1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* 92 * Cgroups are not reclaimed below their configured memory.low, 93 * unless we threaten to OOM. If any cgroups are skipped due to 94 * memory.low and nothing was reclaimed, go back for memory.low. 95 */ 96 unsigned int memcg_low_reclaim:1; 97 unsigned int memcg_low_skipped:1; 98 99 unsigned int hibernation_mode:1; 100 101 /* One of the zones is ready for compaction */ 102 unsigned int compaction_ready:1; 103 104 /* Allocation order */ 105 s8 order; 106 107 /* Scan (total_size >> priority) pages at once */ 108 s8 priority; 109 110 /* The highest zone to isolate pages for reclaim from */ 111 s8 reclaim_idx; 112 113 /* This context's GFP mask */ 114 gfp_t gfp_mask; 115 116 /* Incremented by the number of inactive pages that were scanned */ 117 unsigned long nr_scanned; 118 119 /* Number of pages freed so far during a call to shrink_zones() */ 120 unsigned long nr_reclaimed; 121 122 struct { 123 unsigned int dirty; 124 unsigned int unqueued_dirty; 125 unsigned int congested; 126 unsigned int writeback; 127 unsigned int immediate; 128 unsigned int file_taken; 129 unsigned int taken; 130 } nr; 131 132 /* for recording the reclaimed slab by now */ 133 struct reclaim_state reclaim_state; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static void set_task_reclaim_state(struct task_struct *task, 175 struct reclaim_state *rs) 176 { 177 /* Check for an overwrite */ 178 WARN_ON_ONCE(rs && task->reclaim_state); 179 180 /* Check for the nulling of an already-nulled member */ 181 WARN_ON_ONCE(!rs && !task->reclaim_state); 182 183 task->reclaim_state = rs; 184 } 185 186 static LIST_HEAD(shrinker_list); 187 static DECLARE_RWSEM(shrinker_rwsem); 188 189 #ifdef CONFIG_MEMCG 190 /* 191 * We allow subsystems to populate their shrinker-related 192 * LRU lists before register_shrinker_prepared() is called 193 * for the shrinker, since we don't want to impose 194 * restrictions on their internal registration order. 195 * In this case shrink_slab_memcg() may find corresponding 196 * bit is set in the shrinkers map. 197 * 198 * This value is used by the function to detect registering 199 * shrinkers and to skip do_shrink_slab() calls for them. 200 */ 201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 202 203 static DEFINE_IDR(shrinker_idr); 204 static int shrinker_nr_max; 205 206 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 207 { 208 int id, ret = -ENOMEM; 209 210 down_write(&shrinker_rwsem); 211 /* This may call shrinker, so it must use down_read_trylock() */ 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 213 if (id < 0) 214 goto unlock; 215 216 if (id >= shrinker_nr_max) { 217 if (memcg_expand_shrinker_maps(id)) { 218 idr_remove(&shrinker_idr, id); 219 goto unlock; 220 } 221 222 shrinker_nr_max = id + 1; 223 } 224 shrinker->id = id; 225 ret = 0; 226 unlock: 227 up_write(&shrinker_rwsem); 228 return ret; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 int id = shrinker->id; 234 235 BUG_ON(id < 0); 236 237 down_write(&shrinker_rwsem); 238 idr_remove(&shrinker_idr, id); 239 up_write(&shrinker_rwsem); 240 } 241 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 297 { 298 return 0; 299 } 300 301 static void unregister_memcg_shrinker(struct shrinker *shrinker) 302 { 303 } 304 305 static bool global_reclaim(struct scan_control *sc) 306 { 307 return true; 308 } 309 310 static bool sane_reclaim(struct scan_control *sc) 311 { 312 return true; 313 } 314 315 static inline void set_memcg_congestion(struct pglist_data *pgdat, 316 struct mem_cgroup *memcg, bool congested) 317 { 318 } 319 320 static inline bool memcg_congested(struct pglist_data *pgdat, 321 struct mem_cgroup *memcg) 322 { 323 return false; 324 325 } 326 #endif 327 328 /* 329 * This misses isolated pages which are not accounted for to save counters. 330 * As the data only determines if reclaim or compaction continues, it is 331 * not expected that isolated pages will be a dominating factor. 332 */ 333 unsigned long zone_reclaimable_pages(struct zone *zone) 334 { 335 unsigned long nr; 336 337 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 338 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 339 if (get_nr_swap_pages() > 0) 340 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 342 343 return nr; 344 } 345 346 /** 347 * lruvec_lru_size - Returns the number of pages on the given LRU list. 348 * @lruvec: lru vector 349 * @lru: lru to use 350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 351 */ 352 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 353 { 354 unsigned long lru_size = 0; 355 int zid; 356 357 if (!mem_cgroup_disabled()) { 358 for (zid = 0; zid < MAX_NR_ZONES; zid++) 359 lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 360 } else 361 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 362 363 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 364 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 365 unsigned long size; 366 367 if (!managed_zone(zone)) 368 continue; 369 370 if (!mem_cgroup_disabled()) 371 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 372 else 373 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 374 NR_ZONE_LRU_BASE + lru); 375 lru_size -= min(size, lru_size); 376 } 377 378 return lru_size; 379 380 } 381 382 /* 383 * Add a shrinker callback to be called from the vm. 384 */ 385 int prealloc_shrinker(struct shrinker *shrinker) 386 { 387 unsigned int size = sizeof(*shrinker->nr_deferred); 388 389 if (shrinker->flags & SHRINKER_NUMA_AWARE) 390 size *= nr_node_ids; 391 392 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 393 if (!shrinker->nr_deferred) 394 return -ENOMEM; 395 396 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 397 if (prealloc_memcg_shrinker(shrinker)) 398 goto free_deferred; 399 } 400 401 return 0; 402 403 free_deferred: 404 kfree(shrinker->nr_deferred); 405 shrinker->nr_deferred = NULL; 406 return -ENOMEM; 407 } 408 409 void free_prealloced_shrinker(struct shrinker *shrinker) 410 { 411 if (!shrinker->nr_deferred) 412 return; 413 414 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 415 unregister_memcg_shrinker(shrinker); 416 417 kfree(shrinker->nr_deferred); 418 shrinker->nr_deferred = NULL; 419 } 420 421 void register_shrinker_prepared(struct shrinker *shrinker) 422 { 423 down_write(&shrinker_rwsem); 424 list_add_tail(&shrinker->list, &shrinker_list); 425 #ifdef CONFIG_MEMCG_KMEM 426 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 427 idr_replace(&shrinker_idr, shrinker, shrinker->id); 428 #endif 429 up_write(&shrinker_rwsem); 430 } 431 432 int register_shrinker(struct shrinker *shrinker) 433 { 434 int err = prealloc_shrinker(shrinker); 435 436 if (err) 437 return err; 438 register_shrinker_prepared(shrinker); 439 return 0; 440 } 441 EXPORT_SYMBOL(register_shrinker); 442 443 /* 444 * Remove one 445 */ 446 void unregister_shrinker(struct shrinker *shrinker) 447 { 448 if (!shrinker->nr_deferred) 449 return; 450 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 451 unregister_memcg_shrinker(shrinker); 452 down_write(&shrinker_rwsem); 453 list_del(&shrinker->list); 454 up_write(&shrinker_rwsem); 455 kfree(shrinker->nr_deferred); 456 shrinker->nr_deferred = NULL; 457 } 458 EXPORT_SYMBOL(unregister_shrinker); 459 460 #define SHRINK_BATCH 128 461 462 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 463 struct shrinker *shrinker, int priority) 464 { 465 unsigned long freed = 0; 466 unsigned long long delta; 467 long total_scan; 468 long freeable; 469 long nr; 470 long new_nr; 471 int nid = shrinkctl->nid; 472 long batch_size = shrinker->batch ? shrinker->batch 473 : SHRINK_BATCH; 474 long scanned = 0, next_deferred; 475 476 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 477 nid = 0; 478 479 freeable = shrinker->count_objects(shrinker, shrinkctl); 480 if (freeable == 0 || freeable == SHRINK_EMPTY) 481 return freeable; 482 483 /* 484 * copy the current shrinker scan count into a local variable 485 * and zero it so that other concurrent shrinker invocations 486 * don't also do this scanning work. 487 */ 488 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 489 490 total_scan = nr; 491 if (shrinker->seeks) { 492 delta = freeable >> priority; 493 delta *= 4; 494 do_div(delta, shrinker->seeks); 495 } else { 496 /* 497 * These objects don't require any IO to create. Trim 498 * them aggressively under memory pressure to keep 499 * them from causing refetches in the IO caches. 500 */ 501 delta = freeable / 2; 502 } 503 504 total_scan += delta; 505 if (total_scan < 0) { 506 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 507 shrinker->scan_objects, total_scan); 508 total_scan = freeable; 509 next_deferred = nr; 510 } else 511 next_deferred = total_scan; 512 513 /* 514 * We need to avoid excessive windup on filesystem shrinkers 515 * due to large numbers of GFP_NOFS allocations causing the 516 * shrinkers to return -1 all the time. This results in a large 517 * nr being built up so when a shrink that can do some work 518 * comes along it empties the entire cache due to nr >>> 519 * freeable. This is bad for sustaining a working set in 520 * memory. 521 * 522 * Hence only allow the shrinker to scan the entire cache when 523 * a large delta change is calculated directly. 524 */ 525 if (delta < freeable / 4) 526 total_scan = min(total_scan, freeable / 2); 527 528 /* 529 * Avoid risking looping forever due to too large nr value: 530 * never try to free more than twice the estimate number of 531 * freeable entries. 532 */ 533 if (total_scan > freeable * 2) 534 total_scan = freeable * 2; 535 536 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 537 freeable, delta, total_scan, priority); 538 539 /* 540 * Normally, we should not scan less than batch_size objects in one 541 * pass to avoid too frequent shrinker calls, but if the slab has less 542 * than batch_size objects in total and we are really tight on memory, 543 * we will try to reclaim all available objects, otherwise we can end 544 * up failing allocations although there are plenty of reclaimable 545 * objects spread over several slabs with usage less than the 546 * batch_size. 547 * 548 * We detect the "tight on memory" situations by looking at the total 549 * number of objects we want to scan (total_scan). If it is greater 550 * than the total number of objects on slab (freeable), we must be 551 * scanning at high prio and therefore should try to reclaim as much as 552 * possible. 553 */ 554 while (total_scan >= batch_size || 555 total_scan >= freeable) { 556 unsigned long ret; 557 unsigned long nr_to_scan = min(batch_size, total_scan); 558 559 shrinkctl->nr_to_scan = nr_to_scan; 560 shrinkctl->nr_scanned = nr_to_scan; 561 ret = shrinker->scan_objects(shrinker, shrinkctl); 562 if (ret == SHRINK_STOP) 563 break; 564 freed += ret; 565 566 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 567 total_scan -= shrinkctl->nr_scanned; 568 scanned += shrinkctl->nr_scanned; 569 570 cond_resched(); 571 } 572 573 if (next_deferred >= scanned) 574 next_deferred -= scanned; 575 else 576 next_deferred = 0; 577 /* 578 * move the unused scan count back into the shrinker in a 579 * manner that handles concurrent updates. If we exhausted the 580 * scan, there is no need to do an update. 581 */ 582 if (next_deferred > 0) 583 new_nr = atomic_long_add_return(next_deferred, 584 &shrinker->nr_deferred[nid]); 585 else 586 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 587 588 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 589 return freed; 590 } 591 592 #ifdef CONFIG_MEMCG 593 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 594 struct mem_cgroup *memcg, int priority) 595 { 596 struct memcg_shrinker_map *map; 597 unsigned long ret, freed = 0; 598 int i; 599 600 if (!mem_cgroup_online(memcg)) 601 return 0; 602 603 if (!down_read_trylock(&shrinker_rwsem)) 604 return 0; 605 606 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 607 true); 608 if (unlikely(!map)) 609 goto unlock; 610 611 for_each_set_bit(i, map->map, shrinker_nr_max) { 612 struct shrink_control sc = { 613 .gfp_mask = gfp_mask, 614 .nid = nid, 615 .memcg = memcg, 616 }; 617 struct shrinker *shrinker; 618 619 shrinker = idr_find(&shrinker_idr, i); 620 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 621 if (!shrinker) 622 clear_bit(i, map->map); 623 continue; 624 } 625 626 /* Call non-slab shrinkers even though kmem is disabled */ 627 if (!memcg_kmem_enabled() && 628 !(shrinker->flags & SHRINKER_NONSLAB)) 629 continue; 630 631 ret = do_shrink_slab(&sc, shrinker, priority); 632 if (ret == SHRINK_EMPTY) { 633 clear_bit(i, map->map); 634 /* 635 * After the shrinker reported that it had no objects to 636 * free, but before we cleared the corresponding bit in 637 * the memcg shrinker map, a new object might have been 638 * added. To make sure, we have the bit set in this 639 * case, we invoke the shrinker one more time and reset 640 * the bit if it reports that it is not empty anymore. 641 * The memory barrier here pairs with the barrier in 642 * memcg_set_shrinker_bit(): 643 * 644 * list_lru_add() shrink_slab_memcg() 645 * list_add_tail() clear_bit() 646 * <MB> <MB> 647 * set_bit() do_shrink_slab() 648 */ 649 smp_mb__after_atomic(); 650 ret = do_shrink_slab(&sc, shrinker, priority); 651 if (ret == SHRINK_EMPTY) 652 ret = 0; 653 else 654 memcg_set_shrinker_bit(memcg, nid, i); 655 } 656 freed += ret; 657 658 if (rwsem_is_contended(&shrinker_rwsem)) { 659 freed = freed ? : 1; 660 break; 661 } 662 } 663 unlock: 664 up_read(&shrinker_rwsem); 665 return freed; 666 } 667 #else /* CONFIG_MEMCG */ 668 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 669 struct mem_cgroup *memcg, int priority) 670 { 671 return 0; 672 } 673 #endif /* CONFIG_MEMCG */ 674 675 /** 676 * shrink_slab - shrink slab caches 677 * @gfp_mask: allocation context 678 * @nid: node whose slab caches to target 679 * @memcg: memory cgroup whose slab caches to target 680 * @priority: the reclaim priority 681 * 682 * Call the shrink functions to age shrinkable caches. 683 * 684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 685 * unaware shrinkers will receive a node id of 0 instead. 686 * 687 * @memcg specifies the memory cgroup to target. Unaware shrinkers 688 * are called only if it is the root cgroup. 689 * 690 * @priority is sc->priority, we take the number of objects and >> by priority 691 * in order to get the scan target. 692 * 693 * Returns the number of reclaimed slab objects. 694 */ 695 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 696 struct mem_cgroup *memcg, 697 int priority) 698 { 699 unsigned long ret, freed = 0; 700 struct shrinker *shrinker; 701 702 /* 703 * The root memcg might be allocated even though memcg is disabled 704 * via "cgroup_disable=memory" boot parameter. This could make 705 * mem_cgroup_is_root() return false, then just run memcg slab 706 * shrink, but skip global shrink. This may result in premature 707 * oom. 708 */ 709 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 710 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 711 712 if (!down_read_trylock(&shrinker_rwsem)) 713 goto out; 714 715 list_for_each_entry(shrinker, &shrinker_list, list) { 716 struct shrink_control sc = { 717 .gfp_mask = gfp_mask, 718 .nid = nid, 719 .memcg = memcg, 720 }; 721 722 ret = do_shrink_slab(&sc, shrinker, priority); 723 if (ret == SHRINK_EMPTY) 724 ret = 0; 725 freed += ret; 726 /* 727 * Bail out if someone want to register a new shrinker to 728 * prevent the regsitration from being stalled for long periods 729 * by parallel ongoing shrinking. 730 */ 731 if (rwsem_is_contended(&shrinker_rwsem)) { 732 freed = freed ? : 1; 733 break; 734 } 735 } 736 737 up_read(&shrinker_rwsem); 738 out: 739 cond_resched(); 740 return freed; 741 } 742 743 void drop_slab_node(int nid) 744 { 745 unsigned long freed; 746 747 do { 748 struct mem_cgroup *memcg = NULL; 749 750 freed = 0; 751 memcg = mem_cgroup_iter(NULL, NULL, NULL); 752 do { 753 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 754 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 755 } while (freed > 10); 756 } 757 758 void drop_slab(void) 759 { 760 int nid; 761 762 for_each_online_node(nid) 763 drop_slab_node(nid); 764 } 765 766 static inline int is_page_cache_freeable(struct page *page) 767 { 768 /* 769 * A freeable page cache page is referenced only by the caller 770 * that isolated the page, the page cache and optional buffer 771 * heads at page->private. 