1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* 83 * Scan pressure balancing between anon and file LRUs 84 */ 85 unsigned long anon_cost; 86 unsigned long file_cost; 87 88 /* Can active pages be deactivated as part of reclaim? */ 89 #define DEACTIVATE_ANON 1 90 #define DEACTIVATE_FILE 2 91 unsigned int may_deactivate:2; 92 unsigned int force_deactivate:1; 93 unsigned int skipped_deactivate:1; 94 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 96 unsigned int may_writepage:1; 97 98 /* Can mapped pages be reclaimed? */ 99 unsigned int may_unmap:1; 100 101 /* Can pages be swapped as part of reclaim? */ 102 unsigned int may_swap:1; 103 104 /* 105 * Cgroups are not reclaimed below their configured memory.low, 106 * unless we threaten to OOM. If any cgroups are skipped due to 107 * memory.low and nothing was reclaimed, go back for memory.low. 108 */ 109 unsigned int memcg_low_reclaim:1; 110 unsigned int memcg_low_skipped:1; 111 112 unsigned int hibernation_mode:1; 113 114 /* One of the zones is ready for compaction */ 115 unsigned int compaction_ready:1; 116 117 /* There is easily reclaimable cold cache in the current node */ 118 unsigned int cache_trim_mode:1; 119 120 /* The file pages on the current node are dangerously low */ 121 unsigned int file_is_tiny:1; 122 123 /* Allocation order */ 124 s8 order; 125 126 /* Scan (total_size >> priority) pages at once */ 127 s8 priority; 128 129 /* The highest zone to isolate pages for reclaim from */ 130 s8 reclaim_idx; 131 132 /* This context's GFP mask */ 133 gfp_t gfp_mask; 134 135 /* Incremented by the number of inactive pages that were scanned */ 136 unsigned long nr_scanned; 137 138 /* Number of pages freed so far during a call to shrink_zones() */ 139 unsigned long nr_reclaimed; 140 141 struct { 142 unsigned int dirty; 143 unsigned int unqueued_dirty; 144 unsigned int congested; 145 unsigned int writeback; 146 unsigned int immediate; 147 unsigned int file_taken; 148 unsigned int taken; 149 } nr; 150 151 /* for recording the reclaimed slab by now */ 152 struct reclaim_state reclaim_state; 153 }; 154 155 #ifdef ARCH_HAS_PREFETCHW 156 #define prefetchw_prev_lru_page(_page, _base, _field) \ 157 do { \ 158 if ((_page)->lru.prev != _base) { \ 159 struct page *prev; \ 160 \ 161 prev = lru_to_page(&(_page->lru)); \ 162 prefetchw(&prev->_field); \ 163 } \ 164 } while (0) 165 #else 166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 167 #endif 168 169 /* 170 * From 0 .. 200. Higher means more swappy. 171 */ 172 int vm_swappiness = 60; 173 /* 174 * The total number of pages which are beyond the high watermark within all 175 * zones. 176 */ 177 unsigned long vm_total_pages; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 /* 196 * We allow subsystems to populate their shrinker-related 197 * LRU lists before register_shrinker_prepared() is called 198 * for the shrinker, since we don't want to impose 199 * restrictions on their internal registration order. 200 * In this case shrink_slab_memcg() may find corresponding 201 * bit is set in the shrinkers map. 202 * 203 * This value is used by the function to detect registering 204 * shrinkers and to skip do_shrink_slab() calls for them. 205 */ 206 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 207 208 static DEFINE_IDR(shrinker_idr); 209 static int shrinker_nr_max; 210 211 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 212 { 213 int id, ret = -ENOMEM; 214 215 down_write(&shrinker_rwsem); 216 /* This may call shrinker, so it must use down_read_trylock() */ 217 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 218 if (id < 0) 219 goto unlock; 220 221 if (id >= shrinker_nr_max) { 222 if (memcg_expand_shrinker_maps(id)) { 223 idr_remove(&shrinker_idr, id); 224 goto unlock; 225 } 226 227 shrinker_nr_max = id + 1; 228 } 229 shrinker->id = id; 230 ret = 0; 231 unlock: 232 up_write(&shrinker_rwsem); 233 return ret; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 int id = shrinker->id; 239 240 BUG_ON(id < 0); 241 242 down_write(&shrinker_rwsem); 243 idr_remove(&shrinker_idr, id); 244 up_write(&shrinker_rwsem); 245 } 246 247 static bool cgroup_reclaim(struct scan_control *sc) 248 { 249 return sc->target_mem_cgroup; 250 } 251 252 /** 253 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 254 * @sc: scan_control in question 255 * 256 * The normal page dirty throttling mechanism in balance_dirty_pages() is 257 * completely broken with the legacy memcg and direct stalling in 258 * shrink_page_list() is used for throttling instead, which lacks all the 259 * niceties such as fairness, adaptive pausing, bandwidth proportional 260 * allocation and configurability. 261 * 262 * This function tests whether the vmscan currently in progress can assume 263 * that the normal dirty throttling mechanism is operational. 264 */ 265 static bool writeback_throttling_sane(struct scan_control *sc) 266 { 267 if (!cgroup_reclaim(sc)) 268 return true; 269 #ifdef CONFIG_CGROUP_WRITEBACK 270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 271 return true; 272 #endif 273 return false; 274 } 275 #else 276 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 277 { 278 return 0; 279 } 280 281 static void unregister_memcg_shrinker(struct shrinker *shrinker) 282 { 283 } 284 285 static bool cgroup_reclaim(struct scan_control *sc) 286 { 287 return false; 288 } 289 290 static bool writeback_throttling_sane(struct scan_control *sc) 291 { 292 return true; 293 } 294 #endif 295 296 /* 297 * This misses isolated pages which are not accounted for to save counters. 298 * As the data only determines if reclaim or compaction continues, it is 299 * not expected that isolated pages will be a dominating factor. 300 */ 301 unsigned long zone_reclaimable_pages(struct zone *zone) 302 { 303 unsigned long nr; 304 305 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 306 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 307 if (get_nr_swap_pages() > 0) 308 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 309 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 310 311 return nr; 312 } 313 314 /** 315 * lruvec_lru_size - Returns the number of pages on the given LRU list. 316 * @lruvec: lru vector 317 * @lru: lru to use 318 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 319 */ 320 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 321 { 322 unsigned long size = 0; 323 int zid; 324 325 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 326 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 327 328 if (!managed_zone(zone)) 329 continue; 330 331 if (!mem_cgroup_disabled()) 332 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 333 else 334 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 335 } 336 return size; 337 } 338 339 /* 340 * Add a shrinker callback to be called from the vm. 341 */ 342 int prealloc_shrinker(struct shrinker *shrinker) 343 { 344 unsigned int size = sizeof(*shrinker->nr_deferred); 345 346 if (shrinker->flags & SHRINKER_NUMA_AWARE) 347 size *= nr_node_ids; 348 349 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 350 if (!shrinker->nr_deferred) 351 return -ENOMEM; 352 353 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 354 if (prealloc_memcg_shrinker(shrinker)) 355 goto free_deferred; 356 } 357 358 return 0; 359 360 free_deferred: 361 kfree(shrinker->nr_deferred); 362 shrinker->nr_deferred = NULL; 363 return -ENOMEM; 364 } 365 366 void free_prealloced_shrinker(struct shrinker *shrinker) 367 { 368 if (!shrinker->nr_deferred) 369 return; 370 371 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 372 unregister_memcg_shrinker(shrinker); 373 374 kfree(shrinker->nr_deferred); 375 shrinker->nr_deferred = NULL; 376 } 377 378 void register_shrinker_prepared(struct shrinker *shrinker) 379 { 380 down_write(&shrinker_rwsem); 381 list_add_tail(&shrinker->list, &shrinker_list); 382 #ifdef CONFIG_MEMCG 383 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 384 idr_replace(&shrinker_idr, shrinker, shrinker->id); 385 #endif 386 up_write(&shrinker_rwsem); 387 } 388 389 int register_shrinker(struct shrinker *shrinker) 390 { 391 int err = prealloc_shrinker(shrinker); 392 393 if (err) 394 return err; 395 register_shrinker_prepared(shrinker); 396 return 0; 397 } 398 EXPORT_SYMBOL(register_shrinker); 399 400 /* 401 * Remove one 402 */ 403 void unregister_shrinker(struct shrinker *shrinker) 404 { 405 if (!shrinker->nr_deferred) 406 return; 407 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 408 unregister_memcg_shrinker(shrinker); 409 down_write(&shrinker_rwsem); 410 list_del(&shrinker->list); 411 up_write(&shrinker_rwsem); 412 kfree(shrinker->nr_deferred); 413 shrinker->nr_deferred = NULL; 414 } 415 EXPORT_SYMBOL(unregister_shrinker); 416 417 #define SHRINK_BATCH 128 418 419 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 420 struct shrinker *shrinker, int priority) 421 { 422 unsigned long freed = 0; 423 unsigned long long delta; 424 long total_scan; 425 long freeable; 426 long nr; 427 long new_nr; 428 int nid = shrinkctl->nid; 429 long batch_size = shrinker->batch ? shrinker->batch 430 : SHRINK_BATCH; 431 long scanned = 0, next_deferred; 432 433 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 434 nid = 0; 435 436 freeable = shrinker->count_objects(shrinker, shrinkctl); 437 if (freeable == 0 || freeable == SHRINK_EMPTY) 438 return freeable; 439 440 /* 441 * copy the current shrinker scan count into a local variable 442 * and zero it so that other concurrent shrinker invocations 443 * don't also do this scanning work. 444 */ 445 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 446 447 total_scan = nr; 448 if (shrinker->seeks) { 449 delta = freeable >> priority; 450 delta *= 4; 451 do_div(delta, shrinker->seeks); 452 } else { 453 /* 454 * These objects don't require any IO to create. Trim 455 * them aggressively under memory pressure to keep 456 * them from causing refetches in the IO caches. 457 */ 458 delta = freeable / 2; 459 } 460 461 total_scan += delta; 462 if (total_scan < 0) { 463 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 464 shrinker->scan_objects, total_scan); 465 total_scan = freeable; 466 next_deferred = nr; 467 } else 468 next_deferred = total_scan; 469 470 /* 471 * We need to avoid excessive windup on filesystem shrinkers 472 * due to large numbers of GFP_NOFS allocations causing the 473 * shrinkers to return -1 all the time. This results in a large 474 * nr being built up so when a shrink that can do some work 475 * comes along it empties the entire cache due to nr >>> 476 * freeable. This is bad for sustaining a working set in 477 * memory. 478 * 479 * Hence only allow the shrinker to scan the entire cache when 480 * a large delta change is calculated directly. 481 */ 482 if (delta < freeable / 4) 483 total_scan = min(total_scan, freeable / 2); 484 485 /* 486 * Avoid risking looping forever due to too large nr value: 487 * never try to free more than twice the estimate number of 488 * freeable entries. 489 */ 490 if (total_scan > freeable * 2) 491 total_scan = freeable * 2; 492 493 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 494 freeable, delta, total_scan, priority); 495 496 /* 497 * Normally, we should not scan less than batch_size objects in one 498 * pass to avoid too frequent shrinker calls, but if the slab has less 499 * than batch_size objects in total and we are really tight on memory, 500 * we will try to reclaim all available objects, otherwise we can end 501 * up failing allocations although there are plenty of reclaimable 502 * objects spread over several slabs with usage less than the 503 * batch_size. 504 * 505 * We detect the "tight on memory" situations by looking at the total 506 * number of objects we want to scan (total_scan). If it is greater 507 * than the total number of objects on slab (freeable), we must be 508 * scanning at high prio and therefore should try to reclaim as much as 509 * possible. 510 */ 511 while (total_scan >= batch_size || 512 total_scan >= freeable) { 513 unsigned long ret; 514 unsigned long nr_to_scan = min(batch_size, total_scan); 515 516 shrinkctl->nr_to_scan = nr_to_scan; 517 shrinkctl->nr_scanned = nr_to_scan; 518 ret = shrinker->scan_objects(shrinker, shrinkctl); 519 if (ret == SHRINK_STOP) 520 break; 521 freed += ret; 522 523 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 524 total_scan -= shrinkctl->nr_scanned; 525 scanned += shrinkctl->nr_scanned; 526 527 cond_resched(); 528 } 529 530 if (next_deferred >= scanned) 531 next_deferred -= scanned; 532 else 533 next_deferred = 0; 534 /* 535 * move the unused scan count back into the shrinker in a 536 * manner that handles concurrent updates. If we exhausted the 537 * scan, there is no need to do an update. 538 */ 539 if (next_deferred > 0) 540 new_nr = atomic_long_add_return(next_deferred, 541 &shrinker->nr_deferred[nid]); 542 else 543 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 544 545 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 546 return freed; 547 } 548 549 #ifdef CONFIG_MEMCG 550 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 551 struct mem_cgroup *memcg, int priority) 552 { 553 struct memcg_shrinker_map *map; 554 unsigned long ret, freed = 0; 555 int i; 556 557 if (!mem_cgroup_online(memcg)) 558 return 0; 559 560 if (!down_read_trylock(&shrinker_rwsem)) 561 return 0; 562 563 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 564 true); 565 if (unlikely(!map)) 566 goto unlock; 567 568 for_each_set_bit(i, map->map, shrinker_nr_max) { 569 struct shrink_control sc = { 570 .gfp_mask = gfp_mask, 571 .nid = nid, 572 .memcg = memcg, 573 }; 574 struct shrinker *shrinker; 575 576 shrinker = idr_find(&shrinker_idr, i); 577 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 578 if (!shrinker) 579 clear_bit(i, map->map); 580 continue; 581 } 582 583 /* Call non-slab shrinkers even though kmem is disabled */ 584 if (!memcg_kmem_enabled() && 585 !(shrinker->flags & SHRINKER_NONSLAB)) 586 continue; 587 588 ret = do_shrink_slab(&sc, shrinker, priority); 589 if (ret == SHRINK_EMPTY) { 590 clear_bit(i, map->map); 591 /* 592 * After the shrinker reported that it had no objects to 593 * free, but before we cleared the corresponding bit in 594 * the memcg shrinker map, a new object might have been 595 * added. To make sure, we have the bit set in this 596 * case, we invoke the shrinker one more time and reset 597 * the bit if it reports that it is not empty anymore. 598 * The memory barrier here pairs with the barrier in 599 * memcg_set_shrinker_bit(): 600 * 601 * list_lru_add() shrink_slab_memcg() 602 * list_add_tail() clear_bit() 603 * <MB> <MB> 604 * set_bit() do_shrink_slab() 605 */ 606 smp_mb__after_atomic(); 607 ret = do_shrink_slab(&sc, shrinker, priority); 608 if (ret == SHRINK_EMPTY) 609 ret = 0; 610 else 611 memcg_set_shrinker_bit(memcg, nid, i); 612 } 613 freed += ret; 614 615 if (rwsem_is_contended(&shrinker_rwsem)) { 616 freed = freed ? : 1; 617 break; 618 } 619 } 620 unlock: 621 up_read(&shrinker_rwsem); 622 return freed; 623 } 624 #else /* CONFIG_MEMCG */ 625 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 626 struct mem_cgroup *memcg, int priority) 627 { 628 return 0; 629 } 630 #endif /* CONFIG_MEMCG */ 631 632 /** 633 * shrink_slab - shrink slab caches 634 * @gfp_mask: allocation context 635 * @nid: node whose slab caches to target 636 * @memcg: memory cgroup whose slab caches to target 637 * @priority: the reclaim priority 638 * 639 * Call the shrink functions to age shrinkable caches. 640 * 641 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 642 * unaware shrinkers will receive a node id of 0 instead. 643 * 644 * @memcg specifies the memory cgroup to target. Unaware shrinkers 645 * are called only if it is the root cgroup. 646 * 647 * @priority is sc->priority, we take the number of objects and >> by priority 648 * in order to get the scan target. 649 * 650 * Returns the number of reclaimed slab objects. 651 */ 652 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 653 struct mem_cgroup *memcg, 654 int priority) 655 { 656 unsigned long ret, freed = 0; 657 struct shrinker *shrinker; 658 659 /* 660 * The root memcg might be allocated even though memcg is disabled 661 * via "cgroup_disable=memory" boot parameter. This could make 662 * mem_cgroup_is_root() return false, then just run memcg slab 663 * shrink, but skip global shrink. This may result in premature 664 * oom. 665 */ 666 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 667 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 668 669 if (!down_read_trylock(&shrinker_rwsem)) 670 goto out; 671 672 list_for_each_entry(shrinker, &shrinker_list, list) { 673 struct shrink_control sc = { 674 .gfp_mask = gfp_mask, 675 .nid = nid, 676 .memcg = memcg, 677 }; 678 679 ret = do_shrink_slab(&sc, shrinker, priority); 680 if (ret == SHRINK_EMPTY) 681 ret = 0; 682 freed += ret; 683 /* 684 * Bail out if someone want to register a new shrinker to 685 * prevent the registration from being stalled for long periods 686 * by parallel ongoing shrinking. 