xref: /openbmc/linux/mm/vmscan.c (revision 8781e5df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/*
92 	 * Cgroups are not reclaimed below their configured memory.low,
93 	 * unless we threaten to OOM. If any cgroups are skipped due to
94 	 * memory.low and nothing was reclaimed, go back for memory.low.
95 	 */
96 	unsigned int memcg_low_reclaim:1;
97 	unsigned int memcg_low_skipped:1;
98 
99 	unsigned int hibernation_mode:1;
100 
101 	/* One of the zones is ready for compaction */
102 	unsigned int compaction_ready:1;
103 
104 	/* Allocation order */
105 	s8 order;
106 
107 	/* Scan (total_size >> priority) pages at once */
108 	s8 priority;
109 
110 	/* The highest zone to isolate pages for reclaim from */
111 	s8 reclaim_idx;
112 
113 	/* This context's GFP mask */
114 	gfp_t gfp_mask;
115 
116 	/* Incremented by the number of inactive pages that were scanned */
117 	unsigned long nr_scanned;
118 
119 	/* Number of pages freed so far during a call to shrink_zones() */
120 	unsigned long nr_reclaimed;
121 
122 	struct {
123 		unsigned int dirty;
124 		unsigned int unqueued_dirty;
125 		unsigned int congested;
126 		unsigned int writeback;
127 		unsigned int immediate;
128 		unsigned int file_taken;
129 		unsigned int taken;
130 	} nr;
131 
132 	/* for recording the reclaimed slab by now */
133 	struct reclaim_state reclaim_state;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static void set_task_reclaim_state(struct task_struct *task,
175 				   struct reclaim_state *rs)
176 {
177 	/* Check for an overwrite */
178 	WARN_ON_ONCE(rs && task->reclaim_state);
179 
180 	/* Check for the nulling of an already-nulled member */
181 	WARN_ON_ONCE(!rs && !task->reclaim_state);
182 
183 	task->reclaim_state = rs;
184 }
185 
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
188 
189 #ifdef CONFIG_MEMCG
190 /*
191  * We allow subsystems to populate their shrinker-related
192  * LRU lists before register_shrinker_prepared() is called
193  * for the shrinker, since we don't want to impose
194  * restrictions on their internal registration order.
195  * In this case shrink_slab_memcg() may find corresponding
196  * bit is set in the shrinkers map.
197  *
198  * This value is used by the function to detect registering
199  * shrinkers and to skip do_shrink_slab() calls for them.
200  */
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202 
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
205 
206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 {
208 	int id, ret = -ENOMEM;
209 
210 	down_write(&shrinker_rwsem);
211 	/* This may call shrinker, so it must use down_read_trylock() */
212 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 	if (id < 0)
214 		goto unlock;
215 
216 	if (id >= shrinker_nr_max) {
217 		if (memcg_expand_shrinker_maps(id)) {
218 			idr_remove(&shrinker_idr, id);
219 			goto unlock;
220 		}
221 
222 		shrinker_nr_max = id + 1;
223 	}
224 	shrinker->id = id;
225 	ret = 0;
226 unlock:
227 	up_write(&shrinker_rwsem);
228 	return ret;
229 }
230 
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	int id = shrinker->id;
234 
235 	BUG_ON(id < 0);
236 
237 	down_write(&shrinker_rwsem);
238 	idr_remove(&shrinker_idr, id);
239 	up_write(&shrinker_rwsem);
240 }
241 
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
297 {
298 	return 0;
299 }
300 
301 static void unregister_memcg_shrinker(struct shrinker *shrinker)
302 {
303 }
304 
305 static bool global_reclaim(struct scan_control *sc)
306 {
307 	return true;
308 }
309 
310 static bool sane_reclaim(struct scan_control *sc)
311 {
312 	return true;
313 }
314 
315 static inline void set_memcg_congestion(struct pglist_data *pgdat,
316 				struct mem_cgroup *memcg, bool congested)
317 {
318 }
319 
320 static inline bool memcg_congested(struct pglist_data *pgdat,
321 			struct mem_cgroup *memcg)
322 {
323 	return false;
324 
325 }
326 #endif
327 
328 /*
329  * This misses isolated pages which are not accounted for to save counters.
330  * As the data only determines if reclaim or compaction continues, it is
331  * not expected that isolated pages will be a dominating factor.
332  */
333 unsigned long zone_reclaimable_pages(struct zone *zone)
334 {
335 	unsigned long nr;
336 
337 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
338 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
339 	if (get_nr_swap_pages() > 0)
340 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
341 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
342 
343 	return nr;
344 }
345 
346 /**
347  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
348  * @lruvec: lru vector
349  * @lru: lru to use
350  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
351  */
352 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
353 {
354 	unsigned long lru_size = 0;
355 	int zid;
356 
357 	if (!mem_cgroup_disabled()) {
358 		for (zid = 0; zid < MAX_NR_ZONES; zid++)
359 			lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
360 	} else
361 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
362 
363 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
364 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
365 		unsigned long size;
366 
367 		if (!managed_zone(zone))
368 			continue;
369 
370 		if (!mem_cgroup_disabled())
371 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
372 		else
373 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
374 				       NR_ZONE_LRU_BASE + lru);
375 		lru_size -= min(size, lru_size);
376 	}
377 
378 	return lru_size;
379 
380 }
381 
382 /*
383  * Add a shrinker callback to be called from the vm.
384  */
385 int prealloc_shrinker(struct shrinker *shrinker)
386 {
387 	unsigned int size = sizeof(*shrinker->nr_deferred);
388 
389 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
390 		size *= nr_node_ids;
391 
392 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
393 	if (!shrinker->nr_deferred)
394 		return -ENOMEM;
395 
396 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
397 		if (prealloc_memcg_shrinker(shrinker))
398 			goto free_deferred;
399 	}
400 
401 	return 0;
402 
403 free_deferred:
404 	kfree(shrinker->nr_deferred);
405 	shrinker->nr_deferred = NULL;
406 	return -ENOMEM;
407 }
408 
409 void free_prealloced_shrinker(struct shrinker *shrinker)
410 {
411 	if (!shrinker->nr_deferred)
412 		return;
413 
414 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
415 		unregister_memcg_shrinker(shrinker);
416 
417 	kfree(shrinker->nr_deferred);
418 	shrinker->nr_deferred = NULL;
419 }
420 
421 void register_shrinker_prepared(struct shrinker *shrinker)
422 {
423 	down_write(&shrinker_rwsem);
424 	list_add_tail(&shrinker->list, &shrinker_list);
425 #ifdef CONFIG_MEMCG_KMEM
426 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
427 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
428 #endif
429 	up_write(&shrinker_rwsem);
430 }
431 
432 int register_shrinker(struct shrinker *shrinker)
433 {
434 	int err = prealloc_shrinker(shrinker);
435 
436 	if (err)
437 		return err;
438 	register_shrinker_prepared(shrinker);
439 	return 0;
440 }
441 EXPORT_SYMBOL(register_shrinker);
442 
443 /*
444  * Remove one
445  */
446 void unregister_shrinker(struct shrinker *shrinker)
447 {
448 	if (!shrinker->nr_deferred)
449 		return;
450 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
451 		unregister_memcg_shrinker(shrinker);
452 	down_write(&shrinker_rwsem);
453 	list_del(&shrinker->list);
454 	up_write(&shrinker_rwsem);
455 	kfree(shrinker->nr_deferred);
456 	shrinker->nr_deferred = NULL;
457 }
458 EXPORT_SYMBOL(unregister_shrinker);
459 
460 #define SHRINK_BATCH 128
461 
462 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
463 				    struct shrinker *shrinker, int priority)
464 {
465 	unsigned long freed = 0;
466 	unsigned long long delta;
467 	long total_scan;
468 	long freeable;
469 	long nr;
470 	long new_nr;
471 	int nid = shrinkctl->nid;
472 	long batch_size = shrinker->batch ? shrinker->batch
473 					  : SHRINK_BATCH;
474 	long scanned = 0, next_deferred;
475 
476 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
477 		nid = 0;
478 
479 	freeable = shrinker->count_objects(shrinker, shrinkctl);
480 	if (freeable == 0 || freeable == SHRINK_EMPTY)
481 		return freeable;
482 
483 	/*
484 	 * copy the current shrinker scan count into a local variable
485 	 * and zero it so that other concurrent shrinker invocations
486 	 * don't also do this scanning work.
487 	 */
488 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
489 
490 	total_scan = nr;
491 	if (shrinker->seeks) {
492 		delta = freeable >> priority;
493 		delta *= 4;
494 		do_div(delta, shrinker->seeks);
495 	} else {
496 		/*
497 		 * These objects don't require any IO to create. Trim
498 		 * them aggressively under memory pressure to keep
499 		 * them from causing refetches in the IO caches.
500 		 */
501 		delta = freeable / 2;
502 	}
503 
504 	total_scan += delta;
505 	if (total_scan < 0) {
506 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
507 		       shrinker->scan_objects, total_scan);
508 		total_scan = freeable;
509 		next_deferred = nr;
510 	} else
511 		next_deferred = total_scan;
512 
513 	/*
514 	 * We need to avoid excessive windup on filesystem shrinkers
515 	 * due to large numbers of GFP_NOFS allocations causing the
516 	 * shrinkers to return -1 all the time. This results in a large
517 	 * nr being built up so when a shrink that can do some work
518 	 * comes along it empties the entire cache due to nr >>>
519 	 * freeable. This is bad for sustaining a working set in
520 	 * memory.
521 	 *
522 	 * Hence only allow the shrinker to scan the entire cache when
523 	 * a large delta change is calculated directly.
524 	 */
525 	if (delta < freeable / 4)
526 		total_scan = min(total_scan, freeable / 2);
527 
528 	/*
529 	 * Avoid risking looping forever due to too large nr value:
530 	 * never try to free more than twice the estimate number of
531 	 * freeable entries.
532 	 */
533 	if (total_scan > freeable * 2)
534 		total_scan = freeable * 2;
535 
536 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
537 				   freeable, delta, total_scan, priority);
538 
539 	/*
540 	 * Normally, we should not scan less than batch_size objects in one
541 	 * pass to avoid too frequent shrinker calls, but if the slab has less
542 	 * than batch_size objects in total and we are really tight on memory,
543 	 * we will try to reclaim all available objects, otherwise we can end
544 	 * up failing allocations although there are plenty of reclaimable
545 	 * objects spread over several slabs with usage less than the
546 	 * batch_size.
547 	 *
548 	 * We detect the "tight on memory" situations by looking at the total
549 	 * number of objects we want to scan (total_scan). If it is greater
550 	 * than the total number of objects on slab (freeable), we must be
551 	 * scanning at high prio and therefore should try to reclaim as much as
552 	 * possible.
553 	 */
554 	while (total_scan >= batch_size ||
555 	       total_scan >= freeable) {
556 		unsigned long ret;
557 		unsigned long nr_to_scan = min(batch_size, total_scan);
558 
559 		shrinkctl->nr_to_scan = nr_to_scan;
560 		shrinkctl->nr_scanned = nr_to_scan;
561 		ret = shrinker->scan_objects(shrinker, shrinkctl);
562 		if (ret == SHRINK_STOP)
563 			break;
564 		freed += ret;
565 
566 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
567 		total_scan -= shrinkctl->nr_scanned;
568 		scanned += shrinkctl->nr_scanned;
569 
570 		cond_resched();
571 	}
572 
573 	if (next_deferred >= scanned)
574 		next_deferred -= scanned;
575 	else
576 		next_deferred = 0;
577 	/*
578 	 * move the unused scan count back into the shrinker in a
579 	 * manner that handles concurrent updates. If we exhausted the
580 	 * scan, there is no need to do an update.
581 	 */
582 	if (next_deferred > 0)
583 		new_nr = atomic_long_add_return(next_deferred,
584 						&shrinker->nr_deferred[nid]);
585 	else
586 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
587 
588 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
589 	return freed;
590 }
591 
592 #ifdef CONFIG_MEMCG
593 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
594 			struct mem_cgroup *memcg, int priority)
595 {
596 	struct memcg_shrinker_map *map;
597 	unsigned long ret, freed = 0;
598 	int i;
599 
600 	if (!mem_cgroup_online(memcg))
601 		return 0;
602 
603 	if (!down_read_trylock(&shrinker_rwsem))
604 		return 0;
605 
606 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
607 					true);
608 	if (unlikely(!map))
609 		goto unlock;
610 
611 	for_each_set_bit(i, map->map, shrinker_nr_max) {
612 		struct shrink_control sc = {
613 			.gfp_mask = gfp_mask,
614 			.nid = nid,
615 			.memcg = memcg,
616 		};
617 		struct shrinker *shrinker;
618 
619 		shrinker = idr_find(&shrinker_idr, i);
620 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
621 			if (!shrinker)
622 				clear_bit(i, map->map);
623 			continue;
624 		}
625 
626 		/* Call non-slab shrinkers even though kmem is disabled */
627 		if (!memcg_kmem_enabled() &&
628 		    !(shrinker->flags & SHRINKER_NONSLAB))
629 			continue;
630 
631 		ret = do_shrink_slab(&sc, shrinker, priority);
632 		if (ret == SHRINK_EMPTY) {
633 			clear_bit(i, map->map);
634 			/*
635 			 * After the shrinker reported that it had no objects to
636 			 * free, but before we cleared the corresponding bit in
637 			 * the memcg shrinker map, a new object might have been
638 			 * added. To make sure, we have the bit set in this
639 			 * case, we invoke the shrinker one more time and reset
640 			 * the bit if it reports that it is not empty anymore.
641 			 * The memory barrier here pairs with the barrier in
642 			 * memcg_set_shrinker_bit():
643 			 *
644 			 * list_lru_add()     shrink_slab_memcg()
645 			 *   list_add_tail()    clear_bit()
646 			 *   <MB>               <MB>
647 			 *   set_bit()          do_shrink_slab()
648 			 */
649 			smp_mb__after_atomic();
650 			ret = do_shrink_slab(&sc, shrinker, priority);
651 			if (ret == SHRINK_EMPTY)
652 				ret = 0;
653 			else
654 				memcg_set_shrinker_bit(memcg, nid, i);
655 		}
656 		freed += ret;
657 
658 		if (rwsem_is_contended(&shrinker_rwsem)) {
659 			freed = freed ? : 1;
660 			break;
661 		}
662 	}
663 unlock:
664 	up_read(&shrinker_rwsem);
665 	return freed;
666 }
667 #else /* CONFIG_MEMCG */
668 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
669 			struct mem_cgroup *memcg, int priority)
670 {
671 	return 0;
672 }
673 #endif /* CONFIG_MEMCG */
674 
675 /**
676  * shrink_slab - shrink slab caches
677  * @gfp_mask: allocation context
678  * @nid: node whose slab caches to target
679  * @memcg: memory cgroup whose slab caches to target
680  * @priority: the reclaim priority
681  *
682  * Call the shrink functions to age shrinkable caches.
683  *
684  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
685  * unaware shrinkers will receive a node id of 0 instead.
686  *
687  * @memcg specifies the memory cgroup to target. Unaware shrinkers
688  * are called only if it is the root cgroup.
689  *
690  * @priority is sc->priority, we take the number of objects and >> by priority
691  * in order to get the scan target.
692  *
693  * Returns the number of reclaimed slab objects.
694  */
695 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
696 				 struct mem_cgroup *memcg,
697 				 int priority)
698 {
699 	unsigned long ret, freed = 0;
700 	struct shrinker *shrinker;
701 
702 	/*
703 	 * The root memcg might be allocated even though memcg is disabled
704 	 * via "cgroup_disable=memory" boot parameter.  This could make
705 	 * mem_cgroup_is_root() return false, then just run memcg slab
706 	 * shrink, but skip global shrink.  This may result in premature
707 	 * oom.
708 	 */
709 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
710 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
711 
712 	if (!down_read_trylock(&shrinker_rwsem))
713 		goto out;
714 
715 	list_for_each_entry(shrinker, &shrinker_list, list) {
716 		struct shrink_control sc = {
717 			.gfp_mask = gfp_mask,
718 			.nid = nid,
719 			.memcg = memcg,
720 		};
721 
722 		ret = do_shrink_slab(&sc, shrinker, priority);
723 		if (ret == SHRINK_EMPTY)
724 			ret = 0;
725 		freed += ret;
726 		/*
727 		 * Bail out if someone want to register a new shrinker to
728 		 * prevent the regsitration from being stalled for long periods
729 		 * by parallel ongoing shrinking.
730 		 */
731 		if (rwsem_is_contended(&shrinker_rwsem)) {
732 			freed = freed ? : 1;
733 			break;
734 		}
735 	}
736 
737 	up_read(&shrinker_rwsem);
738 out:
739 	cond_resched();
740 	return freed;
741 }
742 
743 void drop_slab_node(int nid)
744 {
745 	unsigned long freed;
746 
747 	do {
748 		struct mem_cgroup *memcg = NULL;
749 
750 		freed = 0;
751 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
752 		do {
753 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
754 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
755 	} while (freed > 10);
756 }
757 
758 void drop_slab(void)
759 {
760 	int nid;
761 
762 	for_each_online_node(nid)
763 		drop_slab_node(nid);
764 }
765 
766 static inline int is_page_cache_freeable(struct page *page)
767 {
768 	/*
769 	 * A freeable page cache page is referenced only by the caller
770 	 * that isolated the page, the page cache and optional buffer
771 	 * heads at page->private.
