xref: /openbmc/linux/mm/vmscan.c (revision 87c2ce3b)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>	/* for try_to_release_page(),
26 					buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39 
40 #include <linux/swapops.h>
41 
42 /* possible outcome of pageout() */
43 typedef enum {
44 	/* failed to write page out, page is locked */
45 	PAGE_KEEP,
46 	/* move page to the active list, page is locked */
47 	PAGE_ACTIVATE,
48 	/* page has been sent to the disk successfully, page is unlocked */
49 	PAGE_SUCCESS,
50 	/* page is clean and locked */
51 	PAGE_CLEAN,
52 } pageout_t;
53 
54 struct scan_control {
55 	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 	unsigned long nr_to_scan;
57 
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Incremented by the number of pages reclaimed */
62 	unsigned long nr_reclaimed;
63 
64 	unsigned long nr_mapped;	/* From page_state */
65 
66 	/* Ask shrink_caches, or shrink_zone to scan at this priority */
67 	unsigned int priority;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 	 * In this context, it doesn't matter that we scan the
77 	 * whole list at once. */
78 	int swap_cluster_max;
79 };
80 
81 /*
82  * The list of shrinker callbacks used by to apply pressure to
83  * ageable caches.
84  */
85 struct shrinker {
86 	shrinker_t		shrinker;
87 	struct list_head	list;
88 	int			seeks;	/* seeks to recreate an obj */
89 	long			nr;	/* objs pending delete */
90 };
91 
92 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
93 
94 #ifdef ARCH_HAS_PREFETCH
95 #define prefetch_prev_lru_page(_page, _base, _field)			\
96 	do {								\
97 		if ((_page)->lru.prev != _base) {			\
98 			struct page *prev;				\
99 									\
100 			prev = lru_to_page(&(_page->lru));		\
101 			prefetch(&prev->_field);			\
102 		}							\
103 	} while (0)
104 #else
105 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106 #endif
107 
108 #ifdef ARCH_HAS_PREFETCHW
109 #define prefetchw_prev_lru_page(_page, _base, _field)			\
110 	do {								\
111 		if ((_page)->lru.prev != _base) {			\
112 			struct page *prev;				\
113 									\
114 			prev = lru_to_page(&(_page->lru));		\
115 			prefetchw(&prev->_field);			\
116 		}							\
117 	} while (0)
118 #else
119 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120 #endif
121 
122 /*
123  * From 0 .. 100.  Higher means more swappy.
124  */
125 int vm_swappiness = 60;
126 static long total_memory;
127 
128 static LIST_HEAD(shrinker_list);
129 static DECLARE_RWSEM(shrinker_rwsem);
130 
131 /*
132  * Add a shrinker callback to be called from the vm
133  */
134 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
135 {
136         struct shrinker *shrinker;
137 
138         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139         if (shrinker) {
140 	        shrinker->shrinker = theshrinker;
141 	        shrinker->seeks = seeks;
142 	        shrinker->nr = 0;
143 	        down_write(&shrinker_rwsem);
144 	        list_add_tail(&shrinker->list, &shrinker_list);
145 	        up_write(&shrinker_rwsem);
146 	}
147 	return shrinker;
148 }
149 EXPORT_SYMBOL(set_shrinker);
150 
151 /*
152  * Remove one
153  */
154 void remove_shrinker(struct shrinker *shrinker)
155 {
156 	down_write(&shrinker_rwsem);
157 	list_del(&shrinker->list);
158 	up_write(&shrinker_rwsem);
159 	kfree(shrinker);
160 }
161 EXPORT_SYMBOL(remove_shrinker);
162 
163 #define SHRINK_BATCH 128
164 /*
165  * Call the shrink functions to age shrinkable caches
166  *
167  * Here we assume it costs one seek to replace a lru page and that it also
168  * takes a seek to recreate a cache object.  With this in mind we age equal
169  * percentages of the lru and ageable caches.  This should balance the seeks
170  * generated by these structures.
171  *
172  * If the vm encounted mapped pages on the LRU it increase the pressure on
173  * slab to avoid swapping.
174  *
175  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
176  *
177  * `lru_pages' represents the number of on-LRU pages in all the zones which
178  * are eligible for the caller's allocation attempt.  It is used for balancing
179  * slab reclaim versus page reclaim.
180  *
181  * Returns the number of slab objects which we shrunk.
182  */
183 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
184 {
185 	struct shrinker *shrinker;
186 	int ret = 0;
187 
188 	if (scanned == 0)
189 		scanned = SWAP_CLUSTER_MAX;
190 
191 	if (!down_read_trylock(&shrinker_rwsem))
192 		return 1;	/* Assume we'll be able to shrink next time */
193 
194 	list_for_each_entry(shrinker, &shrinker_list, list) {
195 		unsigned long long delta;
196 		unsigned long total_scan;
197 		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
198 
199 		delta = (4 * scanned) / shrinker->seeks;
200 		delta *= max_pass;
201 		do_div(delta, lru_pages + 1);
202 		shrinker->nr += delta;
203 		if (shrinker->nr < 0) {
204 			printk(KERN_ERR "%s: nr=%ld\n",
205 					__FUNCTION__, shrinker->nr);
206 			shrinker->nr = max_pass;
207 		}
208 
209 		/*
210 		 * Avoid risking looping forever due to too large nr value:
211 		 * never try to free more than twice the estimate number of
212 		 * freeable entries.
