xref: /openbmc/linux/mm/vmscan.c (revision 8fdff1dc)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 struct scan_control {
57 	/* Incremented by the number of inactive pages that were scanned */
58 	unsigned long nr_scanned;
59 
60 	/* Number of pages freed so far during a call to shrink_zones() */
61 	unsigned long nr_reclaimed;
62 
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	unsigned long hibernation_mode;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	int may_writepage;
72 
73 	/* Can mapped pages be reclaimed? */
74 	int may_unmap;
75 
76 	/* Can pages be swapped as part of reclaim? */
77 	int may_swap;
78 
79 	int order;
80 
81 	/* Scan (total_size >> priority) pages at once */
82 	int priority;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 	 * are scanned.
93 	 */
94 	nodemask_t	*nodemask;
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 	return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 	return true;
145 }
146 #endif
147 
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 	if (!mem_cgroup_disabled())
151 		return mem_cgroup_get_lru_size(lruvec, lru);
152 
153 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155 
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 	atomic_long_set(&shrinker->nr_in_batch, 0);
162 	down_write(&shrinker_rwsem);
163 	list_add_tail(&shrinker->list, &shrinker_list);
164 	up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167 
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 	down_write(&shrinker_rwsem);
174 	list_del(&shrinker->list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178 
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 				     struct shrink_control *sc,
181 				     unsigned long nr_to_scan)
182 {
183 	sc->nr_to_scan = nr_to_scan;
184 	return (*shrinker->shrink)(shrinker, sc);
185 }
186 
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 			  unsigned long nr_pages_scanned,
209 			  unsigned long lru_pages)
210 {
211 	struct shrinker *shrinker;
212 	unsigned long ret = 0;
213 
214 	if (nr_pages_scanned == 0)
215 		nr_pages_scanned = SWAP_CLUSTER_MAX;
216 
217 	if (!down_read_trylock(&shrinker_rwsem)) {
218 		/* Assume we'll be able to shrink next time */
219 		ret = 1;
220 		goto out;
221 	}
222 
223 	list_for_each_entry(shrinker, &shrinker_list, list) {
224 		unsigned long long delta;
225 		long total_scan;
226 		long max_pass;
227 		int shrink_ret = 0;
228 		long nr;
229 		long new_nr;
230 		long batch_size = shrinker->batch ? shrinker->batch
231 						  : SHRINK_BATCH;
232 
233 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 		if (max_pass <= 0)
235 			continue;
236 
237 		/*
238 		 * copy the current shrinker scan count into a local variable
239 		 * and zero it so that other concurrent shrinker invocations
240 		 * don't also do this scanning work.
241 		 */
242 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 
244 		total_scan = nr;
245 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 		delta *= max_pass;
247 		do_div(delta, lru_pages + 1);
248 		total_scan += delta;
249 		if (total_scan < 0) {
250 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 			       "delete nr=%ld\n",
252 			       shrinker->shrink, total_scan);
253 			total_scan = max_pass;
254 		}
255 
256 		/*
257 		 * We need to avoid excessive windup on filesystem shrinkers
258 		 * due to large numbers of GFP_NOFS allocations causing the
259 		 * shrinkers to return -1 all the time. This results in a large
260 		 * nr being built up so when a shrink that can do some work
261 		 * comes along it empties the entire cache due to nr >>>
262 		 * max_pass.  This is bad for sustaining a working set in
263 		 * memory.
264 		 *
265 		 * Hence only allow the shrinker to scan the entire cache when
266 		 * a large delta change is calculated directly.
267 		 */
268 		if (delta < max_pass / 4)
269 			total_scan = min(total_scan, max_pass / 2);
270 
271 		/*
272 		 * Avoid risking looping forever due to too large nr value:
273 		 * never try to free more than twice the estimate number of
274 		 * freeable entries.
275 		 */
276 		if (total_scan > max_pass * 2)
277 			total_scan = max_pass * 2;
278 
279 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 					nr_pages_scanned, lru_pages,
281 					max_pass, delta, total_scan);
282 
283 		while (total_scan >= batch_size) {
284 			int nr_before;
285 
286 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 							batch_size);
289 			if (shrink_ret == -1)
290 				break;
291 			if (shrink_ret < nr_before)
292 				ret += nr_before - shrink_ret;
293 			count_vm_events(SLABS_SCANNED, batch_size);
294 			total_scan -= batch_size;
295 
296 			cond_resched();
297 		}
298 
299 		/*
300 		 * move the unused scan count back into the shrinker in a
301 		 * manner that handles concurrent updates. If we exhausted the
302 		 * scan, there is no need to do an update.
303 		 */
304 		if (total_scan > 0)
305 			new_nr = atomic_long_add_return(total_scan,
306 					&shrinker->nr_in_batch);
307 		else
308 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 
310 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 	}
312 	up_read(&shrinker_rwsem);
313 out:
314 	cond_resched();
315 	return ret;
316 }
317 
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 	/*
321 	 * A freeable page cache page is referenced only by the caller
322 	 * that isolated the page, the page cache radix tree and
323 	 * optional buffer heads at page->private.
324 	 */
325 	return page_count(page) - page_has_private(page) == 2;
326 }
327 
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 			      struct scan_control *sc)
330 {
331 	if (current->flags & PF_SWAPWRITE)
332 		return 1;
333 	if (!bdi_write_congested(bdi))
334 		return 1;
335 	if (bdi == current->backing_dev_info)
336 		return 1;
337 	return 0;
338 }
339 
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353 				struct page *page, int error)
354 {
355 	lock_page(page);
356 	if (page_mapping(page) == mapping)
357 		mapping_set_error(mapping, error);
358 	unlock_page(page);
359 }
360 
361 /* possible outcome of pageout() */
362 typedef enum {
363 	/* failed to write page out, page is locked */
364 	PAGE_KEEP,
365 	/* move page to the active list, page is locked */
366 	PAGE_ACTIVATE,
367 	/* page has been sent to the disk successfully, page is unlocked */
368 	PAGE_SUCCESS,
369 	/* page is clean and locked */
370 	PAGE_CLEAN,
371 } pageout_t;
372 
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 			 struct scan_control *sc)
379 {
380 	/*
381 	 * If the page is dirty, only perform writeback if that write
382 	 * will be non-blocking.  To prevent this allocation from being
383 	 * stalled by pagecache activity.  But note that there may be
384 	 * stalls if we need to run get_block().  We could test
385 	 * PagePrivate for that.
386 	 *
387 	 * If this process is currently in __generic_file_aio_write() against
388 	 * this page's queue, we can perform writeback even if that
389 	 * will block.
390 	 *
391 	 * If the page is swapcache, write it back even if that would
392 	 * block, for some throttling. This happens by accident, because
393 	 * swap_backing_dev_info is bust: it doesn't reflect the
394 	 * congestion state of the swapdevs.  Easy to fix, if needed.
395 	 */
396 	if (!is_page_cache_freeable(page))
397 		return PAGE_KEEP;
398 	if (!mapping) {
399 		/*
400 		 * Some data journaling orphaned pages can have
401 		 * page->mapping == NULL while being dirty with clean buffers.
402 		 */
403 		if (page_has_private(page)) {
404 			if (try_to_free_buffers(page)) {
405 				ClearPageDirty(page);
406 				printk("%s: orphaned page\n", __func__);
407 				return PAGE_CLEAN;
408 			}
409 		}
410 		return PAGE_KEEP;
411 	}
412 	if (mapping->a_ops->writepage == NULL)
413 		return PAGE_ACTIVATE;
414 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 		return PAGE_KEEP;
416 
417 	if (clear_page_dirty_for_io(page)) {
418 		int res;
419 		struct writeback_control wbc = {
420 			.sync_mode = WB_SYNC_NONE,
421 			.nr_to_write = SWAP_CLUSTER_MAX,
422 			.range_start = 0,
423 			.range_end = LLONG_MAX,
424 			.for_reclaim = 1,
425 		};
426 
427 		SetPageReclaim(page);
428 		res = mapping->a_ops->writepage(page, &wbc);
429 		if (res < 0)
430 			handle_write_error(mapping, page, res);
431 		if (res == AOP_WRITEPAGE_ACTIVATE) {
432 			ClearPageReclaim(page);
433 			return PAGE_ACTIVATE;
434 		}
435 
436 		if (!PageWriteback(page)) {
437 			/* synchronous write or broken a_ops? */
438 			ClearPageReclaim(page);
439 		}
440 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		void (*freepage)(struct page *);
498 
499 		freepage = mapping->a_ops->freepage;
500 
501 		__delete_from_page_cache(page);
502 		spin_unlock_irq(&mapping->tree_lock);
503 		mem_cgroup_uncharge_cache_page(page);
504 
505 		if (freepage != NULL)
506 			freepage(page);
507 	}
508 
509 	return 1;
510 
511 cannot_free:
512 	spin_unlock_irq(&mapping->tree_lock);
513 	return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 	if (__remove_mapping(mapping, page)) {
525 		/*
526 		 * Unfreezing the refcount with 1 rather than 2 effectively
527 		 * drops the pagecache ref for us without requiring another
528 		 * atomic operation.
529 		 */
530 		page_unfreeze_refs(page, 1);
531 		return 1;
532 	}
533 	return 0;
534 }
535 
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547 	int lru;
548 	int active = !!TestClearPageActive(page);
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = active + page_lru_base_type(page);
564 		lru_cache_add_lru(page, lru);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 				      struct zone *zone,
676 				      struct scan_control *sc,
677 				      enum ttu_flags ttu_flags,
678 				      unsigned long *ret_nr_dirty,
679 				      unsigned long *ret_nr_writeback,
680 				      bool force_reclaim)
681 {
682 	LIST_HEAD(ret_pages);
683 	LIST_HEAD(free_pages);
684 	int pgactivate = 0;
685 	unsigned long nr_dirty = 0;
686 	unsigned long nr_congested = 0;
687 	unsigned long nr_reclaimed = 0;
688 	unsigned long nr_writeback = 0;
689 
690 	cond_resched();
691 
692 	mem_cgroup_uncharge_start();
693 	while (!list_empty(page_list)) {
694 		struct address_space *mapping;
695 		struct page *page;
696 		int may_enter_fs;
697 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
698 
699 		cond_resched();
700 
701 		page = lru_to_page(page_list);
702 		list_del(&page->lru);
703 
704 		if (!trylock_page(page))
705 			goto keep;
706 
707 		VM_BUG_ON(PageActive(page));
708 		VM_BUG_ON(page_zone(page) != zone);
709 
710 		sc->nr_scanned++;
711 
712 		if (unlikely(!page_evictable(page)))
713 			goto cull_mlocked;
714 
715 		if (!sc->may_unmap && page_mapped(page))
716 			goto keep_locked;
717 
718 		/* Double the slab pressure for mapped and swapcache pages */
719 		if (page_mapped(page) || PageSwapCache(page))
720 			sc->nr_scanned++;
721 
722 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724 
725 		if (PageWriteback(page)) {
726 			/*
727 			 * memcg doesn't have any dirty pages throttling so we
728 			 * could easily OOM just because too many pages are in
729 			 * writeback and there is nothing else to reclaim.
730 			 *
731 			 * Check __GFP_IO, certainly because a loop driver
732 			 * thread might enter reclaim, and deadlock if it waits
733 			 * on a page for which it is needed to do the write
734 			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 			 * but more thought would probably show more reasons.
736 			 *
737 			 * Don't require __GFP_FS, since we're not going into
738 			 * the FS, just waiting on its writeback completion.
739 			 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 			 * testing may_enter_fs here is liable to OOM on them.
742 			 */
743 			if (global_reclaim(sc) ||
744 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 				/*
746 				 * This is slightly racy - end_page_writeback()
747 				 * might have just cleared PageReclaim, then
748 				 * setting PageReclaim here end up interpreted
749 				 * as PageReadahead - but that does not matter
750 				 * enough to care.  What we do want is for this
751 				 * page to have PageReclaim set next time memcg
752 				 * reclaim reaches the tests above, so it will
753 				 * then wait_on_page_writeback() to avoid OOM;
754 				 * and it's also appropriate in global reclaim.
755 				 */
756 				SetPageReclaim(page);
757 				nr_writeback++;
758 				goto keep_locked;
759 			}
760 			wait_on_page_writeback(page);
761 		}
762 
763 		if (!force_reclaim)
764 			references = page_check_references(page, sc);
765 
766 		switch (references) {
767 		case PAGEREF_ACTIVATE:
768 			goto activate_locked;
769 		case PAGEREF_KEEP:
770 			goto keep_locked;
771 		case PAGEREF_RECLAIM:
772 		case PAGEREF_RECLAIM_CLEAN:
773 			; /* try to reclaim the page below */
774 		}
775 
776 		/*
777 		 * Anonymous process memory has backing store?
