xref: /openbmc/linux/mm/vmscan.c (revision 97da55fc)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 struct scan_control {
57 	/* Incremented by the number of inactive pages that were scanned */
58 	unsigned long nr_scanned;
59 
60 	/* Number of pages freed so far during a call to shrink_zones() */
61 	unsigned long nr_reclaimed;
62 
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	unsigned long hibernation_mode;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	int may_writepage;
72 
73 	/* Can mapped pages be reclaimed? */
74 	int may_unmap;
75 
76 	/* Can pages be swapped as part of reclaim? */
77 	int may_swap;
78 
79 	int order;
80 
81 	/* Scan (total_size >> priority) pages at once */
82 	int priority;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 	 * are scanned.
93 	 */
94 	nodemask_t	*nodemask;
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 	return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 	return true;
145 }
146 #endif
147 
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 	if (!mem_cgroup_disabled())
151 		return mem_cgroup_get_lru_size(lruvec, lru);
152 
153 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155 
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 	atomic_long_set(&shrinker->nr_in_batch, 0);
162 	down_write(&shrinker_rwsem);
163 	list_add_tail(&shrinker->list, &shrinker_list);
164 	up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167 
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 	down_write(&shrinker_rwsem);
174 	list_del(&shrinker->list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178 
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 				     struct shrink_control *sc,
181 				     unsigned long nr_to_scan)
182 {
183 	sc->nr_to_scan = nr_to_scan;
184 	return (*shrinker->shrink)(shrinker, sc);
185 }
186 
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 			  unsigned long nr_pages_scanned,
209 			  unsigned long lru_pages)
210 {
211 	struct shrinker *shrinker;
212 	unsigned long ret = 0;
213 
214 	if (nr_pages_scanned == 0)
215 		nr_pages_scanned = SWAP_CLUSTER_MAX;
216 
217 	if (!down_read_trylock(&shrinker_rwsem)) {
218 		/* Assume we'll be able to shrink next time */
219 		ret = 1;
220 		goto out;
221 	}
222 
223 	list_for_each_entry(shrinker, &shrinker_list, list) {
224 		unsigned long long delta;
225 		long total_scan;
226 		long max_pass;
227 		int shrink_ret = 0;
228 		long nr;
229 		long new_nr;
230 		long batch_size = shrinker->batch ? shrinker->batch
231 						  : SHRINK_BATCH;
232 
233 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 		if (max_pass <= 0)
235 			continue;
236 
237 		/*
238 		 * copy the current shrinker scan count into a local variable
239 		 * and zero it so that other concurrent shrinker invocations
240 		 * don't also do this scanning work.
241 		 */
242 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 
244 		total_scan = nr;
245 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 		delta *= max_pass;
247 		do_div(delta, lru_pages + 1);
248 		total_scan += delta;
249 		if (total_scan < 0) {
250 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 			       "delete nr=%ld\n",
252 			       shrinker->shrink, total_scan);
253 			total_scan = max_pass;
254 		}
255 
256 		/*
257 		 * We need to avoid excessive windup on filesystem shrinkers
258 		 * due to large numbers of GFP_NOFS allocations causing the
259 		 * shrinkers to return -1 all the time. This results in a large
260 		 * nr being built up so when a shrink that can do some work
261 		 * comes along it empties the entire cache due to nr >>>
262 		 * max_pass.  This is bad for sustaining a working set in
263 		 * memory.
264 		 *
265 		 * Hence only allow the shrinker to scan the entire cache when
266 		 * a large delta change is calculated directly.
267 		 */
268 		if (delta < max_pass / 4)
269 			total_scan = min(total_scan, max_pass / 2);
270 
271 		/*
272 		 * Avoid risking looping forever due to too large nr value:
273 		 * never try to free more than twice the estimate number of
274 		 * freeable entries.
275 		 */
276 		if (total_scan > max_pass * 2)
277 			total_scan = max_pass * 2;
278 
279 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 					nr_pages_scanned, lru_pages,
281 					max_pass, delta, total_scan);
282 
283 		while (total_scan >= batch_size) {
284 			int nr_before;
285 
286 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 							batch_size);
289 			if (shrink_ret == -1)
290 				break;
291 			if (shrink_ret < nr_before)
292 				ret += nr_before - shrink_ret;
293 			count_vm_events(SLABS_SCANNED, batch_size);
294 			total_scan -= batch_size;
295 
296 			cond_resched();
297 		}
298 
299 		/*
300 		 * move the unused scan count back into the shrinker in a
301 		 * manner that handles concurrent updates. If we exhausted the
302 		 * scan, there is no need to do an update.
303 		 */
304 		if (total_scan > 0)
305 			new_nr = atomic_long_add_return(total_scan,
306 					&shrinker->nr_in_batch);
307 		else
308 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 
310 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 	}
312 	up_read(&shrinker_rwsem);
313 out:
314 	cond_resched();
315 	return ret;
316 }
317 
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 	/*
321 	 * A freeable page cache page is referenced only by the caller
322 	 * that isolated the page, the page cache radix tree and
323 	 * optional buffer heads at page->private.
324 	 */
325 	return page_count(page) - page_has_private(page) == 2;
326 }
327 
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 			      struct scan_control *sc)
330 {
331 	if (current->flags & PF_SWAPWRITE)
332 		return 1;
333 	if (!bdi_write_congested(bdi))
334 		return 1;
335 	if (bdi == current->backing_dev_info)
336 		return 1;
337 	return 0;
338 }
339 
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353 				struct page *page, int error)
354 {
355 	lock_page(page);
356 	if (page_mapping(page) == mapping)
357 		mapping_set_error(mapping, error);
358 	unlock_page(page);
359 }
360 
361 /* possible outcome of pageout() */
362 typedef enum {
363 	/* failed to write page out, page is locked */
364 	PAGE_KEEP,
365 	/* move page to the active list, page is locked */
366 	PAGE_ACTIVATE,
367 	/* page has been sent to the disk successfully, page is unlocked */
368 	PAGE_SUCCESS,
369 	/* page is clean and locked */
370 	PAGE_CLEAN,
371 } pageout_t;
372 
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 			 struct scan_control *sc)
379 {
380 	/*
381 	 * If the page is dirty, only perform writeback if that write
382 	 * will be non-blocking.  To prevent this allocation from being
383 	 * stalled by pagecache activity.  But note that there may be
384 	 * stalls if we need to run get_block().  We could test
385 	 * PagePrivate for that.
386 	 *
387 	 * If this process is currently in __generic_file_aio_write() against
388 	 * this page's queue, we can perform writeback even if that
389 	 * will block.
390 	 *
391 	 * If the page is swapcache, write it back even if that would
392 	 * block, for some throttling. This happens by accident, because
393 	 * swap_backing_dev_info is bust: it doesn't reflect the
394 	 * congestion state of the swapdevs.  Easy to fix, if needed.
395 	 */
396 	if (!is_page_cache_freeable(page))
397 		return PAGE_KEEP;
398 	if (!mapping) {
399 		/*
400 		 * Some data journaling orphaned pages can have
401 		 * page->mapping == NULL while being dirty with clean buffers.
402 		 */
403 		if (page_has_private(page)) {
404 			if (try_to_free_buffers(page)) {
405 				ClearPageDirty(page);
406 				printk("%s: orphaned page\n", __func__);
407 				return PAGE_CLEAN;
408 			}
409 		}
410 		return PAGE_KEEP;
411 	}
412 	if (mapping->a_ops->writepage == NULL)
413 		return PAGE_ACTIVATE;
414 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 		return PAGE_KEEP;
416 
417 	if (clear_page_dirty_for_io(page)) {
418 		int res;
419 		struct writeback_control wbc = {
420 			.sync_mode = WB_SYNC_NONE,
421 			.nr_to_write = SWAP_CLUSTER_MAX,
422 			.range_start = 0,
423 			.range_end = LLONG_MAX,
424 			.for_reclaim = 1,
425 		};
426 
427 		SetPageReclaim(page);
428 		res = mapping->a_ops->writepage(page, &wbc);
429 		if (res < 0)
430 			handle_write_error(mapping, page, res);
431 		if (res == AOP_WRITEPAGE_ACTIVATE) {
432 			ClearPageReclaim(page);
433 			return PAGE_ACTIVATE;
434 		}
435 
436 		if (!PageWriteback(page)) {
437 			/* synchronous write or broken a_ops? */
438 			ClearPageReclaim(page);
439 		}
440 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		void (*freepage)(struct page *);
498 
499 		freepage = mapping->a_ops->freepage;
500 
501 		__delete_from_page_cache(page);
502 		spin_unlock_irq(&mapping->tree_lock);
503 		mem_cgroup_uncharge_cache_page(page);
504 
505 		if (freepage != NULL)
506 			freepage(page);
507 	}
508 
509 	return 1;
510 
511 cannot_free:
512 	spin_unlock_irq(&mapping->tree_lock);
513 	return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 	if (__remove_mapping(mapping, page)) {
525 		/*
526 		 * Unfreezing the refcount with 1 rather than 2 effectively
527 		 * drops the pagecache ref for us without requiring another
528 		 * atomic operation.
529 		 */
530 		page_unfreeze_refs(page, 1);
531 		return 1;
532 	}
533 	return 0;
534 }
535 
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547 	int lru;
548 	int active = !!TestClearPageActive(page);
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = active + page_lru_base_type(page);
564 		lru_cache_add_lru(page, lru);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 				      struct zone *zone,
676 				      struct scan_control *sc,
677 				      enum ttu_flags ttu_flags,
678 				      unsigned long *ret_nr_dirty,
679 				      unsigned long *ret_nr_writeback,
680 				      bool force_reclaim)
681 {
682 	LIST_HEAD(ret_pages);
683 	LIST_HEAD(free_pages);
684 	int pgactivate = 0;
685 	unsigned long nr_dirty = 0;
686 	unsigned long nr_congested = 0;
687 	unsigned long nr_reclaimed = 0;
688 	unsigned long nr_writeback = 0;
689 
690 	cond_resched();
691 
692 	mem_cgroup_uncharge_start();
693 	while (!list_empty(page_list)) {
694 		struct address_space *mapping;
695 		struct page *page;
696 		int may_enter_fs;
697 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
698 
699 		cond_resched();
700 
701 		page = lru_to_page(page_list);
702 		list_del(&page->lru);
703 
704 		if (!trylock_page(page))
705 			goto keep;
706 
707 		VM_BUG_ON(PageActive(page));
708 		VM_BUG_ON(page_zone(page) != zone);
709 
710 		sc->nr_scanned++;
711 
712 		if (unlikely(!page_evictable(page)))
713 			goto cull_mlocked;
714 
715 		if (!sc->may_unmap && page_mapped(page))
716 			goto keep_locked;
717 
718 		/* Double the slab pressure for mapped and swapcache pages */
719 		if (page_mapped(page) || PageSwapCache(page))
720 			sc->nr_scanned++;
721 
722 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724 
725 		if (PageWriteback(page)) {
726 			/*
727 			 * memcg doesn't have any dirty pages throttling so we
728 			 * could easily OOM just because too many pages are in
729 			 * writeback and there is nothing else to reclaim.
730 			 *
731 			 * Check __GFP_IO, certainly because a loop driver
732 			 * thread might enter reclaim, and deadlock if it waits
733 			 * on a page for which it is needed to do the write
734 			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 			 * but more thought would probably show more reasons.
736 			 *
737 			 * Don't require __GFP_FS, since we're not going into
738 			 * the FS, just waiting on its writeback completion.
739 			 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 			 * testing may_enter_fs here is liable to OOM on them.
742 			 */
743 			if (global_reclaim(sc) ||
744 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 				/*
746 				 * This is slightly racy - end_page_writeback()
747 				 * might have just cleared PageReclaim, then
748 				 * setting PageReclaim here end up interpreted
749 				 * as PageReadahead - but that does not matter
750 				 * enough to care.  What we do want is for this
751 				 * page to have PageReclaim set next time memcg
752 				 * reclaim reaches the tests above, so it will
753 				 * then wait_on_page_writeback() to avoid OOM;
754 				 * and it's also appropriate in global reclaim.
755 				 */
756 				SetPageReclaim(page);
757 				nr_writeback++;
758 				goto keep_locked;
759 			}
760 			wait_on_page_writeback(page);
761 		}
762 
763 		if (!force_reclaim)
764 			references = page_check_references(page, sc);
765 
766 		switch (references) {
767 		case PAGEREF_ACTIVATE:
768 			goto activate_locked;
769 		case PAGEREF_KEEP:
770 			goto keep_locked;
771 		case PAGEREF_RECLAIM:
772 		case PAGEREF_RECLAIM_CLEAN:
773 			; /* try to reclaim the page below */
774 		}
775 
776 		/*
777 		 * Anonymous process memory has backing store?
778 		 * Try to allocate it some swap space here.