213 		 */
214 		if (shrinker->nr > max_pass * 2)
215 			shrinker->nr = max_pass * 2;
216 
217 		total_scan = shrinker->nr;
218 		shrinker->nr = 0;
219 
220 		while (total_scan >= SHRINK_BATCH) {
221 			long this_scan = SHRINK_BATCH;
222 			int shrink_ret;
223 			int nr_before;
224 
225 			nr_before = (*shrinker->shrinker)(0, gfp_mask);
226 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
227 			if (shrink_ret == -1)
228 				break;
229 			if (shrink_ret < nr_before)
230 				ret += nr_before - shrink_ret;
231 			mod_page_state(slabs_scanned, this_scan);
232 			total_scan -= this_scan;
233 
234 			cond_resched();
235 		}
236 
237 		shrinker->nr += total_scan;
238 	}
239 	up_read(&shrinker_rwsem);
240 	return ret;
241 }
242 
243 /* Called without lock on whether page is mapped, so answer is unstable */
244 static inline int page_mapping_inuse(struct page *page)
245 {
246 	struct address_space *mapping;
247 
248 	/* Page is in somebody's page tables. */
249 	if (page_mapped(page))
250 		return 1;
251 
252 	/* Be more reluctant to reclaim swapcache than pagecache */
253 	if (PageSwapCache(page))
254 		return 1;
255 
256 	mapping = page_mapping(page);
257 	if (!mapping)
258 		return 0;
259 
260 	/* File is mmap'd by somebody? */
261 	return mapping_mapped(mapping);
262 }
263 
264 static inline int is_page_cache_freeable(struct page *page)
265 {
266 	return page_count(page) - !!PagePrivate(page) == 2;
267 }
268 
269 static int may_write_to_queue(struct backing_dev_info *bdi)
270 {
271 	if (current->flags & PF_SWAPWRITE)
272 		return 1;
273 	if (!bdi_write_congested(bdi))
274 		return 1;
275 	if (bdi == current->backing_dev_info)
276 		return 1;
277 	return 0;
278 }
279 
280 /*
281  * We detected a synchronous write error writing a page out.  Probably
282  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
283  * fsync(), msync() or close().
284  *
285  * The tricky part is that after writepage we cannot touch the mapping: nothing
286  * prevents it from being freed up.  But we have a ref on the page and once
287  * that page is locked, the mapping is pinned.
288  *
289  * We're allowed to run sleeping lock_page() here because we know the caller has
290  * __GFP_FS.
291  */
292 static void handle_write_error(struct address_space *mapping,
293 				struct page *page, int error)
294 {
295 	lock_page(page);
296 	if (page_mapping(page) == mapping) {
297 		if (error == -ENOSPC)
298 			set_bit(AS_ENOSPC, &mapping->flags);
299 		else
300 			set_bit(AS_EIO, &mapping->flags);
301 	}
302 	unlock_page(page);
303 }
304 
305 /*
306  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
307  */
308 static pageout_t pageout(struct page *page, struct address_space *mapping)
309 {
310 	/*
311 	 * If the page is dirty, only perform writeback if that write
312 	 * will be non-blocking.  To prevent this allocation from being
313 	 * stalled by pagecache activity.  But note that there may be
314 	 * stalls if we need to run get_block().  We could test
315 	 * PagePrivate for that.
316 	 *
317 	 * If this process is currently in generic_file_write() against
318 	 * this page's queue, we can perform writeback even if that
319 	 * will block.
320 	 *
321 	 * If the page is swapcache, write it back even if that would
322 	 * block, for some throttling. This happens by accident, because
323 	 * swap_backing_dev_info is bust: it doesn't reflect the
324 	 * congestion state of the swapdevs.  Easy to fix, if needed.
325 	 * See swapfile.c:page_queue_congested().
326 	 */
327 	if (!is_page_cache_freeable(page))
328 		return PAGE_KEEP;
329 	if (!mapping) {
330 		/*
331 		 * Some data journaling orphaned pages can have
332 		 * page->mapping == NULL while being dirty with clean buffers.
333 		 */
334 		if (PagePrivate(page)) {
335 			if (try_to_free_buffers(page)) {
336 				ClearPageDirty(page);
337 				printk("%s: orphaned page\n", __FUNCTION__);
338 				return PAGE_CLEAN;
339 			}
340 		}
341 		return PAGE_KEEP;
342 	}
343 	if (mapping->a_ops->writepage == NULL)
344 		return PAGE_ACTIVATE;
345 	if (!may_write_to_queue(mapping->backing_dev_info))
346 		return PAGE_KEEP;
347 
348 	if (clear_page_dirty_for_io(page)) {
349 		int res;
350 		struct writeback_control wbc = {
351 			.sync_mode = WB_SYNC_NONE,
352 			.nr_to_write = SWAP_CLUSTER_MAX,
353 			.nonblocking = 1,
354 			.for_reclaim = 1,
355 		};
356 
357 		SetPageReclaim(page);
358 		res = mapping->a_ops->writepage(page, &wbc);
359 		if (res < 0)
360 			handle_write_error(mapping, page, res);
361 		if (res == AOP_WRITEPAGE_ACTIVATE) {
362 			ClearPageReclaim(page);
363 			return PAGE_ACTIVATE;
364 		}
365 		if (!PageWriteback(page)) {
366 			/* synchronous write or broken a_ops? */
367 			ClearPageReclaim(page);
368 		}
369 
370 		return PAGE_SUCCESS;
371 	}
372 
373 	return PAGE_CLEAN;
374 }
375 
376 static int remove_mapping(struct address_space *mapping, struct page *page)
377 {
378 	if (!mapping)
379 		return 0;		/* truncate got there first */
380 
381 	write_lock_irq(&mapping->tree_lock);
382 
383 	/*
384 	 * The non-racy check for busy page.  It is critical to check
385 	 * PageDirty _after_ making sure that the page is freeable and
386 	 * not in use by anybody. 	(pagecache + us == 2)
387 	 */
388 	if (unlikely(page_count(page) != 2))
389 		goto cannot_free;
390 	smp_rmb();
391 	if (unlikely(PageDirty(page)))
392 		goto cannot_free;
393 
394 	if (PageSwapCache(page)) {
395 		swp_entry_t swap = { .val = page_private(page) };
396 		__delete_from_swap_cache(page);
397 		write_unlock_irq(&mapping->tree_lock);
398 		swap_free(swap);
399 		__put_page(page);	/* The pagecache ref */
400 		return 1;
401 	}
402 
403 	__remove_from_page_cache(page);
404 	write_unlock_irq(&mapping->tree_lock);
405 	__put_page(page);
406 	return 1;
407 
408 cannot_free:
409 	write_unlock_irq(&mapping->tree_lock);
410 	return 0;
411 }
412 
413 /*
414  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
415  */
416 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
417 {
418 	LIST_HEAD(ret_pages);
419 	struct pagevec freed_pvec;
420 	int pgactivate = 0;
421 	int reclaimed = 0;
422 
423 	cond_resched();
424 
425 	pagevec_init(&freed_pvec, 1);
426 	while (!list_empty(page_list)) {
427 		struct address_space *mapping;
428 		struct page *page;
429 		int may_enter_fs;
430 		int referenced;
431 
432 		cond_resched();
433 
434 		page = lru_to_page(page_list);
435 		list_del(&page->lru);
436 
437 		if (TestSetPageLocked(page))
438 			goto keep;
439 
440 		BUG_ON(PageActive(page));
441 
442 		sc->nr_scanned++;
443 		/* Double the slab pressure for mapped and swapcache pages */
444 		if (page_mapped(page) || PageSwapCache(page))
445 			sc->nr_scanned++;
446 
447 		if (PageWriteback(page))
448 			goto keep_locked;
449 
450 		referenced = page_referenced(page, 1);
451 		/* In active use or really unfreeable?  Activate it. */
452 		if (referenced && page_mapping_inuse(page))
453 			goto activate_locked;
454 
455 #ifdef CONFIG_SWAP
456 		/*
457 		 * Anonymous process memory has backing store?
