xref: /openbmc/linux/mm/vmscan.c (revision 9344dade)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 struct scan_control {
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Number of pages freed so far during a call to shrink_zones() */
62 	unsigned long nr_reclaimed;
63 
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	unsigned long hibernation_mode;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can mapped pages be reclaimed? */
75 	int may_unmap;
76 
77 	/* Can pages be swapped as part of reclaim? */
78 	int may_swap;
79 
80 	int order;
81 
82 	/* Scan (total_size >> priority) pages at once */
83 	int priority;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 	 * are scanned.
94 	 */
95 	nodemask_t	*nodemask;
96 };
97 
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetch(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetchw(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
133 
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136 
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 	return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 	return true;
146 }
147 #endif
148 
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151 	if (!mem_cgroup_disabled())
152 		return mem_cgroup_get_lru_size(lruvec, lru);
153 
154 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156 
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162 	atomic_long_set(&shrinker->nr_in_batch, 0);
163 	down_write(&shrinker_rwsem);
164 	list_add_tail(&shrinker->list, &shrinker_list);
165 	up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168 
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174 	down_write(&shrinker_rwsem);
175 	list_del(&shrinker->list);
176 	up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179 
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 				     struct shrink_control *sc,
182 				     unsigned long nr_to_scan)
183 {
184 	sc->nr_to_scan = nr_to_scan;
185 	return (*shrinker->shrink)(shrinker, sc);
186 }
187 
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 			  unsigned long nr_pages_scanned,
210 			  unsigned long lru_pages)
211 {
212 	struct shrinker *shrinker;
213 	unsigned long ret = 0;
214 
215 	if (nr_pages_scanned == 0)
216 		nr_pages_scanned = SWAP_CLUSTER_MAX;
217 
218 	if (!down_read_trylock(&shrinker_rwsem)) {
219 		/* Assume we'll be able to shrink next time */
220 		ret = 1;
221 		goto out;
222 	}
223 
224 	list_for_each_entry(shrinker, &shrinker_list, list) {
225 		unsigned long long delta;
226 		long total_scan;
227 		long max_pass;
228 		int shrink_ret = 0;
229 		long nr;
230 		long new_nr;
231 		long batch_size = shrinker->batch ? shrinker->batch
232 						  : SHRINK_BATCH;
233 
234 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 		if (max_pass <= 0)
236 			continue;
237 
238 		/*
239 		 * copy the current shrinker scan count into a local variable
240 		 * and zero it so that other concurrent shrinker invocations
241 		 * don't also do this scanning work.
242 		 */
243 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 
245 		total_scan = nr;
246 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 		delta *= max_pass;
248 		do_div(delta, lru_pages + 1);
249 		total_scan += delta;
250 		if (total_scan < 0) {
251 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 			       "delete nr=%ld\n",
253 			       shrinker->shrink, total_scan);
254 			total_scan = max_pass;
255 		}
256 
257 		/*
258 		 * We need to avoid excessive windup on filesystem shrinkers
259 		 * due to large numbers of GFP_NOFS allocations causing the
260 		 * shrinkers to return -1 all the time. This results in a large
261 		 * nr being built up so when a shrink that can do some work
262 		 * comes along it empties the entire cache due to nr >>>
263 		 * max_pass.  This is bad for sustaining a working set in
264 		 * memory.
265 		 *
266 		 * Hence only allow the shrinker to scan the entire cache when
267 		 * a large delta change is calculated directly.
268 		 */
269 		if (delta < max_pass / 4)
270 			total_scan = min(total_scan, max_pass / 2);
271 
272 		/*
273 		 * Avoid risking looping forever due to too large nr value:
274 		 * never try to free more than twice the estimate number of
275 		 * freeable entries.
276 		 */
277 		if (total_scan > max_pass * 2)
278 			total_scan = max_pass * 2;
279 
280 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 					nr_pages_scanned, lru_pages,
282 					max_pass, delta, total_scan);
283 
284 		while (total_scan >= batch_size) {
285 			int nr_before;
286 
287 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 							batch_size);
290 			if (shrink_ret == -1)
291 				break;
292 			if (shrink_ret < nr_before)
293 				ret += nr_before - shrink_ret;
294 			count_vm_events(SLABS_SCANNED, batch_size);
295 			total_scan -= batch_size;
296 
297 			cond_resched();
298 		}
299 
300 		/*
301 		 * move the unused scan count back into the shrinker in a
302 		 * manner that handles concurrent updates. If we exhausted the
303 		 * scan, there is no need to do an update.
304 		 */
305 		if (total_scan > 0)
306 			new_nr = atomic_long_add_return(total_scan,
307 					&shrinker->nr_in_batch);
308 		else
309 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 
311 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 	}
313 	up_read(&shrinker_rwsem);
314 out:
315 	cond_resched();
316 	return ret;
317 }
318 
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321 	/*
322 	 * A freeable page cache page is referenced only by the caller
323 	 * that isolated the page, the page cache radix tree and
324 	 * optional buffer heads at page->private.
325 	 */
326 	return page_count(page) - page_has_private(page) == 2;
327 }
328 
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 			      struct scan_control *sc)
331 {
332 	if (current->flags & PF_SWAPWRITE)
333 		return 1;
334 	if (!bdi_write_congested(bdi))
335 		return 1;
336 	if (bdi == current->backing_dev_info)
337 		return 1;
338 	return 0;
339 }
340 
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354 				struct page *page, int error)
355 {
356 	lock_page(page);
357 	if (page_mapping(page) == mapping)
358 		mapping_set_error(mapping, error);
359 	unlock_page(page);
360 }
361 
362 /* possible outcome of pageout() */
363 typedef enum {
364 	/* failed to write page out, page is locked */
365 	PAGE_KEEP,
366 	/* move page to the active list, page is locked */
367 	PAGE_ACTIVATE,
368 	/* page has been sent to the disk successfully, page is unlocked */
369 	PAGE_SUCCESS,
370 	/* page is clean and locked */
371 	PAGE_CLEAN,
372 } pageout_t;
373 
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 			 struct scan_control *sc)
380 {
381 	/*
382 	 * If the page is dirty, only perform writeback if that write
383 	 * will be non-blocking.  To prevent this allocation from being
384 	 * stalled by pagecache activity.  But note that there may be
385 	 * stalls if we need to run get_block().  We could test
386 	 * PagePrivate for that.
387 	 *
388 	 * If this process is currently in __generic_file_aio_write() against
389 	 * this page's queue, we can perform writeback even if that
390 	 * will block.
391 	 *
392 	 * If the page is swapcache, write it back even if that would
393 	 * block, for some throttling. This happens by accident, because
394 	 * swap_backing_dev_info is bust: it doesn't reflect the
395 	 * congestion state of the swapdevs.  Easy to fix, if needed.
396 	 */
397 	if (!is_page_cache_freeable(page))
398 		return PAGE_KEEP;
399 	if (!mapping) {
400 		/*
401 		 * Some data journaling orphaned pages can have
402 		 * page->mapping == NULL while being dirty with clean buffers.
403 		 */
404 		if (page_has_private(page)) {
405 			if (try_to_free_buffers(page)) {
406 				ClearPageDirty(page);
407 				printk("%s: orphaned page\n", __func__);
408 				return PAGE_CLEAN;
409 			}
410 		}
411 		return PAGE_KEEP;
412 	}
413 	if (mapping->a_ops->writepage == NULL)
414 		return PAGE_ACTIVATE;
415 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 		return PAGE_KEEP;
417 
418 	if (clear_page_dirty_for_io(page)) {
419 		int res;
420 		struct writeback_control wbc = {
421 			.sync_mode = WB_SYNC_NONE,
422 			.nr_to_write = SWAP_CLUSTER_MAX,
423 			.range_start = 0,
424 			.range_end = LLONG_MAX,
425 			.for_reclaim = 1,
426 		};
427 
428 		SetPageReclaim(page);
429 		res = mapping->a_ops->writepage(page, &wbc);
430 		if (res < 0)
431 			handle_write_error(mapping, page, res);
432 		if (res == AOP_WRITEPAGE_ACTIVATE) {
433 			ClearPageReclaim(page);
434 			return PAGE_ACTIVATE;
435 		}
436 
437 		if (!PageWriteback(page)) {
438 			/* synchronous write or broken a_ops? */
439 			ClearPageReclaim(page);
440 		}
441 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 		return PAGE_SUCCESS;
444 	}
445 
446 	return PAGE_CLEAN;
447 }
448 
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455 	BUG_ON(!PageLocked(page));
456 	BUG_ON(mapping != page_mapping(page));
457 
458 	spin_lock_irq(&mapping->tree_lock);
459 	/*
460 	 * The non racy check for a busy page.
461 	 *
462 	 * Must be careful with the order of the tests. When someone has
463 	 * a ref to the page, it may be possible that they dirty it then
464 	 * drop the reference. So if PageDirty is tested before page_count
465 	 * here, then the following race may occur:
466 	 *
467 	 * get_user_pages(&page);
468 	 * [user mapping goes away]
469 	 * write_to(page);
470 	 *				!PageDirty(page)    [good]
471 	 * SetPageDirty(page);
472 	 * put_page(page);
473 	 *				!page_count(page)   [good, discard it]
474 	 *
475 	 * [oops, our write_to data is lost]
476 	 *
477 	 * Reversing the order of the tests ensures such a situation cannot
478 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 	 * load is not satisfied before that of page->_count.
480 	 *
481 	 * Note that if SetPageDirty is always performed via set_page_dirty,
482 	 * and thus under tree_lock, then this ordering is not required.
483 	 */
484 	if (!page_freeze_refs(page, 2))
485 		goto cannot_free;
486 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 	if (unlikely(PageDirty(page))) {
488 		page_unfreeze_refs(page, 2);
489 		goto cannot_free;
490 	}
491 
492 	if (PageSwapCache(page)) {
493 		swp_entry_t swap = { .val = page_private(page) };
494 		__delete_from_swap_cache(page);
495 		spin_unlock_irq(&mapping->tree_lock);
496 		swapcache_free(swap, page);
497 	} else {
498 		void (*freepage)(struct page *);
499 
500 		freepage = mapping->a_ops->freepage;
501 
502 		__delete_from_page_cache(page);
503 		spin_unlock_irq(&mapping->tree_lock);
504 		mem_cgroup_uncharge_cache_page(page);
505 
506 		if (freepage != NULL)
507 			freepage(page);
508 	}
509 
510 	return 1;
511 
512 cannot_free:
513 	spin_unlock_irq(&mapping->tree_lock);
514 	return 0;
515 }
516 
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525 	if (__remove_mapping(mapping, page)) {
526 		/*
527 		 * Unfreezing the refcount with 1 rather than 2 effectively
528 		 * drops the pagecache ref for us without requiring another
529 		 * atomic operation.
530 		 */
531 		page_unfreeze_refs(page, 1);
532 		return 1;
533 	}
534 	return 0;
535 }
536 
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548 	int lru;
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = page_lru_base_type(page);
564 		lru_cache_add(page);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /* Check if a page is dirty or under writeback */
672 static void page_check_dirty_writeback(struct page *page,
673 				       bool *dirty, bool *writeback)
674 {
675 	struct address_space *mapping;
676 
677 	/*
678 	 * Anonymous pages are not handled by flushers and must be written
679 	 * from reclaim context. Do not stall reclaim based on them
680 	 */
681 	if (!page_is_file_cache(page)) {
682 		*dirty = false;
683 		*writeback = false;
684 		return;
685 	}
686 
687 	/* By default assume that the page flags are accurate */
688 	*dirty = PageDirty(page);
689 	*writeback = PageWriteback(page);
690 
691 	/* Verify dirty/writeback state if the filesystem supports it */
692 	if (!page_has_private(page))
693 		return;
694 
695 	mapping = page_mapping(page);
696 	if (mapping && mapping->a_ops->is_dirty_writeback)
697 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
698 }
699 
700 /*
701  * shrink_page_list() returns the number of reclaimed pages
702  */
703 static unsigned long shrink_page_list(struct list_head *page_list,
704 				      struct zone *zone,
705 				      struct scan_control *sc,
706 				      enum ttu_flags ttu_flags,
707 				      unsigned long *ret_nr_dirty,
708 				      unsigned long *ret_nr_unqueued_dirty,
709 				      unsigned long *ret_nr_congested,
710 				      unsigned long *ret_nr_writeback,
711 				      unsigned long *ret_nr_immediate,
712 				      bool force_reclaim)
713 {
714 	LIST_HEAD(ret_pages);
715 	LIST_HEAD(free_pages);
716 	int pgactivate = 0;
717 	unsigned long nr_unqueued_dirty = 0;
718 	unsigned long nr_dirty = 0;
719 	unsigned long nr_congested = 0;
720 	unsigned long nr_reclaimed = 0;
721 	unsigned long nr_writeback = 0;
722 	unsigned long nr_immediate = 0;
723 
724 	cond_resched();
725 
726 	mem_cgroup_uncharge_start();
727 	while (!list_empty(page_list)) {
728 		struct address_space *mapping;
729 		struct page *page;
730 		int may_enter_fs;
731 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
732 		bool dirty, writeback;
733 
734 		cond_resched();
735 
736 		page = lru_to_page(page_list);
737 		list_del(&page->lru);
738 
739 		if (!trylock_page(page))
740 			goto keep;
741 
742 		VM_BUG_ON(PageActive(page));
743 		VM_BUG_ON(page_zone(page) != zone);
744 
745 		sc->nr_scanned++;
746 
747 		if (unlikely(!page_evictable(page)))
748 			goto cull_mlocked;
749 
750 		if (!sc->may_unmap && page_mapped(page))
751 			goto keep_locked;
752 
753 		/* Double the slab pressure for mapped and swapcache pages */
754 		if (page_mapped(page) || PageSwapCache(page))
755 			sc->nr_scanned++;
756 
757 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
758 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
759 
760 		/*
761 		 * The number of dirty pages determines if a zone is marked
762 		 * reclaim_congested which affects wait_iff_congested. kswapd
763 		 * will stall and start writing pages if the tail of the LRU
764 		 * is all dirty unqueued pages.
