1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/mutex.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 #include <linux/srcu.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 65 #include <linux/swapops.h> 66 #include <linux/balloon_compaction.h> 67 #include <linux/sched/sysctl.h> 68 69 #include "internal.h" 70 #include "swap.h" 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/vmscan.h> 74 75 struct scan_control { 76 /* How many pages shrink_list() should reclaim */ 77 unsigned long nr_to_reclaim; 78 79 /* 80 * Nodemask of nodes allowed by the caller. If NULL, all nodes 81 * are scanned. 82 */ 83 nodemask_t *nodemask; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Scan pressure balancing between anon and file LRUs 93 */ 94 unsigned long anon_cost; 95 unsigned long file_cost; 96 97 /* Can active folios be deactivated as part of reclaim? */ 98 #define DEACTIVATE_ANON 1 99 #define DEACTIVATE_FILE 2 100 unsigned int may_deactivate:2; 101 unsigned int force_deactivate:1; 102 unsigned int skipped_deactivate:1; 103 104 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 105 unsigned int may_writepage:1; 106 107 /* Can mapped folios be reclaimed? */ 108 unsigned int may_unmap:1; 109 110 /* Can folios be swapped as part of reclaim? */ 111 unsigned int may_swap:1; 112 113 /* Proactive reclaim invoked by userspace through memory.reclaim */ 114 unsigned int proactive:1; 115 116 /* 117 * Cgroup memory below memory.low is protected as long as we 118 * don't threaten to OOM. If any cgroup is reclaimed at 119 * reduced force or passed over entirely due to its memory.low 120 * setting (memcg_low_skipped), and nothing is reclaimed as a 121 * result, then go back for one more cycle that reclaims the protected 122 * memory (memcg_low_reclaim) to avert OOM. 123 */ 124 unsigned int memcg_low_reclaim:1; 125 unsigned int memcg_low_skipped:1; 126 127 unsigned int hibernation_mode:1; 128 129 /* One of the zones is ready for compaction */ 130 unsigned int compaction_ready:1; 131 132 /* There is easily reclaimable cold cache in the current node */ 133 unsigned int cache_trim_mode:1; 134 135 /* The file folios on the current node are dangerously low */ 136 unsigned int file_is_tiny:1; 137 138 /* Always discard instead of demoting to lower tier memory */ 139 unsigned int no_demotion:1; 140 141 /* Allocation order */ 142 s8 order; 143 144 /* Scan (total_size >> priority) pages at once */ 145 s8 priority; 146 147 /* The highest zone to isolate folios for reclaim from */ 148 s8 reclaim_idx; 149 150 /* This context's GFP mask */ 151 gfp_t gfp_mask; 152 153 /* Incremented by the number of inactive pages that were scanned */ 154 unsigned long nr_scanned; 155 156 /* Number of pages freed so far during a call to shrink_zones() */ 157 unsigned long nr_reclaimed; 158 159 struct { 160 unsigned int dirty; 161 unsigned int unqueued_dirty; 162 unsigned int congested; 163 unsigned int writeback; 164 unsigned int immediate; 165 unsigned int file_taken; 166 unsigned int taken; 167 } nr; 168 169 /* for recording the reclaimed slab by now */ 170 struct reclaim_state reclaim_state; 171 }; 172 173 #ifdef ARCH_HAS_PREFETCHW 174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 175 do { \ 176 if ((_folio)->lru.prev != _base) { \ 177 struct folio *prev; \ 178 \ 179 prev = lru_to_folio(&(_folio->lru)); \ 180 prefetchw(&prev->_field); \ 181 } \ 182 } while (0) 183 #else 184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 185 #endif 186 187 /* 188 * From 0 .. 200. Higher means more swappy. 189 */ 190 int vm_swappiness = 60; 191 192 LIST_HEAD(shrinker_list); 193 DEFINE_MUTEX(shrinker_mutex); 194 DEFINE_SRCU(shrinker_srcu); 195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0); 196 197 #ifdef CONFIG_MEMCG 198 static int shrinker_nr_max; 199 200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 201 static inline int shrinker_map_size(int nr_items) 202 { 203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 204 } 205 206 static inline int shrinker_defer_size(int nr_items) 207 { 208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 209 } 210 211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 212 int nid) 213 { 214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info, 215 &shrinker_srcu, 216 lockdep_is_held(&shrinker_mutex)); 217 } 218 219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg, 220 int nid) 221 { 222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info, 223 &shrinker_srcu); 224 } 225 226 static void free_shrinker_info_rcu(struct rcu_head *head) 227 { 228 kvfree(container_of(head, struct shrinker_info, rcu)); 229 } 230 231 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 232 int map_size, int defer_size, 233 int old_map_size, int old_defer_size, 234 int new_nr_max) 235 { 236 struct shrinker_info *new, *old; 237 struct mem_cgroup_per_node *pn; 238 int nid; 239 int size = map_size + defer_size; 240 241 for_each_node(nid) { 242 pn = memcg->nodeinfo[nid]; 243 old = shrinker_info_protected(memcg, nid); 244 /* Not yet online memcg */ 245 if (!old) 246 return 0; 247 248 /* Already expanded this shrinker_info */ 249 if (new_nr_max <= old->map_nr_max) 250 continue; 251 252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 253 if (!new) 254 return -ENOMEM; 255 256 new->nr_deferred = (atomic_long_t *)(new + 1); 257 new->map = (void *)new->nr_deferred + defer_size; 258 new->map_nr_max = new_nr_max; 259 260 /* map: set all old bits, clear all new bits */ 261 memset(new->map, (int)0xff, old_map_size); 262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 263 /* nr_deferred: copy old values, clear all new values */ 264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 265 memset((void *)new->nr_deferred + old_defer_size, 0, 266 defer_size - old_defer_size); 267 268 rcu_assign_pointer(pn->shrinker_info, new); 269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu); 270 } 271 272 return 0; 273 } 274 275 void free_shrinker_info(struct mem_cgroup *memcg) 276 { 277 struct mem_cgroup_per_node *pn; 278 struct shrinker_info *info; 279 int nid; 280 281 for_each_node(nid) { 282 pn = memcg->nodeinfo[nid]; 283 info = rcu_dereference_protected(pn->shrinker_info, true); 284 kvfree(info); 285 rcu_assign_pointer(pn->shrinker_info, NULL); 286 } 287 } 288 289 int alloc_shrinker_info(struct mem_cgroup *memcg) 290 { 291 struct shrinker_info *info; 292 int nid, size, ret = 0; 293 int map_size, defer_size = 0; 294 295 mutex_lock(&shrinker_mutex); 296 map_size = shrinker_map_size(shrinker_nr_max); 297 defer_size = shrinker_defer_size(shrinker_nr_max); 298 size = map_size + defer_size; 299 for_each_node(nid) { 300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 301 if (!info) { 302 free_shrinker_info(memcg); 303 ret = -ENOMEM; 304 break; 305 } 306 info->nr_deferred = (atomic_long_t *)(info + 1); 307 info->map = (void *)info->nr_deferred + defer_size; 308 info->map_nr_max = shrinker_nr_max; 309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 310 } 311 mutex_unlock(&shrinker_mutex); 312 313 return ret; 314 } 315 316 static int expand_shrinker_info(int new_id) 317 { 318 int ret = 0; 319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG); 320 int map_size, defer_size = 0; 321 int old_map_size, old_defer_size = 0; 322 struct mem_cgroup *memcg; 323 324 if (!root_mem_cgroup) 325 goto out; 326 327 lockdep_assert_held(&shrinker_mutex); 328 329 map_size = shrinker_map_size(new_nr_max); 330 defer_size = shrinker_defer_size(new_nr_max); 331 old_map_size = shrinker_map_size(shrinker_nr_max); 332 old_defer_size = shrinker_defer_size(shrinker_nr_max); 333 334 memcg = mem_cgroup_iter(NULL, NULL, NULL); 335 do { 336 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 337 old_map_size, old_defer_size, 338 new_nr_max); 339 if (ret) { 340 mem_cgroup_iter_break(NULL, memcg); 341 goto out; 342 } 343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 344 out: 345 if (!ret) 346 shrinker_nr_max = new_nr_max; 347 348 return ret; 349 } 350 351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 352 { 353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 354 struct shrinker_info *info; 355 int srcu_idx; 356 357 srcu_idx = srcu_read_lock(&shrinker_srcu); 358 info = shrinker_info_srcu(memcg, nid); 359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { 360 /* Pairs with smp mb in shrink_slab() */ 361 smp_mb__before_atomic(); 362 set_bit(shrinker_id, info->map); 363 } 364 srcu_read_unlock(&shrinker_srcu, srcu_idx); 365 } 366 } 367 368 static DEFINE_IDR(shrinker_idr); 369 370 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 371 { 372 int id, ret = -ENOMEM; 373 374 if (mem_cgroup_disabled()) 375 return -ENOSYS; 376 377 mutex_lock(&shrinker_mutex); 378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 379 if (id < 0) 380 goto unlock; 381 382 if (id >= shrinker_nr_max) { 383 if (expand_shrinker_info(id)) { 384 idr_remove(&shrinker_idr, id); 385 goto unlock; 386 } 387 } 388 shrinker->id = id; 389 ret = 0; 390 unlock: 391 mutex_unlock(&shrinker_mutex); 392 return ret; 393 } 394 395 static void unregister_memcg_shrinker(struct shrinker *shrinker) 396 { 397 int id = shrinker->id; 398 399 BUG_ON(id < 0); 400 401 lockdep_assert_held(&shrinker_mutex); 402 403 idr_remove(&shrinker_idr, id); 404 } 405 406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 407 struct mem_cgroup *memcg) 408 { 409 struct shrinker_info *info; 410 411 info = shrinker_info_srcu(memcg, nid); 412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 413 } 414 415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 416 struct mem_cgroup *memcg) 417 { 418 struct shrinker_info *info; 419 420 info = shrinker_info_srcu(memcg, nid); 421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 422 } 423 424 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 425 { 426 int i, nid; 427 long nr; 428 struct mem_cgroup *parent; 429 struct shrinker_info *child_info, *parent_info; 430 431 parent = parent_mem_cgroup(memcg); 432 if (!parent) 433 parent = root_mem_cgroup; 434 435 /* Prevent from concurrent shrinker_info expand */ 436 mutex_lock(&shrinker_mutex); 437 for_each_node(nid) { 438 child_info = shrinker_info_protected(memcg, nid); 439 parent_info = shrinker_info_protected(parent, nid); 440 for (i = 0; i < child_info->map_nr_max; i++) { 441 nr = atomic_long_read(&child_info->nr_deferred[i]); 442 atomic_long_add(nr, &parent_info->nr_deferred[i]); 443 } 444 } 445 mutex_unlock(&shrinker_mutex); 446 } 447 448 static bool cgroup_reclaim(struct scan_control *sc) 449 { 450 return sc->target_mem_cgroup; 451 } 452 453 static bool global_reclaim(struct scan_control *sc) 454 { 455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 456 } 457 458 /** 459 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 460 * @sc: scan_control in question 461 * 462 * The normal page dirty throttling mechanism in balance_dirty_pages() is 463 * completely broken with the legacy memcg and direct stalling in 464 * shrink_folio_list() is used for throttling instead, which lacks all the 465 * niceties such as fairness, adaptive pausing, bandwidth proportional 466 * allocation and configurability. 467 * 468 * This function tests whether the vmscan currently in progress can assume 469 * that the normal dirty throttling mechanism is operational. 470 */ 471 static bool writeback_throttling_sane(struct scan_control *sc) 472 { 473 if (!cgroup_reclaim(sc)) 474 return true; 475 #ifdef CONFIG_CGROUP_WRITEBACK 476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 477 return true; 478 #endif 479 return false; 480 } 481 #else 482 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 483 { 484 return -ENOSYS; 485 } 486 487 static void unregister_memcg_shrinker(struct shrinker *shrinker) 488 { 489 } 490 491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 492 struct mem_cgroup *memcg) 493 { 494 return 0; 495 } 496 497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 498 struct mem_cgroup *memcg) 499 { 500 return 0; 501 } 502 503 static bool cgroup_reclaim(struct scan_control *sc) 504 { 505 return false; 506 } 507 508 static bool global_reclaim(struct scan_control *sc) 509 { 510 return true; 511 } 512 513 static bool writeback_throttling_sane(struct scan_control *sc) 514 { 515 return true; 516 } 517 #endif 518 519 static void set_task_reclaim_state(struct task_struct *task, 520 struct reclaim_state *rs) 521 { 522 /* Check for an overwrite */ 523 WARN_ON_ONCE(rs && task->reclaim_state); 524 525 /* Check for the nulling of an already-nulled member */ 526 WARN_ON_ONCE(!rs && !task->reclaim_state); 527 528 task->reclaim_state = rs; 529 } 530 531 /* 532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 533 * scan_control->nr_reclaimed. 534 */ 535 static void flush_reclaim_state(struct scan_control *sc) 536 { 537 /* 538 * Currently, reclaim_state->reclaimed includes three types of pages 539 * freed outside of vmscan: 540 * (1) Slab pages. 541 * (2) Clean file pages from pruned inodes (on highmem systems). 542 * (3) XFS freed buffer pages. 543 * 544 * For all of these cases, we cannot universally link the pages to a 545 * single memcg. For example, a memcg-aware shrinker can free one object 546 * charged to the target memcg, causing an entire page to be freed. 547 * If we count the entire page as reclaimed from the memcg, we end up 548 * overestimating the reclaimed amount (potentially under-reclaiming). 549 * 550 * Only count such pages for global reclaim to prevent under-reclaiming 551 * from the target memcg; preventing unnecessary retries during memcg 552 * charging and false positives from proactive reclaim. 553 * 554 * For uncommon cases where the freed pages were actually mostly 555 * charged to the target memcg, we end up underestimating the reclaimed 556 * amount. This should be fine. The freed pages will be uncharged 557 * anyway, even if they are not counted here properly, and we will be 558 * able to make forward progress in charging (which is usually in a 559 * retry loop). 560 * 561 * We can go one step further, and report the uncharged objcg pages in 562 * memcg reclaim, to make reporting more accurate and reduce 563 * underestimation, but it's probably not worth the complexity for now. 564 */ 565 if (current->reclaim_state && global_reclaim(sc)) { 566 sc->nr_reclaimed += current->reclaim_state->reclaimed; 567 current->reclaim_state->reclaimed = 0; 568 } 569 } 570 571 static long xchg_nr_deferred(struct shrinker *shrinker, 572 struct shrink_control *sc) 573 { 574 int nid = sc->nid; 575 576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 577 nid = 0; 578 579 if (sc->memcg && 580 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 581 return xchg_nr_deferred_memcg(nid, shrinker, 582 sc->memcg); 583 584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 585 } 586 587 588 static long add_nr_deferred(long nr, struct shrinker *shrinker, 589 struct shrink_control *sc) 590 { 591 int nid = sc->nid; 592 593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 594 nid = 0; 595 596 if (sc->memcg && 597 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 598 return add_nr_deferred_memcg(nr, nid, shrinker, 599 sc->memcg); 600 601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 602 } 603 604 static bool can_demote(int nid, struct scan_control *sc) 605 { 606 if (!numa_demotion_enabled) 607 return false; 608 if (sc && sc->no_demotion) 609 return false; 610 if (next_demotion_node(nid) == NUMA_NO_NODE) 611 return false; 612 613 return true; 614 } 615 616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 617 int nid, 618 struct scan_control *sc) 619 { 620 if (memcg == NULL) { 621 /* 622 * For non-memcg reclaim, is there 623 * space in any swap device? 624 */ 625 if (get_nr_swap_pages() > 0) 626 return true; 627 } else { 628 /* Is the memcg below its swap limit? */ 629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 630 return true; 631 } 632 633 /* 634 * The page can not be swapped. 635 * 636 * Can it be reclaimed from this node via demotion? 637 */ 638 return can_demote(nid, sc); 639 } 640 641 /* 642 * This misses isolated folios which are not accounted for to save counters. 643 * As the data only determines if reclaim or compaction continues, it is 644 * not expected that isolated folios will be a dominating factor. 645 */ 646 unsigned long zone_reclaimable_pages(struct zone *zone) 647 { 648 unsigned long nr; 649 650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 655 656 return nr; 657 } 658 659 /** 660 * lruvec_lru_size - Returns the number of pages on the given LRU list. 661 * @lruvec: lru vector 662 * @lru: lru to use 663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 664 */ 665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 666 int zone_idx) 667 { 668 unsigned long size = 0; 669 int zid; 670 671 for (zid = 0; zid <= zone_idx; zid++) { 672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 673 674 if (!managed_zone(zone)) 675 continue; 676 677 if (!mem_cgroup_disabled()) 678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 679 else 680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 681 } 682 return size; 683 } 684 685 /* 686 * Add a shrinker callback to be called from the vm. 687 */ 688 static int __prealloc_shrinker(struct shrinker *shrinker) 689 { 690 unsigned int size; 691 int err; 692 693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 694 err = prealloc_memcg_shrinker(shrinker); 695 if (err != -ENOSYS) 696 return err; 697 698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 699 } 700 701 size = sizeof(*shrinker->nr_deferred); 702 if (shrinker->flags & SHRINKER_NUMA_AWARE) 703 size *= nr_node_ids; 704 705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 706 if (!shrinker->nr_deferred) 707 return -ENOMEM; 708 709 return 0; 710 } 711 712 #ifdef CONFIG_SHRINKER_DEBUG 713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 714 { 715 va_list ap; 716 int err; 717 718 va_start(ap, fmt); 719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 720 va_end(ap); 721 if (!shrinker->name) 722 return -ENOMEM; 723 724 err = __prealloc_shrinker(shrinker); 725 if (err) { 726 kfree_const(shrinker->name); 727 shrinker->name = NULL; 728 } 729 730 return err; 731 } 732 #else 733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 734 { 735 return __prealloc_shrinker(shrinker); 736 } 737 #endif 738 739 void free_prealloced_shrinker(struct shrinker *shrinker) 740 { 741 #ifdef CONFIG_SHRINKER_DEBUG 742 kfree_const(shrinker->name); 743 shrinker->name = NULL; 744 #endif 745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 746 mutex_lock(&shrinker_mutex); 747 unregister_memcg_shrinker(shrinker); 748 mutex_unlock(&shrinker_mutex); 749 return; 750 } 751 752 kfree(shrinker->nr_deferred); 753 shrinker->nr_deferred = NULL; 754 } 755 756 void register_shrinker_prepared(struct shrinker *shrinker) 757 { 758 mutex_lock(&shrinker_mutex); 759 list_add_tail_rcu(&shrinker->list, &shrinker_list); 760 shrinker->flags |= SHRINKER_REGISTERED; 761 shrinker_debugfs_add(shrinker); 762 mutex_unlock(&shrinker_mutex); 763 } 764 765 static int __register_shrinker(struct shrinker *shrinker) 766 { 767 int err = __prealloc_shrinker(shrinker); 768 769 if (err) 770 return err; 771 register_shrinker_prepared(shrinker); 772 return 0; 773 } 774 775 #ifdef CONFIG_SHRINKER_DEBUG 776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 777 { 778 va_list ap; 779 int err; 780 781 va_start(ap, fmt); 782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 783 va_end(ap); 784 if (!shrinker->name) 785 return -ENOMEM; 786 787 err = __register_shrinker(shrinker); 788 if (err) { 789 kfree_const(shrinker->name); 790 shrinker->name = NULL; 791 } 792 return err; 793 } 794 #else 795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 796 { 797 return __register_shrinker(shrinker); 798 } 799 #endif 800 EXPORT_SYMBOL(register_shrinker); 801 802 /* 803 * Remove one 804 */ 805 void unregister_shrinker(struct shrinker *shrinker) 806 { 807 struct dentry *debugfs_entry; 808 int debugfs_id; 809 810 if (!(shrinker->flags & SHRINKER_REGISTERED)) 811 return; 812 813 mutex_lock(&shrinker_mutex); 814 list_del_rcu(&shrinker->list); 815 shrinker->flags &= ~SHRINKER_REGISTERED; 816 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 817 unregister_memcg_shrinker(shrinker); 818 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id); 819 mutex_unlock(&shrinker_mutex); 820 821 atomic_inc(&shrinker_srcu_generation); 822 synchronize_srcu(&shrinker_srcu); 823 824 shrinker_debugfs_remove(debugfs_entry, debugfs_id); 825 826 kfree(shrinker->nr_deferred); 827 shrinker->nr_deferred = NULL; 828 } 829 EXPORT_SYMBOL(unregister_shrinker); 830 831 /** 832 * synchronize_shrinkers - Wait for all running shrinkers to complete. 833 * 834 * This is useful to guarantee that all shrinker invocations have seen an 835 * update, before freeing memory. 836 */ 837 void synchronize_shrinkers(void) 838 { 839 atomic_inc(&shrinker_srcu_generation); 840 synchronize_srcu(&shrinker_srcu); 841 } 842 EXPORT_SYMBOL(synchronize_shrinkers); 843 844 #define SHRINK_BATCH 128 845 846 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 847 struct shrinker *shrinker, int priority) 848 { 849 unsigned long freed = 0; 850 unsigned long long delta; 851 long total_scan; 852 long freeable; 853 long nr; 854 long new_nr; 855 long batch_size = shrinker->batch ? shrinker->batch 856 : SHRINK_BATCH; 857 long scanned = 0, next_deferred; 858 859 freeable = shrinker->count_objects(shrinker, shrinkctl); 860 if (freeable == 0 || freeable == SHRINK_EMPTY) 861 return freeable; 862 863 /* 864 * copy the current shrinker scan count into a local variable 865 * and zero it so that other concurrent shrinker invocations 866 * don't also do this scanning work. 867 */ 868 nr = xchg_nr_deferred(shrinker, shrinkctl); 869 870 if (shrinker->seeks) { 871 delta = freeable >> priority; 872 delta *= 4; 873 do_div(delta, shrinker->seeks); 874 } else { 875 /* 876 * These objects don't require any IO to create. Trim 877 * them aggressively under memory pressure to keep 878 * them from causing refetches in the IO caches. 879 */ 880 delta = freeable / 2; 881 } 882 883 total_scan = nr >> priority; 884 total_scan += delta; 885 total_scan = min(total_scan, (2 * freeable)); 886 887 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 888 freeable, delta, total_scan, priority); 889 890 /* 891 * Normally, we should not scan less than batch_size objects in one 892 * pass to avoid too frequent shrinker calls, but if the slab has less 893 * than batch_size objects in total and we are really tight on memory, 894 * we will try to reclaim all available objects, otherwise we can end 895 * up failing allocations although there are plenty of reclaimable 896 * objects spread over several slabs with usage less than the 897 * batch_size. 898 * 899 * We detect the "tight on memory" situations by looking at the total 900 * number of objects we want to scan (total_scan). If it is greater 901 * than the total number of objects on slab (freeable), we must be 902 * scanning at high prio and therefore should try to reclaim as much as 903 * possible. 904 */ 905 while (total_scan >= batch_size || 906 total_scan >= freeable) { 907 unsigned long ret; 908 unsigned long nr_to_scan = min(batch_size, total_scan); 909 910 shrinkctl->nr_to_scan = nr_to_scan; 911 shrinkctl->nr_scanned = nr_to_scan; 912 ret = shrinker->scan_objects(shrinker, shrinkctl); 913 if (ret == SHRINK_STOP) 914 break; 915 freed += ret; 916 917 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 918 total_scan -= shrinkctl->nr_scanned; 919 scanned += shrinkctl->nr_scanned; 920 921 cond_resched(); 922 } 923 924 /* 925 * The deferred work is increased by any new work (delta) that wasn't 926 * done, decreased by old deferred work that was done now. 927 * 928 * And it is capped to two times of the freeable items. 929 */ 930 next_deferred = max_t(long, (nr + delta - scanned), 0); 931 next_deferred = min(next_deferred, (2 * freeable)); 932 933 /* 934 * move the unused scan count back into the shrinker in a 935 * manner that handles concurrent updates. 936 */ 937 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 938 939 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 940 return freed; 941 } 942 943 #ifdef CONFIG_MEMCG 944 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 945 struct mem_cgroup *memcg, int priority) 946 { 947 struct shrinker_info *info; 948 unsigned long ret, freed = 0; 949 int srcu_idx, generation; 950 int i = 0; 951 952 if (!mem_cgroup_online(memcg)) 953 return 0; 954 955 again: 956 srcu_idx = srcu_read_lock(&shrinker_srcu); 957 info = shrinker_info_srcu(memcg, nid); 958 if (unlikely(!info)) 959 goto unlock; 960 961 generation = atomic_read(&shrinker_srcu_generation); 962 for_each_set_bit_from(i, info->map, info->map_nr_max) { 963 struct shrink_control sc = { 964 .gfp_mask = gfp_mask, 965 .nid = nid, 966 .memcg = memcg, 967 }; 968 struct shrinker *shrinker; 969 970 shrinker = idr_find(&shrinker_idr, i); 971 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 972 if (!shrinker) 973 clear_bit(i, info->map); 974 continue; 975 } 976 977 /* Call non-slab shrinkers even though kmem is disabled */ 978 if (!memcg_kmem_online() && 979 !(shrinker->flags & SHRINKER_NONSLAB)) 980 continue; 981 982 ret = do_shrink_slab(&sc, shrinker, priority); 983 if (ret == SHRINK_EMPTY) { 984 clear_bit(i, info->map); 985 /* 986 * After the shrinker reported that it had no objects to 987 * free, but before we cleared the corresponding bit in 988 * the memcg shrinker map, a new object might have been 989 * added. To make sure, we have the bit set in this 990 * case, we invoke the shrinker one more time and reset 991 * the bit if it reports that it is not empty anymore. 992 * The memory barrier here pairs with the barrier in 993 * set_shrinker_bit(): 994 * 995 * list_lru_add() shrink_slab_memcg() 996 * list_add_tail() clear_bit() 997 * <MB> <MB> 998 * set_bit() do_shrink_slab() 999 */ 1000 smp_mb__after_atomic(); 1001 ret = do_shrink_slab(&sc, shrinker, priority); 1002 if (ret == SHRINK_EMPTY) 1003 ret = 0; 1004 else 1005 set_shrinker_bit(memcg, nid, i); 1006 } 1007 freed += ret; 1008 if (atomic_read(&shrinker_srcu_generation) != generation) { 1009 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1010 i++; 1011 goto again; 1012 } 1013 } 1014 unlock: 1015 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1016 return freed; 1017 } 1018 #else /* CONFIG_MEMCG */ 1019 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 1020 struct mem_cgroup *memcg, int priority) 1021 { 1022 return 0; 1023 } 1024 #endif /* CONFIG_MEMCG */ 1025 1026 /** 1027 * shrink_slab - shrink slab caches 1028 * @gfp_mask: allocation context 1029 * @nid: node whose slab caches to target 1030 * @memcg: memory cgroup whose slab caches to target 1031 * @priority: the reclaim priority 1032 * 1033 * Call the shrink functions to age shrinkable caches. 1034 * 1035 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 1036 * unaware shrinkers will receive a node id of 0 instead. 1037 * 1038 * @memcg specifies the memory cgroup to target. Unaware shrinkers 1039 * are called only if it is the root cgroup. 1040 * 1041 * @priority is sc->priority, we take the number of objects and >> by priority 1042 * in order to get the scan target. 1043 * 1044 * Returns the number of reclaimed slab objects. 1045 */ 1046 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 1047 struct mem_cgroup *memcg, 1048 int priority) 1049 { 1050 unsigned long ret, freed = 0; 1051 struct shrinker *shrinker; 1052 int srcu_idx, generation; 1053 1054 /* 1055 * The root memcg might be allocated even though memcg is disabled 1056 * via "cgroup_disable=memory" boot parameter. This could make 1057 * mem_cgroup_is_root() return false, then just run memcg slab 1058 * shrink, but skip global shrink. This may result in premature 1059 * oom. 1060 */ 1061 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1062 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1063 1064 srcu_idx = srcu_read_lock(&shrinker_srcu); 1065 1066 generation = atomic_read(&shrinker_srcu_generation); 1067 list_for_each_entry_srcu(shrinker, &shrinker_list, list, 1068 srcu_read_lock_held(&shrinker_srcu)) { 1069 struct shrink_control sc = { 1070 .gfp_mask = gfp_mask, 1071 .nid = nid, 1072 .memcg = memcg, 1073 }; 1074 1075 ret = do_shrink_slab(&sc, shrinker, priority); 1076 if (ret == SHRINK_EMPTY) 1077 ret = 0; 1078 freed += ret; 1079 1080 if (atomic_read(&shrinker_srcu_generation) != generation) { 1081 freed = freed ? : 1; 1082 break; 1083 } 1084 } 1085 1086 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1087 cond_resched(); 1088 return freed; 1089 } 1090 1091 static unsigned long drop_slab_node(int nid) 1092 { 1093 unsigned long freed = 0; 1094 struct mem_cgroup *memcg = NULL; 1095 1096 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1097 do { 1098 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1099 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1100 1101 return freed; 1102 } 1103 1104 void drop_slab(void) 1105 { 1106 int nid; 1107 int shift = 0; 1108 unsigned long freed; 1109 1110 do { 1111 freed = 0; 1112 for_each_online_node(nid) { 1113 if (fatal_signal_pending(current)) 1114 return; 1115 1116 freed += drop_slab_node(nid); 1117 } 1118 } while ((freed >> shift++) > 1); 1119 } 1120 1121 static int reclaimer_offset(void) 1122 { 1123 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1124 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1125 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1126 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1127 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1128 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1129 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1130 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1131 1132 if (current_is_kswapd()) 1133 return 0; 1134 if (current_is_khugepaged()) 1135 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1136 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1137 } 1138 1139 static inline int is_page_cache_freeable(struct folio *folio) 1140 { 1141 /* 1142 * A freeable page cache folio is referenced only by the caller 1143 * that isolated the folio, the page cache and optional filesystem 1144 * private data at folio->private. 1145 */ 1146 return folio_ref_count(folio) - folio_test_private(folio) == 1147 1 + folio_nr_pages(folio); 1148 } 1149 1150 /* 1151 * We detected a synchronous write error writing a folio out. Probably 1152 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1153 * fsync(), msync() or close(). 