xref: /openbmc/linux/mm/vmscan.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* This context's GFP mask */
56 	gfp_t gfp_mask;
57 
58 	int may_writepage;
59 
60 	/* Can pages be swapped as part of reclaim? */
61 	int may_swap;
62 
63 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 	 * In this context, it doesn't matter that we scan the
66 	 * whole list at once. */
67 	int swap_cluster_max;
68 
69 	int swappiness;
70 
71 	int all_unreclaimable;
72 
73 	int order;
74 
75 	/* Which cgroup do we reclaim from */
76 	struct mem_cgroup *mem_cgroup;
77 
78 	/* Pluggable isolate pages callback */
79 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
80 			unsigned long *scanned, int order, int mode,
81 			struct zone *z, struct mem_cgroup *mem_cont,
82 			int active, int file);
83 };
84 
85 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 
87 #ifdef ARCH_HAS_PREFETCH
88 #define prefetch_prev_lru_page(_page, _base, _field)			\
89 	do {								\
90 		if ((_page)->lru.prev != _base) {			\
91 			struct page *prev;				\
92 									\
93 			prev = lru_to_page(&(_page->lru));		\
94 			prefetch(&prev->_field);			\
95 		}							\
96 	} while (0)
97 #else
98 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
99 #endif
100 
101 #ifdef ARCH_HAS_PREFETCHW
102 #define prefetchw_prev_lru_page(_page, _base, _field)			\
103 	do {								\
104 		if ((_page)->lru.prev != _base) {			\
105 			struct page *prev;				\
106 									\
107 			prev = lru_to_page(&(_page->lru));		\
108 			prefetchw(&prev->_field);			\
109 		}							\
110 	} while (0)
111 #else
112 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114 
115 /*
116  * From 0 .. 100.  Higher means more swappy.
117  */
118 int vm_swappiness = 60;
119 long vm_total_pages;	/* The total number of pages which the VM controls */
120 
121 static LIST_HEAD(shrinker_list);
122 static DECLARE_RWSEM(shrinker_rwsem);
123 
124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
125 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
126 #else
127 #define scan_global_lru(sc)	(1)
128 #endif
129 
130 /*
131  * Add a shrinker callback to be called from the vm
132  */
133 void register_shrinker(struct shrinker *shrinker)
134 {
135 	shrinker->nr = 0;
136 	down_write(&shrinker_rwsem);
137 	list_add_tail(&shrinker->list, &shrinker_list);
138 	up_write(&shrinker_rwsem);
139 }
140 EXPORT_SYMBOL(register_shrinker);
141 
142 /*
143  * Remove one
144  */
145 void unregister_shrinker(struct shrinker *shrinker)
146 {
147 	down_write(&shrinker_rwsem);
148 	list_del(&shrinker->list);
149 	up_write(&shrinker_rwsem);
150 }
151 EXPORT_SYMBOL(unregister_shrinker);
152 
153 #define SHRINK_BATCH 128
154 /*
155  * Call the shrink functions to age shrinkable caches
156  *
157  * Here we assume it costs one seek to replace a lru page and that it also
158  * takes a seek to recreate a cache object.  With this in mind we age equal
159  * percentages of the lru and ageable caches.  This should balance the seeks
160  * generated by these structures.
161  *
162  * If the vm encountered mapped pages on the LRU it increase the pressure on
163  * slab to avoid swapping.
164  *
165  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166  *
167  * `lru_pages' represents the number of on-LRU pages in all the zones which
168  * are eligible for the caller's allocation attempt.  It is used for balancing
169  * slab reclaim versus page reclaim.
170  *
171  * Returns the number of slab objects which we shrunk.
172  */
173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 			unsigned long lru_pages)
175 {
176 	struct shrinker *shrinker;
177 	unsigned long ret = 0;
178 
179 	if (scanned == 0)
180 		scanned = SWAP_CLUSTER_MAX;
181 
182 	if (!down_read_trylock(&shrinker_rwsem))
183 		return 1;	/* Assume we'll be able to shrink next time */
184 
185 	list_for_each_entry(shrinker, &shrinker_list, list) {
186 		unsigned long long delta;
187 		unsigned long total_scan;
188 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
189 
190 		delta = (4 * scanned) / shrinker->seeks;
191 		delta *= max_pass;
192 		do_div(delta, lru_pages + 1);
193 		shrinker->nr += delta;
194 		if (shrinker->nr < 0) {
195 			printk(KERN_ERR "%s: nr=%ld\n",
196 					__func__, shrinker->nr);
197 			shrinker->nr = max_pass;
198 		}
199 
200 		/*
201 		 * Avoid risking looping forever due to too large nr value:
202 		 * never try to free more than twice the estimate number of
203 		 * freeable entries.
204 		 */
205 		if (shrinker->nr > max_pass * 2)
206 			shrinker->nr = max_pass * 2;
207 
208 		total_scan = shrinker->nr;
209 		shrinker->nr = 0;
210 
211 		while (total_scan >= SHRINK_BATCH) {
212 			long this_scan = SHRINK_BATCH;
213 			int shrink_ret;
214 			int nr_before;
215 
216 			nr_before = (*shrinker->shrink)(0, gfp_mask);
217 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
218 			if (shrink_ret == -1)
219 				break;
220 			if (shrink_ret < nr_before)
221 				ret += nr_before - shrink_ret;
222 			count_vm_events(SLABS_SCANNED, this_scan);
223 			total_scan -= this_scan;
224 
225 			cond_resched();
226 		}
227 
228 		shrinker->nr += total_scan;
229 	}
230 	up_read(&shrinker_rwsem);
231 	return ret;
232 }
233 
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page *page)
236 {
237 	struct address_space *mapping;
238 
239 	/* Page is in somebody's page tables. */
240 	if (page_mapped(page))
241 		return 1;
242 
243 	/* Be more reluctant to reclaim swapcache than pagecache */
244 	if (PageSwapCache(page))
245 		return 1;
246 
247 	mapping = page_mapping(page);
248 	if (!mapping)
249 		return 0;
250 
251 	/* File is mmap'd by somebody? */
252 	return mapping_mapped(mapping);
253 }
254 
255 static inline int is_page_cache_freeable(struct page *page)
256 {
257 	return page_count(page) - !!PagePrivate(page) == 2;
258 }
259 
260 static int may_write_to_queue(struct backing_dev_info *bdi)
261 {
262 	if (current->flags & PF_SWAPWRITE)
263 		return 1;
264 	if (!bdi_write_congested(bdi))
265 		return 1;
266 	if (bdi == current->backing_dev_info)
267 		return 1;
268 	return 0;
269 }
270 
271 /*
272  * We detected a synchronous write error writing a page out.  Probably
273  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
274  * fsync(), msync() or close().
275  *
276  * The tricky part is that after writepage we cannot touch the mapping: nothing
277  * prevents it from being freed up.  But we have a ref on the page and once
278  * that page is locked, the mapping is pinned.
279  *
280  * We're allowed to run sleeping lock_page() here because we know the caller has
281  * __GFP_FS.
282  */
283 static void handle_write_error(struct address_space *mapping,
284 				struct page *page, int error)
285 {
286 	lock_page(page);
287 	if (page_mapping(page) == mapping)
288 		mapping_set_error(mapping, error);
289 	unlock_page(page);
290 }
291 
292 /* Request for sync pageout. */
293 enum pageout_io {
294 	PAGEOUT_IO_ASYNC,
295 	PAGEOUT_IO_SYNC,
296 };
297 
298 /* possible outcome of pageout() */
299 typedef enum {
300 	/* failed to write page out, page is locked */
301 	PAGE_KEEP,
302 	/* move page to the active list, page is locked */
303 	PAGE_ACTIVATE,
304 	/* page has been sent to the disk successfully, page is unlocked */
305 	PAGE_SUCCESS,
306 	/* page is clean and locked */
307 	PAGE_CLEAN,
308 } pageout_t;
309 
310 /*
311  * pageout is called by shrink_page_list() for each dirty page.
312  * Calls ->writepage().
313  */
314 static pageout_t pageout(struct page *page, struct address_space *mapping,
315 						enum pageout_io sync_writeback)
316 {
317 	/*
318 	 * If the page is dirty, only perform writeback if that write
319 	 * will be non-blocking.  To prevent this allocation from being
320 	 * stalled by pagecache activity.  But note that there may be
321 	 * stalls if we need to run get_block().  We could test
322 	 * PagePrivate for that.
323 	 *
324 	 * If this process is currently in generic_file_write() against
325 	 * this page's queue, we can perform writeback even if that
326 	 * will block.
327 	 *
328 	 * If the page is swapcache, write it back even if that would
329 	 * block, for some throttling. This happens by accident, because
330 	 * swap_backing_dev_info is bust: it doesn't reflect the
331 	 * congestion state of the swapdevs.  Easy to fix, if needed.
332 	 * See swapfile.c:page_queue_congested().
333 	 */
334 	if (!is_page_cache_freeable(page))
335 		return PAGE_KEEP;
336 	if (!mapping) {
337 		/*
338 		 * Some data journaling orphaned pages can have
339 		 * page->mapping == NULL while being dirty with clean buffers.
340 		 */
341 		if (PagePrivate(page)) {
342 			if (try_to_free_buffers(page)) {
343 				ClearPageDirty(page);
344 				printk("%s: orphaned page\n", __func__);
345 				return PAGE_CLEAN;
346 			}
347 		}
348 		return PAGE_KEEP;
349 	}
350 	if (mapping->a_ops->writepage == NULL)
351 		return PAGE_ACTIVATE;
352 	if (!may_write_to_queue(mapping->backing_dev_info))
353 		return PAGE_KEEP;
354 
355 	if (clear_page_dirty_for_io(page)) {
356 		int res;
357 		struct writeback_control wbc = {
358 			.sync_mode = WB_SYNC_NONE,
359 			.nr_to_write = SWAP_CLUSTER_MAX,
360 			.range_start = 0,
361 			.range_end = LLONG_MAX,
362 			.nonblocking = 1,
363 			.for_reclaim = 1,
364 		};
365 
366 		SetPageReclaim(page);
367 		res = mapping->a_ops->writepage(page, &wbc);
368 		if (res < 0)
369 			handle_write_error(mapping, page, res);
370 		if (res == AOP_WRITEPAGE_ACTIVATE) {
371 			ClearPageReclaim(page);
372 			return PAGE_ACTIVATE;
373 		}
374 
375 		/*
376 		 * Wait on writeback if requested to. This happens when
377 		 * direct reclaiming a large contiguous area and the
378 		 * first attempt to free a range of pages fails.