458 		 * Try to allocate it some swap space here.
459 		 */
460 		if (PageAnon(page) && !PageSwapCache(page)) {
461 			if (!add_to_swap(page, GFP_ATOMIC))
462 				goto activate_locked;
463 		}
464 #endif /* CONFIG_SWAP */
465 
466 		mapping = page_mapping(page);
467 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
468 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
469 
470 		/*
471 		 * The page is mapped into the page tables of one or more
472 		 * processes. Try to unmap it here.
473 		 */
474 		if (page_mapped(page) && mapping) {
475 			switch (try_to_unmap(page)) {
476 			case SWAP_FAIL:
477 				goto activate_locked;
478 			case SWAP_AGAIN:
479 				goto keep_locked;
480 			case SWAP_SUCCESS:
481 				; /* try to free the page below */
482 			}
483 		}
484 
485 		if (PageDirty(page)) {
486 			if (referenced)
487 				goto keep_locked;
488 			if (!may_enter_fs)
489 				goto keep_locked;
490 			if (laptop_mode && !sc->may_writepage)
491 				goto keep_locked;
492 
493 			/* Page is dirty, try to write it out here */
494 			switch(pageout(page, mapping)) {
495 			case PAGE_KEEP:
496 				goto keep_locked;
497 			case PAGE_ACTIVATE:
498 				goto activate_locked;
499 			case PAGE_SUCCESS:
500 				if (PageWriteback(page) || PageDirty(page))
501 					goto keep;
502 				/*
503 				 * A synchronous write - probably a ramdisk.  Go
504 				 * ahead and try to reclaim the page.
505 				 */
506 				if (TestSetPageLocked(page))
507 					goto keep;
508 				if (PageDirty(page) || PageWriteback(page))
509 					goto keep_locked;
510 				mapping = page_mapping(page);
511 			case PAGE_CLEAN:
512 				; /* try to free the page below */
513 			}
514 		}
515 
516 		/*
517 		 * If the page has buffers, try to free the buffer mappings
518 		 * associated with this page. If we succeed we try to free
519 		 * the page as well.
520 		 *
521 		 * We do this even if the page is PageDirty().
522 		 * try_to_release_page() does not perform I/O, but it is
523 		 * possible for a page to have PageDirty set, but it is actually
524 		 * clean (all its buffers are clean).  This happens if the
525 		 * buffers were written out directly, with submit_bh(). ext3
526 		 * will do this, as well as the blockdev mapping.
527 		 * try_to_release_page() will discover that cleanness and will
528 		 * drop the buffers and mark the page clean - it can be freed.
529 		 *
530 		 * Rarely, pages can have buffers and no ->mapping.  These are
531 		 * the pages which were not successfully invalidated in
532 		 * truncate_complete_page().  We try to drop those buffers here
533 		 * and if that worked, and the page is no longer mapped into
534 		 * process address space (page_count == 1) it can be freed.
535 		 * Otherwise, leave the page on the LRU so it is swappable.
536 		 */
537 		if (PagePrivate(page)) {
538 			if (!try_to_release_page(page, sc->gfp_mask))
539 				goto activate_locked;
540 			if (!mapping && page_count(page) == 1)
541 				goto free_it;
542 		}
543 
544 		if (!remove_mapping(mapping, page))
545 			goto keep_locked;
546 
547 free_it:
548 		unlock_page(page);
549 		reclaimed++;
550 		if (!pagevec_add(&freed_pvec, page))
551 			__pagevec_release_nonlru(&freed_pvec);
552 		continue;
553 
554 activate_locked:
555 		SetPageActive(page);
556 		pgactivate++;
557 keep_locked:
558 		unlock_page(page);
559 keep:
560 		list_add(&page->lru, &ret_pages);
561 		BUG_ON(PageLRU(page));
562 	}
563 	list_splice(&ret_pages, page_list);
564 	if (pagevec_count(&freed_pvec))
565 		__pagevec_release_nonlru(&freed_pvec);
566 	mod_page_state(pgactivate, pgactivate);
567 	sc->nr_reclaimed += reclaimed;
568 	return reclaimed;
569 }
570 
571 #ifdef CONFIG_MIGRATION
572 static inline void move_to_lru(struct page *page)
573 {
574 	list_del(&page->lru);
575 	if (PageActive(page)) {
576 		/*
577 		 * lru_cache_add_active checks that
578 		 * the PG_active bit is off.
579 		 */
580 		ClearPageActive(page);
581 		lru_cache_add_active(page);
582 	} else {
583 		lru_cache_add(page);
584 	}
585 	put_page(page);
586 }
587 
588 /*
589  * Add isolated pages on the list back to the LRU
590  *
591  * returns the number of pages put back.
592  */
593 int putback_lru_pages(struct list_head *l)
594 {
595 	struct page *page;
596 	struct page *page2;
597 	int count = 0;
598 
599 	list_for_each_entry_safe(page, page2, l, lru) {
600 		move_to_lru(page);
601 		count++;
602 	}
603 	return count;
604 }
605 
606 /*
607  * swapout a single page
608  * page is locked upon entry, unlocked on exit
609  */
610 static int swap_page(struct page *page)
611 {
612 	struct address_space *mapping = page_mapping(page);
613 
614 	if (page_mapped(page) && mapping)
615 		if (try_to_unmap(page) != SWAP_SUCCESS)
616 			goto unlock_retry;
617 
618 	if (PageDirty(page)) {
619 		/* Page is dirty, try to write it out here */
620 		switch(pageout(page, mapping)) {
621 		case PAGE_KEEP:
622 		case PAGE_ACTIVATE:
623 			goto unlock_retry;
624 
625 		case PAGE_SUCCESS:
626 			goto retry;
627 
628 		case PAGE_CLEAN:
629 			; /* try to free the page below */
630 		}
631 	}
632 
633 	if (PagePrivate(page)) {
634 		if (!try_to_release_page(page, GFP_KERNEL) ||
635 		    (!mapping && page_count(page) == 1))
636 			goto unlock_retry;
637 	}
638 
639 	if (remove_mapping(mapping, page)) {
640 		/* Success */
641 		unlock_page(page);
642 		return 0;
643 	}
644 
645 unlock_retry:
646 	unlock_page(page);
647 
648 retry:
649 	return -EAGAIN;
650 }
651 /*
652  * migrate_pages
653  *
654  * Two lists are passed to this function. The first list
655  * contains the pages isolated from the LRU to be migrated.