772 	 */
773 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
774 		HPAGE_PMD_NR : 1;
775 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
776 }
777 
778 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
779 {
780 	if (current->flags & PF_SWAPWRITE)
781 		return 1;
782 	if (!inode_write_congested(inode))
783 		return 1;
784 	if (inode_to_bdi(inode) == current->backing_dev_info)
785 		return 1;
786 	return 0;
787 }
788 
789 /*
790  * We detected a synchronous write error writing a page out.  Probably
791  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
792  * fsync(), msync() or close().
793  *
794  * The tricky part is that after writepage we cannot touch the mapping: nothing
795  * prevents it from being freed up.  But we have a ref on the page and once
796  * that page is locked, the mapping is pinned.
797  *
798  * We're allowed to run sleeping lock_page() here because we know the caller has
799  * __GFP_FS.
800  */
801 static void handle_write_error(struct address_space *mapping,
802 				struct page *page, int error)
803 {
804 	lock_page(page);
805 	if (page_mapping(page) == mapping)
806 		mapping_set_error(mapping, error);
807 	unlock_page(page);
808 }
809 
810 /* possible outcome of pageout() */
811 typedef enum {
812 	/* failed to write page out, page is locked */
813 	PAGE_KEEP,
814 	/* move page to the active list, page is locked */
815 	PAGE_ACTIVATE,
816 	/* page has been sent to the disk successfully, page is unlocked */
817 	PAGE_SUCCESS,
818 	/* page is clean and locked */
819 	PAGE_CLEAN,
820 } pageout_t;
821 
822 /*
823  * pageout is called by shrink_page_list() for each dirty page.
824  * Calls ->writepage().
825  */
826 static pageout_t pageout(struct page *page, struct address_space *mapping,
827 			 struct scan_control *sc)
828 {
829 	/*
830 	 * If the page is dirty, only perform writeback if that write
831 	 * will be non-blocking.  To prevent this allocation from being
832 	 * stalled by pagecache activity.  But note that there may be
833 	 * stalls if we need to run get_block().  We could test
834 	 * PagePrivate for that.
835 	 *
836 	 * If this process is currently in __generic_file_write_iter() against
837 	 * this page's queue, we can perform writeback even if that
838 	 * will block.
839 	 *
840 	 * If the page is swapcache, write it back even if that would
841 	 * block, for some throttling. This happens by accident, because
842 	 * swap_backing_dev_info is bust: it doesn't reflect the
843 	 * congestion state of the swapdevs.  Easy to fix, if needed.
844 	 */
845 	if (!is_page_cache_freeable(page))
846 		return PAGE_KEEP;
847 	if (!mapping) {
848 		/*
849 		 * Some data journaling orphaned pages can have
850 		 * page->mapping == NULL while being dirty with clean buffers.
851 		 */
852 		if (page_has_private(page)) {
853 			if (try_to_free_buffers(page)) {
854 				ClearPageDirty(page);
855 				pr_info("%s: orphaned page\n", __func__);
856 				return PAGE_CLEAN;
857 			}
858 		}
859 		return PAGE_KEEP;
860 	}
861 	if (mapping->a_ops->writepage == NULL)
862 		return PAGE_ACTIVATE;
863 	if (!may_write_to_inode(mapping->host, sc))
864 		return PAGE_KEEP;
865 
866 	if (clear_page_dirty_for_io(page)) {
867 		int res;
868 		struct writeback_control wbc = {
869 			.sync_mode = WB_SYNC_NONE,
870 			.nr_to_write = SWAP_CLUSTER_MAX,
871 			.range_start = 0,
872 			.range_end = LLONG_MAX,
873 			.for_reclaim = 1,
874 		};
875 
876 		SetPageReclaim(page);
877 		res = mapping->a_ops->writepage(page, &wbc);
878 		if (res < 0)
879 			handle_write_error(mapping, page, res);
880 		if (res == AOP_WRITEPAGE_ACTIVATE) {
881 			ClearPageReclaim(page);
882 			return PAGE_ACTIVATE;
883 		}
884 
885 		if (!PageWriteback(page)) {
886 			/* synchronous write or broken a_ops? */
887 			ClearPageReclaim(page);
888 		}
889 		trace_mm_vmscan_writepage(page);
890 		inc_node_page_state(page, NR_VMSCAN_WRITE);
891 		return PAGE_SUCCESS;
892 	}
893 
894 	return PAGE_CLEAN;
895 }
896 
897 /*
898  * Same as remove_mapping, but if the page is removed from the mapping, it
899  * gets returned with a refcount of 0.
900  */
901 static int __remove_mapping(struct address_space *mapping, struct page *page,
902 			    bool reclaimed)
903 {
904 	unsigned long flags;
905 	int refcount;
906 
907 	BUG_ON(!PageLocked(page));
908 	BUG_ON(mapping != page_mapping(page));
909 
910 	xa_lock_irqsave(&mapping->i_pages, flags);
911 	/*
912 	 * The non racy check for a busy page.
913 	 *
914 	 * Must be careful with the order of the tests. When someone has
915 	 * a ref to the page, it may be possible that they dirty it then
916 	 * drop the reference. So if PageDirty is tested before page_count
917 	 * here, then the following race may occur:
918 	 *
919 	 * get_user_pages(&page);
920 	 * [user mapping goes away]
921 	 * write_to(page);
922 	 *				!PageDirty(page)    [good]
923 	 * SetPageDirty(page);
924 	 * put_page(page);
925 	 *				!page_count(page)   [good, discard it]
926 	 *
927 	 * [oops, our write_to data is lost]
928 	 *
929 	 * Reversing the order of the tests ensures such a situation cannot
930 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
931 	 * load is not satisfied before that of page->_refcount.
932 	 *
933 	 * Note that if SetPageDirty is always performed via set_page_dirty,
934 	 * and thus under the i_pages lock, then this ordering is not required.
935 	 */
936 	refcount = 1 + compound_nr(page);
937 	if (!page_ref_freeze(page, refcount))
938 		goto cannot_free;
939 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
940 	if (unlikely(PageDirty(page))) {
941 		page_ref_unfreeze(page, refcount);
942 		goto cannot_free;
943 	}
944 
945 	if (PageSwapCache(page)) {
946 		swp_entry_t swap = { .val = page_private(page) };
947 		mem_cgroup_swapout(page, swap);
948 		__delete_from_swap_cache(page, swap);
949 		xa_unlock_irqrestore(&mapping->i_pages, flags);
950 		put_swap_page(page, swap);
951 	} else {
952 		void (*freepage)(struct page *);
953 		void *shadow = NULL;
954 
955 		freepage = mapping->a_ops->freepage;
956 		/*
957 		 * Remember a shadow entry for reclaimed file cache in
958 		 * order to detect refaults, thus thrashing, later on.
959 		 *
960 		 * But don't store shadows in an address space that is
961 		 * already exiting.  This is not just an optizimation,
962 		 * inode reclaim needs to empty out the radix tree or
963 		 * the nodes are lost.  Don't plant shadows behind its
964 		 * back.
965 		 *
966 		 * We also don't store shadows for DAX mappings because the
967 		 * only page cache pages found in these are zero pages
968 		 * covering holes, and because we don't want to mix DAX
969 		 * exceptional entries and shadow exceptional entries in the
970 		 * same address_space.
971 		 */
972 		if (reclaimed && page_is_file_cache(page) &&
973 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
974 			shadow = workingset_eviction(page);
975 		__delete_from_page_cache(page, shadow);
976 		xa_unlock_irqrestore(&mapping->i_pages, flags);
977 
978 		if (freepage != NULL)
979 			freepage(page);
980 	}
981 
982 	return 1;
983 
984 cannot_free:
985 	xa_unlock_irqrestore(&mapping->i_pages, flags);
986 	return 0;
987 }
988 
989 /*
990  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
991  * someone else has a ref on the page, abort and return 0.  If it was
992  * successfully detached, return 1.  Assumes the caller has a single ref on
993  * this page.
994  */
995 int remove_mapping(struct address_space *mapping, struct page *page)
996 {
997 	if (__remove_mapping(mapping, page, false)) {
998 		/*
999 		 * Unfreezing the refcount with 1 rather than 2 effectively
1000 		 * drops the pagecache ref for us without requiring another
1001 		 * atomic operation.
1002 		 */
1003 		page_ref_unfreeze(page, 1);
1004 		return 1;
1005 	}
1006 	return 0;
1007 }
1008 
1009 /**
1010  * putback_lru_page - put previously isolated page onto appropriate LRU list
1011  * @page: page to be put back to appropriate lru list
1012  *
1013  * Add previously isolated @page to appropriate LRU list.
1014  * Page may still be unevictable for other reasons.
1015  *
1016  * lru_lock must not be held, interrupts must be enabled.
1017  */
1018 void putback_lru_page(struct page *page)
1019 {
1020 	lru_cache_add(page);
1021 	put_page(page);		/* drop ref from isolate */
1022 }
1023 
1024 enum page_references {
1025 	PAGEREF_RECLAIM,
1026 	PAGEREF_RECLAIM_CLEAN,
1027 	PAGEREF_KEEP,
1028 	PAGEREF_ACTIVATE,
1029 };
1030 
1031 static enum page_references page_check_references(struct page *page,
1032 						  struct scan_control *sc)
1033 {
1034 	int referenced_ptes, referenced_page;
1035 	unsigned long vm_flags;
1036 
1037 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038 					  &vm_flags);
1039 	referenced_page = TestClearPageReferenced(page);
1040 
1041 	/*
1042 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1043 	 * move the page to the unevictable list.
1044 	 */
1045 	if (vm_flags & VM_LOCKED)
1046 		return PAGEREF_RECLAIM;
1047 
1048 	if (referenced_ptes) {
1049 		if (PageSwapBacked(page))
1050 			return PAGEREF_ACTIVATE;
1051 		/*
1052 		 * All mapped pages start out with page table
1053 		 * references from the instantiating fault, so we need
1054 		 * to look twice if a mapped file page is used more
1055 		 * than once.
1056 		 *
1057 		 * Mark it and spare it for another trip around the
1058 		 * inactive list.  Another page table reference will
1059 		 * lead to its activation.
1060 		 *
1061 		 * Note: the mark is set for activated pages as well
1062 		 * so that recently deactivated but used pages are
1063 		 * quickly recovered.
1064 		 */
1065 		SetPageReferenced(page);
1066 
1067 		if (referenced_page || referenced_ptes > 1)
1068 			return PAGEREF_ACTIVATE;
1069 
1070 		/*
1071 		 * Activate file-backed executable pages after first usage.
1072 		 */
1073 		if (vm_flags & VM_EXEC)
1074 			return PAGEREF_ACTIVATE;
1075 
1076 		return PAGEREF_KEEP;
1077 	}
1078 
1079 	/* Reclaim if clean, defer dirty pages to writeback */
1080 	if (referenced_page && !PageSwapBacked(page))
1081 		return PAGEREF_RECLAIM_CLEAN;
1082 
1083 	return PAGEREF_RECLAIM;
1084 }
1085 
1086 /* Check if a page is dirty or under writeback */
1087 static void page_check_dirty_writeback(struct page *page,
1088 				       bool *dirty, bool *writeback)
1089 {
1090 	struct address_space *mapping;
1091 
1092 	/*
1093 	 * Anonymous pages are not handled by flushers and must be written
1094 	 * from reclaim context. Do not stall reclaim based on them
1095 	 */
1096 	if (!page_is_file_cache(page) ||
1097 	    (PageAnon(page) && !PageSwapBacked(page))) {
1098 		*dirty = false;
1099 		*writeback = false;
1100 		return;
1101 	}
1102 
1103 	/* By default assume that the page flags are accurate */
1104 	*dirty = PageDirty(page);
1105 	*writeback = PageWriteback(page);
1106 
1107 	/* Verify dirty/writeback state if the filesystem supports it */
1108 	if (!page_has_private(page))
1109 		return;
1110 
1111 	mapping = page_mapping(page);
1112 	if (mapping && mapping->a_ops->is_dirty_writeback)
1113 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1114 }
1115 
1116 /*
1117  * shrink_page_list() returns the number of reclaimed pages
1118  */
1119 static unsigned long shrink_page_list(struct list_head *page_list,
1120 				      struct pglist_data *pgdat,
1121 				      struct scan_control *sc,
1122 				      enum ttu_flags ttu_flags,
1123 				      struct reclaim_stat *stat,
1124 				      bool ignore_references)
1125 {
1126 	LIST_HEAD(ret_pages);
1127 	LIST_HEAD(free_pages);
1128 	unsigned nr_reclaimed = 0;
1129 	unsigned pgactivate = 0;
1130 
1131 	memset(stat, 0, sizeof(*stat));
1132 	cond_resched();
1133 
1134 	while (!list_empty(page_list)) {
1135 		struct address_space *mapping;
1136 		struct page *page;
1137 		int may_enter_fs;
1138 		enum page_references references = PAGEREF_RECLAIM;
1139 		bool dirty, writeback;
1140 		unsigned int nr_pages;
1141 
1142 		cond_resched();
1143 
1144 		page = lru_to_page(page_list);
1145 		list_del(&page->lru);
1146 
1147 		if (!trylock_page(page))
1148 			goto keep;
1149 
1150 		VM_BUG_ON_PAGE(PageActive(page), page);
1151 
1152 		nr_pages = compound_nr(page);
1153 
1154 		/* Account the number of base pages even though THP */
1155 		sc->nr_scanned += nr_pages;
1156 
1157 		if (unlikely(!page_evictable(page)))
1158 			goto activate_locked;
1159 
1160 		if (!sc->may_unmap && page_mapped(page))
1161 			goto keep_locked;
1162 
1163 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165 
1166 		/*
1167 		 * The number of dirty pages determines if a node is marked
1168 		 * reclaim_congested which affects wait_iff_congested. kswapd
1169 		 * will stall and start writing pages if the tail of the LRU
1170 		 * is all dirty unqueued pages.
1171 		 */
1172 		page_check_dirty_writeback(page, &dirty, &writeback);
1173 		if (dirty || writeback)
1174 			stat->nr_dirty++;
1175 
1176 		if (dirty && !writeback)
1177 			stat->nr_unqueued_dirty++;
1178 
1179 		/*
1180 		 * Treat this page as congested if the underlying BDI is or if
1181 		 * pages are cycling through the LRU so quickly that the
1182 		 * pages marked for immediate reclaim are making it to the
1183 		 * end of the LRU a second time.
1184 		 */
1185 		mapping = page_mapping(page);
1186 		if (((dirty || writeback) && mapping &&
1187 		     inode_write_congested(mapping->host)) ||
1188 		    (writeback && PageReclaim(page)))
1189 			stat->nr_congested++;
1190 
1191 		/*
1192 		 * If a page at the tail of the LRU is under writeback, there
1193 		 * are three cases to consider.
1194 		 *
1195 		 * 1) If reclaim is encountering an excessive number of pages
1196 		 *    under writeback and this page is both under writeback and
1197 		 *    PageReclaim then it indicates that pages are being queued
1198 		 *    for IO but are being recycled through the LRU before the
1199 		 *    IO can complete. Waiting on the page itself risks an
1200 		 *    indefinite stall if it is impossible to writeback the
1201 		 *    page due to IO error or disconnected storage so instead
1202 		 *    note that the LRU is being scanned too quickly and the
1203 		 *    caller can stall after page list has been processed.
1204 		 *
1205 		 * 2) Global or new memcg reclaim encounters a page that is
1206 		 *    not marked for immediate reclaim, or the caller does not
1207 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208 		 *    not to fs). In this case mark the page for immediate
1209 		 *    reclaim and continue scanning.
1210 		 *
1211 		 *    Require may_enter_fs because we would wait on fs, which
1212 		 *    may not have submitted IO yet. And the loop driver might
1213 		 *    enter reclaim, and deadlock if it waits on a page for
1214 		 *    which it is needed to do the write (loop masks off
1215 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1216 		 *    would probably show more reasons.
1217 		 *
1218 		 * 3) Legacy memcg encounters a page that is already marked
1219 		 *    PageReclaim. memcg does not have any dirty pages
1220 		 *    throttling so we could easily OOM just because too many
1221 		 *    pages are in writeback and there is nothing else to
1222 		 *    reclaim. Wait for the writeback to complete.
1223 		 *
1224 		 * In cases 1) and 2) we activate the pages to get them out of
1225 		 * the way while we continue scanning for clean pages on the
1226 		 * inactive list and refilling from the active list. The
1227 		 * observation here is that waiting for disk writes is more
1228 		 * expensive than potentially causing reloads down the line.
1229 		 * Since they're marked for immediate reclaim, they won't put
1230 		 * memory pressure on the cache working set any longer than it
1231 		 * takes to write them to disk.