379 		 */
380 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
381 			wait_on_page_writeback(page);
382 
383 		if (!PageWriteback(page)) {
384 			/* synchronous write or broken a_ops? */
385 			ClearPageReclaim(page);
386 		}
387 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
388 		return PAGE_SUCCESS;
389 	}
390 
391 	return PAGE_CLEAN;
392 }
393 
394 /*
395  * Same as remove_mapping, but if the page is removed from the mapping, it
396  * gets returned with a refcount of 0.
397  */
398 static int __remove_mapping(struct address_space *mapping, struct page *page)
399 {
400 	BUG_ON(!PageLocked(page));
401 	BUG_ON(mapping != page_mapping(page));
402 
403 	spin_lock_irq(&mapping->tree_lock);
404 	/*
405 	 * The non racy check for a busy page.
406 	 *
407 	 * Must be careful with the order of the tests. When someone has
408 	 * a ref to the page, it may be possible that they dirty it then
409 	 * drop the reference. So if PageDirty is tested before page_count
410 	 * here, then the following race may occur:
411 	 *
412 	 * get_user_pages(&page);
413 	 * [user mapping goes away]
414 	 * write_to(page);
415 	 *				!PageDirty(page)    [good]
416 	 * SetPageDirty(page);
417 	 * put_page(page);
418 	 *				!page_count(page)   [good, discard it]
419 	 *
420 	 * [oops, our write_to data is lost]
421 	 *
422 	 * Reversing the order of the tests ensures such a situation cannot
423 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 	 * load is not satisfied before that of page->_count.
425 	 *
426 	 * Note that if SetPageDirty is always performed via set_page_dirty,
427 	 * and thus under tree_lock, then this ordering is not required.
428 	 */
429 	if (!page_freeze_refs(page, 2))
430 		goto cannot_free;
431 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 	if (unlikely(PageDirty(page))) {
433 		page_unfreeze_refs(page, 2);
434 		goto cannot_free;
435 	}
436 
437 	if (PageSwapCache(page)) {
438 		swp_entry_t swap = { .val = page_private(page) };
439 		__delete_from_swap_cache(page);
440 		spin_unlock_irq(&mapping->tree_lock);
441 		swap_free(swap);
442 	} else {
443 		__remove_from_page_cache(page);
444 		spin_unlock_irq(&mapping->tree_lock);
445 	}
446 
447 	return 1;
448 
449 cannot_free:
450 	spin_unlock_irq(&mapping->tree_lock);
451 	return 0;
452 }
453 
454 /*
455  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
456  * someone else has a ref on the page, abort and return 0.  If it was
457  * successfully detached, return 1.  Assumes the caller has a single ref on
458  * this page.
459  */
460 int remove_mapping(struct address_space *mapping, struct page *page)
461 {
462 	if (__remove_mapping(mapping, page)) {
463 		/*
464 		 * Unfreezing the refcount with 1 rather than 2 effectively
465 		 * drops the pagecache ref for us without requiring another
466 		 * atomic operation.
467 		 */
468 		page_unfreeze_refs(page, 1);
469 		return 1;
470 	}
471 	return 0;
472 }
473 
474 /**
475  * putback_lru_page - put previously isolated page onto appropriate LRU list
476  * @page: page to be put back to appropriate lru list
477  *
478  * Add previously isolated @page to appropriate LRU list.
479  * Page may still be unevictable for other reasons.
480  *
481  * lru_lock must not be held, interrupts must be enabled.
482  */
483 #ifdef CONFIG_UNEVICTABLE_LRU
484 void putback_lru_page(struct page *page)
485 {
486 	int lru;
487 	int active = !!TestClearPageActive(page);
488 	int was_unevictable = PageUnevictable(page);
489 
490 	VM_BUG_ON(PageLRU(page));
491 
492 redo:
493 	ClearPageUnevictable(page);
494 
495 	if (page_evictable(page, NULL)) {
496 		/*
497 		 * For evictable pages, we can use the cache.
498 		 * In event of a race, worst case is we end up with an
499 		 * unevictable page on [in]active list.
500 		 * We know how to handle that.
501 		 */
502 		lru = active + page_is_file_cache(page);
503 		lru_cache_add_lru(page, lru);
504 	} else {
505 		/*
506 		 * Put unevictable pages directly on zone's unevictable
507 		 * list.
508 		 */
509 		lru = LRU_UNEVICTABLE;
510 		add_page_to_unevictable_list(page);
511 	}
512 	mem_cgroup_move_lists(page, lru);
513 
514 	/*
515 	 * page's status can change while we move it among lru. If an evictable
516 	 * page is on unevictable list, it never be freed. To avoid that,
517 	 * check after we added it to the list, again.
518 	 */
519 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
520 		if (!isolate_lru_page(page)) {
521 			put_page(page);
522 			goto redo;
523 		}
524 		/* This means someone else dropped this page from LRU
525 		 * So, it will be freed or putback to LRU again. There is
526 		 * nothing to do here.
527 		 */
528 	}
529 
530 	if (was_unevictable && lru != LRU_UNEVICTABLE)
531 		count_vm_event(UNEVICTABLE_PGRESCUED);
532 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
533 		count_vm_event(UNEVICTABLE_PGCULLED);
534 
535 	put_page(page);		/* drop ref from isolate */
536 }
537 
538 #else /* CONFIG_UNEVICTABLE_LRU */
539 
540 void putback_lru_page(struct page *page)
541 {
542 	int lru;
543 	VM_BUG_ON(PageLRU(page));
544 
545 	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
546 	lru_cache_add_lru(page, lru);
547 	mem_cgroup_move_lists(page, lru);
548 	put_page(page);
549 }
550 #endif /* CONFIG_UNEVICTABLE_LRU */
551 
552 
553 /*
554  * shrink_page_list() returns the number of reclaimed pages
555  */
556 static unsigned long shrink_page_list(struct list_head *page_list,
557 					struct scan_control *sc,
558 					enum pageout_io sync_writeback)
559 {
560 	LIST_HEAD(ret_pages);
561 	struct pagevec freed_pvec;
562 	int pgactivate = 0;
563 	unsigned long nr_reclaimed = 0;
564 
565 	cond_resched();
566 
567 	pagevec_init(&freed_pvec, 1);
568 	while (!list_empty(page_list)) {
569 		struct address_space *mapping;
570 		struct page *page;
571 		int may_enter_fs;
572 		int referenced;
573 
574 		cond_resched();
575 
576 		page = lru_to_page(page_list);
577 		list_del(&page->lru);
578 
579 		if (!trylock_page(page))
580 			goto keep;
581 
582 		VM_BUG_ON(PageActive(page));
583 
584 		sc->nr_scanned++;
585 
586 		if (unlikely(!page_evictable(page, NULL)))
587 			goto cull_mlocked;
588 
589 		if (!sc->may_swap && page_mapped(page))
590 			goto keep_locked;
591 
592 		/* Double the slab pressure for mapped and swapcache pages */
593 		if (page_mapped(page) || PageSwapCache(page))
594 			sc->nr_scanned++;
595 
596 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
597 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
598 
599 		if (PageWriteback(page)) {
600 			/*
601 			 * Synchronous reclaim is performed in two passes,
602 			 * first an asynchronous pass over the list to
603 			 * start parallel writeback, and a second synchronous
604 			 * pass to wait for the IO to complete.  Wait here
605 			 * for any page for which writeback has already
606 			 * started.
607 			 */
608 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
609 				wait_on_page_writeback(page);
610 			else
611 				goto keep_locked;
612 		}
613 
614 		referenced = page_referenced(page, 1, sc->mem_cgroup);
615 		/* In active use or really unfreeable?  Activate it. */
616 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
617 					referenced && page_mapping_inuse(page))
618 			goto activate_locked;
619 
620 #ifdef CONFIG_SWAP
621 		/*
622 		 * Anonymous process memory has backing store?
623 		 * Try to allocate it some swap space here.
624 		 */
625 		if (PageAnon(page) && !PageSwapCache(page)) {
626 			switch (try_to_munlock(page)) {
627 			case SWAP_FAIL:		/* shouldn't happen */
628 			case SWAP_AGAIN:
629 				goto keep_locked;
630 			case SWAP_MLOCK:
631 				goto cull_mlocked;
632 			case SWAP_SUCCESS:
633 				; /* fall thru'; add to swap cache */
634 			}
635 			if (!add_to_swap(page, GFP_ATOMIC))
636 				goto activate_locked;
637 		}
638 #endif /* CONFIG_SWAP */
639 
640 		mapping = page_mapping(page);
641 
642 		/*
643 		 * The page is mapped into the page tables of one or more
644 		 * processes. Try to unmap it here.
645 		 */
646 		if (page_mapped(page) && mapping) {
647 			switch (try_to_unmap(page, 0)) {
648 			case SWAP_FAIL:
649 				goto activate_locked;
650 			case SWAP_AGAIN:
651 				goto keep_locked;
652 			case SWAP_MLOCK:
653 				goto cull_mlocked;
654 			case SWAP_SUCCESS:
655 				; /* try to free the page below */
656 			}
657 		}
658 
659 		if (PageDirty(page)) {
660 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
661 				goto keep_locked;
662 			if (!may_enter_fs)
663 				goto keep_locked;
664 			if (!sc->may_writepage)
665 				goto keep_locked;
666 
667 			/* Page is dirty, try to write it out here */
668 			switch (pageout(page, mapping, sync_writeback)) {
669 			case PAGE_KEEP:
670 				goto keep_locked;
671 			case PAGE_ACTIVATE:
672 				goto activate_locked;
673 			case PAGE_SUCCESS:
674 				if (PageWriteback(page) || PageDirty(page))
675 					goto keep;
676 				/*
677 				 * A synchronous write - probably a ramdisk.  Go
678 				 * ahead and try to reclaim the page.
679 				 */
680 				if (!trylock_page(page))
681 					goto keep;
682 				if (PageDirty(page) || PageWriteback(page))
683 					goto keep_locked;
684 				mapping = page_mapping(page);
685 			case PAGE_CLEAN:
686 				; /* try to free the page below */
687 			}
688 		}
689 
690 		/*
691 		 * If the page has buffers, try to free the buffer mappings
692 		 * associated with this page. If we succeed we try to free
693 		 * the page as well.
694 		 *
695 		 * We do this even if the page is PageDirty().