656  * The second list contains new pages that the pages isolated
657  * can be moved to. If the second list is NULL then all
658  * pages are swapped out.
659  *
660  * The function returns after 10 attempts or if no pages
661  * are movable anymore because t has become empty
662  * or no retryable pages exist anymore.
663  *
664  * SIMPLIFIED VERSION: This implementation of migrate_pages
665  * is only swapping out pages and never touches the second
666  * list. The direct migration patchset
667  * extends this function to avoid the use of swap.
668  *
669  * Return: Number of pages not migrated when "to" ran empty.
670  */
671 int migrate_pages(struct list_head *from, struct list_head *to,
672 		  struct list_head *moved, struct list_head *failed)
673 {
674 	int retry;
675 	int nr_failed = 0;
676 	int pass = 0;
677 	struct page *page;
678 	struct page *page2;
679 	int swapwrite = current->flags & PF_SWAPWRITE;
680 	int rc;
681 
682 	if (!swapwrite)
683 		current->flags |= PF_SWAPWRITE;
684 
685 redo:
686 	retry = 0;
687 
688 	list_for_each_entry_safe(page, page2, from, lru) {
689 		cond_resched();
690 
691 		rc = 0;
692 		if (page_count(page) == 1)
693 			/* page was freed from under us. So we are done. */
694 			goto next;
695 
696 		/*
697 		 * Skip locked pages during the first two passes to give the
698 		 * functions holding the lock time to release the page. Later we
699 		 * use lock_page() to have a higher chance of acquiring the
700 		 * lock.
701 		 */
702 		rc = -EAGAIN;
703 		if (pass > 2)
704 			lock_page(page);
705 		else
706 			if (TestSetPageLocked(page))
707 				goto next;
708 
709 		/*
710 		 * Only wait on writeback if we have already done a pass where
711 		 * we we may have triggered writeouts for lots of pages.
712 		 */
713 		if (pass > 0) {
714 			wait_on_page_writeback(page);
715 		} else {
716 			if (PageWriteback(page))
717 				goto unlock_page;
718 		}
719 
720 		/*
721 		 * Anonymous pages must have swap cache references otherwise
722 		 * the information contained in the page maps cannot be
723 		 * preserved.
724 		 */
725 		if (PageAnon(page) && !PageSwapCache(page)) {
726 			if (!add_to_swap(page, GFP_KERNEL)) {
727 				rc = -ENOMEM;
728 				goto unlock_page;
729 			}
730 		}
731 
732 		/*
733 		 * Page is properly locked and writeback is complete.
734 		 * Try to migrate the page.
735 		 */
736 		rc = swap_page(page);
737 		goto next;
738 
739 unlock_page:
740 		unlock_page(page);
741 
742 next:
743 		if (rc == -EAGAIN) {
744 			retry++;
745 		} else if (rc) {
746 			/* Permanent failure */
747 			list_move(&page->lru, failed);
748 			nr_failed++;
749 		} else {
750 			/* Success */
751 			list_move(&page->lru, moved);
752 		}
753 	}
754 	if (retry && pass++ < 10)
755 		goto redo;
756 
757 	if (!swapwrite)
758 		current->flags &= ~PF_SWAPWRITE;
759 
760 	return nr_failed + retry;
761 }
762 
763 static void lru_add_drain_per_cpu(void *dummy)
764 {
765 	lru_add_drain();
766 }
767 
768 /*
769  * Isolate one page from the LRU lists and put it on the
770  * indicated list. Do necessary cache draining if the
771  * page is not on the LRU lists yet.
772  *
773  * Result:
774  *  0 = page not on LRU list
775  *  1 = page removed from LRU list and added to the specified list.
776  * -ENOENT = page is being freed elsewhere.
777  */
778 int isolate_lru_page(struct page *page)
779 {
780 	int rc = 0;
781 	struct zone *zone = page_zone(page);
782 
783 redo:
784 	spin_lock_irq(&zone->lru_lock);
785 	rc = __isolate_lru_page(page);
786 	if (rc == 1) {
787 		if (PageActive(page))
788 			del_page_from_active_list(zone, page);
789 		else
790 			del_page_from_inactive_list(zone, page);
791 	}
792 	spin_unlock_irq(&zone->lru_lock);
793 	if (rc == 0) {
794 		/*
795 		 * Maybe this page is still waiting for a cpu to drain it
796 		 * from one of the lru lists?
797 		 */
798 		rc = schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
799 		if (rc == 0 && PageLRU(page))
800 			goto redo;
801 	}
802 	return rc;
803 }
804 #endif
805 
806 /*
807  * zone->lru_lock is heavily contended.  Some of the functions that
808  * shrink the lists perform better by taking out a batch of pages
809  * and working on them outside the LRU lock.
810  *
811  * For pagecache intensive workloads, this function is the hottest
812  * spot in the kernel (apart from copy_*_user functions).
813  *
814  * Appropriate locks must be held before calling this function.
815  *
816  * @nr_to_scan:	The number of pages to look through on the list.
817  * @src:	The LRU list to pull pages off.
818  * @dst:	The temp list to put pages on to.
819  * @scanned:	The number of pages that were scanned.
820  *
821  * returns how many pages were moved onto *@dst.