1154 * 1155 * The tricky part is that after writepage we cannot touch the mapping: nothing 1156 * prevents it from being freed up. But we have a ref on the folio and once 1157 * that folio is locked, the mapping is pinned. 1158 * 1159 * We're allowed to run sleeping folio_lock() here because we know the caller has 1160 * __GFP_FS. 1161 */ 1162 static void handle_write_error(struct address_space *mapping, 1163 struct folio *folio, int error) 1164 { 1165 folio_lock(folio); 1166 if (folio_mapping(folio) == mapping) 1167 mapping_set_error(mapping, error); 1168 folio_unlock(folio); 1169 } 1170 1171 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1172 { 1173 int reclaimable = 0, write_pending = 0; 1174 int i; 1175 1176 /* 1177 * If kswapd is disabled, reschedule if necessary but do not 1178 * throttle as the system is likely near OOM. 1179 */ 1180 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1181 return true; 1182 1183 /* 1184 * If there are a lot of dirty/writeback folios then do not 1185 * throttle as throttling will occur when the folios cycle 1186 * towards the end of the LRU if still under writeback. 1187 */ 1188 for (i = 0; i < MAX_NR_ZONES; i++) { 1189 struct zone *zone = pgdat->node_zones + i; 1190 1191 if (!managed_zone(zone)) 1192 continue; 1193 1194 reclaimable += zone_reclaimable_pages(zone); 1195 write_pending += zone_page_state_snapshot(zone, 1196 NR_ZONE_WRITE_PENDING); 1197 } 1198 if (2 * write_pending <= reclaimable) 1199 return true; 1200 1201 return false; 1202 } 1203 1204 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1205 { 1206 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1207 long timeout, ret; 1208 DEFINE_WAIT(wait); 1209 1210 /* 1211 * Do not throttle user workers, kthreads other than kswapd or 1212 * workqueues. They may be required for reclaim to make 1213 * forward progress (e.g. journalling workqueues or kthreads). 1214 */ 1215 if (!current_is_kswapd() && 1216 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 1217 cond_resched(); 1218 return; 1219 } 1220 1221 /* 1222 * These figures are pulled out of thin air. 1223 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1224 * parallel reclaimers which is a short-lived event so the timeout is 1225 * short. Failing to make progress or waiting on writeback are 1226 * potentially long-lived events so use a longer timeout. This is shaky 1227 * logic as a failure to make progress could be due to anything from 1228 * writeback to a slow device to excessive referenced folios at the tail 1229 * of the inactive LRU. 1230 */ 1231 switch(reason) { 1232 case VMSCAN_THROTTLE_WRITEBACK: 1233 timeout = HZ/10; 1234 1235 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1236 WRITE_ONCE(pgdat->nr_reclaim_start, 1237 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1238 } 1239 1240 break; 1241 case VMSCAN_THROTTLE_CONGESTED: 1242 fallthrough; 1243 case VMSCAN_THROTTLE_NOPROGRESS: 1244 if (skip_throttle_noprogress(pgdat)) { 1245 cond_resched(); 1246 return; 1247 } 1248 1249 timeout = 1; 1250 1251 break; 1252 case VMSCAN_THROTTLE_ISOLATED: 1253 timeout = HZ/50; 1254 break; 1255 default: 1256 WARN_ON_ONCE(1); 1257 timeout = HZ; 1258 break; 1259 } 1260 1261 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1262 ret = schedule_timeout(timeout); 1263 finish_wait(wqh, &wait); 1264 1265 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1266 atomic_dec(&pgdat->nr_writeback_throttled); 1267 1268 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1269 jiffies_to_usecs(timeout - ret), 1270 reason); 1271 } 1272 1273 /* 1274 * Account for folios written if tasks are throttled waiting on dirty 1275 * folios to clean. If enough folios have been cleaned since throttling 1276 * started then wakeup the throttled tasks. 1277 */ 1278 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1279 int nr_throttled) 1280 { 1281 unsigned long nr_written; 1282 1283 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1284 1285 /* 1286 * This is an inaccurate read as the per-cpu deltas may not 1287 * be synchronised. However, given that the system is 1288 * writeback throttled, it is not worth taking the penalty 1289 * of getting an accurate count. At worst, the throttle 1290 * timeout guarantees forward progress. 1291 */ 1292 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1293 READ_ONCE(pgdat->nr_reclaim_start); 1294 1295 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1296 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1297 } 1298 1299 /* possible outcome of pageout() */ 1300 typedef enum { 1301 /* failed to write folio out, folio is locked */ 1302 PAGE_KEEP, 1303 /* move folio to the active list, folio is locked */ 1304 PAGE_ACTIVATE, 1305 /* folio has been sent to the disk successfully, folio is unlocked */ 1306 PAGE_SUCCESS, 1307 /* folio is clean and locked */ 1308 PAGE_CLEAN, 1309 } pageout_t; 1310 1311 /* 1312 * pageout is called by shrink_folio_list() for each dirty folio. 1313 * Calls ->writepage(). 1314 */ 1315 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1316 struct swap_iocb **plug) 1317 { 1318 /* 1319 * If the folio is dirty, only perform writeback if that write 1320 * will be non-blocking. To prevent this allocation from being 1321 * stalled by pagecache activity. But note that there may be 1322 * stalls if we need to run get_block(). We could test 1323 * PagePrivate for that. 1324 * 1325 * If this process is currently in __generic_file_write_iter() against 1326 * this folio's queue, we can perform writeback even if that 1327 * will block. 1328 * 1329 * If the folio is swapcache, write it back even if that would 1330 * block, for some throttling. This happens by accident, because 1331 * swap_backing_dev_info is bust: it doesn't reflect the 1332 * congestion state of the swapdevs. Easy to fix, if needed. 1333 */ 1334 if (!is_page_cache_freeable(folio)) 1335 return PAGE_KEEP; 1336 if (!mapping) { 1337 /* 1338 * Some data journaling orphaned folios can have 1339 * folio->mapping == NULL while being dirty with clean buffers. 1340 */ 1341 if (folio_test_private(folio)) { 1342 if (try_to_free_buffers(folio)) { 1343 folio_clear_dirty(folio); 1344 pr_info("%s: orphaned folio\n", __func__); 1345 return PAGE_CLEAN; 1346 } 1347 } 1348 return PAGE_KEEP; 1349 } 1350 if (mapping->a_ops->writepage == NULL) 1351 return PAGE_ACTIVATE; 1352 1353 if (folio_clear_dirty_for_io(folio)) { 1354 int res; 1355 struct writeback_control wbc = { 1356 .sync_mode = WB_SYNC_NONE, 1357 .nr_to_write = SWAP_CLUSTER_MAX, 1358 .range_start = 0, 1359 .range_end = LLONG_MAX, 1360 .for_reclaim = 1, 1361 .swap_plug = plug, 1362 }; 1363 1364 folio_set_reclaim(folio); 1365 res = mapping->a_ops->writepage(&folio->page, &wbc); 1366 if (res < 0) 1367 handle_write_error(mapping, folio, res); 1368 if (res == AOP_WRITEPAGE_ACTIVATE) { 1369 folio_clear_reclaim(folio); 1370 return PAGE_ACTIVATE; 1371 } 1372 1373 if (!folio_test_writeback(folio)) { 1374 /* synchronous write or broken a_ops? */ 1375 folio_clear_reclaim(folio); 1376 } 1377 trace_mm_vmscan_write_folio(folio); 1378 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1379 return PAGE_SUCCESS; 1380 } 1381 1382 return PAGE_CLEAN; 1383 } 1384 1385 /* 1386 * Same as remove_mapping, but if the folio is removed from the mapping, it 1387 * gets returned with a refcount of 0. 1388 */ 1389 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1390 bool reclaimed, struct mem_cgroup *target_memcg) 1391 { 1392 int refcount; 1393 void *shadow = NULL; 1394 1395 BUG_ON(!folio_test_locked(folio)); 1396 BUG_ON(mapping != folio_mapping(folio)); 1397 1398 if (!folio_test_swapcache(folio)) 1399 spin_lock(&mapping->host->i_lock); 1400 xa_lock_irq(&mapping->i_pages); 1401 /* 1402 * The non racy check for a busy folio. 1403 * 1404 * Must be careful with the order of the tests. When someone has 1405 * a ref to the folio, it may be possible that they dirty it then 1406 * drop the reference. So if the dirty flag is tested before the 1407 * refcount here, then the following race may occur: 1408 * 1409 * get_user_pages(&page); 1410 * [user mapping goes away] 1411 * write_to(page); 1412 * !folio_test_dirty(folio) [good] 1413 * folio_set_dirty(folio); 1414 * folio_put(folio); 1415 * !refcount(folio) [good, discard it] 1416 * 1417 * [oops, our write_to data is lost] 1418 * 1419 * Reversing the order of the tests ensures such a situation cannot 1420 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1421 * load is not satisfied before that of folio->_refcount. 1422 * 1423 * Note that if the dirty flag is always set via folio_mark_dirty, 1424 * and thus under the i_pages lock, then this ordering is not required. 1425 */ 1426 refcount = 1 + folio_nr_pages(folio); 1427 if (!folio_ref_freeze(folio, refcount)) 1428 goto cannot_free; 1429 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1430 if (unlikely(folio_test_dirty(folio))) { 1431 folio_ref_unfreeze(folio, refcount); 1432 goto cannot_free; 1433 } 1434 1435 if (folio_test_swapcache(folio)) { 1436 swp_entry_t swap = folio_swap_entry(folio); 1437 1438 if (reclaimed && !mapping_exiting(mapping)) 1439 shadow = workingset_eviction(folio, target_memcg); 1440 __delete_from_swap_cache(folio, swap, shadow); 1441 mem_cgroup_swapout(folio, swap); 1442 xa_unlock_irq(&mapping->i_pages); 1443 put_swap_folio(folio, swap); 1444 } else { 1445 void (*free_folio)(struct folio *); 1446 1447 free_folio = mapping->a_ops->free_folio; 1448 /* 1449 * Remember a shadow entry for reclaimed file cache in 1450 * order to detect refaults, thus thrashing, later on. 1451 * 1452 * But don't store shadows in an address space that is 1453 * already exiting. This is not just an optimization, 1454 * inode reclaim needs to empty out the radix tree or 1455 * the nodes are lost. Don't plant shadows behind its 1456 * back. 1457 * 1458 * We also don't store shadows for DAX mappings because the 1459 * only page cache folios found in these are zero pages 1460 * covering holes, and because we don't want to mix DAX 1461 * exceptional entries and shadow exceptional entries in the 1462 * same address_space. 1463 */ 1464 if (reclaimed && folio_is_file_lru(folio) && 1465 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1466 shadow = workingset_eviction(folio, target_memcg); 1467 __filemap_remove_folio(folio, shadow); 1468 xa_unlock_irq(&mapping->i_pages); 1469 if (mapping_shrinkable(mapping)) 1470 inode_add_lru(mapping->host); 1471 spin_unlock(&mapping->host->i_lock); 1472 1473 if (free_folio) 1474 free_folio(folio); 1475 } 1476 1477 return 1; 1478 1479 cannot_free: 1480 xa_unlock_irq(&mapping->i_pages); 1481 if (!folio_test_swapcache(folio)) 1482 spin_unlock(&mapping->host->i_lock); 1483 return 0; 1484 } 1485 1486 /** 1487 * remove_mapping() - Attempt to remove a folio from its mapping. 1488 * @mapping: The address space. 1489 * @folio: The folio to remove. 1490 * 1491 * If the folio is dirty, under writeback or if someone else has a ref 1492 * on it, removal will fail. 1493 * Return: The number of pages removed from the mapping. 0 if the folio 1494 * could not be removed. 1495 * Context: The caller should have a single refcount on the folio and 1496 * hold its lock. 1497 */ 1498 long remove_mapping(struct address_space *mapping, struct folio *folio) 1499 { 1500 if (__remove_mapping(mapping, folio, false, NULL)) { 1501 /* 1502 * Unfreezing the refcount with 1 effectively 1503 * drops the pagecache ref for us without requiring another 1504 * atomic operation. 1505 */ 1506 folio_ref_unfreeze(folio, 1); 1507 return folio_nr_pages(folio); 1508 } 1509 return 0; 1510 } 1511 1512 /** 1513 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1514 * @folio: Folio to be returned to an LRU list. 1515 * 1516 * Add previously isolated @folio to appropriate LRU list. 1517 * The folio may still be unevictable for other reasons. 1518 * 1519 * Context: lru_lock must not be held, interrupts must be enabled. 1520 */ 1521 void folio_putback_lru(struct folio *folio) 1522 { 1523 folio_add_lru(folio); 1524 folio_put(folio); /* drop ref from isolate */ 1525 } 1526 1527 enum folio_references { 1528 FOLIOREF_RECLAIM, 1529 FOLIOREF_RECLAIM_CLEAN, 1530 FOLIOREF_KEEP, 1531 FOLIOREF_ACTIVATE, 1532 }; 1533 1534 static enum folio_references folio_check_references(struct folio *folio, 1535 struct scan_control *sc) 1536 { 1537 int referenced_ptes, referenced_folio; 1538 unsigned long vm_flags; 1539 1540 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1541 &vm_flags); 1542 referenced_folio = folio_test_clear_referenced(folio); 1543 1544 /* 1545 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1546 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1547 */ 1548 if (vm_flags & VM_LOCKED) 1549 return FOLIOREF_ACTIVATE; 1550 1551 /* rmap lock contention: rotate */ 1552 if (referenced_ptes == -1) 1553 return FOLIOREF_KEEP; 1554 1555 if (referenced_ptes) { 1556 /* 1557 * All mapped folios start out with page table 1558 * references from the instantiating fault, so we need 1559 * to look twice if a mapped file/anon folio is used more 1560 * than once. 1561 * 1562 * Mark it and spare it for another trip around the 1563 * inactive list. Another page table reference will 1564 * lead to its activation. 1565 * 1566 * Note: the mark is set for activated folios as well 1567 * so that recently deactivated but used folios are 1568 * quickly recovered. 1569 */ 1570 folio_set_referenced(folio); 1571 1572 if (referenced_folio || referenced_ptes > 1) 1573 return FOLIOREF_ACTIVATE; 1574 1575 /* 1576 * Activate file-backed executable folios after first usage. 1577 */ 1578 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1579 return FOLIOREF_ACTIVATE; 1580 1581 return FOLIOREF_KEEP; 1582 } 1583 1584 /* Reclaim if clean, defer dirty folios to writeback */ 1585 if (referenced_folio && folio_is_file_lru(folio)) 1586 return FOLIOREF_RECLAIM_CLEAN; 1587 1588 return FOLIOREF_RECLAIM; 1589 } 1590 1591 /* Check if a folio is dirty or under writeback */ 1592 static void folio_check_dirty_writeback(struct folio *folio, 1593 bool *dirty, bool *writeback) 1594 { 1595 struct address_space *mapping; 1596 1597 /* 1598 * Anonymous folios are not handled by flushers and must be written 1599 * from reclaim context. Do not stall reclaim based on them. 1600 * MADV_FREE anonymous folios are put into inactive file list too. 1601 * They could be mistakenly treated as file lru. So further anon 1602 * test is needed. 1603 */ 1604 if (!folio_is_file_lru(folio) || 1605 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1606 *dirty = false; 1607 *writeback = false; 1608 return; 1609 } 1610 1611 /* By default assume that the folio flags are accurate */ 1612 *dirty = folio_test_dirty(folio); 1613 *writeback = folio_test_writeback(folio); 1614 1615 /* Verify dirty/writeback state if the filesystem supports it */ 1616 if (!folio_test_private(folio)) 1617 return; 1618 1619 mapping = folio_mapping(folio); 1620 if (mapping && mapping->a_ops->is_dirty_writeback) 1621 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1622 } 1623 1624 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1625 { 1626 struct page *target_page; 1627 nodemask_t *allowed_mask; 1628 struct migration_target_control *mtc; 1629 1630 mtc = (struct migration_target_control *)private; 1631 1632 allowed_mask = mtc->nmask; 1633 /* 1634 * make sure we allocate from the target node first also trying to 1635 * demote or reclaim pages from the target node via kswapd if we are 1636 * low on free memory on target node. If we don't do this and if 1637 * we have free memory on the slower(lower) memtier, we would start 1638 * allocating pages from slower(lower) memory tiers without even forcing 1639 * a demotion of cold pages from the target memtier. This can result 1640 * in the kernel placing hot pages in slower(lower) memory tiers. 1641 */ 1642 mtc->nmask = NULL; 1643 mtc->gfp_mask |= __GFP_THISNODE; 1644 target_page = alloc_migration_target(page, (unsigned long)mtc); 1645 if (target_page) 1646 return target_page; 1647 1648 mtc->gfp_mask &= ~__GFP_THISNODE; 1649 mtc->nmask = allowed_mask; 1650 1651 return alloc_migration_target(page, (unsigned long)mtc); 1652 } 1653 1654 /* 1655 * Take folios on @demote_folios and attempt to demote them to another node. 1656 * Folios which are not demoted are left on @demote_folios. 1657 */ 1658 static unsigned int demote_folio_list(struct list_head *demote_folios, 1659 struct pglist_data *pgdat) 1660 { 1661 int target_nid = next_demotion_node(pgdat->node_id); 1662 unsigned int nr_succeeded; 1663 nodemask_t allowed_mask; 1664 1665 struct migration_target_control mtc = { 1666 /* 1667 * Allocate from 'node', or fail quickly and quietly. 1668 * When this happens, 'page' will likely just be discarded 1669 * instead of migrated. 1670 */ 1671 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1672 __GFP_NOMEMALLOC | GFP_NOWAIT, 1673 .nid = target_nid, 1674 .nmask = &allowed_mask 1675 }; 1676 1677 if (list_empty(demote_folios)) 1678 return 0; 1679 1680 if (target_nid == NUMA_NO_NODE) 1681 return 0; 1682 1683 node_get_allowed_targets(pgdat, &allowed_mask); 1684 1685 /* Demotion ignores all cpuset and mempolicy settings */ 1686 migrate_pages(demote_folios, alloc_demote_page, NULL, 1687 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1688 &nr_succeeded); 1689 1690 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1691 1692 return nr_succeeded; 1693 } 1694 1695 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1696 { 1697 if (gfp_mask & __GFP_FS) 1698 return true; 1699 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1700 return false; 1701 /* 1702 * We can "enter_fs" for swap-cache with only __GFP_IO 1703 * providing this isn't SWP_FS_OPS. 1704 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1705 * but that will never affect SWP_FS_OPS, so the data_race 1706 * is safe. 1707 */ 1708 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1709 } 1710 1711 /* 1712 * shrink_folio_list() returns the number of reclaimed pages 1713 */ 1714 static unsigned int shrink_folio_list(struct list_head *folio_list, 1715 struct pglist_data *pgdat, struct scan_control *sc, 1716 struct reclaim_stat *stat, bool ignore_references) 1717 { 1718 LIST_HEAD(ret_folios); 1719 LIST_HEAD(free_folios); 1720 LIST_HEAD(demote_folios); 1721 unsigned int nr_reclaimed = 0; 1722 unsigned int pgactivate = 0; 1723 bool do_demote_pass; 1724 struct swap_iocb *plug = NULL; 1725 1726 memset(stat, 0, sizeof(*stat)); 1727 cond_resched(); 1728 do_demote_pass = can_demote(pgdat->node_id, sc); 1729 1730 retry: 1731 while (!list_empty(folio_list)) { 1732 struct address_space *mapping; 1733 struct folio *folio; 1734 enum folio_references references = FOLIOREF_RECLAIM; 1735 bool dirty, writeback; 1736 unsigned int nr_pages; 1737 1738 cond_resched(); 1739 1740 folio = lru_to_folio(folio_list); 1741 list_del(&folio->lru); 1742 1743 if (!folio_trylock(folio)) 1744 goto keep; 1745 1746 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1747 1748 nr_pages = folio_nr_pages(folio); 1749 1750 /* Account the number of base pages */ 1751 sc->nr_scanned += nr_pages; 1752 1753 if (unlikely(!folio_evictable(folio))) 1754 goto activate_locked; 1755 1756 if (!sc->may_unmap && folio_mapped(folio)) 1757 goto keep_locked; 1758 1759 /* folio_update_gen() tried to promote this page? */ 1760 if (lru_gen_enabled() && !ignore_references && 1761 folio_mapped(folio) && folio_test_referenced(folio)) 1762 goto keep_locked; 1763 1764 /* 1765 * The number of dirty pages determines if a node is marked 1766 * reclaim_congested. kswapd will stall and start writing 1767 * folios if the tail of the LRU is all dirty unqueued folios. 1768 */ 1769 folio_check_dirty_writeback(folio, &dirty, &writeback); 1770 if (dirty || writeback) 1771 stat->nr_dirty += nr_pages; 1772 1773 if (dirty && !writeback) 1774 stat->nr_unqueued_dirty += nr_pages; 1775 1776 /* 1777 * Treat this folio as congested if folios are cycling 1778 * through the LRU so quickly that the folios marked 1779 * for immediate reclaim are making it to the end of 1780 * the LRU a second time. 1781 */ 1782 if (writeback && folio_test_reclaim(folio)) 1783 stat->nr_congested += nr_pages; 1784 1785 /* 1786 * If a folio at the tail of the LRU is under writeback, there 1787 * are three cases to consider. 1788 * 1789 * 1) If reclaim is encountering an excessive number 1790 * of folios under writeback and this folio has both 1791 * the writeback and reclaim flags set, then it 1792 * indicates that folios are being queued for I/O but 1793 * are being recycled through the LRU before the I/O 1794 * can complete. Waiting on the folio itself risks an 1795 * indefinite stall if it is impossible to writeback 1796 * the folio due to I/O error or disconnected storage 1797 * so instead note that the LRU is being scanned too 1798 * quickly and the caller can stall after the folio 1799 * list has been processed. 1800 * 1801 * 2) Global or new memcg reclaim encounters a folio that is 1802 * not marked for immediate reclaim, or the caller does not 1803 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1804 * not to fs). In this case mark the folio for immediate 1805 * reclaim and continue scanning. 1806 * 1807 * Require may_enter_fs() because we would wait on fs, which 1808 * may not have submitted I/O yet. And the loop driver might 1809 * enter reclaim, and deadlock if it waits on a folio for 1810 * which it is needed to do the write (loop masks off 1811 * __GFP_IO|__GFP_FS for this reason); but more thought 1812 * would probably show more reasons. 1813 * 1814 * 3) Legacy memcg encounters a folio that already has the 1815 * reclaim flag set. memcg does not have any dirty folio 1816 * throttling so we could easily OOM just because too many 1817 * folios are in writeback and there is nothing else to 1818 * reclaim. Wait for the writeback to complete. 1819 * 1820 * In cases 1) and 2) we activate the folios to get them out of 1821 * the way while we continue scanning for clean folios on the 1822 * inactive list and refilling from the active list. The 1823 * observation here is that waiting for disk writes is more 1824 * expensive than potentially causing reloads down the line. 1825 * Since they're marked for immediate reclaim, they won't put 1826 * memory pressure on the cache working set any longer than it 1827 * takes to write them to disk. 1828 */ 1829 if (folio_test_writeback(folio)) { 1830 /* Case 1 above */ 1831 if (current_is_kswapd() && 1832 folio_test_reclaim(folio) && 1833 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1834 stat->nr_immediate += nr_pages; 1835 goto activate_locked; 1836 1837 /* Case 2 above */ 1838 } else if (writeback_throttling_sane(sc) || 1839 !folio_test_reclaim(folio) || 1840 !may_enter_fs(folio, sc->gfp_mask)) { 1841 /* 1842 * This is slightly racy - 1843 * folio_end_writeback() might have 1844 * just cleared the reclaim flag, then 1845 * setting the reclaim flag here ends up 1846 * interpreted as the readahead flag - but 1847 * that does not matter enough to care. 1848 * What we do want is for this folio to 1849 * have the reclaim flag set next time 1850 * memcg reclaim reaches the tests above, 1851 * so it will then wait for writeback to 1852 * avoid OOM; and it's also appropriate 1853 * in global reclaim. 1854 */ 1855 folio_set_reclaim(folio); 1856 stat->nr_writeback += nr_pages; 1857 goto activate_locked; 1858 1859 /* Case 3 above */ 1860 } else { 1861 folio_unlock(folio); 1862 folio_wait_writeback(folio); 1863 /* then go back and try same folio again */ 1864 list_add_tail(&folio->lru, folio_list); 1865 continue; 1866 } 1867 } 1868 1869 if (!ignore_references) 1870 references = folio_check_references(folio, sc); 1871 1872 switch (references) { 1873 case FOLIOREF_ACTIVATE: 1874 goto activate_locked; 1875 case FOLIOREF_KEEP: 1876 stat->nr_ref_keep += nr_pages; 1877 goto keep_locked; 1878 case FOLIOREF_RECLAIM: 1879 case FOLIOREF_RECLAIM_CLEAN: 1880 ; /* try to reclaim the folio below */ 1881 } 1882 1883 /* 1884 * Before reclaiming the folio, try to relocate 1885 * its contents to another node. 1886 */ 1887 if (do_demote_pass && 1888 (thp_migration_supported() || !folio_test_large(folio))) { 1889 list_add(&folio->lru, &demote_folios); 1890 folio_unlock(folio); 1891 continue; 1892 } 1893 1894 /* 1895 * Anonymous process memory has backing store? 1896 * Try to allocate it some swap space here. 1897 * Lazyfree folio could be freed directly 1898 */ 1899 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1900 if (!folio_test_swapcache(folio)) { 1901 if (!(sc->gfp_mask & __GFP_IO)) 1902 goto keep_locked; 1903 if (folio_maybe_dma_pinned(folio)) 1904 goto keep_locked; 1905 if (folio_test_large(folio)) { 1906 /* cannot split folio, skip it */ 1907 if (!can_split_folio(folio, NULL)) 1908 goto activate_locked; 1909 /* 1910 * Split folios without a PMD map right 1911 * away. Chances are some or all of the 1912 * tail pages can be freed without IO. 1913 */ 1914 if (!folio_entire_mapcount(folio) && 1915 split_folio_to_list(folio, 1916 folio_list)) 1917 goto activate_locked; 1918 } 1919 if (!add_to_swap(folio)) { 1920 if (!folio_test_large(folio)) 1921 goto activate_locked_split; 1922 /* Fallback to swap normal pages */ 1923 if (split_folio_to_list(folio, 1924 folio_list)) 1925 goto activate_locked; 1926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1927 count_vm_event(THP_SWPOUT_FALLBACK); 1928 #endif 1929 if (!add_to_swap(folio)) 1930 goto activate_locked_split; 1931 } 1932 } 1933 } else if (folio_test_swapbacked(folio) && 1934 folio_test_large(folio)) { 1935 /* Split shmem folio */ 1936 if (split_folio_to_list(folio, folio_list)) 1937 goto keep_locked; 1938 } 1939 1940 /* 1941 * If the folio was split above, the tail pages will make 1942 * their own pass through this function and be accounted 1943 * then. 1944 */ 1945 if ((nr_pages > 1) && !folio_test_large(folio)) { 1946 sc->nr_scanned -= (nr_pages - 1); 1947 nr_pages = 1; 1948 } 1949 1950 /* 1951 * The folio is mapped into the page tables of one or more 1952 * processes. Try to unmap it here. 1953 */ 1954 if (folio_mapped(folio)) { 1955 enum ttu_flags flags = TTU_BATCH_FLUSH; 1956 bool was_swapbacked = folio_test_swapbacked(folio); 1957 1958 if (folio_test_pmd_mappable(folio)) 1959 flags |= TTU_SPLIT_HUGE_PMD; 1960 1961 try_to_unmap(folio, flags); 1962 if (folio_mapped(folio)) { 1963 stat->nr_unmap_fail += nr_pages; 1964 if (!was_swapbacked && 1965 folio_test_swapbacked(folio)) 1966 stat->nr_lazyfree_fail += nr_pages; 1967 goto activate_locked; 1968 } 1969 } 1970 1971 /* 1972 * Folio is unmapped now so it cannot be newly pinned anymore. 1973 * No point in trying to reclaim folio if it is pinned. 1974 * Furthermore we don't want to reclaim underlying fs metadata 1975 * if the folio is pinned and thus potentially modified by the 1976 * pinning process as that may upset the filesystem. 1977 */ 1978 if (folio_maybe_dma_pinned(folio)) 1979 goto activate_locked; 1980 1981 mapping = folio_mapping(folio); 1982 if (folio_test_dirty(folio)) { 1983 /* 1984 * Only kswapd can writeback filesystem folios 1985 * to avoid risk of stack overflow. But avoid 1986 * injecting inefficient single-folio I/O into 1987 * flusher writeback as much as possible: only 1988 * write folios when we've encountered many 1989 * dirty folios, and when we've already scanned 1990 * the rest of the LRU for clean folios and see 1991 * the same dirty folios again (with the reclaim 1992 * flag set). 1993 */ 1994 if (folio_is_file_lru(folio) && 1995 (!current_is_kswapd() || 1996 !folio_test_reclaim(folio) || 1997 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1998 /* 1999 * Immediately reclaim when written back. 2000 * Similar in principle to folio_deactivate() 2001 * except we already have the folio isolated 2002 * and know it's dirty 2003 */ 2004 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 2005 nr_pages); 2006 folio_set_reclaim(folio); 2007 2008 goto activate_locked; 2009 } 2010 2011 if (references == FOLIOREF_RECLAIM_CLEAN) 2012 goto keep_locked; 2013 if (!may_enter_fs(folio, sc->gfp_mask)) 2014 goto keep_locked; 2015 if (!sc->may_writepage) 2016 goto keep_locked; 2017 2018 /* 2019 * Folio is dirty. Flush the TLB if a writable entry 2020 * potentially exists to avoid CPU writes after I/O 2021 * starts and then write it out here. 2022 */ 2023 try_to_unmap_flush_dirty(); 2024 switch (pageout(folio, mapping, &plug)) { 2025 case PAGE_KEEP: 2026 goto keep_locked; 2027 case PAGE_ACTIVATE: 2028 goto activate_locked; 2029 case PAGE_SUCCESS: 2030 stat->nr_pageout += nr_pages; 2031 2032 if (folio_test_writeback(folio)) 2033 goto keep; 2034 if (folio_test_dirty(folio)) 2035 goto keep; 2036 2037 /* 2038 * A synchronous write - probably a ramdisk. Go 2039 * ahead and try to reclaim the folio. 2040 */ 2041 if (!folio_trylock(folio)) 2042 goto keep; 2043 if (folio_test_dirty(folio) || 2044 folio_test_writeback(folio)) 2045 goto keep_locked; 2046 mapping = folio_mapping(folio); 2047 fallthrough; 2048 case PAGE_CLEAN: 2049 ; /* try to free the folio below */ 2050 } 2051 } 2052 2053 /* 2054 * If the folio has buffers, try to free the buffer 2055 * mappings associated with this folio. If we succeed 2056 * we try to free the folio as well. 2057 * 2058 * We do this even if the folio is dirty. 2059 * filemap_release_folio() does not perform I/O, but it 2060 * is possible for a folio to have the dirty flag set, 2061 * but it is actually clean (all its buffers are clean). 2062 * This happens if the buffers were written out directly, 2063 * with submit_bh(). ext3 will do this, as well as 2064 * the blockdev mapping. filemap_release_folio() will 2065 * discover that cleanness and will drop the buffers 2066 * and mark the folio clean - it can be freed. 2067 * 2068 * Rarely, folios can have buffers and no ->mapping. 2069 * These are the folios which were not successfully 2070 * invalidated in truncate_cleanup_folio(). We try to 2071 * drop those buffers here and if that worked, and the 2072 * folio is no longer mapped into process address space 2073 * (refcount == 1) it can be freed. Otherwise, leave 2074 * the folio on the LRU so it is swappable. 2075 */ 2076 if (folio_has_private(folio)) { 2077 if (!filemap_release_folio(folio, sc->gfp_mask)) 2078 goto activate_locked; 2079 if (!mapping && folio_ref_count(folio) == 1) { 2080 folio_unlock(folio); 2081 if (folio_put_testzero(folio)) 2082 goto free_it; 2083 else { 2084 /* 2085 * rare race with speculative reference. 