778 		 * Try to allocate it some swap space here.
779 		 */
780 		if (PageAnon(page) && !PageSwapCache(page)) {
781 			if (!(sc->gfp_mask & __GFP_IO))
782 				goto keep_locked;
783 			if (!add_to_swap(page))
784 				goto activate_locked;
785 			may_enter_fs = 1;
786 		}
787 
788 		mapping = page_mapping(page);
789 
790 		/*
791 		 * The page is mapped into the page tables of one or more
792 		 * processes. Try to unmap it here.
793 		 */
794 		if (page_mapped(page) && mapping) {
795 			switch (try_to_unmap(page, ttu_flags)) {
796 			case SWAP_FAIL:
797 				goto activate_locked;
798 			case SWAP_AGAIN:
799 				goto keep_locked;
800 			case SWAP_MLOCK:
801 				goto cull_mlocked;
802 			case SWAP_SUCCESS:
803 				; /* try to free the page below */
804 			}
805 		}
806 
807 		if (PageDirty(page)) {
808 			nr_dirty++;
809 
810 			/*
811 			 * Only kswapd can writeback filesystem pages to
812 			 * avoid risk of stack overflow but do not writeback
813 			 * unless under significant pressure.
814 			 */
815 			if (page_is_file_cache(page) &&
816 					(!current_is_kswapd() ||
817 					 sc->priority >= DEF_PRIORITY - 2)) {
818 				/*
819 				 * Immediately reclaim when written back.
820 				 * Similar in principal to deactivate_page()
821 				 * except we already have the page isolated
822 				 * and know it's dirty
823 				 */
824 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 				SetPageReclaim(page);
826 
827 				goto keep_locked;
828 			}
829 
830 			if (references == PAGEREF_RECLAIM_CLEAN)
831 				goto keep_locked;
832 			if (!may_enter_fs)
833 				goto keep_locked;
834 			if (!sc->may_writepage)
835 				goto keep_locked;
836 
837 			/* Page is dirty, try to write it out here */
838 			switch (pageout(page, mapping, sc)) {
839 			case PAGE_KEEP:
840 				nr_congested++;
841 				goto keep_locked;
842 			case PAGE_ACTIVATE:
843 				goto activate_locked;
844 			case PAGE_SUCCESS:
845 				if (PageWriteback(page))
846 					goto keep;
847 				if (PageDirty(page))
848 					goto keep;
849 
850 				/*
851 				 * A synchronous write - probably a ramdisk.  Go
852 				 * ahead and try to reclaim the page.
853 				 */
854 				if (!trylock_page(page))
855 					goto keep;
856 				if (PageDirty(page) || PageWriteback(page))
857 					goto keep_locked;
858 				mapping = page_mapping(page);
859 			case PAGE_CLEAN:
860 				; /* try to free the page below */
861 			}
862 		}
863 
864 		/*
865 		 * If the page has buffers, try to free the buffer mappings
866 		 * associated with this page. If we succeed we try to free
867 		 * the page as well.
868 		 *
869 		 * We do this even if the page is PageDirty().
870 		 * try_to_release_page() does not perform I/O, but it is
871 		 * possible for a page to have PageDirty set, but it is actually
872 		 * clean (all its buffers are clean).  This happens if the
873 		 * buffers were written out directly, with submit_bh(). ext3
874 		 * will do this, as well as the blockdev mapping.
875 		 * try_to_release_page() will discover that cleanness and will
876 		 * drop the buffers and mark the page clean - it can be freed.
877 		 *
878 		 * Rarely, pages can have buffers and no ->mapping.  These are
879 		 * the pages which were not successfully invalidated in
880 		 * truncate_complete_page().  We try to drop those buffers here
881 		 * and if that worked, and the page is no longer mapped into
882 		 * process address space (page_count == 1) it can be freed.
883 		 * Otherwise, leave the page on the LRU so it is swappable.
884 		 */
885 		if (page_has_private(page)) {
886 			if (!try_to_release_page(page, sc->gfp_mask))
887 				goto activate_locked;
888 			if (!mapping && page_count(page) == 1) {
889 				unlock_page(page);
890 				if (put_page_testzero(page))
891 					goto free_it;
892 				else {
893 					/*
894 					 * rare race with speculative reference.
895 					 * the speculative reference will free
896 					 * this page shortly, so we may
897 					 * increment nr_reclaimed here (and
898 					 * leave it off the LRU).
899 					 */
900 					nr_reclaimed++;
901 					continue;
902 				}
903 			}
904 		}
905 
906 		if (!mapping || !__remove_mapping(mapping, page))
907 			goto keep_locked;
908 
909 		/*
910 		 * At this point, we have no other references and there is
911 		 * no way to pick any more up (removed from LRU, removed
912 		 * from pagecache). Can use non-atomic bitops now (and
913 		 * we obviously don't have to worry about waking up a process
914 		 * waiting on the page lock, because there are no references.
915 		 */
916 		__clear_page_locked(page);
917 free_it:
918 		nr_reclaimed++;
919 
920 		/*
921 		 * Is there need to periodically free_page_list? It would
922 		 * appear not as the counts should be low
923 		 */
924 		list_add(&page->lru, &free_pages);
925 		continue;
926 
927 cull_mlocked:
928 		if (PageSwapCache(page))
929 			try_to_free_swap(page);
930 		unlock_page(page);
931 		putback_lru_page(page);
932 		continue;
933 
934 activate_locked:
935 		/* Not a candidate for swapping, so reclaim swap space. */
936 		if (PageSwapCache(page) && vm_swap_full())
937 			try_to_free_swap(page);
938 		VM_BUG_ON(PageActive(page));
939 		SetPageActive(page);
940 		pgactivate++;
941 keep_locked:
942 		unlock_page(page);
943 keep:
944 		list_add(&page->lru, &ret_pages);
945 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
946 	}
947 
948 	/*
949 	 * Tag a zone as congested if all the dirty pages encountered were
950 	 * backed by a congested BDI. In this case, reclaimers should just
951 	 * back off and wait for congestion to clear because further reclaim
952 	 * will encounter the same problem
953 	 */
954 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955 		zone_set_flag(zone, ZONE_CONGESTED);
956 
957 	free_hot_cold_page_list(&free_pages, 1);
958 
959 	list_splice(&ret_pages, page_list);
960 	count_vm_events(PGACTIVATE, pgactivate);
961 	mem_cgroup_uncharge_end();
962 	*ret_nr_dirty += nr_dirty;
963 	*ret_nr_writeback += nr_writeback;
964 	return nr_reclaimed;
965 }
966 
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 					    struct list_head *page_list)
969 {
970 	struct scan_control sc = {
971 		.gfp_mask = GFP_KERNEL,
972 		.priority = DEF_PRIORITY,
973 		.may_unmap = 1,
974 	};
975 	unsigned long ret, dummy1, dummy2;
976 	struct page *page, *next;
977 	LIST_HEAD(clean_pages);
978 
979 	list_for_each_entry_safe(page, next, page_list, lru) {
980 		if (page_is_file_cache(page) && !PageDirty(page)) {
981 			ClearPageActive(page);
982 			list_move(&page->lru, &clean_pages);
983 		}
984 	}
985 
986 	ret = shrink_page_list(&clean_pages, zone, &sc,
987 				TTU_UNMAP|TTU_IGNORE_ACCESS,
988 				&dummy1, &dummy2, true);
989 	list_splice(&clean_pages, page_list);
990 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 	return ret;
992 }
993 
994 /*
995  * Attempt to remove the specified page from its LRU.  Only take this page
996  * if it is of the appropriate PageActive status.  Pages which are being
997  * freed elsewhere are also ignored.
998  *
999  * page:	page to consider
1000  * mode:	one of the LRU isolation modes defined above
1001  *
1002  * returns 0 on success, -ve errno on failure.
1003  */
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1005 {
1006 	int ret = -EINVAL;
1007 
1008 	/* Only take pages on the LRU. */
1009 	if (!PageLRU(page))
1010 		return ret;
1011 
1012 	/* Compaction should not handle unevictable pages but CMA can do so */
1013 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014 		return ret;
1015 
1016 	ret = -EBUSY;
1017 
1018 	/*
1019 	 * To minimise LRU disruption, the caller can indicate that it only
1020 	 * wants to isolate pages it will be able to operate on without
1021 	 * blocking - clean pages for the most part.
1022 	 *
1023 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 	 * is used by reclaim when it is cannot write to backing storage
1025 	 *
1026 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 	 * that it is possible to migrate without blocking
1028 	 */
1029 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 		/* All the caller can do on PageWriteback is block */
1031 		if (PageWriteback(page))
1032 			return ret;
1033 
1034 		if (PageDirty(page)) {
1035 			struct address_space *mapping;
1036 
1037 			/* ISOLATE_CLEAN means only clean pages */
1038 			if (mode & ISOLATE_CLEAN)
1039 				return ret;
1040 
1041 			/*
1042 			 * Only pages without mappings or that have a
1043 			 * ->migratepage callback are possible to migrate
1044 			 * without blocking
1045 			 */
1046 			mapping = page_mapping(page);
1047 			if (mapping && !mapping->a_ops->migratepage)
1048 				return ret;
1049 		}
1050 	}
1051 
1052 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 		return ret;
1054 
1055 	if (likely(get_page_unless_zero(page))) {
1056 		/*
1057 		 * Be careful not to clear PageLRU until after we're
1058 		 * sure the page is not being freed elsewhere -- the
1059 		 * page release code relies on it.
1060 		 */
1061 		ClearPageLRU(page);
1062 		ret = 0;
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * zone->lru_lock is heavily contended.  Some of the functions that
1070  * shrink the lists perform better by taking out a batch of pages
1071  * and working on them outside the LRU lock.
1072  *
1073  * For pagecache intensive workloads, this function is the hottest
1074  * spot in the kernel (apart from copy_*_user functions).
1075  *
1076  * Appropriate locks must be held before calling this function.
1077  *
1078  * @nr_to_scan:	The number of pages to look through on the list.
1079  * @lruvec:	The LRU vector to pull pages from.
1080  * @dst:	The temp list to put pages on to.
1081  * @nr_scanned:	The number of pages that were scanned.
1082  * @sc:		The scan_control struct for this reclaim session
1083  * @mode:	One of the LRU isolation modes
1084  * @lru:	LRU list id for isolating
1085  *
1086  * returns how many pages were moved onto *@dst.
1087  */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 		struct lruvec *lruvec, struct list_head *dst,
1090 		unsigned long *nr_scanned, struct scan_control *sc,
1091 		isolate_mode_t mode, enum lru_list lru)
1092 {
1093 	struct list_head *src = &lruvec->lists[lru];
1094 	unsigned long nr_taken = 0;
1095 	unsigned long scan;
1096 
1097 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098 		struct page *page;
1099 		int nr_pages;
1100 
1101 		page = lru_to_page(src);
1102 		prefetchw_prev_lru_page(page, src, flags);
1103 
1104 		VM_BUG_ON(!PageLRU(page));
1105 
1106 		switch (__isolate_lru_page(page, mode)) {
1107 		case 0:
1108 			nr_pages = hpage_nr_pages(page);
1109 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110 			list_move(&page->lru, dst);
1111 			nr_taken += nr_pages;
1112 			break;
1113 
1114 		case -EBUSY:
1115 			/* else it is being freed elsewhere */
1116 			list_move(&page->lru, src);
1117 			continue;
1118 
1119 		default:
1120 			BUG();
1121 		}
1122 	}
1123 
1124 	*nr_scanned = scan;
1125 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 				    nr_taken, mode, is_file_lru(lru));
1127 	return nr_taken;
1128 }
1129 
1130 /**
1131  * isolate_lru_page - tries to isolate a page from its LRU list
1132  * @page: page to isolate from its LRU list
1133  *
1134  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135  * vmstat statistic corresponding to whatever LRU list the page was on.
1136  *
1137  * Returns 0 if the page was removed from an LRU list.
1138  * Returns -EBUSY if the page was not on an LRU list.
1139  *
1140  * The returned page will have PageLRU() cleared.  If it was found on
1141  * the active list, it will have PageActive set.  If it was found on
1142  * the unevictable list, it will have the PageUnevictable bit set. That flag
1143  * may need to be cleared by the caller before letting the page go.
1144  *
1145  * The vmstat statistic corresponding to the list on which the page was
1146  * found will be decremented.
1147  *
1148  * Restrictions:
1149  * (1) Must be called with an elevated refcount on the page. This is a
1150  *     fundamentnal difference from isolate_lru_pages (which is called
1151  *     without a stable reference).
1152  * (2) the lru_lock must not be held.
1153  * (3) interrupts must be enabled.