822  */
823 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
824 			     struct list_head *dst, int *scanned)
825 {
826 	int nr_taken = 0;
827 	struct page *page;
828 	int scan = 0;
829 
830 	while (scan++ < nr_to_scan && !list_empty(src)) {
831 		page = lru_to_page(src);
832 		prefetchw_prev_lru_page(page, src, flags);
833 
834 		switch (__isolate_lru_page(page)) {
835 		case 1:
836 			/* Succeeded to isolate page */
837 			list_move(&page->lru, dst);
838 			nr_taken++;
839 			break;
840 		case -ENOENT:
841 			/* Not possible to isolate */
842 			list_move(&page->lru, src);
843 			break;
844 		default:
845 			BUG();
846 		}
847 	}
848 
849 	*scanned = scan;
850 	return nr_taken;
851 }
852 
853 /*
854  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
855  */
856 static void shrink_cache(struct zone *zone, struct scan_control *sc)
857 {
858 	LIST_HEAD(page_list);
859 	struct pagevec pvec;
860 	int max_scan = sc->nr_to_scan;
861 
862 	pagevec_init(&pvec, 1);
863 
864 	lru_add_drain();
865 	spin_lock_irq(&zone->lru_lock);
866 	while (max_scan > 0) {
867 		struct page *page;
868 		int nr_taken;
869 		int nr_scan;
870 		int nr_freed;
871 
872 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
873 					     &zone->inactive_list,
874 					     &page_list, &nr_scan);
875 		zone->nr_inactive -= nr_taken;
876 		zone->pages_scanned += nr_scan;
877 		spin_unlock_irq(&zone->lru_lock);
878 
879 		if (nr_taken == 0)
880 			goto done;
881 
882 		max_scan -= nr_scan;
883 		nr_freed = shrink_list(&page_list, sc);
884 
885 		local_irq_disable();
886 		if (current_is_kswapd()) {
887 			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
888 			__mod_page_state(kswapd_steal, nr_freed);
889 		} else
890 			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
891 		__mod_page_state_zone(zone, pgsteal, nr_freed);
892 
893 		spin_lock(&zone->lru_lock);
894 		/*
895 		 * Put back any unfreeable pages.
896 		 */
897 		while (!list_empty(&page_list)) {
898 			page = lru_to_page(&page_list);
899 			if (TestSetPageLRU(page))
900 				BUG();
901 			list_del(&page->lru);
902 			if (PageActive(page))
903 				add_page_to_active_list(zone, page);
904 			else
905 				add_page_to_inactive_list(zone, page);
906 			if (!pagevec_add(&pvec, page)) {
907 				spin_unlock_irq(&zone->lru_lock);
908 				__pagevec_release(&pvec);
909 				spin_lock_irq(&zone->lru_lock);
910 			}
911 		}
912   	}
913 	spin_unlock_irq(&zone->lru_lock);
914 done:
915 	pagevec_release(&pvec);
916 }
917 
918 /*
919  * This moves pages from the active list to the inactive list.
920  *
921  * We move them the other way if the page is referenced by one or more
922  * processes, from rmap.
923  *
924  * If the pages are mostly unmapped, the processing is fast and it is
925  * appropriate to hold zone->lru_lock across the whole operation.  But if
926  * the pages are mapped, the processing is slow (page_referenced()) so we
927  * should drop zone->lru_lock around each page.  It's impossible to balance
928  * this, so instead we remove the pages from the LRU while processing them.
929  * It is safe to rely on PG_active against the non-LRU pages in here because
930  * nobody will play with that bit on a non-LRU page.
931  *
932  * The downside is that we have to touch page->_count against each page.
933  * But we had to alter page->flags anyway.
934  */
935 static void
936 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
937 {
938 	int pgmoved;
939 	int pgdeactivate = 0;
940 	int pgscanned;
941 	int nr_pages = sc->nr_to_scan;
942 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
943 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
944 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
945 	struct page *page;
946 	struct pagevec pvec;
947 	int reclaim_mapped = 0;
948 	long mapped_ratio;
949 	long distress;
950 	long swap_tendency;
951 
952 	lru_add_drain();
953 	spin_lock_irq(&zone->lru_lock);
954 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
955 				    &l_hold, &pgscanned);
956 	zone->pages_scanned += pgscanned;
957 	zone->nr_active -= pgmoved;
958 	spin_unlock_irq(&zone->lru_lock);
959 
960 	/*
961 	 * `distress' is a measure of how much trouble we're having reclaiming
962 	 * pages.  0 -> no problems.  100 -> great trouble.
963 	 */
964 	distress = 100 >> zone->prev_priority;
965 
966 	/*
967 	 * The point of this algorithm is to decide when to start reclaiming
968 	 * mapped memory instead of just pagecache.  Work out how much memory
969 	 * is mapped.
970 	 */
971 	mapped_ratio = (sc->nr_mapped * 100) / total_memory;
972 
973 	/*
974 	 * Now decide how much we really want to unmap some pages.  The mapped
975 	 * ratio is downgraded - just because there's a lot of mapped memory
976 	 * doesn't necessarily mean that page reclaim isn't succeeding.
977 	 *
978 	 * The distress ratio is important - we don't want to start going oom.
979 	 *
980 	 * A 100% value of vm_swappiness overrides this algorithm altogether.
981 	 */
982 	swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
983 
984 	/*
985 	 * Now use this metric to decide whether to start moving mapped memory
986 	 * onto the inactive list.
