1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 /** 691 * synchronize_shrinkers - Wait for all running shrinkers to complete. 692 * 693 * This is equivalent to calling unregister_shrink() and register_shrinker(), 694 * but atomically and with less overhead. This is useful to guarantee that all 695 * shrinker invocations have seen an update, before freeing memory, similar to 696 * rcu. 697 */ 698 void synchronize_shrinkers(void) 699 { 700 down_write(&shrinker_rwsem); 701 up_write(&shrinker_rwsem); 702 } 703 EXPORT_SYMBOL(synchronize_shrinkers); 704 705 #define SHRINK_BATCH 128 706 707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 708 struct shrinker *shrinker, int priority) 709 { 710 unsigned long freed = 0; 711 unsigned long long delta; 712 long total_scan; 713 long freeable; 714 long nr; 715 long new_nr; 716 long batch_size = shrinker->batch ? shrinker->batch 717 : SHRINK_BATCH; 718 long scanned = 0, next_deferred; 719 720 freeable = shrinker->count_objects(shrinker, shrinkctl); 721 if (freeable == 0 || freeable == SHRINK_EMPTY) 722 return freeable; 723 724 /* 725 * copy the current shrinker scan count into a local variable 726 * and zero it so that other concurrent shrinker invocations 727 * don't also do this scanning work. 728 */ 729 nr = xchg_nr_deferred(shrinker, shrinkctl); 730 731 if (shrinker->seeks) { 732 delta = freeable >> priority; 733 delta *= 4; 734 do_div(delta, shrinker->seeks); 735 } else { 736 /* 737 * These objects don't require any IO to create. Trim 738 * them aggressively under memory pressure to keep 739 * them from causing refetches in the IO caches. 740 */ 741 delta = freeable / 2; 742 } 743 744 total_scan = nr >> priority; 745 total_scan += delta; 746 total_scan = min(total_scan, (2 * freeable)); 747 748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 749 freeable, delta, total_scan, priority); 750 751 /* 752 * Normally, we should not scan less than batch_size objects in one 753 * pass to avoid too frequent shrinker calls, but if the slab has less 754 * than batch_size objects in total and we are really tight on memory, 755 * we will try to reclaim all available objects, otherwise we can end 756 * up failing allocations although there are plenty of reclaimable 757 * objects spread over several slabs with usage less than the 758 * batch_size. 759 * 760 * We detect the "tight on memory" situations by looking at the total 761 * number of objects we want to scan (total_scan). If it is greater 762 * than the total number of objects on slab (freeable), we must be 763 * scanning at high prio and therefore should try to reclaim as much as 764 * possible. 765 */ 766 while (total_scan >= batch_size || 767 total_scan >= freeable) { 768 unsigned long ret; 769 unsigned long nr_to_scan = min(batch_size, total_scan); 770 771 shrinkctl->nr_to_scan = nr_to_scan; 772 shrinkctl->nr_scanned = nr_to_scan; 773 ret = shrinker->scan_objects(shrinker, shrinkctl); 774 if (ret == SHRINK_STOP) 775 break; 776 freed += ret; 777 778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 779 total_scan -= shrinkctl->nr_scanned; 780 scanned += shrinkctl->nr_scanned; 781 782 cond_resched(); 783 } 784 785 /* 786 * The deferred work is increased by any new work (delta) that wasn't 787 * done, decreased by old deferred work that was done now. 788 * 789 * And it is capped to two times of the freeable items. 790 */ 791 next_deferred = max_t(long, (nr + delta - scanned), 0); 792 next_deferred = min(next_deferred, (2 * freeable)); 793 794 /* 795 * move the unused scan count back into the shrinker in a 796 * manner that handles concurrent updates. 797 */ 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 799 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 801 return freed; 802 } 803 804 #ifdef CONFIG_MEMCG 805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 806 struct mem_cgroup *memcg, int priority) 807 { 808 struct shrinker_info *info; 809 unsigned long ret, freed = 0; 810 int i; 811 812 if (!mem_cgroup_online(memcg)) 813 return 0; 814 815 if (!down_read_trylock(&shrinker_rwsem)) 816 return 0; 817 818 info = shrinker_info_protected(memcg, nid); 819 if (unlikely(!info)) 820 goto unlock; 821 822 for_each_set_bit(i, info->map, shrinker_nr_max) { 823 struct shrink_control sc = { 824 .gfp_mask = gfp_mask, 825 .nid = nid, 826 .memcg = memcg, 827 }; 828 struct shrinker *shrinker; 829 830 shrinker = idr_find(&shrinker_idr, i); 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 832 if (!shrinker) 833 clear_bit(i, info->map); 834 continue; 835 } 836 837 /* Call non-slab shrinkers even though kmem is disabled */ 838 if (!memcg_kmem_enabled() && 839 !(shrinker->flags & SHRINKER_NONSLAB)) 840 continue; 841 842 ret = do_shrink_slab(&sc, shrinker, priority); 843 if (ret == SHRINK_EMPTY) { 844 clear_bit(i, info->map); 845 /* 846 * After the shrinker reported that it had no objects to 847 * free, but before we cleared the corresponding bit in 848 * the memcg shrinker map, a new object might have been 849 * added. To make sure, we have the bit set in this 850 * case, we invoke the shrinker one more time and reset 851 * the bit if it reports that it is not empty anymore. 852 * The memory barrier here pairs with the barrier in 853 * set_shrinker_bit(): 854 * 855 * list_lru_add() shrink_slab_memcg() 856 * list_add_tail() clear_bit() 857 * <MB> <MB> 858 * set_bit() do_shrink_slab() 859 */ 860 smp_mb__after_atomic(); 861 ret = do_shrink_slab(&sc, shrinker, priority); 862 if (ret == SHRINK_EMPTY) 863 ret = 0; 864 else 865 set_shrinker_bit(memcg, nid, i); 866 } 867 freed += ret; 868 869 if (rwsem_is_contended(&shrinker_rwsem)) { 870 freed = freed ? : 1; 871 break; 872 } 873 } 874 unlock: 875 up_read(&shrinker_rwsem); 876 return freed; 877 } 878 #else /* CONFIG_MEMCG */ 879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 880 struct mem_cgroup *memcg, int priority) 881 { 882 return 0; 883 } 884 #endif /* CONFIG_MEMCG */ 885 886 /** 887 * shrink_slab - shrink slab caches 888 * @gfp_mask: allocation context 889 * @nid: node whose slab caches to target 890 * @memcg: memory cgroup whose slab caches to target 891 * @priority: the reclaim priority 892 * 893 * Call the shrink functions to age shrinkable caches. 894 * 895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 896 * unaware shrinkers will receive a node id of 0 instead. 897 * 898 * @memcg specifies the memory cgroup to target. Unaware shrinkers 899 * are called only if it is the root cgroup. 900 * 901 * @priority is sc->priority, we take the number of objects and >> by priority 902 * in order to get the scan target. 903 * 904 * Returns the number of reclaimed slab objects. 905 */ 906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 907 struct mem_cgroup *memcg, 908 int priority) 909 { 910 unsigned long ret, freed = 0; 911 struct shrinker *shrinker; 912 913 /* 914 * The root memcg might be allocated even though memcg is disabled 915 * via "cgroup_disable=memory" boot parameter. This could make 916 * mem_cgroup_is_root() return false, then just run memcg slab 917 * shrink, but skip global shrink. This may result in premature 918 * oom. 919 */ 920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 922 923 if (!down_read_trylock(&shrinker_rwsem)) 924 goto out; 925 926 list_for_each_entry(shrinker, &shrinker_list, list) { 927 struct shrink_control sc = { 928 .gfp_mask = gfp_mask, 929 .nid = nid, 930 .memcg = memcg, 931 }; 932 933 ret = do_shrink_slab(&sc, shrinker, priority); 934 if (ret == SHRINK_EMPTY) 935 ret = 0; 936 freed += ret; 937 /* 938 * Bail out if someone want to register a new shrinker to 939 * prevent the registration from being stalled for long periods 940 * by parallel ongoing shrinking. 941 */ 942 if (rwsem_is_contended(&shrinker_rwsem)) { 943 freed = freed ? : 1; 944 break; 945 } 946 } 947 948 up_read(&shrinker_rwsem); 949 out: 950 cond_resched(); 951 return freed; 952 } 953 954 void drop_slab_node(int nid) 955 { 956 unsigned long freed; 957 int shift = 0; 958 959 do { 960 struct mem_cgroup *memcg = NULL; 961 962 if (fatal_signal_pending(current)) 963 return; 964 965 freed = 0; 966 memcg = mem_cgroup_iter(NULL, NULL, NULL); 967 do { 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 970 } while ((freed >> shift++) > 1); 971 } 972 973 void drop_slab(void) 974 { 975 int nid; 976 977 for_each_online_node(nid) 978 drop_slab_node(nid); 979 } 980 981 static inline int is_page_cache_freeable(struct page *page) 982 { 983 /* 984 * A freeable page cache page is referenced only by the caller 985 * that isolated the page, the page cache and optional buffer 986 * heads at page->private. 987 */ 988 int page_cache_pins = thp_nr_pages(page); 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 990 } 991 992 static int may_write_to_inode(struct inode *inode) 993 { 994 if (current->flags & PF_SWAPWRITE) 995 return 1; 996 if (!inode_write_congested(inode)) 997 return 1; 998 if (inode_to_bdi(inode) == current->backing_dev_info) 999 return 1; 1000 return 0; 1001 } 1002 1003 /* 1004 * We detected a synchronous write error writing a page out. Probably 1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1006 * fsync(), msync() or close(). 1007 * 1008 * The tricky part is that after writepage we cannot touch the mapping: nothing 1009 * prevents it from being freed up. But we have a ref on the page and once 1010 * that page is locked, the mapping is pinned. 1011 * 1012 * We're allowed to run sleeping lock_page() here because we know the caller has 1013 * __GFP_FS. 1014 */ 1015 static void handle_write_error(struct address_space *mapping, 1016 struct page *page, int error) 1017 { 1018 lock_page(page); 1019 if (page_mapping(page) == mapping) 1020 mapping_set_error(mapping, error); 1021 unlock_page(page); 1022 } 1023 1024 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1025 { 1026 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1027 long timeout, ret; 1028 DEFINE_WAIT(wait); 1029 1030 /* 1031 * Do not throttle IO workers, kthreads other than kswapd or 1032 * workqueues. They may be required for reclaim to make 1033 * forward progress (e.g. journalling workqueues or kthreads). 1034 */ 1035 if (!current_is_kswapd() && 1036 current->flags & (PF_IO_WORKER|PF_KTHREAD)) 1037 return; 1038 1039 /* 1040 * These figures are pulled out of thin air. 1041 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1042 * parallel reclaimers which is a short-lived event so the timeout is 1043 * short. Failing to make progress or waiting on writeback are 1044 * potentially long-lived events so use a longer timeout. This is shaky 1045 * logic as a failure to make progress could be due to anything from 1046 * writeback to a slow device to excessive references pages at the tail 1047 * of the inactive LRU. 1048 */ 1049 switch(reason) { 1050 case VMSCAN_THROTTLE_WRITEBACK: 1051 timeout = HZ/10; 1052 1053 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1054 WRITE_ONCE(pgdat->nr_reclaim_start, 1055 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1056 } 1057 1058 break; 1059 case VMSCAN_THROTTLE_NOPROGRESS: 1060 timeout = HZ/2; 1061 break; 1062 case VMSCAN_THROTTLE_ISOLATED: 1063 timeout = HZ/50; 1064 break; 1065 default: 1066 WARN_ON_ONCE(1); 1067 timeout = HZ; 1068 break; 1069 } 1070 1071 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1072 ret = schedule_timeout(timeout); 1073 finish_wait(wqh, &wait); 1074 1075 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1076 atomic_dec(&pgdat->nr_writeback_throttled); 1077 1078 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1079 jiffies_to_usecs(timeout - ret), 1080 reason); 1081 } 1082 1083 /* 1084 * Account for pages written if tasks are throttled waiting on dirty 1085 * pages to clean. If enough pages have been cleaned since throttling 1086 * started then wakeup the throttled tasks. 1087 */ 1088 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1089 int nr_throttled) 1090 { 1091 unsigned long nr_written; 1092 1093 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1094 1095 /* 1096 * This is an inaccurate read as the per-cpu deltas may not 1097 * be synchronised. However, given that the system is 1098 * writeback throttled, it is not worth taking the penalty 1099 * of getting an accurate count. At worst, the throttle 1100 * timeout guarantees forward progress. 1101 */ 1102 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1103 READ_ONCE(pgdat->nr_reclaim_start); 1104 1105 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1106 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1107 } 1108 1109 /* possible outcome of pageout() */ 1110 typedef enum { 1111 /* failed to write page out, page is locked */ 1112 PAGE_KEEP, 1113 /* move page to the active list, page is locked */ 1114 PAGE_ACTIVATE, 1115 /* page has been sent to the disk successfully, page is unlocked */ 1116 PAGE_SUCCESS, 1117 /* page is clean and locked */ 1118 PAGE_CLEAN, 1119 } pageout_t; 1120 1121 /* 1122 * pageout is called by shrink_page_list() for each dirty page. 1123 * Calls ->writepage(). 1124 */ 1125 static pageout_t pageout(struct page *page, struct address_space *mapping) 1126 { 1127 /* 1128 * If the page is dirty, only perform writeback if that write 1129 * will be non-blocking. To prevent this allocation from being 1130 * stalled by pagecache activity. But note that there may be 1131 * stalls if we need to run get_block(). We could test 1132 * PagePrivate for that. 1133 * 1134 * If this process is currently in __generic_file_write_iter() against 1135 * this page's queue, we can perform writeback even if that 1136 * will block. 1137 * 1138 * If the page is swapcache, write it back even if that would 1139 * block, for some throttling. This happens by accident, because 1140 * swap_backing_dev_info is bust: it doesn't reflect the 1141 * congestion state of the swapdevs. Easy to fix, if needed. 1142 */ 1143 if (!is_page_cache_freeable(page)) 1144 return PAGE_KEEP; 1145 if (!mapping) { 1146 /* 1147 * Some data journaling orphaned pages can have 1148 * page->mapping == NULL while being dirty with clean buffers. 1149 */ 1150 if (page_has_private(page)) { 1151 if (try_to_free_buffers(page)) { 1152 ClearPageDirty(page); 1153 pr_info("%s: orphaned page\n", __func__); 1154 return PAGE_CLEAN; 1155 } 1156 } 1157 return PAGE_KEEP; 1158 } 1159 if (mapping->a_ops->writepage == NULL) 1160 return PAGE_ACTIVATE; 1161 if (!may_write_to_inode(mapping->host)) 1162 return PAGE_KEEP; 1163 1164 if (clear_page_dirty_for_io(page)) { 1165 int res; 1166 struct writeback_control wbc = { 1167 .sync_mode = WB_SYNC_NONE, 1168 .nr_to_write = SWAP_CLUSTER_MAX, 1169 .range_start = 0, 1170 .range_end = LLONG_MAX, 1171 .for_reclaim = 1, 1172 }; 1173 1174 SetPageReclaim(page); 1175 res = mapping->a_ops->writepage(page, &wbc); 1176 if (res < 0) 1177 handle_write_error(mapping, page, res); 1178 if (res == AOP_WRITEPAGE_ACTIVATE) { 1179 ClearPageReclaim(page); 1180 return PAGE_ACTIVATE; 1181 } 1182 1183 if (!PageWriteback(page)) { 1184 /* synchronous write or broken a_ops? */ 1185 ClearPageReclaim(page); 1186 } 1187 trace_mm_vmscan_writepage(page); 1188 inc_node_page_state(page, NR_VMSCAN_WRITE); 1189 return PAGE_SUCCESS; 1190 } 1191 1192 return PAGE_CLEAN; 1193 } 1194 1195 /* 1196 * Same as remove_mapping, but if the page is removed from the mapping, it 1197 * gets returned with a refcount of 0. 1198 */ 1199 static int __remove_mapping(struct address_space *mapping, struct page *page, 1200 bool reclaimed, struct mem_cgroup *target_memcg) 1201 { 1202 int refcount; 1203 void *shadow = NULL; 1204 1205 BUG_ON(!PageLocked(page)); 1206 BUG_ON(mapping != page_mapping(page)); 1207 1208 if (!PageSwapCache(page)) 1209 spin_lock(&mapping->host->i_lock); 1210 xa_lock_irq(&mapping->i_pages); 1211 /* 1212 * The non racy check for a busy page. 1213 * 1214 * Must be careful with the order of the tests. When someone has 1215 * a ref to the page, it may be possible that they dirty it then 1216 * drop the reference. So if PageDirty is tested before page_count 1217 * here, then the following race may occur: 1218 * 1219 * get_user_pages(&page); 1220 * [user mapping goes away] 1221 * write_to(page); 1222 * !PageDirty(page) [good] 1223 * SetPageDirty(page); 1224 * put_page(page); 1225 * !page_count(page) [good, discard it] 1226 * 1227 * [oops, our write_to data is lost] 1228 * 1229 * Reversing the order of the tests ensures such a situation cannot 1230 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1231 * load is not satisfied before that of page->_refcount. 1232 * 1233 * Note that if SetPageDirty is always performed via set_page_dirty, 1234 * and thus under the i_pages lock, then this ordering is not required. 