2086 * the speculative reference will free 2087 * this folio shortly, so we may 2088 * increment nr_reclaimed here (and 2089 * leave it off the LRU). 2090 */ 2091 nr_reclaimed += nr_pages; 2092 continue; 2093 } 2094 } 2095 } 2096 2097 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2098 /* follow __remove_mapping for reference */ 2099 if (!folio_ref_freeze(folio, 1)) 2100 goto keep_locked; 2101 /* 2102 * The folio has only one reference left, which is 2103 * from the isolation. After the caller puts the 2104 * folio back on the lru and drops the reference, the 2105 * folio will be freed anyway. It doesn't matter 2106 * which lru it goes on. So we don't bother checking 2107 * the dirty flag here. 2108 */ 2109 count_vm_events(PGLAZYFREED, nr_pages); 2110 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2111 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2112 sc->target_mem_cgroup)) 2113 goto keep_locked; 2114 2115 folio_unlock(folio); 2116 free_it: 2117 /* 2118 * Folio may get swapped out as a whole, need to account 2119 * all pages in it. 2120 */ 2121 nr_reclaimed += nr_pages; 2122 2123 /* 2124 * Is there need to periodically free_folio_list? It would 2125 * appear not as the counts should be low 2126 */ 2127 if (unlikely(folio_test_large(folio))) 2128 destroy_large_folio(folio); 2129 else 2130 list_add(&folio->lru, &free_folios); 2131 continue; 2132 2133 activate_locked_split: 2134 /* 2135 * The tail pages that are failed to add into swap cache 2136 * reach here. Fixup nr_scanned and nr_pages. 2137 */ 2138 if (nr_pages > 1) { 2139 sc->nr_scanned -= (nr_pages - 1); 2140 nr_pages = 1; 2141 } 2142 activate_locked: 2143 /* Not a candidate for swapping, so reclaim swap space. */ 2144 if (folio_test_swapcache(folio) && 2145 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2146 folio_free_swap(folio); 2147 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2148 if (!folio_test_mlocked(folio)) { 2149 int type = folio_is_file_lru(folio); 2150 folio_set_active(folio); 2151 stat->nr_activate[type] += nr_pages; 2152 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2153 } 2154 keep_locked: 2155 folio_unlock(folio); 2156 keep: 2157 list_add(&folio->lru, &ret_folios); 2158 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2159 folio_test_unevictable(folio), folio); 2160 } 2161 /* 'folio_list' is always empty here */ 2162 2163 /* Migrate folios selected for demotion */ 2164 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2165 /* Folios that could not be demoted are still in @demote_folios */ 2166 if (!list_empty(&demote_folios)) { 2167 /* Folios which weren't demoted go back on @folio_list */ 2168 list_splice_init(&demote_folios, folio_list); 2169 2170 /* 2171 * goto retry to reclaim the undemoted folios in folio_list if 2172 * desired. 2173 * 2174 * Reclaiming directly from top tier nodes is not often desired 2175 * due to it breaking the LRU ordering: in general memory 2176 * should be reclaimed from lower tier nodes and demoted from 2177 * top tier nodes. 2178 * 2179 * However, disabling reclaim from top tier nodes entirely 2180 * would cause ooms in edge scenarios where lower tier memory 2181 * is unreclaimable for whatever reason, eg memory being 2182 * mlocked or too hot to reclaim. We can disable reclaim 2183 * from top tier nodes in proactive reclaim though as that is 2184 * not real memory pressure. 2185 */ 2186 if (!sc->proactive) { 2187 do_demote_pass = false; 2188 goto retry; 2189 } 2190 } 2191 2192 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2193 2194 mem_cgroup_uncharge_list(&free_folios); 2195 try_to_unmap_flush(); 2196 free_unref_page_list(&free_folios); 2197 2198 list_splice(&ret_folios, folio_list); 2199 count_vm_events(PGACTIVATE, pgactivate); 2200 2201 if (plug) 2202 swap_write_unplug(plug); 2203 return nr_reclaimed; 2204 } 2205 2206 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2207 struct list_head *folio_list) 2208 { 2209 struct scan_control sc = { 2210 .gfp_mask = GFP_KERNEL, 2211 .may_unmap = 1, 2212 }; 2213 struct reclaim_stat stat; 2214 unsigned int nr_reclaimed; 2215 struct folio *folio, *next; 2216 LIST_HEAD(clean_folios); 2217 unsigned int noreclaim_flag; 2218 2219 list_for_each_entry_safe(folio, next, folio_list, lru) { 2220 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2221 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2222 !folio_test_unevictable(folio)) { 2223 folio_clear_active(folio); 2224 list_move(&folio->lru, &clean_folios); 2225 } 2226 } 2227 2228 /* 2229 * We should be safe here since we are only dealing with file pages and 2230 * we are not kswapd and therefore cannot write dirty file pages. But 2231 * call memalloc_noreclaim_save() anyway, just in case these conditions 2232 * change in the future. 2233 */ 2234 noreclaim_flag = memalloc_noreclaim_save(); 2235 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2236 &stat, true); 2237 memalloc_noreclaim_restore(noreclaim_flag); 2238 2239 list_splice(&clean_folios, folio_list); 2240 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2241 -(long)nr_reclaimed); 2242 /* 2243 * Since lazyfree pages are isolated from file LRU from the beginning, 2244 * they will rotate back to anonymous LRU in the end if it failed to 2245 * discard so isolated count will be mismatched. 2246 * Compensate the isolated count for both LRU lists. 2247 */ 2248 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2249 stat.nr_lazyfree_fail); 2250 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2251 -(long)stat.nr_lazyfree_fail); 2252 return nr_reclaimed; 2253 } 2254 2255 /* 2256 * Update LRU sizes after isolating pages. The LRU size updates must 2257 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2258 */ 2259 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2260 enum lru_list lru, unsigned long *nr_zone_taken) 2261 { 2262 int zid; 2263 2264 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2265 if (!nr_zone_taken[zid]) 2266 continue; 2267 2268 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2269 } 2270 2271 } 2272 2273 /* 2274 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2275 * 2276 * lruvec->lru_lock is heavily contended. Some of the functions that 2277 * shrink the lists perform better by taking out a batch of pages 2278 * and working on them outside the LRU lock. 2279 * 2280 * For pagecache intensive workloads, this function is the hottest 2281 * spot in the kernel (apart from copy_*_user functions). 2282 * 2283 * Lru_lock must be held before calling this function. 2284 * 2285 * @nr_to_scan: The number of eligible pages to look through on the list. 2286 * @lruvec: The LRU vector to pull pages from. 2287 * @dst: The temp list to put pages on to. 2288 * @nr_scanned: The number of pages that were scanned. 2289 * @sc: The scan_control struct for this reclaim session 2290 * @lru: LRU list id for isolating 2291 * 2292 * returns how many pages were moved onto *@dst. 2293 */ 2294 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2295 struct lruvec *lruvec, struct list_head *dst, 2296 unsigned long *nr_scanned, struct scan_control *sc, 2297 enum lru_list lru) 2298 { 2299 struct list_head *src = &lruvec->lists[lru]; 2300 unsigned long nr_taken = 0; 2301 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2302 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2303 unsigned long skipped = 0; 2304 unsigned long scan, total_scan, nr_pages; 2305 LIST_HEAD(folios_skipped); 2306 2307 total_scan = 0; 2308 scan = 0; 2309 while (scan < nr_to_scan && !list_empty(src)) { 2310 struct list_head *move_to = src; 2311 struct folio *folio; 2312 2313 folio = lru_to_folio(src); 2314 prefetchw_prev_lru_folio(folio, src, flags); 2315 2316 nr_pages = folio_nr_pages(folio); 2317 total_scan += nr_pages; 2318 2319 if (folio_zonenum(folio) > sc->reclaim_idx) { 2320 nr_skipped[folio_zonenum(folio)] += nr_pages; 2321 move_to = &folios_skipped; 2322 goto move; 2323 } 2324 2325 /* 2326 * Do not count skipped folios because that makes the function 2327 * return with no isolated folios if the LRU mostly contains 2328 * ineligible folios. This causes the VM to not reclaim any 2329 * folios, triggering a premature OOM. 2330 * Account all pages in a folio. 2331 */ 2332 scan += nr_pages; 2333 2334 if (!folio_test_lru(folio)) 2335 goto move; 2336 if (!sc->may_unmap && folio_mapped(folio)) 2337 goto move; 2338 2339 /* 2340 * Be careful not to clear the lru flag until after we're 2341 * sure the folio is not being freed elsewhere -- the 2342 * folio release code relies on it. 2343 */ 2344 if (unlikely(!folio_try_get(folio))) 2345 goto move; 2346 2347 if (!folio_test_clear_lru(folio)) { 2348 /* Another thread is already isolating this folio */ 2349 folio_put(folio); 2350 goto move; 2351 } 2352 2353 nr_taken += nr_pages; 2354 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2355 move_to = dst; 2356 move: 2357 list_move(&folio->lru, move_to); 2358 } 2359 2360 /* 2361 * Splice any skipped folios to the start of the LRU list. Note that 2362 * this disrupts the LRU order when reclaiming for lower zones but 2363 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2364 * scanning would soon rescan the same folios to skip and waste lots 2365 * of cpu cycles. 2366 */ 2367 if (!list_empty(&folios_skipped)) { 2368 int zid; 2369 2370 list_splice(&folios_skipped, src); 2371 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2372 if (!nr_skipped[zid]) 2373 continue; 2374 2375 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2376 skipped += nr_skipped[zid]; 2377 } 2378 } 2379 *nr_scanned = total_scan; 2380 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2381 total_scan, skipped, nr_taken, 2382 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2383 update_lru_sizes(lruvec, lru, nr_zone_taken); 2384 return nr_taken; 2385 } 2386 2387 /** 2388 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2389 * @folio: Folio to isolate from its LRU list. 2390 * 2391 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2392 * corresponding to whatever LRU list the folio was on. 2393 * 2394 * The folio will have its LRU flag cleared. If it was found on the 2395 * active list, it will have the Active flag set. If it was found on the 2396 * unevictable list, it will have the Unevictable flag set. These flags 2397 * may need to be cleared by the caller before letting the page go. 2398 * 2399 * Context: 2400 * 2401 * (1) Must be called with an elevated refcount on the folio. This is a 2402 * fundamental difference from isolate_lru_folios() (which is called 2403 * without a stable reference). 2404 * (2) The lru_lock must not be held. 2405 * (3) Interrupts must be enabled. 2406 * 2407 * Return: true if the folio was removed from an LRU list. 2408 * false if the folio was not on an LRU list. 2409 */ 2410 bool folio_isolate_lru(struct folio *folio) 2411 { 2412 bool ret = false; 2413 2414 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2415 2416 if (folio_test_clear_lru(folio)) { 2417 struct lruvec *lruvec; 2418 2419 folio_get(folio); 2420 lruvec = folio_lruvec_lock_irq(folio); 2421 lruvec_del_folio(lruvec, folio); 2422 unlock_page_lruvec_irq(lruvec); 2423 ret = true; 2424 } 2425 2426 return ret; 2427 } 2428 2429 /* 2430 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2431 * then get rescheduled. When there are massive number of tasks doing page 2432 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2433 * the LRU list will go small and be scanned faster than necessary, leading to 2434 * unnecessary swapping, thrashing and OOM. 2435 */ 2436 static int too_many_isolated(struct pglist_data *pgdat, int file, 2437 struct scan_control *sc) 2438 { 2439 unsigned long inactive, isolated; 2440 bool too_many; 2441 2442 if (current_is_kswapd()) 2443 return 0; 2444 2445 if (!writeback_throttling_sane(sc)) 2446 return 0; 2447 2448 if (file) { 2449 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2450 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2451 } else { 2452 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2453 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2454 } 2455 2456 /* 2457 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2458 * won't get blocked by normal direct-reclaimers, forming a circular 2459 * deadlock. 2460 */ 2461 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2462 inactive >>= 3; 2463 2464 too_many = isolated > inactive; 2465 2466 /* Wake up tasks throttled due to too_many_isolated. */ 2467 if (!too_many) 2468 wake_throttle_isolated(pgdat); 2469 2470 return too_many; 2471 } 2472 2473 /* 2474 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2475 * On return, @list is reused as a list of folios to be freed by the caller. 2476 * 2477 * Returns the number of pages moved to the given lruvec. 2478 */ 2479 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2480 struct list_head *list) 2481 { 2482 int nr_pages, nr_moved = 0; 2483 LIST_HEAD(folios_to_free); 2484 2485 while (!list_empty(list)) { 2486 struct folio *folio = lru_to_folio(list); 2487 2488 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2489 list_del(&folio->lru); 2490 if (unlikely(!folio_evictable(folio))) { 2491 spin_unlock_irq(&lruvec->lru_lock); 2492 folio_putback_lru(folio); 2493 spin_lock_irq(&lruvec->lru_lock); 2494 continue; 2495 } 2496 2497 /* 2498 * The folio_set_lru needs to be kept here for list integrity. 2499 * Otherwise: 2500 * #0 move_folios_to_lru #1 release_pages 2501 * if (!folio_put_testzero()) 2502 * if (folio_put_testzero()) 2503 * !lru //skip lru_lock 2504 * folio_set_lru() 2505 * list_add(&folio->lru,) 2506 * list_add(&folio->lru,) 2507 */ 2508 folio_set_lru(folio); 2509 2510 if (unlikely(folio_put_testzero(folio))) { 2511 __folio_clear_lru_flags(folio); 2512 2513 if (unlikely(folio_test_large(folio))) { 2514 spin_unlock_irq(&lruvec->lru_lock); 2515 destroy_large_folio(folio); 2516 spin_lock_irq(&lruvec->lru_lock); 2517 } else 2518 list_add(&folio->lru, &folios_to_free); 2519 2520 continue; 2521 } 2522 2523 /* 2524 * All pages were isolated from the same lruvec (and isolation 2525 * inhibits memcg migration). 2526 */ 2527 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2528 lruvec_add_folio(lruvec, folio); 2529 nr_pages = folio_nr_pages(folio); 2530 nr_moved += nr_pages; 2531 if (folio_test_active(folio)) 2532 workingset_age_nonresident(lruvec, nr_pages); 2533 } 2534 2535 /* 2536 * To save our caller's stack, now use input list for pages to free. 2537 */ 2538 list_splice(&folios_to_free, list); 2539 2540 return nr_moved; 2541 } 2542 2543 /* 2544 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2545 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2546 * we should not throttle. Otherwise it is safe to do so. 2547 */ 2548 static int current_may_throttle(void) 2549 { 2550 return !(current->flags & PF_LOCAL_THROTTLE); 2551 } 2552 2553 /* 2554 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2555 * of reclaimed pages 2556 */ 2557 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2558 struct lruvec *lruvec, struct scan_control *sc, 2559 enum lru_list lru) 2560 { 2561 LIST_HEAD(folio_list); 2562 unsigned long nr_scanned; 2563 unsigned int nr_reclaimed = 0; 2564 unsigned long nr_taken; 2565 struct reclaim_stat stat; 2566 bool file = is_file_lru(lru); 2567 enum vm_event_item item; 2568 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2569 bool stalled = false; 2570 2571 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2572 if (stalled) 2573 return 0; 2574 2575 /* wait a bit for the reclaimer. */ 2576 stalled = true; 2577 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2578 2579 /* We are about to die and free our memory. Return now. */ 2580 if (fatal_signal_pending(current)) 2581 return SWAP_CLUSTER_MAX; 2582 } 2583 2584 lru_add_drain(); 2585 2586 spin_lock_irq(&lruvec->lru_lock); 2587 2588 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2589 &nr_scanned, sc, lru); 2590 2591 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2592 item = PGSCAN_KSWAPD + reclaimer_offset(); 2593 if (!cgroup_reclaim(sc)) 2594 __count_vm_events(item, nr_scanned); 2595 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2596 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2597 2598 spin_unlock_irq(&lruvec->lru_lock); 2599 2600 if (nr_taken == 0) 2601 return 0; 2602 2603 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2604 2605 spin_lock_irq(&lruvec->lru_lock); 2606 move_folios_to_lru(lruvec, &folio_list); 2607 2608 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2609 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2610 if (!cgroup_reclaim(sc)) 2611 __count_vm_events(item, nr_reclaimed); 2612 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2613 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2614 spin_unlock_irq(&lruvec->lru_lock); 2615 2616 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2617 mem_cgroup_uncharge_list(&folio_list); 2618 free_unref_page_list(&folio_list); 2619 2620 /* 2621 * If dirty folios are scanned that are not queued for IO, it 2622 * implies that flushers are not doing their job. This can 2623 * happen when memory pressure pushes dirty folios to the end of 2624 * the LRU before the dirty limits are breached and the dirty 2625 * data has expired. It can also happen when the proportion of 2626 * dirty folios grows not through writes but through memory 2627 * pressure reclaiming all the clean cache. And in some cases, 2628 * the flushers simply cannot keep up with the allocation 2629 * rate. Nudge the flusher threads in case they are asleep. 2630 */ 2631 if (stat.nr_unqueued_dirty == nr_taken) { 2632 wakeup_flusher_threads(WB_REASON_VMSCAN); 2633 /* 2634 * For cgroupv1 dirty throttling is achieved by waking up 2635 * the kernel flusher here and later waiting on folios 2636 * which are in writeback to finish (see shrink_folio_list()). 2637 * 2638 * Flusher may not be able to issue writeback quickly 2639 * enough for cgroupv1 writeback throttling to work 2640 * on a large system. 2641 */ 2642 if (!writeback_throttling_sane(sc)) 2643 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2644 } 2645 2646 sc->nr.dirty += stat.nr_dirty; 2647 sc->nr.congested += stat.nr_congested; 2648 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2649 sc->nr.writeback += stat.nr_writeback; 2650 sc->nr.immediate += stat.nr_immediate; 2651 sc->nr.taken += nr_taken; 2652 if (file) 2653 sc->nr.file_taken += nr_taken; 2654 2655 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2656 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2657 return nr_reclaimed; 2658 } 2659 2660 /* 2661 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2662 * 2663 * We move them the other way if the folio is referenced by one or more 2664 * processes. 2665 * 2666 * If the folios are mostly unmapped, the processing is fast and it is 2667 * appropriate to hold lru_lock across the whole operation. But if 2668 * the folios are mapped, the processing is slow (folio_referenced()), so 2669 * we should drop lru_lock around each folio. It's impossible to balance 2670 * this, so instead we remove the folios from the LRU while processing them. 2671 * It is safe to rely on the active flag against the non-LRU folios in here 2672 * because nobody will play with that bit on a non-LRU folio. 2673 * 2674 * The downside is that we have to touch folio->_refcount against each folio. 2675 * But we had to alter folio->flags anyway. 2676 */ 2677 static void shrink_active_list(unsigned long nr_to_scan, 2678 struct lruvec *lruvec, 2679 struct scan_control *sc, 2680 enum lru_list lru) 2681 { 2682 unsigned long nr_taken; 2683 unsigned long nr_scanned; 2684 unsigned long vm_flags; 2685 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2686 LIST_HEAD(l_active); 2687 LIST_HEAD(l_inactive); 2688 unsigned nr_deactivate, nr_activate; 2689 unsigned nr_rotated = 0; 2690 int file = is_file_lru(lru); 2691 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2692 2693 lru_add_drain(); 2694 2695 spin_lock_irq(&lruvec->lru_lock); 2696 2697 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2698 &nr_scanned, sc, lru); 2699 2700 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2701 2702 if (!cgroup_reclaim(sc)) 2703 __count_vm_events(PGREFILL, nr_scanned); 2704 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2705 2706 spin_unlock_irq(&lruvec->lru_lock); 2707 2708 while (!list_empty(&l_hold)) { 2709 struct folio *folio; 2710 2711 cond_resched(); 2712 folio = lru_to_folio(&l_hold); 2713 list_del(&folio->lru); 2714 2715 if (unlikely(!folio_evictable(folio))) { 2716 folio_putback_lru(folio); 2717 continue; 2718 } 2719 2720 if (unlikely(buffer_heads_over_limit)) { 2721 if (folio_test_private(folio) && folio_trylock(folio)) { 2722 if (folio_test_private(folio)) 2723 filemap_release_folio(folio, 0); 2724 folio_unlock(folio); 2725 } 2726 } 2727 2728 /* Referenced or rmap lock contention: rotate */ 2729 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2730 &vm_flags) != 0) { 2731 /* 2732 * Identify referenced, file-backed active folios and 2733 * give them one more trip around the active list. So 2734 * that executable code get better chances to stay in 2735 * memory under moderate memory pressure. Anon folios 2736 * are not likely to be evicted by use-once streaming 2737 * IO, plus JVM can create lots of anon VM_EXEC folios, 2738 * so we ignore them here. 2739 */ 2740 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2741 nr_rotated += folio_nr_pages(folio); 2742 list_add(&folio->lru, &l_active); 2743 continue; 2744 } 2745 } 2746 2747 folio_clear_active(folio); /* we are de-activating */ 2748 folio_set_workingset(folio); 2749 list_add(&folio->lru, &l_inactive); 2750 } 2751 2752 /* 2753 * Move folios back to the lru list. 2754 */ 2755 spin_lock_irq(&lruvec->lru_lock); 2756 2757 nr_activate = move_folios_to_lru(lruvec, &l_active); 2758 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2759 /* Keep all free folios in l_active list */ 2760 list_splice(&l_inactive, &l_active); 2761 2762 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2763 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2764 2765 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2766 spin_unlock_irq(&lruvec->lru_lock); 2767 2768 if (nr_rotated) 2769 lru_note_cost(lruvec, file, 0, nr_rotated); 2770 mem_cgroup_uncharge_list(&l_active); 2771 free_unref_page_list(&l_active); 2772 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2773 nr_deactivate, nr_rotated, sc->priority, file); 2774 } 2775 2776 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2777 struct pglist_data *pgdat) 2778 { 2779 struct reclaim_stat dummy_stat; 2780 unsigned int nr_reclaimed; 2781 struct folio *folio; 2782 struct scan_control sc = { 2783 .gfp_mask = GFP_KERNEL, 2784 .may_writepage = 1, 2785 .may_unmap = 1, 2786 .may_swap = 1, 2787 .no_demotion = 1, 2788 }; 2789 2790 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2791 while (!list_empty(folio_list)) { 2792 folio = lru_to_folio(folio_list); 2793 list_del(&folio->lru); 2794 folio_putback_lru(folio); 2795 } 2796 2797 return nr_reclaimed; 2798 } 2799 2800 unsigned long reclaim_pages(struct list_head *folio_list) 2801 { 2802 int nid; 2803 unsigned int nr_reclaimed = 0; 2804 LIST_HEAD(node_folio_list); 2805 unsigned int noreclaim_flag; 2806 2807 if (list_empty(folio_list)) 2808 return nr_reclaimed; 2809 2810 noreclaim_flag = memalloc_noreclaim_save(); 2811 2812 nid = folio_nid(lru_to_folio(folio_list)); 2813 do { 2814 struct folio *folio = lru_to_folio(folio_list); 2815 2816 if (nid == folio_nid(folio)) { 2817 folio_clear_active(folio); 2818 list_move(&folio->lru, &node_folio_list); 2819 continue; 2820 } 2821 2822 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2823 nid = folio_nid(lru_to_folio(folio_list)); 2824 } while (!list_empty(folio_list)); 2825 2826 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2827 2828 memalloc_noreclaim_restore(noreclaim_flag); 2829 2830 return nr_reclaimed; 2831 } 2832 2833 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2834 struct lruvec *lruvec, struct scan_control *sc) 2835 { 2836 if (is_active_lru(lru)) { 2837 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2838 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2839 else 2840 sc->skipped_deactivate = 1; 2841 return 0; 2842 } 2843 2844 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2845 } 2846 2847 /* 2848 * The inactive anon list should be small enough that the VM never has 2849 * to do too much work. 2850 * 2851 * The inactive file list should be small enough to leave most memory 2852 * to the established workingset on the scan-resistant active list, 2853 * but large enough to avoid thrashing the aggregate readahead window. 2854 * 2855 * Both inactive lists should also be large enough that each inactive 2856 * folio has a chance to be referenced again before it is reclaimed. 2857 * 2858 * If that fails and refaulting is observed, the inactive list grows. 2859 * 2860 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2861 * on this LRU, maintained by the pageout code. An inactive_ratio 2862 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2863 * 2864 * total target max 2865 * memory ratio inactive 2866 * ------------------------------------- 2867 * 10MB 1 5MB 2868 * 100MB 1 50MB 2869 * 1GB 3 250MB 2870 * 10GB 10 0.9GB 2871 * 100GB 31 3GB 2872 * 1TB 101 10GB 2873 * 10TB 320 32GB 2874 */ 2875 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2876 { 2877 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2878 unsigned long inactive, active; 2879 unsigned long inactive_ratio; 2880 unsigned long gb; 2881 2882 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2883 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2884 2885 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2886 if (gb) 2887 inactive_ratio = int_sqrt(10 * gb); 2888 else 2889 inactive_ratio = 1; 2890 2891 return inactive * inactive_ratio < active; 2892 } 2893 2894 enum scan_balance { 2895 SCAN_EQUAL, 2896 SCAN_FRACT, 2897 SCAN_ANON, 2898 SCAN_FILE, 2899 }; 2900 2901 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2902 { 2903 unsigned long file; 2904 struct lruvec *target_lruvec; 2905 2906 if (lru_gen_enabled()) 2907 return; 2908 2909 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2910 2911 /* 2912 * Flush the memory cgroup stats, so that we read accurate per-memcg 2913 * lruvec stats for heuristics. 2914 */ 2915 mem_cgroup_flush_stats(); 2916 2917 /* 2918 * Determine the scan balance between anon and file LRUs. 2919 */ 2920 spin_lock_irq(&target_lruvec->lru_lock); 2921 sc->anon_cost = target_lruvec->anon_cost; 2922 sc->file_cost = target_lruvec->file_cost; 2923 spin_unlock_irq(&target_lruvec->lru_lock); 2924 2925 /* 2926 * Target desirable inactive:active list ratios for the anon 2927 * and file LRU lists. 2928 */ 2929 if (!sc->force_deactivate) { 2930 unsigned long refaults; 2931 2932 /* 2933 * When refaults are being observed, it means a new 2934 * workingset is being established. Deactivate to get 2935 * rid of any stale active pages quickly. 2936 */ 2937 refaults = lruvec_page_state(target_lruvec, 2938 WORKINGSET_ACTIVATE_ANON); 2939 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2940 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2941 sc->may_deactivate |= DEACTIVATE_ANON; 2942 else 2943 sc->may_deactivate &= ~DEACTIVATE_ANON; 2944 2945 refaults = lruvec_page_state(target_lruvec, 2946 WORKINGSET_ACTIVATE_FILE); 2947 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2948 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2949 sc->may_deactivate |= DEACTIVATE_FILE; 2950 else 2951 sc->may_deactivate &= ~DEACTIVATE_FILE; 2952 } else 2953 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2954 2955 /* 2956 * If we have plenty of inactive file pages that aren't 2957 * thrashing, try to reclaim those first before touching 2958 * anonymous pages. 2959 */ 2960 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2961 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2962 sc->cache_trim_mode = 1; 2963 else 2964 sc->cache_trim_mode = 0; 2965 2966 /* 2967 * Prevent the reclaimer from falling into the cache trap: as 2968 * cache pages start out inactive, every cache fault will tip 2969 * the scan balance towards the file LRU. And as the file LRU 2970 * shrinks, so does the window for rotation from references. 2971 * This means we have a runaway feedback loop where a tiny 2972 * thrashing file LRU becomes infinitely more attractive than 2973 * anon pages. Try to detect this based on file LRU size. 2974 */ 2975 if (!cgroup_reclaim(sc)) { 2976 unsigned long total_high_wmark = 0; 2977 unsigned long free, anon; 2978 int z; 2979 2980 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2981 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2982 node_page_state(pgdat, NR_INACTIVE_FILE); 2983 2984 for (z = 0; z < MAX_NR_ZONES; z++) { 2985 struct zone *zone = &pgdat->node_zones[z]; 2986 2987 if (!managed_zone(zone)) 2988 continue; 2989 2990 total_high_wmark += high_wmark_pages(zone); 2991 } 2992 2993 /* 2994 * Consider anon: if that's low too, this isn't a 2995 * runaway file reclaim problem, but rather just 2996 * extreme pressure. Reclaim as per usual then. 2997 */ 2998 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2999 3000 sc->file_is_tiny = 3001 file + free <= total_high_wmark && 3002 !(sc->may_deactivate & DEACTIVATE_ANON) && 3003 anon >> sc->priority; 3004 } 3005 } 3006 3007 /* 3008 * Determine how aggressively the anon and file LRU lists should be 3009 * scanned. 3010 * 3011 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 3012 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 3013 */ 3014 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 3015 unsigned long *nr) 3016 { 3017 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3018 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3019 unsigned long anon_cost, file_cost, total_cost; 3020 int swappiness = mem_cgroup_swappiness(memcg); 3021 u64 fraction[ANON_AND_FILE]; 3022 u64 denominator = 0; /* gcc */ 3023 enum scan_balance scan_balance; 3024 unsigned long ap, fp; 3025 enum lru_list lru; 3026 3027 /* If we have no swap space, do not bother scanning anon folios. */ 3028 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 3029 scan_balance = SCAN_FILE; 3030 goto out; 3031 } 3032 3033 /* 3034 * Global reclaim will swap to prevent OOM even with no 3035 * swappiness, but memcg users want to use this knob to 3036 * disable swapping for individual groups completely when 3037 * using the memory controller's swap limit feature would be 3038 * too expensive. 