772 */ 773 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 774 HPAGE_PMD_NR : 1; 775 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 776 } 777 778 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 779 { 780 if (current->flags & PF_SWAPWRITE) 781 return 1; 782 if (!inode_write_congested(inode)) 783 return 1; 784 if (inode_to_bdi(inode) == current->backing_dev_info) 785 return 1; 786 return 0; 787 } 788 789 /* 790 * We detected a synchronous write error writing a page out. Probably 791 * -ENOSPC. We need to propagate that into the address_space for a subsequent 792 * fsync(), msync() or close(). 793 * 794 * The tricky part is that after writepage we cannot touch the mapping: nothing 795 * prevents it from being freed up. But we have a ref on the page and once 796 * that page is locked, the mapping is pinned. 797 * 798 * We're allowed to run sleeping lock_page() here because we know the caller has 799 * __GFP_FS. 800 */ 801 static void handle_write_error(struct address_space *mapping, 802 struct page *page, int error) 803 { 804 lock_page(page); 805 if (page_mapping(page) == mapping) 806 mapping_set_error(mapping, error); 807 unlock_page(page); 808 } 809 810 /* possible outcome of pageout() */ 811 typedef enum { 812 /* failed to write page out, page is locked */ 813 PAGE_KEEP, 814 /* move page to the active list, page is locked */ 815 PAGE_ACTIVATE, 816 /* page has been sent to the disk successfully, page is unlocked */ 817 PAGE_SUCCESS, 818 /* page is clean and locked */ 819 PAGE_CLEAN, 820 } pageout_t; 821 822 /* 823 * pageout is called by shrink_page_list() for each dirty page. 824 * Calls ->writepage(). 825 */ 826 static pageout_t pageout(struct page *page, struct address_space *mapping, 827 struct scan_control *sc) 828 { 829 /* 830 * If the page is dirty, only perform writeback if that write 831 * will be non-blocking. To prevent this allocation from being 832 * stalled by pagecache activity. But note that there may be 833 * stalls if we need to run get_block(). We could test 834 * PagePrivate for that. 835 * 836 * If this process is currently in __generic_file_write_iter() against 837 * this page's queue, we can perform writeback even if that 838 * will block. 839 * 840 * If the page is swapcache, write it back even if that would 841 * block, for some throttling. This happens by accident, because 842 * swap_backing_dev_info is bust: it doesn't reflect the 843 * congestion state of the swapdevs. Easy to fix, if needed. 844 */ 845 if (!is_page_cache_freeable(page)) 846 return PAGE_KEEP; 847 if (!mapping) { 848 /* 849 * Some data journaling orphaned pages can have 850 * page->mapping == NULL while being dirty with clean buffers. 851 */ 852 if (page_has_private(page)) { 853 if (try_to_free_buffers(page)) { 854 ClearPageDirty(page); 855 pr_info("%s: orphaned page\n", __func__); 856 return PAGE_CLEAN; 857 } 858 } 859 return PAGE_KEEP; 860 } 861 if (mapping->a_ops->writepage == NULL) 862 return PAGE_ACTIVATE; 863 if (!may_write_to_inode(mapping->host, sc)) 864 return PAGE_KEEP; 865 866 if (clear_page_dirty_for_io(page)) { 867 int res; 868 struct writeback_control wbc = { 869 .sync_mode = WB_SYNC_NONE, 870 .nr_to_write = SWAP_CLUSTER_MAX, 871 .range_start = 0, 872 .range_end = LLONG_MAX, 873 .for_reclaim = 1, 874 }; 875 876 SetPageReclaim(page); 877 res = mapping->a_ops->writepage(page, &wbc); 878 if (res < 0) 879 handle_write_error(mapping, page, res); 880 if (res == AOP_WRITEPAGE_ACTIVATE) { 881 ClearPageReclaim(page); 882 return PAGE_ACTIVATE; 883 } 884 885 if (!PageWriteback(page)) { 886 /* synchronous write or broken a_ops? */ 887 ClearPageReclaim(page); 888 } 889 trace_mm_vmscan_writepage(page); 890 inc_node_page_state(page, NR_VMSCAN_WRITE); 891 return PAGE_SUCCESS; 892 } 893 894 return PAGE_CLEAN; 895 } 896 897 /* 898 * Same as remove_mapping, but if the page is removed from the mapping, it 899 * gets returned with a refcount of 0. 900 */ 901 static int __remove_mapping(struct address_space *mapping, struct page *page, 902 bool reclaimed) 903 { 904 unsigned long flags; 905 int refcount; 906 907 BUG_ON(!PageLocked(page)); 908 BUG_ON(mapping != page_mapping(page)); 909 910 xa_lock_irqsave(&mapping->i_pages, flags); 911 /* 912 * The non racy check for a busy page. 913 * 914 * Must be careful with the order of the tests. When someone has 915 * a ref to the page, it may be possible that they dirty it then 916 * drop the reference. So if PageDirty is tested before page_count 917 * here, then the following race may occur: 918 * 919 * get_user_pages(&page); 920 * [user mapping goes away] 921 * write_to(page); 922 * !PageDirty(page) [good] 923 * SetPageDirty(page); 924 * put_page(page); 925 * !page_count(page) [good, discard it] 926 * 927 * [oops, our write_to data is lost] 928 * 929 * Reversing the order of the tests ensures such a situation cannot 930 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 931 * load is not satisfied before that of page->_refcount. 932 * 933 * Note that if SetPageDirty is always performed via set_page_dirty, 934 * and thus under the i_pages lock, then this ordering is not required. 935 */ 936 refcount = 1 + compound_nr(page); 937 if (!page_ref_freeze(page, refcount)) 938 goto cannot_free; 939 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 940 if (unlikely(PageDirty(page))) { 941 page_ref_unfreeze(page, refcount); 942 goto cannot_free; 943 } 944 945 if (PageSwapCache(page)) { 946 swp_entry_t swap = { .val = page_private(page) }; 947 mem_cgroup_swapout(page, swap); 948 __delete_from_swap_cache(page, swap); 949 xa_unlock_irqrestore(&mapping->i_pages, flags); 950 put_swap_page(page, swap); 951 } else { 952 void (*freepage)(struct page *); 953 void *shadow = NULL; 954 955 freepage = mapping->a_ops->freepage; 956 /* 957 * Remember a shadow entry for reclaimed file cache in 958 * order to detect refaults, thus thrashing, later on. 959 * 960 * But don't store shadows in an address space that is 961 * already exiting. This is not just an optizimation, 962 * inode reclaim needs to empty out the radix tree or 963 * the nodes are lost. Don't plant shadows behind its 964 * back. 965 * 966 * We also don't store shadows for DAX mappings because the 967 * only page cache pages found in these are zero pages 968 * covering holes, and because we don't want to mix DAX 969 * exceptional entries and shadow exceptional entries in the 970 * same address_space. 971 */ 972 if (reclaimed && page_is_file_cache(page) && 973 !mapping_exiting(mapping) && !dax_mapping(mapping)) 974 shadow = workingset_eviction(page); 975 __delete_from_page_cache(page, shadow); 976 xa_unlock_irqrestore(&mapping->i_pages, flags); 977 978 if (freepage != NULL) 979 freepage(page); 980 } 981 982 return 1; 983 984 cannot_free: 985 xa_unlock_irqrestore(&mapping->i_pages, flags); 986 return 0; 987 } 988 989 /* 990 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 991 * someone else has a ref on the page, abort and return 0. If it was 992 * successfully detached, return 1. Assumes the caller has a single ref on 993 * this page. 994 */ 995 int remove_mapping(struct address_space *mapping, struct page *page) 996 { 997 if (__remove_mapping(mapping, page, false)) { 998 /* 999 * Unfreezing the refcount with 1 rather than 2 effectively 1000 * drops the pagecache ref for us without requiring another 1001 * atomic operation. 1002 */ 1003 page_ref_unfreeze(page, 1); 1004 return 1; 1005 } 1006 return 0; 1007 } 1008 1009 /** 1010 * putback_lru_page - put previously isolated page onto appropriate LRU list 1011 * @page: page to be put back to appropriate lru list 1012 * 1013 * Add previously isolated @page to appropriate LRU list. 1014 * Page may still be unevictable for other reasons. 1015 * 1016 * lru_lock must not be held, interrupts must be enabled. 1017 */ 1018 void putback_lru_page(struct page *page) 1019 { 1020 lru_cache_add(page); 1021 put_page(page); /* drop ref from isolate */ 1022 } 1023 1024 enum page_references { 1025 PAGEREF_RECLAIM, 1026 PAGEREF_RECLAIM_CLEAN, 1027 PAGEREF_KEEP, 1028 PAGEREF_ACTIVATE, 1029 }; 1030 1031 static enum page_references page_check_references(struct page *page, 1032 struct scan_control *sc) 1033 { 1034 int referenced_ptes, referenced_page; 1035 unsigned long vm_flags; 1036 1037 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1038 &vm_flags); 1039 referenced_page = TestClearPageReferenced(page); 1040 1041 /* 1042 * Mlock lost the isolation race with us. Let try_to_unmap() 1043 * move the page to the unevictable list. 1044 */ 1045 if (vm_flags & VM_LOCKED) 1046 return PAGEREF_RECLAIM; 1047 1048 if (referenced_ptes) { 1049 if (PageSwapBacked(page)) 1050 return PAGEREF_ACTIVATE; 1051 /* 1052 * All mapped pages start out with page table 1053 * references from the instantiating fault, so we need 1054 * to look twice if a mapped file page is used more 1055 * than once. 1056 * 1057 * Mark it and spare it for another trip around the 1058 * inactive list. Another page table reference will 1059 * lead to its activation. 1060 * 1061 * Note: the mark is set for activated pages as well 1062 * so that recently deactivated but used pages are 1063 * quickly recovered. 1064 */ 1065 SetPageReferenced(page); 1066 1067 if (referenced_page || referenced_ptes > 1) 1068 return PAGEREF_ACTIVATE; 1069 1070 /* 1071 * Activate file-backed executable pages after first usage. 1072 */ 1073 if (vm_flags & VM_EXEC) 1074 return PAGEREF_ACTIVATE; 1075 1076 return PAGEREF_KEEP; 1077 } 1078 1079 /* Reclaim if clean, defer dirty pages to writeback */ 1080 if (referenced_page && !PageSwapBacked(page)) 1081 return PAGEREF_RECLAIM_CLEAN; 1082 1083 return PAGEREF_RECLAIM; 1084 } 1085 1086 /* Check if a page is dirty or under writeback */ 1087 static void page_check_dirty_writeback(struct page *page, 1088 bool *dirty, bool *writeback) 1089 { 1090 struct address_space *mapping; 1091 1092 /* 1093 * Anonymous pages are not handled by flushers and must be written 1094 * from reclaim context. Do not stall reclaim based on them 1095 */ 1096 if (!page_is_file_cache(page) || 1097 (PageAnon(page) && !PageSwapBacked(page))) { 1098 *dirty = false; 1099 *writeback = false; 1100 return; 1101 } 1102 1103 /* By default assume that the page flags are accurate */ 1104 *dirty = PageDirty(page); 1105 *writeback = PageWriteback(page); 1106 1107 /* Verify dirty/writeback state if the filesystem supports it */ 1108 if (!page_has_private(page)) 1109 return; 1110 1111 mapping = page_mapping(page); 1112 if (mapping && mapping->a_ops->is_dirty_writeback) 1113 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1114 } 1115 1116 /* 1117 * shrink_page_list() returns the number of reclaimed pages 1118 */ 1119 static unsigned long shrink_page_list(struct list_head *page_list, 1120 struct pglist_data *pgdat, 1121 struct scan_control *sc, 1122 enum ttu_flags ttu_flags, 1123 struct reclaim_stat *stat, 1124 bool ignore_references) 1125 { 1126 LIST_HEAD(ret_pages); 1127 LIST_HEAD(free_pages); 1128 unsigned nr_reclaimed = 0; 1129 unsigned pgactivate = 0; 1130 1131 memset(stat, 0, sizeof(*stat)); 1132 cond_resched(); 1133 1134 while (!list_empty(page_list)) { 1135 struct address_space *mapping; 1136 struct page *page; 1137 int may_enter_fs; 1138 enum page_references references = PAGEREF_RECLAIM; 1139 bool dirty, writeback; 1140 unsigned int nr_pages; 1141 1142 cond_resched(); 1143 1144 page = lru_to_page(page_list); 1145 list_del(&page->lru); 1146 1147 if (!trylock_page(page)) 1148 goto keep; 1149 1150 VM_BUG_ON_PAGE(PageActive(page), page); 1151 1152 nr_pages = compound_nr(page); 1153 1154 /* Account the number of base pages even though THP */ 1155 sc->nr_scanned += nr_pages; 1156 1157 if (unlikely(!page_evictable(page))) 1158 goto activate_locked; 1159 1160 if (!sc->may_unmap && page_mapped(page)) 1161 goto keep_locked; 1162 1163 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1164 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1165 1166 /* 1167 * The number of dirty pages determines if a node is marked 1168 * reclaim_congested which affects wait_iff_congested. kswapd 1169 * will stall and start writing pages if the tail of the LRU 1170 * is all dirty unqueued pages. 1171 */ 1172 page_check_dirty_writeback(page, &dirty, &writeback); 1173 if (dirty || writeback) 1174 stat->nr_dirty++; 1175 1176 if (dirty && !writeback) 1177 stat->nr_unqueued_dirty++; 1178 1179 /* 1180 * Treat this page as congested if the underlying BDI is or if 1181 * pages are cycling through the LRU so quickly that the 1182 * pages marked for immediate reclaim are making it to the 1183 * end of the LRU a second time. 1184 */ 1185 mapping = page_mapping(page); 1186 if (((dirty || writeback) && mapping && 1187 inode_write_congested(mapping->host)) || 1188 (writeback && PageReclaim(page))) 1189 stat->nr_congested++; 1190 1191 /* 1192 * If a page at the tail of the LRU is under writeback, there 1193 * are three cases to consider. 1194 * 1195 * 1) If reclaim is encountering an excessive number of pages 1196 * under writeback and this page is both under writeback and 1197 * PageReclaim then it indicates that pages are being queued 1198 * for IO but are being recycled through the LRU before the 1199 * IO can complete. Waiting on the page itself risks an 1200 * indefinite stall if it is impossible to writeback the 1201 * page due to IO error or disconnected storage so instead 1202 * note that the LRU is being scanned too quickly and the 1203 * caller can stall after page list has been processed. 1204 * 1205 * 2) Global or new memcg reclaim encounters a page that is 1206 * not marked for immediate reclaim, or the caller does not 1207 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1208 * not to fs). In this case mark the page for immediate 1209 * reclaim and continue scanning. 1210 * 1211 * Require may_enter_fs because we would wait on fs, which 1212 * may not have submitted IO yet. And the loop driver might 1213 * enter reclaim, and deadlock if it waits on a page for 1214 * which it is needed to do the write (loop masks off 1215 * __GFP_IO|__GFP_FS for this reason); but more thought 1216 * would probably show more reasons. 1217 * 1218 * 3) Legacy memcg encounters a page that is already marked 1219 * PageReclaim. memcg does not have any dirty pages 1220 * throttling so we could easily OOM just because too many 1221 * pages are in writeback and there is nothing else to 1222 * reclaim. Wait for the writeback to complete. 1223 * 1224 * In cases 1) and 2) we activate the pages to get them out of 1225 * the way while we continue scanning for clean pages on the 1226 * inactive list and refilling from the active list. The 1227 * observation here is that waiting for disk writes is more 1228 * expensive than potentially causing reloads down the line. 1229 * Since they're marked for immediate reclaim, they won't put 1230 * memory pressure on the cache working set any longer than it 1231 * takes to write them to disk. 1232 */ 1233 if (PageWriteback(page)) { 1234 /* Case 1 above */ 1235 if (current_is_kswapd() && 1236 PageReclaim(page) && 1237 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1238 stat->nr_immediate++; 1239 goto activate_locked; 1240 1241 /* Case 2 above */ 1242 } else if (sane_reclaim(sc) || 1243 !PageReclaim(page) || !may_enter_fs) { 1244 /* 1245 * This is slightly racy - end_page_writeback() 1246 * might have just cleared PageReclaim, then 1247 * setting PageReclaim here end up interpreted 1248 * as PageReadahead - but that does not matter 1249 * enough to care. What we do want is for this 1250 * page to have PageReclaim set next time memcg 1251 * reclaim reaches the tests above, so it will 1252 * then wait_on_page_writeback() to avoid OOM; 1253 * and it's also appropriate in global reclaim. 1254 */ 1255 SetPageReclaim(page); 1256 stat->nr_writeback++; 1257 goto activate_locked; 1258 1259 /* Case 3 above */ 1260 } else { 1261 unlock_page(page); 1262 wait_on_page_writeback(page); 1263 /* then go back and try same page again */ 1264 list_add_tail(&page->lru, page_list); 1265 continue; 1266 } 1267 } 1268 1269 if (!ignore_references) 1270 references = page_check_references(page, sc); 1271 1272 switch (references) { 1273 case PAGEREF_ACTIVATE: 1274 goto activate_locked; 1275 case PAGEREF_KEEP: 1276 stat->nr_ref_keep += nr_pages; 1277 goto keep_locked; 1278 case PAGEREF_RECLAIM: 1279 case PAGEREF_RECLAIM_CLEAN: 1280 ; /* try to reclaim the page below */ 1281 } 1282 1283 /* 1284 * Anonymous process memory has backing store? 1285 * Try to allocate it some swap space here. 1286 * Lazyfree page could be freed directly 1287 */ 1288 if (PageAnon(page) && PageSwapBacked(page)) { 1289 if (!PageSwapCache(page)) { 1290 if (!