1235 */ 1236 refcount = 1 + compound_nr(page); 1237 if (!page_ref_freeze(page, refcount)) 1238 goto cannot_free; 1239 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1240 if (unlikely(PageDirty(page))) { 1241 page_ref_unfreeze(page, refcount); 1242 goto cannot_free; 1243 } 1244 1245 if (PageSwapCache(page)) { 1246 swp_entry_t swap = { .val = page_private(page) }; 1247 mem_cgroup_swapout(page, swap); 1248 if (reclaimed && !mapping_exiting(mapping)) 1249 shadow = workingset_eviction(page, target_memcg); 1250 __delete_from_swap_cache(page, swap, shadow); 1251 xa_unlock_irq(&mapping->i_pages); 1252 put_swap_page(page, swap); 1253 } else { 1254 void (*freepage)(struct page *); 1255 1256 freepage = mapping->a_ops->freepage; 1257 /* 1258 * Remember a shadow entry for reclaimed file cache in 1259 * order to detect refaults, thus thrashing, later on. 1260 * 1261 * But don't store shadows in an address space that is 1262 * already exiting. This is not just an optimization, 1263 * inode reclaim needs to empty out the radix tree or 1264 * the nodes are lost. Don't plant shadows behind its 1265 * back. 1266 * 1267 * We also don't store shadows for DAX mappings because the 1268 * only page cache pages found in these are zero pages 1269 * covering holes, and because we don't want to mix DAX 1270 * exceptional entries and shadow exceptional entries in the 1271 * same address_space. 1272 */ 1273 if (reclaimed && page_is_file_lru(page) && 1274 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1275 shadow = workingset_eviction(page, target_memcg); 1276 __delete_from_page_cache(page, shadow); 1277 xa_unlock_irq(&mapping->i_pages); 1278 if (mapping_shrinkable(mapping)) 1279 inode_add_lru(mapping->host); 1280 spin_unlock(&mapping->host->i_lock); 1281 1282 if (freepage != NULL) 1283 freepage(page); 1284 } 1285 1286 return 1; 1287 1288 cannot_free: 1289 xa_unlock_irq(&mapping->i_pages); 1290 if (!PageSwapCache(page)) 1291 spin_unlock(&mapping->host->i_lock); 1292 return 0; 1293 } 1294 1295 /* 1296 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1297 * someone else has a ref on the page, abort and return 0. If it was 1298 * successfully detached, return 1. Assumes the caller has a single ref on 1299 * this page. 1300 */ 1301 int remove_mapping(struct address_space *mapping, struct page *page) 1302 { 1303 if (__remove_mapping(mapping, page, false, NULL)) { 1304 /* 1305 * Unfreezing the refcount with 1 rather than 2 effectively 1306 * drops the pagecache ref for us without requiring another 1307 * atomic operation. 1308 */ 1309 page_ref_unfreeze(page, 1); 1310 return 1; 1311 } 1312 return 0; 1313 } 1314 1315 /** 1316 * putback_lru_page - put previously isolated page onto appropriate LRU list 1317 * @page: page to be put back to appropriate lru list 1318 * 1319 * Add previously isolated @page to appropriate LRU list. 1320 * Page may still be unevictable for other reasons. 1321 * 1322 * lru_lock must not be held, interrupts must be enabled. 1323 */ 1324 void putback_lru_page(struct page *page) 1325 { 1326 lru_cache_add(page); 1327 put_page(page); /* drop ref from isolate */ 1328 } 1329 1330 enum page_references { 1331 PAGEREF_RECLAIM, 1332 PAGEREF_RECLAIM_CLEAN, 1333 PAGEREF_KEEP, 1334 PAGEREF_ACTIVATE, 1335 }; 1336 1337 static enum page_references page_check_references(struct page *page, 1338 struct scan_control *sc) 1339 { 1340 int referenced_ptes, referenced_page; 1341 unsigned long vm_flags; 1342 1343 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1344 &vm_flags); 1345 referenced_page = TestClearPageReferenced(page); 1346 1347 /* 1348 * Mlock lost the isolation race with us. Let try_to_unmap() 1349 * move the page to the unevictable list. 1350 */ 1351 if (vm_flags & VM_LOCKED) 1352 return PAGEREF_RECLAIM; 1353 1354 if (referenced_ptes) { 1355 /* 1356 * All mapped pages start out with page table 1357 * references from the instantiating fault, so we need 1358 * to look twice if a mapped file page is used more 1359 * than once. 1360 * 1361 * Mark it and spare it for another trip around the 1362 * inactive list. Another page table reference will 1363 * lead to its activation. 1364 * 1365 * Note: the mark is set for activated pages as well 1366 * so that recently deactivated but used pages are 1367 * quickly recovered. 1368 */ 1369 SetPageReferenced(page); 1370 1371 if (referenced_page || referenced_ptes > 1) 1372 return PAGEREF_ACTIVATE; 1373 1374 /* 1375 * Activate file-backed executable pages after first usage. 1376 */ 1377 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1378 return PAGEREF_ACTIVATE; 1379 1380 return PAGEREF_KEEP; 1381 } 1382 1383 /* Reclaim if clean, defer dirty pages to writeback */ 1384 if (referenced_page && !PageSwapBacked(page)) 1385 return PAGEREF_RECLAIM_CLEAN; 1386 1387 return PAGEREF_RECLAIM; 1388 } 1389 1390 /* Check if a page is dirty or under writeback */ 1391 static void page_check_dirty_writeback(struct page *page, 1392 bool *dirty, bool *writeback) 1393 { 1394 struct address_space *mapping; 1395 1396 /* 1397 * Anonymous pages are not handled by flushers and must be written 1398 * from reclaim context. Do not stall reclaim based on them 1399 */ 1400 if (!page_is_file_lru(page) || 1401 (PageAnon(page) && !PageSwapBacked(page))) { 1402 *dirty = false; 1403 *writeback = false; 1404 return; 1405 } 1406 1407 /* By default assume that the page flags are accurate */ 1408 *dirty = PageDirty(page); 1409 *writeback = PageWriteback(page); 1410 1411 /* Verify dirty/writeback state if the filesystem supports it */ 1412 if (!page_has_private(page)) 1413 return; 1414 1415 mapping = page_mapping(page); 1416 if (mapping && mapping->a_ops->is_dirty_writeback) 1417 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1418 } 1419 1420 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1421 { 1422 struct migration_target_control mtc = { 1423 /* 1424 * Allocate from 'node', or fail quickly and quietly. 1425 * When this happens, 'page' will likely just be discarded 1426 * instead of migrated. 1427 */ 1428 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1429 __GFP_THISNODE | __GFP_NOWARN | 1430 __GFP_NOMEMALLOC | GFP_NOWAIT, 1431 .nid = node 1432 }; 1433 1434 return alloc_migration_target(page, (unsigned long)&mtc); 1435 } 1436 1437 /* 1438 * Take pages on @demote_list and attempt to demote them to 1439 * another node. Pages which are not demoted are left on 1440 * @demote_pages. 1441 */ 1442 static unsigned int demote_page_list(struct list_head *demote_pages, 1443 struct pglist_data *pgdat) 1444 { 1445 int target_nid = next_demotion_node(pgdat->node_id); 1446 unsigned int nr_succeeded; 1447 1448 if (list_empty(demote_pages)) 1449 return 0; 1450 1451 if (target_nid == NUMA_NO_NODE) 1452 return 0; 1453 1454 /* Demotion ignores all cpuset and mempolicy settings */ 1455 migrate_pages(demote_pages, alloc_demote_page, NULL, 1456 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1457 &nr_succeeded); 1458 1459 if (current_is_kswapd()) 1460 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1461 else 1462 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1463 1464 return nr_succeeded; 1465 } 1466 1467 /* 1468 * shrink_page_list() returns the number of reclaimed pages 1469 */ 1470 static unsigned int shrink_page_list(struct list_head *page_list, 1471 struct pglist_data *pgdat, 1472 struct scan_control *sc, 1473 struct reclaim_stat *stat, 1474 bool ignore_references) 1475 { 1476 LIST_HEAD(ret_pages); 1477 LIST_HEAD(free_pages); 1478 LIST_HEAD(demote_pages); 1479 unsigned int nr_reclaimed = 0; 1480 unsigned int pgactivate = 0; 1481 bool do_demote_pass; 1482 1483 memset(stat, 0, sizeof(*stat)); 1484 cond_resched(); 1485 do_demote_pass = can_demote(pgdat->node_id, sc); 1486 1487 retry: 1488 while (!list_empty(page_list)) { 1489 struct address_space *mapping; 1490 struct page *page; 1491 enum page_references references = PAGEREF_RECLAIM; 1492 bool dirty, writeback, may_enter_fs; 1493 unsigned int nr_pages; 1494 1495 cond_resched(); 1496 1497 page = lru_to_page(page_list); 1498 list_del(&page->lru); 1499 1500 if (!trylock_page(page)) 1501 goto keep; 1502 1503 VM_BUG_ON_PAGE(PageActive(page), page); 1504 1505 nr_pages = compound_nr(page); 1506 1507 /* Account the number of base pages even though THP */ 1508 sc->nr_scanned += nr_pages; 1509 1510 if (unlikely(!page_evictable(page))) 1511 goto activate_locked; 1512 1513 if (!sc->may_unmap && page_mapped(page)) 1514 goto keep_locked; 1515 1516 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1517 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1518 1519 /* 1520 * The number of dirty pages determines if a node is marked 1521 * reclaim_congested. kswapd will stall and start writing 1522 * pages if the tail of the LRU is all dirty unqueued pages. 1523 */ 1524 page_check_dirty_writeback(page, &dirty, &writeback); 1525 if (dirty || writeback) 1526 stat->nr_dirty++; 1527 1528 if (dirty && !writeback) 1529 stat->nr_unqueued_dirty++; 1530 1531 /* 1532 * Treat this page as congested if the underlying BDI is or if 1533 * pages are cycling through the LRU so quickly that the 1534 * pages marked for immediate reclaim are making it to the 1535 * end of the LRU a second time. 1536 */ 1537 mapping = page_mapping(page); 1538 if (((dirty || writeback) && mapping && 1539 inode_write_congested(mapping->host)) || 1540 (writeback && PageReclaim(page))) 1541 stat->nr_congested++; 1542 1543 /* 1544 * If a page at the tail of the LRU is under writeback, there 1545 * are three cases to consider. 1546 * 1547 * 1) If reclaim is encountering an excessive number of pages 1548 * under writeback and this page is both under writeback and 1549 * PageReclaim then it indicates that pages are being queued 1550 * for IO but are being recycled through the LRU before the 1551 * IO can complete. Waiting on the page itself risks an 1552 * indefinite stall if it is impossible to writeback the 1553 * page due to IO error or disconnected storage so instead 1554 * note that the LRU is being scanned too quickly and the 1555 * caller can stall after page list has been processed. 1556 * 1557 * 2) Global or new memcg reclaim encounters a page that is 1558 * not marked for immediate reclaim, or the caller does not 1559 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1560 * not to fs). In this case mark the page for immediate 1561 * reclaim and continue scanning. 1562 * 1563 * Require may_enter_fs because we would wait on fs, which 1564 * may not have submitted IO yet. And the loop driver might 1565 * enter reclaim, and deadlock if it waits on a page for 1566 * which it is needed to do the write (loop masks off 1567 * __GFP_IO|__GFP_FS for this reason); but more thought 1568 * would probably show more reasons. 1569 * 1570 * 3) Legacy memcg encounters a page that is already marked 1571 * PageReclaim. memcg does not have any dirty pages 1572 * throttling so we could easily OOM just because too many 1573 * pages are in writeback and there is nothing else to 1574 * reclaim. Wait for the writeback to complete. 1575 * 1576 * In cases 1) and 2) we activate the pages to get them out of 1577 * the way while we continue scanning for clean pages on the 1578 * inactive list and refilling from the active list. The 1579 * observation here is that waiting for disk writes is more 1580 * expensive than potentially causing reloads down the line. 1581 * Since they're marked for immediate reclaim, they won't put 1582 * memory pressure on the cache working set any longer than it 1583 * takes to write them to disk. 1584 */ 1585 if (PageWriteback(page)) { 1586 /* Case 1 above */ 1587 if (current_is_kswapd() && 1588 PageReclaim(page) && 1589 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1590 stat->nr_immediate++; 1591 goto activate_locked; 1592 1593 /* Case 2 above */ 1594 } else if (writeback_throttling_sane(sc) || 1595 !PageReclaim(page) || !may_enter_fs) { 1596 /* 1597 * This is slightly racy - end_page_writeback() 1598 * might have just cleared PageReclaim, then 1599 * setting PageReclaim here end up interpreted 1600 * as PageReadahead - but that does not matter 1601 * enough to care. What we do want is for this 1602 * page to have PageReclaim set next time memcg 1603 * reclaim reaches the tests above, so it will 1604 * then wait_on_page_writeback() to avoid OOM; 1605 * and it's also appropriate in global reclaim. 1606 */ 1607 SetPageReclaim(page); 1608 stat->nr_writeback++; 1609 goto activate_locked; 1610 1611 /* Case 3 above */ 1612 } else { 1613 unlock_page(page); 1614 wait_on_page_writeback(page); 1615 /* then go back and try same page again */ 1616 list_add_tail(&page->lru, page_list); 1617 continue; 1618 } 1619 } 1620 1621 if (!ignore_references) 1622 references = page_check_references(page, sc); 1623 1624 switch (references) { 1625 case PAGEREF_ACTIVATE: 1626 goto activate_locked; 1627 case PAGEREF_KEEP: 1628 stat->nr_ref_keep += nr_pages; 1629 goto keep_locked; 1630 case PAGEREF_RECLAIM: 1631 case PAGEREF_RECLAIM_CLEAN: 1632 ; /* try to reclaim the page below */ 1633 } 1634 1635 /* 1636 * Before reclaiming the page, try to relocate 1637 * its contents to another node. 1638 */ 1639 if (do_demote_pass && 1640 (thp_migration_supported() || !PageTransHuge(page))) { 1641 list_add(&page->lru, &demote_pages); 1642 unlock_page(page); 1643 continue; 1644 } 1645 1646 /* 1647 * Anonymous process memory has backing store? 1648 * Try to allocate it some swap space here. 1649 * Lazyfree page could be freed directly 1650 */ 1651 if (PageAnon(page) && PageSwapBacked(page)) { 1652 if (!PageSwapCache(page)) { 1653 if (!(sc->gfp_mask & __GFP_IO)) 1654 goto keep_locked; 1655 if (page_maybe_dma_pinned(page)) 1656 goto keep_locked; 1657 if (PageTransHuge(page)) { 1658 /* cannot split THP, skip it */ 1659 if (!can_split_huge_page(page, NULL)) 1660 goto activate_locked; 1661 /* 1662 * Split pages without a PMD map right 1663 * away. Chances are some or all of the 1664 * tail pages can be freed without IO. 1665 */ 1666 if (!compound_mapcount(page) && 1667 split_huge_page_to_list(page, 1668 page_list)) 1669 goto activate_locked; 1670 } 1671 if (!add_to_swap(page)) { 1672 if (!PageTransHuge(page)) 1673 goto activate_locked_split; 1674 /* Fallback to swap normal pages */ 1675 if (split_huge_page_to_list(page, 1676 page_list)) 1677 goto activate_locked; 1678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1679 count_vm_event(THP_SWPOUT_FALLBACK); 1680 #endif 1681 if (!add_to_swap(page)) 1682 goto activate_locked_split; 1683 } 1684 1685 may_enter_fs = true; 1686 1687 /* Adding to swap updated mapping */ 1688 mapping = page_mapping(page); 1689 } 1690 } else if (unlikely(PageTransHuge(page))) { 1691 /* Split file THP */ 1692 if (split_huge_page_to_list(page, page_list)) 1693 goto keep_locked; 1694 } 1695 1696 /* 1697 * THP may get split above, need minus tail pages and update 1698 * nr_pages to avoid accounting tail pages twice. 1699 * 1700 * The tail pages that are added into swap cache successfully 1701 * reach here. 1702 */ 1703 if ((nr_pages > 1) && !PageTransHuge(page)) { 1704 sc->nr_scanned -= (nr_pages - 1); 1705 nr_pages = 1; 1706 } 1707 1708 /* 1709 * The page is mapped into the page tables of one or more 1710 * processes. Try to unmap it here. 1711 */ 1712 if (page_mapped(page)) { 1713 enum ttu_flags flags = TTU_BATCH_FLUSH; 1714 bool was_swapbacked = PageSwapBacked(page); 1715 1716 if (unlikely(PageTransHuge(page))) 1717 flags |= TTU_SPLIT_HUGE_PMD; 1718 1719 try_to_unmap(page, flags); 1720 if (page_mapped(page)) { 1721 stat->nr_unmap_fail += nr_pages; 1722 if (!was_swapbacked && PageSwapBacked(page)) 1723 stat->nr_lazyfree_fail += nr_pages; 1724 goto activate_locked; 1725 } 1726 } 1727 1728 if (PageDirty(page)) { 1729 /* 1730 * Only kswapd can writeback filesystem pages 1731 * to avoid risk of stack overflow. But avoid 1732 * injecting inefficient single-page IO into 1733 * flusher writeback as much as possible: only 1734 * write pages when we've encountered many 1735 * dirty pages, and when we've already scanned 1736 * the rest of the LRU for clean pages and see 1737 * the same dirty pages again (PageReclaim). 