1154  */
1155 int isolate_lru_page(struct page *page)
1156 {
1157 	int ret = -EBUSY;
1158 
1159 	VM_BUG_ON(!page_count(page));
1160 
1161 	if (PageLRU(page)) {
1162 		struct zone *zone = page_zone(page);
1163 		struct lruvec *lruvec;
1164 
1165 		spin_lock_irq(&zone->lru_lock);
1166 		lruvec = mem_cgroup_page_lruvec(page, zone);
1167 		if (PageLRU(page)) {
1168 			int lru = page_lru(page);
1169 			get_page(page);
1170 			ClearPageLRU(page);
1171 			del_page_from_lru_list(page, lruvec, lru);
1172 			ret = 0;
1173 		}
1174 		spin_unlock_irq(&zone->lru_lock);
1175 	}
1176 	return ret;
1177 }
1178 
1179 /*
1180  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1181  * then get resheduled. When there are massive number of tasks doing page
1182  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1183  * the LRU list will go small and be scanned faster than necessary, leading to
1184  * unnecessary swapping, thrashing and OOM.
1185  */
1186 static int too_many_isolated(struct zone *zone, int file,
1187 		struct scan_control *sc)
1188 {
1189 	unsigned long inactive, isolated;
1190 
1191 	if (current_is_kswapd())
1192 		return 0;
1193 
1194 	if (!global_reclaim(sc))
1195 		return 0;
1196 
1197 	if (file) {
1198 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1199 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1200 	} else {
1201 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1202 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1203 	}
1204 
1205 	/*
1206 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1207 	 * won't get blocked by normal direct-reclaimers, forming a circular
1208 	 * deadlock.
1209 	 */
1210 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1211 		inactive >>= 3;
1212 
1213 	return isolated > inactive;
1214 }
1215 
1216 static noinline_for_stack void
1217 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1218 {
1219 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1220 	struct zone *zone = lruvec_zone(lruvec);
1221 	LIST_HEAD(pages_to_free);
1222 
1223 	/*
1224 	 * Put back any unfreeable pages.
1225 	 */
1226 	while (!list_empty(page_list)) {
1227 		struct page *page = lru_to_page(page_list);
1228 		int lru;
1229 
1230 		VM_BUG_ON(PageLRU(page));
1231 		list_del(&page->lru);
1232 		if (unlikely(!page_evictable(page))) {
1233 			spin_unlock_irq(&zone->lru_lock);
1234 			putback_lru_page(page);
1235 			spin_lock_irq(&zone->lru_lock);
1236 			continue;
1237 		}
1238 
1239 		lruvec = mem_cgroup_page_lruvec(page, zone);
1240 
1241 		SetPageLRU(page);
1242 		lru = page_lru(page);
1243 		add_page_to_lru_list(page, lruvec, lru);
1244 
1245 		if (is_active_lru(lru)) {
1246 			int file = is_file_lru(lru);
1247 			int numpages = hpage_nr_pages(page);
1248 			reclaim_stat->recent_rotated[file] += numpages;
1249 		}
1250 		if (put_page_testzero(page)) {
1251 			__ClearPageLRU(page);
1252 			__ClearPageActive(page);
1253 			del_page_from_lru_list(page, lruvec, lru);
1254 
1255 			if (unlikely(PageCompound(page))) {
1256 				spin_unlock_irq(&zone->lru_lock);
1257 				(*get_compound_page_dtor(page))(page);
1258 				spin_lock_irq(&zone->lru_lock);
1259 			} else
1260 				list_add(&page->lru, &pages_to_free);
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * To save our caller's stack, now use input list for pages to free.
1266 	 */
1267 	list_splice(&pages_to_free, page_list);
1268 }
1269 
1270 /*
1271  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1272  * of reclaimed pages
1273  */
1274 static noinline_for_stack unsigned long
1275 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1276 		     struct scan_control *sc, enum lru_list lru)
1277 {
1278 	LIST_HEAD(page_list);
1279 	unsigned long nr_scanned;
1280 	unsigned long nr_reclaimed = 0;
1281 	unsigned long nr_taken;
1282 	unsigned long nr_dirty = 0;
1283 	unsigned long nr_writeback = 0;
1284 	isolate_mode_t isolate_mode = 0;
1285 	int file = is_file_lru(lru);
1286 	struct zone *zone = lruvec_zone(lruvec);
1287 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1288 
1289 	while (unlikely(too_many_isolated(zone, file, sc))) {
1290 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1291 
1292 		/* We are about to die and free our memory. Return now. */
1293 		if (fatal_signal_pending(current))
1294 			return SWAP_CLUSTER_MAX;
1295 	}
1296 
1297 	lru_add_drain();
1298 
1299 	if (!sc->may_unmap)
1300 		isolate_mode |= ISOLATE_UNMAPPED;
1301 	if (!sc->may_writepage)
1302 		isolate_mode |= ISOLATE_CLEAN;
1303 
1304 	spin_lock_irq(&zone->lru_lock);
1305 
1306 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1307 				     &nr_scanned, sc, isolate_mode, lru);
1308 
1309 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1310 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1311 
1312 	if (global_reclaim(sc)) {
1313 		zone->pages_scanned += nr_scanned;
1314 		if (current_is_kswapd())
1315 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1316 		else
1317 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1318 	}
1319 	spin_unlock_irq(&zone->lru_lock);
1320 
1321 	if (nr_taken == 0)
1322 		return 0;
1323 
1324 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1325 					&nr_dirty, &nr_writeback, false);
1326 
1327 	spin_lock_irq(&zone->lru_lock);
1328 
1329 	reclaim_stat->recent_scanned[file] += nr_taken;
1330 
1331 	if (global_reclaim(sc)) {
1332 		if (current_is_kswapd())
1333 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1334 					       nr_reclaimed);
1335 		else
1336 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1337 					       nr_reclaimed);
1338 	}
1339 
1340 	putback_inactive_pages(lruvec, &page_list);
1341 
1342 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1343 
1344 	spin_unlock_irq(&zone->lru_lock);
1345 
1346 	free_hot_cold_page_list(&page_list, 1);
1347 
1348 	/*
1349 	 * If reclaim is isolating dirty pages under writeback, it implies
1350 	 * that the long-lived page allocation rate is exceeding the page
1351 	 * laundering rate. Either the global limits are not being effective
1352 	 * at throttling processes due to the page distribution throughout
1353 	 * zones or there is heavy usage of a slow backing device. The
1354 	 * only option is to throttle from reclaim context which is not ideal
1355 	 * as there is no guarantee the dirtying process is throttled in the
1356 	 * same way balance_dirty_pages() manages.
1357 	 *
1358 	 * This scales the number of dirty pages that must be under writeback
1359 	 * before throttling depending on priority. It is a simple backoff
1360 	 * function that has the most effect in the range DEF_PRIORITY to
1361 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1362 	 * in trouble and reclaim is considered to be in trouble.
1363 	 *
1364 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1365 	 * DEF_PRIORITY-1  50% must be PageWriteback
1366 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1367 	 * ...
1368 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1369 	 *                     isolated page is PageWriteback
1370 	 */
1371 	if (nr_writeback && nr_writeback >=
1372 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1373 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1374 
1375 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1376 		zone_idx(zone),
1377 		nr_scanned, nr_reclaimed,
1378 		sc->priority,
1379 		trace_shrink_flags(file));
1380 	return nr_reclaimed;
1381 }
1382 
1383 /*
1384  * This moves pages from the active list to the inactive list.
1385  *
1386  * We move them the other way if the page is referenced by one or more
1387  * processes, from rmap.
1388  *
1389  * If the pages are mostly unmapped, the processing is fast and it is
1390  * appropriate to hold zone->lru_lock across the whole operation.  But if
1391  * the pages are mapped, the processing is slow (page_referenced()) so we
1392  * should drop zone->lru_lock around each page.  It's impossible to balance
1393  * this, so instead we remove the pages from the LRU while processing them.
1394  * It is safe to rely on PG_active against the non-LRU pages in here because
1395  * nobody will play with that bit on a non-LRU page.
1396  *
1397  * The downside is that we have to touch page->_count against each page.
1398  * But we had to alter page->flags anyway.
1399  */
1400 
1401 static void move_active_pages_to_lru(struct lruvec *lruvec,
1402 				     struct list_head *list,
1403 				     struct list_head *pages_to_free,
1404 				     enum lru_list lru)
1405 {
1406 	struct zone *zone = lruvec_zone(lruvec);
1407 	unsigned long pgmoved = 0;
1408 	struct page *page;
1409 	int nr_pages;
1410 
1411 	while (!list_empty(list)) {
1412 		page = lru_to_page(list);
1413 		lruvec = mem_cgroup_page_lruvec(page, zone);
1414 
1415 		VM_BUG_ON(PageLRU(page));
1416 		SetPageLRU(page);
1417 
1418 		nr_pages = hpage_nr_pages(page);
1419 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1420 		list_move(&page->lru, &lruvec->lists[lru]);
1421 		pgmoved += nr_pages;
1422 
1423 		if (put_page_testzero(page)) {
1424 			__ClearPageLRU(page);
1425 			__ClearPageActive(page);
1426 			del_page_from_lru_list(page, lruvec, lru);
1427 
1428 			if (unlikely(PageCompound(page))) {
1429 				spin_unlock_irq(&zone->lru_lock);
1430 				(*get_compound_page_dtor(page))(page);
1431 				spin_lock_irq(&zone->lru_lock);
1432 			} else
1433 				list_add(&page->lru, pages_to_free);
1434 		}
1435 	}
1436 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1437 	if (!is_active_lru(lru))
1438 		__count_vm_events(PGDEACTIVATE, pgmoved);
1439 }
1440 
1441 static void shrink_active_list(unsigned long nr_to_scan,
1442 			       struct lruvec *lruvec,
1443 			       struct scan_control *sc,
1444 			       enum lru_list lru)
1445 {
1446 	unsigned long nr_taken;
1447 	unsigned long nr_scanned;
1448 	unsigned long vm_flags;
1449 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1450 	LIST_HEAD(l_active);
1451 	LIST_HEAD(l_inactive);
1452 	struct page *page;
1453 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1454 	unsigned long nr_rotated = 0;
1455 	isolate_mode_t isolate_mode = 0;
1456 	int file = is_file_lru(lru);
1457 	struct zone *zone = lruvec_zone(lruvec);
1458 
1459 	lru_add_drain();
1460 
1461 	if (!sc->may_unmap)
1462 		isolate_mode |= ISOLATE_UNMAPPED;
1463 	if (!sc->may_writepage)
1464 		isolate_mode |= ISOLATE_CLEAN;
1465 
1466 	spin_lock_irq(&zone->lru_lock);
1467 
1468 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1469 				     &nr_scanned, sc, isolate_mode, lru);
1470 	if (global_reclaim(sc))
1471 		zone->pages_scanned += nr_scanned;
1472 
1473 	reclaim_stat->recent_scanned[file] += nr_taken;
1474 
1475 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1476 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1477 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1478 	spin_unlock_irq(&zone->lru_lock);
1479 
1480 	while (!list_empty(&l_hold)) {
1481 		cond_resched();
1482 		page = lru_to_page(&l_hold);
1483 		list_del(&page->lru);
1484 
1485 		if (unlikely(!page_evictable(page))) {
1486 			putback_lru_page(page);
1487 			continue;
1488 		}
1489 
1490 		if (unlikely(buffer_heads_over_limit)) {
1491 			if (page_has_private(page) && trylock_page(page)) {
1492 				if (page_has_private(page))
1493 					try_to_release_page(page, 0);
1494 				unlock_page(page);
1495 			}
1496 		}
1497 
1498 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1499 				    &vm_flags)) {
1500 			nr_rotated += hpage_nr_pages(page);
1501 			/*
1502 			 * Identify referenced, file-backed active pages and
1503 			 * give them one more trip around the active list. So
1504 			 * that executable code get better chances to stay in
1505 			 * memory under moderate memory pressure.  Anon pages
1506 			 * are not likely to be evicted by use-once streaming
1507 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1508 			 * so we ignore them here.
1509 			 */
1510 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1511 				list_add(&page->lru, &l_active);
1512 				continue;
1513 			}
1514 		}
1515 
1516 		ClearPageActive(page);	/* we are de-activating */
1517 		list_add(&page->lru, &l_inactive);
1518 	}
1519 
1520 	/*
1521 	 * Move pages back to the lru list.
1522 	 */
1523 	spin_lock_irq(&zone->lru_lock);
1524 	/*
1525 	 * Count referenced pages from currently used mappings as rotated,
1526 	 * even though only some of them are actually re-activated.  This
1527 	 * helps balance scan pressure between file and anonymous pages in
1528 	 * get_scan_ratio.
