xref: /openbmc/linux/mm/vmscan.c (revision 84b9b44b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 	unsigned int may_deactivate:2;
101 	unsigned int force_deactivate:1;
102 	unsigned int skipped_deactivate:1;
103 
104 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
105 	unsigned int may_writepage:1;
106 
107 	/* Can mapped folios be reclaimed? */
108 	unsigned int may_unmap:1;
109 
110 	/* Can folios be swapped as part of reclaim? */
111 	unsigned int may_swap:1;
112 
113 	/* Proactive reclaim invoked by userspace through memory.reclaim */
114 	unsigned int proactive:1;
115 
116 	/*
117 	 * Cgroup memory below memory.low is protected as long as we
118 	 * don't threaten to OOM. If any cgroup is reclaimed at
119 	 * reduced force or passed over entirely due to its memory.low
120 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 	 * result, then go back for one more cycle that reclaims the protected
122 	 * memory (memcg_low_reclaim) to avert OOM.
123 	 */
124 	unsigned int memcg_low_reclaim:1;
125 	unsigned int memcg_low_skipped:1;
126 
127 	unsigned int hibernation_mode:1;
128 
129 	/* One of the zones is ready for compaction */
130 	unsigned int compaction_ready:1;
131 
132 	/* There is easily reclaimable cold cache in the current node */
133 	unsigned int cache_trim_mode:1;
134 
135 	/* The file folios on the current node are dangerously low */
136 	unsigned int file_is_tiny:1;
137 
138 	/* Always discard instead of demoting to lower tier memory */
139 	unsigned int no_demotion:1;
140 
141 	/* Allocation order */
142 	s8 order;
143 
144 	/* Scan (total_size >> priority) pages at once */
145 	s8 priority;
146 
147 	/* The highest zone to isolate folios for reclaim from */
148 	s8 reclaim_idx;
149 
150 	/* This context's GFP mask */
151 	gfp_t gfp_mask;
152 
153 	/* Incremented by the number of inactive pages that were scanned */
154 	unsigned long nr_scanned;
155 
156 	/* Number of pages freed so far during a call to shrink_zones() */
157 	unsigned long nr_reclaimed;
158 
159 	struct {
160 		unsigned int dirty;
161 		unsigned int unqueued_dirty;
162 		unsigned int congested;
163 		unsigned int writeback;
164 		unsigned int immediate;
165 		unsigned int file_taken;
166 		unsigned int taken;
167 	} nr;
168 
169 	/* for recording the reclaimed slab by now */
170 	struct reclaim_state reclaim_state;
171 };
172 
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
175 	do {								\
176 		if ((_folio)->lru.prev != _base) {			\
177 			struct folio *prev;				\
178 									\
179 			prev = lru_to_folio(&(_folio->lru));		\
180 			prefetchw(&prev->_field);			\
181 		}							\
182 	} while (0)
183 #else
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
185 #endif
186 
187 /*
188  * From 0 .. 200.  Higher means more swappy.
189  */
190 int vm_swappiness = 60;
191 
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
196 
197 #ifdef CONFIG_MEMCG
198 static int shrinker_nr_max;
199 
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
202 {
203 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
204 }
205 
206 static inline int shrinker_defer_size(int nr_items)
207 {
208 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
209 }
210 
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
212 						     int nid)
213 {
214 	return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
215 				      &shrinker_srcu,
216 				      lockdep_is_held(&shrinker_mutex));
217 }
218 
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
220 						     int nid)
221 {
222 	return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
223 				&shrinker_srcu);
224 }
225 
226 static void free_shrinker_info_rcu(struct rcu_head *head)
227 {
228 	kvfree(container_of(head, struct shrinker_info, rcu));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size,
234 				    int new_nr_max)
235 {
236 	struct shrinker_info *new, *old;
237 	struct mem_cgroup_per_node *pn;
238 	int nid;
239 	int size = map_size + defer_size;
240 
241 	for_each_node(nid) {
242 		pn = memcg->nodeinfo[nid];
243 		old = shrinker_info_protected(memcg, nid);
244 		/* Not yet online memcg */
245 		if (!old)
246 			return 0;
247 
248 		/* Already expanded this shrinker_info */
249 		if (new_nr_max <= old->map_nr_max)
250 			continue;
251 
252 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
253 		if (!new)
254 			return -ENOMEM;
255 
256 		new->nr_deferred = (atomic_long_t *)(new + 1);
257 		new->map = (void *)new->nr_deferred + defer_size;
258 		new->map_nr_max = new_nr_max;
259 
260 		/* map: set all old bits, clear all new bits */
261 		memset(new->map, (int)0xff, old_map_size);
262 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 		/* nr_deferred: copy old values, clear all new values */
264 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 		memset((void *)new->nr_deferred + old_defer_size, 0,
266 		       defer_size - old_defer_size);
267 
268 		rcu_assign_pointer(pn->shrinker_info, new);
269 		call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
270 	}
271 
272 	return 0;
273 }
274 
275 void free_shrinker_info(struct mem_cgroup *memcg)
276 {
277 	struct mem_cgroup_per_node *pn;
278 	struct shrinker_info *info;
279 	int nid;
280 
281 	for_each_node(nid) {
282 		pn = memcg->nodeinfo[nid];
283 		info = rcu_dereference_protected(pn->shrinker_info, true);
284 		kvfree(info);
285 		rcu_assign_pointer(pn->shrinker_info, NULL);
286 	}
287 }
288 
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
290 {
291 	struct shrinker_info *info;
292 	int nid, size, ret = 0;
293 	int map_size, defer_size = 0;
294 
295 	mutex_lock(&shrinker_mutex);
296 	map_size = shrinker_map_size(shrinker_nr_max);
297 	defer_size = shrinker_defer_size(shrinker_nr_max);
298 	size = map_size + defer_size;
299 	for_each_node(nid) {
300 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
301 		if (!info) {
302 			free_shrinker_info(memcg);
303 			ret = -ENOMEM;
304 			break;
305 		}
306 		info->nr_deferred = (atomic_long_t *)(info + 1);
307 		info->map = (void *)info->nr_deferred + defer_size;
308 		info->map_nr_max = shrinker_nr_max;
309 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
310 	}
311 	mutex_unlock(&shrinker_mutex);
312 
313 	return ret;
314 }
315 
316 static int expand_shrinker_info(int new_id)
317 {
318 	int ret = 0;
319 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 	int map_size, defer_size = 0;
321 	int old_map_size, old_defer_size = 0;
322 	struct mem_cgroup *memcg;
323 
324 	if (!root_mem_cgroup)
325 		goto out;
326 
327 	lockdep_assert_held(&shrinker_mutex);
328 
329 	map_size = shrinker_map_size(new_nr_max);
330 	defer_size = shrinker_defer_size(new_nr_max);
331 	old_map_size = shrinker_map_size(shrinker_nr_max);
332 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
333 
334 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
335 	do {
336 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 					       old_map_size, old_defer_size,
338 					       new_nr_max);
339 		if (ret) {
340 			mem_cgroup_iter_break(NULL, memcg);
341 			goto out;
342 		}
343 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
344 out:
345 	if (!ret)
346 		shrinker_nr_max = new_nr_max;
347 
348 	return ret;
349 }
350 
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352 {
353 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 		struct shrinker_info *info;
355 		int srcu_idx;
356 
357 		srcu_idx = srcu_read_lock(&shrinker_srcu);
358 		info = shrinker_info_srcu(memcg, nid);
359 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 			/* Pairs with smp mb in shrink_slab() */
361 			smp_mb__before_atomic();
362 			set_bit(shrinker_id, info->map);
363 		}
364 		srcu_read_unlock(&shrinker_srcu, srcu_idx);
365 	}
366 }
367 
368 static DEFINE_IDR(shrinker_idr);
369 
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
371 {
372 	int id, ret = -ENOMEM;
373 
374 	if (mem_cgroup_disabled())
375 		return -ENOSYS;
376 
377 	mutex_lock(&shrinker_mutex);
378 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
379 	if (id < 0)
380 		goto unlock;
381 
382 	if (id >= shrinker_nr_max) {
383 		if (expand_shrinker_info(id)) {
384 			idr_remove(&shrinker_idr, id);
385 			goto unlock;
386 		}
387 	}
388 	shrinker->id = id;
389 	ret = 0;
390 unlock:
391 	mutex_unlock(&shrinker_mutex);
392 	return ret;
393 }
394 
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 {
397 	int id = shrinker->id;
398 
399 	BUG_ON(id < 0);
400 
401 	lockdep_assert_held(&shrinker_mutex);
402 
403 	idr_remove(&shrinker_idr, id);
404 }
405 
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 				   struct mem_cgroup *memcg)
408 {
409 	struct shrinker_info *info;
410 
411 	info = shrinker_info_srcu(memcg, nid);
412 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
413 }
414 
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 				  struct mem_cgroup *memcg)
417 {
418 	struct shrinker_info *info;
419 
420 	info = shrinker_info_srcu(memcg, nid);
421 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
422 }
423 
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
425 {
426 	int i, nid;
427 	long nr;
428 	struct mem_cgroup *parent;
429 	struct shrinker_info *child_info, *parent_info;
430 
431 	parent = parent_mem_cgroup(memcg);
432 	if (!parent)
433 		parent = root_mem_cgroup;
434 
435 	/* Prevent from concurrent shrinker_info expand */
436 	mutex_lock(&shrinker_mutex);
437 	for_each_node(nid) {
438 		child_info = shrinker_info_protected(memcg, nid);
439 		parent_info = shrinker_info_protected(parent, nid);
440 		for (i = 0; i < child_info->map_nr_max; i++) {
441 			nr = atomic_long_read(&child_info->nr_deferred[i]);
442 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
443 		}
444 	}
445 	mutex_unlock(&shrinker_mutex);
446 }
447 
448 static bool cgroup_reclaim(struct scan_control *sc)
449 {
450 	return sc->target_mem_cgroup;
451 }
452 
453 static bool global_reclaim(struct scan_control *sc)
454 {
455 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
456 }
457 
458 /**
459  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460  * @sc: scan_control in question
461  *
462  * The normal page dirty throttling mechanism in balance_dirty_pages() is
463  * completely broken with the legacy memcg and direct stalling in
464  * shrink_folio_list() is used for throttling instead, which lacks all the
465  * niceties such as fairness, adaptive pausing, bandwidth proportional
466  * allocation and configurability.
467  *
468  * This function tests whether the vmscan currently in progress can assume
469  * that the normal dirty throttling mechanism is operational.
470  */
471 static bool writeback_throttling_sane(struct scan_control *sc)
472 {
473 	if (!cgroup_reclaim(sc))
474 		return true;
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
477 		return true;
478 #endif
479 	return false;
480 }
481 #else
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
483 {
484 	return -ENOSYS;
485 }
486 
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
488 {
489 }
490 
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 				   struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 				  struct mem_cgroup *memcg)
499 {
500 	return 0;
501 }
502 
503 static bool cgroup_reclaim(struct scan_control *sc)
504 {
505 	return false;
506 }
507 
508 static bool global_reclaim(struct scan_control *sc)
509 {
510 	return true;
511 }
512 
513 static bool writeback_throttling_sane(struct scan_control *sc)
514 {
515 	return true;
516 }
517 #endif
518 
519 static void set_task_reclaim_state(struct task_struct *task,
520 				   struct reclaim_state *rs)
521 {
522 	/* Check for an overwrite */
523 	WARN_ON_ONCE(rs && task->reclaim_state);
524 
525 	/* Check for the nulling of an already-nulled member */
526 	WARN_ON_ONCE(!rs && !task->reclaim_state);
527 
528 	task->reclaim_state = rs;
529 }
530 
531 /*
532  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533  * scan_control->nr_reclaimed.
534  */
535 static void flush_reclaim_state(struct scan_control *sc)
536 {
537 	/*
538 	 * Currently, reclaim_state->reclaimed includes three types of pages
539 	 * freed outside of vmscan:
540 	 * (1) Slab pages.
541 	 * (2) Clean file pages from pruned inodes (on highmem systems).
542 	 * (3) XFS freed buffer pages.
543 	 *
544 	 * For all of these cases, we cannot universally link the pages to a
545 	 * single memcg. For example, a memcg-aware shrinker can free one object
546 	 * charged to the target memcg, causing an entire page to be freed.
547 	 * If we count the entire page as reclaimed from the memcg, we end up
548 	 * overestimating the reclaimed amount (potentially under-reclaiming).
549 	 *
550 	 * Only count such pages for global reclaim to prevent under-reclaiming
551 	 * from the target memcg; preventing unnecessary retries during memcg
552 	 * charging and false positives from proactive reclaim.
553 	 *
554 	 * For uncommon cases where the freed pages were actually mostly
555 	 * charged to the target memcg, we end up underestimating the reclaimed
556 	 * amount. This should be fine. The freed pages will be uncharged
557 	 * anyway, even if they are not counted here properly, and we will be
558 	 * able to make forward progress in charging (which is usually in a
559 	 * retry loop).
560 	 *
561 	 * We can go one step further, and report the uncharged objcg pages in
562 	 * memcg reclaim, to make reporting more accurate and reduce
563 	 * underestimation, but it's probably not worth the complexity for now.
564 	 */
565 	if (current->reclaim_state && global_reclaim(sc)) {
566 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 		current->reclaim_state->reclaimed = 0;
568 	}
569 }
570 
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 			     struct shrink_control *sc)
573 {
574 	int nid = sc->nid;
575 
576 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
577 		nid = 0;
578 
579 	if (sc->memcg &&
580 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 		return xchg_nr_deferred_memcg(nid, shrinker,
582 					      sc->memcg);
583 
584 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
585 }
586 
587 
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 			    struct shrink_control *sc)
590 {
591 	int nid = sc->nid;
592 
593 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
594 		nid = 0;
595 
596 	if (sc->memcg &&
597 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 		return add_nr_deferred_memcg(nr, nid, shrinker,
599 					     sc->memcg);
600 
601 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
602 }
603 
604 static bool can_demote(int nid, struct scan_control *sc)
605 {
606 	if (!numa_demotion_enabled)
607 		return false;
608 	if (sc && sc->no_demotion)
609 		return false;
610 	if (next_demotion_node(nid) == NUMA_NO_NODE)
611 		return false;
612 
613 	return true;
614 }
615 
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
617 					  int nid,
618 					  struct scan_control *sc)
619 {
620 	if (memcg == NULL) {
621 		/*
622 		 * For non-memcg reclaim, is there
623 		 * space in any swap device?
624 		 */
625 		if (get_nr_swap_pages() > 0)
626 			return true;
627 	} else {
628 		/* Is the memcg below its swap limit? */
629 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
630 			return true;
631 	}
632 
633 	/*
634 	 * The page can not be swapped.
635 	 *
636 	 * Can it be reclaimed from this node via demotion?
637 	 */
638 	return can_demote(nid, sc);
639 }
640 
641 /*
642  * This misses isolated folios which are not accounted for to save counters.
643  * As the data only determines if reclaim or compaction continues, it is
644  * not expected that isolated folios will be a dominating factor.
645  */
646 unsigned long zone_reclaimable_pages(struct zone *zone)
647 {
648 	unsigned long nr;
649 
650 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
655 
656 	return nr;
657 }
658 
659 /**
660  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
661  * @lruvec: lru vector
662  * @lru: lru to use
663  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
664  */
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
666 				     int zone_idx)
667 {
668 	unsigned long size = 0;
669 	int zid;
670 
671 	for (zid = 0; zid <= zone_idx; zid++) {
672 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
673 
674 		if (!managed_zone(zone))
675 			continue;
676 
677 		if (!mem_cgroup_disabled())
678 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
679 		else
680 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
681 	}
682 	return size;
683 }
684 
685 /*
686  * Add a shrinker callback to be called from the vm.
687  */
688 static int __prealloc_shrinker(struct shrinker *shrinker)
689 {
690 	unsigned int size;
691 	int err;
692 
693 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 		err = prealloc_memcg_shrinker(shrinker);
695 		if (err != -ENOSYS)
696 			return err;
697 
698 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
699 	}
700 
701 	size = sizeof(*shrinker->nr_deferred);
702 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
703 		size *= nr_node_ids;
704 
705 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 	if (!shrinker->nr_deferred)
707 		return -ENOMEM;
708 
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __prealloc_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 
730 	return err;
731 }
732 #else
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 {
735 	return __prealloc_shrinker(shrinker);
736 }
737 #endif
738 
739 void free_prealloced_shrinker(struct shrinker *shrinker)
740 {
741 #ifdef CONFIG_SHRINKER_DEBUG
742 	kfree_const(shrinker->name);
743 	shrinker->name = NULL;
744 #endif
745 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 		mutex_lock(&shrinker_mutex);
747 		unregister_memcg_shrinker(shrinker);
748 		mutex_unlock(&shrinker_mutex);
749 		return;
750 	}
751 
752 	kfree(shrinker->nr_deferred);
753 	shrinker->nr_deferred = NULL;
754 }
755 
756 void register_shrinker_prepared(struct shrinker *shrinker)
757 {
758 	mutex_lock(&shrinker_mutex);
759 	list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 	shrinker->flags |= SHRINKER_REGISTERED;
761 	shrinker_debugfs_add(shrinker);
762 	mutex_unlock(&shrinker_mutex);
763 }
764 
765 static int __register_shrinker(struct shrinker *shrinker)
766 {
767 	int err = __prealloc_shrinker(shrinker);
768 
769 	if (err)
770 		return err;
771 	register_shrinker_prepared(shrinker);
772 	return 0;
773 }
774 
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
777 {
778 	va_list ap;
779 	int err;
780 
781 	va_start(ap, fmt);
782 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
783 	va_end(ap);
784 	if (!shrinker->name)
785 		return -ENOMEM;
786 
787 	err = __register_shrinker(shrinker);
788 	if (err) {
789 		kfree_const(shrinker->name);
790 		shrinker->name = NULL;
791 	}
792 	return err;
793 }
794 #else
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
796 {
797 	return __register_shrinker(shrinker);
798 }
799 #endif
800 EXPORT_SYMBOL(register_shrinker);
801 
802 /*
803  * Remove one
804  */
805 void unregister_shrinker(struct shrinker *shrinker)
806 {
807 	struct dentry *debugfs_entry;
808 	int debugfs_id;
809 
810 	if (!(shrinker->flags & SHRINKER_REGISTERED))
811 		return;
812 
813 	mutex_lock(&shrinker_mutex);
814 	list_del_rcu(&shrinker->list);
815 	shrinker->flags &= ~SHRINKER_REGISTERED;
816 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
817 		unregister_memcg_shrinker(shrinker);
818 	debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
819 	mutex_unlock(&shrinker_mutex);
820 
821 	atomic_inc(&shrinker_srcu_generation);
822 	synchronize_srcu(&shrinker_srcu);
823 
824 	shrinker_debugfs_remove(debugfs_entry, debugfs_id);
825 
826 	kfree(shrinker->nr_deferred);
827 	shrinker->nr_deferred = NULL;
828 }
829 EXPORT_SYMBOL(unregister_shrinker);
830 
831 /**
832  * synchronize_shrinkers - Wait for all running shrinkers to complete.
833  *
834  * This is useful to guarantee that all shrinker invocations have seen an
835  * update, before freeing memory.
836  */
837 void synchronize_shrinkers(void)
838 {
839 	atomic_inc(&shrinker_srcu_generation);
840 	synchronize_srcu(&shrinker_srcu);
841 }
842 EXPORT_SYMBOL(synchronize_shrinkers);
843 
844 #define SHRINK_BATCH 128
845 
846 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
847 				    struct shrinker *shrinker, int priority)
848 {
849 	unsigned long freed = 0;
850 	unsigned long long delta;
851 	long total_scan;
852 	long freeable;
853 	long nr;
854 	long new_nr;
855 	long batch_size = shrinker->batch ? shrinker->batch
856 					  : SHRINK_BATCH;
857 	long scanned = 0, next_deferred;
858 
859 	freeable = shrinker->count_objects(shrinker, shrinkctl);
860 	if (freeable == 0 || freeable == SHRINK_EMPTY)
861 		return freeable;
862 
863 	/*
864 	 * copy the current shrinker scan count into a local variable
865 	 * and zero it so that other concurrent shrinker invocations
866 	 * don't also do this scanning work.
867 	 */
868 	nr = xchg_nr_deferred(shrinker, shrinkctl);
869 
870 	if (shrinker->seeks) {
871 		delta = freeable >> priority;
872 		delta *= 4;
873 		do_div(delta, shrinker->seeks);
874 	} else {
875 		/*
876 		 * These objects don't require any IO to create. Trim
877 		 * them aggressively under memory pressure to keep
878 		 * them from causing refetches in the IO caches.
879 		 */
880 		delta = freeable / 2;
881 	}
882 
883 	total_scan = nr >> priority;
884 	total_scan += delta;
885 	total_scan = min(total_scan, (2 * freeable));
886 
887 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
888 				   freeable, delta, total_scan, priority);
889 
890 	/*
891 	 * Normally, we should not scan less than batch_size objects in one
892 	 * pass to avoid too frequent shrinker calls, but if the slab has less
893 	 * than batch_size objects in total and we are really tight on memory,
894 	 * we will try to reclaim all available objects, otherwise we can end
895 	 * up failing allocations although there are plenty of reclaimable
896 	 * objects spread over several slabs with usage less than the
897 	 * batch_size.
898 	 *
899 	 * We detect the "tight on memory" situations by looking at the total
900 	 * number of objects we want to scan (total_scan). If it is greater
901 	 * than the total number of objects on slab (freeable), we must be
902 	 * scanning at high prio and therefore should try to reclaim as much as
903 	 * possible.
904 	 */
905 	while (total_scan >= batch_size ||
906 	       total_scan >= freeable) {
907 		unsigned long ret;
908 		unsigned long nr_to_scan = min(batch_size, total_scan);
909 
910 		shrinkctl->nr_to_scan = nr_to_scan;
911 		shrinkctl->nr_scanned = nr_to_scan;
912 		ret = shrinker->scan_objects(shrinker, shrinkctl);
913 		if (ret == SHRINK_STOP)
914 			break;
915 		freed += ret;
916 
917 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
918 		total_scan -= shrinkctl->nr_scanned;
919 		scanned += shrinkctl->nr_scanned;
920 
921 		cond_resched();
922 	}
923 
924 	/*
925 	 * The deferred work is increased by any new work (delta) that wasn't
926 	 * done, decreased by old deferred work that was done now.
927 	 *
928 	 * And it is capped to two times of the freeable items.
929 	 */
930 	next_deferred = max_t(long, (nr + delta - scanned), 0);
931 	next_deferred = min(next_deferred, (2 * freeable));
932 
933 	/*
934 	 * move the unused scan count back into the shrinker in a
935 	 * manner that handles concurrent updates.
936 	 */
937 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
938 
939 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
940 	return freed;
941 }
942 
943 #ifdef CONFIG_MEMCG
944 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
945 			struct mem_cgroup *memcg, int priority)
946 {
947 	struct shrinker_info *info;
948 	unsigned long ret, freed = 0;
949 	int srcu_idx, generation;
950 	int i = 0;
951 
952 	if (!mem_cgroup_online(memcg))
953 		return 0;
954 
955 again:
956 	srcu_idx = srcu_read_lock(&shrinker_srcu);
957 	info = shrinker_info_srcu(memcg, nid);
958 	if (unlikely(!info))
959 		goto unlock;
960 
961 	generation = atomic_read(&shrinker_srcu_generation);
962 	for_each_set_bit_from(i, info->map, info->map_nr_max) {
963 		struct shrink_control sc = {
964 			.gfp_mask = gfp_mask,
965 			.nid = nid,
966 			.memcg = memcg,
967 		};
968 		struct shrinker *shrinker;
969 
970 		shrinker = idr_find(&shrinker_idr, i);
971 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
972 			if (!shrinker)
973 				clear_bit(i, info->map);
974 			continue;
975 		}
976 
977 		/* Call non-slab shrinkers even though kmem is disabled */
978 		if (!memcg_kmem_online() &&
979 		    !(shrinker->flags & SHRINKER_NONSLAB))
980 			continue;
981 
982 		ret = do_shrink_slab(&sc, shrinker, priority);
983 		if (ret == SHRINK_EMPTY) {
984 			clear_bit(i, info->map);
985 			/*
986 			 * After the shrinker reported that it had no objects to
987 			 * free, but before we cleared the corresponding bit in
988 			 * the memcg shrinker map, a new object might have been
989 			 * added. To make sure, we have the bit set in this
990 			 * case, we invoke the shrinker one more time and reset
991 			 * the bit if it reports that it is not empty anymore.
992 			 * The memory barrier here pairs with the barrier in
993 			 * set_shrinker_bit():
994 			 *
995 			 * list_lru_add()     shrink_slab_memcg()
996 			 *   list_add_tail()    clear_bit()
997 			 *   <MB>               <MB>
998 			 *   set_bit()          do_shrink_slab()
999 			 */
1000 			smp_mb__after_atomic();
1001 			ret = do_shrink_slab(&sc, shrinker, priority);
1002 			if (ret == SHRINK_EMPTY)
1003 				ret = 0;
1004 			else
1005 				set_shrinker_bit(memcg, nid, i);
1006 		}
1007 		freed += ret;
1008 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1009 			srcu_read_unlock(&shrinker_srcu, srcu_idx);
1010 			i++;
1011 			goto again;
1012 		}
1013 	}
1014 unlock:
1015 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1016 	return freed;
1017 }
1018 #else /* CONFIG_MEMCG */
1019 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1020 			struct mem_cgroup *memcg, int priority)
1021 {
1022 	return 0;
1023 }
1024 #endif /* CONFIG_MEMCG */
1025 
1026 /**
1027  * shrink_slab - shrink slab caches
1028  * @gfp_mask: allocation context
1029  * @nid: node whose slab caches to target
1030  * @memcg: memory cgroup whose slab caches to target
1031  * @priority: the reclaim priority
1032  *
1033  * Call the shrink functions to age shrinkable caches.