(sc->gfp_mask & __GFP_IO)) 1291 goto keep_locked; 1292 if (PageTransHuge(page)) { 1293 /* cannot split THP, skip it */ 1294 if (!can_split_huge_page(page, NULL)) 1295 goto activate_locked; 1296 /* 1297 * Split pages without a PMD map right 1298 * away. Chances are some or all of the 1299 * tail pages can be freed without IO. 1300 */ 1301 if (!compound_mapcount(page) && 1302 split_huge_page_to_list(page, 1303 page_list)) 1304 goto activate_locked; 1305 } 1306 if (!add_to_swap(page)) { 1307 if (!PageTransHuge(page)) 1308 goto activate_locked_split; 1309 /* Fallback to swap normal pages */ 1310 if (split_huge_page_to_list(page, 1311 page_list)) 1312 goto activate_locked; 1313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1314 count_vm_event(THP_SWPOUT_FALLBACK); 1315 #endif 1316 if (!add_to_swap(page)) 1317 goto activate_locked_split; 1318 } 1319 1320 may_enter_fs = 1; 1321 1322 /* Adding to swap updated mapping */ 1323 mapping = page_mapping(page); 1324 } 1325 } else if (unlikely(PageTransHuge(page))) { 1326 /* Split file THP */ 1327 if (split_huge_page_to_list(page, page_list)) 1328 goto keep_locked; 1329 } 1330 1331 /* 1332 * THP may get split above, need minus tail pages and update 1333 * nr_pages to avoid accounting tail pages twice. 1334 * 1335 * The tail pages that are added into swap cache successfully 1336 * reach here. 1337 */ 1338 if ((nr_pages > 1) && !PageTransHuge(page)) { 1339 sc->nr_scanned -= (nr_pages - 1); 1340 nr_pages = 1; 1341 } 1342 1343 /* 1344 * The page is mapped into the page tables of one or more 1345 * processes. Try to unmap it here. 1346 */ 1347 if (page_mapped(page)) { 1348 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1349 1350 if (unlikely(PageTransHuge(page))) 1351 flags |= TTU_SPLIT_HUGE_PMD; 1352 if (!try_to_unmap(page, flags)) { 1353 stat->nr_unmap_fail += nr_pages; 1354 goto activate_locked; 1355 } 1356 } 1357 1358 if (PageDirty(page)) { 1359 /* 1360 * Only kswapd can writeback filesystem pages 1361 * to avoid risk of stack overflow. But avoid 1362 * injecting inefficient single-page IO into 1363 * flusher writeback as much as possible: only 1364 * write pages when we've encountered many 1365 * dirty pages, and when we've already scanned 1366 * the rest of the LRU for clean pages and see 1367 * the same dirty pages again (PageReclaim). 1368 */ 1369 if (page_is_file_cache(page) && 1370 (!current_is_kswapd() || !PageReclaim(page) || 1371 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1372 /* 1373 * Immediately reclaim when written back. 1374 * Similar in principal to deactivate_page() 1375 * except we already have the page isolated 1376 * and know it's dirty 1377 */ 1378 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1379 SetPageReclaim(page); 1380 1381 goto activate_locked; 1382 } 1383 1384 if (references == PAGEREF_RECLAIM_CLEAN) 1385 goto keep_locked; 1386 if (!may_enter_fs) 1387 goto keep_locked; 1388 if (!sc->may_writepage) 1389 goto keep_locked; 1390 1391 /* 1392 * Page is dirty. Flush the TLB if a writable entry 1393 * potentially exists to avoid CPU writes after IO 1394 * starts and then write it out here. 1395 */ 1396 try_to_unmap_flush_dirty(); 1397 switch (pageout(page, mapping, sc)) { 1398 case PAGE_KEEP: 1399 goto keep_locked; 1400 case PAGE_ACTIVATE: 1401 goto activate_locked; 1402 case PAGE_SUCCESS: 1403 if (PageWriteback(page)) 1404 goto keep; 1405 if (PageDirty(page)) 1406 goto keep; 1407 1408 /* 1409 * A synchronous write - probably a ramdisk. Go 1410 * ahead and try to reclaim the page. 1411 */ 1412 if (!trylock_page(page)) 1413 goto keep; 1414 if (PageDirty(page) || PageWriteback(page)) 1415 goto keep_locked; 1416 mapping = page_mapping(page); 1417 case PAGE_CLEAN: 1418 ; /* try to free the page below */ 1419 } 1420 } 1421 1422 /* 1423 * If the page has buffers, try to free the buffer mappings 1424 * associated with this page. If we succeed we try to free 1425 * the page as well. 1426 * 1427 * We do this even if the page is PageDirty(). 1428 * try_to_release_page() does not perform I/O, but it is 1429 * possible for a page to have PageDirty set, but it is actually 1430 * clean (all its buffers are clean). This happens if the 1431 * buffers were written out directly, with submit_bh(). ext3 1432 * will do this, as well as the blockdev mapping. 1433 * try_to_release_page() will discover that cleanness and will 1434 * drop the buffers and mark the page clean - it can be freed. 1435 * 1436 * Rarely, pages can have buffers and no ->mapping. These are 1437 * the pages which were not successfully invalidated in 1438 * truncate_complete_page(). We try to drop those buffers here 1439 * and if that worked, and the page is no longer mapped into 1440 * process address space (page_count == 1) it can be freed. 1441 * Otherwise, leave the page on the LRU so it is swappable. 1442 */ 1443 if (page_has_private(page)) { 1444 if (!try_to_release_page(page, sc->gfp_mask)) 1445 goto activate_locked; 1446 if (!mapping && page_count(page) == 1) { 1447 unlock_page(page); 1448 if (put_page_testzero(page)) 1449 goto free_it; 1450 else { 1451 /* 1452 * rare race with speculative reference. 1453 * the speculative reference will free 1454 * this page shortly, so we may 1455 * increment nr_reclaimed here (and 1456 * leave it off the LRU). 1457 */ 1458 nr_reclaimed++; 1459 continue; 1460 } 1461 } 1462 } 1463 1464 if (PageAnon(page) && !PageSwapBacked(page)) { 1465 /* follow __remove_mapping for reference */ 1466 if (!page_ref_freeze(page, 1)) 1467 goto keep_locked; 1468 if (PageDirty(page)) { 1469 page_ref_unfreeze(page, 1); 1470 goto keep_locked; 1471 } 1472 1473 count_vm_event(PGLAZYFREED); 1474 count_memcg_page_event(page, PGLAZYFREED); 1475 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1476 goto keep_locked; 1477 1478 unlock_page(page); 1479 free_it: 1480 /* 1481 * THP may get swapped out in a whole, need account 1482 * all base pages. 1483 */ 1484 nr_reclaimed += nr_pages; 1485 1486 /* 1487 * Is there need to periodically free_page_list? It would 1488 * appear not as the counts should be low 1489 */ 1490 if (unlikely(PageTransHuge(page))) 1491 (*get_compound_page_dtor(page))(page); 1492 else 1493 list_add(&page->lru, &free_pages); 1494 continue; 1495 1496 activate_locked_split: 1497 /* 1498 * The tail pages that are failed to add into swap cache 1499 * reach here. Fixup nr_scanned and nr_pages. 1500 */ 1501 if (nr_pages > 1) { 1502 sc->nr_scanned -= (nr_pages - 1); 1503 nr_pages = 1; 1504 } 1505 activate_locked: 1506 /* Not a candidate for swapping, so reclaim swap space. */ 1507 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1508 PageMlocked(page))) 1509 try_to_free_swap(page); 1510 VM_BUG_ON_PAGE(PageActive(page), page); 1511 if (!PageMlocked(page)) { 1512 int type = page_is_file_cache(page); 1513 SetPageActive(page); 1514 stat->nr_activate[type] += nr_pages; 1515 count_memcg_page_event(page, PGACTIVATE); 1516 } 1517 keep_locked: 1518 unlock_page(page); 1519 keep: 1520 list_add(&page->lru, &ret_pages); 1521 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1522 } 1523 1524 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1525 1526 mem_cgroup_uncharge_list(&free_pages); 1527 try_to_unmap_flush(); 1528 free_unref_page_list(&free_pages); 1529 1530 list_splice(&ret_pages, page_list); 1531 count_vm_events(PGACTIVATE, pgactivate); 1532 1533 return nr_reclaimed; 1534 } 1535 1536 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1537 struct list_head *page_list) 1538 { 1539 struct scan_control sc = { 1540 .gfp_mask = GFP_KERNEL, 1541 .priority = DEF_PRIORITY, 1542 .may_unmap = 1, 1543 }; 1544 struct reclaim_stat dummy_stat; 1545 unsigned long ret; 1546 struct page *page, *next; 1547 LIST_HEAD(clean_pages); 1548 1549 list_for_each_entry_safe(page, next, page_list, lru) { 1550 if (page_is_file_cache(page) && !PageDirty(page) && 1551 !__PageMovable(page) && !PageUnevictable(page)) { 1552 ClearPageActive(page); 1553 list_move(&page->lru, &clean_pages); 1554 } 1555 } 1556 1557 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1558 TTU_IGNORE_ACCESS, &dummy_stat, true); 1559 list_splice(&clean_pages, page_list); 1560 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1561 return ret; 1562 } 1563 1564 /* 1565 * Attempt to remove the specified page from its LRU. Only take this page 1566 * if it is of the appropriate PageActive status. Pages which are being 1567 * freed elsewhere are also ignored. 1568 * 1569 * page: page to consider 1570 * mode: one of the LRU isolation modes defined above 1571 * 1572 * returns 0 on success, -ve errno on failure. 1573 */ 1574 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1575 { 1576 int ret = -EINVAL; 1577 1578 /* Only take pages on the LRU. */ 1579 if (!PageLRU(page)) 1580 return ret; 1581 1582 /* Compaction should not handle unevictable pages but CMA can do so */ 1583 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1584 return ret; 1585 1586 ret = -EBUSY; 1587 1588 /* 1589 * To minimise LRU disruption, the caller can indicate that it only 1590 * wants to isolate pages it will be able to operate on without 1591 * blocking - clean pages for the most part. 1592 * 1593 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1594 * that it is possible to migrate without blocking 1595 */ 1596 if (mode & ISOLATE_ASYNC_MIGRATE) { 1597 /* All the caller can do on PageWriteback is block */ 1598 if (PageWriteback(page)) 1599 return ret; 1600 1601 if (PageDirty(page)) { 1602 struct address_space *mapping; 1603 bool migrate_dirty; 1604 1605 /* 1606 * Only pages without mappings or that have a 1607 * ->migratepage callback are possible to migrate 1608 * without blocking. However, we can be racing with 1609 * truncation so it's necessary to lock the page 1610 * to stabilise the mapping as truncation holds 1611 * the page lock until after the page is removed 1612 * from the page cache. 1613 */ 1614 if (!trylock_page(page)) 1615 return ret; 1616 1617 mapping = page_mapping(page); 1618 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1619 unlock_page(page); 1620 if (!migrate_dirty) 1621 return ret; 1622 } 1623 } 1624 1625 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1626 return ret; 1627 1628 if (likely(get_page_unless_zero(page))) { 1629 /* 1630 * Be careful not to clear PageLRU until after we're 1631 * sure the page is not being freed elsewhere -- the 1632 * page release code relies on it. 1633 */ 1634 ClearPageLRU(page); 1635 ret = 0; 1636 } 1637 1638 return ret; 1639 } 1640 1641 1642 /* 1643 * Update LRU sizes after isolating pages. The LRU size updates must 1644 * be complete before mem_cgroup_update_lru_size due to a santity check. 1645 */ 1646 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1647 enum lru_list lru, unsigned long *nr_zone_taken) 1648 { 1649 int zid; 1650 1651 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1652 if (!nr_zone_taken[zid]) 1653 continue; 1654 1655 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1656 #ifdef CONFIG_MEMCG 1657 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1658 #endif 1659 } 1660 1661 } 1662 1663 /** 1664 * pgdat->lru_lock is heavily contended. Some of the functions that 1665 * shrink the lists perform better by taking out a batch of pages 1666 * and working on them outside the LRU lock. 1667 * 1668 * For pagecache intensive workloads, this function is the hottest 1669 * spot in the kernel (apart from copy_*_user functions). 1670 * 1671 * Appropriate locks must be held before calling this function. 1672 * 1673 * @nr_to_scan: The number of eligible pages to look through on the list. 1674 * @lruvec: The LRU vector to pull pages from. 1675 * @dst: The temp list to put pages on to. 1676 * @nr_scanned: The number of pages that were scanned. 1677 * @sc: The scan_control struct for this reclaim session 1678 * @mode: One of the LRU isolation modes 1679 * @lru: LRU list id for isolating 1680 * 1681 * returns how many pages were moved onto *@dst. 1682 */ 1683 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1684 struct lruvec *lruvec, struct list_head *dst, 1685 unsigned long *nr_scanned, struct scan_control *sc, 1686 enum lru_list lru) 1687 { 1688 struct list_head *src = &lruvec->lists[lru]; 1689 unsigned long nr_taken = 0; 1690 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1691 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1692 unsigned long skipped = 0; 1693 unsigned long scan, total_scan, nr_pages; 1694 LIST_HEAD(pages_skipped); 1695 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1696 1697 total_scan = 0; 1698 scan = 0; 1699 while (scan < nr_to_scan && !list_empty(src)) { 1700 struct page *page; 1701 1702 page = lru_to_page(src); 1703 prefetchw_prev_lru_page(page, src, flags); 1704 1705 VM_BUG_ON_PAGE(!PageLRU(page), page); 1706 1707 nr_pages = compound_nr(page); 1708 total_scan += nr_pages; 1709 1710 if (page_zonenum(page) > sc->reclaim_idx) { 1711 list_move(&page->lru, &pages_skipped); 1712 nr_skipped[page_zonenum(page)] += nr_pages; 1713 continue; 1714 } 1715 1716 /* 1717 * Do not count skipped pages because that makes the function 1718 * return with no isolated pages if the LRU mostly contains 1719 * ineligible pages. This causes the VM to not reclaim any 1720 * pages, triggering a premature OOM. 1721 * 1722 * Account all tail pages of THP. This would not cause 1723 * premature OOM since __isolate_lru_page() returns -EBUSY 1724 * only when the page is being freed somewhere else. 1725 */ 1726 scan += nr_pages; 1727 switch (__isolate_lru_page(page, mode)) { 1728 case 0: 1729 nr_taken += nr_pages; 1730 nr_zone_taken[page_zonenum(page)] += nr_pages; 1731 list_move(&page->lru, dst); 1732 break; 1733 1734 case -EBUSY: 1735 /* else it is being freed elsewhere */ 1736 list_move(&page->lru, src); 1737 continue; 1738 1739 default: 1740 BUG(); 1741 } 1742 } 1743 1744 /* 1745 * Splice any skipped pages to the start of the LRU list. Note that 1746 * this disrupts the LRU order when reclaiming for lower zones but 1747 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1748 * scanning would soon rescan the same pages to skip and put the 1749 * system at risk of premature OOM. 1750 */ 1751 if (!list_empty(&pages_skipped)) { 1752 int zid; 1753 1754 list_splice(&pages_skipped, src); 1755 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1756 if (!nr_skipped[zid]) 1757 continue; 1758 1759 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1760 skipped += nr_skipped[zid]; 1761 } 1762 } 1763 *nr_scanned = total_scan; 1764 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1765 total_scan, skipped, nr_taken, mode, lru); 1766 update_lru_sizes(lruvec, lru, nr_zone_taken); 1767 return nr_taken; 1768 } 1769 1770 /** 1771 * isolate_lru_page - tries to isolate a page from its LRU list 1772 * @page: page to isolate from its LRU list 1773 * 1774 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1775 * vmstat statistic corresponding to whatever LRU list the page was on. 1776 * 1777 * Returns 0 if the page was removed from an LRU list. 1778 * Returns -EBUSY if the page was not on an LRU list. 1779 * 1780 * The returned page will have PageLRU() cleared. If it was found on 1781 * the active list, it will have PageActive set. If it was found on 1782 * the unevictable list, it will have the PageUnevictable bit set. That flag 1783 * may need to be cleared by the caller before letting the page go. 1784 * 1785 * The vmstat statistic corresponding to the list on which the page was 1786 * found will be decremented. 1787 * 1788 * Restrictions: 1789 * 1790 * (1) Must be called with an elevated refcount on the page. This is a 1791 * fundamentnal difference from isolate_lru_pages (which is called 1792 * without a stable reference). 1793 * (2) the lru_lock must not be held. 1794 * (3) interrupts must be enabled. 1795 */ 1796 int isolate_lru_page(struct page *page) 1797 { 1798 int ret = -EBUSY; 1799 1800 VM_BUG_ON_PAGE(!page_count(page), page); 1801 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1802 1803 if (PageLRU(page)) { 1804 pg_data_t *pgdat = page_pgdat(page); 1805 struct lruvec *lruvec; 1806 1807 spin_lock_irq(&pgdat->lru_lock); 1808 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1809 if (PageLRU(page)) { 1810 int lru = page_lru(page); 1811 get_page(page); 1812 ClearPageLRU(page); 1813 del_page_from_lru_list(page, lruvec, lru); 1814 ret = 0; 1815 } 1816 spin_unlock_irq(&pgdat->lru_lock); 1817 } 1818 return ret; 1819 } 1820 1821 /* 1822 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1823 * then get resheduled. When there are massive number of tasks doing page 1824 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1825 * the LRU list will go small and be scanned faster than necessary, leading to 1826 * unnecessary swapping, thrashing and OOM. 1827 */ 1828 static int too_many_isolated(struct pglist_data *pgdat, int file, 1829 struct scan_control *sc) 1830 { 1831 unsigned long inactive, isolated; 1832 1833 if (current_is_kswapd()) 1834 return 0; 1835 1836 if (!sane_reclaim(sc)) 1837 return 0; 1838 1839 if (file) { 1840 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1841 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1842 } else { 1843 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1844 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1845 } 1846 1847 /* 1848 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1849 * won't get blocked by normal direct-reclaimers, forming a circular 1850 * deadlock. 