779 		 */
780 		if (PageAnon(page) && !PageSwapCache(page)) {
781 			if (!(sc->gfp_mask & __GFP_IO))
782 				goto keep_locked;
783 			if (!add_to_swap(page))
784 				goto activate_locked;
785 			may_enter_fs = 1;
786 		}
787 
788 		mapping = page_mapping(page);
789 
790 		/*
791 		 * The page is mapped into the page tables of one or more
792 		 * processes. Try to unmap it here.
793 		 */
794 		if (page_mapped(page) && mapping) {
795 			switch (try_to_unmap(page, ttu_flags)) {
796 			case SWAP_FAIL:
797 				goto activate_locked;
798 			case SWAP_AGAIN:
799 				goto keep_locked;
800 			case SWAP_MLOCK:
801 				goto cull_mlocked;
802 			case SWAP_SUCCESS:
803 				; /* try to free the page below */
804 			}
805 		}
806 
807 		if (PageDirty(page)) {
808 			nr_dirty++;
809 
810 			/*
811 			 * Only kswapd can writeback filesystem pages to
812 			 * avoid risk of stack overflow but do not writeback
813 			 * unless under significant pressure.
814 			 */
815 			if (page_is_file_cache(page) &&
816 					(!current_is_kswapd() ||
817 					 sc->priority >= DEF_PRIORITY - 2)) {
818 				/*
819 				 * Immediately reclaim when written back.
820 				 * Similar in principal to deactivate_page()
821 				 * except we already have the page isolated
822 				 * and know it's dirty
823 				 */
824 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 				SetPageReclaim(page);
826 
827 				goto keep_locked;
828 			}
829 
830 			if (references == PAGEREF_RECLAIM_CLEAN)
831 				goto keep_locked;
832 			if (!may_enter_fs)
833 				goto keep_locked;
834 			if (!sc->may_writepage)
835 				goto keep_locked;
836 
837 			/* Page is dirty, try to write it out here */
838 			switch (pageout(page, mapping, sc)) {
839 			case PAGE_KEEP:
840 				nr_congested++;
841 				goto keep_locked;
842 			case PAGE_ACTIVATE:
843 				goto activate_locked;
844 			case PAGE_SUCCESS:
845 				if (PageWriteback(page))
846 					goto keep;
847 				if (PageDirty(page))
848 					goto keep;
849 
850 				/*
851 				 * A synchronous write - probably a ramdisk.  Go
852 				 * ahead and try to reclaim the page.
853 				 */
854 				if (!trylock_page(page))
855 					goto keep;
856 				if (PageDirty(page) || PageWriteback(page))
857 					goto keep_locked;
858 				mapping = page_mapping(page);
859 			case PAGE_CLEAN:
860 				; /* try to free the page below */
861 			}
862 		}
863 
864 		/*
865 		 * If the page has buffers, try to free the buffer mappings
866 		 * associated with this page. If we succeed we try to free
867 		 * the page as well.
868 		 *
869 		 * We do this even if the page is PageDirty().
870 		 * try_to_release_page() does not perform I/O, but it is
871 		 * possible for a page to have PageDirty set, but it is actually
872 		 * clean (all its buffers are clean).  This happens if the
873 		 * buffers were written out directly, with submit_bh(). ext3
874 		 * will do this, as well as the blockdev mapping.
875 		 * try_to_release_page() will discover that cleanness and will
876 		 * drop the buffers and mark the page clean - it can be freed.
877 		 *
878 		 * Rarely, pages can have buffers and no ->mapping.  These are
879 		 * the pages which were not successfully invalidated in
880 		 * truncate_complete_page().  We try to drop those buffers here
881 		 * and if that worked, and the page is no longer mapped into
882 		 * process address space (page_count == 1) it can be freed.
883 		 * Otherwise, leave the page on the LRU so it is swappable.
884 		 */
885 		if (page_has_private(page)) {
886 			if (!try_to_release_page(page, sc->gfp_mask))
887 				goto activate_locked;
888 			if (!mapping && page_count(page) == 1) {
889 				unlock_page(page);
890 				if (put_page_testzero(page))
891 					goto free_it;
892 				else {
893 					/*
894 					 * rare race with speculative reference.
895 					 * the speculative reference will free
896 					 * this page shortly, so we may
897 					 * increment nr_reclaimed here (and
898 					 * leave it off the LRU).
899 					 */
900 					nr_reclaimed++;
901 					continue;
902 				}
903 			}
904 		}
905 
906 		if (!mapping || !__remove_mapping(mapping, page))
907 			goto keep_locked;
908 
909 		/*
910 		 * At this point, we have no other references and there is
911 		 * no way to pick any more up (removed from LRU, removed
912 		 * from pagecache). Can use non-atomic bitops now (and
913 		 * we obviously don't have to worry about waking up a process
914 		 * waiting on the page lock, because there are no references.
915 		 */
916 		__clear_page_locked(page);
917 free_it:
918 		nr_reclaimed++;
919 
920 		/*
921 		 * Is there need to periodically free_page_list? It would
922 		 * appear not as the counts should be low
923 		 */
924 		list_add(&page->lru, &free_pages);
925 		continue;
926 
927 cull_mlocked:
928 		if (PageSwapCache(page))
929 			try_to_free_swap(page);
930 		unlock_page(page);
931 		putback_lru_page(page);
932 		continue;
933 
934 activate_locked:
935 		/* Not a candidate for swapping, so reclaim swap space. */
936 		if (PageSwapCache(page) && vm_swap_full())
937 			try_to_free_swap(page);
938 		VM_BUG_ON(PageActive(page));
939 		SetPageActive(page);
940 		pgactivate++;
941 keep_locked:
942 		unlock_page(page);
943 keep:
944 		list_add(&page->lru, &ret_pages);
945 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
946 	}
947 
948 	/*
949 	 * Tag a zone as congested if all the dirty pages encountered were
950 	 * backed by a congested BDI. In this case, reclaimers should just
951 	 * back off and wait for congestion to clear because further reclaim
952 	 * will encounter the same problem
953 	 */
954 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955 		zone_set_flag(zone, ZONE_CONGESTED);
956 
957 	free_hot_cold_page_list(&free_pages, 1);
958 
959 	list_splice(&ret_pages, page_list);
960 	count_vm_events(PGACTIVATE, pgactivate);
961 	mem_cgroup_uncharge_end();
962 	*ret_nr_dirty += nr_dirty;
963 	*ret_nr_writeback += nr_writeback;
964 	return nr_reclaimed;
965 }
966 
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 					    struct list_head *page_list)
969 {
970 	struct scan_control sc = {
971 		.gfp_mask = GFP_KERNEL,
972 		.priority = DEF_PRIORITY,
973 		.may_unmap = 1,
974 	};
975 	unsigned long ret, dummy1, dummy2;
976 	struct page *page, *next;
977 	LIST_HEAD(clean_pages);
978 
979 	list_for_each_entry_safe(page, next, page_list, lru) {
980 		if (page_is_file_cache(page) && !PageDirty(page)) {
981 			ClearPageActive(page);
982 			list_move(&page->lru, &clean_pages);
983 		}
984 	}
985 
986 	ret = shrink_page_list(&clean_pages, zone, &sc,
987 				TTU_UNMAP|TTU_IGNORE_ACCESS,
988 				&dummy1, &dummy2, true);
989 	list_splice(&clean_pages, page_list);
990 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 	return ret;
992 }
993 
994 /*
995  * Attempt to remove the specified page from its LRU.  Only take this page
996  * if it is of the appropriate PageActive status.  Pages which are being
997  * freed elsewhere are also ignored.
998  *
999  * page:	page to consider
1000  * mode:	one of the LRU isolation modes defined above
1001  *
1002  * returns 0 on success, -ve errno on failure.
1003  */
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1005 {
1006 	int ret = -EINVAL;
1007 
1008 	/* Only take pages on the LRU. */
1009 	if (!PageLRU(page))
1010 		return ret;
1011 
1012 	/* Compaction should not handle unevictable pages but CMA can do so */
1013 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014 		return ret;
1015 
1016 	ret = -EBUSY;
1017 
1018 	/*
1019 	 * To minimise LRU disruption, the caller can indicate that it only
1020 	 * wants to isolate pages it will be able to operate on without
1021 	 * blocking - clean pages for the most part.
1022 	 *
1023 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 	 * is used by reclaim when it is cannot write to backing storage
1025 	 *
1026 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 	 * that it is possible to migrate without blocking
1028 	 */
1029 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 		/* All the caller can do on PageWriteback is block */
1031 		if (PageWriteback(page))
1032 			return ret;
1033 
1034 		if (PageDirty(page)) {
1035 			struct address_space *mapping;
1036 
1037 			/* ISOLATE_CLEAN means only clean pages */
1038 			if (mode & ISOLATE_CLEAN)
1039 				return ret;
1040 
1041 			/*
1042 			 * Only pages without mappings or that have a
1043 			 * ->migratepage callback are possible to migrate
1044 			 * without blocking
1045 			 */
1046 			mapping = page_mapping(page);
1047 			if (mapping && !mapping->a_ops->migratepage)
1048 				return ret;
1049 		}
1050 	}
1051 
1052 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 		return ret;
1054 
1055 	if (likely(get_page_unless_zero(page))) {
1056 		/*
1057 		 * Be careful not to clear PageLRU until after we're
1058 		 * sure the page is not being freed elsewhere -- the
1059 		 * page release code relies on it.
1060 		 */
1061 		ClearPageLRU(page);
1062 		ret = 0;
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * zone->lru_lock is heavily contended.  Some of the functions that
1070  * shrink the lists perform better by taking out a batch of pages
1071  * and working on them outside the LRU lock.
1072  *
1073  * For pagecache intensive workloads, this function is the hottest
1074  * spot in the kernel (apart from copy_*_user functions).
1075  *
1076  * Appropriate locks must be held before calling this function.
1077  *
1078  * @nr_to_scan:	The number of pages to look through on the list.
1079  * @lruvec:	The LRU vector to pull pages from.
1080  * @dst:	The temp list to put pages on to.
1081  * @nr_scanned:	The number of pages that were scanned.
1082  * @sc:		The scan_control struct for this reclaim session
1083  * @mode:	One of the LRU isolation modes
1084  * @lru:	LRU list id for isolating
1085  *
1086  * returns how many pages were moved onto *@dst.
1087  */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 		struct lruvec *lruvec, struct list_head *dst,
1090 		unsigned long *nr_scanned, struct scan_control *sc,
1091 		isolate_mode_t mode, enum lru_list lru)
1092 {
1093 	struct list_head *src = &lruvec->lists[lru];
1094 	unsigned long nr_taken = 0;
1095 	unsigned long scan;
1096 
1097 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098 		struct page *page;
1099 		int nr_pages;
1100 
1101 		page = lru_to_page(src);
1102 		prefetchw_prev_lru_page(page, src, flags);
1103 
1104 		VM_BUG_ON(!PageLRU(page));
1105 
1106 		switch (__isolate_lru_page(page, mode)) {
1107 		case 0:
1108 			nr_pages = hpage_nr_pages(page);
1109 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110 			list_move(&page->lru, dst);
1111 			nr_taken += nr_pages;
1112 			break;
1113 
1114 		case -EBUSY:
1115 			/* else it is being freed elsewhere */
1116 			list_move(&page->lru, src);
1117 			continue;
1118 
1119 		default:
1120 			BUG();
1121 		}
1122 	}
1123 
1124 	*nr_scanned = scan;
1125 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 				    nr_taken, mode, is_file_lru(lru));
1127 	return nr_taken;
1128 }
1129 
1130 /**
1131  * isolate_lru_page - tries to isolate a page from its LRU list
1132  * @page: page to isolate from its LRU list
1133  *
1134  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135  * vmstat statistic corresponding to whatever LRU list the page was on.
1136  *
1137  * Returns 0 if the page was removed from an LRU list.
1138  * Returns -EBUSY if the page was not on an LRU list.
1139  *
1140  * The returned page will have PageLRU() cleared.  If it was found on
1141  * the active list, it will have PageActive set.  If it was found on
1142  * the unevictable list, it will have the PageUnevictable bit set. That flag
1143  * may need to be cleared by the caller before letting the page go.
1144  *
1145  * The vmstat statistic corresponding to the list on which the page was
1146  * found will be decremented.
1147  *
1148  * Restrictions:
1149  * (1) Must be called with an elevated refcount on the page. This is a
1150  *     fundamentnal difference from isolate_lru_pages (which is called
1151  *     without a stable reference).
1152  * (2) the lru_lock must not be held.
1153  * (3) interrupts must be enabled.