1034  *
1035  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1036  * unaware shrinkers will receive a node id of 0 instead.
1037  *
1038  * @memcg specifies the memory cgroup to target. Unaware shrinkers
1039  * are called only if it is the root cgroup.
1040  *
1041  * @priority is sc->priority, we take the number of objects and >> by priority
1042  * in order to get the scan target.
1043  *
1044  * Returns the number of reclaimed slab objects.
1045  */
1046 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1047 				 struct mem_cgroup *memcg,
1048 				 int priority)
1049 {
1050 	unsigned long ret, freed = 0;
1051 	struct shrinker *shrinker;
1052 	int srcu_idx, generation;
1053 
1054 	/*
1055 	 * The root memcg might be allocated even though memcg is disabled
1056 	 * via "cgroup_disable=memory" boot parameter.  This could make
1057 	 * mem_cgroup_is_root() return false, then just run memcg slab
1058 	 * shrink, but skip global shrink.  This may result in premature
1059 	 * oom.
1060 	 */
1061 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1062 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1063 
1064 	srcu_idx = srcu_read_lock(&shrinker_srcu);
1065 
1066 	generation = atomic_read(&shrinker_srcu_generation);
1067 	list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1068 				 srcu_read_lock_held(&shrinker_srcu)) {
1069 		struct shrink_control sc = {
1070 			.gfp_mask = gfp_mask,
1071 			.nid = nid,
1072 			.memcg = memcg,
1073 		};
1074 
1075 		ret = do_shrink_slab(&sc, shrinker, priority);
1076 		if (ret == SHRINK_EMPTY)
1077 			ret = 0;
1078 		freed += ret;
1079 
1080 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1081 			freed = freed ? : 1;
1082 			break;
1083 		}
1084 	}
1085 
1086 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1087 	cond_resched();
1088 	return freed;
1089 }
1090 
1091 static unsigned long drop_slab_node(int nid)
1092 {
1093 	unsigned long freed = 0;
1094 	struct mem_cgroup *memcg = NULL;
1095 
1096 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1097 	do {
1098 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1099 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1100 
1101 	return freed;
1102 }
1103 
1104 void drop_slab(void)
1105 {
1106 	int nid;
1107 	int shift = 0;
1108 	unsigned long freed;
1109 
1110 	do {
1111 		freed = 0;
1112 		for_each_online_node(nid) {
1113 			if (fatal_signal_pending(current))
1114 				return;
1115 
1116 			freed += drop_slab_node(nid);
1117 		}
1118 	} while ((freed >> shift++) > 1);
1119 }
1120 
1121 static int reclaimer_offset(void)
1122 {
1123 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1124 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1125 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1126 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1127 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1128 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1129 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1130 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1131 
1132 	if (current_is_kswapd())
1133 		return 0;
1134 	if (current_is_khugepaged())
1135 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1136 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1137 }
1138 
1139 static inline int is_page_cache_freeable(struct folio *folio)
1140 {
1141 	/*
1142 	 * A freeable page cache folio is referenced only by the caller
1143 	 * that isolated the folio, the page cache and optional filesystem
1144 	 * private data at folio->private.
1145 	 */
1146 	return folio_ref_count(folio) - folio_test_private(folio) ==
1147 		1 + folio_nr_pages(folio);
1148 }
1149 
1150 /*
1151  * We detected a synchronous write error writing a folio out.  Probably
1152  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1153  * fsync(), msync() or close().
1154  *
1155  * The tricky part is that after writepage we cannot touch the mapping: nothing
1156  * prevents it from being freed up.  But we have a ref on the folio and once
1157  * that folio is locked, the mapping is pinned.
1158  *
1159  * We're allowed to run sleeping folio_lock() here because we know the caller has
1160  * __GFP_FS.
1161  */
1162 static void handle_write_error(struct address_space *mapping,
1163 				struct folio *folio, int error)
1164 {
1165 	folio_lock(folio);
1166 	if (folio_mapping(folio) == mapping)
1167 		mapping_set_error(mapping, error);
1168 	folio_unlock(folio);
1169 }
1170 
1171 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1172 {
1173 	int reclaimable = 0, write_pending = 0;
1174 	int i;
1175 
1176 	/*
1177 	 * If kswapd is disabled, reschedule if necessary but do not
1178 	 * throttle as the system is likely near OOM.
1179 	 */
1180 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1181 		return true;
1182 
1183 	/*
1184 	 * If there are a lot of dirty/writeback folios then do not
1185 	 * throttle as throttling will occur when the folios cycle
1186 	 * towards the end of the LRU if still under writeback.
1187 	 */
1188 	for (i = 0; i < MAX_NR_ZONES; i++) {
1189 		struct zone *zone = pgdat->node_zones + i;
1190 
1191 		if (!managed_zone(zone))
1192 			continue;
1193 
1194 		reclaimable += zone_reclaimable_pages(zone);
1195 		write_pending += zone_page_state_snapshot(zone,
1196 						  NR_ZONE_WRITE_PENDING);
1197 	}
1198 	if (2 * write_pending <= reclaimable)
1199 		return true;
1200 
1201 	return false;
1202 }
1203 
1204 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1205 {
1206 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1207 	long timeout, ret;
1208 	DEFINE_WAIT(wait);
1209 
1210 	/*
1211 	 * Do not throttle user workers, kthreads other than kswapd or
1212 	 * workqueues. They may be required for reclaim to make
1213 	 * forward progress (e.g. journalling workqueues or kthreads).
1214 	 */
1215 	if (!current_is_kswapd() &&
1216 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1217 		cond_resched();
1218 		return;
1219 	}
1220 
1221 	/*
1222 	 * These figures are pulled out of thin air.
1223 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1224 	 * parallel reclaimers which is a short-lived event so the timeout is
1225 	 * short. Failing to make progress or waiting on writeback are
1226 	 * potentially long-lived events so use a longer timeout. This is shaky
1227 	 * logic as a failure to make progress could be due to anything from
1228 	 * writeback to a slow device to excessive referenced folios at the tail
1229 	 * of the inactive LRU.
1230 	 */
1231 	switch(reason) {
1232 	case VMSCAN_THROTTLE_WRITEBACK:
1233 		timeout = HZ/10;
1234 
1235 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1236 			WRITE_ONCE(pgdat->nr_reclaim_start,
1237 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1238 		}
1239 
1240 		break;
1241 	case VMSCAN_THROTTLE_CONGESTED:
1242 		fallthrough;
1243 	case VMSCAN_THROTTLE_NOPROGRESS:
1244 		if (skip_throttle_noprogress(pgdat)) {
1245 			cond_resched();
1246 			return;
1247 		}
1248 
1249 		timeout = 1;
1250 
1251 		break;
1252 	case VMSCAN_THROTTLE_ISOLATED:
1253 		timeout = HZ/50;
1254 		break;
1255 	default:
1256 		WARN_ON_ONCE(1);
1257 		timeout = HZ;
1258 		break;
1259 	}
1260 
1261 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1262 	ret = schedule_timeout(timeout);
1263 	finish_wait(wqh, &wait);
1264 
1265 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1266 		atomic_dec(&pgdat->nr_writeback_throttled);
1267 
1268 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1269 				jiffies_to_usecs(timeout - ret),
1270 				reason);
1271 }
1272 
1273 /*
1274  * Account for folios written if tasks are throttled waiting on dirty
1275  * folios to clean. If enough folios have been cleaned since throttling
1276  * started then wakeup the throttled tasks.
1277  */
1278 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1279 							int nr_throttled)
1280 {
1281 	unsigned long nr_written;
1282 
1283 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1284 
1285 	/*
1286 	 * This is an inaccurate read as the per-cpu deltas may not
1287 	 * be synchronised. However, given that the system is
1288 	 * writeback throttled, it is not worth taking the penalty
1289 	 * of getting an accurate count. At worst, the throttle
1290 	 * timeout guarantees forward progress.
1291 	 */
1292 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1293 		READ_ONCE(pgdat->nr_reclaim_start);
1294 
1295 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1296 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1297 }
1298 
1299 /* possible outcome of pageout() */
1300 typedef enum {
1301 	/* failed to write folio out, folio is locked */
1302 	PAGE_KEEP,
1303 	/* move folio to the active list, folio is locked */
1304 	PAGE_ACTIVATE,
1305 	/* folio has been sent to the disk successfully, folio is unlocked */
1306 	PAGE_SUCCESS,
1307 	/* folio is clean and locked */
1308 	PAGE_CLEAN,
1309 } pageout_t;
1310 
1311 /*
1312  * pageout is called by shrink_folio_list() for each dirty folio.
1313  * Calls ->writepage().
1314  */
1315 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1316 			 struct swap_iocb **plug)
1317 {
1318 	/*
1319 	 * If the folio is dirty, only perform writeback if that write
1320 	 * will be non-blocking.  To prevent this allocation from being
1321 	 * stalled by pagecache activity.  But note that there may be
1322 	 * stalls if we need to run get_block().  We could test
1323 	 * PagePrivate for that.
1324 	 *
1325 	 * If this process is currently in __generic_file_write_iter() against
1326 	 * this folio's queue, we can perform writeback even if that
1327 	 * will block.
1328 	 *
1329 	 * If the folio is swapcache, write it back even if that would
1330 	 * block, for some throttling. This happens by accident, because
1331 	 * swap_backing_dev_info is bust: it doesn't reflect the
1332 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1333 	 */
1334 	if (!is_page_cache_freeable(folio))
1335 		return PAGE_KEEP;
1336 	if (!mapping) {
1337 		/*
1338 		 * Some data journaling orphaned folios can have
1339 		 * folio->mapping == NULL while being dirty with clean buffers.
1340 		 */
1341 		if (folio_test_private(folio)) {
1342 			if (try_to_free_buffers(folio)) {
1343 				folio_clear_dirty(folio);
1344 				pr_info("%s: orphaned folio\n", __func__);
1345 				return PAGE_CLEAN;
1346 			}
1347 		}
1348 		return PAGE_KEEP;
1349 	}
1350 	if (mapping->a_ops->writepage == NULL)
1351 		return PAGE_ACTIVATE;
1352 
1353 	if (folio_clear_dirty_for_io(folio)) {
1354 		int res;
1355 		struct writeback_control wbc = {
1356 			.sync_mode = WB_SYNC_NONE,
1357 			.nr_to_write = SWAP_CLUSTER_MAX,
1358 			.range_start = 0,
1359 			.range_end = LLONG_MAX,
1360 			.for_reclaim = 1,
1361 			.swap_plug = plug,
1362 		};
1363 
1364 		folio_set_reclaim(folio);
1365 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1366 		if (res < 0)
1367 			handle_write_error(mapping, folio, res);
1368 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1369 			folio_clear_reclaim(folio);
1370 			return PAGE_ACTIVATE;
1371 		}
1372 
1373 		if (!folio_test_writeback(folio)) {
1374 			/* synchronous write or broken a_ops? */
1375 			folio_clear_reclaim(folio);
1376 		}
1377 		trace_mm_vmscan_write_folio(folio);
1378 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1379 		return PAGE_SUCCESS;
1380 	}
1381 
1382 	return PAGE_CLEAN;
1383 }
1384 
1385 /*
1386  * Same as remove_mapping, but if the folio is removed from the mapping, it
1387  * gets returned with a refcount of 0.
1388  */
1389 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1390 			    bool reclaimed, struct mem_cgroup *target_memcg)
1391 {
1392 	int refcount;
1393 	void *shadow = NULL;
1394 
1395 	BUG_ON(!folio_test_locked(folio));
1396 	BUG_ON(mapping != folio_mapping(folio));
1397 
1398 	if (!folio_test_swapcache(folio))
1399 		spin_lock(&mapping->host->i_lock);
1400 	xa_lock_irq(&mapping->i_pages);
1401 	/*
1402 	 * The non racy check for a busy folio.
1403 	 *
1404 	 * Must be careful with the order of the tests. When someone has
1405 	 * a ref to the folio, it may be possible that they dirty it then
1406 	 * drop the reference. So if the dirty flag is tested before the
1407 	 * refcount here, then the following race may occur:
1408 	 *
1409 	 * get_user_pages(&page);
1410 	 * [user mapping goes away]
1411 	 * write_to(page);
1412 	 *				!folio_test_dirty(folio)    [good]
1413 	 * folio_set_dirty(folio);
1414 	 * folio_put(folio);
1415 	 *				!refcount(folio)   [good, discard it]
1416 	 *
1417 	 * [oops, our write_to data is lost]
1418 	 *
1419 	 * Reversing the order of the tests ensures such a situation cannot
1420 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1421 	 * load is not satisfied before that of folio->_refcount.
1422 	 *
1423 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1424 	 * and thus under the i_pages lock, then this ordering is not required.
1425 	 */
1426 	refcount = 1 + folio_nr_pages(folio);
1427 	if (!folio_ref_freeze(folio, refcount))
1428 		goto cannot_free;
1429 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1430 	if (unlikely(folio_test_dirty(folio))) {
1431 		folio_ref_unfreeze(folio, refcount);
1432 		goto cannot_free;
1433 	}
1434 
1435 	if (folio_test_swapcache(folio)) {
1436 		swp_entry_t swap = folio_swap_entry(folio);
1437 
1438 		if (reclaimed && !mapping_exiting(mapping))
1439 			shadow = workingset_eviction(folio, target_memcg);
1440 		__delete_from_swap_cache(folio, swap, shadow);
1441 		mem_cgroup_swapout(folio, swap);
1442 		xa_unlock_irq(&mapping->i_pages);
1443 		put_swap_folio(folio, swap);
1444 	} else {
1445 		void (*free_folio)(struct folio *);
1446 
1447 		free_folio = mapping->a_ops->free_folio;
1448 		/*
1449 		 * Remember a shadow entry for reclaimed file cache in
1450 		 * order to detect refaults, thus thrashing, later on.
1451 		 *
1452 		 * But don't store shadows in an address space that is
1453 		 * already exiting.  This is not just an optimization,
1454 		 * inode reclaim needs to empty out the radix tree or
1455 		 * the nodes are lost.  Don't plant shadows behind its
1456 		 * back.
1457 		 *
1458 		 * We also don't store shadows for DAX mappings because the
1459 		 * only page cache folios found in these are zero pages
1460 		 * covering holes, and because we don't want to mix DAX
1461 		 * exceptional entries and shadow exceptional entries in the
1462 		 * same address_space.
1463 		 */
1464 		if (reclaimed && folio_is_file_lru(folio) &&
1465 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1466 			shadow = workingset_eviction(folio, target_memcg);
1467 		__filemap_remove_folio(folio, shadow);
1468 		xa_unlock_irq(&mapping->i_pages);
1469 		if (mapping_shrinkable(mapping))
1470 			inode_add_lru(mapping->host);
1471 		spin_unlock(&mapping->host->i_lock);
1472 
1473 		if (free_folio)
1474 			free_folio(folio);
1475 	}
1476 
1477 	return 1;
1478 
1479 cannot_free:
1480 	xa_unlock_irq(&mapping->i_pages);
1481 	if (!folio_test_swapcache(folio))
1482 		spin_unlock(&mapping->host->i_lock);
1483 	return 0;
1484 }
1485 
1486 /**
1487  * remove_mapping() - Attempt to remove a folio from its mapping.
1488  * @mapping: The address space.
1489  * @folio: The folio to remove.
1490  *
1491  * If the folio is dirty, under writeback or if someone else has a ref
1492  * on it, removal will fail.
1493  * Return: The number of pages removed from the mapping.  0 if the folio
1494  * could not be removed.
1495  * Context: The caller should have a single refcount on the folio and
1496  * hold its lock.
1497  */
1498 long remove_mapping(struct address_space *mapping, struct folio *folio)
1499 {
1500 	if (__remove_mapping(mapping, folio, false, NULL)) {
1501 		/*
1502 		 * Unfreezing the refcount with 1 effectively
1503 		 * drops the pagecache ref for us without requiring another
1504 		 * atomic operation.
1505 		 */
1506 		folio_ref_unfreeze(folio, 1);
1507 		return folio_nr_pages(folio);
1508 	}
1509 	return 0;
1510 }
1511 
1512 /**
1513  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1514  * @folio: Folio to be returned to an LRU list.
1515  *
1516  * Add previously isolated @folio to appropriate LRU list.
1517  * The folio may still be unevictable for other reasons.
1518  *
1519  * Context: lru_lock must not be held, interrupts must be enabled.
1520  */
1521 void folio_putback_lru(struct folio *folio)
1522 {
1523 	folio_add_lru(folio);
1524 	folio_put(folio);		/* drop ref from isolate */
1525 }
1526 
1527 enum folio_references {
1528 	FOLIOREF_RECLAIM,
1529 	FOLIOREF_RECLAIM_CLEAN,
1530 	FOLIOREF_KEEP,
1531 	FOLIOREF_ACTIVATE,
1532 };
1533 
1534 static enum folio_references folio_check_references(struct folio *folio,
1535 						  struct scan_control *sc)
1536 {
1537 	int referenced_ptes, referenced_folio;
1538 	unsigned long vm_flags;
1539 
1540 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1541 					   &vm_flags);
1542 	referenced_folio = folio_test_clear_referenced(folio);
1543 
1544 	/*
1545 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1546 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1547 	 */
1548 	if (vm_flags & VM_LOCKED)
1549 		return FOLIOREF_ACTIVATE;
1550 
1551 	/* rmap lock contention: rotate */
1552 	if (referenced_ptes == -1)
1553 		return FOLIOREF_KEEP;
1554 
1555 	if (referenced_ptes) {
1556 		/*
1557 		 * All mapped folios start out with page table
1558 		 * references from the instantiating fault, so we need
1559 		 * to look twice if a mapped file/anon folio is used more
1560 		 * than once.
1561 		 *
1562 		 * Mark it and spare it for another trip around the
1563 		 * inactive list.  Another page table reference will
1564 		 * lead to its activation.
1565 		 *
1566 		 * Note: the mark is set for activated folios as well
1567 		 * so that recently deactivated but used folios are
1568 		 * quickly recovered.
1569 		 */
1570 		folio_set_referenced(folio);
1571 
1572 		if (referenced_folio || referenced_ptes > 1)
1573 			return FOLIOREF_ACTIVATE;
1574 
1575 		/*
1576 		 * Activate file-backed executable folios after first usage.
1577 		 */
1578 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1579 			return FOLIOREF_ACTIVATE;
1580 
1581 		return FOLIOREF_KEEP;
1582 	}
1583 
1584 	/* Reclaim if clean, defer dirty folios to writeback */
1585 	if (referenced_folio && folio_is_file_lru(folio))
1586 		return FOLIOREF_RECLAIM_CLEAN;
1587 
1588 	return FOLIOREF_RECLAIM;
1589 }
1590 
1591 /* Check if a folio is dirty or under writeback */
1592 static void folio_check_dirty_writeback(struct folio *folio,
1593 				       bool *dirty, bool *writeback)
1594 {
1595 	struct address_space *mapping;
1596 
1597 	/*
1598 	 * Anonymous folios are not handled by flushers and must be written
1599 	 * from reclaim context. Do not stall reclaim based on them.
1600 	 * MADV_FREE anonymous folios are put into inactive file list too.
1601 	 * They could be mistakenly treated as file lru. So further anon
1602 	 * test is needed.
1603 	 */
1604 	if (!folio_is_file_lru(folio) ||
1605 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1606 		*dirty = false;
1607 		*writeback = false;
1608 		return;
1609 	}
1610 
1611 	/* By default assume that the folio flags are accurate */
1612 	*dirty = folio_test_dirty(folio);
1613 	*writeback = folio_test_writeback(folio);
1614 
1615 	/* Verify dirty/writeback state if the filesystem supports it */
1616 	if (!folio_test_private(folio))
1617 		return;
1618 
1619 	mapping = folio_mapping(folio);
1620 	if (mapping && mapping->a_ops->is_dirty_writeback)
1621 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1622 }
1623 
1624 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1625 {
1626 	struct page *target_page;
1627 	nodemask_t *allowed_mask;
1628 	struct migration_target_control *mtc;
1629 
1630 	mtc = (struct migration_target_control *)private;
1631 
1632 	allowed_mask = mtc->nmask;
1633 	/*
1634 	 * make sure we allocate from the target node first also trying to
1635 	 * demote or reclaim pages from the target node via kswapd if we are
1636 	 * low on free memory on target node. If we don't do this and if
1637 	 * we have free memory on the slower(lower) memtier, we would start
1638 	 * allocating pages from slower(lower) memory tiers without even forcing
1639 	 * a demotion of cold pages from the target memtier. This can result
1640 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1641 	 */
1642 	mtc->nmask = NULL;
1643 	mtc->gfp_mask |= __GFP_THISNODE;
1644 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1645 	if (target_page)
1646 		return target_page;
1647 
1648 	mtc->gfp_mask &= ~__GFP_THISNODE;
1649 	mtc->nmask = allowed_mask;
1650 
1651 	return alloc_migration_target(page, (unsigned long)mtc);
1652 }
1653 
1654 /*
1655  * Take folios on @demote_folios and attempt to demote them to another node.
1656  * Folios which are not demoted are left on @demote_folios.
1657  */
1658 static unsigned int demote_folio_list(struct list_head *demote_folios,
1659 				     struct pglist_data *pgdat)
1660 {
1661 	int target_nid = next_demotion_node(pgdat->node_id);
1662 	unsigned int nr_succeeded;
1663 	nodemask_t allowed_mask;
1664 
1665 	struct migration_target_control mtc = {
1666 		/*
1667 		 * Allocate from 'node', or fail quickly and quietly.
1668 		 * When this happens, 'page' will likely just be discarded
1669 		 * instead of migrated.
1670 		 */
1671 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1672 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1673 		.nid = target_nid,
1674 		.nmask = &allowed_mask
1675 	};
1676 
1677 	if (list_empty(demote_folios))
1678 		return 0;
1679 
1680 	if (target_nid == NUMA_NO_NODE)
1681 		return 0;
1682 
1683 	node_get_allowed_targets(pgdat, &allowed_mask);
1684 
1685 	/* Demotion ignores all cpuset and mempolicy settings */
1686 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1687 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1688 		      &nr_succeeded);
1689 
1690 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1691 
1692 	return nr_succeeded;
1693 }
1694 
1695 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1696 {
1697 	if (gfp_mask & __GFP_FS)
1698 		return true;
1699 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1700 		return false;
1701 	/*
1702 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1703 	 * providing this isn't SWP_FS_OPS.
1704 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1705 	 * but that will never affect SWP_FS_OPS, so the data_race
1706 	 * is safe.
1707 	 */
1708 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1709 }
1710 
1711 /*
1712  * shrink_folio_list() returns the number of reclaimed pages
1713  */
1714 static unsigned int shrink_folio_list(struct list_head *folio_list,
1715 		struct pglist_data *pgdat, struct scan_control *sc,
1716 		struct reclaim_stat *stat, bool ignore_references)
1717 {
1718 	LIST_HEAD(ret_folios);
1719 	LIST_HEAD(free_folios);
1720 	LIST_HEAD(demote_folios);
1721 	unsigned int nr_reclaimed = 0;
1722 	unsigned int pgactivate = 0;
1723 	bool do_demote_pass;
1724 	struct swap_iocb *plug = NULL;
1725 
1726 	memset(stat, 0, sizeof(*stat));
1727 	cond_resched();
1728 	do_demote_pass = can_demote(pgdat->node_id, sc);
1729 
1730 retry:
1731 	while (!list_empty(folio_list)) {
1732 		struct address_space *mapping;
1733 		struct folio *folio;
1734 		enum folio_references references = FOLIOREF_RECLAIM;
1735 		bool dirty, writeback;
1736 		unsigned int nr_pages;
1737 
1738 		cond_resched();
1739 
1740 		folio = lru_to_folio(folio_list);
1741 		list_del(&folio->lru);
1742 
1743 		if (!folio_trylock(folio))
1744 			goto keep;
1745 
1746 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1747 
1748 		nr_pages = folio_nr_pages(folio);
1749 
1750 		/* Account the number of base pages */
1751 		sc->nr_scanned += nr_pages;
1752 
1753 		if (unlikely(!folio_evictable(folio)))
1754 			goto activate_locked;
1755 
1756 		if (!sc->may_unmap && folio_mapped(folio))
1757 			goto keep_locked;
1758 
1759 		/* folio_update_gen() tried to promote this page? */
1760 		if (lru_gen_enabled() && !ignore_references &&
1761 		    folio_mapped(folio) && folio_test_referenced(folio))
1762 			goto keep_locked;
1763 
1764 		/*
1765 		 * The number of dirty pages determines if a node is marked
1766 		 * reclaim_congested. kswapd will stall and start writing
1767 		 * folios if the tail of the LRU is all dirty unqueued folios.
1768 		 */
1769 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1770 		if (dirty || writeback)
1771 			stat->nr_dirty += nr_pages;
1772 
1773 		if (dirty && !writeback)
1774 			stat->nr_unqueued_dirty += nr_pages;
1775 
1776 		/*
1777 		 * Treat this folio as congested if folios are cycling
1778 		 * through the LRU so quickly that the folios marked
1779 		 * for immediate reclaim are making it to the end of
1780 		 * the LRU a second time.
1781 		 */
1782 		if (writeback && folio_test_reclaim(folio))
1783 			stat->nr_congested += nr_pages;
1784 
1785 		/*
1786 		 * If a folio at the tail of the LRU is under writeback, there
1787 		 * are three cases to consider.
1788 		 *
1789 		 * 1) If reclaim is encountering an excessive number
1790 		 *    of folios under writeback and this folio has both
1791 		 *    the writeback and reclaim flags set, then it
1792 		 *    indicates that folios are being queued for I/O but
1793 		 *    are being recycled through the LRU before the I/O
1794 		 *    can complete. Waiting on the folio itself risks an
1795 		 *    indefinite stall if it is impossible to writeback
1796 		 *    the folio due to I/O error or disconnected storage
1797 		 *    so instead note that the LRU is being scanned too
1798 		 *    quickly and the caller can stall after the folio
1799 		 *    list has been processed.