765 		 */
766 		page_check_dirty_writeback(page, &dirty, &writeback);
767 		if (dirty || writeback)
768 			nr_dirty++;
769 
770 		if (dirty && !writeback)
771 			nr_unqueued_dirty++;
772 
773 		/*
774 		 * Treat this page as congested if the underlying BDI is or if
775 		 * pages are cycling through the LRU so quickly that the
776 		 * pages marked for immediate reclaim are making it to the
777 		 * end of the LRU a second time.
778 		 */
779 		mapping = page_mapping(page);
780 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
781 		    (writeback && PageReclaim(page)))
782 			nr_congested++;
783 
784 		/*
785 		 * If a page at the tail of the LRU is under writeback, there
786 		 * are three cases to consider.
787 		 *
788 		 * 1) If reclaim is encountering an excessive number of pages
789 		 *    under writeback and this page is both under writeback and
790 		 *    PageReclaim then it indicates that pages are being queued
791 		 *    for IO but are being recycled through the LRU before the
792 		 *    IO can complete. Waiting on the page itself risks an
793 		 *    indefinite stall if it is impossible to writeback the
794 		 *    page due to IO error or disconnected storage so instead
795 		 *    note that the LRU is being scanned too quickly and the
796 		 *    caller can stall after page list has been processed.
797 		 *
798 		 * 2) Global reclaim encounters a page, memcg encounters a
799 		 *    page that is not marked for immediate reclaim or
800 		 *    the caller does not have __GFP_IO. In this case mark
801 		 *    the page for immediate reclaim and continue scanning.
802 		 *
803 		 *    __GFP_IO is checked  because a loop driver thread might
804 		 *    enter reclaim, and deadlock if it waits on a page for
805 		 *    which it is needed to do the write (loop masks off
806 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
807 		 *    would probably show more reasons.
808 		 *
809 		 *    Don't require __GFP_FS, since we're not going into the
810 		 *    FS, just waiting on its writeback completion. Worryingly,
811 		 *    ext4 gfs2 and xfs allocate pages with
812 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
813 		 *    may_enter_fs here is liable to OOM on them.
814 		 *
815 		 * 3) memcg encounters a page that is not already marked
816 		 *    PageReclaim. memcg does not have any dirty pages
817 		 *    throttling so we could easily OOM just because too many
818 		 *    pages are in writeback and there is nothing else to
819 		 *    reclaim. Wait for the writeback to complete.
820 		 */
821 		if (PageWriteback(page)) {
822 			/* Case 1 above */
823 			if (current_is_kswapd() &&
824 			    PageReclaim(page) &&
825 			    zone_is_reclaim_writeback(zone)) {
826 				nr_immediate++;
827 				goto keep_locked;
828 
829 			/* Case 2 above */
830 			} else if (global_reclaim(sc) ||
831 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
832 				/*
833 				 * This is slightly racy - end_page_writeback()
834 				 * might have just cleared PageReclaim, then
835 				 * setting PageReclaim here end up interpreted
836 				 * as PageReadahead - but that does not matter
837 				 * enough to care.  What we do want is for this
838 				 * page to have PageReclaim set next time memcg
839 				 * reclaim reaches the tests above, so it will
840 				 * then wait_on_page_writeback() to avoid OOM;
841 				 * and it's also appropriate in global reclaim.
842 				 */
843 				SetPageReclaim(page);
844 				nr_writeback++;
845 
846 				goto keep_locked;
847 
848 			/* Case 3 above */
849 			} else {
850 				wait_on_page_writeback(page);
851 			}
852 		}
853 
854 		if (!force_reclaim)
855 			references = page_check_references(page, sc);
856 
857 		switch (references) {
858 		case PAGEREF_ACTIVATE:
859 			goto activate_locked;
860 		case PAGEREF_KEEP:
861 			goto keep_locked;
862 		case PAGEREF_RECLAIM:
863 		case PAGEREF_RECLAIM_CLEAN:
864 			; /* try to reclaim the page below */
865 		}
866 
867 		/*
868 		 * Anonymous process memory has backing store?
869 		 * Try to allocate it some swap space here.
870 		 */
871 		if (PageAnon(page) && !PageSwapCache(page)) {
872 			if (!(sc->gfp_mask & __GFP_IO))
873 				goto keep_locked;
874 			if (!add_to_swap(page, page_list))
875 				goto activate_locked;
876 			may_enter_fs = 1;
877 
878 			/* Adding to swap updated mapping */
879 			mapping = page_mapping(page);
880 		}
881 
882 		/*
883 		 * The page is mapped into the page tables of one or more
884 		 * processes. Try to unmap it here.
885 		 */
886 		if (page_mapped(page) && mapping) {
887 			switch (try_to_unmap(page, ttu_flags)) {
888 			case SWAP_FAIL:
889 				goto activate_locked;
890 			case SWAP_AGAIN:
891 				goto keep_locked;
892 			case SWAP_MLOCK:
893 				goto cull_mlocked;
894 			case SWAP_SUCCESS:
895 				; /* try to free the page below */
896 			}
897 		}
898 
899 		if (PageDirty(page)) {
900 			/*
901 			 * Only kswapd can writeback filesystem pages to
902 			 * avoid risk of stack overflow but only writeback
903 			 * if many dirty pages have been encountered.
904 			 */
905 			if (page_is_file_cache(page) &&
906 					(!current_is_kswapd() ||
907 					 !zone_is_reclaim_dirty(zone))) {
908 				/*
909 				 * Immediately reclaim when written back.
910 				 * Similar in principal to deactivate_page()
911 				 * except we already have the page isolated
912 				 * and know it's dirty
913 				 */
914 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
915 				SetPageReclaim(page);
916 
917 				goto keep_locked;
918 			}
919 
920 			if (references == PAGEREF_RECLAIM_CLEAN)
921 				goto keep_locked;
922 			if (!may_enter_fs)
923 				goto keep_locked;
924 			if (!sc->may_writepage)
925 				goto keep_locked;
926 
927 			/* Page is dirty, try to write it out here */
928 			switch (pageout(page, mapping, sc)) {
929 			case PAGE_KEEP:
930 				goto keep_locked;
931 			case PAGE_ACTIVATE:
932 				goto activate_locked;
933 			case PAGE_SUCCESS:
934 				if (PageWriteback(page))
935 					goto keep;
936 				if (PageDirty(page))
937 					goto keep;
938 
939 				/*
940 				 * A synchronous write - probably a ramdisk.  Go
941 				 * ahead and try to reclaim the page.
942 				 */
943 				if (!trylock_page(page))
944 					goto keep;
945 				if (PageDirty(page) || PageWriteback(page))
946 					goto keep_locked;
947 				mapping = page_mapping(page);
948 			case PAGE_CLEAN:
949 				; /* try to free the page below */
950 			}
951 		}
952 
953 		/*
954 		 * If the page has buffers, try to free the buffer mappings
955 		 * associated with this page. If we succeed we try to free
956 		 * the page as well.
957 		 *
958 		 * We do this even if the page is PageDirty().
959 		 * try_to_release_page() does not perform I/O, but it is
960 		 * possible for a page to have PageDirty set, but it is actually
961 		 * clean (all its buffers are clean).  This happens if the
962 		 * buffers were written out directly, with submit_bh(). ext3
963 		 * will do this, as well as the blockdev mapping.
964 		 * try_to_release_page() will discover that cleanness and will
965 		 * drop the buffers and mark the page clean - it can be freed.
966 		 *
967 		 * Rarely, pages can have buffers and no ->mapping.  These are
968 		 * the pages which were not successfully invalidated in
969 		 * truncate_complete_page().  We try to drop those buffers here
970 		 * and if that worked, and the page is no longer mapped into
971 		 * process address space (page_count == 1) it can be freed.
972 		 * Otherwise, leave the page on the LRU so it is swappable.
973 		 */
974 		if (page_has_private(page)) {
975 			if (!try_to_release_page(page, sc->gfp_mask))
976 				goto activate_locked;
977 			if (!mapping && page_count(page) == 1) {
978 				unlock_page(page);
979 				if (put_page_testzero(page))
980 					goto free_it;
981 				else {
982 					/*
983 					 * rare race with speculative reference.
984 					 * the speculative reference will free
985 					 * this page shortly, so we may
986 					 * increment nr_reclaimed here (and
987 					 * leave it off the LRU).
988 					 */
989 					nr_reclaimed++;
990 					continue;
991 				}
992 			}
993 		}
994 
995 		if (!mapping || !__remove_mapping(mapping, page))
996 			goto keep_locked;
997 
998 		/*
999 		 * At this point, we have no other references and there is
1000 		 * no way to pick any more up (removed from LRU, removed
1001 		 * from pagecache). Can use non-atomic bitops now (and
1002 		 * we obviously don't have to worry about waking up a process
1003 		 * waiting on the page lock, because there are no references.
1004 		 */
1005 		__clear_page_locked(page);
1006 free_it:
1007 		nr_reclaimed++;
1008 
1009 		/*
1010 		 * Is there need to periodically free_page_list? It would
1011 		 * appear not as the counts should be low
1012 		 */
1013 		list_add(&page->lru, &free_pages);
1014 		continue;
1015 
1016 cull_mlocked:
1017 		if (PageSwapCache(page))
1018 			try_to_free_swap(page);
1019 		unlock_page(page);
1020 		putback_lru_page(page);
1021 		continue;
1022 
1023 activate_locked:
1024 		/* Not a candidate for swapping, so reclaim swap space. */
1025 		if (PageSwapCache(page) && vm_swap_full())
1026 			try_to_free_swap(page);
1027 		VM_BUG_ON(PageActive(page));
1028 		SetPageActive(page);
1029 		pgactivate++;
1030 keep_locked:
1031 		unlock_page(page);
1032 keep:
1033 		list_add(&page->lru, &ret_pages);
1034 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1035 	}
1036 
1037 	free_hot_cold_page_list(&free_pages, 1);
1038 
1039 	list_splice(&ret_pages, page_list);
1040 	count_vm_events(PGACTIVATE, pgactivate);
1041 	mem_cgroup_uncharge_end();
1042 	*ret_nr_dirty += nr_dirty;
1043 	*ret_nr_congested += nr_congested;
1044 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1045 	*ret_nr_writeback += nr_writeback;
1046 	*ret_nr_immediate += nr_immediate;
1047 	return nr_reclaimed;
1048 }
1049 
1050 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1051 					    struct list_head *page_list)
1052 {
1053 	struct scan_control sc = {
1054 		.gfp_mask = GFP_KERNEL,
1055 		.priority = DEF_PRIORITY,
1056 		.may_unmap = 1,
1057 	};
1058 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1059 	struct page *page, *next;
1060 	LIST_HEAD(clean_pages);
1061 
1062 	list_for_each_entry_safe(page, next, page_list, lru) {
1063 		if (page_is_file_cache(page) && !PageDirty(page)) {
1064 			ClearPageActive(page);
1065 			list_move(&page->lru, &clean_pages);
1066 		}
1067 	}
1068 
1069 	ret = shrink_page_list(&clean_pages, zone, &sc,
1070 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1071 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1072 	list_splice(&clean_pages, page_list);
1073 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1074 	return ret;
1075 }
1076 
1077 /*
1078  * Attempt to remove the specified page from its LRU.  Only take this page
1079  * if it is of the appropriate PageActive status.  Pages which are being
1080  * freed elsewhere are also ignored.
1081  *
1082  * page:	page to consider
1083  * mode:	one of the LRU isolation modes defined above
1084  *
1085  * returns 0 on success, -ve errno on failure.
1086  */
1087 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1088 {
1089 	int ret = -EINVAL;
1090 
1091 	/* Only take pages on the LRU. */
1092 	if (!PageLRU(page))
1093 		return ret;
1094 
1095 	/* Compaction should not handle unevictable pages but CMA can do so */
1096 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1097 		return ret;
1098 
1099 	ret = -EBUSY;
1100 
1101 	/*
1102 	 * To minimise LRU disruption, the caller can indicate that it only
1103 	 * wants to isolate pages it will be able to operate on without
1104 	 * blocking - clean pages for the most part.
1105 	 *
1106 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1107 	 * is used by reclaim when it is cannot write to backing storage
1108 	 *
1109 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1110 	 * that it is possible to migrate without blocking
1111 	 */
1112 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1113 		/* All the caller can do on PageWriteback is block */
1114 		if (PageWriteback(page))
1115 			return ret;
1116 
1117 		if (PageDirty(page)) {
1118 			struct address_space *mapping;
1119 
1120 			/* ISOLATE_CLEAN means only clean pages */
1121 			if (mode & ISOLATE_CLEAN)
1122 				return ret;
1123 
1124 			/*
1125 			 * Only pages without mappings or that have a
1126 			 * ->migratepage callback are possible to migrate
1127 			 * without blocking
1128 			 */
1129 			mapping = page_mapping(page);
1130 			if (mapping && !mapping->a_ops->migratepage)
1131 				return ret;
1132 		}
1133 	}
1134 
1135 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1136 		return ret;
1137 
1138 	if (likely(get_page_unless_zero(page))) {
1139 		/*
1140 		 * Be careful not to clear PageLRU until after we're
1141 		 * sure the page is not being freed elsewhere -- the
1142 		 * page release code relies on it.
1143 		 */
1144 		ClearPageLRU(page);
1145 		ret = 0;
1146 	}
1147 
1148 	return ret;
1149 }
1150 
1151 /*
1152  * zone->lru_lock is heavily contended.  Some of the functions that
1153  * shrink the lists perform better by taking out a batch of pages
1154  * and working on them outside the LRU lock.
1155  *
1156  * For pagecache intensive workloads, this function is the hottest
1157  * spot in the kernel (apart from copy_*_user functions).
1158  *
1159  * Appropriate locks must be held before calling this function.