696 		 * try_to_release_page() does not perform I/O, but it is
697 		 * possible for a page to have PageDirty set, but it is actually
698 		 * clean (all its buffers are clean).  This happens if the
699 		 * buffers were written out directly, with submit_bh(). ext3
700 		 * will do this, as well as the blockdev mapping.
701 		 * try_to_release_page() will discover that cleanness and will
702 		 * drop the buffers and mark the page clean - it can be freed.
703 		 *
704 		 * Rarely, pages can have buffers and no ->mapping.  These are
705 		 * the pages which were not successfully invalidated in
706 		 * truncate_complete_page().  We try to drop those buffers here
707 		 * and if that worked, and the page is no longer mapped into
708 		 * process address space (page_count == 1) it can be freed.
709 		 * Otherwise, leave the page on the LRU so it is swappable.
710 		 */
711 		if (PagePrivate(page)) {
712 			if (!try_to_release_page(page, sc->gfp_mask))
713 				goto activate_locked;
714 			if (!mapping && page_count(page) == 1) {
715 				unlock_page(page);
716 				if (put_page_testzero(page))
717 					goto free_it;
718 				else {
719 					/*
720 					 * rare race with speculative reference.
721 					 * the speculative reference will free
722 					 * this page shortly, so we may
723 					 * increment nr_reclaimed here (and
724 					 * leave it off the LRU).
725 					 */
726 					nr_reclaimed++;
727 					continue;
728 				}
729 			}
730 		}
731 
732 		if (!mapping || !__remove_mapping(mapping, page))
733 			goto keep_locked;
734 
735 		/*
736 		 * At this point, we have no other references and there is
737 		 * no way to pick any more up (removed from LRU, removed
738 		 * from pagecache). Can use non-atomic bitops now (and
739 		 * we obviously don't have to worry about waking up a process
740 		 * waiting on the page lock, because there are no references.
741 		 */
742 		__clear_page_locked(page);
743 free_it:
744 		nr_reclaimed++;
745 		if (!pagevec_add(&freed_pvec, page)) {
746 			__pagevec_free(&freed_pvec);
747 			pagevec_reinit(&freed_pvec);
748 		}
749 		continue;
750 
751 cull_mlocked:
752 		unlock_page(page);
753 		putback_lru_page(page);
754 		continue;
755 
756 activate_locked:
757 		/* Not a candidate for swapping, so reclaim swap space. */
758 		if (PageSwapCache(page) && vm_swap_full())
759 			remove_exclusive_swap_page_ref(page);
760 		VM_BUG_ON(PageActive(page));
761 		SetPageActive(page);
762 		pgactivate++;
763 keep_locked:
764 		unlock_page(page);
765 keep:
766 		list_add(&page->lru, &ret_pages);
767 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
768 	}
769 	list_splice(&ret_pages, page_list);
770 	if (pagevec_count(&freed_pvec))
771 		__pagevec_free(&freed_pvec);
772 	count_vm_events(PGACTIVATE, pgactivate);
773 	return nr_reclaimed;
774 }
775 
776 /* LRU Isolation modes. */
777 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
778 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
779 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
780 
781 /*
782  * Attempt to remove the specified page from its LRU.  Only take this page
783  * if it is of the appropriate PageActive status.  Pages which are being
784  * freed elsewhere are also ignored.
785  *
786  * page:	page to consider
787  * mode:	one of the LRU isolation modes defined above
788  *
789  * returns 0 on success, -ve errno on failure.
790  */
791 int __isolate_lru_page(struct page *page, int mode, int file)
792 {
793 	int ret = -EINVAL;
794 
795 	/* Only take pages on the LRU. */
796 	if (!PageLRU(page))
797 		return ret;
798 
799 	/*
800 	 * When checking the active state, we need to be sure we are
801 	 * dealing with comparible boolean values.  Take the logical not
802 	 * of each.
803 	 */
804 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
805 		return ret;
806 
807 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
808 		return ret;
809 
810 	/*
811 	 * When this function is being called for lumpy reclaim, we
812 	 * initially look into all LRU pages, active, inactive and
813 	 * unevictable; only give shrink_page_list evictable pages.
814 	 */
815 	if (PageUnevictable(page))
816 		return ret;
817 
818 	ret = -EBUSY;
819 	if (likely(get_page_unless_zero(page))) {
820 		/*
821 		 * Be careful not to clear PageLRU until after we're
822 		 * sure the page is not being freed elsewhere -- the
823 		 * page release code relies on it.
824 		 */
825 		ClearPageLRU(page);
826 		ret = 0;
827 	}
828 
829 	return ret;
830 }
831 
832 /*
833  * zone->lru_lock is heavily contended.  Some of the functions that
834  * shrink the lists perform better by taking out a batch of pages
835  * and working on them outside the LRU lock.
836  *
837  * For pagecache intensive workloads, this function is the hottest
838  * spot in the kernel (apart from copy_*_user functions).
839  *
840  * Appropriate locks must be held before calling this function.
841  *
842  * @nr_to_scan:	The number of pages to look through on the list.
843  * @src:	The LRU list to pull pages off.
844  * @dst:	The temp list to put pages on to.
845  * @scanned:	The number of pages that were scanned.
846  * @order:	The caller's attempted allocation order
847  * @mode:	One of the LRU isolation modes
848  * @file:	True [1] if isolating file [!anon] pages
849  *
850  * returns how many pages were moved onto *@dst.
851  */
852 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
853 		struct list_head *src, struct list_head *dst,
854 		unsigned long *scanned, int order, int mode, int file)
855 {
856 	unsigned long nr_taken = 0;
857 	unsigned long scan;
858 
859 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
860 		struct page *page;
861 		unsigned long pfn;
862 		unsigned long end_pfn;
863 		unsigned long page_pfn;
864 		int zone_id;
865 
866 		page = lru_to_page(src);
867 		prefetchw_prev_lru_page(page, src, flags);
868 
869 		VM_BUG_ON(!PageLRU(page));
870 
871 		switch (__isolate_lru_page(page, mode, file)) {
872 		case 0:
873 			list_move(&page->lru, dst);
874 			nr_taken++;
875 			break;
876 
877 		case -EBUSY:
878 			/* else it is being freed elsewhere */
879 			list_move(&page->lru, src);
880 			continue;
881 
882 		default:
883 			BUG();
884 		}
885 
886 		if (!order)
887 			continue;
888 
889 		/*
890 		 * Attempt to take all pages in the order aligned region
891 		 * surrounding the tag page.  Only take those pages of
892 		 * the same active state as that tag page.  We may safely
893 		 * round the target page pfn down to the requested order
894 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
895 		 * where that page is in a different zone we will detect
896 		 * it from its zone id and abort this block scan.
897 		 */
898 		zone_id = page_zone_id(page);
899 		page_pfn = page_to_pfn(page);
900 		pfn = page_pfn & ~((1 << order) - 1);
901 		end_pfn = pfn + (1 << order);
902 		for (; pfn < end_pfn; pfn++) {
903 			struct page *cursor_page;
904 
905 			/* The target page is in the block, ignore it. */
906 			if (unlikely(pfn == page_pfn))
907 				continue;
908 
909 			/* Avoid holes within the zone. */
910 			if (unlikely(!pfn_valid_within(pfn)))
911 				break;
912 
913 			cursor_page = pfn_to_page(pfn);
914 
915 			/* Check that we have not crossed a zone boundary. */
916 			if (unlikely(page_zone_id(cursor_page) != zone_id))
917 				continue;
918 			switch (__isolate_lru_page(cursor_page, mode, file)) {
919 			case 0:
920 				list_move(&cursor_page->lru, dst);
921 				nr_taken++;
922 				scan++;
923 				break;
924 
925 			case -EBUSY:
926 				/* else it is being freed elsewhere */
927 				list_move(&cursor_page->lru, src);
928 			default:
929 				break;	/* ! on LRU or wrong list */
930 			}
931 		}
932 	}
933 
934 	*scanned = scan;
935 	return nr_taken;
936 }
937 
938 static unsigned long isolate_pages_global(unsigned long nr,
939 					struct list_head *dst,
940 					unsigned long *scanned, int order,
941 					int mode, struct zone *z,
942 					struct mem_cgroup *mem_cont,
943 					int active, int file)
944 {
945 	int lru = LRU_BASE;
946 	if (active)
947 		lru += LRU_ACTIVE;
948 	if (file)
949 		lru += LRU_FILE;
950 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
951 								mode, !!file);
952 }
953 
954 /*
955  * clear_active_flags() is a helper for shrink_active_list(), clearing
956  * any active bits from the pages in the list.
957  */
958 static unsigned long clear_active_flags(struct list_head *page_list,
959 					unsigned int *count)
960 {
961 	int nr_active = 0;
962 	int lru;
963 	struct page *page;
964 
965 	list_for_each_entry(page, page_list, lru) {
966 		lru = page_is_file_cache(page);
967 		if (PageActive(page)) {
968 			lru += LRU_ACTIVE;
969 			ClearPageActive(page);
970 			nr_active++;
971 		}
972 		count[lru]++;
973 	}
974 
975 	return nr_active;
976 }
977 
978 /**
979  * isolate_lru_page - tries to isolate a page from its LRU list
980  * @page: page to isolate from its LRU list
981  *
982  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
983  * vmstat statistic corresponding to whatever LRU list the page was on.
984  *
985  * Returns 0 if the page was removed from an LRU list.
986  * Returns -EBUSY if the page was not on an LRU list.
987  *
988  * The returned page will have PageLRU() cleared.  If it was found on
989  * the active list, it will have PageActive set.  If it was found on
990  * the unevictable list, it will have the PageUnevictable bit set. That flag
991  * may need to be cleared by the caller before letting the page go.
992  *
993  * The vmstat statistic corresponding to the list on which the page was
994  * found will be decremented.
995  *
996  * Restrictions:
997  * (1) Must be called with an elevated refcount on the page. This is a
998  *     fundamentnal difference from isolate_lru_pages (which is called
999  *     without a stable reference).
1000  * (2) the lru_lock must not be held.
1001  * (3) interrupts must be enabled.