1529 	 */
1530 	reclaim_stat->recent_rotated[file] += nr_rotated;
1531 
1532 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1533 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1534 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1535 	spin_unlock_irq(&zone->lru_lock);
1536 
1537 	free_hot_cold_page_list(&l_hold, 1);
1538 }
1539 
1540 #ifdef CONFIG_SWAP
1541 static int inactive_anon_is_low_global(struct zone *zone)
1542 {
1543 	unsigned long active, inactive;
1544 
1545 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1546 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1547 
1548 	if (inactive * zone->inactive_ratio < active)
1549 		return 1;
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1556  * @lruvec: LRU vector to check
1557  *
1558  * Returns true if the zone does not have enough inactive anon pages,
1559  * meaning some active anon pages need to be deactivated.
1560  */
1561 static int inactive_anon_is_low(struct lruvec *lruvec)
1562 {
1563 	/*
1564 	 * If we don't have swap space, anonymous page deactivation
1565 	 * is pointless.
1566 	 */
1567 	if (!total_swap_pages)
1568 		return 0;
1569 
1570 	if (!mem_cgroup_disabled())
1571 		return mem_cgroup_inactive_anon_is_low(lruvec);
1572 
1573 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1574 }
1575 #else
1576 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1577 {
1578 	return 0;
1579 }
1580 #endif
1581 
1582 static int inactive_file_is_low_global(struct zone *zone)
1583 {
1584 	unsigned long active, inactive;
1585 
1586 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1587 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1588 
1589 	return (active > inactive);
1590 }
1591 
1592 /**
1593  * inactive_file_is_low - check if file pages need to be deactivated
1594  * @lruvec: LRU vector to check
1595  *
1596  * When the system is doing streaming IO, memory pressure here
1597  * ensures that active file pages get deactivated, until more
1598  * than half of the file pages are on the inactive list.
1599  *
1600  * Once we get to that situation, protect the system's working
1601  * set from being evicted by disabling active file page aging.
1602  *
1603  * This uses a different ratio than the anonymous pages, because
1604  * the page cache uses a use-once replacement algorithm.
1605  */
1606 static int inactive_file_is_low(struct lruvec *lruvec)
1607 {
1608 	if (!mem_cgroup_disabled())
1609 		return mem_cgroup_inactive_file_is_low(lruvec);
1610 
1611 	return inactive_file_is_low_global(lruvec_zone(lruvec));
1612 }
1613 
1614 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1615 {
1616 	if (is_file_lru(lru))
1617 		return inactive_file_is_low(lruvec);
1618 	else
1619 		return inactive_anon_is_low(lruvec);
1620 }
1621 
1622 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1623 				 struct lruvec *lruvec, struct scan_control *sc)
1624 {
1625 	if (is_active_lru(lru)) {
1626 		if (inactive_list_is_low(lruvec, lru))
1627 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1628 		return 0;
1629 	}
1630 
1631 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1632 }
1633 
1634 static int vmscan_swappiness(struct scan_control *sc)
1635 {
1636 	if (global_reclaim(sc))
1637 		return vm_swappiness;
1638 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1639 }
1640 
1641 /*
1642  * Determine how aggressively the anon and file LRU lists should be
1643  * scanned.  The relative value of each set of LRU lists is determined
1644  * by looking at the fraction of the pages scanned we did rotate back
1645  * onto the active list instead of evict.
1646  *
1647  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1648  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1649  */
1650 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1651 			   unsigned long *nr)
1652 {
1653 	unsigned long anon, file, free;
1654 	unsigned long anon_prio, file_prio;
1655 	unsigned long ap, fp;
1656 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1657 	u64 fraction[2], denominator;
1658 	enum lru_list lru;
1659 	int noswap = 0;
1660 	bool force_scan = false;
1661 	struct zone *zone = lruvec_zone(lruvec);
1662 
1663 	/*
1664 	 * If the zone or memcg is small, nr[l] can be 0.  This
1665 	 * results in no scanning on this priority and a potential
1666 	 * priority drop.  Global direct reclaim can go to the next
1667 	 * zone and tends to have no problems. Global kswapd is for
1668 	 * zone balancing and it needs to scan a minimum amount. When
1669 	 * reclaiming for a memcg, a priority drop can cause high
1670 	 * latencies, so it's better to scan a minimum amount there as
1671 	 * well.
1672 	 */
1673 	if (current_is_kswapd() && zone->all_unreclaimable)
1674 		force_scan = true;
1675 	if (!global_reclaim(sc))
1676 		force_scan = true;
1677 
1678 	/* If we have no swap space, do not bother scanning anon pages. */
1679 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1680 		noswap = 1;
1681 		fraction[0] = 0;
1682 		fraction[1] = 1;
1683 		denominator = 1;
1684 		goto out;
1685 	}
1686 
1687 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1688 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1689 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1690 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1691 
1692 	if (global_reclaim(sc)) {
1693 		free  = zone_page_state(zone, NR_FREE_PAGES);
1694 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1695 			/*
1696 			 * If we have very few page cache pages, force-scan
1697 			 * anon pages.
1698 			 */
1699 			fraction[0] = 1;
1700 			fraction[1] = 0;
1701 			denominator = 1;
1702 			goto out;
1703 		} else if (!inactive_file_is_low_global(zone)) {
1704 			/*
1705 			 * There is enough inactive page cache, do not
1706 			 * reclaim anything from the working set right now.
1707 			 */
1708 			fraction[0] = 0;
1709 			fraction[1] = 1;
1710 			denominator = 1;
1711 			goto out;
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * With swappiness at 100, anonymous and file have the same priority.
1717 	 * This scanning priority is essentially the inverse of IO cost.
1718 	 */
1719 	anon_prio = vmscan_swappiness(sc);
1720 	file_prio = 200 - anon_prio;
1721 
1722 	/*
1723 	 * OK, so we have swap space and a fair amount of page cache
1724 	 * pages.  We use the recently rotated / recently scanned
1725 	 * ratios to determine how valuable each cache is.
1726 	 *
1727 	 * Because workloads change over time (and to avoid overflow)
1728 	 * we keep these statistics as a floating average, which ends
1729 	 * up weighing recent references more than old ones.
1730 	 *
1731 	 * anon in [0], file in [1]
1732 	 */
1733 	spin_lock_irq(&zone->lru_lock);
1734 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1735 		reclaim_stat->recent_scanned[0] /= 2;
1736 		reclaim_stat->recent_rotated[0] /= 2;
1737 	}
1738 
1739 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1740 		reclaim_stat->recent_scanned[1] /= 2;
1741 		reclaim_stat->recent_rotated[1] /= 2;
1742 	}
1743 
1744 	/*
1745 	 * The amount of pressure on anon vs file pages is inversely
1746 	 * proportional to the fraction of recently scanned pages on
1747 	 * each list that were recently referenced and in active use.
1748 	 */
1749 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1750 	ap /= reclaim_stat->recent_rotated[0] + 1;
1751 
1752 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1753 	fp /= reclaim_stat->recent_rotated[1] + 1;
1754 	spin_unlock_irq(&zone->lru_lock);
1755 
1756 	fraction[0] = ap;
1757 	fraction[1] = fp;
1758 	denominator = ap + fp + 1;
1759 out:
1760 	for_each_evictable_lru(lru) {
1761 		int file = is_file_lru(lru);
1762 		unsigned long scan;
1763 
1764 		scan = get_lru_size(lruvec, lru);
1765 		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1766 			scan >>= sc->priority;
1767 			if (!scan && force_scan)
1768 				scan = SWAP_CLUSTER_MAX;
1769 			scan = div64_u64(scan * fraction[file], denominator);
1770 		}
1771 		nr[lru] = scan;
1772 	}
1773 }
1774 
1775 /* Use reclaim/compaction for costly allocs or under memory pressure */
1776 static bool in_reclaim_compaction(struct scan_control *sc)
1777 {
1778 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1779 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1780 			 sc->priority < DEF_PRIORITY - 2))
1781 		return true;
1782 
1783 	return false;
1784 }
1785 
1786 /*
1787  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1788  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1789  * true if more pages should be reclaimed such that when the page allocator
1790  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1791  * It will give up earlier than that if there is difficulty reclaiming pages.
1792  */
1793 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1794 					unsigned long nr_reclaimed,
1795 					unsigned long nr_scanned,
1796 					struct scan_control *sc)
1797 {
1798 	unsigned long pages_for_compaction;
1799 	unsigned long inactive_lru_pages;
1800 
1801 	/* If not in reclaim/compaction mode, stop */
1802 	if (!in_reclaim_compaction(sc))
1803 		return false;
1804 
1805 	/* Consider stopping depending on scan and reclaim activity */
1806 	if (sc->gfp_mask & __GFP_REPEAT) {
1807 		/*
1808 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1809 		 * full LRU list has been scanned and we are still failing
1810 		 * to reclaim pages. This full LRU scan is potentially
1811 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1812 		 */
1813 		if (!nr_reclaimed && !nr_scanned)
1814 			return false;
1815 	} else {
1816 		/*
1817 		 * For non-__GFP_REPEAT allocations which can presumably
1818 		 * fail without consequence, stop if we failed to reclaim
1819 		 * any pages from the last SWAP_CLUSTER_MAX number of
1820 		 * pages that were scanned. This will return to the
1821 		 * caller faster at the risk reclaim/compaction and
1822 		 * the resulting allocation attempt fails
1823 		 */
1824 		if (!nr_reclaimed)
1825 			return false;
1826 	}
1827 
1828 	/*
1829 	 * If we have not reclaimed enough pages for compaction and the
1830 	 * inactive lists are large enough, continue reclaiming
1831 	 */
1832 	pages_for_compaction = (2UL << sc->order);
1833 	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1834 	if (nr_swap_pages > 0)
1835 		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1836 	if (sc->nr_reclaimed < pages_for_compaction &&
1837 			inactive_lru_pages > pages_for_compaction)
1838 		return true;
1839 
1840 	/* If compaction would go ahead or the allocation would succeed, stop */
1841 	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1842 	case COMPACT_PARTIAL:
1843 	case COMPACT_CONTINUE:
1844 		return false;
1845 	default:
1846 		return true;
1847 	}
1848 }
1849 
1850 /*
1851  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1852  */
1853 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1854 {
1855 	unsigned long nr[NR_LRU_LISTS];
1856 	unsigned long nr_to_scan;
1857 	enum lru_list lru;
1858 	unsigned long nr_reclaimed, nr_scanned;
1859 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1860 	struct blk_plug plug;
1861 
1862 restart:
1863 	nr_reclaimed = 0;
1864 	nr_scanned = sc->nr_scanned;
1865 	get_scan_count(lruvec, sc, nr);
1866 
1867 	blk_start_plug(&plug);
1868 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1869 					nr[LRU_INACTIVE_FILE]) {
1870 		for_each_evictable_lru(lru) {
1871 			if (nr[lru]) {
1872 				nr_to_scan = min_t(unsigned long,
1873 						   nr[lru], SWAP_CLUSTER_MAX);
1874 				nr[lru] -= nr_to_scan;
1875 
1876 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1877 							    lruvec, sc);
1878 			}
1879 		}
1880 		/*
1881 		 * On large memory systems, scan >> priority can become
1882 		 * really large. This is fine for the starting priority;
1883 		 * we want to put equal scanning pressure on each zone.
1884 		 * However, if the VM has a harder time of freeing pages,
1885 		 * with multiple processes reclaiming pages, the total
1886 		 * freeing target can get unreasonably large.
1887 		 */
1888 		if (nr_reclaimed >= nr_to_reclaim &&
1889 		    sc->priority < DEF_PRIORITY)
1890 			break;
1891 	}
1892 	blk_finish_plug(&plug);
1893 	sc->nr_reclaimed += nr_reclaimed;
1894 
1895 	/*
1896 	 * Even if we did not try to evict anon pages at all, we want to
1897 	 * rebalance the anon lru active/inactive ratio.
1898 	 */
1899 	if (inactive_anon_is_low(lruvec))
1900 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1901 				   sc, LRU_ACTIVE_ANON);
1902 
1903 	/* reclaim/compaction might need reclaim to continue */
1904 	if (should_continue_reclaim(lruvec, nr_reclaimed,
1905 				    sc->nr_scanned - nr_scanned, sc))
1906 		goto restart;
1907 
1908 	throttle_vm_writeout(sc->gfp_mask);
1909 }
1910 
1911 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1912 {
1913 	struct mem_cgroup *root = sc->target_mem_cgroup;
1914 	struct mem_cgroup_reclaim_cookie reclaim = {
1915 		.zone = zone,
1916 		.priority = sc->priority,
1917 	};
1918 	struct mem_cgroup *memcg;
1919 
1920 	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1921 	do {
1922 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1923 
1924 		shrink_lruvec(lruvec, sc);
1925 
1926 		/*
1927 		 * Limit reclaim has historically picked one memcg and
1928 		 * scanned it with decreasing priority levels until
1929 		 * nr_to_reclaim had been reclaimed.  This priority
1930 		 * cycle is thus over after a single memcg.