1160  *
1161  * @nr_to_scan:	The number of pages to look through on the list.
1162  * @lruvec:	The LRU vector to pull pages from.
1163  * @dst:	The temp list to put pages on to.
1164  * @nr_scanned:	The number of pages that were scanned.
1165  * @sc:		The scan_control struct for this reclaim session
1166  * @mode:	One of the LRU isolation modes
1167  * @lru:	LRU list id for isolating
1168  *
1169  * returns how many pages were moved onto *@dst.
1170  */
1171 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1172 		struct lruvec *lruvec, struct list_head *dst,
1173 		unsigned long *nr_scanned, struct scan_control *sc,
1174 		isolate_mode_t mode, enum lru_list lru)
1175 {
1176 	struct list_head *src = &lruvec->lists[lru];
1177 	unsigned long nr_taken = 0;
1178 	unsigned long scan;
1179 
1180 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1181 		struct page *page;
1182 		int nr_pages;
1183 
1184 		page = lru_to_page(src);
1185 		prefetchw_prev_lru_page(page, src, flags);
1186 
1187 		VM_BUG_ON(!PageLRU(page));
1188 
1189 		switch (__isolate_lru_page(page, mode)) {
1190 		case 0:
1191 			nr_pages = hpage_nr_pages(page);
1192 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1193 			list_move(&page->lru, dst);
1194 			nr_taken += nr_pages;
1195 			break;
1196 
1197 		case -EBUSY:
1198 			/* else it is being freed elsewhere */
1199 			list_move(&page->lru, src);
1200 			continue;
1201 
1202 		default:
1203 			BUG();
1204 		}
1205 	}
1206 
1207 	*nr_scanned = scan;
1208 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1209 				    nr_taken, mode, is_file_lru(lru));
1210 	return nr_taken;
1211 }
1212 
1213 /**
1214  * isolate_lru_page - tries to isolate a page from its LRU list
1215  * @page: page to isolate from its LRU list
1216  *
1217  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1218  * vmstat statistic corresponding to whatever LRU list the page was on.
1219  *
1220  * Returns 0 if the page was removed from an LRU list.
1221  * Returns -EBUSY if the page was not on an LRU list.
1222  *
1223  * The returned page will have PageLRU() cleared.  If it was found on
1224  * the active list, it will have PageActive set.  If it was found on
1225  * the unevictable list, it will have the PageUnevictable bit set. That flag
1226  * may need to be cleared by the caller before letting the page go.
1227  *
1228  * The vmstat statistic corresponding to the list on which the page was
1229  * found will be decremented.
1230  *
1231  * Restrictions:
1232  * (1) Must be called with an elevated refcount on the page. This is a
1233  *     fundamentnal difference from isolate_lru_pages (which is called
1234  *     without a stable reference).
1235  * (2) the lru_lock must not be held.
1236  * (3) interrupts must be enabled.
1237  */
1238 int isolate_lru_page(struct page *page)
1239 {
1240 	int ret = -EBUSY;
1241 
1242 	VM_BUG_ON(!page_count(page));
1243 
1244 	if (PageLRU(page)) {
1245 		struct zone *zone = page_zone(page);
1246 		struct lruvec *lruvec;
1247 
1248 		spin_lock_irq(&zone->lru_lock);
1249 		lruvec = mem_cgroup_page_lruvec(page, zone);
1250 		if (PageLRU(page)) {
1251 			int lru = page_lru(page);
1252 			get_page(page);
1253 			ClearPageLRU(page);
1254 			del_page_from_lru_list(page, lruvec, lru);
1255 			ret = 0;
1256 		}
1257 		spin_unlock_irq(&zone->lru_lock);
1258 	}
1259 	return ret;
1260 }
1261 
1262 /*
1263  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1264  * then get resheduled. When there are massive number of tasks doing page
1265  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1266  * the LRU list will go small and be scanned faster than necessary, leading to
1267  * unnecessary swapping, thrashing and OOM.
1268  */
1269 static int too_many_isolated(struct zone *zone, int file,
1270 		struct scan_control *sc)
1271 {
1272 	unsigned long inactive, isolated;
1273 
1274 	if (current_is_kswapd())
1275 		return 0;
1276 
1277 	if (!global_reclaim(sc))
1278 		return 0;
1279 
1280 	if (file) {
1281 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1282 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1283 	} else {
1284 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1285 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1286 	}
1287 
1288 	/*
1289 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1290 	 * won't get blocked by normal direct-reclaimers, forming a circular
1291 	 * deadlock.
1292 	 */
1293 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1294 		inactive >>= 3;
1295 
1296 	return isolated > inactive;
1297 }
1298 
1299 static noinline_for_stack void
1300 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1301 {
1302 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1303 	struct zone *zone = lruvec_zone(lruvec);
1304 	LIST_HEAD(pages_to_free);
1305 
1306 	/*
1307 	 * Put back any unfreeable pages.
1308 	 */
1309 	while (!list_empty(page_list)) {
1310 		struct page *page = lru_to_page(page_list);
1311 		int lru;
1312 
1313 		VM_BUG_ON(PageLRU(page));
1314 		list_del(&page->lru);
1315 		if (unlikely(!page_evictable(page))) {
1316 			spin_unlock_irq(&zone->lru_lock);
1317 			putback_lru_page(page);
1318 			spin_lock_irq(&zone->lru_lock);
1319 			continue;
1320 		}
1321 
1322 		lruvec = mem_cgroup_page_lruvec(page, zone);
1323 
1324 		SetPageLRU(page);
1325 		lru = page_lru(page);
1326 		add_page_to_lru_list(page, lruvec, lru);
1327 
1328 		if (is_active_lru(lru)) {
1329 			int file = is_file_lru(lru);
1330 			int numpages = hpage_nr_pages(page);
1331 			reclaim_stat->recent_rotated[file] += numpages;
1332 		}
1333 		if (put_page_testzero(page)) {
1334 			__ClearPageLRU(page);
1335 			__ClearPageActive(page);
1336 			del_page_from_lru_list(page, lruvec, lru);
1337 
1338 			if (unlikely(PageCompound(page))) {
1339 				spin_unlock_irq(&zone->lru_lock);
1340 				(*get_compound_page_dtor(page))(page);
1341 				spin_lock_irq(&zone->lru_lock);
1342 			} else
1343 				list_add(&page->lru, &pages_to_free);
1344 		}
1345 	}
1346 
1347 	/*
1348 	 * To save our caller's stack, now use input list for pages to free.
1349 	 */
1350 	list_splice(&pages_to_free, page_list);
1351 }
1352 
1353 /*
1354  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1355  * of reclaimed pages
1356  */
1357 static noinline_for_stack unsigned long
1358 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1359 		     struct scan_control *sc, enum lru_list lru)
1360 {
1361 	LIST_HEAD(page_list);
1362 	unsigned long nr_scanned;
1363 	unsigned long nr_reclaimed = 0;
1364 	unsigned long nr_taken;
1365 	unsigned long nr_dirty = 0;
1366 	unsigned long nr_congested = 0;
1367 	unsigned long nr_unqueued_dirty = 0;
1368 	unsigned long nr_writeback = 0;
1369 	unsigned long nr_immediate = 0;
1370 	isolate_mode_t isolate_mode = 0;
1371 	int file = is_file_lru(lru);
1372 	struct zone *zone = lruvec_zone(lruvec);
1373 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1374 
1375 	while (unlikely(too_many_isolated(zone, file, sc))) {
1376 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1377 
1378 		/* We are about to die and free our memory. Return now. */
1379 		if (fatal_signal_pending(current))
1380 			return SWAP_CLUSTER_MAX;
1381 	}
1382 
1383 	lru_add_drain();
1384 
1385 	if (!sc->may_unmap)
1386 		isolate_mode |= ISOLATE_UNMAPPED;
1387 	if (!sc->may_writepage)
1388 		isolate_mode |= ISOLATE_CLEAN;
1389 
1390 	spin_lock_irq(&zone->lru_lock);
1391 
1392 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1393 				     &nr_scanned, sc, isolate_mode, lru);
1394 
1395 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1396 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1397 
1398 	if (global_reclaim(sc)) {
1399 		zone->pages_scanned += nr_scanned;
1400 		if (current_is_kswapd())
1401 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1402 		else
1403 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1404 	}
1405 	spin_unlock_irq(&zone->lru_lock);
1406 
1407 	if (nr_taken == 0)
1408 		return 0;
1409 
1410 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1411 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1412 				&nr_writeback, &nr_immediate,
1413 				false);
1414 
1415 	spin_lock_irq(&zone->lru_lock);
1416 
1417 	reclaim_stat->recent_scanned[file] += nr_taken;
1418 
1419 	if (global_reclaim(sc)) {
1420 		if (current_is_kswapd())
1421 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1422 					       nr_reclaimed);
1423 		else
1424 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1425 					       nr_reclaimed);
1426 	}
1427 
1428 	putback_inactive_pages(lruvec, &page_list);
1429 
1430 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1431 
1432 	spin_unlock_irq(&zone->lru_lock);
1433 
1434 	free_hot_cold_page_list(&page_list, 1);
1435 
1436 	/*
1437 	 * If reclaim is isolating dirty pages under writeback, it implies
1438 	 * that the long-lived page allocation rate is exceeding the page
1439 	 * laundering rate. Either the global limits are not being effective
1440 	 * at throttling processes due to the page distribution throughout
1441 	 * zones or there is heavy usage of a slow backing device. The
1442 	 * only option is to throttle from reclaim context which is not ideal
1443 	 * as there is no guarantee the dirtying process is throttled in the
1444 	 * same way balance_dirty_pages() manages.
1445 	 *
1446 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1447 	 * of pages under pages flagged for immediate reclaim and stall if any
1448 	 * are encountered in the nr_immediate check below.
1449 	 */
1450 	if (nr_writeback && nr_writeback == nr_taken)
1451 		zone_set_flag(zone, ZONE_WRITEBACK);
1452 
1453 	/*
1454 	 * memcg will stall in page writeback so only consider forcibly
1455 	 * stalling for global reclaim
1456 	 */
1457 	if (global_reclaim(sc)) {
1458 		/*
1459 		 * Tag a zone as congested if all the dirty pages scanned were
1460 		 * backed by a congested BDI and wait_iff_congested will stall.
1461 		 */
1462 		if (nr_dirty && nr_dirty == nr_congested)
1463 			zone_set_flag(zone, ZONE_CONGESTED);
1464 
1465 		/*
1466 		 * If dirty pages are scanned that are not queued for IO, it
1467 		 * implies that flushers are not keeping up. In this case, flag
1468 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1469 		 * pages from reclaim context. It will forcibly stall in the
1470 		 * next check.
1471 		 */
1472 		if (nr_unqueued_dirty == nr_taken)
1473 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1474 
1475 		/*
1476 		 * In addition, if kswapd scans pages marked marked for
1477 		 * immediate reclaim and under writeback (nr_immediate), it
1478 		 * implies that pages are cycling through the LRU faster than
1479 		 * they are written so also forcibly stall.
1480 		 */
1481 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1482 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1483 	}
1484 
1485 	/*
1486 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1487 	 * is congested. Allow kswapd to continue until it starts encountering
1488 	 * unqueued dirty pages or cycling through the LRU too quickly.
1489 	 */
1490 	if (!sc->hibernation_mode && !current_is_kswapd())
1491 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1492 
1493 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1494 		zone_idx(zone),
1495 		nr_scanned, nr_reclaimed,
1496 		sc->priority,
1497 		trace_shrink_flags(file));
1498 	return nr_reclaimed;
1499 }
1500 
1501 /*
1502  * This moves pages from the active list to the inactive list.
1503  *
1504  * We move them the other way if the page is referenced by one or more
1505  * processes, from rmap.
1506  *
1507  * If the pages are mostly unmapped, the processing is fast and it is
1508  * appropriate to hold zone->lru_lock across the whole operation.  But if
1509  * the pages are mapped, the processing is slow (page_referenced()) so we
1510  * should drop zone->lru_lock around each page.  It's impossible to balance
1511  * this, so instead we remove the pages from the LRU while processing them.
1512  * It is safe to rely on PG_active against the non-LRU pages in here because
1513  * nobody will play with that bit on a non-LRU page.
1514  *
1515  * The downside is that we have to touch page->_count against each page.
1516  * But we had to alter page->flags anyway.