1800 		 *
1801 		 * 2) Global or new memcg reclaim encounters a folio that is
1802 		 *    not marked for immediate reclaim, or the caller does not
1803 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1804 		 *    not to fs). In this case mark the folio for immediate
1805 		 *    reclaim and continue scanning.
1806 		 *
1807 		 *    Require may_enter_fs() because we would wait on fs, which
1808 		 *    may not have submitted I/O yet. And the loop driver might
1809 		 *    enter reclaim, and deadlock if it waits on a folio for
1810 		 *    which it is needed to do the write (loop masks off
1811 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1812 		 *    would probably show more reasons.
1813 		 *
1814 		 * 3) Legacy memcg encounters a folio that already has the
1815 		 *    reclaim flag set. memcg does not have any dirty folio
1816 		 *    throttling so we could easily OOM just because too many
1817 		 *    folios are in writeback and there is nothing else to
1818 		 *    reclaim. Wait for the writeback to complete.
1819 		 *
1820 		 * In cases 1) and 2) we activate the folios to get them out of
1821 		 * the way while we continue scanning for clean folios on the
1822 		 * inactive list and refilling from the active list. The
1823 		 * observation here is that waiting for disk writes is more
1824 		 * expensive than potentially causing reloads down the line.
1825 		 * Since they're marked for immediate reclaim, they won't put
1826 		 * memory pressure on the cache working set any longer than it
1827 		 * takes to write them to disk.
1828 		 */
1829 		if (folio_test_writeback(folio)) {
1830 			/* Case 1 above */
1831 			if (current_is_kswapd() &&
1832 			    folio_test_reclaim(folio) &&
1833 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1834 				stat->nr_immediate += nr_pages;
1835 				goto activate_locked;
1836 
1837 			/* Case 2 above */
1838 			} else if (writeback_throttling_sane(sc) ||
1839 			    !folio_test_reclaim(folio) ||
1840 			    !may_enter_fs(folio, sc->gfp_mask)) {
1841 				/*
1842 				 * This is slightly racy -
1843 				 * folio_end_writeback() might have
1844 				 * just cleared the reclaim flag, then
1845 				 * setting the reclaim flag here ends up
1846 				 * interpreted as the readahead flag - but
1847 				 * that does not matter enough to care.
1848 				 * What we do want is for this folio to
1849 				 * have the reclaim flag set next time
1850 				 * memcg reclaim reaches the tests above,
1851 				 * so it will then wait for writeback to
1852 				 * avoid OOM; and it's also appropriate
1853 				 * in global reclaim.
1854 				 */
1855 				folio_set_reclaim(folio);
1856 				stat->nr_writeback += nr_pages;
1857 				goto activate_locked;
1858 
1859 			/* Case 3 above */
1860 			} else {
1861 				folio_unlock(folio);
1862 				folio_wait_writeback(folio);
1863 				/* then go back and try same folio again */
1864 				list_add_tail(&folio->lru, folio_list);
1865 				continue;
1866 			}
1867 		}
1868 
1869 		if (!ignore_references)
1870 			references = folio_check_references(folio, sc);
1871 
1872 		switch (references) {
1873 		case FOLIOREF_ACTIVATE:
1874 			goto activate_locked;
1875 		case FOLIOREF_KEEP:
1876 			stat->nr_ref_keep += nr_pages;
1877 			goto keep_locked;
1878 		case FOLIOREF_RECLAIM:
1879 		case FOLIOREF_RECLAIM_CLEAN:
1880 			; /* try to reclaim the folio below */
1881 		}
1882 
1883 		/*
1884 		 * Before reclaiming the folio, try to relocate
1885 		 * its contents to another node.
1886 		 */
1887 		if (do_demote_pass &&
1888 		    (thp_migration_supported() || !folio_test_large(folio))) {
1889 			list_add(&folio->lru, &demote_folios);
1890 			folio_unlock(folio);
1891 			continue;
1892 		}
1893 
1894 		/*
1895 		 * Anonymous process memory has backing store?
1896 		 * Try to allocate it some swap space here.
1897 		 * Lazyfree folio could be freed directly
1898 		 */
1899 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1900 			if (!folio_test_swapcache(folio)) {
1901 				if (!(sc->gfp_mask & __GFP_IO))
1902 					goto keep_locked;
1903 				if (folio_maybe_dma_pinned(folio))
1904 					goto keep_locked;
1905 				if (folio_test_large(folio)) {
1906 					/* cannot split folio, skip it */
1907 					if (!can_split_folio(folio, NULL))
1908 						goto activate_locked;
1909 					/*
1910 					 * Split folios without a PMD map right
1911 					 * away. Chances are some or all of the
1912 					 * tail pages can be freed without IO.
1913 					 */
1914 					if (!folio_entire_mapcount(folio) &&
1915 					    split_folio_to_list(folio,
1916 								folio_list))
1917 						goto activate_locked;
1918 				}
1919 				if (!add_to_swap(folio)) {
1920 					if (!folio_test_large(folio))
1921 						goto activate_locked_split;
1922 					/* Fallback to swap normal pages */
1923 					if (split_folio_to_list(folio,
1924 								folio_list))
1925 						goto activate_locked;
1926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1927 					count_vm_event(THP_SWPOUT_FALLBACK);
1928 #endif
1929 					if (!add_to_swap(folio))
1930 						goto activate_locked_split;
1931 				}
1932 			}
1933 		} else if (folio_test_swapbacked(folio) &&
1934 			   folio_test_large(folio)) {
1935 			/* Split shmem folio */
1936 			if (split_folio_to_list(folio, folio_list))
1937 				goto keep_locked;
1938 		}
1939 
1940 		/*
1941 		 * If the folio was split above, the tail pages will make
1942 		 * their own pass through this function and be accounted
1943 		 * then.
1944 		 */
1945 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1946 			sc->nr_scanned -= (nr_pages - 1);
1947 			nr_pages = 1;
1948 		}
1949 
1950 		/*
1951 		 * The folio is mapped into the page tables of one or more
1952 		 * processes. Try to unmap it here.
1953 		 */
1954 		if (folio_mapped(folio)) {
1955 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1956 			bool was_swapbacked = folio_test_swapbacked(folio);
1957 
1958 			if (folio_test_pmd_mappable(folio))
1959 				flags |= TTU_SPLIT_HUGE_PMD;
1960 
1961 			try_to_unmap(folio, flags);
1962 			if (folio_mapped(folio)) {
1963 				stat->nr_unmap_fail += nr_pages;
1964 				if (!was_swapbacked &&
1965 				    folio_test_swapbacked(folio))
1966 					stat->nr_lazyfree_fail += nr_pages;
1967 				goto activate_locked;
1968 			}
1969 		}
1970 
1971 		/*
1972 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1973 		 * No point in trying to reclaim folio if it is pinned.
1974 		 * Furthermore we don't want to reclaim underlying fs metadata
1975 		 * if the folio is pinned and thus potentially modified by the
1976 		 * pinning process as that may upset the filesystem.
1977 		 */
1978 		if (folio_maybe_dma_pinned(folio))
1979 			goto activate_locked;
1980 
1981 		mapping = folio_mapping(folio);
1982 		if (folio_test_dirty(folio)) {
1983 			/*
1984 			 * Only kswapd can writeback filesystem folios
1985 			 * to avoid risk of stack overflow. But avoid
1986 			 * injecting inefficient single-folio I/O into
1987 			 * flusher writeback as much as possible: only
1988 			 * write folios when we've encountered many
1989 			 * dirty folios, and when we've already scanned
1990 			 * the rest of the LRU for clean folios and see
1991 			 * the same dirty folios again (with the reclaim
1992 			 * flag set).
1993 			 */
1994 			if (folio_is_file_lru(folio) &&
1995 			    (!current_is_kswapd() ||
1996 			     !folio_test_reclaim(folio) ||
1997 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1998 				/*
1999 				 * Immediately reclaim when written back.
2000 				 * Similar in principle to folio_deactivate()
2001 				 * except we already have the folio isolated
2002 				 * and know it's dirty
2003 				 */
2004 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2005 						nr_pages);
2006 				folio_set_reclaim(folio);
2007 
2008 				goto activate_locked;
2009 			}
2010 
2011 			if (references == FOLIOREF_RECLAIM_CLEAN)
2012 				goto keep_locked;
2013 			if (!may_enter_fs(folio, sc->gfp_mask))
2014 				goto keep_locked;
2015 			if (!sc->may_writepage)
2016 				goto keep_locked;
2017 
2018 			/*
2019 			 * Folio is dirty. Flush the TLB if a writable entry
2020 			 * potentially exists to avoid CPU writes after I/O
2021 			 * starts and then write it out here.
2022 			 */
2023 			try_to_unmap_flush_dirty();
2024 			switch (pageout(folio, mapping, &plug)) {
2025 			case PAGE_KEEP:
2026 				goto keep_locked;
2027 			case PAGE_ACTIVATE:
2028 				goto activate_locked;
2029 			case PAGE_SUCCESS:
2030 				stat->nr_pageout += nr_pages;
2031 
2032 				if (folio_test_writeback(folio))
2033 					goto keep;
2034 				if (folio_test_dirty(folio))
2035 					goto keep;
2036 
2037 				/*
2038 				 * A synchronous write - probably a ramdisk.  Go
2039 				 * ahead and try to reclaim the folio.
2040 				 */
2041 				if (!folio_trylock(folio))
2042 					goto keep;
2043 				if (folio_test_dirty(folio) ||
2044 				    folio_test_writeback(folio))
2045 					goto keep_locked;
2046 				mapping = folio_mapping(folio);
2047 				fallthrough;
2048 			case PAGE_CLEAN:
2049 				; /* try to free the folio below */
2050 			}
2051 		}
2052 
2053 		/*
2054 		 * If the folio has buffers, try to free the buffer
2055 		 * mappings associated with this folio. If we succeed
2056 		 * we try to free the folio as well.
2057 		 *
2058 		 * We do this even if the folio is dirty.
2059 		 * filemap_release_folio() does not perform I/O, but it
2060 		 * is possible for a folio to have the dirty flag set,
2061 		 * but it is actually clean (all its buffers are clean).
2062 		 * This happens if the buffers were written out directly,
2063 		 * with submit_bh(). ext3 will do this, as well as
2064 		 * the blockdev mapping.  filemap_release_folio() will
2065 		 * discover that cleanness and will drop the buffers
2066 		 * and mark the folio clean - it can be freed.
2067 		 *
2068 		 * Rarely, folios can have buffers and no ->mapping.
2069 		 * These are the folios which were not successfully
2070 		 * invalidated in truncate_cleanup_folio().  We try to
2071 		 * drop those buffers here and if that worked, and the
2072 		 * folio is no longer mapped into process address space
2073 		 * (refcount == 1) it can be freed.  Otherwise, leave
2074 		 * the folio on the LRU so it is swappable.
2075 		 */
2076 		if (folio_has_private(folio)) {
2077 			if (!filemap_release_folio(folio, sc->gfp_mask))
2078 				goto activate_locked;
2079 			if (!mapping && folio_ref_count(folio) == 1) {
2080 				folio_unlock(folio);
2081 				if (folio_put_testzero(folio))
2082 					goto free_it;
2083 				else {
2084 					/*
2085 					 * rare race with speculative reference.
2086 					 * the speculative reference will free
2087 					 * this folio shortly, so we may
2088 					 * increment nr_reclaimed here (and
2089 					 * leave it off the LRU).
2090 					 */
2091 					nr_reclaimed += nr_pages;
2092 					continue;
2093 				}
2094 			}
2095 		}
2096 
2097 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2098 			/* follow __remove_mapping for reference */
2099 			if (!folio_ref_freeze(folio, 1))
2100 				goto keep_locked;
2101 			/*
2102 			 * The folio has only one reference left, which is
2103 			 * from the isolation. After the caller puts the
2104 			 * folio back on the lru and drops the reference, the
2105 			 * folio will be freed anyway. It doesn't matter
2106 			 * which lru it goes on. So we don't bother checking
2107 			 * the dirty flag here.
2108 			 */
2109 			count_vm_events(PGLAZYFREED, nr_pages);
2110 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2111 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2112 							 sc->target_mem_cgroup))
2113 			goto keep_locked;
2114 
2115 		folio_unlock(folio);
2116 free_it:
2117 		/*
2118 		 * Folio may get swapped out as a whole, need to account
2119 		 * all pages in it.
2120 		 */
2121 		nr_reclaimed += nr_pages;
2122 
2123 		/*
2124 		 * Is there need to periodically free_folio_list? It would
2125 		 * appear not as the counts should be low
2126 		 */
2127 		if (unlikely(folio_test_large(folio)))
2128 			destroy_large_folio(folio);
2129 		else
2130 			list_add(&folio->lru, &free_folios);
2131 		continue;
2132 
2133 activate_locked_split:
2134 		/*
2135 		 * The tail pages that are failed to add into swap cache
2136 		 * reach here.  Fixup nr_scanned and nr_pages.
2137 		 */
2138 		if (nr_pages > 1) {
2139 			sc->nr_scanned -= (nr_pages - 1);
2140 			nr_pages = 1;
2141 		}
2142 activate_locked:
2143 		/* Not a candidate for swapping, so reclaim swap space. */
2144 		if (folio_test_swapcache(folio) &&
2145 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2146 			folio_free_swap(folio);
2147 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2148 		if (!folio_test_mlocked(folio)) {
2149 			int type = folio_is_file_lru(folio);
2150 			folio_set_active(folio);
2151 			stat->nr_activate[type] += nr_pages;
2152 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2153 		}
2154 keep_locked:
2155 		folio_unlock(folio);
2156 keep:
2157 		list_add(&folio->lru, &ret_folios);
2158 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2159 				folio_test_unevictable(folio), folio);
2160 	}
2161 	/* 'folio_list' is always empty here */
2162 
2163 	/* Migrate folios selected for demotion */
2164 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2165 	/* Folios that could not be demoted are still in @demote_folios */
2166 	if (!list_empty(&demote_folios)) {
2167 		/* Folios which weren't demoted go back on @folio_list */
2168 		list_splice_init(&demote_folios, folio_list);
2169 
2170 		/*
2171 		 * goto retry to reclaim the undemoted folios in folio_list if
2172 		 * desired.
2173 		 *
2174 		 * Reclaiming directly from top tier nodes is not often desired
2175 		 * due to it breaking the LRU ordering: in general memory
2176 		 * should be reclaimed from lower tier nodes and demoted from
2177 		 * top tier nodes.
2178 		 *
2179 		 * However, disabling reclaim from top tier nodes entirely
2180 		 * would cause ooms in edge scenarios where lower tier memory
2181 		 * is unreclaimable for whatever reason, eg memory being
2182 		 * mlocked or too hot to reclaim. We can disable reclaim
2183 		 * from top tier nodes in proactive reclaim though as that is
2184 		 * not real memory pressure.
2185 		 */
2186 		if (!sc->proactive) {
2187 			do_demote_pass = false;
2188 			goto retry;
2189 		}
2190 	}
2191 
2192 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2193 
2194 	mem_cgroup_uncharge_list(&free_folios);
2195 	try_to_unmap_flush();
2196 	free_unref_page_list(&free_folios);
2197 
2198 	list_splice(&ret_folios, folio_list);
2199 	count_vm_events(PGACTIVATE, pgactivate);
2200 
2201 	if (plug)
2202 		swap_write_unplug(plug);
2203 	return nr_reclaimed;
2204 }
2205 
2206 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2207 					   struct list_head *folio_list)
2208 {
2209 	struct scan_control sc = {
2210 		.gfp_mask = GFP_KERNEL,
2211 		.may_unmap = 1,
2212 	};
2213 	struct reclaim_stat stat;
2214 	unsigned int nr_reclaimed;
2215 	struct folio *folio, *next;
2216 	LIST_HEAD(clean_folios);
2217 	unsigned int noreclaim_flag;
2218 
2219 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2220 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2221 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2222 		    !folio_test_unevictable(folio)) {
2223 			folio_clear_active(folio);
2224 			list_move(&folio->lru, &clean_folios);
2225 		}
2226 	}
2227 
2228 	/*
2229 	 * We should be safe here since we are only dealing with file pages and
2230 	 * we are not kswapd and therefore cannot write dirty file pages. But
2231 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2232 	 * change in the future.
2233 	 */
2234 	noreclaim_flag = memalloc_noreclaim_save();
2235 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2236 					&stat, true);
2237 	memalloc_noreclaim_restore(noreclaim_flag);
2238 
2239 	list_splice(&clean_folios, folio_list);
2240 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2241 			    -(long)nr_reclaimed);
2242 	/*
2243 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2244 	 * they will rotate back to anonymous LRU in the end if it failed to
2245 	 * discard so isolated count will be mismatched.
2246 	 * Compensate the isolated count for both LRU lists.
2247 	 */
2248 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2249 			    stat.nr_lazyfree_fail);
2250 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2251 			    -(long)stat.nr_lazyfree_fail);
2252 	return nr_reclaimed;
2253 }
2254 
2255 /*
2256  * Update LRU sizes after isolating pages. The LRU size updates must
2257  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2258  */
2259 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2260 			enum lru_list lru, unsigned long *nr_zone_taken)
2261 {
2262 	int zid;
2263 
2264 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2265 		if (!nr_zone_taken[zid])
2266 			continue;
2267 
2268 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2269 	}
2270 
2271 }
2272 
2273 /*
2274  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2275  *
2276  * lruvec->lru_lock is heavily contended.  Some of the functions that
2277  * shrink the lists perform better by taking out a batch of pages
2278  * and working on them outside the LRU lock.
2279  *
2280  * For pagecache intensive workloads, this function is the hottest
2281  * spot in the kernel (apart from copy_*_user functions).
2282  *
2283  * Lru_lock must be held before calling this function.
2284  *
2285  * @nr_to_scan:	The number of eligible pages to look through on the list.
2286  * @lruvec:	The LRU vector to pull pages from.
2287  * @dst:	The temp list to put pages on to.
2288  * @nr_scanned:	The number of pages that were scanned.
2289  * @sc:		The scan_control struct for this reclaim session
2290  * @lru:	LRU list id for isolating
2291  *
2292  * returns how many pages were moved onto *@dst.
2293  */
2294 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2295 		struct lruvec *lruvec, struct list_head *dst,
2296 		unsigned long *nr_scanned, struct scan_control *sc,
2297 		enum lru_list lru)
2298 {
2299 	struct list_head *src = &lruvec->lists[lru];
2300 	unsigned long nr_taken = 0;
2301 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2302 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2303 	unsigned long skipped = 0;
2304 	unsigned long scan, total_scan, nr_pages;
2305 	LIST_HEAD(folios_skipped);
2306 
2307 	total_scan = 0;
2308 	scan = 0;
2309 	while (scan < nr_to_scan && !list_empty(src)) {
2310 		struct list_head *move_to = src;
2311 		struct folio *folio;
2312 
2313 		folio = lru_to_folio(src);
2314 		prefetchw_prev_lru_folio(folio, src, flags);
2315 
2316 		nr_pages = folio_nr_pages(folio);
2317 		total_scan += nr_pages;
2318 
2319 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2320 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2321 			move_to = &folios_skipped;
2322 			goto move;
2323 		}
2324 
2325 		/*
2326 		 * Do not count skipped folios because that makes the function
2327 		 * return with no isolated folios if the LRU mostly contains
2328 		 * ineligible folios.  This causes the VM to not reclaim any
2329 		 * folios, triggering a premature OOM.
2330 		 * Account all pages in a folio.
2331 		 */
2332 		scan += nr_pages;
2333 
2334 		if (!folio_test_lru(folio))
2335 			goto move;
2336 		if (!sc->may_unmap && folio_mapped(folio))
2337 			goto move;
2338 
2339 		/*
2340 		 * Be careful not to clear the lru flag until after we're
2341 		 * sure the folio is not being freed elsewhere -- the
2342 		 * folio release code relies on it.
2343 		 */
2344 		if (unlikely(!folio_try_get(folio)))
2345 			goto move;
2346 
2347 		if (!folio_test_clear_lru(folio)) {
2348 			/* Another thread is already isolating this folio */
2349 			folio_put(folio);
2350 			goto move;
2351 		}
2352 
2353 		nr_taken += nr_pages;
2354 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2355 		move_to = dst;
2356 move:
2357 		list_move(&folio->lru, move_to);
2358 	}
2359 
2360 	/*
2361 	 * Splice any skipped folios to the start of the LRU list. Note that
2362 	 * this disrupts the LRU order when reclaiming for lower zones but
2363 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2364 	 * scanning would soon rescan the same folios to skip and waste lots
2365 	 * of cpu cycles.
2366 	 */
2367 	if (!list_empty(&folios_skipped)) {
2368 		int zid;
2369 
2370 		list_splice(&folios_skipped, src);
2371 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2372 			if (!nr_skipped[zid])
2373 				continue;
2374 
2375 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2376 			skipped += nr_skipped[zid];
2377 		}
2378 	}
2379 	*nr_scanned = total_scan;
2380 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2381 				    total_scan, skipped, nr_taken,
2382 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2383 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2384 	return nr_taken;
2385 }
2386 
2387 /**
2388  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2389  * @folio: Folio to isolate from its LRU list.
2390  *
2391  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2392  * corresponding to whatever LRU list the folio was on.
2393  *
2394  * The folio will have its LRU flag cleared.  If it was found on the
2395  * active list, it will have the Active flag set.  If it was found on the
2396  * unevictable list, it will have the Unevictable flag set.  These flags
2397  * may need to be cleared by the caller before letting the page go.
2398  *
2399  * Context:
2400  *
2401  * (1) Must be called with an elevated refcount on the folio. This is a
2402  *     fundamental difference from isolate_lru_folios() (which is called
2403  *     without a stable reference).
2404  * (2) The lru_lock must not be held.
2405  * (3) Interrupts must be enabled.
2406  *
2407  * Return: true if the folio was removed from an LRU list.
2408  * false if the folio was not on an LRU list.
2409  */
2410 bool folio_isolate_lru(struct folio *folio)
2411 {
2412 	bool ret = false;
2413 
2414 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2415 
2416 	if (folio_test_clear_lru(folio)) {
2417 		struct lruvec *lruvec;
2418 
2419 		folio_get(folio);
2420 		lruvec = folio_lruvec_lock_irq(folio);
2421 		lruvec_del_folio(lruvec, folio);
2422 		unlock_page_lruvec_irq(lruvec);
2423 		ret = true;
2424 	}
2425 
2426 	return ret;
2427 }
2428 
2429 /*
2430  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2431  * then get rescheduled. When there are massive number of tasks doing page
2432  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2433  * the LRU list will go small and be scanned faster than necessary, leading to
2434  * unnecessary swapping, thrashing and OOM.
2435  */
2436 static int too_many_isolated(struct pglist_data *pgdat, int file,
2437 		struct scan_control *sc)
2438 {
2439 	unsigned long inactive, isolated;
2440 	bool too_many;
2441 
2442 	if (current_is_kswapd())
2443 		return 0;
2444 
2445 	if (!writeback_throttling_sane(sc))
2446 		return 0;
2447 
2448 	if (file) {
2449 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2450 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2451 	} else {
2452 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2453 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2454 	}
2455 
2456 	/*
2457 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2458 	 * won't get blocked by normal direct-reclaimers, forming a circular
2459 	 * deadlock.
2460 	 */
2461 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2462 		inactive >>= 3;
2463 
2464 	too_many = isolated > inactive;
2465 
2466 	/* Wake up tasks throttled due to too_many_isolated. */
2467 	if (!too_many)
2468 		wake_throttle_isolated(pgdat);
2469 
2470 	return too_many;
2471 }
2472 
2473 /*
2474  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2475  * On return, @list is reused as a list of folios to be freed by the caller.
2476  *
2477  * Returns the number of pages moved to the given lruvec.
2478  */
2479 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2480 		struct list_head *list)
2481 {
2482 	int nr_pages, nr_moved = 0;
2483 	LIST_HEAD(folios_to_free);
2484 
2485 	while (!list_empty(list)) {
2486 		struct folio *folio = lru_to_folio(list);
2487 
2488 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2489 		list_del(&folio->lru);
2490 		if (unlikely(!folio_evictable(folio))) {
2491 			spin_unlock_irq(&lruvec->lru_lock);
2492 			folio_putback_lru(folio);
2493 			spin_lock_irq(&lruvec->lru_lock);
2494 			continue;
2495 		}
2496 
2497 		/*
2498 		 * The folio_set_lru needs to be kept here for list integrity.
2499 		 * Otherwise:
2500 		 *   #0 move_folios_to_lru             #1 release_pages
2501 		 *   if (!folio_put_testzero())
2502 		 *				      if (folio_put_testzero())
2503 		 *				        !lru //skip lru_lock
2504 		 *     folio_set_lru()
2505 		 *     list_add(&folio->lru,)
2506 		 *                                        list_add(&folio->lru,)
2507 		 */
2508 		folio_set_lru(folio);
2509 
2510 		if (unlikely(folio_put_testzero(folio))) {
2511 			__folio_clear_lru_flags(folio);
2512 
2513 			if (unlikely(folio_test_large(folio))) {
2514 				spin_unlock_irq(&lruvec->lru_lock);
2515 				destroy_large_folio(folio);
2516 				spin_lock_irq(&lruvec->lru_lock);
2517 			} else
2518 				list_add(&folio->lru, &folios_to_free);
2519 
2520 			continue;
2521 		}
2522 
2523 		/*
2524 		 * All pages were isolated from the same lruvec (and isolation
2525 		 * inhibits memcg migration).
2526 		 */
2527 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2528 		lruvec_add_folio(lruvec, folio);
2529 		nr_pages = folio_nr_pages(folio);
2530 		nr_moved += nr_pages;
2531 		if (folio_test_active(folio))
2532 			workingset_age_nonresident(lruvec, nr_pages);
2533 	}
2534 
2535 	/*
2536 	 * To save our caller's stack, now use input list for pages to free.