1851 */ 1852 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1853 inactive >>= 3; 1854 1855 return isolated > inactive; 1856 } 1857 1858 /* 1859 * This moves pages from @list to corresponding LRU list. 1860 * 1861 * We move them the other way if the page is referenced by one or more 1862 * processes, from rmap. 1863 * 1864 * If the pages are mostly unmapped, the processing is fast and it is 1865 * appropriate to hold zone_lru_lock across the whole operation. But if 1866 * the pages are mapped, the processing is slow (page_referenced()) so we 1867 * should drop zone_lru_lock around each page. It's impossible to balance 1868 * this, so instead we remove the pages from the LRU while processing them. 1869 * It is safe to rely on PG_active against the non-LRU pages in here because 1870 * nobody will play with that bit on a non-LRU page. 1871 * 1872 * The downside is that we have to touch page->_refcount against each page. 1873 * But we had to alter page->flags anyway. 1874 * 1875 * Returns the number of pages moved to the given lruvec. 1876 */ 1877 1878 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1879 struct list_head *list) 1880 { 1881 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1882 int nr_pages, nr_moved = 0; 1883 LIST_HEAD(pages_to_free); 1884 struct page *page; 1885 enum lru_list lru; 1886 1887 while (!list_empty(list)) { 1888 page = lru_to_page(list); 1889 VM_BUG_ON_PAGE(PageLRU(page), page); 1890 if (unlikely(!page_evictable(page))) { 1891 list_del(&page->lru); 1892 spin_unlock_irq(&pgdat->lru_lock); 1893 putback_lru_page(page); 1894 spin_lock_irq(&pgdat->lru_lock); 1895 continue; 1896 } 1897 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1898 1899 SetPageLRU(page); 1900 lru = page_lru(page); 1901 1902 nr_pages = hpage_nr_pages(page); 1903 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1904 list_move(&page->lru, &lruvec->lists[lru]); 1905 1906 if (put_page_testzero(page)) { 1907 __ClearPageLRU(page); 1908 __ClearPageActive(page); 1909 del_page_from_lru_list(page, lruvec, lru); 1910 1911 if (unlikely(PageCompound(page))) { 1912 spin_unlock_irq(&pgdat->lru_lock); 1913 (*get_compound_page_dtor(page))(page); 1914 spin_lock_irq(&pgdat->lru_lock); 1915 } else 1916 list_add(&page->lru, &pages_to_free); 1917 } else { 1918 nr_moved += nr_pages; 1919 } 1920 } 1921 1922 /* 1923 * To save our caller's stack, now use input list for pages to free. 1924 */ 1925 list_splice(&pages_to_free, list); 1926 1927 return nr_moved; 1928 } 1929 1930 /* 1931 * If a kernel thread (such as nfsd for loop-back mounts) services 1932 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1933 * In that case we should only throttle if the backing device it is 1934 * writing to is congested. In other cases it is safe to throttle. 1935 */ 1936 static int current_may_throttle(void) 1937 { 1938 return !(current->flags & PF_LESS_THROTTLE) || 1939 current->backing_dev_info == NULL || 1940 bdi_write_congested(current->backing_dev_info); 1941 } 1942 1943 /* 1944 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1945 * of reclaimed pages 1946 */ 1947 static noinline_for_stack unsigned long 1948 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1949 struct scan_control *sc, enum lru_list lru) 1950 { 1951 LIST_HEAD(page_list); 1952 unsigned long nr_scanned; 1953 unsigned long nr_reclaimed = 0; 1954 unsigned long nr_taken; 1955 struct reclaim_stat stat; 1956 int file = is_file_lru(lru); 1957 enum vm_event_item item; 1958 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1959 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1960 bool stalled = false; 1961 1962 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1963 if (stalled) 1964 return 0; 1965 1966 /* wait a bit for the reclaimer. */ 1967 msleep(100); 1968 stalled = true; 1969 1970 /* We are about to die and free our memory. Return now. */ 1971 if (fatal_signal_pending(current)) 1972 return SWAP_CLUSTER_MAX; 1973 } 1974 1975 lru_add_drain(); 1976 1977 spin_lock_irq(&pgdat->lru_lock); 1978 1979 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1980 &nr_scanned, sc, lru); 1981 1982 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1983 reclaim_stat->recent_scanned[file] += nr_taken; 1984 1985 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1986 if (global_reclaim(sc)) 1987 __count_vm_events(item, nr_scanned); 1988 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1989 spin_unlock_irq(&pgdat->lru_lock); 1990 1991 if (nr_taken == 0) 1992 return 0; 1993 1994 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1995 &stat, false); 1996 1997 spin_lock_irq(&pgdat->lru_lock); 1998 1999 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2000 if (global_reclaim(sc)) 2001 __count_vm_events(item, nr_reclaimed); 2002 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2003 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 2004 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 2005 2006 move_pages_to_lru(lruvec, &page_list); 2007 2008 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2009 2010 spin_unlock_irq(&pgdat->lru_lock); 2011 2012 mem_cgroup_uncharge_list(&page_list); 2013 free_unref_page_list(&page_list); 2014 2015 /* 2016 * If dirty pages are scanned that are not queued for IO, it 2017 * implies that flushers are not doing their job. This can 2018 * happen when memory pressure pushes dirty pages to the end of 2019 * the LRU before the dirty limits are breached and the dirty 2020 * data has expired. It can also happen when the proportion of 2021 * dirty pages grows not through writes but through memory 2022 * pressure reclaiming all the clean cache. And in some cases, 2023 * the flushers simply cannot keep up with the allocation 2024 * rate. Nudge the flusher threads in case they are asleep. 2025 */ 2026 if (stat.nr_unqueued_dirty == nr_taken) 2027 wakeup_flusher_threads(WB_REASON_VMSCAN); 2028 2029 sc->nr.dirty += stat.nr_dirty; 2030 sc->nr.congested += stat.nr_congested; 2031 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2032 sc->nr.writeback += stat.nr_writeback; 2033 sc->nr.immediate += stat.nr_immediate; 2034 sc->nr.taken += nr_taken; 2035 if (file) 2036 sc->nr.file_taken += nr_taken; 2037 2038 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2039 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2040 return nr_reclaimed; 2041 } 2042 2043 static void shrink_active_list(unsigned long nr_to_scan, 2044 struct lruvec *lruvec, 2045 struct scan_control *sc, 2046 enum lru_list lru) 2047 { 2048 unsigned long nr_taken; 2049 unsigned long nr_scanned; 2050 unsigned long vm_flags; 2051 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2052 LIST_HEAD(l_active); 2053 LIST_HEAD(l_inactive); 2054 struct page *page; 2055 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2056 unsigned nr_deactivate, nr_activate; 2057 unsigned nr_rotated = 0; 2058 int file = is_file_lru(lru); 2059 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2060 2061 lru_add_drain(); 2062 2063 spin_lock_irq(&pgdat->lru_lock); 2064 2065 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2066 &nr_scanned, sc, lru); 2067 2068 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2069 reclaim_stat->recent_scanned[file] += nr_taken; 2070 2071 __count_vm_events(PGREFILL, nr_scanned); 2072 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2073 2074 spin_unlock_irq(&pgdat->lru_lock); 2075 2076 while (!list_empty(&l_hold)) { 2077 cond_resched(); 2078 page = lru_to_page(&l_hold); 2079 list_del(&page->lru); 2080 2081 if (unlikely(!page_evictable(page))) { 2082 putback_lru_page(page); 2083 continue; 2084 } 2085 2086 if (unlikely(buffer_heads_over_limit)) { 2087 if (page_has_private(page) && trylock_page(page)) { 2088 if (page_has_private(page)) 2089 try_to_release_page(page, 0); 2090 unlock_page(page); 2091 } 2092 } 2093 2094 if (page_referenced(page, 0, sc->target_mem_cgroup, 2095 &vm_flags)) { 2096 nr_rotated += hpage_nr_pages(page); 2097 /* 2098 * Identify referenced, file-backed active pages and 2099 * give them one more trip around the active list. So 2100 * that executable code get better chances to stay in 2101 * memory under moderate memory pressure. Anon pages 2102 * are not likely to be evicted by use-once streaming 2103 * IO, plus JVM can create lots of anon VM_EXEC pages, 2104 * so we ignore them here. 2105 */ 2106 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2107 list_add(&page->lru, &l_active); 2108 continue; 2109 } 2110 } 2111 2112 ClearPageActive(page); /* we are de-activating */ 2113 SetPageWorkingset(page); 2114 list_add(&page->lru, &l_inactive); 2115 } 2116 2117 /* 2118 * Move pages back to the lru list. 2119 */ 2120 spin_lock_irq(&pgdat->lru_lock); 2121 /* 2122 * Count referenced pages from currently used mappings as rotated, 2123 * even though only some of them are actually re-activated. This 2124 * helps balance scan pressure between file and anonymous pages in 2125 * get_scan_count. 2126 */ 2127 reclaim_stat->recent_rotated[file] += nr_rotated; 2128 2129 nr_activate = move_pages_to_lru(lruvec, &l_active); 2130 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2131 /* Keep all free pages in l_active list */ 2132 list_splice(&l_inactive, &l_active); 2133 2134 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2135 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2136 2137 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2138 spin_unlock_irq(&pgdat->lru_lock); 2139 2140 mem_cgroup_uncharge_list(&l_active); 2141 free_unref_page_list(&l_active); 2142 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2143 nr_deactivate, nr_rotated, sc->priority, file); 2144 } 2145 2146 unsigned long reclaim_pages(struct list_head *page_list) 2147 { 2148 int nid = -1; 2149 unsigned long nr_reclaimed = 0; 2150 LIST_HEAD(node_page_list); 2151 struct reclaim_stat dummy_stat; 2152 struct page *page; 2153 struct scan_control sc = { 2154 .gfp_mask = GFP_KERNEL, 2155 .priority = DEF_PRIORITY, 2156 .may_writepage = 1, 2157 .may_unmap = 1, 2158 .may_swap = 1, 2159 }; 2160 2161 while (!list_empty(page_list)) { 2162 page = lru_to_page(page_list); 2163 if (nid == -1) { 2164 nid = page_to_nid(page); 2165 INIT_LIST_HEAD(&node_page_list); 2166 } 2167 2168 if (nid == page_to_nid(page)) { 2169 ClearPageActive(page); 2170 list_move(&page->lru, &node_page_list); 2171 continue; 2172 } 2173 2174 nr_reclaimed += shrink_page_list(&node_page_list, 2175 NODE_DATA(nid), 2176 &sc, 0, 2177 &dummy_stat, false); 2178 while (!list_empty(&node_page_list)) { 2179 page = lru_to_page(&node_page_list); 2180 list_del(&page->lru); 2181 putback_lru_page(page); 2182 } 2183 2184 nid = -1; 2185 } 2186 2187 if (!list_empty(&node_page_list)) { 2188 nr_reclaimed += shrink_page_list(&node_page_list, 2189 NODE_DATA(nid), 2190 &sc, 0, 2191 &dummy_stat, false); 2192 while (!list_empty(&node_page_list)) { 2193 page = lru_to_page(&node_page_list); 2194 list_del(&page->lru); 2195 putback_lru_page(page); 2196 } 2197 } 2198 2199 return nr_reclaimed; 2200 } 2201 2202 /* 2203 * The inactive anon list should be small enough that the VM never has 2204 * to do too much work. 2205 * 2206 * The inactive file list should be small enough to leave most memory 2207 * to the established workingset on the scan-resistant active list, 2208 * but large enough to avoid thrashing the aggregate readahead window. 2209 * 2210 * Both inactive lists should also be large enough that each inactive 2211 * page has a chance to be referenced again before it is reclaimed. 2212 * 2213 * If that fails and refaulting is observed, the inactive list grows. 2214 * 2215 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2216 * on this LRU, maintained by the pageout code. An inactive_ratio 2217 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2218 * 2219 * total target max 2220 * memory ratio inactive 2221 * ------------------------------------- 2222 * 10MB 1 5MB 2223 * 100MB 1 50MB 2224 * 1GB 3 250MB 2225 * 10GB 10 0.9GB 2226 * 100GB 31 3GB 2227 * 1TB 101 10GB 2228 * 10TB 320 32GB 2229 */ 2230 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2231 struct scan_control *sc, bool trace) 2232 { 2233 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2234 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2235 enum lru_list inactive_lru = file * LRU_FILE; 2236 unsigned long inactive, active; 2237 unsigned long inactive_ratio; 2238 unsigned long refaults; 2239 unsigned long gb; 2240 2241 /* 2242 * If we don't have swap space, anonymous page deactivation 2243 * is pointless. 2244 */ 2245 if (!file && !total_swap_pages) 2246 return false; 2247 2248 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2249 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2250 2251 /* 2252 * When refaults are being observed, it means a new workingset 2253 * is being established. Disable active list protection to get 2254 * rid of the stale workingset quickly. 2255 */ 2256 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2257 if (file && lruvec->refaults != refaults) { 2258 inactive_ratio = 0; 2259 } else { 2260 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2261 if (gb) 2262 inactive_ratio = int_sqrt(10 * gb); 2263 else 2264 inactive_ratio = 1; 2265 } 2266 2267 if (trace) 2268 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2269 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2270 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2271 inactive_ratio, file); 2272 2273 return inactive * inactive_ratio < active; 2274 } 2275 2276 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2277 struct lruvec *lruvec, struct scan_control *sc) 2278 { 2279 if (is_active_lru(lru)) { 2280 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2281 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2282 return 0; 2283 } 2284 2285 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2286 } 2287 2288 enum scan_balance { 2289 SCAN_EQUAL, 2290 SCAN_FRACT, 2291 SCAN_ANON, 2292 SCAN_FILE, 2293 }; 2294 2295 /* 2296 * Determine how aggressively the anon and file LRU lists should be 2297 * scanned. The relative value of each set of LRU lists is determined 2298 * by looking at the fraction of the pages scanned we did rotate back 2299 * onto the active list instead of evict. 2300 * 2301 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2302 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2303 */ 2304 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2305 struct scan_control *sc, unsigned long *nr, 2306 unsigned long *lru_pages) 2307 { 2308 int swappiness = mem_cgroup_swappiness(memcg); 2309 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2310 u64 fraction[2]; 2311 u64 denominator = 0; /* gcc */ 2312 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2313 unsigned long anon_prio, file_prio; 2314 enum scan_balance scan_balance; 2315 unsigned long anon, file; 2316 unsigned long ap, fp; 2317 enum lru_list lru; 2318 2319 /* If we have no swap space, do not bother scanning anon pages. */ 2320 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2321 scan_balance = SCAN_FILE; 2322 goto out; 2323 } 2324 2325 /* 2326 * Global reclaim will swap to prevent OOM even with no 2327 * swappiness, but memcg users want to use this knob to 2328 * disable swapping for individual groups completely when 2329 * using the memory controller's swap limit feature would be 2330 * too expensive. 2331 */ 2332 if (!global_reclaim(sc) && !swappiness) { 2333 scan_balance = SCAN_FILE; 2334 goto out; 2335 } 2336 2337 /* 2338 * Do not apply any pressure balancing cleverness when the 2339 * system is close to OOM, scan both anon and file equally 2340 * (unless the swappiness setting disagrees with swapping). 2341 */ 2342 if (!sc->priority && swappiness) { 2343 scan_balance = SCAN_EQUAL; 2344 goto out; 2345 } 2346 2347 /* 2348 * Prevent the reclaimer from falling into the cache trap: as 2349 * cache pages start out inactive, every cache fault will tip 2350 * the scan balance towards the file LRU. And as the file LRU 2351 * shrinks, so does the window for rotation from references. 