1154  */
1155 int isolate_lru_page(struct page *page)
1156 {
1157 	int ret = -EBUSY;
1158 
1159 	VM_BUG_ON(!page_count(page));
1160 
1161 	if (PageLRU(page)) {
1162 		struct zone *zone = page_zone(page);
1163 		struct lruvec *lruvec;
1164 
1165 		spin_lock_irq(&zone->lru_lock);
1166 		lruvec = mem_cgroup_page_lruvec(page, zone);
1167 		if (PageLRU(page)) {
1168 			int lru = page_lru(page);
1169 			get_page(page);
1170 			ClearPageLRU(page);
1171 			del_page_from_lru_list(page, lruvec, lru);
1172 			ret = 0;
1173 		}
1174 		spin_unlock_irq(&zone->lru_lock);
1175 	}
1176 	return ret;
1177 }
1178 
1179 /*
1180  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1181  * then get resheduled. When there are massive number of tasks doing page
1182  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1183  * the LRU list will go small and be scanned faster than necessary, leading to
1184  * unnecessary swapping, thrashing and OOM.
1185  */
1186 static int too_many_isolated(struct zone *zone, int file,
1187 		struct scan_control *sc)
1188 {
1189 	unsigned long inactive, isolated;
1190 
1191 	if (current_is_kswapd())
1192 		return 0;
1193 
1194 	if (!global_reclaim(sc))
1195 		return 0;
1196 
1197 	if (file) {
1198 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1199 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1200 	} else {
1201 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1202 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1203 	}
1204 
1205 	/*
1206 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1207 	 * won't get blocked by normal direct-reclaimers, forming a circular
1208 	 * deadlock.
1209 	 */
1210 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1211 		inactive >>= 3;
1212 
1213 	return isolated > inactive;
1214 }
1215 
1216 static noinline_for_stack void
1217 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1218 {
1219 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1220 	struct zone *zone = lruvec_zone(lruvec);
1221 	LIST_HEAD(pages_to_free);
1222 
1223 	/*
1224 	 * Put back any unfreeable pages.
1225 	 */
1226 	while (!list_empty(page_list)) {
1227 		struct page *page = lru_to_page(page_list);
1228 		int lru;
1229 
1230 		VM_BUG_ON(PageLRU(page));
1231 		list_del(&page->lru);
1232 		if (unlikely(!page_evictable(page))) {
1233 			spin_unlock_irq(&zone->lru_lock);
1234 			putback_lru_page(page);
1235 			spin_lock_irq(&zone->lru_lock);
1236 			continue;
1237 		}
1238 
1239 		lruvec = mem_cgroup_page_lruvec(page, zone);
1240 
1241 		SetPageLRU(page);
1242 		lru = page_lru(page);
1243 		add_page_to_lru_list(page, lruvec, lru);
1244 
1245 		if (is_active_lru(lru)) {
1246 			int file = is_file_lru(lru);
1247 			int numpages = hpage_nr_pages(page);
1248 			reclaim_stat->recent_rotated[file] += numpages;
1249 		}
1250 		if (put_page_testzero(page)) {
1251 			__ClearPageLRU(page);
1252 			__ClearPageActive(page);
1253 			del_page_from_lru_list(page, lruvec, lru);
1254 
1255 			if (unlikely(PageCompound(page))) {
1256 				spin_unlock_irq(&zone->lru_lock);
1257 				(*get_compound_page_dtor(page))(page);
1258 				spin_lock_irq(&zone->lru_lock);
1259 			} else
1260 				list_add(&page->lru, &pages_to_free);
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * To save our caller's stack, now use input list for pages to free.
1266 	 */
1267 	list_splice(&pages_to_free, page_list);
1268 }
1269 
1270 /*
1271  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1272  * of reclaimed pages
1273  */
1274 static noinline_for_stack unsigned long
1275 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1276 		     struct scan_control *sc, enum lru_list lru)
1277 {
1278 	LIST_HEAD(page_list);
1279 	unsigned long nr_scanned;
1280 	unsigned long nr_reclaimed = 0;
1281 	unsigned long nr_taken;
1282 	unsigned long nr_dirty = 0;
1283 	unsigned long nr_writeback = 0;
1284 	isolate_mode_t isolate_mode = 0;
1285 	int file = is_file_lru(lru);
1286 	struct zone *zone = lruvec_zone(lruvec);
1287 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1288 
1289 	while (unlikely(too_many_isolated(zone, file, sc))) {
1290 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1291 
1292 		/* We are about to die and free our memory. Return now. */
1293 		if (fatal_signal_pending(current))
1294 			return SWAP_CLUSTER_MAX;
1295 	}
1296 
1297 	lru_add_drain();
1298 
1299 	if (!sc->may_unmap)
1300 		isolate_mode |= ISOLATE_UNMAPPED;
1301 	if (!sc->may_writepage)
1302 		isolate_mode |= ISOLATE_CLEAN;
1303 
1304 	spin_lock_irq(&zone->lru_lock);
1305 
1306 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1307 				     &nr_scanned, sc, isolate_mode, lru);
1308 
1309 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1310 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1311 
1312 	if (global_reclaim(sc)) {
1313 		zone->pages_scanned += nr_scanned;
1314 		if (current_is_kswapd())
1315 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1316 		else
1317 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1318 	}
1319 	spin_unlock_irq(&zone->lru_lock);
1320 
1321 	if (nr_taken == 0)
1322 		return 0;
1323 
1324 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1325 					&nr_dirty, &nr_writeback, false);
1326 
1327 	spin_lock_irq(&zone->lru_lock);
1328 
1329 	reclaim_stat->recent_scanned[file] += nr_taken;
1330 
1331 	if (global_reclaim(sc)) {
1332 		if (current_is_kswapd())
1333 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1334 					       nr_reclaimed);
1335 		else
1336 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1337 					       nr_reclaimed);
1338 	}
1339 
1340 	putback_inactive_pages(lruvec, &page_list);
1341 
1342 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1343 
1344 	spin_unlock_irq(&zone->lru_lock);
1345 
1346 	free_hot_cold_page_list(&page_list, 1);
1347 
1348 	/*
1349 	 * If reclaim is isolating dirty pages under writeback, it implies
1350 	 * that the long-lived page allocation rate is exceeding the page
1351 	 * laundering rate. Either the global limits are not being effective
1352 	 * at throttling processes due to the page distribution throughout
1353 	 * zones or there is heavy usage of a slow backing device. The
1354 	 * only option is to throttle from reclaim context which is not ideal
1355 	 * as there is no guarantee the dirtying process is throttled in the
1356 	 * same way balance_dirty_pages() manages.
1357 	 *
1358 	 * This scales the number of dirty pages that must be under writeback
1359 	 * before throttling depending on priority. It is a simple backoff
1360 	 * function that has the most effect in the range DEF_PRIORITY to
1361 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1362 	 * in trouble and reclaim is considered to be in trouble.
1363 	 *
1364 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1365 	 * DEF_PRIORITY-1  50% must be PageWriteback
1366 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1367 	 * ...
1368 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1369 	 *                     isolated page is PageWriteback
1370 	 */
1371 	if (nr_writeback && nr_writeback >=
1372 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1373 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1374 
1375 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1376 		zone_idx(zone),
1377 		nr_scanned, nr_reclaimed,
1378 		sc->priority,
1379 		trace_shrink_flags(file));
1380 	return nr_reclaimed;
1381 }
1382 
1383 /*
1384  * This moves pages from the active list to the inactive list.
1385  *
1386  * We move them the other way if the page is referenced by one or more
1387  * processes, from rmap.
1388  *
1389  * If the pages are mostly unmapped, the processing is fast and it is
1390  * appropriate to hold zone->lru_lock across the whole operation.  But if
1391  * the pages are mapped, the processing is slow (page_referenced()) so we
1392  * should drop zone->lru_lock around each page.  It's impossible to balance
1393  * this, so instead we remove the pages from the LRU while processing them.
1394  * It is safe to rely on PG_active against the non-LRU pages in here because
1395  * nobody will play with that bit on a non-LRU page.
1396  *
1397  * The downside is that we have to touch page->_count against each page.
1398  * But we had to alter page->flags anyway.
1399  */
1400 
1401 static void move_active_pages_to_lru(struct lruvec *lruvec,
1402 				     struct list_head *list,
1403 				     struct list_head *pages_to_free,
1404 				     enum lru_list lru)
1405 {
1406 	struct zone *zone = lruvec_zone(lruvec);
1407 	unsigned long pgmoved = 0;
1408 	struct page *page;
1409 	int nr_pages;
1410 
1411 	while (!list_empty(list)) {
1412 		page = lru_to_page(list);
1413 		lruvec = mem_cgroup_page_lruvec(page, zone);
1414 
1415 		VM_BUG_ON(PageLRU(page));
1416 		SetPageLRU(page);
1417 
1418 		nr_pages = hpage_nr_pages(page);
1419 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1420 		list_move(&page->lru, &lruvec->lists[lru]);
1421 		pgmoved += nr_pages;
1422 
1423 		if (put_page_testzero(page)) {
1424 			__ClearPageLRU(page);
1425 			__ClearPageActive(page);
1426 			del_page_from_lru_list(page, lruvec, lru);
1427 
1428 			if (unlikely(PageCompound(page))) {
1429 				spin_unlock_irq(&zone->lru_lock);
1430 				(*get_compound_page_dtor(page))(page);
1431 				spin_lock_irq(&zone->lru_lock);
1432 			} else
1433 				list_add(&page->lru, pages_to_free);
1434 		}
1435 	}
1436 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1437 	if (!is_active_lru(lru))
1438 		__count_vm_events(PGDEACTIVATE, pgmoved);
1439 }
1440 
1441 static void shrink_active_list(unsigned long nr_to_scan,
1442 			       struct lruvec *lruvec,
1443 			       struct scan_control *sc,
1444 			       enum lru_list lru)
1445 {
1446 	unsigned long nr_taken;
1447 	unsigned long nr_scanned;
1448 	unsigned long vm_flags;
1449 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1450 	LIST_HEAD(l_active);
1451 	LIST_HEAD(l_inactive);
1452 	struct page *page;
1453 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1454 	unsigned long nr_rotated = 0;
1455 	isolate_mode_t isolate_mode = 0;
1456 	int file = is_file_lru(lru);
1457 	struct zone *zone = lruvec_zone(lruvec);
1458 
1459 	lru_add_drain();
1460 
1461 	if (!sc->may_unmap)
1462 		isolate_mode |= ISOLATE_UNMAPPED;
1463 	if (!sc->may_writepage)
1464 		isolate_mode |= ISOLATE_CLEAN;
1465 
1466 	spin_lock_irq(&zone->lru_lock);
1467 
1468 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1469 				     &nr_scanned, sc, isolate_mode, lru);
1470 	if (global_reclaim(sc))
1471 		zone->pages_scanned += nr_scanned;
1472 
1473 	reclaim_stat->recent_scanned[file] += nr_taken;
1474 
1475 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1476 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1477 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1478 	spin_unlock_irq(&zone->lru_lock);
1479 
1480 	while (!list_empty(&l_hold)) {
1481 		cond_resched();
1482 		page = lru_to_page(&l_hold);
1483 		list_del(&page->lru);
1484 
1485 		if (unlikely(!page_evictable(page))) {
1486 			putback_lru_page(page);
1487 			continue;
1488 		}
1489 
1490 		if (unlikely(buffer_heads_over_limit)) {
1491 			if (page_has_private(page) && trylock_page(page)) {
1492 				if (page_has_private(page))
1493 					try_to_release_page(page, 0);
1494 				unlock_page(page);
1495 			}
1496 		}
1497 
1498 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1499 				    &vm_flags)) {
1500 			nr_rotated += hpage_nr_pages(page);
1501 			/*
1502 			 * Identify referenced, file-backed active pages and
1503 			 * give them one more trip around the active list. So
1504 			 * that executable code get better chances to stay in
1505 			 * memory under moderate memory pressure.  Anon pages
1506 			 * are not likely to be evicted by use-once streaming
1507 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1508 			 * so we ignore them here.
1509 			 */
1510 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1511 				list_add(&page->lru, &l_active);
1512 				continue;
1513 			}
1514 		}
1515 
1516 		ClearPageActive(page);	/* we are de-activating */
1517 		list_add(&page->lru, &l_inactive);
1518 	}
1519 
1520 	/*
1521 	 * Move pages back to the lru list.
1522 	 */
1523 	spin_lock_irq(&zone->lru_lock);
1524 	/*
1525 	 * Count referenced pages from currently used mappings as rotated,
1526 	 * even though only some of them are actually re-activated.  This
1527 	 * helps balance scan pressure between file and anonymous pages in
1528 	 * get_scan_ratio.
1529 	 */
1530 	reclaim_stat->recent_rotated[file] += nr_rotated;
1531 
1532 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1533 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1534 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1535 	spin_unlock_irq(&zone->lru_lock);
1536 
1537 	free_hot_cold_page_list(&l_hold, 1);
1538 }
1539 
1540 #ifdef CONFIG_SWAP
1541 static int inactive_anon_is_low_global(struct zone *zone)
1542 {
1543 	unsigned long active, inactive;
1544 
1545 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1546 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1547 
1548 	if (inactive * zone->inactive_ratio < active)
1549 		return 1;
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1556  * @lruvec: LRU vector to check
1557  *
1558  * Returns true if the zone does not have enough inactive anon pages,
1559  * meaning some active anon pages need to be deactivated.