1931 		 *
1932 		 * Direct reclaim and kswapd, on the other hand, have
1933 		 * to scan all memory cgroups to fulfill the overall
1934 		 * scan target for the zone.
1935 		 */
1936 		if (!global_reclaim(sc)) {
1937 			mem_cgroup_iter_break(root, memcg);
1938 			break;
1939 		}
1940 		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1941 	} while (memcg);
1942 }
1943 
1944 /* Returns true if compaction should go ahead for a high-order request */
1945 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1946 {
1947 	unsigned long balance_gap, watermark;
1948 	bool watermark_ok;
1949 
1950 	/* Do not consider compaction for orders reclaim is meant to satisfy */
1951 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1952 		return false;
1953 
1954 	/*
1955 	 * Compaction takes time to run and there are potentially other
1956 	 * callers using the pages just freed. Continue reclaiming until
1957 	 * there is a buffer of free pages available to give compaction
1958 	 * a reasonable chance of completing and allocating the page
1959 	 */
1960 	balance_gap = min(low_wmark_pages(zone),
1961 		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1962 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1963 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1964 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1965 
1966 	/*
1967 	 * If compaction is deferred, reclaim up to a point where
1968 	 * compaction will have a chance of success when re-enabled
1969 	 */
1970 	if (compaction_deferred(zone, sc->order))
1971 		return watermark_ok;
1972 
1973 	/* If compaction is not ready to start, keep reclaiming */
1974 	if (!compaction_suitable(zone, sc->order))
1975 		return false;
1976 
1977 	return watermark_ok;
1978 }
1979 
1980 /*
1981  * This is the direct reclaim path, for page-allocating processes.  We only
1982  * try to reclaim pages from zones which will satisfy the caller's allocation
1983  * request.
1984  *
1985  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1986  * Because:
1987  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1988  *    allocation or
1989  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1990  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1991  *    zone defense algorithm.
1992  *
1993  * If a zone is deemed to be full of pinned pages then just give it a light
1994  * scan then give up on it.
1995  *
1996  * This function returns true if a zone is being reclaimed for a costly
1997  * high-order allocation and compaction is ready to begin. This indicates to
1998  * the caller that it should consider retrying the allocation instead of
1999  * further reclaim.
2000  */
2001 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2002 {
2003 	struct zoneref *z;
2004 	struct zone *zone;
2005 	unsigned long nr_soft_reclaimed;
2006 	unsigned long nr_soft_scanned;
2007 	bool aborted_reclaim = false;
2008 
2009 	/*
2010 	 * If the number of buffer_heads in the machine exceeds the maximum
2011 	 * allowed level, force direct reclaim to scan the highmem zone as
2012 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2013 	 */
2014 	if (buffer_heads_over_limit)
2015 		sc->gfp_mask |= __GFP_HIGHMEM;
2016 
2017 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2018 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2019 		if (!populated_zone(zone))
2020 			continue;
2021 		/*
2022 		 * Take care memory controller reclaiming has small influence
2023 		 * to global LRU.
2024 		 */
2025 		if (global_reclaim(sc)) {
2026 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2027 				continue;
2028 			if (zone->all_unreclaimable &&
2029 					sc->priority != DEF_PRIORITY)
2030 				continue;	/* Let kswapd poll it */
2031 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2032 				/*
2033 				 * If we already have plenty of memory free for
2034 				 * compaction in this zone, don't free any more.
2035 				 * Even though compaction is invoked for any
2036 				 * non-zero order, only frequent costly order
2037 				 * reclamation is disruptive enough to become a
2038 				 * noticeable problem, like transparent huge
2039 				 * page allocations.
2040 				 */
2041 				if (compaction_ready(zone, sc)) {
2042 					aborted_reclaim = true;
2043 					continue;
2044 				}
2045 			}
2046 			/*
2047 			 * This steals pages from memory cgroups over softlimit
2048 			 * and returns the number of reclaimed pages and
2049 			 * scanned pages. This works for global memory pressure
2050 			 * and balancing, not for a memcg's limit.
2051 			 */
2052 			nr_soft_scanned = 0;
2053 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2054 						sc->order, sc->gfp_mask,
2055 						&nr_soft_scanned);
2056 			sc->nr_reclaimed += nr_soft_reclaimed;
2057 			sc->nr_scanned += nr_soft_scanned;
2058 			/* need some check for avoid more shrink_zone() */
2059 		}
2060 
2061 		shrink_zone(zone, sc);
2062 	}
2063 
2064 	return aborted_reclaim;
2065 }
2066 
2067 static bool zone_reclaimable(struct zone *zone)
2068 {
2069 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2070 }
2071 
2072 /* All zones in zonelist are unreclaimable? */
2073 static bool all_unreclaimable(struct zonelist *zonelist,
2074 		struct scan_control *sc)
2075 {
2076 	struct zoneref *z;
2077 	struct zone *zone;
2078 
2079 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2080 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2081 		if (!populated_zone(zone))
2082 			continue;
2083 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2084 			continue;
2085 		if (!zone->all_unreclaimable)
2086 			return false;
2087 	}
2088 
2089 	return true;
2090 }
2091 
2092 /*
2093  * This is the main entry point to direct page reclaim.
2094  *
2095  * If a full scan of the inactive list fails to free enough memory then we
2096  * are "out of memory" and something needs to be killed.
2097  *
2098  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2099  * high - the zone may be full of dirty or under-writeback pages, which this
2100  * caller can't do much about.  We kick the writeback threads and take explicit
2101  * naps in the hope that some of these pages can be written.  But if the
2102  * allocating task holds filesystem locks which prevent writeout this might not
2103  * work, and the allocation attempt will fail.
2104  *
2105  * returns:	0, if no pages reclaimed
2106  * 		else, the number of pages reclaimed
2107  */
2108 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2109 					struct scan_control *sc,
2110 					struct shrink_control *shrink)
2111 {
2112 	unsigned long total_scanned = 0;
2113 	struct reclaim_state *reclaim_state = current->reclaim_state;
2114 	struct zoneref *z;
2115 	struct zone *zone;
2116 	unsigned long writeback_threshold;
2117 	bool aborted_reclaim;
2118 
2119 	delayacct_freepages_start();
2120 
2121 	if (global_reclaim(sc))
2122 		count_vm_event(ALLOCSTALL);
2123 
2124 	do {
2125 		sc->nr_scanned = 0;
2126 		aborted_reclaim = shrink_zones(zonelist, sc);
2127 
2128 		/*
2129 		 * Don't shrink slabs when reclaiming memory from
2130 		 * over limit cgroups
2131 		 */
2132 		if (global_reclaim(sc)) {
2133 			unsigned long lru_pages = 0;
2134 			for_each_zone_zonelist(zone, z, zonelist,
2135 					gfp_zone(sc->gfp_mask)) {
2136 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2137 					continue;
2138 
2139 				lru_pages += zone_reclaimable_pages(zone);
2140 			}
2141 
2142 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2143 			if (reclaim_state) {
2144 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2145 				reclaim_state->reclaimed_slab = 0;
2146 			}
2147 		}
2148 		total_scanned += sc->nr_scanned;
2149 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2150 			goto out;
2151 
2152 		/*
2153 		 * Try to write back as many pages as we just scanned.  This
2154 		 * tends to cause slow streaming writers to write data to the
2155 		 * disk smoothly, at the dirtying rate, which is nice.   But
2156 		 * that's undesirable in laptop mode, where we *want* lumpy
2157 		 * writeout.  So in laptop mode, write out the whole world.
2158 		 */
2159 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2160 		if (total_scanned > writeback_threshold) {
2161 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2162 						WB_REASON_TRY_TO_FREE_PAGES);
2163 			sc->may_writepage = 1;
2164 		}
2165 
2166 		/* Take a nap, wait for some writeback to complete */
2167 		if (!sc->hibernation_mode && sc->nr_scanned &&
2168 		    sc->priority < DEF_PRIORITY - 2) {
2169 			struct zone *preferred_zone;
2170 
2171 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2172 						&cpuset_current_mems_allowed,
2173 						&preferred_zone);
2174 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2175 		}
2176 	} while (--sc->priority >= 0);
2177 
2178 out:
2179 	delayacct_freepages_end();
2180 
2181 	if (sc->nr_reclaimed)
2182 		return sc->nr_reclaimed;
2183 
2184 	/*
2185 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2186 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2187 	 * check.
2188 	 */
2189 	if (oom_killer_disabled)
2190 		return 0;
2191 
2192 	/* Aborted reclaim to try compaction? don't OOM, then */
2193 	if (aborted_reclaim)
2194 		return 1;
2195 
2196 	/* top priority shrink_zones still had more to do? don't OOM, then */
2197 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2198 		return 1;
2199 
2200 	return 0;
2201 }
2202 
2203 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2204 {
2205 	struct zone *zone;
2206 	unsigned long pfmemalloc_reserve = 0;
2207 	unsigned long free_pages = 0;
2208 	int i;
2209 	bool wmark_ok;
2210 
2211 	for (i = 0; i <= ZONE_NORMAL; i++) {
2212 		zone = &pgdat->node_zones[i];
2213 		pfmemalloc_reserve += min_wmark_pages(zone);
2214 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2215 	}
2216 
2217 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2218 
2219 	/* kswapd must be awake if processes are being throttled */
2220 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2221 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2222 						(enum zone_type)ZONE_NORMAL);
2223 		wake_up_interruptible(&pgdat->kswapd_wait);
2224 	}
2225 
2226 	return wmark_ok;
2227 }
2228 
2229 /*
2230  * Throttle direct reclaimers if backing storage is backed by the network
2231  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2232  * depleted. kswapd will continue to make progress and wake the processes
2233  * when the low watermark is reached.
2234  *
2235  * Returns true if a fatal signal was delivered during throttling. If this
2236  * happens, the page allocator should not consider triggering the OOM killer.
2237  */
2238 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2239 					nodemask_t *nodemask)
2240 {
2241 	struct zone *zone;
2242 	int high_zoneidx = gfp_zone(gfp_mask);
2243 	pg_data_t *pgdat;
2244 
2245 	/*
2246 	 * Kernel threads should not be throttled as they may be indirectly
2247 	 * responsible for cleaning pages necessary for reclaim to make forward
2248 	 * progress. kjournald for example may enter direct reclaim while
2249 	 * committing a transaction where throttling it could forcing other
2250 	 * processes to block on log_wait_commit().
2251 	 */
2252 	if (current->flags & PF_KTHREAD)
2253 		goto out;
2254 
2255 	/*
2256 	 * If a fatal signal is pending, this process should not throttle.
2257 	 * It should return quickly so it can exit and free its memory
2258 	 */
2259 	if (fatal_signal_pending(current))
2260 		goto out;
2261 
2262 	/* Check if the pfmemalloc reserves are ok */
2263 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2264 	pgdat = zone->zone_pgdat;
2265 	if (pfmemalloc_watermark_ok(pgdat))
2266 		goto out;
2267 
2268 	/* Account for the throttling */
2269 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2270 
2271 	/*
2272 	 * If the caller cannot enter the filesystem, it's possible that it
2273 	 * is due to the caller holding an FS lock or performing a journal
2274 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2275 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2276 	 * blocked waiting on the same lock. Instead, throttle for up to a
2277 	 * second before continuing.
2278 	 */
2279 	if (!(gfp_mask & __GFP_FS)) {
2280 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2281 			pfmemalloc_watermark_ok(pgdat), HZ);
2282 
2283 		goto check_pending;
2284 	}
2285 
2286 	/* Throttle until kswapd wakes the process */
2287 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2288 		pfmemalloc_watermark_ok(pgdat));
2289 
2290 check_pending:
2291 	if (fatal_signal_pending(current))
2292 		return true;
2293 
2294 out:
2295 	return false;
2296 }
2297 
2298 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2299 				gfp_t gfp_mask, nodemask_t *nodemask)
2300 {
2301 	unsigned long nr_reclaimed;
2302 	struct scan_control sc = {
2303 		.gfp_mask = gfp_mask,
2304 		.may_writepage = !laptop_mode,
2305 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2306 		.may_unmap = 1,
2307 		.may_swap = 1,
2308 		.order = order,
2309 		.priority = DEF_PRIORITY,
2310 		.target_mem_cgroup = NULL,
2311 		.nodemask = nodemask,
2312 	};
2313 	struct shrink_control shrink = {
2314 		.gfp_mask = sc.gfp_mask,
2315 	};
2316 
2317 	/*
2318 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2319 	 * 1 is returned so that the page allocator does not OOM kill at this
2320 	 * point.