1517  */
1518 
1519 static void move_active_pages_to_lru(struct lruvec *lruvec,
1520 				     struct list_head *list,
1521 				     struct list_head *pages_to_free,
1522 				     enum lru_list lru)
1523 {
1524 	struct zone *zone = lruvec_zone(lruvec);
1525 	unsigned long pgmoved = 0;
1526 	struct page *page;
1527 	int nr_pages;
1528 
1529 	while (!list_empty(list)) {
1530 		page = lru_to_page(list);
1531 		lruvec = mem_cgroup_page_lruvec(page, zone);
1532 
1533 		VM_BUG_ON(PageLRU(page));
1534 		SetPageLRU(page);
1535 
1536 		nr_pages = hpage_nr_pages(page);
1537 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1538 		list_move(&page->lru, &lruvec->lists[lru]);
1539 		pgmoved += nr_pages;
1540 
1541 		if (put_page_testzero(page)) {
1542 			__ClearPageLRU(page);
1543 			__ClearPageActive(page);
1544 			del_page_from_lru_list(page, lruvec, lru);
1545 
1546 			if (unlikely(PageCompound(page))) {
1547 				spin_unlock_irq(&zone->lru_lock);
1548 				(*get_compound_page_dtor(page))(page);
1549 				spin_lock_irq(&zone->lru_lock);
1550 			} else
1551 				list_add(&page->lru, pages_to_free);
1552 		}
1553 	}
1554 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1555 	if (!is_active_lru(lru))
1556 		__count_vm_events(PGDEACTIVATE, pgmoved);
1557 }
1558 
1559 static void shrink_active_list(unsigned long nr_to_scan,
1560 			       struct lruvec *lruvec,
1561 			       struct scan_control *sc,
1562 			       enum lru_list lru)
1563 {
1564 	unsigned long nr_taken;
1565 	unsigned long nr_scanned;
1566 	unsigned long vm_flags;
1567 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1568 	LIST_HEAD(l_active);
1569 	LIST_HEAD(l_inactive);
1570 	struct page *page;
1571 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1572 	unsigned long nr_rotated = 0;
1573 	isolate_mode_t isolate_mode = 0;
1574 	int file = is_file_lru(lru);
1575 	struct zone *zone = lruvec_zone(lruvec);
1576 
1577 	lru_add_drain();
1578 
1579 	if (!sc->may_unmap)
1580 		isolate_mode |= ISOLATE_UNMAPPED;
1581 	if (!sc->may_writepage)
1582 		isolate_mode |= ISOLATE_CLEAN;
1583 
1584 	spin_lock_irq(&zone->lru_lock);
1585 
1586 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1587 				     &nr_scanned, sc, isolate_mode, lru);
1588 	if (global_reclaim(sc))
1589 		zone->pages_scanned += nr_scanned;
1590 
1591 	reclaim_stat->recent_scanned[file] += nr_taken;
1592 
1593 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1594 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1595 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1596 	spin_unlock_irq(&zone->lru_lock);
1597 
1598 	while (!list_empty(&l_hold)) {
1599 		cond_resched();
1600 		page = lru_to_page(&l_hold);
1601 		list_del(&page->lru);
1602 
1603 		if (unlikely(!page_evictable(page))) {
1604 			putback_lru_page(page);
1605 			continue;
1606 		}
1607 
1608 		if (unlikely(buffer_heads_over_limit)) {
1609 			if (page_has_private(page) && trylock_page(page)) {
1610 				if (page_has_private(page))
1611 					try_to_release_page(page, 0);
1612 				unlock_page(page);
1613 			}
1614 		}
1615 
1616 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1617 				    &vm_flags)) {
1618 			nr_rotated += hpage_nr_pages(page);
1619 			/*
1620 			 * Identify referenced, file-backed active pages and
1621 			 * give them one more trip around the active list. So
1622 			 * that executable code get better chances to stay in
1623 			 * memory under moderate memory pressure.  Anon pages
1624 			 * are not likely to be evicted by use-once streaming
1625 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1626 			 * so we ignore them here.
1627 			 */
1628 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1629 				list_add(&page->lru, &l_active);
1630 				continue;
1631 			}
1632 		}
1633 
1634 		ClearPageActive(page);	/* we are de-activating */
1635 		list_add(&page->lru, &l_inactive);
1636 	}
1637 
1638 	/*
1639 	 * Move pages back to the lru list.
1640 	 */
1641 	spin_lock_irq(&zone->lru_lock);
1642 	/*
1643 	 * Count referenced pages from currently used mappings as rotated,
1644 	 * even though only some of them are actually re-activated.  This
1645 	 * helps balance scan pressure between file and anonymous pages in
1646 	 * get_scan_ratio.
1647 	 */
1648 	reclaim_stat->recent_rotated[file] += nr_rotated;
1649 
1650 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1651 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1652 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1653 	spin_unlock_irq(&zone->lru_lock);
1654 
1655 	free_hot_cold_page_list(&l_hold, 1);
1656 }
1657 
1658 #ifdef CONFIG_SWAP
1659 static int inactive_anon_is_low_global(struct zone *zone)
1660 {
1661 	unsigned long active, inactive;
1662 
1663 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1664 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1665 
1666 	if (inactive * zone->inactive_ratio < active)
1667 		return 1;
1668 
1669 	return 0;
1670 }
1671 
1672 /**
1673  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1674  * @lruvec: LRU vector to check
1675  *
1676  * Returns true if the zone does not have enough inactive anon pages,
1677  * meaning some active anon pages need to be deactivated.
1678  */
1679 static int inactive_anon_is_low(struct lruvec *lruvec)
1680 {
1681 	/*
1682 	 * If we don't have swap space, anonymous page deactivation
1683 	 * is pointless.
1684 	 */
1685 	if (!total_swap_pages)
1686 		return 0;
1687 
1688 	if (!mem_cgroup_disabled())
1689 		return mem_cgroup_inactive_anon_is_low(lruvec);
1690 
1691 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1692 }
1693 #else
1694 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1695 {
1696 	return 0;
1697 }
1698 #endif
1699 
1700 /**
1701  * inactive_file_is_low - check if file pages need to be deactivated
1702  * @lruvec: LRU vector to check
1703  *
1704  * When the system is doing streaming IO, memory pressure here
1705  * ensures that active file pages get deactivated, until more
1706  * than half of the file pages are on the inactive list.
1707  *
1708  * Once we get to that situation, protect the system's working
1709  * set from being evicted by disabling active file page aging.
1710  *
1711  * This uses a different ratio than the anonymous pages, because
1712  * the page cache uses a use-once replacement algorithm.
1713  */
1714 static int inactive_file_is_low(struct lruvec *lruvec)
1715 {
1716 	unsigned long inactive;
1717 	unsigned long active;
1718 
1719 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1720 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1721 
1722 	return active > inactive;
1723 }
1724 
1725 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1726 {
1727 	if (is_file_lru(lru))
1728 		return inactive_file_is_low(lruvec);
1729 	else
1730 		return inactive_anon_is_low(lruvec);
1731 }
1732 
1733 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1734 				 struct lruvec *lruvec, struct scan_control *sc)
1735 {
1736 	if (is_active_lru(lru)) {
1737 		if (inactive_list_is_low(lruvec, lru))
1738 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1739 		return 0;
1740 	}
1741 
1742 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1743 }
1744 
1745 static int vmscan_swappiness(struct scan_control *sc)
1746 {
1747 	if (global_reclaim(sc))
1748 		return vm_swappiness;
1749 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1750 }
1751 
1752 enum scan_balance {
1753 	SCAN_EQUAL,
1754 	SCAN_FRACT,
1755 	SCAN_ANON,
1756 	SCAN_FILE,
1757 };
1758 
1759 /*
1760  * Determine how aggressively the anon and file LRU lists should be
1761  * scanned.  The relative value of each set of LRU lists is determined
1762  * by looking at the fraction of the pages scanned we did rotate back
1763  * onto the active list instead of evict.
1764  *
1765  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1766  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1767  */
1768 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1769 			   unsigned long *nr)
1770 {
1771 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1772 	u64 fraction[2];
1773 	u64 denominator = 0;	/* gcc */
1774 	struct zone *zone = lruvec_zone(lruvec);
1775 	unsigned long anon_prio, file_prio;
1776 	enum scan_balance scan_balance;
1777 	unsigned long anon, file, free;
1778 	bool force_scan = false;
1779 	unsigned long ap, fp;
1780 	enum lru_list lru;
1781 
1782 	/*
1783 	 * If the zone or memcg is small, nr[l] can be 0.  This
1784 	 * results in no scanning on this priority and a potential
1785 	 * priority drop.  Global direct reclaim can go to the next
1786 	 * zone and tends to have no problems. Global kswapd is for
1787 	 * zone balancing and it needs to scan a minimum amount. When
1788 	 * reclaiming for a memcg, a priority drop can cause high
1789 	 * latencies, so it's better to scan a minimum amount there as
1790 	 * well.
1791 	 */
1792 	if (current_is_kswapd() && zone->all_unreclaimable)
1793 		force_scan = true;
1794 	if (!global_reclaim(sc))
1795 		force_scan = true;
1796 
1797 	/* If we have no swap space, do not bother scanning anon pages. */
1798 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1799 		scan_balance = SCAN_FILE;
1800 		goto out;
1801 	}
1802 
1803 	/*
1804 	 * Global reclaim will swap to prevent OOM even with no
1805 	 * swappiness, but memcg users want to use this knob to
1806 	 * disable swapping for individual groups completely when
1807 	 * using the memory controller's swap limit feature would be
1808 	 * too expensive.
1809 	 */
1810 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1811 		scan_balance = SCAN_FILE;
1812 		goto out;
1813 	}
1814 
1815 	/*
1816 	 * Do not apply any pressure balancing cleverness when the
1817 	 * system is close to OOM, scan both anon and file equally
1818 	 * (unless the swappiness setting disagrees with swapping).
1819 	 */
1820 	if (!sc->priority && vmscan_swappiness(sc)) {
1821 		scan_balance = SCAN_EQUAL;
1822 		goto out;
1823 	}
1824 
1825 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1826 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1827 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1828 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1829 
1830 	/*
1831 	 * If it's foreseeable that reclaiming the file cache won't be
1832 	 * enough to get the zone back into a desirable shape, we have
1833 	 * to swap.  Better start now and leave the - probably heavily
1834 	 * thrashing - remaining file pages alone.
1835 	 */
1836 	if (global_reclaim(sc)) {
1837 		free = zone_page_state(zone, NR_FREE_PAGES);
1838 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1839 			scan_balance = SCAN_ANON;
1840 			goto out;
1841 		}
1842 	}
1843 
1844 	/*
1845 	 * There is enough inactive page cache, do not reclaim
1846 	 * anything from the anonymous working set right now.
1847 	 */
1848 	if (!inactive_file_is_low(lruvec)) {
1849 		scan_balance = SCAN_FILE;
1850 		goto out;
1851 	}
1852 
1853 	scan_balance = SCAN_FRACT;
1854 
1855 	/*
1856 	 * With swappiness at 100, anonymous and file have the same priority.
1857 	 * This scanning priority is essentially the inverse of IO cost.
1858 	 */
1859 	anon_prio = vmscan_swappiness(sc);
1860 	file_prio = 200 - anon_prio;
1861 
1862 	/*
1863 	 * OK, so we have swap space and a fair amount of page cache
1864 	 * pages.  We use the recently rotated / recently scanned
1865 	 * ratios to determine how valuable each cache is.
1866 	 *
1867 	 * Because workloads change over time (and to avoid overflow)
1868 	 * we keep these statistics as a floating average, which ends
1869 	 * up weighing recent references more than old ones.
1870 	 *
1871 	 * anon in [0], file in [1]
1872 	 */
1873 	spin_lock_irq(&zone->lru_lock);
1874 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1875 		reclaim_stat->recent_scanned[0] /= 2;
1876 		reclaim_stat->recent_rotated[0] /= 2;
1877 	}
1878 
1879 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1880 		reclaim_stat->recent_scanned[1] /= 2;
1881 		reclaim_stat->recent_rotated[1] /= 2;
1882 	}
1883 
1884 	/*
1885 	 * The amount of pressure on anon vs file pages is inversely
1886 	 * proportional to the fraction of recently scanned pages on
1887 	 * each list that were recently referenced and in active use.
1888 	 */
1889 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1890 	ap /= reclaim_stat->recent_rotated[0] + 1;
1891 
1892 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1893 	fp /= reclaim_stat->recent_rotated[1] + 1;
1894 	spin_unlock_irq(&zone->lru_lock);
1895 
1896 	fraction[0] = ap;
1897 	fraction[1] = fp;
1898 	denominator = ap + fp + 1;
1899 out:
1900 	for_each_evictable_lru(lru) {
1901 		int file = is_file_lru(lru);
1902 		unsigned long size;
1903 		unsigned long scan;
1904 
1905 		size = get_lru_size(lruvec, lru);
1906 		scan = size >> sc->priority;
1907 
1908 		if (!scan && force_scan)
1909 			scan = min(size, SWAP_CLUSTER_MAX);
1910 
1911 		switch (scan_balance) {
1912 		case SCAN_EQUAL:
1913 			/* Scan lists relative to size */
1914 			break;
1915 		case SCAN_FRACT:
1916 			/*
1917 			 * Scan types proportional to swappiness and
1918 			 * their relative recent reclaim efficiency.
1919 			 */
1920 			scan = div64_u64(scan * fraction[file], denominator);
1921 			break;
1922 		case SCAN_FILE:
1923 		case SCAN_ANON:
1924 			/* Scan one type exclusively */
1925 			if ((scan_balance == SCAN_FILE) != file)
1926 				scan = 0;
1927 			break;
1928 		default:
1929 			/* Look ma, no brain */
1930 			BUG();
1931 		}
1932 		nr[lru] = scan;
1933 	}
1934 }
1935 
1936 /*
1937  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1938  */
1939 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1940 {
1941 	unsigned long nr[NR_LRU_LISTS];
1942 	unsigned long targets[NR_LRU_LISTS];
1943 	unsigned long nr_to_scan;
1944 	enum lru_list lru;
1945 	unsigned long nr_reclaimed = 0;
1946 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1947 	struct blk_plug plug;
1948 	bool scan_adjusted = false;
1949 
1950 	get_scan_count(lruvec, sc, nr);
1951 
1952 	/* Record the original scan target for proportional adjustments later */
1953 	memcpy(targets, nr, sizeof(nr));
1954 
1955 	blk_start_plug(&plug);
1956 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1957 					nr[LRU_INACTIVE_FILE]) {
1958 		unsigned long nr_anon, nr_file, percentage;
1959 		unsigned long nr_scanned;
1960 
1961 		for_each_evictable_lru(lru) {
1962 			if (nr[lru]) {
1963 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1964 				nr[lru] -= nr_to_scan;
1965 
1966 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1967 							    lruvec, sc);
1968 			}
1969 		}
1970 
1971 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1972 			continue;
1973 
1974 		/*
1975 		 * For global direct reclaim, reclaim only the number of pages
1976 		 * requested. Less care is taken to scan proportionally as it
1977 		 * is more important to minimise direct reclaim stall latency
1978 		 * than it is to properly age the LRU lists.
1979 		 */
1980 		if (global_reclaim(sc) && !current_is_kswapd())
1981 			break;
1982 
1983 		/*
1984 		 * For kswapd and memcg, reclaim at least the number of pages
1985 		 * requested. Ensure that the anon and file LRUs shrink
1986 		 * proportionally what was requested by get_scan_count(). We
1987 		 * stop reclaiming one LRU and reduce the amount scanning
1988 		 * proportional to the original scan target.