1002  */
1003 int isolate_lru_page(struct page *page)
1004 {
1005 	int ret = -EBUSY;
1006 
1007 	if (PageLRU(page)) {
1008 		struct zone *zone = page_zone(page);
1009 
1010 		spin_lock_irq(&zone->lru_lock);
1011 		if (PageLRU(page) && get_page_unless_zero(page)) {
1012 			int lru = page_lru(page);
1013 			ret = 0;
1014 			ClearPageLRU(page);
1015 
1016 			del_page_from_lru_list(zone, page, lru);
1017 		}
1018 		spin_unlock_irq(&zone->lru_lock);
1019 	}
1020 	return ret;
1021 }
1022 
1023 /*
1024  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1025  * of reclaimed pages
1026  */
1027 static unsigned long shrink_inactive_list(unsigned long max_scan,
1028 			struct zone *zone, struct scan_control *sc,
1029 			int priority, int file)
1030 {
1031 	LIST_HEAD(page_list);
1032 	struct pagevec pvec;
1033 	unsigned long nr_scanned = 0;
1034 	unsigned long nr_reclaimed = 0;
1035 
1036 	pagevec_init(&pvec, 1);
1037 
1038 	lru_add_drain();
1039 	spin_lock_irq(&zone->lru_lock);
1040 	do {
1041 		struct page *page;
1042 		unsigned long nr_taken;
1043 		unsigned long nr_scan;
1044 		unsigned long nr_freed;
1045 		unsigned long nr_active;
1046 		unsigned int count[NR_LRU_LISTS] = { 0, };
1047 		int mode = ISOLATE_INACTIVE;
1048 
1049 		/*
1050 		 * If we need a large contiguous chunk of memory, or have
1051 		 * trouble getting a small set of contiguous pages, we
1052 		 * will reclaim both active and inactive pages.
1053 		 *
1054 		 * We use the same threshold as pageout congestion_wait below.
1055 		 */
1056 		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1057 			mode = ISOLATE_BOTH;
1058 		else if (sc->order && priority < DEF_PRIORITY - 2)
1059 			mode = ISOLATE_BOTH;
1060 
1061 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1062 			     &page_list, &nr_scan, sc->order, mode,
1063 				zone, sc->mem_cgroup, 0, file);
1064 		nr_active = clear_active_flags(&page_list, count);
1065 		__count_vm_events(PGDEACTIVATE, nr_active);
1066 
1067 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1068 						-count[LRU_ACTIVE_FILE]);
1069 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1070 						-count[LRU_INACTIVE_FILE]);
1071 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1072 						-count[LRU_ACTIVE_ANON]);
1073 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1074 						-count[LRU_INACTIVE_ANON]);
1075 
1076 		if (scan_global_lru(sc)) {
1077 			zone->pages_scanned += nr_scan;
1078 			zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1079 			zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1080 			zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1081 			zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1082 		}
1083 		spin_unlock_irq(&zone->lru_lock);
1084 
1085 		nr_scanned += nr_scan;
1086 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1087 
1088 		/*
1089 		 * If we are direct reclaiming for contiguous pages and we do
1090 		 * not reclaim everything in the list, try again and wait
1091 		 * for IO to complete. This will stall high-order allocations
1092 		 * but that should be acceptable to the caller
1093 		 */
1094 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1095 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1096 			congestion_wait(WRITE, HZ/10);
1097 
1098 			/*
1099 			 * The attempt at page out may have made some
1100 			 * of the pages active, mark them inactive again.
1101 			 */
1102 			nr_active = clear_active_flags(&page_list, count);
1103 			count_vm_events(PGDEACTIVATE, nr_active);
1104 
1105 			nr_freed += shrink_page_list(&page_list, sc,
1106 							PAGEOUT_IO_SYNC);
1107 		}
1108 
1109 		nr_reclaimed += nr_freed;
1110 		local_irq_disable();
1111 		if (current_is_kswapd()) {
1112 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1113 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1114 		} else if (scan_global_lru(sc))
1115 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1116 
1117 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1118 
1119 		if (nr_taken == 0)
1120 			goto done;
1121 
1122 		spin_lock(&zone->lru_lock);
1123 		/*
1124 		 * Put back any unfreeable pages.
1125 		 */
1126 		while (!list_empty(&page_list)) {
1127 			int lru;
1128 			page = lru_to_page(&page_list);
1129 			VM_BUG_ON(PageLRU(page));
1130 			list_del(&page->lru);
1131 			if (unlikely(!page_evictable(page, NULL))) {
1132 				spin_unlock_irq(&zone->lru_lock);
1133 				putback_lru_page(page);
1134 				spin_lock_irq(&zone->lru_lock);
1135 				continue;
1136 			}
1137 			SetPageLRU(page);
1138 			lru = page_lru(page);
1139 			add_page_to_lru_list(zone, page, lru);
1140 			mem_cgroup_move_lists(page, lru);
1141 			if (PageActive(page) && scan_global_lru(sc)) {
1142 				int file = !!page_is_file_cache(page);
1143 				zone->recent_rotated[file]++;
1144 			}
1145 			if (!pagevec_add(&pvec, page)) {
1146 				spin_unlock_irq(&zone->lru_lock);
1147 				__pagevec_release(&pvec);
1148 				spin_lock_irq(&zone->lru_lock);
1149 			}
1150 		}
1151   	} while (nr_scanned < max_scan);
1152 	spin_unlock(&zone->lru_lock);
1153 done:
1154 	local_irq_enable();
1155 	pagevec_release(&pvec);
1156 	return nr_reclaimed;
1157 }
1158 
1159 /*
1160  * We are about to scan this zone at a certain priority level.  If that priority
1161  * level is smaller (ie: more urgent) than the previous priority, then note
1162  * that priority level within the zone.  This is done so that when the next
1163  * process comes in to scan this zone, it will immediately start out at this
1164  * priority level rather than having to build up its own scanning priority.
1165  * Here, this priority affects only the reclaim-mapped threshold.
1166  */
1167 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1168 {
1169 	if (priority < zone->prev_priority)
1170 		zone->prev_priority = priority;
1171 }
1172 
1173 static inline int zone_is_near_oom(struct zone *zone)
1174 {
1175 	return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1176 }
1177 
1178 /*
1179  * This moves pages from the active list to the inactive list.
1180  *
1181  * We move them the other way if the page is referenced by one or more
1182  * processes, from rmap.
1183  *
1184  * If the pages are mostly unmapped, the processing is fast and it is
1185  * appropriate to hold zone->lru_lock across the whole operation.  But if
1186  * the pages are mapped, the processing is slow (page_referenced()) so we
1187  * should drop zone->lru_lock around each page.  It's impossible to balance
1188  * this, so instead we remove the pages from the LRU while processing them.
1189  * It is safe to rely on PG_active against the non-LRU pages in here because
1190  * nobody will play with that bit on a non-LRU page.
1191  *
1192  * The downside is that we have to touch page->_count against each page.
1193  * But we had to alter page->flags anyway.
1194  */
1195 
1196 
1197 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1198 			struct scan_control *sc, int priority, int file)
1199 {
1200 	unsigned long pgmoved;
1201 	int pgdeactivate = 0;
1202 	unsigned long pgscanned;
1203 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1204 	LIST_HEAD(l_inactive);
1205 	struct page *page;
1206 	struct pagevec pvec;
1207 	enum lru_list lru;
1208 
1209 	lru_add_drain();
1210 	spin_lock_irq(&zone->lru_lock);
1211 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1212 					ISOLATE_ACTIVE, zone,
1213 					sc->mem_cgroup, 1, file);
1214 	/*
1215 	 * zone->pages_scanned is used for detect zone's oom
1216 	 * mem_cgroup remembers nr_scan by itself.
1217 	 */
1218 	if (scan_global_lru(sc)) {
1219 		zone->pages_scanned += pgscanned;
1220 		zone->recent_scanned[!!file] += pgmoved;
1221 	}
1222 
1223 	if (file)
1224 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1225 	else
1226 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1227 	spin_unlock_irq(&zone->lru_lock);
1228 
1229 	pgmoved = 0;
1230 	while (!list_empty(&l_hold)) {
1231 		cond_resched();
1232 		page = lru_to_page(&l_hold);
1233 		list_del(&page->lru);
1234 
1235 		if (unlikely(!page_evictable(page, NULL))) {
1236 			putback_lru_page(page);
1237 			continue;
1238 		}
1239 
1240 		/* page_referenced clears PageReferenced */
1241 		if (page_mapping_inuse(page) &&
1242 		    page_referenced(page, 0, sc->mem_cgroup))
1243 			pgmoved++;
1244 
1245 		list_add(&page->lru, &l_inactive);
1246 	}
1247 
1248 	/*
1249 	 * Count referenced pages from currently used mappings as
1250 	 * rotated, even though they are moved to the inactive list.
1251 	 * This helps balance scan pressure between file and anonymous
1252 	 * pages in get_scan_ratio.
1253 	 */
1254 	zone->recent_rotated[!!file] += pgmoved;
1255 
1256 	/*
1257 	 * Move the pages to the [file or anon] inactive list.
1258 	 */
1259 	pagevec_init(&pvec, 1);
1260 
1261 	pgmoved = 0;
1262 	lru = LRU_BASE + file * LRU_FILE;
1263 	spin_lock_irq(&zone->lru_lock);
1264 	while (!list_empty(&l_inactive)) {
1265 		page = lru_to_page(&l_inactive);
1266 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1267 		VM_BUG_ON(PageLRU(page));
1268 		SetPageLRU(page);
1269 		VM_BUG_ON(!PageActive(page));
1270 		ClearPageActive(page);
1271 
1272 		list_move(&page->lru, &zone->lru[lru].list);
1273 		mem_cgroup_move_lists(page, lru);
1274 		pgmoved++;
1275 		if (!pagevec_add(&pvec, page)) {
1276 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1277 			spin_unlock_irq(&zone->lru_lock);
1278 			pgdeactivate += pgmoved;
1279 			pgmoved = 0;
1280 			if (buffer_heads_over_limit)
1281 				pagevec_strip(&pvec);
1282 			__pagevec_release(&pvec);
1283 			spin_lock_irq(&zone->lru_lock);
1284 		}
1285 	}
1286 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1287 	pgdeactivate += pgmoved;
1288 	if (buffer_heads_over_limit) {
1289 		spin_unlock_irq(&zone->lru_lock);
1290 		pagevec_strip(&pvec);
1291 		spin_lock_irq(&zone->lru_lock);
1292 	}
1293 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1294 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1295 	spin_unlock_irq(&zone->lru_lock);
1296 	if (vm_swap_full())
1297 		pagevec_swap_free(&pvec);
1298 
1299 	pagevec_release(&pvec);
1300 }
1301 
1302 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1303 	struct zone *zone, struct scan_control *sc, int priority)
1304 {
1305 	int file = is_file_lru(lru);
1306 
1307 	if (lru == LRU_ACTIVE_FILE) {
1308 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1309 		return 0;
1310 	}
1311 
1312 	if (lru == LRU_ACTIVE_ANON &&
1313 	    (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1314 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1315 		return 0;
1316 	}
1317 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1318 }
1319 
1320 /*
1321  * Determine how aggressively the anon and file LRU lists should be
1322  * scanned.  The relative value of each set of LRU lists is determined
1323  * by looking at the fraction of the pages scanned we did rotate back
1324  * onto the active list instead of evict.