687 */ 688 if (rwsem_is_contended(&shrinker_rwsem)) { 689 freed = freed ? : 1; 690 break; 691 } 692 } 693 694 up_read(&shrinker_rwsem); 695 out: 696 cond_resched(); 697 return freed; 698 } 699 700 void drop_slab_node(int nid) 701 { 702 unsigned long freed; 703 704 do { 705 struct mem_cgroup *memcg = NULL; 706 707 freed = 0; 708 memcg = mem_cgroup_iter(NULL, NULL, NULL); 709 do { 710 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 711 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 712 } while (freed > 10); 713 } 714 715 void drop_slab(void) 716 { 717 int nid; 718 719 for_each_online_node(nid) 720 drop_slab_node(nid); 721 } 722 723 static inline int is_page_cache_freeable(struct page *page) 724 { 725 /* 726 * A freeable page cache page is referenced only by the caller 727 * that isolated the page, the page cache and optional buffer 728 * heads at page->private. 729 */ 730 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 731 HPAGE_PMD_NR : 1; 732 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 733 } 734 735 static int may_write_to_inode(struct inode *inode) 736 { 737 if (current->flags & PF_SWAPWRITE) 738 return 1; 739 if (!inode_write_congested(inode)) 740 return 1; 741 if (inode_to_bdi(inode) == current->backing_dev_info) 742 return 1; 743 return 0; 744 } 745 746 /* 747 * We detected a synchronous write error writing a page out. Probably 748 * -ENOSPC. We need to propagate that into the address_space for a subsequent 749 * fsync(), msync() or close(). 750 * 751 * The tricky part is that after writepage we cannot touch the mapping: nothing 752 * prevents it from being freed up. But we have a ref on the page and once 753 * that page is locked, the mapping is pinned. 754 * 755 * We're allowed to run sleeping lock_page() here because we know the caller has 756 * __GFP_FS. 757 */ 758 static void handle_write_error(struct address_space *mapping, 759 struct page *page, int error) 760 { 761 lock_page(page); 762 if (page_mapping(page) == mapping) 763 mapping_set_error(mapping, error); 764 unlock_page(page); 765 } 766 767 /* possible outcome of pageout() */ 768 typedef enum { 769 /* failed to write page out, page is locked */ 770 PAGE_KEEP, 771 /* move page to the active list, page is locked */ 772 PAGE_ACTIVATE, 773 /* page has been sent to the disk successfully, page is unlocked */ 774 PAGE_SUCCESS, 775 /* page is clean and locked */ 776 PAGE_CLEAN, 777 } pageout_t; 778 779 /* 780 * pageout is called by shrink_page_list() for each dirty page. 781 * Calls ->writepage(). 782 */ 783 static pageout_t pageout(struct page *page, struct address_space *mapping) 784 { 785 /* 786 * If the page is dirty, only perform writeback if that write 787 * will be non-blocking. To prevent this allocation from being 788 * stalled by pagecache activity. But note that there may be 789 * stalls if we need to run get_block(). We could test 790 * PagePrivate for that. 791 * 792 * If this process is currently in __generic_file_write_iter() against 793 * this page's queue, we can perform writeback even if that 794 * will block. 795 * 796 * If the page is swapcache, write it back even if that would 797 * block, for some throttling. This happens by accident, because 798 * swap_backing_dev_info is bust: it doesn't reflect the 799 * congestion state of the swapdevs. Easy to fix, if needed. 800 */ 801 if (!is_page_cache_freeable(page)) 802 return PAGE_KEEP; 803 if (!mapping) { 804 /* 805 * Some data journaling orphaned pages can have 806 * page->mapping == NULL while being dirty with clean buffers. 807 */ 808 if (page_has_private(page)) { 809 if (try_to_free_buffers(page)) { 810 ClearPageDirty(page); 811 pr_info("%s: orphaned page\n", __func__); 812 return PAGE_CLEAN; 813 } 814 } 815 return PAGE_KEEP; 816 } 817 if (mapping->a_ops->writepage == NULL) 818 return PAGE_ACTIVATE; 819 if (!may_write_to_inode(mapping->host)) 820 return PAGE_KEEP; 821 822 if (clear_page_dirty_for_io(page)) { 823 int res; 824 struct writeback_control wbc = { 825 .sync_mode = WB_SYNC_NONE, 826 .nr_to_write = SWAP_CLUSTER_MAX, 827 .range_start = 0, 828 .range_end = LLONG_MAX, 829 .for_reclaim = 1, 830 }; 831 832 SetPageReclaim(page); 833 res = mapping->a_ops->writepage(page, &wbc); 834 if (res < 0) 835 handle_write_error(mapping, page, res); 836 if (res == AOP_WRITEPAGE_ACTIVATE) { 837 ClearPageReclaim(page); 838 return PAGE_ACTIVATE; 839 } 840 841 if (!PageWriteback(page)) { 842 /* synchronous write or broken a_ops? */ 843 ClearPageReclaim(page); 844 } 845 trace_mm_vmscan_writepage(page); 846 inc_node_page_state(page, NR_VMSCAN_WRITE); 847 return PAGE_SUCCESS; 848 } 849 850 return PAGE_CLEAN; 851 } 852 853 /* 854 * Same as remove_mapping, but if the page is removed from the mapping, it 855 * gets returned with a refcount of 0. 856 */ 857 static int __remove_mapping(struct address_space *mapping, struct page *page, 858 bool reclaimed, struct mem_cgroup *target_memcg) 859 { 860 unsigned long flags; 861 int refcount; 862 863 BUG_ON(!PageLocked(page)); 864 BUG_ON(mapping != page_mapping(page)); 865 866 xa_lock_irqsave(&mapping->i_pages, flags); 867 /* 868 * The non racy check for a busy page. 869 * 870 * Must be careful with the order of the tests. When someone has 871 * a ref to the page, it may be possible that they dirty it then 872 * drop the reference. So if PageDirty is tested before page_count 873 * here, then the following race may occur: 874 * 875 * get_user_pages(&page); 876 * [user mapping goes away] 877 * write_to(page); 878 * !PageDirty(page) [good] 879 * SetPageDirty(page); 880 * put_page(page); 881 * !page_count(page) [good, discard it] 882 * 883 * [oops, our write_to data is lost] 884 * 885 * Reversing the order of the tests ensures such a situation cannot 886 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 887 * load is not satisfied before that of page->_refcount. 888 * 889 * Note that if SetPageDirty is always performed via set_page_dirty, 890 * and thus under the i_pages lock, then this ordering is not required. 891 */ 892 refcount = 1 + compound_nr(page); 893 if (!page_ref_freeze(page, refcount)) 894 goto cannot_free; 895 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 896 if (unlikely(PageDirty(page))) { 897 page_ref_unfreeze(page, refcount); 898 goto cannot_free; 899 } 900 901 if (PageSwapCache(page)) { 902 swp_entry_t swap = { .val = page_private(page) }; 903 mem_cgroup_swapout(page, swap); 904 __delete_from_swap_cache(page, swap); 905 xa_unlock_irqrestore(&mapping->i_pages, flags); 906 put_swap_page(page, swap); 907 } else { 908 void (*freepage)(struct page *); 909 void *shadow = NULL; 910 911 freepage = mapping->a_ops->freepage; 912 /* 913 * Remember a shadow entry for reclaimed file cache in 914 * order to detect refaults, thus thrashing, later on. 915 * 916 * But don't store shadows in an address space that is 917 * already exiting. This is not just an optizimation, 918 * inode reclaim needs to empty out the radix tree or 919 * the nodes are lost. Don't plant shadows behind its 920 * back. 921 * 922 * We also don't store shadows for DAX mappings because the 923 * only page cache pages found in these are zero pages 924 * covering holes, and because we don't want to mix DAX 925 * exceptional entries and shadow exceptional entries in the 926 * same address_space. 927 */ 928 if (reclaimed && page_is_file_lru(page) && 929 !mapping_exiting(mapping) && !dax_mapping(mapping)) 930 shadow = workingset_eviction(page, target_memcg); 931 __delete_from_page_cache(page, shadow); 932 xa_unlock_irqrestore(&mapping->i_pages, flags); 933 934 if (freepage != NULL) 935 freepage(page); 936 } 937 938 return 1; 939 940 cannot_free: 941 xa_unlock_irqrestore(&mapping->i_pages, flags); 942 return 0; 943 } 944 945 /* 946 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 947 * someone else has a ref on the page, abort and return 0. If it was 948 * successfully detached, return 1. Assumes the caller has a single ref on 949 * this page. 950 */ 951 int remove_mapping(struct address_space *mapping, struct page *page) 952 { 953 if (__remove_mapping(mapping, page, false, NULL)) { 954 /* 955 * Unfreezing the refcount with 1 rather than 2 effectively 956 * drops the pagecache ref for us without requiring another 957 * atomic operation. 958 */ 959 page_ref_unfreeze(page, 1); 960 return 1; 961 } 962 return 0; 963 } 964 965 /** 966 * putback_lru_page - put previously isolated page onto appropriate LRU list 967 * @page: page to be put back to appropriate lru list 968 * 969 * Add previously isolated @page to appropriate LRU list. 970 * Page may still be unevictable for other reasons. 971 * 972 * lru_lock must not be held, interrupts must be enabled. 973 */ 974 void putback_lru_page(struct page *page) 975 { 976 lru_cache_add(page); 977 put_page(page); /* drop ref from isolate */ 978 } 979 980 enum page_references { 981 PAGEREF_RECLAIM, 982 PAGEREF_RECLAIM_CLEAN, 983 PAGEREF_KEEP, 984 PAGEREF_ACTIVATE, 985 }; 986 987 static enum page_references page_check_references(struct page *page, 988 struct scan_control *sc) 989 { 990 int referenced_ptes, referenced_page; 991 unsigned long vm_flags; 992 993 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 994 &vm_flags); 995 referenced_page = TestClearPageReferenced(page); 996 997 /* 998 * Mlock lost the isolation race with us. Let try_to_unmap() 999 * move the page to the unevictable list. 1000 */ 1001 if (vm_flags & VM_LOCKED) 1002 return PAGEREF_RECLAIM; 1003 1004 if (referenced_ptes) { 1005 if (PageSwapBacked(page)) 1006 return PAGEREF_ACTIVATE; 1007 /* 1008 * All mapped pages start out with page table 1009 * references from the instantiating fault, so we need 1010 * to look twice if a mapped file page is used more 1011 * than once. 1012 * 1013 * Mark it and spare it for another trip around the 1014 * inactive list. Another page table reference will 1015 * lead to its activation. 1016 * 1017 * Note: the mark is set for activated pages as well 1018 * so that recently deactivated but used pages are 1019 * quickly recovered. 1020 */ 1021 SetPageReferenced(page); 1022 1023 if (referenced_page || referenced_ptes > 1) 1024 return PAGEREF_ACTIVATE; 1025 1026 /* 1027 * Activate file-backed executable pages after first usage. 1028 */ 1029 if (vm_flags & VM_EXEC) 1030 return PAGEREF_ACTIVATE; 1031 1032 return PAGEREF_KEEP; 1033 } 1034 1035 /* Reclaim if clean, defer dirty pages to writeback */ 1036 if (referenced_page && !PageSwapBacked(page)) 1037 return PAGEREF_RECLAIM_CLEAN; 1038 1039 return PAGEREF_RECLAIM; 1040 } 1041 1042 /* Check if a page is dirty or under writeback */ 1043 static void page_check_dirty_writeback(struct page *page, 1044 bool *dirty, bool *writeback) 1045 { 1046 struct address_space *mapping; 1047 1048 /* 1049 * Anonymous pages are not handled by flushers and must be written 1050 * from reclaim context. Do not stall reclaim based on them 1051 */ 1052 if (!page_is_file_lru(page) || 1053 (PageAnon(page) && !PageSwapBacked(page))) { 1054 *dirty = false; 1055 *writeback = false; 1056 return; 1057 } 1058 1059 /* By default assume that the page flags are accurate */ 1060 *dirty = PageDirty(page); 1061 *writeback = PageWriteback(page); 1062 1063 /* Verify dirty/writeback state if the filesystem supports it */ 1064 if (!page_has_private(page)) 1065 return; 1066 1067 mapping = page_mapping(page); 1068 if (mapping && mapping->a_ops->is_dirty_writeback) 1069 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1070 } 1071 1072 /* 1073 * shrink_page_list() returns the number of reclaimed pages 1074 */ 1075 static unsigned int shrink_page_list(struct list_head *page_list, 1076 struct pglist_data *pgdat, 1077 struct scan_control *sc, 1078 enum ttu_flags ttu_flags, 1079 struct reclaim_stat *stat, 1080 bool ignore_references) 1081 { 1082 LIST_HEAD(ret_pages); 1083 LIST_HEAD(free_pages); 1084 unsigned int nr_reclaimed = 0; 1085 unsigned int pgactivate = 0; 1086 1087 memset(stat, 0, sizeof(*stat)); 1088 cond_resched(); 1089 1090 while (!list_empty(page_list)) { 1091 struct address_space *mapping; 1092 struct page *page; 1093 enum page_references references = PAGEREF_RECLAIM; 1094 bool dirty, writeback, may_enter_fs; 1095 unsigned int nr_pages; 1096 1097 cond_resched(); 1098 1099 page = lru_to_page(page_list); 1100 list_del(&page->lru); 1101 1102 if (!trylock_page(page)) 1103 goto keep; 1104 1105 VM_BUG_ON_PAGE(PageActive(page), page); 1106 1107 nr_pages = compound_nr(page); 1108 1109 /* Account the number of base pages even though THP */ 1110 sc->nr_scanned += nr_pages; 1111 1112 if (unlikely(!page_evictable(page))) 1113 goto activate_locked; 1114 1115 if (!sc->may_unmap && page_mapped(page)) 1116 goto keep_locked; 1117 1118 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1119 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1120 1121 /* 1122 * The number of dirty pages determines if a node is marked 1123 * reclaim_congested which affects wait_iff_congested. kswapd 1124 * will stall and start writing pages if the tail of the LRU 1125 * is all dirty unqueued pages. 1126 */ 1127 page_check_dirty_writeback(page, &dirty, &writeback); 1128 if (dirty || writeback) 1129 stat->nr_dirty++; 1130 1131 if (dirty && !writeback) 1132 stat->nr_unqueued_dirty++; 1133 1134 /* 1135 * Treat this page as congested if the underlying BDI is or if 1136 * pages are cycling through the LRU so quickly that the 1137 * pages marked for immediate reclaim are making it to the 1138 * end of the LRU a second time. 1139 */ 1140 mapping = page_mapping(page); 1141 if (((dirty || writeback) && mapping && 1142 inode_write_congested(mapping->host)) || 1143 (writeback && PageReclaim(page))) 1144 stat->nr_congested++; 1145 1146 /* 1147 * If a page at the tail of the LRU is under writeback, there 1148 * are three cases to consider. 1149 * 1150 * 1) If reclaim is encountering an excessive number of pages 1151 * under writeback and this page is both under writeback and 1152 * PageReclaim then it indicates that pages are being queued 1153 * for IO but are being recycled through the LRU before the 1154 * IO can complete. Waiting on the page itself risks an 1155 * indefinite stall if it is impossible to writeback the 1156 * page due to IO error or disconnected storage so instead 1157 * note that the LRU is being scanned too quickly and the 1158 * caller can stall after page list has been processed. 1159 * 1160 * 2) Global or new memcg reclaim encounters a page that is 1161 * not marked for immediate reclaim, or the caller does not 1162 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1163 * not to fs). In this case mark the page for immediate 1164 * reclaim and continue scanning. 1165 * 1166 * Require may_enter_fs because we would wait on fs, which 1167 * may not have submitted IO yet. And the loop driver might 1168 * enter reclaim, and deadlock if it waits on a page for 1169 * which it is needed to do the write (loop masks off 1170 * __GFP_IO|__GFP_FS for this reason); but more thought 1171 * would probably show more reasons. 1172 * 1173 * 3) Legacy memcg encounters a page that is already marked 1174 * PageReclaim. memcg does not have any dirty pages 1175 * throttling so we could easily OOM just because too many 1176 * pages are in writeback and there is nothing else to 1177 * reclaim. Wait for the writeback to complete. 1178 * 1179 * In cases 1) and 2) we activate the pages to get them out of 1180 * the way while we continue scanning for clean pages on the 1181 * inactive list and refilling from the active list. The 1182 * observation here is that waiting for disk writes is more 1183 * expensive than potentially causing reloads down the line. 1184 * Since they're marked for immediate reclaim, they won't put 1185 * memory pressure on the cache working set any longer than it 1186 * takes to write them to disk. 1187 */ 1188 if (PageWriteback(page)) { 1189 /* Case 1 above */ 1190 if (current_is_kswapd() && 1191 PageReclaim(page) && 1192 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1193 stat->nr_immediate++; 1194 goto activate_locked; 1195 1196 /* Case 2 above */ 1197 } else if (writeback_throttling_sane(sc) || 1198 !PageReclaim(page) || !may_enter_fs) { 1199 /* 1200 * This is slightly racy - end_page_writeback() 1201 * might have just cleared PageReclaim, then 1202 * setting PageReclaim here end up interpreted 1203 * as PageReadahead - but that does not matter 1204 * enough to care. What we do want is for this 1205 * page to have PageReclaim set next time memcg 1206 * reclaim reaches the tests above, so it will 1207 * then wait_on_page_writeback() to avoid OOM; 1208 * and it's also appropriate in global reclaim. 