3039 */ 3040 if (cgroup_reclaim(sc) && !swappiness) { 3041 scan_balance = SCAN_FILE; 3042 goto out; 3043 } 3044 3045 /* 3046 * Do not apply any pressure balancing cleverness when the 3047 * system is close to OOM, scan both anon and file equally 3048 * (unless the swappiness setting disagrees with swapping). 3049 */ 3050 if (!sc->priority && swappiness) { 3051 scan_balance = SCAN_EQUAL; 3052 goto out; 3053 } 3054 3055 /* 3056 * If the system is almost out of file pages, force-scan anon. 3057 */ 3058 if (sc->file_is_tiny) { 3059 scan_balance = SCAN_ANON; 3060 goto out; 3061 } 3062 3063 /* 3064 * If there is enough inactive page cache, we do not reclaim 3065 * anything from the anonymous working right now. 3066 */ 3067 if (sc->cache_trim_mode) { 3068 scan_balance = SCAN_FILE; 3069 goto out; 3070 } 3071 3072 scan_balance = SCAN_FRACT; 3073 /* 3074 * Calculate the pressure balance between anon and file pages. 3075 * 3076 * The amount of pressure we put on each LRU is inversely 3077 * proportional to the cost of reclaiming each list, as 3078 * determined by the share of pages that are refaulting, times 3079 * the relative IO cost of bringing back a swapped out 3080 * anonymous page vs reloading a filesystem page (swappiness). 3081 * 3082 * Although we limit that influence to ensure no list gets 3083 * left behind completely: at least a third of the pressure is 3084 * applied, before swappiness. 3085 * 3086 * With swappiness at 100, anon and file have equal IO cost. 3087 */ 3088 total_cost = sc->anon_cost + sc->file_cost; 3089 anon_cost = total_cost + sc->anon_cost; 3090 file_cost = total_cost + sc->file_cost; 3091 total_cost = anon_cost + file_cost; 3092 3093 ap = swappiness * (total_cost + 1); 3094 ap /= anon_cost + 1; 3095 3096 fp = (200 - swappiness) * (total_cost + 1); 3097 fp /= file_cost + 1; 3098 3099 fraction[0] = ap; 3100 fraction[1] = fp; 3101 denominator = ap + fp; 3102 out: 3103 for_each_evictable_lru(lru) { 3104 int file = is_file_lru(lru); 3105 unsigned long lruvec_size; 3106 unsigned long low, min; 3107 unsigned long scan; 3108 3109 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3110 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3111 &min, &low); 3112 3113 if (min || low) { 3114 /* 3115 * Scale a cgroup's reclaim pressure by proportioning 3116 * its current usage to its memory.low or memory.min 3117 * setting. 3118 * 3119 * This is important, as otherwise scanning aggression 3120 * becomes extremely binary -- from nothing as we 3121 * approach the memory protection threshold, to totally 3122 * nominal as we exceed it. This results in requiring 3123 * setting extremely liberal protection thresholds. It 3124 * also means we simply get no protection at all if we 3125 * set it too low, which is not ideal. 3126 * 3127 * If there is any protection in place, we reduce scan 3128 * pressure by how much of the total memory used is 3129 * within protection thresholds. 3130 * 3131 * There is one special case: in the first reclaim pass, 3132 * we skip over all groups that are within their low 3133 * protection. If that fails to reclaim enough pages to 3134 * satisfy the reclaim goal, we come back and override 3135 * the best-effort low protection. However, we still 3136 * ideally want to honor how well-behaved groups are in 3137 * that case instead of simply punishing them all 3138 * equally. As such, we reclaim them based on how much 3139 * memory they are using, reducing the scan pressure 3140 * again by how much of the total memory used is under 3141 * hard protection. 3142 */ 3143 unsigned long cgroup_size = mem_cgroup_size(memcg); 3144 unsigned long protection; 3145 3146 /* memory.low scaling, make sure we retry before OOM */ 3147 if (!sc->memcg_low_reclaim && low > min) { 3148 protection = low; 3149 sc->memcg_low_skipped = 1; 3150 } else { 3151 protection = min; 3152 } 3153 3154 /* Avoid TOCTOU with earlier protection check */ 3155 cgroup_size = max(cgroup_size, protection); 3156 3157 scan = lruvec_size - lruvec_size * protection / 3158 (cgroup_size + 1); 3159 3160 /* 3161 * Minimally target SWAP_CLUSTER_MAX pages to keep 3162 * reclaim moving forwards, avoiding decrementing 3163 * sc->priority further than desirable. 3164 */ 3165 scan = max(scan, SWAP_CLUSTER_MAX); 3166 } else { 3167 scan = lruvec_size; 3168 } 3169 3170 scan >>= sc->priority; 3171 3172 /* 3173 * If the cgroup's already been deleted, make sure to 3174 * scrape out the remaining cache. 3175 */ 3176 if (!scan && !mem_cgroup_online(memcg)) 3177 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3178 3179 switch (scan_balance) { 3180 case SCAN_EQUAL: 3181 /* Scan lists relative to size */ 3182 break; 3183 case SCAN_FRACT: 3184 /* 3185 * Scan types proportional to swappiness and 3186 * their relative recent reclaim efficiency. 3187 * Make sure we don't miss the last page on 3188 * the offlined memory cgroups because of a 3189 * round-off error. 3190 */ 3191 scan = mem_cgroup_online(memcg) ? 3192 div64_u64(scan * fraction[file], denominator) : 3193 DIV64_U64_ROUND_UP(scan * fraction[file], 3194 denominator); 3195 break; 3196 case SCAN_FILE: 3197 case SCAN_ANON: 3198 /* Scan one type exclusively */ 3199 if ((scan_balance == SCAN_FILE) != file) 3200 scan = 0; 3201 break; 3202 default: 3203 /* Look ma, no brain */ 3204 BUG(); 3205 } 3206 3207 nr[lru] = scan; 3208 } 3209 } 3210 3211 /* 3212 * Anonymous LRU management is a waste if there is 3213 * ultimately no way to reclaim the memory. 3214 */ 3215 static bool can_age_anon_pages(struct pglist_data *pgdat, 3216 struct scan_control *sc) 3217 { 3218 /* Aging the anon LRU is valuable if swap is present: */ 3219 if (total_swap_pages > 0) 3220 return true; 3221 3222 /* Also valuable if anon pages can be demoted: */ 3223 return can_demote(pgdat->node_id, sc); 3224 } 3225 3226 #ifdef CONFIG_LRU_GEN 3227 3228 #ifdef CONFIG_LRU_GEN_ENABLED 3229 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3230 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3231 #else 3232 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3233 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3234 #endif 3235 3236 /****************************************************************************** 3237 * shorthand helpers 3238 ******************************************************************************/ 3239 3240 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3241 3242 #define DEFINE_MAX_SEQ(lruvec) \ 3243 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3244 3245 #define DEFINE_MIN_SEQ(lruvec) \ 3246 unsigned long min_seq[ANON_AND_FILE] = { \ 3247 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3248 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3249 } 3250 3251 #define for_each_gen_type_zone(gen, type, zone) \ 3252 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3253 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3254 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3255 3256 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3257 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3258 3259 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3260 { 3261 struct pglist_data *pgdat = NODE_DATA(nid); 3262 3263 #ifdef CONFIG_MEMCG 3264 if (memcg) { 3265 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3266 3267 /* see the comment in mem_cgroup_lruvec() */ 3268 if (!lruvec->pgdat) 3269 lruvec->pgdat = pgdat; 3270 3271 return lruvec; 3272 } 3273 #endif 3274 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3275 3276 return &pgdat->__lruvec; 3277 } 3278 3279 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3280 { 3281 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3282 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3283 3284 if (!sc->may_swap) 3285 return 0; 3286 3287 if (!can_demote(pgdat->node_id, sc) && 3288 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3289 return 0; 3290 3291 return mem_cgroup_swappiness(memcg); 3292 } 3293 3294 static int get_nr_gens(struct lruvec *lruvec, int type) 3295 { 3296 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3297 } 3298 3299 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3300 { 3301 /* see the comment on lru_gen_folio */ 3302 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3303 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3304 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3305 } 3306 3307 /****************************************************************************** 3308 * Bloom filters 3309 ******************************************************************************/ 3310 3311 /* 3312 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3313 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3314 * bits in a bitmap, k is the number of hash functions and n is the number of 3315 * inserted items. 3316 * 3317 * Page table walkers use one of the two filters to reduce their search space. 3318 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3319 * aging uses the double-buffering technique to flip to the other filter each 3320 * time it produces a new generation. For non-leaf entries that have enough 3321 * leaf entries, the aging carries them over to the next generation in 3322 * walk_pmd_range(); the eviction also report them when walking the rmap 3323 * in lru_gen_look_around(). 3324 * 3325 * For future optimizations: 3326 * 1. It's not necessary to keep both filters all the time. The spare one can be 3327 * freed after the RCU grace period and reallocated if needed again. 3328 * 2. And when reallocating, it's worth scaling its size according to the number 3329 * of inserted entries in the other filter, to reduce the memory overhead on 3330 * small systems and false positives on large systems. 3331 * 3. Jenkins' hash function is an alternative to Knuth's. 3332 */ 3333 #define BLOOM_FILTER_SHIFT 15 3334 3335 static inline int filter_gen_from_seq(unsigned long seq) 3336 { 3337 return seq % NR_BLOOM_FILTERS; 3338 } 3339 3340 static void get_item_key(void *item, int *key) 3341 { 3342 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3343 3344 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3345 3346 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3347 key[1] = hash >> BLOOM_FILTER_SHIFT; 3348 } 3349 3350 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3351 { 3352 int key[2]; 3353 unsigned long *filter; 3354 int gen = filter_gen_from_seq(seq); 3355 3356 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3357 if (!filter) 3358 return true; 3359 3360 get_item_key(item, key); 3361 3362 return test_bit(key[0], filter) && test_bit(key[1], filter); 3363 } 3364 3365 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3366 { 3367 int key[2]; 3368 unsigned long *filter; 3369 int gen = filter_gen_from_seq(seq); 3370 3371 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3372 if (!filter) 3373 return; 3374 3375 get_item_key(item, key); 3376 3377 if (!test_bit(key[0], filter)) 3378 set_bit(key[0], filter); 3379 if (!test_bit(key[1], filter)) 3380 set_bit(key[1], filter); 3381 } 3382 3383 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3384 { 3385 unsigned long *filter; 3386 int gen = filter_gen_from_seq(seq); 3387 3388 filter = lruvec->mm_state.filters[gen]; 3389 if (filter) { 3390 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3391 return; 3392 } 3393 3394 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3395 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3396 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3397 } 3398 3399 /****************************************************************************** 3400 * mm_struct list 3401 ******************************************************************************/ 3402 3403 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3404 { 3405 static struct lru_gen_mm_list mm_list = { 3406 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3407 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3408 }; 3409 3410 #ifdef CONFIG_MEMCG 3411 if (memcg) 3412 return &memcg->mm_list; 3413 #endif 3414 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3415 3416 return &mm_list; 3417 } 3418 3419 void lru_gen_add_mm(struct mm_struct *mm) 3420 { 3421 int nid; 3422 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3423 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3424 3425 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3426 #ifdef CONFIG_MEMCG 3427 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3428 mm->lru_gen.memcg = memcg; 3429 #endif 3430 spin_lock(&mm_list->lock); 3431 3432 for_each_node_state(nid, N_MEMORY) { 3433 struct lruvec *lruvec = get_lruvec(memcg, nid); 3434 3435 /* the first addition since the last iteration */ 3436 if (lruvec->mm_state.tail == &mm_list->fifo) 3437 lruvec->mm_state.tail = &mm->lru_gen.list; 3438 } 3439 3440 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3441 3442 spin_unlock(&mm_list->lock); 3443 } 3444 3445 void lru_gen_del_mm(struct mm_struct *mm) 3446 { 3447 int nid; 3448 struct lru_gen_mm_list *mm_list; 3449 struct mem_cgroup *memcg = NULL; 3450 3451 if (list_empty(&mm->lru_gen.list)) 3452 return; 3453 3454 #ifdef CONFIG_MEMCG 3455 memcg = mm->lru_gen.memcg; 3456 #endif 3457 mm_list = get_mm_list(memcg); 3458 3459 spin_lock(&mm_list->lock); 3460 3461 for_each_node(nid) { 3462 struct lruvec *lruvec = get_lruvec(memcg, nid); 3463 3464 /* where the current iteration continues after */ 3465 if (lruvec->mm_state.head == &mm->lru_gen.list) 3466 lruvec->mm_state.head = lruvec->mm_state.head->prev; 3467 3468 /* where the last iteration ended before */ 3469 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3470 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3471 } 3472 3473 list_del_init(&mm->lru_gen.list); 3474 3475 spin_unlock(&mm_list->lock); 3476 3477 #ifdef CONFIG_MEMCG 3478 mem_cgroup_put(mm->lru_gen.memcg); 3479 mm->lru_gen.memcg = NULL; 3480 #endif 3481 } 3482 3483 #ifdef CONFIG_MEMCG 3484 void lru_gen_migrate_mm(struct mm_struct *mm) 3485 { 3486 struct mem_cgroup *memcg; 3487 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3488 3489 VM_WARN_ON_ONCE(task->mm != mm); 3490 lockdep_assert_held(&task->alloc_lock); 3491 3492 /* for mm_update_next_owner() */ 3493 if (mem_cgroup_disabled()) 3494 return; 3495 3496 /* migration can happen before addition */ 3497 if (!mm->lru_gen.memcg) 3498 return; 3499 3500 rcu_read_lock(); 3501 memcg = mem_cgroup_from_task(task); 3502 rcu_read_unlock(); 3503 if (memcg == mm->lru_gen.memcg) 3504 return; 3505 3506 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3507 3508 lru_gen_del_mm(mm); 3509 lru_gen_add_mm(mm); 3510 } 3511 #endif 3512 3513 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3514 { 3515 int i; 3516 int hist; 3517 3518 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3519 3520 if (walk) { 3521 hist = lru_hist_from_seq(walk->max_seq); 3522 3523 for (i = 0; i < NR_MM_STATS; i++) { 3524 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3525 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3526 walk->mm_stats[i] = 0; 3527 } 3528 } 3529 3530 if (NR_HIST_GENS > 1 && last) { 3531 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3532 3533 for (i = 0; i < NR_MM_STATS; i++) 3534 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3535 } 3536 } 3537 3538 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3539 { 3540 int type; 3541 unsigned long size = 0; 3542 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3543 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3544 3545 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3546 return true; 3547 3548 clear_bit(key, &mm->lru_gen.bitmap); 3549 3550 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3551 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3552 get_mm_counter(mm, MM_ANONPAGES) + 3553 get_mm_counter(mm, MM_SHMEMPAGES); 3554 } 3555 3556 if (size < MIN_LRU_BATCH) 3557 return true; 3558 3559 return !mmget_not_zero(mm); 3560 } 3561 3562 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3563 struct mm_struct **iter) 3564 { 3565 bool first = false; 3566 bool last = false; 3567 struct mm_struct *mm = NULL; 3568 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3569 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3570 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3571 3572 /* 3573 * mm_state->seq is incremented after each iteration of mm_list. There 3574 * are three interesting cases for this page table walker: 3575 * 1. It tries to start a new iteration with a stale max_seq: there is 3576 * nothing left to do. 3577 * 2. It started the next iteration: it needs to reset the Bloom filter 3578 * so that a fresh set of PTE tables can be recorded. 3579 * 3. It ended the current iteration: it needs to reset the mm stats 3580 * counters and tell its caller to increment max_seq. 3581 */ 3582 spin_lock(&mm_list->lock); 3583 3584 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3585 3586 if (walk->max_seq <= mm_state->seq) 3587 goto done; 3588 3589 if (!mm_state->head) 3590 mm_state->head = &mm_list->fifo; 3591 3592 if (mm_state->head == &mm_list->fifo) 3593 first = true; 3594 3595 do { 3596 mm_state->head = mm_state->head->next; 3597 if (mm_state->head == &mm_list->fifo) { 3598 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3599 last = true; 3600 break; 3601 } 3602 3603 /* force scan for those added after the last iteration */ 3604 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3605 mm_state->tail = mm_state->head->next; 3606 walk->force_scan = true; 3607 } 3608 3609 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3610 if (should_skip_mm(mm, walk)) 3611 mm = NULL; 3612 } while (!mm); 3613 done: 3614 if (*iter || last) 3615 reset_mm_stats(lruvec, walk, last); 3616 3617 spin_unlock(&mm_list->lock); 3618 3619 if (mm && first) 3620 reset_bloom_filter(lruvec, walk->max_seq + 1); 3621 3622 if (*iter) 3623 mmput_async(*iter); 3624 3625 *iter = mm; 3626 3627 return last; 3628 } 3629 3630 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3631 { 3632 bool success = false; 3633 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3634 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3635 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3636 3637 spin_lock(&mm_list->lock); 3638 3639 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3640 3641 if (max_seq > mm_state->seq) { 3642 mm_state->head = NULL; 3643 mm_state->tail = NULL; 3644 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3645 reset_mm_stats(lruvec, NULL, true); 3646 success = true; 3647 } 3648 3649 spin_unlock(&mm_list->lock); 3650 3651 return success; 3652 } 3653 3654 /****************************************************************************** 3655 * PID controller 3656 ******************************************************************************/ 3657 3658 /* 3659 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3660 * 3661 * The P term is refaulted/(evicted+protected) from a tier in the generation 3662 * currently being evicted; the I term is the exponential moving average of the 3663 * P term over the generations previously evicted, using the smoothing factor 3664 * 1/2; the D term isn't supported. 3665 * 3666 * The setpoint (SP) is always the first tier of one type; the process variable 3667 * (PV) is either any tier of the other type or any other tier of the same 3668 * type. 3669 * 3670 * The error is the difference between the SP and the PV; the correction is to 3671 * turn off protection when SP>PV or turn on protection when SP<PV. 3672 * 3673 * For future optimizations: 3674 * 1. The D term may discount the other two terms over time so that long-lived 3675 * generations can resist stale information. 3676 */ 3677 struct ctrl_pos { 3678 unsigned long refaulted; 3679 unsigned long total; 3680 int gain; 3681 }; 3682 3683 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3684 struct ctrl_pos *pos) 3685 { 3686 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3687 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3688 3689 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3690 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3691 pos->total = lrugen->avg_total[type][tier] + 3692 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3693 if (tier) 3694 pos->total += lrugen->protected[hist][type][tier - 1]; 3695 pos->gain = gain; 3696 } 3697 3698 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3699 { 3700 int hist, tier; 3701 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3702 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3703 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3704 3705 lockdep_assert_held(&lruvec->lru_lock); 3706 3707 if (!carryover && !clear) 3708 return; 3709 3710 hist = lru_hist_from_seq(seq); 3711 3712 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3713 if (carryover) { 3714 unsigned long sum; 3715 3716 sum = lrugen->avg_refaulted[type][tier] + 3717 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3718 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3719 3720 sum = lrugen->avg_total[type][tier] + 3721 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3722 if (tier) 3723 sum += lrugen->protected[hist][type][tier - 1]; 3724 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3725 } 3726 3727 if (clear) { 3728 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3729 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3730 if (tier) 3731 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3732 } 3733 } 3734 } 3735 3736 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3737 { 3738 /* 3739 * Return true if the PV has a limited number of refaults or a lower 3740 * refaulted/total than the SP. 3741 */ 3742 return pv->refaulted < MIN_LRU_BATCH || 3743 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3744 (sp->refaulted + 1) * pv->total * pv->gain; 3745 } 3746 3747 /****************************************************************************** 3748 * the aging 3749 ******************************************************************************/ 3750 3751 /* promote pages accessed through page tables */ 3752 static int folio_update_gen(struct folio *folio, int gen) 3753 { 3754 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3755 3756 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3757 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3758 3759 do { 3760 /* lru_gen_del_folio() has isolated this page? */ 3761 if (!(old_flags & LRU_GEN_MASK)) { 3762 /* for shrink_folio_list() */ 3763 new_flags = old_flags | BIT(PG_referenced); 3764 continue; 3765 } 3766 3767 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3768 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3769 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3770 3771 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3772 } 3773 3774 /* protect pages accessed multiple times through file descriptors */ 3775 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3776 { 3777 int type = folio_is_file_lru(folio); 3778 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3779 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3780 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3781 3782 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3783 3784 do { 3785 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3786 /* folio_update_gen() has promoted this page? */ 3787 if (new_gen >= 0 && new_gen != old_gen) 3788 return new_gen; 3789 3790 new_gen = (old_gen + 1) % MAX_NR_GENS; 3791 3792 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3793 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3794 /* for folio_end_writeback() */ 3795 if (reclaiming) 3796 new_flags |= BIT(PG_reclaim); 3797 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3798 3799 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3800 3801 return new_gen; 3802 } 3803 3804 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3805 int old_gen, int new_gen) 3806 { 3807 int type = folio_is_file_lru(folio); 3808 int zone = folio_zonenum(folio); 3809 int delta = folio_nr_pages(folio); 3810 3811 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3812 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3813 3814 walk->batched++; 3815 3816 walk->nr_pages[old_gen][type][zone] -= delta; 3817 walk->nr_pages[new_gen][type][zone] += delta; 3818 } 3819 3820 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3821 { 3822 int gen, type, zone; 3823 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3824 3825 walk->batched = 0; 3826 3827 for_each_gen_type_zone(gen, type, zone) { 3828 enum lru_list lru = type * LRU_INACTIVE_FILE; 3829 int delta = walk->nr_pages[gen][type][zone]; 3830 3831 if (!delta) 3832 continue; 3833 3834 walk->nr_pages[gen][type][zone] = 0; 3835 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3836 lrugen->nr_pages[gen][type][zone] + delta); 3837 3838 if (lru_gen_is_active(lruvec, gen)) 3839 lru += LRU_ACTIVE; 3840 __update_lru_size(lruvec, lru, zone, delta); 3841 } 3842 } 3843 3844 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3845 { 3846 struct address_space *mapping; 3847 struct vm_area_struct *vma = args->vma; 3848 struct lru_gen_mm_walk *walk = args->private; 3849 3850 if (!vma_is_accessible(vma)) 3851 return true; 3852 3853 if (is_vm_hugetlb_page(vma)) 3854 return true; 3855 3856 if (!vma_has_recency(vma)) 3857 return true; 3858 3859 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3860 return true; 3861 3862 if (vma == get_gate_vma(vma->vm_mm)) 3863 return true; 3864 3865 if (vma_is_anonymous(vma)) 3866 return !walk->can_swap; 3867 3868 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3869 return true; 3870 3871 mapping = vma->vm_file->f_mapping; 3872 if (mapping_unevictable(mapping)) 3873 return true; 3874 3875 if (shmem_mapping(mapping)) 3876 return !walk->can_swap; 3877 3878 /* to exclude special mappings like dax, etc. */ 3879 return !mapping->a_ops->read_folio; 3880 } 3881 3882 /* 3883 * Some userspace memory allocators map many single-page VMAs. Instead of 3884 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3885 * table to reduce zigzags and improve cache performance. 3886 */ 3887 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3888 unsigned long *vm_start, unsigned long *vm_end) 3889 { 3890 unsigned long start = round_up(*vm_end, size); 3891 unsigned long end = (start | ~mask) + 1; 3892 VMA_ITERATOR(vmi, args->mm, start); 3893 3894 VM_WARN_ON_ONCE(mask & size); 3895 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3896 3897 for_each_vma(vmi, args->vma) { 3898 if (end && end <= args->vma->vm_start) 3899 return false; 3900 3901 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3902 continue; 3903 3904 *vm_start = max(start, args->vma->vm_start); 3905 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3906 3907 return true; 3908 } 3909 3910 return false; 3911 } 3912 3913 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3914 { 3915 unsigned long pfn = pte_pfn(pte); 3916 3917 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3918 3919 if (!pte_present(pte) || is_zero_pfn(pfn)) 3920 return -1; 3921 3922 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3923 return -1; 3924 3925 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3926 return -1; 3927 3928 return pfn; 3929 } 3930 3931 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3932 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3933 { 3934 unsigned long pfn = pmd_pfn(pmd); 3935 3936 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3937 3938 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3939 return -1; 3940 3941 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3942 return -1; 3943 3944 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3945 return -1; 3946 3947 return pfn; 3948 } 3949 #endif 3950 3951 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3952 struct pglist_data *pgdat, bool can_swap) 3953 { 3954 struct folio *folio; 3955 3956 /* try to avoid unnecessary memory loads */ 3957 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3958 return NULL; 3959 3960 folio = pfn_folio(pfn); 3961 if (folio_nid(folio) != pgdat->node_id) 3962 return NULL; 3963 3964 if (folio_memcg_rcu(folio) != memcg) 3965 return NULL; 3966 3967 /* file VMAs can contain anon pages from COW */ 3968 if (!folio_is_file_lru(folio) && !can_swap) 3969 return NULL; 3970 3971 return folio; 3972 } 3973 3974 static bool suitable_to_scan(int total, int young) 3975 { 3976 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3977 3978 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3979 return young * n >= total; 3980 } 3981 3982 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3983 struct mm_walk *args) 3984 { 3985 int i; 3986 pte_t *pte; 3987 spinlock_t *ptl; 3988 unsigned long addr; 3989 int total = 0; 3990 int young = 0; 3991 struct lru_gen_mm_walk *walk = args->private; 3992 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3993 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3994 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3995 3996 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3997 3998 ptl = pte_lockptr(args->mm, pmd); 3999 if (!spin_trylock(ptl)) 4000 return false; 4001 4002 arch_enter_lazy_mmu_mode(); 4003 4004 pte = pte_offset_map(pmd, start & PMD_MASK); 4005 restart: 4006 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 4007 unsigned long pfn; 4008 struct folio *folio; 4009 4010 total++; 4011 walk->mm_stats[MM_LEAF_TOTAL]++; 4012 4013 pfn = get_pte_pfn(pte[i], args->vma, addr); 4014 if (pfn == -1) 4015 continue; 4016 4017 if (!pte_young(pte[i])) { 4018 walk->mm_stats[MM_LEAF_OLD]++; 4019 continue; 4020 } 4021 4022 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4023 if (!folio) 4024 continue; 4025 4026 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 4027 VM_WARN_ON_ONCE(true); 4028 4029 young++; 4030 walk->mm_stats[MM_LEAF_YOUNG]++; 4031 4032 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4033 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4034 !folio_test_swapcache(folio))) 4035 folio_mark_dirty(folio); 4036 4037 old_gen = folio_update_gen(folio, new_gen); 4038 if (old_gen >= 0 && old_gen != new_gen) 4039 update_batch_size(walk, folio, old_gen, new_gen); 4040 } 4041 4042 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 4043 goto restart; 4044 4045 pte_unmap(pte); 4046 4047 arch_leave_lazy_mmu_mode(); 4048 spin_unlock(ptl); 4049 4050 return suitable_to_scan(total, young); 4051 } 4052 4053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 4054 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4055 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4056 { 4057 int i; 4058 pmd_t *pmd; 4059 spinlock_t *ptl; 4060 struct lru_gen_mm_walk *walk = args->private; 4061 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4062 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4063 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4064 4065 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4066 4067 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4068 if (*first == -1) { 4069 *first = addr; 4070 bitmap_zero(bitmap, MIN_LRU_BATCH); 4071 return; 4072 } 4073 4074 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 4075 if (i && i <= MIN_LRU_BATCH) { 4076 __set_bit(i - 1, bitmap); 4077 return; 4078 } 4079 4080 pmd = pmd_offset(pud, *first); 4081 4082 ptl = pmd_lockptr(args->mm, pmd); 4083 if (!spin_trylock(ptl)) 4084 goto done; 4085 4086 arch_enter_lazy_mmu_mode(); 4087 4088 do { 4089 unsigned long pfn; 4090 struct folio *folio; 4091 4092 /* don't round down the first address */ 4093 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 4094 4095 pfn = get_pmd_pfn(pmd[i], vma, addr); 4096 if (pfn == -1) 4097 goto next; 4098 4099 if (!pmd_trans_huge(pmd[i])) { 4100 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 4101 pmdp_test_and_clear_young(vma, addr, pmd + i); 4102 goto next; 4103 } 4104 4105 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4106 if (!folio) 4107 goto next; 4108 4109 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4110 goto next; 4111 4112 walk->mm_stats[MM_LEAF_YOUNG]++; 4113 4114 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4115 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4116 !folio_test_swapcache(folio))) 4117 folio_mark_dirty(folio); 4118 4119 old_gen = folio_update_gen(folio, new_gen); 4120 if (old_gen >= 0 && old_gen != new_gen) 4121 update_batch_size(walk, folio, old_gen, new_gen); 4122 next: 4123 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4124 } while (i <= MIN_LRU_BATCH); 4125 4126 arch_leave_lazy_mmu_mode(); 4127 spin_unlock(ptl); 4128 done: 4129 *first = -1; 4130 } 4131 #else 4132 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4133 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4134 { 4135 } 4136 #endif 4137 4138 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4139 struct mm_walk *args) 4140 { 4141 int i; 4142 pmd_t *pmd; 4143 unsigned long next; 4144 unsigned long addr; 4145 struct vm_area_struct *vma; 4146 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)]; 4147 unsigned long first = -1; 4148 struct lru_gen_mm_walk *walk = args->private; 4149 4150 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4151 4152 /* 4153 * Finish an entire PMD in two passes: the first only reaches to PTE 4154 * tables to avoid taking the PMD lock; the second, if necessary, takes 4155 * the PMD lock to clear the accessed bit in PMD entries. 