1325  *
1326  * percent[0] specifies how much pressure to put on ram/swap backed
1327  * memory, while percent[1] determines pressure on the file LRUs.
1328  */
1329 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1330 					unsigned long *percent)
1331 {
1332 	unsigned long anon, file, free;
1333 	unsigned long anon_prio, file_prio;
1334 	unsigned long ap, fp;
1335 
1336 	anon  = zone_page_state(zone, NR_ACTIVE_ANON) +
1337 		zone_page_state(zone, NR_INACTIVE_ANON);
1338 	file  = zone_page_state(zone, NR_ACTIVE_FILE) +
1339 		zone_page_state(zone, NR_INACTIVE_FILE);
1340 	free  = zone_page_state(zone, NR_FREE_PAGES);
1341 
1342 	/* If we have no swap space, do not bother scanning anon pages. */
1343 	if (nr_swap_pages <= 0) {
1344 		percent[0] = 0;
1345 		percent[1] = 100;
1346 		return;
1347 	}
1348 
1349 	/* If we have very few page cache pages, force-scan anon pages. */
1350 	if (unlikely(file + free <= zone->pages_high)) {
1351 		percent[0] = 100;
1352 		percent[1] = 0;
1353 		return;
1354 	}
1355 
1356 	/*
1357 	 * OK, so we have swap space and a fair amount of page cache
1358 	 * pages.  We use the recently rotated / recently scanned
1359 	 * ratios to determine how valuable each cache is.
1360 	 *
1361 	 * Because workloads change over time (and to avoid overflow)
1362 	 * we keep these statistics as a floating average, which ends
1363 	 * up weighing recent references more than old ones.
1364 	 *
1365 	 * anon in [0], file in [1]
1366 	 */
1367 	if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1368 		spin_lock_irq(&zone->lru_lock);
1369 		zone->recent_scanned[0] /= 2;
1370 		zone->recent_rotated[0] /= 2;
1371 		spin_unlock_irq(&zone->lru_lock);
1372 	}
1373 
1374 	if (unlikely(zone->recent_scanned[1] > file / 4)) {
1375 		spin_lock_irq(&zone->lru_lock);
1376 		zone->recent_scanned[1] /= 2;
1377 		zone->recent_rotated[1] /= 2;
1378 		spin_unlock_irq(&zone->lru_lock);
1379 	}
1380 
1381 	/*
1382 	 * With swappiness at 100, anonymous and file have the same priority.
1383 	 * This scanning priority is essentially the inverse of IO cost.
1384 	 */
1385 	anon_prio = sc->swappiness;
1386 	file_prio = 200 - sc->swappiness;
1387 
1388 	/*
1389 	 *                  anon       recent_rotated[0]
1390 	 * %anon = 100 * ----------- / ----------------- * IO cost
1391 	 *               anon + file      rotate_sum
1392 	 */
1393 	ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1394 	ap /= zone->recent_rotated[0] + 1;
1395 
1396 	fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1397 	fp /= zone->recent_rotated[1] + 1;
1398 
1399 	/* Normalize to percentages */
1400 	percent[0] = 100 * ap / (ap + fp + 1);
1401 	percent[1] = 100 - percent[0];
1402 }
1403 
1404 
1405 /*
1406  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1407  */
1408 static unsigned long shrink_zone(int priority, struct zone *zone,
1409 				struct scan_control *sc)
1410 {
1411 	unsigned long nr[NR_LRU_LISTS];
1412 	unsigned long nr_to_scan;
1413 	unsigned long nr_reclaimed = 0;
1414 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1415 	enum lru_list l;
1416 
1417 	get_scan_ratio(zone, sc, percent);
1418 
1419 	for_each_evictable_lru(l) {
1420 		if (scan_global_lru(sc)) {
1421 			int file = is_file_lru(l);
1422 			int scan;
1423 
1424 			scan = zone_page_state(zone, NR_LRU_BASE + l);
1425 			if (priority) {
1426 				scan >>= priority;
1427 				scan = (scan * percent[file]) / 100;
1428 			}
1429 			zone->lru[l].nr_scan += scan;
1430 			nr[l] = zone->lru[l].nr_scan;
1431 			if (nr[l] >= sc->swap_cluster_max)
1432 				zone->lru[l].nr_scan = 0;
1433 			else
1434 				nr[l] = 0;
1435 		} else {
1436 			/*
1437 			 * This reclaim occurs not because zone memory shortage
1438 			 * but because memory controller hits its limit.
1439 			 * Don't modify zone reclaim related data.
1440 			 */
1441 			nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1442 								priority, l);
1443 		}
1444 	}
1445 
1446 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1447 					nr[LRU_INACTIVE_FILE]) {
1448 		for_each_evictable_lru(l) {
1449 			if (nr[l]) {
1450 				nr_to_scan = min(nr[l],
1451 					(unsigned long)sc->swap_cluster_max);
1452 				nr[l] -= nr_to_scan;
1453 
1454 				nr_reclaimed += shrink_list(l, nr_to_scan,
1455 							zone, sc, priority);
1456 			}
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * Even if we did not try to evict anon pages at all, we want to
1462 	 * rebalance the anon lru active/inactive ratio.
1463 	 */
1464 	if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1465 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1466 	else if (!scan_global_lru(sc))
1467 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1468 
1469 	throttle_vm_writeout(sc->gfp_mask);
1470 	return nr_reclaimed;
1471 }
1472 
1473 /*
1474  * This is the direct reclaim path, for page-allocating processes.  We only
1475  * try to reclaim pages from zones which will satisfy the caller's allocation
1476  * request.
1477  *
1478  * We reclaim from a zone even if that zone is over pages_high.  Because:
1479  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1480  *    allocation or
1481  * b) The zones may be over pages_high but they must go *over* pages_high to
1482  *    satisfy the `incremental min' zone defense algorithm.
1483  *
1484  * Returns the number of reclaimed pages.
1485  *
1486  * If a zone is deemed to be full of pinned pages then just give it a light
1487  * scan then give up on it.
1488  */
1489 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1490 					struct scan_control *sc)
1491 {
1492 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1493 	unsigned long nr_reclaimed = 0;
1494 	struct zoneref *z;
1495 	struct zone *zone;
1496 
1497 	sc->all_unreclaimable = 1;
1498 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1499 		if (!populated_zone(zone))
1500 			continue;
1501 		/*
1502 		 * Take care memory controller reclaiming has small influence
1503 		 * to global LRU.
1504 		 */
1505 		if (scan_global_lru(sc)) {
1506 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1507 				continue;
1508 			note_zone_scanning_priority(zone, priority);
1509 
1510 			if (zone_is_all_unreclaimable(zone) &&
1511 						priority != DEF_PRIORITY)
1512 				continue;	/* Let kswapd poll it */
1513 			sc->all_unreclaimable = 0;
1514 		} else {
1515 			/*
1516 			 * Ignore cpuset limitation here. We just want to reduce
1517 			 * # of used pages by us regardless of memory shortage.
1518 			 */
1519 			sc->all_unreclaimable = 0;
1520 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1521 							priority);
1522 		}
1523 
1524 		nr_reclaimed += shrink_zone(priority, zone, sc);
1525 	}
1526 
1527 	return nr_reclaimed;
1528 }
1529 
1530 /*
1531  * This is the main entry point to direct page reclaim.
1532  *
1533  * If a full scan of the inactive list fails to free enough memory then we
1534  * are "out of memory" and something needs to be killed.
1535  *
1536  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1537  * high - the zone may be full of dirty or under-writeback pages, which this
1538  * caller can't do much about.  We kick pdflush and take explicit naps in the
1539  * hope that some of these pages can be written.  But if the allocating task
1540  * holds filesystem locks which prevent writeout this might not work, and the
1541  * allocation attempt will fail.
1542  *
1543  * returns:	0, if no pages reclaimed
1544  * 		else, the number of pages reclaimed
1545  */
1546 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1547 					struct scan_control *sc)
1548 {
1549 	int priority;
1550 	unsigned long ret = 0;
1551 	unsigned long total_scanned = 0;
1552 	unsigned long nr_reclaimed = 0;
1553 	struct reclaim_state *reclaim_state = current->reclaim_state;
1554 	unsigned long lru_pages = 0;
1555 	struct zoneref *z;
1556 	struct zone *zone;
1557 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1558 
1559 	delayacct_freepages_start();
1560 
1561 	if (scan_global_lru(sc))
1562 		count_vm_event(ALLOCSTALL);
1563 	/*
1564 	 * mem_cgroup will not do shrink_slab.
1565 	 */
1566 	if (scan_global_lru(sc)) {
1567 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1568 
1569 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1570 				continue;
1571 
1572 			lru_pages += zone_lru_pages(zone);
1573 		}
1574 	}
1575 
1576 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1577 		sc->nr_scanned = 0;
1578 		if (!priority)
1579 			disable_swap_token();
1580 		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1581 		/*
1582 		 * Don't shrink slabs when reclaiming memory from
1583 		 * over limit cgroups
1584 		 */
1585 		if (scan_global_lru(sc)) {
1586 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1587 			if (reclaim_state) {
1588 				nr_reclaimed += reclaim_state->reclaimed_slab;
1589 				reclaim_state->reclaimed_slab = 0;
1590 			}
1591 		}
1592 		total_scanned += sc->nr_scanned;
1593 		if (nr_reclaimed >= sc->swap_cluster_max) {
1594 			ret = nr_reclaimed;
1595 			goto out;
1596 		}
1597 
1598 		/*
1599 		 * Try to write back as many pages as we just scanned.  This
1600 		 * tends to cause slow streaming writers to write data to the
1601 		 * disk smoothly, at the dirtying rate, which is nice.   But
1602 		 * that's undesirable in laptop mode, where we *want* lumpy
1603 		 * writeout.  So in laptop mode, write out the whole world.