1209 */ 1210 SetPageReclaim(page); 1211 stat->nr_writeback++; 1212 goto activate_locked; 1213 1214 /* Case 3 above */ 1215 } else { 1216 unlock_page(page); 1217 wait_on_page_writeback(page); 1218 /* then go back and try same page again */ 1219 list_add_tail(&page->lru, page_list); 1220 continue; 1221 } 1222 } 1223 1224 if (!ignore_references) 1225 references = page_check_references(page, sc); 1226 1227 switch (references) { 1228 case PAGEREF_ACTIVATE: 1229 goto activate_locked; 1230 case PAGEREF_KEEP: 1231 stat->nr_ref_keep += nr_pages; 1232 goto keep_locked; 1233 case PAGEREF_RECLAIM: 1234 case PAGEREF_RECLAIM_CLEAN: 1235 ; /* try to reclaim the page below */ 1236 } 1237 1238 /* 1239 * Anonymous process memory has backing store? 1240 * Try to allocate it some swap space here. 1241 * Lazyfree page could be freed directly 1242 */ 1243 if (PageAnon(page) && PageSwapBacked(page)) { 1244 if (!PageSwapCache(page)) { 1245 if (!(sc->gfp_mask & __GFP_IO)) 1246 goto keep_locked; 1247 if (PageTransHuge(page)) { 1248 /* cannot split THP, skip it */ 1249 if (!can_split_huge_page(page, NULL)) 1250 goto activate_locked; 1251 /* 1252 * Split pages without a PMD map right 1253 * away. Chances are some or all of the 1254 * tail pages can be freed without IO. 1255 */ 1256 if (!compound_mapcount(page) && 1257 split_huge_page_to_list(page, 1258 page_list)) 1259 goto activate_locked; 1260 } 1261 if (!add_to_swap(page)) { 1262 if (!PageTransHuge(page)) 1263 goto activate_locked_split; 1264 /* Fallback to swap normal pages */ 1265 if (split_huge_page_to_list(page, 1266 page_list)) 1267 goto activate_locked; 1268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1269 count_vm_event(THP_SWPOUT_FALLBACK); 1270 #endif 1271 if (!add_to_swap(page)) 1272 goto activate_locked_split; 1273 } 1274 1275 may_enter_fs = true; 1276 1277 /* Adding to swap updated mapping */ 1278 mapping = page_mapping(page); 1279 } 1280 } else if (unlikely(PageTransHuge(page))) { 1281 /* Split file THP */ 1282 if (split_huge_page_to_list(page, page_list)) 1283 goto keep_locked; 1284 } 1285 1286 /* 1287 * THP may get split above, need minus tail pages and update 1288 * nr_pages to avoid accounting tail pages twice. 1289 * 1290 * The tail pages that are added into swap cache successfully 1291 * reach here. 1292 */ 1293 if ((nr_pages > 1) && !PageTransHuge(page)) { 1294 sc->nr_scanned -= (nr_pages - 1); 1295 nr_pages = 1; 1296 } 1297 1298 /* 1299 * The page is mapped into the page tables of one or more 1300 * processes. Try to unmap it here. 1301 */ 1302 if (page_mapped(page)) { 1303 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1304 bool was_swapbacked = PageSwapBacked(page); 1305 1306 if (unlikely(PageTransHuge(page))) 1307 flags |= TTU_SPLIT_HUGE_PMD; 1308 1309 if (!try_to_unmap(page, flags)) { 1310 stat->nr_unmap_fail += nr_pages; 1311 if (!was_swapbacked && PageSwapBacked(page)) 1312 stat->nr_lazyfree_fail += nr_pages; 1313 goto activate_locked; 1314 } 1315 } 1316 1317 if (PageDirty(page)) { 1318 /* 1319 * Only kswapd can writeback filesystem pages 1320 * to avoid risk of stack overflow. But avoid 1321 * injecting inefficient single-page IO into 1322 * flusher writeback as much as possible: only 1323 * write pages when we've encountered many 1324 * dirty pages, and when we've already scanned 1325 * the rest of the LRU for clean pages and see 1326 * the same dirty pages again (PageReclaim). 1327 */ 1328 if (page_is_file_lru(page) && 1329 (!current_is_kswapd() || !PageReclaim(page) || 1330 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1331 /* 1332 * Immediately reclaim when written back. 1333 * Similar in principal to deactivate_page() 1334 * except we already have the page isolated 1335 * and know it's dirty 1336 */ 1337 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1338 SetPageReclaim(page); 1339 1340 goto activate_locked; 1341 } 1342 1343 if (references == PAGEREF_RECLAIM_CLEAN) 1344 goto keep_locked; 1345 if (!may_enter_fs) 1346 goto keep_locked; 1347 if (!sc->may_writepage) 1348 goto keep_locked; 1349 1350 /* 1351 * Page is dirty. Flush the TLB if a writable entry 1352 * potentially exists to avoid CPU writes after IO 1353 * starts and then write it out here. 1354 */ 1355 try_to_unmap_flush_dirty(); 1356 switch (pageout(page, mapping)) { 1357 case PAGE_KEEP: 1358 goto keep_locked; 1359 case PAGE_ACTIVATE: 1360 goto activate_locked; 1361 case PAGE_SUCCESS: 1362 stat->nr_pageout += hpage_nr_pages(page); 1363 1364 if (PageWriteback(page)) 1365 goto keep; 1366 if (PageDirty(page)) 1367 goto keep; 1368 1369 /* 1370 * A synchronous write - probably a ramdisk. Go 1371 * ahead and try to reclaim the page. 1372 */ 1373 if (!trylock_page(page)) 1374 goto keep; 1375 if (PageDirty(page) || PageWriteback(page)) 1376 goto keep_locked; 1377 mapping = page_mapping(page); 1378 case PAGE_CLEAN: 1379 ; /* try to free the page below */ 1380 } 1381 } 1382 1383 /* 1384 * If the page has buffers, try to free the buffer mappings 1385 * associated with this page. If we succeed we try to free 1386 * the page as well. 1387 * 1388 * We do this even if the page is PageDirty(). 1389 * try_to_release_page() does not perform I/O, but it is 1390 * possible for a page to have PageDirty set, but it is actually 1391 * clean (all its buffers are clean). This happens if the 1392 * buffers were written out directly, with submit_bh(). ext3 1393 * will do this, as well as the blockdev mapping. 1394 * try_to_release_page() will discover that cleanness and will 1395 * drop the buffers and mark the page clean - it can be freed. 1396 * 1397 * Rarely, pages can have buffers and no ->mapping. These are 1398 * the pages which were not successfully invalidated in 1399 * truncate_complete_page(). We try to drop those buffers here 1400 * and if that worked, and the page is no longer mapped into 1401 * process address space (page_count == 1) it can be freed. 1402 * Otherwise, leave the page on the LRU so it is swappable. 1403 */ 1404 if (page_has_private(page)) { 1405 if (!try_to_release_page(page, sc->gfp_mask)) 1406 goto activate_locked; 1407 if (!mapping && page_count(page) == 1) { 1408 unlock_page(page); 1409 if (put_page_testzero(page)) 1410 goto free_it; 1411 else { 1412 /* 1413 * rare race with speculative reference. 1414 * the speculative reference will free 1415 * this page shortly, so we may 1416 * increment nr_reclaimed here (and 1417 * leave it off the LRU). 1418 */ 1419 nr_reclaimed++; 1420 continue; 1421 } 1422 } 1423 } 1424 1425 if (PageAnon(page) && !PageSwapBacked(page)) { 1426 /* follow __remove_mapping for reference */ 1427 if (!page_ref_freeze(page, 1)) 1428 goto keep_locked; 1429 if (PageDirty(page)) { 1430 page_ref_unfreeze(page, 1); 1431 goto keep_locked; 1432 } 1433 1434 count_vm_event(PGLAZYFREED); 1435 count_memcg_page_event(page, PGLAZYFREED); 1436 } else if (!mapping || !__remove_mapping(mapping, page, true, 1437 sc->target_mem_cgroup)) 1438 goto keep_locked; 1439 1440 unlock_page(page); 1441 free_it: 1442 /* 1443 * THP may get swapped out in a whole, need account 1444 * all base pages. 1445 */ 1446 nr_reclaimed += nr_pages; 1447 1448 /* 1449 * Is there need to periodically free_page_list? It would 1450 * appear not as the counts should be low 1451 */ 1452 if (unlikely(PageTransHuge(page))) 1453 destroy_compound_page(page); 1454 else 1455 list_add(&page->lru, &free_pages); 1456 continue; 1457 1458 activate_locked_split: 1459 /* 1460 * The tail pages that are failed to add into swap cache 1461 * reach here. Fixup nr_scanned and nr_pages. 1462 */ 1463 if (nr_pages > 1) { 1464 sc->nr_scanned -= (nr_pages - 1); 1465 nr_pages = 1; 1466 } 1467 activate_locked: 1468 /* Not a candidate for swapping, so reclaim swap space. */ 1469 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1470 PageMlocked(page))) 1471 try_to_free_swap(page); 1472 VM_BUG_ON_PAGE(PageActive(page), page); 1473 if (!PageMlocked(page)) { 1474 int type = page_is_file_lru(page); 1475 SetPageActive(page); 1476 stat->nr_activate[type] += nr_pages; 1477 count_memcg_page_event(page, PGACTIVATE); 1478 } 1479 keep_locked: 1480 unlock_page(page); 1481 keep: 1482 list_add(&page->lru, &ret_pages); 1483 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1484 } 1485 1486 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1487 1488 mem_cgroup_uncharge_list(&free_pages); 1489 try_to_unmap_flush(); 1490 free_unref_page_list(&free_pages); 1491 1492 list_splice(&ret_pages, page_list); 1493 count_vm_events(PGACTIVATE, pgactivate); 1494 1495 return nr_reclaimed; 1496 } 1497 1498 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1499 struct list_head *page_list) 1500 { 1501 struct scan_control sc = { 1502 .gfp_mask = GFP_KERNEL, 1503 .priority = DEF_PRIORITY, 1504 .may_unmap = 1, 1505 }; 1506 struct reclaim_stat stat; 1507 unsigned int nr_reclaimed; 1508 struct page *page, *next; 1509 LIST_HEAD(clean_pages); 1510 1511 list_for_each_entry_safe(page, next, page_list, lru) { 1512 if (page_is_file_lru(page) && !PageDirty(page) && 1513 !__PageMovable(page) && !PageUnevictable(page)) { 1514 ClearPageActive(page); 1515 list_move(&page->lru, &clean_pages); 1516 } 1517 } 1518 1519 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1520 TTU_IGNORE_ACCESS, &stat, true); 1521 list_splice(&clean_pages, page_list); 1522 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed); 1523 /* 1524 * Since lazyfree pages are isolated from file LRU from the beginning, 1525 * they will rotate back to anonymous LRU in the end if it failed to 1526 * discard so isolated count will be mismatched. 1527 * Compensate the isolated count for both LRU lists. 1528 */ 1529 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1530 stat.nr_lazyfree_fail); 1531 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1532 -stat.nr_lazyfree_fail); 1533 return nr_reclaimed; 1534 } 1535 1536 /* 1537 * Attempt to remove the specified page from its LRU. Only take this page 1538 * if it is of the appropriate PageActive status. Pages which are being 1539 * freed elsewhere are also ignored. 1540 * 1541 * page: page to consider 1542 * mode: one of the LRU isolation modes defined above 1543 * 1544 * returns 0 on success, -ve errno on failure. 1545 */ 1546 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1547 { 1548 int ret = -EINVAL; 1549 1550 /* Only take pages on the LRU. */ 1551 if (!PageLRU(page)) 1552 return ret; 1553 1554 /* Compaction should not handle unevictable pages but CMA can do so */ 1555 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1556 return ret; 1557 1558 ret = -EBUSY; 1559 1560 /* 1561 * To minimise LRU disruption, the caller can indicate that it only 1562 * wants to isolate pages it will be able to operate on without 1563 * blocking - clean pages for the most part. 1564 * 1565 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1566 * that it is possible to migrate without blocking 1567 */ 1568 if (mode & ISOLATE_ASYNC_MIGRATE) { 1569 /* All the caller can do on PageWriteback is block */ 1570 if (PageWriteback(page)) 1571 return ret; 1572 1573 if (PageDirty(page)) { 1574 struct address_space *mapping; 1575 bool migrate_dirty; 1576 1577 /* 1578 * Only pages without mappings or that have a 1579 * ->migratepage callback are possible to migrate 1580 * without blocking. However, we can be racing with 1581 * truncation so it's necessary to lock the page 1582 * to stabilise the mapping as truncation holds 1583 * the page lock until after the page is removed 1584 * from the page cache. 1585 */ 1586 if (!trylock_page(page)) 1587 return ret; 1588 1589 mapping = page_mapping(page); 1590 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1591 unlock_page(page); 1592 if (!migrate_dirty) 1593 return ret; 1594 } 1595 } 1596 1597 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1598 return ret; 1599 1600 if (likely(get_page_unless_zero(page))) { 1601 /* 1602 * Be careful not to clear PageLRU until after we're 1603 * sure the page is not being freed elsewhere -- the 1604 * page release code relies on it. 1605 */ 1606 ClearPageLRU(page); 1607 ret = 0; 1608 } 1609 1610 return ret; 1611 } 1612 1613 1614 /* 1615 * Update LRU sizes after isolating pages. The LRU size updates must 1616 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1617 */ 1618 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1619 enum lru_list lru, unsigned long *nr_zone_taken) 1620 { 1621 int zid; 1622 1623 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1624 if (!nr_zone_taken[zid]) 1625 continue; 1626 1627 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1628 } 1629 1630 } 1631 1632 /** 1633 * pgdat->lru_lock is heavily contended. Some of the functions that 1634 * shrink the lists perform better by taking out a batch of pages 1635 * and working on them outside the LRU lock. 1636 * 1637 * For pagecache intensive workloads, this function is the hottest 1638 * spot in the kernel (apart from copy_*_user functions). 1639 * 1640 * Appropriate locks must be held before calling this function. 1641 * 1642 * @nr_to_scan: The number of eligible pages to look through on the list. 1643 * @lruvec: The LRU vector to pull pages from. 1644 * @dst: The temp list to put pages on to. 1645 * @nr_scanned: The number of pages that were scanned. 1646 * @sc: The scan_control struct for this reclaim session 1647 * @lru: LRU list id for isolating 1648 * 1649 * returns how many pages were moved onto *@dst. 1650 */ 1651 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1652 struct lruvec *lruvec, struct list_head *dst, 1653 unsigned long *nr_scanned, struct scan_control *sc, 1654 enum lru_list lru) 1655 { 1656 struct list_head *src = &lruvec->lists[lru]; 1657 unsigned long nr_taken = 0; 1658 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1659 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1660 unsigned long skipped = 0; 1661 unsigned long scan, total_scan, nr_pages; 1662 LIST_HEAD(pages_skipped); 1663 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1664 1665 total_scan = 0; 1666 scan = 0; 1667 while (scan < nr_to_scan && !list_empty(src)) { 1668 struct page *page; 1669 1670 page = lru_to_page(src); 1671 prefetchw_prev_lru_page(page, src, flags); 1672 1673 VM_BUG_ON_PAGE(!PageLRU(page), page); 1674 1675 nr_pages = compound_nr(page); 1676 total_scan += nr_pages; 1677 1678 if (page_zonenum(page) > sc->reclaim_idx) { 1679 list_move(&page->lru, &pages_skipped); 1680 nr_skipped[page_zonenum(page)] += nr_pages; 1681 continue; 1682 } 1683 1684 /* 1685 * Do not count skipped pages because that makes the function 1686 * return with no isolated pages if the LRU mostly contains 1687 * ineligible pages. This causes the VM to not reclaim any 1688 * pages, triggering a premature OOM. 1689 * 1690 * Account all tail pages of THP. This would not cause 1691 * premature OOM since __isolate_lru_page() returns -EBUSY 1692 * only when the page is being freed somewhere else. 1693 */ 1694 scan += nr_pages; 1695 switch (__isolate_lru_page(page, mode)) { 1696 case 0: 1697 nr_taken += nr_pages; 1698 nr_zone_taken[page_zonenum(page)] += nr_pages; 1699 list_move(&page->lru, dst); 1700 break; 1701 1702 case -EBUSY: 1703 /* else it is being freed elsewhere */ 1704 list_move(&page->lru, src); 1705 continue; 1706 1707 default: 1708 BUG(); 1709 } 1710 } 1711 1712 /* 1713 * Splice any skipped pages to the start of the LRU list. Note that 1714 * this disrupts the LRU order when reclaiming for lower zones but 1715 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1716 * scanning would soon rescan the same pages to skip and put the 1717 * system at risk of premature OOM. 1718 */ 1719 if (!list_empty(&pages_skipped)) { 1720 int zid; 1721 1722 list_splice(&pages_skipped, src); 1723 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1724 if (!nr_skipped[zid]) 1725 continue; 1726 1727 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1728 skipped += nr_skipped[zid]; 1729 } 1730 } 1731 *nr_scanned = total_scan; 1732 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1733 total_scan, skipped, nr_taken, mode, lru); 1734 update_lru_sizes(lruvec, lru, nr_zone_taken); 1735 return nr_taken; 1736 } 1737 1738 /** 1739 * isolate_lru_page - tries to isolate a page from its LRU list 1740 * @page: page to isolate from its LRU list 1741 * 1742 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1743 * vmstat statistic corresponding to whatever LRU list the page was on. 1744 * 1745 * Returns 0 if the page was removed from an LRU list. 1746 * Returns -EBUSY if the page was not on an LRU list. 1747 * 1748 * The returned page will have PageLRU() cleared. If it was found on 1749 * the active list, it will have PageActive set. If it was found on 1750 * the unevictable list, it will have the PageUnevictable bit set. That flag 1751 * may need to be cleared by the caller before letting the page go. 1752 * 1753 * The vmstat statistic corresponding to the list on which the page was 1754 * found will be decremented. 