2321 	 */
2322 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2323 		return 1;
2324 
2325 	trace_mm_vmscan_direct_reclaim_begin(order,
2326 				sc.may_writepage,
2327 				gfp_mask);
2328 
2329 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2330 
2331 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2332 
2333 	return nr_reclaimed;
2334 }
2335 
2336 #ifdef CONFIG_MEMCG
2337 
2338 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2339 						gfp_t gfp_mask, bool noswap,
2340 						struct zone *zone,
2341 						unsigned long *nr_scanned)
2342 {
2343 	struct scan_control sc = {
2344 		.nr_scanned = 0,
2345 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2346 		.may_writepage = !laptop_mode,
2347 		.may_unmap = 1,
2348 		.may_swap = !noswap,
2349 		.order = 0,
2350 		.priority = 0,
2351 		.target_mem_cgroup = memcg,
2352 	};
2353 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2354 
2355 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2356 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2357 
2358 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2359 						      sc.may_writepage,
2360 						      sc.gfp_mask);
2361 
2362 	/*
2363 	 * NOTE: Although we can get the priority field, using it
2364 	 * here is not a good idea, since it limits the pages we can scan.
2365 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2366 	 * will pick up pages from other mem cgroup's as well. We hack
2367 	 * the priority and make it zero.
2368 	 */
2369 	shrink_lruvec(lruvec, &sc);
2370 
2371 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2372 
2373 	*nr_scanned = sc.nr_scanned;
2374 	return sc.nr_reclaimed;
2375 }
2376 
2377 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2378 					   gfp_t gfp_mask,
2379 					   bool noswap)
2380 {
2381 	struct zonelist *zonelist;
2382 	unsigned long nr_reclaimed;
2383 	int nid;
2384 	struct scan_control sc = {
2385 		.may_writepage = !laptop_mode,
2386 		.may_unmap = 1,
2387 		.may_swap = !noswap,
2388 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2389 		.order = 0,
2390 		.priority = DEF_PRIORITY,
2391 		.target_mem_cgroup = memcg,
2392 		.nodemask = NULL, /* we don't care the placement */
2393 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2394 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2395 	};
2396 	struct shrink_control shrink = {
2397 		.gfp_mask = sc.gfp_mask,
2398 	};
2399 
2400 	/*
2401 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2402 	 * take care of from where we get pages. So the node where we start the
2403 	 * scan does not need to be the current node.
2404 	 */
2405 	nid = mem_cgroup_select_victim_node(memcg);
2406 
2407 	zonelist = NODE_DATA(nid)->node_zonelists;
2408 
2409 	trace_mm_vmscan_memcg_reclaim_begin(0,
2410 					    sc.may_writepage,
2411 					    sc.gfp_mask);
2412 
2413 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2414 
2415 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2416 
2417 	return nr_reclaimed;
2418 }
2419 #endif
2420 
2421 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2422 {
2423 	struct mem_cgroup *memcg;
2424 
2425 	if (!total_swap_pages)
2426 		return;
2427 
2428 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2429 	do {
2430 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2431 
2432 		if (inactive_anon_is_low(lruvec))
2433 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2434 					   sc, LRU_ACTIVE_ANON);
2435 
2436 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2437 	} while (memcg);
2438 }
2439 
2440 static bool zone_balanced(struct zone *zone, int order,
2441 			  unsigned long balance_gap, int classzone_idx)
2442 {
2443 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2444 				    balance_gap, classzone_idx, 0))
2445 		return false;
2446 
2447 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2448 	    !compaction_suitable(zone, order))
2449 		return false;
2450 
2451 	return true;
2452 }
2453 
2454 /*
2455  * pgdat_balanced() is used when checking if a node is balanced.
2456  *
2457  * For order-0, all zones must be balanced!
2458  *
2459  * For high-order allocations only zones that meet watermarks and are in a
2460  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2461  * total of balanced pages must be at least 25% of the zones allowed by
2462  * classzone_idx for the node to be considered balanced. Forcing all zones to
2463  * be balanced for high orders can cause excessive reclaim when there are
2464  * imbalanced zones.
2465  * The choice of 25% is due to
2466  *   o a 16M DMA zone that is balanced will not balance a zone on any
2467  *     reasonable sized machine
2468  *   o On all other machines, the top zone must be at least a reasonable
2469  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2470  *     would need to be at least 256M for it to be balance a whole node.
2471  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2472  *     to balance a node on its own. These seemed like reasonable ratios.
2473  */
2474 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2475 {
2476 	unsigned long present_pages = 0;
2477 	unsigned long balanced_pages = 0;
2478 	int i;
2479 
2480 	/* Check the watermark levels */
2481 	for (i = 0; i <= classzone_idx; i++) {
2482 		struct zone *zone = pgdat->node_zones + i;
2483 
2484 		if (!populated_zone(zone))
2485 			continue;
2486 
2487 		present_pages += zone->present_pages;
2488 
2489 		/*
2490 		 * A special case here:
2491 		 *
2492 		 * balance_pgdat() skips over all_unreclaimable after
2493 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2494 		 * they must be considered balanced here as well!
2495 		 */
2496 		if (zone->all_unreclaimable) {
2497 			balanced_pages += zone->present_pages;
2498 			continue;
2499 		}
2500 
2501 		if (zone_balanced(zone, order, 0, i))
2502 			balanced_pages += zone->present_pages;
2503 		else if (!order)
2504 			return false;
2505 	}
2506 
2507 	if (order)
2508 		return balanced_pages >= (present_pages >> 2);
2509 	else
2510 		return true;
2511 }
2512 
2513 /*
2514  * Prepare kswapd for sleeping. This verifies that there are no processes
2515  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2516  *
2517  * Returns true if kswapd is ready to sleep
2518  */
2519 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2520 					int classzone_idx)
2521 {
2522 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2523 	if (remaining)
2524 		return false;
2525 
2526 	/*
2527 	 * There is a potential race between when kswapd checks its watermarks
2528 	 * and a process gets throttled. There is also a potential race if
2529 	 * processes get throttled, kswapd wakes, a large process exits therby
2530 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2531 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2532 	 * so wake them now if necessary. If necessary, processes will wake
2533 	 * kswapd and get throttled again
2534 	 */
2535 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2536 		wake_up(&pgdat->pfmemalloc_wait);
2537 		return false;
2538 	}
2539 
2540 	return pgdat_balanced(pgdat, order, classzone_idx);
2541 }
2542 
2543 /*
2544  * For kswapd, balance_pgdat() will work across all this node's zones until
2545  * they are all at high_wmark_pages(zone).
2546  *
2547  * Returns the final order kswapd was reclaiming at
2548  *
2549  * There is special handling here for zones which are full of pinned pages.
2550  * This can happen if the pages are all mlocked, or if they are all used by
2551  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2552  * What we do is to detect the case where all pages in the zone have been
2553  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2554  * dead and from now on, only perform a short scan.  Basically we're polling
2555  * the zone for when the problem goes away.
2556  *
2557  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2558  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2559  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2560  * lower zones regardless of the number of free pages in the lower zones. This
2561  * interoperates with the page allocator fallback scheme to ensure that aging
2562  * of pages is balanced across the zones.
2563  */
2564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2565 							int *classzone_idx)
2566 {
2567 	struct zone *unbalanced_zone;
2568 	int i;
2569 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2570 	unsigned long total_scanned;
2571 	struct reclaim_state *reclaim_state = current->reclaim_state;
2572 	unsigned long nr_soft_reclaimed;
2573 	unsigned long nr_soft_scanned;
2574 	struct scan_control sc = {
2575 		.gfp_mask = GFP_KERNEL,
2576 		.may_unmap = 1,
2577 		.may_swap = 1,
2578 		/*
2579 		 * kswapd doesn't want to be bailed out while reclaim. because
2580 		 * we want to put equal scanning pressure on each zone.
2581 		 */
2582 		.nr_to_reclaim = ULONG_MAX,
2583 		.order = order,
2584 		.target_mem_cgroup = NULL,
2585 	};
2586 	struct shrink_control shrink = {
2587 		.gfp_mask = sc.gfp_mask,
2588 	};
2589 loop_again:
2590 	total_scanned = 0;
2591 	sc.priority = DEF_PRIORITY;
2592 	sc.nr_reclaimed = 0;
2593 	sc.may_writepage = !laptop_mode;
2594 	count_vm_event(PAGEOUTRUN);
2595 
2596 	do {
2597 		unsigned long lru_pages = 0;
2598 		int has_under_min_watermark_zone = 0;
2599 
2600 		unbalanced_zone = NULL;
2601 
2602 		/*
2603 		 * Scan in the highmem->dma direction for the highest
2604 		 * zone which needs scanning
2605 		 */
2606 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2607 			struct zone *zone = pgdat->node_zones + i;
2608 
2609 			if (!populated_zone(zone))
2610 				continue;
2611 
2612 			if (zone->all_unreclaimable &&
2613 			    sc.priority != DEF_PRIORITY)
2614 				continue;
2615 
2616 			/*
2617 			 * Do some background aging of the anon list, to give
2618 			 * pages a chance to be referenced before reclaiming.
2619 			 */
2620 			age_active_anon(zone, &sc);
2621 
2622 			/*
2623 			 * If the number of buffer_heads in the machine
2624 			 * exceeds the maximum allowed level and this node
2625 			 * has a highmem zone, force kswapd to reclaim from
2626 			 * it to relieve lowmem pressure.
2627 			 */
2628 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2629 				end_zone = i;
2630 				break;
2631 			}
2632 
2633 			if (!zone_balanced(zone, order, 0, 0)) {
2634 				end_zone = i;
2635 				break;
2636 			} else {
2637 				/* If balanced, clear the congested flag */
2638 				zone_clear_flag(zone, ZONE_CONGESTED);
2639 			}
2640 		}
2641 		if (i < 0)
2642 			goto out;
2643 
2644 		for (i = 0; i <= end_zone; i++) {
2645 			struct zone *zone = pgdat->node_zones + i;
2646 
2647 			lru_pages += zone_reclaimable_pages(zone);
2648 		}
2649 
2650 		/*
2651 		 * Now scan the zone in the dma->highmem direction, stopping
2652 		 * at the last zone which needs scanning.
2653 		 *
2654 		 * We do this because the page allocator works in the opposite
2655 		 * direction.  This prevents the page allocator from allocating
2656 		 * pages behind kswapd's direction of progress, which would
2657 		 * cause too much scanning of the lower zones.
2658 		 */
2659 		for (i = 0; i <= end_zone; i++) {
2660 			struct zone *zone = pgdat->node_zones + i;
2661 			int nr_slab, testorder;
2662 			unsigned long balance_gap;
2663 
2664 			if (!populated_zone(zone))
2665 				continue;
2666 
2667 			if (zone->all_unreclaimable &&
2668 			    sc.priority != DEF_PRIORITY)
2669 				continue;
2670 
2671 			sc.nr_scanned = 0;
2672 
2673 			nr_soft_scanned = 0;
2674 			/*
2675 			 * Call soft limit reclaim before calling shrink_zone.
2676 			 */
2677 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2678 							order, sc.gfp_mask,
2679 							&nr_soft_scanned);
2680 			sc.nr_reclaimed += nr_soft_reclaimed;
2681 			total_scanned += nr_soft_scanned;
2682 
2683 			/*
2684 			 * We put equal pressure on every zone, unless
2685 			 * one zone has way too many pages free
2686 			 * already. The "too many pages" is defined
2687 			 * as the high wmark plus a "gap" where the
2688 			 * gap is either the low watermark or 1%
2689 			 * of the zone, whichever is smaller.
2690 			 */
2691 			balance_gap = min(low_wmark_pages(zone),
2692 				(zone->present_pages +
2693 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2694 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2695 			/*
2696 			 * Kswapd reclaims only single pages with compaction
2697 			 * enabled. Trying too hard to reclaim until contiguous
2698 			 * free pages have become available can hurt performance
2699 			 * by evicting too much useful data from memory.
2700 			 * Do not reclaim more than needed for compaction.
2701 			 */
2702 			testorder = order;
2703 			if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2704 					compaction_suitable(zone, order) !=
2705 						COMPACT_SKIPPED)
2706 				testorder = 0;
2707 
2708 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2709 			    !zone_balanced(zone, testorder,
2710 					   balance_gap, end_zone)) {
2711 				shrink_zone(zone, &sc);
2712 
2713 				reclaim_state->reclaimed_slab = 0;
2714 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2715 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2716 				total_scanned += sc.nr_scanned;
2717 
2718 				if (nr_slab == 0 && !zone_reclaimable(zone))
2719 					zone->all_unreclaimable = 1;
2720 			}
2721 
2722 			/*
2723 			 * If we've done a decent amount of scanning and
2724 			 * the reclaim ratio is low, start doing writepage
2725 			 * even in laptop mode
2726 			 */
2727 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2728 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2729 				sc.may_writepage = 1;
2730 
2731 			if (zone->all_unreclaimable) {
2732 				if (end_zone && end_zone == i)
2733 					end_zone--;
2734 				continue;
2735 			}
2736 
2737 			if (!zone_balanced(zone, testorder, 0, end_zone)) {
2738 				unbalanced_zone = zone;
2739 				/*
2740 				 * We are still under min water mark.  This
2741 				 * means that we have a GFP_ATOMIC allocation
2742 				 * failure risk. Hurry up!