1738 */ 1739 if (page_is_file_lru(page) && 1740 (!current_is_kswapd() || !PageReclaim(page) || 1741 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1742 /* 1743 * Immediately reclaim when written back. 1744 * Similar in principal to deactivate_page() 1745 * except we already have the page isolated 1746 * and know it's dirty 1747 */ 1748 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1749 SetPageReclaim(page); 1750 1751 goto activate_locked; 1752 } 1753 1754 if (references == PAGEREF_RECLAIM_CLEAN) 1755 goto keep_locked; 1756 if (!may_enter_fs) 1757 goto keep_locked; 1758 if (!sc->may_writepage) 1759 goto keep_locked; 1760 1761 /* 1762 * Page is dirty. Flush the TLB if a writable entry 1763 * potentially exists to avoid CPU writes after IO 1764 * starts and then write it out here. 1765 */ 1766 try_to_unmap_flush_dirty(); 1767 switch (pageout(page, mapping)) { 1768 case PAGE_KEEP: 1769 goto keep_locked; 1770 case PAGE_ACTIVATE: 1771 goto activate_locked; 1772 case PAGE_SUCCESS: 1773 stat->nr_pageout += thp_nr_pages(page); 1774 1775 if (PageWriteback(page)) 1776 goto keep; 1777 if (PageDirty(page)) 1778 goto keep; 1779 1780 /* 1781 * A synchronous write - probably a ramdisk. Go 1782 * ahead and try to reclaim the page. 1783 */ 1784 if (!trylock_page(page)) 1785 goto keep; 1786 if (PageDirty(page) || PageWriteback(page)) 1787 goto keep_locked; 1788 mapping = page_mapping(page); 1789 fallthrough; 1790 case PAGE_CLEAN: 1791 ; /* try to free the page below */ 1792 } 1793 } 1794 1795 /* 1796 * If the page has buffers, try to free the buffer mappings 1797 * associated with this page. If we succeed we try to free 1798 * the page as well. 1799 * 1800 * We do this even if the page is PageDirty(). 1801 * try_to_release_page() does not perform I/O, but it is 1802 * possible for a page to have PageDirty set, but it is actually 1803 * clean (all its buffers are clean). This happens if the 1804 * buffers were written out directly, with submit_bh(). ext3 1805 * will do this, as well as the blockdev mapping. 1806 * try_to_release_page() will discover that cleanness and will 1807 * drop the buffers and mark the page clean - it can be freed. 1808 * 1809 * Rarely, pages can have buffers and no ->mapping. These are 1810 * the pages which were not successfully invalidated in 1811 * truncate_cleanup_page(). We try to drop those buffers here 1812 * and if that worked, and the page is no longer mapped into 1813 * process address space (page_count == 1) it can be freed. 1814 * Otherwise, leave the page on the LRU so it is swappable. 1815 */ 1816 if (page_has_private(page)) { 1817 if (!try_to_release_page(page, sc->gfp_mask)) 1818 goto activate_locked; 1819 if (!mapping && page_count(page) == 1) { 1820 unlock_page(page); 1821 if (put_page_testzero(page)) 1822 goto free_it; 1823 else { 1824 /* 1825 * rare race with speculative reference. 1826 * the speculative reference will free 1827 * this page shortly, so we may 1828 * increment nr_reclaimed here (and 1829 * leave it off the LRU). 1830 */ 1831 nr_reclaimed++; 1832 continue; 1833 } 1834 } 1835 } 1836 1837 if (PageAnon(page) && !PageSwapBacked(page)) { 1838 /* follow __remove_mapping for reference */ 1839 if (!page_ref_freeze(page, 1)) 1840 goto keep_locked; 1841 /* 1842 * The page has only one reference left, which is 1843 * from the isolation. After the caller puts the 1844 * page back on lru and drops the reference, the 1845 * page will be freed anyway. It doesn't matter 1846 * which lru it goes. So we don't bother checking 1847 * PageDirty here. 1848 */ 1849 count_vm_event(PGLAZYFREED); 1850 count_memcg_page_event(page, PGLAZYFREED); 1851 } else if (!mapping || !__remove_mapping(mapping, page, true, 1852 sc->target_mem_cgroup)) 1853 goto keep_locked; 1854 1855 unlock_page(page); 1856 free_it: 1857 /* 1858 * THP may get swapped out in a whole, need account 1859 * all base pages. 1860 */ 1861 nr_reclaimed += nr_pages; 1862 1863 /* 1864 * Is there need to periodically free_page_list? It would 1865 * appear not as the counts should be low 1866 */ 1867 if (unlikely(PageTransHuge(page))) 1868 destroy_compound_page(page); 1869 else 1870 list_add(&page->lru, &free_pages); 1871 continue; 1872 1873 activate_locked_split: 1874 /* 1875 * The tail pages that are failed to add into swap cache 1876 * reach here. Fixup nr_scanned and nr_pages. 1877 */ 1878 if (nr_pages > 1) { 1879 sc->nr_scanned -= (nr_pages - 1); 1880 nr_pages = 1; 1881 } 1882 activate_locked: 1883 /* Not a candidate for swapping, so reclaim swap space. */ 1884 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1885 PageMlocked(page))) 1886 try_to_free_swap(page); 1887 VM_BUG_ON_PAGE(PageActive(page), page); 1888 if (!PageMlocked(page)) { 1889 int type = page_is_file_lru(page); 1890 SetPageActive(page); 1891 stat->nr_activate[type] += nr_pages; 1892 count_memcg_page_event(page, PGACTIVATE); 1893 } 1894 keep_locked: 1895 unlock_page(page); 1896 keep: 1897 list_add(&page->lru, &ret_pages); 1898 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1899 } 1900 /* 'page_list' is always empty here */ 1901 1902 /* Migrate pages selected for demotion */ 1903 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1904 /* Pages that could not be demoted are still in @demote_pages */ 1905 if (!list_empty(&demote_pages)) { 1906 /* Pages which failed to demoted go back on @page_list for retry: */ 1907 list_splice_init(&demote_pages, page_list); 1908 do_demote_pass = false; 1909 goto retry; 1910 } 1911 1912 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1913 1914 mem_cgroup_uncharge_list(&free_pages); 1915 try_to_unmap_flush(); 1916 free_unref_page_list(&free_pages); 1917 1918 list_splice(&ret_pages, page_list); 1919 count_vm_events(PGACTIVATE, pgactivate); 1920 1921 return nr_reclaimed; 1922 } 1923 1924 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1925 struct list_head *page_list) 1926 { 1927 struct scan_control sc = { 1928 .gfp_mask = GFP_KERNEL, 1929 .may_unmap = 1, 1930 }; 1931 struct reclaim_stat stat; 1932 unsigned int nr_reclaimed; 1933 struct page *page, *next; 1934 LIST_HEAD(clean_pages); 1935 unsigned int noreclaim_flag; 1936 1937 list_for_each_entry_safe(page, next, page_list, lru) { 1938 if (!PageHuge(page) && page_is_file_lru(page) && 1939 !PageDirty(page) && !__PageMovable(page) && 1940 !PageUnevictable(page)) { 1941 ClearPageActive(page); 1942 list_move(&page->lru, &clean_pages); 1943 } 1944 } 1945 1946 /* 1947 * We should be safe here since we are only dealing with file pages and 1948 * we are not kswapd and therefore cannot write dirty file pages. But 1949 * call memalloc_noreclaim_save() anyway, just in case these conditions 1950 * change in the future. 1951 */ 1952 noreclaim_flag = memalloc_noreclaim_save(); 1953 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1954 &stat, true); 1955 memalloc_noreclaim_restore(noreclaim_flag); 1956 1957 list_splice(&clean_pages, page_list); 1958 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1959 -(long)nr_reclaimed); 1960 /* 1961 * Since lazyfree pages are isolated from file LRU from the beginning, 1962 * they will rotate back to anonymous LRU in the end if it failed to 1963 * discard so isolated count will be mismatched. 1964 * Compensate the isolated count for both LRU lists. 1965 */ 1966 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1967 stat.nr_lazyfree_fail); 1968 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1969 -(long)stat.nr_lazyfree_fail); 1970 return nr_reclaimed; 1971 } 1972 1973 /* 1974 * Attempt to remove the specified page from its LRU. Only take this page 1975 * if it is of the appropriate PageActive status. Pages which are being 1976 * freed elsewhere are also ignored. 1977 * 1978 * page: page to consider 1979 * mode: one of the LRU isolation modes defined above 1980 * 1981 * returns true on success, false on failure. 1982 */ 1983 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1984 { 1985 /* Only take pages on the LRU. */ 1986 if (!PageLRU(page)) 1987 return false; 1988 1989 /* Compaction should not handle unevictable pages but CMA can do so */ 1990 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1991 return false; 1992 1993 /* 1994 * To minimise LRU disruption, the caller can indicate that it only 1995 * wants to isolate pages it will be able to operate on without 1996 * blocking - clean pages for the most part. 1997 * 1998 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1999 * that it is possible to migrate without blocking 2000 */ 2001 if (mode & ISOLATE_ASYNC_MIGRATE) { 2002 /* All the caller can do on PageWriteback is block */ 2003 if (PageWriteback(page)) 2004 return false; 2005 2006 if (PageDirty(page)) { 2007 struct address_space *mapping; 2008 bool migrate_dirty; 2009 2010 /* 2011 * Only pages without mappings or that have a 2012 * ->migratepage callback are possible to migrate 2013 * without blocking. However, we can be racing with 2014 * truncation so it's necessary to lock the page 2015 * to stabilise the mapping as truncation holds 2016 * the page lock until after the page is removed 2017 * from the page cache. 2018 */ 2019 if (!trylock_page(page)) 2020 return false; 2021 2022 mapping = page_mapping(page); 2023 migrate_dirty = !mapping || mapping->a_ops->migratepage; 2024 unlock_page(page); 2025 if (!migrate_dirty) 2026 return false; 2027 } 2028 } 2029 2030 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 2031 return false; 2032 2033 return true; 2034 } 2035 2036 /* 2037 * Update LRU sizes after isolating pages. The LRU size updates must 2038 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2039 */ 2040 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2041 enum lru_list lru, unsigned long *nr_zone_taken) 2042 { 2043 int zid; 2044 2045 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2046 if (!nr_zone_taken[zid]) 2047 continue; 2048 2049 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2050 } 2051 2052 } 2053 2054 /* 2055 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2056 * 2057 * lruvec->lru_lock is heavily contended. Some of the functions that 2058 * shrink the lists perform better by taking out a batch of pages 2059 * and working on them outside the LRU lock. 2060 * 2061 * For pagecache intensive workloads, this function is the hottest 2062 * spot in the kernel (apart from copy_*_user functions). 2063 * 2064 * Lru_lock must be held before calling this function. 2065 * 2066 * @nr_to_scan: The number of eligible pages to look through on the list. 2067 * @lruvec: The LRU vector to pull pages from. 2068 * @dst: The temp list to put pages on to. 2069 * @nr_scanned: The number of pages that were scanned. 2070 * @sc: The scan_control struct for this reclaim session 2071 * @lru: LRU list id for isolating 2072 * 2073 * returns how many pages were moved onto *@dst. 2074 */ 2075 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2076 struct lruvec *lruvec, struct list_head *dst, 2077 unsigned long *nr_scanned, struct scan_control *sc, 2078 enum lru_list lru) 2079 { 2080 struct list_head *src = &lruvec->lists[lru]; 2081 unsigned long nr_taken = 0; 2082 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2083 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2084 unsigned long skipped = 0; 2085 unsigned long scan, total_scan, nr_pages; 2086 LIST_HEAD(pages_skipped); 2087 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 2088 2089 total_scan = 0; 2090 scan = 0; 2091 while (scan < nr_to_scan && !list_empty(src)) { 2092 struct page *page; 2093 2094 page = lru_to_page(src); 2095 prefetchw_prev_lru_page(page, src, flags); 2096 2097 nr_pages = compound_nr(page); 2098 total_scan += nr_pages; 2099 2100 if (page_zonenum(page) > sc->reclaim_idx) { 2101 list_move(&page->lru, &pages_skipped); 2102 nr_skipped[page_zonenum(page)] += nr_pages; 2103 continue; 2104 } 2105 2106 /* 2107 * Do not count skipped pages because that makes the function 2108 * return with no isolated pages if the LRU mostly contains 2109 * ineligible pages. This causes the VM to not reclaim any 2110 * pages, triggering a premature OOM. 2111 * 2112 * Account all tail pages of THP. This would not cause 2113 * premature OOM since __isolate_lru_page() returns -EBUSY 2114 * only when the page is being freed somewhere else. 2115 */ 2116 scan += nr_pages; 2117 if (!__isolate_lru_page_prepare(page, mode)) { 2118 /* It is being freed elsewhere */ 2119 list_move(&page->lru, src); 2120 continue; 2121 } 2122 /* 2123 * Be careful not to clear PageLRU until after we're 2124 * sure the page is not being freed elsewhere -- the 2125 * page release code relies on it. 2126 */ 2127 if (unlikely(!get_page_unless_zero(page))) { 2128 list_move(&page->lru, src); 2129 continue; 2130 } 2131 2132 if (!TestClearPageLRU(page)) { 2133 /* Another thread is already isolating this page */ 2134 put_page(page); 2135 list_move(&page->lru, src); 2136 continue; 2137 } 2138 2139 nr_taken += nr_pages; 2140 nr_zone_taken[page_zonenum(page)] += nr_pages; 2141 list_move(&page->lru, dst); 2142 } 2143 2144 /* 2145 * Splice any skipped pages to the start of the LRU list. Note that 2146 * this disrupts the LRU order when reclaiming for lower zones but 2147 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2148 * scanning would soon rescan the same pages to skip and put the 2149 * system at risk of premature OOM. 2150 */ 2151 if (!list_empty(&pages_skipped)) { 2152 int zid; 2153 2154 list_splice(&pages_skipped, src); 2155 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2156 if (!nr_skipped[zid]) 2157 continue; 2158 2159 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2160 skipped += nr_skipped[zid]; 2161 } 2162 } 2163 *nr_scanned = total_scan; 2164 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2165 total_scan, skipped, nr_taken, mode, lru); 2166 update_lru_sizes(lruvec, lru, nr_zone_taken); 2167 return nr_taken; 2168 } 2169 2170 /** 2171 * isolate_lru_page - tries to isolate a page from its LRU list 2172 * @page: page to isolate from its LRU list 2173 * 2174 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2175 * vmstat statistic corresponding to whatever LRU list the page was on. 2176 * 2177 * Returns 0 if the page was removed from an LRU list. 2178 * Returns -EBUSY if the page was not on an LRU list. 2179 * 2180 * The returned page will have PageLRU() cleared. If it was found on 2181 * the active list, it will have PageActive set. If it was found on 2182 * the unevictable list, it will have the PageUnevictable bit set. That flag 2183 * may need to be cleared by the caller before letting the page go. 2184 * 2185 * The vmstat statistic corresponding to the list on which the page was 2186 * found will be decremented. 2187 * 2188 * Restrictions: 2189 * 2190 * (1) Must be called with an elevated refcount on the page. This is a 2191 * fundamental difference from isolate_lru_pages (which is called 2192 * without a stable reference). 2193 * (2) the lru_lock must not be held. 2194 * (3) interrupts must be enabled. 2195 */ 2196 int isolate_lru_page(struct page *page) 2197 { 2198 struct folio *folio = page_folio(page); 2199 int ret = -EBUSY; 2200 2201 VM_BUG_ON_PAGE(!page_count(page), page); 2202 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2203 2204 if (TestClearPageLRU(page)) { 2205 struct lruvec *lruvec; 2206 2207 get_page(page); 2208 lruvec = folio_lruvec_lock_irq(folio); 2209 del_page_from_lru_list(page, lruvec); 2210 unlock_page_lruvec_irq(lruvec); 2211 ret = 0; 2212 } 2213 2214 return ret; 2215 } 2216 2217 /* 2218 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2219 * then get rescheduled. When there are massive number of tasks doing page 2220 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2221 * the LRU list will go small and be scanned faster than necessary, leading to 2222 * unnecessary swapping, thrashing and OOM. 2223 */ 2224 static int too_many_isolated(struct pglist_data *pgdat, int file, 2225 struct scan_control *sc) 2226 { 2227 unsigned long inactive, isolated; 2228 bool too_many; 2229 2230 if (current_is_kswapd()) 2231 return 0; 2232 2233 if (!writeback_throttling_sane(sc)) 2234 return 0; 2235 2236 if (file) { 2237 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2238 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2239 } else { 2240 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2241 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2242 } 2243 2244 /* 2245 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2246 * won't get blocked by normal direct-reclaimers, forming a circular 2247 * deadlock. 2248 */ 2249 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2250 inactive >>= 3; 2251 2252 too_many = isolated > inactive; 2253 2254 /* Wake up tasks throttled due to too_many_isolated. */ 2255 if (!too_many) 2256 wake_throttle_isolated(pgdat); 2257 2258 return too_many; 2259 } 2260 2261 /* 2262 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2263 * On return, @list is reused as a list of pages to be freed by the caller. 2264 * 2265 * Returns the number of pages moved to the given lruvec. 2266 */ 2267 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2268 struct list_head *list) 2269 { 2270 int nr_pages, nr_moved = 0; 2271 LIST_HEAD(pages_to_free); 2272 struct page *page; 2273 2274 while (!list_empty(list)) { 2275 page = lru_to_page(list); 2276 VM_BUG_ON_PAGE(PageLRU(page), page); 2277 list_del(&page->lru); 2278 if (unlikely(!page_evictable(page))) { 2279 spin_unlock_irq(&lruvec->lru_lock); 2280 putback_lru_page(page); 2281 spin_lock_irq(&lruvec->lru_lock); 2282 continue; 2283 } 2284 2285 /* 2286 * The SetPageLRU needs to be kept here for list integrity. 