1989 		 */
1990 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1991 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1992 
1993 		if (nr_file > nr_anon) {
1994 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1995 						targets[LRU_ACTIVE_ANON] + 1;
1996 			lru = LRU_BASE;
1997 			percentage = nr_anon * 100 / scan_target;
1998 		} else {
1999 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2000 						targets[LRU_ACTIVE_FILE] + 1;
2001 			lru = LRU_FILE;
2002 			percentage = nr_file * 100 / scan_target;
2003 		}
2004 
2005 		/* Stop scanning the smaller of the LRU */
2006 		nr[lru] = 0;
2007 		nr[lru + LRU_ACTIVE] = 0;
2008 
2009 		/*
2010 		 * Recalculate the other LRU scan count based on its original
2011 		 * scan target and the percentage scanning already complete
2012 		 */
2013 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2014 		nr_scanned = targets[lru] - nr[lru];
2015 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2016 		nr[lru] -= min(nr[lru], nr_scanned);
2017 
2018 		lru += LRU_ACTIVE;
2019 		nr_scanned = targets[lru] - nr[lru];
2020 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2021 		nr[lru] -= min(nr[lru], nr_scanned);
2022 
2023 		scan_adjusted = true;
2024 	}
2025 	blk_finish_plug(&plug);
2026 	sc->nr_reclaimed += nr_reclaimed;
2027 
2028 	/*
2029 	 * Even if we did not try to evict anon pages at all, we want to
2030 	 * rebalance the anon lru active/inactive ratio.
2031 	 */
2032 	if (inactive_anon_is_low(lruvec))
2033 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2034 				   sc, LRU_ACTIVE_ANON);
2035 
2036 	throttle_vm_writeout(sc->gfp_mask);
2037 }
2038 
2039 /* Use reclaim/compaction for costly allocs or under memory pressure */
2040 static bool in_reclaim_compaction(struct scan_control *sc)
2041 {
2042 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2043 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2044 			 sc->priority < DEF_PRIORITY - 2))
2045 		return true;
2046 
2047 	return false;
2048 }
2049 
2050 /*
2051  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2052  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2053  * true if more pages should be reclaimed such that when the page allocator
2054  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2055  * It will give up earlier than that if there is difficulty reclaiming pages.
2056  */
2057 static inline bool should_continue_reclaim(struct zone *zone,
2058 					unsigned long nr_reclaimed,
2059 					unsigned long nr_scanned,
2060 					struct scan_control *sc)
2061 {
2062 	unsigned long pages_for_compaction;
2063 	unsigned long inactive_lru_pages;
2064 
2065 	/* If not in reclaim/compaction mode, stop */
2066 	if (!in_reclaim_compaction(sc))
2067 		return false;
2068 
2069 	/* Consider stopping depending on scan and reclaim activity */
2070 	if (sc->gfp_mask & __GFP_REPEAT) {
2071 		/*
2072 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2073 		 * full LRU list has been scanned and we are still failing
2074 		 * to reclaim pages. This full LRU scan is potentially
2075 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2076 		 */
2077 		if (!nr_reclaimed && !nr_scanned)
2078 			return false;
2079 	} else {
2080 		/*
2081 		 * For non-__GFP_REPEAT allocations which can presumably
2082 		 * fail without consequence, stop if we failed to reclaim
2083 		 * any pages from the last SWAP_CLUSTER_MAX number of
2084 		 * pages that were scanned. This will return to the
2085 		 * caller faster at the risk reclaim/compaction and
2086 		 * the resulting allocation attempt fails
2087 		 */
2088 		if (!nr_reclaimed)
2089 			return false;
2090 	}
2091 
2092 	/*
2093 	 * If we have not reclaimed enough pages for compaction and the
2094 	 * inactive lists are large enough, continue reclaiming
2095 	 */
2096 	pages_for_compaction = (2UL << sc->order);
2097 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2098 	if (get_nr_swap_pages() > 0)
2099 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2100 	if (sc->nr_reclaimed < pages_for_compaction &&
2101 			inactive_lru_pages > pages_for_compaction)
2102 		return true;
2103 
2104 	/* If compaction would go ahead or the allocation would succeed, stop */
2105 	switch (compaction_suitable(zone, sc->order)) {
2106 	case COMPACT_PARTIAL:
2107 	case COMPACT_CONTINUE:
2108 		return false;
2109 	default:
2110 		return true;
2111 	}
2112 }
2113 
2114 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2115 {
2116 	unsigned long nr_reclaimed, nr_scanned;
2117 
2118 	do {
2119 		struct mem_cgroup *root = sc->target_mem_cgroup;
2120 		struct mem_cgroup_reclaim_cookie reclaim = {
2121 			.zone = zone,
2122 			.priority = sc->priority,
2123 		};
2124 		struct mem_cgroup *memcg;
2125 
2126 		nr_reclaimed = sc->nr_reclaimed;
2127 		nr_scanned = sc->nr_scanned;
2128 
2129 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2130 		do {
2131 			struct lruvec *lruvec;
2132 
2133 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2134 
2135 			shrink_lruvec(lruvec, sc);
2136 
2137 			/*
2138 			 * Direct reclaim and kswapd have to scan all memory
2139 			 * cgroups to fulfill the overall scan target for the
2140 			 * zone.
2141 			 *
2142 			 * Limit reclaim, on the other hand, only cares about
2143 			 * nr_to_reclaim pages to be reclaimed and it will
2144 			 * retry with decreasing priority if one round over the
2145 			 * whole hierarchy is not sufficient.
2146 			 */
2147 			if (!global_reclaim(sc) &&
2148 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2149 				mem_cgroup_iter_break(root, memcg);
2150 				break;
2151 			}
2152 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2153 		} while (memcg);
2154 
2155 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2156 			   sc->nr_scanned - nr_scanned,
2157 			   sc->nr_reclaimed - nr_reclaimed);
2158 
2159 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2160 					 sc->nr_scanned - nr_scanned, sc));
2161 }
2162 
2163 /* Returns true if compaction should go ahead for a high-order request */
2164 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2165 {
2166 	unsigned long balance_gap, watermark;
2167 	bool watermark_ok;
2168 
2169 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2170 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2171 		return false;
2172 
2173 	/*
2174 	 * Compaction takes time to run and there are potentially other
2175 	 * callers using the pages just freed. Continue reclaiming until
2176 	 * there is a buffer of free pages available to give compaction
2177 	 * a reasonable chance of completing and allocating the page
2178 	 */
2179 	balance_gap = min(low_wmark_pages(zone),
2180 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2181 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2182 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2183 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2184 
2185 	/*
2186 	 * If compaction is deferred, reclaim up to a point where
2187 	 * compaction will have a chance of success when re-enabled
2188 	 */
2189 	if (compaction_deferred(zone, sc->order))
2190 		return watermark_ok;
2191 
2192 	/* If compaction is not ready to start, keep reclaiming */
2193 	if (!compaction_suitable(zone, sc->order))
2194 		return false;
2195 
2196 	return watermark_ok;
2197 }
2198 
2199 /*
2200  * This is the direct reclaim path, for page-allocating processes.  We only
2201  * try to reclaim pages from zones which will satisfy the caller's allocation
2202  * request.
2203  *
2204  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2205  * Because:
2206  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2207  *    allocation or
2208  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2209  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2210  *    zone defense algorithm.
2211  *
2212  * If a zone is deemed to be full of pinned pages then just give it a light
2213  * scan then give up on it.
2214  *
2215  * This function returns true if a zone is being reclaimed for a costly
2216  * high-order allocation and compaction is ready to begin. This indicates to
2217  * the caller that it should consider retrying the allocation instead of
2218  * further reclaim.
2219  */
2220 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2221 {
2222 	struct zoneref *z;
2223 	struct zone *zone;
2224 	unsigned long nr_soft_reclaimed;
2225 	unsigned long nr_soft_scanned;
2226 	bool aborted_reclaim = false;
2227 
2228 	/*
2229 	 * If the number of buffer_heads in the machine exceeds the maximum
2230 	 * allowed level, force direct reclaim to scan the highmem zone as
2231 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2232 	 */
2233 	if (buffer_heads_over_limit)
2234 		sc->gfp_mask |= __GFP_HIGHMEM;
2235 
2236 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2237 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2238 		if (!populated_zone(zone))
2239 			continue;
2240 		/*
2241 		 * Take care memory controller reclaiming has small influence
2242 		 * to global LRU.
2243 		 */
2244 		if (global_reclaim(sc)) {
2245 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2246 				continue;
2247 			if (zone->all_unreclaimable &&
2248 					sc->priority != DEF_PRIORITY)
2249 				continue;	/* Let kswapd poll it */
2250 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2251 				/*
2252 				 * If we already have plenty of memory free for
2253 				 * compaction in this zone, don't free any more.
2254 				 * Even though compaction is invoked for any
2255 				 * non-zero order, only frequent costly order
2256 				 * reclamation is disruptive enough to become a
2257 				 * noticeable problem, like transparent huge
2258 				 * page allocations.
2259 				 */
2260 				if (compaction_ready(zone, sc)) {
2261 					aborted_reclaim = true;
2262 					continue;
2263 				}
2264 			}
2265 			/*
2266 			 * This steals pages from memory cgroups over softlimit
2267 			 * and returns the number of reclaimed pages and
2268 			 * scanned pages. This works for global memory pressure
2269 			 * and balancing, not for a memcg's limit.
2270 			 */
2271 			nr_soft_scanned = 0;
2272 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2273 						sc->order, sc->gfp_mask,
2274 						&nr_soft_scanned);
2275 			sc->nr_reclaimed += nr_soft_reclaimed;
2276 			sc->nr_scanned += nr_soft_scanned;
2277 			/* need some check for avoid more shrink_zone() */
2278 		}
2279 
2280 		shrink_zone(zone, sc);
2281 	}
2282 
2283 	return aborted_reclaim;
2284 }
2285 
2286 static bool zone_reclaimable(struct zone *zone)
2287 {
2288 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2289 }
2290 
2291 /* All zones in zonelist are unreclaimable? */
2292 static bool all_unreclaimable(struct zonelist *zonelist,
2293 		struct scan_control *sc)
2294 {
2295 	struct zoneref *z;
2296 	struct zone *zone;
2297 
2298 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2299 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2300 		if (!populated_zone(zone))
2301 			continue;
2302 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2303 			continue;
2304 		if (!zone->all_unreclaimable)
2305 			return false;
2306 	}
2307 
2308 	return true;
2309 }
2310 
2311 /*
2312  * This is the main entry point to direct page reclaim.
2313  *
2314  * If a full scan of the inactive list fails to free enough memory then we
2315  * are "out of memory" and something needs to be killed.
2316  *
2317  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2318  * high - the zone may be full of dirty or under-writeback pages, which this
2319  * caller can't do much about.  We kick the writeback threads and take explicit
2320  * naps in the hope that some of these pages can be written.  But if the
2321  * allocating task holds filesystem locks which prevent writeout this might not
2322  * work, and the allocation attempt will fail.
2323  *
2324  * returns:	0, if no pages reclaimed
2325  * 		else, the number of pages reclaimed
2326  */
2327 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2328 					struct scan_control *sc,
2329 					struct shrink_control *shrink)
2330 {
2331 	unsigned long total_scanned = 0;
2332 	struct reclaim_state *reclaim_state = current->reclaim_state;
2333 	struct zoneref *z;
2334 	struct zone *zone;
2335 	unsigned long writeback_threshold;
2336 	bool aborted_reclaim;
2337 
2338 	delayacct_freepages_start();
2339 
2340 	if (global_reclaim(sc))
2341 		count_vm_event(ALLOCSTALL);
2342 
2343 	do {
2344 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2345 				sc->priority);
2346 		sc->nr_scanned = 0;
2347 		aborted_reclaim = shrink_zones(zonelist, sc);
2348 
2349 		/*
2350 		 * Don't shrink slabs when reclaiming memory from over limit
2351 		 * cgroups but do shrink slab at least once when aborting
2352 		 * reclaim for compaction to avoid unevenly scanning file/anon
2353 		 * LRU pages over slab pages.
2354 		 */
2355 		if (global_reclaim(sc)) {
2356 			unsigned long lru_pages = 0;
2357 			for_each_zone_zonelist(zone, z, zonelist,
2358 					gfp_zone(sc->gfp_mask)) {
2359 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2360 					continue;
2361 
2362 				lru_pages += zone_reclaimable_pages(zone);
2363 			}
2364 
2365 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2366 			if (reclaim_state) {
2367 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2368 				reclaim_state->reclaimed_slab = 0;
2369 			}
2370 		}
2371 		total_scanned += sc->nr_scanned;
2372 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2373 			goto out;
2374 
2375 		/*
2376 		 * If we're getting trouble reclaiming, start doing
2377 		 * writepage even in laptop mode.
2378 		 */
2379 		if (sc->priority < DEF_PRIORITY - 2)
2380 			sc->may_writepage = 1;
2381 
2382 		/*
2383 		 * Try to write back as many pages as we just scanned.  This
2384 		 * tends to cause slow streaming writers to write data to the
2385 		 * disk smoothly, at the dirtying rate, which is nice.   But
2386 		 * that's undesirable in laptop mode, where we *want* lumpy
2387 		 * writeout.  So in laptop mode, write out the whole world.
2388 		 */
2389 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2390 		if (total_scanned > writeback_threshold) {
2391 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2392 						WB_REASON_TRY_TO_FREE_PAGES);
2393 			sc->may_writepage = 1;
2394 		}
2395 	} while (--sc->priority >= 0 && !aborted_reclaim);
2396 
2397 out:
2398 	delayacct_freepages_end();
2399 
2400 	if (sc->nr_reclaimed)
2401 		return sc->nr_reclaimed;
2402 
2403 	/*
2404 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2405 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2406 	 * check.