1604 		 */
1605 		if (total_scanned > sc->swap_cluster_max +
1606 					sc->swap_cluster_max / 2) {
1607 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1608 			sc->may_writepage = 1;
1609 		}
1610 
1611 		/* Take a nap, wait for some writeback to complete */
1612 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1613 			congestion_wait(WRITE, HZ/10);
1614 	}
1615 	/* top priority shrink_zones still had more to do? don't OOM, then */
1616 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1617 		ret = nr_reclaimed;
1618 out:
1619 	/*
1620 	 * Now that we've scanned all the zones at this priority level, note
1621 	 * that level within the zone so that the next thread which performs
1622 	 * scanning of this zone will immediately start out at this priority
1623 	 * level.  This affects only the decision whether or not to bring
1624 	 * mapped pages onto the inactive list.
1625 	 */
1626 	if (priority < 0)
1627 		priority = 0;
1628 
1629 	if (scan_global_lru(sc)) {
1630 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1631 
1632 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1633 				continue;
1634 
1635 			zone->prev_priority = priority;
1636 		}
1637 	} else
1638 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1639 
1640 	delayacct_freepages_end();
1641 
1642 	return ret;
1643 }
1644 
1645 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1646 								gfp_t gfp_mask)
1647 {
1648 	struct scan_control sc = {
1649 		.gfp_mask = gfp_mask,
1650 		.may_writepage = !laptop_mode,
1651 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1652 		.may_swap = 1,
1653 		.swappiness = vm_swappiness,
1654 		.order = order,
1655 		.mem_cgroup = NULL,
1656 		.isolate_pages = isolate_pages_global,
1657 	};
1658 
1659 	return do_try_to_free_pages(zonelist, &sc);
1660 }
1661 
1662 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1663 
1664 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1665 						gfp_t gfp_mask)
1666 {
1667 	struct scan_control sc = {
1668 		.may_writepage = !laptop_mode,
1669 		.may_swap = 1,
1670 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1671 		.swappiness = vm_swappiness,
1672 		.order = 0,
1673 		.mem_cgroup = mem_cont,
1674 		.isolate_pages = mem_cgroup_isolate_pages,
1675 	};
1676 	struct zonelist *zonelist;
1677 
1678 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1679 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1680 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1681 	return do_try_to_free_pages(zonelist, &sc);
1682 }
1683 #endif
1684 
1685 /*
1686  * For kswapd, balance_pgdat() will work across all this node's zones until
1687  * they are all at pages_high.
1688  *
1689  * Returns the number of pages which were actually freed.
1690  *
1691  * There is special handling here for zones which are full of pinned pages.
1692  * This can happen if the pages are all mlocked, or if they are all used by
1693  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1694  * What we do is to detect the case where all pages in the zone have been
1695  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1696  * dead and from now on, only perform a short scan.  Basically we're polling
1697  * the zone for when the problem goes away.
1698  *
1699  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1700  * zones which have free_pages > pages_high, but once a zone is found to have
1701  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1702  * of the number of free pages in the lower zones.  This interoperates with
1703  * the page allocator fallback scheme to ensure that aging of pages is balanced
1704  * across the zones.
1705  */
1706 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1707 {
1708 	int all_zones_ok;
1709 	int priority;
1710 	int i;
1711 	unsigned long total_scanned;
1712 	unsigned long nr_reclaimed;
1713 	struct reclaim_state *reclaim_state = current->reclaim_state;
1714 	struct scan_control sc = {
1715 		.gfp_mask = GFP_KERNEL,
1716 		.may_swap = 1,
1717 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1718 		.swappiness = vm_swappiness,
1719 		.order = order,
1720 		.mem_cgroup = NULL,
1721 		.isolate_pages = isolate_pages_global,
1722 	};
1723 	/*
1724 	 * temp_priority is used to remember the scanning priority at which
1725 	 * this zone was successfully refilled to free_pages == pages_high.
1726 	 */
1727 	int temp_priority[MAX_NR_ZONES];
1728 
1729 loop_again:
1730 	total_scanned = 0;
1731 	nr_reclaimed = 0;
1732 	sc.may_writepage = !laptop_mode;
1733 	count_vm_event(PAGEOUTRUN);
1734 
1735 	for (i = 0; i < pgdat->nr_zones; i++)
1736 		temp_priority[i] = DEF_PRIORITY;
1737 
1738 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1739 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1740 		unsigned long lru_pages = 0;
1741 
1742 		/* The swap token gets in the way of swapout... */
1743 		if (!priority)
1744 			disable_swap_token();
1745 
1746 		all_zones_ok = 1;
1747 
1748 		/*
1749 		 * Scan in the highmem->dma direction for the highest
1750 		 * zone which needs scanning
1751 		 */
1752 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1753 			struct zone *zone = pgdat->node_zones + i;
1754 
1755 			if (!populated_zone(zone))
1756 				continue;
1757 
1758 			if (zone_is_all_unreclaimable(zone) &&
1759 			    priority != DEF_PRIORITY)
1760 				continue;
1761 
1762 			/*
1763 			 * Do some background aging of the anon list, to give
1764 			 * pages a chance to be referenced before reclaiming.
1765 			 */
1766 			if (inactive_anon_is_low(zone))
1767 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1768 							&sc, priority, 0);
1769 
1770 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1771 					       0, 0)) {
1772 				end_zone = i;
1773 				break;
1774 			}
1775 		}
1776 		if (i < 0)
1777 			goto out;
1778 
1779 		for (i = 0; i <= end_zone; i++) {
1780 			struct zone *zone = pgdat->node_zones + i;
1781 
1782 			lru_pages += zone_lru_pages(zone);
1783 		}
1784 
1785 		/*
1786 		 * Now scan the zone in the dma->highmem direction, stopping
1787 		 * at the last zone which needs scanning.
1788 		 *
1789 		 * We do this because the page allocator works in the opposite
1790 		 * direction.  This prevents the page allocator from allocating
1791 		 * pages behind kswapd's direction of progress, which would
1792 		 * cause too much scanning of the lower zones.
1793 		 */
1794 		for (i = 0; i <= end_zone; i++) {
1795 			struct zone *zone = pgdat->node_zones + i;
1796 			int nr_slab;
1797 
1798 			if (!populated_zone(zone))
1799 				continue;
1800 
1801 			if (zone_is_all_unreclaimable(zone) &&
1802 					priority != DEF_PRIORITY)
1803 				continue;
1804 
1805 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1806 					       end_zone, 0))
1807 				all_zones_ok = 0;
1808 			temp_priority[i] = priority;
1809 			sc.nr_scanned = 0;
1810 			note_zone_scanning_priority(zone, priority);
1811 			/*
1812 			 * We put equal pressure on every zone, unless one
1813 			 * zone has way too many pages free already.
1814 			 */
1815 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1816 						end_zone, 0))
1817 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1818 			reclaim_state->reclaimed_slab = 0;
1819 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1820 						lru_pages);
1821 			nr_reclaimed += reclaim_state->reclaimed_slab;
1822 			total_scanned += sc.nr_scanned;
1823 			if (zone_is_all_unreclaimable(zone))
1824 				continue;
1825 			if (nr_slab == 0 && zone->pages_scanned >=
1826 						(zone_lru_pages(zone) * 6))
1827 					zone_set_flag(zone,
1828 						      ZONE_ALL_UNRECLAIMABLE);
1829 			/*
1830 			 * If we've done a decent amount of scanning and
1831 			 * the reclaim ratio is low, start doing writepage
1832 			 * even in laptop mode
1833 			 */
1834 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1835 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1836 				sc.may_writepage = 1;
1837 		}
1838 		if (all_zones_ok)
1839 			break;		/* kswapd: all done */
1840 		/*
1841 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1842 		 * another pass across the zones.
1843 		 */
1844 		if (total_scanned && priority < DEF_PRIORITY - 2)
1845 			congestion_wait(WRITE, HZ/10);
1846 
1847 		/*
1848 		 * We do this so kswapd doesn't build up large priorities for
1849 		 * example when it is freeing in parallel with allocators. It
1850 		 * matches the direct reclaim path behaviour in terms of impact
1851 		 * on zone->*_priority.
1852 		 */
1853 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1854 			break;
1855 	}
1856 out:
1857 	/*
1858 	 * Note within each zone the priority level at which this zone was
1859 	 * brought into a happy state.  So that the next thread which scans this
1860 	 * zone will start out at that priority level.
1861 	 */
1862 	for (i = 0; i < pgdat->nr_zones; i++) {
1863 		struct zone *zone = pgdat->node_zones + i;
1864 
1865 		zone->prev_priority = temp_priority[i];
1866 	}
1867 	if (!all_zones_ok) {
1868 		cond_resched();
1869 
1870 		try_to_freeze();
1871 
1872 		goto loop_again;
1873 	}
1874 
1875 	return nr_reclaimed;
1876 }
1877 
1878 /*
1879  * The background pageout daemon, started as a kernel thread
1880  * from the init process.
1881  *
1882  * This basically trickles out pages so that we have _some_
1883  * free memory available even if there is no other activity
1884  * that frees anything up. This is needed for things like routing
1885  * etc, where we otherwise might have all activity going on in
1886  * asynchronous contexts that cannot page things out.
1887  *
1888  * If there are applications that are active memory-allocators
1889  * (most normal use), this basically shouldn't matter.
1890  */
1891 static int kswapd(void *p)
1892 {
1893 	unsigned long order;
1894 	pg_data_t *pgdat = (pg_data_t*)p;
1895 	struct task_struct *tsk = current;
1896 	DEFINE_WAIT(wait);
1897 	struct reclaim_state reclaim_state = {
1898 		.reclaimed_slab = 0,
1899 	};
1900 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1901 
1902 	if (!cpus_empty(*cpumask))
1903 		set_cpus_allowed_ptr(tsk, cpumask);
1904 	current->reclaim_state = &reclaim_state;
1905 
1906 	/*
1907 	 * Tell the memory management that we're a "memory allocator",
1908 	 * and that if we need more memory we should get access to it
1909 	 * regardless (see "__alloc_pages()"). "kswapd" should
1910 	 * never get caught in the normal page freeing logic.
1911 	 *
1912 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1913 	 * you need a small amount of memory in order to be able to
1914 	 * page out something else, and this flag essentially protects
1915 	 * us from recursively trying to free more memory as we're
1916 	 * trying to free the first piece of memory in the first place).