2287 * Otherwise: 2288 * #0 move_pages_to_lru #1 release_pages 2289 * if !put_page_testzero 2290 * if (put_page_testzero()) 2291 * !PageLRU //skip lru_lock 2292 * SetPageLRU() 2293 * list_add(&page->lru,) 2294 * list_add(&page->lru,) 2295 */ 2296 SetPageLRU(page); 2297 2298 if (unlikely(put_page_testzero(page))) { 2299 __clear_page_lru_flags(page); 2300 2301 if (unlikely(PageCompound(page))) { 2302 spin_unlock_irq(&lruvec->lru_lock); 2303 destroy_compound_page(page); 2304 spin_lock_irq(&lruvec->lru_lock); 2305 } else 2306 list_add(&page->lru, &pages_to_free); 2307 2308 continue; 2309 } 2310 2311 /* 2312 * All pages were isolated from the same lruvec (and isolation 2313 * inhibits memcg migration). 2314 */ 2315 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2316 add_page_to_lru_list(page, lruvec); 2317 nr_pages = thp_nr_pages(page); 2318 nr_moved += nr_pages; 2319 if (PageActive(page)) 2320 workingset_age_nonresident(lruvec, nr_pages); 2321 } 2322 2323 /* 2324 * To save our caller's stack, now use input list for pages to free. 2325 */ 2326 list_splice(&pages_to_free, list); 2327 2328 return nr_moved; 2329 } 2330 2331 /* 2332 * If a kernel thread (such as nfsd for loop-back mounts) services 2333 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2334 * In that case we should only throttle if the backing device it is 2335 * writing to is congested. In other cases it is safe to throttle. 2336 */ 2337 static int current_may_throttle(void) 2338 { 2339 return !(current->flags & PF_LOCAL_THROTTLE) || 2340 current->backing_dev_info == NULL || 2341 bdi_write_congested(current->backing_dev_info); 2342 } 2343 2344 /* 2345 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2346 * of reclaimed pages 2347 */ 2348 static unsigned long 2349 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2350 struct scan_control *sc, enum lru_list lru) 2351 { 2352 LIST_HEAD(page_list); 2353 unsigned long nr_scanned; 2354 unsigned int nr_reclaimed = 0; 2355 unsigned long nr_taken; 2356 struct reclaim_stat stat; 2357 bool file = is_file_lru(lru); 2358 enum vm_event_item item; 2359 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2360 bool stalled = false; 2361 2362 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2363 if (stalled) 2364 return 0; 2365 2366 /* wait a bit for the reclaimer. */ 2367 stalled = true; 2368 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2369 2370 /* We are about to die and free our memory. Return now. */ 2371 if (fatal_signal_pending(current)) 2372 return SWAP_CLUSTER_MAX; 2373 } 2374 2375 lru_add_drain(); 2376 2377 spin_lock_irq(&lruvec->lru_lock); 2378 2379 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2380 &nr_scanned, sc, lru); 2381 2382 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2383 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2384 if (!cgroup_reclaim(sc)) 2385 __count_vm_events(item, nr_scanned); 2386 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2387 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2388 2389 spin_unlock_irq(&lruvec->lru_lock); 2390 2391 if (nr_taken == 0) 2392 return 0; 2393 2394 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2395 2396 spin_lock_irq(&lruvec->lru_lock); 2397 move_pages_to_lru(lruvec, &page_list); 2398 2399 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2400 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2401 if (!cgroup_reclaim(sc)) 2402 __count_vm_events(item, nr_reclaimed); 2403 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2404 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2405 spin_unlock_irq(&lruvec->lru_lock); 2406 2407 lru_note_cost(lruvec, file, stat.nr_pageout); 2408 mem_cgroup_uncharge_list(&page_list); 2409 free_unref_page_list(&page_list); 2410 2411 /* 2412 * If dirty pages are scanned that are not queued for IO, it 2413 * implies that flushers are not doing their job. This can 2414 * happen when memory pressure pushes dirty pages to the end of 2415 * the LRU before the dirty limits are breached and the dirty 2416 * data has expired. It can also happen when the proportion of 2417 * dirty pages grows not through writes but through memory 2418 * pressure reclaiming all the clean cache. And in some cases, 2419 * the flushers simply cannot keep up with the allocation 2420 * rate. Nudge the flusher threads in case they are asleep. 2421 */ 2422 if (stat.nr_unqueued_dirty == nr_taken) 2423 wakeup_flusher_threads(WB_REASON_VMSCAN); 2424 2425 sc->nr.dirty += stat.nr_dirty; 2426 sc->nr.congested += stat.nr_congested; 2427 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2428 sc->nr.writeback += stat.nr_writeback; 2429 sc->nr.immediate += stat.nr_immediate; 2430 sc->nr.taken += nr_taken; 2431 if (file) 2432 sc->nr.file_taken += nr_taken; 2433 2434 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2435 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2436 return nr_reclaimed; 2437 } 2438 2439 /* 2440 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2441 * 2442 * We move them the other way if the page is referenced by one or more 2443 * processes. 2444 * 2445 * If the pages are mostly unmapped, the processing is fast and it is 2446 * appropriate to hold lru_lock across the whole operation. But if 2447 * the pages are mapped, the processing is slow (page_referenced()), so 2448 * we should drop lru_lock around each page. It's impossible to balance 2449 * this, so instead we remove the pages from the LRU while processing them. 2450 * It is safe to rely on PG_active against the non-LRU pages in here because 2451 * nobody will play with that bit on a non-LRU page. 2452 * 2453 * The downside is that we have to touch page->_refcount against each page. 2454 * But we had to alter page->flags anyway. 2455 */ 2456 static void shrink_active_list(unsigned long nr_to_scan, 2457 struct lruvec *lruvec, 2458 struct scan_control *sc, 2459 enum lru_list lru) 2460 { 2461 unsigned long nr_taken; 2462 unsigned long nr_scanned; 2463 unsigned long vm_flags; 2464 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2465 LIST_HEAD(l_active); 2466 LIST_HEAD(l_inactive); 2467 struct page *page; 2468 unsigned nr_deactivate, nr_activate; 2469 unsigned nr_rotated = 0; 2470 int file = is_file_lru(lru); 2471 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2472 2473 lru_add_drain(); 2474 2475 spin_lock_irq(&lruvec->lru_lock); 2476 2477 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2478 &nr_scanned, sc, lru); 2479 2480 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2481 2482 if (!cgroup_reclaim(sc)) 2483 __count_vm_events(PGREFILL, nr_scanned); 2484 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2485 2486 spin_unlock_irq(&lruvec->lru_lock); 2487 2488 while (!list_empty(&l_hold)) { 2489 cond_resched(); 2490 page = lru_to_page(&l_hold); 2491 list_del(&page->lru); 2492 2493 if (unlikely(!page_evictable(page))) { 2494 putback_lru_page(page); 2495 continue; 2496 } 2497 2498 if (unlikely(buffer_heads_over_limit)) { 2499 if (page_has_private(page) && trylock_page(page)) { 2500 if (page_has_private(page)) 2501 try_to_release_page(page, 0); 2502 unlock_page(page); 2503 } 2504 } 2505 2506 if (page_referenced(page, 0, sc->target_mem_cgroup, 2507 &vm_flags)) { 2508 /* 2509 * Identify referenced, file-backed active pages and 2510 * give them one more trip around the active list. So 2511 * that executable code get better chances to stay in 2512 * memory under moderate memory pressure. Anon pages 2513 * are not likely to be evicted by use-once streaming 2514 * IO, plus JVM can create lots of anon VM_EXEC pages, 2515 * so we ignore them here. 2516 */ 2517 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2518 nr_rotated += thp_nr_pages(page); 2519 list_add(&page->lru, &l_active); 2520 continue; 2521 } 2522 } 2523 2524 ClearPageActive(page); /* we are de-activating */ 2525 SetPageWorkingset(page); 2526 list_add(&page->lru, &l_inactive); 2527 } 2528 2529 /* 2530 * Move pages back to the lru list. 2531 */ 2532 spin_lock_irq(&lruvec->lru_lock); 2533 2534 nr_activate = move_pages_to_lru(lruvec, &l_active); 2535 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2536 /* Keep all free pages in l_active list */ 2537 list_splice(&l_inactive, &l_active); 2538 2539 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2540 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2541 2542 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2543 spin_unlock_irq(&lruvec->lru_lock); 2544 2545 mem_cgroup_uncharge_list(&l_active); 2546 free_unref_page_list(&l_active); 2547 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2548 nr_deactivate, nr_rotated, sc->priority, file); 2549 } 2550 2551 unsigned long reclaim_pages(struct list_head *page_list) 2552 { 2553 int nid = NUMA_NO_NODE; 2554 unsigned int nr_reclaimed = 0; 2555 LIST_HEAD(node_page_list); 2556 struct reclaim_stat dummy_stat; 2557 struct page *page; 2558 unsigned int noreclaim_flag; 2559 struct scan_control sc = { 2560 .gfp_mask = GFP_KERNEL, 2561 .may_writepage = 1, 2562 .may_unmap = 1, 2563 .may_swap = 1, 2564 .no_demotion = 1, 2565 }; 2566 2567 noreclaim_flag = memalloc_noreclaim_save(); 2568 2569 while (!list_empty(page_list)) { 2570 page = lru_to_page(page_list); 2571 if (nid == NUMA_NO_NODE) { 2572 nid = page_to_nid(page); 2573 INIT_LIST_HEAD(&node_page_list); 2574 } 2575 2576 if (nid == page_to_nid(page)) { 2577 ClearPageActive(page); 2578 list_move(&page->lru, &node_page_list); 2579 continue; 2580 } 2581 2582 nr_reclaimed += shrink_page_list(&node_page_list, 2583 NODE_DATA(nid), 2584 &sc, &dummy_stat, false); 2585 while (!list_empty(&node_page_list)) { 2586 page = lru_to_page(&node_page_list); 2587 list_del(&page->lru); 2588 putback_lru_page(page); 2589 } 2590 2591 nid = NUMA_NO_NODE; 2592 } 2593 2594 if (!list_empty(&node_page_list)) { 2595 nr_reclaimed += shrink_page_list(&node_page_list, 2596 NODE_DATA(nid), 2597 &sc, &dummy_stat, false); 2598 while (!list_empty(&node_page_list)) { 2599 page = lru_to_page(&node_page_list); 2600 list_del(&page->lru); 2601 putback_lru_page(page); 2602 } 2603 } 2604 2605 memalloc_noreclaim_restore(noreclaim_flag); 2606 2607 return nr_reclaimed; 2608 } 2609 2610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2611 struct lruvec *lruvec, struct scan_control *sc) 2612 { 2613 if (is_active_lru(lru)) { 2614 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2615 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2616 else 2617 sc->skipped_deactivate = 1; 2618 return 0; 2619 } 2620 2621 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2622 } 2623 2624 /* 2625 * The inactive anon list should be small enough that the VM never has 2626 * to do too much work. 2627 * 2628 * The inactive file list should be small enough to leave most memory 2629 * to the established workingset on the scan-resistant active list, 2630 * but large enough to avoid thrashing the aggregate readahead window. 2631 * 2632 * Both inactive lists should also be large enough that each inactive 2633 * page has a chance to be referenced again before it is reclaimed. 2634 * 2635 * If that fails and refaulting is observed, the inactive list grows. 2636 * 2637 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2638 * on this LRU, maintained by the pageout code. An inactive_ratio 2639 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2640 * 2641 * total target max 2642 * memory ratio inactive 2643 * ------------------------------------- 2644 * 10MB 1 5MB 2645 * 100MB 1 50MB 2646 * 1GB 3 250MB 2647 * 10GB 10 0.9GB 2648 * 100GB 31 3GB 2649 * 1TB 101 10GB 2650 * 10TB 320 32GB 2651 */ 2652 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2653 { 2654 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2655 unsigned long inactive, active; 2656 unsigned long inactive_ratio; 2657 unsigned long gb; 2658 2659 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2660 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2661 2662 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2663 if (gb) 2664 inactive_ratio = int_sqrt(10 * gb); 2665 else 2666 inactive_ratio = 1; 2667 2668 return inactive * inactive_ratio < active; 2669 } 2670 2671 enum scan_balance { 2672 SCAN_EQUAL, 2673 SCAN_FRACT, 2674 SCAN_ANON, 2675 SCAN_FILE, 2676 }; 2677 2678 /* 2679 * Determine how aggressively the anon and file LRU lists should be 2680 * scanned. The relative value of each set of LRU lists is determined 2681 * by looking at the fraction of the pages scanned we did rotate back 2682 * onto the active list instead of evict. 2683 * 2684 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2685 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2686 */ 2687 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2688 unsigned long *nr) 2689 { 2690 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2691 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2692 unsigned long anon_cost, file_cost, total_cost; 2693 int swappiness = mem_cgroup_swappiness(memcg); 2694 u64 fraction[ANON_AND_FILE]; 2695 u64 denominator = 0; /* gcc */ 2696 enum scan_balance scan_balance; 2697 unsigned long ap, fp; 2698 enum lru_list lru; 2699 2700 /* If we have no swap space, do not bother scanning anon pages. */ 2701 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2702 scan_balance = SCAN_FILE; 2703 goto out; 2704 } 2705 2706 /* 2707 * Global reclaim will swap to prevent OOM even with no 2708 * swappiness, but memcg users want to use this knob to 2709 * disable swapping for individual groups completely when 2710 * using the memory controller's swap limit feature would be 2711 * too expensive. 2712 */ 2713 if (cgroup_reclaim(sc) && !swappiness) { 2714 scan_balance = SCAN_FILE; 2715 goto out; 2716 } 2717 2718 /* 2719 * Do not apply any pressure balancing cleverness when the 2720 * system is close to OOM, scan both anon and file equally 2721 * (unless the swappiness setting disagrees with swapping). 2722 */ 2723 if (!sc->priority && swappiness) { 2724 scan_balance = SCAN_EQUAL; 2725 goto out; 2726 } 2727 2728 /* 2729 * If the system is almost out of file pages, force-scan anon. 2730 */ 2731 if (sc->file_is_tiny) { 2732 scan_balance = SCAN_ANON; 2733 goto out; 2734 } 2735 2736 /* 2737 * If there is enough inactive page cache, we do not reclaim 2738 * anything from the anonymous working right now. 2739 */ 2740 if (sc->cache_trim_mode) { 2741 scan_balance = SCAN_FILE; 2742 goto out; 2743 } 2744 2745 scan_balance = SCAN_FRACT; 2746 /* 2747 * Calculate the pressure balance between anon and file pages. 2748 * 2749 * The amount of pressure we put on each LRU is inversely 2750 * proportional to the cost of reclaiming each list, as 2751 * determined by the share of pages that are refaulting, times 2752 * the relative IO cost of bringing back a swapped out 2753 * anonymous page vs reloading a filesystem page (swappiness). 2754 * 2755 * Although we limit that influence to ensure no list gets 2756 * left behind completely: at least a third of the pressure is 2757 * applied, before swappiness. 2758 * 2759 * With swappiness at 100, anon and file have equal IO cost. 2760 */ 2761 total_cost = sc->anon_cost + sc->file_cost; 2762 anon_cost = total_cost + sc->anon_cost; 2763 file_cost = total_cost + sc->file_cost; 2764 total_cost = anon_cost + file_cost; 2765 2766 ap = swappiness * (total_cost + 1); 2767 ap /= anon_cost + 1; 2768 2769 fp = (200 - swappiness) * (total_cost + 1); 2770 fp /= file_cost + 1; 2771 2772 fraction[0] = ap; 2773 fraction[1] = fp; 2774 denominator = ap + fp; 2775 out: 2776 for_each_evictable_lru(lru) { 2777 int file = is_file_lru(lru); 2778 unsigned long lruvec_size; 2779 unsigned long low, min; 2780 unsigned long scan; 2781 2782 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2783 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2784 &min, &low); 2785 2786 if (min || low) { 2787 /* 2788 * Scale a cgroup's reclaim pressure by proportioning 2789 * its current usage to its memory.low or memory.min 2790 * setting. 2791 * 2792 * This is important, as otherwise scanning aggression 2793 * becomes extremely binary -- from nothing as we 2794 * approach the memory protection threshold, to totally 2795 * nominal as we exceed it. This results in requiring 2796 * setting extremely liberal protection thresholds. It 2797 * also means we simply get no protection at all if we 2798 * set it too low, which is not ideal. 2799 * 2800 * If there is any protection in place, we reduce scan 2801 * pressure by how much of the total memory used is 2802 * within protection thresholds. 