1755 * 1756 * Restrictions: 1757 * 1758 * (1) Must be called with an elevated refcount on the page. This is a 1759 * fundamentnal difference from isolate_lru_pages (which is called 1760 * without a stable reference). 1761 * (2) the lru_lock must not be held. 1762 * (3) interrupts must be enabled. 1763 */ 1764 int isolate_lru_page(struct page *page) 1765 { 1766 int ret = -EBUSY; 1767 1768 VM_BUG_ON_PAGE(!page_count(page), page); 1769 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1770 1771 if (PageLRU(page)) { 1772 pg_data_t *pgdat = page_pgdat(page); 1773 struct lruvec *lruvec; 1774 1775 spin_lock_irq(&pgdat->lru_lock); 1776 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1777 if (PageLRU(page)) { 1778 int lru = page_lru(page); 1779 get_page(page); 1780 ClearPageLRU(page); 1781 del_page_from_lru_list(page, lruvec, lru); 1782 ret = 0; 1783 } 1784 spin_unlock_irq(&pgdat->lru_lock); 1785 } 1786 return ret; 1787 } 1788 1789 /* 1790 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1791 * then get rescheduled. When there are massive number of tasks doing page 1792 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1793 * the LRU list will go small and be scanned faster than necessary, leading to 1794 * unnecessary swapping, thrashing and OOM. 1795 */ 1796 static int too_many_isolated(struct pglist_data *pgdat, int file, 1797 struct scan_control *sc) 1798 { 1799 unsigned long inactive, isolated; 1800 1801 if (current_is_kswapd()) 1802 return 0; 1803 1804 if (!writeback_throttling_sane(sc)) 1805 return 0; 1806 1807 if (file) { 1808 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1809 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1810 } else { 1811 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1812 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1813 } 1814 1815 /* 1816 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1817 * won't get blocked by normal direct-reclaimers, forming a circular 1818 * deadlock. 1819 */ 1820 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1821 inactive >>= 3; 1822 1823 return isolated > inactive; 1824 } 1825 1826 /* 1827 * This moves pages from @list to corresponding LRU list. 1828 * 1829 * We move them the other way if the page is referenced by one or more 1830 * processes, from rmap. 1831 * 1832 * If the pages are mostly unmapped, the processing is fast and it is 1833 * appropriate to hold zone_lru_lock across the whole operation. But if 1834 * the pages are mapped, the processing is slow (page_referenced()) so we 1835 * should drop zone_lru_lock around each page. It's impossible to balance 1836 * this, so instead we remove the pages from the LRU while processing them. 1837 * It is safe to rely on PG_active against the non-LRU pages in here because 1838 * nobody will play with that bit on a non-LRU page. 1839 * 1840 * The downside is that we have to touch page->_refcount against each page. 1841 * But we had to alter page->flags anyway. 1842 * 1843 * Returns the number of pages moved to the given lruvec. 1844 */ 1845 1846 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1847 struct list_head *list) 1848 { 1849 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1850 int nr_pages, nr_moved = 0; 1851 LIST_HEAD(pages_to_free); 1852 struct page *page; 1853 enum lru_list lru; 1854 1855 while (!list_empty(list)) { 1856 page = lru_to_page(list); 1857 VM_BUG_ON_PAGE(PageLRU(page), page); 1858 if (unlikely(!page_evictable(page))) { 1859 list_del(&page->lru); 1860 spin_unlock_irq(&pgdat->lru_lock); 1861 putback_lru_page(page); 1862 spin_lock_irq(&pgdat->lru_lock); 1863 continue; 1864 } 1865 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1866 1867 SetPageLRU(page); 1868 lru = page_lru(page); 1869 1870 nr_pages = hpage_nr_pages(page); 1871 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1872 list_move(&page->lru, &lruvec->lists[lru]); 1873 1874 if (put_page_testzero(page)) { 1875 __ClearPageLRU(page); 1876 __ClearPageActive(page); 1877 del_page_from_lru_list(page, lruvec, lru); 1878 1879 if (unlikely(PageCompound(page))) { 1880 spin_unlock_irq(&pgdat->lru_lock); 1881 destroy_compound_page(page); 1882 spin_lock_irq(&pgdat->lru_lock); 1883 } else 1884 list_add(&page->lru, &pages_to_free); 1885 } else { 1886 nr_moved += nr_pages; 1887 } 1888 } 1889 1890 /* 1891 * To save our caller's stack, now use input list for pages to free. 1892 */ 1893 list_splice(&pages_to_free, list); 1894 1895 return nr_moved; 1896 } 1897 1898 /* 1899 * If a kernel thread (such as nfsd for loop-back mounts) services 1900 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1901 * In that case we should only throttle if the backing device it is 1902 * writing to is congested. In other cases it is safe to throttle. 1903 */ 1904 static int current_may_throttle(void) 1905 { 1906 return !(current->flags & PF_LOCAL_THROTTLE) || 1907 current->backing_dev_info == NULL || 1908 bdi_write_congested(current->backing_dev_info); 1909 } 1910 1911 /* 1912 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1913 * of reclaimed pages 1914 */ 1915 static noinline_for_stack unsigned long 1916 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1917 struct scan_control *sc, enum lru_list lru) 1918 { 1919 LIST_HEAD(page_list); 1920 unsigned long nr_scanned; 1921 unsigned int nr_reclaimed = 0; 1922 unsigned long nr_taken; 1923 struct reclaim_stat stat; 1924 bool file = is_file_lru(lru); 1925 enum vm_event_item item; 1926 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1927 bool stalled = false; 1928 1929 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1930 if (stalled) 1931 return 0; 1932 1933 /* wait a bit for the reclaimer. */ 1934 msleep(100); 1935 stalled = true; 1936 1937 /* We are about to die and free our memory. Return now. */ 1938 if (fatal_signal_pending(current)) 1939 return SWAP_CLUSTER_MAX; 1940 } 1941 1942 lru_add_drain(); 1943 1944 spin_lock_irq(&pgdat->lru_lock); 1945 1946 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1947 &nr_scanned, sc, lru); 1948 1949 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1950 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1951 if (!cgroup_reclaim(sc)) 1952 __count_vm_events(item, nr_scanned); 1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1954 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1955 1956 spin_unlock_irq(&pgdat->lru_lock); 1957 1958 if (nr_taken == 0) 1959 return 0; 1960 1961 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1962 &stat, false); 1963 1964 spin_lock_irq(&pgdat->lru_lock); 1965 1966 move_pages_to_lru(lruvec, &page_list); 1967 1968 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1969 lru_note_cost(lruvec, file, stat.nr_pageout); 1970 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1971 if (!cgroup_reclaim(sc)) 1972 __count_vm_events(item, nr_reclaimed); 1973 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1974 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1975 1976 spin_unlock_irq(&pgdat->lru_lock); 1977 1978 mem_cgroup_uncharge_list(&page_list); 1979 free_unref_page_list(&page_list); 1980 1981 /* 1982 * If dirty pages are scanned that are not queued for IO, it 1983 * implies that flushers are not doing their job. This can 1984 * happen when memory pressure pushes dirty pages to the end of 1985 * the LRU before the dirty limits are breached and the dirty 1986 * data has expired. It can also happen when the proportion of 1987 * dirty pages grows not through writes but through memory 1988 * pressure reclaiming all the clean cache. And in some cases, 1989 * the flushers simply cannot keep up with the allocation 1990 * rate. Nudge the flusher threads in case they are asleep. 1991 */ 1992 if (stat.nr_unqueued_dirty == nr_taken) 1993 wakeup_flusher_threads(WB_REASON_VMSCAN); 1994 1995 sc->nr.dirty += stat.nr_dirty; 1996 sc->nr.congested += stat.nr_congested; 1997 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1998 sc->nr.writeback += stat.nr_writeback; 1999 sc->nr.immediate += stat.nr_immediate; 2000 sc->nr.taken += nr_taken; 2001 if (file) 2002 sc->nr.file_taken += nr_taken; 2003 2004 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2005 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2006 return nr_reclaimed; 2007 } 2008 2009 static void shrink_active_list(unsigned long nr_to_scan, 2010 struct lruvec *lruvec, 2011 struct scan_control *sc, 2012 enum lru_list lru) 2013 { 2014 unsigned long nr_taken; 2015 unsigned long nr_scanned; 2016 unsigned long vm_flags; 2017 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2018 LIST_HEAD(l_active); 2019 LIST_HEAD(l_inactive); 2020 struct page *page; 2021 unsigned nr_deactivate, nr_activate; 2022 unsigned nr_rotated = 0; 2023 int file = is_file_lru(lru); 2024 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2025 2026 lru_add_drain(); 2027 2028 spin_lock_irq(&pgdat->lru_lock); 2029 2030 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2031 &nr_scanned, sc, lru); 2032 2033 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2034 2035 __count_vm_events(PGREFILL, nr_scanned); 2036 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2037 2038 spin_unlock_irq(&pgdat->lru_lock); 2039 2040 while (!list_empty(&l_hold)) { 2041 cond_resched(); 2042 page = lru_to_page(&l_hold); 2043 list_del(&page->lru); 2044 2045 if (unlikely(!page_evictable(page))) { 2046 putback_lru_page(page); 2047 continue; 2048 } 2049 2050 if (unlikely(buffer_heads_over_limit)) { 2051 if (page_has_private(page) && trylock_page(page)) { 2052 if (page_has_private(page)) 2053 try_to_release_page(page, 0); 2054 unlock_page(page); 2055 } 2056 } 2057 2058 if (page_referenced(page, 0, sc->target_mem_cgroup, 2059 &vm_flags)) { 2060 /* 2061 * Identify referenced, file-backed active pages and 2062 * give them one more trip around the active list. So 2063 * that executable code get better chances to stay in 2064 * memory under moderate memory pressure. Anon pages 2065 * are not likely to be evicted by use-once streaming 2066 * IO, plus JVM can create lots of anon VM_EXEC pages, 2067 * so we ignore them here. 2068 */ 2069 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2070 nr_rotated += hpage_nr_pages(page); 2071 list_add(&page->lru, &l_active); 2072 continue; 2073 } 2074 } 2075 2076 ClearPageActive(page); /* we are de-activating */ 2077 SetPageWorkingset(page); 2078 list_add(&page->lru, &l_inactive); 2079 } 2080 2081 /* 2082 * Move pages back to the lru list. 2083 */ 2084 spin_lock_irq(&pgdat->lru_lock); 2085 2086 nr_activate = move_pages_to_lru(lruvec, &l_active); 2087 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2088 /* Keep all free pages in l_active list */ 2089 list_splice(&l_inactive, &l_active); 2090 2091 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2092 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2093 2094 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2095 spin_unlock_irq(&pgdat->lru_lock); 2096 2097 mem_cgroup_uncharge_list(&l_active); 2098 free_unref_page_list(&l_active); 2099 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2100 nr_deactivate, nr_rotated, sc->priority, file); 2101 } 2102 2103 unsigned long reclaim_pages(struct list_head *page_list) 2104 { 2105 int nid = NUMA_NO_NODE; 2106 unsigned int nr_reclaimed = 0; 2107 LIST_HEAD(node_page_list); 2108 struct reclaim_stat dummy_stat; 2109 struct page *page; 2110 struct scan_control sc = { 2111 .gfp_mask = GFP_KERNEL, 2112 .priority = DEF_PRIORITY, 2113 .may_writepage = 1, 2114 .may_unmap = 1, 2115 .may_swap = 1, 2116 }; 2117 2118 while (!list_empty(page_list)) { 2119 page = lru_to_page(page_list); 2120 if (nid == NUMA_NO_NODE) { 2121 nid = page_to_nid(page); 2122 INIT_LIST_HEAD(&node_page_list); 2123 } 2124 2125 if (nid == page_to_nid(page)) { 2126 ClearPageActive(page); 2127 list_move(&page->lru, &node_page_list); 2128 continue; 2129 } 2130 2131 nr_reclaimed += shrink_page_list(&node_page_list, 2132 NODE_DATA(nid), 2133 &sc, 0, 2134 &dummy_stat, false); 2135 while (!list_empty(&node_page_list)) { 2136 page = lru_to_page(&node_page_list); 2137 list_del(&page->lru); 2138 putback_lru_page(page); 2139 } 2140 2141 nid = NUMA_NO_NODE; 2142 } 2143 2144 if (!list_empty(&node_page_list)) { 2145 nr_reclaimed += shrink_page_list(&node_page_list, 2146 NODE_DATA(nid), 2147 &sc, 0, 2148 &dummy_stat, false); 2149 while (!list_empty(&node_page_list)) { 2150 page = lru_to_page(&node_page_list); 2151 list_del(&page->lru); 2152 putback_lru_page(page); 2153 } 2154 } 2155 2156 return nr_reclaimed; 2157 } 2158 2159 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2160 struct lruvec *lruvec, struct scan_control *sc) 2161 { 2162 if (is_active_lru(lru)) { 2163 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2164 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2165 else 2166 sc->skipped_deactivate = 1; 2167 return 0; 2168 } 2169 2170 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2171 } 2172 2173 /* 2174 * The inactive anon list should be small enough that the VM never has 2175 * to do too much work. 2176 * 2177 * The inactive file list should be small enough to leave most memory 2178 * to the established workingset on the scan-resistant active list, 2179 * but large enough to avoid thrashing the aggregate readahead window. 2180 * 2181 * Both inactive lists should also be large enough that each inactive 2182 * page has a chance to be referenced again before it is reclaimed. 2183 * 2184 * If that fails and refaulting is observed, the inactive list grows. 2185 * 2186 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2187 * on this LRU, maintained by the pageout code. An inactive_ratio 2188 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2189 * 2190 * total target max 2191 * memory ratio inactive 2192 * ------------------------------------- 2193 * 10MB 1 5MB 2194 * 100MB 1 50MB 2195 * 1GB 3 250MB 2196 * 10GB 10 0.9GB 2197 * 100GB 31 3GB 2198 * 1TB 101 10GB 2199 * 10TB 320 32GB 2200 */ 2201 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2202 { 2203 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2204 unsigned long inactive, active; 2205 unsigned long inactive_ratio; 2206 unsigned long gb; 2207 2208 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2209 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2210 2211 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2212 if (gb) 2213 inactive_ratio = int_sqrt(10 * gb); 2214 else 2215 inactive_ratio = 1; 2216 2217 return inactive * inactive_ratio < active; 2218 } 2219 2220 enum scan_balance { 2221 SCAN_EQUAL, 2222 SCAN_FRACT, 2223 SCAN_ANON, 2224 SCAN_FILE, 2225 }; 2226 2227 /* 2228 * Determine how aggressively the anon and file LRU lists should be 2229 * scanned. The relative value of each set of LRU lists is determined 2230 * by looking at the fraction of the pages scanned we did rotate back 2231 * onto the active list instead of evict. 2232 * 2233 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2234 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2235 */ 2236 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2237 unsigned long *nr) 2238 { 2239 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2240 unsigned long anon_cost, file_cost, total_cost; 2241 int swappiness = mem_cgroup_swappiness(memcg); 2242 u64 fraction[2]; 2243 u64 denominator = 0; /* gcc */ 2244 enum scan_balance scan_balance; 2245 unsigned long ap, fp; 2246 enum lru_list lru; 2247 2248 /* If we have no swap space, do not bother scanning anon pages. */ 2249 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2250 scan_balance = SCAN_FILE; 2251 goto out; 2252 } 2253 2254 /* 2255 * Global reclaim will swap to prevent OOM even with no 2256 * swappiness, but memcg users want to use this knob to 2257 * disable swapping for individual groups completely when 2258 * using the memory controller's swap limit feature would be 2259 * too expensive. 2260 */ 2261 if (cgroup_reclaim(sc) && !swappiness) { 2262 scan_balance = SCAN_FILE; 2263 goto out; 2264 } 2265 2266 /* 2267 * Do not apply any pressure balancing cleverness when the 2268 * system is close to OOM, scan both anon and file equally 2269 * (unless the swappiness setting disagrees with swapping). 