2743 				 */
2744 				if (!zone_watermark_ok_safe(zone, order,
2745 					    min_wmark_pages(zone), end_zone, 0))
2746 					has_under_min_watermark_zone = 1;
2747 			} else {
2748 				/*
2749 				 * If a zone reaches its high watermark,
2750 				 * consider it to be no longer congested. It's
2751 				 * possible there are dirty pages backed by
2752 				 * congested BDIs but as pressure is relieved,
2753 				 * speculatively avoid congestion waits
2754 				 */
2755 				zone_clear_flag(zone, ZONE_CONGESTED);
2756 			}
2757 
2758 		}
2759 
2760 		/*
2761 		 * If the low watermark is met there is no need for processes
2762 		 * to be throttled on pfmemalloc_wait as they should not be
2763 		 * able to safely make forward progress. Wake them
2764 		 */
2765 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2766 				pfmemalloc_watermark_ok(pgdat))
2767 			wake_up(&pgdat->pfmemalloc_wait);
2768 
2769 		if (pgdat_balanced(pgdat, order, *classzone_idx))
2770 			break;		/* kswapd: all done */
2771 		/*
2772 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2773 		 * another pass across the zones.
2774 		 */
2775 		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2776 			if (has_under_min_watermark_zone)
2777 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2778 			else if (unbalanced_zone)
2779 				wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10);
2780 		}
2781 
2782 		/*
2783 		 * We do this so kswapd doesn't build up large priorities for
2784 		 * example when it is freeing in parallel with allocators. It
2785 		 * matches the direct reclaim path behaviour in terms of impact
2786 		 * on zone->*_priority.
2787 		 */
2788 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2789 			break;
2790 	} while (--sc.priority >= 0);
2791 out:
2792 
2793 	if (!pgdat_balanced(pgdat, order, *classzone_idx)) {
2794 		cond_resched();
2795 
2796 		try_to_freeze();
2797 
2798 		/*
2799 		 * Fragmentation may mean that the system cannot be
2800 		 * rebalanced for high-order allocations in all zones.
2801 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2802 		 * it means the zones have been fully scanned and are still
2803 		 * not balanced. For high-order allocations, there is
2804 		 * little point trying all over again as kswapd may
2805 		 * infinite loop.
2806 		 *
2807 		 * Instead, recheck all watermarks at order-0 as they
2808 		 * are the most important. If watermarks are ok, kswapd will go
2809 		 * back to sleep. High-order users can still perform direct
2810 		 * reclaim if they wish.
2811 		 */
2812 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2813 			order = sc.order = 0;
2814 
2815 		goto loop_again;
2816 	}
2817 
2818 	/*
2819 	 * If kswapd was reclaiming at a higher order, it has the option of
2820 	 * sleeping without all zones being balanced. Before it does, it must
2821 	 * ensure that the watermarks for order-0 on *all* zones are met and
2822 	 * that the congestion flags are cleared. The congestion flag must
2823 	 * be cleared as kswapd is the only mechanism that clears the flag
2824 	 * and it is potentially going to sleep here.
2825 	 */
2826 	if (order) {
2827 		int zones_need_compaction = 1;
2828 
2829 		for (i = 0; i <= end_zone; i++) {
2830 			struct zone *zone = pgdat->node_zones + i;
2831 
2832 			if (!populated_zone(zone))
2833 				continue;
2834 
2835 			/* Check if the memory needs to be defragmented. */
2836 			if (zone_watermark_ok(zone, order,
2837 				    low_wmark_pages(zone), *classzone_idx, 0))
2838 				zones_need_compaction = 0;
2839 		}
2840 
2841 		if (zones_need_compaction)
2842 			compact_pgdat(pgdat, order);
2843 	}
2844 
2845 	/*
2846 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2847 	 * makes a decision on the order we were last reclaiming at. However,
2848 	 * if another caller entered the allocator slow path while kswapd
2849 	 * was awake, order will remain at the higher level
2850 	 */
2851 	*classzone_idx = end_zone;
2852 	return order;
2853 }
2854 
2855 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2856 {
2857 	long remaining = 0;
2858 	DEFINE_WAIT(wait);
2859 
2860 	if (freezing(current) || kthread_should_stop())
2861 		return;
2862 
2863 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2864 
2865 	/* Try to sleep for a short interval */
2866 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2867 		remaining = schedule_timeout(HZ/10);
2868 		finish_wait(&pgdat->kswapd_wait, &wait);
2869 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2870 	}
2871 
2872 	/*
2873 	 * After a short sleep, check if it was a premature sleep. If not, then
2874 	 * go fully to sleep until explicitly woken up.
2875 	 */
2876 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2877 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2878 
2879 		/*
2880 		 * vmstat counters are not perfectly accurate and the estimated
2881 		 * value for counters such as NR_FREE_PAGES can deviate from the
2882 		 * true value by nr_online_cpus * threshold. To avoid the zone
2883 		 * watermarks being breached while under pressure, we reduce the
2884 		 * per-cpu vmstat threshold while kswapd is awake and restore
2885 		 * them before going back to sleep.
2886 		 */
2887 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2888 
2889 		/*
2890 		 * Compaction records what page blocks it recently failed to
2891 		 * isolate pages from and skips them in the future scanning.
2892 		 * When kswapd is going to sleep, it is reasonable to assume
2893 		 * that pages and compaction may succeed so reset the cache.
2894 		 */
2895 		reset_isolation_suitable(pgdat);
2896 
2897 		if (!kthread_should_stop())
2898 			schedule();
2899 
2900 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2901 	} else {
2902 		if (remaining)
2903 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2904 		else
2905 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2906 	}
2907 	finish_wait(&pgdat->kswapd_wait, &wait);
2908 }
2909 
2910 /*
2911  * The background pageout daemon, started as a kernel thread
2912  * from the init process.
2913  *
2914  * This basically trickles out pages so that we have _some_
2915  * free memory available even if there is no other activity
2916  * that frees anything up. This is needed for things like routing
2917  * etc, where we otherwise might have all activity going on in
2918  * asynchronous contexts that cannot page things out.
2919  *
2920  * If there are applications that are active memory-allocators
2921  * (most normal use), this basically shouldn't matter.
2922  */
2923 static int kswapd(void *p)
2924 {
2925 	unsigned long order, new_order;
2926 	unsigned balanced_order;
2927 	int classzone_idx, new_classzone_idx;
2928 	int balanced_classzone_idx;
2929 	pg_data_t *pgdat = (pg_data_t*)p;
2930 	struct task_struct *tsk = current;
2931 
2932 	struct reclaim_state reclaim_state = {
2933 		.reclaimed_slab = 0,
2934 	};
2935 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2936 
2937 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2938 
2939 	if (!cpumask_empty(cpumask))
2940 		set_cpus_allowed_ptr(tsk, cpumask);
2941 	current->reclaim_state = &reclaim_state;
2942 
2943 	/*
2944 	 * Tell the memory management that we're a "memory allocator",
2945 	 * and that if we need more memory we should get access to it
2946 	 * regardless (see "__alloc_pages()"). "kswapd" should
2947 	 * never get caught in the normal page freeing logic.
2948 	 *
2949 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2950 	 * you need a small amount of memory in order to be able to
2951 	 * page out something else, and this flag essentially protects
2952 	 * us from recursively trying to free more memory as we're
2953 	 * trying to free the first piece of memory in the first place).
2954 	 */
2955 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2956 	set_freezable();
2957 
2958 	order = new_order = 0;
2959 	balanced_order = 0;
2960 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2961 	balanced_classzone_idx = classzone_idx;
2962 	for ( ; ; ) {
2963 		bool ret;
2964 
2965 		/*
2966 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2967 		 * new request of a similar or harder type will succeed soon
2968 		 * so consider going to sleep on the basis we reclaimed at
2969 		 */
2970 		if (balanced_classzone_idx >= new_classzone_idx &&
2971 					balanced_order == new_order) {
2972 			new_order = pgdat->kswapd_max_order;
2973 			new_classzone_idx = pgdat->classzone_idx;
2974 			pgdat->kswapd_max_order =  0;
2975 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2976 		}
2977 
2978 		if (order < new_order || classzone_idx > new_classzone_idx) {
2979 			/*
2980 			 * Don't sleep if someone wants a larger 'order'
2981 			 * allocation or has tigher zone constraints
2982 			 */
2983 			order = new_order;
2984 			classzone_idx = new_classzone_idx;
2985 		} else {
2986 			kswapd_try_to_sleep(pgdat, balanced_order,
2987 						balanced_classzone_idx);
2988 			order = pgdat->kswapd_max_order;
2989 			classzone_idx = pgdat->classzone_idx;
2990 			new_order = order;
2991 			new_classzone_idx = classzone_idx;
2992 			pgdat->kswapd_max_order = 0;
2993 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2994 		}
2995 
2996 		ret = try_to_freeze();
2997 		if (kthread_should_stop())
2998 			break;
2999 
3000 		/*
3001 		 * We can speed up thawing tasks if we don't call balance_pgdat
3002 		 * after returning from the refrigerator
3003 		 */
3004 		if (!ret) {
3005 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3006 			balanced_classzone_idx = classzone_idx;
3007 			balanced_order = balance_pgdat(pgdat, order,
3008 						&balanced_classzone_idx);
3009 		}
3010 	}
3011 
3012 	current->reclaim_state = NULL;
3013 	return 0;
3014 }
3015 
3016 /*
3017  * A zone is low on free memory, so wake its kswapd task to service it.
3018  */
3019 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3020 {
3021 	pg_data_t *pgdat;
3022 
3023 	if (!populated_zone(zone))
3024 		return;
3025 
3026 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3027 		return;
3028 	pgdat = zone->zone_pgdat;
3029 	if (pgdat->kswapd_max_order < order) {
3030 		pgdat->kswapd_max_order = order;
3031 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3032 	}
3033 	if (!waitqueue_active(&pgdat->kswapd_wait))
3034 		return;
3035 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3036 		return;
3037 
3038 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3039 	wake_up_interruptible(&pgdat->kswapd_wait);
3040 }
3041 
3042 /*
3043  * The reclaimable count would be mostly accurate.
3044  * The less reclaimable pages may be
3045  * - mlocked pages, which will be moved to unevictable list when encountered
3046  * - mapped pages, which may require several travels to be reclaimed
3047  * - dirty pages, which is not "instantly" reclaimable
3048  */
3049 unsigned long global_reclaimable_pages(void)
3050 {
3051 	int nr;
3052 
3053 	nr = global_page_state(NR_ACTIVE_FILE) +
3054 	     global_page_state(NR_INACTIVE_FILE);
3055 
3056 	if (nr_swap_pages > 0)
3057 		nr += global_page_state(NR_ACTIVE_ANON) +
3058 		      global_page_state(NR_INACTIVE_ANON);
3059 
3060 	return nr;
3061 }
3062 
3063 unsigned long zone_reclaimable_pages(struct zone *zone)
3064 {
3065 	int nr;
3066 
3067 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3068 	     zone_page_state(zone, NR_INACTIVE_FILE);
3069 
3070 	if (nr_swap_pages > 0)
3071 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3072 		      zone_page_state(zone, NR_INACTIVE_ANON);
3073 
3074 	return nr;
3075 }
3076 
3077 #ifdef CONFIG_HIBERNATION
3078 /*
3079  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3080  * freed pages.