2803 * 2804 * There is one special case: in the first reclaim pass, 2805 * we skip over all groups that are within their low 2806 * protection. If that fails to reclaim enough pages to 2807 * satisfy the reclaim goal, we come back and override 2808 * the best-effort low protection. However, we still 2809 * ideally want to honor how well-behaved groups are in 2810 * that case instead of simply punishing them all 2811 * equally. As such, we reclaim them based on how much 2812 * memory they are using, reducing the scan pressure 2813 * again by how much of the total memory used is under 2814 * hard protection. 2815 */ 2816 unsigned long cgroup_size = mem_cgroup_size(memcg); 2817 unsigned long protection; 2818 2819 /* memory.low scaling, make sure we retry before OOM */ 2820 if (!sc->memcg_low_reclaim && low > min) { 2821 protection = low; 2822 sc->memcg_low_skipped = 1; 2823 } else { 2824 protection = min; 2825 } 2826 2827 /* Avoid TOCTOU with earlier protection check */ 2828 cgroup_size = max(cgroup_size, protection); 2829 2830 scan = lruvec_size - lruvec_size * protection / 2831 (cgroup_size + 1); 2832 2833 /* 2834 * Minimally target SWAP_CLUSTER_MAX pages to keep 2835 * reclaim moving forwards, avoiding decrementing 2836 * sc->priority further than desirable. 2837 */ 2838 scan = max(scan, SWAP_CLUSTER_MAX); 2839 } else { 2840 scan = lruvec_size; 2841 } 2842 2843 scan >>= sc->priority; 2844 2845 /* 2846 * If the cgroup's already been deleted, make sure to 2847 * scrape out the remaining cache. 2848 */ 2849 if (!scan && !mem_cgroup_online(memcg)) 2850 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2851 2852 switch (scan_balance) { 2853 case SCAN_EQUAL: 2854 /* Scan lists relative to size */ 2855 break; 2856 case SCAN_FRACT: 2857 /* 2858 * Scan types proportional to swappiness and 2859 * their relative recent reclaim efficiency. 2860 * Make sure we don't miss the last page on 2861 * the offlined memory cgroups because of a 2862 * round-off error. 2863 */ 2864 scan = mem_cgroup_online(memcg) ? 2865 div64_u64(scan * fraction[file], denominator) : 2866 DIV64_U64_ROUND_UP(scan * fraction[file], 2867 denominator); 2868 break; 2869 case SCAN_FILE: 2870 case SCAN_ANON: 2871 /* Scan one type exclusively */ 2872 if ((scan_balance == SCAN_FILE) != file) 2873 scan = 0; 2874 break; 2875 default: 2876 /* Look ma, no brain */ 2877 BUG(); 2878 } 2879 2880 nr[lru] = scan; 2881 } 2882 } 2883 2884 /* 2885 * Anonymous LRU management is a waste if there is 2886 * ultimately no way to reclaim the memory. 2887 */ 2888 static bool can_age_anon_pages(struct pglist_data *pgdat, 2889 struct scan_control *sc) 2890 { 2891 /* Aging the anon LRU is valuable if swap is present: */ 2892 if (total_swap_pages > 0) 2893 return true; 2894 2895 /* Also valuable if anon pages can be demoted: */ 2896 return can_demote(pgdat->node_id, sc); 2897 } 2898 2899 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2900 { 2901 unsigned long nr[NR_LRU_LISTS]; 2902 unsigned long targets[NR_LRU_LISTS]; 2903 unsigned long nr_to_scan; 2904 enum lru_list lru; 2905 unsigned long nr_reclaimed = 0; 2906 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2907 struct blk_plug plug; 2908 bool scan_adjusted; 2909 2910 get_scan_count(lruvec, sc, nr); 2911 2912 /* Record the original scan target for proportional adjustments later */ 2913 memcpy(targets, nr, sizeof(nr)); 2914 2915 /* 2916 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2917 * event that can occur when there is little memory pressure e.g. 2918 * multiple streaming readers/writers. Hence, we do not abort scanning 2919 * when the requested number of pages are reclaimed when scanning at 2920 * DEF_PRIORITY on the assumption that the fact we are direct 2921 * reclaiming implies that kswapd is not keeping up and it is best to 2922 * do a batch of work at once. For memcg reclaim one check is made to 2923 * abort proportional reclaim if either the file or anon lru has already 2924 * dropped to zero at the first pass. 2925 */ 2926 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2927 sc->priority == DEF_PRIORITY); 2928 2929 blk_start_plug(&plug); 2930 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2931 nr[LRU_INACTIVE_FILE]) { 2932 unsigned long nr_anon, nr_file, percentage; 2933 unsigned long nr_scanned; 2934 2935 for_each_evictable_lru(lru) { 2936 if (nr[lru]) { 2937 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2938 nr[lru] -= nr_to_scan; 2939 2940 nr_reclaimed += shrink_list(lru, nr_to_scan, 2941 lruvec, sc); 2942 } 2943 } 2944 2945 cond_resched(); 2946 2947 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2948 continue; 2949 2950 /* 2951 * For kswapd and memcg, reclaim at least the number of pages 2952 * requested. Ensure that the anon and file LRUs are scanned 2953 * proportionally what was requested by get_scan_count(). We 2954 * stop reclaiming one LRU and reduce the amount scanning 2955 * proportional to the original scan target. 2956 */ 2957 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2958 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2959 2960 /* 2961 * It's just vindictive to attack the larger once the smaller 2962 * has gone to zero. And given the way we stop scanning the 2963 * smaller below, this makes sure that we only make one nudge 2964 * towards proportionality once we've got nr_to_reclaim. 2965 */ 2966 if (!nr_file || !nr_anon) 2967 break; 2968 2969 if (nr_file > nr_anon) { 2970 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2971 targets[LRU_ACTIVE_ANON] + 1; 2972 lru = LRU_BASE; 2973 percentage = nr_anon * 100 / scan_target; 2974 } else { 2975 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2976 targets[LRU_ACTIVE_FILE] + 1; 2977 lru = LRU_FILE; 2978 percentage = nr_file * 100 / scan_target; 2979 } 2980 2981 /* Stop scanning the smaller of the LRU */ 2982 nr[lru] = 0; 2983 nr[lru + LRU_ACTIVE] = 0; 2984 2985 /* 2986 * Recalculate the other LRU scan count based on its original 2987 * scan target and the percentage scanning already complete 2988 */ 2989 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2990 nr_scanned = targets[lru] - nr[lru]; 2991 nr[lru] = targets[lru] * (100 - percentage) / 100; 2992 nr[lru] -= min(nr[lru], nr_scanned); 2993 2994 lru += LRU_ACTIVE; 2995 nr_scanned = targets[lru] - nr[lru]; 2996 nr[lru] = targets[lru] * (100 - percentage) / 100; 2997 nr[lru] -= min(nr[lru], nr_scanned); 2998 2999 scan_adjusted = true; 3000 } 3001 blk_finish_plug(&plug); 3002 sc->nr_reclaimed += nr_reclaimed; 3003 3004 /* 3005 * Even if we did not try to evict anon pages at all, we want to 3006 * rebalance the anon lru active/inactive ratio. 3007 */ 3008 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 3009 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3010 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3011 sc, LRU_ACTIVE_ANON); 3012 } 3013 3014 /* Use reclaim/compaction for costly allocs or under memory pressure */ 3015 static bool in_reclaim_compaction(struct scan_control *sc) 3016 { 3017 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3018 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 3019 sc->priority < DEF_PRIORITY - 2)) 3020 return true; 3021 3022 return false; 3023 } 3024 3025 /* 3026 * Reclaim/compaction is used for high-order allocation requests. It reclaims 3027 * order-0 pages before compacting the zone. should_continue_reclaim() returns 3028 * true if more pages should be reclaimed such that when the page allocator 3029 * calls try_to_compact_pages() that it will have enough free pages to succeed. 3030 * It will give up earlier than that if there is difficulty reclaiming pages. 3031 */ 3032 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 3033 unsigned long nr_reclaimed, 3034 struct scan_control *sc) 3035 { 3036 unsigned long pages_for_compaction; 3037 unsigned long inactive_lru_pages; 3038 int z; 3039 3040 /* If not in reclaim/compaction mode, stop */ 3041 if (!in_reclaim_compaction(sc)) 3042 return false; 3043 3044 /* 3045 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3046 * number of pages that were scanned. This will return to the caller 3047 * with the risk reclaim/compaction and the resulting allocation attempt 3048 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3049 * allocations through requiring that the full LRU list has been scanned 3050 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3051 * scan, but that approximation was wrong, and there were corner cases 3052 * where always a non-zero amount of pages were scanned. 3053 */ 3054 if (!nr_reclaimed) 3055 return false; 3056 3057 /* If compaction would go ahead or the allocation would succeed, stop */ 3058 for (z = 0; z <= sc->reclaim_idx; z++) { 3059 struct zone *zone = &pgdat->node_zones[z]; 3060 if (!managed_zone(zone)) 3061 continue; 3062 3063 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3064 case COMPACT_SUCCESS: 3065 case COMPACT_CONTINUE: 3066 return false; 3067 default: 3068 /* check next zone */ 3069 ; 3070 } 3071 } 3072 3073 /* 3074 * If we have not reclaimed enough pages for compaction and the 3075 * inactive lists are large enough, continue reclaiming 3076 */ 3077 pages_for_compaction = compact_gap(sc->order); 3078 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3079 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3080 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3081 3082 return inactive_lru_pages > pages_for_compaction; 3083 } 3084 3085 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3086 { 3087 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3088 struct mem_cgroup *memcg; 3089 3090 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3091 do { 3092 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3093 unsigned long reclaimed; 3094 unsigned long scanned; 3095 3096 /* 3097 * This loop can become CPU-bound when target memcgs 3098 * aren't eligible for reclaim - either because they 3099 * don't have any reclaimable pages, or because their 3100 * memory is explicitly protected. Avoid soft lockups. 3101 */ 3102 cond_resched(); 3103 3104 mem_cgroup_calculate_protection(target_memcg, memcg); 3105 3106 if (mem_cgroup_below_min(memcg)) { 3107 /* 3108 * Hard protection. 3109 * If there is no reclaimable memory, OOM. 3110 */ 3111 continue; 3112 } else if (mem_cgroup_below_low(memcg)) { 3113 /* 3114 * Soft protection. 3115 * Respect the protection only as long as 3116 * there is an unprotected supply 3117 * of reclaimable memory from other cgroups. 3118 */ 3119 if (!sc->memcg_low_reclaim) { 3120 sc->memcg_low_skipped = 1; 3121 continue; 3122 } 3123 memcg_memory_event(memcg, MEMCG_LOW); 3124 } 3125 3126 reclaimed = sc->nr_reclaimed; 3127 scanned = sc->nr_scanned; 3128 3129 shrink_lruvec(lruvec, sc); 3130 3131 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3132 sc->priority); 3133 3134 /* Record the group's reclaim efficiency */ 3135 vmpressure(sc->gfp_mask, memcg, false, 3136 sc->nr_scanned - scanned, 3137 sc->nr_reclaimed - reclaimed); 3138 3139 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3140 } 3141 3142 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3143 { 3144 struct reclaim_state *reclaim_state = current->reclaim_state; 3145 unsigned long nr_reclaimed, nr_scanned; 3146 struct lruvec *target_lruvec; 3147 bool reclaimable = false; 3148 unsigned long file; 3149 3150 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3151 3152 again: 3153 /* 3154 * Flush the memory cgroup stats, so that we read accurate per-memcg 3155 * lruvec stats for heuristics. 3156 */ 3157 mem_cgroup_flush_stats(); 3158 3159 memset(&sc->nr, 0, sizeof(sc->nr)); 3160 3161 nr_reclaimed = sc->nr_reclaimed; 3162 nr_scanned = sc->nr_scanned; 3163 3164 /* 3165 * Determine the scan balance between anon and file LRUs. 3166 */ 3167 spin_lock_irq(&target_lruvec->lru_lock); 3168 sc->anon_cost = target_lruvec->anon_cost; 3169 sc->file_cost = target_lruvec->file_cost; 3170 spin_unlock_irq(&target_lruvec->lru_lock); 3171 3172 /* 3173 * Target desirable inactive:active list ratios for the anon 3174 * and file LRU lists. 3175 */ 3176 if (!sc->force_deactivate) { 3177 unsigned long refaults; 3178 3179 refaults = lruvec_page_state(target_lruvec, 3180 WORKINGSET_ACTIVATE_ANON); 3181 if (refaults != target_lruvec->refaults[0] || 3182 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3183 sc->may_deactivate |= DEACTIVATE_ANON; 3184 else 3185 sc->may_deactivate &= ~DEACTIVATE_ANON; 3186 3187 /* 3188 * When refaults are being observed, it means a new 3189 * workingset is being established. Deactivate to get 3190 * rid of any stale active pages quickly. 3191 */ 3192 refaults = lruvec_page_state(target_lruvec, 3193 WORKINGSET_ACTIVATE_FILE); 3194 if (refaults != target_lruvec->refaults[1] || 3195 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3196 sc->may_deactivate |= DEACTIVATE_FILE; 3197 else 3198 sc->may_deactivate &= ~DEACTIVATE_FILE; 3199 } else 3200 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3201 3202 /* 3203 * If we have plenty of inactive file pages that aren't 3204 * thrashing, try to reclaim those first before touching 3205 * anonymous pages. 3206 */ 3207 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3208 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3209 sc->cache_trim_mode = 1; 3210 else 3211 sc->cache_trim_mode = 0; 3212 3213 /* 3214 * Prevent the reclaimer from falling into the cache trap: as 3215 * cache pages start out inactive, every cache fault will tip 3216 * the scan balance towards the file LRU. And as the file LRU 3217 * shrinks, so does the window for rotation from references. 3218 * This means we have a runaway feedback loop where a tiny 3219 * thrashing file LRU becomes infinitely more attractive than 3220 * anon pages. Try to detect this based on file LRU size. 3221 */ 3222 if (!cgroup_reclaim(sc)) { 3223 unsigned long total_high_wmark = 0; 3224 unsigned long free, anon; 3225 int z; 3226 3227 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3228 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3229 node_page_state(pgdat, NR_INACTIVE_FILE); 3230 3231 for (z = 0; z < MAX_NR_ZONES; z++) { 3232 struct zone *zone = &pgdat->node_zones[z]; 3233 if (!managed_zone(zone)) 3234 continue; 3235 3236 total_high_wmark += high_wmark_pages(zone); 3237 } 3238 3239 /* 3240 * Consider anon: if that's low too, this isn't a 3241 * runaway file reclaim problem, but rather just 3242 * extreme pressure. Reclaim as per usual then. 3243 */ 3244 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3245 3246 sc->file_is_tiny = 3247 file + free <= total_high_wmark && 3248 !(sc->may_deactivate & DEACTIVATE_ANON) && 3249 anon >> sc->priority; 3250 } 3251 3252 shrink_node_memcgs(pgdat, sc); 3253 3254 if (reclaim_state) { 3255 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3256 reclaim_state->reclaimed_slab = 0; 3257 } 3258 3259 /* Record the subtree's reclaim efficiency */ 3260 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3261 sc->nr_scanned - nr_scanned, 3262 sc->nr_reclaimed - nr_reclaimed); 3263 3264 if (sc->nr_reclaimed - nr_reclaimed) 3265 reclaimable = true; 3266 3267 if (current_is_kswapd()) { 3268 /* 3269 * If reclaim is isolating dirty pages under writeback, 3270 * it implies that the long-lived page allocation rate 3271 * is exceeding the page laundering rate. Either the 3272 * global limits are not being effective at throttling 3273 * processes due to the page distribution throughout 3274 * zones or there is heavy usage of a slow backing 3275 * device. The only option is to throttle from reclaim 3276 * context which is not ideal as there is no guarantee 3277 * the dirtying process is throttled in the same way 3278 * balance_dirty_pages() manages. 3279 * 3280 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3281 * count the number of pages under pages flagged for 3282 * immediate reclaim and stall if any are encountered 3283 * in the nr_immediate check below. 3284 */ 3285 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3286 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3287 3288 /* Allow kswapd to start writing pages during reclaim.*/ 3289 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3290 set_bit(PGDAT_DIRTY, &pgdat->flags); 3291 3292 /* 3293 * If kswapd scans pages marked for immediate 3294 * reclaim and under writeback (nr_immediate), it 3295 * implies that pages are cycling through the LRU 3296 * faster than they are written so forcibly stall 3297 * until some pages complete writeback. 3298 */ 3299 if (sc->nr.immediate) 3300 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3301 } 3302 3303 /* 3304 * Tag a node/memcg as congested if all the dirty pages were marked 3305 * for writeback and immediate reclaim (counted in nr.congested). 