1232 		 */
1233 		if (PageWriteback(page)) {
1234 			/* Case 1 above */
1235 			if (current_is_kswapd() &&
1236 			    PageReclaim(page) &&
1237 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238 				stat->nr_immediate++;
1239 				goto activate_locked;
1240 
1241 			/* Case 2 above */
1242 			} else if (sane_reclaim(sc) ||
1243 			    !PageReclaim(page) || !may_enter_fs) {
1244 				/*
1245 				 * This is slightly racy - end_page_writeback()
1246 				 * might have just cleared PageReclaim, then
1247 				 * setting PageReclaim here end up interpreted
1248 				 * as PageReadahead - but that does not matter
1249 				 * enough to care.  What we do want is for this
1250 				 * page to have PageReclaim set next time memcg
1251 				 * reclaim reaches the tests above, so it will
1252 				 * then wait_on_page_writeback() to avoid OOM;
1253 				 * and it's also appropriate in global reclaim.
1254 				 */
1255 				SetPageReclaim(page);
1256 				stat->nr_writeback++;
1257 				goto activate_locked;
1258 
1259 			/* Case 3 above */
1260 			} else {
1261 				unlock_page(page);
1262 				wait_on_page_writeback(page);
1263 				/* then go back and try same page again */
1264 				list_add_tail(&page->lru, page_list);
1265 				continue;
1266 			}
1267 		}
1268 
1269 		if (!ignore_references)
1270 			references = page_check_references(page, sc);
1271 
1272 		switch (references) {
1273 		case PAGEREF_ACTIVATE:
1274 			goto activate_locked;
1275 		case PAGEREF_KEEP:
1276 			stat->nr_ref_keep += nr_pages;
1277 			goto keep_locked;
1278 		case PAGEREF_RECLAIM:
1279 		case PAGEREF_RECLAIM_CLEAN:
1280 			; /* try to reclaim the page below */
1281 		}
1282 
1283 		/*
1284 		 * Anonymous process memory has backing store?
1285 		 * Try to allocate it some swap space here.
1286 		 * Lazyfree page could be freed directly
1287 		 */
1288 		if (PageAnon(page) && PageSwapBacked(page)) {
1289 			if (!PageSwapCache(page)) {
1290 				if (!(sc->gfp_mask & __GFP_IO))
1291 					goto keep_locked;
1292 				if (PageTransHuge(page)) {
1293 					/* cannot split THP, skip it */
1294 					if (!can_split_huge_page(page, NULL))
1295 						goto activate_locked;
1296 					/*
1297 					 * Split pages without a PMD map right
1298 					 * away. Chances are some or all of the
1299 					 * tail pages can be freed without IO.
1300 					 */
1301 					if (!compound_mapcount(page) &&
1302 					    split_huge_page_to_list(page,
1303 								    page_list))
1304 						goto activate_locked;
1305 				}
1306 				if (!add_to_swap(page)) {
1307 					if (!PageTransHuge(page))
1308 						goto activate_locked_split;
1309 					/* Fallback to swap normal pages */
1310 					if (split_huge_page_to_list(page,
1311 								    page_list))
1312 						goto activate_locked;
1313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314 					count_vm_event(THP_SWPOUT_FALLBACK);
1315 #endif
1316 					if (!add_to_swap(page))
1317 						goto activate_locked_split;
1318 				}
1319 
1320 				may_enter_fs = 1;
1321 
1322 				/* Adding to swap updated mapping */
1323 				mapping = page_mapping(page);
1324 			}
1325 		} else if (unlikely(PageTransHuge(page))) {
1326 			/* Split file THP */
1327 			if (split_huge_page_to_list(page, page_list))
1328 				goto keep_locked;
1329 		}
1330 
1331 		/*
1332 		 * THP may get split above, need minus tail pages and update
1333 		 * nr_pages to avoid accounting tail pages twice.
1334 		 *
1335 		 * The tail pages that are added into swap cache successfully
1336 		 * reach here.
1337 		 */
1338 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1339 			sc->nr_scanned -= (nr_pages - 1);
1340 			nr_pages = 1;
1341 		}
1342 
1343 		/*
1344 		 * The page is mapped into the page tables of one or more
1345 		 * processes. Try to unmap it here.
1346 		 */
1347 		if (page_mapped(page)) {
1348 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1349 
1350 			if (unlikely(PageTransHuge(page)))
1351 				flags |= TTU_SPLIT_HUGE_PMD;
1352 			if (!try_to_unmap(page, flags)) {
1353 				stat->nr_unmap_fail += nr_pages;
1354 				goto activate_locked;
1355 			}
1356 		}
1357 
1358 		if (PageDirty(page)) {
1359 			/*
1360 			 * Only kswapd can writeback filesystem pages
1361 			 * to avoid risk of stack overflow. But avoid
1362 			 * injecting inefficient single-page IO into
1363 			 * flusher writeback as much as possible: only
1364 			 * write pages when we've encountered many
1365 			 * dirty pages, and when we've already scanned
1366 			 * the rest of the LRU for clean pages and see
1367 			 * the same dirty pages again (PageReclaim).
1368 			 */
1369 			if (page_is_file_cache(page) &&
1370 			    (!current_is_kswapd() || !PageReclaim(page) ||
1371 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372 				/*
1373 				 * Immediately reclaim when written back.
1374 				 * Similar in principal to deactivate_page()
1375 				 * except we already have the page isolated
1376 				 * and know it's dirty
1377 				 */
1378 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379 				SetPageReclaim(page);
1380 
1381 				goto activate_locked;
1382 			}
1383 
1384 			if (references == PAGEREF_RECLAIM_CLEAN)
1385 				goto keep_locked;
1386 			if (!may_enter_fs)
1387 				goto keep_locked;
1388 			if (!sc->may_writepage)
1389 				goto keep_locked;
1390 
1391 			/*
1392 			 * Page is dirty. Flush the TLB if a writable entry
1393 			 * potentially exists to avoid CPU writes after IO
1394 			 * starts and then write it out here.
1395 			 */
1396 			try_to_unmap_flush_dirty();
1397 			switch (pageout(page, mapping, sc)) {
1398 			case PAGE_KEEP:
1399 				goto keep_locked;
1400 			case PAGE_ACTIVATE:
1401 				goto activate_locked;
1402 			case PAGE_SUCCESS:
1403 				if (PageWriteback(page))
1404 					goto keep;
1405 				if (PageDirty(page))
1406 					goto keep;
1407 
1408 				/*
1409 				 * A synchronous write - probably a ramdisk.  Go
1410 				 * ahead and try to reclaim the page.
1411 				 */
1412 				if (!trylock_page(page))
1413 					goto keep;
1414 				if (PageDirty(page) || PageWriteback(page))
1415 					goto keep_locked;
1416 				mapping = page_mapping(page);
1417 			case PAGE_CLEAN:
1418 				; /* try to free the page below */
1419 			}
1420 		}
1421 
1422 		/*
1423 		 * If the page has buffers, try to free the buffer mappings
1424 		 * associated with this page. If we succeed we try to free
1425 		 * the page as well.
1426 		 *
1427 		 * We do this even if the page is PageDirty().
1428 		 * try_to_release_page() does not perform I/O, but it is
1429 		 * possible for a page to have PageDirty set, but it is actually
1430 		 * clean (all its buffers are clean).  This happens if the
1431 		 * buffers were written out directly, with submit_bh(). ext3
1432 		 * will do this, as well as the blockdev mapping.
1433 		 * try_to_release_page() will discover that cleanness and will
1434 		 * drop the buffers and mark the page clean - it can be freed.
1435 		 *
1436 		 * Rarely, pages can have buffers and no ->mapping.  These are
1437 		 * the pages which were not successfully invalidated in
1438 		 * truncate_complete_page().  We try to drop those buffers here
1439 		 * and if that worked, and the page is no longer mapped into
1440 		 * process address space (page_count == 1) it can be freed.
1441 		 * Otherwise, leave the page on the LRU so it is swappable.
1442 		 */
1443 		if (page_has_private(page)) {
1444 			if (!try_to_release_page(page, sc->gfp_mask))
1445 				goto activate_locked;
1446 			if (!mapping && page_count(page) == 1) {
1447 				unlock_page(page);
1448 				if (put_page_testzero(page))
1449 					goto free_it;
1450 				else {
1451 					/*
1452 					 * rare race with speculative reference.
1453 					 * the speculative reference will free
1454 					 * this page shortly, so we may
1455 					 * increment nr_reclaimed here (and
1456 					 * leave it off the LRU).
1457 					 */
1458 					nr_reclaimed++;
1459 					continue;
1460 				}
1461 			}
1462 		}
1463 
1464 		if (PageAnon(page) && !PageSwapBacked(page)) {
1465 			/* follow __remove_mapping for reference */
1466 			if (!page_ref_freeze(page, 1))
1467 				goto keep_locked;
1468 			if (PageDirty(page)) {
1469 				page_ref_unfreeze(page, 1);
1470 				goto keep_locked;
1471 			}
1472 
1473 			count_vm_event(PGLAZYFREED);
1474 			count_memcg_page_event(page, PGLAZYFREED);
1475 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1476 			goto keep_locked;
1477 
1478 		unlock_page(page);
1479 free_it:
1480 		/*
1481 		 * THP may get swapped out in a whole, need account
1482 		 * all base pages.
1483 		 */
1484 		nr_reclaimed += nr_pages;
1485 
1486 		/*
1487 		 * Is there need to periodically free_page_list? It would
1488 		 * appear not as the counts should be low
1489 		 */
1490 		if (unlikely(PageTransHuge(page)))
1491 			(*get_compound_page_dtor(page))(page);
1492 		else
1493 			list_add(&page->lru, &free_pages);
1494 		continue;
1495 
1496 activate_locked_split:
1497 		/*
1498 		 * The tail pages that are failed to add into swap cache
1499 		 * reach here.  Fixup nr_scanned and nr_pages.
1500 		 */
1501 		if (nr_pages > 1) {
1502 			sc->nr_scanned -= (nr_pages - 1);
1503 			nr_pages = 1;
1504 		}
1505 activate_locked:
1506 		/* Not a candidate for swapping, so reclaim swap space. */
1507 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1508 						PageMlocked(page)))
1509 			try_to_free_swap(page);
1510 		VM_BUG_ON_PAGE(PageActive(page), page);
1511 		if (!PageMlocked(page)) {
1512 			int type = page_is_file_cache(page);
1513 			SetPageActive(page);
1514 			stat->nr_activate[type] += nr_pages;
1515 			count_memcg_page_event(page, PGACTIVATE);
1516 		}
1517 keep_locked:
1518 		unlock_page(page);
1519 keep:
1520 		list_add(&page->lru, &ret_pages);
1521 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1522 	}
1523 
1524 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1525 
1526 	mem_cgroup_uncharge_list(&free_pages);
1527 	try_to_unmap_flush();
1528 	free_unref_page_list(&free_pages);
1529 
1530 	list_splice(&ret_pages, page_list);
1531 	count_vm_events(PGACTIVATE, pgactivate);
1532 
1533 	return nr_reclaimed;
1534 }
1535 
1536 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1537 					    struct list_head *page_list)
1538 {
1539 	struct scan_control sc = {
1540 		.gfp_mask = GFP_KERNEL,
1541 		.priority = DEF_PRIORITY,
1542 		.may_unmap = 1,
1543 	};
1544 	struct reclaim_stat dummy_stat;
1545 	unsigned long ret;
1546 	struct page *page, *next;
1547 	LIST_HEAD(clean_pages);
1548 
1549 	list_for_each_entry_safe(page, next, page_list, lru) {
1550 		if (page_is_file_cache(page) && !PageDirty(page) &&
1551 		    !__PageMovable(page) && !PageUnevictable(page)) {
1552 			ClearPageActive(page);
1553 			list_move(&page->lru, &clean_pages);
1554 		}
1555 	}
1556 
1557 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1558 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1559 	list_splice(&clean_pages, page_list);
1560 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Attempt to remove the specified page from its LRU.  Only take this page
1566  * if it is of the appropriate PageActive status.  Pages which are being
1567  * freed elsewhere are also ignored.
1568  *
1569  * page:	page to consider
1570  * mode:	one of the LRU isolation modes defined above
1571  *
1572  * returns 0 on success, -ve errno on failure.
1573  */
1574 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1575 {
1576 	int ret = -EINVAL;
1577 
1578 	/* Only take pages on the LRU. */
1579 	if (!PageLRU(page))
1580 		return ret;
1581 
1582 	/* Compaction should not handle unevictable pages but CMA can do so */
1583 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1584 		return ret;
1585 
1586 	ret = -EBUSY;
1587 
1588 	/*
1589 	 * To minimise LRU disruption, the caller can indicate that it only
1590 	 * wants to isolate pages it will be able to operate on without
1591 	 * blocking - clean pages for the most part.
1592 	 *
1593 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1594 	 * that it is possible to migrate without blocking
1595 	 */
1596 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1597 		/* All the caller can do on PageWriteback is block */
1598 		if (PageWriteback(page))
1599 			return ret;
1600 
1601 		if (PageDirty(page)) {
1602 			struct address_space *mapping;
1603 			bool migrate_dirty;
1604 
1605 			/*
1606 			 * Only pages without mappings or that have a
1607 			 * ->migratepage callback are possible to migrate
1608 			 * without blocking. However, we can be racing with
1609 			 * truncation so it's necessary to lock the page
1610 			 * to stabilise the mapping as truncation holds
1611 			 * the page lock until after the page is removed
1612 			 * from the page cache.
1613 			 */
1614 			if (!trylock_page(page))
1615 				return ret;
1616 
1617 			mapping = page_mapping(page);
1618 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1619 			unlock_page(page);
1620 			if (!migrate_dirty)
1621 				return ret;
1622 		}
1623 	}
1624 
1625 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1626 		return ret;
1627 
1628 	if (likely(get_page_unless_zero(page))) {
1629 		/*
1630 		 * Be careful not to clear PageLRU until after we're
1631 		 * sure the page is not being freed elsewhere -- the
1632 		 * page release code relies on it.
1633 		 */
1634 		ClearPageLRU(page);
1635 		ret = 0;
1636 	}
1637 
1638 	return ret;
1639 }
1640 
1641 
1642 /*
1643  * Update LRU sizes after isolating pages. The LRU size updates must
1644  * be complete before mem_cgroup_update_lru_size due to a santity check.
1645  */
1646 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1647 			enum lru_list lru, unsigned long *nr_zone_taken)
1648 {
1649 	int zid;
1650 
1651 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1652 		if (!nr_zone_taken[zid])
1653 			continue;
1654 
1655 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1656 #ifdef CONFIG_MEMCG
1657 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1658 #endif
1659 	}
1660 
1661 }
1662 
1663 /**
1664  * pgdat->lru_lock is heavily contended.  Some of the functions that
1665  * shrink the lists perform better by taking out a batch of pages
1666  * and working on them outside the LRU lock.
1667  *
1668  * For pagecache intensive workloads, this function is the hottest
1669  * spot in the kernel (apart from copy_*_user functions).
1670  *
1671  * Appropriate locks must be held before calling this function.
1672  *
1673  * @nr_to_scan:	The number of eligible pages to look through on the list.
1674  * @lruvec:	The LRU vector to pull pages from.
1675  * @dst:	The temp list to put pages on to.
1676  * @nr_scanned:	The number of pages that were scanned.
1677  * @sc:		The scan_control struct for this reclaim session
1678  * @mode:	One of the LRU isolation modes
1679  * @lru:	LRU list id for isolating
1680  *
1681  * returns how many pages were moved onto *@dst.
1682  */
1683 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1684 		struct lruvec *lruvec, struct list_head *dst,
1685 		unsigned long *nr_scanned, struct scan_control *sc,
1686 		enum lru_list lru)
1687 {
1688 	struct list_head *src = &lruvec->lists[lru];
1689 	unsigned long nr_taken = 0;
1690 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1691 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1692 	unsigned long skipped = 0;
1693 	unsigned long scan, total_scan, nr_pages;
1694 	LIST_HEAD(pages_skipped);
1695 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1696 
1697 	total_scan = 0;
1698 	scan = 0;
1699 	while (scan < nr_to_scan && !list_empty(src)) {
1700 		struct page *page;
1701 
1702 		page = lru_to_page(src);
1703 		prefetchw_prev_lru_page(page, src, flags);
1704 
1705 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1706 
1707 		nr_pages = compound_nr(page);
1708 		total_scan += nr_pages;
1709 
1710 		if (page_zonenum(page) > sc->reclaim_idx) {
1711 			list_move(&page->lru, &pages_skipped);
1712 			nr_skipped[page_zonenum(page)] += nr_pages;
1713 			continue;
1714 		}
1715 
1716 		/*
1717 		 * Do not count skipped pages because that makes the function
1718 		 * return with no isolated pages if the LRU mostly contains
1719 		 * ineligible pages.  This causes the VM to not reclaim any
1720 		 * pages, triggering a premature OOM.
1721 		 *
1722 		 * Account all tail pages of THP.  This would not cause
1723 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1724 		 * only when the page is being freed somewhere else.