1917 	 */
1918 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1919 	set_freezable();
1920 
1921 	order = 0;
1922 	for ( ; ; ) {
1923 		unsigned long new_order;
1924 
1925 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1926 		new_order = pgdat->kswapd_max_order;
1927 		pgdat->kswapd_max_order = 0;
1928 		if (order < new_order) {
1929 			/*
1930 			 * Don't sleep if someone wants a larger 'order'
1931 			 * allocation
1932 			 */
1933 			order = new_order;
1934 		} else {
1935 			if (!freezing(current))
1936 				schedule();
1937 
1938 			order = pgdat->kswapd_max_order;
1939 		}
1940 		finish_wait(&pgdat->kswapd_wait, &wait);
1941 
1942 		if (!try_to_freeze()) {
1943 			/* We can speed up thawing tasks if we don't call
1944 			 * balance_pgdat after returning from the refrigerator
1945 			 */
1946 			balance_pgdat(pgdat, order);
1947 		}
1948 	}
1949 	return 0;
1950 }
1951 
1952 /*
1953  * A zone is low on free memory, so wake its kswapd task to service it.
1954  */
1955 void wakeup_kswapd(struct zone *zone, int order)
1956 {
1957 	pg_data_t *pgdat;
1958 
1959 	if (!populated_zone(zone))
1960 		return;
1961 
1962 	pgdat = zone->zone_pgdat;
1963 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1964 		return;
1965 	if (pgdat->kswapd_max_order < order)
1966 		pgdat->kswapd_max_order = order;
1967 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1968 		return;
1969 	if (!waitqueue_active(&pgdat->kswapd_wait))
1970 		return;
1971 	wake_up_interruptible(&pgdat->kswapd_wait);
1972 }
1973 
1974 unsigned long global_lru_pages(void)
1975 {
1976 	return global_page_state(NR_ACTIVE_ANON)
1977 		+ global_page_state(NR_ACTIVE_FILE)
1978 		+ global_page_state(NR_INACTIVE_ANON)
1979 		+ global_page_state(NR_INACTIVE_FILE);
1980 }
1981 
1982 #ifdef CONFIG_PM
1983 /*
1984  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1985  * from LRU lists system-wide, for given pass and priority, and returns the
1986  * number of reclaimed pages
1987  *
1988  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1989  */
1990 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1991 				      int pass, struct scan_control *sc)
1992 {
1993 	struct zone *zone;
1994 	unsigned long nr_to_scan, ret = 0;
1995 	enum lru_list l;
1996 
1997 	for_each_zone(zone) {
1998 
1999 		if (!populated_zone(zone))
2000 			continue;
2001 
2002 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2003 			continue;
2004 
2005 		for_each_evictable_lru(l) {
2006 			/* For pass = 0, we don't shrink the active list */
2007 			if (pass == 0 &&
2008 				(l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2009 				continue;
2010 
2011 			zone->lru[l].nr_scan +=
2012 				(zone_page_state(zone, NR_LRU_BASE + l)
2013 								>> prio) + 1;
2014 			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2015 				zone->lru[l].nr_scan = 0;
2016 				nr_to_scan = min(nr_pages,
2017 					zone_page_state(zone,
2018 							NR_LRU_BASE + l));
2019 				ret += shrink_list(l, nr_to_scan, zone,
2020 								sc, prio);
2021 				if (ret >= nr_pages)
2022 					return ret;
2023 			}
2024 		}
2025 	}
2026 
2027 	return ret;
2028 }
2029 
2030 /*
2031  * Try to free `nr_pages' of memory, system-wide, and return the number of
2032  * freed pages.
2033  *
2034  * Rather than trying to age LRUs the aim is to preserve the overall
2035  * LRU order by reclaiming preferentially
2036  * inactive > active > active referenced > active mapped
2037  */
2038 unsigned long shrink_all_memory(unsigned long nr_pages)
2039 {
2040 	unsigned long lru_pages, nr_slab;
2041 	unsigned long ret = 0;
2042 	int pass;
2043 	struct reclaim_state reclaim_state;
2044 	struct scan_control sc = {
2045 		.gfp_mask = GFP_KERNEL,
2046 		.may_swap = 0,
2047 		.swap_cluster_max = nr_pages,
2048 		.may_writepage = 1,
2049 		.swappiness = vm_swappiness,
2050 		.isolate_pages = isolate_pages_global,
2051 	};
2052 
2053 	current->reclaim_state = &reclaim_state;
2054 
2055 	lru_pages = global_lru_pages();
2056 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2057 	/* If slab caches are huge, it's better to hit them first */
2058 	while (nr_slab >= lru_pages) {
2059 		reclaim_state.reclaimed_slab = 0;
2060 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2061 		if (!reclaim_state.reclaimed_slab)
2062 			break;
2063 
2064 		ret += reclaim_state.reclaimed_slab;
2065 		if (ret >= nr_pages)
2066 			goto out;
2067 
2068 		nr_slab -= reclaim_state.reclaimed_slab;
2069 	}
2070 
2071 	/*
2072 	 * We try to shrink LRUs in 5 passes:
2073 	 * 0 = Reclaim from inactive_list only
2074 	 * 1 = Reclaim from active list but don't reclaim mapped
2075 	 * 2 = 2nd pass of type 1
2076 	 * 3 = Reclaim mapped (normal reclaim)
2077 	 * 4 = 2nd pass of type 3
2078 	 */
2079 	for (pass = 0; pass < 5; pass++) {
2080 		int prio;
2081 
2082 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2083 		if (pass > 2) {
2084 			sc.may_swap = 1;
2085 			sc.swappiness = 100;
2086 		}
2087 
2088 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2089 			unsigned long nr_to_scan = nr_pages - ret;
2090 
2091 			sc.nr_scanned = 0;
2092 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2093 			if (ret >= nr_pages)
2094 				goto out;
2095 
2096 			reclaim_state.reclaimed_slab = 0;
2097 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2098 					global_lru_pages());
2099 			ret += reclaim_state.reclaimed_slab;
2100 			if (ret >= nr_pages)
2101 				goto out;
2102 
2103 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2104 				congestion_wait(WRITE, HZ / 10);
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * If ret = 0, we could not shrink LRUs, but there may be something
2110 	 * in slab caches
2111 	 */
2112 	if (!ret) {
2113 		do {
2114 			reclaim_state.reclaimed_slab = 0;
2115 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2116 			ret += reclaim_state.reclaimed_slab;
2117 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2118 	}
2119 
2120 out:
2121 	current->reclaim_state = NULL;
2122 
2123 	return ret;
2124 }
2125 #endif
2126 
2127 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2128    not required for correctness.  So if the last cpu in a node goes
2129    away, we get changed to run anywhere: as the first one comes back,
2130    restore their cpu bindings. */
2131 static int __devinit cpu_callback(struct notifier_block *nfb,
2132 				  unsigned long action, void *hcpu)
2133 {
2134 	int nid;
2135 
2136 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2137 		for_each_node_state(nid, N_HIGH_MEMORY) {
2138 			pg_data_t *pgdat = NODE_DATA(nid);
2139 			node_to_cpumask_ptr(mask, pgdat->node_id);
2140 
2141 			if (any_online_cpu(*mask) < nr_cpu_ids)
2142 				/* One of our CPUs online: restore mask */
2143 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2144 		}
2145 	}
2146 	return NOTIFY_OK;
2147 }
2148 
2149 /*
2150  * This kswapd start function will be called by init and node-hot-add.
2151  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2152  */
2153 int kswapd_run(int nid)
2154 {
2155 	pg_data_t *pgdat = NODE_DATA(nid);
2156 	int ret = 0;
2157 
2158 	if (pgdat->kswapd)
2159 		return 0;
2160 
2161 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2162 	if (IS_ERR(pgdat->kswapd)) {
2163 		/* failure at boot is fatal */
2164 		BUG_ON(system_state == SYSTEM_BOOTING);
2165 		printk("Failed to start kswapd on node %d\n",nid);
2166 		ret = -1;
2167 	}
2168 	return ret;
2169 }
2170 
2171 static int __init kswapd_init(void)
2172 {
2173 	int nid;
2174 
2175 	swap_setup();
2176 	for_each_node_state(nid, N_HIGH_MEMORY)
2177  		kswapd_run(nid);
2178 	hotcpu_notifier(cpu_callback, 0);
2179 	return 0;
2180 }
2181 
2182 module_init(kswapd_init)
2183 
2184 #ifdef CONFIG_NUMA
2185 /*
2186  * Zone reclaim mode
2187  *
2188  * If non-zero call zone_reclaim when the number of free pages falls below
2189  * the watermarks.
2190  */
2191 int zone_reclaim_mode __read_mostly;
2192 
2193 #define RECLAIM_OFF 0
2194 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2195 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2196 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2197 
2198 /*
2199  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2200  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2201  * a zone.
2202  */
2203 #define ZONE_RECLAIM_PRIORITY 4
2204 
2205 /*
2206  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2207  * occur.
2208  */
2209 int sysctl_min_unmapped_ratio = 1;
2210 
2211 /*
2212  * If the number of slab pages in a zone grows beyond this percentage then
2213  * slab reclaim needs to occur.
2214  */
2215 int sysctl_min_slab_ratio = 5;
2216 
2217 /*
2218  * Try to free up some pages from this zone through reclaim.
2219  */
2220 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2221 {
2222 	/* Minimum pages needed in order to stay on node */
2223 	const unsigned long nr_pages = 1 << order;
2224 	struct task_struct *p = current;
2225 	struct reclaim_state reclaim_state;
2226 	int priority;
2227 	unsigned long nr_reclaimed = 0;
2228 	struct scan_control sc = {
2229 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2230 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2231 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2232 					SWAP_CLUSTER_MAX),
2233 		.gfp_mask = gfp_mask,
2234 		.swappiness = vm_swappiness,
2235 		.isolate_pages = isolate_pages_global,
2236 	};
2237 	unsigned long slab_reclaimable;
2238 
2239 	disable_swap_token();
2240 	cond_resched();
2241 	/*
2242 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2243 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2244 	 * and RECLAIM_SWAP.
2245 	 */
2246 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2247 	reclaim_state.reclaimed_slab = 0;
2248 	p->reclaim_state = &reclaim_state;
2249 
2250 	if (zone_page_state(zone, NR_FILE_PAGES) -
2251 		zone_page_state(zone, NR_FILE_MAPPED) >
2252 		zone->min_unmapped_pages) {
2253 		/*
2254 		 * Free memory by calling shrink zone with increasing
2255 		 * priorities until we have enough memory freed.
2256 		 */
2257 		priority = ZONE_RECLAIM_PRIORITY;
2258 		do {
2259 			note_zone_scanning_priority(zone, priority);
2260 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2261 			priority--;
2262 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2263 	}
2264 
2265 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2266 	if (slab_reclaimable > zone->min_slab_pages) {
2267 		/*
2268 		 * shrink_slab() does not currently allow us to determine how
2269 		 * many pages were freed in this zone. So we take the current
2270 		 * number of slab pages and shake the slab until it is reduced
2271 		 * by the same nr_pages that we used for reclaiming unmapped
2272 		 * pages.