4156 */ 4157 pmd = pmd_offset(pud, start & PUD_MASK); 4158 restart: 4159 /* walk_pte_range() may call get_next_vma() */ 4160 vma = args->vma; 4161 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4162 pmd_t val = pmdp_get_lockless(pmd + i); 4163 4164 next = pmd_addr_end(addr, end); 4165 4166 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4167 walk->mm_stats[MM_LEAF_TOTAL]++; 4168 continue; 4169 } 4170 4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4172 if (pmd_trans_huge(val)) { 4173 unsigned long pfn = pmd_pfn(val); 4174 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4175 4176 walk->mm_stats[MM_LEAF_TOTAL]++; 4177 4178 if (!pmd_young(val)) { 4179 walk->mm_stats[MM_LEAF_OLD]++; 4180 continue; 4181 } 4182 4183 /* try to avoid unnecessary memory loads */ 4184 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4185 continue; 4186 4187 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4188 continue; 4189 } 4190 #endif 4191 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4192 4193 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4194 if (!pmd_young(val)) 4195 continue; 4196 4197 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4198 } 4199 4200 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4201 continue; 4202 4203 walk->mm_stats[MM_NONLEAF_FOUND]++; 4204 4205 if (!walk_pte_range(&val, addr, next, args)) 4206 continue; 4207 4208 walk->mm_stats[MM_NONLEAF_ADDED]++; 4209 4210 /* carry over to the next generation */ 4211 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4212 } 4213 4214 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 4215 4216 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4217 goto restart; 4218 } 4219 4220 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4221 struct mm_walk *args) 4222 { 4223 int i; 4224 pud_t *pud; 4225 unsigned long addr; 4226 unsigned long next; 4227 struct lru_gen_mm_walk *walk = args->private; 4228 4229 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4230 4231 pud = pud_offset(p4d, start & P4D_MASK); 4232 restart: 4233 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4234 pud_t val = READ_ONCE(pud[i]); 4235 4236 next = pud_addr_end(addr, end); 4237 4238 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4239 continue; 4240 4241 walk_pmd_range(&val, addr, next, args); 4242 4243 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4244 end = (addr | ~PUD_MASK) + 1; 4245 goto done; 4246 } 4247 } 4248 4249 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4250 goto restart; 4251 4252 end = round_up(end, P4D_SIZE); 4253 done: 4254 if (!end || !args->vma) 4255 return 1; 4256 4257 walk->next_addr = max(end, args->vma->vm_start); 4258 4259 return -EAGAIN; 4260 } 4261 4262 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4263 { 4264 static const struct mm_walk_ops mm_walk_ops = { 4265 .test_walk = should_skip_vma, 4266 .p4d_entry = walk_pud_range, 4267 }; 4268 4269 int err; 4270 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4271 4272 walk->next_addr = FIRST_USER_ADDRESS; 4273 4274 do { 4275 DEFINE_MAX_SEQ(lruvec); 4276 4277 err = -EBUSY; 4278 4279 /* another thread might have called inc_max_seq() */ 4280 if (walk->max_seq != max_seq) 4281 break; 4282 4283 /* folio_update_gen() requires stable folio_memcg() */ 4284 if (!mem_cgroup_trylock_pages(memcg)) 4285 break; 4286 4287 /* the caller might be holding the lock for write */ 4288 if (mmap_read_trylock(mm)) { 4289 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4290 4291 mmap_read_unlock(mm); 4292 } 4293 4294 mem_cgroup_unlock_pages(); 4295 4296 if (walk->batched) { 4297 spin_lock_irq(&lruvec->lru_lock); 4298 reset_batch_size(lruvec, walk); 4299 spin_unlock_irq(&lruvec->lru_lock); 4300 } 4301 4302 cond_resched(); 4303 } while (err == -EAGAIN); 4304 } 4305 4306 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4307 { 4308 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4309 4310 if (pgdat && current_is_kswapd()) { 4311 VM_WARN_ON_ONCE(walk); 4312 4313 walk = &pgdat->mm_walk; 4314 } else if (!walk && force_alloc) { 4315 VM_WARN_ON_ONCE(current_is_kswapd()); 4316 4317 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4318 } 4319 4320 current->reclaim_state->mm_walk = walk; 4321 4322 return walk; 4323 } 4324 4325 static void clear_mm_walk(void) 4326 { 4327 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4328 4329 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4330 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4331 4332 current->reclaim_state->mm_walk = NULL; 4333 4334 if (!current_is_kswapd()) 4335 kfree(walk); 4336 } 4337 4338 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4339 { 4340 int zone; 4341 int remaining = MAX_LRU_BATCH; 4342 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4343 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4344 4345 if (type == LRU_GEN_ANON && !can_swap) 4346 goto done; 4347 4348 /* prevent cold/hot inversion if force_scan is true */ 4349 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4350 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4351 4352 while (!list_empty(head)) { 4353 struct folio *folio = lru_to_folio(head); 4354 4355 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4356 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4357 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4358 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4359 4360 new_gen = folio_inc_gen(lruvec, folio, false); 4361 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4362 4363 if (!--remaining) 4364 return false; 4365 } 4366 } 4367 done: 4368 reset_ctrl_pos(lruvec, type, true); 4369 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4370 4371 return true; 4372 } 4373 4374 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4375 { 4376 int gen, type, zone; 4377 bool success = false; 4378 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4379 DEFINE_MIN_SEQ(lruvec); 4380 4381 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4382 4383 /* find the oldest populated generation */ 4384 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4385 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4386 gen = lru_gen_from_seq(min_seq[type]); 4387 4388 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4389 if (!list_empty(&lrugen->folios[gen][type][zone])) 4390 goto next; 4391 } 4392 4393 min_seq[type]++; 4394 } 4395 next: 4396 ; 4397 } 4398 4399 /* see the comment on lru_gen_folio */ 4400 if (can_swap) { 4401 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4402 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4403 } 4404 4405 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4406 if (min_seq[type] == lrugen->min_seq[type]) 4407 continue; 4408 4409 reset_ctrl_pos(lruvec, type, true); 4410 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4411 success = true; 4412 } 4413 4414 return success; 4415 } 4416 4417 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4418 { 4419 int prev, next; 4420 int type, zone; 4421 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4422 4423 spin_lock_irq(&lruvec->lru_lock); 4424 4425 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4426 4427 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4428 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4429 continue; 4430 4431 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4432 4433 while (!inc_min_seq(lruvec, type, can_swap)) { 4434 spin_unlock_irq(&lruvec->lru_lock); 4435 cond_resched(); 4436 spin_lock_irq(&lruvec->lru_lock); 4437 } 4438 } 4439 4440 /* 4441 * Update the active/inactive LRU sizes for compatibility. Both sides of 4442 * the current max_seq need to be covered, since max_seq+1 can overlap 4443 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4444 * overlap, cold/hot inversion happens. 4445 */ 4446 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4447 next = lru_gen_from_seq(lrugen->max_seq + 1); 4448 4449 for (type = 0; type < ANON_AND_FILE; type++) { 4450 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4451 enum lru_list lru = type * LRU_INACTIVE_FILE; 4452 long delta = lrugen->nr_pages[prev][type][zone] - 4453 lrugen->nr_pages[next][type][zone]; 4454 4455 if (!delta) 4456 continue; 4457 4458 __update_lru_size(lruvec, lru, zone, delta); 4459 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4460 } 4461 } 4462 4463 for (type = 0; type < ANON_AND_FILE; type++) 4464 reset_ctrl_pos(lruvec, type, false); 4465 4466 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4467 /* make sure preceding modifications appear */ 4468 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4469 4470 spin_unlock_irq(&lruvec->lru_lock); 4471 } 4472 4473 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4474 struct scan_control *sc, bool can_swap, bool force_scan) 4475 { 4476 bool success; 4477 struct lru_gen_mm_walk *walk; 4478 struct mm_struct *mm = NULL; 4479 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4480 4481 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4482 4483 /* see the comment in iterate_mm_list() */ 4484 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4485 success = false; 4486 goto done; 4487 } 4488 4489 /* 4490 * If the hardware doesn't automatically set the accessed bit, fallback 4491 * to lru_gen_look_around(), which only clears the accessed bit in a 4492 * handful of PTEs. Spreading the work out over a period of time usually 4493 * is less efficient, but it avoids bursty page faults. 4494 */ 4495 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) { 4496 success = iterate_mm_list_nowalk(lruvec, max_seq); 4497 goto done; 4498 } 4499 4500 walk = set_mm_walk(NULL, true); 4501 if (!walk) { 4502 success = iterate_mm_list_nowalk(lruvec, max_seq); 4503 goto done; 4504 } 4505 4506 walk->lruvec = lruvec; 4507 walk->max_seq = max_seq; 4508 walk->can_swap = can_swap; 4509 walk->force_scan = force_scan; 4510 4511 do { 4512 success = iterate_mm_list(lruvec, walk, &mm); 4513 if (mm) 4514 walk_mm(lruvec, mm, walk); 4515 } while (mm); 4516 done: 4517 if (success) 4518 inc_max_seq(lruvec, can_swap, force_scan); 4519 4520 return success; 4521 } 4522 4523 /****************************************************************************** 4524 * working set protection 4525 ******************************************************************************/ 4526 4527 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4528 { 4529 int gen, type, zone; 4530 unsigned long total = 0; 4531 bool can_swap = get_swappiness(lruvec, sc); 4532 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4533 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4534 DEFINE_MAX_SEQ(lruvec); 4535 DEFINE_MIN_SEQ(lruvec); 4536 4537 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4538 unsigned long seq; 4539 4540 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4541 gen = lru_gen_from_seq(seq); 4542 4543 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4544 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4545 } 4546 } 4547 4548 /* whether the size is big enough to be helpful */ 4549 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4550 } 4551 4552 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4553 unsigned long min_ttl) 4554 { 4555 int gen; 4556 unsigned long birth; 4557 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4558 DEFINE_MIN_SEQ(lruvec); 4559 4560 /* see the comment on lru_gen_folio */ 4561 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4562 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4563 4564 if (time_is_after_jiffies(birth + min_ttl)) 4565 return false; 4566 4567 if (!lruvec_is_sizable(lruvec, sc)) 4568 return false; 4569 4570 mem_cgroup_calculate_protection(NULL, memcg); 4571 4572 return !mem_cgroup_below_min(NULL, memcg); 4573 } 4574 4575 /* to protect the working set of the last N jiffies */ 4576 static unsigned long lru_gen_min_ttl __read_mostly; 4577 4578 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4579 { 4580 struct mem_cgroup *memcg; 4581 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4582 4583 VM_WARN_ON_ONCE(!current_is_kswapd()); 4584 4585 /* check the order to exclude compaction-induced reclaim */ 4586 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4587 return; 4588 4589 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4590 do { 4591 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4592 4593 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4594 mem_cgroup_iter_break(NULL, memcg); 4595 return; 4596 } 4597 4598 cond_resched(); 4599 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4600 4601 /* 4602 * The main goal is to OOM kill if every generation from all memcgs is 4603 * younger than min_ttl. However, another possibility is all memcgs are 4604 * either too small or below min. 4605 */ 4606 if (mutex_trylock(&oom_lock)) { 4607 struct oom_control oc = { 4608 .gfp_mask = sc->gfp_mask, 4609 }; 4610 4611 out_of_memory(&oc); 4612 4613 mutex_unlock(&oom_lock); 4614 } 4615 } 4616 4617 /****************************************************************************** 4618 * rmap/PT walk feedback 4619 ******************************************************************************/ 4620 4621 /* 4622 * This function exploits spatial locality when shrink_folio_list() walks the 4623 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4624 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4625 * the PTE table to the Bloom filter. This forms a feedback loop between the 4626 * eviction and the aging. 4627 */ 4628 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4629 { 4630 int i; 4631 unsigned long start; 4632 unsigned long end; 4633 struct lru_gen_mm_walk *walk; 4634 int young = 0; 4635 pte_t *pte = pvmw->pte; 4636 unsigned long addr = pvmw->address; 4637 struct folio *folio = pfn_folio(pvmw->pfn); 4638 struct mem_cgroup *memcg = folio_memcg(folio); 4639 struct pglist_data *pgdat = folio_pgdat(folio); 4640 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4641 DEFINE_MAX_SEQ(lruvec); 4642 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4643 4644 lockdep_assert_held(pvmw->ptl); 4645 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4646 4647 if (spin_is_contended(pvmw->ptl)) 4648 return; 4649 4650 /* avoid taking the LRU lock under the PTL when possible */ 4651 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4652 4653 start = max(addr & PMD_MASK, pvmw->vma->vm_start); 4654 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4655 4656 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4657 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4658 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4659 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4660 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4661 else { 4662 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4663 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4664 } 4665 } 4666 4667 /* folio_update_gen() requires stable folio_memcg() */ 4668 if (!mem_cgroup_trylock_pages(memcg)) 4669 return; 4670 4671 arch_enter_lazy_mmu_mode(); 4672 4673 pte -= (addr - start) / PAGE_SIZE; 4674 4675 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4676 unsigned long pfn; 4677 4678 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4679 if (pfn == -1) 4680 continue; 4681 4682 if (!pte_young(pte[i])) 4683 continue; 4684 4685 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4686 if (!folio) 4687 continue; 4688 4689 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4690 VM_WARN_ON_ONCE(true); 4691 4692 young++; 4693 4694 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4695 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4696 !folio_test_swapcache(folio))) 4697 folio_mark_dirty(folio); 4698 4699 if (walk) { 4700 old_gen = folio_update_gen(folio, new_gen); 4701 if (old_gen >= 0 && old_gen != new_gen) 4702 update_batch_size(walk, folio, old_gen, new_gen); 4703 4704 continue; 4705 } 4706 4707 old_gen = folio_lru_gen(folio); 4708 if (old_gen < 0) 4709 folio_set_referenced(folio); 4710 else if (old_gen != new_gen) 4711 folio_activate(folio); 4712 } 4713 4714 arch_leave_lazy_mmu_mode(); 4715 mem_cgroup_unlock_pages(); 4716 4717 /* feedback from rmap walkers to page table walkers */ 4718 if (suitable_to_scan(i, young)) 4719 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4720 } 4721 4722 /****************************************************************************** 4723 * memcg LRU 4724 ******************************************************************************/ 4725 4726 /* see the comment on MEMCG_NR_GENS */ 4727 enum { 4728 MEMCG_LRU_NOP, 4729 MEMCG_LRU_HEAD, 4730 MEMCG_LRU_TAIL, 4731 MEMCG_LRU_OLD, 4732 MEMCG_LRU_YOUNG, 4733 }; 4734 4735 #ifdef CONFIG_MEMCG 4736 4737 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4738 { 4739 return READ_ONCE(lruvec->lrugen.seg); 4740 } 4741 4742 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4743 { 4744 int seg; 4745 int old, new; 4746 int bin = get_random_u32_below(MEMCG_NR_BINS); 4747 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4748 4749 spin_lock(&pgdat->memcg_lru.lock); 4750 4751 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4752 4753 seg = 0; 4754 new = old = lruvec->lrugen.gen; 4755 4756 /* see the comment on MEMCG_NR_GENS */ 4757 if (op == MEMCG_LRU_HEAD) 4758 seg = MEMCG_LRU_HEAD; 4759 else if (op == MEMCG_LRU_TAIL) 4760 seg = MEMCG_LRU_TAIL; 4761 else if (op == MEMCG_LRU_OLD) 4762 new = get_memcg_gen(pgdat->memcg_lru.seq); 4763 else if (op == MEMCG_LRU_YOUNG) 4764 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4765 else 4766 VM_WARN_ON_ONCE(true); 4767 4768 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4769 4770 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4771 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4772 else 4773 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4774 4775 pgdat->memcg_lru.nr_memcgs[old]--; 4776 pgdat->memcg_lru.nr_memcgs[new]++; 4777 4778 lruvec->lrugen.gen = new; 4779 WRITE_ONCE(lruvec->lrugen.seg, seg); 4780 4781 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4782 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4783 4784 spin_unlock(&pgdat->memcg_lru.lock); 4785 } 4786 4787 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4788 { 4789 int gen; 4790 int nid; 4791 int bin = get_random_u32_below(MEMCG_NR_BINS); 4792 4793 for_each_node(nid) { 4794 struct pglist_data *pgdat = NODE_DATA(nid); 4795 struct lruvec *lruvec = get_lruvec(memcg, nid); 4796 4797 spin_lock(&pgdat->memcg_lru.lock); 4798 4799 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4800 4801 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4802 4803 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4804 pgdat->memcg_lru.nr_memcgs[gen]++; 4805 4806 lruvec->lrugen.gen = gen; 4807 4808 spin_unlock(&pgdat->memcg_lru.lock); 4809 } 4810 } 4811 4812 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4813 { 4814 int nid; 4815 4816 for_each_node(nid) { 4817 struct lruvec *lruvec = get_lruvec(memcg, nid); 4818 4819 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4820 } 4821 } 4822 4823 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4824 { 4825 int gen; 4826 int nid; 4827 4828 for_each_node(nid) { 4829 struct pglist_data *pgdat = NODE_DATA(nid); 4830 struct lruvec *lruvec = get_lruvec(memcg, nid); 4831 4832 spin_lock(&pgdat->memcg_lru.lock); 4833 4834 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4835 4836 gen = lruvec->lrugen.gen; 4837 4838 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4839 pgdat->memcg_lru.nr_memcgs[gen]--; 4840 4841 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4842 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4843 4844 spin_unlock(&pgdat->memcg_lru.lock); 4845 } 4846 } 4847 4848 void lru_gen_soft_reclaim(struct lruvec *lruvec) 4849 { 4850 /* see the comment on MEMCG_NR_GENS */ 4851 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4852 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4853 } 4854 4855 #else /* !CONFIG_MEMCG */ 4856 4857 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4858 { 4859 return 0; 4860 } 4861 4862 #endif 4863 4864 /****************************************************************************** 4865 * the eviction 4866 ******************************************************************************/ 4867 4868 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4869 { 4870 bool success; 4871 int gen = folio_lru_gen(folio); 4872 int type = folio_is_file_lru(folio); 4873 int zone = folio_zonenum(folio); 4874 int delta = folio_nr_pages(folio); 4875 int refs = folio_lru_refs(folio); 4876 int tier = lru_tier_from_refs(refs); 4877 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4878 4879 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4880 4881 /* unevictable */ 4882 if (!folio_evictable(folio)) { 4883 success = lru_gen_del_folio(lruvec, folio, true); 4884 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4885 folio_set_unevictable(folio); 4886 lruvec_add_folio(lruvec, folio); 4887 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4888 return true; 4889 } 4890 4891 /* dirty lazyfree */ 4892 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4893 success = lru_gen_del_folio(lruvec, folio, true); 4894 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4895 folio_set_swapbacked(folio); 4896 lruvec_add_folio_tail(lruvec, folio); 4897 return true; 4898 } 4899 4900 /* promoted */ 4901 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4902 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4903 return true; 4904 } 4905 4906 /* protected */ 4907 if (tier > tier_idx) { 4908 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4909 4910 gen = folio_inc_gen(lruvec, folio, false); 4911 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4912 4913 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4914 lrugen->protected[hist][type][tier - 1] + delta); 4915 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4916 return true; 4917 } 4918 4919 /* waiting for writeback */ 4920 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4921 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4922 gen = folio_inc_gen(lruvec, folio, true); 4923 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4924 return true; 4925 } 4926 4927 return false; 4928 } 4929 4930 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4931 { 4932 bool success; 4933 4934 /* swapping inhibited */ 4935 if (!(sc->gfp_mask & __GFP_IO) && 4936 (folio_test_dirty(folio) || 4937 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4938 return false; 4939 4940 /* raced with release_pages() */ 4941 if (!folio_try_get(folio)) 4942 return false; 4943 4944 /* raced with another isolation */ 4945 if (!folio_test_clear_lru(folio)) { 4946 folio_put(folio); 4947 return false; 4948 } 4949 4950 /* see the comment on MAX_NR_TIERS */ 4951 if (!folio_test_referenced(folio)) 4952 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4953 4954 /* for shrink_folio_list() */ 4955 folio_clear_reclaim(folio); 4956 folio_clear_referenced(folio); 4957 4958 success = lru_gen_del_folio(lruvec, folio, true); 4959 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4960 4961 return true; 4962 } 4963 4964 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4965 int type, int tier, struct list_head *list) 4966 { 4967 int gen, zone; 4968 enum vm_event_item item; 4969 int sorted = 0; 4970 int scanned = 0; 4971 int isolated = 0; 4972 int remaining = MAX_LRU_BATCH; 4973 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4974 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4975 4976 VM_WARN_ON_ONCE(!list_empty(list)); 4977 4978 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4979 return 0; 4980 4981 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4982 4983 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4984 LIST_HEAD(moved); 4985 int skipped = 0; 4986 struct list_head *head = &lrugen->folios[gen][type][zone]; 4987 4988 while (!list_empty(head)) { 4989 struct folio *folio = lru_to_folio(head); 4990 int delta = folio_nr_pages(folio); 4991 4992 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4993 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4994 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4995 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4996 4997 scanned += delta; 4998 4999 if (sort_folio(lruvec, folio, tier)) 5000 sorted += delta; 5001 else if (isolate_folio(lruvec, folio, sc)) { 5002 list_add(&folio->lru, list); 5003 isolated += delta; 5004 } else { 5005 list_move(&folio->lru, &moved); 5006 skipped += delta; 5007 } 5008 5009 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 5010 break; 5011 } 5012 5013 if (skipped) { 5014 list_splice(&moved, head); 5015 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 5016 } 5017 5018 if (!remaining || isolated >= MIN_LRU_BATCH) 5019 break; 5020 } 5021 5022 item = PGSCAN_KSWAPD + reclaimer_offset(); 5023 if (!cgroup_reclaim(sc)) { 5024 __count_vm_events(item, isolated); 5025 __count_vm_events(PGREFILL, sorted); 5026 } 5027 __count_memcg_events(memcg, item, isolated); 5028 __count_memcg_events(memcg, PGREFILL, sorted); 5029 __count_vm_events(PGSCAN_ANON + type, isolated); 5030 5031 /* 5032 * There might not be eligible folios due to reclaim_idx. Check the 5033 * remaining to prevent livelock if it's not making progress. 5034 */ 5035 return isolated || !remaining ? scanned : 0; 5036 } 5037 5038 static int get_tier_idx(struct lruvec *lruvec, int type) 5039 { 5040 int tier; 5041 struct ctrl_pos sp, pv; 5042 5043 /* 5044 * To leave a margin for fluctuations, use a larger gain factor (1:2). 5045 * This value is chosen because any other tier would have at least twice 5046 * as many refaults as the first tier. 5047 */ 5048 read_ctrl_pos(lruvec, type, 0, 1, &sp); 5049 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5050 read_ctrl_pos(lruvec, type, tier, 2, &pv); 5051 if (!positive_ctrl_err(&sp, &pv)) 5052 break; 5053 } 5054 5055 return tier - 1; 5056 } 5057 5058 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 5059 { 5060 int type, tier; 5061 struct ctrl_pos sp, pv; 5062 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 5063 5064 /* 5065 * Compare the first tier of anon with that of file to determine which 5066 * type to scan. Also need to compare other tiers of the selected type 5067 * with the first tier of the other type to determine the last tier (of 5068 * the selected type) to evict. 5069 */ 5070 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 5071 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 5072 type = positive_ctrl_err(&sp, &pv); 5073 5074 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 5075 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5076 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 5077 if (!positive_ctrl_err(&sp, &pv)) 5078 break; 5079 } 5080 5081 *tier_idx = tier - 1; 5082 5083 return type; 5084 } 5085 5086 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5087 int *type_scanned, struct list_head *list) 5088 { 5089 int i; 5090 int type; 5091 int scanned; 5092 int tier = -1; 5093 DEFINE_MIN_SEQ(lruvec); 5094 5095 /* 5096 * Try to make the obvious choice first. When anon and file are both 5097 * available from the same generation, interpret swappiness 1 as file 5098 * first and 200 as anon first. 