1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/backing-dev.h> 30 #include <linux/rmap.h> 31 #include <linux/topology.h> 32 #include <linux/cpu.h> 33 #include <linux/cpuset.h> 34 #include <linux/compaction.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 #include <linux/oom.h> 44 #include <linux/prefetch.h> 45 46 #include <asm/tlbflush.h> 47 #include <asm/div64.h> 48 49 #include <linux/swapops.h> 50 51 #include "internal.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/vmscan.h> 55 56 struct scan_control { 57 /* Incremented by the number of inactive pages that were scanned */ 58 unsigned long nr_scanned; 59 60 /* Number of pages freed so far during a call to shrink_zones() */ 61 unsigned long nr_reclaimed; 62 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 unsigned long hibernation_mode; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 int may_writepage; 72 73 /* Can mapped pages be reclaimed? */ 74 int may_unmap; 75 76 /* Can pages be swapped as part of reclaim? */ 77 int may_swap; 78 79 int order; 80 81 /* Scan (total_size >> priority) pages at once */ 82 int priority; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Nodemask of nodes allowed by the caller. If NULL, all nodes 92 * are scanned. 93 */ 94 nodemask_t *nodemask; 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_MEMCG 137 static bool global_reclaim(struct scan_control *sc) 138 { 139 return !sc->target_mem_cgroup; 140 } 141 #else 142 static bool global_reclaim(struct scan_control *sc) 143 { 144 return true; 145 } 146 #endif 147 148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 149 { 150 if (!mem_cgroup_disabled()) 151 return mem_cgroup_get_lru_size(lruvec, lru); 152 153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 154 } 155 156 /* 157 * Add a shrinker callback to be called from the vm 158 */ 159 void register_shrinker(struct shrinker *shrinker) 160 { 161 atomic_long_set(&shrinker->nr_in_batch, 0); 162 down_write(&shrinker_rwsem); 163 list_add_tail(&shrinker->list, &shrinker_list); 164 up_write(&shrinker_rwsem); 165 } 166 EXPORT_SYMBOL(register_shrinker); 167 168 /* 169 * Remove one 170 */ 171 void unregister_shrinker(struct shrinker *shrinker) 172 { 173 down_write(&shrinker_rwsem); 174 list_del(&shrinker->list); 175 up_write(&shrinker_rwsem); 176 } 177 EXPORT_SYMBOL(unregister_shrinker); 178 179 static inline int do_shrinker_shrink(struct shrinker *shrinker, 180 struct shrink_control *sc, 181 unsigned long nr_to_scan) 182 { 183 sc->nr_to_scan = nr_to_scan; 184 return (*shrinker->shrink)(shrinker, sc); 185 } 186 187 #define SHRINK_BATCH 128 188 /* 189 * Call the shrink functions to age shrinkable caches 190 * 191 * Here we assume it costs one seek to replace a lru page and that it also 192 * takes a seek to recreate a cache object. With this in mind we age equal 193 * percentages of the lru and ageable caches. This should balance the seeks 194 * generated by these structures. 195 * 196 * If the vm encountered mapped pages on the LRU it increase the pressure on 197 * slab to avoid swapping. 198 * 199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 200 * 201 * `lru_pages' represents the number of on-LRU pages in all the zones which 202 * are eligible for the caller's allocation attempt. It is used for balancing 203 * slab reclaim versus page reclaim. 204 * 205 * Returns the number of slab objects which we shrunk. 206 */ 207 unsigned long shrink_slab(struct shrink_control *shrink, 208 unsigned long nr_pages_scanned, 209 unsigned long lru_pages) 210 { 211 struct shrinker *shrinker; 212 unsigned long ret = 0; 213 214 if (nr_pages_scanned == 0) 215 nr_pages_scanned = SWAP_CLUSTER_MAX; 216 217 if (!down_read_trylock(&shrinker_rwsem)) { 218 /* Assume we'll be able to shrink next time */ 219 ret = 1; 220 goto out; 221 } 222 223 list_for_each_entry(shrinker, &shrinker_list, list) { 224 unsigned long long delta; 225 long total_scan; 226 long max_pass; 227 int shrink_ret = 0; 228 long nr; 229 long new_nr; 230 long batch_size = shrinker->batch ? shrinker->batch 231 : SHRINK_BATCH; 232 233 max_pass = do_shrinker_shrink(shrinker, shrink, 0); 234 if (max_pass <= 0) 235 continue; 236 237 /* 238 * copy the current shrinker scan count into a local variable 239 * and zero it so that other concurrent shrinker invocations 240 * don't also do this scanning work. 241 */ 242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); 243 244 total_scan = nr; 245 delta = (4 * nr_pages_scanned) / shrinker->seeks; 246 delta *= max_pass; 247 do_div(delta, lru_pages + 1); 248 total_scan += delta; 249 if (total_scan < 0) { 250 printk(KERN_ERR "shrink_slab: %pF negative objects to " 251 "delete nr=%ld\n", 252 shrinker->shrink, total_scan); 253 total_scan = max_pass; 254 } 255 256 /* 257 * We need to avoid excessive windup on filesystem shrinkers 258 * due to large numbers of GFP_NOFS allocations causing the 259 * shrinkers to return -1 all the time. This results in a large 260 * nr being built up so when a shrink that can do some work 261 * comes along it empties the entire cache due to nr >>> 262 * max_pass. This is bad for sustaining a working set in 263 * memory. 264 * 265 * Hence only allow the shrinker to scan the entire cache when 266 * a large delta change is calculated directly. 267 */ 268 if (delta < max_pass / 4) 269 total_scan = min(total_scan, max_pass / 2); 270 271 /* 272 * Avoid risking looping forever due to too large nr value: 273 * never try to free more than twice the estimate number of 274 * freeable entries. 275 */ 276 if (total_scan > max_pass * 2) 277 total_scan = max_pass * 2; 278 279 trace_mm_shrink_slab_start(shrinker, shrink, nr, 280 nr_pages_scanned, lru_pages, 281 max_pass, delta, total_scan); 282 283 while (total_scan >= batch_size) { 284 int nr_before; 285 286 nr_before = do_shrinker_shrink(shrinker, shrink, 0); 287 shrink_ret = do_shrinker_shrink(shrinker, shrink, 288 batch_size); 289 if (shrink_ret == -1) 290 break; 291 if (shrink_ret < nr_before) 292 ret += nr_before - shrink_ret; 293 count_vm_events(SLABS_SCANNED, batch_size); 294 total_scan -= batch_size; 295 296 cond_resched(); 297 } 298 299 /* 300 * move the unused scan count back into the shrinker in a 301 * manner that handles concurrent updates. If we exhausted the 302 * scan, there is no need to do an update. 303 */ 304 if (total_scan > 0) 305 new_nr = atomic_long_add_return(total_scan, 306 &shrinker->nr_in_batch); 307 else 308 new_nr = atomic_long_read(&shrinker->nr_in_batch); 309 310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); 311 } 312 up_read(&shrinker_rwsem); 313 out: 314 cond_resched(); 315 return ret; 316 } 317 318 static inline int is_page_cache_freeable(struct page *page) 319 { 320 /* 321 * A freeable page cache page is referenced only by the caller 322 * that isolated the page, the page cache radix tree and 323 * optional buffer heads at page->private. 324 */ 325 return page_count(page) - page_has_private(page) == 2; 326 } 327 328 static int may_write_to_queue(struct backing_dev_info *bdi, 329 struct scan_control *sc) 330 { 331 if (current->flags & PF_SWAPWRITE) 332 return 1; 333 if (!bdi_write_congested(bdi)) 334 return 1; 335 if (bdi == current->backing_dev_info) 336 return 1; 337 return 0; 338 } 339 340 /* 341 * We detected a synchronous write error writing a page out. Probably 342 * -ENOSPC. We need to propagate that into the address_space for a subsequent 343 * fsync(), msync() or close(). 344 * 345 * The tricky part is that after writepage we cannot touch the mapping: nothing 346 * prevents it from being freed up. But we have a ref on the page and once 347 * that page is locked, the mapping is pinned. 348 * 349 * We're allowed to run sleeping lock_page() here because we know the caller has 350 * __GFP_FS. 351 */ 352 static void handle_write_error(struct address_space *mapping, 353 struct page *page, int error) 354 { 355 lock_page(page); 356 if (page_mapping(page) == mapping) 357 mapping_set_error(mapping, error); 358 unlock_page(page); 359 } 360 361 /* possible outcome of pageout() */ 362 typedef enum { 363 /* failed to write page out, page is locked */ 364 PAGE_KEEP, 365 /* move page to the active list, page is locked */ 366 PAGE_ACTIVATE, 367 /* page has been sent to the disk successfully, page is unlocked */ 368 PAGE_SUCCESS, 369 /* page is clean and locked */ 370 PAGE_CLEAN, 371 } pageout_t; 372 373 /* 374 * pageout is called by shrink_page_list() for each dirty page. 375 * Calls ->writepage(). 376 */ 377 static pageout_t pageout(struct page *page, struct address_space *mapping, 378 struct scan_control *sc) 379 { 380 /* 381 * If the page is dirty, only perform writeback if that write 382 * will be non-blocking. To prevent this allocation from being 383 * stalled by pagecache activity. But note that there may be 384 * stalls if we need to run get_block(). We could test 385 * PagePrivate for that. 386 * 387 * If this process is currently in __generic_file_aio_write() against 388 * this page's queue, we can perform writeback even if that 389 * will block. 390 * 391 * If the page is swapcache, write it back even if that would 392 * block, for some throttling. This happens by accident, because 393 * swap_backing_dev_info is bust: it doesn't reflect the 394 * congestion state of the swapdevs. Easy to fix, if needed. 395 */ 396 if (!is_page_cache_freeable(page)) 397 return PAGE_KEEP; 398 if (!mapping) { 399 /* 400 * Some data journaling orphaned pages can have 401 * page->mapping == NULL while being dirty with clean buffers. 402 */ 403 if (page_has_private(page)) { 404 if (try_to_free_buffers(page)) { 405 ClearPageDirty(page); 406 printk("%s: orphaned page\n", __func__); 407 return PAGE_CLEAN; 408 } 409 } 410 return PAGE_KEEP; 411 } 412 if (mapping->a_ops->writepage == NULL) 413 return PAGE_ACTIVATE; 414 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 415 return PAGE_KEEP; 416 417 if (clear_page_dirty_for_io(page)) { 418 int res; 419 struct writeback_control wbc = { 420 .sync_mode = WB_SYNC_NONE, 421 .nr_to_write = SWAP_CLUSTER_MAX, 422 .range_start = 0, 423 .range_end = LLONG_MAX, 424 .for_reclaim = 1, 425 }; 426 427 SetPageReclaim(page); 428 res = mapping->a_ops->writepage(page, &wbc); 429 if (res < 0) 430 handle_write_error(mapping, page, res); 431 if (res == AOP_WRITEPAGE_ACTIVATE) { 432 ClearPageReclaim(page); 433 return PAGE_ACTIVATE; 434 } 435 436 if (!PageWriteback(page)) { 437 /* synchronous write or broken a_ops? */ 438 ClearPageReclaim(page); 439 } 440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 441 inc_zone_page_state(page, NR_VMSCAN_WRITE); 442 return PAGE_SUCCESS; 443 } 444 445 return PAGE_CLEAN; 446 } 447 448 /* 449 * Same as remove_mapping, but if the page is removed from the mapping, it 450 * gets returned with a refcount of 0. 451 */ 452 static int __remove_mapping(struct address_space *mapping, struct page *page) 453 { 454 BUG_ON(!PageLocked(page)); 455 BUG_ON(mapping != page_mapping(page)); 456 457 spin_lock_irq(&mapping->tree_lock); 458 /* 459 * The non racy check for a busy page. 460 * 461 * Must be careful with the order of the tests. When someone has 462 * a ref to the page, it may be possible that they dirty it then 463 * drop the reference. So if PageDirty is tested before page_count 464 * here, then the following race may occur: 465 * 466 * get_user_pages(&page); 467 * [user mapping goes away] 468 * write_to(page); 469 * !PageDirty(page) [good] 470 * SetPageDirty(page); 471 * put_page(page); 472 * !page_count(page) [good, discard it] 473 * 474 * [oops, our write_to data is lost] 475 * 476 * Reversing the order of the tests ensures such a situation cannot 477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 478 * load is not satisfied before that of page->_count. 479 * 480 * Note that if SetPageDirty is always performed via set_page_dirty, 481 * and thus under tree_lock, then this ordering is not required. 482 */ 483 if (!page_freeze_refs(page, 2)) 484 goto cannot_free; 485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 486 if (unlikely(PageDirty(page))) { 487 page_unfreeze_refs(page, 2); 488 goto cannot_free; 489 } 490 491 if (PageSwapCache(page)) { 492 swp_entry_t swap = { .val = page_private(page) }; 493 __delete_from_swap_cache(page); 494 spin_unlock_irq(&mapping->tree_lock); 495 swapcache_free(swap, page); 496 } else { 497 void (*freepage)(struct page *); 498 499 freepage = mapping->a_ops->freepage; 500 501 __delete_from_page_cache(page); 502 spin_unlock_irq(&mapping->tree_lock); 503 mem_cgroup_uncharge_cache_page(page); 504 505 if (freepage != NULL) 506 freepage(page); 507 } 508 509 return 1; 510 511 cannot_free: 512 spin_unlock_irq(&mapping->tree_lock); 513 return 0; 514 } 515 516 /* 517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 518 * someone else has a ref on the page, abort and return 0. If it was 519 * successfully detached, return 1. Assumes the caller has a single ref on 520 * this page. 521 */ 522 int remove_mapping(struct address_space *mapping, struct page *page) 523 { 524 if (__remove_mapping(mapping, page)) { 525 /* 526 * Unfreezing the refcount with 1 rather than 2 effectively 527 * drops the pagecache ref for us without requiring another 528 * atomic operation. 529 */ 530 page_unfreeze_refs(page, 1); 531 return 1; 532 } 533 return 0; 534 } 535 536 /** 537 * putback_lru_page - put previously isolated page onto appropriate LRU list 538 * @page: page to be put back to appropriate lru list 539 * 540 * Add previously isolated @page to appropriate LRU list. 541 * Page may still be unevictable for other reasons. 