2273 		 *
2274 		 * Note that shrink_slab will free memory on all zones and may
2275 		 * take a long time.
2276 		 */
2277 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2278 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2279 				slab_reclaimable - nr_pages)
2280 			;
2281 
2282 		/*
2283 		 * Update nr_reclaimed by the number of slab pages we
2284 		 * reclaimed from this zone.
2285 		 */
2286 		nr_reclaimed += slab_reclaimable -
2287 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2288 	}
2289 
2290 	p->reclaim_state = NULL;
2291 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2292 	return nr_reclaimed >= nr_pages;
2293 }
2294 
2295 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2296 {
2297 	int node_id;
2298 	int ret;
2299 
2300 	/*
2301 	 * Zone reclaim reclaims unmapped file backed pages and
2302 	 * slab pages if we are over the defined limits.
2303 	 *
2304 	 * A small portion of unmapped file backed pages is needed for
2305 	 * file I/O otherwise pages read by file I/O will be immediately
2306 	 * thrown out if the zone is overallocated. So we do not reclaim
2307 	 * if less than a specified percentage of the zone is used by
2308 	 * unmapped file backed pages.
2309 	 */
2310 	if (zone_page_state(zone, NR_FILE_PAGES) -
2311 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2312 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2313 			<= zone->min_slab_pages)
2314 		return 0;
2315 
2316 	if (zone_is_all_unreclaimable(zone))
2317 		return 0;
2318 
2319 	/*
2320 	 * Do not scan if the allocation should not be delayed.
2321 	 */
2322 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2323 			return 0;
2324 
2325 	/*
2326 	 * Only run zone reclaim on the local zone or on zones that do not
2327 	 * have associated processors. This will favor the local processor
2328 	 * over remote processors and spread off node memory allocations
2329 	 * as wide as possible.
2330 	 */
2331 	node_id = zone_to_nid(zone);
2332 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2333 		return 0;
2334 
2335 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2336 		return 0;
2337 	ret = __zone_reclaim(zone, gfp_mask, order);
2338 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2339 
2340 	return ret;
2341 }
2342 #endif
2343 
2344 #ifdef CONFIG_UNEVICTABLE_LRU
2345 /*
2346  * page_evictable - test whether a page is evictable
2347  * @page: the page to test
2348  * @vma: the VMA in which the page is or will be mapped, may be NULL
2349  *
2350  * Test whether page is evictable--i.e., should be placed on active/inactive
2351  * lists vs unevictable list.  The vma argument is !NULL when called from the
2352  * fault path to determine how to instantate a new page.
2353  *
2354  * Reasons page might not be evictable:
2355  * (1) page's mapping marked unevictable
2356  * (2) page is part of an mlocked VMA
2357  *
2358  */
2359 int page_evictable(struct page *page, struct vm_area_struct *vma)
2360 {
2361 
2362 	if (mapping_unevictable(page_mapping(page)))
2363 		return 0;
2364 
2365 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2366 		return 0;
2367 
2368 	return 1;
2369 }
2370 
2371 static void show_page_path(struct page *page)
2372 {
2373 	char buf[256];
2374 	if (page_is_file_cache(page)) {
2375 		struct address_space *mapping = page->mapping;
2376 		struct dentry *dentry;
2377 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
2378 
2379 		spin_lock(&mapping->i_mmap_lock);
2380 		dentry = d_find_alias(mapping->host);
2381 		printk(KERN_INFO "rescued: %s %lu\n",
2382 		       dentry_path(dentry, buf, 256), pgoff);
2383 		spin_unlock(&mapping->i_mmap_lock);
2384 	} else {
2385 #if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU)
2386 		struct anon_vma *anon_vma;
2387 		struct vm_area_struct *vma;
2388 
2389 		anon_vma = page_lock_anon_vma(page);
2390 		if (!anon_vma)
2391 			return;
2392 
2393 		list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
2394 			printk(KERN_INFO "rescued: anon %s\n",
2395 			       vma->vm_mm->owner->comm);
2396 			break;
2397 		}
2398 		page_unlock_anon_vma(anon_vma);
2399 #endif
2400 	}
2401 }
2402 
2403 
2404 /**
2405  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2406  * @page: page to check evictability and move to appropriate lru list
2407  * @zone: zone page is in
2408  *
2409  * Checks a page for evictability and moves the page to the appropriate
2410  * zone lru list.
2411  *
2412  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2413  * have PageUnevictable set.
2414  */
2415 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2416 {
2417 	VM_BUG_ON(PageActive(page));
2418 
2419 retry:
2420 	ClearPageUnevictable(page);
2421 	if (page_evictable(page, NULL)) {
2422 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2423 
2424 		show_page_path(page);
2425 
2426 		__dec_zone_state(zone, NR_UNEVICTABLE);
2427 		list_move(&page->lru, &zone->lru[l].list);
2428 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2429 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2430 	} else {
2431 		/*
2432 		 * rotate unevictable list
2433 		 */
2434 		SetPageUnevictable(page);
2435 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2436 		if (page_evictable(page, NULL))
2437 			goto retry;
2438 	}
2439 }
2440 
2441 /**
2442  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2443  * @mapping: struct address_space to scan for evictable pages
2444  *
2445  * Scan all pages in mapping.  Check unevictable pages for
2446  * evictability and move them to the appropriate zone lru list.
2447  */
2448 void scan_mapping_unevictable_pages(struct address_space *mapping)
2449 {
2450 	pgoff_t next = 0;
2451 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2452 			 PAGE_CACHE_SHIFT;
2453 	struct zone *zone;
2454 	struct pagevec pvec;
2455 
2456 	if (mapping->nrpages == 0)
2457 		return;
2458 
2459 	pagevec_init(&pvec, 0);
2460 	while (next < end &&
2461 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2462 		int i;
2463 		int pg_scanned = 0;
2464 
2465 		zone = NULL;
2466 
2467 		for (i = 0; i < pagevec_count(&pvec); i++) {
2468 			struct page *page = pvec.pages[i];
2469 			pgoff_t page_index = page->index;
2470 			struct zone *pagezone = page_zone(page);
2471 
2472 			pg_scanned++;
2473 			if (page_index > next)
2474 				next = page_index;
2475 			next++;
2476 
2477 			if (pagezone != zone) {
2478 				if (zone)
2479 					spin_unlock_irq(&zone->lru_lock);
2480 				zone = pagezone;
2481 				spin_lock_irq(&zone->lru_lock);
2482 			}
2483 
2484 			if (PageLRU(page) && PageUnevictable(page))
2485 				check_move_unevictable_page(page, zone);
2486 		}
2487 		if (zone)
2488 			spin_unlock_irq(&zone->lru_lock);
2489 		pagevec_release(&pvec);
2490 
2491 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2492 	}
2493 
2494 }
2495 
2496 /**
2497  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2498  * @zone - zone of which to scan the unevictable list
2499  *
2500  * Scan @zone's unevictable LRU lists to check for pages that have become
2501  * evictable.  Move those that have to @zone's inactive list where they
2502  * become candidates for reclaim, unless shrink_inactive_zone() decides
2503  * to reactivate them.  Pages that are still unevictable are rotated
2504  * back onto @zone's unevictable list.
2505  */
2506 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2507 void scan_zone_unevictable_pages(struct zone *zone)
2508 {
2509 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2510 	unsigned long scan;
2511 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2512 
2513 	while (nr_to_scan > 0) {
2514 		unsigned long batch_size = min(nr_to_scan,
2515 						SCAN_UNEVICTABLE_BATCH_SIZE);
2516 
2517 		spin_lock_irq(&zone->lru_lock);
2518 		for (scan = 0;  scan < batch_size; scan++) {
2519 			struct page *page = lru_to_page(l_unevictable);
2520 
2521 			if (!trylock_page(page))
2522 				continue;
2523 
2524 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2525 
2526 			if (likely(PageLRU(page) && PageUnevictable(page)))
2527 				check_move_unevictable_page(page, zone);
2528 
2529 			unlock_page(page);
2530 		}
2531 		spin_unlock_irq(&zone->lru_lock);
2532 
2533 		nr_to_scan -= batch_size;
2534 	}
2535 }
2536 
2537 
2538 /**
2539  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2540  *
2541  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2542  * pages that have become evictable.  Move those back to the zones'
2543  * inactive list where they become candidates for reclaim.
2544  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2545  * and we add swap to the system.  As such, it runs in the context of a task
2546  * that has possibly/probably made some previously unevictable pages
2547  * evictable.
2548  */
2549 void scan_all_zones_unevictable_pages(void)
2550 {
2551 	struct zone *zone;
2552 
2553 	for_each_zone(zone) {
2554 		scan_zone_unevictable_pages(zone);
2555 	}
2556 }
2557 
2558 /*
2559  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2560  * all nodes' unevictable lists for evictable pages
2561  */
2562 unsigned long scan_unevictable_pages;
2563 
2564 int scan_unevictable_handler(struct ctl_table *table, int write,
2565 			   struct file *file, void __user *buffer,
2566 			   size_t *length, loff_t *ppos)
2567 {
2568 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2569 
2570 	if (write && *(unsigned long *)table->data)
2571 		scan_all_zones_unevictable_pages();
2572 
2573 	scan_unevictable_pages = 0;
2574 	return 0;
2575 }
2576 
2577 /*
2578  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2579  * a specified node's per zone unevictable lists for evictable pages.
2580  */
2581 
2582 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2583 					  struct sysdev_attribute *attr,
2584 					  char *buf)
2585 {
2586 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2587 }
2588 
2589 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2590 					   struct sysdev_attribute *attr,
2591 					const char *buf, size_t count)
2592 {
2593 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2594 	struct zone *zone;
2595 	unsigned long res;
2596 	unsigned long req = strict_strtoul(buf, 10, &res);
2597 
2598 	if (!req)
2599 		return 1;	/* zero is no-op */
2600 
2601 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2602 		if (!populated_zone(zone))
2603 			continue;
2604 		scan_zone_unevictable_pages(zone);
2605 	}
2606 	return 1;
2607 }
2608 
2609 
2610 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2611 			read_scan_unevictable_node,
2612 			write_scan_unevictable_node);
2613 
2614 int scan_unevictable_register_node(struct node *node)
2615 {
2616 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2617 }
2618 
2619 void scan_unevictable_unregister_node(struct node *node)
2620 {
2621 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2622 }
2623 
2624 #endif
2625