5099 */ 5100 if (!swappiness) 5101 type = LRU_GEN_FILE; 5102 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 5103 type = LRU_GEN_ANON; 5104 else if (swappiness == 1) 5105 type = LRU_GEN_FILE; 5106 else if (swappiness == 200) 5107 type = LRU_GEN_ANON; 5108 else 5109 type = get_type_to_scan(lruvec, swappiness, &tier); 5110 5111 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5112 if (tier < 0) 5113 tier = get_tier_idx(lruvec, type); 5114 5115 scanned = scan_folios(lruvec, sc, type, tier, list); 5116 if (scanned) 5117 break; 5118 5119 type = !type; 5120 tier = -1; 5121 } 5122 5123 *type_scanned = type; 5124 5125 return scanned; 5126 } 5127 5128 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5129 { 5130 int type; 5131 int scanned; 5132 int reclaimed; 5133 LIST_HEAD(list); 5134 LIST_HEAD(clean); 5135 struct folio *folio; 5136 struct folio *next; 5137 enum vm_event_item item; 5138 struct reclaim_stat stat; 5139 struct lru_gen_mm_walk *walk; 5140 bool skip_retry = false; 5141 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5142 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5143 5144 spin_lock_irq(&lruvec->lru_lock); 5145 5146 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5147 5148 scanned += try_to_inc_min_seq(lruvec, swappiness); 5149 5150 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5151 scanned = 0; 5152 5153 spin_unlock_irq(&lruvec->lru_lock); 5154 5155 if (list_empty(&list)) 5156 return scanned; 5157 retry: 5158 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5159 sc->nr_reclaimed += reclaimed; 5160 5161 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5162 if (!folio_evictable(folio)) { 5163 list_del(&folio->lru); 5164 folio_putback_lru(folio); 5165 continue; 5166 } 5167 5168 if (folio_test_reclaim(folio) && 5169 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5170 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5171 if (folio_test_workingset(folio)) 5172 folio_set_referenced(folio); 5173 continue; 5174 } 5175 5176 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5177 folio_mapped(folio) || folio_test_locked(folio) || 5178 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5179 /* don't add rejected folios to the oldest generation */ 5180 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5181 BIT(PG_active)); 5182 continue; 5183 } 5184 5185 /* retry folios that may have missed folio_rotate_reclaimable() */ 5186 list_move(&folio->lru, &clean); 5187 sc->nr_scanned -= folio_nr_pages(folio); 5188 } 5189 5190 spin_lock_irq(&lruvec->lru_lock); 5191 5192 move_folios_to_lru(lruvec, &list); 5193 5194 walk = current->reclaim_state->mm_walk; 5195 if (walk && walk->batched) 5196 reset_batch_size(lruvec, walk); 5197 5198 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5199 if (!cgroup_reclaim(sc)) 5200 __count_vm_events(item, reclaimed); 5201 __count_memcg_events(memcg, item, reclaimed); 5202 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5203 5204 spin_unlock_irq(&lruvec->lru_lock); 5205 5206 mem_cgroup_uncharge_list(&list); 5207 free_unref_page_list(&list); 5208 5209 INIT_LIST_HEAD(&list); 5210 list_splice_init(&clean, &list); 5211 5212 if (!list_empty(&list)) { 5213 skip_retry = true; 5214 goto retry; 5215 } 5216 5217 return scanned; 5218 } 5219 5220 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5221 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5222 { 5223 int gen, type, zone; 5224 unsigned long old = 0; 5225 unsigned long young = 0; 5226 unsigned long total = 0; 5227 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5228 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5229 DEFINE_MIN_SEQ(lruvec); 5230 5231 /* whether this lruvec is completely out of cold folios */ 5232 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5233 *nr_to_scan = 0; 5234 return true; 5235 } 5236 5237 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5238 unsigned long seq; 5239 5240 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5241 unsigned long size = 0; 5242 5243 gen = lru_gen_from_seq(seq); 5244 5245 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5246 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5247 5248 total += size; 5249 if (seq == max_seq) 5250 young += size; 5251 else if (seq + MIN_NR_GENS == max_seq) 5252 old += size; 5253 } 5254 } 5255 5256 /* try to scrape all its memory if this memcg was deleted */ 5257 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 5258 5259 /* 5260 * The aging tries to be lazy to reduce the overhead, while the eviction 5261 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5262 * ideal number of generations is MIN_NR_GENS+1. 5263 */ 5264 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5265 return false; 5266 5267 /* 5268 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5269 * of the total number of pages for each generation. A reasonable range 5270 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5271 * aging cares about the upper bound of hot pages, while the eviction 5272 * cares about the lower bound of cold pages. 5273 */ 5274 if (young * MIN_NR_GENS > total) 5275 return true; 5276 if (old * (MIN_NR_GENS + 2) < total) 5277 return true; 5278 5279 return false; 5280 } 5281 5282 /* 5283 * For future optimizations: 5284 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5285 * reclaim. 5286 */ 5287 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5288 { 5289 unsigned long nr_to_scan; 5290 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5291 DEFINE_MAX_SEQ(lruvec); 5292 5293 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5294 return 0; 5295 5296 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5297 return nr_to_scan; 5298 5299 /* skip the aging path at the default priority */ 5300 if (sc->priority == DEF_PRIORITY) 5301 return nr_to_scan; 5302 5303 /* skip this lruvec as it's low on cold folios */ 5304 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5305 } 5306 5307 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5308 { 5309 /* don't abort memcg reclaim to ensure fairness */ 5310 if (!global_reclaim(sc)) 5311 return -1; 5312 5313 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5314 } 5315 5316 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5317 { 5318 long nr_to_scan; 5319 unsigned long scanned = 0; 5320 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5321 int swappiness = get_swappiness(lruvec, sc); 5322 5323 /* clean file folios are more likely to exist */ 5324 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5325 swappiness = 1; 5326 5327 while (true) { 5328 int delta; 5329 5330 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5331 if (nr_to_scan <= 0) 5332 break; 5333 5334 delta = evict_folios(lruvec, sc, swappiness); 5335 if (!delta) 5336 break; 5337 5338 scanned += delta; 5339 if (scanned >= nr_to_scan) 5340 break; 5341 5342 if (sc->nr_reclaimed >= nr_to_reclaim) 5343 break; 5344 5345 cond_resched(); 5346 } 5347 5348 /* whether try_to_inc_max_seq() was successful */ 5349 return nr_to_scan < 0; 5350 } 5351 5352 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5353 { 5354 bool success; 5355 unsigned long scanned = sc->nr_scanned; 5356 unsigned long reclaimed = sc->nr_reclaimed; 5357 int seg = lru_gen_memcg_seg(lruvec); 5358 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5359 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5360 5361 /* see the comment on MEMCG_NR_GENS */ 5362 if (!lruvec_is_sizable(lruvec, sc)) 5363 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5364 5365 mem_cgroup_calculate_protection(NULL, memcg); 5366 5367 if (mem_cgroup_below_min(NULL, memcg)) 5368 return MEMCG_LRU_YOUNG; 5369 5370 if (mem_cgroup_below_low(NULL, memcg)) { 5371 /* see the comment on MEMCG_NR_GENS */ 5372 if (seg != MEMCG_LRU_TAIL) 5373 return MEMCG_LRU_TAIL; 5374 5375 memcg_memory_event(memcg, MEMCG_LOW); 5376 } 5377 5378 success = try_to_shrink_lruvec(lruvec, sc); 5379 5380 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5381 5382 if (!sc->proactive) 5383 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5384 sc->nr_reclaimed - reclaimed); 5385 5386 flush_reclaim_state(sc); 5387 5388 return success ? MEMCG_LRU_YOUNG : 0; 5389 } 5390 5391 #ifdef CONFIG_MEMCG 5392 5393 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5394 { 5395 int op; 5396 int gen; 5397 int bin; 5398 int first_bin; 5399 struct lruvec *lruvec; 5400 struct lru_gen_folio *lrugen; 5401 struct mem_cgroup *memcg; 5402 const struct hlist_nulls_node *pos; 5403 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5404 5405 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5406 restart: 5407 op = 0; 5408 memcg = NULL; 5409 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5410 5411 rcu_read_lock(); 5412 5413 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5414 if (op) 5415 lru_gen_rotate_memcg(lruvec, op); 5416 5417 mem_cgroup_put(memcg); 5418 5419 lruvec = container_of(lrugen, struct lruvec, lrugen); 5420 memcg = lruvec_memcg(lruvec); 5421 5422 if (!mem_cgroup_tryget(memcg)) { 5423 op = 0; 5424 memcg = NULL; 5425 continue; 5426 } 5427 5428 rcu_read_unlock(); 5429 5430 op = shrink_one(lruvec, sc); 5431 5432 rcu_read_lock(); 5433 5434 if (sc->nr_reclaimed >= nr_to_reclaim) 5435 break; 5436 } 5437 5438 rcu_read_unlock(); 5439 5440 if (op) 5441 lru_gen_rotate_memcg(lruvec, op); 5442 5443 mem_cgroup_put(memcg); 5444 5445 if (sc->nr_reclaimed >= nr_to_reclaim) 5446 return; 5447 5448 /* restart if raced with lru_gen_rotate_memcg() */ 5449 if (gen != get_nulls_value(pos)) 5450 goto restart; 5451 5452 /* try the rest of the bins of the current generation */ 5453 bin = get_memcg_bin(bin + 1); 5454 if (bin != first_bin) 5455 goto restart; 5456 } 5457 5458 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5459 { 5460 struct blk_plug plug; 5461 5462 VM_WARN_ON_ONCE(global_reclaim(sc)); 5463 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5464 5465 lru_add_drain(); 5466 5467 blk_start_plug(&plug); 5468 5469 set_mm_walk(NULL, sc->proactive); 5470 5471 if (try_to_shrink_lruvec(lruvec, sc)) 5472 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5473 5474 clear_mm_walk(); 5475 5476 blk_finish_plug(&plug); 5477 } 5478 5479 #else /* !CONFIG_MEMCG */ 5480 5481 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5482 { 5483 BUILD_BUG(); 5484 } 5485 5486 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5487 { 5488 BUILD_BUG(); 5489 } 5490 5491 #endif 5492 5493 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 5494 { 5495 int priority; 5496 unsigned long reclaimable; 5497 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 5498 5499 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 5500 return; 5501 /* 5502 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> 5503 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the 5504 * estimated reclaimed_to_scanned_ratio = inactive / total. 5505 */ 5506 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 5507 if (get_swappiness(lruvec, sc)) 5508 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 5509 5510 reclaimable /= MEMCG_NR_GENS; 5511 5512 /* round down reclaimable and round up sc->nr_to_reclaim */ 5513 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 5514 5515 sc->priority = clamp(priority, 0, DEF_PRIORITY); 5516 } 5517 5518 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5519 { 5520 struct blk_plug plug; 5521 unsigned long reclaimed = sc->nr_reclaimed; 5522 5523 VM_WARN_ON_ONCE(!global_reclaim(sc)); 5524 5525 /* 5526 * Unmapped clean folios are already prioritized. Scanning for more of 5527 * them is likely futile and can cause high reclaim latency when there 5528 * is a large number of memcgs. 5529 */ 5530 if (!sc->may_writepage || !sc->may_unmap) 5531 goto done; 5532 5533 lru_add_drain(); 5534 5535 blk_start_plug(&plug); 5536 5537 set_mm_walk(pgdat, sc->proactive); 5538 5539 set_initial_priority(pgdat, sc); 5540 5541 if (current_is_kswapd()) 5542 sc->nr_reclaimed = 0; 5543 5544 if (mem_cgroup_disabled()) 5545 shrink_one(&pgdat->__lruvec, sc); 5546 else 5547 shrink_many(pgdat, sc); 5548 5549 if (current_is_kswapd()) 5550 sc->nr_reclaimed += reclaimed; 5551 5552 clear_mm_walk(); 5553 5554 blk_finish_plug(&plug); 5555 done: 5556 /* kswapd should never fail */ 5557 pgdat->kswapd_failures = 0; 5558 } 5559 5560 /****************************************************************************** 5561 * state change 5562 ******************************************************************************/ 5563 5564 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5565 { 5566 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5567 5568 if (lrugen->enabled) { 5569 enum lru_list lru; 5570 5571 for_each_evictable_lru(lru) { 5572 if (!list_empty(&lruvec->lists[lru])) 5573 return false; 5574 } 5575 } else { 5576 int gen, type, zone; 5577 5578 for_each_gen_type_zone(gen, type, zone) { 5579 if (!list_empty(&lrugen->folios[gen][type][zone])) 5580 return false; 5581 } 5582 } 5583 5584 return true; 5585 } 5586 5587 static bool fill_evictable(struct lruvec *lruvec) 5588 { 5589 enum lru_list lru; 5590 int remaining = MAX_LRU_BATCH; 5591 5592 for_each_evictable_lru(lru) { 5593 int type = is_file_lru(lru); 5594 bool active = is_active_lru(lru); 5595 struct list_head *head = &lruvec->lists[lru]; 5596 5597 while (!list_empty(head)) { 5598 bool success; 5599 struct folio *folio = lru_to_folio(head); 5600 5601 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5602 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5603 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5604 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5605 5606 lruvec_del_folio(lruvec, folio); 5607 success = lru_gen_add_folio(lruvec, folio, false); 5608 VM_WARN_ON_ONCE(!success); 5609 5610 if (!--remaining) 5611 return false; 5612 } 5613 } 5614 5615 return true; 5616 } 5617 5618 static bool drain_evictable(struct lruvec *lruvec) 5619 { 5620 int gen, type, zone; 5621 int remaining = MAX_LRU_BATCH; 5622 5623 for_each_gen_type_zone(gen, type, zone) { 5624 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5625 5626 while (!list_empty(head)) { 5627 bool success; 5628 struct folio *folio = lru_to_folio(head); 5629 5630 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5631 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5632 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5633 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5634 5635 success = lru_gen_del_folio(lruvec, folio, false); 5636 VM_WARN_ON_ONCE(!success); 5637 lruvec_add_folio(lruvec, folio); 5638 5639 if (!--remaining) 5640 return false; 5641 } 5642 } 5643 5644 return true; 5645 } 5646 5647 static void lru_gen_change_state(bool enabled) 5648 { 5649 static DEFINE_MUTEX(state_mutex); 5650 5651 struct mem_cgroup *memcg; 5652 5653 cgroup_lock(); 5654 cpus_read_lock(); 5655 get_online_mems(); 5656 mutex_lock(&state_mutex); 5657 5658 if (enabled == lru_gen_enabled()) 5659 goto unlock; 5660 5661 if (enabled) 5662 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5663 else 5664 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5665 5666 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5667 do { 5668 int nid; 5669 5670 for_each_node(nid) { 5671 struct lruvec *lruvec = get_lruvec(memcg, nid); 5672 5673 spin_lock_irq(&lruvec->lru_lock); 5674 5675 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5676 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5677 5678 lruvec->lrugen.enabled = enabled; 5679 5680 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5681 spin_unlock_irq(&lruvec->lru_lock); 5682 cond_resched(); 5683 spin_lock_irq(&lruvec->lru_lock); 5684 } 5685 5686 spin_unlock_irq(&lruvec->lru_lock); 5687 } 5688 5689 cond_resched(); 5690 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5691 unlock: 5692 mutex_unlock(&state_mutex); 5693 put_online_mems(); 5694 cpus_read_unlock(); 5695 cgroup_unlock(); 5696 } 5697 5698 /****************************************************************************** 5699 * sysfs interface 5700 ******************************************************************************/ 5701 5702 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5703 { 5704 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5705 } 5706 5707 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5708 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5709 const char *buf, size_t len) 5710 { 5711 unsigned int msecs; 5712 5713 if (kstrtouint(buf, 0, &msecs)) 5714 return -EINVAL; 5715 5716 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5717 5718 return len; 5719 } 5720 5721 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5722 5723 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5724 { 5725 unsigned int caps = 0; 5726 5727 if (get_cap(LRU_GEN_CORE)) 5728 caps |= BIT(LRU_GEN_CORE); 5729 5730 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5731 caps |= BIT(LRU_GEN_MM_WALK); 5732 5733 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5734 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5735 5736 return sysfs_emit(buf, "0x%04x\n", caps); 5737 } 5738 5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5740 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5741 const char *buf, size_t len) 5742 { 5743 int i; 5744 unsigned int caps; 5745 5746 if (tolower(*buf) == 'n') 5747 caps = 0; 5748 else if (tolower(*buf) == 'y') 5749 caps = -1; 5750 else if (kstrtouint(buf, 0, &caps)) 5751 return -EINVAL; 5752 5753 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5754 bool enabled = caps & BIT(i); 5755 5756 if (i == LRU_GEN_CORE) 5757 lru_gen_change_state(enabled); 5758 else if (enabled) 5759 static_branch_enable(&lru_gen_caps[i]); 5760 else 5761 static_branch_disable(&lru_gen_caps[i]); 5762 } 5763 5764 return len; 5765 } 5766 5767 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5768 5769 static struct attribute *lru_gen_attrs[] = { 5770 &lru_gen_min_ttl_attr.attr, 5771 &lru_gen_enabled_attr.attr, 5772 NULL 5773 }; 5774 5775 static const struct attribute_group lru_gen_attr_group = { 5776 .name = "lru_gen", 5777 .attrs = lru_gen_attrs, 5778 }; 5779 5780 /****************************************************************************** 5781 * debugfs interface 5782 ******************************************************************************/ 5783 5784 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5785 { 5786 struct mem_cgroup *memcg; 5787 loff_t nr_to_skip = *pos; 5788 5789 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5790 if (!m->private) 5791 return ERR_PTR(-ENOMEM); 5792 5793 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5794 do { 5795 int nid; 5796 5797 for_each_node_state(nid, N_MEMORY) { 5798 if (!nr_to_skip--) 5799 return get_lruvec(memcg, nid); 5800 } 5801 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5802 5803 return NULL; 5804 } 5805 5806 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5807 { 5808 if (!IS_ERR_OR_NULL(v)) 5809 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5810 5811 kvfree(m->private); 5812 m->private = NULL; 5813 } 5814 5815 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5816 { 5817 int nid = lruvec_pgdat(v)->node_id; 5818 struct mem_cgroup *memcg = lruvec_memcg(v); 5819 5820 ++*pos; 5821 5822 nid = next_memory_node(nid); 5823 if (nid == MAX_NUMNODES) { 5824 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5825 if (!memcg) 5826 return NULL; 5827 5828 nid = first_memory_node; 5829 } 5830 5831 return get_lruvec(memcg, nid); 5832 } 5833 5834 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5835 unsigned long max_seq, unsigned long *min_seq, 5836 unsigned long seq) 5837 { 5838 int i; 5839 int type, tier; 5840 int hist = lru_hist_from_seq(seq); 5841 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5842 5843 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5844 seq_printf(m, " %10d", tier); 5845 for (type = 0; type < ANON_AND_FILE; type++) { 5846 const char *s = " "; 5847 unsigned long n[3] = {}; 5848 5849 if (seq == max_seq) { 5850 s = "RT "; 5851 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5852 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5853 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5854 s = "rep"; 5855 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5856 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5857 if (tier) 5858 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5859 } 5860 5861 for (i = 0; i < 3; i++) 5862 seq_printf(m, " %10lu%c", n[i], s[i]); 5863 } 5864 seq_putc(m, '\n'); 5865 } 5866 5867 seq_puts(m, " "); 5868 for (i = 0; i < NR_MM_STATS; i++) { 5869 const char *s = " "; 5870 unsigned long n = 0; 5871 5872 if (seq == max_seq && NR_HIST_GENS == 1) { 5873 s = "LOYNFA"; 5874 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5875 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5876 s = "loynfa"; 5877 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5878 } 5879 5880 seq_printf(m, " %10lu%c", n, s[i]); 5881 } 5882 seq_putc(m, '\n'); 5883 } 5884 5885 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5886 static int lru_gen_seq_show(struct seq_file *m, void *v) 5887 { 5888 unsigned long seq; 5889 bool full = !debugfs_real_fops(m->file)->write; 5890 struct lruvec *lruvec = v; 5891 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5892 int nid = lruvec_pgdat(lruvec)->node_id; 5893 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5894 DEFINE_MAX_SEQ(lruvec); 5895 DEFINE_MIN_SEQ(lruvec); 5896 5897 if (nid == first_memory_node) { 5898 const char *path = memcg ? m->private : ""; 5899 5900 #ifdef CONFIG_MEMCG 5901 if (memcg) 5902 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5903 #endif 5904 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5905 } 5906 5907 seq_printf(m, " node %5d\n", nid); 5908 5909 if (!full) 5910 seq = min_seq[LRU_GEN_ANON]; 5911 else if (max_seq >= MAX_NR_GENS) 5912 seq = max_seq - MAX_NR_GENS + 1; 5913 else 5914 seq = 0; 5915 5916 for (; seq <= max_seq; seq++) { 5917 int type, zone; 5918 int gen = lru_gen_from_seq(seq); 5919 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5920 5921 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5922 5923 for (type = 0; type < ANON_AND_FILE; type++) { 5924 unsigned long size = 0; 5925 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5926 5927 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5928 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5929 5930 seq_printf(m, " %10lu%c", size, mark); 5931 } 5932 5933 seq_putc(m, '\n'); 5934 5935 if (full) 5936 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5937 } 5938 5939 return 0; 5940 } 5941 5942 static const struct seq_operations lru_gen_seq_ops = { 5943 .start = lru_gen_seq_start, 5944 .stop = lru_gen_seq_stop, 5945 .next = lru_gen_seq_next, 5946 .show = lru_gen_seq_show, 5947 }; 5948 5949 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5950 bool can_swap, bool force_scan) 5951 { 5952 DEFINE_MAX_SEQ(lruvec); 5953 DEFINE_MIN_SEQ(lruvec); 5954 5955 if (seq < max_seq) 5956 return 0; 5957 5958 if (seq > max_seq) 5959 return -EINVAL; 5960 5961 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5962 return -ERANGE; 5963 5964 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5965 5966 return 0; 5967 } 5968 5969 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5970 int swappiness, unsigned long nr_to_reclaim) 5971 { 5972 DEFINE_MAX_SEQ(lruvec); 5973 5974 if (seq + MIN_NR_GENS > max_seq) 5975 return -EINVAL; 5976 5977 sc->nr_reclaimed = 0; 5978 5979 while (!signal_pending(current)) { 5980 DEFINE_MIN_SEQ(lruvec); 5981 5982 if (seq < min_seq[!swappiness]) 5983 return 0; 5984 5985 if (sc->nr_reclaimed >= nr_to_reclaim) 5986 return 0; 5987 5988 if (!evict_folios(lruvec, sc, swappiness)) 5989 return 0; 5990 5991 cond_resched(); 5992 } 5993 5994 return -EINTR; 5995 } 5996 5997 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5998 struct scan_control *sc, int swappiness, unsigned long opt) 5999 { 6000 struct lruvec *lruvec; 6001 int err = -EINVAL; 6002 struct mem_cgroup *memcg = NULL; 6003 6004 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 6005 return -EINVAL; 6006 6007 if (!mem_cgroup_disabled()) { 6008 rcu_read_lock(); 6009 6010 memcg = mem_cgroup_from_id(memcg_id); 6011 if (!mem_cgroup_tryget(memcg)) 6012 memcg = NULL; 6013 6014 rcu_read_unlock(); 6015 6016 if (!memcg) 6017 return -EINVAL; 6018 } 6019 6020 if (memcg_id != mem_cgroup_id(memcg)) 6021 goto done; 6022 6023 lruvec = get_lruvec(memcg, nid); 6024 6025 if (swappiness < 0) 6026 swappiness = get_swappiness(lruvec, sc); 6027 else if (swappiness > 200) 6028 goto done; 6029 6030 switch (cmd) { 6031 case '+': 6032 err = run_aging(lruvec, seq, sc, swappiness, opt); 6033 break; 6034 case '-': 6035 err = run_eviction(lruvec, seq, sc, swappiness, opt); 6036 break; 6037 } 6038 done: 6039 mem_cgroup_put(memcg); 6040 6041 return err; 6042 } 6043 6044 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 6045 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 6046 size_t len, loff_t *pos) 6047 { 6048 void *buf; 6049 char *cur, *next; 6050 unsigned int flags; 6051 struct blk_plug plug; 6052 int err = -EINVAL; 6053 struct scan_control sc = { 6054 .may_writepage = true, 6055 .may_unmap = true, 6056 .may_swap = true, 6057 .reclaim_idx = MAX_NR_ZONES - 1, 6058 .gfp_mask = GFP_KERNEL, 6059 }; 6060 6061 buf = kvmalloc(len + 1, GFP_KERNEL); 6062 if (!buf) 6063 return -ENOMEM; 6064 6065 if (copy_from_user(buf, src, len)) { 6066 kvfree(buf); 6067 return -EFAULT; 6068 } 6069 6070 set_task_reclaim_state(current, &sc.reclaim_state); 6071 flags = memalloc_noreclaim_save(); 6072 blk_start_plug(&plug); 6073 if (!set_mm_walk(NULL, true)) { 6074 err = -ENOMEM; 6075 goto done; 6076 } 6077 6078 next = buf; 6079 next[len] = '\0'; 6080 6081 while ((cur = strsep(&next, ",;\n"))) { 6082 int n; 6083 int end; 6084 char cmd; 6085 unsigned int memcg_id; 6086 unsigned int nid; 6087 unsigned long seq; 6088 unsigned int swappiness = -1; 6089 unsigned long opt = -1; 6090 6091 cur = skip_spaces(cur); 6092 if (!*cur) 6093 continue; 6094 6095 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 6096 &seq, &end, &swappiness, &end, &opt, &end); 6097 if (n < 4 || cur[end]) { 6098 err = -EINVAL; 6099 break; 6100 } 6101 6102 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 6103 if (err) 6104 break; 6105 } 6106 done: 6107 clear_mm_walk(); 6108 blk_finish_plug(&plug); 6109 memalloc_noreclaim_restore(flags); 6110 set_task_reclaim_state(current, NULL); 6111 6112 kvfree(buf); 6113 6114 return err ? : len; 6115 } 6116 6117 static int lru_gen_seq_open(struct inode *inode, struct file *file) 6118 { 6119 return seq_open(file, &lru_gen_seq_ops); 6120 } 6121 6122 static const struct file_operations lru_gen_rw_fops = { 6123 .open = lru_gen_seq_open, 6124 .read = seq_read, 6125 .write = lru_gen_seq_write, 6126 .llseek = seq_lseek, 6127 .release = seq_release, 6128 }; 6129 6130 static const struct file_operations lru_gen_ro_fops = { 6131 .open = lru_gen_seq_open, 6132 .read = seq_read, 6133 .llseek = seq_lseek, 6134 .release = seq_release, 6135 }; 6136 6137 /****************************************************************************** 6138 * initialization 6139 ******************************************************************************/ 6140 6141 void lru_gen_init_lruvec(struct lruvec *lruvec) 6142 { 6143 int i; 6144 int gen, type, zone; 6145 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6146 6147 lrugen->max_seq = MIN_NR_GENS + 1; 6148 lrugen->enabled = lru_gen_enabled(); 6149 6150 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6151 lrugen->timestamps[i] = jiffies; 6152 6153 for_each_gen_type_zone(gen, type, zone) 6154 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6155 6156 lruvec->mm_state.seq = MIN_NR_GENS; 6157 } 6158 6159 #ifdef CONFIG_MEMCG 6160 6161 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6162 { 6163 int i, j; 6164 6165 spin_lock_init(&pgdat->memcg_lru.lock); 6166 6167 for (i = 0; i < MEMCG_NR_GENS; i++) { 6168 for (j = 0; j < MEMCG_NR_BINS; j++) 6169 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6170 } 6171 } 6172 6173 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6174 { 6175 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6176 spin_lock_init(&memcg->mm_list.lock); 6177 } 6178 6179 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6180 { 6181 int i; 6182 int nid; 6183 6184 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 6185 6186 for_each_node(nid) { 6187 struct lruvec *lruvec = get_lruvec(memcg, nid); 6188 6189 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6190 sizeof(lruvec->lrugen.nr_pages))); 6191 6192 lruvec->lrugen.list.next = LIST_POISON1; 6193 6194 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6195 bitmap_free(lruvec->mm_state.filters[i]); 6196 lruvec->mm_state.filters[i] = NULL; 6197 } 6198 } 6199 } 6200 6201 #endif /* CONFIG_MEMCG */ 6202 6203 static int __init init_lru_gen(void) 6204 { 6205 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6206 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6207 6208 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6209 pr_err("lru_gen: failed to create sysfs group\n"); 6210 6211 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6212 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6213 6214 return 0; 6215 }; 6216 late_initcall(init_lru_gen); 6217 6218 #else /* !CONFIG_LRU_GEN */ 6219 6220 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6221 { 6222 } 6223 6224 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6225 { 6226 } 6227 6228 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6229 { 6230 } 6231 6232 #endif /* CONFIG_LRU_GEN */ 6233 6234 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6235 { 6236 unsigned long nr[NR_LRU_LISTS]; 6237 unsigned long targets[NR_LRU_LISTS]; 6238 unsigned long nr_to_scan; 6239 enum lru_list lru; 6240 unsigned long nr_reclaimed = 0; 6241 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6242 bool proportional_reclaim; 6243 struct blk_plug plug; 6244 6245 if (lru_gen_enabled() && !global_reclaim(sc)) { 6246 lru_gen_shrink_lruvec(lruvec, sc); 6247 return; 6248 } 6249 6250 get_scan_count(lruvec, sc, nr); 6251 6252 /* Record the original scan target for proportional adjustments later */ 6253 memcpy(targets, nr, sizeof(nr)); 6254 6255 /* 6256 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6257 * event that can occur when there is little memory pressure e.g. 6258 * multiple streaming readers/writers. Hence, we do not abort scanning 6259 * when the requested number of pages are reclaimed when scanning at 6260 * DEF_PRIORITY on the assumption that the fact we are direct 6261 * reclaiming implies that kswapd is not keeping up and it is best to 6262 * do a batch of work at once. For memcg reclaim one check is made to 6263 * abort proportional reclaim if either the file or anon lru has already 6264 * dropped to zero at the first pass. 6265 */ 6266 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6267 sc->priority == DEF_PRIORITY); 6268 6269 blk_start_plug(&plug); 6270 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6271 nr[LRU_INACTIVE_FILE]) { 6272 unsigned long nr_anon, nr_file, percentage; 6273 unsigned long nr_scanned; 6274 6275 for_each_evictable_lru(lru) { 6276 if (nr[lru]) { 6277 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6278 nr[lru] -= nr_to_scan; 6279 6280 nr_reclaimed += shrink_list(lru, nr_to_scan, 6281 lruvec, sc); 6282 } 6283 } 6284 6285 cond_resched(); 6286 6287 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6288 continue; 6289 6290 /* 6291 * For kswapd and memcg, reclaim at least the number of pages 6292 * requested. Ensure that the anon and file LRUs are scanned 6293 * proportionally what was requested by get_scan_count(). We 6294 * stop reclaiming one LRU and reduce the amount scanning 6295 * proportional to the original scan target. 