987 	 */
988 	if (swap_tendency >= 100)
989 		reclaim_mapped = 1;
990 
991 	while (!list_empty(&l_hold)) {
992 		cond_resched();
993 		page = lru_to_page(&l_hold);
994 		list_del(&page->lru);
995 		if (page_mapped(page)) {
996 			if (!reclaim_mapped ||
997 			    (total_swap_pages == 0 && PageAnon(page)) ||
998 			    page_referenced(page, 0)) {
999 				list_add(&page->lru, &l_active);
1000 				continue;
1001 			}
1002 		}
1003 		list_add(&page->lru, &l_inactive);
1004 	}
1005 
1006 	pagevec_init(&pvec, 1);
1007 	pgmoved = 0;
1008 	spin_lock_irq(&zone->lru_lock);
1009 	while (!list_empty(&l_inactive)) {
1010 		page = lru_to_page(&l_inactive);
1011 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1012 		if (TestSetPageLRU(page))
1013 			BUG();
1014 		if (!TestClearPageActive(page))
1015 			BUG();
1016 		list_move(&page->lru, &zone->inactive_list);
1017 		pgmoved++;
1018 		if (!pagevec_add(&pvec, page)) {
1019 			zone->nr_inactive += pgmoved;
1020 			spin_unlock_irq(&zone->lru_lock);
1021 			pgdeactivate += pgmoved;
1022 			pgmoved = 0;
1023 			if (buffer_heads_over_limit)
1024 				pagevec_strip(&pvec);
1025 			__pagevec_release(&pvec);
1026 			spin_lock_irq(&zone->lru_lock);
1027 		}
1028 	}
1029 	zone->nr_inactive += pgmoved;
1030 	pgdeactivate += pgmoved;
1031 	if (buffer_heads_over_limit) {
1032 		spin_unlock_irq(&zone->lru_lock);
1033 		pagevec_strip(&pvec);
1034 		spin_lock_irq(&zone->lru_lock);
1035 	}
1036 
1037 	pgmoved = 0;
1038 	while (!list_empty(&l_active)) {
1039 		page = lru_to_page(&l_active);
1040 		prefetchw_prev_lru_page(page, &l_active, flags);
1041 		if (TestSetPageLRU(page))
1042 			BUG();
1043 		BUG_ON(!PageActive(page));
1044 		list_move(&page->lru, &zone->active_list);
1045 		pgmoved++;
1046 		if (!pagevec_add(&pvec, page)) {
1047 			zone->nr_active += pgmoved;
1048 			pgmoved = 0;
1049 			spin_unlock_irq(&zone->lru_lock);
1050 			__pagevec_release(&pvec);
1051 			spin_lock_irq(&zone->lru_lock);
1052 		}
1053 	}
1054 	zone->nr_active += pgmoved;
1055 	spin_unlock(&zone->lru_lock);
1056 
1057 	__mod_page_state_zone(zone, pgrefill, pgscanned);
1058 	__mod_page_state(pgdeactivate, pgdeactivate);
1059 	local_irq_enable();
1060 
1061 	pagevec_release(&pvec);
1062 }
1063 
1064 /*
1065  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1066  */
1067 static void
1068 shrink_zone(struct zone *zone, struct scan_control *sc)
1069 {
1070 	unsigned long nr_active;
1071 	unsigned long nr_inactive;
1072 
1073 	atomic_inc(&zone->reclaim_in_progress);
1074 
1075 	/*
1076 	 * Add one to `nr_to_scan' just to make sure that the kernel will
1077 	 * slowly sift through the active list.
1078 	 */
1079 	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1080 	nr_active = zone->nr_scan_active;
1081 	if (nr_active >= sc->swap_cluster_max)
1082 		zone->nr_scan_active = 0;
1083 	else
1084 		nr_active = 0;
1085 
1086 	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1087 	nr_inactive = zone->nr_scan_inactive;
1088 	if (nr_inactive >= sc->swap_cluster_max)
1089 		zone->nr_scan_inactive = 0;
1090 	else
1091 		nr_inactive = 0;
1092 
1093 	while (nr_active || nr_inactive) {
1094 		if (nr_active) {
1095 			sc->nr_to_scan = min(nr_active,
1096 					(unsigned long)sc->swap_cluster_max);
1097 			nr_active -= sc->nr_to_scan;
1098 			refill_inactive_zone(zone, sc);
1099 		}
1100 
1101 		if (nr_inactive) {
1102 			sc->nr_to_scan = min(nr_inactive,
1103 					(unsigned long)sc->swap_cluster_max);
1104 			nr_inactive -= sc->nr_to_scan;
1105 			shrink_cache(zone, sc);
1106 		}
1107 	}
1108 
1109 	throttle_vm_writeout();
1110 
1111 	atomic_dec(&zone->reclaim_in_progress);
1112 }
1113 
1114 /*
1115  * This is the direct reclaim path, for page-allocating processes.  We only
1116  * try to reclaim pages from zones which will satisfy the caller's allocation
1117  * request.
1118  *
1119  * We reclaim from a zone even if that zone is over pages_high.  Because:
1120  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1121  *    allocation or
1122  * b) The zones may be over pages_high but they must go *over* pages_high to
1123  *    satisfy the `incremental min' zone defense algorithm.
1124  *
1125  * Returns the number of reclaimed pages.
1126  *
1127  * If a zone is deemed to be full of pinned pages then just give it a light
1128  * scan then give up on it.
1129  */
1130 static void
1131 shrink_caches(struct zone **zones, struct scan_control *sc)
1132 {
1133 	int i;
1134 
1135 	for (i = 0; zones[i] != NULL; i++) {
1136 		struct zone *zone = zones[i];
1137 
1138 		if (!populated_zone(zone))
1139 			continue;
1140 
1141 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1142 			continue;
1143 
1144 		zone->temp_priority = sc->priority;
1145 		if (zone->prev_priority > sc->priority)
1146 			zone->prev_priority = sc->priority;
1147 
1148 		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1149 			continue;	/* Let kswapd poll it */
1150 
1151 		shrink_zone(zone, sc);
1152 	}
1153 }
1154 
1155 /*
1156  * This is the main entry point to direct page reclaim.
1157  *
1158  * If a full scan of the inactive list fails to free enough memory then we
1159  * are "out of memory" and something needs to be killed.
1160  *
1161  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1162  * high - the zone may be full of dirty or under-writeback pages, which this
1163  * caller can't do much about.  We kick pdflush and take explicit naps in the
1164  * hope that some of these pages can be written.  But if the allocating task
1165  * holds filesystem locks which prevent writeout this might not work, and the
1166  * allocation attempt will fail.
1167  */
1168 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1169 {
1170 	int priority;
1171 	int ret = 0;
1172 	int total_scanned = 0, total_reclaimed = 0;
1173 	struct reclaim_state *reclaim_state = current->reclaim_state;
1174 	struct scan_control sc;
1175 	unsigned long lru_pages = 0;
1176 	int i;
1177 
1178 	sc.gfp_mask = gfp_mask;
1179 	sc.may_writepage = 0;
1180 
1181 	inc_page_state(allocstall);
1182 
1183 	for (i = 0; zones[i] != NULL; i++) {
1184 		struct zone *zone = zones[i];
1185 
1186 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1187 			continue;
1188 
1189 		zone->temp_priority = DEF_PRIORITY;
1190 		lru_pages += zone->nr_active + zone->nr_inactive;
1191 	}
1192 
1193 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1194 		sc.nr_mapped = read_page_state(nr_mapped);
1195 		sc.nr_scanned = 0;
1196 		sc.nr_reclaimed = 0;
1197 		sc.priority = priority;
1198 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1199 		if (!priority)
1200 			disable_swap_token();
1201 		shrink_caches(zones, &sc);
1202 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1203 		if (reclaim_state) {
1204 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1205 			reclaim_state->reclaimed_slab = 0;
1206 		}
1207 		total_scanned += sc.nr_scanned;
1208 		total_reclaimed += sc.nr_reclaimed;
1209 		if (total_reclaimed >= sc.swap_cluster_max) {
1210 			ret = 1;
1211 			goto out;
1212 		}
1213 
1214 		/*
1215 		 * Try to write back as many pages as we just scanned.  This
1216 		 * tends to cause slow streaming writers to write data to the
1217 		 * disk smoothly, at the dirtying rate, which is nice.   But
1218 		 * that's undesirable in laptop mode, where we *want* lumpy
1219 		 * writeout.  So in laptop mode, write out the whole world.