542 * 543 * lru_lock must not be held, interrupts must be enabled. 544 */ 545 void putback_lru_page(struct page *page) 546 { 547 int lru; 548 int active = !!TestClearPageActive(page); 549 int was_unevictable = PageUnevictable(page); 550 551 VM_BUG_ON(PageLRU(page)); 552 553 redo: 554 ClearPageUnevictable(page); 555 556 if (page_evictable(page)) { 557 /* 558 * For evictable pages, we can use the cache. 559 * In event of a race, worst case is we end up with an 560 * unevictable page on [in]active list. 561 * We know how to handle that. 562 */ 563 lru = active + page_lru_base_type(page); 564 lru_cache_add_lru(page, lru); 565 } else { 566 /* 567 * Put unevictable pages directly on zone's unevictable 568 * list. 569 */ 570 lru = LRU_UNEVICTABLE; 571 add_page_to_unevictable_list(page); 572 /* 573 * When racing with an mlock or AS_UNEVICTABLE clearing 574 * (page is unlocked) make sure that if the other thread 575 * does not observe our setting of PG_lru and fails 576 * isolation/check_move_unevictable_pages, 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 578 * the page back to the evictable list. 579 * 580 * The other side is TestClearPageMlocked() or shmem_lock(). 581 */ 582 smp_mb(); 583 } 584 585 /* 586 * page's status can change while we move it among lru. If an evictable 587 * page is on unevictable list, it never be freed. To avoid that, 588 * check after we added it to the list, again. 589 */ 590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) { 591 if (!isolate_lru_page(page)) { 592 put_page(page); 593 goto redo; 594 } 595 /* This means someone else dropped this page from LRU 596 * So, it will be freed or putback to LRU again. There is 597 * nothing to do here. 598 */ 599 } 600 601 if (was_unevictable && lru != LRU_UNEVICTABLE) 602 count_vm_event(UNEVICTABLE_PGRESCUED); 603 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 604 count_vm_event(UNEVICTABLE_PGCULLED); 605 606 put_page(page); /* drop ref from isolate */ 607 } 608 609 enum page_references { 610 PAGEREF_RECLAIM, 611 PAGEREF_RECLAIM_CLEAN, 612 PAGEREF_KEEP, 613 PAGEREF_ACTIVATE, 614 }; 615 616 static enum page_references page_check_references(struct page *page, 617 struct scan_control *sc) 618 { 619 int referenced_ptes, referenced_page; 620 unsigned long vm_flags; 621 622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 623 &vm_flags); 624 referenced_page = TestClearPageReferenced(page); 625 626 /* 627 * Mlock lost the isolation race with us. Let try_to_unmap() 628 * move the page to the unevictable list. 629 */ 630 if (vm_flags & VM_LOCKED) 631 return PAGEREF_RECLAIM; 632 633 if (referenced_ptes) { 634 if (PageSwapBacked(page)) 635 return PAGEREF_ACTIVATE; 636 /* 637 * All mapped pages start out with page table 638 * references from the instantiating fault, so we need 639 * to look twice if a mapped file page is used more 640 * than once. 641 * 642 * Mark it and spare it for another trip around the 643 * inactive list. Another page table reference will 644 * lead to its activation. 645 * 646 * Note: the mark is set for activated pages as well 647 * so that recently deactivated but used pages are 648 * quickly recovered. 649 */ 650 SetPageReferenced(page); 651 652 if (referenced_page || referenced_ptes > 1) 653 return PAGEREF_ACTIVATE; 654 655 /* 656 * Activate file-backed executable pages after first usage. 657 */ 658 if (vm_flags & VM_EXEC) 659 return PAGEREF_ACTIVATE; 660 661 return PAGEREF_KEEP; 662 } 663 664 /* Reclaim if clean, defer dirty pages to writeback */ 665 if (referenced_page && !PageSwapBacked(page)) 666 return PAGEREF_RECLAIM_CLEAN; 667 668 return PAGEREF_RECLAIM; 669 } 670 671 /* 672 * shrink_page_list() returns the number of reclaimed pages 673 */ 674 static unsigned long shrink_page_list(struct list_head *page_list, 675 struct zone *zone, 676 struct scan_control *sc, 677 enum ttu_flags ttu_flags, 678 unsigned long *ret_nr_dirty, 679 unsigned long *ret_nr_writeback, 680 bool force_reclaim) 681 { 682 LIST_HEAD(ret_pages); 683 LIST_HEAD(free_pages); 684 int pgactivate = 0; 685 unsigned long nr_dirty = 0; 686 unsigned long nr_congested = 0; 687 unsigned long nr_reclaimed = 0; 688 unsigned long nr_writeback = 0; 689 690 cond_resched(); 691 692 mem_cgroup_uncharge_start(); 693 while (!list_empty(page_list)) { 694 struct address_space *mapping; 695 struct page *page; 696 int may_enter_fs; 697 enum page_references references = PAGEREF_RECLAIM_CLEAN; 698 699 cond_resched(); 700 701 page = lru_to_page(page_list); 702 list_del(&page->lru); 703 704 if (!trylock_page(page)) 705 goto keep; 706 707 VM_BUG_ON(PageActive(page)); 708 VM_BUG_ON(page_zone(page) != zone); 709 710 sc->nr_scanned++; 711 712 if (unlikely(!page_evictable(page))) 713 goto cull_mlocked; 714 715 if (!sc->may_unmap && page_mapped(page)) 716 goto keep_locked; 717 718 /* Double the slab pressure for mapped and swapcache pages */ 719 if (page_mapped(page) || PageSwapCache(page)) 720 sc->nr_scanned++; 721 722 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 724 725 if (PageWriteback(page)) { 726 /* 727 * memcg doesn't have any dirty pages throttling so we 728 * could easily OOM just because too many pages are in 729 * writeback and there is nothing else to reclaim. 730 * 731 * Check __GFP_IO, certainly because a loop driver 732 * thread might enter reclaim, and deadlock if it waits 733 * on a page for which it is needed to do the write 734 * (loop masks off __GFP_IO|__GFP_FS for this reason); 735 * but more thought would probably show more reasons. 736 * 737 * Don't require __GFP_FS, since we're not going into 738 * the FS, just waiting on its writeback completion. 739 * Worryingly, ext4 gfs2 and xfs allocate pages with 740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so 741 * testing may_enter_fs here is liable to OOM on them. 742 */ 743 if (global_reclaim(sc) || 744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 745 /* 746 * This is slightly racy - end_page_writeback() 747 * might have just cleared PageReclaim, then 748 * setting PageReclaim here end up interpreted 749 * as PageReadahead - but that does not matter 750 * enough to care. What we do want is for this 751 * page to have PageReclaim set next time memcg 752 * reclaim reaches the tests above, so it will 753 * then wait_on_page_writeback() to avoid OOM; 754 * and it's also appropriate in global reclaim. 755 */ 756 SetPageReclaim(page); 757 nr_writeback++; 758 goto keep_locked; 759 } 760 wait_on_page_writeback(page); 761 } 762 763 if (!force_reclaim) 764 references = page_check_references(page, sc); 765 766 switch (references) { 767 case PAGEREF_ACTIVATE: 768 goto activate_locked; 769 case PAGEREF_KEEP: 770 goto keep_locked; 771 case PAGEREF_RECLAIM: 772 case PAGEREF_RECLAIM_CLEAN: 773 ; /* try to reclaim the page below */ 774 } 775 776 /* 777 * Anonymous process memory has backing store? 778 * Try to allocate it some swap space here. 779 */ 780 if (PageAnon(page) && !PageSwapCache(page)) { 781 if (!(sc->gfp_mask & __GFP_IO)) 782 goto keep_locked; 783 if (!add_to_swap(page)) 784 goto activate_locked; 785 may_enter_fs = 1; 786 } 787 788 mapping = page_mapping(page); 789 790 /* 791 * The page is mapped into the page tables of one or more 792 * processes. Try to unmap it here. 793 */ 794 if (page_mapped(page) && mapping) { 795 switch (try_to_unmap(page, ttu_flags)) { 796 case SWAP_FAIL: 797 goto activate_locked; 798 case SWAP_AGAIN: 799 goto keep_locked; 800 case SWAP_MLOCK: 801 goto cull_mlocked; 802 case SWAP_SUCCESS: 803 ; /* try to free the page below */ 804 } 805 } 806 807 if (PageDirty(page)) { 808 nr_dirty++; 809 810 /* 811 * Only kswapd can writeback filesystem pages to 812 * avoid risk of stack overflow but do not writeback 813 * unless under significant pressure. 814 */ 815 if (page_is_file_cache(page) && 816 (!current_is_kswapd() || 817 sc->priority >= DEF_PRIORITY - 2)) { 818 /* 819 * Immediately reclaim when written back. 820 * Similar in principal to deactivate_page() 821 * except we already have the page isolated 822 * and know it's dirty 823 */ 824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 825 SetPageReclaim(page); 826 827 goto keep_locked; 828 } 829 830 if (references == PAGEREF_RECLAIM_CLEAN) 831 goto keep_locked; 832 if (!may_enter_fs) 833 goto keep_locked; 834 if (!sc->may_writepage) 835 goto keep_locked; 836 837 /* Page is dirty, try to write it out here */ 838 switch (pageout(page, mapping, sc)) { 839 case PAGE_KEEP: 840 nr_congested++; 841 goto keep_locked; 842 case PAGE_ACTIVATE: 843 goto activate_locked; 844 case PAGE_SUCCESS: 845 if (PageWriteback(page)) 846 goto keep; 847 if (PageDirty(page)) 848 goto keep; 849 850 /* 851 * A synchronous write - probably a ramdisk. Go 852 * ahead and try to reclaim the page. 853 */ 854 if (!trylock_page(page)) 855 goto keep; 856 if (PageDirty(page) || PageWriteback(page)) 857 goto keep_locked; 858 mapping = page_mapping(page); 859 case PAGE_CLEAN: 860 ; /* try to free the page below */ 861 } 862 } 863 864 /* 865 * If the page has buffers, try to free the buffer mappings 866 * associated with this page. If we succeed we try to free 867 * the page as well. 868 * 869 * We do this even if the page is PageDirty(). 870 * try_to_release_page() does not perform I/O, but it is 871 * possible for a page to have PageDirty set, but it is actually 872 * clean (all its buffers are clean). This happens if the 873 * buffers were written out directly, with submit_bh(). ext3 874 * will do this, as well as the blockdev mapping. 875 * try_to_release_page() will discover that cleanness and will 876 * drop the buffers and mark the page clean - it can be freed. 877 * 878 * Rarely, pages can have buffers and no ->mapping. These are 879 * the pages which were not successfully invalidated in 880 * truncate_complete_page(). We try to drop those buffers here 881 * and if that worked, and the page is no longer mapped into 882 * process address space (page_count == 1) it can be freed. 883 * Otherwise, leave the page on the LRU so it is swappable. 884 */ 885 if (page_has_private(page)) { 886 if (!try_to_release_page(page, sc->gfp_mask)) 887 goto activate_locked; 888 if (!mapping && page_count(page) == 1) { 889 unlock_page(page); 890 if (put_page_testzero(page)) 891 goto free_it; 892 else { 893 /* 894 * rare race with speculative reference. 895 * the speculative reference will free 896 * this page shortly, so we may 897 * increment nr_reclaimed here (and 898 * leave it off the LRU). 899 */ 900 nr_reclaimed++; 901 continue; 902 } 903 } 904 } 905 906 if (!mapping || !__remove_mapping(mapping, page)) 907 goto keep_locked; 908 909 /* 910 * At this point, we have no other references and there is 911 * no way to pick any more up (removed from LRU, removed 912 * from pagecache). Can use non-atomic bitops now (and 913 * we obviously don't have to worry about waking up a process 914 * waiting on the page lock, because there are no references. 915 */ 916 __clear_page_locked(page); 917 free_it: 918 nr_reclaimed++; 919 920 /* 921 * Is there need to periodically free_page_list? It would 922 * appear not as the counts should be low 923 */ 924 list_add(&page->lru, &free_pages); 925 continue; 926 927 cull_mlocked: 928 if (PageSwapCache(page)) 929 try_to_free_swap(page); 930 unlock_page(page); 931 putback_lru_page(page); 932 continue; 933 934 activate_locked: 935 /* Not a candidate for swapping, so reclaim swap space. */ 936 if (PageSwapCache(page) && vm_swap_full()) 937 try_to_free_swap(page); 938 VM_BUG_ON(PageActive(page)); 939 SetPageActive(page); 940 pgactivate++; 941 keep_locked: 942 unlock_page(page); 943 keep: 944 list_add(&page->lru, &ret_pages); 945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 946 } 947 948 /* 949 * Tag a zone as congested if all the dirty pages encountered were 950 * backed by a congested BDI. In this case, reclaimers should just 951 * back off and wait for congestion to clear because further reclaim 952 * will encounter the same problem 953 */ 954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) 955 zone_set_flag(zone, ZONE_CONGESTED); 956 957 free_hot_cold_page_list(&free_pages, 1); 958 959 list_splice(&ret_pages, page_list); 960 count_vm_events(PGACTIVATE, pgactivate); 961 mem_cgroup_uncharge_end(); 962 *ret_nr_dirty += nr_dirty; 963 *ret_nr_writeback += nr_writeback; 964 return nr_reclaimed; 965 } 966 967 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 968 struct list_head *page_list) 969 { 970 struct scan_control sc = { 971 .gfp_mask = GFP_KERNEL, 972 .priority = DEF_PRIORITY, 973 .may_unmap = 1, 974 }; 975 unsigned long ret, dummy1, dummy2; 976 struct page *page, *next; 977 LIST_HEAD(clean_pages); 978 979 list_for_each_entry_safe(page, next, page_list, lru) { 980 if (page_is_file_cache(page) && !PageDirty(page)) { 981 ClearPageActive(page); 982 list_move(&page->lru, &clean_pages); 983 } 984 } 985 986 ret = shrink_page_list(&clean_pages, zone, &sc, 987 TTU_UNMAP|TTU_IGNORE_ACCESS, 988 &dummy1, &dummy2, true); 989 list_splice(&clean_pages, page_list); 990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 991 return ret; 992 } 993 994 /* 995 * Attempt to remove the specified page from its LRU. Only take this page 996 * if it is of the appropriate PageActive status. Pages which are being 997 * freed elsewhere are also ignored. 998 * 999 * page: page to consider 1000 * mode: one of the LRU isolation modes defined above 1001 * 1002 * returns 0 on success, -ve errno on failure. 