2537 	 */
2538 	list_splice(&folios_to_free, list);
2539 
2540 	return nr_moved;
2541 }
2542 
2543 /*
2544  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2545  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2546  * we should not throttle.  Otherwise it is safe to do so.
2547  */
2548 static int current_may_throttle(void)
2549 {
2550 	return !(current->flags & PF_LOCAL_THROTTLE);
2551 }
2552 
2553 /*
2554  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2555  * of reclaimed pages
2556  */
2557 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2558 		struct lruvec *lruvec, struct scan_control *sc,
2559 		enum lru_list lru)
2560 {
2561 	LIST_HEAD(folio_list);
2562 	unsigned long nr_scanned;
2563 	unsigned int nr_reclaimed = 0;
2564 	unsigned long nr_taken;
2565 	struct reclaim_stat stat;
2566 	bool file = is_file_lru(lru);
2567 	enum vm_event_item item;
2568 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2569 	bool stalled = false;
2570 
2571 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2572 		if (stalled)
2573 			return 0;
2574 
2575 		/* wait a bit for the reclaimer. */
2576 		stalled = true;
2577 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2578 
2579 		/* We are about to die and free our memory. Return now. */
2580 		if (fatal_signal_pending(current))
2581 			return SWAP_CLUSTER_MAX;
2582 	}
2583 
2584 	lru_add_drain();
2585 
2586 	spin_lock_irq(&lruvec->lru_lock);
2587 
2588 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2589 				     &nr_scanned, sc, lru);
2590 
2591 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2592 	item = PGSCAN_KSWAPD + reclaimer_offset();
2593 	if (!cgroup_reclaim(sc))
2594 		__count_vm_events(item, nr_scanned);
2595 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2596 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2597 
2598 	spin_unlock_irq(&lruvec->lru_lock);
2599 
2600 	if (nr_taken == 0)
2601 		return 0;
2602 
2603 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2604 
2605 	spin_lock_irq(&lruvec->lru_lock);
2606 	move_folios_to_lru(lruvec, &folio_list);
2607 
2608 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2609 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2610 	if (!cgroup_reclaim(sc))
2611 		__count_vm_events(item, nr_reclaimed);
2612 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2613 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2614 	spin_unlock_irq(&lruvec->lru_lock);
2615 
2616 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2617 	mem_cgroup_uncharge_list(&folio_list);
2618 	free_unref_page_list(&folio_list);
2619 
2620 	/*
2621 	 * If dirty folios are scanned that are not queued for IO, it
2622 	 * implies that flushers are not doing their job. This can
2623 	 * happen when memory pressure pushes dirty folios to the end of
2624 	 * the LRU before the dirty limits are breached and the dirty
2625 	 * data has expired. It can also happen when the proportion of
2626 	 * dirty folios grows not through writes but through memory
2627 	 * pressure reclaiming all the clean cache. And in some cases,
2628 	 * the flushers simply cannot keep up with the allocation
2629 	 * rate. Nudge the flusher threads in case they are asleep.
2630 	 */
2631 	if (stat.nr_unqueued_dirty == nr_taken) {
2632 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2633 		/*
2634 		 * For cgroupv1 dirty throttling is achieved by waking up
2635 		 * the kernel flusher here and later waiting on folios
2636 		 * which are in writeback to finish (see shrink_folio_list()).
2637 		 *
2638 		 * Flusher may not be able to issue writeback quickly
2639 		 * enough for cgroupv1 writeback throttling to work
2640 		 * on a large system.
2641 		 */
2642 		if (!writeback_throttling_sane(sc))
2643 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2644 	}
2645 
2646 	sc->nr.dirty += stat.nr_dirty;
2647 	sc->nr.congested += stat.nr_congested;
2648 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2649 	sc->nr.writeback += stat.nr_writeback;
2650 	sc->nr.immediate += stat.nr_immediate;
2651 	sc->nr.taken += nr_taken;
2652 	if (file)
2653 		sc->nr.file_taken += nr_taken;
2654 
2655 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2656 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2657 	return nr_reclaimed;
2658 }
2659 
2660 /*
2661  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2662  *
2663  * We move them the other way if the folio is referenced by one or more
2664  * processes.
2665  *
2666  * If the folios are mostly unmapped, the processing is fast and it is
2667  * appropriate to hold lru_lock across the whole operation.  But if
2668  * the folios are mapped, the processing is slow (folio_referenced()), so
2669  * we should drop lru_lock around each folio.  It's impossible to balance
2670  * this, so instead we remove the folios from the LRU while processing them.
2671  * It is safe to rely on the active flag against the non-LRU folios in here
2672  * because nobody will play with that bit on a non-LRU folio.
2673  *
2674  * The downside is that we have to touch folio->_refcount against each folio.
2675  * But we had to alter folio->flags anyway.
2676  */
2677 static void shrink_active_list(unsigned long nr_to_scan,
2678 			       struct lruvec *lruvec,
2679 			       struct scan_control *sc,
2680 			       enum lru_list lru)
2681 {
2682 	unsigned long nr_taken;
2683 	unsigned long nr_scanned;
2684 	unsigned long vm_flags;
2685 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2686 	LIST_HEAD(l_active);
2687 	LIST_HEAD(l_inactive);
2688 	unsigned nr_deactivate, nr_activate;
2689 	unsigned nr_rotated = 0;
2690 	int file = is_file_lru(lru);
2691 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2692 
2693 	lru_add_drain();
2694 
2695 	spin_lock_irq(&lruvec->lru_lock);
2696 
2697 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2698 				     &nr_scanned, sc, lru);
2699 
2700 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2701 
2702 	if (!cgroup_reclaim(sc))
2703 		__count_vm_events(PGREFILL, nr_scanned);
2704 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2705 
2706 	spin_unlock_irq(&lruvec->lru_lock);
2707 
2708 	while (!list_empty(&l_hold)) {
2709 		struct folio *folio;
2710 
2711 		cond_resched();
2712 		folio = lru_to_folio(&l_hold);
2713 		list_del(&folio->lru);
2714 
2715 		if (unlikely(!folio_evictable(folio))) {
2716 			folio_putback_lru(folio);
2717 			continue;
2718 		}
2719 
2720 		if (unlikely(buffer_heads_over_limit)) {
2721 			if (folio_test_private(folio) && folio_trylock(folio)) {
2722 				if (folio_test_private(folio))
2723 					filemap_release_folio(folio, 0);
2724 				folio_unlock(folio);
2725 			}
2726 		}
2727 
2728 		/* Referenced or rmap lock contention: rotate */
2729 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2730 				     &vm_flags) != 0) {
2731 			/*
2732 			 * Identify referenced, file-backed active folios and
2733 			 * give them one more trip around the active list. So
2734 			 * that executable code get better chances to stay in
2735 			 * memory under moderate memory pressure.  Anon folios
2736 			 * are not likely to be evicted by use-once streaming
2737 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2738 			 * so we ignore them here.
2739 			 */
2740 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2741 				nr_rotated += folio_nr_pages(folio);
2742 				list_add(&folio->lru, &l_active);
2743 				continue;
2744 			}
2745 		}
2746 
2747 		folio_clear_active(folio);	/* we are de-activating */
2748 		folio_set_workingset(folio);
2749 		list_add(&folio->lru, &l_inactive);
2750 	}
2751 
2752 	/*
2753 	 * Move folios back to the lru list.
2754 	 */
2755 	spin_lock_irq(&lruvec->lru_lock);
2756 
2757 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2758 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2759 	/* Keep all free folios in l_active list */
2760 	list_splice(&l_inactive, &l_active);
2761 
2762 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2763 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2764 
2765 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2766 	spin_unlock_irq(&lruvec->lru_lock);
2767 
2768 	if (nr_rotated)
2769 		lru_note_cost(lruvec, file, 0, nr_rotated);
2770 	mem_cgroup_uncharge_list(&l_active);
2771 	free_unref_page_list(&l_active);
2772 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2773 			nr_deactivate, nr_rotated, sc->priority, file);
2774 }
2775 
2776 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2777 				      struct pglist_data *pgdat)
2778 {
2779 	struct reclaim_stat dummy_stat;
2780 	unsigned int nr_reclaimed;
2781 	struct folio *folio;
2782 	struct scan_control sc = {
2783 		.gfp_mask = GFP_KERNEL,
2784 		.may_writepage = 1,
2785 		.may_unmap = 1,
2786 		.may_swap = 1,
2787 		.no_demotion = 1,
2788 	};
2789 
2790 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2791 	while (!list_empty(folio_list)) {
2792 		folio = lru_to_folio(folio_list);
2793 		list_del(&folio->lru);
2794 		folio_putback_lru(folio);
2795 	}
2796 
2797 	return nr_reclaimed;
2798 }
2799 
2800 unsigned long reclaim_pages(struct list_head *folio_list)
2801 {
2802 	int nid;
2803 	unsigned int nr_reclaimed = 0;
2804 	LIST_HEAD(node_folio_list);
2805 	unsigned int noreclaim_flag;
2806 
2807 	if (list_empty(folio_list))
2808 		return nr_reclaimed;
2809 
2810 	noreclaim_flag = memalloc_noreclaim_save();
2811 
2812 	nid = folio_nid(lru_to_folio(folio_list));
2813 	do {
2814 		struct folio *folio = lru_to_folio(folio_list);
2815 
2816 		if (nid == folio_nid(folio)) {
2817 			folio_clear_active(folio);
2818 			list_move(&folio->lru, &node_folio_list);
2819 			continue;
2820 		}
2821 
2822 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2823 		nid = folio_nid(lru_to_folio(folio_list));
2824 	} while (!list_empty(folio_list));
2825 
2826 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2827 
2828 	memalloc_noreclaim_restore(noreclaim_flag);
2829 
2830 	return nr_reclaimed;
2831 }
2832 
2833 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2834 				 struct lruvec *lruvec, struct scan_control *sc)
2835 {
2836 	if (is_active_lru(lru)) {
2837 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2838 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2839 		else
2840 			sc->skipped_deactivate = 1;
2841 		return 0;
2842 	}
2843 
2844 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2845 }
2846 
2847 /*
2848  * The inactive anon list should be small enough that the VM never has
2849  * to do too much work.
2850  *
2851  * The inactive file list should be small enough to leave most memory
2852  * to the established workingset on the scan-resistant active list,
2853  * but large enough to avoid thrashing the aggregate readahead window.
2854  *
2855  * Both inactive lists should also be large enough that each inactive
2856  * folio has a chance to be referenced again before it is reclaimed.
2857  *
2858  * If that fails and refaulting is observed, the inactive list grows.
2859  *
2860  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2861  * on this LRU, maintained by the pageout code. An inactive_ratio
2862  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2863  *
2864  * total     target    max
2865  * memory    ratio     inactive
2866  * -------------------------------------
2867  *   10MB       1         5MB
2868  *  100MB       1        50MB
2869  *    1GB       3       250MB
2870  *   10GB      10       0.9GB
2871  *  100GB      31         3GB
2872  *    1TB     101        10GB
2873  *   10TB     320        32GB
2874  */
2875 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2876 {
2877 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2878 	unsigned long inactive, active;
2879 	unsigned long inactive_ratio;
2880 	unsigned long gb;
2881 
2882 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2883 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2884 
2885 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2886 	if (gb)
2887 		inactive_ratio = int_sqrt(10 * gb);
2888 	else
2889 		inactive_ratio = 1;
2890 
2891 	return inactive * inactive_ratio < active;
2892 }
2893 
2894 enum scan_balance {
2895 	SCAN_EQUAL,
2896 	SCAN_FRACT,
2897 	SCAN_ANON,
2898 	SCAN_FILE,
2899 };
2900 
2901 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2902 {
2903 	unsigned long file;
2904 	struct lruvec *target_lruvec;
2905 
2906 	if (lru_gen_enabled())
2907 		return;
2908 
2909 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2910 
2911 	/*
2912 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2913 	 * lruvec stats for heuristics.
2914 	 */
2915 	mem_cgroup_flush_stats();
2916 
2917 	/*
2918 	 * Determine the scan balance between anon and file LRUs.
2919 	 */
2920 	spin_lock_irq(&target_lruvec->lru_lock);
2921 	sc->anon_cost = target_lruvec->anon_cost;
2922 	sc->file_cost = target_lruvec->file_cost;
2923 	spin_unlock_irq(&target_lruvec->lru_lock);
2924 
2925 	/*
2926 	 * Target desirable inactive:active list ratios for the anon
2927 	 * and file LRU lists.
2928 	 */
2929 	if (!sc->force_deactivate) {
2930 		unsigned long refaults;
2931 
2932 		/*
2933 		 * When refaults are being observed, it means a new
2934 		 * workingset is being established. Deactivate to get
2935 		 * rid of any stale active pages quickly.
2936 		 */
2937 		refaults = lruvec_page_state(target_lruvec,
2938 				WORKINGSET_ACTIVATE_ANON);
2939 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2940 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2941 			sc->may_deactivate |= DEACTIVATE_ANON;
2942 		else
2943 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2944 
2945 		refaults = lruvec_page_state(target_lruvec,
2946 				WORKINGSET_ACTIVATE_FILE);
2947 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2948 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2949 			sc->may_deactivate |= DEACTIVATE_FILE;
2950 		else
2951 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2952 	} else
2953 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2954 
2955 	/*
2956 	 * If we have plenty of inactive file pages that aren't
2957 	 * thrashing, try to reclaim those first before touching
2958 	 * anonymous pages.
2959 	 */
2960 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2961 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2962 		sc->cache_trim_mode = 1;
2963 	else
2964 		sc->cache_trim_mode = 0;
2965 
2966 	/*
2967 	 * Prevent the reclaimer from falling into the cache trap: as
2968 	 * cache pages start out inactive, every cache fault will tip
2969 	 * the scan balance towards the file LRU.  And as the file LRU
2970 	 * shrinks, so does the window for rotation from references.
2971 	 * This means we have a runaway feedback loop where a tiny
2972 	 * thrashing file LRU becomes infinitely more attractive than
2973 	 * anon pages.  Try to detect this based on file LRU size.
2974 	 */
2975 	if (!cgroup_reclaim(sc)) {
2976 		unsigned long total_high_wmark = 0;
2977 		unsigned long free, anon;
2978 		int z;
2979 
2980 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2981 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2982 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2983 
2984 		for (z = 0; z < MAX_NR_ZONES; z++) {
2985 			struct zone *zone = &pgdat->node_zones[z];
2986 
2987 			if (!managed_zone(zone))
2988 				continue;
2989 
2990 			total_high_wmark += high_wmark_pages(zone);
2991 		}
2992 
2993 		/*
2994 		 * Consider anon: if that's low too, this isn't a
2995 		 * runaway file reclaim problem, but rather just
2996 		 * extreme pressure. Reclaim as per usual then.
2997 		 */
2998 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2999 
3000 		sc->file_is_tiny =
3001 			file + free <= total_high_wmark &&
3002 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3003 			anon >> sc->priority;
3004 	}
3005 }
3006 
3007 /*
3008  * Determine how aggressively the anon and file LRU lists should be
3009  * scanned.
3010  *
3011  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3012  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3013  */
3014 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3015 			   unsigned long *nr)
3016 {
3017 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3018 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3019 	unsigned long anon_cost, file_cost, total_cost;
3020 	int swappiness = mem_cgroup_swappiness(memcg);
3021 	u64 fraction[ANON_AND_FILE];
3022 	u64 denominator = 0;	/* gcc */
3023 	enum scan_balance scan_balance;
3024 	unsigned long ap, fp;
3025 	enum lru_list lru;
3026 
3027 	/* If we have no swap space, do not bother scanning anon folios. */
3028 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3029 		scan_balance = SCAN_FILE;
3030 		goto out;
3031 	}
3032 
3033 	/*
3034 	 * Global reclaim will swap to prevent OOM even with no
3035 	 * swappiness, but memcg users want to use this knob to
3036 	 * disable swapping for individual groups completely when
3037 	 * using the memory controller's swap limit feature would be
3038 	 * too expensive.
3039 	 */
3040 	if (cgroup_reclaim(sc) && !swappiness) {
3041 		scan_balance = SCAN_FILE;
3042 		goto out;
3043 	}
3044 
3045 	/*
3046 	 * Do not apply any pressure balancing cleverness when the
3047 	 * system is close to OOM, scan both anon and file equally
3048 	 * (unless the swappiness setting disagrees with swapping).
3049 	 */
3050 	if (!sc->priority && swappiness) {
3051 		scan_balance = SCAN_EQUAL;
3052 		goto out;
3053 	}
3054 
3055 	/*
3056 	 * If the system is almost out of file pages, force-scan anon.
3057 	 */
3058 	if (sc->file_is_tiny) {
3059 		scan_balance = SCAN_ANON;
3060 		goto out;
3061 	}
3062 
3063 	/*
3064 	 * If there is enough inactive page cache, we do not reclaim
3065 	 * anything from the anonymous working right now.
3066 	 */
3067 	if (sc->cache_trim_mode) {
3068 		scan_balance = SCAN_FILE;
3069 		goto out;
3070 	}
3071 
3072 	scan_balance = SCAN_FRACT;
3073 	/*
3074 	 * Calculate the pressure balance between anon and file pages.
3075 	 *
3076 	 * The amount of pressure we put on each LRU is inversely
3077 	 * proportional to the cost of reclaiming each list, as
3078 	 * determined by the share of pages that are refaulting, times
3079 	 * the relative IO cost of bringing back a swapped out
3080 	 * anonymous page vs reloading a filesystem page (swappiness).
3081 	 *
3082 	 * Although we limit that influence to ensure no list gets
3083 	 * left behind completely: at least a third of the pressure is
3084 	 * applied, before swappiness.
3085 	 *
3086 	 * With swappiness at 100, anon and file have equal IO cost.
3087 	 */
3088 	total_cost = sc->anon_cost + sc->file_cost;
3089 	anon_cost = total_cost + sc->anon_cost;
3090 	file_cost = total_cost + sc->file_cost;
3091 	total_cost = anon_cost + file_cost;
3092 
3093 	ap = swappiness * (total_cost + 1);
3094 	ap /= anon_cost + 1;
3095 
3096 	fp = (200 - swappiness) * (total_cost + 1);
3097 	fp /= file_cost + 1;
3098 
3099 	fraction[0] = ap;
3100 	fraction[1] = fp;
3101 	denominator = ap + fp;
3102 out:
3103 	for_each_evictable_lru(lru) {
3104 		int file = is_file_lru(lru);
3105 		unsigned long lruvec_size;
3106 		unsigned long low, min;
3107 		unsigned long scan;
3108 
3109 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3110 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3111 				      &min, &low);
3112 
3113 		if (min || low) {
3114 			/*
3115 			 * Scale a cgroup's reclaim pressure by proportioning
3116 			 * its current usage to its memory.low or memory.min
3117 			 * setting.
3118 			 *
3119 			 * This is important, as otherwise scanning aggression
3120 			 * becomes extremely binary -- from nothing as we
3121 			 * approach the memory protection threshold, to totally
3122 			 * nominal as we exceed it.  This results in requiring
3123 			 * setting extremely liberal protection thresholds. It
3124 			 * also means we simply get no protection at all if we
3125 			 * set it too low, which is not ideal.
3126 			 *
3127 			 * If there is any protection in place, we reduce scan
3128 			 * pressure by how much of the total memory used is
3129 			 * within protection thresholds.
3130 			 *
3131 			 * There is one special case: in the first reclaim pass,
3132 			 * we skip over all groups that are within their low
3133 			 * protection. If that fails to reclaim enough pages to
3134 			 * satisfy the reclaim goal, we come back and override
3135 			 * the best-effort low protection. However, we still
3136 			 * ideally want to honor how well-behaved groups are in
3137 			 * that case instead of simply punishing them all
3138 			 * equally. As such, we reclaim them based on how much
3139 			 * memory they are using, reducing the scan pressure
3140 			 * again by how much of the total memory used is under
3141 			 * hard protection.
3142 			 */
3143 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3144 			unsigned long protection;
3145 
3146 			/* memory.low scaling, make sure we retry before OOM */
3147 			if (!sc->memcg_low_reclaim && low > min) {
3148 				protection = low;
3149 				sc->memcg_low_skipped = 1;
3150 			} else {
3151 				protection = min;
3152 			}
3153 
3154 			/* Avoid TOCTOU with earlier protection check */
3155 			cgroup_size = max(cgroup_size, protection);
3156 
3157 			scan = lruvec_size - lruvec_size * protection /
3158 				(cgroup_size + 1);
3159 
3160 			/*
3161 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3162 			 * reclaim moving forwards, avoiding decrementing
3163 			 * sc->priority further than desirable.
3164 			 */
3165 			scan = max(scan, SWAP_CLUSTER_MAX);
3166 		} else {
3167 			scan = lruvec_size;
3168 		}
3169 
3170 		scan >>= sc->priority;
3171 
3172 		/*
3173 		 * If the cgroup's already been deleted, make sure to
3174 		 * scrape out the remaining cache.
3175 		 */
3176 		if (!scan && !mem_cgroup_online(memcg))
3177 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3178 
3179 		switch (scan_balance) {
3180 		case SCAN_EQUAL:
3181 			/* Scan lists relative to size */
3182 			break;
3183 		case SCAN_FRACT:
3184 			/*
3185 			 * Scan types proportional to swappiness and
3186 			 * their relative recent reclaim efficiency.
3187 			 * Make sure we don't miss the last page on
3188 			 * the offlined memory cgroups because of a
3189 			 * round-off error.
3190 			 */
3191 			scan = mem_cgroup_online(memcg) ?
3192 			       div64_u64(scan * fraction[file], denominator) :
3193 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3194 						  denominator);
3195 			break;
3196 		case SCAN_FILE:
3197 		case SCAN_ANON:
3198 			/* Scan one type exclusively */
3199 			if ((scan_balance == SCAN_FILE) != file)
3200 				scan = 0;
3201 			break;
3202 		default:
3203 			/* Look ma, no brain */
3204 			BUG();
3205 		}
3206 
3207 		nr[lru] = scan;
3208 	}
3209 }
3210 
3211 /*
3212  * Anonymous LRU management is a waste if there is
3213  * ultimately no way to reclaim the memory.
3214  */
3215 static bool can_age_anon_pages(struct pglist_data *pgdat,
3216 			       struct scan_control *sc)
3217 {
3218 	/* Aging the anon LRU is valuable if swap is present: */
3219 	if (total_swap_pages > 0)
3220 		return true;
3221 
3222 	/* Also valuable if anon pages can be demoted: */
3223 	return can_demote(pgdat->node_id, sc);
3224 }
3225 
3226 #ifdef CONFIG_LRU_GEN
3227 
3228 #ifdef CONFIG_LRU_GEN_ENABLED
3229 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3230 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3231 #else
3232 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3233 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3234 #endif
3235 
3236 /******************************************************************************
3237  *                          shorthand helpers
3238  ******************************************************************************/
3239 
3240 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3241 
3242 #define DEFINE_MAX_SEQ(lruvec)						\
3243 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3244 
3245 #define DEFINE_MIN_SEQ(lruvec)						\
3246 	unsigned long min_seq[ANON_AND_FILE] = {			\
3247 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3248 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3249 	}
3250 
3251 #define for_each_gen_type_zone(gen, type, zone)				\
3252 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3253 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3254 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3255 
3256 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3257 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3258 
3259 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3260 {
3261 	struct pglist_data *pgdat = NODE_DATA(nid);
3262 
3263 #ifdef CONFIG_MEMCG
3264 	if (memcg) {
3265 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3266 
3267 		/* see the comment in mem_cgroup_lruvec() */
3268 		if (!lruvec->pgdat)
3269 			lruvec->pgdat = pgdat;
3270 
3271 		return lruvec;
3272 	}
3273 #endif
3274 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3275 
3276 	return &pgdat->__lruvec;
3277 }
3278 
3279 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3280 {
3281 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3282 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3283 
3284 	if (!sc->may_swap)
3285 		return 0;
3286 
3287 	if (!can_demote(pgdat->node_id, sc) &&
3288 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3289 		return 0;
3290 
3291 	return mem_cgroup_swappiness(memcg);
3292 }
3293 
3294 static int get_nr_gens(struct lruvec *lruvec, int type)
3295 {
3296 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3297 }
3298 
3299 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3300 {
3301 	/* see the comment on lru_gen_folio */
3302 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3303 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3304 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3305 }
3306 
3307 /******************************************************************************
3308  *                          Bloom filters
3309  ******************************************************************************/
3310 
3311 /*
3312  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3313  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3314  * bits in a bitmap, k is the number of hash functions and n is the number of
3315  * inserted items.
3316  *
3317  * Page table walkers use one of the two filters to reduce their search space.
3318  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3319  * aging uses the double-buffering technique to flip to the other filter each
3320  * time it produces a new generation. For non-leaf entries that have enough
3321  * leaf entries, the aging carries them over to the next generation in
3322  * walk_pmd_range(); the eviction also report them when walking the rmap
3323  * in lru_gen_look_around().
3324  *
3325  * For future optimizations:
3326  * 1. It's not necessary to keep both filters all the time. The spare one can be
3327  *    freed after the RCU grace period and reallocated if needed again.
3328  * 2. And when reallocating, it's worth scaling its size according to the number
3329  *    of inserted entries in the other filter, to reduce the memory overhead on
3330  *    small systems and false positives on large systems.
3331  * 3. Jenkins' hash function is an alternative to Knuth's.