1725 		 */
1726 		scan += nr_pages;
1727 		switch (__isolate_lru_page(page, mode)) {
1728 		case 0:
1729 			nr_taken += nr_pages;
1730 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1731 			list_move(&page->lru, dst);
1732 			break;
1733 
1734 		case -EBUSY:
1735 			/* else it is being freed elsewhere */
1736 			list_move(&page->lru, src);
1737 			continue;
1738 
1739 		default:
1740 			BUG();
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * Splice any skipped pages to the start of the LRU list. Note that
1746 	 * this disrupts the LRU order when reclaiming for lower zones but
1747 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1748 	 * scanning would soon rescan the same pages to skip and put the
1749 	 * system at risk of premature OOM.
1750 	 */
1751 	if (!list_empty(&pages_skipped)) {
1752 		int zid;
1753 
1754 		list_splice(&pages_skipped, src);
1755 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1756 			if (!nr_skipped[zid])
1757 				continue;
1758 
1759 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1760 			skipped += nr_skipped[zid];
1761 		}
1762 	}
1763 	*nr_scanned = total_scan;
1764 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1765 				    total_scan, skipped, nr_taken, mode, lru);
1766 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1767 	return nr_taken;
1768 }
1769 
1770 /**
1771  * isolate_lru_page - tries to isolate a page from its LRU list
1772  * @page: page to isolate from its LRU list
1773  *
1774  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1775  * vmstat statistic corresponding to whatever LRU list the page was on.
1776  *
1777  * Returns 0 if the page was removed from an LRU list.
1778  * Returns -EBUSY if the page was not on an LRU list.
1779  *
1780  * The returned page will have PageLRU() cleared.  If it was found on
1781  * the active list, it will have PageActive set.  If it was found on
1782  * the unevictable list, it will have the PageUnevictable bit set. That flag
1783  * may need to be cleared by the caller before letting the page go.
1784  *
1785  * The vmstat statistic corresponding to the list on which the page was
1786  * found will be decremented.
1787  *
1788  * Restrictions:
1789  *
1790  * (1) Must be called with an elevated refcount on the page. This is a
1791  *     fundamentnal difference from isolate_lru_pages (which is called
1792  *     without a stable reference).
1793  * (2) the lru_lock must not be held.
1794  * (3) interrupts must be enabled.
1795  */
1796 int isolate_lru_page(struct page *page)
1797 {
1798 	int ret = -EBUSY;
1799 
1800 	VM_BUG_ON_PAGE(!page_count(page), page);
1801 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1802 
1803 	if (PageLRU(page)) {
1804 		pg_data_t *pgdat = page_pgdat(page);
1805 		struct lruvec *lruvec;
1806 
1807 		spin_lock_irq(&pgdat->lru_lock);
1808 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1809 		if (PageLRU(page)) {
1810 			int lru = page_lru(page);
1811 			get_page(page);
1812 			ClearPageLRU(page);
1813 			del_page_from_lru_list(page, lruvec, lru);
1814 			ret = 0;
1815 		}
1816 		spin_unlock_irq(&pgdat->lru_lock);
1817 	}
1818 	return ret;
1819 }
1820 
1821 /*
1822  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1823  * then get resheduled. When there are massive number of tasks doing page
1824  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1825  * the LRU list will go small and be scanned faster than necessary, leading to
1826  * unnecessary swapping, thrashing and OOM.
1827  */
1828 static int too_many_isolated(struct pglist_data *pgdat, int file,
1829 		struct scan_control *sc)
1830 {
1831 	unsigned long inactive, isolated;
1832 
1833 	if (current_is_kswapd())
1834 		return 0;
1835 
1836 	if (!sane_reclaim(sc))
1837 		return 0;
1838 
1839 	if (file) {
1840 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1841 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1842 	} else {
1843 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1844 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1845 	}
1846 
1847 	/*
1848 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1849 	 * won't get blocked by normal direct-reclaimers, forming a circular
1850 	 * deadlock.
1851 	 */
1852 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1853 		inactive >>= 3;
1854 
1855 	return isolated > inactive;
1856 }
1857 
1858 /*
1859  * This moves pages from @list to corresponding LRU list.
1860  *
1861  * We move them the other way if the page is referenced by one or more
1862  * processes, from rmap.
1863  *
1864  * If the pages are mostly unmapped, the processing is fast and it is
1865  * appropriate to hold zone_lru_lock across the whole operation.  But if
1866  * the pages are mapped, the processing is slow (page_referenced()) so we
1867  * should drop zone_lru_lock around each page.  It's impossible to balance
1868  * this, so instead we remove the pages from the LRU while processing them.
1869  * It is safe to rely on PG_active against the non-LRU pages in here because
1870  * nobody will play with that bit on a non-LRU page.
1871  *
1872  * The downside is that we have to touch page->_refcount against each page.
1873  * But we had to alter page->flags anyway.
1874  *
1875  * Returns the number of pages moved to the given lruvec.
1876  */
1877 
1878 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1879 						     struct list_head *list)
1880 {
1881 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1882 	int nr_pages, nr_moved = 0;
1883 	LIST_HEAD(pages_to_free);
1884 	struct page *page;
1885 	enum lru_list lru;
1886 
1887 	while (!list_empty(list)) {
1888 		page = lru_to_page(list);
1889 		VM_BUG_ON_PAGE(PageLRU(page), page);
1890 		if (unlikely(!page_evictable(page))) {
1891 			list_del(&page->lru);
1892 			spin_unlock_irq(&pgdat->lru_lock);
1893 			putback_lru_page(page);
1894 			spin_lock_irq(&pgdat->lru_lock);
1895 			continue;
1896 		}
1897 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1898 
1899 		SetPageLRU(page);
1900 		lru = page_lru(page);
1901 
1902 		nr_pages = hpage_nr_pages(page);
1903 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1904 		list_move(&page->lru, &lruvec->lists[lru]);
1905 
1906 		if (put_page_testzero(page)) {
1907 			__ClearPageLRU(page);
1908 			__ClearPageActive(page);
1909 			del_page_from_lru_list(page, lruvec, lru);
1910 
1911 			if (unlikely(PageCompound(page))) {
1912 				spin_unlock_irq(&pgdat->lru_lock);
1913 				(*get_compound_page_dtor(page))(page);
1914 				spin_lock_irq(&pgdat->lru_lock);
1915 			} else
1916 				list_add(&page->lru, &pages_to_free);
1917 		} else {
1918 			nr_moved += nr_pages;
1919 		}
1920 	}
1921 
1922 	/*
1923 	 * To save our caller's stack, now use input list for pages to free.
1924 	 */
1925 	list_splice(&pages_to_free, list);
1926 
1927 	return nr_moved;
1928 }
1929 
1930 /*
1931  * If a kernel thread (such as nfsd for loop-back mounts) services
1932  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1933  * In that case we should only throttle if the backing device it is
1934  * writing to is congested.  In other cases it is safe to throttle.
1935  */
1936 static int current_may_throttle(void)
1937 {
1938 	return !(current->flags & PF_LESS_THROTTLE) ||
1939 		current->backing_dev_info == NULL ||
1940 		bdi_write_congested(current->backing_dev_info);
1941 }
1942 
1943 /*
1944  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1945  * of reclaimed pages
1946  */
1947 static noinline_for_stack unsigned long
1948 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1949 		     struct scan_control *sc, enum lru_list lru)
1950 {
1951 	LIST_HEAD(page_list);
1952 	unsigned long nr_scanned;
1953 	unsigned long nr_reclaimed = 0;
1954 	unsigned long nr_taken;
1955 	struct reclaim_stat stat;
1956 	int file = is_file_lru(lru);
1957 	enum vm_event_item item;
1958 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1959 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1960 	bool stalled = false;
1961 
1962 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1963 		if (stalled)
1964 			return 0;
1965 
1966 		/* wait a bit for the reclaimer. */
1967 		msleep(100);
1968 		stalled = true;
1969 
1970 		/* We are about to die and free our memory. Return now. */
1971 		if (fatal_signal_pending(current))
1972 			return SWAP_CLUSTER_MAX;
1973 	}
1974 
1975 	lru_add_drain();
1976 
1977 	spin_lock_irq(&pgdat->lru_lock);
1978 
1979 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1980 				     &nr_scanned, sc, lru);
1981 
1982 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1983 	reclaim_stat->recent_scanned[file] += nr_taken;
1984 
1985 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1986 	if (global_reclaim(sc))
1987 		__count_vm_events(item, nr_scanned);
1988 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1989 	spin_unlock_irq(&pgdat->lru_lock);
1990 
1991 	if (nr_taken == 0)
1992 		return 0;
1993 
1994 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1995 				&stat, false);
1996 
1997 	spin_lock_irq(&pgdat->lru_lock);
1998 
1999 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2000 	if (global_reclaim(sc))
2001 		__count_vm_events(item, nr_reclaimed);
2002 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2003 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2004 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2005 
2006 	move_pages_to_lru(lruvec, &page_list);
2007 
2008 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2009 
2010 	spin_unlock_irq(&pgdat->lru_lock);
2011 
2012 	mem_cgroup_uncharge_list(&page_list);
2013 	free_unref_page_list(&page_list);
2014 
2015 	/*
2016 	 * If dirty pages are scanned that are not queued for IO, it
2017 	 * implies that flushers are not doing their job. This can
2018 	 * happen when memory pressure pushes dirty pages to the end of
2019 	 * the LRU before the dirty limits are breached and the dirty
2020 	 * data has expired. It can also happen when the proportion of
2021 	 * dirty pages grows not through writes but through memory
2022 	 * pressure reclaiming all the clean cache. And in some cases,
2023 	 * the flushers simply cannot keep up with the allocation
2024 	 * rate. Nudge the flusher threads in case they are asleep.
2025 	 */
2026 	if (stat.nr_unqueued_dirty == nr_taken)
2027 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2028 
2029 	sc->nr.dirty += stat.nr_dirty;
2030 	sc->nr.congested += stat.nr_congested;
2031 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2032 	sc->nr.writeback += stat.nr_writeback;
2033 	sc->nr.immediate += stat.nr_immediate;
2034 	sc->nr.taken += nr_taken;
2035 	if (file)
2036 		sc->nr.file_taken += nr_taken;
2037 
2038 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2039 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2040 	return nr_reclaimed;
2041 }
2042 
2043 static void shrink_active_list(unsigned long nr_to_scan,
2044 			       struct lruvec *lruvec,
2045 			       struct scan_control *sc,
2046 			       enum lru_list lru)
2047 {
2048 	unsigned long nr_taken;
2049 	unsigned long nr_scanned;
2050 	unsigned long vm_flags;
2051 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2052 	LIST_HEAD(l_active);
2053 	LIST_HEAD(l_inactive);
2054 	struct page *page;
2055 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2056 	unsigned nr_deactivate, nr_activate;
2057 	unsigned nr_rotated = 0;
2058 	int file = is_file_lru(lru);
2059 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2060 
2061 	lru_add_drain();
2062 
2063 	spin_lock_irq(&pgdat->lru_lock);
2064 
2065 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2066 				     &nr_scanned, sc, lru);
2067 
2068 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2069 	reclaim_stat->recent_scanned[file] += nr_taken;
2070 
2071 	__count_vm_events(PGREFILL, nr_scanned);
2072 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2073 
2074 	spin_unlock_irq(&pgdat->lru_lock);
2075 
2076 	while (!list_empty(&l_hold)) {
2077 		cond_resched();
2078 		page = lru_to_page(&l_hold);
2079 		list_del(&page->lru);
2080 
2081 		if (unlikely(!page_evictable(page))) {
2082 			putback_lru_page(page);
2083 			continue;
2084 		}
2085 
2086 		if (unlikely(buffer_heads_over_limit)) {
2087 			if (page_has_private(page) && trylock_page(page)) {
2088 				if (page_has_private(page))
2089 					try_to_release_page(page, 0);
2090 				unlock_page(page);
2091 			}
2092 		}
2093 
2094 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2095 				    &vm_flags)) {
2096 			nr_rotated += hpage_nr_pages(page);
2097 			/*
2098 			 * Identify referenced, file-backed active pages and
2099 			 * give them one more trip around the active list. So
2100 			 * that executable code get better chances to stay in
2101 			 * memory under moderate memory pressure.  Anon pages
2102 			 * are not likely to be evicted by use-once streaming
2103 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2104 			 * so we ignore them here.
2105 			 */
2106 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2107 				list_add(&page->lru, &l_active);
2108 				continue;
2109 			}
2110 		}
2111 
2112 		ClearPageActive(page);	/* we are de-activating */
2113 		SetPageWorkingset(page);
2114 		list_add(&page->lru, &l_inactive);
2115 	}
2116 
2117 	/*
2118 	 * Move pages back to the lru list.
2119 	 */
2120 	spin_lock_irq(&pgdat->lru_lock);
2121 	/*
2122 	 * Count referenced pages from currently used mappings as rotated,
2123 	 * even though only some of them are actually re-activated.  This
2124 	 * helps balance scan pressure between file and anonymous pages in
2125 	 * get_scan_count.
2126 	 */
2127 	reclaim_stat->recent_rotated[file] += nr_rotated;
2128 
2129 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2130 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2131 	/* Keep all free pages in l_active list */
2132 	list_splice(&l_inactive, &l_active);
2133 
2134 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2135 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2136 
2137 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2138 	spin_unlock_irq(&pgdat->lru_lock);
2139 
2140 	mem_cgroup_uncharge_list(&l_active);
2141 	free_unref_page_list(&l_active);
2142 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2143 			nr_deactivate, nr_rotated, sc->priority, file);
2144 }
2145 
2146 unsigned long reclaim_pages(struct list_head *page_list)
2147 {
2148 	int nid = -1;
2149 	unsigned long nr_reclaimed = 0;
2150 	LIST_HEAD(node_page_list);
2151 	struct reclaim_stat dummy_stat;
2152 	struct page *page;
2153 	struct scan_control sc = {
2154 		.gfp_mask = GFP_KERNEL,
2155 		.priority = DEF_PRIORITY,
2156 		.may_writepage = 1,
2157 		.may_unmap = 1,
2158 		.may_swap = 1,
2159 	};
2160 
2161 	while (!list_empty(page_list)) {
2162 		page = lru_to_page(page_list);
2163 		if (nid == -1) {
2164 			nid = page_to_nid(page);
2165 			INIT_LIST_HEAD(&node_page_list);
2166 		}
2167 
2168 		if (nid == page_to_nid(page)) {
2169 			ClearPageActive(page);
2170 			list_move(&page->lru, &node_page_list);
2171 			continue;
2172 		}
2173 
2174 		nr_reclaimed += shrink_page_list(&node_page_list,
2175 						NODE_DATA(nid),
2176 						&sc, 0,
2177 						&dummy_stat, false);
2178 		while (!list_empty(&node_page_list)) {
2179 			page = lru_to_page(&node_page_list);
2180 			list_del(&page->lru);
2181 			putback_lru_page(page);
2182 		}
2183 
2184 		nid = -1;
2185 	}
2186 
2187 	if (!list_empty(&node_page_list)) {
2188 		nr_reclaimed += shrink_page_list(&node_page_list,
2189 						NODE_DATA(nid),
2190 						&sc, 0,
2191 						&dummy_stat, false);
2192 		while (!list_empty(&node_page_list)) {
2193 			page = lru_to_page(&node_page_list);
2194 			list_del(&page->lru);
2195 			putback_lru_page(page);
2196 		}
2197 	}
2198 
2199 	return nr_reclaimed;
2200 }
2201 
2202 /*
2203  * The inactive anon list should be small enough that the VM never has
2204  * to do too much work.
2205  *
2206  * The inactive file list should be small enough to leave most memory
2207  * to the established workingset on the scan-resistant active list,
2208  * but large enough to avoid thrashing the aggregate readahead window.
2209  *
2210  * Both inactive lists should also be large enough that each inactive
2211  * page has a chance to be referenced again before it is reclaimed.
2212  *
2213  * If that fails and refaulting is observed, the inactive list grows.
2214  *
2215  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2216  * on this LRU, maintained by the pageout code. An inactive_ratio
2217  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2218  *
2219  * total     target    max
2220  * memory    ratio     inactive
2221  * -------------------------------------
2222  *   10MB       1         5MB
2223  *  100MB       1        50MB
2224  *    1GB       3       250MB
2225  *   10GB      10       0.9GB
2226  *  100GB      31         3GB
2227  *    1TB     101        10GB
2228  *   10TB     320        32GB
2229  */
2230 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2231 				 struct scan_control *sc, bool trace)
2232 {
2233 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2234 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2235 	enum lru_list inactive_lru = file * LRU_FILE;
2236 	unsigned long inactive, active;
2237 	unsigned long inactive_ratio;
2238 	unsigned long refaults;
2239 	unsigned long gb;
2240 
2241 	/*
2242 	 * If we don't have swap space, anonymous page deactivation
2243 	 * is pointless.
2244 	 */
2245 	if (!file && !total_swap_pages)
2246 		return false;
2247 
2248 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2249 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2250 
2251 	/*
2252 	 * When refaults are being observed, it means a new workingset
2253 	 * is being established. Disable active list protection to get
2254 	 * rid of the stale workingset quickly.