1560  */
1561 static int inactive_anon_is_low(struct lruvec *lruvec)
1562 {
1563 	/*
1564 	 * If we don't have swap space, anonymous page deactivation
1565 	 * is pointless.
1566 	 */
1567 	if (!total_swap_pages)
1568 		return 0;
1569 
1570 	if (!mem_cgroup_disabled())
1571 		return mem_cgroup_inactive_anon_is_low(lruvec);
1572 
1573 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1574 }
1575 #else
1576 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1577 {
1578 	return 0;
1579 }
1580 #endif
1581 
1582 /**
1583  * inactive_file_is_low - check if file pages need to be deactivated
1584  * @lruvec: LRU vector to check
1585  *
1586  * When the system is doing streaming IO, memory pressure here
1587  * ensures that active file pages get deactivated, until more
1588  * than half of the file pages are on the inactive list.
1589  *
1590  * Once we get to that situation, protect the system's working
1591  * set from being evicted by disabling active file page aging.
1592  *
1593  * This uses a different ratio than the anonymous pages, because
1594  * the page cache uses a use-once replacement algorithm.
1595  */
1596 static int inactive_file_is_low(struct lruvec *lruvec)
1597 {
1598 	unsigned long inactive;
1599 	unsigned long active;
1600 
1601 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1602 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1603 
1604 	return active > inactive;
1605 }
1606 
1607 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1608 {
1609 	if (is_file_lru(lru))
1610 		return inactive_file_is_low(lruvec);
1611 	else
1612 		return inactive_anon_is_low(lruvec);
1613 }
1614 
1615 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1616 				 struct lruvec *lruvec, struct scan_control *sc)
1617 {
1618 	if (is_active_lru(lru)) {
1619 		if (inactive_list_is_low(lruvec, lru))
1620 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1621 		return 0;
1622 	}
1623 
1624 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1625 }
1626 
1627 static int vmscan_swappiness(struct scan_control *sc)
1628 {
1629 	if (global_reclaim(sc))
1630 		return vm_swappiness;
1631 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1632 }
1633 
1634 enum scan_balance {
1635 	SCAN_EQUAL,
1636 	SCAN_FRACT,
1637 	SCAN_ANON,
1638 	SCAN_FILE,
1639 };
1640 
1641 /*
1642  * Determine how aggressively the anon and file LRU lists should be
1643  * scanned.  The relative value of each set of LRU lists is determined
1644  * by looking at the fraction of the pages scanned we did rotate back
1645  * onto the active list instead of evict.
1646  *
1647  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1648  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1649  */
1650 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1651 			   unsigned long *nr)
1652 {
1653 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1654 	u64 fraction[2];
1655 	u64 denominator = 0;	/* gcc */
1656 	struct zone *zone = lruvec_zone(lruvec);
1657 	unsigned long anon_prio, file_prio;
1658 	enum scan_balance scan_balance;
1659 	unsigned long anon, file, free;
1660 	bool force_scan = false;
1661 	unsigned long ap, fp;
1662 	enum lru_list lru;
1663 
1664 	/*
1665 	 * If the zone or memcg is small, nr[l] can be 0.  This
1666 	 * results in no scanning on this priority and a potential
1667 	 * priority drop.  Global direct reclaim can go to the next
1668 	 * zone and tends to have no problems. Global kswapd is for
1669 	 * zone balancing and it needs to scan a minimum amount. When
1670 	 * reclaiming for a memcg, a priority drop can cause high
1671 	 * latencies, so it's better to scan a minimum amount there as
1672 	 * well.
1673 	 */
1674 	if (current_is_kswapd() && zone->all_unreclaimable)
1675 		force_scan = true;
1676 	if (!global_reclaim(sc))
1677 		force_scan = true;
1678 
1679 	/* If we have no swap space, do not bother scanning anon pages. */
1680 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1681 		scan_balance = SCAN_FILE;
1682 		goto out;
1683 	}
1684 
1685 	/*
1686 	 * Global reclaim will swap to prevent OOM even with no
1687 	 * swappiness, but memcg users want to use this knob to
1688 	 * disable swapping for individual groups completely when
1689 	 * using the memory controller's swap limit feature would be
1690 	 * too expensive.
1691 	 */
1692 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1693 		scan_balance = SCAN_FILE;
1694 		goto out;
1695 	}
1696 
1697 	/*
1698 	 * Do not apply any pressure balancing cleverness when the
1699 	 * system is close to OOM, scan both anon and file equally
1700 	 * (unless the swappiness setting disagrees with swapping).
1701 	 */
1702 	if (!sc->priority && vmscan_swappiness(sc)) {
1703 		scan_balance = SCAN_EQUAL;
1704 		goto out;
1705 	}
1706 
1707 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1708 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1709 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1710 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1711 
1712 	/*
1713 	 * If it's foreseeable that reclaiming the file cache won't be
1714 	 * enough to get the zone back into a desirable shape, we have
1715 	 * to swap.  Better start now and leave the - probably heavily
1716 	 * thrashing - remaining file pages alone.
1717 	 */
1718 	if (global_reclaim(sc)) {
1719 		free = zone_page_state(zone, NR_FREE_PAGES);
1720 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1721 			scan_balance = SCAN_ANON;
1722 			goto out;
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * There is enough inactive page cache, do not reclaim
1728 	 * anything from the anonymous working set right now.
1729 	 */
1730 	if (!inactive_file_is_low(lruvec)) {
1731 		scan_balance = SCAN_FILE;
1732 		goto out;
1733 	}
1734 
1735 	scan_balance = SCAN_FRACT;
1736 
1737 	/*
1738 	 * With swappiness at 100, anonymous and file have the same priority.
1739 	 * This scanning priority is essentially the inverse of IO cost.
1740 	 */
1741 	anon_prio = vmscan_swappiness(sc);
1742 	file_prio = 200 - anon_prio;
1743 
1744 	/*
1745 	 * OK, so we have swap space and a fair amount of page cache
1746 	 * pages.  We use the recently rotated / recently scanned
1747 	 * ratios to determine how valuable each cache is.
1748 	 *
1749 	 * Because workloads change over time (and to avoid overflow)
1750 	 * we keep these statistics as a floating average, which ends
1751 	 * up weighing recent references more than old ones.
1752 	 *
1753 	 * anon in [0], file in [1]
1754 	 */
1755 	spin_lock_irq(&zone->lru_lock);
1756 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1757 		reclaim_stat->recent_scanned[0] /= 2;
1758 		reclaim_stat->recent_rotated[0] /= 2;
1759 	}
1760 
1761 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1762 		reclaim_stat->recent_scanned[1] /= 2;
1763 		reclaim_stat->recent_rotated[1] /= 2;
1764 	}
1765 
1766 	/*
1767 	 * The amount of pressure on anon vs file pages is inversely
1768 	 * proportional to the fraction of recently scanned pages on
1769 	 * each list that were recently referenced and in active use.
1770 	 */
1771 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1772 	ap /= reclaim_stat->recent_rotated[0] + 1;
1773 
1774 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1775 	fp /= reclaim_stat->recent_rotated[1] + 1;
1776 	spin_unlock_irq(&zone->lru_lock);
1777 
1778 	fraction[0] = ap;
1779 	fraction[1] = fp;
1780 	denominator = ap + fp + 1;
1781 out:
1782 	for_each_evictable_lru(lru) {
1783 		int file = is_file_lru(lru);
1784 		unsigned long size;
1785 		unsigned long scan;
1786 
1787 		size = get_lru_size(lruvec, lru);
1788 		scan = size >> sc->priority;
1789 
1790 		if (!scan && force_scan)
1791 			scan = min(size, SWAP_CLUSTER_MAX);
1792 
1793 		switch (scan_balance) {
1794 		case SCAN_EQUAL:
1795 			/* Scan lists relative to size */
1796 			break;
1797 		case SCAN_FRACT:
1798 			/*
1799 			 * Scan types proportional to swappiness and
1800 			 * their relative recent reclaim efficiency.
1801 			 */
1802 			scan = div64_u64(scan * fraction[file], denominator);
1803 			break;
1804 		case SCAN_FILE:
1805 		case SCAN_ANON:
1806 			/* Scan one type exclusively */
1807 			if ((scan_balance == SCAN_FILE) != file)
1808 				scan = 0;
1809 			break;
1810 		default:
1811 			/* Look ma, no brain */
1812 			BUG();
1813 		}
1814 		nr[lru] = scan;
1815 	}
1816 }
1817 
1818 /*
1819  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1820  */
1821 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1822 {
1823 	unsigned long nr[NR_LRU_LISTS];
1824 	unsigned long nr_to_scan;
1825 	enum lru_list lru;
1826 	unsigned long nr_reclaimed = 0;
1827 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1828 	struct blk_plug plug;
1829 
1830 	get_scan_count(lruvec, sc, nr);
1831 
1832 	blk_start_plug(&plug);
1833 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1834 					nr[LRU_INACTIVE_FILE]) {
1835 		for_each_evictable_lru(lru) {
1836 			if (nr[lru]) {
1837 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1838 				nr[lru] -= nr_to_scan;
1839 
1840 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1841 							    lruvec, sc);
1842 			}
1843 		}
1844 		/*
1845 		 * On large memory systems, scan >> priority can become
1846 		 * really large. This is fine for the starting priority;
1847 		 * we want to put equal scanning pressure on each zone.
1848 		 * However, if the VM has a harder time of freeing pages,
1849 		 * with multiple processes reclaiming pages, the total
1850 		 * freeing target can get unreasonably large.
1851 		 */
1852 		if (nr_reclaimed >= nr_to_reclaim &&
1853 		    sc->priority < DEF_PRIORITY)
1854 			break;
1855 	}
1856 	blk_finish_plug(&plug);
1857 	sc->nr_reclaimed += nr_reclaimed;
1858 
1859 	/*
1860 	 * Even if we did not try to evict anon pages at all, we want to
1861 	 * rebalance the anon lru active/inactive ratio.
1862 	 */
1863 	if (inactive_anon_is_low(lruvec))
1864 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1865 				   sc, LRU_ACTIVE_ANON);
1866 
1867 	throttle_vm_writeout(sc->gfp_mask);
1868 }
1869 
1870 /* Use reclaim/compaction for costly allocs or under memory pressure */
1871 static bool in_reclaim_compaction(struct scan_control *sc)
1872 {
1873 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1874 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1875 			 sc->priority < DEF_PRIORITY - 2))
1876 		return true;
1877 
1878 	return false;
1879 }
1880 
1881 /*
1882  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1883  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1884  * true if more pages should be reclaimed such that when the page allocator
1885  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1886  * It will give up earlier than that if there is difficulty reclaiming pages.
1887  */
1888 static inline bool should_continue_reclaim(struct zone *zone,
1889 					unsigned long nr_reclaimed,
1890 					unsigned long nr_scanned,
1891 					struct scan_control *sc)
1892 {
1893 	unsigned long pages_for_compaction;
1894 	unsigned long inactive_lru_pages;
1895 
1896 	/* If not in reclaim/compaction mode, stop */
1897 	if (!in_reclaim_compaction(sc))
1898 		return false;
1899 
1900 	/* Consider stopping depending on scan and reclaim activity */
1901 	if (sc->gfp_mask & __GFP_REPEAT) {
1902 		/*
1903 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1904 		 * full LRU list has been scanned and we are still failing
1905 		 * to reclaim pages. This full LRU scan is potentially
1906 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1907 		 */
1908 		if (!nr_reclaimed && !nr_scanned)
1909 			return false;
1910 	} else {
1911 		/*
1912 		 * For non-__GFP_REPEAT allocations which can presumably
1913 		 * fail without consequence, stop if we failed to reclaim
1914 		 * any pages from the last SWAP_CLUSTER_MAX number of
1915 		 * pages that were scanned. This will return to the
1916 		 * caller faster at the risk reclaim/compaction and
1917 		 * the resulting allocation attempt fails
1918 		 */
1919 		if (!nr_reclaimed)
1920 			return false;
1921 	}
1922 
1923 	/*
1924 	 * If we have not reclaimed enough pages for compaction and the
1925 	 * inactive lists are large enough, continue reclaiming
1926 	 */
1927 	pages_for_compaction = (2UL << sc->order);
1928 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1929 	if (get_nr_swap_pages() > 0)
1930 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1931 	if (sc->nr_reclaimed < pages_for_compaction &&
1932 			inactive_lru_pages > pages_for_compaction)
1933 		return true;
1934 
1935 	/* If compaction would go ahead or the allocation would succeed, stop */
1936 	switch (compaction_suitable(zone, sc->order)) {
1937 	case COMPACT_PARTIAL:
1938 	case COMPACT_CONTINUE:
1939 		return false;
1940 	default:
1941 		return true;
1942 	}
1943 }
1944 
1945 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1946 {
1947 	unsigned long nr_reclaimed, nr_scanned;
1948 
1949 	do {
1950 		struct mem_cgroup *root = sc->target_mem_cgroup;
1951 		struct mem_cgroup_reclaim_cookie reclaim = {
1952 			.zone = zone,
1953 			.priority = sc->priority,
1954 		};
1955 		struct mem_cgroup *memcg;
1956 
1957 		nr_reclaimed = sc->nr_reclaimed;
1958 		nr_scanned = sc->nr_scanned;
1959 
1960 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
1961 		do {
1962 			struct lruvec *lruvec;
1963 
1964 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1965 
1966 			shrink_lruvec(lruvec, sc);
1967 
1968 			/*
1969 			 * Direct reclaim and kswapd have to scan all memory
1970 			 * cgroups to fulfill the overall scan target for the
1971 			 * zone.