1003 */ 1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1005 { 1006 int ret = -EINVAL; 1007 1008 /* Only take pages on the LRU. */ 1009 if (!PageLRU(page)) 1010 return ret; 1011 1012 /* Compaction should not handle unevictable pages but CMA can do so */ 1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1014 return ret; 1015 1016 ret = -EBUSY; 1017 1018 /* 1019 * To minimise LRU disruption, the caller can indicate that it only 1020 * wants to isolate pages it will be able to operate on without 1021 * blocking - clean pages for the most part. 1022 * 1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1024 * is used by reclaim when it is cannot write to backing storage 1025 * 1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1027 * that it is possible to migrate without blocking 1028 */ 1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1030 /* All the caller can do on PageWriteback is block */ 1031 if (PageWriteback(page)) 1032 return ret; 1033 1034 if (PageDirty(page)) { 1035 struct address_space *mapping; 1036 1037 /* ISOLATE_CLEAN means only clean pages */ 1038 if (mode & ISOLATE_CLEAN) 1039 return ret; 1040 1041 /* 1042 * Only pages without mappings or that have a 1043 * ->migratepage callback are possible to migrate 1044 * without blocking 1045 */ 1046 mapping = page_mapping(page); 1047 if (mapping && !mapping->a_ops->migratepage) 1048 return ret; 1049 } 1050 } 1051 1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1053 return ret; 1054 1055 if (likely(get_page_unless_zero(page))) { 1056 /* 1057 * Be careful not to clear PageLRU until after we're 1058 * sure the page is not being freed elsewhere -- the 1059 * page release code relies on it. 1060 */ 1061 ClearPageLRU(page); 1062 ret = 0; 1063 } 1064 1065 return ret; 1066 } 1067 1068 /* 1069 * zone->lru_lock is heavily contended. Some of the functions that 1070 * shrink the lists perform better by taking out a batch of pages 1071 * and working on them outside the LRU lock. 1072 * 1073 * For pagecache intensive workloads, this function is the hottest 1074 * spot in the kernel (apart from copy_*_user functions). 1075 * 1076 * Appropriate locks must be held before calling this function. 1077 * 1078 * @nr_to_scan: The number of pages to look through on the list. 1079 * @lruvec: The LRU vector to pull pages from. 1080 * @dst: The temp list to put pages on to. 1081 * @nr_scanned: The number of pages that were scanned. 1082 * @sc: The scan_control struct for this reclaim session 1083 * @mode: One of the LRU isolation modes 1084 * @lru: LRU list id for isolating 1085 * 1086 * returns how many pages were moved onto *@dst. 1087 */ 1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1089 struct lruvec *lruvec, struct list_head *dst, 1090 unsigned long *nr_scanned, struct scan_control *sc, 1091 isolate_mode_t mode, enum lru_list lru) 1092 { 1093 struct list_head *src = &lruvec->lists[lru]; 1094 unsigned long nr_taken = 0; 1095 unsigned long scan; 1096 1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1098 struct page *page; 1099 int nr_pages; 1100 1101 page = lru_to_page(src); 1102 prefetchw_prev_lru_page(page, src, flags); 1103 1104 VM_BUG_ON(!PageLRU(page)); 1105 1106 switch (__isolate_lru_page(page, mode)) { 1107 case 0: 1108 nr_pages = hpage_nr_pages(page); 1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1110 list_move(&page->lru, dst); 1111 nr_taken += nr_pages; 1112 break; 1113 1114 case -EBUSY: 1115 /* else it is being freed elsewhere */ 1116 list_move(&page->lru, src); 1117 continue; 1118 1119 default: 1120 BUG(); 1121 } 1122 } 1123 1124 *nr_scanned = scan; 1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1126 nr_taken, mode, is_file_lru(lru)); 1127 return nr_taken; 1128 } 1129 1130 /** 1131 * isolate_lru_page - tries to isolate a page from its LRU list 1132 * @page: page to isolate from its LRU list 1133 * 1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1135 * vmstat statistic corresponding to whatever LRU list the page was on. 1136 * 1137 * Returns 0 if the page was removed from an LRU list. 1138 * Returns -EBUSY if the page was not on an LRU list. 1139 * 1140 * The returned page will have PageLRU() cleared. If it was found on 1141 * the active list, it will have PageActive set. If it was found on 1142 * the unevictable list, it will have the PageUnevictable bit set. That flag 1143 * may need to be cleared by the caller before letting the page go. 1144 * 1145 * The vmstat statistic corresponding to the list on which the page was 1146 * found will be decremented. 1147 * 1148 * Restrictions: 1149 * (1) Must be called with an elevated refcount on the page. This is a 1150 * fundamentnal difference from isolate_lru_pages (which is called 1151 * without a stable reference). 1152 * (2) the lru_lock must not be held. 1153 * (3) interrupts must be enabled. 1154 */ 1155 int isolate_lru_page(struct page *page) 1156 { 1157 int ret = -EBUSY; 1158 1159 VM_BUG_ON(!page_count(page)); 1160 1161 if (PageLRU(page)) { 1162 struct zone *zone = page_zone(page); 1163 struct lruvec *lruvec; 1164 1165 spin_lock_irq(&zone->lru_lock); 1166 lruvec = mem_cgroup_page_lruvec(page, zone); 1167 if (PageLRU(page)) { 1168 int lru = page_lru(page); 1169 get_page(page); 1170 ClearPageLRU(page); 1171 del_page_from_lru_list(page, lruvec, lru); 1172 ret = 0; 1173 } 1174 spin_unlock_irq(&zone->lru_lock); 1175 } 1176 return ret; 1177 } 1178 1179 /* 1180 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1181 * then get resheduled. When there are massive number of tasks doing page 1182 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1183 * the LRU list will go small and be scanned faster than necessary, leading to 1184 * unnecessary swapping, thrashing and OOM. 1185 */ 1186 static int too_many_isolated(struct zone *zone, int file, 1187 struct scan_control *sc) 1188 { 1189 unsigned long inactive, isolated; 1190 1191 if (current_is_kswapd()) 1192 return 0; 1193 1194 if (!global_reclaim(sc)) 1195 return 0; 1196 1197 if (file) { 1198 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1199 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1200 } else { 1201 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1202 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1203 } 1204 1205 /* 1206 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1207 * won't get blocked by normal direct-reclaimers, forming a circular 1208 * deadlock. 1209 */ 1210 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1211 inactive >>= 3; 1212 1213 return isolated > inactive; 1214 } 1215 1216 static noinline_for_stack void 1217 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1218 { 1219 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1220 struct zone *zone = lruvec_zone(lruvec); 1221 LIST_HEAD(pages_to_free); 1222 1223 /* 1224 * Put back any unfreeable pages. 1225 */ 1226 while (!list_empty(page_list)) { 1227 struct page *page = lru_to_page(page_list); 1228 int lru; 1229 1230 VM_BUG_ON(PageLRU(page)); 1231 list_del(&page->lru); 1232 if (unlikely(!page_evictable(page))) { 1233 spin_unlock_irq(&zone->lru_lock); 1234 putback_lru_page(page); 1235 spin_lock_irq(&zone->lru_lock); 1236 continue; 1237 } 1238 1239 lruvec = mem_cgroup_page_lruvec(page, zone); 1240 1241 SetPageLRU(page); 1242 lru = page_lru(page); 1243 add_page_to_lru_list(page, lruvec, lru); 1244 1245 if (is_active_lru(lru)) { 1246 int file = is_file_lru(lru); 1247 int numpages = hpage_nr_pages(page); 1248 reclaim_stat->recent_rotated[file] += numpages; 1249 } 1250 if (put_page_testzero(page)) { 1251 __ClearPageLRU(page); 1252 __ClearPageActive(page); 1253 del_page_from_lru_list(page, lruvec, lru); 1254 1255 if (unlikely(PageCompound(page))) { 1256 spin_unlock_irq(&zone->lru_lock); 1257 (*get_compound_page_dtor(page))(page); 1258 spin_lock_irq(&zone->lru_lock); 1259 } else 1260 list_add(&page->lru, &pages_to_free); 1261 } 1262 } 1263 1264 /* 1265 * To save our caller's stack, now use input list for pages to free. 1266 */ 1267 list_splice(&pages_to_free, page_list); 1268 } 1269 1270 /* 1271 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1272 * of reclaimed pages 1273 */ 1274 static noinline_for_stack unsigned long 1275 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1276 struct scan_control *sc, enum lru_list lru) 1277 { 1278 LIST_HEAD(page_list); 1279 unsigned long nr_scanned; 1280 unsigned long nr_reclaimed = 0; 1281 unsigned long nr_taken; 1282 unsigned long nr_dirty = 0; 1283 unsigned long nr_writeback = 0; 1284 isolate_mode_t isolate_mode = 0; 1285 int file = is_file_lru(lru); 1286 struct zone *zone = lruvec_zone(lruvec); 1287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1288 1289 while (unlikely(too_many_isolated(zone, file, sc))) { 1290 congestion_wait(BLK_RW_ASYNC, HZ/10); 1291 1292 /* We are about to die and free our memory. Return now. */ 1293 if (fatal_signal_pending(current)) 1294 return SWAP_CLUSTER_MAX; 1295 } 1296 1297 lru_add_drain(); 1298 1299 if (!sc->may_unmap) 1300 isolate_mode |= ISOLATE_UNMAPPED; 1301 if (!sc->may_writepage) 1302 isolate_mode |= ISOLATE_CLEAN; 1303 1304 spin_lock_irq(&zone->lru_lock); 1305 1306 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1307 &nr_scanned, sc, isolate_mode, lru); 1308 1309 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1310 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1311 1312 if (global_reclaim(sc)) { 1313 zone->pages_scanned += nr_scanned; 1314 if (current_is_kswapd()) 1315 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1316 else 1317 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1318 } 1319 spin_unlock_irq(&zone->lru_lock); 1320 1321 if (nr_taken == 0) 1322 return 0; 1323 1324 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1325 &nr_dirty, &nr_writeback, false); 1326 1327 spin_lock_irq(&zone->lru_lock); 1328 1329 reclaim_stat->recent_scanned[file] += nr_taken; 1330 1331 if (global_reclaim(sc)) { 1332 if (current_is_kswapd()) 1333 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1334 nr_reclaimed); 1335 else 1336 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1337 nr_reclaimed); 1338 } 1339 1340 putback_inactive_pages(lruvec, &page_list); 1341 1342 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1343 1344 spin_unlock_irq(&zone->lru_lock); 1345 1346 free_hot_cold_page_list(&page_list, 1); 1347 1348 /* 1349 * If reclaim is isolating dirty pages under writeback, it implies 1350 * that the long-lived page allocation rate is exceeding the page 1351 * laundering rate. Either the global limits are not being effective 1352 * at throttling processes due to the page distribution throughout 1353 * zones or there is heavy usage of a slow backing device. The 1354 * only option is to throttle from reclaim context which is not ideal 1355 * as there is no guarantee the dirtying process is throttled in the 1356 * same way balance_dirty_pages() manages. 1357 * 1358 * This scales the number of dirty pages that must be under writeback 1359 * before throttling depending on priority. It is a simple backoff 1360 * function that has the most effect in the range DEF_PRIORITY to 1361 * DEF_PRIORITY-2 which is the priority reclaim is considered to be 1362 * in trouble and reclaim is considered to be in trouble. 1363 * 1364 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle 1365 * DEF_PRIORITY-1 50% must be PageWriteback 1366 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble 1367 * ... 1368 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any 1369 * isolated page is PageWriteback 1370 */ 1371 if (nr_writeback && nr_writeback >= 1372 (nr_taken >> (DEF_PRIORITY - sc->priority))) 1373 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1374 1375 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1376 zone_idx(zone), 1377 nr_scanned, nr_reclaimed, 1378 sc->priority, 1379 trace_shrink_flags(file)); 1380 return nr_reclaimed; 1381 } 1382 1383 /* 1384 * This moves pages from the active list to the inactive list. 1385 * 1386 * We move them the other way if the page is referenced by one or more 1387 * processes, from rmap. 1388 * 1389 * If the pages are mostly unmapped, the processing is fast and it is 1390 * appropriate to hold zone->lru_lock across the whole operation. But if 1391 * the pages are mapped, the processing is slow (page_referenced()) so we 1392 * should drop zone->lru_lock around each page. It's impossible to balance 1393 * this, so instead we remove the pages from the LRU while processing them. 1394 * It is safe to rely on PG_active against the non-LRU pages in here because 1395 * nobody will play with that bit on a non-LRU page. 1396 * 1397 * The downside is that we have to touch page->_count against each page. 1398 * But we had to alter page->flags anyway. 