2270 */ 2271 if (!sc->priority && swappiness) { 2272 scan_balance = SCAN_EQUAL; 2273 goto out; 2274 } 2275 2276 /* 2277 * If the system is almost out of file pages, force-scan anon. 2278 */ 2279 if (sc->file_is_tiny) { 2280 scan_balance = SCAN_ANON; 2281 goto out; 2282 } 2283 2284 /* 2285 * If there is enough inactive page cache, we do not reclaim 2286 * anything from the anonymous working right now. 2287 */ 2288 if (sc->cache_trim_mode) { 2289 scan_balance = SCAN_FILE; 2290 goto out; 2291 } 2292 2293 scan_balance = SCAN_FRACT; 2294 /* 2295 * Calculate the pressure balance between anon and file pages. 2296 * 2297 * The amount of pressure we put on each LRU is inversely 2298 * proportional to the cost of reclaiming each list, as 2299 * determined by the share of pages that are refaulting, times 2300 * the relative IO cost of bringing back a swapped out 2301 * anonymous page vs reloading a filesystem page (swappiness). 2302 * 2303 * Although we limit that influence to ensure no list gets 2304 * left behind completely: at least a third of the pressure is 2305 * applied, before swappiness. 2306 * 2307 * With swappiness at 100, anon and file have equal IO cost. 2308 */ 2309 total_cost = sc->anon_cost + sc->file_cost; 2310 anon_cost = total_cost + sc->anon_cost; 2311 file_cost = total_cost + sc->file_cost; 2312 total_cost = anon_cost + file_cost; 2313 2314 ap = swappiness * (total_cost + 1); 2315 ap /= anon_cost + 1; 2316 2317 fp = (200 - swappiness) * (total_cost + 1); 2318 fp /= file_cost + 1; 2319 2320 fraction[0] = ap; 2321 fraction[1] = fp; 2322 denominator = ap + fp; 2323 out: 2324 for_each_evictable_lru(lru) { 2325 int file = is_file_lru(lru); 2326 unsigned long lruvec_size; 2327 unsigned long scan; 2328 unsigned long protection; 2329 2330 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2331 protection = mem_cgroup_protection(memcg, 2332 sc->memcg_low_reclaim); 2333 2334 if (protection) { 2335 /* 2336 * Scale a cgroup's reclaim pressure by proportioning 2337 * its current usage to its memory.low or memory.min 2338 * setting. 2339 * 2340 * This is important, as otherwise scanning aggression 2341 * becomes extremely binary -- from nothing as we 2342 * approach the memory protection threshold, to totally 2343 * nominal as we exceed it. This results in requiring 2344 * setting extremely liberal protection thresholds. It 2345 * also means we simply get no protection at all if we 2346 * set it too low, which is not ideal. 2347 * 2348 * If there is any protection in place, we reduce scan 2349 * pressure by how much of the total memory used is 2350 * within protection thresholds. 2351 * 2352 * There is one special case: in the first reclaim pass, 2353 * we skip over all groups that are within their low 2354 * protection. If that fails to reclaim enough pages to 2355 * satisfy the reclaim goal, we come back and override 2356 * the best-effort low protection. However, we still 2357 * ideally want to honor how well-behaved groups are in 2358 * that case instead of simply punishing them all 2359 * equally. As such, we reclaim them based on how much 2360 * memory they are using, reducing the scan pressure 2361 * again by how much of the total memory used is under 2362 * hard protection. 2363 */ 2364 unsigned long cgroup_size = mem_cgroup_size(memcg); 2365 2366 /* Avoid TOCTOU with earlier protection check */ 2367 cgroup_size = max(cgroup_size, protection); 2368 2369 scan = lruvec_size - lruvec_size * protection / 2370 cgroup_size; 2371 2372 /* 2373 * Minimally target SWAP_CLUSTER_MAX pages to keep 2374 * reclaim moving forwards, avoiding decrementing 2375 * sc->priority further than desirable. 2376 */ 2377 scan = max(scan, SWAP_CLUSTER_MAX); 2378 } else { 2379 scan = lruvec_size; 2380 } 2381 2382 scan >>= sc->priority; 2383 2384 /* 2385 * If the cgroup's already been deleted, make sure to 2386 * scrape out the remaining cache. 2387 */ 2388 if (!scan && !mem_cgroup_online(memcg)) 2389 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2390 2391 switch (scan_balance) { 2392 case SCAN_EQUAL: 2393 /* Scan lists relative to size */ 2394 break; 2395 case SCAN_FRACT: 2396 /* 2397 * Scan types proportional to swappiness and 2398 * their relative recent reclaim efficiency. 2399 * Make sure we don't miss the last page on 2400 * the offlined memory cgroups because of a 2401 * round-off error. 2402 */ 2403 scan = mem_cgroup_online(memcg) ? 2404 div64_u64(scan * fraction[file], denominator) : 2405 DIV64_U64_ROUND_UP(scan * fraction[file], 2406 denominator); 2407 break; 2408 case SCAN_FILE: 2409 case SCAN_ANON: 2410 /* Scan one type exclusively */ 2411 if ((scan_balance == SCAN_FILE) != file) 2412 scan = 0; 2413 break; 2414 default: 2415 /* Look ma, no brain */ 2416 BUG(); 2417 } 2418 2419 nr[lru] = scan; 2420 } 2421 } 2422 2423 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2424 { 2425 unsigned long nr[NR_LRU_LISTS]; 2426 unsigned long targets[NR_LRU_LISTS]; 2427 unsigned long nr_to_scan; 2428 enum lru_list lru; 2429 unsigned long nr_reclaimed = 0; 2430 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2431 struct blk_plug plug; 2432 bool scan_adjusted; 2433 2434 get_scan_count(lruvec, sc, nr); 2435 2436 /* Record the original scan target for proportional adjustments later */ 2437 memcpy(targets, nr, sizeof(nr)); 2438 2439 /* 2440 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2441 * event that can occur when there is little memory pressure e.g. 2442 * multiple streaming readers/writers. Hence, we do not abort scanning 2443 * when the requested number of pages are reclaimed when scanning at 2444 * DEF_PRIORITY on the assumption that the fact we are direct 2445 * reclaiming implies that kswapd is not keeping up and it is best to 2446 * do a batch of work at once. For memcg reclaim one check is made to 2447 * abort proportional reclaim if either the file or anon lru has already 2448 * dropped to zero at the first pass. 2449 */ 2450 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2451 sc->priority == DEF_PRIORITY); 2452 2453 blk_start_plug(&plug); 2454 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2455 nr[LRU_INACTIVE_FILE]) { 2456 unsigned long nr_anon, nr_file, percentage; 2457 unsigned long nr_scanned; 2458 2459 for_each_evictable_lru(lru) { 2460 if (nr[lru]) { 2461 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2462 nr[lru] -= nr_to_scan; 2463 2464 nr_reclaimed += shrink_list(lru, nr_to_scan, 2465 lruvec, sc); 2466 } 2467 } 2468 2469 cond_resched(); 2470 2471 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2472 continue; 2473 2474 /* 2475 * For kswapd and memcg, reclaim at least the number of pages 2476 * requested. Ensure that the anon and file LRUs are scanned 2477 * proportionally what was requested by get_scan_count(). We 2478 * stop reclaiming one LRU and reduce the amount scanning 2479 * proportional to the original scan target. 2480 */ 2481 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2482 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2483 2484 /* 2485 * It's just vindictive to attack the larger once the smaller 2486 * has gone to zero. And given the way we stop scanning the 2487 * smaller below, this makes sure that we only make one nudge 2488 * towards proportionality once we've got nr_to_reclaim. 2489 */ 2490 if (!nr_file || !nr_anon) 2491 break; 2492 2493 if (nr_file > nr_anon) { 2494 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2495 targets[LRU_ACTIVE_ANON] + 1; 2496 lru = LRU_BASE; 2497 percentage = nr_anon * 100 / scan_target; 2498 } else { 2499 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2500 targets[LRU_ACTIVE_FILE] + 1; 2501 lru = LRU_FILE; 2502 percentage = nr_file * 100 / scan_target; 2503 } 2504 2505 /* Stop scanning the smaller of the LRU */ 2506 nr[lru] = 0; 2507 nr[lru + LRU_ACTIVE] = 0; 2508 2509 /* 2510 * Recalculate the other LRU scan count based on its original 2511 * scan target and the percentage scanning already complete 2512 */ 2513 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2514 nr_scanned = targets[lru] - nr[lru]; 2515 nr[lru] = targets[lru] * (100 - percentage) / 100; 2516 nr[lru] -= min(nr[lru], nr_scanned); 2517 2518 lru += LRU_ACTIVE; 2519 nr_scanned = targets[lru] - nr[lru]; 2520 nr[lru] = targets[lru] * (100 - percentage) / 100; 2521 nr[lru] -= min(nr[lru], nr_scanned); 2522 2523 scan_adjusted = true; 2524 } 2525 blk_finish_plug(&plug); 2526 sc->nr_reclaimed += nr_reclaimed; 2527 2528 /* 2529 * Even if we did not try to evict anon pages at all, we want to 2530 * rebalance the anon lru active/inactive ratio. 2531 */ 2532 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2533 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2534 sc, LRU_ACTIVE_ANON); 2535 } 2536 2537 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2538 static bool in_reclaim_compaction(struct scan_control *sc) 2539 { 2540 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2541 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2542 sc->priority < DEF_PRIORITY - 2)) 2543 return true; 2544 2545 return false; 2546 } 2547 2548 /* 2549 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2550 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2551 * true if more pages should be reclaimed such that when the page allocator 2552 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2553 * It will give up earlier than that if there is difficulty reclaiming pages. 2554 */ 2555 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2556 unsigned long nr_reclaimed, 2557 struct scan_control *sc) 2558 { 2559 unsigned long pages_for_compaction; 2560 unsigned long inactive_lru_pages; 2561 int z; 2562 2563 /* If not in reclaim/compaction mode, stop */ 2564 if (!in_reclaim_compaction(sc)) 2565 return false; 2566 2567 /* 2568 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2569 * number of pages that were scanned. This will return to the caller 2570 * with the risk reclaim/compaction and the resulting allocation attempt 2571 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2572 * allocations through requiring that the full LRU list has been scanned 2573 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2574 * scan, but that approximation was wrong, and there were corner cases 2575 * where always a non-zero amount of pages were scanned. 2576 */ 2577 if (!nr_reclaimed) 2578 return false; 2579 2580 /* If compaction would go ahead or the allocation would succeed, stop */ 2581 for (z = 0; z <= sc->reclaim_idx; z++) { 2582 struct zone *zone = &pgdat->node_zones[z]; 2583 if (!managed_zone(zone)) 2584 continue; 2585 2586 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2587 case COMPACT_SUCCESS: 2588 case COMPACT_CONTINUE: 2589 return false; 2590 default: 2591 /* check next zone */ 2592 ; 2593 } 2594 } 2595 2596 /* 2597 * If we have not reclaimed enough pages for compaction and the 2598 * inactive lists are large enough, continue reclaiming 2599 */ 2600 pages_for_compaction = compact_gap(sc->order); 2601 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2602 if (get_nr_swap_pages() > 0) 2603 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2604 2605 return inactive_lru_pages > pages_for_compaction; 2606 } 2607 2608 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2609 { 2610 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2611 struct mem_cgroup *memcg; 2612 2613 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2614 do { 2615 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2616 unsigned long reclaimed; 2617 unsigned long scanned; 2618 2619 switch (mem_cgroup_protected(target_memcg, memcg)) { 2620 case MEMCG_PROT_MIN: 2621 /* 2622 * Hard protection. 2623 * If there is no reclaimable memory, OOM. 2624 */ 2625 continue; 2626 case MEMCG_PROT_LOW: 2627 /* 2628 * Soft protection. 2629 * Respect the protection only as long as 2630 * there is an unprotected supply 2631 * of reclaimable memory from other cgroups. 2632 */ 2633 if (!sc->memcg_low_reclaim) { 2634 sc->memcg_low_skipped = 1; 2635 continue; 2636 } 2637 memcg_memory_event(memcg, MEMCG_LOW); 2638 break; 2639 case MEMCG_PROT_NONE: 2640 /* 2641 * All protection thresholds breached. We may 2642 * still choose to vary the scan pressure 2643 * applied based on by how much the cgroup in 2644 * question has exceeded its protection 2645 * thresholds (see get_scan_count). 2646 */ 2647 break; 2648 } 2649 2650 reclaimed = sc->nr_reclaimed; 2651 scanned = sc->nr_scanned; 2652 2653 shrink_lruvec(lruvec, sc); 2654 2655 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2656 sc->priority); 2657 2658 /* Record the group's reclaim efficiency */ 2659 vmpressure(sc->gfp_mask, memcg, false, 2660 sc->nr_scanned - scanned, 2661 sc->nr_reclaimed - reclaimed); 2662 2663 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2664 } 2665 2666 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2667 { 2668 struct reclaim_state *reclaim_state = current->reclaim_state; 2669 unsigned long nr_reclaimed, nr_scanned; 2670 struct lruvec *target_lruvec; 2671 bool reclaimable = false; 2672 unsigned long file; 2673 2674 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2675 2676 again: 2677 memset(&sc->nr, 0, sizeof(sc->nr)); 2678 2679 nr_reclaimed = sc->nr_reclaimed; 2680 nr_scanned = sc->nr_scanned; 2681 2682 /* 2683 * Determine the scan balance between anon and file LRUs. 2684 */ 2685 spin_lock_irq(&pgdat->lru_lock); 2686 sc->anon_cost = target_lruvec->anon_cost; 2687 sc->file_cost = target_lruvec->file_cost; 2688 spin_unlock_irq(&pgdat->lru_lock); 2689 2690 /* 2691 * Target desirable inactive:active list ratios for the anon 2692 * and file LRU lists. 2693 */ 2694 if (!sc->force_deactivate) { 2695 unsigned long refaults; 2696 2697 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2698 sc->may_deactivate |= DEACTIVATE_ANON; 2699 else 2700 sc->may_deactivate &= ~DEACTIVATE_ANON; 2701 2702 /* 2703 * When refaults are being observed, it means a new 2704 * workingset is being established. Deactivate to get 2705 * rid of any stale active pages quickly. 2706 */ 2707 refaults = lruvec_page_state(target_lruvec, 2708 WORKINGSET_ACTIVATE); 2709 if (refaults != target_lruvec->refaults || 2710 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2711 sc->may_deactivate |= DEACTIVATE_FILE; 2712 else 2713 sc->may_deactivate &= ~DEACTIVATE_FILE; 2714 } else 2715 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2716 2717 /* 2718 * If we have plenty of inactive file pages that aren't 2719 * thrashing, try to reclaim those first before touching 2720 * anonymous pages. 2721 */ 2722 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2723 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2724 sc->cache_trim_mode = 1; 2725 else 2726 sc->cache_trim_mode = 0; 2727 2728 /* 2729 * Prevent the reclaimer from falling into the cache trap: as 2730 * cache pages start out inactive, every cache fault will tip 2731 * the scan balance towards the file LRU. And as the file LRU 2732 * shrinks, so does the window for rotation from references. 2733 * This means we have a runaway feedback loop where a tiny 2734 * thrashing file LRU becomes infinitely more attractive than 2735 * anon pages. Try to detect this based on file LRU size. 2736 */ 2737 if (!cgroup_reclaim(sc)) { 2738 unsigned long total_high_wmark = 0; 2739 unsigned long free, anon; 2740 int z; 2741 2742 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2743 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2744 node_page_state(pgdat, NR_INACTIVE_FILE); 2745 2746 for (z = 0; z < MAX_NR_ZONES; z++) { 2747 struct zone *zone = &pgdat->node_zones[z]; 2748 if (!managed_zone(zone)) 2749 continue; 2750 2751 total_high_wmark += high_wmark_pages(zone); 2752 } 2753 2754 /* 2755 * Consider anon: if that's low too, this isn't a 2756 * runaway file reclaim problem, but rather just 2757 * extreme pressure. Reclaim as per usual then. 2758 */ 2759 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2760 2761 sc->file_is_tiny = 2762 file + free <= total_high_wmark && 2763 !