3332  */
3333 #define BLOOM_FILTER_SHIFT	15
3334 
3335 static inline int filter_gen_from_seq(unsigned long seq)
3336 {
3337 	return seq % NR_BLOOM_FILTERS;
3338 }
3339 
3340 static void get_item_key(void *item, int *key)
3341 {
3342 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3343 
3344 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3345 
3346 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3347 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3348 }
3349 
3350 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3351 {
3352 	int key[2];
3353 	unsigned long *filter;
3354 	int gen = filter_gen_from_seq(seq);
3355 
3356 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3357 	if (!filter)
3358 		return true;
3359 
3360 	get_item_key(item, key);
3361 
3362 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3363 }
3364 
3365 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3366 {
3367 	int key[2];
3368 	unsigned long *filter;
3369 	int gen = filter_gen_from_seq(seq);
3370 
3371 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3372 	if (!filter)
3373 		return;
3374 
3375 	get_item_key(item, key);
3376 
3377 	if (!test_bit(key[0], filter))
3378 		set_bit(key[0], filter);
3379 	if (!test_bit(key[1], filter))
3380 		set_bit(key[1], filter);
3381 }
3382 
3383 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3384 {
3385 	unsigned long *filter;
3386 	int gen = filter_gen_from_seq(seq);
3387 
3388 	filter = lruvec->mm_state.filters[gen];
3389 	if (filter) {
3390 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3391 		return;
3392 	}
3393 
3394 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3395 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3396 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3397 }
3398 
3399 /******************************************************************************
3400  *                          mm_struct list
3401  ******************************************************************************/
3402 
3403 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3404 {
3405 	static struct lru_gen_mm_list mm_list = {
3406 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3407 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3408 	};
3409 
3410 #ifdef CONFIG_MEMCG
3411 	if (memcg)
3412 		return &memcg->mm_list;
3413 #endif
3414 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3415 
3416 	return &mm_list;
3417 }
3418 
3419 void lru_gen_add_mm(struct mm_struct *mm)
3420 {
3421 	int nid;
3422 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3423 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3424 
3425 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3426 #ifdef CONFIG_MEMCG
3427 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3428 	mm->lru_gen.memcg = memcg;
3429 #endif
3430 	spin_lock(&mm_list->lock);
3431 
3432 	for_each_node_state(nid, N_MEMORY) {
3433 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3434 
3435 		/* the first addition since the last iteration */
3436 		if (lruvec->mm_state.tail == &mm_list->fifo)
3437 			lruvec->mm_state.tail = &mm->lru_gen.list;
3438 	}
3439 
3440 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3441 
3442 	spin_unlock(&mm_list->lock);
3443 }
3444 
3445 void lru_gen_del_mm(struct mm_struct *mm)
3446 {
3447 	int nid;
3448 	struct lru_gen_mm_list *mm_list;
3449 	struct mem_cgroup *memcg = NULL;
3450 
3451 	if (list_empty(&mm->lru_gen.list))
3452 		return;
3453 
3454 #ifdef CONFIG_MEMCG
3455 	memcg = mm->lru_gen.memcg;
3456 #endif
3457 	mm_list = get_mm_list(memcg);
3458 
3459 	spin_lock(&mm_list->lock);
3460 
3461 	for_each_node(nid) {
3462 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3463 
3464 		/* where the current iteration continues after */
3465 		if (lruvec->mm_state.head == &mm->lru_gen.list)
3466 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
3467 
3468 		/* where the last iteration ended before */
3469 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3470 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3471 	}
3472 
3473 	list_del_init(&mm->lru_gen.list);
3474 
3475 	spin_unlock(&mm_list->lock);
3476 
3477 #ifdef CONFIG_MEMCG
3478 	mem_cgroup_put(mm->lru_gen.memcg);
3479 	mm->lru_gen.memcg = NULL;
3480 #endif
3481 }
3482 
3483 #ifdef CONFIG_MEMCG
3484 void lru_gen_migrate_mm(struct mm_struct *mm)
3485 {
3486 	struct mem_cgroup *memcg;
3487 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3488 
3489 	VM_WARN_ON_ONCE(task->mm != mm);
3490 	lockdep_assert_held(&task->alloc_lock);
3491 
3492 	/* for mm_update_next_owner() */
3493 	if (mem_cgroup_disabled())
3494 		return;
3495 
3496 	/* migration can happen before addition */
3497 	if (!mm->lru_gen.memcg)
3498 		return;
3499 
3500 	rcu_read_lock();
3501 	memcg = mem_cgroup_from_task(task);
3502 	rcu_read_unlock();
3503 	if (memcg == mm->lru_gen.memcg)
3504 		return;
3505 
3506 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3507 
3508 	lru_gen_del_mm(mm);
3509 	lru_gen_add_mm(mm);
3510 }
3511 #endif
3512 
3513 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3514 {
3515 	int i;
3516 	int hist;
3517 
3518 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3519 
3520 	if (walk) {
3521 		hist = lru_hist_from_seq(walk->max_seq);
3522 
3523 		for (i = 0; i < NR_MM_STATS; i++) {
3524 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3525 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3526 			walk->mm_stats[i] = 0;
3527 		}
3528 	}
3529 
3530 	if (NR_HIST_GENS > 1 && last) {
3531 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3532 
3533 		for (i = 0; i < NR_MM_STATS; i++)
3534 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3535 	}
3536 }
3537 
3538 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3539 {
3540 	int type;
3541 	unsigned long size = 0;
3542 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3543 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3544 
3545 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3546 		return true;
3547 
3548 	clear_bit(key, &mm->lru_gen.bitmap);
3549 
3550 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3551 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3552 			       get_mm_counter(mm, MM_ANONPAGES) +
3553 			       get_mm_counter(mm, MM_SHMEMPAGES);
3554 	}
3555 
3556 	if (size < MIN_LRU_BATCH)
3557 		return true;
3558 
3559 	return !mmget_not_zero(mm);
3560 }
3561 
3562 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3563 			    struct mm_struct **iter)
3564 {
3565 	bool first = false;
3566 	bool last = false;
3567 	struct mm_struct *mm = NULL;
3568 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3569 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3570 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3571 
3572 	/*
3573 	 * mm_state->seq is incremented after each iteration of mm_list. There
3574 	 * are three interesting cases for this page table walker:
3575 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3576 	 *    nothing left to do.
3577 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3578 	 *    so that a fresh set of PTE tables can be recorded.
3579 	 * 3. It ended the current iteration: it needs to reset the mm stats
3580 	 *    counters and tell its caller to increment max_seq.
3581 	 */
3582 	spin_lock(&mm_list->lock);
3583 
3584 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3585 
3586 	if (walk->max_seq <= mm_state->seq)
3587 		goto done;
3588 
3589 	if (!mm_state->head)
3590 		mm_state->head = &mm_list->fifo;
3591 
3592 	if (mm_state->head == &mm_list->fifo)
3593 		first = true;
3594 
3595 	do {
3596 		mm_state->head = mm_state->head->next;
3597 		if (mm_state->head == &mm_list->fifo) {
3598 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3599 			last = true;
3600 			break;
3601 		}
3602 
3603 		/* force scan for those added after the last iteration */
3604 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3605 			mm_state->tail = mm_state->head->next;
3606 			walk->force_scan = true;
3607 		}
3608 
3609 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3610 		if (should_skip_mm(mm, walk))
3611 			mm = NULL;
3612 	} while (!mm);
3613 done:
3614 	if (*iter || last)
3615 		reset_mm_stats(lruvec, walk, last);
3616 
3617 	spin_unlock(&mm_list->lock);
3618 
3619 	if (mm && first)
3620 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3621 
3622 	if (*iter)
3623 		mmput_async(*iter);
3624 
3625 	*iter = mm;
3626 
3627 	return last;
3628 }
3629 
3630 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3631 {
3632 	bool success = false;
3633 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3634 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3635 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3636 
3637 	spin_lock(&mm_list->lock);
3638 
3639 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3640 
3641 	if (max_seq > mm_state->seq) {
3642 		mm_state->head = NULL;
3643 		mm_state->tail = NULL;
3644 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3645 		reset_mm_stats(lruvec, NULL, true);
3646 		success = true;
3647 	}
3648 
3649 	spin_unlock(&mm_list->lock);
3650 
3651 	return success;
3652 }
3653 
3654 /******************************************************************************
3655  *                          PID controller
3656  ******************************************************************************/
3657 
3658 /*
3659  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3660  *
3661  * The P term is refaulted/(evicted+protected) from a tier in the generation
3662  * currently being evicted; the I term is the exponential moving average of the
3663  * P term over the generations previously evicted, using the smoothing factor
3664  * 1/2; the D term isn't supported.
3665  *
3666  * The setpoint (SP) is always the first tier of one type; the process variable
3667  * (PV) is either any tier of the other type or any other tier of the same
3668  * type.
3669  *
3670  * The error is the difference between the SP and the PV; the correction is to
3671  * turn off protection when SP>PV or turn on protection when SP<PV.
3672  *
3673  * For future optimizations:
3674  * 1. The D term may discount the other two terms over time so that long-lived
3675  *    generations can resist stale information.
3676  */
3677 struct ctrl_pos {
3678 	unsigned long refaulted;
3679 	unsigned long total;
3680 	int gain;
3681 };
3682 
3683 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3684 			  struct ctrl_pos *pos)
3685 {
3686 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3687 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3688 
3689 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3690 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3691 	pos->total = lrugen->avg_total[type][tier] +
3692 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3693 	if (tier)
3694 		pos->total += lrugen->protected[hist][type][tier - 1];
3695 	pos->gain = gain;
3696 }
3697 
3698 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3699 {
3700 	int hist, tier;
3701 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3702 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3703 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3704 
3705 	lockdep_assert_held(&lruvec->lru_lock);
3706 
3707 	if (!carryover && !clear)
3708 		return;
3709 
3710 	hist = lru_hist_from_seq(seq);
3711 
3712 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3713 		if (carryover) {
3714 			unsigned long sum;
3715 
3716 			sum = lrugen->avg_refaulted[type][tier] +
3717 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3718 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3719 
3720 			sum = lrugen->avg_total[type][tier] +
3721 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3722 			if (tier)
3723 				sum += lrugen->protected[hist][type][tier - 1];
3724 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3725 		}
3726 
3727 		if (clear) {
3728 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3729 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3730 			if (tier)
3731 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3732 		}
3733 	}
3734 }
3735 
3736 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3737 {
3738 	/*
3739 	 * Return true if the PV has a limited number of refaults or a lower
3740 	 * refaulted/total than the SP.
3741 	 */
3742 	return pv->refaulted < MIN_LRU_BATCH ||
3743 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3744 	       (sp->refaulted + 1) * pv->total * pv->gain;
3745 }
3746 
3747 /******************************************************************************
3748  *                          the aging
3749  ******************************************************************************/
3750 
3751 /* promote pages accessed through page tables */
3752 static int folio_update_gen(struct folio *folio, int gen)
3753 {
3754 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3755 
3756 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3757 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3758 
3759 	do {
3760 		/* lru_gen_del_folio() has isolated this page? */
3761 		if (!(old_flags & LRU_GEN_MASK)) {
3762 			/* for shrink_folio_list() */
3763 			new_flags = old_flags | BIT(PG_referenced);
3764 			continue;
3765 		}
3766 
3767 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3768 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3769 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3770 
3771 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3772 }
3773 
3774 /* protect pages accessed multiple times through file descriptors */
3775 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3776 {
3777 	int type = folio_is_file_lru(folio);
3778 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3779 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3780 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3781 
3782 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3783 
3784 	do {
3785 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3786 		/* folio_update_gen() has promoted this page? */
3787 		if (new_gen >= 0 && new_gen != old_gen)
3788 			return new_gen;
3789 
3790 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3791 
3792 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3793 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3794 		/* for folio_end_writeback() */
3795 		if (reclaiming)
3796 			new_flags |= BIT(PG_reclaim);
3797 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3798 
3799 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3800 
3801 	return new_gen;
3802 }
3803 
3804 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3805 			      int old_gen, int new_gen)
3806 {
3807 	int type = folio_is_file_lru(folio);
3808 	int zone = folio_zonenum(folio);
3809 	int delta = folio_nr_pages(folio);
3810 
3811 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3812 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3813 
3814 	walk->batched++;
3815 
3816 	walk->nr_pages[old_gen][type][zone] -= delta;
3817 	walk->nr_pages[new_gen][type][zone] += delta;
3818 }
3819 
3820 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3821 {
3822 	int gen, type, zone;
3823 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3824 
3825 	walk->batched = 0;
3826 
3827 	for_each_gen_type_zone(gen, type, zone) {
3828 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3829 		int delta = walk->nr_pages[gen][type][zone];
3830 
3831 		if (!delta)
3832 			continue;
3833 
3834 		walk->nr_pages[gen][type][zone] = 0;
3835 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3836 			   lrugen->nr_pages[gen][type][zone] + delta);
3837 
3838 		if (lru_gen_is_active(lruvec, gen))
3839 			lru += LRU_ACTIVE;
3840 		__update_lru_size(lruvec, lru, zone, delta);
3841 	}
3842 }
3843 
3844 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3845 {
3846 	struct address_space *mapping;
3847 	struct vm_area_struct *vma = args->vma;
3848 	struct lru_gen_mm_walk *walk = args->private;
3849 
3850 	if (!vma_is_accessible(vma))
3851 		return true;
3852 
3853 	if (is_vm_hugetlb_page(vma))
3854 		return true;
3855 
3856 	if (!vma_has_recency(vma))
3857 		return true;
3858 
3859 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3860 		return true;
3861 
3862 	if (vma == get_gate_vma(vma->vm_mm))
3863 		return true;
3864 
3865 	if (vma_is_anonymous(vma))
3866 		return !walk->can_swap;
3867 
3868 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3869 		return true;
3870 
3871 	mapping = vma->vm_file->f_mapping;
3872 	if (mapping_unevictable(mapping))
3873 		return true;
3874 
3875 	if (shmem_mapping(mapping))
3876 		return !walk->can_swap;
3877 
3878 	/* to exclude special mappings like dax, etc. */
3879 	return !mapping->a_ops->read_folio;
3880 }
3881 
3882 /*
3883  * Some userspace memory allocators map many single-page VMAs. Instead of
3884  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3885  * table to reduce zigzags and improve cache performance.
3886  */
3887 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3888 			 unsigned long *vm_start, unsigned long *vm_end)
3889 {
3890 	unsigned long start = round_up(*vm_end, size);
3891 	unsigned long end = (start | ~mask) + 1;
3892 	VMA_ITERATOR(vmi, args->mm, start);
3893 
3894 	VM_WARN_ON_ONCE(mask & size);
3895 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3896 
3897 	for_each_vma(vmi, args->vma) {
3898 		if (end && end <= args->vma->vm_start)
3899 			return false;
3900 
3901 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3902 			continue;
3903 
3904 		*vm_start = max(start, args->vma->vm_start);
3905 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3906 
3907 		return true;
3908 	}
3909 
3910 	return false;
3911 }
3912 
3913 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3914 {
3915 	unsigned long pfn = pte_pfn(pte);
3916 
3917 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3918 
3919 	if (!pte_present(pte) || is_zero_pfn(pfn))
3920 		return -1;
3921 
3922 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3923 		return -1;
3924 
3925 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3926 		return -1;
3927 
3928 	return pfn;
3929 }
3930 
3931 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3932 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3933 {
3934 	unsigned long pfn = pmd_pfn(pmd);
3935 
3936 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3937 
3938 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3939 		return -1;
3940 
3941 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3942 		return -1;
3943 
3944 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3945 		return -1;
3946 
3947 	return pfn;
3948 }
3949 #endif
3950 
3951 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3952 				   struct pglist_data *pgdat, bool can_swap)
3953 {
3954 	struct folio *folio;
3955 
3956 	/* try to avoid unnecessary memory loads */
3957 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3958 		return NULL;
3959 
3960 	folio = pfn_folio(pfn);
3961 	if (folio_nid(folio) != pgdat->node_id)
3962 		return NULL;
3963 
3964 	if (folio_memcg_rcu(folio) != memcg)
3965 		return NULL;
3966 
3967 	/* file VMAs can contain anon pages from COW */
3968 	if (!folio_is_file_lru(folio) && !can_swap)
3969 		return NULL;
3970 
3971 	return folio;
3972 }
3973 
3974 static bool suitable_to_scan(int total, int young)
3975 {
3976 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3977 
3978 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3979 	return young * n >= total;
3980 }
3981 
3982 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3983 			   struct mm_walk *args)
3984 {
3985 	int i;
3986 	pte_t *pte;
3987 	spinlock_t *ptl;
3988 	unsigned long addr;
3989 	int total = 0;
3990 	int young = 0;
3991 	struct lru_gen_mm_walk *walk = args->private;
3992 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3993 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3994 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3995 
3996 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3997 
3998 	ptl = pte_lockptr(args->mm, pmd);
3999 	if (!spin_trylock(ptl))
4000 		return false;
4001 
4002 	arch_enter_lazy_mmu_mode();
4003 
4004 	pte = pte_offset_map(pmd, start & PMD_MASK);
4005 restart:
4006 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4007 		unsigned long pfn;
4008 		struct folio *folio;
4009 
4010 		total++;
4011 		walk->mm_stats[MM_LEAF_TOTAL]++;
4012 
4013 		pfn = get_pte_pfn(pte[i], args->vma, addr);
4014 		if (pfn == -1)
4015 			continue;
4016 
4017 		if (!pte_young(pte[i])) {
4018 			walk->mm_stats[MM_LEAF_OLD]++;
4019 			continue;
4020 		}
4021 
4022 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4023 		if (!folio)
4024 			continue;
4025 
4026 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4027 			VM_WARN_ON_ONCE(true);
4028 
4029 		young++;
4030 		walk->mm_stats[MM_LEAF_YOUNG]++;
4031 
4032 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4033 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4034 		      !folio_test_swapcache(folio)))
4035 			folio_mark_dirty(folio);
4036 
4037 		old_gen = folio_update_gen(folio, new_gen);
4038 		if (old_gen >= 0 && old_gen != new_gen)
4039 			update_batch_size(walk, folio, old_gen, new_gen);
4040 	}
4041 
4042 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4043 		goto restart;
4044 
4045 	pte_unmap(pte);
4046 
4047 	arch_leave_lazy_mmu_mode();
4048 	spin_unlock(ptl);
4049 
4050 	return suitable_to_scan(total, young);
4051 }
4052 
4053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4054 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4055 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4056 {
4057 	int i;
4058 	pmd_t *pmd;
4059 	spinlock_t *ptl;
4060 	struct lru_gen_mm_walk *walk = args->private;
4061 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4062 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4063 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4064 
4065 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4066 
4067 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4068 	if (*first == -1) {
4069 		*first = addr;
4070 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4071 		return;
4072 	}
4073 
4074 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4075 	if (i && i <= MIN_LRU_BATCH) {
4076 		__set_bit(i - 1, bitmap);
4077 		return;
4078 	}
4079 
4080 	pmd = pmd_offset(pud, *first);
4081 
4082 	ptl = pmd_lockptr(args->mm, pmd);
4083 	if (!spin_trylock(ptl))
4084 		goto done;
4085 
4086 	arch_enter_lazy_mmu_mode();
4087 
4088 	do {
4089 		unsigned long pfn;
4090 		struct folio *folio;
4091 
4092 		/* don't round down the first address */
4093 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4094 
4095 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4096 		if (pfn == -1)
4097 			goto next;
4098 
4099 		if (!pmd_trans_huge(pmd[i])) {
4100 			if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4101 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4102 			goto next;
4103 		}
4104 
4105 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4106 		if (!folio)
4107 			goto next;
4108 
4109 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4110 			goto next;
4111 
4112 		walk->mm_stats[MM_LEAF_YOUNG]++;
4113 
4114 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4115 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4116 		      !folio_test_swapcache(folio)))
4117 			folio_mark_dirty(folio);
4118 
4119 		old_gen = folio_update_gen(folio, new_gen);
4120 		if (old_gen >= 0 && old_gen != new_gen)
4121 			update_batch_size(walk, folio, old_gen, new_gen);
4122 next:
4123 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4124 	} while (i <= MIN_LRU_BATCH);
4125 
4126 	arch_leave_lazy_mmu_mode();
4127 	spin_unlock(ptl);
4128 done:
4129 	*first = -1;
4130 }
4131 #else
4132 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4133 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4134 {
4135 }
4136 #endif
4137 
4138 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4139 			   struct mm_walk *args)
4140 {
4141 	int i;
4142 	pmd_t *pmd;
4143 	unsigned long next;
4144 	unsigned long addr;
4145 	struct vm_area_struct *vma;
4146 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4147 	unsigned long first = -1;
4148 	struct lru_gen_mm_walk *walk = args->private;
4149 
4150 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4151 
4152 	/*
4153 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4154 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4155 	 * the PMD lock to clear the accessed bit in PMD entries.
4156 	 */
4157 	pmd = pmd_offset(pud, start & PUD_MASK);
4158 restart:
4159 	/* walk_pte_range() may call get_next_vma() */
4160 	vma = args->vma;
4161 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4162 		pmd_t val = pmdp_get_lockless(pmd + i);
4163 
4164 		next = pmd_addr_end(addr, end);
4165 
4166 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4167 			walk->mm_stats[MM_LEAF_TOTAL]++;
4168 			continue;
4169 		}
4170 
4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4172 		if (pmd_trans_huge(val)) {
4173 			unsigned long pfn = pmd_pfn(val);
4174 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4175 
4176 			walk->mm_stats[MM_LEAF_TOTAL]++;
4177 
4178 			if (!pmd_young(val)) {
4179 				walk->mm_stats[MM_LEAF_OLD]++;
4180 				continue;
4181 			}
4182 
4183 			/* try to avoid unnecessary memory loads */
4184 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4185 				continue;
4186 
4187 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4188 			continue;
4189 		}
4190 #endif
4191 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4192 
4193 		if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4194 			if (!pmd_young(val))
4195 				continue;
4196 
4197 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4198 		}
4199 
4200 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4201 			continue;
4202 
4203 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4204 
4205 		if (!walk_pte_range(&val, addr, next, args))
4206 			continue;
4207 
4208 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4209 
4210 		/* carry over to the next generation */
4211 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4212 	}
4213 
4214 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4215 
4216 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4217 		goto restart;
4218 }
4219 
4220 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4221 			  struct mm_walk *args)
4222 {
4223 	int i;
4224 	pud_t *pud;
4225 	unsigned long addr;
4226 	unsigned long next;
4227 	struct lru_gen_mm_walk *walk = args->private;
4228 
4229 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4230 
4231 	pud = pud_offset(p4d, start & P4D_MASK);
4232 restart:
4233 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4234 		pud_t val = READ_ONCE(pud[i]);
4235 
4236 		next = pud_addr_end(addr, end);
4237 
4238 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4239 			continue;
4240 
4241 		walk_pmd_range(&val, addr, next, args);
4242 
4243 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4244 			end = (addr | ~PUD_MASK) + 1;
4245 			goto done;
4246 		}
4247 	}
4248 
4249 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4250 		goto restart;
4251 
4252 	end = round_up(end, P4D_SIZE);
4253 done:
4254 	if (!end || !args->vma)
4255 		return 1;
4256 
4257 	walk->next_addr = max(end, args->vma->vm_start);
4258 
4259 	return -EAGAIN;
4260 }
4261 
4262 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4263 {
4264 	static const struct mm_walk_ops mm_walk_ops = {
4265 		.test_walk = should_skip_vma,
4266 		.p4d_entry = walk_pud_range,
4267 	};
4268 
4269 	int err;
4270 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4271 
4272 	walk->next_addr = FIRST_USER_ADDRESS;
4273 
4274 	do {
4275 		DEFINE_MAX_SEQ(lruvec);
4276 
4277 		err = -EBUSY;
4278 
4279 		/* another thread might have called inc_max_seq() */
4280 		if (walk->max_seq != max_seq)
4281 			break;
4282 
4283 		/* folio_update_gen() requires stable folio_memcg() */
4284 		if (!mem_cgroup_trylock_pages(memcg))
4285 			break;
4286 
4287 		/* the caller might be holding the lock for write */
4288 		if (mmap_read_trylock(mm)) {
4289 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4290 
4291 			mmap_read_unlock(mm);
4292 		}
4293 
4294 		mem_cgroup_unlock_pages();
4295 
4296 		if (walk->batched) {
4297 			spin_lock_irq(&lruvec->lru_lock);
4298 			reset_batch_size(lruvec, walk);
4299 			spin_unlock_irq(&lruvec->lru_lock);
4300 		}
4301 
4302 		cond_resched();
4303 	} while (err == -EAGAIN);
4304 }
4305 
4306 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4307 {
4308 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4309 
4310 	if (pgdat && current_is_kswapd()) {
4311 		VM_WARN_ON_ONCE(walk);
4312 
4313 		walk = &pgdat->mm_walk;
4314 	} else if (!walk && force_alloc) {
4315 		VM_WARN_ON_ONCE(current_is_kswapd());
4316 
4317 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4318 	}
4319 
4320 	current->reclaim_state->mm_walk = walk;
4321 
4322 	return walk;
4323 }
4324 
4325 static void clear_mm_walk(void)
4326 {
4327 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4328 
4329 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4330 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4331 
4332 	current->reclaim_state->mm_walk = NULL;
4333 
4334 	if (!current_is_kswapd())
4335 		kfree(walk);
4336 }
4337 
4338 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4339 {
4340 	int zone;
4341 	int remaining = MAX_LRU_BATCH;
4342 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4343 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4344 
4345 	if (type == LRU_GEN_ANON && !can_swap)
4346 		goto done;
4347 
4348 	/* prevent cold/hot inversion if force_scan is true */
4349 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4350 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4351 
4352 		while (!list_empty(head)) {
4353 			struct folio *folio = lru_to_folio(head);
4354 
4355 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4356 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4357 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4358 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4359 
4360 			new_gen = folio_inc_gen(lruvec, folio, false);
4361 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4362 
4363 			if (!--remaining)
4364 				return false;
4365 		}
4366 	}
4367 done:
4368 	reset_ctrl_pos(lruvec, type, true);
4369 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4370 
4371 	return true;
4372 }
4373 
4374 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4375 {
4376 	int gen, type, zone;
4377 	bool success = false;
4378 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4379 	DEFINE_MIN_SEQ(lruvec);
4380 
4381 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4382 
4383 	/* find the oldest populated generation */
4384 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4385 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4386 			gen = lru_gen_from_seq(min_seq[type]);
4387 
4388 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4389 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4390 					goto next;
4391 			}
4392 
4393 			min_seq[type]++;
4394 		}
4395 next:
4396 		;
4397 	}
4398 
4399 	/* see the comment on lru_gen_folio */
4400 	if (can_swap) {
4401 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4402 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4403 	}
4404 
4405 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4406 		if (min_seq[type] == lrugen->min_seq[type])
4407 			continue;
4408 
4409 		reset_ctrl_pos(lruvec, type, true);
4410 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4411 		success = true;
4412 	}
4413 
4414 	return success;
4415 }
4416 
4417 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4418 {
4419 	int prev, next;
4420 	int type, zone;
4421 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4422 
4423 	spin_lock_irq(&lruvec->lru_lock);
4424 
4425 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4426 
4427 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4428 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4429 			continue;
4430 
4431 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4432 
4433 		while (!inc_min_seq(lruvec, type, can_swap)) {
4434 			spin_unlock_irq(&lruvec->lru_lock);
4435 			cond_resched();
4436 			spin_lock_irq(&lruvec->lru_lock);
4437 		}
4438 	}
4439 
4440 	/*
4441 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4442 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4443 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4444 	 * overlap, cold/hot inversion happens.