6296 */ 6297 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6298 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6299 6300 /* 6301 * It's just vindictive to attack the larger once the smaller 6302 * has gone to zero. And given the way we stop scanning the 6303 * smaller below, this makes sure that we only make one nudge 6304 * towards proportionality once we've got nr_to_reclaim. 6305 */ 6306 if (!nr_file || !nr_anon) 6307 break; 6308 6309 if (nr_file > nr_anon) { 6310 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6311 targets[LRU_ACTIVE_ANON] + 1; 6312 lru = LRU_BASE; 6313 percentage = nr_anon * 100 / scan_target; 6314 } else { 6315 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6316 targets[LRU_ACTIVE_FILE] + 1; 6317 lru = LRU_FILE; 6318 percentage = nr_file * 100 / scan_target; 6319 } 6320 6321 /* Stop scanning the smaller of the LRU */ 6322 nr[lru] = 0; 6323 nr[lru + LRU_ACTIVE] = 0; 6324 6325 /* 6326 * Recalculate the other LRU scan count based on its original 6327 * scan target and the percentage scanning already complete 6328 */ 6329 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6330 nr_scanned = targets[lru] - nr[lru]; 6331 nr[lru] = targets[lru] * (100 - percentage) / 100; 6332 nr[lru] -= min(nr[lru], nr_scanned); 6333 6334 lru += LRU_ACTIVE; 6335 nr_scanned = targets[lru] - nr[lru]; 6336 nr[lru] = targets[lru] * (100 - percentage) / 100; 6337 nr[lru] -= min(nr[lru], nr_scanned); 6338 } 6339 blk_finish_plug(&plug); 6340 sc->nr_reclaimed += nr_reclaimed; 6341 6342 /* 6343 * Even if we did not try to evict anon pages at all, we want to 6344 * rebalance the anon lru active/inactive ratio. 6345 */ 6346 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6347 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6348 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6349 sc, LRU_ACTIVE_ANON); 6350 } 6351 6352 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6353 static bool in_reclaim_compaction(struct scan_control *sc) 6354 { 6355 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6356 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6357 sc->priority < DEF_PRIORITY - 2)) 6358 return true; 6359 6360 return false; 6361 } 6362 6363 /* 6364 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6365 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6366 * true if more pages should be reclaimed such that when the page allocator 6367 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6368 * It will give up earlier than that if there is difficulty reclaiming pages. 6369 */ 6370 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6371 unsigned long nr_reclaimed, 6372 struct scan_control *sc) 6373 { 6374 unsigned long pages_for_compaction; 6375 unsigned long inactive_lru_pages; 6376 int z; 6377 6378 /* If not in reclaim/compaction mode, stop */ 6379 if (!in_reclaim_compaction(sc)) 6380 return false; 6381 6382 /* 6383 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6384 * number of pages that were scanned. This will return to the caller 6385 * with the risk reclaim/compaction and the resulting allocation attempt 6386 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6387 * allocations through requiring that the full LRU list has been scanned 6388 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6389 * scan, but that approximation was wrong, and there were corner cases 6390 * where always a non-zero amount of pages were scanned. 6391 */ 6392 if (!nr_reclaimed) 6393 return false; 6394 6395 /* If compaction would go ahead or the allocation would succeed, stop */ 6396 for (z = 0; z <= sc->reclaim_idx; z++) { 6397 struct zone *zone = &pgdat->node_zones[z]; 6398 if (!managed_zone(zone)) 6399 continue; 6400 6401 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6402 case COMPACT_SUCCESS: 6403 case COMPACT_CONTINUE: 6404 return false; 6405 default: 6406 /* check next zone */ 6407 ; 6408 } 6409 } 6410 6411 /* 6412 * If we have not reclaimed enough pages for compaction and the 6413 * inactive lists are large enough, continue reclaiming 6414 */ 6415 pages_for_compaction = compact_gap(sc->order); 6416 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6417 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6418 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6419 6420 return inactive_lru_pages > pages_for_compaction; 6421 } 6422 6423 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6424 { 6425 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6426 struct mem_cgroup *memcg; 6427 6428 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6429 do { 6430 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6431 unsigned long reclaimed; 6432 unsigned long scanned; 6433 6434 /* 6435 * This loop can become CPU-bound when target memcgs 6436 * aren't eligible for reclaim - either because they 6437 * don't have any reclaimable pages, or because their 6438 * memory is explicitly protected. Avoid soft lockups. 6439 */ 6440 cond_resched(); 6441 6442 mem_cgroup_calculate_protection(target_memcg, memcg); 6443 6444 if (mem_cgroup_below_min(target_memcg, memcg)) { 6445 /* 6446 * Hard protection. 6447 * If there is no reclaimable memory, OOM. 6448 */ 6449 continue; 6450 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6451 /* 6452 * Soft protection. 6453 * Respect the protection only as long as 6454 * there is an unprotected supply 6455 * of reclaimable memory from other cgroups. 6456 */ 6457 if (!sc->memcg_low_reclaim) { 6458 sc->memcg_low_skipped = 1; 6459 continue; 6460 } 6461 memcg_memory_event(memcg, MEMCG_LOW); 6462 } 6463 6464 reclaimed = sc->nr_reclaimed; 6465 scanned = sc->nr_scanned; 6466 6467 shrink_lruvec(lruvec, sc); 6468 6469 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6470 sc->priority); 6471 6472 /* Record the group's reclaim efficiency */ 6473 if (!sc->proactive) 6474 vmpressure(sc->gfp_mask, memcg, false, 6475 sc->nr_scanned - scanned, 6476 sc->nr_reclaimed - reclaimed); 6477 6478 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6479 } 6480 6481 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6482 { 6483 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6484 struct lruvec *target_lruvec; 6485 bool reclaimable = false; 6486 6487 if (lru_gen_enabled() && global_reclaim(sc)) { 6488 lru_gen_shrink_node(pgdat, sc); 6489 return; 6490 } 6491 6492 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6493 6494 again: 6495 memset(&sc->nr, 0, sizeof(sc->nr)); 6496 6497 nr_reclaimed = sc->nr_reclaimed; 6498 nr_scanned = sc->nr_scanned; 6499 6500 prepare_scan_count(pgdat, sc); 6501 6502 shrink_node_memcgs(pgdat, sc); 6503 6504 flush_reclaim_state(sc); 6505 6506 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6507 6508 /* Record the subtree's reclaim efficiency */ 6509 if (!sc->proactive) 6510 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6511 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6512 6513 if (nr_node_reclaimed) 6514 reclaimable = true; 6515 6516 if (current_is_kswapd()) { 6517 /* 6518 * If reclaim is isolating dirty pages under writeback, 6519 * it implies that the long-lived page allocation rate 6520 * is exceeding the page laundering rate. Either the 6521 * global limits are not being effective at throttling 6522 * processes due to the page distribution throughout 6523 * zones or there is heavy usage of a slow backing 6524 * device. The only option is to throttle from reclaim 6525 * context which is not ideal as there is no guarantee 6526 * the dirtying process is throttled in the same way 6527 * balance_dirty_pages() manages. 6528 * 6529 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6530 * count the number of pages under pages flagged for 6531 * immediate reclaim and stall if any are encountered 6532 * in the nr_immediate check below. 6533 */ 6534 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6535 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6536 6537 /* Allow kswapd to start writing pages during reclaim.*/ 6538 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6539 set_bit(PGDAT_DIRTY, &pgdat->flags); 6540 6541 /* 6542 * If kswapd scans pages marked for immediate 6543 * reclaim and under writeback (nr_immediate), it 6544 * implies that pages are cycling through the LRU 6545 * faster than they are written so forcibly stall 6546 * until some pages complete writeback. 6547 */ 6548 if (sc->nr.immediate) 6549 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6550 } 6551 6552 /* 6553 * Tag a node/memcg as congested if all the dirty pages were marked 6554 * for writeback and immediate reclaim (counted in nr.congested). 6555 * 6556 * Legacy memcg will stall in page writeback so avoid forcibly 6557 * stalling in reclaim_throttle(). 6558 */ 6559 if ((current_is_kswapd() || 6560 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6561 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6562 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6563 6564 /* 6565 * Stall direct reclaim for IO completions if the lruvec is 6566 * node is congested. Allow kswapd to continue until it 6567 * starts encountering unqueued dirty pages or cycling through 6568 * the LRU too quickly. 6569 */ 6570 if (!current_is_kswapd() && current_may_throttle() && 6571 !sc->hibernation_mode && 6572 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6573 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6574 6575 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6576 goto again; 6577 6578 /* 6579 * Kswapd gives up on balancing particular nodes after too 6580 * many failures to reclaim anything from them and goes to 6581 * sleep. On reclaim progress, reset the failure counter. A 6582 * successful direct reclaim run will revive a dormant kswapd. 6583 */ 6584 if (reclaimable) 6585 pgdat->kswapd_failures = 0; 6586 } 6587 6588 /* 6589 * Returns true if compaction should go ahead for a costly-order request, or 6590 * the allocation would already succeed without compaction. Return false if we 6591 * should reclaim first. 6592 */ 6593 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6594 { 6595 unsigned long watermark; 6596 enum compact_result suitable; 6597 6598 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6599 if (suitable == COMPACT_SUCCESS) 6600 /* Allocation should succeed already. Don't reclaim. */ 6601 return true; 6602 if (suitable == COMPACT_SKIPPED) 6603 /* Compaction cannot yet proceed. Do reclaim. */ 6604 return false; 6605 6606 /* 6607 * Compaction is already possible, but it takes time to run and there 6608 * are potentially other callers using the pages just freed. So proceed 6609 * with reclaim to make a buffer of free pages available to give 6610 * compaction a reasonable chance of completing and allocating the page. 6611 * Note that we won't actually reclaim the whole buffer in one attempt 6612 * as the target watermark in should_continue_reclaim() is lower. But if 6613 * we are already above the high+gap watermark, don't reclaim at all. 6614 */ 6615 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6616 6617 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6618 } 6619 6620 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6621 { 6622 /* 6623 * If reclaim is making progress greater than 12% efficiency then 6624 * wake all the NOPROGRESS throttled tasks. 6625 */ 6626 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6627 wait_queue_head_t *wqh; 6628 6629 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6630 if (waitqueue_active(wqh)) 6631 wake_up(wqh); 6632 6633 return; 6634 } 6635 6636 /* 6637 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6638 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6639 * under writeback and marked for immediate reclaim at the tail of the 6640 * LRU. 6641 */ 6642 if (current_is_kswapd() || cgroup_reclaim(sc)) 6643 return; 6644 6645 /* Throttle if making no progress at high prioities. */ 6646 if (sc->priority == 1 && !sc->nr_reclaimed) 6647 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6648 } 6649 6650 /* 6651 * This is the direct reclaim path, for page-allocating processes. We only 6652 * try to reclaim pages from zones which will satisfy the caller's allocation 6653 * request. 6654 * 6655 * If a zone is deemed to be full of pinned pages then just give it a light 6656 * scan then give up on it. 6657 */ 6658 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6659 { 6660 struct zoneref *z; 6661 struct zone *zone; 6662 unsigned long nr_soft_reclaimed; 6663 unsigned long nr_soft_scanned; 6664 gfp_t orig_mask; 6665 pg_data_t *last_pgdat = NULL; 6666 pg_data_t *first_pgdat = NULL; 6667 6668 /* 6669 * If the number of buffer_heads in the machine exceeds the maximum 6670 * allowed level, force direct reclaim to scan the highmem zone as 6671 * highmem pages could be pinning lowmem pages storing buffer_heads 6672 */ 6673 orig_mask = sc->gfp_mask; 6674 if (buffer_heads_over_limit) { 6675 sc->gfp_mask |= __GFP_HIGHMEM; 6676 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6677 } 6678 6679 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6680 sc->reclaim_idx, sc->nodemask) { 6681 /* 6682 * Take care memory controller reclaiming has small influence 6683 * to global LRU. 6684 */ 6685 if (!cgroup_reclaim(sc)) { 6686 if (!cpuset_zone_allowed(zone, 6687 GFP_KERNEL | __GFP_HARDWALL)) 6688 continue; 6689 6690 /* 6691 * If we already have plenty of memory free for 6692 * compaction in this zone, don't free any more. 6693 * Even though compaction is invoked for any 6694 * non-zero order, only frequent costly order 6695 * reclamation is disruptive enough to become a 6696 * noticeable problem, like transparent huge 6697 * page allocations. 6698 */ 6699 if (IS_ENABLED(CONFIG_COMPACTION) && 6700 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6701 compaction_ready(zone, sc)) { 6702 sc->compaction_ready = true; 6703 continue; 6704 } 6705 6706 /* 6707 * Shrink each node in the zonelist once. If the 6708 * zonelist is ordered by zone (not the default) then a 6709 * node may be shrunk multiple times but in that case 6710 * the user prefers lower zones being preserved. 6711 */ 6712 if (zone->zone_pgdat == last_pgdat) 6713 continue; 6714 6715 /* 6716 * This steals pages from memory cgroups over softlimit 6717 * and returns the number of reclaimed pages and 6718 * scanned pages. This works for global memory pressure 6719 * and balancing, not for a memcg's limit. 6720 */ 6721 nr_soft_scanned = 0; 6722 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6723 sc->order, sc->gfp_mask, 6724 &nr_soft_scanned); 6725 sc->nr_reclaimed += nr_soft_reclaimed; 6726 sc->nr_scanned += nr_soft_scanned; 6727 /* need some check for avoid more shrink_zone() */ 6728 } 6729 6730 if (!first_pgdat) 6731 first_pgdat = zone->zone_pgdat; 6732 6733 /* See comment about same check for global reclaim above */ 6734 if (zone->zone_pgdat == last_pgdat) 6735 continue; 6736 last_pgdat = zone->zone_pgdat; 6737 shrink_node(zone->zone_pgdat, sc); 6738 } 6739 6740 if (first_pgdat) 6741 consider_reclaim_throttle(first_pgdat, sc); 6742 6743 /* 6744 * Restore to original mask to avoid the impact on the caller if we 6745 * promoted it to __GFP_HIGHMEM. 6746 */ 6747 sc->gfp_mask = orig_mask; 6748 } 6749 6750 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6751 { 6752 struct lruvec *target_lruvec; 6753 unsigned long refaults; 6754 6755 if (lru_gen_enabled()) 6756 return; 6757 6758 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6759 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6760 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6761 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6762 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6763 } 6764 6765 /* 6766 * This is the main entry point to direct page reclaim. 6767 * 6768 * If a full scan of the inactive list fails to free enough memory then we 6769 * are "out of memory" and something needs to be killed. 6770 * 6771 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6772 * high - the zone may be full of dirty or under-writeback pages, which this 6773 * caller can't do much about. We kick the writeback threads and take explicit 6774 * naps in the hope that some of these pages can be written. But if the 6775 * allocating task holds filesystem locks which prevent writeout this might not 6776 * work, and the allocation attempt will fail. 6777 * 6778 * returns: 0, if no pages reclaimed 6779 * else, the number of pages reclaimed 6780 */ 6781 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6782 struct scan_control *sc) 6783 { 6784 int initial_priority = sc->priority; 6785 pg_data_t *last_pgdat; 6786 struct zoneref *z; 6787 struct zone *zone; 6788 retry: 6789 delayacct_freepages_start(); 6790 6791 if (!cgroup_reclaim(sc)) 6792 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6793 6794 do { 6795 if (!sc->proactive) 6796 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6797 sc->priority); 6798 sc->nr_scanned = 0; 6799 shrink_zones(zonelist, sc); 6800 6801 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6802 break; 6803 6804 if (sc->compaction_ready) 6805 break; 6806 6807 /* 6808 * If we're getting trouble reclaiming, start doing 6809 * writepage even in laptop mode. 6810 */ 6811 if (sc->priority < DEF_PRIORITY - 2) 6812 sc->may_writepage = 1; 6813 } while (--sc->priority >= 0); 6814 6815 last_pgdat = NULL; 6816 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6817 sc->nodemask) { 6818 if (zone->zone_pgdat == last_pgdat) 6819 continue; 6820 last_pgdat = zone->zone_pgdat; 6821 6822 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6823 6824 if (cgroup_reclaim(sc)) { 6825 struct lruvec *lruvec; 6826 6827 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6828 zone->zone_pgdat); 6829 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6830 } 6831 } 6832 6833 delayacct_freepages_end(); 6834 6835 if (sc->nr_reclaimed) 6836 return sc->nr_reclaimed; 6837 6838 /* Aborted reclaim to try compaction? don't OOM, then */ 6839 if (sc->compaction_ready) 6840 return 1; 6841 6842 /* 6843 * We make inactive:active ratio decisions based on the node's 6844 * composition of memory, but a restrictive reclaim_idx or a 6845 * memory.low cgroup setting can exempt large amounts of 6846 * memory from reclaim. Neither of which are very common, so 6847 * instead of doing costly eligibility calculations of the 6848 * entire cgroup subtree up front, we assume the estimates are 6849 * good, and retry with forcible deactivation if that fails. 6850 */ 6851 if (sc->skipped_deactivate) { 6852 sc->priority = initial_priority; 6853 sc->force_deactivate = 1; 6854 sc->skipped_deactivate = 0; 6855 goto retry; 6856 } 6857 6858 /* Untapped cgroup reserves? Don't OOM, retry. */ 6859 if (sc->memcg_low_skipped) { 6860 sc->priority = initial_priority; 6861 sc->force_deactivate = 0; 6862 sc->memcg_low_reclaim = 1; 6863 sc->memcg_low_skipped = 0; 6864 goto retry; 6865 } 6866 6867 return 0; 6868 } 6869 6870 static bool allow_direct_reclaim(pg_data_t *pgdat) 6871 { 6872 struct zone *zone; 6873 unsigned long pfmemalloc_reserve = 0; 6874 unsigned long free_pages = 0; 6875 int i; 6876 bool wmark_ok; 6877 6878 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6879 return true; 6880 6881 for (i = 0; i <= ZONE_NORMAL; i++) { 6882 zone = &pgdat->node_zones[i]; 6883 if (!managed_zone(zone)) 6884 continue; 6885 6886 if (!zone_reclaimable_pages(zone)) 6887 continue; 6888 6889 pfmemalloc_reserve += min_wmark_pages(zone); 6890 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6891 } 6892 6893 /* If there are no reserves (unexpected config) then do not throttle */ 6894 if (!pfmemalloc_reserve) 6895 return true; 6896 6897 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6898 6899 /* kswapd must be awake if processes are being throttled */ 6900 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6901 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6902 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6903 6904 wake_up_interruptible(&pgdat->kswapd_wait); 6905 } 6906 6907 return wmark_ok; 6908 } 6909 6910 /* 6911 * Throttle direct reclaimers if backing storage is backed by the network 6912 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6913 * depleted. kswapd will continue to make progress and wake the processes 6914 * when the low watermark is reached. 6915 * 6916 * Returns true if a fatal signal was delivered during throttling. If this 6917 * happens, the page allocator should not consider triggering the OOM killer. 6918 */ 6919 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6920 nodemask_t *nodemask) 6921 { 6922 struct zoneref *z; 6923 struct zone *zone; 6924 pg_data_t *pgdat = NULL; 6925 6926 /* 6927 * Kernel threads should not be throttled as they may be indirectly 6928 * responsible for cleaning pages necessary for reclaim to make forward 6929 * progress. kjournald for example may enter direct reclaim while 6930 * committing a transaction where throttling it could forcing other 6931 * processes to block on log_wait_commit(). 6932 */ 6933 if (current->flags & PF_KTHREAD) 6934 goto out; 6935 6936 /* 6937 * If a fatal signal is pending, this process should not throttle. 6938 * It should return quickly so it can exit and free its memory 6939 */ 6940 if (fatal_signal_pending(current)) 6941 goto out; 6942 6943 /* 6944 * Check if the pfmemalloc reserves are ok by finding the first node 6945 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6946 * GFP_KERNEL will be required for allocating network buffers when 6947 * swapping over the network so ZONE_HIGHMEM is unusable. 6948 * 6949 * Throttling is based on the first usable node and throttled processes 6950 * wait on a queue until kswapd makes progress and wakes them. There 6951 * is an affinity then between processes waking up and where reclaim 6952 * progress has been made assuming the process wakes on the same node. 6953 * More importantly, processes running on remote nodes will not compete 6954 * for remote pfmemalloc reserves and processes on different nodes 6955 * should make reasonable progress. 6956 */ 6957 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6958 gfp_zone(gfp_mask), nodemask) { 6959 if (zone_idx(zone) > ZONE_NORMAL) 6960 continue; 6961 6962 /* Throttle based on the first usable node */ 6963 pgdat = zone->zone_pgdat; 6964 if (allow_direct_reclaim(pgdat)) 6965 goto out; 6966 break; 6967 } 6968 6969 /* If no zone was usable by the allocation flags then do not throttle */ 6970 if (!pgdat) 6971 goto out; 6972 6973 /* Account for the throttling */ 6974 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6975 6976 /* 6977 * If the caller cannot enter the filesystem, it's possible that it 6978 * is due to the caller holding an FS lock or performing a journal 6979 * transaction in the case of a filesystem like ext[3|4]. In this case, 6980 * it is not safe to block on pfmemalloc_wait as kswapd could be 6981 * blocked waiting on the same lock. Instead, throttle for up to a 6982 * second before continuing. 6983 */ 6984 if (!(gfp_mask & __GFP_FS)) 6985 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6986 allow_direct_reclaim(pgdat), HZ); 6987 else 6988 /* Throttle until kswapd wakes the process */ 6989 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6990 allow_direct_reclaim(pgdat)); 6991 6992 if (fatal_signal_pending(current)) 6993 return true; 6994 6995 out: 6996 return false; 6997 } 6998 6999 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 7000 gfp_t gfp_mask, nodemask_t *nodemask) 7001 { 7002 unsigned long nr_reclaimed; 7003 struct scan_control sc = { 7004 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7005 .gfp_mask = current_gfp_context(gfp_mask), 7006 .reclaim_idx = gfp_zone(gfp_mask), 7007 .order = order, 7008 .nodemask = nodemask, 7009 .priority = DEF_PRIORITY, 7010 .may_writepage = !laptop_mode, 7011 .may_unmap = 1, 7012 .may_swap = 1, 7013 }; 7014 7015 /* 7016 * scan_control uses s8 fields for order, priority, and reclaim_idx. 7017 * Confirm they are large enough for max values. 7018 */ 7019 BUILD_BUG_ON(MAX_ORDER >= S8_MAX); 7020 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 7021 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 7022 7023 /* 7024 * Do not enter reclaim if fatal signal was delivered while throttled. 7025 * 1 is returned so that the page allocator does not OOM kill at this 7026 * point. 7027 */ 7028 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 7029 return 1; 7030 7031 set_task_reclaim_state(current, &sc.reclaim_state); 7032 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 7033 7034 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7035 7036 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 7037 set_task_reclaim_state(current, NULL); 7038 7039 return nr_reclaimed; 7040 } 7041 7042 #ifdef CONFIG_MEMCG 7043 7044 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 7045 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 7046 gfp_t gfp_mask, bool noswap, 7047 pg_data_t *pgdat, 7048 unsigned long *nr_scanned) 7049 { 7050 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 7051 struct scan_control sc = { 7052 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7053 .target_mem_cgroup = memcg, 7054 .may_writepage = !laptop_mode, 7055 .may_unmap = 1, 7056 .reclaim_idx = MAX_NR_ZONES - 1, 7057 .may_swap = !noswap, 7058 }; 7059 7060 WARN_ON_ONCE(!current->reclaim_state); 7061 7062 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 7063 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 7064 7065 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7066 sc.gfp_mask); 7067 7068 /* 7069 * NOTE: Although we can get the priority field, using it 7070 * here is not a good idea, since it limits the pages we can scan. 7071 * if we don't reclaim here, the shrink_node from balance_pgdat 7072 * will pick up pages from other mem cgroup's as well. We hack 7073 * the priority and make it zero. 7074 */ 7075 shrink_lruvec(lruvec, &sc); 7076 7077 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7078 7079 *nr_scanned = sc.nr_scanned; 7080 7081 return sc.nr_reclaimed; 7082 } 7083 7084 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7085 unsigned long nr_pages, 7086 gfp_t gfp_mask, 7087 unsigned int reclaim_options) 7088 { 7089 unsigned long nr_reclaimed; 7090 unsigned int noreclaim_flag; 7091 struct scan_control sc = { 7092 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7093 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7094 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7095 .reclaim_idx = MAX_NR_ZONES - 1, 7096 .target_mem_cgroup = memcg, 7097 .priority = DEF_PRIORITY, 7098 .may_writepage = !laptop_mode, 7099 .may_unmap = 1, 7100 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7101 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7102 }; 7103 /* 7104 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7105 * equal pressure on all the nodes. This is based on the assumption that 7106 * the reclaim does not bail out early. 7107 */ 7108 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7109 7110 set_task_reclaim_state(current, &sc.reclaim_state); 7111 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7112 noreclaim_flag = memalloc_noreclaim_save(); 7113 7114 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7115 7116 memalloc_noreclaim_restore(noreclaim_flag); 7117 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7118 set_task_reclaim_state(current, NULL); 7119 7120 return nr_reclaimed; 7121 } 7122 #endif 7123 7124 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7125 { 7126 struct mem_cgroup *memcg; 7127 struct lruvec *lruvec; 7128 7129 if (lru_gen_enabled()) { 7130 lru_gen_age_node(pgdat, sc); 7131 return; 7132 } 7133 7134 if (!can_age_anon_pages(pgdat, sc)) 7135 return; 7136 7137 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7138 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7139 return; 7140 7141 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7142 do { 7143 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7144 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7145 sc, LRU_ACTIVE_ANON); 7146 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7147 } while (memcg); 7148 } 7149 7150 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7151 { 7152 int i; 7153 struct zone *zone; 7154 7155 /* 7156 * Check for watermark boosts top-down as the higher zones 7157 * are more likely to be boosted. Both watermarks and boosts 7158 * should not be checked at the same time as reclaim would 7159 * start prematurely when there is no boosting and a lower 7160 * zone is balanced. 7161 */ 7162 for (i = highest_zoneidx; i >= 0; i--) { 7163 zone = pgdat->node_zones + i; 7164 if (!managed_zone(zone)) 7165 continue; 7166 7167 if (zone->watermark_boost) 7168 return true; 7169 } 7170 7171 return false; 7172 } 7173 7174 /* 7175 * Returns true if there is an eligible zone balanced for the request order 7176 * and highest_zoneidx 7177 */ 7178 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7179 { 7180 int i; 7181 unsigned long mark = -1; 7182 struct zone *zone; 7183 7184 /* 7185 * Check watermarks bottom-up as lower zones are more likely to 7186 * meet watermarks. 