(sc->may_deactivate & DEACTIVATE_ANON) && 2764 anon >> sc->priority; 2765 } 2766 2767 shrink_node_memcgs(pgdat, sc); 2768 2769 if (reclaim_state) { 2770 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2771 reclaim_state->reclaimed_slab = 0; 2772 } 2773 2774 /* Record the subtree's reclaim efficiency */ 2775 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2776 sc->nr_scanned - nr_scanned, 2777 sc->nr_reclaimed - nr_reclaimed); 2778 2779 if (sc->nr_reclaimed - nr_reclaimed) 2780 reclaimable = true; 2781 2782 if (current_is_kswapd()) { 2783 /* 2784 * If reclaim is isolating dirty pages under writeback, 2785 * it implies that the long-lived page allocation rate 2786 * is exceeding the page laundering rate. Either the 2787 * global limits are not being effective at throttling 2788 * processes due to the page distribution throughout 2789 * zones or there is heavy usage of a slow backing 2790 * device. The only option is to throttle from reclaim 2791 * context which is not ideal as there is no guarantee 2792 * the dirtying process is throttled in the same way 2793 * balance_dirty_pages() manages. 2794 * 2795 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2796 * count the number of pages under pages flagged for 2797 * immediate reclaim and stall if any are encountered 2798 * in the nr_immediate check below. 2799 */ 2800 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2801 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2802 2803 /* Allow kswapd to start writing pages during reclaim.*/ 2804 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2805 set_bit(PGDAT_DIRTY, &pgdat->flags); 2806 2807 /* 2808 * If kswapd scans pages marked marked for immediate 2809 * reclaim and under writeback (nr_immediate), it 2810 * implies that pages are cycling through the LRU 2811 * faster than they are written so also forcibly stall. 2812 */ 2813 if (sc->nr.immediate) 2814 congestion_wait(BLK_RW_ASYNC, HZ/10); 2815 } 2816 2817 /* 2818 * Tag a node/memcg as congested if all the dirty pages 2819 * scanned were backed by a congested BDI and 2820 * wait_iff_congested will stall. 2821 * 2822 * Legacy memcg will stall in page writeback so avoid forcibly 2823 * stalling in wait_iff_congested(). 2824 */ 2825 if ((current_is_kswapd() || 2826 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2827 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2828 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2829 2830 /* 2831 * Stall direct reclaim for IO completions if underlying BDIs 2832 * and node is congested. Allow kswapd to continue until it 2833 * starts encountering unqueued dirty pages or cycling through 2834 * the LRU too quickly. 2835 */ 2836 if (!current_is_kswapd() && current_may_throttle() && 2837 !sc->hibernation_mode && 2838 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2839 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2840 2841 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2842 sc)) 2843 goto again; 2844 2845 /* 2846 * Kswapd gives up on balancing particular nodes after too 2847 * many failures to reclaim anything from them and goes to 2848 * sleep. On reclaim progress, reset the failure counter. A 2849 * successful direct reclaim run will revive a dormant kswapd. 2850 */ 2851 if (reclaimable) 2852 pgdat->kswapd_failures = 0; 2853 } 2854 2855 /* 2856 * Returns true if compaction should go ahead for a costly-order request, or 2857 * the allocation would already succeed without compaction. Return false if we 2858 * should reclaim first. 2859 */ 2860 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2861 { 2862 unsigned long watermark; 2863 enum compact_result suitable; 2864 2865 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2866 if (suitable == COMPACT_SUCCESS) 2867 /* Allocation should succeed already. Don't reclaim. */ 2868 return true; 2869 if (suitable == COMPACT_SKIPPED) 2870 /* Compaction cannot yet proceed. Do reclaim. */ 2871 return false; 2872 2873 /* 2874 * Compaction is already possible, but it takes time to run and there 2875 * are potentially other callers using the pages just freed. So proceed 2876 * with reclaim to make a buffer of free pages available to give 2877 * compaction a reasonable chance of completing and allocating the page. 2878 * Note that we won't actually reclaim the whole buffer in one attempt 2879 * as the target watermark in should_continue_reclaim() is lower. But if 2880 * we are already above the high+gap watermark, don't reclaim at all. 2881 */ 2882 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2883 2884 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2885 } 2886 2887 /* 2888 * This is the direct reclaim path, for page-allocating processes. We only 2889 * try to reclaim pages from zones which will satisfy the caller's allocation 2890 * request. 2891 * 2892 * If a zone is deemed to be full of pinned pages then just give it a light 2893 * scan then give up on it. 2894 */ 2895 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2896 { 2897 struct zoneref *z; 2898 struct zone *zone; 2899 unsigned long nr_soft_reclaimed; 2900 unsigned long nr_soft_scanned; 2901 gfp_t orig_mask; 2902 pg_data_t *last_pgdat = NULL; 2903 2904 /* 2905 * If the number of buffer_heads in the machine exceeds the maximum 2906 * allowed level, force direct reclaim to scan the highmem zone as 2907 * highmem pages could be pinning lowmem pages storing buffer_heads 2908 */ 2909 orig_mask = sc->gfp_mask; 2910 if (buffer_heads_over_limit) { 2911 sc->gfp_mask |= __GFP_HIGHMEM; 2912 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2913 } 2914 2915 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2916 sc->reclaim_idx, sc->nodemask) { 2917 /* 2918 * Take care memory controller reclaiming has small influence 2919 * to global LRU. 2920 */ 2921 if (!cgroup_reclaim(sc)) { 2922 if (!cpuset_zone_allowed(zone, 2923 GFP_KERNEL | __GFP_HARDWALL)) 2924 continue; 2925 2926 /* 2927 * If we already have plenty of memory free for 2928 * compaction in this zone, don't free any more. 2929 * Even though compaction is invoked for any 2930 * non-zero order, only frequent costly order 2931 * reclamation is disruptive enough to become a 2932 * noticeable problem, like transparent huge 2933 * page allocations. 2934 */ 2935 if (IS_ENABLED(CONFIG_COMPACTION) && 2936 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2937 compaction_ready(zone, sc)) { 2938 sc->compaction_ready = true; 2939 continue; 2940 } 2941 2942 /* 2943 * Shrink each node in the zonelist once. If the 2944 * zonelist is ordered by zone (not the default) then a 2945 * node may be shrunk multiple times but in that case 2946 * the user prefers lower zones being preserved. 2947 */ 2948 if (zone->zone_pgdat == last_pgdat) 2949 continue; 2950 2951 /* 2952 * This steals pages from memory cgroups over softlimit 2953 * and returns the number of reclaimed pages and 2954 * scanned pages. This works for global memory pressure 2955 * and balancing, not for a memcg's limit. 2956 */ 2957 nr_soft_scanned = 0; 2958 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2959 sc->order, sc->gfp_mask, 2960 &nr_soft_scanned); 2961 sc->nr_reclaimed += nr_soft_reclaimed; 2962 sc->nr_scanned += nr_soft_scanned; 2963 /* need some check for avoid more shrink_zone() */ 2964 } 2965 2966 /* See comment about same check for global reclaim above */ 2967 if (zone->zone_pgdat == last_pgdat) 2968 continue; 2969 last_pgdat = zone->zone_pgdat; 2970 shrink_node(zone->zone_pgdat, sc); 2971 } 2972 2973 /* 2974 * Restore to original mask to avoid the impact on the caller if we 2975 * promoted it to __GFP_HIGHMEM. 2976 */ 2977 sc->gfp_mask = orig_mask; 2978 } 2979 2980 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2981 { 2982 struct lruvec *target_lruvec; 2983 unsigned long refaults; 2984 2985 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2986 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE); 2987 target_lruvec->refaults = refaults; 2988 } 2989 2990 /* 2991 * This is the main entry point to direct page reclaim. 2992 * 2993 * If a full scan of the inactive list fails to free enough memory then we 2994 * are "out of memory" and something needs to be killed. 2995 * 2996 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2997 * high - the zone may be full of dirty or under-writeback pages, which this 2998 * caller can't do much about. We kick the writeback threads and take explicit 2999 * naps in the hope that some of these pages can be written. But if the 3000 * allocating task holds filesystem locks which prevent writeout this might not 3001 * work, and the allocation attempt will fail. 3002 * 3003 * returns: 0, if no pages reclaimed 3004 * else, the number of pages reclaimed 3005 */ 3006 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3007 struct scan_control *sc) 3008 { 3009 int initial_priority = sc->priority; 3010 pg_data_t *last_pgdat; 3011 struct zoneref *z; 3012 struct zone *zone; 3013 retry: 3014 delayacct_freepages_start(); 3015 3016 if (!cgroup_reclaim(sc)) 3017 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3018 3019 do { 3020 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3021 sc->priority); 3022 sc->nr_scanned = 0; 3023 shrink_zones(zonelist, sc); 3024 3025 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3026 break; 3027 3028 if (sc->compaction_ready) 3029 break; 3030 3031 /* 3032 * If we're getting trouble reclaiming, start doing 3033 * writepage even in laptop mode. 3034 */ 3035 if (sc->priority < DEF_PRIORITY - 2) 3036 sc->may_writepage = 1; 3037 } while (--sc->priority >= 0); 3038 3039 last_pgdat = NULL; 3040 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3041 sc->nodemask) { 3042 if (zone->zone_pgdat == last_pgdat) 3043 continue; 3044 last_pgdat = zone->zone_pgdat; 3045 3046 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3047 3048 if (cgroup_reclaim(sc)) { 3049 struct lruvec *lruvec; 3050 3051 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3052 zone->zone_pgdat); 3053 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3054 } 3055 } 3056 3057 delayacct_freepages_end(); 3058 3059 if (sc->nr_reclaimed) 3060 return sc->nr_reclaimed; 3061 3062 /* Aborted reclaim to try compaction? don't OOM, then */ 3063 if (sc->compaction_ready) 3064 return 1; 3065 3066 /* 3067 * We make inactive:active ratio decisions based on the node's 3068 * composition of memory, but a restrictive reclaim_idx or a 3069 * memory.low cgroup setting can exempt large amounts of 3070 * memory from reclaim. Neither of which are very common, so 3071 * instead of doing costly eligibility calculations of the 3072 * entire cgroup subtree up front, we assume the estimates are 3073 * good, and retry with forcible deactivation if that fails. 3074 */ 3075 if (sc->skipped_deactivate) { 3076 sc->priority = initial_priority; 3077 sc->force_deactivate = 1; 3078 sc->skipped_deactivate = 0; 3079 goto retry; 3080 } 3081 3082 /* Untapped cgroup reserves? Don't OOM, retry. */ 3083 if (sc->memcg_low_skipped) { 3084 sc->priority = initial_priority; 3085 sc->force_deactivate = 0; 3086 sc->memcg_low_reclaim = 1; 3087 sc->memcg_low_skipped = 0; 3088 goto retry; 3089 } 3090 3091 return 0; 3092 } 3093 3094 static bool allow_direct_reclaim(pg_data_t *pgdat) 3095 { 3096 struct zone *zone; 3097 unsigned long pfmemalloc_reserve = 0; 3098 unsigned long free_pages = 0; 3099 int i; 3100 bool wmark_ok; 3101 3102 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3103 return true; 3104 3105 for (i = 0; i <= ZONE_NORMAL; i++) { 3106 zone = &pgdat->node_zones[i]; 3107 if (!managed_zone(zone)) 3108 continue; 3109 3110 if (!zone_reclaimable_pages(zone)) 3111 continue; 3112 3113 pfmemalloc_reserve += min_wmark_pages(zone); 3114 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3115 } 3116 3117 /* If there are no reserves (unexpected config) then do not throttle */ 3118 if (!pfmemalloc_reserve) 3119 return true; 3120 3121 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3122 3123 /* kswapd must be awake if processes are being throttled */ 3124 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3125 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3126 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3127 3128 wake_up_interruptible(&pgdat->kswapd_wait); 3129 } 3130 3131 return wmark_ok; 3132 } 3133 3134 /* 3135 * Throttle direct reclaimers if backing storage is backed by the network 3136 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3137 * depleted. kswapd will continue to make progress and wake the processes 3138 * when the low watermark is reached. 3139 * 3140 * Returns true if a fatal signal was delivered during throttling. If this 3141 * happens, the page allocator should not consider triggering the OOM killer. 3142 */ 3143 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3144 nodemask_t *nodemask) 3145 { 3146 struct zoneref *z; 3147 struct zone *zone; 3148 pg_data_t *pgdat = NULL; 3149 3150 /* 3151 * Kernel threads should not be throttled as they may be indirectly 3152 * responsible for cleaning pages necessary for reclaim to make forward 3153 * progress. kjournald for example may enter direct reclaim while 3154 * committing a transaction where throttling it could forcing other 3155 * processes to block on log_wait_commit(). 3156 */ 3157 if (current->flags & PF_KTHREAD) 3158 goto out; 3159 3160 /* 3161 * If a fatal signal is pending, this process should not throttle. 3162 * It should return quickly so it can exit and free its memory 3163 */ 3164 if (fatal_signal_pending(current)) 3165 goto out; 3166 3167 /* 3168 * Check if the pfmemalloc reserves are ok by finding the first node 3169 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3170 * GFP_KERNEL will be required for allocating network buffers when 3171 * swapping over the network so ZONE_HIGHMEM is unusable. 3172 * 3173 * Throttling is based on the first usable node and throttled processes 3174 * wait on a queue until kswapd makes progress and wakes them. There 3175 * is an affinity then between processes waking up and where reclaim 3176 * progress has been made assuming the process wakes on the same node. 3177 * More importantly, processes running on remote nodes will not compete 3178 * for remote pfmemalloc reserves and processes on different nodes 3179 * should make reasonable progress. 3180 */ 3181 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3182 gfp_zone(gfp_mask), nodemask) { 3183 if (zone_idx(zone) > ZONE_NORMAL) 3184 continue; 3185 3186 /* Throttle based on the first usable node */ 3187 pgdat = zone->zone_pgdat; 3188 if (allow_direct_reclaim(pgdat)) 3189 goto out; 3190 break; 3191 } 3192 3193 /* If no zone was usable by the allocation flags then do not throttle */ 3194 if (!pgdat) 3195 goto out; 3196 3197 /* Account for the throttling */ 3198 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3199 3200 /* 3201 * If the caller cannot enter the filesystem, it's possible that it 3202 * is due to the caller holding an FS lock or performing a journal 3203 * transaction in the case of a filesystem like ext[3|4]. In this case, 3204 * it is not safe to block on pfmemalloc_wait as kswapd could be 3205 * blocked waiting on the same lock. Instead, throttle for up to a 3206 * second before continuing. 3207 */ 3208 if (!(gfp_mask & __GFP_FS)) { 3209 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3210 allow_direct_reclaim(pgdat), HZ); 3211 3212 goto check_pending; 3213 } 3214 3215 /* Throttle until kswapd wakes the process */ 3216 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3217 allow_direct_reclaim(pgdat)); 3218 3219 check_pending: 3220 if (fatal_signal_pending(current)) 3221 return true; 3222 3223 out: 3224 return false; 3225 } 3226 3227 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3228 gfp_t gfp_mask, nodemask_t *nodemask) 3229 { 3230 unsigned long nr_reclaimed; 3231 struct scan_control sc = { 3232 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3233 .gfp_mask = current_gfp_context(gfp_mask), 3234 .reclaim_idx = gfp_zone(gfp_mask), 3235 .order = order, 3236 .nodemask = nodemask, 3237 .priority = DEF_PRIORITY, 3238 .may_writepage = !laptop_mode, 3239 .may_unmap = 1, 3240 .may_swap = 1, 3241 }; 3242 3243 /* 3244 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3245 * Confirm they are large enough for max values. 3246 */ 3247 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3248 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3249 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3250 3251 /* 3252 * Do not enter reclaim if fatal signal was delivered while throttled. 3253 * 1 is returned so that the page allocator does not OOM kill at this 3254 * point. 