4445 	 */
4446 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4447 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4448 
4449 	for (type = 0; type < ANON_AND_FILE; type++) {
4450 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4451 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4452 			long delta = lrugen->nr_pages[prev][type][zone] -
4453 				     lrugen->nr_pages[next][type][zone];
4454 
4455 			if (!delta)
4456 				continue;
4457 
4458 			__update_lru_size(lruvec, lru, zone, delta);
4459 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4460 		}
4461 	}
4462 
4463 	for (type = 0; type < ANON_AND_FILE; type++)
4464 		reset_ctrl_pos(lruvec, type, false);
4465 
4466 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4467 	/* make sure preceding modifications appear */
4468 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4469 
4470 	spin_unlock_irq(&lruvec->lru_lock);
4471 }
4472 
4473 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4474 			       struct scan_control *sc, bool can_swap, bool force_scan)
4475 {
4476 	bool success;
4477 	struct lru_gen_mm_walk *walk;
4478 	struct mm_struct *mm = NULL;
4479 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4480 
4481 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4482 
4483 	/* see the comment in iterate_mm_list() */
4484 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4485 		success = false;
4486 		goto done;
4487 	}
4488 
4489 	/*
4490 	 * If the hardware doesn't automatically set the accessed bit, fallback
4491 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4492 	 * handful of PTEs. Spreading the work out over a period of time usually
4493 	 * is less efficient, but it avoids bursty page faults.
4494 	 */
4495 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4496 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4497 		goto done;
4498 	}
4499 
4500 	walk = set_mm_walk(NULL, true);
4501 	if (!walk) {
4502 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4503 		goto done;
4504 	}
4505 
4506 	walk->lruvec = lruvec;
4507 	walk->max_seq = max_seq;
4508 	walk->can_swap = can_swap;
4509 	walk->force_scan = force_scan;
4510 
4511 	do {
4512 		success = iterate_mm_list(lruvec, walk, &mm);
4513 		if (mm)
4514 			walk_mm(lruvec, mm, walk);
4515 	} while (mm);
4516 done:
4517 	if (success)
4518 		inc_max_seq(lruvec, can_swap, force_scan);
4519 
4520 	return success;
4521 }
4522 
4523 /******************************************************************************
4524  *                          working set protection
4525  ******************************************************************************/
4526 
4527 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4528 {
4529 	int gen, type, zone;
4530 	unsigned long total = 0;
4531 	bool can_swap = get_swappiness(lruvec, sc);
4532 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4533 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4534 	DEFINE_MAX_SEQ(lruvec);
4535 	DEFINE_MIN_SEQ(lruvec);
4536 
4537 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4538 		unsigned long seq;
4539 
4540 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4541 			gen = lru_gen_from_seq(seq);
4542 
4543 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4544 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4545 		}
4546 	}
4547 
4548 	/* whether the size is big enough to be helpful */
4549 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4550 }
4551 
4552 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4553 				  unsigned long min_ttl)
4554 {
4555 	int gen;
4556 	unsigned long birth;
4557 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4558 	DEFINE_MIN_SEQ(lruvec);
4559 
4560 	/* see the comment on lru_gen_folio */
4561 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4562 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4563 
4564 	if (time_is_after_jiffies(birth + min_ttl))
4565 		return false;
4566 
4567 	if (!lruvec_is_sizable(lruvec, sc))
4568 		return false;
4569 
4570 	mem_cgroup_calculate_protection(NULL, memcg);
4571 
4572 	return !mem_cgroup_below_min(NULL, memcg);
4573 }
4574 
4575 /* to protect the working set of the last N jiffies */
4576 static unsigned long lru_gen_min_ttl __read_mostly;
4577 
4578 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4579 {
4580 	struct mem_cgroup *memcg;
4581 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4582 
4583 	VM_WARN_ON_ONCE(!current_is_kswapd());
4584 
4585 	/* check the order to exclude compaction-induced reclaim */
4586 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4587 		return;
4588 
4589 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4590 	do {
4591 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4592 
4593 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4594 			mem_cgroup_iter_break(NULL, memcg);
4595 			return;
4596 		}
4597 
4598 		cond_resched();
4599 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4600 
4601 	/*
4602 	 * The main goal is to OOM kill if every generation from all memcgs is
4603 	 * younger than min_ttl. However, another possibility is all memcgs are
4604 	 * either too small or below min.
4605 	 */
4606 	if (mutex_trylock(&oom_lock)) {
4607 		struct oom_control oc = {
4608 			.gfp_mask = sc->gfp_mask,
4609 		};
4610 
4611 		out_of_memory(&oc);
4612 
4613 		mutex_unlock(&oom_lock);
4614 	}
4615 }
4616 
4617 /******************************************************************************
4618  *                          rmap/PT walk feedback
4619  ******************************************************************************/
4620 
4621 /*
4622  * This function exploits spatial locality when shrink_folio_list() walks the
4623  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4624  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4625  * the PTE table to the Bloom filter. This forms a feedback loop between the
4626  * eviction and the aging.
4627  */
4628 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4629 {
4630 	int i;
4631 	unsigned long start;
4632 	unsigned long end;
4633 	struct lru_gen_mm_walk *walk;
4634 	int young = 0;
4635 	pte_t *pte = pvmw->pte;
4636 	unsigned long addr = pvmw->address;
4637 	struct folio *folio = pfn_folio(pvmw->pfn);
4638 	struct mem_cgroup *memcg = folio_memcg(folio);
4639 	struct pglist_data *pgdat = folio_pgdat(folio);
4640 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4641 	DEFINE_MAX_SEQ(lruvec);
4642 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4643 
4644 	lockdep_assert_held(pvmw->ptl);
4645 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4646 
4647 	if (spin_is_contended(pvmw->ptl))
4648 		return;
4649 
4650 	/* avoid taking the LRU lock under the PTL when possible */
4651 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4652 
4653 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4654 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4655 
4656 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4657 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4658 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4659 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4660 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4661 		else {
4662 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4663 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4664 		}
4665 	}
4666 
4667 	/* folio_update_gen() requires stable folio_memcg() */
4668 	if (!mem_cgroup_trylock_pages(memcg))
4669 		return;
4670 
4671 	arch_enter_lazy_mmu_mode();
4672 
4673 	pte -= (addr - start) / PAGE_SIZE;
4674 
4675 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4676 		unsigned long pfn;
4677 
4678 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4679 		if (pfn == -1)
4680 			continue;
4681 
4682 		if (!pte_young(pte[i]))
4683 			continue;
4684 
4685 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4686 		if (!folio)
4687 			continue;
4688 
4689 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4690 			VM_WARN_ON_ONCE(true);
4691 
4692 		young++;
4693 
4694 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4695 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4696 		      !folio_test_swapcache(folio)))
4697 			folio_mark_dirty(folio);
4698 
4699 		if (walk) {
4700 			old_gen = folio_update_gen(folio, new_gen);
4701 			if (old_gen >= 0 && old_gen != new_gen)
4702 				update_batch_size(walk, folio, old_gen, new_gen);
4703 
4704 			continue;
4705 		}
4706 
4707 		old_gen = folio_lru_gen(folio);
4708 		if (old_gen < 0)
4709 			folio_set_referenced(folio);
4710 		else if (old_gen != new_gen)
4711 			folio_activate(folio);
4712 	}
4713 
4714 	arch_leave_lazy_mmu_mode();
4715 	mem_cgroup_unlock_pages();
4716 
4717 	/* feedback from rmap walkers to page table walkers */
4718 	if (suitable_to_scan(i, young))
4719 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4720 }
4721 
4722 /******************************************************************************
4723  *                          memcg LRU
4724  ******************************************************************************/
4725 
4726 /* see the comment on MEMCG_NR_GENS */
4727 enum {
4728 	MEMCG_LRU_NOP,
4729 	MEMCG_LRU_HEAD,
4730 	MEMCG_LRU_TAIL,
4731 	MEMCG_LRU_OLD,
4732 	MEMCG_LRU_YOUNG,
4733 };
4734 
4735 #ifdef CONFIG_MEMCG
4736 
4737 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4738 {
4739 	return READ_ONCE(lruvec->lrugen.seg);
4740 }
4741 
4742 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4743 {
4744 	int seg;
4745 	int old, new;
4746 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4747 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4748 
4749 	spin_lock(&pgdat->memcg_lru.lock);
4750 
4751 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4752 
4753 	seg = 0;
4754 	new = old = lruvec->lrugen.gen;
4755 
4756 	/* see the comment on MEMCG_NR_GENS */
4757 	if (op == MEMCG_LRU_HEAD)
4758 		seg = MEMCG_LRU_HEAD;
4759 	else if (op == MEMCG_LRU_TAIL)
4760 		seg = MEMCG_LRU_TAIL;
4761 	else if (op == MEMCG_LRU_OLD)
4762 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4763 	else if (op == MEMCG_LRU_YOUNG)
4764 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4765 	else
4766 		VM_WARN_ON_ONCE(true);
4767 
4768 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4769 
4770 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4771 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4772 	else
4773 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4774 
4775 	pgdat->memcg_lru.nr_memcgs[old]--;
4776 	pgdat->memcg_lru.nr_memcgs[new]++;
4777 
4778 	lruvec->lrugen.gen = new;
4779 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4780 
4781 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4782 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4783 
4784 	spin_unlock(&pgdat->memcg_lru.lock);
4785 }
4786 
4787 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4788 {
4789 	int gen;
4790 	int nid;
4791 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4792 
4793 	for_each_node(nid) {
4794 		struct pglist_data *pgdat = NODE_DATA(nid);
4795 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4796 
4797 		spin_lock(&pgdat->memcg_lru.lock);
4798 
4799 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4800 
4801 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4802 
4803 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4804 		pgdat->memcg_lru.nr_memcgs[gen]++;
4805 
4806 		lruvec->lrugen.gen = gen;
4807 
4808 		spin_unlock(&pgdat->memcg_lru.lock);
4809 	}
4810 }
4811 
4812 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4813 {
4814 	int nid;
4815 
4816 	for_each_node(nid) {
4817 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4818 
4819 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4820 	}
4821 }
4822 
4823 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4824 {
4825 	int gen;
4826 	int nid;
4827 
4828 	for_each_node(nid) {
4829 		struct pglist_data *pgdat = NODE_DATA(nid);
4830 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4831 
4832 		spin_lock(&pgdat->memcg_lru.lock);
4833 
4834 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4835 
4836 		gen = lruvec->lrugen.gen;
4837 
4838 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4839 		pgdat->memcg_lru.nr_memcgs[gen]--;
4840 
4841 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4842 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4843 
4844 		spin_unlock(&pgdat->memcg_lru.lock);
4845 	}
4846 }
4847 
4848 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4849 {
4850 	/* see the comment on MEMCG_NR_GENS */
4851 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4852 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4853 }
4854 
4855 #else /* !CONFIG_MEMCG */
4856 
4857 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4858 {
4859 	return 0;
4860 }
4861 
4862 #endif
4863 
4864 /******************************************************************************
4865  *                          the eviction
4866  ******************************************************************************/
4867 
4868 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4869 {
4870 	bool success;
4871 	int gen = folio_lru_gen(folio);
4872 	int type = folio_is_file_lru(folio);
4873 	int zone = folio_zonenum(folio);
4874 	int delta = folio_nr_pages(folio);
4875 	int refs = folio_lru_refs(folio);
4876 	int tier = lru_tier_from_refs(refs);
4877 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4878 
4879 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4880 
4881 	/* unevictable */
4882 	if (!folio_evictable(folio)) {
4883 		success = lru_gen_del_folio(lruvec, folio, true);
4884 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4885 		folio_set_unevictable(folio);
4886 		lruvec_add_folio(lruvec, folio);
4887 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4888 		return true;
4889 	}
4890 
4891 	/* dirty lazyfree */
4892 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4893 		success = lru_gen_del_folio(lruvec, folio, true);
4894 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4895 		folio_set_swapbacked(folio);
4896 		lruvec_add_folio_tail(lruvec, folio);
4897 		return true;
4898 	}
4899 
4900 	/* promoted */
4901 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4902 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4903 		return true;
4904 	}
4905 
4906 	/* protected */
4907 	if (tier > tier_idx) {
4908 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4909 
4910 		gen = folio_inc_gen(lruvec, folio, false);
4911 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4912 
4913 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4914 			   lrugen->protected[hist][type][tier - 1] + delta);
4915 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4916 		return true;
4917 	}
4918 
4919 	/* waiting for writeback */
4920 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4921 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4922 		gen = folio_inc_gen(lruvec, folio, true);
4923 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4924 		return true;
4925 	}
4926 
4927 	return false;
4928 }
4929 
4930 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4931 {
4932 	bool success;
4933 
4934 	/* swapping inhibited */
4935 	if (!(sc->gfp_mask & __GFP_IO) &&
4936 	    (folio_test_dirty(folio) ||
4937 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4938 		return false;
4939 
4940 	/* raced with release_pages() */
4941 	if (!folio_try_get(folio))
4942 		return false;
4943 
4944 	/* raced with another isolation */
4945 	if (!folio_test_clear_lru(folio)) {
4946 		folio_put(folio);
4947 		return false;
4948 	}
4949 
4950 	/* see the comment on MAX_NR_TIERS */
4951 	if (!folio_test_referenced(folio))
4952 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4953 
4954 	/* for shrink_folio_list() */
4955 	folio_clear_reclaim(folio);
4956 	folio_clear_referenced(folio);
4957 
4958 	success = lru_gen_del_folio(lruvec, folio, true);
4959 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4960 
4961 	return true;
4962 }
4963 
4964 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4965 		       int type, int tier, struct list_head *list)
4966 {
4967 	int gen, zone;
4968 	enum vm_event_item item;
4969 	int sorted = 0;
4970 	int scanned = 0;
4971 	int isolated = 0;
4972 	int remaining = MAX_LRU_BATCH;
4973 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4974 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4975 
4976 	VM_WARN_ON_ONCE(!list_empty(list));
4977 
4978 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4979 		return 0;
4980 
4981 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4982 
4983 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4984 		LIST_HEAD(moved);
4985 		int skipped = 0;
4986 		struct list_head *head = &lrugen->folios[gen][type][zone];
4987 
4988 		while (!list_empty(head)) {
4989 			struct folio *folio = lru_to_folio(head);
4990 			int delta = folio_nr_pages(folio);
4991 
4992 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4993 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4994 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4995 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4996 
4997 			scanned += delta;
4998 
4999 			if (sort_folio(lruvec, folio, tier))
5000 				sorted += delta;
5001 			else if (isolate_folio(lruvec, folio, sc)) {
5002 				list_add(&folio->lru, list);
5003 				isolated += delta;
5004 			} else {
5005 				list_move(&folio->lru, &moved);
5006 				skipped += delta;
5007 			}
5008 
5009 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5010 				break;
5011 		}
5012 
5013 		if (skipped) {
5014 			list_splice(&moved, head);
5015 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5016 		}
5017 
5018 		if (!remaining || isolated >= MIN_LRU_BATCH)
5019 			break;
5020 	}
5021 
5022 	item = PGSCAN_KSWAPD + reclaimer_offset();
5023 	if (!cgroup_reclaim(sc)) {
5024 		__count_vm_events(item, isolated);
5025 		__count_vm_events(PGREFILL, sorted);
5026 	}
5027 	__count_memcg_events(memcg, item, isolated);
5028 	__count_memcg_events(memcg, PGREFILL, sorted);
5029 	__count_vm_events(PGSCAN_ANON + type, isolated);
5030 
5031 	/*
5032 	 * There might not be eligible folios due to reclaim_idx. Check the
5033 	 * remaining to prevent livelock if it's not making progress.
5034 	 */
5035 	return isolated || !remaining ? scanned : 0;
5036 }
5037 
5038 static int get_tier_idx(struct lruvec *lruvec, int type)
5039 {
5040 	int tier;
5041 	struct ctrl_pos sp, pv;
5042 
5043 	/*
5044 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5045 	 * This value is chosen because any other tier would have at least twice
5046 	 * as many refaults as the first tier.
5047 	 */
5048 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5049 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5050 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5051 		if (!positive_ctrl_err(&sp, &pv))
5052 			break;
5053 	}
5054 
5055 	return tier - 1;
5056 }
5057 
5058 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5059 {
5060 	int type, tier;
5061 	struct ctrl_pos sp, pv;
5062 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5063 
5064 	/*
5065 	 * Compare the first tier of anon with that of file to determine which
5066 	 * type to scan. Also need to compare other tiers of the selected type
5067 	 * with the first tier of the other type to determine the last tier (of
5068 	 * the selected type) to evict.
5069 	 */
5070 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5071 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5072 	type = positive_ctrl_err(&sp, &pv);
5073 
5074 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5075 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5076 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5077 		if (!positive_ctrl_err(&sp, &pv))
5078 			break;
5079 	}
5080 
5081 	*tier_idx = tier - 1;
5082 
5083 	return type;
5084 }
5085 
5086 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5087 			  int *type_scanned, struct list_head *list)
5088 {
5089 	int i;
5090 	int type;
5091 	int scanned;
5092 	int tier = -1;
5093 	DEFINE_MIN_SEQ(lruvec);
5094 
5095 	/*
5096 	 * Try to make the obvious choice first. When anon and file are both
5097 	 * available from the same generation, interpret swappiness 1 as file
5098 	 * first and 200 as anon first.
5099 	 */
5100 	if (!swappiness)
5101 		type = LRU_GEN_FILE;
5102 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5103 		type = LRU_GEN_ANON;
5104 	else if (swappiness == 1)
5105 		type = LRU_GEN_FILE;
5106 	else if (swappiness == 200)
5107 		type = LRU_GEN_ANON;
5108 	else
5109 		type = get_type_to_scan(lruvec, swappiness, &tier);
5110 
5111 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5112 		if (tier < 0)
5113 			tier = get_tier_idx(lruvec, type);
5114 
5115 		scanned = scan_folios(lruvec, sc, type, tier, list);
5116 		if (scanned)
5117 			break;
5118 
5119 		type = !type;
5120 		tier = -1;
5121 	}
5122 
5123 	*type_scanned = type;
5124 
5125 	return scanned;
5126 }
5127 
5128 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5129 {
5130 	int type;
5131 	int scanned;
5132 	int reclaimed;
5133 	LIST_HEAD(list);
5134 	LIST_HEAD(clean);
5135 	struct folio *folio;
5136 	struct folio *next;
5137 	enum vm_event_item item;
5138 	struct reclaim_stat stat;
5139 	struct lru_gen_mm_walk *walk;
5140 	bool skip_retry = false;
5141 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5142 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5143 
5144 	spin_lock_irq(&lruvec->lru_lock);
5145 
5146 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5147 
5148 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5149 
5150 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5151 		scanned = 0;
5152 
5153 	spin_unlock_irq(&lruvec->lru_lock);
5154 
5155 	if (list_empty(&list))
5156 		return scanned;
5157 retry:
5158 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5159 	sc->nr_reclaimed += reclaimed;
5160 
5161 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5162 		if (!folio_evictable(folio)) {
5163 			list_del(&folio->lru);
5164 			folio_putback_lru(folio);
5165 			continue;
5166 		}
5167 
5168 		if (folio_test_reclaim(folio) &&
5169 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5170 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5171 			if (folio_test_workingset(folio))
5172 				folio_set_referenced(folio);
5173 			continue;
5174 		}
5175 
5176 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5177 		    folio_mapped(folio) || folio_test_locked(folio) ||
5178 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5179 			/* don't add rejected folios to the oldest generation */
5180 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5181 				      BIT(PG_active));
5182 			continue;
5183 		}
5184 
5185 		/* retry folios that may have missed folio_rotate_reclaimable() */
5186 		list_move(&folio->lru, &clean);
5187 		sc->nr_scanned -= folio_nr_pages(folio);
5188 	}
5189 
5190 	spin_lock_irq(&lruvec->lru_lock);
5191 
5192 	move_folios_to_lru(lruvec, &list);
5193 
5194 	walk = current->reclaim_state->mm_walk;
5195 	if (walk && walk->batched)
5196 		reset_batch_size(lruvec, walk);
5197 
5198 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5199 	if (!cgroup_reclaim(sc))
5200 		__count_vm_events(item, reclaimed);
5201 	__count_memcg_events(memcg, item, reclaimed);
5202 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5203 
5204 	spin_unlock_irq(&lruvec->lru_lock);
5205 
5206 	mem_cgroup_uncharge_list(&list);
5207 	free_unref_page_list(&list);
5208 
5209 	INIT_LIST_HEAD(&list);
5210 	list_splice_init(&clean, &list);
5211 
5212 	if (!list_empty(&list)) {
5213 		skip_retry = true;
5214 		goto retry;
5215 	}
5216 
5217 	return scanned;
5218 }
5219 
5220 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5221 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5222 {
5223 	int gen, type, zone;
5224 	unsigned long old = 0;
5225 	unsigned long young = 0;
5226 	unsigned long total = 0;
5227 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5228 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5229 	DEFINE_MIN_SEQ(lruvec);
5230 
5231 	/* whether this lruvec is completely out of cold folios */
5232 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5233 		*nr_to_scan = 0;
5234 		return true;
5235 	}
5236 
5237 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5238 		unsigned long seq;
5239 
5240 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5241 			unsigned long size = 0;
5242 
5243 			gen = lru_gen_from_seq(seq);
5244 
5245 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5246 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5247 
5248 			total += size;
5249 			if (seq == max_seq)
5250 				young += size;
5251 			else if (seq + MIN_NR_GENS == max_seq)
5252 				old += size;
5253 		}
5254 	}
5255 
5256 	/* try to scrape all its memory if this memcg was deleted */
5257 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5258 
5259 	/*
5260 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5261 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5262 	 * ideal number of generations is MIN_NR_GENS+1.
5263 	 */
5264 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5265 		return false;
5266 
5267 	/*
5268 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5269 	 * of the total number of pages for each generation. A reasonable range
5270 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5271 	 * aging cares about the upper bound of hot pages, while the eviction
5272 	 * cares about the lower bound of cold pages.
5273 	 */
5274 	if (young * MIN_NR_GENS > total)
5275 		return true;
5276 	if (old * (MIN_NR_GENS + 2) < total)
5277 		return true;
5278 
5279 	return false;
5280 }
5281 
5282 /*
5283  * For future optimizations:
5284  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5285  *    reclaim.