1972 			 *
1973 			 * Limit reclaim, on the other hand, only cares about
1974 			 * nr_to_reclaim pages to be reclaimed and it will
1975 			 * retry with decreasing priority if one round over the
1976 			 * whole hierarchy is not sufficient.
1977 			 */
1978 			if (!global_reclaim(sc) &&
1979 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
1980 				mem_cgroup_iter_break(root, memcg);
1981 				break;
1982 			}
1983 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
1984 		} while (memcg);
1985 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
1986 					 sc->nr_scanned - nr_scanned, sc));
1987 }
1988 
1989 /* Returns true if compaction should go ahead for a high-order request */
1990 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1991 {
1992 	unsigned long balance_gap, watermark;
1993 	bool watermark_ok;
1994 
1995 	/* Do not consider compaction for orders reclaim is meant to satisfy */
1996 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1997 		return false;
1998 
1999 	/*
2000 	 * Compaction takes time to run and there are potentially other
2001 	 * callers using the pages just freed. Continue reclaiming until
2002 	 * there is a buffer of free pages available to give compaction
2003 	 * a reasonable chance of completing and allocating the page
2004 	 */
2005 	balance_gap = min(low_wmark_pages(zone),
2006 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2007 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2008 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2009 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2010 
2011 	/*
2012 	 * If compaction is deferred, reclaim up to a point where
2013 	 * compaction will have a chance of success when re-enabled
2014 	 */
2015 	if (compaction_deferred(zone, sc->order))
2016 		return watermark_ok;
2017 
2018 	/* If compaction is not ready to start, keep reclaiming */
2019 	if (!compaction_suitable(zone, sc->order))
2020 		return false;
2021 
2022 	return watermark_ok;
2023 }
2024 
2025 /*
2026  * This is the direct reclaim path, for page-allocating processes.  We only
2027  * try to reclaim pages from zones which will satisfy the caller's allocation
2028  * request.
2029  *
2030  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2031  * Because:
2032  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2033  *    allocation or
2034  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2035  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2036  *    zone defense algorithm.
2037  *
2038  * If a zone is deemed to be full of pinned pages then just give it a light
2039  * scan then give up on it.
2040  *
2041  * This function returns true if a zone is being reclaimed for a costly
2042  * high-order allocation and compaction is ready to begin. This indicates to
2043  * the caller that it should consider retrying the allocation instead of
2044  * further reclaim.
2045  */
2046 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2047 {
2048 	struct zoneref *z;
2049 	struct zone *zone;
2050 	unsigned long nr_soft_reclaimed;
2051 	unsigned long nr_soft_scanned;
2052 	bool aborted_reclaim = false;
2053 
2054 	/*
2055 	 * If the number of buffer_heads in the machine exceeds the maximum
2056 	 * allowed level, force direct reclaim to scan the highmem zone as
2057 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2058 	 */
2059 	if (buffer_heads_over_limit)
2060 		sc->gfp_mask |= __GFP_HIGHMEM;
2061 
2062 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2063 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2064 		if (!populated_zone(zone))
2065 			continue;
2066 		/*
2067 		 * Take care memory controller reclaiming has small influence
2068 		 * to global LRU.
2069 		 */
2070 		if (global_reclaim(sc)) {
2071 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2072 				continue;
2073 			if (zone->all_unreclaimable &&
2074 					sc->priority != DEF_PRIORITY)
2075 				continue;	/* Let kswapd poll it */
2076 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2077 				/*
2078 				 * If we already have plenty of memory free for
2079 				 * compaction in this zone, don't free any more.
2080 				 * Even though compaction is invoked for any
2081 				 * non-zero order, only frequent costly order
2082 				 * reclamation is disruptive enough to become a
2083 				 * noticeable problem, like transparent huge
2084 				 * page allocations.
2085 				 */
2086 				if (compaction_ready(zone, sc)) {
2087 					aborted_reclaim = true;
2088 					continue;
2089 				}
2090 			}
2091 			/*
2092 			 * This steals pages from memory cgroups over softlimit
2093 			 * and returns the number of reclaimed pages and
2094 			 * scanned pages. This works for global memory pressure
2095 			 * and balancing, not for a memcg's limit.
2096 			 */
2097 			nr_soft_scanned = 0;
2098 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2099 						sc->order, sc->gfp_mask,
2100 						&nr_soft_scanned);
2101 			sc->nr_reclaimed += nr_soft_reclaimed;
2102 			sc->nr_scanned += nr_soft_scanned;
2103 			/* need some check for avoid more shrink_zone() */
2104 		}
2105 
2106 		shrink_zone(zone, sc);
2107 	}
2108 
2109 	return aborted_reclaim;
2110 }
2111 
2112 static bool zone_reclaimable(struct zone *zone)
2113 {
2114 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2115 }
2116 
2117 /* All zones in zonelist are unreclaimable? */
2118 static bool all_unreclaimable(struct zonelist *zonelist,
2119 		struct scan_control *sc)
2120 {
2121 	struct zoneref *z;
2122 	struct zone *zone;
2123 
2124 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2125 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2126 		if (!populated_zone(zone))
2127 			continue;
2128 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2129 			continue;
2130 		if (!zone->all_unreclaimable)
2131 			return false;
2132 	}
2133 
2134 	return true;
2135 }
2136 
2137 /*
2138  * This is the main entry point to direct page reclaim.
2139  *
2140  * If a full scan of the inactive list fails to free enough memory then we
2141  * are "out of memory" and something needs to be killed.
2142  *
2143  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2144  * high - the zone may be full of dirty or under-writeback pages, which this
2145  * caller can't do much about.  We kick the writeback threads and take explicit
2146  * naps in the hope that some of these pages can be written.  But if the
2147  * allocating task holds filesystem locks which prevent writeout this might not
2148  * work, and the allocation attempt will fail.
2149  *
2150  * returns:	0, if no pages reclaimed
2151  * 		else, the number of pages reclaimed
2152  */
2153 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2154 					struct scan_control *sc,
2155 					struct shrink_control *shrink)
2156 {
2157 	unsigned long total_scanned = 0;
2158 	struct reclaim_state *reclaim_state = current->reclaim_state;
2159 	struct zoneref *z;
2160 	struct zone *zone;
2161 	unsigned long writeback_threshold;
2162 	bool aborted_reclaim;
2163 
2164 	delayacct_freepages_start();
2165 
2166 	if (global_reclaim(sc))
2167 		count_vm_event(ALLOCSTALL);
2168 
2169 	do {
2170 		sc->nr_scanned = 0;
2171 		aborted_reclaim = shrink_zones(zonelist, sc);
2172 
2173 		/*
2174 		 * Don't shrink slabs when reclaiming memory from
2175 		 * over limit cgroups
2176 		 */
2177 		if (global_reclaim(sc)) {
2178 			unsigned long lru_pages = 0;
2179 			for_each_zone_zonelist(zone, z, zonelist,
2180 					gfp_zone(sc->gfp_mask)) {
2181 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2182 					continue;
2183 
2184 				lru_pages += zone_reclaimable_pages(zone);
2185 			}
2186 
2187 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2188 			if (reclaim_state) {
2189 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2190 				reclaim_state->reclaimed_slab = 0;
2191 			}
2192 		}
2193 		total_scanned += sc->nr_scanned;
2194 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2195 			goto out;
2196 
2197 		/*
2198 		 * If we're getting trouble reclaiming, start doing
2199 		 * writepage even in laptop mode.
2200 		 */
2201 		if (sc->priority < DEF_PRIORITY - 2)
2202 			sc->may_writepage = 1;
2203 
2204 		/*
2205 		 * Try to write back as many pages as we just scanned.  This
2206 		 * tends to cause slow streaming writers to write data to the
2207 		 * disk smoothly, at the dirtying rate, which is nice.   But
2208 		 * that's undesirable in laptop mode, where we *want* lumpy
2209 		 * writeout.  So in laptop mode, write out the whole world.
2210 		 */
2211 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2212 		if (total_scanned > writeback_threshold) {
2213 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2214 						WB_REASON_TRY_TO_FREE_PAGES);
2215 			sc->may_writepage = 1;
2216 		}
2217 
2218 		/* Take a nap, wait for some writeback to complete */
2219 		if (!sc->hibernation_mode && sc->nr_scanned &&
2220 		    sc->priority < DEF_PRIORITY - 2) {
2221 			struct zone *preferred_zone;
2222 
2223 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2224 						&cpuset_current_mems_allowed,
2225 						&preferred_zone);
2226 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2227 		}
2228 	} while (--sc->priority >= 0);
2229 
2230 out:
2231 	delayacct_freepages_end();
2232 
2233 	if (sc->nr_reclaimed)
2234 		return sc->nr_reclaimed;
2235 
2236 	/*
2237 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2238 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2239 	 * check.
2240 	 */
2241 	if (oom_killer_disabled)
2242 		return 0;
2243 
2244 	/* Aborted reclaim to try compaction? don't OOM, then */
2245 	if (aborted_reclaim)
2246 		return 1;
2247 
2248 	/* top priority shrink_zones still had more to do? don't OOM, then */
2249 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2250 		return 1;
2251 
2252 	return 0;
2253 }
2254 
2255 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2256 {
2257 	struct zone *zone;
2258 	unsigned long pfmemalloc_reserve = 0;
2259 	unsigned long free_pages = 0;
2260 	int i;
2261 	bool wmark_ok;
2262 
2263 	for (i = 0; i <= ZONE_NORMAL; i++) {
2264 		zone = &pgdat->node_zones[i];
2265 		pfmemalloc_reserve += min_wmark_pages(zone);
2266 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2267 	}
2268 
2269 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2270 
2271 	/* kswapd must be awake if processes are being throttled */
2272 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2273 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2274 						(enum zone_type)ZONE_NORMAL);
2275 		wake_up_interruptible(&pgdat->kswapd_wait);
2276 	}
2277 
2278 	return wmark_ok;
2279 }
2280 
2281 /*
2282  * Throttle direct reclaimers if backing storage is backed by the network
2283  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2284  * depleted. kswapd will continue to make progress and wake the processes
2285  * when the low watermark is reached.
2286  *
2287  * Returns true if a fatal signal was delivered during throttling. If this
2288  * happens, the page allocator should not consider triggering the OOM killer.
2289  */
2290 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2291 					nodemask_t *nodemask)
2292 {
2293 	struct zone *zone;
2294 	int high_zoneidx = gfp_zone(gfp_mask);
2295 	pg_data_t *pgdat;
2296 
2297 	/*
2298 	 * Kernel threads should not be throttled as they may be indirectly
2299 	 * responsible for cleaning pages necessary for reclaim to make forward
2300 	 * progress. kjournald for example may enter direct reclaim while
2301 	 * committing a transaction where throttling it could forcing other
2302 	 * processes to block on log_wait_commit().
2303 	 */
2304 	if (current->flags & PF_KTHREAD)
2305 		goto out;
2306 
2307 	/*
2308 	 * If a fatal signal is pending, this process should not throttle.
2309 	 * It should return quickly so it can exit and free its memory
2310 	 */
2311 	if (fatal_signal_pending(current))
2312 		goto out;
2313 
2314 	/* Check if the pfmemalloc reserves are ok */
2315 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2316 	pgdat = zone->zone_pgdat;
2317 	if (pfmemalloc_watermark_ok(pgdat))
2318 		goto out;
2319 
2320 	/* Account for the throttling */
2321 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2322 
2323 	/*
2324 	 * If the caller cannot enter the filesystem, it's possible that it
2325 	 * is due to the caller holding an FS lock or performing a journal
2326 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2327 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2328 	 * blocked waiting on the same lock. Instead, throttle for up to a
2329 	 * second before continuing.