1399 */ 1400 1401 static void move_active_pages_to_lru(struct lruvec *lruvec, 1402 struct list_head *list, 1403 struct list_head *pages_to_free, 1404 enum lru_list lru) 1405 { 1406 struct zone *zone = lruvec_zone(lruvec); 1407 unsigned long pgmoved = 0; 1408 struct page *page; 1409 int nr_pages; 1410 1411 while (!list_empty(list)) { 1412 page = lru_to_page(list); 1413 lruvec = mem_cgroup_page_lruvec(page, zone); 1414 1415 VM_BUG_ON(PageLRU(page)); 1416 SetPageLRU(page); 1417 1418 nr_pages = hpage_nr_pages(page); 1419 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1420 list_move(&page->lru, &lruvec->lists[lru]); 1421 pgmoved += nr_pages; 1422 1423 if (put_page_testzero(page)) { 1424 __ClearPageLRU(page); 1425 __ClearPageActive(page); 1426 del_page_from_lru_list(page, lruvec, lru); 1427 1428 if (unlikely(PageCompound(page))) { 1429 spin_unlock_irq(&zone->lru_lock); 1430 (*get_compound_page_dtor(page))(page); 1431 spin_lock_irq(&zone->lru_lock); 1432 } else 1433 list_add(&page->lru, pages_to_free); 1434 } 1435 } 1436 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1437 if (!is_active_lru(lru)) 1438 __count_vm_events(PGDEACTIVATE, pgmoved); 1439 } 1440 1441 static void shrink_active_list(unsigned long nr_to_scan, 1442 struct lruvec *lruvec, 1443 struct scan_control *sc, 1444 enum lru_list lru) 1445 { 1446 unsigned long nr_taken; 1447 unsigned long nr_scanned; 1448 unsigned long vm_flags; 1449 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1450 LIST_HEAD(l_active); 1451 LIST_HEAD(l_inactive); 1452 struct page *page; 1453 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1454 unsigned long nr_rotated = 0; 1455 isolate_mode_t isolate_mode = 0; 1456 int file = is_file_lru(lru); 1457 struct zone *zone = lruvec_zone(lruvec); 1458 1459 lru_add_drain(); 1460 1461 if (!sc->may_unmap) 1462 isolate_mode |= ISOLATE_UNMAPPED; 1463 if (!sc->may_writepage) 1464 isolate_mode |= ISOLATE_CLEAN; 1465 1466 spin_lock_irq(&zone->lru_lock); 1467 1468 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1469 &nr_scanned, sc, isolate_mode, lru); 1470 if (global_reclaim(sc)) 1471 zone->pages_scanned += nr_scanned; 1472 1473 reclaim_stat->recent_scanned[file] += nr_taken; 1474 1475 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1476 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1477 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1478 spin_unlock_irq(&zone->lru_lock); 1479 1480 while (!list_empty(&l_hold)) { 1481 cond_resched(); 1482 page = lru_to_page(&l_hold); 1483 list_del(&page->lru); 1484 1485 if (unlikely(!page_evictable(page))) { 1486 putback_lru_page(page); 1487 continue; 1488 } 1489 1490 if (unlikely(buffer_heads_over_limit)) { 1491 if (page_has_private(page) && trylock_page(page)) { 1492 if (page_has_private(page)) 1493 try_to_release_page(page, 0); 1494 unlock_page(page); 1495 } 1496 } 1497 1498 if (page_referenced(page, 0, sc->target_mem_cgroup, 1499 &vm_flags)) { 1500 nr_rotated += hpage_nr_pages(page); 1501 /* 1502 * Identify referenced, file-backed active pages and 1503 * give them one more trip around the active list. So 1504 * that executable code get better chances to stay in 1505 * memory under moderate memory pressure. Anon pages 1506 * are not likely to be evicted by use-once streaming 1507 * IO, plus JVM can create lots of anon VM_EXEC pages, 1508 * so we ignore them here. 1509 */ 1510 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1511 list_add(&page->lru, &l_active); 1512 continue; 1513 } 1514 } 1515 1516 ClearPageActive(page); /* we are de-activating */ 1517 list_add(&page->lru, &l_inactive); 1518 } 1519 1520 /* 1521 * Move pages back to the lru list. 1522 */ 1523 spin_lock_irq(&zone->lru_lock); 1524 /* 1525 * Count referenced pages from currently used mappings as rotated, 1526 * even though only some of them are actually re-activated. This 1527 * helps balance scan pressure between file and anonymous pages in 1528 * get_scan_ratio. 1529 */ 1530 reclaim_stat->recent_rotated[file] += nr_rotated; 1531 1532 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1533 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1534 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1535 spin_unlock_irq(&zone->lru_lock); 1536 1537 free_hot_cold_page_list(&l_hold, 1); 1538 } 1539 1540 #ifdef CONFIG_SWAP 1541 static int inactive_anon_is_low_global(struct zone *zone) 1542 { 1543 unsigned long active, inactive; 1544 1545 active = zone_page_state(zone, NR_ACTIVE_ANON); 1546 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1547 1548 if (inactive * zone->inactive_ratio < active) 1549 return 1; 1550 1551 return 0; 1552 } 1553 1554 /** 1555 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1556 * @lruvec: LRU vector to check 1557 * 1558 * Returns true if the zone does not have enough inactive anon pages, 1559 * meaning some active anon pages need to be deactivated. 1560 */ 1561 static int inactive_anon_is_low(struct lruvec *lruvec) 1562 { 1563 /* 1564 * If we don't have swap space, anonymous page deactivation 1565 * is pointless. 1566 */ 1567 if (!total_swap_pages) 1568 return 0; 1569 1570 if (!mem_cgroup_disabled()) 1571 return mem_cgroup_inactive_anon_is_low(lruvec); 1572 1573 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1574 } 1575 #else 1576 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1577 { 1578 return 0; 1579 } 1580 #endif 1581 1582 static int inactive_file_is_low_global(struct zone *zone) 1583 { 1584 unsigned long active, inactive; 1585 1586 active = zone_page_state(zone, NR_ACTIVE_FILE); 1587 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1588 1589 return (active > inactive); 1590 } 1591 1592 /** 1593 * inactive_file_is_low - check if file pages need to be deactivated 1594 * @lruvec: LRU vector to check 1595 * 1596 * When the system is doing streaming IO, memory pressure here 1597 * ensures that active file pages get deactivated, until more 1598 * than half of the file pages are on the inactive list. 1599 * 1600 * Once we get to that situation, protect the system's working 1601 * set from being evicted by disabling active file page aging. 1602 * 1603 * This uses a different ratio than the anonymous pages, because 1604 * the page cache uses a use-once replacement algorithm. 1605 */ 1606 static int inactive_file_is_low(struct lruvec *lruvec) 1607 { 1608 if (!mem_cgroup_disabled()) 1609 return mem_cgroup_inactive_file_is_low(lruvec); 1610 1611 return inactive_file_is_low_global(lruvec_zone(lruvec)); 1612 } 1613 1614 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1615 { 1616 if (is_file_lru(lru)) 1617 return inactive_file_is_low(lruvec); 1618 else 1619 return inactive_anon_is_low(lruvec); 1620 } 1621 1622 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1623 struct lruvec *lruvec, struct scan_control *sc) 1624 { 1625 if (is_active_lru(lru)) { 1626 if (inactive_list_is_low(lruvec, lru)) 1627 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1628 return 0; 1629 } 1630 1631 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1632 } 1633 1634 static int vmscan_swappiness(struct scan_control *sc) 1635 { 1636 if (global_reclaim(sc)) 1637 return vm_swappiness; 1638 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1639 } 1640 1641 /* 1642 * Determine how aggressively the anon and file LRU lists should be 1643 * scanned. The relative value of each set of LRU lists is determined 1644 * by looking at the fraction of the pages scanned we did rotate back 1645 * onto the active list instead of evict. 1646 * 1647 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1648 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1649 */ 1650 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1651 unsigned long *nr) 1652 { 1653 unsigned long anon, file, free; 1654 unsigned long anon_prio, file_prio; 1655 unsigned long ap, fp; 1656 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1657 u64 fraction[2], denominator; 1658 enum lru_list lru; 1659 int noswap = 0; 1660 bool force_scan = false; 1661 struct zone *zone = lruvec_zone(lruvec); 1662 1663 /* 1664 * If the zone or memcg is small, nr[l] can be 0. This 1665 * results in no scanning on this priority and a potential 1666 * priority drop. Global direct reclaim can go to the next 1667 * zone and tends to have no problems. Global kswapd is for 1668 * zone balancing and it needs to scan a minimum amount. When 1669 * reclaiming for a memcg, a priority drop can cause high 1670 * latencies, so it's better to scan a minimum amount there as 1671 * well. 1672 */ 1673 if (current_is_kswapd() && zone->all_unreclaimable) 1674 force_scan = true; 1675 if (!global_reclaim(sc)) 1676 force_scan = true; 1677 1678 /* If we have no swap space, do not bother scanning anon pages. */ 1679 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1680 noswap = 1; 1681 fraction[0] = 0; 1682 fraction[1] = 1; 1683 denominator = 1; 1684 goto out; 1685 } 1686 1687 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1688 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1689 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1690 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1691 1692 if (global_reclaim(sc)) { 1693 free = zone_page_state(zone, NR_FREE_PAGES); 1694 if (unlikely(file + free <= high_wmark_pages(zone))) { 1695 /* 1696 * If we have very few page cache pages, force-scan 1697 * anon pages. 1698 */ 1699 fraction[0] = 1; 1700 fraction[1] = 0; 1701 denominator = 1; 1702 goto out; 1703 } else if (!inactive_file_is_low_global(zone)) { 1704 /* 1705 * There is enough inactive page cache, do not 1706 * reclaim anything from the working set right now. 1707 */ 1708 fraction[0] = 0; 1709 fraction[1] = 1; 1710 denominator = 1; 1711 goto out; 1712 } 1713 } 1714 1715 /* 1716 * With swappiness at 100, anonymous and file have the same priority. 1717 * This scanning priority is essentially the inverse of IO cost. 1718 */ 1719 anon_prio = vmscan_swappiness(sc); 1720 file_prio = 200 - anon_prio; 1721 1722 /* 1723 * OK, so we have swap space and a fair amount of page cache 1724 * pages. We use the recently rotated / recently scanned 1725 * ratios to determine how valuable each cache is. 1726 * 1727 * Because workloads change over time (and to avoid overflow) 1728 * we keep these statistics as a floating average, which ends 1729 * up weighing recent references more than old ones. 1730 * 1731 * anon in [0], file in [1] 1732 */ 1733 spin_lock_irq(&zone->lru_lock); 1734 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1735 reclaim_stat->recent_scanned[0] /= 2; 1736 reclaim_stat->recent_rotated[0] /= 2; 1737 } 1738 1739 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1740 reclaim_stat->recent_scanned[1] /= 2; 1741 reclaim_stat->recent_rotated[1] /= 2; 1742 } 1743 1744 /* 1745 * The amount of pressure on anon vs file pages is inversely 1746 * proportional to the fraction of recently scanned pages on 1747 * each list that were recently referenced and in active use. 1748 */ 1749 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1750 ap /= reclaim_stat->recent_rotated[0] + 1; 1751 1752 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1753 fp /= reclaim_stat->recent_rotated[1] + 1; 1754 spin_unlock_irq(&zone->lru_lock); 1755 1756 fraction[0] = ap; 1757 fraction[1] = fp; 1758 denominator = ap + fp + 1; 1759 out: 1760 for_each_evictable_lru(lru) { 1761 int file = is_file_lru(lru); 1762 unsigned long scan; 1763 1764 scan = get_lru_size(lruvec, lru); 1765 if (sc->priority || noswap || !vmscan_swappiness(sc)) { 1766 scan >>= sc->priority; 1767 if (!scan && force_scan) 1768 scan = SWAP_CLUSTER_MAX; 1769 scan = div64_u64(scan * fraction[file], denominator); 1770 } 1771 nr[lru] = scan; 1772 } 1773 } 1774 1775 /* Use reclaim/compaction for costly allocs or under memory pressure */ 1776 static bool in_reclaim_compaction(struct scan_control *sc) 1777 { 1778 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 1779 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 1780 sc->priority < DEF_PRIORITY - 2)) 1781 return true; 1782 1783 return false; 1784 } 1785 1786 /* 1787 * Reclaim/compaction is used for high-order allocation requests. It reclaims 1788 * order-0 pages before compacting the zone. should_continue_reclaim() returns 1789 * true if more pages should be reclaimed such that when the page allocator 1790 * calls try_to_compact_zone() that it will have enough free pages to succeed. 1791 * It will give up earlier than that if there is difficulty reclaiming pages. 1792 */ 1793 static inline bool should_continue_reclaim(struct lruvec *lruvec, 1794 unsigned long nr_reclaimed, 1795 unsigned long nr_scanned, 1796 struct scan_control *sc) 1797 { 1798 unsigned long pages_for_compaction; 1799 unsigned long inactive_lru_pages; 1800 1801 /* If not in reclaim/compaction mode, stop */ 1802 if (!in_reclaim_compaction(sc)) 1803 return false; 1804 1805 /* Consider stopping depending on scan and reclaim activity */ 1806 if (sc->gfp_mask & __GFP_REPEAT) { 1807 /* 1808 * For __GFP_REPEAT allocations, stop reclaiming if the 1809 * full LRU list has been scanned and we are still failing 1810 * to reclaim pages. This full LRU scan is potentially 1811 * expensive but a __GFP_REPEAT caller really wants to succeed 1812 */ 1813 if (!nr_reclaimed && !nr_scanned) 1814 return false; 1815 } else { 1816 /* 1817 * For non-__GFP_REPEAT allocations which can presumably 1818 * fail without consequence, stop if we failed to reclaim 1819 * any pages from the last SWAP_CLUSTER_MAX number of 1820 * pages that were scanned. This will return to the 1821 * caller faster at the risk reclaim/compaction and 1822 * the resulting allocation attempt fails 1823 */ 1824 if (!nr_reclaimed) 1825 return false; 1826 } 1827 1828 /* 1829 * If we have not reclaimed enough pages for compaction and the 1830 * inactive lists are large enough, continue reclaiming 1831 */ 1832 pages_for_compaction = (2UL << sc->order); 1833 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1834 if (nr_swap_pages > 0) 1835 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON); 1836 if (sc->nr_reclaimed < pages_for_compaction && 1837 inactive_lru_pages > pages_for_compaction) 1838 return true; 1839 1840 /* If compaction would go ahead or the allocation would succeed, stop */ 1841 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) { 1842 case COMPACT_PARTIAL: 1843 case COMPACT_CONTINUE: 1844 return false; 1845 default: 1846 return true; 1847 } 1848 } 1849 1850 /* 1851 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1852 */ 1853 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1854 { 1855 unsigned long nr[NR_LRU_LISTS]; 1856 unsigned long nr_to_scan; 1857 enum lru_list lru; 1858 unsigned long nr_reclaimed, nr_scanned; 1859 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1860 struct blk_plug plug; 1861 1862 restart: 1863 nr_reclaimed = 0; 1864 nr_scanned = sc->nr_scanned; 1865 get_scan_count(lruvec, sc, nr); 1866 1867 blk_start_plug(&plug); 1868 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1869 nr[LRU_INACTIVE_FILE]) { 1870 for_each_evictable_lru(lru) { 1871 if (nr[lru]) { 1872 nr_to_scan = min_t(unsigned long, 1873 nr[lru], SWAP_CLUSTER_MAX); 1874 nr[lru] -= nr_to_scan; 1875 1876 nr_reclaimed += shrink_list(lru, nr_to_scan, 1877 lruvec, sc); 1878 } 1879 } 1880 /* 1881 * On large memory systems, scan >> priority can become 1882 * really large. This is fine for the starting priority; 1883 * we want to put equal scanning pressure on each zone. 1884 * However, if the VM has a harder time of freeing pages, 1885 * with multiple processes reclaiming pages, the total 1886 * freeing target can get unreasonably large. 