2352 * This means we have a runaway feedback loop where a tiny 2353 * thrashing file LRU becomes infinitely more attractive than 2354 * anon pages. Try to detect this based on file LRU size. 2355 */ 2356 if (global_reclaim(sc)) { 2357 unsigned long pgdatfile; 2358 unsigned long pgdatfree; 2359 int z; 2360 unsigned long total_high_wmark = 0; 2361 2362 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2363 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2364 node_page_state(pgdat, NR_INACTIVE_FILE); 2365 2366 for (z = 0; z < MAX_NR_ZONES; z++) { 2367 struct zone *zone = &pgdat->node_zones[z]; 2368 if (!managed_zone(zone)) 2369 continue; 2370 2371 total_high_wmark += high_wmark_pages(zone); 2372 } 2373 2374 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2375 /* 2376 * Force SCAN_ANON if there are enough inactive 2377 * anonymous pages on the LRU in eligible zones. 2378 * Otherwise, the small LRU gets thrashed. 2379 */ 2380 if (!inactive_list_is_low(lruvec, false, sc, false) && 2381 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2382 >> sc->priority) { 2383 scan_balance = SCAN_ANON; 2384 goto out; 2385 } 2386 } 2387 } 2388 2389 /* 2390 * If there is enough inactive page cache, i.e. if the size of the 2391 * inactive list is greater than that of the active list *and* the 2392 * inactive list actually has some pages to scan on this priority, we 2393 * do not reclaim anything from the anonymous working set right now. 2394 * Without the second condition we could end up never scanning an 2395 * lruvec even if it has plenty of old anonymous pages unless the 2396 * system is under heavy pressure. 2397 */ 2398 if (!inactive_list_is_low(lruvec, true, sc, false) && 2399 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2400 scan_balance = SCAN_FILE; 2401 goto out; 2402 } 2403 2404 scan_balance = SCAN_FRACT; 2405 2406 /* 2407 * With swappiness at 100, anonymous and file have the same priority. 2408 * This scanning priority is essentially the inverse of IO cost. 2409 */ 2410 anon_prio = swappiness; 2411 file_prio = 200 - anon_prio; 2412 2413 /* 2414 * OK, so we have swap space and a fair amount of page cache 2415 * pages. We use the recently rotated / recently scanned 2416 * ratios to determine how valuable each cache is. 2417 * 2418 * Because workloads change over time (and to avoid overflow) 2419 * we keep these statistics as a floating average, which ends 2420 * up weighing recent references more than old ones. 2421 * 2422 * anon in [0], file in [1] 2423 */ 2424 2425 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2426 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2427 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2428 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2429 2430 spin_lock_irq(&pgdat->lru_lock); 2431 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2432 reclaim_stat->recent_scanned[0] /= 2; 2433 reclaim_stat->recent_rotated[0] /= 2; 2434 } 2435 2436 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2437 reclaim_stat->recent_scanned[1] /= 2; 2438 reclaim_stat->recent_rotated[1] /= 2; 2439 } 2440 2441 /* 2442 * The amount of pressure on anon vs file pages is inversely 2443 * proportional to the fraction of recently scanned pages on 2444 * each list that were recently referenced and in active use. 2445 */ 2446 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2447 ap /= reclaim_stat->recent_rotated[0] + 1; 2448 2449 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2450 fp /= reclaim_stat->recent_rotated[1] + 1; 2451 spin_unlock_irq(&pgdat->lru_lock); 2452 2453 fraction[0] = ap; 2454 fraction[1] = fp; 2455 denominator = ap + fp + 1; 2456 out: 2457 *lru_pages = 0; 2458 for_each_evictable_lru(lru) { 2459 int file = is_file_lru(lru); 2460 unsigned long lruvec_size; 2461 unsigned long scan; 2462 unsigned long protection; 2463 2464 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2465 protection = mem_cgroup_protection(memcg, 2466 sc->memcg_low_reclaim); 2467 2468 if (protection) { 2469 /* 2470 * Scale a cgroup's reclaim pressure by proportioning 2471 * its current usage to its memory.low or memory.min 2472 * setting. 2473 * 2474 * This is important, as otherwise scanning aggression 2475 * becomes extremely binary -- from nothing as we 2476 * approach the memory protection threshold, to totally 2477 * nominal as we exceed it. This results in requiring 2478 * setting extremely liberal protection thresholds. It 2479 * also means we simply get no protection at all if we 2480 * set it too low, which is not ideal. 2481 * 2482 * If there is any protection in place, we reduce scan 2483 * pressure by how much of the total memory used is 2484 * within protection thresholds. 2485 * 2486 * There is one special case: in the first reclaim pass, 2487 * we skip over all groups that are within their low 2488 * protection. If that fails to reclaim enough pages to 2489 * satisfy the reclaim goal, we come back and override 2490 * the best-effort low protection. However, we still 2491 * ideally want to honor how well-behaved groups are in 2492 * that case instead of simply punishing them all 2493 * equally. As such, we reclaim them based on how much 2494 * memory they are using, reducing the scan pressure 2495 * again by how much of the total memory used is under 2496 * hard protection. 2497 */ 2498 unsigned long cgroup_size = mem_cgroup_size(memcg); 2499 2500 /* Avoid TOCTOU with earlier protection check */ 2501 cgroup_size = max(cgroup_size, protection); 2502 2503 scan = lruvec_size - lruvec_size * protection / 2504 cgroup_size; 2505 2506 /* 2507 * Minimally target SWAP_CLUSTER_MAX pages to keep 2508 * reclaim moving forwards, avoiding decremeting 2509 * sc->priority further than desirable. 2510 */ 2511 scan = max(scan, SWAP_CLUSTER_MAX); 2512 } else { 2513 scan = lruvec_size; 2514 } 2515 2516 scan >>= sc->priority; 2517 2518 /* 2519 * If the cgroup's already been deleted, make sure to 2520 * scrape out the remaining cache. 2521 */ 2522 if (!scan && !mem_cgroup_online(memcg)) 2523 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2524 2525 switch (scan_balance) { 2526 case SCAN_EQUAL: 2527 /* Scan lists relative to size */ 2528 break; 2529 case SCAN_FRACT: 2530 /* 2531 * Scan types proportional to swappiness and 2532 * their relative recent reclaim efficiency. 2533 * Make sure we don't miss the last page 2534 * because of a round-off error. 2535 */ 2536 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2537 denominator); 2538 break; 2539 case SCAN_FILE: 2540 case SCAN_ANON: 2541 /* Scan one type exclusively */ 2542 if ((scan_balance == SCAN_FILE) != file) { 2543 lruvec_size = 0; 2544 scan = 0; 2545 } 2546 break; 2547 default: 2548 /* Look ma, no brain */ 2549 BUG(); 2550 } 2551 2552 *lru_pages += lruvec_size; 2553 nr[lru] = scan; 2554 } 2555 } 2556 2557 /* 2558 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2559 */ 2560 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2561 struct scan_control *sc, unsigned long *lru_pages) 2562 { 2563 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2564 unsigned long nr[NR_LRU_LISTS]; 2565 unsigned long targets[NR_LRU_LISTS]; 2566 unsigned long nr_to_scan; 2567 enum lru_list lru; 2568 unsigned long nr_reclaimed = 0; 2569 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2570 struct blk_plug plug; 2571 bool scan_adjusted; 2572 2573 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2574 2575 /* Record the original scan target for proportional adjustments later */ 2576 memcpy(targets, nr, sizeof(nr)); 2577 2578 /* 2579 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2580 * event that can occur when there is little memory pressure e.g. 2581 * multiple streaming readers/writers. Hence, we do not abort scanning 2582 * when the requested number of pages are reclaimed when scanning at 2583 * DEF_PRIORITY on the assumption that the fact we are direct 2584 * reclaiming implies that kswapd is not keeping up and it is best to 2585 * do a batch of work at once. For memcg reclaim one check is made to 2586 * abort proportional reclaim if either the file or anon lru has already 2587 * dropped to zero at the first pass. 2588 */ 2589 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2590 sc->priority == DEF_PRIORITY); 2591 2592 blk_start_plug(&plug); 2593 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2594 nr[LRU_INACTIVE_FILE]) { 2595 unsigned long nr_anon, nr_file, percentage; 2596 unsigned long nr_scanned; 2597 2598 for_each_evictable_lru(lru) { 2599 if (nr[lru]) { 2600 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2601 nr[lru] -= nr_to_scan; 2602 2603 nr_reclaimed += shrink_list(lru, nr_to_scan, 2604 lruvec, sc); 2605 } 2606 } 2607 2608 cond_resched(); 2609 2610 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2611 continue; 2612 2613 /* 2614 * For kswapd and memcg, reclaim at least the number of pages 2615 * requested. Ensure that the anon and file LRUs are scanned 2616 * proportionally what was requested by get_scan_count(). We 2617 * stop reclaiming one LRU and reduce the amount scanning 2618 * proportional to the original scan target. 2619 */ 2620 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2621 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2622 2623 /* 2624 * It's just vindictive to attack the larger once the smaller 2625 * has gone to zero. And given the way we stop scanning the 2626 * smaller below, this makes sure that we only make one nudge 2627 * towards proportionality once we've got nr_to_reclaim. 2628 */ 2629 if (!nr_file || !nr_anon) 2630 break; 2631 2632 if (nr_file > nr_anon) { 2633 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2634 targets[LRU_ACTIVE_ANON] + 1; 2635 lru = LRU_BASE; 2636 percentage = nr_anon * 100 / scan_target; 2637 } else { 2638 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2639 targets[LRU_ACTIVE_FILE] + 1; 2640 lru = LRU_FILE; 2641 percentage = nr_file * 100 / scan_target; 2642 } 2643 2644 /* Stop scanning the smaller of the LRU */ 2645 nr[lru] = 0; 2646 nr[lru + LRU_ACTIVE] = 0; 2647 2648 /* 2649 * Recalculate the other LRU scan count based on its original 2650 * scan target and the percentage scanning already complete 2651 */ 2652 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2653 nr_scanned = targets[lru] - nr[lru]; 2654 nr[lru] = targets[lru] * (100 - percentage) / 100; 2655 nr[lru] -= min(nr[lru], nr_scanned); 2656 2657 lru += LRU_ACTIVE; 2658 nr_scanned = targets[lru] - nr[lru]; 2659 nr[lru] = targets[lru] * (100 - percentage) / 100; 2660 nr[lru] -= min(nr[lru], nr_scanned); 2661 2662 scan_adjusted = true; 2663 } 2664 blk_finish_plug(&plug); 2665 sc->nr_reclaimed += nr_reclaimed; 2666 2667 /* 2668 * Even if we did not try to evict anon pages at all, we want to 2669 * rebalance the anon lru active/inactive ratio. 2670 */ 2671 if (inactive_list_is_low(lruvec, false, sc, true)) 2672 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2673 sc, LRU_ACTIVE_ANON); 2674 } 2675 2676 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2677 static bool in_reclaim_compaction(struct scan_control *sc) 2678 { 2679 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2680 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2681 sc->priority < DEF_PRIORITY - 2)) 2682 return true; 2683 2684 return false; 2685 } 2686 2687 /* 2688 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2689 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2690 * true if more pages should be reclaimed such that when the page allocator 2691 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2692 * It will give up earlier than that if there is difficulty reclaiming pages. 2693 */ 2694 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2695 unsigned long nr_reclaimed, 2696 struct scan_control *sc) 2697 { 2698 unsigned long pages_for_compaction; 2699 unsigned long inactive_lru_pages; 2700 int z; 2701 2702 /* If not in reclaim/compaction mode, stop */ 2703 if (!in_reclaim_compaction(sc)) 2704 return false; 2705 2706 /* 2707 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2708 * number of pages that were scanned. This will return to the caller 2709 * with the risk reclaim/compaction and the resulting allocation attempt 2710 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2711 * allocations through requiring that the full LRU list has been scanned 2712 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2713 * scan, but that approximation was wrong, and there were corner cases 2714 * where always a non-zero amount of pages were scanned. 2715 */ 2716 if (!nr_reclaimed) 2717 return false; 2718 2719 /* If compaction would go ahead or the allocation would succeed, stop */ 2720 for (z = 0; z <= sc->reclaim_idx; z++) { 2721 struct zone *zone = &pgdat->node_zones[z]; 2722 if (!managed_zone(zone)) 2723 continue; 2724 2725 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2726 case COMPACT_SUCCESS: 2727 case COMPACT_CONTINUE: 2728 return false; 2729 default: 2730 /* check next zone */ 2731 ; 2732 } 2733 } 2734 2735 /* 2736 * If we have not reclaimed enough pages for compaction and the 2737 * inactive lists are large enough, continue reclaiming 2738 */ 2739 pages_for_compaction = compact_gap(sc->order); 2740 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2741 if (get_nr_swap_pages() > 0) 2742 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2743 2744 return inactive_lru_pages > pages_for_compaction; 2745 } 2746 2747 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2748 { 2749 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2750 (memcg && memcg_congested(pgdat, memcg)); 2751 } 2752 2753 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2754 { 2755 struct reclaim_state *reclaim_state = current->reclaim_state; 2756 unsigned long nr_reclaimed, nr_scanned; 2757 bool reclaimable = false; 2758 2759 do { 2760 struct mem_cgroup *root = sc->target_mem_cgroup; 2761 unsigned long node_lru_pages = 0; 2762 struct mem_cgroup *memcg; 2763 2764 memset(&sc->nr, 0, sizeof(sc->nr)); 2765 2766 nr_reclaimed = sc->nr_reclaimed; 2767 nr_scanned = sc->nr_scanned; 2768 2769 memcg = mem_cgroup_iter(root, NULL, NULL); 2770 do { 2771 unsigned long lru_pages; 2772 unsigned long reclaimed; 2773 unsigned long scanned; 2774 2775 switch (mem_cgroup_protected(root, memcg)) { 2776 case MEMCG_PROT_MIN: 2777 /* 2778 * Hard protection. 2779 * If there is no reclaimable memory, OOM. 2780 */ 2781 continue; 2782 case MEMCG_PROT_LOW: 2783 /* 2784 * Soft protection. 2785 * Respect the protection only as long as 2786 * there is an unprotected supply 2787 * of reclaimable memory from other cgroups. 2788 */ 2789 if (!sc->memcg_low_reclaim) { 2790 sc->memcg_low_skipped = 1; 2791 continue; 2792 } 2793 memcg_memory_event(memcg, MEMCG_LOW); 2794 break; 2795 case MEMCG_PROT_NONE: 2796 /* 2797 * All protection thresholds breached. We may 2798 * still choose to vary the scan pressure 2799 * applied based on by how much the cgroup in 2800 * question has exceeded its protection 2801 * thresholds (see get_scan_count). 2802 */ 2803 break; 2804 } 2805 2806 reclaimed = sc->nr_reclaimed; 2807 scanned = sc->nr_scanned; 2808 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2809 node_lru_pages += lru_pages; 2810 2811 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2812 sc->priority); 2813 2814 /* Record the group's reclaim efficiency */ 2815 vmpressure(sc->gfp_mask, memcg, false, 2816 sc->nr_scanned - scanned, 2817 sc->nr_reclaimed - reclaimed); 2818 2819 } while ((memcg = mem_cgroup_iter(root, memcg, NULL))); 2820 2821 if (reclaim_state) { 2822 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2823 reclaim_state->reclaimed_slab = 0; 2824 } 2825 2826 /* Record the subtree's reclaim efficiency */ 2827 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2828 sc->nr_scanned - nr_scanned, 2829 sc->nr_reclaimed - nr_reclaimed); 2830 2831 if (sc->nr_reclaimed - nr_reclaimed) 2832 reclaimable = true; 2833 2834 if (current_is_kswapd()) { 2835 /* 2836 * If reclaim is isolating dirty pages under writeback, 2837 * it implies that the long-lived page allocation rate 2838 * is exceeding the page laundering rate. Either the 2839 * global limits are not being effective at throttling 2840 * processes due to the page distribution throughout 2841 * zones or there is heavy usage of a slow backing 2842 * device. The only option is to throttle from reclaim 2843 * context which is not ideal as there is no guarantee 2844 * the dirtying process is throttled in the same way 2845 * balance_dirty_pages() manages. 