3255 */ 3256 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3257 return 1; 3258 3259 set_task_reclaim_state(current, &sc.reclaim_state); 3260 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3261 3262 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3263 3264 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3265 set_task_reclaim_state(current, NULL); 3266 3267 return nr_reclaimed; 3268 } 3269 3270 #ifdef CONFIG_MEMCG 3271 3272 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3273 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3274 gfp_t gfp_mask, bool noswap, 3275 pg_data_t *pgdat, 3276 unsigned long *nr_scanned) 3277 { 3278 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3279 struct scan_control sc = { 3280 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3281 .target_mem_cgroup = memcg, 3282 .may_writepage = !laptop_mode, 3283 .may_unmap = 1, 3284 .reclaim_idx = MAX_NR_ZONES - 1, 3285 .may_swap = !noswap, 3286 }; 3287 3288 WARN_ON_ONCE(!current->reclaim_state); 3289 3290 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3291 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3292 3293 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3294 sc.gfp_mask); 3295 3296 /* 3297 * NOTE: Although we can get the priority field, using it 3298 * here is not a good idea, since it limits the pages we can scan. 3299 * if we don't reclaim here, the shrink_node from balance_pgdat 3300 * will pick up pages from other mem cgroup's as well. We hack 3301 * the priority and make it zero. 3302 */ 3303 shrink_lruvec(lruvec, &sc); 3304 3305 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3306 3307 *nr_scanned = sc.nr_scanned; 3308 3309 return sc.nr_reclaimed; 3310 } 3311 3312 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3313 unsigned long nr_pages, 3314 gfp_t gfp_mask, 3315 bool may_swap) 3316 { 3317 unsigned long nr_reclaimed; 3318 unsigned long pflags; 3319 unsigned int noreclaim_flag; 3320 struct scan_control sc = { 3321 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3322 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3323 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3324 .reclaim_idx = MAX_NR_ZONES - 1, 3325 .target_mem_cgroup = memcg, 3326 .priority = DEF_PRIORITY, 3327 .may_writepage = !laptop_mode, 3328 .may_unmap = 1, 3329 .may_swap = may_swap, 3330 }; 3331 /* 3332 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3333 * equal pressure on all the nodes. This is based on the assumption that 3334 * the reclaim does not bail out early. 3335 */ 3336 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3337 3338 set_task_reclaim_state(current, &sc.reclaim_state); 3339 3340 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3341 3342 psi_memstall_enter(&pflags); 3343 noreclaim_flag = memalloc_noreclaim_save(); 3344 3345 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3346 3347 memalloc_noreclaim_restore(noreclaim_flag); 3348 psi_memstall_leave(&pflags); 3349 3350 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3351 set_task_reclaim_state(current, NULL); 3352 3353 return nr_reclaimed; 3354 } 3355 #endif 3356 3357 static void age_active_anon(struct pglist_data *pgdat, 3358 struct scan_control *sc) 3359 { 3360 struct mem_cgroup *memcg; 3361 struct lruvec *lruvec; 3362 3363 if (!total_swap_pages) 3364 return; 3365 3366 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3367 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3368 return; 3369 3370 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3371 do { 3372 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3373 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3374 sc, LRU_ACTIVE_ANON); 3375 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3376 } while (memcg); 3377 } 3378 3379 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3380 { 3381 int i; 3382 struct zone *zone; 3383 3384 /* 3385 * Check for watermark boosts top-down as the higher zones 3386 * are more likely to be boosted. Both watermarks and boosts 3387 * should not be checked at the time time as reclaim would 3388 * start prematurely when there is no boosting and a lower 3389 * zone is balanced. 3390 */ 3391 for (i = highest_zoneidx; i >= 0; i--) { 3392 zone = pgdat->node_zones + i; 3393 if (!managed_zone(zone)) 3394 continue; 3395 3396 if (zone->watermark_boost) 3397 return true; 3398 } 3399 3400 return false; 3401 } 3402 3403 /* 3404 * Returns true if there is an eligible zone balanced for the request order 3405 * and highest_zoneidx 3406 */ 3407 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3408 { 3409 int i; 3410 unsigned long mark = -1; 3411 struct zone *zone; 3412 3413 /* 3414 * Check watermarks bottom-up as lower zones are more likely to 3415 * meet watermarks. 3416 */ 3417 for (i = 0; i <= highest_zoneidx; i++) { 3418 zone = pgdat->node_zones + i; 3419 3420 if (!managed_zone(zone)) 3421 continue; 3422 3423 mark = high_wmark_pages(zone); 3424 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3425 return true; 3426 } 3427 3428 /* 3429 * If a node has no populated zone within highest_zoneidx, it does not 3430 * need balancing by definition. This can happen if a zone-restricted 3431 * allocation tries to wake a remote kswapd. 3432 */ 3433 if (mark == -1) 3434 return true; 3435 3436 return false; 3437 } 3438 3439 /* Clear pgdat state for congested, dirty or under writeback. */ 3440 static void clear_pgdat_congested(pg_data_t *pgdat) 3441 { 3442 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3443 3444 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3445 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3446 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3447 } 3448 3449 /* 3450 * Prepare kswapd for sleeping. This verifies that there are no processes 3451 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3452 * 3453 * Returns true if kswapd is ready to sleep 3454 */ 3455 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3456 int highest_zoneidx) 3457 { 3458 /* 3459 * The throttled processes are normally woken up in balance_pgdat() as 3460 * soon as allow_direct_reclaim() is true. But there is a potential 3461 * race between when kswapd checks the watermarks and a process gets 3462 * throttled. There is also a potential race if processes get 3463 * throttled, kswapd wakes, a large process exits thereby balancing the 3464 * zones, which causes kswapd to exit balance_pgdat() before reaching 3465 * the wake up checks. If kswapd is going to sleep, no process should 3466 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3467 * the wake up is premature, processes will wake kswapd and get 3468 * throttled again. The difference from wake ups in balance_pgdat() is 3469 * that here we are under prepare_to_wait(). 3470 */ 3471 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3472 wake_up_all(&pgdat->pfmemalloc_wait); 3473 3474 /* Hopeless node, leave it to direct reclaim */ 3475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3476 return true; 3477 3478 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3479 clear_pgdat_congested(pgdat); 3480 return true; 3481 } 3482 3483 return false; 3484 } 3485 3486 /* 3487 * kswapd shrinks a node of pages that are at or below the highest usable 3488 * zone that is currently unbalanced. 3489 * 3490 * Returns true if kswapd scanned at least the requested number of pages to 3491 * reclaim or if the lack of progress was due to pages under writeback. 3492 * This is used to determine if the scanning priority needs to be raised. 3493 */ 3494 static bool kswapd_shrink_node(pg_data_t *pgdat, 3495 struct scan_control *sc) 3496 { 3497 struct zone *zone; 3498 int z; 3499 3500 /* Reclaim a number of pages proportional to the number of zones */ 3501 sc->nr_to_reclaim = 0; 3502 for (z = 0; z <= sc->reclaim_idx; z++) { 3503 zone = pgdat->node_zones + z; 3504 if (!managed_zone(zone)) 3505 continue; 3506 3507 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3508 } 3509 3510 /* 3511 * Historically care was taken to put equal pressure on all zones but 3512 * now pressure is applied based on node LRU order. 3513 */ 3514 shrink_node(pgdat, sc); 3515 3516 /* 3517 * Fragmentation may mean that the system cannot be rebalanced for 3518 * high-order allocations. If twice the allocation size has been 3519 * reclaimed then recheck watermarks only at order-0 to prevent 3520 * excessive reclaim. Assume that a process requested a high-order 3521 * can direct reclaim/compact. 3522 */ 3523 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3524 sc->order = 0; 3525 3526 return sc->nr_scanned >= sc->nr_to_reclaim; 3527 } 3528 3529 /* 3530 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3531 * that are eligible for use by the caller until at least one zone is 3532 * balanced. 3533 * 3534 * Returns the order kswapd finished reclaiming at. 3535 * 3536 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3537 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3538 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3539 * or lower is eligible for reclaim until at least one usable zone is 3540 * balanced. 3541 */ 3542 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3543 { 3544 int i; 3545 unsigned long nr_soft_reclaimed; 3546 unsigned long nr_soft_scanned; 3547 unsigned long pflags; 3548 unsigned long nr_boost_reclaim; 3549 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3550 bool boosted; 3551 struct zone *zone; 3552 struct scan_control sc = { 3553 .gfp_mask = GFP_KERNEL, 3554 .order = order, 3555 .may_unmap = 1, 3556 }; 3557 3558 set_task_reclaim_state(current, &sc.reclaim_state); 3559 psi_memstall_enter(&pflags); 3560 __fs_reclaim_acquire(); 3561 3562 count_vm_event(PAGEOUTRUN); 3563 3564 /* 3565 * Account for the reclaim boost. Note that the zone boost is left in 3566 * place so that parallel allocations that are near the watermark will 3567 * stall or direct reclaim until kswapd is finished. 3568 */ 3569 nr_boost_reclaim = 0; 3570 for (i = 0; i <= highest_zoneidx; i++) { 3571 zone = pgdat->node_zones + i; 3572 if (!managed_zone(zone)) 3573 continue; 3574 3575 nr_boost_reclaim += zone->watermark_boost; 3576 zone_boosts[i] = zone->watermark_boost; 3577 } 3578 boosted = nr_boost_reclaim; 3579 3580 restart: 3581 sc.priority = DEF_PRIORITY; 3582 do { 3583 unsigned long nr_reclaimed = sc.nr_reclaimed; 3584 bool raise_priority = true; 3585 bool balanced; 3586 bool ret; 3587 3588 sc.reclaim_idx = highest_zoneidx; 3589 3590 /* 3591 * If the number of buffer_heads exceeds the maximum allowed 3592 * then consider reclaiming from all zones. This has a dual 3593 * purpose -- on 64-bit systems it is expected that 3594 * buffer_heads are stripped during active rotation. On 32-bit 3595 * systems, highmem pages can pin lowmem memory and shrinking 3596 * buffers can relieve lowmem pressure. Reclaim may still not 3597 * go ahead if all eligible zones for the original allocation 3598 * request are balanced to avoid excessive reclaim from kswapd. 3599 */ 3600 if (buffer_heads_over_limit) { 3601 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3602 zone = pgdat->node_zones + i; 3603 if (!managed_zone(zone)) 3604 continue; 3605 3606 sc.reclaim_idx = i; 3607 break; 3608 } 3609 } 3610 3611 /* 3612 * If the pgdat is imbalanced then ignore boosting and preserve 3613 * the watermarks for a later time and restart. Note that the 3614 * zone watermarks will be still reset at the end of balancing 3615 * on the grounds that the normal reclaim should be enough to 3616 * re-evaluate if boosting is required when kswapd next wakes. 3617 */ 3618 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3619 if (!balanced && nr_boost_reclaim) { 3620 nr_boost_reclaim = 0; 3621 goto restart; 3622 } 3623 3624 /* 3625 * If boosting is not active then only reclaim if there are no 3626 * eligible zones. Note that sc.reclaim_idx is not used as 3627 * buffer_heads_over_limit may have adjusted it. 3628 */ 3629 if (!nr_boost_reclaim && balanced) 3630 goto out; 3631 3632 /* Limit the priority of boosting to avoid reclaim writeback */ 3633 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3634 raise_priority = false; 3635 3636 /* 3637 * Do not writeback or swap pages for boosted reclaim. The 3638 * intent is to relieve pressure not issue sub-optimal IO 3639 * from reclaim context. If no pages are reclaimed, the 3640 * reclaim will be aborted. 3641 */ 3642 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3643 sc.may_swap = !nr_boost_reclaim; 3644 3645 /* 3646 * Do some background aging of the anon list, to give 3647 * pages a chance to be referenced before reclaiming. All 3648 * pages are rotated regardless of classzone as this is 3649 * about consistent aging. 3650 */ 3651 age_active_anon(pgdat, &sc); 3652 3653 /* 3654 * If we're getting trouble reclaiming, start doing writepage 3655 * even in laptop mode. 3656 */ 3657 if (sc.priority < DEF_PRIORITY - 2) 3658 sc.may_writepage = 1; 3659 3660 /* Call soft limit reclaim before calling shrink_node. */ 3661 sc.nr_scanned = 0; 3662 nr_soft_scanned = 0; 3663 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3664 sc.gfp_mask, &nr_soft_scanned); 3665 sc.nr_reclaimed += nr_soft_reclaimed; 3666 3667 /* 3668 * There should be no need to raise the scanning priority if 3669 * enough pages are already being scanned that that high 3670 * watermark would be met at 100% efficiency. 3671 */ 3672 if (kswapd_shrink_node(pgdat, &sc)) 3673 raise_priority = false; 3674 3675 /* 3676 * If the low watermark is met there is no need for processes 3677 * to be throttled on pfmemalloc_wait as they should not be 3678 * able to safely make forward progress. Wake them 3679 */ 3680 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3681 allow_direct_reclaim(pgdat)) 3682 wake_up_all(&pgdat->pfmemalloc_wait); 3683 3684 /* Check if kswapd should be suspending */ 3685 __fs_reclaim_release(); 3686 ret = try_to_freeze(); 3687 __fs_reclaim_acquire(); 3688 if (ret || kthread_should_stop()) 3689 break; 3690 3691 /* 3692 * Raise priority if scanning rate is too low or there was no 3693 * progress in reclaiming pages 3694 */ 3695 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3696 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3697 3698 /* 3699 * If reclaim made no progress for a boost, stop reclaim as 3700 * IO cannot be queued and it could be an infinite loop in 3701 * extreme circumstances. 3702 */ 3703 if (nr_boost_reclaim && !nr_reclaimed) 3704 break; 3705 3706 if (raise_priority || !nr_reclaimed) 3707 sc.priority--; 3708 } while (sc.priority >= 1); 3709 3710 if (!sc.nr_reclaimed) 3711 pgdat->kswapd_failures++; 3712 3713 out: 3714 /* If reclaim was boosted, account for the reclaim done in this pass */ 3715 if (boosted) { 3716 unsigned long flags; 3717 3718 for (i = 0; i <= highest_zoneidx; i++) { 3719 if (!zone_boosts[i]) 3720 continue; 3721 3722 /* Increments are under the zone lock */ 3723 zone = pgdat->node_zones + i; 3724 spin_lock_irqsave(&zone->lock, flags); 3725 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3726 spin_unlock_irqrestore(&zone->lock, flags); 3727 } 3728 3729 /* 3730 * As there is now likely space, wakeup kcompact to defragment 3731 * pageblocks. 3732 */ 3733 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3734 } 3735 3736 snapshot_refaults(NULL, pgdat); 3737 __fs_reclaim_release(); 3738 psi_memstall_leave(&pflags); 3739 set_task_reclaim_state(current, NULL); 3740 3741 /* 3742 * Return the order kswapd stopped reclaiming at as 3743 * prepare_kswapd_sleep() takes it into account. If another caller 3744 * entered the allocator slow path while kswapd was awake, order will 3745 * remain at the higher level. 3746 */ 3747 return sc.order; 3748 } 3749 3750 /* 3751 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3752 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3753 * not a valid index then either kswapd runs for first time or kswapd couldn't 3754 * sleep after previous reclaim attempt (node is still unbalanced). In that 3755 * case return the zone index of the previous kswapd reclaim cycle. 3756 */ 3757 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3758 enum zone_type prev_highest_zoneidx) 3759 { 3760 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3761 3762 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3763 } 3764 3765 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3766 unsigned int highest_zoneidx) 3767 { 3768 long remaining = 0; 3769 DEFINE_WAIT(wait); 3770 3771 if (freezing(current) || kthread_should_stop()) 3772 return; 3773 3774 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3775 3776 /* 3777 * Try to sleep for a short interval. Note that kcompactd will only be 3778 * woken if it is possible to sleep for a short interval. This is 3779 * deliberate on the assumption that if reclaim cannot keep an 3780 * eligible zone balanced that it's also unlikely that compaction will 3781 * succeed. 3782 */ 3783 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3784 /* 3785 * Compaction records what page blocks it recently failed to 3786 * isolate pages from and skips them in the future scanning. 3787 * When kswapd is going to sleep, it is reasonable to assume 3788 * that pages and compaction may succeed so reset the cache. 