1887 */ 1888 if (nr_reclaimed >= nr_to_reclaim && 1889 sc->priority < DEF_PRIORITY) 1890 break; 1891 } 1892 blk_finish_plug(&plug); 1893 sc->nr_reclaimed += nr_reclaimed; 1894 1895 /* 1896 * Even if we did not try to evict anon pages at all, we want to 1897 * rebalance the anon lru active/inactive ratio. 1898 */ 1899 if (inactive_anon_is_low(lruvec)) 1900 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 1901 sc, LRU_ACTIVE_ANON); 1902 1903 /* reclaim/compaction might need reclaim to continue */ 1904 if (should_continue_reclaim(lruvec, nr_reclaimed, 1905 sc->nr_scanned - nr_scanned, sc)) 1906 goto restart; 1907 1908 throttle_vm_writeout(sc->gfp_mask); 1909 } 1910 1911 static void shrink_zone(struct zone *zone, struct scan_control *sc) 1912 { 1913 struct mem_cgroup *root = sc->target_mem_cgroup; 1914 struct mem_cgroup_reclaim_cookie reclaim = { 1915 .zone = zone, 1916 .priority = sc->priority, 1917 }; 1918 struct mem_cgroup *memcg; 1919 1920 memcg = mem_cgroup_iter(root, NULL, &reclaim); 1921 do { 1922 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 1923 1924 shrink_lruvec(lruvec, sc); 1925 1926 /* 1927 * Limit reclaim has historically picked one memcg and 1928 * scanned it with decreasing priority levels until 1929 * nr_to_reclaim had been reclaimed. This priority 1930 * cycle is thus over after a single memcg. 1931 * 1932 * Direct reclaim and kswapd, on the other hand, have 1933 * to scan all memory cgroups to fulfill the overall 1934 * scan target for the zone. 1935 */ 1936 if (!global_reclaim(sc)) { 1937 mem_cgroup_iter_break(root, memcg); 1938 break; 1939 } 1940 memcg = mem_cgroup_iter(root, memcg, &reclaim); 1941 } while (memcg); 1942 } 1943 1944 /* Returns true if compaction should go ahead for a high-order request */ 1945 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 1946 { 1947 unsigned long balance_gap, watermark; 1948 bool watermark_ok; 1949 1950 /* Do not consider compaction for orders reclaim is meant to satisfy */ 1951 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 1952 return false; 1953 1954 /* 1955 * Compaction takes time to run and there are potentially other 1956 * callers using the pages just freed. Continue reclaiming until 1957 * there is a buffer of free pages available to give compaction 1958 * a reasonable chance of completing and allocating the page 1959 */ 1960 balance_gap = min(low_wmark_pages(zone), 1961 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 1962 KSWAPD_ZONE_BALANCE_GAP_RATIO); 1963 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 1964 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 1965 1966 /* 1967 * If compaction is deferred, reclaim up to a point where 1968 * compaction will have a chance of success when re-enabled 1969 */ 1970 if (compaction_deferred(zone, sc->order)) 1971 return watermark_ok; 1972 1973 /* If compaction is not ready to start, keep reclaiming */ 1974 if (!compaction_suitable(zone, sc->order)) 1975 return false; 1976 1977 return watermark_ok; 1978 } 1979 1980 /* 1981 * This is the direct reclaim path, for page-allocating processes. We only 1982 * try to reclaim pages from zones which will satisfy the caller's allocation 1983 * request. 1984 * 1985 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1986 * Because: 1987 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1988 * allocation or 1989 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1990 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1991 * zone defense algorithm. 1992 * 1993 * If a zone is deemed to be full of pinned pages then just give it a light 1994 * scan then give up on it. 1995 * 1996 * This function returns true if a zone is being reclaimed for a costly 1997 * high-order allocation and compaction is ready to begin. This indicates to 1998 * the caller that it should consider retrying the allocation instead of 1999 * further reclaim. 2000 */ 2001 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2002 { 2003 struct zoneref *z; 2004 struct zone *zone; 2005 unsigned long nr_soft_reclaimed; 2006 unsigned long nr_soft_scanned; 2007 bool aborted_reclaim = false; 2008 2009 /* 2010 * If the number of buffer_heads in the machine exceeds the maximum 2011 * allowed level, force direct reclaim to scan the highmem zone as 2012 * highmem pages could be pinning lowmem pages storing buffer_heads 2013 */ 2014 if (buffer_heads_over_limit) 2015 sc->gfp_mask |= __GFP_HIGHMEM; 2016 2017 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2018 gfp_zone(sc->gfp_mask), sc->nodemask) { 2019 if (!populated_zone(zone)) 2020 continue; 2021 /* 2022 * Take care memory controller reclaiming has small influence 2023 * to global LRU. 2024 */ 2025 if (global_reclaim(sc)) { 2026 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2027 continue; 2028 if (zone->all_unreclaimable && 2029 sc->priority != DEF_PRIORITY) 2030 continue; /* Let kswapd poll it */ 2031 if (IS_ENABLED(CONFIG_COMPACTION)) { 2032 /* 2033 * If we already have plenty of memory free for 2034 * compaction in this zone, don't free any more. 2035 * Even though compaction is invoked for any 2036 * non-zero order, only frequent costly order 2037 * reclamation is disruptive enough to become a 2038 * noticeable problem, like transparent huge 2039 * page allocations. 2040 */ 2041 if (compaction_ready(zone, sc)) { 2042 aborted_reclaim = true; 2043 continue; 2044 } 2045 } 2046 /* 2047 * This steals pages from memory cgroups over softlimit 2048 * and returns the number of reclaimed pages and 2049 * scanned pages. This works for global memory pressure 2050 * and balancing, not for a memcg's limit. 2051 */ 2052 nr_soft_scanned = 0; 2053 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2054 sc->order, sc->gfp_mask, 2055 &nr_soft_scanned); 2056 sc->nr_reclaimed += nr_soft_reclaimed; 2057 sc->nr_scanned += nr_soft_scanned; 2058 /* need some check for avoid more shrink_zone() */ 2059 } 2060 2061 shrink_zone(zone, sc); 2062 } 2063 2064 return aborted_reclaim; 2065 } 2066 2067 static bool zone_reclaimable(struct zone *zone) 2068 { 2069 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 2070 } 2071 2072 /* All zones in zonelist are unreclaimable? */ 2073 static bool all_unreclaimable(struct zonelist *zonelist, 2074 struct scan_control *sc) 2075 { 2076 struct zoneref *z; 2077 struct zone *zone; 2078 2079 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2080 gfp_zone(sc->gfp_mask), sc->nodemask) { 2081 if (!populated_zone(zone)) 2082 continue; 2083 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2084 continue; 2085 if (!zone->all_unreclaimable) 2086 return false; 2087 } 2088 2089 return true; 2090 } 2091 2092 /* 2093 * This is the main entry point to direct page reclaim. 2094 * 2095 * If a full scan of the inactive list fails to free enough memory then we 2096 * are "out of memory" and something needs to be killed. 2097 * 2098 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2099 * high - the zone may be full of dirty or under-writeback pages, which this 2100 * caller can't do much about. We kick the writeback threads and take explicit 2101 * naps in the hope that some of these pages can be written. But if the 2102 * allocating task holds filesystem locks which prevent writeout this might not 2103 * work, and the allocation attempt will fail. 2104 * 2105 * returns: 0, if no pages reclaimed 2106 * else, the number of pages reclaimed 2107 */ 2108 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2109 struct scan_control *sc, 2110 struct shrink_control *shrink) 2111 { 2112 unsigned long total_scanned = 0; 2113 struct reclaim_state *reclaim_state = current->reclaim_state; 2114 struct zoneref *z; 2115 struct zone *zone; 2116 unsigned long writeback_threshold; 2117 bool aborted_reclaim; 2118 2119 delayacct_freepages_start(); 2120 2121 if (global_reclaim(sc)) 2122 count_vm_event(ALLOCSTALL); 2123 2124 do { 2125 sc->nr_scanned = 0; 2126 aborted_reclaim = shrink_zones(zonelist, sc); 2127 2128 /* 2129 * Don't shrink slabs when reclaiming memory from 2130 * over limit cgroups 2131 */ 2132 if (global_reclaim(sc)) { 2133 unsigned long lru_pages = 0; 2134 for_each_zone_zonelist(zone, z, zonelist, 2135 gfp_zone(sc->gfp_mask)) { 2136 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2137 continue; 2138 2139 lru_pages += zone_reclaimable_pages(zone); 2140 } 2141 2142 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2143 if (reclaim_state) { 2144 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2145 reclaim_state->reclaimed_slab = 0; 2146 } 2147 } 2148 total_scanned += sc->nr_scanned; 2149 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2150 goto out; 2151 2152 /* 2153 * Try to write back as many pages as we just scanned. This 2154 * tends to cause slow streaming writers to write data to the 2155 * disk smoothly, at the dirtying rate, which is nice. But 2156 * that's undesirable in laptop mode, where we *want* lumpy 2157 * writeout. So in laptop mode, write out the whole world. 2158 */ 2159 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2160 if (total_scanned > writeback_threshold) { 2161 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2162 WB_REASON_TRY_TO_FREE_PAGES); 2163 sc->may_writepage = 1; 2164 } 2165 2166 /* Take a nap, wait for some writeback to complete */ 2167 if (!sc->hibernation_mode && sc->nr_scanned && 2168 sc->priority < DEF_PRIORITY - 2) { 2169 struct zone *preferred_zone; 2170 2171 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), 2172 &cpuset_current_mems_allowed, 2173 &preferred_zone); 2174 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); 2175 } 2176 } while (--sc->priority >= 0); 2177 2178 out: 2179 delayacct_freepages_end(); 2180 2181 if (sc->nr_reclaimed) 2182 return sc->nr_reclaimed; 2183 2184 /* 2185 * As hibernation is going on, kswapd is freezed so that it can't mark 2186 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2187 * check. 2188 */ 2189 if (oom_killer_disabled) 2190 return 0; 2191 2192 /* Aborted reclaim to try compaction? don't OOM, then */ 2193 if (aborted_reclaim) 2194 return 1; 2195 2196 /* top priority shrink_zones still had more to do? don't OOM, then */ 2197 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2198 return 1; 2199 2200 return 0; 2201 } 2202 2203 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2204 { 2205 struct zone *zone; 2206 unsigned long pfmemalloc_reserve = 0; 2207 unsigned long free_pages = 0; 2208 int i; 2209 bool wmark_ok; 2210 2211 for (i = 0; i <= ZONE_NORMAL; i++) { 2212 zone = &pgdat->node_zones[i]; 2213 pfmemalloc_reserve += min_wmark_pages(zone); 2214 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2215 } 2216 2217 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2218 2219 /* kswapd must be awake if processes are being throttled */ 2220 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2221 pgdat->classzone_idx = min(pgdat->classzone_idx, 2222 (enum zone_type)ZONE_NORMAL); 2223 wake_up_interruptible(&pgdat->kswapd_wait); 2224 } 2225 2226 return wmark_ok; 2227 } 2228 2229 /* 2230 * Throttle direct reclaimers if backing storage is backed by the network 2231 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2232 * depleted. kswapd will continue to make progress and wake the processes 2233 * when the low watermark is reached. 2234 * 2235 * Returns true if a fatal signal was delivered during throttling. If this 2236 * happens, the page allocator should not consider triggering the OOM killer. 2237 */ 2238 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2239 nodemask_t *nodemask) 2240 { 2241 struct zone *zone; 2242 int high_zoneidx = gfp_zone(gfp_mask); 2243 pg_data_t *pgdat; 2244 2245 /* 2246 * Kernel threads should not be throttled as they may be indirectly 2247 * responsible for cleaning pages necessary for reclaim to make forward 2248 * progress. kjournald for example may enter direct reclaim while 2249 * committing a transaction where throttling it could forcing other 2250 * processes to block on log_wait_commit(). 