2330 	 */
2331 	if (!(gfp_mask & __GFP_FS)) {
2332 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2333 			pfmemalloc_watermark_ok(pgdat), HZ);
2334 
2335 		goto check_pending;
2336 	}
2337 
2338 	/* Throttle until kswapd wakes the process */
2339 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2340 		pfmemalloc_watermark_ok(pgdat));
2341 
2342 check_pending:
2343 	if (fatal_signal_pending(current))
2344 		return true;
2345 
2346 out:
2347 	return false;
2348 }
2349 
2350 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2351 				gfp_t gfp_mask, nodemask_t *nodemask)
2352 {
2353 	unsigned long nr_reclaimed;
2354 	struct scan_control sc = {
2355 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2356 		.may_writepage = !laptop_mode,
2357 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2358 		.may_unmap = 1,
2359 		.may_swap = 1,
2360 		.order = order,
2361 		.priority = DEF_PRIORITY,
2362 		.target_mem_cgroup = NULL,
2363 		.nodemask = nodemask,
2364 	};
2365 	struct shrink_control shrink = {
2366 		.gfp_mask = sc.gfp_mask,
2367 	};
2368 
2369 	/*
2370 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2371 	 * 1 is returned so that the page allocator does not OOM kill at this
2372 	 * point.
2373 	 */
2374 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2375 		return 1;
2376 
2377 	trace_mm_vmscan_direct_reclaim_begin(order,
2378 				sc.may_writepage,
2379 				gfp_mask);
2380 
2381 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2382 
2383 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2384 
2385 	return nr_reclaimed;
2386 }
2387 
2388 #ifdef CONFIG_MEMCG
2389 
2390 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2391 						gfp_t gfp_mask, bool noswap,
2392 						struct zone *zone,
2393 						unsigned long *nr_scanned)
2394 {
2395 	struct scan_control sc = {
2396 		.nr_scanned = 0,
2397 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2398 		.may_writepage = !laptop_mode,
2399 		.may_unmap = 1,
2400 		.may_swap = !noswap,
2401 		.order = 0,
2402 		.priority = 0,
2403 		.target_mem_cgroup = memcg,
2404 	};
2405 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2406 
2407 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2408 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2409 
2410 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2411 						      sc.may_writepage,
2412 						      sc.gfp_mask);
2413 
2414 	/*
2415 	 * NOTE: Although we can get the priority field, using it
2416 	 * here is not a good idea, since it limits the pages we can scan.
2417 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2418 	 * will pick up pages from other mem cgroup's as well. We hack
2419 	 * the priority and make it zero.
2420 	 */
2421 	shrink_lruvec(lruvec, &sc);
2422 
2423 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2424 
2425 	*nr_scanned = sc.nr_scanned;
2426 	return sc.nr_reclaimed;
2427 }
2428 
2429 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2430 					   gfp_t gfp_mask,
2431 					   bool noswap)
2432 {
2433 	struct zonelist *zonelist;
2434 	unsigned long nr_reclaimed;
2435 	int nid;
2436 	struct scan_control sc = {
2437 		.may_writepage = !laptop_mode,
2438 		.may_unmap = 1,
2439 		.may_swap = !noswap,
2440 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2441 		.order = 0,
2442 		.priority = DEF_PRIORITY,
2443 		.target_mem_cgroup = memcg,
2444 		.nodemask = NULL, /* we don't care the placement */
2445 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2446 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2447 	};
2448 	struct shrink_control shrink = {
2449 		.gfp_mask = sc.gfp_mask,
2450 	};
2451 
2452 	/*
2453 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2454 	 * take care of from where we get pages. So the node where we start the
2455 	 * scan does not need to be the current node.
2456 	 */
2457 	nid = mem_cgroup_select_victim_node(memcg);
2458 
2459 	zonelist = NODE_DATA(nid)->node_zonelists;
2460 
2461 	trace_mm_vmscan_memcg_reclaim_begin(0,
2462 					    sc.may_writepage,
2463 					    sc.gfp_mask);
2464 
2465 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2466 
2467 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2468 
2469 	return nr_reclaimed;
2470 }
2471 #endif
2472 
2473 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2474 {
2475 	struct mem_cgroup *memcg;
2476 
2477 	if (!total_swap_pages)
2478 		return;
2479 
2480 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2481 	do {
2482 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2483 
2484 		if (inactive_anon_is_low(lruvec))
2485 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2486 					   sc, LRU_ACTIVE_ANON);
2487 
2488 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2489 	} while (memcg);
2490 }
2491 
2492 static bool zone_balanced(struct zone *zone, int order,
2493 			  unsigned long balance_gap, int classzone_idx)
2494 {
2495 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2496 				    balance_gap, classzone_idx, 0))
2497 		return false;
2498 
2499 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2500 	    !compaction_suitable(zone, order))
2501 		return false;
2502 
2503 	return true;
2504 }
2505 
2506 /*
2507  * pgdat_balanced() is used when checking if a node is balanced.
2508  *
2509  * For order-0, all zones must be balanced!
2510  *
2511  * For high-order allocations only zones that meet watermarks and are in a
2512  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2513  * total of balanced pages must be at least 25% of the zones allowed by
2514  * classzone_idx for the node to be considered balanced. Forcing all zones to
2515  * be balanced for high orders can cause excessive reclaim when there are
2516  * imbalanced zones.
2517  * The choice of 25% is due to
2518  *   o a 16M DMA zone that is balanced will not balance a zone on any
2519  *     reasonable sized machine
2520  *   o On all other machines, the top zone must be at least a reasonable
2521  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2522  *     would need to be at least 256M for it to be balance a whole node.
2523  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2524  *     to balance a node on its own. These seemed like reasonable ratios.
2525  */
2526 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2527 {
2528 	unsigned long managed_pages = 0;
2529 	unsigned long balanced_pages = 0;
2530 	int i;
2531 
2532 	/* Check the watermark levels */
2533 	for (i = 0; i <= classzone_idx; i++) {
2534 		struct zone *zone = pgdat->node_zones + i;
2535 
2536 		if (!populated_zone(zone))
2537 			continue;
2538 
2539 		managed_pages += zone->managed_pages;
2540 
2541 		/*
2542 		 * A special case here:
2543 		 *
2544 		 * balance_pgdat() skips over all_unreclaimable after
2545 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2546 		 * they must be considered balanced here as well!
2547 		 */
2548 		if (zone->all_unreclaimable) {
2549 			balanced_pages += zone->managed_pages;
2550 			continue;
2551 		}
2552 
2553 		if (zone_balanced(zone, order, 0, i))
2554 			balanced_pages += zone->managed_pages;
2555 		else if (!order)
2556 			return false;
2557 	}
2558 
2559 	if (order)
2560 		return balanced_pages >= (managed_pages >> 2);
2561 	else
2562 		return true;
2563 }
2564 
2565 /*
2566  * Prepare kswapd for sleeping. This verifies that there are no processes
2567  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2568  *
2569  * Returns true if kswapd is ready to sleep
2570  */
2571 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2572 					int classzone_idx)
2573 {
2574 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2575 	if (remaining)
2576 		return false;
2577 
2578 	/*
2579 	 * There is a potential race between when kswapd checks its watermarks
2580 	 * and a process gets throttled. There is also a potential race if
2581 	 * processes get throttled, kswapd wakes, a large process exits therby
2582 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2583 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2584 	 * so wake them now if necessary. If necessary, processes will wake
2585 	 * kswapd and get throttled again
2586 	 */
2587 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2588 		wake_up(&pgdat->pfmemalloc_wait);
2589 		return false;
2590 	}
2591 
2592 	return pgdat_balanced(pgdat, order, classzone_idx);
2593 }
2594 
2595 /*
2596  * For kswapd, balance_pgdat() will work across all this node's zones until
2597  * they are all at high_wmark_pages(zone).
2598  *
2599  * Returns the final order kswapd was reclaiming at
2600  *
2601  * There is special handling here for zones which are full of pinned pages.
2602  * This can happen if the pages are all mlocked, or if they are all used by
2603  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2604  * What we do is to detect the case where all pages in the zone have been
2605  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2606  * dead and from now on, only perform a short scan.  Basically we're polling
2607  * the zone for when the problem goes away.
2608  *
2609  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2610  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2611  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2612  * lower zones regardless of the number of free pages in the lower zones. This
2613  * interoperates with the page allocator fallback scheme to ensure that aging
2614  * of pages is balanced across the zones.
2615  */
2616 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2617 							int *classzone_idx)
2618 {
2619 	bool pgdat_is_balanced = false;
2620 	int i;
2621 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2622 	unsigned long total_scanned;
2623 	struct reclaim_state *reclaim_state = current->reclaim_state;
2624 	unsigned long nr_soft_reclaimed;
2625 	unsigned long nr_soft_scanned;
2626 	struct scan_control sc = {
2627 		.gfp_mask = GFP_KERNEL,
2628 		.may_unmap = 1,
2629 		.may_swap = 1,
2630 		/*
2631 		 * kswapd doesn't want to be bailed out while reclaim. because
2632 		 * we want to put equal scanning pressure on each zone.
2633 		 */
2634 		.nr_to_reclaim = ULONG_MAX,
2635 		.order = order,
2636 		.target_mem_cgroup = NULL,
2637 	};
2638 	struct shrink_control shrink = {
2639 		.gfp_mask = sc.gfp_mask,
2640 	};
2641 loop_again:
2642 	total_scanned = 0;
2643 	sc.priority = DEF_PRIORITY;
2644 	sc.nr_reclaimed = 0;
2645 	sc.may_writepage = !laptop_mode;
2646 	count_vm_event(PAGEOUTRUN);
2647 
2648 	do {
2649 		unsigned long lru_pages = 0;
2650 
2651 		/*
2652 		 * Scan in the highmem->dma direction for the highest
2653 		 * zone which needs scanning
2654 		 */
2655 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2656 			struct zone *zone = pgdat->node_zones + i;
2657 
2658 			if (!populated_zone(zone))
2659 				continue;
2660 
2661 			if (zone->all_unreclaimable &&
2662 			    sc.priority != DEF_PRIORITY)
2663 				continue;
2664 
2665 			/*
2666 			 * Do some background aging of the anon list, to give
2667 			 * pages a chance to be referenced before reclaiming.
2668 			 */
2669 			age_active_anon(zone, &sc);
2670 
2671 			/*
2672 			 * If the number of buffer_heads in the machine
2673 			 * exceeds the maximum allowed level and this node
2674 			 * has a highmem zone, force kswapd to reclaim from
2675 			 * it to relieve lowmem pressure.
2676 			 */
2677 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2678 				end_zone = i;
2679 				break;
2680 			}
2681 
2682 			if (!zone_balanced(zone, order, 0, 0)) {
2683 				end_zone = i;
2684 				break;
2685 			} else {
2686 				/* If balanced, clear the congested flag */
2687 				zone_clear_flag(zone, ZONE_CONGESTED);
2688 			}
2689 		}
2690 
2691 		if (i < 0) {
2692 			pgdat_is_balanced = true;
2693 			goto out;
2694 		}
2695 
2696 		for (i = 0; i <= end_zone; i++) {
2697 			struct zone *zone = pgdat->node_zones + i;
2698 
2699 			lru_pages += zone_reclaimable_pages(zone);
2700 		}
2701 
2702 		/*
2703 		 * Now scan the zone in the dma->highmem direction, stopping
2704 		 * at the last zone which needs scanning.
2705 		 *
2706 		 * We do this because the page allocator works in the opposite
2707 		 * direction.  This prevents the page allocator from allocating
2708 		 * pages behind kswapd's direction of progress, which would
2709 		 * cause too much scanning of the lower zones.
2710 		 */
2711 		for (i = 0; i <= end_zone; i++) {
2712 			struct zone *zone = pgdat->node_zones + i;
2713 			int nr_slab, testorder;
2714 			unsigned long balance_gap;
2715 
2716 			if (!populated_zone(zone))
2717 				continue;
2718 
2719 			if (zone->all_unreclaimable &&
2720 			    sc.priority != DEF_PRIORITY)
2721 				continue;
2722 
2723 			sc.nr_scanned = 0;
2724 
2725 			nr_soft_scanned = 0;
2726 			/*
2727 			 * Call soft limit reclaim before calling shrink_zone.
2728 			 */
2729 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2730 							order, sc.gfp_mask,
2731 							&nr_soft_scanned);
2732 			sc.nr_reclaimed += nr_soft_reclaimed;
2733 			total_scanned += nr_soft_scanned;
2734 
2735 			/*
2736 			 * We put equal pressure on every zone, unless
2737 			 * one zone has way too many pages free
2738 			 * already. The "too many pages" is defined
2739 			 * as the high wmark plus a "gap" where the
2740 			 * gap is either the low watermark or 1%
2741 			 * of the zone, whichever is smaller.
2742 			 */
2743 			balance_gap = min(low_wmark_pages(zone),
2744 				(zone->managed_pages +
2745 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2746 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2747 			/*
2748 			 * Kswapd reclaims only single pages with compaction
2749 			 * enabled. Trying too hard to reclaim until contiguous
2750 			 * free pages have become available can hurt performance
2751 			 * by evicting too much useful data from memory.