2846 * 2847 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2848 * count the number of pages under pages flagged for 2849 * immediate reclaim and stall if any are encountered 2850 * in the nr_immediate check below. 2851 */ 2852 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2853 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2854 2855 /* 2856 * Tag a node as congested if all the dirty pages 2857 * scanned were backed by a congested BDI and 2858 * wait_iff_congested will stall. 2859 */ 2860 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2861 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2862 2863 /* Allow kswapd to start writing pages during reclaim.*/ 2864 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2865 set_bit(PGDAT_DIRTY, &pgdat->flags); 2866 2867 /* 2868 * If kswapd scans pages marked marked for immediate 2869 * reclaim and under writeback (nr_immediate), it 2870 * implies that pages are cycling through the LRU 2871 * faster than they are written so also forcibly stall. 2872 */ 2873 if (sc->nr.immediate) 2874 congestion_wait(BLK_RW_ASYNC, HZ/10); 2875 } 2876 2877 /* 2878 * Legacy memcg will stall in page writeback so avoid forcibly 2879 * stalling in wait_iff_congested(). 2880 */ 2881 if (!global_reclaim(sc) && sane_reclaim(sc) && 2882 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2883 set_memcg_congestion(pgdat, root, true); 2884 2885 /* 2886 * Stall direct reclaim for IO completions if underlying BDIs 2887 * and node is congested. Allow kswapd to continue until it 2888 * starts encountering unqueued dirty pages or cycling through 2889 * the LRU too quickly. 2890 */ 2891 if (!sc->hibernation_mode && !current_is_kswapd() && 2892 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2893 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2894 2895 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2896 sc)); 2897 2898 /* 2899 * Kswapd gives up on balancing particular nodes after too 2900 * many failures to reclaim anything from them and goes to 2901 * sleep. On reclaim progress, reset the failure counter. A 2902 * successful direct reclaim run will revive a dormant kswapd. 2903 */ 2904 if (reclaimable) 2905 pgdat->kswapd_failures = 0; 2906 2907 return reclaimable; 2908 } 2909 2910 /* 2911 * Returns true if compaction should go ahead for a costly-order request, or 2912 * the allocation would already succeed without compaction. Return false if we 2913 * should reclaim first. 2914 */ 2915 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2916 { 2917 unsigned long watermark; 2918 enum compact_result suitable; 2919 2920 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2921 if (suitable == COMPACT_SUCCESS) 2922 /* Allocation should succeed already. Don't reclaim. */ 2923 return true; 2924 if (suitable == COMPACT_SKIPPED) 2925 /* Compaction cannot yet proceed. Do reclaim. */ 2926 return false; 2927 2928 /* 2929 * Compaction is already possible, but it takes time to run and there 2930 * are potentially other callers using the pages just freed. So proceed 2931 * with reclaim to make a buffer of free pages available to give 2932 * compaction a reasonable chance of completing and allocating the page. 2933 * Note that we won't actually reclaim the whole buffer in one attempt 2934 * as the target watermark in should_continue_reclaim() is lower. But if 2935 * we are already above the high+gap watermark, don't reclaim at all. 2936 */ 2937 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2938 2939 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2940 } 2941 2942 /* 2943 * This is the direct reclaim path, for page-allocating processes. We only 2944 * try to reclaim pages from zones which will satisfy the caller's allocation 2945 * request. 2946 * 2947 * If a zone is deemed to be full of pinned pages then just give it a light 2948 * scan then give up on it. 2949 */ 2950 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2951 { 2952 struct zoneref *z; 2953 struct zone *zone; 2954 unsigned long nr_soft_reclaimed; 2955 unsigned long nr_soft_scanned; 2956 gfp_t orig_mask; 2957 pg_data_t *last_pgdat = NULL; 2958 2959 /* 2960 * If the number of buffer_heads in the machine exceeds the maximum 2961 * allowed level, force direct reclaim to scan the highmem zone as 2962 * highmem pages could be pinning lowmem pages storing buffer_heads 2963 */ 2964 orig_mask = sc->gfp_mask; 2965 if (buffer_heads_over_limit) { 2966 sc->gfp_mask |= __GFP_HIGHMEM; 2967 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2968 } 2969 2970 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2971 sc->reclaim_idx, sc->nodemask) { 2972 /* 2973 * Take care memory controller reclaiming has small influence 2974 * to global LRU. 2975 */ 2976 if (global_reclaim(sc)) { 2977 if (!cpuset_zone_allowed(zone, 2978 GFP_KERNEL | __GFP_HARDWALL)) 2979 continue; 2980 2981 /* 2982 * If we already have plenty of memory free for 2983 * compaction in this zone, don't free any more. 2984 * Even though compaction is invoked for any 2985 * non-zero order, only frequent costly order 2986 * reclamation is disruptive enough to become a 2987 * noticeable problem, like transparent huge 2988 * page allocations. 2989 */ 2990 if (IS_ENABLED(CONFIG_COMPACTION) && 2991 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2992 compaction_ready(zone, sc)) { 2993 sc->compaction_ready = true; 2994 continue; 2995 } 2996 2997 /* 2998 * Shrink each node in the zonelist once. If the 2999 * zonelist is ordered by zone (not the default) then a 3000 * node may be shrunk multiple times but in that case 3001 * the user prefers lower zones being preserved. 3002 */ 3003 if (zone->zone_pgdat == last_pgdat) 3004 continue; 3005 3006 /* 3007 * This steals pages from memory cgroups over softlimit 3008 * and returns the number of reclaimed pages and 3009 * scanned pages. This works for global memory pressure 3010 * and balancing, not for a memcg's limit. 3011 */ 3012 nr_soft_scanned = 0; 3013 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3014 sc->order, sc->gfp_mask, 3015 &nr_soft_scanned); 3016 sc->nr_reclaimed += nr_soft_reclaimed; 3017 sc->nr_scanned += nr_soft_scanned; 3018 /* need some check for avoid more shrink_zone() */ 3019 } 3020 3021 /* See comment about same check for global reclaim above */ 3022 if (zone->zone_pgdat == last_pgdat) 3023 continue; 3024 last_pgdat = zone->zone_pgdat; 3025 shrink_node(zone->zone_pgdat, sc); 3026 } 3027 3028 /* 3029 * Restore to original mask to avoid the impact on the caller if we 3030 * promoted it to __GFP_HIGHMEM. 3031 */ 3032 sc->gfp_mask = orig_mask; 3033 } 3034 3035 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 3036 { 3037 struct mem_cgroup *memcg; 3038 3039 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 3040 do { 3041 unsigned long refaults; 3042 struct lruvec *lruvec; 3043 3044 lruvec = mem_cgroup_lruvec(pgdat, memcg); 3045 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 3046 lruvec->refaults = refaults; 3047 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 3048 } 3049 3050 /* 3051 * This is the main entry point to direct page reclaim. 3052 * 3053 * If a full scan of the inactive list fails to free enough memory then we 3054 * are "out of memory" and something needs to be killed. 3055 * 3056 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3057 * high - the zone may be full of dirty or under-writeback pages, which this 3058 * caller can't do much about. We kick the writeback threads and take explicit 3059 * naps in the hope that some of these pages can be written. But if the 3060 * allocating task holds filesystem locks which prevent writeout this might not 3061 * work, and the allocation attempt will fail. 3062 * 3063 * returns: 0, if no pages reclaimed 3064 * else, the number of pages reclaimed 3065 */ 3066 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3067 struct scan_control *sc) 3068 { 3069 int initial_priority = sc->priority; 3070 pg_data_t *last_pgdat; 3071 struct zoneref *z; 3072 struct zone *zone; 3073 retry: 3074 delayacct_freepages_start(); 3075 3076 if (global_reclaim(sc)) 3077 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3078 3079 do { 3080 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3081 sc->priority); 3082 sc->nr_scanned = 0; 3083 shrink_zones(zonelist, sc); 3084 3085 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3086 break; 3087 3088 if (sc->compaction_ready) 3089 break; 3090 3091 /* 3092 * If we're getting trouble reclaiming, start doing 3093 * writepage even in laptop mode. 3094 */ 3095 if (sc->priority < DEF_PRIORITY - 2) 3096 sc->may_writepage = 1; 3097 } while (--sc->priority >= 0); 3098 3099 last_pgdat = NULL; 3100 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3101 sc->nodemask) { 3102 if (zone->zone_pgdat == last_pgdat) 3103 continue; 3104 last_pgdat = zone->zone_pgdat; 3105 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3106 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3107 } 3108 3109 delayacct_freepages_end(); 3110 3111 if (sc->nr_reclaimed) 3112 return sc->nr_reclaimed; 3113 3114 /* Aborted reclaim to try compaction? don't OOM, then */ 3115 if (sc->compaction_ready) 3116 return 1; 3117 3118 /* Untapped cgroup reserves? Don't OOM, retry. */ 3119 if (sc->memcg_low_skipped) { 3120 sc->priority = initial_priority; 3121 sc->memcg_low_reclaim = 1; 3122 sc->memcg_low_skipped = 0; 3123 goto retry; 3124 } 3125 3126 return 0; 3127 } 3128 3129 static bool allow_direct_reclaim(pg_data_t *pgdat) 3130 { 3131 struct zone *zone; 3132 unsigned long pfmemalloc_reserve = 0; 3133 unsigned long free_pages = 0; 3134 int i; 3135 bool wmark_ok; 3136 3137 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3138 return true; 3139 3140 for (i = 0; i <= ZONE_NORMAL; i++) { 3141 zone = &pgdat->node_zones[i]; 3142 if (!managed_zone(zone)) 3143 continue; 3144 3145 if (!zone_reclaimable_pages(zone)) 3146 continue; 3147 3148 pfmemalloc_reserve += min_wmark_pages(zone); 3149 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3150 } 3151 3152 /* If there are no reserves (unexpected config) then do not throttle */ 3153 if (!pfmemalloc_reserve) 3154 return true; 3155 3156 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3157 3158 /* kswapd must be awake if processes are being throttled */ 3159 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3160 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3161 (enum zone_type)ZONE_NORMAL); 3162 wake_up_interruptible(&pgdat->kswapd_wait); 3163 } 3164 3165 return wmark_ok; 3166 } 3167 3168 /* 3169 * Throttle direct reclaimers if backing storage is backed by the network 3170 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3171 * depleted. kswapd will continue to make progress and wake the processes 3172 * when the low watermark is reached. 3173 * 3174 * Returns true if a fatal signal was delivered during throttling. If this 3175 * happens, the page allocator should not consider triggering the OOM killer. 3176 */ 3177 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3178 nodemask_t *nodemask) 3179 { 3180 struct zoneref *z; 3181 struct zone *zone; 3182 pg_data_t *pgdat = NULL; 3183 3184 /* 3185 * Kernel threads should not be throttled as they may be indirectly 3186 * responsible for cleaning pages necessary for reclaim to make forward 3187 * progress. kjournald for example may enter direct reclaim while 3188 * committing a transaction where throttling it could forcing other 3189 * processes to block on log_wait_commit(). 3190 */ 3191 if (current->flags & PF_KTHREAD) 3192 goto out; 3193 3194 /* 3195 * If a fatal signal is pending, this process should not throttle. 3196 * It should return quickly so it can exit and free its memory 3197 */ 3198 if (fatal_signal_pending(current)) 3199 goto out; 3200 3201 /* 3202 * Check if the pfmemalloc reserves are ok by finding the first node 3203 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3204 * GFP_KERNEL will be required for allocating network buffers when 3205 * swapping over the network so ZONE_HIGHMEM is unusable. 3206 * 3207 * Throttling is based on the first usable node and throttled processes 3208 * wait on a queue until kswapd makes progress and wakes them. There 3209 * is an affinity then between processes waking up and where reclaim 3210 * progress has been made assuming the process wakes on the same node. 3211 * More importantly, processes running on remote nodes will not compete 3212 * for remote pfmemalloc reserves and processes on different nodes 3213 * should make reasonable progress. 3214 */ 3215 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3216 gfp_zone(gfp_mask), nodemask) { 3217 if (zone_idx(zone) > ZONE_NORMAL) 3218 continue; 3219 3220 /* Throttle based on the first usable node */ 3221 pgdat = zone->zone_pgdat; 3222 if (allow_direct_reclaim(pgdat)) 3223 goto out; 3224 break; 3225 } 3226 3227 /* If no zone was usable by the allocation flags then do not throttle */ 3228 if (!pgdat) 3229 goto out; 3230 3231 /* Account for the throttling */ 3232 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3233 3234 /* 3235 * If the caller cannot enter the filesystem, it's possible that it 3236 * is due to the caller holding an FS lock or performing a journal 3237 * transaction in the case of a filesystem like ext[3|4]. In this case, 3238 * it is not safe to block on pfmemalloc_wait as kswapd could be 3239 * blocked waiting on the same lock. Instead, throttle for up to a 3240 * second before continuing. 3241 */ 3242 if (!(gfp_mask & __GFP_FS)) { 3243 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3244 allow_direct_reclaim(pgdat), HZ); 3245 3246 goto check_pending; 3247 } 3248 3249 /* Throttle until kswapd wakes the process */ 3250 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3251 allow_direct_reclaim(pgdat)); 3252 3253 check_pending: 3254 if (fatal_signal_pending(current)) 3255 return true; 3256 3257 out: 3258 return false; 3259 } 3260 3261 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3262 gfp_t gfp_mask, nodemask_t *nodemask) 3263 { 3264 unsigned long nr_reclaimed; 3265 struct scan_control sc = { 3266 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3267 .gfp_mask = current_gfp_context(gfp_mask), 3268 .reclaim_idx = gfp_zone(gfp_mask), 3269 .order = order, 3270 .nodemask = nodemask, 3271 .priority = DEF_PRIORITY, 3272 .may_writepage = !laptop_mode, 3273 .may_unmap = 1, 3274 .may_swap = 1, 3275 }; 3276 3277 /* 3278 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3279 * Confirm they are large enough for max values. 3280 */ 3281 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3282 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3283 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3284 3285 /* 3286 * Do not enter reclaim if fatal signal was delivered while throttled. 3287 * 1 is returned so that the page allocator does not OOM kill at this 3288 * point. 