1220 		 */
1221 		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1222 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1223 			sc.may_writepage = 1;
1224 		}
1225 
1226 		/* Take a nap, wait for some writeback to complete */
1227 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1228 			blk_congestion_wait(WRITE, HZ/10);
1229 	}
1230 out:
1231 	for (i = 0; zones[i] != 0; i++) {
1232 		struct zone *zone = zones[i];
1233 
1234 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1235 			continue;
1236 
1237 		zone->prev_priority = zone->temp_priority;
1238 	}
1239 	return ret;
1240 }
1241 
1242 /*
1243  * For kswapd, balance_pgdat() will work across all this node's zones until
1244  * they are all at pages_high.
1245  *
1246  * If `nr_pages' is non-zero then it is the number of pages which are to be
1247  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1248  * special.
1249  *
1250  * Returns the number of pages which were actually freed.
1251  *
1252  * There is special handling here for zones which are full of pinned pages.
1253  * This can happen if the pages are all mlocked, or if they are all used by
1254  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1255  * What we do is to detect the case where all pages in the zone have been
1256  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1257  * dead and from now on, only perform a short scan.  Basically we're polling
1258  * the zone for when the problem goes away.
1259  *
1260  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1261  * zones which have free_pages > pages_high, but once a zone is found to have
1262  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1263  * of the number of free pages in the lower zones.  This interoperates with
1264  * the page allocator fallback scheme to ensure that aging of pages is balanced
1265  * across the zones.
1266  */
1267 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1268 {
1269 	int to_free = nr_pages;
1270 	int all_zones_ok;
1271 	int priority;
1272 	int i;
1273 	int total_scanned, total_reclaimed;
1274 	struct reclaim_state *reclaim_state = current->reclaim_state;
1275 	struct scan_control sc;
1276 
1277 loop_again:
1278 	total_scanned = 0;
1279 	total_reclaimed = 0;
1280 	sc.gfp_mask = GFP_KERNEL;
1281 	sc.may_writepage = 0;
1282 	sc.nr_mapped = read_page_state(nr_mapped);
1283 
1284 	inc_page_state(pageoutrun);
1285 
1286 	for (i = 0; i < pgdat->nr_zones; i++) {
1287 		struct zone *zone = pgdat->node_zones + i;
1288 
1289 		zone->temp_priority = DEF_PRIORITY;
1290 	}
1291 
1292 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1293 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1294 		unsigned long lru_pages = 0;
1295 
1296 		/* The swap token gets in the way of swapout... */
1297 		if (!priority)
1298 			disable_swap_token();
1299 
1300 		all_zones_ok = 1;
1301 
1302 		if (nr_pages == 0) {
1303 			/*
1304 			 * Scan in the highmem->dma direction for the highest
1305 			 * zone which needs scanning
1306 			 */
1307 			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1308 				struct zone *zone = pgdat->node_zones + i;
1309 
1310 				if (!populated_zone(zone))
1311 					continue;
1312 
1313 				if (zone->all_unreclaimable &&
1314 						priority != DEF_PRIORITY)
1315 					continue;
1316 
1317 				if (!zone_watermark_ok(zone, order,
1318 						zone->pages_high, 0, 0)) {
1319 					end_zone = i;
1320 					goto scan;
1321 				}
1322 			}
1323 			goto out;
1324 		} else {
1325 			end_zone = pgdat->nr_zones - 1;
1326 		}
1327 scan:
1328 		for (i = 0; i <= end_zone; i++) {
1329 			struct zone *zone = pgdat->node_zones + i;
1330 
1331 			lru_pages += zone->nr_active + zone->nr_inactive;
1332 		}
1333 
1334 		/*
1335 		 * Now scan the zone in the dma->highmem direction, stopping
1336 		 * at the last zone which needs scanning.
1337 		 *
1338 		 * We do this because the page allocator works in the opposite
1339 		 * direction.  This prevents the page allocator from allocating
1340 		 * pages behind kswapd's direction of progress, which would
1341 		 * cause too much scanning of the lower zones.
1342 		 */
1343 		for (i = 0; i <= end_zone; i++) {
1344 			struct zone *zone = pgdat->node_zones + i;
1345 			int nr_slab;
1346 
1347 			if (!populated_zone(zone))
1348 				continue;
1349 
1350 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1351 				continue;
1352 
1353 			if (nr_pages == 0) {	/* Not software suspend */
1354 				if (!zone_watermark_ok(zone, order,
1355 						zone->pages_high, end_zone, 0))
1356 					all_zones_ok = 0;
1357 			}
1358 			zone->temp_priority = priority;
1359 			if (zone->prev_priority > priority)
1360 				zone->prev_priority = priority;
1361 			sc.nr_scanned = 0;
1362 			sc.nr_reclaimed = 0;
1363 			sc.priority = priority;
1364 			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1365 			atomic_inc(&zone->reclaim_in_progress);
1366 			shrink_zone(zone, &sc);
1367 			atomic_dec(&zone->reclaim_in_progress);
1368 			reclaim_state->reclaimed_slab = 0;
1369 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1370 						lru_pages);
1371 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1372 			total_reclaimed += sc.nr_reclaimed;
1373 			total_scanned += sc.nr_scanned;
1374 			if (zone->all_unreclaimable)
1375 				continue;
1376 			if (nr_slab == 0 && zone->pages_scanned >=
1377 				    (zone->nr_active + zone->nr_inactive) * 4)
1378 				zone->all_unreclaimable = 1;
1379 			/*
1380 			 * If we've done a decent amount of scanning and
1381 			 * the reclaim ratio is low, start doing writepage
1382 			 * even in laptop mode
1383 			 */
1384 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1385 			    total_scanned > total_reclaimed+total_reclaimed/2)
1386 				sc.may_writepage = 1;
1387 		}
1388 		if (nr_pages && to_free > total_reclaimed)
1389 			continue;	/* swsusp: need to do more work */
1390 		if (all_zones_ok)
1391 			break;		/* kswapd: all done */
1392 		/*
1393 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1394 		 * another pass across the zones.