3306 * 3307 * Legacy memcg will stall in page writeback so avoid forcibly 3308 * stalling in reclaim_throttle(). 3309 */ 3310 if ((current_is_kswapd() || 3311 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3312 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3313 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3314 3315 /* 3316 * Stall direct reclaim for IO completions if the lruvec is 3317 * node is congested. Allow kswapd to continue until it 3318 * starts encountering unqueued dirty pages or cycling through 3319 * the LRU too quickly. 3320 */ 3321 if (!current_is_kswapd() && current_may_throttle() && 3322 !sc->hibernation_mode && 3323 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3324 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3325 3326 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3327 sc)) 3328 goto again; 3329 3330 /* 3331 * Kswapd gives up on balancing particular nodes after too 3332 * many failures to reclaim anything from them and goes to 3333 * sleep. On reclaim progress, reset the failure counter. A 3334 * successful direct reclaim run will revive a dormant kswapd. 3335 */ 3336 if (reclaimable) 3337 pgdat->kswapd_failures = 0; 3338 } 3339 3340 /* 3341 * Returns true if compaction should go ahead for a costly-order request, or 3342 * the allocation would already succeed without compaction. Return false if we 3343 * should reclaim first. 3344 */ 3345 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3346 { 3347 unsigned long watermark; 3348 enum compact_result suitable; 3349 3350 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3351 if (suitable == COMPACT_SUCCESS) 3352 /* Allocation should succeed already. Don't reclaim. */ 3353 return true; 3354 if (suitable == COMPACT_SKIPPED) 3355 /* Compaction cannot yet proceed. Do reclaim. */ 3356 return false; 3357 3358 /* 3359 * Compaction is already possible, but it takes time to run and there 3360 * are potentially other callers using the pages just freed. So proceed 3361 * with reclaim to make a buffer of free pages available to give 3362 * compaction a reasonable chance of completing and allocating the page. 3363 * Note that we won't actually reclaim the whole buffer in one attempt 3364 * as the target watermark in should_continue_reclaim() is lower. But if 3365 * we are already above the high+gap watermark, don't reclaim at all. 3366 */ 3367 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3368 3369 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3370 } 3371 3372 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3373 { 3374 /* 3375 * If reclaim is making progress greater than 12% efficiency then 3376 * wake all the NOPROGRESS throttled tasks. 3377 */ 3378 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3379 wait_queue_head_t *wqh; 3380 3381 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3382 if (waitqueue_active(wqh)) 3383 wake_up(wqh); 3384 3385 return; 3386 } 3387 3388 /* 3389 * Do not throttle kswapd on NOPROGRESS as it will throttle on 3390 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under 3391 * writeback and marked for immediate reclaim at the tail of 3392 * the LRU. 3393 */ 3394 if (current_is_kswapd()) 3395 return; 3396 3397 /* Throttle if making no progress at high prioities. */ 3398 if (sc->priority < DEF_PRIORITY - 2) 3399 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3400 } 3401 3402 /* 3403 * This is the direct reclaim path, for page-allocating processes. We only 3404 * try to reclaim pages from zones which will satisfy the caller's allocation 3405 * request. 3406 * 3407 * If a zone is deemed to be full of pinned pages then just give it a light 3408 * scan then give up on it. 3409 */ 3410 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3411 { 3412 struct zoneref *z; 3413 struct zone *zone; 3414 unsigned long nr_soft_reclaimed; 3415 unsigned long nr_soft_scanned; 3416 gfp_t orig_mask; 3417 pg_data_t *last_pgdat = NULL; 3418 3419 /* 3420 * If the number of buffer_heads in the machine exceeds the maximum 3421 * allowed level, force direct reclaim to scan the highmem zone as 3422 * highmem pages could be pinning lowmem pages storing buffer_heads 3423 */ 3424 orig_mask = sc->gfp_mask; 3425 if (buffer_heads_over_limit) { 3426 sc->gfp_mask |= __GFP_HIGHMEM; 3427 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3428 } 3429 3430 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3431 sc->reclaim_idx, sc->nodemask) { 3432 /* 3433 * Take care memory controller reclaiming has small influence 3434 * to global LRU. 3435 */ 3436 if (!cgroup_reclaim(sc)) { 3437 if (!cpuset_zone_allowed(zone, 3438 GFP_KERNEL | __GFP_HARDWALL)) 3439 continue; 3440 3441 /* 3442 * If we already have plenty of memory free for 3443 * compaction in this zone, don't free any more. 3444 * Even though compaction is invoked for any 3445 * non-zero order, only frequent costly order 3446 * reclamation is disruptive enough to become a 3447 * noticeable problem, like transparent huge 3448 * page allocations. 3449 */ 3450 if (IS_ENABLED(CONFIG_COMPACTION) && 3451 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3452 compaction_ready(zone, sc)) { 3453 sc->compaction_ready = true; 3454 continue; 3455 } 3456 3457 /* 3458 * Shrink each node in the zonelist once. If the 3459 * zonelist is ordered by zone (not the default) then a 3460 * node may be shrunk multiple times but in that case 3461 * the user prefers lower zones being preserved. 3462 */ 3463 if (zone->zone_pgdat == last_pgdat) 3464 continue; 3465 3466 /* 3467 * This steals pages from memory cgroups over softlimit 3468 * and returns the number of reclaimed pages and 3469 * scanned pages. This works for global memory pressure 3470 * and balancing, not for a memcg's limit. 3471 */ 3472 nr_soft_scanned = 0; 3473 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3474 sc->order, sc->gfp_mask, 3475 &nr_soft_scanned); 3476 sc->nr_reclaimed += nr_soft_reclaimed; 3477 sc->nr_scanned += nr_soft_scanned; 3478 /* need some check for avoid more shrink_zone() */ 3479 } 3480 3481 /* See comment about same check for global reclaim above */ 3482 if (zone->zone_pgdat == last_pgdat) 3483 continue; 3484 last_pgdat = zone->zone_pgdat; 3485 shrink_node(zone->zone_pgdat, sc); 3486 consider_reclaim_throttle(zone->zone_pgdat, sc); 3487 } 3488 3489 /* 3490 * Restore to original mask to avoid the impact on the caller if we 3491 * promoted it to __GFP_HIGHMEM. 3492 */ 3493 sc->gfp_mask = orig_mask; 3494 } 3495 3496 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3497 { 3498 struct lruvec *target_lruvec; 3499 unsigned long refaults; 3500 3501 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3502 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3503 target_lruvec->refaults[0] = refaults; 3504 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3505 target_lruvec->refaults[1] = refaults; 3506 } 3507 3508 /* 3509 * This is the main entry point to direct page reclaim. 3510 * 3511 * If a full scan of the inactive list fails to free enough memory then we 3512 * are "out of memory" and something needs to be killed. 3513 * 3514 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3515 * high - the zone may be full of dirty or under-writeback pages, which this 3516 * caller can't do much about. We kick the writeback threads and take explicit 3517 * naps in the hope that some of these pages can be written. But if the 3518 * allocating task holds filesystem locks which prevent writeout this might not 3519 * work, and the allocation attempt will fail. 3520 * 3521 * returns: 0, if no pages reclaimed 3522 * else, the number of pages reclaimed 3523 */ 3524 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3525 struct scan_control *sc) 3526 { 3527 int initial_priority = sc->priority; 3528 pg_data_t *last_pgdat; 3529 struct zoneref *z; 3530 struct zone *zone; 3531 retry: 3532 delayacct_freepages_start(); 3533 3534 if (!cgroup_reclaim(sc)) 3535 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3536 3537 do { 3538 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3539 sc->priority); 3540 sc->nr_scanned = 0; 3541 shrink_zones(zonelist, sc); 3542 3543 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3544 break; 3545 3546 if (sc->compaction_ready) 3547 break; 3548 3549 /* 3550 * If we're getting trouble reclaiming, start doing 3551 * writepage even in laptop mode. 3552 */ 3553 if (sc->priority < DEF_PRIORITY - 2) 3554 sc->may_writepage = 1; 3555 } while (--sc->priority >= 0); 3556 3557 last_pgdat = NULL; 3558 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3559 sc->nodemask) { 3560 if (zone->zone_pgdat == last_pgdat) 3561 continue; 3562 last_pgdat = zone->zone_pgdat; 3563 3564 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3565 3566 if (cgroup_reclaim(sc)) { 3567 struct lruvec *lruvec; 3568 3569 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3570 zone->zone_pgdat); 3571 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3572 } 3573 } 3574 3575 delayacct_freepages_end(); 3576 3577 if (sc->nr_reclaimed) 3578 return sc->nr_reclaimed; 3579 3580 /* Aborted reclaim to try compaction? don't OOM, then */ 3581 if (sc->compaction_ready) 3582 return 1; 3583 3584 /* 3585 * We make inactive:active ratio decisions based on the node's 3586 * composition of memory, but a restrictive reclaim_idx or a 3587 * memory.low cgroup setting can exempt large amounts of 3588 * memory from reclaim. Neither of which are very common, so 3589 * instead of doing costly eligibility calculations of the 3590 * entire cgroup subtree up front, we assume the estimates are 3591 * good, and retry with forcible deactivation if that fails. 3592 */ 3593 if (sc->skipped_deactivate) { 3594 sc->priority = initial_priority; 3595 sc->force_deactivate = 1; 3596 sc->skipped_deactivate = 0; 3597 goto retry; 3598 } 3599 3600 /* Untapped cgroup reserves? Don't OOM, retry. */ 3601 if (sc->memcg_low_skipped) { 3602 sc->priority = initial_priority; 3603 sc->force_deactivate = 0; 3604 sc->memcg_low_reclaim = 1; 3605 sc->memcg_low_skipped = 0; 3606 goto retry; 3607 } 3608 3609 return 0; 3610 } 3611 3612 static bool allow_direct_reclaim(pg_data_t *pgdat) 3613 { 3614 struct zone *zone; 3615 unsigned long pfmemalloc_reserve = 0; 3616 unsigned long free_pages = 0; 3617 int i; 3618 bool wmark_ok; 3619 3620 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3621 return true; 3622 3623 for (i = 0; i <= ZONE_NORMAL; i++) { 3624 zone = &pgdat->node_zones[i]; 3625 if (!managed_zone(zone)) 3626 continue; 3627 3628 if (!zone_reclaimable_pages(zone)) 3629 continue; 3630 3631 pfmemalloc_reserve += min_wmark_pages(zone); 3632 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3633 } 3634 3635 /* If there are no reserves (unexpected config) then do not throttle */ 3636 if (!pfmemalloc_reserve) 3637 return true; 3638 3639 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3640 3641 /* kswapd must be awake if processes are being throttled */ 3642 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3643 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3644 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3645 3646 wake_up_interruptible(&pgdat->kswapd_wait); 3647 } 3648 3649 return wmark_ok; 3650 } 3651 3652 /* 3653 * Throttle direct reclaimers if backing storage is backed by the network 3654 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3655 * depleted. kswapd will continue to make progress and wake the processes 3656 * when the low watermark is reached. 3657 * 3658 * Returns true if a fatal signal was delivered during throttling. If this 3659 * happens, the page allocator should not consider triggering the OOM killer. 3660 */ 3661 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3662 nodemask_t *nodemask) 3663 { 3664 struct zoneref *z; 3665 struct zone *zone; 3666 pg_data_t *pgdat = NULL; 3667 3668 /* 3669 * Kernel threads should not be throttled as they may be indirectly 3670 * responsible for cleaning pages necessary for reclaim to make forward 3671 * progress. kjournald for example may enter direct reclaim while 3672 * committing a transaction where throttling it could forcing other 3673 * processes to block on log_wait_commit(). 3674 */ 3675 if (current->flags & PF_KTHREAD) 3676 goto out; 3677 3678 /* 3679 * If a fatal signal is pending, this process should not throttle. 3680 * It should return quickly so it can exit and free its memory 3681 */ 3682 if (fatal_signal_pending(current)) 3683 goto out; 3684 3685 /* 3686 * Check if the pfmemalloc reserves are ok by finding the first node 3687 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3688 * GFP_KERNEL will be required for allocating network buffers when 3689 * swapping over the network so ZONE_HIGHMEM is unusable. 3690 * 3691 * Throttling is based on the first usable node and throttled processes 3692 * wait on a queue until kswapd makes progress and wakes them. There 3693 * is an affinity then between processes waking up and where reclaim 3694 * progress has been made assuming the process wakes on the same node. 3695 * More importantly, processes running on remote nodes will not compete 3696 * for remote pfmemalloc reserves and processes on different nodes 3697 * should make reasonable progress. 3698 */ 3699 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3700 gfp_zone(gfp_mask), nodemask) { 3701 if (zone_idx(zone) > ZONE_NORMAL) 3702 continue; 3703 3704 /* Throttle based on the first usable node */ 3705 pgdat = zone->zone_pgdat; 3706 if (allow_direct_reclaim(pgdat)) 3707 goto out; 3708 break; 3709 } 3710 3711 /* If no zone was usable by the allocation flags then do not throttle */ 3712 if (!pgdat) 3713 goto out; 3714 3715 /* Account for the throttling */ 3716 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3717 3718 /* 3719 * If the caller cannot enter the filesystem, it's possible that it 3720 * is due to the caller holding an FS lock or performing a journal 3721 * transaction in the case of a filesystem like ext[3|4]. In this case, 3722 * it is not safe to block on pfmemalloc_wait as kswapd could be 3723 * blocked waiting on the same lock. Instead, throttle for up to a 3724 * second before continuing. 3725 */ 3726 if (!(gfp_mask & __GFP_FS)) 3727 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3728 allow_direct_reclaim(pgdat), HZ); 3729 else 3730 /* Throttle until kswapd wakes the process */ 3731 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3732 allow_direct_reclaim(pgdat)); 3733 3734 if (fatal_signal_pending(current)) 3735 return true; 3736 3737 out: 3738 return false; 3739 } 3740 3741 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3742 gfp_t gfp_mask, nodemask_t *nodemask) 3743 { 3744 unsigned long nr_reclaimed; 3745 struct scan_control sc = { 3746 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3747 .gfp_mask = current_gfp_context(gfp_mask), 3748 .reclaim_idx = gfp_zone(gfp_mask), 3749 .order = order, 3750 .nodemask = nodemask, 3751 .priority = DEF_PRIORITY, 3752 .may_writepage = !laptop_mode, 3753 .may_unmap = 1, 3754 .may_swap = 1, 3755 }; 3756 3757 /* 3758 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3759 * Confirm they are large enough for max values. 3760 */ 3761 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3762 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3763 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3764 3765 /* 3766 * Do not enter reclaim if fatal signal was delivered while throttled. 3767 * 1 is returned so that the page allocator does not OOM kill at this 3768 * point. 