3081  *
3082  * Rather than trying to age LRUs the aim is to preserve the overall
3083  * LRU order by reclaiming preferentially
3084  * inactive > active > active referenced > active mapped
3085  */
3086 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3087 {
3088 	struct reclaim_state reclaim_state;
3089 	struct scan_control sc = {
3090 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3091 		.may_swap = 1,
3092 		.may_unmap = 1,
3093 		.may_writepage = 1,
3094 		.nr_to_reclaim = nr_to_reclaim,
3095 		.hibernation_mode = 1,
3096 		.order = 0,
3097 		.priority = DEF_PRIORITY,
3098 	};
3099 	struct shrink_control shrink = {
3100 		.gfp_mask = sc.gfp_mask,
3101 	};
3102 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3103 	struct task_struct *p = current;
3104 	unsigned long nr_reclaimed;
3105 
3106 	p->flags |= PF_MEMALLOC;
3107 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3108 	reclaim_state.reclaimed_slab = 0;
3109 	p->reclaim_state = &reclaim_state;
3110 
3111 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3112 
3113 	p->reclaim_state = NULL;
3114 	lockdep_clear_current_reclaim_state();
3115 	p->flags &= ~PF_MEMALLOC;
3116 
3117 	return nr_reclaimed;
3118 }
3119 #endif /* CONFIG_HIBERNATION */
3120 
3121 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3122    not required for correctness.  So if the last cpu in a node goes
3123    away, we get changed to run anywhere: as the first one comes back,
3124    restore their cpu bindings. */
3125 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3126 			void *hcpu)
3127 {
3128 	int nid;
3129 
3130 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3131 		for_each_node_state(nid, N_MEMORY) {
3132 			pg_data_t *pgdat = NODE_DATA(nid);
3133 			const struct cpumask *mask;
3134 
3135 			mask = cpumask_of_node(pgdat->node_id);
3136 
3137 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3138 				/* One of our CPUs online: restore mask */
3139 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3140 		}
3141 	}
3142 	return NOTIFY_OK;
3143 }
3144 
3145 /*
3146  * This kswapd start function will be called by init and node-hot-add.
3147  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3148  */
3149 int kswapd_run(int nid)
3150 {
3151 	pg_data_t *pgdat = NODE_DATA(nid);
3152 	int ret = 0;
3153 
3154 	if (pgdat->kswapd)
3155 		return 0;
3156 
3157 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3158 	if (IS_ERR(pgdat->kswapd)) {
3159 		/* failure at boot is fatal */
3160 		BUG_ON(system_state == SYSTEM_BOOTING);
3161 		pgdat->kswapd = NULL;
3162 		pr_err("Failed to start kswapd on node %d\n", nid);
3163 		ret = PTR_ERR(pgdat->kswapd);
3164 	}
3165 	return ret;
3166 }
3167 
3168 /*
3169  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3170  * hold lock_memory_hotplug().
3171  */
3172 void kswapd_stop(int nid)
3173 {
3174 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3175 
3176 	if (kswapd) {
3177 		kthread_stop(kswapd);
3178 		NODE_DATA(nid)->kswapd = NULL;
3179 	}
3180 }
3181 
3182 static int __init kswapd_init(void)
3183 {
3184 	int nid;
3185 
3186 	swap_setup();
3187 	for_each_node_state(nid, N_MEMORY)
3188  		kswapd_run(nid);
3189 	hotcpu_notifier(cpu_callback, 0);
3190 	return 0;
3191 }
3192 
3193 module_init(kswapd_init)
3194 
3195 #ifdef CONFIG_NUMA
3196 /*
3197  * Zone reclaim mode
3198  *
3199  * If non-zero call zone_reclaim when the number of free pages falls below
3200  * the watermarks.
3201  */
3202 int zone_reclaim_mode __read_mostly;
3203 
3204 #define RECLAIM_OFF 0
3205 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3206 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3207 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3208 
3209 /*
3210  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3211  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3212  * a zone.
3213  */
3214 #define ZONE_RECLAIM_PRIORITY 4
3215 
3216 /*
3217  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3218  * occur.
3219  */
3220 int sysctl_min_unmapped_ratio = 1;
3221 
3222 /*
3223  * If the number of slab pages in a zone grows beyond this percentage then
3224  * slab reclaim needs to occur.
3225  */
3226 int sysctl_min_slab_ratio = 5;
3227 
3228 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3229 {
3230 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3231 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3232 		zone_page_state(zone, NR_ACTIVE_FILE);
3233 
3234 	/*
3235 	 * It's possible for there to be more file mapped pages than
3236 	 * accounted for by the pages on the file LRU lists because
3237 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3238 	 */
3239 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3240 }
3241 
3242 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3243 static long zone_pagecache_reclaimable(struct zone *zone)
3244 {
3245 	long nr_pagecache_reclaimable;
3246 	long delta = 0;
3247 
3248 	/*
3249 	 * If RECLAIM_SWAP is set, then all file pages are considered
3250 	 * potentially reclaimable. Otherwise, we have to worry about
3251 	 * pages like swapcache and zone_unmapped_file_pages() provides
3252 	 * a better estimate
3253 	 */
3254 	if (zone_reclaim_mode & RECLAIM_SWAP)
3255 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3256 	else
3257 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3258 
3259 	/* If we can't clean pages, remove dirty pages from consideration */
3260 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3261 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3262 
3263 	/* Watch for any possible underflows due to delta */
3264 	if (unlikely(delta > nr_pagecache_reclaimable))
3265 		delta = nr_pagecache_reclaimable;
3266 
3267 	return nr_pagecache_reclaimable - delta;
3268 }
3269 
3270 /*
3271  * Try to free up some pages from this zone through reclaim.
3272  */
3273 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3274 {
3275 	/* Minimum pages needed in order to stay on node */
3276 	const unsigned long nr_pages = 1 << order;
3277 	struct task_struct *p = current;
3278 	struct reclaim_state reclaim_state;
3279 	struct scan_control sc = {
3280 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3281 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3282 		.may_swap = 1,
3283 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3284 				       SWAP_CLUSTER_MAX),
3285 		.gfp_mask = gfp_mask,
3286 		.order = order,
3287 		.priority = ZONE_RECLAIM_PRIORITY,
3288 	};
3289 	struct shrink_control shrink = {
3290 		.gfp_mask = sc.gfp_mask,
3291 	};
3292 	unsigned long nr_slab_pages0, nr_slab_pages1;
3293 
3294 	cond_resched();
3295 	/*
3296 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3297 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3298 	 * and RECLAIM_SWAP.
3299 	 */
3300 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3301 	lockdep_set_current_reclaim_state(gfp_mask);
3302 	reclaim_state.reclaimed_slab = 0;
3303 	p->reclaim_state = &reclaim_state;
3304 
3305 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3306 		/*
3307 		 * Free memory by calling shrink zone with increasing
3308 		 * priorities until we have enough memory freed.
3309 		 */
3310 		do {
3311 			shrink_zone(zone, &sc);
3312 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3313 	}
3314 
3315 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3316 	if (nr_slab_pages0 > zone->min_slab_pages) {
3317 		/*
3318 		 * shrink_slab() does not currently allow us to determine how
3319 		 * many pages were freed in this zone. So we take the current
3320 		 * number of slab pages and shake the slab until it is reduced
3321 		 * by the same nr_pages that we used for reclaiming unmapped
3322 		 * pages.
3323 		 *
3324 		 * Note that shrink_slab will free memory on all zones and may
3325 		 * take a long time.
3326 		 */
3327 		for (;;) {
3328 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3329 
3330 			/* No reclaimable slab or very low memory pressure */
3331 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3332 				break;
3333 
3334 			/* Freed enough memory */
3335 			nr_slab_pages1 = zone_page_state(zone,
3336 							NR_SLAB_RECLAIMABLE);
3337 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3338 				break;
3339 		}
3340 
3341 		/*
3342 		 * Update nr_reclaimed by the number of slab pages we
3343 		 * reclaimed from this zone.
3344 		 */
3345 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3346 		if (nr_slab_pages1 < nr_slab_pages0)
3347 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3348 	}
3349 
3350 	p->reclaim_state = NULL;
3351 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3352 	lockdep_clear_current_reclaim_state();
3353 	return sc.nr_reclaimed >= nr_pages;
3354 }
3355 
3356 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3357 {
3358 	int node_id;
3359 	int ret;
3360 
3361 	/*
3362 	 * Zone reclaim reclaims unmapped file backed pages and
3363 	 * slab pages if we are over the defined limits.
3364 	 *
3365 	 * A small portion of unmapped file backed pages is needed for
3366 	 * file I/O otherwise pages read by file I/O will be immediately
3367 	 * thrown out if the zone is overallocated. So we do not reclaim
3368 	 * if less than a specified percentage of the zone is used by
3369 	 * unmapped file backed pages.
3370 	 */
3371 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3372 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3373 		return ZONE_RECLAIM_FULL;
3374 
3375 	if (zone->all_unreclaimable)
3376 		return ZONE_RECLAIM_FULL;
3377 
3378 	/*
3379 	 * Do not scan if the allocation should not be delayed.
3380 	 */
3381 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3382 		return ZONE_RECLAIM_NOSCAN;
3383 
3384 	/*
3385 	 * Only run zone reclaim on the local zone or on zones that do not
3386 	 * have associated processors. This will favor the local processor
3387 	 * over remote processors and spread off node memory allocations
3388 	 * as wide as possible.
3389 	 */
3390 	node_id = zone_to_nid(zone);
3391 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3392 		return ZONE_RECLAIM_NOSCAN;
3393 
3394 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3395 		return ZONE_RECLAIM_NOSCAN;
3396 
3397 	ret = __zone_reclaim(zone, gfp_mask, order);
3398 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3399 
3400 	if (!ret)
3401 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3402 
3403 	return ret;
3404 }
3405 #endif
3406 
3407 /*
3408  * page_evictable - test whether a page is evictable
3409  * @page: the page to test
3410  *
3411  * Test whether page is evictable--i.e., should be placed on active/inactive
3412  * lists vs unevictable list.
3413  *
3414  * Reasons page might not be evictable:
3415  * (1) page's mapping marked unevictable
3416  * (2) page is part of an mlocked VMA
3417  *
3418  */
3419 int page_evictable(struct page *page)
3420 {
3421 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3422 }
3423 
3424 #ifdef CONFIG_SHMEM
3425 /**
3426  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3427  * @pages:	array of pages to check
3428  * @nr_pages:	number of pages to check
3429  *
3430  * Checks pages for evictability and moves them to the appropriate lru list.
3431  *
3432  * This function is only used for SysV IPC SHM_UNLOCK.
3433  */
3434 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3435 {
3436 	struct lruvec *lruvec;
3437 	struct zone *zone = NULL;
3438 	int pgscanned = 0;
3439 	int pgrescued = 0;
3440 	int i;
3441 
3442 	for (i = 0; i < nr_pages; i++) {
3443 		struct page *page = pages[i];
3444 		struct zone *pagezone;
3445 
3446 		pgscanned++;
3447 		pagezone = page_zone(page);
3448 		if (pagezone != zone) {
3449 			if (zone)
3450 				spin_unlock_irq(&zone->lru_lock);
3451 			zone = pagezone;
3452 			spin_lock_irq(&zone->lru_lock);
3453 		}
3454 		lruvec = mem_cgroup_page_lruvec(page, zone);
3455 
3456 		if (!PageLRU(page) || !PageUnevictable(page))
3457 			continue;
3458 
3459 		if (page_evictable(page)) {
3460 			enum lru_list lru = page_lru_base_type(page);
3461 
3462 			VM_BUG_ON(PageActive(page));
3463 			ClearPageUnevictable(page);
3464 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3465 			add_page_to_lru_list(page, lruvec, lru);
3466 			pgrescued++;
3467 		}
3468 	}
3469 
3470 	if (zone) {
3471 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3472 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3473 		spin_unlock_irq(&zone->lru_lock);
3474 	}
3475 }
3476 #endif /* CONFIG_SHMEM */
3477 
3478 static void warn_scan_unevictable_pages(void)
3479 {
3480 	printk_once(KERN_WARNING
3481 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3482 		    "disabled for lack of a legitimate use case.  If you have "
3483 		    "one, please send an email to linux-mm@kvack.org.\n",
3484 		    current->comm);
3485 }
3486 
3487 /*
3488  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3489  * all nodes' unevictable lists for evictable pages
3490  */
3491 unsigned long scan_unevictable_pages;
3492 
3493 int scan_unevictable_handler(struct ctl_table *table, int write,
3494 			   void __user *buffer,
3495 			   size_t *length, loff_t *ppos)
3496 {
3497 	warn_scan_unevictable_pages();
3498 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3499 	scan_unevictable_pages = 0;
3500 	return 0;
3501 }
3502 
3503 #ifdef CONFIG_NUMA
3504 /*
3505  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3506  * a specified node's per zone unevictable lists for evictable pages.
3507  */
3508 
3509 static ssize_t read_scan_unevictable_node(struct device *dev,
3510 					  struct device_attribute *attr,
3511 					  char *buf)
3512 {
3513 	warn_scan_unevictable_pages();
3514 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3515 }
3516 
3517 static ssize_t write_scan_unevictable_node(struct device *dev,
3518 					   struct device_attribute *attr,
3519 					const char *buf, size_t count)
3520 {
3521 	warn_scan_unevictable_pages();
3522 	return 1;
3523 }
3524 
3525 
3526 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3527 			read_scan_unevictable_node,
3528 			write_scan_unevictable_node);
3529 
3530 int scan_unevictable_register_node(struct node *node)
3531 {
3532 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3533 }
3534 
3535 void scan_unevictable_unregister_node(struct node *node)
3536 {
3537 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3538 }
3539 #endif
3540