1395 		 */
1396 		if (total_scanned && priority < DEF_PRIORITY - 2)
1397 			blk_congestion_wait(WRITE, HZ/10);
1398 
1399 		/*
1400 		 * We do this so kswapd doesn't build up large priorities for
1401 		 * example when it is freeing in parallel with allocators. It
1402 		 * matches the direct reclaim path behaviour in terms of impact
1403 		 * on zone->*_priority.
1404 		 */
1405 		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1406 			break;
1407 	}
1408 out:
1409 	for (i = 0; i < pgdat->nr_zones; i++) {
1410 		struct zone *zone = pgdat->node_zones + i;
1411 
1412 		zone->prev_priority = zone->temp_priority;
1413 	}
1414 	if (!all_zones_ok) {
1415 		cond_resched();
1416 		goto loop_again;
1417 	}
1418 
1419 	return total_reclaimed;
1420 }
1421 
1422 /*
1423  * The background pageout daemon, started as a kernel thread
1424  * from the init process.
1425  *
1426  * This basically trickles out pages so that we have _some_
1427  * free memory available even if there is no other activity
1428  * that frees anything up. This is needed for things like routing
1429  * etc, where we otherwise might have all activity going on in
1430  * asynchronous contexts that cannot page things out.
1431  *
1432  * If there are applications that are active memory-allocators
1433  * (most normal use), this basically shouldn't matter.
1434  */
1435 static int kswapd(void *p)
1436 {
1437 	unsigned long order;
1438 	pg_data_t *pgdat = (pg_data_t*)p;
1439 	struct task_struct *tsk = current;
1440 	DEFINE_WAIT(wait);
1441 	struct reclaim_state reclaim_state = {
1442 		.reclaimed_slab = 0,
1443 	};
1444 	cpumask_t cpumask;
1445 
1446 	daemonize("kswapd%d", pgdat->node_id);
1447 	cpumask = node_to_cpumask(pgdat->node_id);
1448 	if (!cpus_empty(cpumask))
1449 		set_cpus_allowed(tsk, cpumask);
1450 	current->reclaim_state = &reclaim_state;
1451 
1452 	/*
1453 	 * Tell the memory management that we're a "memory allocator",
1454 	 * and that if we need more memory we should get access to it
1455 	 * regardless (see "__alloc_pages()"). "kswapd" should
1456 	 * never get caught in the normal page freeing logic.
1457 	 *
1458 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1459 	 * you need a small amount of memory in order to be able to
1460 	 * page out something else, and this flag essentially protects
1461 	 * us from recursively trying to free more memory as we're
1462 	 * trying to free the first piece of memory in the first place).
1463 	 */
1464 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1465 
1466 	order = 0;
1467 	for ( ; ; ) {
1468 		unsigned long new_order;
1469 
1470 		try_to_freeze();
1471 
1472 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1473 		new_order = pgdat->kswapd_max_order;
1474 		pgdat->kswapd_max_order = 0;
1475 		if (order < new_order) {
1476 			/*
1477 			 * Don't sleep if someone wants a larger 'order'
1478 			 * allocation
1479 			 */
1480 			order = new_order;
1481 		} else {
1482 			schedule();
1483 			order = pgdat->kswapd_max_order;
1484 		}
1485 		finish_wait(&pgdat->kswapd_wait, &wait);
1486 
1487 		balance_pgdat(pgdat, 0, order);
1488 	}
1489 	return 0;
1490 }
1491 
1492 /*
1493  * A zone is low on free memory, so wake its kswapd task to service it.
1494  */
1495 void wakeup_kswapd(struct zone *zone, int order)
1496 {
1497 	pg_data_t *pgdat;
1498 
1499 	if (!populated_zone(zone))
1500 		return;
1501 
1502 	pgdat = zone->zone_pgdat;
1503 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1504 		return;
1505 	if (pgdat->kswapd_max_order < order)
1506 		pgdat->kswapd_max_order = order;
1507 	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1508 		return;
1509 	if (!waitqueue_active(&pgdat->kswapd_wait))
1510 		return;
1511 	wake_up_interruptible(&pgdat->kswapd_wait);
1512 }
1513 
1514 #ifdef CONFIG_PM
1515 /*
1516  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1517  * pages.
1518  */
1519 int shrink_all_memory(int nr_pages)
1520 {
1521 	pg_data_t *pgdat;
1522 	int nr_to_free = nr_pages;
1523 	int ret = 0;
1524 	struct reclaim_state reclaim_state = {
1525 		.reclaimed_slab = 0,
1526 	};
1527 
1528 	current->reclaim_state = &reclaim_state;
1529 	for_each_pgdat(pgdat) {
1530 		int freed;
1531 		freed = balance_pgdat(pgdat, nr_to_free, 0);
1532 		ret += freed;
1533 		nr_to_free -= freed;
1534 		if (nr_to_free <= 0)
1535 			break;
1536 	}
1537 	current->reclaim_state = NULL;
1538 	return ret;
1539 }
1540 #endif
1541 
1542 #ifdef CONFIG_HOTPLUG_CPU
1543 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1544    not required for correctness.  So if the last cpu in a node goes
1545    away, we get changed to run anywhere: as the first one comes back,
1546    restore their cpu bindings. */
1547 static int __devinit cpu_callback(struct notifier_block *nfb,
1548 				  unsigned long action,
1549 				  void *hcpu)
1550 {
1551 	pg_data_t *pgdat;
1552 	cpumask_t mask;
1553 
1554 	if (action == CPU_ONLINE) {
1555 		for_each_pgdat(pgdat) {
1556 			mask = node_to_cpumask(pgdat->node_id);
1557 			if (any_online_cpu(mask) != NR_CPUS)
1558 				/* One of our CPUs online: restore mask */
1559 				set_cpus_allowed(pgdat->kswapd, mask);
1560 		}
1561 	}
1562 	return NOTIFY_OK;
1563 }
1564 #endif /* CONFIG_HOTPLUG_CPU */
1565 
1566 static int __init kswapd_init(void)
1567 {
1568 	pg_data_t *pgdat;
1569 	swap_setup();
1570 	for_each_pgdat(pgdat)
1571 		pgdat->kswapd
1572 		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1573 	total_memory = nr_free_pagecache_pages();
1574 	hotcpu_notifier(cpu_callback, 0);
1575 	return 0;
1576 }
1577 
1578 module_init(kswapd_init)
1579