2407 	 */
2408 	if (oom_killer_disabled)
2409 		return 0;
2410 
2411 	/* Aborted reclaim to try compaction? don't OOM, then */
2412 	if (aborted_reclaim)
2413 		return 1;
2414 
2415 	/* top priority shrink_zones still had more to do? don't OOM, then */
2416 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2417 		return 1;
2418 
2419 	return 0;
2420 }
2421 
2422 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2423 {
2424 	struct zone *zone;
2425 	unsigned long pfmemalloc_reserve = 0;
2426 	unsigned long free_pages = 0;
2427 	int i;
2428 	bool wmark_ok;
2429 
2430 	for (i = 0; i <= ZONE_NORMAL; i++) {
2431 		zone = &pgdat->node_zones[i];
2432 		pfmemalloc_reserve += min_wmark_pages(zone);
2433 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2434 	}
2435 
2436 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2437 
2438 	/* kswapd must be awake if processes are being throttled */
2439 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2440 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2441 						(enum zone_type)ZONE_NORMAL);
2442 		wake_up_interruptible(&pgdat->kswapd_wait);
2443 	}
2444 
2445 	return wmark_ok;
2446 }
2447 
2448 /*
2449  * Throttle direct reclaimers if backing storage is backed by the network
2450  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2451  * depleted. kswapd will continue to make progress and wake the processes
2452  * when the low watermark is reached.
2453  *
2454  * Returns true if a fatal signal was delivered during throttling. If this
2455  * happens, the page allocator should not consider triggering the OOM killer.
2456  */
2457 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2458 					nodemask_t *nodemask)
2459 {
2460 	struct zone *zone;
2461 	int high_zoneidx = gfp_zone(gfp_mask);
2462 	pg_data_t *pgdat;
2463 
2464 	/*
2465 	 * Kernel threads should not be throttled as they may be indirectly
2466 	 * responsible for cleaning pages necessary for reclaim to make forward
2467 	 * progress. kjournald for example may enter direct reclaim while
2468 	 * committing a transaction where throttling it could forcing other
2469 	 * processes to block on log_wait_commit().
2470 	 */
2471 	if (current->flags & PF_KTHREAD)
2472 		goto out;
2473 
2474 	/*
2475 	 * If a fatal signal is pending, this process should not throttle.
2476 	 * It should return quickly so it can exit and free its memory
2477 	 */
2478 	if (fatal_signal_pending(current))
2479 		goto out;
2480 
2481 	/* Check if the pfmemalloc reserves are ok */
2482 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2483 	pgdat = zone->zone_pgdat;
2484 	if (pfmemalloc_watermark_ok(pgdat))
2485 		goto out;
2486 
2487 	/* Account for the throttling */
2488 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2489 
2490 	/*
2491 	 * If the caller cannot enter the filesystem, it's possible that it
2492 	 * is due to the caller holding an FS lock or performing a journal
2493 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2494 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2495 	 * blocked waiting on the same lock. Instead, throttle for up to a
2496 	 * second before continuing.
2497 	 */
2498 	if (!(gfp_mask & __GFP_FS)) {
2499 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2500 			pfmemalloc_watermark_ok(pgdat), HZ);
2501 
2502 		goto check_pending;
2503 	}
2504 
2505 	/* Throttle until kswapd wakes the process */
2506 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2507 		pfmemalloc_watermark_ok(pgdat));
2508 
2509 check_pending:
2510 	if (fatal_signal_pending(current))
2511 		return true;
2512 
2513 out:
2514 	return false;
2515 }
2516 
2517 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2518 				gfp_t gfp_mask, nodemask_t *nodemask)
2519 {
2520 	unsigned long nr_reclaimed;
2521 	struct scan_control sc = {
2522 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2523 		.may_writepage = !laptop_mode,
2524 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2525 		.may_unmap = 1,
2526 		.may_swap = 1,
2527 		.order = order,
2528 		.priority = DEF_PRIORITY,
2529 		.target_mem_cgroup = NULL,
2530 		.nodemask = nodemask,
2531 	};
2532 	struct shrink_control shrink = {
2533 		.gfp_mask = sc.gfp_mask,
2534 	};
2535 
2536 	/*
2537 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2538 	 * 1 is returned so that the page allocator does not OOM kill at this
2539 	 * point.
2540 	 */
2541 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2542 		return 1;
2543 
2544 	trace_mm_vmscan_direct_reclaim_begin(order,
2545 				sc.may_writepage,
2546 				gfp_mask);
2547 
2548 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2549 
2550 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2551 
2552 	return nr_reclaimed;
2553 }
2554 
2555 #ifdef CONFIG_MEMCG
2556 
2557 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2558 						gfp_t gfp_mask, bool noswap,
2559 						struct zone *zone,
2560 						unsigned long *nr_scanned)
2561 {
2562 	struct scan_control sc = {
2563 		.nr_scanned = 0,
2564 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2565 		.may_writepage = !laptop_mode,
2566 		.may_unmap = 1,
2567 		.may_swap = !noswap,
2568 		.order = 0,
2569 		.priority = 0,
2570 		.target_mem_cgroup = memcg,
2571 	};
2572 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2573 
2574 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2575 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2576 
2577 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2578 						      sc.may_writepage,
2579 						      sc.gfp_mask);
2580 
2581 	/*
2582 	 * NOTE: Although we can get the priority field, using it
2583 	 * here is not a good idea, since it limits the pages we can scan.
2584 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2585 	 * will pick up pages from other mem cgroup's as well. We hack
2586 	 * the priority and make it zero.
2587 	 */
2588 	shrink_lruvec(lruvec, &sc);
2589 
2590 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2591 
2592 	*nr_scanned = sc.nr_scanned;
2593 	return sc.nr_reclaimed;
2594 }
2595 
2596 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2597 					   gfp_t gfp_mask,
2598 					   bool noswap)
2599 {
2600 	struct zonelist *zonelist;
2601 	unsigned long nr_reclaimed;
2602 	int nid;
2603 	struct scan_control sc = {
2604 		.may_writepage = !laptop_mode,
2605 		.may_unmap = 1,
2606 		.may_swap = !noswap,
2607 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2608 		.order = 0,
2609 		.priority = DEF_PRIORITY,
2610 		.target_mem_cgroup = memcg,
2611 		.nodemask = NULL, /* we don't care the placement */
2612 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2613 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2614 	};
2615 	struct shrink_control shrink = {
2616 		.gfp_mask = sc.gfp_mask,
2617 	};
2618 
2619 	/*
2620 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2621 	 * take care of from where we get pages. So the node where we start the
2622 	 * scan does not need to be the current node.
2623 	 */
2624 	nid = mem_cgroup_select_victim_node(memcg);
2625 
2626 	zonelist = NODE_DATA(nid)->node_zonelists;
2627 
2628 	trace_mm_vmscan_memcg_reclaim_begin(0,
2629 					    sc.may_writepage,
2630 					    sc.gfp_mask);
2631 
2632 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2633 
2634 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2635 
2636 	return nr_reclaimed;
2637 }
2638 #endif
2639 
2640 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2641 {
2642 	struct mem_cgroup *memcg;
2643 
2644 	if (!total_swap_pages)
2645 		return;
2646 
2647 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2648 	do {
2649 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2650 
2651 		if (inactive_anon_is_low(lruvec))
2652 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2653 					   sc, LRU_ACTIVE_ANON);
2654 
2655 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2656 	} while (memcg);
2657 }
2658 
2659 static bool zone_balanced(struct zone *zone, int order,
2660 			  unsigned long balance_gap, int classzone_idx)
2661 {
2662 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2663 				    balance_gap, classzone_idx, 0))
2664 		return false;
2665 
2666 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2667 	    !compaction_suitable(zone, order))
2668 		return false;
2669 
2670 	return true;
2671 }
2672 
2673 /*
2674  * pgdat_balanced() is used when checking if a node is balanced.
2675  *
2676  * For order-0, all zones must be balanced!
2677  *
2678  * For high-order allocations only zones that meet watermarks and are in a
2679  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2680  * total of balanced pages must be at least 25% of the zones allowed by
2681  * classzone_idx for the node to be considered balanced. Forcing all zones to
2682  * be balanced for high orders can cause excessive reclaim when there are
2683  * imbalanced zones.
2684  * The choice of 25% is due to
2685  *   o a 16M DMA zone that is balanced will not balance a zone on any
2686  *     reasonable sized machine
2687  *   o On all other machines, the top zone must be at least a reasonable
2688  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2689  *     would need to be at least 256M for it to be balance a whole node.
2690  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2691  *     to balance a node on its own. These seemed like reasonable ratios.
2692  */
2693 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2694 {
2695 	unsigned long managed_pages = 0;
2696 	unsigned long balanced_pages = 0;
2697 	int i;
2698 
2699 	/* Check the watermark levels */
2700 	for (i = 0; i <= classzone_idx; i++) {
2701 		struct zone *zone = pgdat->node_zones + i;
2702 
2703 		if (!populated_zone(zone))
2704 			continue;
2705 
2706 		managed_pages += zone->managed_pages;
2707 
2708 		/*
2709 		 * A special case here:
2710 		 *
2711 		 * balance_pgdat() skips over all_unreclaimable after
2712 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2713 		 * they must be considered balanced here as well!
2714 		 */
2715 		if (zone->all_unreclaimable) {
2716 			balanced_pages += zone->managed_pages;
2717 			continue;
2718 		}
2719 
2720 		if (zone_balanced(zone, order, 0, i))
2721 			balanced_pages += zone->managed_pages;
2722 		else if (!order)
2723 			return false;
2724 	}
2725 
2726 	if (order)
2727 		return balanced_pages >= (managed_pages >> 2);
2728 	else
2729 		return true;
2730 }
2731 
2732 /*
2733  * Prepare kswapd for sleeping. This verifies that there are no processes
2734  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2735  *
2736  * Returns true if kswapd is ready to sleep
2737  */
2738 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2739 					int classzone_idx)
2740 {
2741 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2742 	if (remaining)
2743 		return false;
2744 
2745 	/*
2746 	 * There is a potential race between when kswapd checks its watermarks
2747 	 * and a process gets throttled. There is also a potential race if
2748 	 * processes get throttled, kswapd wakes, a large process exits therby
2749 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2750 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2751 	 * so wake them now if necessary. If necessary, processes will wake
2752 	 * kswapd and get throttled again
2753 	 */
2754 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2755 		wake_up(&pgdat->pfmemalloc_wait);
2756 		return false;
2757 	}
2758 
2759 	return pgdat_balanced(pgdat, order, classzone_idx);
2760 }
2761 
2762 /*
2763  * kswapd shrinks the zone by the number of pages required to reach
2764  * the high watermark.
2765  *
2766  * Returns true if kswapd scanned at least the requested number of pages to
2767  * reclaim or if the lack of progress was due to pages under writeback.
2768  * This is used to determine if the scanning priority needs to be raised.
2769  */
2770 static bool kswapd_shrink_zone(struct zone *zone,
2771 			       int classzone_idx,
2772 			       struct scan_control *sc,
2773 			       unsigned long lru_pages,
2774 			       unsigned long *nr_attempted)
2775 {
2776 	unsigned long nr_slab;
2777 	int testorder = sc->order;
2778 	unsigned long balance_gap;
2779 	struct reclaim_state *reclaim_state = current->reclaim_state;
2780 	struct shrink_control shrink = {
2781 		.gfp_mask = sc->gfp_mask,
2782 	};
2783 	bool lowmem_pressure;
2784 
2785 	/* Reclaim above the high watermark. */
2786 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2787 
2788 	/*
2789 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2790 	 * too hard to reclaim until contiguous free pages have become
2791 	 * available can hurt performance by evicting too much useful data
2792 	 * from memory. Do not reclaim more than needed for compaction.
2793 	 */
2794 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2795 			compaction_suitable(zone, sc->order) !=
2796 				COMPACT_SKIPPED)
2797 		testorder = 0;
2798 
2799 	/*
2800 	 * We put equal pressure on every zone, unless one zone has way too
2801 	 * many pages free already. The "too many pages" is defined as the
2802 	 * high wmark plus a "gap" where the gap is either the low
2803 	 * watermark or 1% of the zone, whichever is smaller.
2804 	 */
2805 	balance_gap = min(low_wmark_pages(zone),
2806 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2807 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2808 
2809 	/*
2810 	 * If there is no low memory pressure or the zone is balanced then no
2811 	 * reclaim is necessary
2812 	 */
2813 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2814 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2815 						balance_gap, classzone_idx))
2816 		return true;
2817 
2818 	shrink_zone(zone, sc);
2819 
2820 	reclaim_state->reclaimed_slab = 0;
2821 	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2822 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2823 
2824 	/* Account for the number of pages attempted to reclaim */
2825 	*nr_attempted += sc->nr_to_reclaim;
2826 
2827 	if (nr_slab == 0 && !zone_reclaimable(zone))
2828 		zone->all_unreclaimable = 1;
2829 
2830 	zone_clear_flag(zone, ZONE_WRITEBACK);
2831 
2832 	/*
2833 	 * If a zone reaches its high watermark, consider it to be no longer
2834 	 * congested. It's possible there are dirty pages backed by congested
2835 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2836 	 * waits.
2837 	 */
2838 	if (!zone->all_unreclaimable &&
2839 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2840 		zone_clear_flag(zone, ZONE_CONGESTED);
2841 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2842 	}
2843 
2844 	return sc->nr_scanned >= sc->nr_to_reclaim;
2845 }
2846 
2847 /*
2848  * For kswapd, balance_pgdat() will work across all this node's zones until
2849  * they are all at high_wmark_pages(zone).
2850  *
2851  * Returns the final order kswapd was reclaiming at
2852  *
2853  * There is special handling here for zones which are full of pinned pages.
2854  * This can happen if the pages are all mlocked, or if they are all used by
2855  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2856  * What we do is to detect the case where all pages in the zone have been
2857  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2858  * dead and from now on, only perform a short scan.  Basically we're polling
2859  * the zone for when the problem goes away.