2752 			 * Do not reclaim more than needed for compaction.
2753 			 */
2754 			testorder = order;
2755 			if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2756 					compaction_suitable(zone, order) !=
2757 						COMPACT_SKIPPED)
2758 				testorder = 0;
2759 
2760 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2761 			    !zone_balanced(zone, testorder,
2762 					   balance_gap, end_zone)) {
2763 				shrink_zone(zone, &sc);
2764 
2765 				reclaim_state->reclaimed_slab = 0;
2766 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2767 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2768 				total_scanned += sc.nr_scanned;
2769 
2770 				if (nr_slab == 0 && !zone_reclaimable(zone))
2771 					zone->all_unreclaimable = 1;
2772 			}
2773 
2774 			/*
2775 			 * If we're getting trouble reclaiming, start doing
2776 			 * writepage even in laptop mode.
2777 			 */
2778 			if (sc.priority < DEF_PRIORITY - 2)
2779 				sc.may_writepage = 1;
2780 
2781 			if (zone->all_unreclaimable) {
2782 				if (end_zone && end_zone == i)
2783 					end_zone--;
2784 				continue;
2785 			}
2786 
2787 			if (zone_balanced(zone, testorder, 0, end_zone))
2788 				/*
2789 				 * If a zone reaches its high watermark,
2790 				 * consider it to be no longer congested. It's
2791 				 * possible there are dirty pages backed by
2792 				 * congested BDIs but as pressure is relieved,
2793 				 * speculatively avoid congestion waits
2794 				 */
2795 				zone_clear_flag(zone, ZONE_CONGESTED);
2796 		}
2797 
2798 		/*
2799 		 * If the low watermark is met there is no need for processes
2800 		 * to be throttled on pfmemalloc_wait as they should not be
2801 		 * able to safely make forward progress. Wake them
2802 		 */
2803 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2804 				pfmemalloc_watermark_ok(pgdat))
2805 			wake_up(&pgdat->pfmemalloc_wait);
2806 
2807 		if (pgdat_balanced(pgdat, order, *classzone_idx)) {
2808 			pgdat_is_balanced = true;
2809 			break;		/* kswapd: all done */
2810 		}
2811 
2812 		/*
2813 		 * We do this so kswapd doesn't build up large priorities for
2814 		 * example when it is freeing in parallel with allocators. It
2815 		 * matches the direct reclaim path behaviour in terms of impact
2816 		 * on zone->*_priority.
2817 		 */
2818 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2819 			break;
2820 	} while (--sc.priority >= 0);
2821 
2822 out:
2823 	if (!pgdat_is_balanced) {
2824 		cond_resched();
2825 
2826 		try_to_freeze();
2827 
2828 		/*
2829 		 * Fragmentation may mean that the system cannot be
2830 		 * rebalanced for high-order allocations in all zones.
2831 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2832 		 * it means the zones have been fully scanned and are still
2833 		 * not balanced. For high-order allocations, there is
2834 		 * little point trying all over again as kswapd may
2835 		 * infinite loop.
2836 		 *
2837 		 * Instead, recheck all watermarks at order-0 as they
2838 		 * are the most important. If watermarks are ok, kswapd will go
2839 		 * back to sleep. High-order users can still perform direct
2840 		 * reclaim if they wish.
2841 		 */
2842 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2843 			order = sc.order = 0;
2844 
2845 		goto loop_again;
2846 	}
2847 
2848 	/*
2849 	 * If kswapd was reclaiming at a higher order, it has the option of
2850 	 * sleeping without all zones being balanced. Before it does, it must
2851 	 * ensure that the watermarks for order-0 on *all* zones are met and
2852 	 * that the congestion flags are cleared. The congestion flag must
2853 	 * be cleared as kswapd is the only mechanism that clears the flag
2854 	 * and it is potentially going to sleep here.
2855 	 */
2856 	if (order) {
2857 		int zones_need_compaction = 1;
2858 
2859 		for (i = 0; i <= end_zone; i++) {
2860 			struct zone *zone = pgdat->node_zones + i;
2861 
2862 			if (!populated_zone(zone))
2863 				continue;
2864 
2865 			/* Check if the memory needs to be defragmented. */
2866 			if (zone_watermark_ok(zone, order,
2867 				    low_wmark_pages(zone), *classzone_idx, 0))
2868 				zones_need_compaction = 0;
2869 		}
2870 
2871 		if (zones_need_compaction)
2872 			compact_pgdat(pgdat, order);
2873 	}
2874 
2875 	/*
2876 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2877 	 * makes a decision on the order we were last reclaiming at. However,
2878 	 * if another caller entered the allocator slow path while kswapd
2879 	 * was awake, order will remain at the higher level
2880 	 */
2881 	*classzone_idx = end_zone;
2882 	return order;
2883 }
2884 
2885 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2886 {
2887 	long remaining = 0;
2888 	DEFINE_WAIT(wait);
2889 
2890 	if (freezing(current) || kthread_should_stop())
2891 		return;
2892 
2893 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2894 
2895 	/* Try to sleep for a short interval */
2896 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2897 		remaining = schedule_timeout(HZ/10);
2898 		finish_wait(&pgdat->kswapd_wait, &wait);
2899 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2900 	}
2901 
2902 	/*
2903 	 * After a short sleep, check if it was a premature sleep. If not, then
2904 	 * go fully to sleep until explicitly woken up.
2905 	 */
2906 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2907 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2908 
2909 		/*
2910 		 * vmstat counters are not perfectly accurate and the estimated
2911 		 * value for counters such as NR_FREE_PAGES can deviate from the
2912 		 * true value by nr_online_cpus * threshold. To avoid the zone
2913 		 * watermarks being breached while under pressure, we reduce the
2914 		 * per-cpu vmstat threshold while kswapd is awake and restore
2915 		 * them before going back to sleep.
2916 		 */
2917 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2918 
2919 		/*
2920 		 * Compaction records what page blocks it recently failed to
2921 		 * isolate pages from and skips them in the future scanning.
2922 		 * When kswapd is going to sleep, it is reasonable to assume
2923 		 * that pages and compaction may succeed so reset the cache.
2924 		 */
2925 		reset_isolation_suitable(pgdat);
2926 
2927 		if (!kthread_should_stop())
2928 			schedule();
2929 
2930 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2931 	} else {
2932 		if (remaining)
2933 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2934 		else
2935 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2936 	}
2937 	finish_wait(&pgdat->kswapd_wait, &wait);
2938 }
2939 
2940 /*
2941  * The background pageout daemon, started as a kernel thread
2942  * from the init process.
2943  *
2944  * This basically trickles out pages so that we have _some_
2945  * free memory available even if there is no other activity
2946  * that frees anything up. This is needed for things like routing
2947  * etc, where we otherwise might have all activity going on in
2948  * asynchronous contexts that cannot page things out.
2949  *
2950  * If there are applications that are active memory-allocators
2951  * (most normal use), this basically shouldn't matter.
2952  */
2953 static int kswapd(void *p)
2954 {
2955 	unsigned long order, new_order;
2956 	unsigned balanced_order;
2957 	int classzone_idx, new_classzone_idx;
2958 	int balanced_classzone_idx;
2959 	pg_data_t *pgdat = (pg_data_t*)p;
2960 	struct task_struct *tsk = current;
2961 
2962 	struct reclaim_state reclaim_state = {
2963 		.reclaimed_slab = 0,
2964 	};
2965 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2966 
2967 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2968 
2969 	if (!cpumask_empty(cpumask))
2970 		set_cpus_allowed_ptr(tsk, cpumask);
2971 	current->reclaim_state = &reclaim_state;
2972 
2973 	/*
2974 	 * Tell the memory management that we're a "memory allocator",
2975 	 * and that if we need more memory we should get access to it
2976 	 * regardless (see "__alloc_pages()"). "kswapd" should
2977 	 * never get caught in the normal page freeing logic.
2978 	 *
2979 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2980 	 * you need a small amount of memory in order to be able to
2981 	 * page out something else, and this flag essentially protects
2982 	 * us from recursively trying to free more memory as we're
2983 	 * trying to free the first piece of memory in the first place).
2984 	 */
2985 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2986 	set_freezable();
2987 
2988 	order = new_order = 0;
2989 	balanced_order = 0;
2990 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2991 	balanced_classzone_idx = classzone_idx;
2992 	for ( ; ; ) {
2993 		bool ret;
2994 
2995 		/*
2996 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2997 		 * new request of a similar or harder type will succeed soon
2998 		 * so consider going to sleep on the basis we reclaimed at
2999 		 */
3000 		if (balanced_classzone_idx >= new_classzone_idx &&
3001 					balanced_order == new_order) {
3002 			new_order = pgdat->kswapd_max_order;
3003 			new_classzone_idx = pgdat->classzone_idx;
3004 			pgdat->kswapd_max_order =  0;
3005 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3006 		}
3007 
3008 		if (order < new_order || classzone_idx > new_classzone_idx) {
3009 			/*
3010 			 * Don't sleep if someone wants a larger 'order'
3011 			 * allocation or has tigher zone constraints
3012 			 */
3013 			order = new_order;
3014 			classzone_idx = new_classzone_idx;
3015 		} else {
3016 			kswapd_try_to_sleep(pgdat, balanced_order,
3017 						balanced_classzone_idx);
3018 			order = pgdat->kswapd_max_order;
3019 			classzone_idx = pgdat->classzone_idx;
3020 			new_order = order;
3021 			new_classzone_idx = classzone_idx;
3022 			pgdat->kswapd_max_order = 0;
3023 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3024 		}
3025 
3026 		ret = try_to_freeze();
3027 		if (kthread_should_stop())
3028 			break;
3029 
3030 		/*
3031 		 * We can speed up thawing tasks if we don't call balance_pgdat
3032 		 * after returning from the refrigerator
3033 		 */
3034 		if (!ret) {
3035 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3036 			balanced_classzone_idx = classzone_idx;
3037 			balanced_order = balance_pgdat(pgdat, order,
3038 						&balanced_classzone_idx);
3039 		}
3040 	}
3041 
3042 	current->reclaim_state = NULL;
3043 	return 0;
3044 }
3045 
3046 /*
3047  * A zone is low on free memory, so wake its kswapd task to service it.
3048  */
3049 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3050 {
3051 	pg_data_t *pgdat;
3052 
3053 	if (!populated_zone(zone))
3054 		return;
3055 
3056 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3057 		return;
3058 	pgdat = zone->zone_pgdat;
3059 	if (pgdat->kswapd_max_order < order) {
3060 		pgdat->kswapd_max_order = order;
3061 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3062 	}
3063 	if (!waitqueue_active(&pgdat->kswapd_wait))
3064 		return;
3065 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3066 		return;
3067 
3068 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3069 	wake_up_interruptible(&pgdat->kswapd_wait);
3070 }
3071 
3072 /*
3073  * The reclaimable count would be mostly accurate.
3074  * The less reclaimable pages may be
3075  * - mlocked pages, which will be moved to unevictable list when encountered
3076  * - mapped pages, which may require several travels to be reclaimed
3077  * - dirty pages, which is not "instantly" reclaimable
3078  */
3079 unsigned long global_reclaimable_pages(void)
3080 {
3081 	int nr;
3082 
3083 	nr = global_page_state(NR_ACTIVE_FILE) +
3084 	     global_page_state(NR_INACTIVE_FILE);
3085 
3086 	if (get_nr_swap_pages() > 0)
3087 		nr += global_page_state(NR_ACTIVE_ANON) +
3088 		      global_page_state(NR_INACTIVE_ANON);
3089 
3090 	return nr;
3091 }
3092 
3093 unsigned long zone_reclaimable_pages(struct zone *zone)
3094 {
3095 	int nr;
3096 
3097 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3098 	     zone_page_state(zone, NR_INACTIVE_FILE);
3099 
3100 	if (get_nr_swap_pages() > 0)
3101 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3102 		      zone_page_state(zone, NR_INACTIVE_ANON);
3103 
3104 	return nr;
3105 }
3106 
3107 #ifdef CONFIG_HIBERNATION
3108 /*
3109  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3110  * freed pages.