3769 */ 3770 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3771 return 1; 3772 3773 set_task_reclaim_state(current, &sc.reclaim_state); 3774 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3775 3776 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3777 3778 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3779 set_task_reclaim_state(current, NULL); 3780 3781 return nr_reclaimed; 3782 } 3783 3784 #ifdef CONFIG_MEMCG 3785 3786 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3787 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3788 gfp_t gfp_mask, bool noswap, 3789 pg_data_t *pgdat, 3790 unsigned long *nr_scanned) 3791 { 3792 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3793 struct scan_control sc = { 3794 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3795 .target_mem_cgroup = memcg, 3796 .may_writepage = !laptop_mode, 3797 .may_unmap = 1, 3798 .reclaim_idx = MAX_NR_ZONES - 1, 3799 .may_swap = !noswap, 3800 }; 3801 3802 WARN_ON_ONCE(!current->reclaim_state); 3803 3804 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3805 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3806 3807 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3808 sc.gfp_mask); 3809 3810 /* 3811 * NOTE: Although we can get the priority field, using it 3812 * here is not a good idea, since it limits the pages we can scan. 3813 * if we don't reclaim here, the shrink_node from balance_pgdat 3814 * will pick up pages from other mem cgroup's as well. We hack 3815 * the priority and make it zero. 3816 */ 3817 shrink_lruvec(lruvec, &sc); 3818 3819 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3820 3821 *nr_scanned = sc.nr_scanned; 3822 3823 return sc.nr_reclaimed; 3824 } 3825 3826 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3827 unsigned long nr_pages, 3828 gfp_t gfp_mask, 3829 bool may_swap) 3830 { 3831 unsigned long nr_reclaimed; 3832 unsigned int noreclaim_flag; 3833 struct scan_control sc = { 3834 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3835 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3836 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3837 .reclaim_idx = MAX_NR_ZONES - 1, 3838 .target_mem_cgroup = memcg, 3839 .priority = DEF_PRIORITY, 3840 .may_writepage = !laptop_mode, 3841 .may_unmap = 1, 3842 .may_swap = may_swap, 3843 }; 3844 /* 3845 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3846 * equal pressure on all the nodes. This is based on the assumption that 3847 * the reclaim does not bail out early. 3848 */ 3849 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3850 3851 set_task_reclaim_state(current, &sc.reclaim_state); 3852 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3853 noreclaim_flag = memalloc_noreclaim_save(); 3854 3855 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3856 3857 memalloc_noreclaim_restore(noreclaim_flag); 3858 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3859 set_task_reclaim_state(current, NULL); 3860 3861 return nr_reclaimed; 3862 } 3863 #endif 3864 3865 static void age_active_anon(struct pglist_data *pgdat, 3866 struct scan_control *sc) 3867 { 3868 struct mem_cgroup *memcg; 3869 struct lruvec *lruvec; 3870 3871 if (!can_age_anon_pages(pgdat, sc)) 3872 return; 3873 3874 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3875 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3876 return; 3877 3878 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3879 do { 3880 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3881 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3882 sc, LRU_ACTIVE_ANON); 3883 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3884 } while (memcg); 3885 } 3886 3887 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3888 { 3889 int i; 3890 struct zone *zone; 3891 3892 /* 3893 * Check for watermark boosts top-down as the higher zones 3894 * are more likely to be boosted. Both watermarks and boosts 3895 * should not be checked at the same time as reclaim would 3896 * start prematurely when there is no boosting and a lower 3897 * zone is balanced. 3898 */ 3899 for (i = highest_zoneidx; i >= 0; i--) { 3900 zone = pgdat->node_zones + i; 3901 if (!managed_zone(zone)) 3902 continue; 3903 3904 if (zone->watermark_boost) 3905 return true; 3906 } 3907 3908 return false; 3909 } 3910 3911 /* 3912 * Returns true if there is an eligible zone balanced for the request order 3913 * and highest_zoneidx 3914 */ 3915 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3916 { 3917 int i; 3918 unsigned long mark = -1; 3919 struct zone *zone; 3920 3921 /* 3922 * Check watermarks bottom-up as lower zones are more likely to 3923 * meet watermarks. 3924 */ 3925 for (i = 0; i <= highest_zoneidx; i++) { 3926 zone = pgdat->node_zones + i; 3927 3928 if (!managed_zone(zone)) 3929 continue; 3930 3931 mark = high_wmark_pages(zone); 3932 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3933 return true; 3934 } 3935 3936 /* 3937 * If a node has no populated zone within highest_zoneidx, it does not 3938 * need balancing by definition. This can happen if a zone-restricted 3939 * allocation tries to wake a remote kswapd. 3940 */ 3941 if (mark == -1) 3942 return true; 3943 3944 return false; 3945 } 3946 3947 /* Clear pgdat state for congested, dirty or under writeback. */ 3948 static void clear_pgdat_congested(pg_data_t *pgdat) 3949 { 3950 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3951 3952 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3953 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3954 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3955 } 3956 3957 /* 3958 * Prepare kswapd for sleeping. This verifies that there are no processes 3959 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3960 * 3961 * Returns true if kswapd is ready to sleep 3962 */ 3963 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3964 int highest_zoneidx) 3965 { 3966 /* 3967 * The throttled processes are normally woken up in balance_pgdat() as 3968 * soon as allow_direct_reclaim() is true. But there is a potential 3969 * race between when kswapd checks the watermarks and a process gets 3970 * throttled. There is also a potential race if processes get 3971 * throttled, kswapd wakes, a large process exits thereby balancing the 3972 * zones, which causes kswapd to exit balance_pgdat() before reaching 3973 * the wake up checks. If kswapd is going to sleep, no process should 3974 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3975 * the wake up is premature, processes will wake kswapd and get 3976 * throttled again. The difference from wake ups in balance_pgdat() is 3977 * that here we are under prepare_to_wait(). 3978 */ 3979 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3980 wake_up_all(&pgdat->pfmemalloc_wait); 3981 3982 /* Hopeless node, leave it to direct reclaim */ 3983 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3984 return true; 3985 3986 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3987 clear_pgdat_congested(pgdat); 3988 return true; 3989 } 3990 3991 return false; 3992 } 3993 3994 /* 3995 * kswapd shrinks a node of pages that are at or below the highest usable 3996 * zone that is currently unbalanced. 3997 * 3998 * Returns true if kswapd scanned at least the requested number of pages to 3999 * reclaim or if the lack of progress was due to pages under writeback. 4000 * This is used to determine if the scanning priority needs to be raised. 4001 */ 4002 static bool kswapd_shrink_node(pg_data_t *pgdat, 4003 struct scan_control *sc) 4004 { 4005 struct zone *zone; 4006 int z; 4007 4008 /* Reclaim a number of pages proportional to the number of zones */ 4009 sc->nr_to_reclaim = 0; 4010 for (z = 0; z <= sc->reclaim_idx; z++) { 4011 zone = pgdat->node_zones + z; 4012 if (!managed_zone(zone)) 4013 continue; 4014 4015 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 4016 } 4017 4018 /* 4019 * Historically care was taken to put equal pressure on all zones but 4020 * now pressure is applied based on node LRU order. 4021 */ 4022 shrink_node(pgdat, sc); 4023 4024 /* 4025 * Fragmentation may mean that the system cannot be rebalanced for 4026 * high-order allocations. If twice the allocation size has been 4027 * reclaimed then recheck watermarks only at order-0 to prevent 4028 * excessive reclaim. Assume that a process requested a high-order 4029 * can direct reclaim/compact. 4030 */ 4031 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4032 sc->order = 0; 4033 4034 return sc->nr_scanned >= sc->nr_to_reclaim; 4035 } 4036 4037 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4038 static inline void 4039 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4040 { 4041 int i; 4042 struct zone *zone; 4043 4044 for (i = 0; i <= highest_zoneidx; i++) { 4045 zone = pgdat->node_zones + i; 4046 4047 if (!managed_zone(zone)) 4048 continue; 4049 4050 if (active) 4051 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4052 else 4053 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4054 } 4055 } 4056 4057 static inline void 4058 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4059 { 4060 update_reclaim_active(pgdat, highest_zoneidx, true); 4061 } 4062 4063 static inline void 4064 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4065 { 4066 update_reclaim_active(pgdat, highest_zoneidx, false); 4067 } 4068 4069 /* 4070 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4071 * that are eligible for use by the caller until at least one zone is 4072 * balanced. 4073 * 4074 * Returns the order kswapd finished reclaiming at. 4075 * 4076 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4077 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4078 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4079 * or lower is eligible for reclaim until at least one usable zone is 4080 * balanced. 4081 */ 4082 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4083 { 4084 int i; 4085 unsigned long nr_soft_reclaimed; 4086 unsigned long nr_soft_scanned; 4087 unsigned long pflags; 4088 unsigned long nr_boost_reclaim; 4089 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4090 bool boosted; 4091 struct zone *zone; 4092 struct scan_control sc = { 4093 .gfp_mask = GFP_KERNEL, 4094 .order = order, 4095 .may_unmap = 1, 4096 }; 4097 4098 set_task_reclaim_state(current, &sc.reclaim_state); 4099 psi_memstall_enter(&pflags); 4100 __fs_reclaim_acquire(_THIS_IP_); 4101 4102 count_vm_event(PAGEOUTRUN); 4103 4104 /* 4105 * Account for the reclaim boost. Note that the zone boost is left in 4106 * place so that parallel allocations that are near the watermark will 4107 * stall or direct reclaim until kswapd is finished. 4108 */ 4109 nr_boost_reclaim = 0; 4110 for (i = 0; i <= highest_zoneidx; i++) { 4111 zone = pgdat->node_zones + i; 4112 if (!managed_zone(zone)) 4113 continue; 4114 4115 nr_boost_reclaim += zone->watermark_boost; 4116 zone_boosts[i] = zone->watermark_boost; 4117 } 4118 boosted = nr_boost_reclaim; 4119 4120 restart: 4121 set_reclaim_active(pgdat, highest_zoneidx); 4122 sc.priority = DEF_PRIORITY; 4123 do { 4124 unsigned long nr_reclaimed = sc.nr_reclaimed; 4125 bool raise_priority = true; 4126 bool balanced; 4127 bool ret; 4128 4129 sc.reclaim_idx = highest_zoneidx; 4130 4131 /* 4132 * If the number of buffer_heads exceeds the maximum allowed 4133 * then consider reclaiming from all zones. This has a dual 4134 * purpose -- on 64-bit systems it is expected that 4135 * buffer_heads are stripped during active rotation. On 32-bit 4136 * systems, highmem pages can pin lowmem memory and shrinking 4137 * buffers can relieve lowmem pressure. Reclaim may still not 4138 * go ahead if all eligible zones for the original allocation 4139 * request are balanced to avoid excessive reclaim from kswapd. 4140 */ 4141 if (buffer_heads_over_limit) { 4142 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4143 zone = pgdat->node_zones + i; 4144 if (!managed_zone(zone)) 4145 continue; 4146 4147 sc.reclaim_idx = i; 4148 break; 4149 } 4150 } 4151 4152 /* 4153 * If the pgdat is imbalanced then ignore boosting and preserve 4154 * the watermarks for a later time and restart. Note that the 4155 * zone watermarks will be still reset at the end of balancing 4156 * on the grounds that the normal reclaim should be enough to 4157 * re-evaluate if boosting is required when kswapd next wakes. 4158 */ 4159 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4160 if (!balanced && nr_boost_reclaim) { 4161 nr_boost_reclaim = 0; 4162 goto restart; 4163 } 4164 4165 /* 4166 * If boosting is not active then only reclaim if there are no 4167 * eligible zones. Note that sc.reclaim_idx is not used as 4168 * buffer_heads_over_limit may have adjusted it. 4169 */ 4170 if (!nr_boost_reclaim && balanced) 4171 goto out; 4172 4173 /* Limit the priority of boosting to avoid reclaim writeback */ 4174 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4175 raise_priority = false; 4176 4177 /* 4178 * Do not writeback or swap pages for boosted reclaim. The 4179 * intent is to relieve pressure not issue sub-optimal IO 4180 * from reclaim context. If no pages are reclaimed, the 4181 * reclaim will be aborted. 4182 */ 4183 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4184 sc.may_swap = !nr_boost_reclaim; 4185 4186 /* 4187 * Do some background aging of the anon list, to give 4188 * pages a chance to be referenced before reclaiming. All 4189 * pages are rotated regardless of classzone as this is 4190 * about consistent aging. 4191 */ 4192 age_active_anon(pgdat, &sc); 4193 4194 /* 4195 * If we're getting trouble reclaiming, start doing writepage 4196 * even in laptop mode. 4197 */ 4198 if (sc.priority < DEF_PRIORITY - 2) 4199 sc.may_writepage = 1; 4200 4201 /* Call soft limit reclaim before calling shrink_node. */ 4202 sc.nr_scanned = 0; 4203 nr_soft_scanned = 0; 4204 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4205 sc.gfp_mask, &nr_soft_scanned); 4206 sc.nr_reclaimed += nr_soft_reclaimed; 4207 4208 /* 4209 * There should be no need to raise the scanning priority if 4210 * enough pages are already being scanned that that high 4211 * watermark would be met at 100% efficiency. 4212 */ 4213 if (kswapd_shrink_node(pgdat, &sc)) 4214 raise_priority = false; 4215 4216 /* 4217 * If the low watermark is met there is no need for processes 4218 * to be throttled on pfmemalloc_wait as they should not be 4219 * able to safely make forward progress. Wake them 4220 */ 4221 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4222 allow_direct_reclaim(pgdat)) 4223 wake_up_all(&pgdat->pfmemalloc_wait); 4224 4225 /* Check if kswapd should be suspending */ 4226 __fs_reclaim_release(_THIS_IP_); 4227 ret = try_to_freeze(); 4228 __fs_reclaim_acquire(_THIS_IP_); 4229 if (ret || kthread_should_stop()) 4230 break; 4231 4232 /* 4233 * Raise priority if scanning rate is too low or there was no 4234 * progress in reclaiming pages 4235 */ 4236 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4237 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4238 4239 /* 4240 * If reclaim made no progress for a boost, stop reclaim as 4241 * IO cannot be queued and it could be an infinite loop in 4242 * extreme circumstances. 4243 */ 4244 if (nr_boost_reclaim && !nr_reclaimed) 4245 break; 4246 4247 if (raise_priority || !nr_reclaimed) 4248 sc.priority--; 4249 } while (sc.priority >= 1); 4250 4251 if (!sc.nr_reclaimed) 4252 pgdat->kswapd_failures++; 4253 4254 out: 4255 clear_reclaim_active(pgdat, highest_zoneidx); 4256 4257 /* If reclaim was boosted, account for the reclaim done in this pass */ 4258 if (boosted) { 4259 unsigned long flags; 4260 4261 for (i = 0; i <= highest_zoneidx; i++) { 4262 if (!zone_boosts[i]) 4263 continue; 4264 4265 /* Increments are under the zone lock */ 4266 zone = pgdat->node_zones + i; 4267 spin_lock_irqsave(&zone->lock, flags); 4268 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4269 spin_unlock_irqrestore(&zone->lock, flags); 4270 } 4271 4272 /* 4273 * As there is now likely space, wakeup kcompact to defragment 4274 * pageblocks. 4275 */ 4276 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4277 } 4278 4279 snapshot_refaults(NULL, pgdat); 4280 __fs_reclaim_release(_THIS_IP_); 4281 psi_memstall_leave(&pflags); 4282 set_task_reclaim_state(current, NULL); 4283 4284 /* 4285 * Return the order kswapd stopped reclaiming at as 4286 * prepare_kswapd_sleep() takes it into account. If another caller 4287 * entered the allocator slow path while kswapd was awake, order will 4288 * remain at the higher level. 4289 */ 4290 return sc.order; 4291 } 4292 4293 /* 4294 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4295 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4296 * not a valid index then either kswapd runs for first time or kswapd couldn't 4297 * sleep after previous reclaim attempt (node is still unbalanced). In that 4298 * case return the zone index of the previous kswapd reclaim cycle. 4299 */ 4300 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4301 enum zone_type prev_highest_zoneidx) 4302 { 4303 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4304 4305 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4306 } 4307 4308 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4309 unsigned int highest_zoneidx) 4310 { 4311 long remaining = 0; 4312 DEFINE_WAIT(wait); 4313 4314 if (freezing(current) || kthread_should_stop()) 4315 return; 4316 4317 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4318 4319 /* 4320 * Try to sleep for a short interval. Note that kcompactd will only be 4321 * woken if it is possible to sleep for a short interval. This is 4322 * deliberate on the assumption that if reclaim cannot keep an 4323 * eligible zone balanced that it's also unlikely that compaction will 4324 * succeed. 4325 */ 4326 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4327 /* 4328 * Compaction records what page blocks it recently failed to 4329 * isolate pages from and skips them in the future scanning. 