3289 */ 3290 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3291 return 1; 3292 3293 set_task_reclaim_state(current, &sc.reclaim_state); 3294 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3295 3296 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3297 3298 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3299 set_task_reclaim_state(current, NULL); 3300 3301 return nr_reclaimed; 3302 } 3303 3304 #ifdef CONFIG_MEMCG 3305 3306 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3307 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3308 gfp_t gfp_mask, bool noswap, 3309 pg_data_t *pgdat, 3310 unsigned long *nr_scanned) 3311 { 3312 struct scan_control sc = { 3313 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3314 .target_mem_cgroup = memcg, 3315 .may_writepage = !laptop_mode, 3316 .may_unmap = 1, 3317 .reclaim_idx = MAX_NR_ZONES - 1, 3318 .may_swap = !noswap, 3319 }; 3320 unsigned long lru_pages; 3321 3322 WARN_ON_ONCE(!current->reclaim_state); 3323 3324 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3325 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3326 3327 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3328 sc.gfp_mask); 3329 3330 /* 3331 * NOTE: Although we can get the priority field, using it 3332 * here is not a good idea, since it limits the pages we can scan. 3333 * if we don't reclaim here, the shrink_node from balance_pgdat 3334 * will pick up pages from other mem cgroup's as well. We hack 3335 * the priority and make it zero. 3336 */ 3337 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3338 3339 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3340 3341 *nr_scanned = sc.nr_scanned; 3342 3343 return sc.nr_reclaimed; 3344 } 3345 3346 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3347 unsigned long nr_pages, 3348 gfp_t gfp_mask, 3349 bool may_swap) 3350 { 3351 struct zonelist *zonelist; 3352 unsigned long nr_reclaimed; 3353 unsigned long pflags; 3354 int nid; 3355 unsigned int noreclaim_flag; 3356 struct scan_control sc = { 3357 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3358 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3359 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3360 .reclaim_idx = MAX_NR_ZONES - 1, 3361 .target_mem_cgroup = memcg, 3362 .priority = DEF_PRIORITY, 3363 .may_writepage = !laptop_mode, 3364 .may_unmap = 1, 3365 .may_swap = may_swap, 3366 }; 3367 3368 set_task_reclaim_state(current, &sc.reclaim_state); 3369 /* 3370 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3371 * take care of from where we get pages. So the node where we start the 3372 * scan does not need to be the current node. 3373 */ 3374 nid = mem_cgroup_select_victim_node(memcg); 3375 3376 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3377 3378 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3379 3380 psi_memstall_enter(&pflags); 3381 noreclaim_flag = memalloc_noreclaim_save(); 3382 3383 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3384 3385 memalloc_noreclaim_restore(noreclaim_flag); 3386 psi_memstall_leave(&pflags); 3387 3388 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3389 set_task_reclaim_state(current, NULL); 3390 3391 return nr_reclaimed; 3392 } 3393 #endif 3394 3395 static void age_active_anon(struct pglist_data *pgdat, 3396 struct scan_control *sc) 3397 { 3398 struct mem_cgroup *memcg; 3399 3400 if (!total_swap_pages) 3401 return; 3402 3403 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3404 do { 3405 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3406 3407 if (inactive_list_is_low(lruvec, false, sc, true)) 3408 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3409 sc, LRU_ACTIVE_ANON); 3410 3411 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3412 } while (memcg); 3413 } 3414 3415 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3416 { 3417 int i; 3418 struct zone *zone; 3419 3420 /* 3421 * Check for watermark boosts top-down as the higher zones 3422 * are more likely to be boosted. Both watermarks and boosts 3423 * should not be checked at the time time as reclaim would 3424 * start prematurely when there is no boosting and a lower 3425 * zone is balanced. 3426 */ 3427 for (i = classzone_idx; i >= 0; i--) { 3428 zone = pgdat->node_zones + i; 3429 if (!managed_zone(zone)) 3430 continue; 3431 3432 if (zone->watermark_boost) 3433 return true; 3434 } 3435 3436 return false; 3437 } 3438 3439 /* 3440 * Returns true if there is an eligible zone balanced for the request order 3441 * and classzone_idx 3442 */ 3443 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3444 { 3445 int i; 3446 unsigned long mark = -1; 3447 struct zone *zone; 3448 3449 /* 3450 * Check watermarks bottom-up as lower zones are more likely to 3451 * meet watermarks. 3452 */ 3453 for (i = 0; i <= classzone_idx; i++) { 3454 zone = pgdat->node_zones + i; 3455 3456 if (!managed_zone(zone)) 3457 continue; 3458 3459 mark = high_wmark_pages(zone); 3460 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3461 return true; 3462 } 3463 3464 /* 3465 * If a node has no populated zone within classzone_idx, it does not 3466 * need balancing by definition. This can happen if a zone-restricted 3467 * allocation tries to wake a remote kswapd. 3468 */ 3469 if (mark == -1) 3470 return true; 3471 3472 return false; 3473 } 3474 3475 /* Clear pgdat state for congested, dirty or under writeback. */ 3476 static void clear_pgdat_congested(pg_data_t *pgdat) 3477 { 3478 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3479 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3480 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3481 } 3482 3483 /* 3484 * Prepare kswapd for sleeping. This verifies that there are no processes 3485 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3486 * 3487 * Returns true if kswapd is ready to sleep 3488 */ 3489 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3490 { 3491 /* 3492 * The throttled processes are normally woken up in balance_pgdat() as 3493 * soon as allow_direct_reclaim() is true. But there is a potential 3494 * race between when kswapd checks the watermarks and a process gets 3495 * throttled. There is also a potential race if processes get 3496 * throttled, kswapd wakes, a large process exits thereby balancing the 3497 * zones, which causes kswapd to exit balance_pgdat() before reaching 3498 * the wake up checks. If kswapd is going to sleep, no process should 3499 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3500 * the wake up is premature, processes will wake kswapd and get 3501 * throttled again. The difference from wake ups in balance_pgdat() is 3502 * that here we are under prepare_to_wait(). 3503 */ 3504 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3505 wake_up_all(&pgdat->pfmemalloc_wait); 3506 3507 /* Hopeless node, leave it to direct reclaim */ 3508 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3509 return true; 3510 3511 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3512 clear_pgdat_congested(pgdat); 3513 return true; 3514 } 3515 3516 return false; 3517 } 3518 3519 /* 3520 * kswapd shrinks a node of pages that are at or below the highest usable 3521 * zone that is currently unbalanced. 3522 * 3523 * Returns true if kswapd scanned at least the requested number of pages to 3524 * reclaim or if the lack of progress was due to pages under writeback. 3525 * This is used to determine if the scanning priority needs to be raised. 3526 */ 3527 static bool kswapd_shrink_node(pg_data_t *pgdat, 3528 struct scan_control *sc) 3529 { 3530 struct zone *zone; 3531 int z; 3532 3533 /* Reclaim a number of pages proportional to the number of zones */ 3534 sc->nr_to_reclaim = 0; 3535 for (z = 0; z <= sc->reclaim_idx; z++) { 3536 zone = pgdat->node_zones + z; 3537 if (!managed_zone(zone)) 3538 continue; 3539 3540 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3541 } 3542 3543 /* 3544 * Historically care was taken to put equal pressure on all zones but 3545 * now pressure is applied based on node LRU order. 3546 */ 3547 shrink_node(pgdat, sc); 3548 3549 /* 3550 * Fragmentation may mean that the system cannot be rebalanced for 3551 * high-order allocations. If twice the allocation size has been 3552 * reclaimed then recheck watermarks only at order-0 to prevent 3553 * excessive reclaim. Assume that a process requested a high-order 3554 * can direct reclaim/compact. 3555 */ 3556 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3557 sc->order = 0; 3558 3559 return sc->nr_scanned >= sc->nr_to_reclaim; 3560 } 3561 3562 /* 3563 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3564 * that are eligible for use by the caller until at least one zone is 3565 * balanced. 3566 * 3567 * Returns the order kswapd finished reclaiming at. 3568 * 3569 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3570 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3571 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3572 * or lower is eligible for reclaim until at least one usable zone is 3573 * balanced. 3574 */ 3575 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3576 { 3577 int i; 3578 unsigned long nr_soft_reclaimed; 3579 unsigned long nr_soft_scanned; 3580 unsigned long pflags; 3581 unsigned long nr_boost_reclaim; 3582 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3583 bool boosted; 3584 struct zone *zone; 3585 struct scan_control sc = { 3586 .gfp_mask = GFP_KERNEL, 3587 .order = order, 3588 .may_unmap = 1, 3589 }; 3590 3591 set_task_reclaim_state(current, &sc.reclaim_state); 3592 psi_memstall_enter(&pflags); 3593 __fs_reclaim_acquire(); 3594 3595 count_vm_event(PAGEOUTRUN); 3596 3597 /* 3598 * Account for the reclaim boost. Note that the zone boost is left in 3599 * place so that parallel allocations that are near the watermark will 3600 * stall or direct reclaim until kswapd is finished. 3601 */ 3602 nr_boost_reclaim = 0; 3603 for (i = 0; i <= classzone_idx; i++) { 3604 zone = pgdat->node_zones + i; 3605 if (!managed_zone(zone)) 3606 continue; 3607 3608 nr_boost_reclaim += zone->watermark_boost; 3609 zone_boosts[i] = zone->watermark_boost; 3610 } 3611 boosted = nr_boost_reclaim; 3612 3613 restart: 3614 sc.priority = DEF_PRIORITY; 3615 do { 3616 unsigned long nr_reclaimed = sc.nr_reclaimed; 3617 bool raise_priority = true; 3618 bool balanced; 3619 bool ret; 3620 3621 sc.reclaim_idx = classzone_idx; 3622 3623 /* 3624 * If the number of buffer_heads exceeds the maximum allowed 3625 * then consider reclaiming from all zones. This has a dual 3626 * purpose -- on 64-bit systems it is expected that 3627 * buffer_heads are stripped during active rotation. On 32-bit 3628 * systems, highmem pages can pin lowmem memory and shrinking 3629 * buffers can relieve lowmem pressure. Reclaim may still not 3630 * go ahead if all eligible zones for the original allocation 3631 * request are balanced to avoid excessive reclaim from kswapd. 3632 */ 3633 if (buffer_heads_over_limit) { 3634 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3635 zone = pgdat->node_zones + i; 3636 if (!managed_zone(zone)) 3637 continue; 3638 3639 sc.reclaim_idx = i; 3640 break; 3641 } 3642 } 3643 3644 /* 3645 * If the pgdat is imbalanced then ignore boosting and preserve 3646 * the watermarks for a later time and restart. Note that the 3647 * zone watermarks will be still reset at the end of balancing 3648 * on the grounds that the normal reclaim should be enough to 3649 * re-evaluate if boosting is required when kswapd next wakes. 3650 */ 3651 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3652 if (!balanced && nr_boost_reclaim) { 3653 nr_boost_reclaim = 0; 3654 goto restart; 3655 } 3656 3657 /* 3658 * If boosting is not active then only reclaim if there are no 3659 * eligible zones. Note that sc.reclaim_idx is not used as 3660 * buffer_heads_over_limit may have adjusted it. 3661 */ 3662 if (!nr_boost_reclaim && balanced) 3663 goto out; 3664 3665 /* Limit the priority of boosting to avoid reclaim writeback */ 3666 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3667 raise_priority = false; 3668 3669 /* 3670 * Do not writeback or swap pages for boosted reclaim. The 3671 * intent is to relieve pressure not issue sub-optimal IO 3672 * from reclaim context. If no pages are reclaimed, the 3673 * reclaim will be aborted. 3674 */ 3675 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3676 sc.may_swap = !nr_boost_reclaim; 3677 3678 /* 3679 * Do some background aging of the anon list, to give 3680 * pages a chance to be referenced before reclaiming. All 3681 * pages are rotated regardless of classzone as this is 3682 * about consistent aging. 3683 */ 3684 age_active_anon(pgdat, &sc); 3685 3686 /* 3687 * If we're getting trouble reclaiming, start doing writepage 3688 * even in laptop mode. 3689 */ 3690 if (sc.priority < DEF_PRIORITY - 2) 3691 sc.may_writepage = 1; 3692 3693 /* Call soft limit reclaim before calling shrink_node. */ 3694 sc.nr_scanned = 0; 3695 nr_soft_scanned = 0; 3696 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3697 sc.gfp_mask, &nr_soft_scanned); 3698 sc.nr_reclaimed += nr_soft_reclaimed; 3699 3700 /* 3701 * There should be no need to raise the scanning priority if 3702 * enough pages are already being scanned that that high 3703 * watermark would be met at 100% efficiency. 3704 */ 3705 if (kswapd_shrink_node(pgdat, &sc)) 3706 raise_priority = false; 3707 3708 /* 3709 * If the low watermark is met there is no need for processes 3710 * to be throttled on pfmemalloc_wait as they should not be 3711 * able to safely make forward progress. Wake them 3712 */ 3713 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3714 allow_direct_reclaim(pgdat)) 3715 wake_up_all(&pgdat->pfmemalloc_wait); 3716 3717 /* Check if kswapd should be suspending */ 3718 __fs_reclaim_release(); 3719 ret = try_to_freeze(); 3720 __fs_reclaim_acquire(); 3721 if (ret || kthread_should_stop()) 3722 break; 3723 3724 /* 3725 * Raise priority if scanning rate is too low or there was no 3726 * progress in reclaiming pages 3727 */ 3728 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3729 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3730 3731 /* 3732 * If reclaim made no progress for a boost, stop reclaim as 3733 * IO cannot be queued and it could be an infinite loop in 3734 * extreme circumstances. 3735 */ 3736 if (nr_boost_reclaim && !nr_reclaimed) 3737 break; 3738 3739 if (raise_priority || !nr_reclaimed) 3740 sc.priority--; 3741 } while (sc.priority >= 1); 3742 3743 if (!sc.nr_reclaimed) 3744 pgdat->kswapd_failures++; 3745 3746 out: 3747 /* If reclaim was boosted, account for the reclaim done in this pass */ 3748 if (boosted) { 3749 unsigned long flags; 3750 3751 for (i = 0; i <= classzone_idx; i++) { 3752 if (!zone_boosts[i]) 3753 continue; 3754 3755 /* Increments are under the zone lock */ 3756 zone = pgdat->node_zones + i; 3757 spin_lock_irqsave(&zone->lock, flags); 3758 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3759 spin_unlock_irqrestore(&zone->lock, flags); 3760 } 3761 3762 /* 3763 * As there is now likely space, wakeup kcompact to defragment 3764 * pageblocks. 3765 */ 3766 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3767 } 3768 3769 snapshot_refaults(NULL, pgdat); 3770 __fs_reclaim_release(); 3771 psi_memstall_leave(&pflags); 3772 set_task_reclaim_state(current, NULL); 3773 3774 /* 3775 * Return the order kswapd stopped reclaiming at as 3776 * prepare_kswapd_sleep() takes it into account. If another caller 3777 * entered the allocator slow path while kswapd was awake, order will 3778 * remain at the higher level. 3779 */ 3780 return sc.order; 3781 } 3782 3783 /* 3784 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3785 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3786 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3787 * after previous reclaim attempt (node is still unbalanced). In that case 3788 * return the zone index of the previous kswapd reclaim cycle. 3789 */ 3790 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3791 enum zone_type prev_classzone_idx) 3792 { 3793 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3794 return prev_classzone_idx; 3795 return pgdat->kswapd_classzone_idx; 3796 } 3797 3798 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3799 unsigned int classzone_idx) 3800 { 3801 long remaining = 0; 3802 DEFINE_WAIT(wait); 3803 3804 if (freezing(current) || kthread_should_stop()) 3805 return; 3806 3807 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3808 3809 /* 3810 * Try to sleep for a short interval. Note that kcompactd will only be 3811 * woken if it is possible to sleep for a short interval. This is 3812 * deliberate on the assumption that if reclaim cannot keep an 3813 * eligible zone balanced that it's also unlikely that compaction will 3814 * succeed. 3815 */ 3816 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3817 /* 3818 * Compaction records what page blocks it recently failed to 3819 * isolate pages from and skips them in the future scanning. 3820 * When kswapd is going to sleep, it is reasonable to assume 3821 * that pages and compaction may succeed so reset the cache. 3822 */ 3823 reset_isolation_suitable(pgdat); 3824 3825 /* 3826 * We have freed the memory, now we should compact it to make 3827 * allocation of the requested order possible. 3828 */ 3829 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3830 3831 remaining = schedule_timeout(HZ/10); 3832 3833 /* 3834 * If woken prematurely then reset kswapd_classzone_idx and 3835 * order. The values will either be from a wakeup request or 3836 * the previous request that slept prematurely. 3837 */ 3838 if (remaining) { 3839 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3840 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3841 } 3842 3843 finish_wait(&pgdat->kswapd_wait, &wait); 3844 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3845 } 3846 3847 /* 3848 * After a short sleep, check if it was a premature sleep. If not, then 3849 * go fully to sleep until explicitly woken up. 3850 */ 3851 if (!remaining && 3852 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3853 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3854 3855 /* 3856 * vmstat counters are not perfectly accurate and the estimated 3857 * value for counters such as NR_FREE_PAGES can deviate from the 3858 * true value by nr_online_cpus * threshold. To avoid the zone 3859 * watermarks being breached while under pressure, we reduce the 3860 * per-cpu vmstat threshold while kswapd is awake and restore 3861 * them before going back to sleep. 