeed so reset the cache. 3445 */ 3446 reset_isolation_suitable(pgdat); 3447 3448 /* 3449 * We have freed the memory, now we should compact it to make 3450 * allocation of the requested order possible. 3451 */ 3452 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3453 3454 remaining = schedule_timeout(HZ/10); 3455 3456 /* 3457 * If woken prematurely then reset kswapd_classzone_idx and 3458 * order. The values will either be from a wakeup request or 3459 * the previous request that slept prematurely. 3460 */ 3461 if (remaining) { 3462 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3463 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3464 } 3465 3466 finish_wait(&pgdat->kswapd_wait, &wait); 3467 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3468 } 3469 3470 /* 3471 * After a short sleep, check if it was a premature sleep. If not, then 3472 * go fully to sleep until explicitly woken up. 3473 */ 3474 if (!remaining && 3475 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3476 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3477 3478 /* 3479 * vmstat counters are not perfectly accurate and the estimated 3480 * value for counters such as NR_FREE_PAGES can deviate from the 3481 * true value by nr_online_cpus * threshold. To avoid the zone 3482 * watermarks being breached while under pressure, we reduce the 3483 * per-cpu vmstat threshold while kswapd is awake and restore 3484 * them before going back to sleep. 3485 */ 3486 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3487 3488 if (!kthread_should_stop()) 3489 schedule(); 3490 3491 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3492 } else { 3493 if (remaining) 3494 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3495 else 3496 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3497 } 3498 finish_wait(&pgdat->kswapd_wait, &wait); 3499 } 3500 3501 /* 3502 * The background pageout daemon, started as a kernel thread 3503 * from the init process. 3504 * 3505 * This basically trickles out pages so that we have _some_ 3506 * free memory available even if there is no other activity 3507 * that frees anything up. This is needed for things like routing 3508 * etc, where we otherwise might have all activity going on in 3509 * asynchronous contexts that cannot page things out. 3510 * 3511 * If there are applications that are active memory-allocators 3512 * (most normal use), this basically shouldn't matter. 3513 */ 3514 static int kswapd(void *p) 3515 { 3516 unsigned int alloc_order, reclaim_order; 3517 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3518 pg_data_t *pgdat = (pg_data_t*)p; 3519 struct task_struct *tsk = current; 3520 3521 struct reclaim_state reclaim_state = { 3522 .reclaimed_slab = 0, 3523 }; 3524 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3525 3526 if (!cpumask_empty(cpumask)) 3527 set_cpus_allowed_ptr(tsk, cpumask); 3528 current->reclaim_state = &reclaim_state; 3529 3530 /* 3531 * Tell the memory management that we're a "memory allocator", 3532 * and that if we need more memory we should get access to it 3533 * regardless (see "__alloc_pages()"). "kswapd" should 3534 * never get caught in the normal page freeing logic. 3535 * 3536 * (Kswapd normally doesn't need memory anyway, but sometimes 3537 * you need a small amount of memory in order to be able to 3538 * page out something else, and this flag essentially protects 3539 * us from recursively trying to free more memory as we're 3540 * trying to free the first piece of memory in the first place). 3541 */ 3542 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3543 set_freezable(); 3544 3545 pgdat->kswapd_order = 0; 3546 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3547 for ( ; ; ) { 3548 bool ret; 3549 3550 alloc_order = reclaim_order = pgdat->kswapd_order; 3551 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3552 3553 kswapd_try_sleep: 3554 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3555 classzone_idx); 3556 3557 /* Read the new order and classzone_idx */ 3558 alloc_order = reclaim_order = pgdat->kswapd_order; 3559 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3560 pgdat->kswapd_order = 0; 3561 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3562 3563 ret = try_to_freeze(); 3564 if (kthread_should_stop()) 3565 break; 3566 3567 /* 3568 * We can speed up thawing tasks if we don't call balance_pgdat 3569 * after returning from the refrigerator 3570 */ 3571 if (ret) 3572 continue; 3573 3574 /* 3575 * Reclaim begins at the requested order but if a high-order 3576 * reclaim fails then kswapd falls back to reclaiming for 3577 * order-0. If that happens, kswapd will consider sleeping 3578 * for the order it finished reclaiming at (reclaim_order) 3579 * but kcompactd is woken to compact for the original 3580 * request (alloc_order). 