3789 */ 3790 reset_isolation_suitable(pgdat); 3791 3792 /* 3793 * We have freed the memory, now we should compact it to make 3794 * allocation of the requested order possible. 3795 */ 3796 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3797 3798 remaining = schedule_timeout(HZ/10); 3799 3800 /* 3801 * If woken prematurely then reset kswapd_highest_zoneidx and 3802 * order. The values will either be from a wakeup request or 3803 * the previous request that slept prematurely. 3804 */ 3805 if (remaining) { 3806 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3807 kswapd_highest_zoneidx(pgdat, 3808 highest_zoneidx)); 3809 3810 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3811 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3812 } 3813 3814 finish_wait(&pgdat->kswapd_wait, &wait); 3815 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3816 } 3817 3818 /* 3819 * After a short sleep, check if it was a premature sleep. If not, then 3820 * go fully to sleep until explicitly woken up. 3821 */ 3822 if (!remaining && 3823 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3824 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3825 3826 /* 3827 * vmstat counters are not perfectly accurate and the estimated 3828 * value for counters such as NR_FREE_PAGES can deviate from the 3829 * true value by nr_online_cpus * threshold. To avoid the zone 3830 * watermarks being breached while under pressure, we reduce the 3831 * per-cpu vmstat threshold while kswapd is awake and restore 3832 * them before going back to sleep. 3833 */ 3834 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3835 3836 if (!kthread_should_stop()) 3837 schedule(); 3838 3839 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3840 } else { 3841 if (remaining) 3842 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3843 else 3844 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3845 } 3846 finish_wait(&pgdat->kswapd_wait, &wait); 3847 } 3848 3849 /* 3850 * The background pageout daemon, started as a kernel thread 3851 * from the init process. 3852 * 3853 * This basically trickles out pages so that we have _some_ 3854 * free memory available even if there is no other activity 3855 * that frees anything up. This is needed for things like routing 3856 * etc, where we otherwise might have all activity going on in 3857 * asynchronous contexts that cannot page things out. 3858 * 3859 * If there are applications that are active memory-allocators 3860 * (most normal use), this basically shouldn't matter. 3861 */ 3862 static int kswapd(void *p) 3863 { 3864 unsigned int alloc_order, reclaim_order; 3865 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3866 pg_data_t *pgdat = (pg_data_t*)p; 3867 struct task_struct *tsk = current; 3868 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3869 3870 if (!cpumask_empty(cpumask)) 3871 set_cpus_allowed_ptr(tsk, cpumask); 3872 3873 /* 3874 * Tell the memory management that we're a "memory allocator", 3875 * and that if we need more memory we should get access to it 3876 * regardless (see "__alloc_pages()"). "kswapd" should 3877 * never get caught in the normal page freeing logic. 3878 * 3879 * (Kswapd normally doesn't need memory anyway, but sometimes 3880 * you need a small amount of memory in order to be able to 3881 * page out something else, and this flag essentially protects 3882 * us from recursively trying to free more memory as we're 3883 * trying to free the first piece of memory in the first place). 3884 */ 3885 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3886 set_freezable(); 3887 3888 WRITE_ONCE(pgdat->kswapd_order, 0); 3889 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3890 for ( ; ; ) { 3891 bool ret; 3892 3893 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3894 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3895 highest_zoneidx); 3896 3897 kswapd_try_sleep: 3898 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3899 highest_zoneidx); 3900 3901 /* Read the new order and highest_zoneidx */ 3902 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3903 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3904 highest_zoneidx); 3905 WRITE_ONCE(pgdat->kswapd_order, 0); 3906 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3907 3908 ret = try_to_freeze(); 3909 if (kthread_should_stop()) 3910 break; 3911 3912 /* 3913 * We can speed up thawing tasks if we don't call balance_pgdat 3914 * after returning from the refrigerator 3915 */ 3916 if (ret) 3917 continue; 3918 3919 /* 3920 * Reclaim begins at the requested order but if a high-order 3921 * reclaim fails then kswapd falls back to reclaiming for 3922 * order-0. If that happens, kswapd will consider sleeping 3923 * for the order it finished reclaiming at (reclaim_order) 3924 * but kcompactd is woken to compact for the original 3925 * request (alloc_order). 3926 */ 3927 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3928 alloc_order); 3929 reclaim_order = balance_pgdat(pgdat, alloc_order, 3930 highest_zoneidx); 3931 if (reclaim_order < alloc_order) 3932 goto kswapd_try_sleep; 3933 } 3934 3935 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3936 3937 return 0; 3938 } 3939 3940 /* 3941 * A zone is low on free memory or too fragmented for high-order memory. If 3942 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3943 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3944 * has failed or is not needed, still wake up kcompactd if only compaction is 3945 * needed. 3946 */ 3947 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3948 enum zone_type highest_zoneidx) 3949 { 3950 pg_data_t *pgdat; 3951 enum zone_type curr_idx; 3952 3953 if (!managed_zone(zone)) 3954 return; 3955 3956 if (!cpuset_zone_allowed(zone, gfp_flags)) 3957 return; 3958 3959 pgdat = zone->zone_pgdat; 3960 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3961 3962 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3963 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3964 3965 if (READ_ONCE(pgdat->kswapd_order) < order) 3966 WRITE_ONCE(pgdat->kswapd_order, order); 3967 3968 if (!waitqueue_active(&pgdat->kswapd_wait)) 3969 return; 3970 3971 /* Hopeless node, leave it to direct reclaim if possible */ 3972 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3973 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3974 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3975 /* 3976 * There may be plenty of free memory available, but it's too 3977 * fragmented for high-order allocations. Wake up kcompactd 3978 * and rely on compaction_suitable() to determine if it's 3979 * needed. If it fails, it will defer subsequent attempts to 3980 * ratelimit its work. 3981 */ 3982 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3983 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3984 return; 3985 } 3986 3987 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3988 gfp_flags); 3989 wake_up_interruptible(&pgdat->kswapd_wait); 3990 } 3991 3992 #ifdef CONFIG_HIBERNATION 3993 /* 3994 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3995 * freed pages. 3996 * 3997 * Rather than trying to age LRUs the aim is to preserve the overall 3998 * LRU order by reclaiming preferentially 3999 * inactive > active > active referenced > active mapped 4000 */ 4001 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4002 { 4003 struct scan_control sc = { 4004 .nr_to_reclaim = nr_to_reclaim, 4005 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4006 .reclaim_idx = MAX_NR_ZONES - 1, 4007 .priority = DEF_PRIORITY, 4008 .may_writepage = 1, 4009 .may_unmap = 1, 4010 .may_swap = 1, 4011 .hibernation_mode = 1, 4012 }; 4013 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4014 unsigned long nr_reclaimed; 4015 unsigned int noreclaim_flag; 4016 4017 fs_reclaim_acquire(sc.gfp_mask); 4018 noreclaim_flag = memalloc_noreclaim_save(); 4019 set_task_reclaim_state(current, &sc.reclaim_state); 4020 4021 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4022 4023 set_task_reclaim_state(current, NULL); 4024 memalloc_noreclaim_restore(noreclaim_flag); 4025 fs_reclaim_release(sc.gfp_mask); 4026 4027 return nr_reclaimed; 4028 } 4029 #endif /* CONFIG_HIBERNATION */ 4030 4031 /* 4032 * This kswapd start function will be called by init and node-hot-add. 4033 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4034 */ 4035 int kswapd_run(int nid) 4036 { 4037 pg_data_t *pgdat = NODE_DATA(nid); 4038 int ret = 0; 4039 4040 if (pgdat->kswapd) 4041 return 0; 4042 4043 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4044 if (IS_ERR(pgdat->kswapd)) { 4045 /* failure at boot is fatal */ 4046 BUG_ON(system_state < SYSTEM_RUNNING); 4047 pr_err("Failed to start kswapd on node %d\n", nid); 4048 ret = PTR_ERR(pgdat->kswapd); 4049 pgdat->kswapd = NULL; 4050 } 4051 return ret; 4052 } 4053 4054 /* 4055 * Called by memory hotplug when all memory in a node is offlined. Caller must 4056 * hold mem_hotplug_begin/end(). 4057 */ 4058 void kswapd_stop(int nid) 4059 { 4060 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4061 4062 if (kswapd) { 4063 kthread_stop(kswapd); 4064 NODE_DATA(nid)->kswapd = NULL; 4065 } 4066 } 4067 4068 static int __init kswapd_init(void) 4069 { 4070 int nid; 4071 4072 swap_setup(); 4073 for_each_node_state(nid, N_MEMORY) 4074 kswapd_run(nid); 4075 return 0; 4076 } 4077 4078 module_init(kswapd_init) 4079 4080 #ifdef CONFIG_NUMA 4081 /* 4082 * Node reclaim mode 4083 * 4084 * If non-zero call node_reclaim when the number of free pages falls below 4085 * the watermarks. 4086 */ 4087 int node_reclaim_mode __read_mostly; 4088 4089 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4090 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4091 4092 /* 4093 * Priority for NODE_RECLAIM. This determines the fraction of pages 4094 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4095 * a zone. 4096 */ 4097 #define NODE_RECLAIM_PRIORITY 4 4098 4099 /* 4100 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4101 * occur. 4102 */ 4103 int sysctl_min_unmapped_ratio = 1; 4104 4105 /* 4106 * If the number of slab pages in a zone grows beyond this percentage then 4107 * slab reclaim needs to occur. 4108 */ 4109 int sysctl_min_slab_ratio = 5; 4110 4111 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4112 { 4113 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4114 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4115 node_page_state(pgdat, NR_ACTIVE_FILE); 4116 4117 /* 4118 * It's possible for there to be more file mapped pages than 4119 * accounted for by the pages on the file LRU lists because 4120 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4121 */ 4122 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4123 } 4124 4125 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4126 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4127 { 4128 unsigned long nr_pagecache_reclaimable; 4129 unsigned long delta = 0; 4130 4131 /* 4132 * If RECLAIM_UNMAP is set, then all file pages are considered 4133 * potentially reclaimable. Otherwise, we have to worry about 4134 * pages like swapcache and node_unmapped_file_pages() provides 4135 * a better estimate 4136 */ 4137 if (node_reclaim_mode & RECLAIM_UNMAP) 4138 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4139 else 4140 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4141 4142 /* If we can't clean pages, remove dirty pages from consideration */ 4143 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4144 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4145 4146 /* Watch for any possible underflows due to delta */ 4147 if (unlikely(delta > nr_pagecache_reclaimable)) 4148 delta = nr_pagecache_reclaimable; 4149 4150 return nr_pagecache_reclaimable - delta; 4151 } 4152 4153 /* 4154 * Try to free up some pages from this node through reclaim. 4155 */ 4156 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4157 { 4158 /* Minimum pages needed in order to stay on node */ 4159 const unsigned long nr_pages = 1 << order; 4160 struct task_struct *p = current; 4161 unsigned int noreclaim_flag; 4162 struct scan_control sc = { 4163 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4164 .gfp_mask = current_gfp_context(gfp_mask), 4165 .order = order, 4166 .priority = NODE_RECLAIM_PRIORITY, 4167 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4168 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4169 .may_swap = 1, 4170 .reclaim_idx = gfp_zone(gfp_mask), 4171 }; 4172 4173 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4174 sc.gfp_mask); 4175 4176 cond_resched(); 4177 fs_reclaim_acquire(sc.gfp_mask); 4178 /* 4179 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4180 * and we also need to be able to write out pages for RECLAIM_WRITE 4181 * and RECLAIM_UNMAP. 4182 */ 4183 noreclaim_flag = memalloc_noreclaim_save(); 4184 p->flags |= PF_SWAPWRITE; 4185 set_task_reclaim_state(p, &sc.reclaim_state); 4186 4187 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4188 /* 4189 * Free memory by calling shrink node with increasing 4190 * priorities until we have enough memory freed. 4191 */ 4192 do { 4193 shrink_node(pgdat, &sc); 4194 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4195 } 4196 4197 set_task_reclaim_state(p, NULL); 4198 current->flags &= ~PF_SWAPWRITE; 4199 memalloc_noreclaim_restore(noreclaim_flag); 4200 fs_reclaim_release(sc.gfp_mask); 4201 4202 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4203 4204 return sc.nr_reclaimed >= nr_pages; 4205 } 4206 4207 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4208 { 4209 int ret; 4210 4211 /* 4212 * Node reclaim reclaims unmapped file backed pages and 4213 * slab pages if we are over the defined limits. 4214 * 4215 * A small portion of unmapped file backed pages is needed for 4216 * file I/O otherwise pages read by file I/O will be immediately 4217 * thrown out if the node is overallocated. So we do not reclaim 4218 * if less than a specified percentage of the node is used by 4219 * unmapped file backed pages. 4220 */ 4221 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4222 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4223 return NODE_RECLAIM_FULL; 4224 4225 /* 4226 * Do not scan if the allocation should not be delayed. 4227 */ 4228 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4229 return NODE_RECLAIM_NOSCAN; 4230 4231 /* 4232 * Only run node reclaim on the local node or on nodes that do not 4233 * have associated processors. This will favor the local processor 4234 * over remote processors and spread off node memory allocations 4235 * as wide as possible. 4236 */ 4237 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4238 return NODE_RECLAIM_NOSCAN; 4239 4240 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4241 return NODE_RECLAIM_NOSCAN; 4242 4243 ret = __node_reclaim(pgdat, gfp_mask, order); 4244 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4245 4246 if (!ret) 4247 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4248 4249 return ret; 4250 } 4251 #endif 4252 4253 /** 4254 * check_move_unevictable_pages - check pages for evictability and move to 4255 * appropriate zone lru list 4256 * @pvec: pagevec with lru pages to check 4257 * 4258 * Checks pages for evictability, if an evictable page is in the unevictable 4259 * lru list, moves it to the appropriate evictable lru list. This function 4260 * should be only used for lru pages. 4261 */ 4262 void check_move_unevictable_pages(struct pagevec *pvec) 4263 { 4264 struct lruvec *lruvec; 4265 struct pglist_data *pgdat = NULL; 4266 int pgscanned = 0; 4267 int pgrescued = 0; 4268 int i; 4269 4270 for (i = 0; i < pvec->nr; i++) { 4271 struct page *page = pvec->pages[i]; 4272 struct pglist_data *pagepgdat = page_pgdat(page); 4273 4274 pgscanned++; 4275 if (pagepgdat != pgdat) { 4276 if (pgdat) 4277 spin_unlock_irq(&pgdat->lru_lock); 4278 pgdat = pagepgdat; 4279 spin_lock_irq(&pgdat->lru_lock); 4280 } 4281 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4282 4283 if (!PageLRU(page) || !PageUnevictable(page)) 4284 continue; 4285 4286 if (page_evictable(page)) { 4287 enum lru_list lru = page_lru_base_type(page); 4288 4289 VM_BUG_ON_PAGE(PageActive(page), page); 4290 ClearPageUnevictable(page); 4291 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4292 add_page_to_lru_list(page, lruvec, lru); 4293 pgrescued++; 4294 } 4295 } 4296 4297 if (pgdat) { 4298 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4299 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4300 spin_unlock_irq(&pgdat->lru_lock); 4301 } 4302 } 4303 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4304