3862 */ 3863 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3864 3865 if (!kthread_should_stop()) 3866 schedule(); 3867 3868 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3869 } else { 3870 if (remaining) 3871 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3872 else 3873 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3874 } 3875 finish_wait(&pgdat->kswapd_wait, &wait); 3876 } 3877 3878 /* 3879 * The background pageout daemon, started as a kernel thread 3880 * from the init process. 3881 * 3882 * This basically trickles out pages so that we have _some_ 3883 * free memory available even if there is no other activity 3884 * that frees anything up. This is needed for things like routing 3885 * etc, where we otherwise might have all activity going on in 3886 * asynchronous contexts that cannot page things out. 3887 * 3888 * If there are applications that are active memory-allocators 3889 * (most normal use), this basically shouldn't matter. 3890 */ 3891 static int kswapd(void *p) 3892 { 3893 unsigned int alloc_order, reclaim_order; 3894 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3895 pg_data_t *pgdat = (pg_data_t*)p; 3896 struct task_struct *tsk = current; 3897 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3898 3899 if (!cpumask_empty(cpumask)) 3900 set_cpus_allowed_ptr(tsk, cpumask); 3901 3902 /* 3903 * Tell the memory management that we're a "memory allocator", 3904 * and that if we need more memory we should get access to it 3905 * regardless (see "__alloc_pages()"). "kswapd" should 3906 * never get caught in the normal page freeing logic. 3907 * 3908 * (Kswapd normally doesn't need memory anyway, but sometimes 3909 * you need a small amount of memory in order to be able to 3910 * page out something else, and this flag essentially protects 3911 * us from recursively trying to free more memory as we're 3912 * trying to free the first piece of memory in the first place). 3913 */ 3914 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3915 set_freezable(); 3916 3917 pgdat->kswapd_order = 0; 3918 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3919 for ( ; ; ) { 3920 bool ret; 3921 3922 alloc_order = reclaim_order = pgdat->kswapd_order; 3923 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3924 3925 kswapd_try_sleep: 3926 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3927 classzone_idx); 3928 3929 /* Read the new order and classzone_idx */ 3930 alloc_order = reclaim_order = pgdat->kswapd_order; 3931 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3932 pgdat->kswapd_order = 0; 3933 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3934 3935 ret = try_to_freeze(); 3936 if (kthread_should_stop()) 3937 break; 3938 3939 /* 3940 * We can speed up thawing tasks if we don't call balance_pgdat 3941 * after returning from the refrigerator 3942 */ 3943 if (ret) 3944 continue; 3945 3946 /* 3947 * Reclaim begins at the requested order but if a high-order 3948 * reclaim fails then kswapd falls back to reclaiming for 3949 * order-0. If that happens, kswapd will consider sleeping 3950 * for the order it finished reclaiming at (reclaim_order) 3951 * but kcompactd is woken to compact for the original 3952 * request (alloc_order). 3953 */ 3954 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3955 alloc_order); 3956 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3957 if (reclaim_order < alloc_order) 3958 goto kswapd_try_sleep; 3959 } 3960 3961 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3962 3963 return 0; 3964 } 3965 3966 /* 3967 * A zone is low on free memory or too fragmented for high-order memory. If 3968 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3969 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3970 * has failed or is not needed, still wake up kcompactd if only compaction is 3971 * needed. 3972 */ 3973 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3974 enum zone_type classzone_idx) 3975 { 3976 pg_data_t *pgdat; 3977 3978 if (!managed_zone(zone)) 3979 return; 3980 3981 if (!cpuset_zone_allowed(zone, gfp_flags)) 3982 return; 3983 pgdat = zone->zone_pgdat; 3984 3985 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3986 pgdat->kswapd_classzone_idx = classzone_idx; 3987 else 3988 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3989 classzone_idx); 3990 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3991 if (!waitqueue_active(&pgdat->kswapd_wait)) 3992 return; 3993 3994 /* Hopeless node, leave it to direct reclaim if possible */ 3995 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3996 (pgdat_balanced(pgdat, order, classzone_idx) && 3997 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3998 /* 3999 * There may be plenty of free memory available, but it's too 4000 * fragmented for high-order allocations. Wake up kcompactd 4001 * and rely on compaction_suitable() to determine if it's 4002 * needed. If it fails, it will defer subsequent attempts to 4003 * ratelimit its work. 4004 */ 4005 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4006 wakeup_kcompactd(pgdat, order, classzone_idx); 4007 return; 4008 } 4009 4010 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 4011 gfp_flags); 4012 wake_up_interruptible(&pgdat->kswapd_wait); 4013 } 4014 4015 #ifdef CONFIG_HIBERNATION 4016 /* 4017 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4018 * freed pages. 4019 * 4020 * Rather than trying to age LRUs the aim is to preserve the overall 4021 * LRU order by reclaiming preferentially 4022 * inactive > active > active referenced > active mapped 4023 */ 4024 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4025 { 4026 struct scan_control sc = { 4027 .nr_to_reclaim = nr_to_reclaim, 4028 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4029 .reclaim_idx = MAX_NR_ZONES - 1, 4030 .priority = DEF_PRIORITY, 4031 .may_writepage = 1, 4032 .may_unmap = 1, 4033 .may_swap = 1, 4034 .hibernation_mode = 1, 4035 }; 4036 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4037 unsigned long nr_reclaimed; 4038 unsigned int noreclaim_flag; 4039 4040 fs_reclaim_acquire(sc.gfp_mask); 4041 noreclaim_flag = memalloc_noreclaim_save(); 4042 set_task_reclaim_state(current, &sc.reclaim_state); 4043 4044 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4045 4046 set_task_reclaim_state(current, NULL); 4047 memalloc_noreclaim_restore(noreclaim_flag); 4048 fs_reclaim_release(sc.gfp_mask); 4049 4050 return nr_reclaimed; 4051 } 4052 #endif /* CONFIG_HIBERNATION */ 4053 4054 /* It's optimal to keep kswapds on the same CPUs as their memory, but 4055 not required for correctness. So if the last cpu in a node goes 4056 away, we get changed to run anywhere: as the first one comes back, 4057 restore their cpu bindings. */ 4058 static int kswapd_cpu_online(unsigned int cpu) 4059 { 4060 int nid; 4061 4062 for_each_node_state(nid, N_MEMORY) { 4063 pg_data_t *pgdat = NODE_DATA(nid); 4064 const struct cpumask *mask; 4065 4066 mask = cpumask_of_node(pgdat->node_id); 4067 4068 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 4069 /* One of our CPUs online: restore mask */ 4070 set_cpus_allowed_ptr(pgdat->kswapd, mask); 4071 } 4072 return 0; 4073 } 4074 4075 /* 4076 * This kswapd start function will be called by init and node-hot-add. 4077 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4078 */ 4079 int kswapd_run(int nid) 4080 { 4081 pg_data_t *pgdat = NODE_DATA(nid); 4082 int ret = 0; 4083 4084 if (pgdat->kswapd) 4085 return 0; 4086 4087 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4088 if (IS_ERR(pgdat->kswapd)) { 4089 /* failure at boot is fatal */ 4090 BUG_ON(system_state < SYSTEM_RUNNING); 4091 pr_err("Failed to start kswapd on node %d\n", nid); 4092 ret = PTR_ERR(pgdat->kswapd); 4093 pgdat->kswapd = NULL; 4094 } 4095 return ret; 4096 } 4097 4098 /* 4099 * Called by memory hotplug when all memory in a node is offlined. Caller must 4100 * hold mem_hotplug_begin/end(). 4101 */ 4102 void kswapd_stop(int nid) 4103 { 4104 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4105 4106 if (kswapd) { 4107 kthread_stop(kswapd); 4108 NODE_DATA(nid)->kswapd = NULL; 4109 } 4110 } 4111 4112 static int __init kswapd_init(void) 4113 { 4114 int nid, ret; 4115 4116 swap_setup(); 4117 for_each_node_state(nid, N_MEMORY) 4118 kswapd_run(nid); 4119 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4120 "mm/vmscan:online", kswapd_cpu_online, 4121 NULL); 4122 WARN_ON(ret < 0); 4123 return 0; 4124 } 4125 4126 module_init(kswapd_init) 4127 4128 #ifdef CONFIG_NUMA 4129 /* 4130 * Node reclaim mode 4131 * 4132 * If non-zero call node_reclaim when the number of free pages falls below 4133 * the watermarks. 4134 */ 4135 int node_reclaim_mode __read_mostly; 4136 4137 #define RECLAIM_OFF 0 4138 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4139 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4140 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4141 4142 /* 4143 * Priority for NODE_RECLAIM. This determines the fraction of pages 4144 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4145 * a zone. 4146 */ 4147 #define NODE_RECLAIM_PRIORITY 4 4148 4149 /* 4150 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4151 * occur. 4152 */ 4153 int sysctl_min_unmapped_ratio = 1; 4154 4155 /* 4156 * If the number of slab pages in a zone grows beyond this percentage then 4157 * slab reclaim needs to occur. 4158 */ 4159 int sysctl_min_slab_ratio = 5; 4160 4161 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4162 { 4163 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4164 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4165 node_page_state(pgdat, NR_ACTIVE_FILE); 4166 4167 /* 4168 * It's possible for there to be more file mapped pages than 4169 * accounted for by the pages on the file LRU lists because 4170 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4171 */ 4172 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4173 } 4174 4175 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4176 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4177 { 4178 unsigned long nr_pagecache_reclaimable; 4179 unsigned long delta = 0; 4180 4181 /* 4182 * If RECLAIM_UNMAP is set, then all file pages are considered 4183 * potentially reclaimable. Otherwise, we have to worry about 4184 * pages like swapcache and node_unmapped_file_pages() provides 4185 * a better estimate 4186 */ 4187 if (node_reclaim_mode & RECLAIM_UNMAP) 4188 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4189 else 4190 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4191 4192 /* If we can't clean pages, remove dirty pages from consideration */ 4193 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4194 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4195 4196 /* Watch for any possible underflows due to delta */ 4197 if (unlikely(delta > nr_pagecache_reclaimable)) 4198 delta = nr_pagecache_reclaimable; 4199 4200 return nr_pagecache_reclaimable - delta; 4201 } 4202 4203 /* 4204 * Try to free up some pages from this node through reclaim. 4205 */ 4206 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4207 { 4208 /* Minimum pages needed in order to stay on node */ 4209 const unsigned long nr_pages = 1 << order; 4210 struct task_struct *p = current; 4211 unsigned int noreclaim_flag; 4212 struct scan_control sc = { 4213 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4214 .gfp_mask = current_gfp_context(gfp_mask), 4215 .order = order, 4216 .priority = NODE_RECLAIM_PRIORITY, 4217 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4218 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4219 .may_swap = 1, 4220 .reclaim_idx = gfp_zone(gfp_mask), 4221 }; 4222 4223 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4224 sc.gfp_mask); 4225 4226 cond_resched(); 4227 fs_reclaim_acquire(sc.gfp_mask); 4228 /* 4229 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4230 * and we also need to be able to write out pages for RECLAIM_WRITE 4231 * and RECLAIM_UNMAP. 4232 */ 4233 noreclaim_flag = memalloc_noreclaim_save(); 4234 p->flags |= PF_SWAPWRITE; 4235 set_task_reclaim_state(p, &sc.reclaim_state); 4236 4237 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4238 /* 4239 * Free memory by calling shrink node with increasing 4240 * priorities until we have enough memory freed. 4241 */ 4242 do { 4243 shrink_node(pgdat, &sc); 4244 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4245 } 4246 4247 set_task_reclaim_state(p, NULL); 4248 current->flags &= ~PF_SWAPWRITE; 4249 memalloc_noreclaim_restore(noreclaim_flag); 4250 fs_reclaim_release(sc.gfp_mask); 4251 4252 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4253 4254 return sc.nr_reclaimed >= nr_pages; 4255 } 4256 4257 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4258 { 4259 int ret; 4260 4261 /* 4262 * Node reclaim reclaims unmapped file backed pages and 4263 * slab pages if we are over the defined limits. 4264 * 4265 * A small portion of unmapped file backed pages is needed for 4266 * file I/O otherwise pages read by file I/O will be immediately 4267 * thrown out if the node is overallocated. So we do not reclaim 4268 * if less than a specified percentage of the node is used by 4269 * unmapped file backed pages. 4270 */ 4271 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4272 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4273 return NODE_RECLAIM_FULL; 4274 4275 /* 4276 * Do not scan if the allocation should not be delayed. 4277 */ 4278 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4279 return NODE_RECLAIM_NOSCAN; 4280 4281 /* 4282 * Only run node reclaim on the local node or on nodes that do not 4283 * have associated processors. This will favor the local processor 4284 * over remote processors and spread off node memory allocations 4285 * as wide as possible. 4286 */ 4287 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4288 return NODE_RECLAIM_NOSCAN; 4289 4290 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4291 return NODE_RECLAIM_NOSCAN; 4292 4293 ret = __node_reclaim(pgdat, gfp_mask, order); 4294 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4295 4296 if (!ret) 4297 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4298 4299 return ret; 4300 } 4301 #endif 4302 4303 /* 4304 * page_evictable - test whether a page is evictable 4305 * @page: the page to test 4306 * 4307 * Test whether page is evictable--i.e., should be placed on active/inactive 4308 * lists vs unevictable list. 4309 * 4310 * Reasons page might not be evictable: 4311 * (1) page's mapping marked unevictable 4312 * (2) page is part of an mlocked VMA 4313 * 4314 */ 4315 int page_evictable(struct page *page) 4316 { 4317 int ret; 4318 4319 /* Prevent address_space of inode and swap cache from being freed */ 4320 rcu_read_lock(); 4321 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4322 rcu_read_unlock(); 4323 return ret; 4324 } 4325 4326 /** 4327 * check_move_unevictable_pages - check pages for evictability and move to 4328 * appropriate zone lru list 4329 * @pvec: pagevec with lru pages to check 4330 * 4331 * Checks pages for evictability, if an evictable page is in the unevictable 4332 * lru list, moves it to the appropriate evictable lru list. This function 4333 * should be only used for lru pages. 4334 */ 4335 void check_move_unevictable_pages(struct pagevec *pvec) 4336 { 4337 struct lruvec *lruvec; 4338 struct pglist_data *pgdat = NULL; 4339 int pgscanned = 0; 4340 int pgrescued = 0; 4341 int i; 4342 4343 for (i = 0; i < pvec->nr; i++) { 4344 struct page *page = pvec->pages[i]; 4345 struct pglist_data *pagepgdat = page_pgdat(page); 4346 4347 pgscanned++; 4348 if (pagepgdat != pgdat) { 4349 if (pgdat) 4350 spin_unlock_irq(&pgdat->lru_lock); 4351 pgdat = pagepgdat; 4352 spin_lock_irq(&pgdat->lru_lock); 4353 } 4354 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4355 4356 if (!PageLRU(page) || !PageUnevictable(page)) 4357 continue; 4358 4359 if (page_evictable(page)) { 4360 enum lru_list lru = page_lru_base_type(page); 4361 4362 VM_BUG_ON_PAGE(PageActive(page), page); 4363 ClearPageUnevictable(page); 4364 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4365 add_page_to_lru_list(page, lruvec, lru); 4366 pgrescued++; 4367 } 4368 } 4369 4370 if (pgdat) { 4371 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4372 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4373 spin_unlock_irq(&pgdat->lru_lock); 4374 } 4375 } 4376 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4377