3581 */ 3582 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3583 alloc_order); 3584 fs_reclaim_acquire(GFP_KERNEL); 3585 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3586 fs_reclaim_release(GFP_KERNEL); 3587 if (reclaim_order < alloc_order) 3588 goto kswapd_try_sleep; 3589 } 3590 3591 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3592 current->reclaim_state = NULL; 3593 3594 return 0; 3595 } 3596 3597 /* 3598 * A zone is low on free memory or too fragmented for high-order memory. If 3599 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3600 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3601 * has failed or is not needed, still wake up kcompactd if only compaction is 3602 * needed. 3603 */ 3604 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3605 enum zone_type classzone_idx) 3606 { 3607 pg_data_t *pgdat; 3608 3609 if (!managed_zone(zone)) 3610 return; 3611 3612 if (!cpuset_zone_allowed(zone, gfp_flags)) 3613 return; 3614 pgdat = zone->zone_pgdat; 3615 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3616 classzone_idx); 3617 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3618 if (!waitqueue_active(&pgdat->kswapd_wait)) 3619 return; 3620 3621 /* Hopeless node, leave it to direct reclaim if possible */ 3622 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3623 pgdat_balanced(pgdat, order, classzone_idx)) { 3624 /* 3625 * There may be plenty of free memory available, but it's too 3626 * fragmented for high-order allocations. Wake up kcompactd 3627 * and rely on compaction_suitable() to determine if it's 3628 * needed. If it fails, it will defer subsequent attempts to 3629 * ratelimit its work. 3630 */ 3631 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3632 wakeup_kcompactd(pgdat, order, classzone_idx); 3633 return; 3634 } 3635 3636 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3637 gfp_flags); 3638 wake_up_interruptible(&pgdat->kswapd_wait); 3639 } 3640 3641 #ifdef CONFIG_HIBERNATION 3642 /* 3643 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3644 * freed pages. 3645 * 3646 * Rather than trying to age LRUs the aim is to preserve the overall 3647 * LRU order by reclaiming preferentially 3648 * inactive > active > active referenced > active mapped 3649 */ 3650 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3651 { 3652 struct reclaim_state reclaim_state; 3653 struct scan_control sc = { 3654 .nr_to_reclaim = nr_to_reclaim, 3655 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3656 .reclaim_idx = MAX_NR_ZONES - 1, 3657 .priority = DEF_PRIORITY, 3658 .may_writepage = 1, 3659 .may_unmap = 1, 3660 .may_swap = 1, 3661 .hibernation_mode = 1, 3662 }; 3663 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3664 struct task_struct *p = current; 3665 unsigned long nr_reclaimed; 3666 unsigned int noreclaim_flag; 3667 3668 noreclaim_flag = memalloc_noreclaim_save(); 3669 fs_reclaim_acquire(sc.gfp_mask); 3670 reclaim_state.reclaimed_slab = 0; 3671 p->reclaim_state = &reclaim_state; 3672 3673 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3674 3675 p->reclaim_state = NULL; 3676 fs_reclaim_release(sc.gfp_mask); 3677 memalloc_noreclaim_restore(noreclaim_flag); 3678 3679 return nr_reclaimed; 3680 } 3681 #endif /* CONFIG_HIBERNATION */ 3682 3683 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3684 not required for correctness. So if the last cpu in a node goes 3685 away, we get changed to run anywhere: as the first one comes back, 3686 restore their cpu bindings. */ 3687 static int kswapd_cpu_online(unsigned int cpu) 3688 { 3689 int nid; 3690 3691 for_each_node_state(nid, N_MEMORY) { 3692 pg_data_t *pgdat = NODE_DATA(nid); 3693 const struct cpumask *mask; 3694 3695 mask = cpumask_of_node(pgdat->node_id); 3696 3697 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3698 /* One of our CPUs online: restore mask */ 3699 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3700 } 3701 return 0; 3702 } 3703 3704 /* 3705 * This kswapd start function will be called by init and node-hot-add. 3706 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3707 */ 3708 int kswapd_run(int nid) 3709 { 3710 pg_data_t *pgdat = NODE_DATA(nid); 3711 int ret = 0; 3712 3713 if (pgdat->kswapd) 3714 return 0; 3715 3716 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3717 if (IS_ERR(pgdat->kswapd)) { 3718 /* failure at boot is fatal */ 3719 BUG_ON(system_state < SYSTEM_RUNNING); 3720 pr_err("Failed to start kswapd on node %d\n", nid); 3721 ret = PTR_ERR(pgdat->kswapd); 3722 pgdat->kswapd = NULL; 3723 } 3724 return ret; 3725 } 3726 3727 /* 3728 * Called by memory hotplug when all memory in a node is offlined. Caller must 3729 * hold mem_hotplug_begin/end(). 