4330 * When kswapd is going to sleep, it is reasonable to assume 4331 * that pages and compaction may succeed so reset the cache. 4332 */ 4333 reset_isolation_suitable(pgdat); 4334 4335 /* 4336 * We have freed the memory, now we should compact it to make 4337 * allocation of the requested order possible. 4338 */ 4339 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4340 4341 remaining = schedule_timeout(HZ/10); 4342 4343 /* 4344 * If woken prematurely then reset kswapd_highest_zoneidx and 4345 * order. The values will either be from a wakeup request or 4346 * the previous request that slept prematurely. 4347 */ 4348 if (remaining) { 4349 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4350 kswapd_highest_zoneidx(pgdat, 4351 highest_zoneidx)); 4352 4353 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4354 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4355 } 4356 4357 finish_wait(&pgdat->kswapd_wait, &wait); 4358 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4359 } 4360 4361 /* 4362 * After a short sleep, check if it was a premature sleep. If not, then 4363 * go fully to sleep until explicitly woken up. 4364 */ 4365 if (!remaining && 4366 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4367 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4368 4369 /* 4370 * vmstat counters are not perfectly accurate and the estimated 4371 * value for counters such as NR_FREE_PAGES can deviate from the 4372 * true value by nr_online_cpus * threshold. To avoid the zone 4373 * watermarks being breached while under pressure, we reduce the 4374 * per-cpu vmstat threshold while kswapd is awake and restore 4375 * them before going back to sleep. 4376 */ 4377 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4378 4379 if (!kthread_should_stop()) 4380 schedule(); 4381 4382 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4383 } else { 4384 if (remaining) 4385 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4386 else 4387 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4388 } 4389 finish_wait(&pgdat->kswapd_wait, &wait); 4390 } 4391 4392 /* 4393 * The background pageout daemon, started as a kernel thread 4394 * from the init process. 4395 * 4396 * This basically trickles out pages so that we have _some_ 4397 * free memory available even if there is no other activity 4398 * that frees anything up. This is needed for things like routing 4399 * etc, where we otherwise might have all activity going on in 4400 * asynchronous contexts that cannot page things out. 4401 * 4402 * If there are applications that are active memory-allocators 4403 * (most normal use), this basically shouldn't matter. 4404 */ 4405 static int kswapd(void *p) 4406 { 4407 unsigned int alloc_order, reclaim_order; 4408 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4409 pg_data_t *pgdat = (pg_data_t *)p; 4410 struct task_struct *tsk = current; 4411 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4412 4413 if (!cpumask_empty(cpumask)) 4414 set_cpus_allowed_ptr(tsk, cpumask); 4415 4416 /* 4417 * Tell the memory management that we're a "memory allocator", 4418 * and that if we need more memory we should get access to it 4419 * regardless (see "__alloc_pages()"). "kswapd" should 4420 * never get caught in the normal page freeing logic. 4421 * 4422 * (Kswapd normally doesn't need memory anyway, but sometimes 4423 * you need a small amount of memory in order to be able to 4424 * page out something else, and this flag essentially protects 4425 * us from recursively trying to free more memory as we're 4426 * trying to free the first piece of memory in the first place). 4427 */ 4428 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4429 set_freezable(); 4430 4431 WRITE_ONCE(pgdat->kswapd_order, 0); 4432 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4433 atomic_set(&pgdat->nr_writeback_throttled, 0); 4434 for ( ; ; ) { 4435 bool ret; 4436 4437 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4438 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4439 highest_zoneidx); 4440 4441 kswapd_try_sleep: 4442 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4443 highest_zoneidx); 4444 4445 /* Read the new order and highest_zoneidx */ 4446 alloc_order = READ_ONCE(pgdat->kswapd_order); 4447 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4448 highest_zoneidx); 4449 WRITE_ONCE(pgdat->kswapd_order, 0); 4450 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4451 4452 ret = try_to_freeze(); 4453 if (kthread_should_stop()) 4454 break; 4455 4456 /* 4457 * We can speed up thawing tasks if we don't call balance_pgdat 4458 * after returning from the refrigerator 4459 */ 4460 if (ret) 4461 continue; 4462 4463 /* 4464 * Reclaim begins at the requested order but if a high-order 4465 * reclaim fails then kswapd falls back to reclaiming for 4466 * order-0. If that happens, kswapd will consider sleeping 4467 * for the order it finished reclaiming at (reclaim_order) 4468 * but kcompactd is woken to compact for the original 4469 * request (alloc_order). 4470 */ 4471 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4472 alloc_order); 4473 reclaim_order = balance_pgdat(pgdat, alloc_order, 4474 highest_zoneidx); 4475 if (reclaim_order < alloc_order) 4476 goto kswapd_try_sleep; 4477 } 4478 4479 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4480 4481 return 0; 4482 } 4483 4484 /* 4485 * A zone is low on free memory or too fragmented for high-order memory. If 4486 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4487 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4488 * has failed or is not needed, still wake up kcompactd if only compaction is 4489 * needed. 4490 */ 4491 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4492 enum zone_type highest_zoneidx) 4493 { 4494 pg_data_t *pgdat; 4495 enum zone_type curr_idx; 4496 4497 if (!managed_zone(zone)) 4498 return; 4499 4500 if (!cpuset_zone_allowed(zone, gfp_flags)) 4501 return; 4502 4503 pgdat = zone->zone_pgdat; 4504 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4505 4506 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4507 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4508 4509 if (READ_ONCE(pgdat->kswapd_order) < order) 4510 WRITE_ONCE(pgdat->kswapd_order, order); 4511 4512 if (!waitqueue_active(&pgdat->kswapd_wait)) 4513 return; 4514 4515 /* Hopeless node, leave it to direct reclaim if possible */ 4516 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4517 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4518 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4519 /* 4520 * There may be plenty of free memory available, but it's too 4521 * fragmented for high-order allocations. Wake up kcompactd 4522 * and rely on compaction_suitable() to determine if it's 4523 * needed. If it fails, it will defer subsequent attempts to 4524 * ratelimit its work. 4525 */ 4526 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4527 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4528 return; 4529 } 4530 4531 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4532 gfp_flags); 4533 wake_up_interruptible(&pgdat->kswapd_wait); 4534 } 4535 4536 #ifdef CONFIG_HIBERNATION 4537 /* 4538 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4539 * freed pages. 4540 * 4541 * Rather than trying to age LRUs the aim is to preserve the overall 4542 * LRU order by reclaiming preferentially 4543 * inactive > active > active referenced > active mapped 4544 */ 4545 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4546 { 4547 struct scan_control sc = { 4548 .nr_to_reclaim = nr_to_reclaim, 4549 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4550 .reclaim_idx = MAX_NR_ZONES - 1, 4551 .priority = DEF_PRIORITY, 4552 .may_writepage = 1, 4553 .may_unmap = 1, 4554 .may_swap = 1, 4555 .hibernation_mode = 1, 4556 }; 4557 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4558 unsigned long nr_reclaimed; 4559 unsigned int noreclaim_flag; 4560 4561 fs_reclaim_acquire(sc.gfp_mask); 4562 noreclaim_flag = memalloc_noreclaim_save(); 4563 set_task_reclaim_state(current, &sc.reclaim_state); 4564 4565 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4566 4567 set_task_reclaim_state(current, NULL); 4568 memalloc_noreclaim_restore(noreclaim_flag); 4569 fs_reclaim_release(sc.gfp_mask); 4570 4571 return nr_reclaimed; 4572 } 4573 #endif /* CONFIG_HIBERNATION */ 4574 4575 /* 4576 * This kswapd start function will be called by init and node-hot-add. 4577 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4578 */ 4579 void kswapd_run(int nid) 4580 { 4581 pg_data_t *pgdat = NODE_DATA(nid); 4582 4583 if (pgdat->kswapd) 4584 return; 4585 4586 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4587 if (IS_ERR(pgdat->kswapd)) { 4588 /* failure at boot is fatal */ 4589 BUG_ON(system_state < SYSTEM_RUNNING); 4590 pr_err("Failed to start kswapd on node %d\n", nid); 4591 pgdat->kswapd = NULL; 4592 } 4593 } 4594 4595 /* 4596 * Called by memory hotplug when all memory in a node is offlined. Caller must 4597 * hold mem_hotplug_begin/end(). 4598 */ 4599 void kswapd_stop(int nid) 4600 { 4601 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4602 4603 if (kswapd) { 4604 kthread_stop(kswapd); 4605 NODE_DATA(nid)->kswapd = NULL; 4606 } 4607 } 4608 4609 static int __init kswapd_init(void) 4610 { 4611 int nid; 4612 4613 swap_setup(); 4614 for_each_node_state(nid, N_MEMORY) 4615 kswapd_run(nid); 4616 return 0; 4617 } 4618 4619 module_init(kswapd_init) 4620 4621 #ifdef CONFIG_NUMA 4622 /* 4623 * Node reclaim mode 4624 * 4625 * If non-zero call node_reclaim when the number of free pages falls below 4626 * the watermarks. 4627 */ 4628 int node_reclaim_mode __read_mostly; 4629 4630 /* 4631 * Priority for NODE_RECLAIM. This determines the fraction of pages 4632 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4633 * a zone. 4634 */ 4635 #define NODE_RECLAIM_PRIORITY 4 4636 4637 /* 4638 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4639 * occur. 4640 */ 4641 int sysctl_min_unmapped_ratio = 1; 4642 4643 /* 4644 * If the number of slab pages in a zone grows beyond this percentage then 4645 * slab reclaim needs to occur. 4646 */ 4647 int sysctl_min_slab_ratio = 5; 4648 4649 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4650 { 4651 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4652 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4653 node_page_state(pgdat, NR_ACTIVE_FILE); 4654 4655 /* 4656 * It's possible for there to be more file mapped pages than 4657 * accounted for by the pages on the file LRU lists because 4658 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4659 */ 4660 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4661 } 4662 4663 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4664 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4665 { 4666 unsigned long nr_pagecache_reclaimable; 4667 unsigned long delta = 0; 4668 4669 /* 4670 * If RECLAIM_UNMAP is set, then all file pages are considered 4671 * potentially reclaimable. Otherwise, we have to worry about 4672 * pages like swapcache and node_unmapped_file_pages() provides 4673 * a better estimate 4674 */ 4675 if (node_reclaim_mode & RECLAIM_UNMAP) 4676 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4677 else 4678 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4679 4680 /* If we can't clean pages, remove dirty pages from consideration */ 4681 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4682 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4683 4684 /* Watch for any possible underflows due to delta */ 4685 if (unlikely(delta > nr_pagecache_reclaimable)) 4686 delta = nr_pagecache_reclaimable; 4687 4688 return nr_pagecache_reclaimable - delta; 4689 } 4690 4691 /* 4692 * Try to free up some pages from this node through reclaim. 4693 */ 4694 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4695 { 4696 /* Minimum pages needed in order to stay on node */ 4697 const unsigned long nr_pages = 1 << order; 4698 struct task_struct *p = current; 4699 unsigned int noreclaim_flag; 4700 struct scan_control sc = { 4701 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4702 .gfp_mask = current_gfp_context(gfp_mask), 4703 .order = order, 4704 .priority = NODE_RECLAIM_PRIORITY, 4705 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4706 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4707 .may_swap = 1, 4708 .reclaim_idx = gfp_zone(gfp_mask), 4709 }; 4710 unsigned long pflags; 4711 4712 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4713 sc.gfp_mask); 4714 4715 cond_resched(); 4716 psi_memstall_enter(&pflags); 4717 fs_reclaim_acquire(sc.gfp_mask); 4718 /* 4719 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4720 * and we also need to be able to write out pages for RECLAIM_WRITE 4721 * and RECLAIM_UNMAP. 4722 */ 4723 noreclaim_flag = memalloc_noreclaim_save(); 4724 p->flags |= PF_SWAPWRITE; 4725 set_task_reclaim_state(p, &sc.reclaim_state); 4726 4727 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4728 /* 4729 * Free memory by calling shrink node with increasing 4730 * priorities until we have enough memory freed. 4731 */ 4732 do { 4733 shrink_node(pgdat, &sc); 4734 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4735 } 4736 4737 set_task_reclaim_state(p, NULL); 4738 current->flags &= ~PF_SWAPWRITE; 4739 memalloc_noreclaim_restore(noreclaim_flag); 4740 fs_reclaim_release(sc.gfp_mask); 4741 psi_memstall_leave(&pflags); 4742 4743 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4744 4745 return sc.nr_reclaimed >= nr_pages; 4746 } 4747 4748 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4749 { 4750 int ret; 4751 4752 /* 4753 * Node reclaim reclaims unmapped file backed pages and 4754 * slab pages if we are over the defined limits. 4755 * 4756 * A small portion of unmapped file backed pages is needed for 4757 * file I/O otherwise pages read by file I/O will be immediately 4758 * thrown out if the node is overallocated. So we do not reclaim 4759 * if less than a specified percentage of the node is used by 4760 * unmapped file backed pages. 4761 */ 4762 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4763 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4764 pgdat->min_slab_pages) 4765 return NODE_RECLAIM_FULL; 4766 4767 /* 4768 * Do not scan if the allocation should not be delayed. 4769 */ 4770 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4771 return NODE_RECLAIM_NOSCAN; 4772 4773 /* 4774 * Only run node reclaim on the local node or on nodes that do not 4775 * have associated processors. This will favor the local processor 4776 * over remote processors and spread off node memory allocations 4777 * as wide as possible. 4778 */ 4779 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4780 return NODE_RECLAIM_NOSCAN; 4781 4782 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4783 return NODE_RECLAIM_NOSCAN; 4784 4785 ret = __node_reclaim(pgdat, gfp_mask, order); 4786 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4787 4788 if (!ret) 4789 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4790 4791 return ret; 4792 } 4793 #endif 4794 4795 /** 4796 * check_move_unevictable_pages - check pages for evictability and move to 4797 * appropriate zone lru list 4798 * @pvec: pagevec with lru pages to check 4799 * 4800 * Checks pages for evictability, if an evictable page is in the unevictable 4801 * lru list, moves it to the appropriate evictable lru list. This function 4802 * should be only used for lru pages. 4803 */ 4804 void check_move_unevictable_pages(struct pagevec *pvec) 4805 { 4806 struct lruvec *lruvec = NULL; 4807 int pgscanned = 0; 4808 int pgrescued = 0; 4809 int i; 4810 4811 for (i = 0; i < pvec->nr; i++) { 4812 struct page *page = pvec->pages[i]; 4813 struct folio *folio = page_folio(page); 4814 int nr_pages; 4815 4816 if (PageTransTail(page)) 4817 continue; 4818 4819 nr_pages = thp_nr_pages(page); 4820 pgscanned += nr_pages; 4821 4822 /* block memcg migration during page moving between lru */ 4823 if (!TestClearPageLRU(page)) 4824 continue; 4825 4826 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4827 if (page_evictable(page) && PageUnevictable(page)) { 4828 del_page_from_lru_list(page, lruvec); 4829 ClearPageUnevictable(page); 4830 add_page_to_lru_list(page, lruvec); 4831 pgrescued += nr_pages; 4832 } 4833 SetPageLRU(page); 4834 } 4835 4836 if (lruvec) { 4837 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4838 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4839 unlock_page_lruvec_irq(lruvec); 4840 } else if (pgscanned) { 4841 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4842 } 4843 } 4844 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4845