2251 */ 2252 if (current->flags & PF_KTHREAD) 2253 goto out; 2254 2255 /* 2256 * If a fatal signal is pending, this process should not throttle. 2257 * It should return quickly so it can exit and free its memory 2258 */ 2259 if (fatal_signal_pending(current)) 2260 goto out; 2261 2262 /* Check if the pfmemalloc reserves are ok */ 2263 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2264 pgdat = zone->zone_pgdat; 2265 if (pfmemalloc_watermark_ok(pgdat)) 2266 goto out; 2267 2268 /* Account for the throttling */ 2269 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2270 2271 /* 2272 * If the caller cannot enter the filesystem, it's possible that it 2273 * is due to the caller holding an FS lock or performing a journal 2274 * transaction in the case of a filesystem like ext[3|4]. In this case, 2275 * it is not safe to block on pfmemalloc_wait as kswapd could be 2276 * blocked waiting on the same lock. Instead, throttle for up to a 2277 * second before continuing. 2278 */ 2279 if (!(gfp_mask & __GFP_FS)) { 2280 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2281 pfmemalloc_watermark_ok(pgdat), HZ); 2282 2283 goto check_pending; 2284 } 2285 2286 /* Throttle until kswapd wakes the process */ 2287 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2288 pfmemalloc_watermark_ok(pgdat)); 2289 2290 check_pending: 2291 if (fatal_signal_pending(current)) 2292 return true; 2293 2294 out: 2295 return false; 2296 } 2297 2298 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2299 gfp_t gfp_mask, nodemask_t *nodemask) 2300 { 2301 unsigned long nr_reclaimed; 2302 struct scan_control sc = { 2303 .gfp_mask = gfp_mask, 2304 .may_writepage = !laptop_mode, 2305 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2306 .may_unmap = 1, 2307 .may_swap = 1, 2308 .order = order, 2309 .priority = DEF_PRIORITY, 2310 .target_mem_cgroup = NULL, 2311 .nodemask = nodemask, 2312 }; 2313 struct shrink_control shrink = { 2314 .gfp_mask = sc.gfp_mask, 2315 }; 2316 2317 /* 2318 * Do not enter reclaim if fatal signal was delivered while throttled. 2319 * 1 is returned so that the page allocator does not OOM kill at this 2320 * point. 2321 */ 2322 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2323 return 1; 2324 2325 trace_mm_vmscan_direct_reclaim_begin(order, 2326 sc.may_writepage, 2327 gfp_mask); 2328 2329 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2330 2331 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2332 2333 return nr_reclaimed; 2334 } 2335 2336 #ifdef CONFIG_MEMCG 2337 2338 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2339 gfp_t gfp_mask, bool noswap, 2340 struct zone *zone, 2341 unsigned long *nr_scanned) 2342 { 2343 struct scan_control sc = { 2344 .nr_scanned = 0, 2345 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2346 .may_writepage = !laptop_mode, 2347 .may_unmap = 1, 2348 .may_swap = !noswap, 2349 .order = 0, 2350 .priority = 0, 2351 .target_mem_cgroup = memcg, 2352 }; 2353 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2354 2355 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2356 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2357 2358 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2359 sc.may_writepage, 2360 sc.gfp_mask); 2361 2362 /* 2363 * NOTE: Although we can get the priority field, using it 2364 * here is not a good idea, since it limits the pages we can scan. 2365 * if we don't reclaim here, the shrink_zone from balance_pgdat 2366 * will pick up pages from other mem cgroup's as well. We hack 2367 * the priority and make it zero. 2368 */ 2369 shrink_lruvec(lruvec, &sc); 2370 2371 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2372 2373 *nr_scanned = sc.nr_scanned; 2374 return sc.nr_reclaimed; 2375 } 2376 2377 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2378 gfp_t gfp_mask, 2379 bool noswap) 2380 { 2381 struct zonelist *zonelist; 2382 unsigned long nr_reclaimed; 2383 int nid; 2384 struct scan_control sc = { 2385 .may_writepage = !laptop_mode, 2386 .may_unmap = 1, 2387 .may_swap = !noswap, 2388 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2389 .order = 0, 2390 .priority = DEF_PRIORITY, 2391 .target_mem_cgroup = memcg, 2392 .nodemask = NULL, /* we don't care the placement */ 2393 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2394 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2395 }; 2396 struct shrink_control shrink = { 2397 .gfp_mask = sc.gfp_mask, 2398 }; 2399 2400 /* 2401 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2402 * take care of from where we get pages. So the node where we start the 2403 * scan does not need to be the current node. 2404 */ 2405 nid = mem_cgroup_select_victim_node(memcg); 2406 2407 zonelist = NODE_DATA(nid)->node_zonelists; 2408 2409 trace_mm_vmscan_memcg_reclaim_begin(0, 2410 sc.may_writepage, 2411 sc.gfp_mask); 2412 2413 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2414 2415 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2416 2417 return nr_reclaimed; 2418 } 2419 #endif 2420 2421 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2422 { 2423 struct mem_cgroup *memcg; 2424 2425 if (!total_swap_pages) 2426 return; 2427 2428 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2429 do { 2430 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2431 2432 if (inactive_anon_is_low(lruvec)) 2433 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2434 sc, LRU_ACTIVE_ANON); 2435 2436 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2437 } while (memcg); 2438 } 2439 2440 static bool zone_balanced(struct zone *zone, int order, 2441 unsigned long balance_gap, int classzone_idx) 2442 { 2443 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2444 balance_gap, classzone_idx, 0)) 2445 return false; 2446 2447 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2448 !compaction_suitable(zone, order)) 2449 return false; 2450 2451 return true; 2452 } 2453 2454 /* 2455 * pgdat_balanced() is used when checking if a node is balanced. 2456 * 2457 * For order-0, all zones must be balanced! 2458 * 2459 * For high-order allocations only zones that meet watermarks and are in a 2460 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2461 * total of balanced pages must be at least 25% of the zones allowed by 2462 * classzone_idx for the node to be considered balanced. Forcing all zones to 2463 * be balanced for high orders can cause excessive reclaim when there are 2464 * imbalanced zones. 2465 * The choice of 25% is due to 2466 * o a 16M DMA zone that is balanced will not balance a zone on any 2467 * reasonable sized machine 2468 * o On all other machines, the top zone must be at least a reasonable 2469 * percentage of the middle zones. For example, on 32-bit x86, highmem 2470 * would need to be at least 256M for it to be balance a whole node. 2471 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2472 * to balance a node on its own. These seemed like reasonable ratios. 2473 */ 2474 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2475 { 2476 unsigned long present_pages = 0; 2477 unsigned long balanced_pages = 0; 2478 int i; 2479 2480 /* Check the watermark levels */ 2481 for (i = 0; i <= classzone_idx; i++) { 2482 struct zone *zone = pgdat->node_zones + i; 2483 2484 if (!populated_zone(zone)) 2485 continue; 2486 2487 present_pages += zone->present_pages; 2488 2489 /* 2490 * A special case here: 2491 * 2492 * balance_pgdat() skips over all_unreclaimable after 2493 * DEF_PRIORITY. Effectively, it considers them balanced so 2494 * they must be considered balanced here as well! 2495 */ 2496 if (zone->all_unreclaimable) { 2497 balanced_pages += zone->present_pages; 2498 continue; 2499 } 2500 2501 if (zone_balanced(zone, order, 0, i)) 2502 balanced_pages += zone->present_pages; 2503 else if (!order) 2504 return false; 2505 } 2506 2507 if (order) 2508 return balanced_pages >= (present_pages >> 2); 2509 else 2510 return true; 2511 } 2512 2513 /* 2514 * Prepare kswapd for sleeping. This verifies that there are no processes 2515 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2516 * 2517 * Returns true if kswapd is ready to sleep 2518 */ 2519 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2520 int classzone_idx) 2521 { 2522 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2523 if (remaining) 2524 return false; 2525 2526 /* 2527 * There is a potential race between when kswapd checks its watermarks 2528 * and a process gets throttled. There is also a potential race if 2529 * processes get throttled, kswapd wakes, a large process exits therby 2530 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2531 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2532 * so wake them now if necessary. If necessary, processes will wake 2533 * kswapd and get throttled again 2534 */ 2535 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2536 wake_up(&pgdat->pfmemalloc_wait); 2537 return false; 2538 } 2539 2540 return pgdat_balanced(pgdat, order, classzone_idx); 2541 } 2542 2543 /* 2544 * For kswapd, balance_pgdat() will work across all this node's zones until 2545 * they are all at high_wmark_pages(zone). 2546 * 2547 * Returns the final order kswapd was reclaiming at 2548 * 2549 * There is special handling here for zones which are full of pinned pages. 2550 * This can happen if the pages are all mlocked, or if they are all used by 2551 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2552 * What we do is to detect the case where all pages in the zone have been 2553 * scanned twice and there has been zero successful reclaim. Mark the zone as 2554 * dead and from now on, only perform a short scan. Basically we're polling 2555 * the zone for when the problem goes away. 2556 * 2557 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2558 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2559 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2560 * lower zones regardless of the number of free pages in the lower zones. This 2561 * interoperates with the page allocator fallback scheme to ensure that aging 2562 * of pages is balanced across the zones. 2563 */ 2564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2565 int *classzone_idx) 2566 { 2567 struct zone *unbalanced_zone; 2568 int i; 2569 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2570 unsigned long total_scanned; 2571 struct reclaim_state *reclaim_state = current->reclaim_state; 2572 unsigned long nr_soft_reclaimed; 2573 unsigned long nr_soft_scanned; 2574 struct scan_control sc = { 2575 .gfp_mask = GFP_KERNEL, 2576 .may_unmap = 1, 2577 .may_swap = 1, 2578 /* 2579 * kswapd doesn't want to be bailed out while reclaim. because 2580 * we want to put equal scanning pressure on each zone. 2581 */ 2582 .nr_to_reclaim = ULONG_MAX, 2583 .order = order, 2584 .target_mem_cgroup = NULL, 2585 }; 2586 struct shrink_control shrink = { 2587 .gfp_mask = sc.gfp_mask, 2588 }; 2589 loop_again: 2590 total_scanned = 0; 2591 sc.priority = DEF_PRIORITY; 2592 sc.nr_reclaimed = 0; 2593 sc.may_writepage = !laptop_mode; 2594 count_vm_event(PAGEOUTRUN); 2595 2596 do { 2597 unsigned long lru_pages = 0; 2598 int has_under_min_watermark_zone = 0; 2599 2600 unbalanced_zone = NULL; 2601 2602 /* 2603 * Scan in the highmem->dma direction for the highest 2604 * zone which needs scanning 2605 */ 2606 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2607 struct zone *zone = pgdat->node_zones + i; 2608 2609 if (!populated_zone(zone)) 2610 continue; 2611 2612 if (zone->all_unreclaimable && 2613 sc.priority != DEF_PRIORITY) 2614 continue; 2615 2616 /* 2617 * Do some background aging of the anon list, to give 2618 * pages a chance to be referenced before reclaiming. 2619 */ 2620 age_active_anon(zone, &sc); 2621 2622 /* 2623 * If the number of buffer_heads in the machine 2624 * exceeds the maximum allowed level and this node 2625 * has a highmem zone, force kswapd to reclaim from 2626 * it to relieve lowmem pressure. 2627 */ 2628 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2629 end_zone = i; 2630 break; 2631 } 2632 2633 if (!zone_balanced(zone, order, 0, 0)) { 2634 end_zone = i; 2635 break; 2636 } else { 2637 /* If balanced, clear the congested flag */ 2638 zone_clear_flag(zone, ZONE_CONGESTED); 2639 } 2640 } 2641 if (i < 0) 2642 goto out; 2643 2644 for (i = 0; i <= end_zone; i++) { 2645 struct zone *zone = pgdat->node_zones + i; 2646 2647 lru_pages += zone_reclaimable_pages(zone); 2648 } 2649 2650 /* 2651 * Now scan the zone in the dma->highmem direction, stopping 2652 * at the last zone which needs scanning. 2653 * 2654 * We do this because the page allocator works in the opposite 2655 * direction. This prevents the page allocator from allocating 2656 * pages behind kswapd's direction of progress, which would 2657 * cause too much scanning of the lower zones. 2658 */ 2659 for (i = 0; i <= end_zone; i++) { 2660 struct zone *zone = pgdat->node_zones + i; 2661 int nr_slab, testorder; 2662 unsigned long balance_gap; 2663 2664 if (!populated_zone(zone)) 2665 continue; 2666 2667 if (zone->all_unreclaimable && 2668 sc.priority != DEF_PRIORITY) 2669 continue; 2670 2671 sc.nr_scanned = 0; 2672 2673 nr_soft_scanned = 0; 2674 /* 2675 * Call soft limit reclaim before calling shrink_zone. 2676 */ 2677 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2678 order, sc.gfp_mask, 2679 &nr_soft_scanned); 2680 sc.nr_reclaimed += nr_soft_reclaimed; 2681 total_scanned += nr_soft_scanned; 2682 2683 /* 2684 * We put equal pressure on every zone, unless 2685 * one zone has way too many pages free 2686 * already. The "too many pages" is defined 2687 * as the high wmark plus a "gap" where the 2688 * gap is either the low watermark or 1% 2689 * of the zone, whichever is smaller. 