7187 */ 7188 for (i = 0; i <= highest_zoneidx; i++) { 7189 zone = pgdat->node_zones + i; 7190 7191 if (!managed_zone(zone)) 7192 continue; 7193 7194 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7195 mark = wmark_pages(zone, WMARK_PROMO); 7196 else 7197 mark = high_wmark_pages(zone); 7198 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7199 return true; 7200 } 7201 7202 /* 7203 * If a node has no managed zone within highest_zoneidx, it does not 7204 * need balancing by definition. This can happen if a zone-restricted 7205 * allocation tries to wake a remote kswapd. 7206 */ 7207 if (mark == -1) 7208 return true; 7209 7210 return false; 7211 } 7212 7213 /* Clear pgdat state for congested, dirty or under writeback. */ 7214 static void clear_pgdat_congested(pg_data_t *pgdat) 7215 { 7216 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7217 7218 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 7219 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7220 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7221 } 7222 7223 /* 7224 * Prepare kswapd for sleeping. This verifies that there are no processes 7225 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7226 * 7227 * Returns true if kswapd is ready to sleep 7228 */ 7229 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7230 int highest_zoneidx) 7231 { 7232 /* 7233 * The throttled processes are normally woken up in balance_pgdat() as 7234 * soon as allow_direct_reclaim() is true. But there is a potential 7235 * race between when kswapd checks the watermarks and a process gets 7236 * throttled. There is also a potential race if processes get 7237 * throttled, kswapd wakes, a large process exits thereby balancing the 7238 * zones, which causes kswapd to exit balance_pgdat() before reaching 7239 * the wake up checks. If kswapd is going to sleep, no process should 7240 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7241 * the wake up is premature, processes will wake kswapd and get 7242 * throttled again. The difference from wake ups in balance_pgdat() is 7243 * that here we are under prepare_to_wait(). 7244 */ 7245 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7246 wake_up_all(&pgdat->pfmemalloc_wait); 7247 7248 /* Hopeless node, leave it to direct reclaim */ 7249 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7250 return true; 7251 7252 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7253 clear_pgdat_congested(pgdat); 7254 return true; 7255 } 7256 7257 return false; 7258 } 7259 7260 /* 7261 * kswapd shrinks a node of pages that are at or below the highest usable 7262 * zone that is currently unbalanced. 7263 * 7264 * Returns true if kswapd scanned at least the requested number of pages to 7265 * reclaim or if the lack of progress was due to pages under writeback. 7266 * This is used to determine if the scanning priority needs to be raised. 7267 */ 7268 static bool kswapd_shrink_node(pg_data_t *pgdat, 7269 struct scan_control *sc) 7270 { 7271 struct zone *zone; 7272 int z; 7273 7274 /* Reclaim a number of pages proportional to the number of zones */ 7275 sc->nr_to_reclaim = 0; 7276 for (z = 0; z <= sc->reclaim_idx; z++) { 7277 zone = pgdat->node_zones + z; 7278 if (!managed_zone(zone)) 7279 continue; 7280 7281 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7282 } 7283 7284 /* 7285 * Historically care was taken to put equal pressure on all zones but 7286 * now pressure is applied based on node LRU order. 7287 */ 7288 shrink_node(pgdat, sc); 7289 7290 /* 7291 * Fragmentation may mean that the system cannot be rebalanced for 7292 * high-order allocations. If twice the allocation size has been 7293 * reclaimed then recheck watermarks only at order-0 to prevent 7294 * excessive reclaim. Assume that a process requested a high-order 7295 * can direct reclaim/compact. 7296 */ 7297 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7298 sc->order = 0; 7299 7300 return sc->nr_scanned >= sc->nr_to_reclaim; 7301 } 7302 7303 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7304 static inline void 7305 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7306 { 7307 int i; 7308 struct zone *zone; 7309 7310 for (i = 0; i <= highest_zoneidx; i++) { 7311 zone = pgdat->node_zones + i; 7312 7313 if (!managed_zone(zone)) 7314 continue; 7315 7316 if (active) 7317 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7318 else 7319 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7320 } 7321 } 7322 7323 static inline void 7324 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7325 { 7326 update_reclaim_active(pgdat, highest_zoneidx, true); 7327 } 7328 7329 static inline void 7330 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7331 { 7332 update_reclaim_active(pgdat, highest_zoneidx, false); 7333 } 7334 7335 /* 7336 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7337 * that are eligible for use by the caller until at least one zone is 7338 * balanced. 7339 * 7340 * Returns the order kswapd finished reclaiming at. 7341 * 7342 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7343 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7344 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7345 * or lower is eligible for reclaim until at least one usable zone is 7346 * balanced. 7347 */ 7348 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7349 { 7350 int i; 7351 unsigned long nr_soft_reclaimed; 7352 unsigned long nr_soft_scanned; 7353 unsigned long pflags; 7354 unsigned long nr_boost_reclaim; 7355 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7356 bool boosted; 7357 struct zone *zone; 7358 struct scan_control sc = { 7359 .gfp_mask = GFP_KERNEL, 7360 .order = order, 7361 .may_unmap = 1, 7362 }; 7363 7364 set_task_reclaim_state(current, &sc.reclaim_state); 7365 psi_memstall_enter(&pflags); 7366 __fs_reclaim_acquire(_THIS_IP_); 7367 7368 count_vm_event(PAGEOUTRUN); 7369 7370 /* 7371 * Account for the reclaim boost. Note that the zone boost is left in 7372 * place so that parallel allocations that are near the watermark will 7373 * stall or direct reclaim until kswapd is finished. 7374 */ 7375 nr_boost_reclaim = 0; 7376 for (i = 0; i <= highest_zoneidx; i++) { 7377 zone = pgdat->node_zones + i; 7378 if (!managed_zone(zone)) 7379 continue; 7380 7381 nr_boost_reclaim += zone->watermark_boost; 7382 zone_boosts[i] = zone->watermark_boost; 7383 } 7384 boosted = nr_boost_reclaim; 7385 7386 restart: 7387 set_reclaim_active(pgdat, highest_zoneidx); 7388 sc.priority = DEF_PRIORITY; 7389 do { 7390 unsigned long nr_reclaimed = sc.nr_reclaimed; 7391 bool raise_priority = true; 7392 bool balanced; 7393 bool ret; 7394 7395 sc.reclaim_idx = highest_zoneidx; 7396 7397 /* 7398 * If the number of buffer_heads exceeds the maximum allowed 7399 * then consider reclaiming from all zones. This has a dual 7400 * purpose -- on 64-bit systems it is expected that 7401 * buffer_heads are stripped during active rotation. On 32-bit 7402 * systems, highmem pages can pin lowmem memory and shrinking 7403 * buffers can relieve lowmem pressure. Reclaim may still not 7404 * go ahead if all eligible zones for the original allocation 7405 * request are balanced to avoid excessive reclaim from kswapd. 7406 */ 7407 if (buffer_heads_over_limit) { 7408 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7409 zone = pgdat->node_zones + i; 7410 if (!managed_zone(zone)) 7411 continue; 7412 7413 sc.reclaim_idx = i; 7414 break; 7415 } 7416 } 7417 7418 /* 7419 * If the pgdat is imbalanced then ignore boosting and preserve 7420 * the watermarks for a later time and restart. Note that the 7421 * zone watermarks will be still reset at the end of balancing 7422 * on the grounds that the normal reclaim should be enough to 7423 * re-evaluate if boosting is required when kswapd next wakes. 7424 */ 7425 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7426 if (!balanced && nr_boost_reclaim) { 7427 nr_boost_reclaim = 0; 7428 goto restart; 7429 } 7430 7431 /* 7432 * If boosting is not active then only reclaim if there are no 7433 * eligible zones. Note that sc.reclaim_idx is not used as 7434 * buffer_heads_over_limit may have adjusted it. 7435 */ 7436 if (!nr_boost_reclaim && balanced) 7437 goto out; 7438 7439 /* Limit the priority of boosting to avoid reclaim writeback */ 7440 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7441 raise_priority = false; 7442 7443 /* 7444 * Do not writeback or swap pages for boosted reclaim. The 7445 * intent is to relieve pressure not issue sub-optimal IO 7446 * from reclaim context. If no pages are reclaimed, the 7447 * reclaim will be aborted. 7448 */ 7449 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7450 sc.may_swap = !nr_boost_reclaim; 7451 7452 /* 7453 * Do some background aging, to give pages a chance to be 7454 * referenced before reclaiming. All pages are rotated 7455 * regardless of classzone as this is about consistent aging. 7456 */ 7457 kswapd_age_node(pgdat, &sc); 7458 7459 /* 7460 * If we're getting trouble reclaiming, start doing writepage 7461 * even in laptop mode. 7462 */ 7463 if (sc.priority < DEF_PRIORITY - 2) 7464 sc.may_writepage = 1; 7465 7466 /* Call soft limit reclaim before calling shrink_node. */ 7467 sc.nr_scanned = 0; 7468 nr_soft_scanned = 0; 7469 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7470 sc.gfp_mask, &nr_soft_scanned); 7471 sc.nr_reclaimed += nr_soft_reclaimed; 7472 7473 /* 7474 * There should be no need to raise the scanning priority if 7475 * enough pages are already being scanned that that high 7476 * watermark would be met at 100% efficiency. 7477 */ 7478 if (kswapd_shrink_node(pgdat, &sc)) 7479 raise_priority = false; 7480 7481 /* 7482 * If the low watermark is met there is no need for processes 7483 * to be throttled on pfmemalloc_wait as they should not be 7484 * able to safely make forward progress. Wake them 7485 */ 7486 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7487 allow_direct_reclaim(pgdat)) 7488 wake_up_all(&pgdat->pfmemalloc_wait); 7489 7490 /* Check if kswapd should be suspending */ 7491 __fs_reclaim_release(_THIS_IP_); 7492 ret = try_to_freeze(); 7493 __fs_reclaim_acquire(_THIS_IP_); 7494 if (ret || kthread_should_stop()) 7495 break; 7496 7497 /* 7498 * Raise priority if scanning rate is too low or there was no 7499 * progress in reclaiming pages 7500 */ 7501 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7502 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7503 7504 /* 7505 * If reclaim made no progress for a boost, stop reclaim as 7506 * IO cannot be queued and it could be an infinite loop in 7507 * extreme circumstances. 7508 */ 7509 if (nr_boost_reclaim && !nr_reclaimed) 7510 break; 7511 7512 if (raise_priority || !nr_reclaimed) 7513 sc.priority--; 7514 } while (sc.priority >= 1); 7515 7516 if (!sc.nr_reclaimed) 7517 pgdat->kswapd_failures++; 7518 7519 out: 7520 clear_reclaim_active(pgdat, highest_zoneidx); 7521 7522 /* If reclaim was boosted, account for the reclaim done in this pass */ 7523 if (boosted) { 7524 unsigned long flags; 7525 7526 for (i = 0; i <= highest_zoneidx; i++) { 7527 if (!zone_boosts[i]) 7528 continue; 7529 7530 /* Increments are under the zone lock */ 7531 zone = pgdat->node_zones + i; 7532 spin_lock_irqsave(&zone->lock, flags); 7533 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7534 spin_unlock_irqrestore(&zone->lock, flags); 7535 } 7536 7537 /* 7538 * As there is now likely space, wakeup kcompact to defragment 7539 * pageblocks. 7540 */ 7541 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7542 } 7543 7544 snapshot_refaults(NULL, pgdat); 7545 __fs_reclaim_release(_THIS_IP_); 7546 psi_memstall_leave(&pflags); 7547 set_task_reclaim_state(current, NULL); 7548 7549 /* 7550 * Return the order kswapd stopped reclaiming at as 7551 * prepare_kswapd_sleep() takes it into account. If another caller 7552 * entered the allocator slow path while kswapd was awake, order will 7553 * remain at the higher level. 7554 */ 7555 return sc.order; 7556 } 7557 7558 /* 7559 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7560 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7561 * not a valid index then either kswapd runs for first time or kswapd couldn't 7562 * sleep after previous reclaim attempt (node is still unbalanced). In that 7563 * case return the zone index of the previous kswapd reclaim cycle. 7564 */ 7565 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7566 enum zone_type prev_highest_zoneidx) 7567 { 7568 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7569 7570 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7571 } 7572 7573 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7574 unsigned int highest_zoneidx) 7575 { 7576 long remaining = 0; 7577 DEFINE_WAIT(wait); 7578 7579 if (freezing(current) || kthread_should_stop()) 7580 return; 7581 7582 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7583 7584 /* 7585 * Try to sleep for a short interval. Note that kcompactd will only be 7586 * woken if it is possible to sleep for a short interval. This is 7587 * deliberate on the assumption that if reclaim cannot keep an 7588 * eligible zone balanced that it's also unlikely that compaction will 7589 * succeed. 7590 */ 7591 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7592 /* 7593 * Compaction records what page blocks it recently failed to 7594 * isolate pages from and skips them in the future scanning. 7595 * When kswapd is going to sleep, it is reasonable to assume 7596 * that pages and compaction may succeed so reset the cache. 7597 */ 7598 reset_isolation_suitable(pgdat); 7599 7600 /* 7601 * We have freed the memory, now we should compact it to make 7602 * allocation of the requested order possible. 7603 */ 7604 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7605 7606 remaining = schedule_timeout(HZ/10); 7607 7608 /* 7609 * If woken prematurely then reset kswapd_highest_zoneidx and 7610 * order. The values will either be from a wakeup request or 7611 * the previous request that slept prematurely. 7612 */ 7613 if (remaining) { 7614 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7615 kswapd_highest_zoneidx(pgdat, 7616 highest_zoneidx)); 7617 7618 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7619 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7620 } 7621 7622 finish_wait(&pgdat->kswapd_wait, &wait); 7623 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7624 } 7625 7626 /* 7627 * After a short sleep, check if it was a premature sleep. If not, then 7628 * go fully to sleep until explicitly woken up. 7629 */ 7630 if (!remaining && 7631 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7632 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7633 7634 /* 7635 * vmstat counters are not perfectly accurate and the estimated 7636 * value for counters such as NR_FREE_PAGES can deviate from the 7637 * true value by nr_online_cpus * threshold. To avoid the zone 7638 * watermarks being breached while under pressure, we reduce the 7639 * per-cpu vmstat threshold while kswapd is awake and restore 7640 * them before going back to sleep. 7641 */ 7642 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7643 7644 if (!kthread_should_stop()) 7645 schedule(); 7646 7647 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7648 } else { 7649 if (remaining) 7650 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7651 else 7652 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7653 } 7654 finish_wait(&pgdat->kswapd_wait, &wait); 7655 } 7656 7657 /* 7658 * The background pageout daemon, started as a kernel thread 7659 * from the init process. 7660 * 7661 * This basically trickles out pages so that we have _some_ 7662 * free memory available even if there is no other activity 7663 * that frees anything up. This is needed for things like routing 7664 * etc, where we otherwise might have all activity going on in 7665 * asynchronous contexts that cannot page things out. 7666 * 7667 * If there are applications that are active memory-allocators 7668 * (most normal use), this basically shouldn't matter. 7669 */ 7670 static int kswapd(void *p) 7671 { 7672 unsigned int alloc_order, reclaim_order; 7673 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7674 pg_data_t *pgdat = (pg_data_t *)p; 7675 struct task_struct *tsk = current; 7676 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7677 7678 if (!cpumask_empty(cpumask)) 7679 set_cpus_allowed_ptr(tsk, cpumask); 7680 7681 /* 7682 * Tell the memory management that we're a "memory allocator", 7683 * and that if we need more memory we should get access to it 7684 * regardless (see "__alloc_pages()"). "kswapd" should 7685 * never get caught in the normal page freeing logic. 7686 * 7687 * (Kswapd normally doesn't need memory anyway, but sometimes 7688 * you need a small amount of memory in order to be able to 7689 * page out something else, and this flag essentially protects 7690 * us from recursively trying to free more memory as we're 7691 * trying to free the first piece of memory in the first place). 7692 */ 7693 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7694 set_freezable(); 7695 7696 WRITE_ONCE(pgdat->kswapd_order, 0); 7697 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7698 atomic_set(&pgdat->nr_writeback_throttled, 0); 7699 for ( ; ; ) { 7700 bool ret; 7701 7702 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7703 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7704 highest_zoneidx); 7705 7706 kswapd_try_sleep: 7707 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7708 highest_zoneidx); 7709 7710 /* Read the new order and highest_zoneidx */ 7711 alloc_order = READ_ONCE(pgdat->kswapd_order); 7712 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7713 highest_zoneidx); 7714 WRITE_ONCE(pgdat->kswapd_order, 0); 7715 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7716 7717 ret = try_to_freeze(); 7718 if (kthread_should_stop()) 7719 break; 7720 7721 /* 7722 * We can speed up thawing tasks if we don't call balance_pgdat 7723 * after returning from the refrigerator 7724 */ 7725 if (ret) 7726 continue; 7727 7728 /* 7729 * Reclaim begins at the requested order but if a high-order 7730 * reclaim fails then kswapd falls back to reclaiming for 7731 * order-0. If that happens, kswapd will consider sleeping 7732 * for the order it finished reclaiming at (reclaim_order) 7733 * but kcompactd is woken to compact for the original 7734 * request (alloc_order). 7735 */ 7736 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7737 alloc_order); 7738 reclaim_order = balance_pgdat(pgdat, alloc_order, 7739 highest_zoneidx); 7740 if (reclaim_order < alloc_order) 7741 goto kswapd_try_sleep; 7742 } 7743 7744 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7745 7746 return 0; 7747 } 7748 7749 /* 7750 * A zone is low on free memory or too fragmented for high-order memory. If 7751 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7752 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7753 * has failed or is not needed, still wake up kcompactd if only compaction is 7754 * needed. 7755 */ 7756 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7757 enum zone_type highest_zoneidx) 7758 { 7759 pg_data_t *pgdat; 7760 enum zone_type curr_idx; 7761 7762 if (!managed_zone(zone)) 7763 return; 7764 7765 if (!cpuset_zone_allowed(zone, gfp_flags)) 7766 return; 7767 7768 pgdat = zone->zone_pgdat; 7769 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7770 7771 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7772 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7773 7774 if (READ_ONCE(pgdat->kswapd_order) < order) 7775 WRITE_ONCE(pgdat->kswapd_order, order); 7776 7777 if (!waitqueue_active(&pgdat->kswapd_wait)) 7778 return; 7779 7780 /* Hopeless node, leave it to direct reclaim if possible */ 7781 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7782 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7783 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7784 /* 7785 * There may be plenty of free memory available, but it's too 7786 * fragmented for high-order allocations. Wake up kcompactd 7787 * and rely on compaction_suitable() to determine if it's 7788 * needed. If it fails, it will defer subsequent attempts to 7789 * ratelimit its work. 7790 */ 7791 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7792 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7793 return; 7794 } 7795 7796 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7797 gfp_flags); 7798 wake_up_interruptible(&pgdat->kswapd_wait); 7799 } 7800 7801 #ifdef CONFIG_HIBERNATION 7802 /* 7803 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7804 * freed pages. 7805 * 7806 * Rather than trying to age LRUs the aim is to preserve the overall 7807 * LRU order by reclaiming preferentially 7808 * inactive > active > active referenced > active mapped 7809 */ 7810 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7811 { 7812 struct scan_control sc = { 7813 .nr_to_reclaim = nr_to_reclaim, 7814 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7815 .reclaim_idx = MAX_NR_ZONES - 1, 7816 .priority = DEF_PRIORITY, 7817 .may_writepage = 1, 7818 .may_unmap = 1, 7819 .may_swap = 1, 7820 .hibernation_mode = 1, 7821 }; 7822 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7823 unsigned long nr_reclaimed; 7824 unsigned int noreclaim_flag; 7825 7826 fs_reclaim_acquire(sc.gfp_mask); 7827 noreclaim_flag = memalloc_noreclaim_save(); 7828 set_task_reclaim_state(current, &sc.reclaim_state); 7829 7830 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7831 7832 set_task_reclaim_state(current, NULL); 7833 memalloc_noreclaim_restore(noreclaim_flag); 7834 fs_reclaim_release(sc.gfp_mask); 7835 7836 return nr_reclaimed; 7837 } 7838 #endif /* CONFIG_HIBERNATION */ 7839 7840 /* 7841 * This kswapd start function will be called by init and node-hot-add. 7842 */ 7843 void kswapd_run(int nid) 7844 { 7845 pg_data_t *pgdat = NODE_DATA(nid); 7846 7847 pgdat_kswapd_lock(pgdat); 7848 if (!pgdat->kswapd) { 7849 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7850 if (IS_ERR(pgdat->kswapd)) { 7851 /* failure at boot is fatal */ 7852 BUG_ON(system_state < SYSTEM_RUNNING); 7853 pr_err("Failed to start kswapd on node %d\n", nid); 7854 pgdat->kswapd = NULL; 7855 } 7856 } 7857 pgdat_kswapd_unlock(pgdat); 7858 } 7859 7860 /* 7861 * Called by memory hotplug when all memory in a node is offlined. Caller must 7862 * be holding mem_hotplug_begin/done(). 7863 */ 7864 void kswapd_stop(int nid) 7865 { 7866 pg_data_t *pgdat = NODE_DATA(nid); 7867 struct task_struct *kswapd; 7868 7869 pgdat_kswapd_lock(pgdat); 7870 kswapd = pgdat->kswapd; 7871 if (kswapd) { 7872 kthread_stop(kswapd); 7873 pgdat->kswapd = NULL; 7874 } 7875 pgdat_kswapd_unlock(pgdat); 7876 } 7877 7878 static int __init kswapd_init(void) 7879 { 7880 int nid; 7881 7882 swap_setup(); 7883 for_each_node_state(nid, N_MEMORY) 7884 kswapd_run(nid); 7885 return 0; 7886 } 7887 7888 module_init(kswapd_init) 7889 7890 #ifdef CONFIG_NUMA 7891 /* 7892 * Node reclaim mode 7893 * 7894 * If non-zero call node_reclaim when the number of free pages falls below 7895 * the watermarks. 7896 */ 7897 int node_reclaim_mode __read_mostly; 7898 7899 /* 7900 * Priority for NODE_RECLAIM. This determines the fraction of pages 7901 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7902 * a zone. 7903 */ 7904 #define NODE_RECLAIM_PRIORITY 4 7905 7906 /* 7907 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7908 * occur. 7909 */ 7910 int sysctl_min_unmapped_ratio = 1; 7911 7912 /* 7913 * If the number of slab pages in a zone grows beyond this percentage then 7914 * slab reclaim needs to occur. 7915 */ 7916 int sysctl_min_slab_ratio = 5; 7917 7918 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7919 { 7920 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7921 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7922 node_page_state(pgdat, NR_ACTIVE_FILE); 7923 7924 /* 7925 * It's possible for there to be more file mapped pages than 7926 * accounted for by the pages on the file LRU lists because 7927 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7928 */ 7929 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7930 } 7931 7932 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7933 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7934 { 7935 unsigned long nr_pagecache_reclaimable; 7936 unsigned long delta = 0; 7937 7938 /* 7939 * If RECLAIM_UNMAP is set, then all file pages are considered 7940 * potentially reclaimable. Otherwise, we have to worry about 7941 * pages like swapcache and node_unmapped_file_pages() provides 7942 * a better estimate 7943 */ 7944 if (node_reclaim_mode & RECLAIM_UNMAP) 7945 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7946 else 7947 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7948 7949 /* If we can't clean pages, remove dirty pages from consideration */ 7950 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7951 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7952 7953 /* Watch for any possible underflows due to delta */ 7954 if (unlikely(delta > nr_pagecache_reclaimable)) 7955 delta = nr_pagecache_reclaimable; 7956 7957 return nr_pagecache_reclaimable - delta; 7958 } 7959 7960 /* 7961 * Try to free up some pages from this node through reclaim. 7962 */ 7963 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7964 { 7965 /* Minimum pages needed in order to stay on node */ 7966 const unsigned long nr_pages = 1 << order; 7967 struct task_struct *p = current; 7968 unsigned int noreclaim_flag; 7969 struct scan_control sc = { 7970 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7971 .gfp_mask = current_gfp_context(gfp_mask), 7972 .order = order, 7973 .priority = NODE_RECLAIM_PRIORITY, 7974 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7975 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7976 .may_swap = 1, 7977 .reclaim_idx = gfp_zone(gfp_mask), 7978 }; 7979 unsigned long pflags; 7980 7981 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7982 sc.gfp_mask); 7983 7984 cond_resched(); 7985 psi_memstall_enter(&pflags); 7986 fs_reclaim_acquire(sc.gfp_mask); 7987 /* 7988 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7989 */ 7990 noreclaim_flag = memalloc_noreclaim_save(); 7991 set_task_reclaim_state(p, &sc.reclaim_state); 7992 7993 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7994 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7995 /* 7996 * Free memory by calling shrink node with increasing 7997 * priorities until we have enough memory freed. 7998 */ 7999 do { 8000 shrink_node(pgdat, &sc); 8001 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 8002 } 8003 8004 set_task_reclaim_state(p, NULL); 8005 memalloc_noreclaim_restore(noreclaim_flag); 8006 fs_reclaim_release(sc.gfp_mask); 8007 psi_memstall_leave(&pflags); 8008 8009 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 8010 8011 return sc.nr_reclaimed >= nr_pages; 8012 } 8013 8014 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 8015 { 8016 int ret; 8017 8018 /* 8019 * Node reclaim reclaims unmapped file backed pages and 8020 * slab pages if we are over the defined limits. 8021 * 8022 * A small portion of unmapped file backed pages is needed for 8023 * file I/O otherwise pages read by file I/O will be immediately 8024 * thrown out if the node is overallocated. So we do not reclaim 8025 * if less than a specified percentage of the node is used by 8026 * unmapped file backed pages. 8027 */ 8028 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 8029 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 8030 pgdat->min_slab_pages) 8031 return NODE_RECLAIM_FULL; 8032 8033 /* 8034 * Do not scan if the allocation should not be delayed. 8035 */ 8036 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 8037 return NODE_RECLAIM_NOSCAN; 8038 8039 /* 8040 * Only run node reclaim on the local node or on nodes that do not 8041 * have associated processors. This will favor the local processor 8042 * over remote processors and spread off node memory allocations 8043 * as wide as possible. 8044 */ 8045 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 8046 return NODE_RECLAIM_NOSCAN; 8047 8048 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 8049 return NODE_RECLAIM_NOSCAN; 8050 8051 ret = __node_reclaim(pgdat, gfp_mask, order); 8052 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 8053 8054 if (!ret) 8055 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 8056 8057 return ret; 8058 } 8059 #endif 8060 8061 void check_move_unevictable_pages(struct pagevec *pvec) 8062 { 8063 struct folio_batch fbatch; 8064 unsigned i; 8065 8066 folio_batch_init(&fbatch); 8067 for (i = 0; i < pvec->nr; i++) { 8068 struct page *page = pvec->pages[i]; 8069 8070 if (PageTransTail(page)) 8071 continue; 8072 folio_batch_add(&fbatch, page_folio(page)); 8073 } 8074 check_move_unevictable_folios(&fbatch); 8075 } 8076 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 8077 8078 /** 8079 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8080 * lru list 8081 * @fbatch: Batch of lru folios to check. 8082 * 8083 * Checks folios for evictability, if an evictable folio is in the unevictable 8084 * lru list, moves it to the appropriate evictable lru list. This function 8085 * should be only used for lru folios. 8086 */ 8087 void check_move_unevictable_folios(struct folio_batch *fbatch) 8088 { 8089 struct lruvec *lruvec = NULL; 8090 int pgscanned = 0; 8091 int pgrescued = 0; 8092 int i; 8093 8094 for (i = 0; i < fbatch->nr; i++) { 8095 struct folio *folio = fbatch->folios[i]; 8096 int nr_pages = folio_nr_pages(folio); 8097 8098 pgscanned += nr_pages; 8099 8100 /* block memcg migration while the folio moves between lrus */ 8101 if (!folio_test_clear_lru(folio)) 8102 continue; 8103 8104 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8105 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8106 lruvec_del_folio(lruvec, folio); 8107 folio_clear_unevictable(folio); 8108 lruvec_add_folio(lruvec, folio); 8109 pgrescued += nr_pages; 8110 } 8111 folio_set_lru(folio); 8112 } 8113 8114 if (lruvec) { 8115 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8116 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8117 unlock_page_lruvec_irq(lruvec); 8118 } else if (pgscanned) { 8119 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8120 } 8121 } 8122 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8123