5286  */
5287 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5288 {
5289 	unsigned long nr_to_scan;
5290 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5291 	DEFINE_MAX_SEQ(lruvec);
5292 
5293 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5294 		return 0;
5295 
5296 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5297 		return nr_to_scan;
5298 
5299 	/* skip the aging path at the default priority */
5300 	if (sc->priority == DEF_PRIORITY)
5301 		return nr_to_scan;
5302 
5303 	/* skip this lruvec as it's low on cold folios */
5304 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5305 }
5306 
5307 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5308 {
5309 	/* don't abort memcg reclaim to ensure fairness */
5310 	if (!global_reclaim(sc))
5311 		return -1;
5312 
5313 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5314 }
5315 
5316 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5317 {
5318 	long nr_to_scan;
5319 	unsigned long scanned = 0;
5320 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5321 	int swappiness = get_swappiness(lruvec, sc);
5322 
5323 	/* clean file folios are more likely to exist */
5324 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5325 		swappiness = 1;
5326 
5327 	while (true) {
5328 		int delta;
5329 
5330 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5331 		if (nr_to_scan <= 0)
5332 			break;
5333 
5334 		delta = evict_folios(lruvec, sc, swappiness);
5335 		if (!delta)
5336 			break;
5337 
5338 		scanned += delta;
5339 		if (scanned >= nr_to_scan)
5340 			break;
5341 
5342 		if (sc->nr_reclaimed >= nr_to_reclaim)
5343 			break;
5344 
5345 		cond_resched();
5346 	}
5347 
5348 	/* whether try_to_inc_max_seq() was successful */
5349 	return nr_to_scan < 0;
5350 }
5351 
5352 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5353 {
5354 	bool success;
5355 	unsigned long scanned = sc->nr_scanned;
5356 	unsigned long reclaimed = sc->nr_reclaimed;
5357 	int seg = lru_gen_memcg_seg(lruvec);
5358 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5359 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5360 
5361 	/* see the comment on MEMCG_NR_GENS */
5362 	if (!lruvec_is_sizable(lruvec, sc))
5363 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5364 
5365 	mem_cgroup_calculate_protection(NULL, memcg);
5366 
5367 	if (mem_cgroup_below_min(NULL, memcg))
5368 		return MEMCG_LRU_YOUNG;
5369 
5370 	if (mem_cgroup_below_low(NULL, memcg)) {
5371 		/* see the comment on MEMCG_NR_GENS */
5372 		if (seg != MEMCG_LRU_TAIL)
5373 			return MEMCG_LRU_TAIL;
5374 
5375 		memcg_memory_event(memcg, MEMCG_LOW);
5376 	}
5377 
5378 	success = try_to_shrink_lruvec(lruvec, sc);
5379 
5380 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5381 
5382 	if (!sc->proactive)
5383 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5384 			   sc->nr_reclaimed - reclaimed);
5385 
5386 	flush_reclaim_state(sc);
5387 
5388 	return success ? MEMCG_LRU_YOUNG : 0;
5389 }
5390 
5391 #ifdef CONFIG_MEMCG
5392 
5393 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5394 {
5395 	int op;
5396 	int gen;
5397 	int bin;
5398 	int first_bin;
5399 	struct lruvec *lruvec;
5400 	struct lru_gen_folio *lrugen;
5401 	struct mem_cgroup *memcg;
5402 	const struct hlist_nulls_node *pos;
5403 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5404 
5405 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5406 restart:
5407 	op = 0;
5408 	memcg = NULL;
5409 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5410 
5411 	rcu_read_lock();
5412 
5413 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5414 		if (op)
5415 			lru_gen_rotate_memcg(lruvec, op);
5416 
5417 		mem_cgroup_put(memcg);
5418 
5419 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5420 		memcg = lruvec_memcg(lruvec);
5421 
5422 		if (!mem_cgroup_tryget(memcg)) {
5423 			op = 0;
5424 			memcg = NULL;
5425 			continue;
5426 		}
5427 
5428 		rcu_read_unlock();
5429 
5430 		op = shrink_one(lruvec, sc);
5431 
5432 		rcu_read_lock();
5433 
5434 		if (sc->nr_reclaimed >= nr_to_reclaim)
5435 			break;
5436 	}
5437 
5438 	rcu_read_unlock();
5439 
5440 	if (op)
5441 		lru_gen_rotate_memcg(lruvec, op);
5442 
5443 	mem_cgroup_put(memcg);
5444 
5445 	if (sc->nr_reclaimed >= nr_to_reclaim)
5446 		return;
5447 
5448 	/* restart if raced with lru_gen_rotate_memcg() */
5449 	if (gen != get_nulls_value(pos))
5450 		goto restart;
5451 
5452 	/* try the rest of the bins of the current generation */
5453 	bin = get_memcg_bin(bin + 1);
5454 	if (bin != first_bin)
5455 		goto restart;
5456 }
5457 
5458 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5459 {
5460 	struct blk_plug plug;
5461 
5462 	VM_WARN_ON_ONCE(global_reclaim(sc));
5463 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5464 
5465 	lru_add_drain();
5466 
5467 	blk_start_plug(&plug);
5468 
5469 	set_mm_walk(NULL, sc->proactive);
5470 
5471 	if (try_to_shrink_lruvec(lruvec, sc))
5472 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5473 
5474 	clear_mm_walk();
5475 
5476 	blk_finish_plug(&plug);
5477 }
5478 
5479 #else /* !CONFIG_MEMCG */
5480 
5481 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5482 {
5483 	BUILD_BUG();
5484 }
5485 
5486 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5487 {
5488 	BUILD_BUG();
5489 }
5490 
5491 #endif
5492 
5493 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5494 {
5495 	int priority;
5496 	unsigned long reclaimable;
5497 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5498 
5499 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5500 		return;
5501 	/*
5502 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5503 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5504 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5505 	 */
5506 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5507 	if (get_swappiness(lruvec, sc))
5508 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5509 
5510 	reclaimable /= MEMCG_NR_GENS;
5511 
5512 	/* round down reclaimable and round up sc->nr_to_reclaim */
5513 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5514 
5515 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5516 }
5517 
5518 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5519 {
5520 	struct blk_plug plug;
5521 	unsigned long reclaimed = sc->nr_reclaimed;
5522 
5523 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5524 
5525 	/*
5526 	 * Unmapped clean folios are already prioritized. Scanning for more of
5527 	 * them is likely futile and can cause high reclaim latency when there
5528 	 * is a large number of memcgs.
5529 	 */
5530 	if (!sc->may_writepage || !sc->may_unmap)
5531 		goto done;
5532 
5533 	lru_add_drain();
5534 
5535 	blk_start_plug(&plug);
5536 
5537 	set_mm_walk(pgdat, sc->proactive);
5538 
5539 	set_initial_priority(pgdat, sc);
5540 
5541 	if (current_is_kswapd())
5542 		sc->nr_reclaimed = 0;
5543 
5544 	if (mem_cgroup_disabled())
5545 		shrink_one(&pgdat->__lruvec, sc);
5546 	else
5547 		shrink_many(pgdat, sc);
5548 
5549 	if (current_is_kswapd())
5550 		sc->nr_reclaimed += reclaimed;
5551 
5552 	clear_mm_walk();
5553 
5554 	blk_finish_plug(&plug);
5555 done:
5556 	/* kswapd should never fail */
5557 	pgdat->kswapd_failures = 0;
5558 }
5559 
5560 /******************************************************************************
5561  *                          state change
5562  ******************************************************************************/
5563 
5564 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5565 {
5566 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5567 
5568 	if (lrugen->enabled) {
5569 		enum lru_list lru;
5570 
5571 		for_each_evictable_lru(lru) {
5572 			if (!list_empty(&lruvec->lists[lru]))
5573 				return false;
5574 		}
5575 	} else {
5576 		int gen, type, zone;
5577 
5578 		for_each_gen_type_zone(gen, type, zone) {
5579 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5580 				return false;
5581 		}
5582 	}
5583 
5584 	return true;
5585 }
5586 
5587 static bool fill_evictable(struct lruvec *lruvec)
5588 {
5589 	enum lru_list lru;
5590 	int remaining = MAX_LRU_BATCH;
5591 
5592 	for_each_evictable_lru(lru) {
5593 		int type = is_file_lru(lru);
5594 		bool active = is_active_lru(lru);
5595 		struct list_head *head = &lruvec->lists[lru];
5596 
5597 		while (!list_empty(head)) {
5598 			bool success;
5599 			struct folio *folio = lru_to_folio(head);
5600 
5601 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5602 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5603 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5604 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5605 
5606 			lruvec_del_folio(lruvec, folio);
5607 			success = lru_gen_add_folio(lruvec, folio, false);
5608 			VM_WARN_ON_ONCE(!success);
5609 
5610 			if (!--remaining)
5611 				return false;
5612 		}
5613 	}
5614 
5615 	return true;
5616 }
5617 
5618 static bool drain_evictable(struct lruvec *lruvec)
5619 {
5620 	int gen, type, zone;
5621 	int remaining = MAX_LRU_BATCH;
5622 
5623 	for_each_gen_type_zone(gen, type, zone) {
5624 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5625 
5626 		while (!list_empty(head)) {
5627 			bool success;
5628 			struct folio *folio = lru_to_folio(head);
5629 
5630 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5631 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5632 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5633 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5634 
5635 			success = lru_gen_del_folio(lruvec, folio, false);
5636 			VM_WARN_ON_ONCE(!success);
5637 			lruvec_add_folio(lruvec, folio);
5638 
5639 			if (!--remaining)
5640 				return false;
5641 		}
5642 	}
5643 
5644 	return true;
5645 }
5646 
5647 static void lru_gen_change_state(bool enabled)
5648 {
5649 	static DEFINE_MUTEX(state_mutex);
5650 
5651 	struct mem_cgroup *memcg;
5652 
5653 	cgroup_lock();
5654 	cpus_read_lock();
5655 	get_online_mems();
5656 	mutex_lock(&state_mutex);
5657 
5658 	if (enabled == lru_gen_enabled())
5659 		goto unlock;
5660 
5661 	if (enabled)
5662 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5663 	else
5664 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5665 
5666 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5667 	do {
5668 		int nid;
5669 
5670 		for_each_node(nid) {
5671 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5672 
5673 			spin_lock_irq(&lruvec->lru_lock);
5674 
5675 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5676 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5677 
5678 			lruvec->lrugen.enabled = enabled;
5679 
5680 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5681 				spin_unlock_irq(&lruvec->lru_lock);
5682 				cond_resched();
5683 				spin_lock_irq(&lruvec->lru_lock);
5684 			}
5685 
5686 			spin_unlock_irq(&lruvec->lru_lock);
5687 		}
5688 
5689 		cond_resched();
5690 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5691 unlock:
5692 	mutex_unlock(&state_mutex);
5693 	put_online_mems();
5694 	cpus_read_unlock();
5695 	cgroup_unlock();
5696 }
5697 
5698 /******************************************************************************
5699  *                          sysfs interface
5700  ******************************************************************************/
5701 
5702 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5703 {
5704 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5705 }
5706 
5707 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5708 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5709 				const char *buf, size_t len)
5710 {
5711 	unsigned int msecs;
5712 
5713 	if (kstrtouint(buf, 0, &msecs))
5714 		return -EINVAL;
5715 
5716 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5717 
5718 	return len;
5719 }
5720 
5721 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5722 
5723 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5724 {
5725 	unsigned int caps = 0;
5726 
5727 	if (get_cap(LRU_GEN_CORE))
5728 		caps |= BIT(LRU_GEN_CORE);
5729 
5730 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5731 		caps |= BIT(LRU_GEN_MM_WALK);
5732 
5733 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5734 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5735 
5736 	return sysfs_emit(buf, "0x%04x\n", caps);
5737 }
5738 
5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5740 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5741 			     const char *buf, size_t len)
5742 {
5743 	int i;
5744 	unsigned int caps;
5745 
5746 	if (tolower(*buf) == 'n')
5747 		caps = 0;
5748 	else if (tolower(*buf) == 'y')
5749 		caps = -1;
5750 	else if (kstrtouint(buf, 0, &caps))
5751 		return -EINVAL;
5752 
5753 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5754 		bool enabled = caps & BIT(i);
5755 
5756 		if (i == LRU_GEN_CORE)
5757 			lru_gen_change_state(enabled);
5758 		else if (enabled)
5759 			static_branch_enable(&lru_gen_caps[i]);
5760 		else
5761 			static_branch_disable(&lru_gen_caps[i]);
5762 	}
5763 
5764 	return len;
5765 }
5766 
5767 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5768 
5769 static struct attribute *lru_gen_attrs[] = {
5770 	&lru_gen_min_ttl_attr.attr,
5771 	&lru_gen_enabled_attr.attr,
5772 	NULL
5773 };
5774 
5775 static const struct attribute_group lru_gen_attr_group = {
5776 	.name = "lru_gen",
5777 	.attrs = lru_gen_attrs,
5778 };
5779 
5780 /******************************************************************************
5781  *                          debugfs interface
5782  ******************************************************************************/
5783 
5784 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5785 {
5786 	struct mem_cgroup *memcg;
5787 	loff_t nr_to_skip = *pos;
5788 
5789 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5790 	if (!m->private)
5791 		return ERR_PTR(-ENOMEM);
5792 
5793 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5794 	do {
5795 		int nid;
5796 
5797 		for_each_node_state(nid, N_MEMORY) {
5798 			if (!nr_to_skip--)
5799 				return get_lruvec(memcg, nid);
5800 		}
5801 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5802 
5803 	return NULL;
5804 }
5805 
5806 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5807 {
5808 	if (!IS_ERR_OR_NULL(v))
5809 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5810 
5811 	kvfree(m->private);
5812 	m->private = NULL;
5813 }
5814 
5815 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5816 {
5817 	int nid = lruvec_pgdat(v)->node_id;
5818 	struct mem_cgroup *memcg = lruvec_memcg(v);
5819 
5820 	++*pos;
5821 
5822 	nid = next_memory_node(nid);
5823 	if (nid == MAX_NUMNODES) {
5824 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5825 		if (!memcg)
5826 			return NULL;
5827 
5828 		nid = first_memory_node;
5829 	}
5830 
5831 	return get_lruvec(memcg, nid);
5832 }
5833 
5834 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5835 				  unsigned long max_seq, unsigned long *min_seq,
5836 				  unsigned long seq)
5837 {
5838 	int i;
5839 	int type, tier;
5840 	int hist = lru_hist_from_seq(seq);
5841 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5842 
5843 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5844 		seq_printf(m, "            %10d", tier);
5845 		for (type = 0; type < ANON_AND_FILE; type++) {
5846 			const char *s = "   ";
5847 			unsigned long n[3] = {};
5848 
5849 			if (seq == max_seq) {
5850 				s = "RT ";
5851 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5852 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5853 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5854 				s = "rep";
5855 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5856 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5857 				if (tier)
5858 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5859 			}
5860 
5861 			for (i = 0; i < 3; i++)
5862 				seq_printf(m, " %10lu%c", n[i], s[i]);
5863 		}
5864 		seq_putc(m, '\n');
5865 	}
5866 
5867 	seq_puts(m, "                      ");
5868 	for (i = 0; i < NR_MM_STATS; i++) {
5869 		const char *s = "      ";
5870 		unsigned long n = 0;
5871 
5872 		if (seq == max_seq && NR_HIST_GENS == 1) {
5873 			s = "LOYNFA";
5874 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5875 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5876 			s = "loynfa";
5877 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5878 		}
5879 
5880 		seq_printf(m, " %10lu%c", n, s[i]);
5881 	}
5882 	seq_putc(m, '\n');
5883 }
5884 
5885 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5886 static int lru_gen_seq_show(struct seq_file *m, void *v)
5887 {
5888 	unsigned long seq;
5889 	bool full = !debugfs_real_fops(m->file)->write;
5890 	struct lruvec *lruvec = v;
5891 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5892 	int nid = lruvec_pgdat(lruvec)->node_id;
5893 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5894 	DEFINE_MAX_SEQ(lruvec);
5895 	DEFINE_MIN_SEQ(lruvec);
5896 
5897 	if (nid == first_memory_node) {
5898 		const char *path = memcg ? m->private : "";
5899 
5900 #ifdef CONFIG_MEMCG
5901 		if (memcg)
5902 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5903 #endif
5904 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5905 	}
5906 
5907 	seq_printf(m, " node %5d\n", nid);
5908 
5909 	if (!full)
5910 		seq = min_seq[LRU_GEN_ANON];
5911 	else if (max_seq >= MAX_NR_GENS)
5912 		seq = max_seq - MAX_NR_GENS + 1;
5913 	else
5914 		seq = 0;
5915 
5916 	for (; seq <= max_seq; seq++) {
5917 		int type, zone;
5918 		int gen = lru_gen_from_seq(seq);
5919 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5920 
5921 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5922 
5923 		for (type = 0; type < ANON_AND_FILE; type++) {
5924 			unsigned long size = 0;
5925 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5926 
5927 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5928 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5929 
5930 			seq_printf(m, " %10lu%c", size, mark);
5931 		}
5932 
5933 		seq_putc(m, '\n');
5934 
5935 		if (full)
5936 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5937 	}
5938 
5939 	return 0;
5940 }
5941 
5942 static const struct seq_operations lru_gen_seq_ops = {
5943 	.start = lru_gen_seq_start,
5944 	.stop = lru_gen_seq_stop,
5945 	.next = lru_gen_seq_next,
5946 	.show = lru_gen_seq_show,
5947 };
5948 
5949 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5950 		     bool can_swap, bool force_scan)
5951 {
5952 	DEFINE_MAX_SEQ(lruvec);
5953 	DEFINE_MIN_SEQ(lruvec);
5954 
5955 	if (seq < max_seq)
5956 		return 0;
5957 
5958 	if (seq > max_seq)
5959 		return -EINVAL;
5960 
5961 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5962 		return -ERANGE;
5963 
5964 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5965 
5966 	return 0;
5967 }
5968 
5969 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5970 			int swappiness, unsigned long nr_to_reclaim)
5971 {
5972 	DEFINE_MAX_SEQ(lruvec);
5973 
5974 	if (seq + MIN_NR_GENS > max_seq)
5975 		return -EINVAL;
5976 
5977 	sc->nr_reclaimed = 0;
5978 
5979 	while (!signal_pending(current)) {
5980 		DEFINE_MIN_SEQ(lruvec);
5981 
5982 		if (seq < min_seq[!swappiness])
5983 			return 0;
5984 
5985 		if (sc->nr_reclaimed >= nr_to_reclaim)
5986 			return 0;
5987 
5988 		if (!evict_folios(lruvec, sc, swappiness))
5989 			return 0;
5990 
5991 		cond_resched();
5992 	}
5993 
5994 	return -EINTR;
5995 }
5996 
5997 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5998 		   struct scan_control *sc, int swappiness, unsigned long opt)
5999 {
6000 	struct lruvec *lruvec;
6001 	int err = -EINVAL;
6002 	struct mem_cgroup *memcg = NULL;
6003 
6004 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6005 		return -EINVAL;
6006 
6007 	if (!mem_cgroup_disabled()) {
6008 		rcu_read_lock();
6009 
6010 		memcg = mem_cgroup_from_id(memcg_id);
6011 		if (!mem_cgroup_tryget(memcg))
6012 			memcg = NULL;
6013 
6014 		rcu_read_unlock();
6015 
6016 		if (!memcg)
6017 			return -EINVAL;
6018 	}
6019 
6020 	if (memcg_id != mem_cgroup_id(memcg))
6021 		goto done;
6022 
6023 	lruvec = get_lruvec(memcg, nid);
6024 
6025 	if (swappiness < 0)
6026 		swappiness = get_swappiness(lruvec, sc);
6027 	else if (swappiness > 200)
6028 		goto done;
6029 
6030 	switch (cmd) {
6031 	case '+':
6032 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6033 		break;
6034 	case '-':
6035 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6036 		break;
6037 	}
6038 done:
6039 	mem_cgroup_put(memcg);
6040 
6041 	return err;
6042 }
6043 
6044 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6045 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6046 				 size_t len, loff_t *pos)
6047 {
6048 	void *buf;
6049 	char *cur, *next;
6050 	unsigned int flags;
6051 	struct blk_plug plug;
6052 	int err = -EINVAL;
6053 	struct scan_control sc = {
6054 		.may_writepage = true,
6055 		.may_unmap = true,
6056 		.may_swap = true,
6057 		.reclaim_idx = MAX_NR_ZONES - 1,
6058 		.gfp_mask = GFP_KERNEL,
6059 	};
6060 
6061 	buf = kvmalloc(len + 1, GFP_KERNEL);
6062 	if (!buf)
6063 		return -ENOMEM;
6064 
6065 	if (copy_from_user(buf, src, len)) {
6066 		kvfree(buf);
6067 		return -EFAULT;
6068 	}
6069 
6070 	set_task_reclaim_state(current, &sc.reclaim_state);
6071 	flags = memalloc_noreclaim_save();
6072 	blk_start_plug(&plug);
6073 	if (!set_mm_walk(NULL, true)) {
6074 		err = -ENOMEM;
6075 		goto done;
6076 	}
6077 
6078 	next = buf;
6079 	next[len] = '\0';
6080 
6081 	while ((cur = strsep(&next, ",;\n"))) {
6082 		int n;
6083 		int end;
6084 		char cmd;
6085 		unsigned int memcg_id;
6086 		unsigned int nid;
6087 		unsigned long seq;
6088 		unsigned int swappiness = -1;
6089 		unsigned long opt = -1;
6090 
6091 		cur = skip_spaces(cur);
6092 		if (!*cur)
6093 			continue;
6094 
6095 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6096 			   &seq, &end, &swappiness, &end, &opt, &end);
6097 		if (n < 4 || cur[end]) {
6098 			err = -EINVAL;
6099 			break;
6100 		}
6101 
6102 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6103 		if (err)
6104 			break;
6105 	}
6106 done:
6107 	clear_mm_walk();
6108 	blk_finish_plug(&plug);
6109 	memalloc_noreclaim_restore(flags);
6110 	set_task_reclaim_state(current, NULL);
6111 
6112 	kvfree(buf);
6113 
6114 	return err ? : len;
6115 }
6116 
6117 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6118 {
6119 	return seq_open(file, &lru_gen_seq_ops);
6120 }
6121 
6122 static const struct file_operations lru_gen_rw_fops = {
6123 	.open = lru_gen_seq_open,
6124 	.read = seq_read,
6125 	.write = lru_gen_seq_write,
6126 	.llseek = seq_lseek,
6127 	.release = seq_release,
6128 };
6129 
6130 static const struct file_operations lru_gen_ro_fops = {
6131 	.open = lru_gen_seq_open,
6132 	.read = seq_read,
6133 	.llseek = seq_lseek,
6134 	.release = seq_release,
6135 };
6136 
6137 /******************************************************************************
6138  *                          initialization
6139  ******************************************************************************/
6140 
6141 void lru_gen_init_lruvec(struct lruvec *lruvec)
6142 {
6143 	int i;
6144 	int gen, type, zone;
6145 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6146 
6147 	lrugen->max_seq = MIN_NR_GENS + 1;
6148 	lrugen->enabled = lru_gen_enabled();
6149 
6150 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6151 		lrugen->timestamps[i] = jiffies;
6152 
6153 	for_each_gen_type_zone(gen, type, zone)
6154 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6155 
6156 	lruvec->mm_state.seq = MIN_NR_GENS;
6157 }
6158 
6159 #ifdef CONFIG_MEMCG
6160 
6161 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6162 {
6163 	int i, j;
6164 
6165 	spin_lock_init(&pgdat->memcg_lru.lock);
6166 
6167 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6168 		for (j = 0; j < MEMCG_NR_BINS; j++)
6169 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6170 	}
6171 }
6172 
6173 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6174 {
6175 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6176 	spin_lock_init(&memcg->mm_list.lock);
6177 }
6178 
6179 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6180 {
6181 	int i;
6182 	int nid;
6183 
6184 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6185 
6186 	for_each_node(nid) {
6187 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6188 
6189 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6190 					   sizeof(lruvec->lrugen.nr_pages)));
6191 
6192 		lruvec->lrugen.list.next = LIST_POISON1;
6193 
6194 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6195 			bitmap_free(lruvec->mm_state.filters[i]);
6196 			lruvec->mm_state.filters[i] = NULL;
6197 		}
6198 	}
6199 }
6200 
6201 #endif /* CONFIG_MEMCG */
6202 
6203 static int __init init_lru_gen(void)
6204 {
6205 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6206 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6207 
6208 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6209 		pr_err("lru_gen: failed to create sysfs group\n");
6210 
6211 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6212 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6213 
6214 	return 0;
6215 };
6216 late_initcall(init_lru_gen);
6217 
6218 #else /* !CONFIG_LRU_GEN */
6219 
6220 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6221 {
6222 }
6223 
6224 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6225 {
6226 }
6227 
6228 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6229 {
6230 }
6231 
6232 #endif /* CONFIG_LRU_GEN */
6233 
6234 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6235 {
6236 	unsigned long nr[NR_LRU_LISTS];
6237 	unsigned long targets[NR_LRU_LISTS];
6238 	unsigned long nr_to_scan;
6239 	enum lru_list lru;
6240 	unsigned long nr_reclaimed = 0;
6241 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6242 	bool proportional_reclaim;
6243 	struct blk_plug plug;
6244 
6245 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6246 		lru_gen_shrink_lruvec(lruvec, sc);
6247 		return;
6248 	}
6249 
6250 	get_scan_count(lruvec, sc, nr);
6251 
6252 	/* Record the original scan target for proportional adjustments later */
6253 	memcpy(targets, nr, sizeof(nr));
6254 
6255 	/*
6256 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6257 	 * event that can occur when there is little memory pressure e.g.
6258 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6259 	 * when the requested number of pages are reclaimed when scanning at
6260 	 * DEF_PRIORITY on the assumption that the fact we are direct
6261 	 * reclaiming implies that kswapd is not keeping up and it is best to
6262 	 * do a batch of work at once. For memcg reclaim one check is made to
6263 	 * abort proportional reclaim if either the file or anon lru has already
6264 	 * dropped to zero at the first pass.
6265 	 */
6266 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6267 				sc->priority == DEF_PRIORITY);
6268 
6269 	blk_start_plug(&plug);
6270 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6271 					nr[LRU_INACTIVE_FILE]) {
6272 		unsigned long nr_anon, nr_file, percentage;
6273 		unsigned long nr_scanned;
6274 
6275 		for_each_evictable_lru(lru) {
6276 			if (nr[lru]) {
6277 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6278 				nr[lru] -= nr_to_scan;
6279 
6280 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6281 							    lruvec, sc);
6282 			}
6283 		}
6284 
6285 		cond_resched();
6286 
6287 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6288 			continue;
6289 
6290 		/*
6291 		 * For kswapd and memcg, reclaim at least the number of pages
6292 		 * requested. Ensure that the anon and file LRUs are scanned
6293 		 * proportionally what was requested by get_scan_count(). We
6294 		 * stop reclaiming one LRU and reduce the amount scanning
6295 		 * proportional to the original scan target.
6296 		 */
6297 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6298 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6299 
6300 		/*
6301 		 * It's just vindictive to attack the larger once the smaller
6302 		 * has gone to zero.  And given the way we stop scanning the
6303 		 * smaller below, this makes sure that we only make one nudge
6304 		 * towards proportionality once we've got nr_to_reclaim.
6305 		 */
6306 		if (!nr_file || !nr_anon)
6307 			break;
6308 
6309 		if (nr_file > nr_anon) {
6310 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6311 						targets[LRU_ACTIVE_ANON] + 1;
6312 			lru = LRU_BASE;
6313 			percentage = nr_anon * 100 / scan_target;
6314 		} else {
6315 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6316 						targets[LRU_ACTIVE_FILE] + 1;
6317 			lru = LRU_FILE;
6318 			percentage = nr_file * 100 / scan_target;
6319 		}
6320 
6321 		/* Stop scanning the smaller of the LRU */
6322 		nr[lru] = 0;
6323 		nr[lru + LRU_ACTIVE] = 0;
6324 
6325 		/*
6326 		 * Recalculate the other LRU scan count based on its original
6327 		 * scan target and the percentage scanning already complete
6328 		 */
6329 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6330 		nr_scanned = targets[lru] - nr[lru];
6331 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6332 		nr[lru] -= min(nr[lru], nr_scanned);
6333 
6334 		lru += LRU_ACTIVE;
6335 		nr_scanned = targets[lru] - nr[lru];
6336 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6337 		nr[lru] -= min(nr[lru], nr_scanned);
6338 	}
6339 	blk_finish_plug(&plug);
6340 	sc->nr_reclaimed += nr_reclaimed;
6341 
6342 	/*
6343 	 * Even if we did not try to evict anon pages at all, we want to
6344 	 * rebalance the anon lru active/inactive ratio.