2690 */ 2691 balance_gap = min(low_wmark_pages(zone), 2692 (zone->present_pages + 2693 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2694 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2695 /* 2696 * Kswapd reclaims only single pages with compaction 2697 * enabled. Trying too hard to reclaim until contiguous 2698 * free pages have become available can hurt performance 2699 * by evicting too much useful data from memory. 2700 * Do not reclaim more than needed for compaction. 2701 */ 2702 testorder = order; 2703 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2704 compaction_suitable(zone, order) != 2705 COMPACT_SKIPPED) 2706 testorder = 0; 2707 2708 if ((buffer_heads_over_limit && is_highmem_idx(i)) || 2709 !zone_balanced(zone, testorder, 2710 balance_gap, end_zone)) { 2711 shrink_zone(zone, &sc); 2712 2713 reclaim_state->reclaimed_slab = 0; 2714 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages); 2715 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2716 total_scanned += sc.nr_scanned; 2717 2718 if (nr_slab == 0 && !zone_reclaimable(zone)) 2719 zone->all_unreclaimable = 1; 2720 } 2721 2722 /* 2723 * If we've done a decent amount of scanning and 2724 * the reclaim ratio is low, start doing writepage 2725 * even in laptop mode 2726 */ 2727 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2728 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2729 sc.may_writepage = 1; 2730 2731 if (zone->all_unreclaimable) { 2732 if (end_zone && end_zone == i) 2733 end_zone--; 2734 continue; 2735 } 2736 2737 if (!zone_balanced(zone, testorder, 0, end_zone)) { 2738 unbalanced_zone = zone; 2739 /* 2740 * We are still under min water mark. This 2741 * means that we have a GFP_ATOMIC allocation 2742 * failure risk. Hurry up! 2743 */ 2744 if (!zone_watermark_ok_safe(zone, order, 2745 min_wmark_pages(zone), end_zone, 0)) 2746 has_under_min_watermark_zone = 1; 2747 } else { 2748 /* 2749 * If a zone reaches its high watermark, 2750 * consider it to be no longer congested. It's 2751 * possible there are dirty pages backed by 2752 * congested BDIs but as pressure is relieved, 2753 * speculatively avoid congestion waits 2754 */ 2755 zone_clear_flag(zone, ZONE_CONGESTED); 2756 } 2757 2758 } 2759 2760 /* 2761 * If the low watermark is met there is no need for processes 2762 * to be throttled on pfmemalloc_wait as they should not be 2763 * able to safely make forward progress. Wake them 2764 */ 2765 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 2766 pfmemalloc_watermark_ok(pgdat)) 2767 wake_up(&pgdat->pfmemalloc_wait); 2768 2769 if (pgdat_balanced(pgdat, order, *classzone_idx)) 2770 break; /* kswapd: all done */ 2771 /* 2772 * OK, kswapd is getting into trouble. Take a nap, then take 2773 * another pass across the zones. 2774 */ 2775 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) { 2776 if (has_under_min_watermark_zone) 2777 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2778 else if (unbalanced_zone) 2779 wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10); 2780 } 2781 2782 /* 2783 * We do this so kswapd doesn't build up large priorities for 2784 * example when it is freeing in parallel with allocators. It 2785 * matches the direct reclaim path behaviour in terms of impact 2786 * on zone->*_priority. 2787 */ 2788 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2789 break; 2790 } while (--sc.priority >= 0); 2791 out: 2792 2793 if (!pgdat_balanced(pgdat, order, *classzone_idx)) { 2794 cond_resched(); 2795 2796 try_to_freeze(); 2797 2798 /* 2799 * Fragmentation may mean that the system cannot be 2800 * rebalanced for high-order allocations in all zones. 2801 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2802 * it means the zones have been fully scanned and are still 2803 * not balanced. For high-order allocations, there is 2804 * little point trying all over again as kswapd may 2805 * infinite loop. 2806 * 2807 * Instead, recheck all watermarks at order-0 as they 2808 * are the most important. If watermarks are ok, kswapd will go 2809 * back to sleep. High-order users can still perform direct 2810 * reclaim if they wish. 2811 */ 2812 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2813 order = sc.order = 0; 2814 2815 goto loop_again; 2816 } 2817 2818 /* 2819 * If kswapd was reclaiming at a higher order, it has the option of 2820 * sleeping without all zones being balanced. Before it does, it must 2821 * ensure that the watermarks for order-0 on *all* zones are met and 2822 * that the congestion flags are cleared. The congestion flag must 2823 * be cleared as kswapd is the only mechanism that clears the flag 2824 * and it is potentially going to sleep here. 2825 */ 2826 if (order) { 2827 int zones_need_compaction = 1; 2828 2829 for (i = 0; i <= end_zone; i++) { 2830 struct zone *zone = pgdat->node_zones + i; 2831 2832 if (!populated_zone(zone)) 2833 continue; 2834 2835 /* Check if the memory needs to be defragmented. */ 2836 if (zone_watermark_ok(zone, order, 2837 low_wmark_pages(zone), *classzone_idx, 0)) 2838 zones_need_compaction = 0; 2839 } 2840 2841 if (zones_need_compaction) 2842 compact_pgdat(pgdat, order); 2843 } 2844 2845 /* 2846 * Return the order we were reclaiming at so prepare_kswapd_sleep() 2847 * makes a decision on the order we were last reclaiming at. However, 2848 * if another caller entered the allocator slow path while kswapd 2849 * was awake, order will remain at the higher level 2850 */ 2851 *classzone_idx = end_zone; 2852 return order; 2853 } 2854 2855 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 2856 { 2857 long remaining = 0; 2858 DEFINE_WAIT(wait); 2859 2860 if (freezing(current) || kthread_should_stop()) 2861 return; 2862 2863 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2864 2865 /* Try to sleep for a short interval */ 2866 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 2867 remaining = schedule_timeout(HZ/10); 2868 finish_wait(&pgdat->kswapd_wait, &wait); 2869 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2870 } 2871 2872 /* 2873 * After a short sleep, check if it was a premature sleep. If not, then 2874 * go fully to sleep until explicitly woken up. 2875 */ 2876 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 2877 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 2878 2879 /* 2880 * vmstat counters are not perfectly accurate and the estimated 2881 * value for counters such as NR_FREE_PAGES can deviate from the 2882 * true value by nr_online_cpus * threshold. To avoid the zone 2883 * watermarks being breached while under pressure, we reduce the 2884 * per-cpu vmstat threshold while kswapd is awake and restore 2885 * them before going back to sleep. 2886 */ 2887 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 2888 2889 /* 2890 * Compaction records what page blocks it recently failed to 2891 * isolate pages from and skips them in the future scanning. 2892 * When kswapd is going to sleep, it is reasonable to assume 2893 * that pages and compaction may succeed so reset the cache. 2894 */ 2895 reset_isolation_suitable(pgdat); 2896 2897 if (!kthread_should_stop()) 2898 schedule(); 2899 2900 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 2901 } else { 2902 if (remaining) 2903 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2904 else 2905 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2906 } 2907 finish_wait(&pgdat->kswapd_wait, &wait); 2908 } 2909 2910 /* 2911 * The background pageout daemon, started as a kernel thread 2912 * from the init process. 2913 * 2914 * This basically trickles out pages so that we have _some_ 2915 * free memory available even if there is no other activity 2916 * that frees anything up. This is needed for things like routing 2917 * etc, where we otherwise might have all activity going on in 2918 * asynchronous contexts that cannot page things out. 2919 * 2920 * If there are applications that are active memory-allocators 2921 * (most normal use), this basically shouldn't matter. 2922 */ 2923 static int kswapd(void *p) 2924 { 2925 unsigned long order, new_order; 2926 unsigned balanced_order; 2927 int classzone_idx, new_classzone_idx; 2928 int balanced_classzone_idx; 2929 pg_data_t *pgdat = (pg_data_t*)p; 2930 struct task_struct *tsk = current; 2931 2932 struct reclaim_state reclaim_state = { 2933 .reclaimed_slab = 0, 2934 }; 2935 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2936 2937 lockdep_set_current_reclaim_state(GFP_KERNEL); 2938 2939 if (!cpumask_empty(cpumask)) 2940 set_cpus_allowed_ptr(tsk, cpumask); 2941 current->reclaim_state = &reclaim_state; 2942 2943 /* 2944 * Tell the memory management that we're a "memory allocator", 2945 * and that if we need more memory we should get access to it 2946 * regardless (see "__alloc_pages()"). "kswapd" should 2947 * never get caught in the normal page freeing logic. 2948 * 2949 * (Kswapd normally doesn't need memory anyway, but sometimes 2950 * you need a small amount of memory in order to be able to 2951 * page out something else, and this flag essentially protects 2952 * us from recursively trying to free more memory as we're 2953 * trying to free the first piece of memory in the first place). 2954 */ 2955 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2956 set_freezable(); 2957 2958 order = new_order = 0; 2959 balanced_order = 0; 2960 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 2961 balanced_classzone_idx = classzone_idx; 2962 for ( ; ; ) { 2963 bool ret; 2964 2965 /* 2966 * If the last balance_pgdat was unsuccessful it's unlikely a 2967 * new request of a similar or harder type will succeed soon 2968 * so consider going to sleep on the basis we reclaimed at 2969 */ 2970 if (balanced_classzone_idx >= new_classzone_idx && 2971 balanced_order == new_order) { 2972 new_order = pgdat->kswapd_max_order; 2973 new_classzone_idx = pgdat->classzone_idx; 2974 pgdat->kswapd_max_order = 0; 2975 pgdat->classzone_idx = pgdat->nr_zones - 1; 2976 } 2977 2978 if (order < new_order || classzone_idx > new_classzone_idx) { 2979 /* 2980 * Don't sleep if someone wants a larger 'order' 2981 * allocation or has tigher zone constraints 2982 */ 2983 order = new_order; 2984 classzone_idx = new_classzone_idx; 2985 } else { 2986 kswapd_try_to_sleep(pgdat, balanced_order, 2987 balanced_classzone_idx); 2988 order = pgdat->kswapd_max_order; 2989 classzone_idx = pgdat->classzone_idx; 2990 new_order = order; 2991 new_classzone_idx = classzone_idx; 2992 pgdat->kswapd_max_order = 0; 2993 pgdat->classzone_idx = pgdat->nr_zones - 1; 2994 } 2995 2996 ret = try_to_freeze(); 2997 if (kthread_should_stop()) 2998 break; 2999 3000 /* 3001 * We can speed up thawing tasks if we don't call balance_pgdat 3002 * after returning from the refrigerator 3003 */ 3004 if (!ret) { 3005 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3006 balanced_classzone_idx = classzone_idx; 3007 balanced_order = balance_pgdat(pgdat, order, 3008 &balanced_classzone_idx); 3009 } 3010 } 3011 3012 current->reclaim_state = NULL; 3013 return 0; 3014 } 3015 3016 /* 3017 * A zone is low on free memory, so wake its kswapd task to service it. 3018 */ 3019 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3020 { 3021 pg_data_t *pgdat; 3022 3023 if (!populated_zone(zone)) 3024 return; 3025 3026 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3027 return; 3028 pgdat = zone->zone_pgdat; 3029 if (pgdat->kswapd_max_order < order) { 3030 pgdat->kswapd_max_order = order; 3031 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3032 } 3033 if (!waitqueue_active(&pgdat->kswapd_wait)) 3034 return; 3035 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) 3036 return; 3037 3038 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3039 wake_up_interruptible(&pgdat->kswapd_wait); 3040 } 3041 3042 /* 3043 * The reclaimable count would be mostly accurate. 3044 * The less reclaimable pages may be 3045 * - mlocked pages, which will be moved to unevictable list when encountered 3046 * - mapped pages, which may require several travels to be reclaimed 3047 * - dirty pages, which is not "instantly" reclaimable 3048 */ 3049 unsigned long global_reclaimable_pages(void) 3050 { 3051 int nr; 3052 3053 nr = global_page_state(NR_ACTIVE_FILE) + 3054 global_page_state(NR_INACTIVE_FILE); 3055 3056 if (nr_swap_pages > 0) 3057 nr += global_page_state(NR_ACTIVE_ANON) + 3058 global_page_state(NR_INACTIVE_ANON); 3059 3060 return nr; 3061 } 3062 3063 unsigned long zone_reclaimable_pages(struct zone *zone) 3064 { 3065 int nr; 3066 3067 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 3068 zone_page_state(zone, NR_INACTIVE_FILE); 3069 3070 if (nr_swap_pages > 0) 3071 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 3072 zone_page_state(zone, NR_INACTIVE_ANON); 3073 3074 return nr; 3075 } 3076 3077 #ifdef CONFIG_HIBERNATION 3078 /* 3079 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3080 * freed pages. 