2255 	 */
2256 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2257 	if (file && lruvec->refaults != refaults) {
2258 		inactive_ratio = 0;
2259 	} else {
2260 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2261 		if (gb)
2262 			inactive_ratio = int_sqrt(10 * gb);
2263 		else
2264 			inactive_ratio = 1;
2265 	}
2266 
2267 	if (trace)
2268 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2269 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2270 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2271 			inactive_ratio, file);
2272 
2273 	return inactive * inactive_ratio < active;
2274 }
2275 
2276 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277 				 struct lruvec *lruvec, struct scan_control *sc)
2278 {
2279 	if (is_active_lru(lru)) {
2280 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2281 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282 		return 0;
2283 	}
2284 
2285 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2286 }
2287 
2288 enum scan_balance {
2289 	SCAN_EQUAL,
2290 	SCAN_FRACT,
2291 	SCAN_ANON,
2292 	SCAN_FILE,
2293 };
2294 
2295 /*
2296  * Determine how aggressively the anon and file LRU lists should be
2297  * scanned.  The relative value of each set of LRU lists is determined
2298  * by looking at the fraction of the pages scanned we did rotate back
2299  * onto the active list instead of evict.
2300  *
2301  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2302  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2303  */
2304 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2305 			   struct scan_control *sc, unsigned long *nr,
2306 			   unsigned long *lru_pages)
2307 {
2308 	int swappiness = mem_cgroup_swappiness(memcg);
2309 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2310 	u64 fraction[2];
2311 	u64 denominator = 0;	/* gcc */
2312 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2313 	unsigned long anon_prio, file_prio;
2314 	enum scan_balance scan_balance;
2315 	unsigned long anon, file;
2316 	unsigned long ap, fp;
2317 	enum lru_list lru;
2318 
2319 	/* If we have no swap space, do not bother scanning anon pages. */
2320 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2321 		scan_balance = SCAN_FILE;
2322 		goto out;
2323 	}
2324 
2325 	/*
2326 	 * Global reclaim will swap to prevent OOM even with no
2327 	 * swappiness, but memcg users want to use this knob to
2328 	 * disable swapping for individual groups completely when
2329 	 * using the memory controller's swap limit feature would be
2330 	 * too expensive.
2331 	 */
2332 	if (!global_reclaim(sc) && !swappiness) {
2333 		scan_balance = SCAN_FILE;
2334 		goto out;
2335 	}
2336 
2337 	/*
2338 	 * Do not apply any pressure balancing cleverness when the
2339 	 * system is close to OOM, scan both anon and file equally
2340 	 * (unless the swappiness setting disagrees with swapping).
2341 	 */
2342 	if (!sc->priority && swappiness) {
2343 		scan_balance = SCAN_EQUAL;
2344 		goto out;
2345 	}
2346 
2347 	/*
2348 	 * Prevent the reclaimer from falling into the cache trap: as
2349 	 * cache pages start out inactive, every cache fault will tip
2350 	 * the scan balance towards the file LRU.  And as the file LRU
2351 	 * shrinks, so does the window for rotation from references.
2352 	 * This means we have a runaway feedback loop where a tiny
2353 	 * thrashing file LRU becomes infinitely more attractive than
2354 	 * anon pages.  Try to detect this based on file LRU size.
2355 	 */
2356 	if (global_reclaim(sc)) {
2357 		unsigned long pgdatfile;
2358 		unsigned long pgdatfree;
2359 		int z;
2360 		unsigned long total_high_wmark = 0;
2361 
2362 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2363 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2364 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2365 
2366 		for (z = 0; z < MAX_NR_ZONES; z++) {
2367 			struct zone *zone = &pgdat->node_zones[z];
2368 			if (!managed_zone(zone))
2369 				continue;
2370 
2371 			total_high_wmark += high_wmark_pages(zone);
2372 		}
2373 
2374 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2375 			/*
2376 			 * Force SCAN_ANON if there are enough inactive
2377 			 * anonymous pages on the LRU in eligible zones.
2378 			 * Otherwise, the small LRU gets thrashed.
2379 			 */
2380 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2381 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2382 					>> sc->priority) {
2383 				scan_balance = SCAN_ANON;
2384 				goto out;
2385 			}
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * If there is enough inactive page cache, i.e. if the size of the
2391 	 * inactive list is greater than that of the active list *and* the
2392 	 * inactive list actually has some pages to scan on this priority, we
2393 	 * do not reclaim anything from the anonymous working set right now.
2394 	 * Without the second condition we could end up never scanning an
2395 	 * lruvec even if it has plenty of old anonymous pages unless the
2396 	 * system is under heavy pressure.
2397 	 */
2398 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2399 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2400 		scan_balance = SCAN_FILE;
2401 		goto out;
2402 	}
2403 
2404 	scan_balance = SCAN_FRACT;
2405 
2406 	/*
2407 	 * With swappiness at 100, anonymous and file have the same priority.
2408 	 * This scanning priority is essentially the inverse of IO cost.
2409 	 */
2410 	anon_prio = swappiness;
2411 	file_prio = 200 - anon_prio;
2412 
2413 	/*
2414 	 * OK, so we have swap space and a fair amount of page cache
2415 	 * pages.  We use the recently rotated / recently scanned
2416 	 * ratios to determine how valuable each cache is.
2417 	 *
2418 	 * Because workloads change over time (and to avoid overflow)
2419 	 * we keep these statistics as a floating average, which ends
2420 	 * up weighing recent references more than old ones.
2421 	 *
2422 	 * anon in [0], file in [1]
2423 	 */
2424 
2425 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2426 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2427 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2428 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2429 
2430 	spin_lock_irq(&pgdat->lru_lock);
2431 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2432 		reclaim_stat->recent_scanned[0] /= 2;
2433 		reclaim_stat->recent_rotated[0] /= 2;
2434 	}
2435 
2436 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2437 		reclaim_stat->recent_scanned[1] /= 2;
2438 		reclaim_stat->recent_rotated[1] /= 2;
2439 	}
2440 
2441 	/*
2442 	 * The amount of pressure on anon vs file pages is inversely
2443 	 * proportional to the fraction of recently scanned pages on
2444 	 * each list that were recently referenced and in active use.
2445 	 */
2446 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2447 	ap /= reclaim_stat->recent_rotated[0] + 1;
2448 
2449 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2450 	fp /= reclaim_stat->recent_rotated[1] + 1;
2451 	spin_unlock_irq(&pgdat->lru_lock);
2452 
2453 	fraction[0] = ap;
2454 	fraction[1] = fp;
2455 	denominator = ap + fp + 1;
2456 out:
2457 	*lru_pages = 0;
2458 	for_each_evictable_lru(lru) {
2459 		int file = is_file_lru(lru);
2460 		unsigned long lruvec_size;
2461 		unsigned long scan;
2462 		unsigned long protection;
2463 
2464 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2465 		protection = mem_cgroup_protection(memcg,
2466 						   sc->memcg_low_reclaim);
2467 
2468 		if (protection) {
2469 			/*
2470 			 * Scale a cgroup's reclaim pressure by proportioning
2471 			 * its current usage to its memory.low or memory.min
2472 			 * setting.
2473 			 *
2474 			 * This is important, as otherwise scanning aggression
2475 			 * becomes extremely binary -- from nothing as we
2476 			 * approach the memory protection threshold, to totally
2477 			 * nominal as we exceed it.  This results in requiring
2478 			 * setting extremely liberal protection thresholds. It
2479 			 * also means we simply get no protection at all if we
2480 			 * set it too low, which is not ideal.
2481 			 *
2482 			 * If there is any protection in place, we reduce scan
2483 			 * pressure by how much of the total memory used is
2484 			 * within protection thresholds.
2485 			 *
2486 			 * There is one special case: in the first reclaim pass,
2487 			 * we skip over all groups that are within their low
2488 			 * protection. If that fails to reclaim enough pages to
2489 			 * satisfy the reclaim goal, we come back and override
2490 			 * the best-effort low protection. However, we still
2491 			 * ideally want to honor how well-behaved groups are in
2492 			 * that case instead of simply punishing them all
2493 			 * equally. As such, we reclaim them based on how much
2494 			 * memory they are using, reducing the scan pressure
2495 			 * again by how much of the total memory used is under
2496 			 * hard protection.
2497 			 */
2498 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2499 
2500 			/* Avoid TOCTOU with earlier protection check */
2501 			cgroup_size = max(cgroup_size, protection);
2502 
2503 			scan = lruvec_size - lruvec_size * protection /
2504 				cgroup_size;
2505 
2506 			/*
2507 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2508 			 * reclaim moving forwards, avoiding decremeting
2509 			 * sc->priority further than desirable.
2510 			 */
2511 			scan = max(scan, SWAP_CLUSTER_MAX);
2512 		} else {
2513 			scan = lruvec_size;
2514 		}
2515 
2516 		scan >>= sc->priority;
2517 
2518 		/*
2519 		 * If the cgroup's already been deleted, make sure to
2520 		 * scrape out the remaining cache.
2521 		 */
2522 		if (!scan && !mem_cgroup_online(memcg))
2523 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2524 
2525 		switch (scan_balance) {
2526 		case SCAN_EQUAL:
2527 			/* Scan lists relative to size */
2528 			break;
2529 		case SCAN_FRACT:
2530 			/*
2531 			 * Scan types proportional to swappiness and
2532 			 * their relative recent reclaim efficiency.
2533 			 * Make sure we don't miss the last page
2534 			 * because of a round-off error.
2535 			 */
2536 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2537 						  denominator);
2538 			break;
2539 		case SCAN_FILE:
2540 		case SCAN_ANON:
2541 			/* Scan one type exclusively */
2542 			if ((scan_balance == SCAN_FILE) != file) {
2543 				lruvec_size = 0;
2544 				scan = 0;
2545 			}
2546 			break;
2547 		default:
2548 			/* Look ma, no brain */
2549 			BUG();
2550 		}
2551 
2552 		*lru_pages += lruvec_size;
2553 		nr[lru] = scan;
2554 	}
2555 }
2556 
2557 /*
2558  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2559  */
2560 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2561 			      struct scan_control *sc, unsigned long *lru_pages)
2562 {
2563 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2564 	unsigned long nr[NR_LRU_LISTS];
2565 	unsigned long targets[NR_LRU_LISTS];
2566 	unsigned long nr_to_scan;
2567 	enum lru_list lru;
2568 	unsigned long nr_reclaimed = 0;
2569 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2570 	struct blk_plug plug;
2571 	bool scan_adjusted;
2572 
2573 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2574 
2575 	/* Record the original scan target for proportional adjustments later */
2576 	memcpy(targets, nr, sizeof(nr));
2577 
2578 	/*
2579 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2580 	 * event that can occur when there is little memory pressure e.g.
2581 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2582 	 * when the requested number of pages are reclaimed when scanning at
2583 	 * DEF_PRIORITY on the assumption that the fact we are direct
2584 	 * reclaiming implies that kswapd is not keeping up and it is best to
2585 	 * do a batch of work at once. For memcg reclaim one check is made to
2586 	 * abort proportional reclaim if either the file or anon lru has already
2587 	 * dropped to zero at the first pass.
2588 	 */
2589 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2590 			 sc->priority == DEF_PRIORITY);
2591 
2592 	blk_start_plug(&plug);
2593 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2594 					nr[LRU_INACTIVE_FILE]) {
2595 		unsigned long nr_anon, nr_file, percentage;
2596 		unsigned long nr_scanned;
2597 
2598 		for_each_evictable_lru(lru) {
2599 			if (nr[lru]) {
2600 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2601 				nr[lru] -= nr_to_scan;
2602 
2603 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2604 							    lruvec, sc);
2605 			}
2606 		}
2607 
2608 		cond_resched();
2609 
2610 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2611 			continue;
2612 
2613 		/*
2614 		 * For kswapd and memcg, reclaim at least the number of pages
2615 		 * requested. Ensure that the anon and file LRUs are scanned
2616 		 * proportionally what was requested by get_scan_count(). We
2617 		 * stop reclaiming one LRU and reduce the amount scanning
2618 		 * proportional to the original scan target.
2619 		 */
2620 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2621 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2622 
2623 		/*
2624 		 * It's just vindictive to attack the larger once the smaller
2625 		 * has gone to zero.  And given the way we stop scanning the
2626 		 * smaller below, this makes sure that we only make one nudge
2627 		 * towards proportionality once we've got nr_to_reclaim.
2628 		 */
2629 		if (!nr_file || !nr_anon)
2630 			break;
2631 
2632 		if (nr_file > nr_anon) {
2633 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2634 						targets[LRU_ACTIVE_ANON] + 1;
2635 			lru = LRU_BASE;
2636 			percentage = nr_anon * 100 / scan_target;
2637 		} else {
2638 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2639 						targets[LRU_ACTIVE_FILE] + 1;
2640 			lru = LRU_FILE;
2641 			percentage = nr_file * 100 / scan_target;
2642 		}
2643 
2644 		/* Stop scanning the smaller of the LRU */
2645 		nr[lru] = 0;
2646 		nr[lru + LRU_ACTIVE] = 0;
2647 
2648 		/*
2649 		 * Recalculate the other LRU scan count based on its original
2650 		 * scan target and the percentage scanning already complete
2651 		 */
2652 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2653 		nr_scanned = targets[lru] - nr[lru];
2654 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2655 		nr[lru] -= min(nr[lru], nr_scanned);
2656 
2657 		lru += LRU_ACTIVE;
2658 		nr_scanned = targets[lru] - nr[lru];
2659 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2660 		nr[lru] -= min(nr[lru], nr_scanned);
2661 
2662 		scan_adjusted = true;
2663 	}
2664 	blk_finish_plug(&plug);
2665 	sc->nr_reclaimed += nr_reclaimed;
2666 
2667 	/*
2668 	 * Even if we did not try to evict anon pages at all, we want to
2669 	 * rebalance the anon lru active/inactive ratio.
2670 	 */
2671 	if (inactive_list_is_low(lruvec, false, sc, true))
2672 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2673 				   sc, LRU_ACTIVE_ANON);
2674 }
2675 
2676 /* Use reclaim/compaction for costly allocs or under memory pressure */
2677 static bool in_reclaim_compaction(struct scan_control *sc)
2678 {
2679 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2680 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2681 			 sc->priority < DEF_PRIORITY - 2))
2682 		return true;
2683 
2684 	return false;
2685 }
2686 
2687 /*
2688  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2689  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2690  * true if more pages should be reclaimed such that when the page allocator
2691  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2692  * It will give up earlier than that if there is difficulty reclaiming pages.
2693  */
2694 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2695 					unsigned long nr_reclaimed,
2696 					struct scan_control *sc)
2697 {
2698 	unsigned long pages_for_compaction;
2699 	unsigned long inactive_lru_pages;
2700 	int z;
2701 
2702 	/* If not in reclaim/compaction mode, stop */
2703 	if (!in_reclaim_compaction(sc))
2704 		return false;
2705 
2706 	/*
2707 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2708 	 * number of pages that were scanned. This will return to the caller
2709 	 * with the risk reclaim/compaction and the resulting allocation attempt
2710 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2711 	 * allocations through requiring that the full LRU list has been scanned
2712 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2713 	 * scan, but that approximation was wrong, and there were corner cases
2714 	 * where always a non-zero amount of pages were scanned.
2715 	 */
2716 	if (!nr_reclaimed)
2717 		return false;
2718 
2719 	/* If compaction would go ahead or the allocation would succeed, stop */
2720 	for (z = 0; z <= sc->reclaim_idx; z++) {
2721 		struct zone *zone = &pgdat->node_zones[z];
2722 		if (!managed_zone(zone))
2723 			continue;
2724 
2725 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2726 		case COMPACT_SUCCESS:
2727 		case COMPACT_CONTINUE:
2728 			return false;
2729 		default:
2730 			/* check next zone */
2731 			;
2732 		}
2733 	}
2734 
2735 	/*
2736 	 * If we have not reclaimed enough pages for compaction and the
2737 	 * inactive lists are large enough, continue reclaiming
2738 	 */
2739 	pages_for_compaction = compact_gap(sc->order);
2740 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2741 	if (get_nr_swap_pages() > 0)
2742 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2743 
2744 	return inactive_lru_pages > pages_for_compaction;
2745 }
2746 
2747 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2748 {
2749 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2750 		(memcg && memcg_congested(pgdat, memcg));
2751 }
2752 
2753 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2754 {
2755 	struct reclaim_state *reclaim_state = current->reclaim_state;
2756 	unsigned long nr_reclaimed, nr_scanned;
2757 	bool reclaimable = false;
2758 
2759 	do {
2760 		struct mem_cgroup *root = sc->target_mem_cgroup;
2761 		unsigned long node_lru_pages = 0;
2762 		struct mem_cgroup *memcg;
2763 
2764 		memset(&sc->nr, 0, sizeof(sc->nr));
2765 
2766 		nr_reclaimed = sc->nr_reclaimed;
2767 		nr_scanned = sc->nr_scanned;
2768 
2769 		memcg = mem_cgroup_iter(root, NULL, NULL);
2770 		do {
2771 			unsigned long lru_pages;
2772 			unsigned long reclaimed;
2773 			unsigned long scanned;
2774 
2775 			switch (mem_cgroup_protected(root, memcg)) {
2776 			case MEMCG_PROT_MIN:
2777 				/*
2778 				 * Hard protection.