2860  *
2861  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2862  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2863  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2864  * lower zones regardless of the number of free pages in the lower zones. This
2865  * interoperates with the page allocator fallback scheme to ensure that aging
2866  * of pages is balanced across the zones.
2867  */
2868 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2869 							int *classzone_idx)
2870 {
2871 	int i;
2872 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2873 	unsigned long nr_soft_reclaimed;
2874 	unsigned long nr_soft_scanned;
2875 	struct scan_control sc = {
2876 		.gfp_mask = GFP_KERNEL,
2877 		.priority = DEF_PRIORITY,
2878 		.may_unmap = 1,
2879 		.may_swap = 1,
2880 		.may_writepage = !laptop_mode,
2881 		.order = order,
2882 		.target_mem_cgroup = NULL,
2883 	};
2884 	count_vm_event(PAGEOUTRUN);
2885 
2886 	do {
2887 		unsigned long lru_pages = 0;
2888 		unsigned long nr_attempted = 0;
2889 		bool raise_priority = true;
2890 		bool pgdat_needs_compaction = (order > 0);
2891 
2892 		sc.nr_reclaimed = 0;
2893 
2894 		/*
2895 		 * Scan in the highmem->dma direction for the highest
2896 		 * zone which needs scanning
2897 		 */
2898 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2899 			struct zone *zone = pgdat->node_zones + i;
2900 
2901 			if (!populated_zone(zone))
2902 				continue;
2903 
2904 			if (zone->all_unreclaimable &&
2905 			    sc.priority != DEF_PRIORITY)
2906 				continue;
2907 
2908 			/*
2909 			 * Do some background aging of the anon list, to give
2910 			 * pages a chance to be referenced before reclaiming.
2911 			 */
2912 			age_active_anon(zone, &sc);
2913 
2914 			/*
2915 			 * If the number of buffer_heads in the machine
2916 			 * exceeds the maximum allowed level and this node
2917 			 * has a highmem zone, force kswapd to reclaim from
2918 			 * it to relieve lowmem pressure.
2919 			 */
2920 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2921 				end_zone = i;
2922 				break;
2923 			}
2924 
2925 			if (!zone_balanced(zone, order, 0, 0)) {
2926 				end_zone = i;
2927 				break;
2928 			} else {
2929 				/*
2930 				 * If balanced, clear the dirty and congested
2931 				 * flags
2932 				 */
2933 				zone_clear_flag(zone, ZONE_CONGESTED);
2934 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2935 			}
2936 		}
2937 
2938 		if (i < 0)
2939 			goto out;
2940 
2941 		for (i = 0; i <= end_zone; i++) {
2942 			struct zone *zone = pgdat->node_zones + i;
2943 
2944 			if (!populated_zone(zone))
2945 				continue;
2946 
2947 			lru_pages += zone_reclaimable_pages(zone);
2948 
2949 			/*
2950 			 * If any zone is currently balanced then kswapd will
2951 			 * not call compaction as it is expected that the
2952 			 * necessary pages are already available.
2953 			 */
2954 			if (pgdat_needs_compaction &&
2955 					zone_watermark_ok(zone, order,
2956 						low_wmark_pages(zone),
2957 						*classzone_idx, 0))
2958 				pgdat_needs_compaction = false;
2959 		}
2960 
2961 		/*
2962 		 * If we're getting trouble reclaiming, start doing writepage
2963 		 * even in laptop mode.
2964 		 */
2965 		if (sc.priority < DEF_PRIORITY - 2)
2966 			sc.may_writepage = 1;
2967 
2968 		/*
2969 		 * Now scan the zone in the dma->highmem direction, stopping
2970 		 * at the last zone which needs scanning.
2971 		 *
2972 		 * We do this because the page allocator works in the opposite
2973 		 * direction.  This prevents the page allocator from allocating
2974 		 * pages behind kswapd's direction of progress, which would
2975 		 * cause too much scanning of the lower zones.
2976 		 */
2977 		for (i = 0; i <= end_zone; i++) {
2978 			struct zone *zone = pgdat->node_zones + i;
2979 
2980 			if (!populated_zone(zone))
2981 				continue;
2982 
2983 			if (zone->all_unreclaimable &&
2984 			    sc.priority != DEF_PRIORITY)
2985 				continue;
2986 
2987 			sc.nr_scanned = 0;
2988 
2989 			nr_soft_scanned = 0;
2990 			/*
2991 			 * Call soft limit reclaim before calling shrink_zone.
2992 			 */
2993 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2994 							order, sc.gfp_mask,
2995 							&nr_soft_scanned);
2996 			sc.nr_reclaimed += nr_soft_reclaimed;
2997 
2998 			/*
2999 			 * There should be no need to raise the scanning
3000 			 * priority if enough pages are already being scanned
3001 			 * that that high watermark would be met at 100%
3002 			 * efficiency.
3003 			 */
3004 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3005 					lru_pages, &nr_attempted))
3006 				raise_priority = false;
3007 		}
3008 
3009 		/*
3010 		 * If the low watermark is met there is no need for processes
3011 		 * to be throttled on pfmemalloc_wait as they should not be
3012 		 * able to safely make forward progress. Wake them
3013 		 */
3014 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3015 				pfmemalloc_watermark_ok(pgdat))
3016 			wake_up(&pgdat->pfmemalloc_wait);
3017 
3018 		/*
3019 		 * Fragmentation may mean that the system cannot be rebalanced
3020 		 * for high-order allocations in all zones. If twice the
3021 		 * allocation size has been reclaimed and the zones are still
3022 		 * not balanced then recheck the watermarks at order-0 to
3023 		 * prevent kswapd reclaiming excessively. Assume that a
3024 		 * process requested a high-order can direct reclaim/compact.
3025 		 */
3026 		if (order && sc.nr_reclaimed >= 2UL << order)
3027 			order = sc.order = 0;
3028 
3029 		/* Check if kswapd should be suspending */
3030 		if (try_to_freeze() || kthread_should_stop())
3031 			break;
3032 
3033 		/*
3034 		 * Compact if necessary and kswapd is reclaiming at least the
3035 		 * high watermark number of pages as requsted
3036 		 */
3037 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3038 			compact_pgdat(pgdat, order);
3039 
3040 		/*
3041 		 * Raise priority if scanning rate is too low or there was no
3042 		 * progress in reclaiming pages
3043 		 */
3044 		if (raise_priority || !sc.nr_reclaimed)
3045 			sc.priority--;
3046 	} while (sc.priority >= 1 &&
3047 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3048 
3049 out:
3050 	/*
3051 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3052 	 * makes a decision on the order we were last reclaiming at. However,
3053 	 * if another caller entered the allocator slow path while kswapd
3054 	 * was awake, order will remain at the higher level
3055 	 */
3056 	*classzone_idx = end_zone;
3057 	return order;
3058 }
3059 
3060 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3061 {
3062 	long remaining = 0;
3063 	DEFINE_WAIT(wait);
3064 
3065 	if (freezing(current) || kthread_should_stop())
3066 		return;
3067 
3068 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3069 
3070 	/* Try to sleep for a short interval */
3071 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3072 		remaining = schedule_timeout(HZ/10);
3073 		finish_wait(&pgdat->kswapd_wait, &wait);
3074 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3075 	}
3076 
3077 	/*
3078 	 * After a short sleep, check if it was a premature sleep. If not, then
3079 	 * go fully to sleep until explicitly woken up.
3080 	 */
3081 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3082 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3083 
3084 		/*
3085 		 * vmstat counters are not perfectly accurate and the estimated
3086 		 * value for counters such as NR_FREE_PAGES can deviate from the
3087 		 * true value by nr_online_cpus * threshold. To avoid the zone
3088 		 * watermarks being breached while under pressure, we reduce the
3089 		 * per-cpu vmstat threshold while kswapd is awake and restore
3090 		 * them before going back to sleep.
3091 		 */
3092 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3093 
3094 		/*
3095 		 * Compaction records what page blocks it recently failed to
3096 		 * isolate pages from and skips them in the future scanning.
3097 		 * When kswapd is going to sleep, it is reasonable to assume
3098 		 * that pages and compaction may succeed so reset the cache.
3099 		 */
3100 		reset_isolation_suitable(pgdat);
3101 
3102 		if (!kthread_should_stop())
3103 			schedule();
3104 
3105 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3106 	} else {
3107 		if (remaining)
3108 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3109 		else
3110 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3111 	}
3112 	finish_wait(&pgdat->kswapd_wait, &wait);
3113 }
3114 
3115 /*
3116  * The background pageout daemon, started as a kernel thread
3117  * from the init process.
3118  *
3119  * This basically trickles out pages so that we have _some_
3120  * free memory available even if there is no other activity
3121  * that frees anything up. This is needed for things like routing
3122  * etc, where we otherwise might have all activity going on in
3123  * asynchronous contexts that cannot page things out.
3124  *
3125  * If there are applications that are active memory-allocators
3126  * (most normal use), this basically shouldn't matter.
3127  */
3128 static int kswapd(void *p)
3129 {
3130 	unsigned long order, new_order;
3131 	unsigned balanced_order;
3132 	int classzone_idx, new_classzone_idx;
3133 	int balanced_classzone_idx;
3134 	pg_data_t *pgdat = (pg_data_t*)p;
3135 	struct task_struct *tsk = current;
3136 
3137 	struct reclaim_state reclaim_state = {
3138 		.reclaimed_slab = 0,
3139 	};
3140 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3141 
3142 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3143 
3144 	if (!cpumask_empty(cpumask))
3145 		set_cpus_allowed_ptr(tsk, cpumask);
3146 	current->reclaim_state = &reclaim_state;
3147 
3148 	/*
3149 	 * Tell the memory management that we're a "memory allocator",
3150 	 * and that if we need more memory we should get access to it
3151 	 * regardless (see "__alloc_pages()"). "kswapd" should
3152 	 * never get caught in the normal page freeing logic.
3153 	 *
3154 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3155 	 * you need a small amount of memory in order to be able to
3156 	 * page out something else, and this flag essentially protects
3157 	 * us from recursively trying to free more memory as we're
3158 	 * trying to free the first piece of memory in the first place).
3159 	 */
3160 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3161 	set_freezable();
3162 
3163 	order = new_order = 0;
3164 	balanced_order = 0;
3165 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3166 	balanced_classzone_idx = classzone_idx;
3167 	for ( ; ; ) {
3168 		bool ret;
3169 
3170 		/*
3171 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3172 		 * new request of a similar or harder type will succeed soon
3173 		 * so consider going to sleep on the basis we reclaimed at
3174 		 */
3175 		if (balanced_classzone_idx >= new_classzone_idx &&
3176 					balanced_order == new_order) {
3177 			new_order = pgdat->kswapd_max_order;
3178 			new_classzone_idx = pgdat->classzone_idx;
3179 			pgdat->kswapd_max_order =  0;
3180 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3181 		}
3182 
3183 		if (order < new_order || classzone_idx > new_classzone_idx) {
3184 			/*
3185 			 * Don't sleep if someone wants a larger 'order'
3186 			 * allocation or has tigher zone constraints
3187 			 */
3188 			order = new_order;
3189 			classzone_idx = new_classzone_idx;
3190 		} else {
3191 			kswapd_try_to_sleep(pgdat, balanced_order,
3192 						balanced_classzone_idx);
3193 			order = pgdat->kswapd_max_order;
3194 			classzone_idx = pgdat->classzone_idx;
3195 			new_order = order;
3196 			new_classzone_idx = classzone_idx;
3197 			pgdat->kswapd_max_order = 0;
3198 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3199 		}
3200 
3201 		ret = try_to_freeze();
3202 		if (kthread_should_stop())
3203 			break;
3204 
3205 		/*
3206 		 * We can speed up thawing tasks if we don't call balance_pgdat
3207 		 * after returning from the refrigerator
3208 		 */
3209 		if (!ret) {
3210 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3211 			balanced_classzone_idx = classzone_idx;
3212 			balanced_order = balance_pgdat(pgdat, order,
3213 						&balanced_classzone_idx);
3214 		}
3215 	}
3216 
3217 	current->reclaim_state = NULL;
3218 	return 0;
3219 }
3220 
3221 /*
3222  * A zone is low on free memory, so wake its kswapd task to service it.
3223  */
3224 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3225 {
3226 	pg_data_t *pgdat;
3227 
3228 	if (!populated_zone(zone))
3229 		return;
3230 
3231 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3232 		return;
3233 	pgdat = zone->zone_pgdat;
3234 	if (pgdat->kswapd_max_order < order) {
3235 		pgdat->kswapd_max_order = order;
3236 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3237 	}
3238 	if (!waitqueue_active(&pgdat->kswapd_wait))
3239 		return;
3240 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3241 		return;
3242 
3243 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3244 	wake_up_interruptible(&pgdat->kswapd_wait);
3245 }
3246 
3247 /*
3248  * The reclaimable count would be mostly accurate.
3249  * The less reclaimable pages may be
3250  * - mlocked pages, which will be moved to unevictable list when encountered
3251  * - mapped pages, which may require several travels to be reclaimed
3252  * - dirty pages, which is not "instantly" reclaimable
3253  */
3254 unsigned long global_reclaimable_pages(void)
3255 {
3256 	int nr;
3257 
3258 	nr = global_page_state(NR_ACTIVE_FILE) +
3259 	     global_page_state(NR_INACTIVE_FILE);
3260 
3261 	if (get_nr_swap_pages() > 0)
3262 		nr += global_page_state(NR_ACTIVE_ANON) +
3263 		      global_page_state(NR_INACTIVE_ANON);
3264 
3265 	return nr;
3266 }
3267 
3268 unsigned long zone_reclaimable_pages(struct zone *zone)
3269 {
3270 	int nr;
3271 
3272 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3273 	     zone_page_state(zone, NR_INACTIVE_FILE);
3274 
3275 	if (get_nr_swap_pages() > 0)
3276 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3277 		      zone_page_state(zone, NR_INACTIVE_ANON);
3278 
3279 	return nr;
3280 }
3281 
3282 #ifdef CONFIG_HIBERNATION
3283 /*
3284  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3285  * freed pages.