3081 * 3082 * Rather than trying to age LRUs the aim is to preserve the overall 3083 * LRU order by reclaiming preferentially 3084 * inactive > active > active referenced > active mapped 3085 */ 3086 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3087 { 3088 struct reclaim_state reclaim_state; 3089 struct scan_control sc = { 3090 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3091 .may_swap = 1, 3092 .may_unmap = 1, 3093 .may_writepage = 1, 3094 .nr_to_reclaim = nr_to_reclaim, 3095 .hibernation_mode = 1, 3096 .order = 0, 3097 .priority = DEF_PRIORITY, 3098 }; 3099 struct shrink_control shrink = { 3100 .gfp_mask = sc.gfp_mask, 3101 }; 3102 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3103 struct task_struct *p = current; 3104 unsigned long nr_reclaimed; 3105 3106 p->flags |= PF_MEMALLOC; 3107 lockdep_set_current_reclaim_state(sc.gfp_mask); 3108 reclaim_state.reclaimed_slab = 0; 3109 p->reclaim_state = &reclaim_state; 3110 3111 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3112 3113 p->reclaim_state = NULL; 3114 lockdep_clear_current_reclaim_state(); 3115 p->flags &= ~PF_MEMALLOC; 3116 3117 return nr_reclaimed; 3118 } 3119 #endif /* CONFIG_HIBERNATION */ 3120 3121 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3122 not required for correctness. So if the last cpu in a node goes 3123 away, we get changed to run anywhere: as the first one comes back, 3124 restore their cpu bindings. */ 3125 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3126 void *hcpu) 3127 { 3128 int nid; 3129 3130 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3131 for_each_node_state(nid, N_MEMORY) { 3132 pg_data_t *pgdat = NODE_DATA(nid); 3133 const struct cpumask *mask; 3134 3135 mask = cpumask_of_node(pgdat->node_id); 3136 3137 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3138 /* One of our CPUs online: restore mask */ 3139 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3140 } 3141 } 3142 return NOTIFY_OK; 3143 } 3144 3145 /* 3146 * This kswapd start function will be called by init and node-hot-add. 3147 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3148 */ 3149 int kswapd_run(int nid) 3150 { 3151 pg_data_t *pgdat = NODE_DATA(nid); 3152 int ret = 0; 3153 3154 if (pgdat->kswapd) 3155 return 0; 3156 3157 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3158 if (IS_ERR(pgdat->kswapd)) { 3159 /* failure at boot is fatal */ 3160 BUG_ON(system_state == SYSTEM_BOOTING); 3161 pgdat->kswapd = NULL; 3162 pr_err("Failed to start kswapd on node %d\n", nid); 3163 ret = PTR_ERR(pgdat->kswapd); 3164 } 3165 return ret; 3166 } 3167 3168 /* 3169 * Called by memory hotplug when all memory in a node is offlined. Caller must 3170 * hold lock_memory_hotplug(). 3171 */ 3172 void kswapd_stop(int nid) 3173 { 3174 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3175 3176 if (kswapd) { 3177 kthread_stop(kswapd); 3178 NODE_DATA(nid)->kswapd = NULL; 3179 } 3180 } 3181 3182 static int __init kswapd_init(void) 3183 { 3184 int nid; 3185 3186 swap_setup(); 3187 for_each_node_state(nid, N_MEMORY) 3188 kswapd_run(nid); 3189 hotcpu_notifier(cpu_callback, 0); 3190 return 0; 3191 } 3192 3193 module_init(kswapd_init) 3194 3195 #ifdef CONFIG_NUMA 3196 /* 3197 * Zone reclaim mode 3198 * 3199 * If non-zero call zone_reclaim when the number of free pages falls below 3200 * the watermarks. 3201 */ 3202 int zone_reclaim_mode __read_mostly; 3203 3204 #define RECLAIM_OFF 0 3205 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3206 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3207 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3208 3209 /* 3210 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3211 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3212 * a zone. 3213 */ 3214 #define ZONE_RECLAIM_PRIORITY 4 3215 3216 /* 3217 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3218 * occur. 3219 */ 3220 int sysctl_min_unmapped_ratio = 1; 3221 3222 /* 3223 * If the number of slab pages in a zone grows beyond this percentage then 3224 * slab reclaim needs to occur. 3225 */ 3226 int sysctl_min_slab_ratio = 5; 3227 3228 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3229 { 3230 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3231 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3232 zone_page_state(zone, NR_ACTIVE_FILE); 3233 3234 /* 3235 * It's possible for there to be more file mapped pages than 3236 * accounted for by the pages on the file LRU lists because 3237 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3238 */ 3239 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3240 } 3241 3242 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3243 static long zone_pagecache_reclaimable(struct zone *zone) 3244 { 3245 long nr_pagecache_reclaimable; 3246 long delta = 0; 3247 3248 /* 3249 * If RECLAIM_SWAP is set, then all file pages are considered 3250 * potentially reclaimable. Otherwise, we have to worry about 3251 * pages like swapcache and zone_unmapped_file_pages() provides 3252 * a better estimate 3253 */ 3254 if (zone_reclaim_mode & RECLAIM_SWAP) 3255 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3256 else 3257 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3258 3259 /* If we can't clean pages, remove dirty pages from consideration */ 3260 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3261 delta += zone_page_state(zone, NR_FILE_DIRTY); 3262 3263 /* Watch for any possible underflows due to delta */ 3264 if (unlikely(delta > nr_pagecache_reclaimable)) 3265 delta = nr_pagecache_reclaimable; 3266 3267 return nr_pagecache_reclaimable - delta; 3268 } 3269 3270 /* 3271 * Try to free up some pages from this zone through reclaim. 3272 */ 3273 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3274 { 3275 /* Minimum pages needed in order to stay on node */ 3276 const unsigned long nr_pages = 1 << order; 3277 struct task_struct *p = current; 3278 struct reclaim_state reclaim_state; 3279 struct scan_control sc = { 3280 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3281 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3282 .may_swap = 1, 3283 .nr_to_reclaim = max_t(unsigned long, nr_pages, 3284 SWAP_CLUSTER_MAX), 3285 .gfp_mask = gfp_mask, 3286 .order = order, 3287 .priority = ZONE_RECLAIM_PRIORITY, 3288 }; 3289 struct shrink_control shrink = { 3290 .gfp_mask = sc.gfp_mask, 3291 }; 3292 unsigned long nr_slab_pages0, nr_slab_pages1; 3293 3294 cond_resched(); 3295 /* 3296 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3297 * and we also need to be able to write out pages for RECLAIM_WRITE 3298 * and RECLAIM_SWAP. 3299 */ 3300 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3301 lockdep_set_current_reclaim_state(gfp_mask); 3302 reclaim_state.reclaimed_slab = 0; 3303 p->reclaim_state = &reclaim_state; 3304 3305 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3306 /* 3307 * Free memory by calling shrink zone with increasing 3308 * priorities until we have enough memory freed. 3309 */ 3310 do { 3311 shrink_zone(zone, &sc); 3312 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3313 } 3314 3315 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3316 if (nr_slab_pages0 > zone->min_slab_pages) { 3317 /* 3318 * shrink_slab() does not currently allow us to determine how 3319 * many pages were freed in this zone. So we take the current 3320 * number of slab pages and shake the slab until it is reduced 3321 * by the same nr_pages that we used for reclaiming unmapped 3322 * pages. 3323 * 3324 * Note that shrink_slab will free memory on all zones and may 3325 * take a long time. 3326 */ 3327 for (;;) { 3328 unsigned long lru_pages = zone_reclaimable_pages(zone); 3329 3330 /* No reclaimable slab or very low memory pressure */ 3331 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3332 break; 3333 3334 /* Freed enough memory */ 3335 nr_slab_pages1 = zone_page_state(zone, 3336 NR_SLAB_RECLAIMABLE); 3337 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3338 break; 3339 } 3340 3341 /* 3342 * Update nr_reclaimed by the number of slab pages we 3343 * reclaimed from this zone. 3344 */ 3345 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3346 if (nr_slab_pages1 < nr_slab_pages0) 3347 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3348 } 3349 3350 p->reclaim_state = NULL; 3351 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3352 lockdep_clear_current_reclaim_state(); 3353 return sc.nr_reclaimed >= nr_pages; 3354 } 3355 3356 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3357 { 3358 int node_id; 3359 int ret; 3360 3361 /* 3362 * Zone reclaim reclaims unmapped file backed pages and 3363 * slab pages if we are over the defined limits. 3364 * 3365 * A small portion of unmapped file backed pages is needed for 3366 * file I/O otherwise pages read by file I/O will be immediately 3367 * thrown out if the zone is overallocated. So we do not reclaim 3368 * if less than a specified percentage of the zone is used by 3369 * unmapped file backed pages. 3370 */ 3371 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3372 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3373 return ZONE_RECLAIM_FULL; 3374 3375 if (zone->all_unreclaimable) 3376 return ZONE_RECLAIM_FULL; 3377 3378 /* 3379 * Do not scan if the allocation should not be delayed. 3380 */ 3381 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3382 return ZONE_RECLAIM_NOSCAN; 3383 3384 /* 3385 * Only run zone reclaim on the local zone or on zones that do not 3386 * have associated processors. This will favor the local processor 3387 * over remote processors and spread off node memory allocations 3388 * as wide as possible. 3389 */ 3390 node_id = zone_to_nid(zone); 3391 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3392 return ZONE_RECLAIM_NOSCAN; 3393 3394 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3395 return ZONE_RECLAIM_NOSCAN; 3396 3397 ret = __zone_reclaim(zone, gfp_mask, order); 3398 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3399 3400 if (!ret) 3401 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3402 3403 return ret; 3404 } 3405 #endif 3406 3407 /* 3408 * page_evictable - test whether a page is evictable 3409 * @page: the page to test 3410 * 3411 * Test whether page is evictable--i.e., should be placed on active/inactive 3412 * lists vs unevictable list. 3413 * 3414 * Reasons page might not be evictable: 3415 * (1) page's mapping marked unevictable 3416 * (2) page is part of an mlocked VMA 3417 * 3418 */ 3419 int page_evictable(struct page *page) 3420 { 3421 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3422 } 3423 3424 #ifdef CONFIG_SHMEM 3425 /** 3426 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3427 * @pages: array of pages to check 3428 * @nr_pages: number of pages to check 3429 * 3430 * Checks pages for evictability and moves them to the appropriate lru list. 3431 * 3432 * This function is only used for SysV IPC SHM_UNLOCK. 3433 */ 3434 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3435 { 3436 struct lruvec *lruvec; 3437 struct zone *zone = NULL; 3438 int pgscanned = 0; 3439 int pgrescued = 0; 3440 int i; 3441 3442 for (i = 0; i < nr_pages; i++) { 3443 struct page *page = pages[i]; 3444 struct zone *pagezone; 3445 3446 pgscanned++; 3447 pagezone = page_zone(page); 3448 if (pagezone != zone) { 3449 if (zone) 3450 spin_unlock_irq(&zone->lru_lock); 3451 zone = pagezone; 3452 spin_lock_irq(&zone->lru_lock); 3453 } 3454 lruvec = mem_cgroup_page_lruvec(page, zone); 3455 3456 if (!PageLRU(page) || !PageUnevictable(page)) 3457 continue; 3458 3459 if (page_evictable(page)) { 3460 enum lru_list lru = page_lru_base_type(page); 3461 3462 VM_BUG_ON(PageActive(page)); 3463 ClearPageUnevictable(page); 3464 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3465 add_page_to_lru_list(page, lruvec, lru); 3466 pgrescued++; 3467 } 3468 } 3469 3470 if (zone) { 3471 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3472 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3473 spin_unlock_irq(&zone->lru_lock); 3474 } 3475 } 3476 #endif /* CONFIG_SHMEM */ 3477 3478 static void warn_scan_unevictable_pages(void) 3479 { 3480 printk_once(KERN_WARNING 3481 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3482 "disabled for lack of a legitimate use case. If you have " 3483 "one, please send an email to linux-mm@kvack.org.\n", 3484 current->comm); 3485 } 3486 3487 /* 3488 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3489 * all nodes' unevictable lists for evictable pages 3490 */ 3491 unsigned long scan_unevictable_pages; 3492 3493 int scan_unevictable_handler(struct ctl_table *table, int write, 3494 void __user *buffer, 3495 size_t *length, loff_t *ppos) 3496 { 3497 warn_scan_unevictable_pages(); 3498 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3499 scan_unevictable_pages = 0; 3500 return 0; 3501 } 3502 3503 #ifdef CONFIG_NUMA 3504 /* 3505 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3506 * a specified node's per zone unevictable lists for evictable pages. 3507 */ 3508 3509 static ssize_t read_scan_unevictable_node(struct device *dev, 3510 struct device_attribute *attr, 3511 char *buf) 3512 { 3513 warn_scan_unevictable_pages(); 3514 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3515 } 3516 3517 static ssize_t write_scan_unevictable_node(struct device *dev, 3518 struct device_attribute *attr, 3519 const char *buf, size_t count) 3520 { 3521 warn_scan_unevictable_pages(); 3522 return 1; 3523 } 3524 3525 3526 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3527 read_scan_unevictable_node, 3528 write_scan_unevictable_node); 3529 3530 int scan_unevictable_register_node(struct node *node) 3531 { 3532 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3533 } 3534 3535 void scan_unevictable_unregister_node(struct node *node) 3536 { 3537 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3538 } 3539 #endif 3540