2779 				 * If there is no reclaimable memory, OOM.
2780 				 */
2781 				continue;
2782 			case MEMCG_PROT_LOW:
2783 				/*
2784 				 * Soft protection.
2785 				 * Respect the protection only as long as
2786 				 * there is an unprotected supply
2787 				 * of reclaimable memory from other cgroups.
2788 				 */
2789 				if (!sc->memcg_low_reclaim) {
2790 					sc->memcg_low_skipped = 1;
2791 					continue;
2792 				}
2793 				memcg_memory_event(memcg, MEMCG_LOW);
2794 				break;
2795 			case MEMCG_PROT_NONE:
2796 				/*
2797 				 * All protection thresholds breached. We may
2798 				 * still choose to vary the scan pressure
2799 				 * applied based on by how much the cgroup in
2800 				 * question has exceeded its protection
2801 				 * thresholds (see get_scan_count).
2802 				 */
2803 				break;
2804 			}
2805 
2806 			reclaimed = sc->nr_reclaimed;
2807 			scanned = sc->nr_scanned;
2808 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2809 			node_lru_pages += lru_pages;
2810 
2811 			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2812 					sc->priority);
2813 
2814 			/* Record the group's reclaim efficiency */
2815 			vmpressure(sc->gfp_mask, memcg, false,
2816 				   sc->nr_scanned - scanned,
2817 				   sc->nr_reclaimed - reclaimed);
2818 
2819 		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2820 
2821 		if (reclaim_state) {
2822 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2823 			reclaim_state->reclaimed_slab = 0;
2824 		}
2825 
2826 		/* Record the subtree's reclaim efficiency */
2827 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2828 			   sc->nr_scanned - nr_scanned,
2829 			   sc->nr_reclaimed - nr_reclaimed);
2830 
2831 		if (sc->nr_reclaimed - nr_reclaimed)
2832 			reclaimable = true;
2833 
2834 		if (current_is_kswapd()) {
2835 			/*
2836 			 * If reclaim is isolating dirty pages under writeback,
2837 			 * it implies that the long-lived page allocation rate
2838 			 * is exceeding the page laundering rate. Either the
2839 			 * global limits are not being effective at throttling
2840 			 * processes due to the page distribution throughout
2841 			 * zones or there is heavy usage of a slow backing
2842 			 * device. The only option is to throttle from reclaim
2843 			 * context which is not ideal as there is no guarantee
2844 			 * the dirtying process is throttled in the same way
2845 			 * balance_dirty_pages() manages.
2846 			 *
2847 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2848 			 * count the number of pages under pages flagged for
2849 			 * immediate reclaim and stall if any are encountered
2850 			 * in the nr_immediate check below.
2851 			 */
2852 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2853 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2854 
2855 			/*
2856 			 * Tag a node as congested if all the dirty pages
2857 			 * scanned were backed by a congested BDI and
2858 			 * wait_iff_congested will stall.
2859 			 */
2860 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2861 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2862 
2863 			/* Allow kswapd to start writing pages during reclaim.*/
2864 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2865 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2866 
2867 			/*
2868 			 * If kswapd scans pages marked marked for immediate
2869 			 * reclaim and under writeback (nr_immediate), it
2870 			 * implies that pages are cycling through the LRU
2871 			 * faster than they are written so also forcibly stall.
2872 			 */
2873 			if (sc->nr.immediate)
2874 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2875 		}
2876 
2877 		/*
2878 		 * Legacy memcg will stall in page writeback so avoid forcibly
2879 		 * stalling in wait_iff_congested().
2880 		 */
2881 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2882 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2883 			set_memcg_congestion(pgdat, root, true);
2884 
2885 		/*
2886 		 * Stall direct reclaim for IO completions if underlying BDIs
2887 		 * and node is congested. Allow kswapd to continue until it
2888 		 * starts encountering unqueued dirty pages or cycling through
2889 		 * the LRU too quickly.
2890 		 */
2891 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2892 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2893 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2894 
2895 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2896 					 sc));
2897 
2898 	/*
2899 	 * Kswapd gives up on balancing particular nodes after too
2900 	 * many failures to reclaim anything from them and goes to
2901 	 * sleep. On reclaim progress, reset the failure counter. A
2902 	 * successful direct reclaim run will revive a dormant kswapd.
2903 	 */
2904 	if (reclaimable)
2905 		pgdat->kswapd_failures = 0;
2906 
2907 	return reclaimable;
2908 }
2909 
2910 /*
2911  * Returns true if compaction should go ahead for a costly-order request, or
2912  * the allocation would already succeed without compaction. Return false if we
2913  * should reclaim first.
2914  */
2915 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2916 {
2917 	unsigned long watermark;
2918 	enum compact_result suitable;
2919 
2920 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2921 	if (suitable == COMPACT_SUCCESS)
2922 		/* Allocation should succeed already. Don't reclaim. */
2923 		return true;
2924 	if (suitable == COMPACT_SKIPPED)
2925 		/* Compaction cannot yet proceed. Do reclaim. */
2926 		return false;
2927 
2928 	/*
2929 	 * Compaction is already possible, but it takes time to run and there
2930 	 * are potentially other callers using the pages just freed. So proceed
2931 	 * with reclaim to make a buffer of free pages available to give
2932 	 * compaction a reasonable chance of completing and allocating the page.
2933 	 * Note that we won't actually reclaim the whole buffer in one attempt
2934 	 * as the target watermark in should_continue_reclaim() is lower. But if
2935 	 * we are already above the high+gap watermark, don't reclaim at all.
2936 	 */
2937 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2938 
2939 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2940 }
2941 
2942 /*
2943  * This is the direct reclaim path, for page-allocating processes.  We only
2944  * try to reclaim pages from zones which will satisfy the caller's allocation
2945  * request.
2946  *
2947  * If a zone is deemed to be full of pinned pages then just give it a light
2948  * scan then give up on it.
2949  */
2950 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2951 {
2952 	struct zoneref *z;
2953 	struct zone *zone;
2954 	unsigned long nr_soft_reclaimed;
2955 	unsigned long nr_soft_scanned;
2956 	gfp_t orig_mask;
2957 	pg_data_t *last_pgdat = NULL;
2958 
2959 	/*
2960 	 * If the number of buffer_heads in the machine exceeds the maximum
2961 	 * allowed level, force direct reclaim to scan the highmem zone as
2962 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2963 	 */
2964 	orig_mask = sc->gfp_mask;
2965 	if (buffer_heads_over_limit) {
2966 		sc->gfp_mask |= __GFP_HIGHMEM;
2967 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2968 	}
2969 
2970 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2971 					sc->reclaim_idx, sc->nodemask) {
2972 		/*
2973 		 * Take care memory controller reclaiming has small influence
2974 		 * to global LRU.
2975 		 */
2976 		if (global_reclaim(sc)) {
2977 			if (!cpuset_zone_allowed(zone,
2978 						 GFP_KERNEL | __GFP_HARDWALL))
2979 				continue;
2980 
2981 			/*
2982 			 * If we already have plenty of memory free for
2983 			 * compaction in this zone, don't free any more.
2984 			 * Even though compaction is invoked for any
2985 			 * non-zero order, only frequent costly order
2986 			 * reclamation is disruptive enough to become a
2987 			 * noticeable problem, like transparent huge
2988 			 * page allocations.
2989 			 */
2990 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2991 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2992 			    compaction_ready(zone, sc)) {
2993 				sc->compaction_ready = true;
2994 				continue;
2995 			}
2996 
2997 			/*
2998 			 * Shrink each node in the zonelist once. If the
2999 			 * zonelist is ordered by zone (not the default) then a
3000 			 * node may be shrunk multiple times but in that case
3001 			 * the user prefers lower zones being preserved.
3002 			 */
3003 			if (zone->zone_pgdat == last_pgdat)
3004 				continue;
3005 
3006 			/*
3007 			 * This steals pages from memory cgroups over softlimit
3008 			 * and returns the number of reclaimed pages and
3009 			 * scanned pages. This works for global memory pressure
3010 			 * and balancing, not for a memcg's limit.
3011 			 */
3012 			nr_soft_scanned = 0;
3013 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3014 						sc->order, sc->gfp_mask,
3015 						&nr_soft_scanned);
3016 			sc->nr_reclaimed += nr_soft_reclaimed;
3017 			sc->nr_scanned += nr_soft_scanned;
3018 			/* need some check for avoid more shrink_zone() */
3019 		}
3020 
3021 		/* See comment about same check for global reclaim above */
3022 		if (zone->zone_pgdat == last_pgdat)
3023 			continue;
3024 		last_pgdat = zone->zone_pgdat;
3025 		shrink_node(zone->zone_pgdat, sc);
3026 	}
3027 
3028 	/*
3029 	 * Restore to original mask to avoid the impact on the caller if we
3030 	 * promoted it to __GFP_HIGHMEM.
3031 	 */
3032 	sc->gfp_mask = orig_mask;
3033 }
3034 
3035 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3036 {
3037 	struct mem_cgroup *memcg;
3038 
3039 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3040 	do {
3041 		unsigned long refaults;
3042 		struct lruvec *lruvec;
3043 
3044 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3045 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3046 		lruvec->refaults = refaults;
3047 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3048 }
3049 
3050 /*
3051  * This is the main entry point to direct page reclaim.
3052  *
3053  * If a full scan of the inactive list fails to free enough memory then we
3054  * are "out of memory" and something needs to be killed.
3055  *
3056  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3057  * high - the zone may be full of dirty or under-writeback pages, which this
3058  * caller can't do much about.  We kick the writeback threads and take explicit
3059  * naps in the hope that some of these pages can be written.  But if the
3060  * allocating task holds filesystem locks which prevent writeout this might not
3061  * work, and the allocation attempt will fail.
3062  *
3063  * returns:	0, if no pages reclaimed
3064  * 		else, the number of pages reclaimed
3065  */
3066 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3067 					  struct scan_control *sc)
3068 {
3069 	int initial_priority = sc->priority;
3070 	pg_data_t *last_pgdat;
3071 	struct zoneref *z;
3072 	struct zone *zone;
3073 retry:
3074 	delayacct_freepages_start();
3075 
3076 	if (global_reclaim(sc))
3077 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3078 
3079 	do {
3080 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3081 				sc->priority);
3082 		sc->nr_scanned = 0;
3083 		shrink_zones(zonelist, sc);
3084 
3085 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3086 			break;
3087 
3088 		if (sc->compaction_ready)
3089 			break;
3090 
3091 		/*
3092 		 * If we're getting trouble reclaiming, start doing
3093 		 * writepage even in laptop mode.
3094 		 */
3095 		if (sc->priority < DEF_PRIORITY - 2)
3096 			sc->may_writepage = 1;
3097 	} while (--sc->priority >= 0);
3098 
3099 	last_pgdat = NULL;
3100 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3101 					sc->nodemask) {
3102 		if (zone->zone_pgdat == last_pgdat)
3103 			continue;
3104 		last_pgdat = zone->zone_pgdat;
3105 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3106 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3107 	}
3108 
3109 	delayacct_freepages_end();
3110 
3111 	if (sc->nr_reclaimed)
3112 		return sc->nr_reclaimed;
3113 
3114 	/* Aborted reclaim to try compaction? don't OOM, then */
3115 	if (sc->compaction_ready)
3116 		return 1;
3117 
3118 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3119 	if (sc->memcg_low_skipped) {
3120 		sc->priority = initial_priority;
3121 		sc->memcg_low_reclaim = 1;
3122 		sc->memcg_low_skipped = 0;
3123 		goto retry;
3124 	}
3125 
3126 	return 0;
3127 }
3128 
3129 static bool allow_direct_reclaim(pg_data_t *pgdat)
3130 {
3131 	struct zone *zone;
3132 	unsigned long pfmemalloc_reserve = 0;
3133 	unsigned long free_pages = 0;
3134 	int i;
3135 	bool wmark_ok;
3136 
3137 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3138 		return true;
3139 
3140 	for (i = 0; i <= ZONE_NORMAL; i++) {
3141 		zone = &pgdat->node_zones[i];
3142 		if (!managed_zone(zone))
3143 			continue;
3144 
3145 		if (!zone_reclaimable_pages(zone))
3146 			continue;
3147 
3148 		pfmemalloc_reserve += min_wmark_pages(zone);
3149 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3150 	}
3151 
3152 	/* If there are no reserves (unexpected config) then do not throttle */
3153 	if (!pfmemalloc_reserve)
3154 		return true;
3155 
3156 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3157 
3158 	/* kswapd must be awake if processes are being throttled */
3159 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3160 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3161 						(enum zone_type)ZONE_NORMAL);
3162 		wake_up_interruptible(&pgdat->kswapd_wait);
3163 	}
3164 
3165 	return wmark_ok;
3166 }
3167 
3168 /*
3169  * Throttle direct reclaimers if backing storage is backed by the network
3170  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3171  * depleted. kswapd will continue to make progress and wake the processes
3172  * when the low watermark is reached.
3173  *
3174  * Returns true if a fatal signal was delivered during throttling. If this
3175  * happens, the page allocator should not consider triggering the OOM killer.
3176  */
3177 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3178 					nodemask_t *nodemask)
3179 {
3180 	struct zoneref *z;
3181 	struct zone *zone;
3182 	pg_data_t *pgdat = NULL;
3183 
3184 	/*
3185 	 * Kernel threads should not be throttled as they may be indirectly
3186 	 * responsible for cleaning pages necessary for reclaim to make forward
3187 	 * progress. kjournald for example may enter direct reclaim while
3188 	 * committing a transaction where throttling it could forcing other
3189 	 * processes to block on log_wait_commit().
3190 	 */
3191 	if (current->flags & PF_KTHREAD)
3192 		goto out;
3193 
3194 	/*
3195 	 * If a fatal signal is pending, this process should not throttle.
3196 	 * It should return quickly so it can exit and free its memory
3197 	 */
3198 	if (fatal_signal_pending(current))
3199 		goto out;
3200 
3201 	/*
3202 	 * Check if the pfmemalloc reserves are ok by finding the first node
3203 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3204 	 * GFP_KERNEL will be required for allocating network buffers when
3205 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3206 	 *
3207 	 * Throttling is based on the first usable node and throttled processes
3208 	 * wait on a queue until kswapd makes progress and wakes them. There
3209 	 * is an affinity then between processes waking up and where reclaim
3210 	 * progress has been made assuming the process wakes on the same node.
3211 	 * More importantly, processes running on remote nodes will not compete
3212 	 * for remote pfmemalloc reserves and processes on different nodes
3213 	 * should make reasonable progress.
3214 	 */
3215 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3216 					gfp_zone(gfp_mask), nodemask) {
3217 		if (zone_idx(zone) > ZONE_NORMAL)
3218 			continue;
3219 
3220 		/* Throttle based on the first usable node */
3221 		pgdat = zone->zone_pgdat;
3222 		if (allow_direct_reclaim(pgdat))
3223 			goto out;
3224 		break;
3225 	}
3226 
3227 	/* If no zone was usable by the allocation flags then do not throttle */
3228 	if (!pgdat)
3229 		goto out;
3230 
3231 	/* Account for the throttling */
3232 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3233 
3234 	/*
3235 	 * If the caller cannot enter the filesystem, it's possible that it
3236 	 * is due to the caller holding an FS lock or performing a journal
3237 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3238 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3239 	 * blocked waiting on the same lock. Instead, throttle for up to a
3240 	 * second before continuing.
3241 	 */
3242 	if (!(gfp_mask & __GFP_FS)) {
3243 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3244 			allow_direct_reclaim(pgdat), HZ);
3245 
3246 		goto check_pending;
3247 	}
3248 
3249 	/* Throttle until kswapd wakes the process */
3250 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3251 		allow_direct_reclaim(pgdat));
3252 
3253 check_pending:
3254 	if (fatal_signal_pending(current))
3255 		return true;
3256 
3257 out:
3258 	return false;
3259 }
3260 
3261 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3262 				gfp_t gfp_mask, nodemask_t *nodemask)
3263 {
3264 	unsigned long nr_reclaimed;
3265 	struct scan_control sc = {
3266 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3267 		.gfp_mask = current_gfp_context(gfp_mask),
3268 		.reclaim_idx = gfp_zone(gfp_mask),
3269 		.order = order,
3270 		.nodemask = nodemask,
3271 		.priority = DEF_PRIORITY,
3272 		.may_writepage = !laptop_mode,
3273 		.may_unmap = 1,
3274 		.may_swap = 1,
3275 	};
3276 
3277 	/*
3278 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3279 	 * Confirm they are large enough for max values.
3280 	 */
3281 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3282 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3283 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3284 
3285 	/*
3286 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3287 	 * 1 is returned so that the page allocator does not OOM kill at this
3288 	 * point.