3730 */ 3731 void kswapd_stop(int nid) 3732 { 3733 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3734 3735 if (kswapd) { 3736 kthread_stop(kswapd); 3737 NODE_DATA(nid)->kswapd = NULL; 3738 } 3739 } 3740 3741 static int __init kswapd_init(void) 3742 { 3743 int nid, ret; 3744 3745 swap_setup(); 3746 for_each_node_state(nid, N_MEMORY) 3747 kswapd_run(nid); 3748 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3749 "mm/vmscan:online", kswapd_cpu_online, 3750 NULL); 3751 WARN_ON(ret < 0); 3752 return 0; 3753 } 3754 3755 module_init(kswapd_init) 3756 3757 #ifdef CONFIG_NUMA 3758 /* 3759 * Node reclaim mode 3760 * 3761 * If non-zero call node_reclaim when the number of free pages falls below 3762 * the watermarks. 3763 */ 3764 int node_reclaim_mode __read_mostly; 3765 3766 #define RECLAIM_OFF 0 3767 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3768 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3769 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3770 3771 /* 3772 * Priority for NODE_RECLAIM. This determines the fraction of pages 3773 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3774 * a zone. 3775 */ 3776 #define NODE_RECLAIM_PRIORITY 4 3777 3778 /* 3779 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3780 * occur. 3781 */ 3782 int sysctl_min_unmapped_ratio = 1; 3783 3784 /* 3785 * If the number of slab pages in a zone grows beyond this percentage then 3786 * slab reclaim needs to occur. 3787 */ 3788 int sysctl_min_slab_ratio = 5; 3789 3790 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3791 { 3792 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3793 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3794 node_page_state(pgdat, NR_ACTIVE_FILE); 3795 3796 /* 3797 * It's possible for there to be more file mapped pages than 3798 * accounted for by the pages on the file LRU lists because 3799 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3800 */ 3801 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3802 } 3803 3804 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3805 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3806 { 3807 unsigned long nr_pagecache_reclaimable; 3808 unsigned long delta = 0; 3809 3810 /* 3811 * If RECLAIM_UNMAP is set, then all file pages are considered 3812 * potentially reclaimable. Otherwise, we have to worry about 3813 * pages like swapcache and node_unmapped_file_pages() provides 3814 * a better estimate 3815 */ 3816 if (node_reclaim_mode & RECLAIM_UNMAP) 3817 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3818 else 3819 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3820 3821 /* If we can't clean pages, remove dirty pages from consideration */ 3822 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3823 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3824 3825 /* Watch for any possible underflows due to delta */ 3826 if (unlikely(delta > nr_pagecache_reclaimable)) 3827 delta = nr_pagecache_reclaimable; 3828 3829 return nr_pagecache_reclaimable - delta; 3830 } 3831 3832 /* 3833 * Try to free up some pages from this node through reclaim. 3834 */ 3835 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3836 { 3837 /* Minimum pages needed in order to stay on node */ 3838 const unsigned long nr_pages = 1 << order; 3839 struct task_struct *p = current; 3840 struct reclaim_state reclaim_state; 3841 unsigned int noreclaim_flag; 3842 struct scan_control sc = { 3843 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3844 .gfp_mask = current_gfp_context(gfp_mask), 3845 .order = order, 3846 .priority = NODE_RECLAIM_PRIORITY, 3847 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3848 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3849 .may_swap = 1, 3850 .reclaim_idx = gfp_zone(gfp_mask), 3851 }; 3852 3853 cond_resched(); 3854 /* 3855 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3856 * and we also need to be able to write out pages for RECLAIM_WRITE 3857 * and RECLAIM_UNMAP. 