3111  *
3112  * Rather than trying to age LRUs the aim is to preserve the overall
3113  * LRU order by reclaiming preferentially
3114  * inactive > active > active referenced > active mapped
3115  */
3116 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3117 {
3118 	struct reclaim_state reclaim_state;
3119 	struct scan_control sc = {
3120 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3121 		.may_swap = 1,
3122 		.may_unmap = 1,
3123 		.may_writepage = 1,
3124 		.nr_to_reclaim = nr_to_reclaim,
3125 		.hibernation_mode = 1,
3126 		.order = 0,
3127 		.priority = DEF_PRIORITY,
3128 	};
3129 	struct shrink_control shrink = {
3130 		.gfp_mask = sc.gfp_mask,
3131 	};
3132 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3133 	struct task_struct *p = current;
3134 	unsigned long nr_reclaimed;
3135 
3136 	p->flags |= PF_MEMALLOC;
3137 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3138 	reclaim_state.reclaimed_slab = 0;
3139 	p->reclaim_state = &reclaim_state;
3140 
3141 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3142 
3143 	p->reclaim_state = NULL;
3144 	lockdep_clear_current_reclaim_state();
3145 	p->flags &= ~PF_MEMALLOC;
3146 
3147 	return nr_reclaimed;
3148 }
3149 #endif /* CONFIG_HIBERNATION */
3150 
3151 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3152    not required for correctness.  So if the last cpu in a node goes
3153    away, we get changed to run anywhere: as the first one comes back,
3154    restore their cpu bindings. */
3155 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3156 			void *hcpu)
3157 {
3158 	int nid;
3159 
3160 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3161 		for_each_node_state(nid, N_MEMORY) {
3162 			pg_data_t *pgdat = NODE_DATA(nid);
3163 			const struct cpumask *mask;
3164 
3165 			mask = cpumask_of_node(pgdat->node_id);
3166 
3167 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3168 				/* One of our CPUs online: restore mask */
3169 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3170 		}
3171 	}
3172 	return NOTIFY_OK;
3173 }
3174 
3175 /*
3176  * This kswapd start function will be called by init and node-hot-add.
3177  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3178  */
3179 int kswapd_run(int nid)
3180 {
3181 	pg_data_t *pgdat = NODE_DATA(nid);
3182 	int ret = 0;
3183 
3184 	if (pgdat->kswapd)
3185 		return 0;
3186 
3187 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3188 	if (IS_ERR(pgdat->kswapd)) {
3189 		/* failure at boot is fatal */
3190 		BUG_ON(system_state == SYSTEM_BOOTING);
3191 		pgdat->kswapd = NULL;
3192 		pr_err("Failed to start kswapd on node %d\n", nid);
3193 		ret = PTR_ERR(pgdat->kswapd);
3194 	}
3195 	return ret;
3196 }
3197 
3198 /*
3199  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3200  * hold lock_memory_hotplug().
3201  */
3202 void kswapd_stop(int nid)
3203 {
3204 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3205 
3206 	if (kswapd) {
3207 		kthread_stop(kswapd);
3208 		NODE_DATA(nid)->kswapd = NULL;
3209 	}
3210 }
3211 
3212 static int __init kswapd_init(void)
3213 {
3214 	int nid;
3215 
3216 	swap_setup();
3217 	for_each_node_state(nid, N_MEMORY)
3218  		kswapd_run(nid);
3219 	hotcpu_notifier(cpu_callback, 0);
3220 	return 0;
3221 }
3222 
3223 module_init(kswapd_init)
3224 
3225 #ifdef CONFIG_NUMA
3226 /*
3227  * Zone reclaim mode
3228  *
3229  * If non-zero call zone_reclaim when the number of free pages falls below
3230  * the watermarks.
3231  */
3232 int zone_reclaim_mode __read_mostly;
3233 
3234 #define RECLAIM_OFF 0
3235 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3236 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3237 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3238 
3239 /*
3240  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3241  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3242  * a zone.
3243  */
3244 #define ZONE_RECLAIM_PRIORITY 4
3245 
3246 /*
3247  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3248  * occur.
3249  */
3250 int sysctl_min_unmapped_ratio = 1;
3251 
3252 /*
3253  * If the number of slab pages in a zone grows beyond this percentage then
3254  * slab reclaim needs to occur.
3255  */
3256 int sysctl_min_slab_ratio = 5;
3257 
3258 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3259 {
3260 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3261 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3262 		zone_page_state(zone, NR_ACTIVE_FILE);
3263 
3264 	/*
3265 	 * It's possible for there to be more file mapped pages than
3266 	 * accounted for by the pages on the file LRU lists because
3267 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3268 	 */
3269 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3270 }
3271 
3272 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3273 static long zone_pagecache_reclaimable(struct zone *zone)
3274 {
3275 	long nr_pagecache_reclaimable;
3276 	long delta = 0;
3277 
3278 	/*
3279 	 * If RECLAIM_SWAP is set, then all file pages are considered
3280 	 * potentially reclaimable. Otherwise, we have to worry about
3281 	 * pages like swapcache and zone_unmapped_file_pages() provides
3282 	 * a better estimate
3283 	 */
3284 	if (zone_reclaim_mode & RECLAIM_SWAP)
3285 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3286 	else
3287 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3288 
3289 	/* If we can't clean pages, remove dirty pages from consideration */
3290 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3291 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3292 
3293 	/* Watch for any possible underflows due to delta */
3294 	if (unlikely(delta > nr_pagecache_reclaimable))
3295 		delta = nr_pagecache_reclaimable;
3296 
3297 	return nr_pagecache_reclaimable - delta;
3298 }
3299 
3300 /*
3301  * Try to free up some pages from this zone through reclaim.
3302  */
3303 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3304 {
3305 	/* Minimum pages needed in order to stay on node */
3306 	const unsigned long nr_pages = 1 << order;
3307 	struct task_struct *p = current;
3308 	struct reclaim_state reclaim_state;
3309 	struct scan_control sc = {
3310 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3311 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3312 		.may_swap = 1,
3313 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3314 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3315 		.order = order,
3316 		.priority = ZONE_RECLAIM_PRIORITY,
3317 	};
3318 	struct shrink_control shrink = {
3319 		.gfp_mask = sc.gfp_mask,
3320 	};
3321 	unsigned long nr_slab_pages0, nr_slab_pages1;
3322 
3323 	cond_resched();
3324 	/*
3325 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3326 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3327 	 * and RECLAIM_SWAP.
3328 	 */
3329 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3330 	lockdep_set_current_reclaim_state(gfp_mask);
3331 	reclaim_state.reclaimed_slab = 0;
3332 	p->reclaim_state = &reclaim_state;
3333 
3334 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3335 		/*
3336 		 * Free memory by calling shrink zone with increasing
3337 		 * priorities until we have enough memory freed.
3338 		 */
3339 		do {
3340 			shrink_zone(zone, &sc);
3341 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3342 	}
3343 
3344 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3345 	if (nr_slab_pages0 > zone->min_slab_pages) {
3346 		/*
3347 		 * shrink_slab() does not currently allow us to determine how
3348 		 * many pages were freed in this zone. So we take the current
3349 		 * number of slab pages and shake the slab until it is reduced
3350 		 * by the same nr_pages that we used for reclaiming unmapped
3351 		 * pages.
3352 		 *
3353 		 * Note that shrink_slab will free memory on all zones and may
3354 		 * take a long time.
3355 		 */
3356 		for (;;) {
3357 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3358 
3359 			/* No reclaimable slab or very low memory pressure */
3360 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3361 				break;
3362 
3363 			/* Freed enough memory */
3364 			nr_slab_pages1 = zone_page_state(zone,
3365 							NR_SLAB_RECLAIMABLE);
3366 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3367 				break;
3368 		}
3369 
3370 		/*
3371 		 * Update nr_reclaimed by the number of slab pages we
3372 		 * reclaimed from this zone.
3373 		 */
3374 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3375 		if (nr_slab_pages1 < nr_slab_pages0)
3376 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3377 	}
3378 
3379 	p->reclaim_state = NULL;
3380 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3381 	lockdep_clear_current_reclaim_state();
3382 	return sc.nr_reclaimed >= nr_pages;
3383 }
3384 
3385 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3386 {
3387 	int node_id;
3388 	int ret;
3389 
3390 	/*
3391 	 * Zone reclaim reclaims unmapped file backed pages and
3392 	 * slab pages if we are over the defined limits.
3393 	 *
3394 	 * A small portion of unmapped file backed pages is needed for
3395 	 * file I/O otherwise pages read by file I/O will be immediately
3396 	 * thrown out if the zone is overallocated. So we do not reclaim
3397 	 * if less than a specified percentage of the zone is used by
3398 	 * unmapped file backed pages.
3399 	 */
3400 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3401 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3402 		return ZONE_RECLAIM_FULL;
3403 
3404 	if (zone->all_unreclaimable)
3405 		return ZONE_RECLAIM_FULL;
3406 
3407 	/*
3408 	 * Do not scan if the allocation should not be delayed.
3409 	 */
3410 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3411 		return ZONE_RECLAIM_NOSCAN;
3412 
3413 	/*
3414 	 * Only run zone reclaim on the local zone or on zones that do not
3415 	 * have associated processors. This will favor the local processor
3416 	 * over remote processors and spread off node memory allocations
3417 	 * as wide as possible.
3418 	 */
3419 	node_id = zone_to_nid(zone);
3420 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3421 		return ZONE_RECLAIM_NOSCAN;
3422 
3423 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3424 		return ZONE_RECLAIM_NOSCAN;
3425 
3426 	ret = __zone_reclaim(zone, gfp_mask, order);
3427 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3428 
3429 	if (!ret)
3430 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3431 
3432 	return ret;
3433 }
3434 #endif
3435 
3436 /*
3437  * page_evictable - test whether a page is evictable
3438  * @page: the page to test
3439  *
3440  * Test whether page is evictable--i.e., should be placed on active/inactive
3441  * lists vs unevictable list.
3442  *
3443  * Reasons page might not be evictable:
3444  * (1) page's mapping marked unevictable
3445  * (2) page is part of an mlocked VMA
3446  *
3447  */
3448 int page_evictable(struct page *page)
3449 {
3450 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3451 }
3452 
3453 #ifdef CONFIG_SHMEM
3454 /**
3455  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3456  * @pages:	array of pages to check
3457  * @nr_pages:	number of pages to check
3458  *
3459  * Checks pages for evictability and moves them to the appropriate lru list.
3460  *
3461  * This function is only used for SysV IPC SHM_UNLOCK.
3462  */
3463 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3464 {
3465 	struct lruvec *lruvec;
3466 	struct zone *zone = NULL;
3467 	int pgscanned = 0;
3468 	int pgrescued = 0;
3469 	int i;
3470 
3471 	for (i = 0; i < nr_pages; i++) {
3472 		struct page *page = pages[i];
3473 		struct zone *pagezone;
3474 
3475 		pgscanned++;
3476 		pagezone = page_zone(page);
3477 		if (pagezone != zone) {
3478 			if (zone)
3479 				spin_unlock_irq(&zone->lru_lock);
3480 			zone = pagezone;
3481 			spin_lock_irq(&zone->lru_lock);
3482 		}
3483 		lruvec = mem_cgroup_page_lruvec(page, zone);
3484 
3485 		if (!PageLRU(page) || !PageUnevictable(page))
3486 			continue;
3487 
3488 		if (page_evictable(page)) {
3489 			enum lru_list lru = page_lru_base_type(page);
3490 
3491 			VM_BUG_ON(PageActive(page));
3492 			ClearPageUnevictable(page);
3493 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3494 			add_page_to_lru_list(page, lruvec, lru);
3495 			pgrescued++;
3496 		}
3497 	}
3498 
3499 	if (zone) {
3500 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3501 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3502 		spin_unlock_irq(&zone->lru_lock);
3503 	}
3504 }
3505 #endif /* CONFIG_SHMEM */
3506 
3507 static void warn_scan_unevictable_pages(void)
3508 {
3509 	printk_once(KERN_WARNING
3510 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3511 		    "disabled for lack of a legitimate use case.  If you have "
3512 		    "one, please send an email to linux-mm@kvack.org.\n",
3513 		    current->comm);
3514 }
3515 
3516 /*
3517  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3518  * all nodes' unevictable lists for evictable pages
3519  */
3520 unsigned long scan_unevictable_pages;
3521 
3522 int scan_unevictable_handler(struct ctl_table *table, int write,
3523 			   void __user *buffer,
3524 			   size_t *length, loff_t *ppos)
3525 {
3526 	warn_scan_unevictable_pages();
3527 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3528 	scan_unevictable_pages = 0;
3529 	return 0;
3530 }
3531 
3532 #ifdef CONFIG_NUMA
3533 /*
3534  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3535  * a specified node's per zone unevictable lists for evictable pages.
3536  */
3537 
3538 static ssize_t read_scan_unevictable_node(struct device *dev,
3539 					  struct device_attribute *attr,
3540 					  char *buf)
3541 {
3542 	warn_scan_unevictable_pages();
3543 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3544 }
3545 
3546 static ssize_t write_scan_unevictable_node(struct device *dev,
3547 					   struct device_attribute *attr,
3548 					const char *buf, size_t count)
3549 {
3550 	warn_scan_unevictable_pages();
3551 	return 1;
3552 }
3553 
3554 
3555 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3556 			read_scan_unevictable_node,
3557 			write_scan_unevictable_node);
3558 
3559 int scan_unevictable_register_node(struct node *node)
3560 {
3561 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3562 }
3563 
3564 void scan_unevictable_unregister_node(struct node *node)
3565 {
3566 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3567 }
3568 #endif
3569