3289 	 */
3290 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3291 		return 1;
3292 
3293 	set_task_reclaim_state(current, &sc.reclaim_state);
3294 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3295 
3296 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3297 
3298 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3299 	set_task_reclaim_state(current, NULL);
3300 
3301 	return nr_reclaimed;
3302 }
3303 
3304 #ifdef CONFIG_MEMCG
3305 
3306 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3307 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3308 						gfp_t gfp_mask, bool noswap,
3309 						pg_data_t *pgdat,
3310 						unsigned long *nr_scanned)
3311 {
3312 	struct scan_control sc = {
3313 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3314 		.target_mem_cgroup = memcg,
3315 		.may_writepage = !laptop_mode,
3316 		.may_unmap = 1,
3317 		.reclaim_idx = MAX_NR_ZONES - 1,
3318 		.may_swap = !noswap,
3319 	};
3320 	unsigned long lru_pages;
3321 
3322 	WARN_ON_ONCE(!current->reclaim_state);
3323 
3324 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3325 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3326 
3327 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3328 						      sc.gfp_mask);
3329 
3330 	/*
3331 	 * NOTE: Although we can get the priority field, using it
3332 	 * here is not a good idea, since it limits the pages we can scan.
3333 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3334 	 * will pick up pages from other mem cgroup's as well. We hack
3335 	 * the priority and make it zero.
3336 	 */
3337 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3338 
3339 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3340 
3341 	*nr_scanned = sc.nr_scanned;
3342 
3343 	return sc.nr_reclaimed;
3344 }
3345 
3346 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3347 					   unsigned long nr_pages,
3348 					   gfp_t gfp_mask,
3349 					   bool may_swap)
3350 {
3351 	struct zonelist *zonelist;
3352 	unsigned long nr_reclaimed;
3353 	unsigned long pflags;
3354 	int nid;
3355 	unsigned int noreclaim_flag;
3356 	struct scan_control sc = {
3357 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3358 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3359 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3360 		.reclaim_idx = MAX_NR_ZONES - 1,
3361 		.target_mem_cgroup = memcg,
3362 		.priority = DEF_PRIORITY,
3363 		.may_writepage = !laptop_mode,
3364 		.may_unmap = 1,
3365 		.may_swap = may_swap,
3366 	};
3367 
3368 	set_task_reclaim_state(current, &sc.reclaim_state);
3369 	/*
3370 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3371 	 * take care of from where we get pages. So the node where we start the
3372 	 * scan does not need to be the current node.
3373 	 */
3374 	nid = mem_cgroup_select_victim_node(memcg);
3375 
3376 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3377 
3378 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3379 
3380 	psi_memstall_enter(&pflags);
3381 	noreclaim_flag = memalloc_noreclaim_save();
3382 
3383 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3384 
3385 	memalloc_noreclaim_restore(noreclaim_flag);
3386 	psi_memstall_leave(&pflags);
3387 
3388 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3389 	set_task_reclaim_state(current, NULL);
3390 
3391 	return nr_reclaimed;
3392 }
3393 #endif
3394 
3395 static void age_active_anon(struct pglist_data *pgdat,
3396 				struct scan_control *sc)
3397 {
3398 	struct mem_cgroup *memcg;
3399 
3400 	if (!total_swap_pages)
3401 		return;
3402 
3403 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3404 	do {
3405 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3406 
3407 		if (inactive_list_is_low(lruvec, false, sc, true))
3408 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3409 					   sc, LRU_ACTIVE_ANON);
3410 
3411 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3412 	} while (memcg);
3413 }
3414 
3415 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3416 {
3417 	int i;
3418 	struct zone *zone;
3419 
3420 	/*
3421 	 * Check for watermark boosts top-down as the higher zones
3422 	 * are more likely to be boosted. Both watermarks and boosts
3423 	 * should not be checked at the time time as reclaim would
3424 	 * start prematurely when there is no boosting and a lower
3425 	 * zone is balanced.
3426 	 */
3427 	for (i = classzone_idx; i >= 0; i--) {
3428 		zone = pgdat->node_zones + i;
3429 		if (!managed_zone(zone))
3430 			continue;
3431 
3432 		if (zone->watermark_boost)
3433 			return true;
3434 	}
3435 
3436 	return false;
3437 }
3438 
3439 /*
3440  * Returns true if there is an eligible zone balanced for the request order
3441  * and classzone_idx
3442  */
3443 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3444 {
3445 	int i;
3446 	unsigned long mark = -1;
3447 	struct zone *zone;
3448 
3449 	/*
3450 	 * Check watermarks bottom-up as lower zones are more likely to
3451 	 * meet watermarks.
3452 	 */
3453 	for (i = 0; i <= classzone_idx; i++) {
3454 		zone = pgdat->node_zones + i;
3455 
3456 		if (!managed_zone(zone))
3457 			continue;
3458 
3459 		mark = high_wmark_pages(zone);
3460 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3461 			return true;
3462 	}
3463 
3464 	/*
3465 	 * If a node has no populated zone within classzone_idx, it does not
3466 	 * need balancing by definition. This can happen if a zone-restricted
3467 	 * allocation tries to wake a remote kswapd.
3468 	 */
3469 	if (mark == -1)
3470 		return true;
3471 
3472 	return false;
3473 }
3474 
3475 /* Clear pgdat state for congested, dirty or under writeback. */
3476 static void clear_pgdat_congested(pg_data_t *pgdat)
3477 {
3478 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3479 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3480 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3481 }
3482 
3483 /*
3484  * Prepare kswapd for sleeping. This verifies that there are no processes
3485  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3486  *
3487  * Returns true if kswapd is ready to sleep
3488  */
3489 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3490 {
3491 	/*
3492 	 * The throttled processes are normally woken up in balance_pgdat() as
3493 	 * soon as allow_direct_reclaim() is true. But there is a potential
3494 	 * race between when kswapd checks the watermarks and a process gets
3495 	 * throttled. There is also a potential race if processes get
3496 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3497 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3498 	 * the wake up checks. If kswapd is going to sleep, no process should
3499 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3500 	 * the wake up is premature, processes will wake kswapd and get
3501 	 * throttled again. The difference from wake ups in balance_pgdat() is
3502 	 * that here we are under prepare_to_wait().
3503 	 */
3504 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3505 		wake_up_all(&pgdat->pfmemalloc_wait);
3506 
3507 	/* Hopeless node, leave it to direct reclaim */
3508 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3509 		return true;
3510 
3511 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3512 		clear_pgdat_congested(pgdat);
3513 		return true;
3514 	}
3515 
3516 	return false;
3517 }
3518 
3519 /*
3520  * kswapd shrinks a node of pages that are at or below the highest usable
3521  * zone that is currently unbalanced.
3522  *
3523  * Returns true if kswapd scanned at least the requested number of pages to
3524  * reclaim or if the lack of progress was due to pages under writeback.
3525  * This is used to determine if the scanning priority needs to be raised.
3526  */
3527 static bool kswapd_shrink_node(pg_data_t *pgdat,
3528 			       struct scan_control *sc)
3529 {
3530 	struct zone *zone;
3531 	int z;
3532 
3533 	/* Reclaim a number of pages proportional to the number of zones */
3534 	sc->nr_to_reclaim = 0;
3535 	for (z = 0; z <= sc->reclaim_idx; z++) {
3536 		zone = pgdat->node_zones + z;
3537 		if (!managed_zone(zone))
3538 			continue;
3539 
3540 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3541 	}
3542 
3543 	/*
3544 	 * Historically care was taken to put equal pressure on all zones but
3545 	 * now pressure is applied based on node LRU order.
3546 	 */
3547 	shrink_node(pgdat, sc);
3548 
3549 	/*
3550 	 * Fragmentation may mean that the system cannot be rebalanced for
3551 	 * high-order allocations. If twice the allocation size has been
3552 	 * reclaimed then recheck watermarks only at order-0 to prevent
3553 	 * excessive reclaim. Assume that a process requested a high-order
3554 	 * can direct reclaim/compact.
3555 	 */
3556 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3557 		sc->order = 0;
3558 
3559 	return sc->nr_scanned >= sc->nr_to_reclaim;
3560 }
3561 
3562 /*
3563  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3564  * that are eligible for use by the caller until at least one zone is
3565  * balanced.
3566  *
3567  * Returns the order kswapd finished reclaiming at.
3568  *
3569  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3570  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3571  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3572  * or lower is eligible for reclaim until at least one usable zone is
3573  * balanced.
3574  */
3575 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3576 {
3577 	int i;
3578 	unsigned long nr_soft_reclaimed;
3579 	unsigned long nr_soft_scanned;
3580 	unsigned long pflags;
3581 	unsigned long nr_boost_reclaim;
3582 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3583 	bool boosted;
3584 	struct zone *zone;
3585 	struct scan_control sc = {
3586 		.gfp_mask = GFP_KERNEL,
3587 		.order = order,
3588 		.may_unmap = 1,
3589 	};
3590 
3591 	set_task_reclaim_state(current, &sc.reclaim_state);
3592 	psi_memstall_enter(&pflags);
3593 	__fs_reclaim_acquire();
3594 
3595 	count_vm_event(PAGEOUTRUN);
3596 
3597 	/*
3598 	 * Account for the reclaim boost. Note that the zone boost is left in
3599 	 * place so that parallel allocations that are near the watermark will
3600 	 * stall or direct reclaim until kswapd is finished.
3601 	 */
3602 	nr_boost_reclaim = 0;
3603 	for (i = 0; i <= classzone_idx; i++) {
3604 		zone = pgdat->node_zones + i;
3605 		if (!managed_zone(zone))
3606 			continue;
3607 
3608 		nr_boost_reclaim += zone->watermark_boost;
3609 		zone_boosts[i] = zone->watermark_boost;
3610 	}
3611 	boosted = nr_boost_reclaim;
3612 
3613 restart:
3614 	sc.priority = DEF_PRIORITY;
3615 	do {
3616 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3617 		bool raise_priority = true;
3618 		bool balanced;
3619 		bool ret;
3620 
3621 		sc.reclaim_idx = classzone_idx;
3622 
3623 		/*
3624 		 * If the number of buffer_heads exceeds the maximum allowed
3625 		 * then consider reclaiming from all zones. This has a dual
3626 		 * purpose -- on 64-bit systems it is expected that
3627 		 * buffer_heads are stripped during active rotation. On 32-bit
3628 		 * systems, highmem pages can pin lowmem memory and shrinking
3629 		 * buffers can relieve lowmem pressure. Reclaim may still not
3630 		 * go ahead if all eligible zones for the original allocation
3631 		 * request are balanced to avoid excessive reclaim from kswapd.
3632 		 */
3633 		if (buffer_heads_over_limit) {
3634 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3635 				zone = pgdat->node_zones + i;
3636 				if (!managed_zone(zone))
3637 					continue;
3638 
3639 				sc.reclaim_idx = i;
3640 				break;
3641 			}
3642 		}
3643 
3644 		/*
3645 		 * If the pgdat is imbalanced then ignore boosting and preserve
3646 		 * the watermarks for a later time and restart. Note that the
3647 		 * zone watermarks will be still reset at the end of balancing
3648 		 * on the grounds that the normal reclaim should be enough to
3649 		 * re-evaluate if boosting is required when kswapd next wakes.
3650 		 */
3651 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3652 		if (!balanced && nr_boost_reclaim) {
3653 			nr_boost_reclaim = 0;
3654 			goto restart;
3655 		}
3656 
3657 		/*
3658 		 * If boosting is not active then only reclaim if there are no
3659 		 * eligible zones. Note that sc.reclaim_idx is not used as
3660 		 * buffer_heads_over_limit may have adjusted it.
3661 		 */
3662 		if (!nr_boost_reclaim && balanced)
3663 			goto out;
3664 
3665 		/* Limit the priority of boosting to avoid reclaim writeback */
3666 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3667 			raise_priority = false;
3668 
3669 		/*
3670 		 * Do not writeback or swap pages for boosted reclaim. The
3671 		 * intent is to relieve pressure not issue sub-optimal IO
3672 		 * from reclaim context. If no pages are reclaimed, the
3673 		 * reclaim will be aborted.
3674 		 */
3675 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3676 		sc.may_swap = !nr_boost_reclaim;
3677 
3678 		/*
3679 		 * Do some background aging of the anon list, to give
3680 		 * pages a chance to be referenced before reclaiming. All
3681 		 * pages are rotated regardless of classzone as this is
3682 		 * about consistent aging.
3683 		 */
3684 		age_active_anon(pgdat, &sc);
3685 
3686 		/*
3687 		 * If we're getting trouble reclaiming, start doing writepage
3688 		 * even in laptop mode.
3689 		 */
3690 		if (sc.priority < DEF_PRIORITY - 2)
3691 			sc.may_writepage = 1;
3692 
3693 		/* Call soft limit reclaim before calling shrink_node. */
3694 		sc.nr_scanned = 0;
3695 		nr_soft_scanned = 0;
3696 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3697 						sc.gfp_mask, &nr_soft_scanned);
3698 		sc.nr_reclaimed += nr_soft_reclaimed;
3699 
3700 		/*
3701 		 * There should be no need to raise the scanning priority if
3702 		 * enough pages are already being scanned that that high
3703 		 * watermark would be met at 100% efficiency.
3704 		 */
3705 		if (kswapd_shrink_node(pgdat, &sc))
3706 			raise_priority = false;
3707 
3708 		/*
3709 		 * If the low watermark is met there is no need for processes
3710 		 * to be throttled on pfmemalloc_wait as they should not be
3711 		 * able to safely make forward progress. Wake them
3712 		 */
3713 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3714 				allow_direct_reclaim(pgdat))
3715 			wake_up_all(&pgdat->pfmemalloc_wait);
3716 
3717 		/* Check if kswapd should be suspending */
3718 		__fs_reclaim_release();
3719 		ret = try_to_freeze();
3720 		__fs_reclaim_acquire();
3721 		if (ret || kthread_should_stop())
3722 			break;
3723 
3724 		/*
3725 		 * Raise priority if scanning rate is too low or there was no
3726 		 * progress in reclaiming pages
3727 		 */
3728 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3729 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3730 
3731 		/*
3732 		 * If reclaim made no progress for a boost, stop reclaim as
3733 		 * IO cannot be queued and it could be an infinite loop in
3734 		 * extreme circumstances.
3735 		 */
3736 		if (nr_boost_reclaim && !nr_reclaimed)
3737 			break;
3738 
3739 		if (raise_priority || !nr_reclaimed)
3740 			sc.priority--;
3741 	} while (sc.priority >= 1);
3742 
3743 	if (!sc.nr_reclaimed)
3744 		pgdat->kswapd_failures++;
3745 
3746 out:
3747 	/* If reclaim was boosted, account for the reclaim done in this pass */
3748 	if (boosted) {
3749 		unsigned long flags;
3750 
3751 		for (i = 0; i <= classzone_idx; i++) {
3752 			if (!zone_boosts[i])
3753 				continue;
3754 
3755 			/* Increments are under the zone lock */
3756 			zone = pgdat->node_zones + i;
3757 			spin_lock_irqsave(&zone->lock, flags);
3758 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3759 			spin_unlock_irqrestore(&zone->lock, flags);
3760 		}
3761 
3762 		/*
3763 		 * As there is now likely space, wakeup kcompact to defragment
3764 		 * pageblocks.
3765 		 */
3766 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3767 	}
3768 
3769 	snapshot_refaults(NULL, pgdat);
3770 	__fs_reclaim_release();
3771 	psi_memstall_leave(&pflags);
3772 	set_task_reclaim_state(current, NULL);
3773 
3774 	/*
3775 	 * Return the order kswapd stopped reclaiming at as
3776 	 * prepare_kswapd_sleep() takes it into account. If another caller
3777 	 * entered the allocator slow path while kswapd was awake, order will
3778 	 * remain at the higher level.
3779 	 */
3780 	return sc.order;
3781 }
3782 
3783 /*
3784  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3785  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3786  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3787  * after previous reclaim attempt (node is still unbalanced). In that case
3788  * return the zone index of the previous kswapd reclaim cycle.
3789  */
3790 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3791 					   enum zone_type prev_classzone_idx)
3792 {
3793 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3794 		return prev_classzone_idx;
3795 	return pgdat->kswapd_classzone_idx;
3796 }
3797 
3798 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3799 				unsigned int classzone_idx)
3800 {
3801 	long remaining = 0;
3802 	DEFINE_WAIT(wait);
3803 
3804 	if (freezing(current) || kthread_should_stop())
3805 		return;
3806 
3807 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3808 
3809 	/*
3810 	 * Try to sleep for a short interval. Note that kcompactd will only be
3811 	 * woken if it is possible to sleep for a short interval. This is
3812 	 * deliberate on the assumption that if reclaim cannot keep an
3813 	 * eligible zone balanced that it's also unlikely that compaction will
3814 	 * succeed.
3815 	 */
3816 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3817 		/*
3818 		 * Compaction records what page blocks it recently failed to
3819 		 * isolate pages from and skips them in the future scanning.
3820 		 * When kswapd is going to sleep, it is reasonable to assume
3821 		 * that pages and compaction may succeed so reset the cache.