3858 */ 3859 noreclaim_flag = memalloc_noreclaim_save(); 3860 p->flags |= PF_SWAPWRITE; 3861 fs_reclaim_acquire(sc.gfp_mask); 3862 reclaim_state.reclaimed_slab = 0; 3863 p->reclaim_state = &reclaim_state; 3864 3865 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3866 /* 3867 * Free memory by calling shrink node with increasing 3868 * priorities until we have enough memory freed. 3869 */ 3870 do { 3871 shrink_node(pgdat, &sc); 3872 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3873 } 3874 3875 p->reclaim_state = NULL; 3876 fs_reclaim_release(gfp_mask); 3877 current->flags &= ~PF_SWAPWRITE; 3878 memalloc_noreclaim_restore(noreclaim_flag); 3879 return sc.nr_reclaimed >= nr_pages; 3880 } 3881 3882 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3883 { 3884 int ret; 3885 3886 /* 3887 * Node reclaim reclaims unmapped file backed pages and 3888 * slab pages if we are over the defined limits. 3889 * 3890 * A small portion of unmapped file backed pages is needed for 3891 * file I/O otherwise pages read by file I/O will be immediately 3892 * thrown out if the node is overallocated. So we do not reclaim 3893 * if less than a specified percentage of the node is used by 3894 * unmapped file backed pages. 3895 */ 3896 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3897 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3898 return NODE_RECLAIM_FULL; 3899 3900 /* 3901 * Do not scan if the allocation should not be delayed. 3902 */ 3903 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3904 return NODE_RECLAIM_NOSCAN; 3905 3906 /* 3907 * Only run node reclaim on the local node or on nodes that do not 3908 * have associated processors. This will favor the local processor 3909 * over remote processors and spread off node memory allocations 3910 * as wide as possible. 3911 */ 3912 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3913 return NODE_RECLAIM_NOSCAN; 3914 3915 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3916 return NODE_RECLAIM_NOSCAN; 3917 3918 ret = __node_reclaim(pgdat, gfp_mask, order); 3919 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3920 3921 if (!ret) 3922 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3923 3924 return ret; 3925 } 3926 #endif 3927 3928 /* 3929 * page_evictable - test whether a page is evictable 3930 * @page: the page to test 3931 * 3932 * Test whether page is evictable--i.e., should be placed on active/inactive 3933 * lists vs unevictable list. 3934 * 3935 * Reasons page might not be evictable: 3936 * (1) page's mapping marked unevictable 3937 * (2) page is part of an mlocked VMA 3938 * 3939 */ 3940 int page_evictable(struct page *page) 3941 { 3942 int ret; 3943 3944 /* Prevent address_space of inode and swap cache from being freed */ 3945 rcu_read_lock(); 3946 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3947 rcu_read_unlock(); 3948 return ret; 3949 } 3950 3951 #ifdef CONFIG_SHMEM 3952 /** 3953 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3954 * @pages: array of pages to check 3955 * @nr_pages: number of pages to check 3956 * 3957 * Checks pages for evictability and moves them to the appropriate lru list. 3958 * 3959 * This function is only used for SysV IPC SHM_UNLOCK. 3960 */ 3961 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3962 { 3963 struct lruvec *lruvec; 3964 struct pglist_data *pgdat = NULL; 3965 int pgscanned = 0; 3966 int pgrescued = 0; 3967 int i; 3968 3969 for (i = 0; i < nr_pages; i++) { 3970 struct page *page = pages[i]; 3971 struct pglist_data *pagepgdat = page_pgdat(page); 3972 3973 pgscanned++; 3974 if (pagepgdat != pgdat) { 3975 if (pgdat) 3976 spin_unlock_irq(&pgdat->lru_lock); 3977 pgdat = pagepgdat; 3978 spin_lock_irq(&pgdat->lru_lock); 3979 } 3980 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3981 3982 if (!PageLRU(page) || !PageUnevictable(page)) 3983 continue; 3984 3985 if (page_evictable(page)) { 3986 enum lru_list lru = page_lru_base_type(page); 3987 3988 VM_BUG_ON_PAGE(PageActive(page), page); 3989 ClearPageUnevictable(page); 3990 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3991 add_page_to_lru_list(page, lruvec, lru); 3992 pgrescued++; 3993 } 3994 } 3995 3996 if (pgdat) { 3997 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3998 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3999 spin_unlock_irq(&pgdat->lru_lock); 4000 } 4001 } 4002 #endif /* CONFIG_SHMEM */ 4003