3286  *
3287  * Rather than trying to age LRUs the aim is to preserve the overall
3288  * LRU order by reclaiming preferentially
3289  * inactive > active > active referenced > active mapped
3290  */
3291 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3292 {
3293 	struct reclaim_state reclaim_state;
3294 	struct scan_control sc = {
3295 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3296 		.may_swap = 1,
3297 		.may_unmap = 1,
3298 		.may_writepage = 1,
3299 		.nr_to_reclaim = nr_to_reclaim,
3300 		.hibernation_mode = 1,
3301 		.order = 0,
3302 		.priority = DEF_PRIORITY,
3303 	};
3304 	struct shrink_control shrink = {
3305 		.gfp_mask = sc.gfp_mask,
3306 	};
3307 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3308 	struct task_struct *p = current;
3309 	unsigned long nr_reclaimed;
3310 
3311 	p->flags |= PF_MEMALLOC;
3312 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3313 	reclaim_state.reclaimed_slab = 0;
3314 	p->reclaim_state = &reclaim_state;
3315 
3316 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3317 
3318 	p->reclaim_state = NULL;
3319 	lockdep_clear_current_reclaim_state();
3320 	p->flags &= ~PF_MEMALLOC;
3321 
3322 	return nr_reclaimed;
3323 }
3324 #endif /* CONFIG_HIBERNATION */
3325 
3326 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3327    not required for correctness.  So if the last cpu in a node goes
3328    away, we get changed to run anywhere: as the first one comes back,
3329    restore their cpu bindings. */
3330 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3331 			void *hcpu)
3332 {
3333 	int nid;
3334 
3335 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3336 		for_each_node_state(nid, N_MEMORY) {
3337 			pg_data_t *pgdat = NODE_DATA(nid);
3338 			const struct cpumask *mask;
3339 
3340 			mask = cpumask_of_node(pgdat->node_id);
3341 
3342 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3343 				/* One of our CPUs online: restore mask */
3344 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3345 		}
3346 	}
3347 	return NOTIFY_OK;
3348 }
3349 
3350 /*
3351  * This kswapd start function will be called by init and node-hot-add.
3352  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3353  */
3354 int kswapd_run(int nid)
3355 {
3356 	pg_data_t *pgdat = NODE_DATA(nid);
3357 	int ret = 0;
3358 
3359 	if (pgdat->kswapd)
3360 		return 0;
3361 
3362 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3363 	if (IS_ERR(pgdat->kswapd)) {
3364 		/* failure at boot is fatal */
3365 		BUG_ON(system_state == SYSTEM_BOOTING);
3366 		pr_err("Failed to start kswapd on node %d\n", nid);
3367 		ret = PTR_ERR(pgdat->kswapd);
3368 		pgdat->kswapd = NULL;
3369 	}
3370 	return ret;
3371 }
3372 
3373 /*
3374  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3375  * hold lock_memory_hotplug().
3376  */
3377 void kswapd_stop(int nid)
3378 {
3379 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3380 
3381 	if (kswapd) {
3382 		kthread_stop(kswapd);
3383 		NODE_DATA(nid)->kswapd = NULL;
3384 	}
3385 }
3386 
3387 static int __init kswapd_init(void)
3388 {
3389 	int nid;
3390 
3391 	swap_setup();
3392 	for_each_node_state(nid, N_MEMORY)
3393  		kswapd_run(nid);
3394 	hotcpu_notifier(cpu_callback, 0);
3395 	return 0;
3396 }
3397 
3398 module_init(kswapd_init)
3399 
3400 #ifdef CONFIG_NUMA
3401 /*
3402  * Zone reclaim mode
3403  *
3404  * If non-zero call zone_reclaim when the number of free pages falls below
3405  * the watermarks.
3406  */
3407 int zone_reclaim_mode __read_mostly;
3408 
3409 #define RECLAIM_OFF 0
3410 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3411 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3412 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3413 
3414 /*
3415  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3416  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3417  * a zone.
3418  */
3419 #define ZONE_RECLAIM_PRIORITY 4
3420 
3421 /*
3422  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3423  * occur.
3424  */
3425 int sysctl_min_unmapped_ratio = 1;
3426 
3427 /*
3428  * If the number of slab pages in a zone grows beyond this percentage then
3429  * slab reclaim needs to occur.
3430  */
3431 int sysctl_min_slab_ratio = 5;
3432 
3433 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3434 {
3435 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3436 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3437 		zone_page_state(zone, NR_ACTIVE_FILE);
3438 
3439 	/*
3440 	 * It's possible for there to be more file mapped pages than
3441 	 * accounted for by the pages on the file LRU lists because
3442 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3443 	 */
3444 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3445 }
3446 
3447 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3448 static long zone_pagecache_reclaimable(struct zone *zone)
3449 {
3450 	long nr_pagecache_reclaimable;
3451 	long delta = 0;
3452 
3453 	/*
3454 	 * If RECLAIM_SWAP is set, then all file pages are considered
3455 	 * potentially reclaimable. Otherwise, we have to worry about
3456 	 * pages like swapcache and zone_unmapped_file_pages() provides
3457 	 * a better estimate
3458 	 */
3459 	if (zone_reclaim_mode & RECLAIM_SWAP)
3460 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3461 	else
3462 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3463 
3464 	/* If we can't clean pages, remove dirty pages from consideration */
3465 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3466 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3467 
3468 	/* Watch for any possible underflows due to delta */
3469 	if (unlikely(delta > nr_pagecache_reclaimable))
3470 		delta = nr_pagecache_reclaimable;
3471 
3472 	return nr_pagecache_reclaimable - delta;
3473 }
3474 
3475 /*
3476  * Try to free up some pages from this zone through reclaim.
3477  */
3478 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3479 {
3480 	/* Minimum pages needed in order to stay on node */
3481 	const unsigned long nr_pages = 1 << order;
3482 	struct task_struct *p = current;
3483 	struct reclaim_state reclaim_state;
3484 	struct scan_control sc = {
3485 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3486 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3487 		.may_swap = 1,
3488 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3489 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3490 		.order = order,
3491 		.priority = ZONE_RECLAIM_PRIORITY,
3492 	};
3493 	struct shrink_control shrink = {
3494 		.gfp_mask = sc.gfp_mask,
3495 	};
3496 	unsigned long nr_slab_pages0, nr_slab_pages1;
3497 
3498 	cond_resched();
3499 	/*
3500 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3501 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3502 	 * and RECLAIM_SWAP.
3503 	 */
3504 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3505 	lockdep_set_current_reclaim_state(gfp_mask);
3506 	reclaim_state.reclaimed_slab = 0;
3507 	p->reclaim_state = &reclaim_state;
3508 
3509 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3510 		/*
3511 		 * Free memory by calling shrink zone with increasing
3512 		 * priorities until we have enough memory freed.
3513 		 */
3514 		do {
3515 			shrink_zone(zone, &sc);
3516 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3517 	}
3518 
3519 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3520 	if (nr_slab_pages0 > zone->min_slab_pages) {
3521 		/*
3522 		 * shrink_slab() does not currently allow us to determine how
3523 		 * many pages were freed in this zone. So we take the current
3524 		 * number of slab pages and shake the slab until it is reduced
3525 		 * by the same nr_pages that we used for reclaiming unmapped
3526 		 * pages.
3527 		 *
3528 		 * Note that shrink_slab will free memory on all zones and may
3529 		 * take a long time.
3530 		 */
3531 		for (;;) {
3532 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3533 
3534 			/* No reclaimable slab or very low memory pressure */
3535 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3536 				break;
3537 
3538 			/* Freed enough memory */
3539 			nr_slab_pages1 = zone_page_state(zone,
3540 							NR_SLAB_RECLAIMABLE);
3541 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3542 				break;
3543 		}
3544 
3545 		/*
3546 		 * Update nr_reclaimed by the number of slab pages we
3547 		 * reclaimed from this zone.
3548 		 */
3549 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3550 		if (nr_slab_pages1 < nr_slab_pages0)
3551 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3552 	}
3553 
3554 	p->reclaim_state = NULL;
3555 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3556 	lockdep_clear_current_reclaim_state();
3557 	return sc.nr_reclaimed >= nr_pages;
3558 }
3559 
3560 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3561 {
3562 	int node_id;
3563 	int ret;
3564 
3565 	/*
3566 	 * Zone reclaim reclaims unmapped file backed pages and
3567 	 * slab pages if we are over the defined limits.
3568 	 *
3569 	 * A small portion of unmapped file backed pages is needed for
3570 	 * file I/O otherwise pages read by file I/O will be immediately
3571 	 * thrown out if the zone is overallocated. So we do not reclaim
3572 	 * if less than a specified percentage of the zone is used by
3573 	 * unmapped file backed pages.
3574 	 */
3575 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3576 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3577 		return ZONE_RECLAIM_FULL;
3578 
3579 	if (zone->all_unreclaimable)
3580 		return ZONE_RECLAIM_FULL;
3581 
3582 	/*
3583 	 * Do not scan if the allocation should not be delayed.
3584 	 */
3585 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3586 		return ZONE_RECLAIM_NOSCAN;
3587 
3588 	/*
3589 	 * Only run zone reclaim on the local zone or on zones that do not
3590 	 * have associated processors. This will favor the local processor
3591 	 * over remote processors and spread off node memory allocations
3592 	 * as wide as possible.
3593 	 */
3594 	node_id = zone_to_nid(zone);
3595 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3596 		return ZONE_RECLAIM_NOSCAN;
3597 
3598 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3599 		return ZONE_RECLAIM_NOSCAN;
3600 
3601 	ret = __zone_reclaim(zone, gfp_mask, order);
3602 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3603 
3604 	if (!ret)
3605 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3606 
3607 	return ret;
3608 }
3609 #endif
3610 
3611 /*
3612  * page_evictable - test whether a page is evictable
3613  * @page: the page to test
3614  *
3615  * Test whether page is evictable--i.e., should be placed on active/inactive
3616  * lists vs unevictable list.
3617  *
3618  * Reasons page might not be evictable:
3619  * (1) page's mapping marked unevictable
3620  * (2) page is part of an mlocked VMA
3621  *
3622  */
3623 int page_evictable(struct page *page)
3624 {
3625 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3626 }
3627 
3628 #ifdef CONFIG_SHMEM
3629 /**
3630  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3631  * @pages:	array of pages to check
3632  * @nr_pages:	number of pages to check
3633  *
3634  * Checks pages for evictability and moves them to the appropriate lru list.
3635  *
3636  * This function is only used for SysV IPC SHM_UNLOCK.
3637  */
3638 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3639 {
3640 	struct lruvec *lruvec;
3641 	struct zone *zone = NULL;
3642 	int pgscanned = 0;
3643 	int pgrescued = 0;
3644 	int i;
3645 
3646 	for (i = 0; i < nr_pages; i++) {
3647 		struct page *page = pages[i];
3648 		struct zone *pagezone;
3649 
3650 		pgscanned++;
3651 		pagezone = page_zone(page);
3652 		if (pagezone != zone) {
3653 			if (zone)
3654 				spin_unlock_irq(&zone->lru_lock);
3655 			zone = pagezone;
3656 			spin_lock_irq(&zone->lru_lock);
3657 		}
3658 		lruvec = mem_cgroup_page_lruvec(page, zone);
3659 
3660 		if (!PageLRU(page) || !PageUnevictable(page))
3661 			continue;
3662 
3663 		if (page_evictable(page)) {
3664 			enum lru_list lru = page_lru_base_type(page);
3665 
3666 			VM_BUG_ON(PageActive(page));
3667 			ClearPageUnevictable(page);
3668 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3669 			add_page_to_lru_list(page, lruvec, lru);
3670 			pgrescued++;
3671 		}
3672 	}
3673 
3674 	if (zone) {
3675 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3676 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3677 		spin_unlock_irq(&zone->lru_lock);
3678 	}
3679 }
3680 #endif /* CONFIG_SHMEM */
3681 
3682 static void warn_scan_unevictable_pages(void)
3683 {
3684 	printk_once(KERN_WARNING
3685 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3686 		    "disabled for lack of a legitimate use case.  If you have "
3687 		    "one, please send an email to linux-mm@kvack.org.\n",
3688 		    current->comm);
3689 }
3690 
3691 /*
3692  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3693  * all nodes' unevictable lists for evictable pages
3694  */
3695 unsigned long scan_unevictable_pages;
3696 
3697 int scan_unevictable_handler(struct ctl_table *table, int write,
3698 			   void __user *buffer,
3699 			   size_t *length, loff_t *ppos)
3700 {
3701 	warn_scan_unevictable_pages();
3702 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3703 	scan_unevictable_pages = 0;
3704 	return 0;
3705 }
3706 
3707 #ifdef CONFIG_NUMA
3708 /*
3709  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3710  * a specified node's per zone unevictable lists for evictable pages.
3711  */
3712 
3713 static ssize_t read_scan_unevictable_node(struct device *dev,
3714 					  struct device_attribute *attr,
3715 					  char *buf)
3716 {
3717 	warn_scan_unevictable_pages();
3718 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3719 }
3720 
3721 static ssize_t write_scan_unevictable_node(struct device *dev,
3722 					   struct device_attribute *attr,
3723 					const char *buf, size_t count)
3724 {
3725 	warn_scan_unevictable_pages();
3726 	return 1;
3727 }
3728 
3729 
3730 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3731 			read_scan_unevictable_node,
3732 			write_scan_unevictable_node);
3733 
3734 int scan_unevictable_register_node(struct node *node)
3735 {
3736 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3737 }
3738 
3739 void scan_unevictable_unregister_node(struct node *node)
3740 {
3741 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3742 }
3743 #endif
3744