3822 		 */
3823 		reset_isolation_suitable(pgdat);
3824 
3825 		/*
3826 		 * We have freed the memory, now we should compact it to make
3827 		 * allocation of the requested order possible.
3828 		 */
3829 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3830 
3831 		remaining = schedule_timeout(HZ/10);
3832 
3833 		/*
3834 		 * If woken prematurely then reset kswapd_classzone_idx and
3835 		 * order. The values will either be from a wakeup request or
3836 		 * the previous request that slept prematurely.
3837 		 */
3838 		if (remaining) {
3839 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3840 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3841 		}
3842 
3843 		finish_wait(&pgdat->kswapd_wait, &wait);
3844 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3845 	}
3846 
3847 	/*
3848 	 * After a short sleep, check if it was a premature sleep. If not, then
3849 	 * go fully to sleep until explicitly woken up.
3850 	 */
3851 	if (!remaining &&
3852 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3853 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3854 
3855 		/*
3856 		 * vmstat counters are not perfectly accurate and the estimated
3857 		 * value for counters such as NR_FREE_PAGES can deviate from the
3858 		 * true value by nr_online_cpus * threshold. To avoid the zone
3859 		 * watermarks being breached while under pressure, we reduce the
3860 		 * per-cpu vmstat threshold while kswapd is awake and restore
3861 		 * them before going back to sleep.
3862 		 */
3863 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3864 
3865 		if (!kthread_should_stop())
3866 			schedule();
3867 
3868 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3869 	} else {
3870 		if (remaining)
3871 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3872 		else
3873 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3874 	}
3875 	finish_wait(&pgdat->kswapd_wait, &wait);
3876 }
3877 
3878 /*
3879  * The background pageout daemon, started as a kernel thread
3880  * from the init process.
3881  *
3882  * This basically trickles out pages so that we have _some_
3883  * free memory available even if there is no other activity
3884  * that frees anything up. This is needed for things like routing
3885  * etc, where we otherwise might have all activity going on in
3886  * asynchronous contexts that cannot page things out.
3887  *
3888  * If there are applications that are active memory-allocators
3889  * (most normal use), this basically shouldn't matter.
3890  */
3891 static int kswapd(void *p)
3892 {
3893 	unsigned int alloc_order, reclaim_order;
3894 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3895 	pg_data_t *pgdat = (pg_data_t*)p;
3896 	struct task_struct *tsk = current;
3897 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3898 
3899 	if (!cpumask_empty(cpumask))
3900 		set_cpus_allowed_ptr(tsk, cpumask);
3901 
3902 	/*
3903 	 * Tell the memory management that we're a "memory allocator",
3904 	 * and that if we need more memory we should get access to it
3905 	 * regardless (see "__alloc_pages()"). "kswapd" should
3906 	 * never get caught in the normal page freeing logic.
3907 	 *
3908 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3909 	 * you need a small amount of memory in order to be able to
3910 	 * page out something else, and this flag essentially protects
3911 	 * us from recursively trying to free more memory as we're
3912 	 * trying to free the first piece of memory in the first place).
3913 	 */
3914 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3915 	set_freezable();
3916 
3917 	pgdat->kswapd_order = 0;
3918 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3919 	for ( ; ; ) {
3920 		bool ret;
3921 
3922 		alloc_order = reclaim_order = pgdat->kswapd_order;
3923 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3924 
3925 kswapd_try_sleep:
3926 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3927 					classzone_idx);
3928 
3929 		/* Read the new order and classzone_idx */
3930 		alloc_order = reclaim_order = pgdat->kswapd_order;
3931 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3932 		pgdat->kswapd_order = 0;
3933 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3934 
3935 		ret = try_to_freeze();
3936 		if (kthread_should_stop())
3937 			break;
3938 
3939 		/*
3940 		 * We can speed up thawing tasks if we don't call balance_pgdat
3941 		 * after returning from the refrigerator
3942 		 */
3943 		if (ret)
3944 			continue;
3945 
3946 		/*
3947 		 * Reclaim begins at the requested order but if a high-order
3948 		 * reclaim fails then kswapd falls back to reclaiming for
3949 		 * order-0. If that happens, kswapd will consider sleeping
3950 		 * for the order it finished reclaiming at (reclaim_order)
3951 		 * but kcompactd is woken to compact for the original
3952 		 * request (alloc_order).
3953 		 */
3954 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3955 						alloc_order);
3956 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3957 		if (reclaim_order < alloc_order)
3958 			goto kswapd_try_sleep;
3959 	}
3960 
3961 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3962 
3963 	return 0;
3964 }
3965 
3966 /*
3967  * A zone is low on free memory or too fragmented for high-order memory.  If
3968  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3969  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3970  * has failed or is not needed, still wake up kcompactd if only compaction is
3971  * needed.
3972  */
3973 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3974 		   enum zone_type classzone_idx)
3975 {
3976 	pg_data_t *pgdat;
3977 
3978 	if (!managed_zone(zone))
3979 		return;
3980 
3981 	if (!cpuset_zone_allowed(zone, gfp_flags))
3982 		return;
3983 	pgdat = zone->zone_pgdat;
3984 
3985 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3986 		pgdat->kswapd_classzone_idx = classzone_idx;
3987 	else
3988 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3989 						  classzone_idx);
3990 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3991 	if (!waitqueue_active(&pgdat->kswapd_wait))
3992 		return;
3993 
3994 	/* Hopeless node, leave it to direct reclaim if possible */
3995 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3996 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3997 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3998 		/*
3999 		 * There may be plenty of free memory available, but it's too
4000 		 * fragmented for high-order allocations.  Wake up kcompactd
4001 		 * and rely on compaction_suitable() to determine if it's
4002 		 * needed.  If it fails, it will defer subsequent attempts to
4003 		 * ratelimit its work.
4004 		 */
4005 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4006 			wakeup_kcompactd(pgdat, order, classzone_idx);
4007 		return;
4008 	}
4009 
4010 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4011 				      gfp_flags);
4012 	wake_up_interruptible(&pgdat->kswapd_wait);
4013 }
4014 
4015 #ifdef CONFIG_HIBERNATION
4016 /*
4017  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4018  * freed pages.
4019  *
4020  * Rather than trying to age LRUs the aim is to preserve the overall
4021  * LRU order by reclaiming preferentially
4022  * inactive > active > active referenced > active mapped
4023  */
4024 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4025 {
4026 	struct scan_control sc = {
4027 		.nr_to_reclaim = nr_to_reclaim,
4028 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4029 		.reclaim_idx = MAX_NR_ZONES - 1,
4030 		.priority = DEF_PRIORITY,
4031 		.may_writepage = 1,
4032 		.may_unmap = 1,
4033 		.may_swap = 1,
4034 		.hibernation_mode = 1,
4035 	};
4036 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4037 	unsigned long nr_reclaimed;
4038 	unsigned int noreclaim_flag;
4039 
4040 	fs_reclaim_acquire(sc.gfp_mask);
4041 	noreclaim_flag = memalloc_noreclaim_save();
4042 	set_task_reclaim_state(current, &sc.reclaim_state);
4043 
4044 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4045 
4046 	set_task_reclaim_state(current, NULL);
4047 	memalloc_noreclaim_restore(noreclaim_flag);
4048 	fs_reclaim_release(sc.gfp_mask);
4049 
4050 	return nr_reclaimed;
4051 }
4052 #endif /* CONFIG_HIBERNATION */
4053 
4054 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4055    not required for correctness.  So if the last cpu in a node goes
4056    away, we get changed to run anywhere: as the first one comes back,
4057    restore their cpu bindings. */
4058 static int kswapd_cpu_online(unsigned int cpu)
4059 {
4060 	int nid;
4061 
4062 	for_each_node_state(nid, N_MEMORY) {
4063 		pg_data_t *pgdat = NODE_DATA(nid);
4064 		const struct cpumask *mask;
4065 
4066 		mask = cpumask_of_node(pgdat->node_id);
4067 
4068 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4069 			/* One of our CPUs online: restore mask */
4070 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4071 	}
4072 	return 0;
4073 }
4074 
4075 /*
4076  * This kswapd start function will be called by init and node-hot-add.
4077  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4078  */
4079 int kswapd_run(int nid)
4080 {
4081 	pg_data_t *pgdat = NODE_DATA(nid);
4082 	int ret = 0;
4083 
4084 	if (pgdat->kswapd)
4085 		return 0;
4086 
4087 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4088 	if (IS_ERR(pgdat->kswapd)) {
4089 		/* failure at boot is fatal */
4090 		BUG_ON(system_state < SYSTEM_RUNNING);
4091 		pr_err("Failed to start kswapd on node %d\n", nid);
4092 		ret = PTR_ERR(pgdat->kswapd);
4093 		pgdat->kswapd = NULL;
4094 	}
4095 	return ret;
4096 }
4097 
4098 /*
4099  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4100  * hold mem_hotplug_begin/end().
4101  */
4102 void kswapd_stop(int nid)
4103 {
4104 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4105 
4106 	if (kswapd) {
4107 		kthread_stop(kswapd);
4108 		NODE_DATA(nid)->kswapd = NULL;
4109 	}
4110 }
4111 
4112 static int __init kswapd_init(void)
4113 {
4114 	int nid, ret;
4115 
4116 	swap_setup();
4117 	for_each_node_state(nid, N_MEMORY)
4118  		kswapd_run(nid);
4119 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4120 					"mm/vmscan:online", kswapd_cpu_online,
4121 					NULL);
4122 	WARN_ON(ret < 0);
4123 	return 0;
4124 }
4125 
4126 module_init(kswapd_init)
4127 
4128 #ifdef CONFIG_NUMA
4129 /*
4130  * Node reclaim mode
4131  *
4132  * If non-zero call node_reclaim when the number of free pages falls below
4133  * the watermarks.
4134  */
4135 int node_reclaim_mode __read_mostly;
4136 
4137 #define RECLAIM_OFF 0
4138 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4139 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4140 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4141 
4142 /*
4143  * Priority for NODE_RECLAIM. This determines the fraction of pages
4144  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4145  * a zone.
4146  */
4147 #define NODE_RECLAIM_PRIORITY 4
4148 
4149 /*
4150  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4151  * occur.
4152  */
4153 int sysctl_min_unmapped_ratio = 1;
4154 
4155 /*
4156  * If the number of slab pages in a zone grows beyond this percentage then
4157  * slab reclaim needs to occur.
4158  */
4159 int sysctl_min_slab_ratio = 5;
4160 
4161 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4162 {
4163 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4164 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4165 		node_page_state(pgdat, NR_ACTIVE_FILE);
4166 
4167 	/*
4168 	 * It's possible for there to be more file mapped pages than
4169 	 * accounted for by the pages on the file LRU lists because
4170 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4171 	 */
4172 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4173 }
4174 
4175 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4176 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4177 {
4178 	unsigned long nr_pagecache_reclaimable;
4179 	unsigned long delta = 0;
4180 
4181 	/*
4182 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4183 	 * potentially reclaimable. Otherwise, we have to worry about
4184 	 * pages like swapcache and node_unmapped_file_pages() provides
4185 	 * a better estimate
4186 	 */
4187 	if (node_reclaim_mode & RECLAIM_UNMAP)
4188 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4189 	else
4190 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4191 
4192 	/* If we can't clean pages, remove dirty pages from consideration */
4193 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4194 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4195 
4196 	/* Watch for any possible underflows due to delta */
4197 	if (unlikely(delta > nr_pagecache_reclaimable))
4198 		delta = nr_pagecache_reclaimable;
4199 
4200 	return nr_pagecache_reclaimable - delta;
4201 }
4202 
4203 /*
4204  * Try to free up some pages from this node through reclaim.
4205  */
4206 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4207 {
4208 	/* Minimum pages needed in order to stay on node */
4209 	const unsigned long nr_pages = 1 << order;
4210 	struct task_struct *p = current;
4211 	unsigned int noreclaim_flag;
4212 	struct scan_control sc = {
4213 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4214 		.gfp_mask = current_gfp_context(gfp_mask),
4215 		.order = order,
4216 		.priority = NODE_RECLAIM_PRIORITY,
4217 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4218 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4219 		.may_swap = 1,
4220 		.reclaim_idx = gfp_zone(gfp_mask),
4221 	};
4222 
4223 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4224 					   sc.gfp_mask);
4225 
4226 	cond_resched();
4227 	fs_reclaim_acquire(sc.gfp_mask);
4228 	/*
4229 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4230 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4231 	 * and RECLAIM_UNMAP.
4232 	 */
4233 	noreclaim_flag = memalloc_noreclaim_save();
4234 	p->flags |= PF_SWAPWRITE;
4235 	set_task_reclaim_state(p, &sc.reclaim_state);
4236 
4237 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4238 		/*
4239 		 * Free memory by calling shrink node with increasing
4240 		 * priorities until we have enough memory freed.
4241 		 */
4242 		do {
4243 			shrink_node(pgdat, &sc);
4244 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4245 	}
4246 
4247 	set_task_reclaim_state(p, NULL);
4248 	current->flags &= ~PF_SWAPWRITE;
4249 	memalloc_noreclaim_restore(noreclaim_flag);
4250 	fs_reclaim_release(sc.gfp_mask);
4251 
4252 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4253 
4254 	return sc.nr_reclaimed >= nr_pages;
4255 }
4256 
4257 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4258 {
4259 	int ret;
4260 
4261 	/*
4262 	 * Node reclaim reclaims unmapped file backed pages and
4263 	 * slab pages if we are over the defined limits.
4264 	 *
4265 	 * A small portion of unmapped file backed pages is needed for
4266 	 * file I/O otherwise pages read by file I/O will be immediately
4267 	 * thrown out if the node is overallocated. So we do not reclaim
4268 	 * if less than a specified percentage of the node is used by
4269 	 * unmapped file backed pages.
4270 	 */
4271 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4272 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4273 		return NODE_RECLAIM_FULL;
4274 
4275 	/*
4276 	 * Do not scan if the allocation should not be delayed.
4277 	 */
4278 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4279 		return NODE_RECLAIM_NOSCAN;
4280 
4281 	/*
4282 	 * Only run node reclaim on the local node or on nodes that do not
4283 	 * have associated processors. This will favor the local processor
4284 	 * over remote processors and spread off node memory allocations
4285 	 * as wide as possible.
4286 	 */
4287 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4288 		return NODE_RECLAIM_NOSCAN;
4289 
4290 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4291 		return NODE_RECLAIM_NOSCAN;
4292 
4293 	ret = __node_reclaim(pgdat, gfp_mask, order);
4294 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4295 
4296 	if (!ret)
4297 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4298 
4299 	return ret;
4300 }
4301 #endif
4302 
4303 /*
4304  * page_evictable - test whether a page is evictable
4305  * @page: the page to test
4306  *
4307  * Test whether page is evictable--i.e., should be placed on active/inactive
4308  * lists vs unevictable list.
4309  *
4310  * Reasons page might not be evictable:
4311  * (1) page's mapping marked unevictable
4312  * (2) page is part of an mlocked VMA
4313  *
4314  */
4315 int page_evictable(struct page *page)
4316 {
4317 	int ret;
4318 
4319 	/* Prevent address_space of inode and swap cache from being freed */
4320 	rcu_read_lock();
4321 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4322 	rcu_read_unlock();
4323 	return ret;
4324 }
4325 
4326 /**
4327  * check_move_unevictable_pages - check pages for evictability and move to
4328  * appropriate zone lru list
4329  * @pvec: pagevec with lru pages to check
4330  *
4331  * Checks pages for evictability, if an evictable page is in the unevictable
4332  * lru list, moves it to the appropriate evictable lru list. This function
4333  * should be only used for lru pages.
4334  */
4335 void check_move_unevictable_pages(struct pagevec *pvec)
4336 {
4337 	struct lruvec *lruvec;
4338 	struct pglist_data *pgdat = NULL;
4339 	int pgscanned = 0;
4340 	int pgrescued = 0;
4341 	int i;
4342 
4343 	for (i = 0; i < pvec->nr; i++) {
4344 		struct page *page = pvec->pages[i];
4345 		struct pglist_data *pagepgdat = page_pgdat(page);
4346 
4347 		pgscanned++;
4348 		if (pagepgdat != pgdat) {
4349 			if (pgdat)
4350 				spin_unlock_irq(&pgdat->lru_lock);
4351 			pgdat = pagepgdat;
4352 			spin_lock_irq(&pgdat->lru_lock);
4353 		}
4354 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4355 
4356 		if (!PageLRU(page) || !PageUnevictable(page))
4357 			continue;
4358 
4359 		if (page_evictable(page)) {
4360 			enum lru_list lru = page_lru_base_type(page);
4361 
4362 			VM_BUG_ON_PAGE(PageActive(page), page);
4363 			ClearPageUnevictable(page);
4364 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4365 			add_page_to_lru_list(page, lruvec, lru);
4366 			pgrescued++;
4367 		}
4368 	}
4369 
4370 	if (pgdat) {
4371 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4372 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4373 		spin_unlock_irq(&pgdat->lru_lock);
4374 	}
4375 }
4376 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4377