6345 	 */
6346 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6347 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6348 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6349 				   sc, LRU_ACTIVE_ANON);
6350 }
6351 
6352 /* Use reclaim/compaction for costly allocs or under memory pressure */
6353 static bool in_reclaim_compaction(struct scan_control *sc)
6354 {
6355 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6356 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6357 			 sc->priority < DEF_PRIORITY - 2))
6358 		return true;
6359 
6360 	return false;
6361 }
6362 
6363 /*
6364  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6365  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6366  * true if more pages should be reclaimed such that when the page allocator
6367  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6368  * It will give up earlier than that if there is difficulty reclaiming pages.
6369  */
6370 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6371 					unsigned long nr_reclaimed,
6372 					struct scan_control *sc)
6373 {
6374 	unsigned long pages_for_compaction;
6375 	unsigned long inactive_lru_pages;
6376 	int z;
6377 
6378 	/* If not in reclaim/compaction mode, stop */
6379 	if (!in_reclaim_compaction(sc))
6380 		return false;
6381 
6382 	/*
6383 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6384 	 * number of pages that were scanned. This will return to the caller
6385 	 * with the risk reclaim/compaction and the resulting allocation attempt
6386 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6387 	 * allocations through requiring that the full LRU list has been scanned
6388 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6389 	 * scan, but that approximation was wrong, and there were corner cases
6390 	 * where always a non-zero amount of pages were scanned.
6391 	 */
6392 	if (!nr_reclaimed)
6393 		return false;
6394 
6395 	/* If compaction would go ahead or the allocation would succeed, stop */
6396 	for (z = 0; z <= sc->reclaim_idx; z++) {
6397 		struct zone *zone = &pgdat->node_zones[z];
6398 		if (!managed_zone(zone))
6399 			continue;
6400 
6401 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6402 		case COMPACT_SUCCESS:
6403 		case COMPACT_CONTINUE:
6404 			return false;
6405 		default:
6406 			/* check next zone */
6407 			;
6408 		}
6409 	}
6410 
6411 	/*
6412 	 * If we have not reclaimed enough pages for compaction and the
6413 	 * inactive lists are large enough, continue reclaiming
6414 	 */
6415 	pages_for_compaction = compact_gap(sc->order);
6416 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6417 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6418 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6419 
6420 	return inactive_lru_pages > pages_for_compaction;
6421 }
6422 
6423 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6424 {
6425 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6426 	struct mem_cgroup *memcg;
6427 
6428 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6429 	do {
6430 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6431 		unsigned long reclaimed;
6432 		unsigned long scanned;
6433 
6434 		/*
6435 		 * This loop can become CPU-bound when target memcgs
6436 		 * aren't eligible for reclaim - either because they
6437 		 * don't have any reclaimable pages, or because their
6438 		 * memory is explicitly protected. Avoid soft lockups.
6439 		 */
6440 		cond_resched();
6441 
6442 		mem_cgroup_calculate_protection(target_memcg, memcg);
6443 
6444 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6445 			/*
6446 			 * Hard protection.
6447 			 * If there is no reclaimable memory, OOM.
6448 			 */
6449 			continue;
6450 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6451 			/*
6452 			 * Soft protection.
6453 			 * Respect the protection only as long as
6454 			 * there is an unprotected supply
6455 			 * of reclaimable memory from other cgroups.
6456 			 */
6457 			if (!sc->memcg_low_reclaim) {
6458 				sc->memcg_low_skipped = 1;
6459 				continue;
6460 			}
6461 			memcg_memory_event(memcg, MEMCG_LOW);
6462 		}
6463 
6464 		reclaimed = sc->nr_reclaimed;
6465 		scanned = sc->nr_scanned;
6466 
6467 		shrink_lruvec(lruvec, sc);
6468 
6469 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6470 			    sc->priority);
6471 
6472 		/* Record the group's reclaim efficiency */
6473 		if (!sc->proactive)
6474 			vmpressure(sc->gfp_mask, memcg, false,
6475 				   sc->nr_scanned - scanned,
6476 				   sc->nr_reclaimed - reclaimed);
6477 
6478 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6479 }
6480 
6481 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6482 {
6483 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6484 	struct lruvec *target_lruvec;
6485 	bool reclaimable = false;
6486 
6487 	if (lru_gen_enabled() && global_reclaim(sc)) {
6488 		lru_gen_shrink_node(pgdat, sc);
6489 		return;
6490 	}
6491 
6492 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6493 
6494 again:
6495 	memset(&sc->nr, 0, sizeof(sc->nr));
6496 
6497 	nr_reclaimed = sc->nr_reclaimed;
6498 	nr_scanned = sc->nr_scanned;
6499 
6500 	prepare_scan_count(pgdat, sc);
6501 
6502 	shrink_node_memcgs(pgdat, sc);
6503 
6504 	flush_reclaim_state(sc);
6505 
6506 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6507 
6508 	/* Record the subtree's reclaim efficiency */
6509 	if (!sc->proactive)
6510 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6511 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6512 
6513 	if (nr_node_reclaimed)
6514 		reclaimable = true;
6515 
6516 	if (current_is_kswapd()) {
6517 		/*
6518 		 * If reclaim is isolating dirty pages under writeback,
6519 		 * it implies that the long-lived page allocation rate
6520 		 * is exceeding the page laundering rate. Either the
6521 		 * global limits are not being effective at throttling
6522 		 * processes due to the page distribution throughout
6523 		 * zones or there is heavy usage of a slow backing
6524 		 * device. The only option is to throttle from reclaim
6525 		 * context which is not ideal as there is no guarantee
6526 		 * the dirtying process is throttled in the same way
6527 		 * balance_dirty_pages() manages.
6528 		 *
6529 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6530 		 * count the number of pages under pages flagged for
6531 		 * immediate reclaim and stall if any are encountered
6532 		 * in the nr_immediate check below.
6533 		 */
6534 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6535 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6536 
6537 		/* Allow kswapd to start writing pages during reclaim.*/
6538 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6539 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6540 
6541 		/*
6542 		 * If kswapd scans pages marked for immediate
6543 		 * reclaim and under writeback (nr_immediate), it
6544 		 * implies that pages are cycling through the LRU
6545 		 * faster than they are written so forcibly stall
6546 		 * until some pages complete writeback.
6547 		 */
6548 		if (sc->nr.immediate)
6549 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6550 	}
6551 
6552 	/*
6553 	 * Tag a node/memcg as congested if all the dirty pages were marked
6554 	 * for writeback and immediate reclaim (counted in nr.congested).
6555 	 *
6556 	 * Legacy memcg will stall in page writeback so avoid forcibly
6557 	 * stalling in reclaim_throttle().
6558 	 */
6559 	if ((current_is_kswapd() ||
6560 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6561 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6562 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6563 
6564 	/*
6565 	 * Stall direct reclaim for IO completions if the lruvec is
6566 	 * node is congested. Allow kswapd to continue until it
6567 	 * starts encountering unqueued dirty pages or cycling through
6568 	 * the LRU too quickly.
6569 	 */
6570 	if (!current_is_kswapd() && current_may_throttle() &&
6571 	    !sc->hibernation_mode &&
6572 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6573 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6574 
6575 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6576 		goto again;
6577 
6578 	/*
6579 	 * Kswapd gives up on balancing particular nodes after too
6580 	 * many failures to reclaim anything from them and goes to
6581 	 * sleep. On reclaim progress, reset the failure counter. A
6582 	 * successful direct reclaim run will revive a dormant kswapd.
6583 	 */
6584 	if (reclaimable)
6585 		pgdat->kswapd_failures = 0;
6586 }
6587 
6588 /*
6589  * Returns true if compaction should go ahead for a costly-order request, or
6590  * the allocation would already succeed without compaction. Return false if we
6591  * should reclaim first.
6592  */
6593 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6594 {
6595 	unsigned long watermark;
6596 	enum compact_result suitable;
6597 
6598 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6599 	if (suitable == COMPACT_SUCCESS)
6600 		/* Allocation should succeed already. Don't reclaim. */
6601 		return true;
6602 	if (suitable == COMPACT_SKIPPED)
6603 		/* Compaction cannot yet proceed. Do reclaim. */
6604 		return false;
6605 
6606 	/*
6607 	 * Compaction is already possible, but it takes time to run and there
6608 	 * are potentially other callers using the pages just freed. So proceed
6609 	 * with reclaim to make a buffer of free pages available to give
6610 	 * compaction a reasonable chance of completing and allocating the page.
6611 	 * Note that we won't actually reclaim the whole buffer in one attempt
6612 	 * as the target watermark in should_continue_reclaim() is lower. But if
6613 	 * we are already above the high+gap watermark, don't reclaim at all.
6614 	 */
6615 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6616 
6617 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6618 }
6619 
6620 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6621 {
6622 	/*
6623 	 * If reclaim is making progress greater than 12% efficiency then
6624 	 * wake all the NOPROGRESS throttled tasks.
6625 	 */
6626 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6627 		wait_queue_head_t *wqh;
6628 
6629 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6630 		if (waitqueue_active(wqh))
6631 			wake_up(wqh);
6632 
6633 		return;
6634 	}
6635 
6636 	/*
6637 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6638 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6639 	 * under writeback and marked for immediate reclaim at the tail of the
6640 	 * LRU.
6641 	 */
6642 	if (current_is_kswapd() || cgroup_reclaim(sc))
6643 		return;
6644 
6645 	/* Throttle if making no progress at high prioities. */
6646 	if (sc->priority == 1 && !sc->nr_reclaimed)
6647 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6648 }
6649 
6650 /*
6651  * This is the direct reclaim path, for page-allocating processes.  We only
6652  * try to reclaim pages from zones which will satisfy the caller's allocation
6653  * request.
6654  *
6655  * If a zone is deemed to be full of pinned pages then just give it a light
6656  * scan then give up on it.
6657  */
6658 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6659 {
6660 	struct zoneref *z;
6661 	struct zone *zone;
6662 	unsigned long nr_soft_reclaimed;
6663 	unsigned long nr_soft_scanned;
6664 	gfp_t orig_mask;
6665 	pg_data_t *last_pgdat = NULL;
6666 	pg_data_t *first_pgdat = NULL;
6667 
6668 	/*
6669 	 * If the number of buffer_heads in the machine exceeds the maximum
6670 	 * allowed level, force direct reclaim to scan the highmem zone as
6671 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6672 	 */
6673 	orig_mask = sc->gfp_mask;
6674 	if (buffer_heads_over_limit) {
6675 		sc->gfp_mask |= __GFP_HIGHMEM;
6676 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6677 	}
6678 
6679 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6680 					sc->reclaim_idx, sc->nodemask) {
6681 		/*
6682 		 * Take care memory controller reclaiming has small influence
6683 		 * to global LRU.
6684 		 */
6685 		if (!cgroup_reclaim(sc)) {
6686 			if (!cpuset_zone_allowed(zone,
6687 						 GFP_KERNEL | __GFP_HARDWALL))
6688 				continue;
6689 
6690 			/*
6691 			 * If we already have plenty of memory free for
6692 			 * compaction in this zone, don't free any more.
6693 			 * Even though compaction is invoked for any
6694 			 * non-zero order, only frequent costly order
6695 			 * reclamation is disruptive enough to become a
6696 			 * noticeable problem, like transparent huge
6697 			 * page allocations.
6698 			 */
6699 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6700 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6701 			    compaction_ready(zone, sc)) {
6702 				sc->compaction_ready = true;
6703 				continue;
6704 			}
6705 
6706 			/*
6707 			 * Shrink each node in the zonelist once. If the
6708 			 * zonelist is ordered by zone (not the default) then a
6709 			 * node may be shrunk multiple times but in that case
6710 			 * the user prefers lower zones being preserved.
6711 			 */
6712 			if (zone->zone_pgdat == last_pgdat)
6713 				continue;
6714 
6715 			/*
6716 			 * This steals pages from memory cgroups over softlimit
6717 			 * and returns the number of reclaimed pages and
6718 			 * scanned pages. This works for global memory pressure
6719 			 * and balancing, not for a memcg's limit.
6720 			 */
6721 			nr_soft_scanned = 0;
6722 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6723 						sc->order, sc->gfp_mask,
6724 						&nr_soft_scanned);
6725 			sc->nr_reclaimed += nr_soft_reclaimed;
6726 			sc->nr_scanned += nr_soft_scanned;
6727 			/* need some check for avoid more shrink_zone() */
6728 		}
6729 
6730 		if (!first_pgdat)
6731 			first_pgdat = zone->zone_pgdat;
6732 
6733 		/* See comment about same check for global reclaim above */
6734 		if (zone->zone_pgdat == last_pgdat)
6735 			continue;
6736 		last_pgdat = zone->zone_pgdat;
6737 		shrink_node(zone->zone_pgdat, sc);
6738 	}
6739 
6740 	if (first_pgdat)
6741 		consider_reclaim_throttle(first_pgdat, sc);
6742 
6743 	/*
6744 	 * Restore to original mask to avoid the impact on the caller if we
6745 	 * promoted it to __GFP_HIGHMEM.
6746 	 */
6747 	sc->gfp_mask = orig_mask;
6748 }
6749 
6750 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6751 {
6752 	struct lruvec *target_lruvec;
6753 	unsigned long refaults;
6754 
6755 	if (lru_gen_enabled())
6756 		return;
6757 
6758 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6759 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6760 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6761 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6762 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6763 }
6764 
6765 /*
6766  * This is the main entry point to direct page reclaim.
6767  *
6768  * If a full scan of the inactive list fails to free enough memory then we
6769  * are "out of memory" and something needs to be killed.
6770  *
6771  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6772  * high - the zone may be full of dirty or under-writeback pages, which this
6773  * caller can't do much about.  We kick the writeback threads and take explicit
6774  * naps in the hope that some of these pages can be written.  But if the
6775  * allocating task holds filesystem locks which prevent writeout this might not
6776  * work, and the allocation attempt will fail.
6777  *
6778  * returns:	0, if no pages reclaimed
6779  * 		else, the number of pages reclaimed
6780  */
6781 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6782 					  struct scan_control *sc)
6783 {
6784 	int initial_priority = sc->priority;
6785 	pg_data_t *last_pgdat;
6786 	struct zoneref *z;
6787 	struct zone *zone;
6788 retry:
6789 	delayacct_freepages_start();
6790 
6791 	if (!cgroup_reclaim(sc))
6792 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6793 
6794 	do {
6795 		if (!sc->proactive)
6796 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6797 					sc->priority);
6798 		sc->nr_scanned = 0;
6799 		shrink_zones(zonelist, sc);
6800 
6801 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6802 			break;
6803 
6804 		if (sc->compaction_ready)
6805 			break;
6806 
6807 		/*
6808 		 * If we're getting trouble reclaiming, start doing
6809 		 * writepage even in laptop mode.
6810 		 */
6811 		if (sc->priority < DEF_PRIORITY - 2)
6812 			sc->may_writepage = 1;
6813 	} while (--sc->priority >= 0);
6814 
6815 	last_pgdat = NULL;
6816 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6817 					sc->nodemask) {
6818 		if (zone->zone_pgdat == last_pgdat)
6819 			continue;
6820 		last_pgdat = zone->zone_pgdat;
6821 
6822 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6823 
6824 		if (cgroup_reclaim(sc)) {
6825 			struct lruvec *lruvec;
6826 
6827 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6828 						   zone->zone_pgdat);
6829 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6830 		}
6831 	}
6832 
6833 	delayacct_freepages_end();
6834 
6835 	if (sc->nr_reclaimed)
6836 		return sc->nr_reclaimed;
6837 
6838 	/* Aborted reclaim to try compaction? don't OOM, then */
6839 	if (sc->compaction_ready)
6840 		return 1;
6841 
6842 	/*
6843 	 * We make inactive:active ratio decisions based on the node's
6844 	 * composition of memory, but a restrictive reclaim_idx or a
6845 	 * memory.low cgroup setting can exempt large amounts of
6846 	 * memory from reclaim. Neither of which are very common, so
6847 	 * instead of doing costly eligibility calculations of the
6848 	 * entire cgroup subtree up front, we assume the estimates are
6849 	 * good, and retry with forcible deactivation if that fails.
6850 	 */
6851 	if (sc->skipped_deactivate) {
6852 		sc->priority = initial_priority;
6853 		sc->force_deactivate = 1;
6854 		sc->skipped_deactivate = 0;
6855 		goto retry;
6856 	}
6857 
6858 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6859 	if (sc->memcg_low_skipped) {
6860 		sc->priority = initial_priority;
6861 		sc->force_deactivate = 0;
6862 		sc->memcg_low_reclaim = 1;
6863 		sc->memcg_low_skipped = 0;
6864 		goto retry;
6865 	}
6866 
6867 	return 0;
6868 }
6869 
6870 static bool allow_direct_reclaim(pg_data_t *pgdat)
6871 {
6872 	struct zone *zone;
6873 	unsigned long pfmemalloc_reserve = 0;
6874 	unsigned long free_pages = 0;
6875 	int i;
6876 	bool wmark_ok;
6877 
6878 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6879 		return true;
6880 
6881 	for (i = 0; i <= ZONE_NORMAL; i++) {
6882 		zone = &pgdat->node_zones[i];
6883 		if (!managed_zone(zone))
6884 			continue;
6885 
6886 		if (!zone_reclaimable_pages(zone))
6887 			continue;
6888 
6889 		pfmemalloc_reserve += min_wmark_pages(zone);
6890 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6891 	}
6892 
6893 	/* If there are no reserves (unexpected config) then do not throttle */
6894 	if (!pfmemalloc_reserve)
6895 		return true;
6896 
6897 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6898 
6899 	/* kswapd must be awake if processes are being throttled */
6900 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6901 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6902 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6903 
6904 		wake_up_interruptible(&pgdat->kswapd_wait);
6905 	}
6906 
6907 	return wmark_ok;
6908 }
6909 
6910 /*
6911  * Throttle direct reclaimers if backing storage is backed by the network
6912  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6913  * depleted. kswapd will continue to make progress and wake the processes
6914  * when the low watermark is reached.
6915  *
6916  * Returns true if a fatal signal was delivered during throttling. If this
6917  * happens, the page allocator should not consider triggering the OOM killer.
6918  */
6919 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6920 					nodemask_t *nodemask)
6921 {
6922 	struct zoneref *z;
6923 	struct zone *zone;
6924 	pg_data_t *pgdat = NULL;
6925 
6926 	/*
6927 	 * Kernel threads should not be throttled as they may be indirectly
6928 	 * responsible for cleaning pages necessary for reclaim to make forward
6929 	 * progress. kjournald for example may enter direct reclaim while
6930 	 * committing a transaction where throttling it could forcing other
6931 	 * processes to block on log_wait_commit().
6932 	 */
6933 	if (current->flags & PF_KTHREAD)
6934 		goto out;
6935 
6936 	/*
6937 	 * If a fatal signal is pending, this process should not throttle.
6938 	 * It should return quickly so it can exit and free its memory
6939 	 */
6940 	if (fatal_signal_pending(current))
6941 		goto out;
6942 
6943 	/*
6944 	 * Check if the pfmemalloc reserves are ok by finding the first node
6945 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6946 	 * GFP_KERNEL will be required for allocating network buffers when
6947 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6948 	 *
6949 	 * Throttling is based on the first usable node and throttled processes
6950 	 * wait on a queue until kswapd makes progress and wakes them. There
6951 	 * is an affinity then between processes waking up and where reclaim
6952 	 * progress has been made assuming the process wakes on the same node.
6953 	 * More importantly, processes running on remote nodes will not compete
6954 	 * for remote pfmemalloc reserves and processes on different nodes
6955 	 * should make reasonable progress.
6956 	 */
6957 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6958 					gfp_zone(gfp_mask), nodemask) {
6959 		if (zone_idx(zone) > ZONE_NORMAL)
6960 			continue;
6961 
6962 		/* Throttle based on the first usable node */
6963 		pgdat = zone->zone_pgdat;
6964 		if (allow_direct_reclaim(pgdat))
6965 			goto out;
6966 		break;
6967 	}
6968 
6969 	/* If no zone was usable by the allocation flags then do not throttle */
6970 	if (!pgdat)
6971 		goto out;
6972 
6973 	/* Account for the throttling */
6974 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6975 
6976 	/*
6977 	 * If the caller cannot enter the filesystem, it's possible that it
6978 	 * is due to the caller holding an FS lock or performing a journal
6979 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6980 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6981 	 * blocked waiting on the same lock. Instead, throttle for up to a
6982 	 * second before continuing.
6983 	 */
6984 	if (!(gfp_mask & __GFP_FS))
6985 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6986 			allow_direct_reclaim(pgdat), HZ);
6987 	else
6988 		/* Throttle until kswapd wakes the process */
6989 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6990 			allow_direct_reclaim(pgdat));
6991 
6992 	if (fatal_signal_pending(current))
6993 		return true;
6994 
6995 out:
6996 	return false;
6997 }
6998 
6999 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7000 				gfp_t gfp_mask, nodemask_t *nodemask)
7001 {
7002 	unsigned long nr_reclaimed;
7003 	struct scan_control sc = {
7004 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7005 		.gfp_mask = current_gfp_context(gfp_mask),
7006 		.reclaim_idx = gfp_zone(gfp_mask),
7007 		.order = order,
7008 		.nodemask = nodemask,
7009 		.priority = DEF_PRIORITY,
7010 		.may_writepage = !laptop_mode,
7011 		.may_unmap = 1,
7012 		.may_swap = 1,
7013 	};
7014 
7015 	/*
7016 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7017 	 * Confirm they are large enough for max values.
7018 	 */
7019 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7020 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7021 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7022 
7023 	/*
7024 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7025 	 * 1 is returned so that the page allocator does not OOM kill at this
7026 	 * point.
7027 	 */
7028 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7029 		return 1;
7030 
7031 	set_task_reclaim_state(current, &sc.reclaim_state);
7032 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7033 
7034 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7035 
7036 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7037 	set_task_reclaim_state(current, NULL);
7038 
7039 	return nr_reclaimed;
7040 }
7041 
7042 #ifdef CONFIG_MEMCG
7043 
7044 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7045 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7046 						gfp_t gfp_mask, bool noswap,
7047 						pg_data_t *pgdat,
7048 						unsigned long *nr_scanned)
7049 {
7050 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7051 	struct scan_control sc = {
7052 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7053 		.target_mem_cgroup = memcg,
7054 		.may_writepage = !laptop_mode,
7055 		.may_unmap = 1,
7056 		.reclaim_idx = MAX_NR_ZONES - 1,
7057 		.may_swap = !noswap,
7058 	};
7059 
7060 	WARN_ON_ONCE(!current->reclaim_state);
7061 
7062 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7063 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7064 
7065 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7066 						      sc.gfp_mask);
7067 
7068 	/*
7069 	 * NOTE: Although we can get the priority field, using it
7070 	 * here is not a good idea, since it limits the pages we can scan.
7071 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7072 	 * will pick up pages from other mem cgroup's as well. We hack
7073 	 * the priority and make it zero.
7074 	 */
7075 	shrink_lruvec(lruvec, &sc);
7076 
7077 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7078 
7079 	*nr_scanned = sc.nr_scanned;
7080 
7081 	return sc.nr_reclaimed;
7082 }
7083 
7084 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7085 					   unsigned long nr_pages,
7086 					   gfp_t gfp_mask,
7087 					   unsigned int reclaim_options)
7088 {
7089 	unsigned long nr_reclaimed;
7090 	unsigned int noreclaim_flag;
7091 	struct scan_control sc = {
7092 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7093 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7094 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7095 		.reclaim_idx = MAX_NR_ZONES - 1,
7096 		.target_mem_cgroup = memcg,
7097 		.priority = DEF_PRIORITY,
7098 		.may_writepage = !laptop_mode,
7099 		.may_unmap = 1,
7100 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7101 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7102 	};
7103 	/*
7104 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7105 	 * equal pressure on all the nodes. This is based on the assumption that
7106 	 * the reclaim does not bail out early.
7107 	 */
7108 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7109 
7110 	set_task_reclaim_state(current, &sc.reclaim_state);
7111 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7112 	noreclaim_flag = memalloc_noreclaim_save();
7113 
7114 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7115 
7116 	memalloc_noreclaim_restore(noreclaim_flag);
7117 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7118 	set_task_reclaim_state(current, NULL);
7119 
7120 	return nr_reclaimed;
7121 }
7122 #endif
7123 
7124 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7125 {
7126 	struct mem_cgroup *memcg;
7127 	struct lruvec *lruvec;
7128 
7129 	if (lru_gen_enabled()) {
7130 		lru_gen_age_node(pgdat, sc);
7131 		return;
7132 	}
7133 
7134 	if (!can_age_anon_pages(pgdat, sc))
7135 		return;
7136 
7137 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7138 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7139 		return;
7140 
7141 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7142 	do {
7143 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7144 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7145 				   sc, LRU_ACTIVE_ANON);
7146 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7147 	} while (memcg);
7148 }
7149 
7150 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7151 {
7152 	int i;
7153 	struct zone *zone;
7154 
7155 	/*
7156 	 * Check for watermark boosts top-down as the higher zones
7157 	 * are more likely to be boosted. Both watermarks and boosts
7158 	 * should not be checked at the same time as reclaim would
7159 	 * start prematurely when there is no boosting and a lower
7160 	 * zone is balanced.
7161 	 */
7162 	for (i = highest_zoneidx; i >= 0; i--) {
7163 		zone = pgdat->node_zones + i;
7164 		if (!managed_zone(zone))
7165 			continue;
7166 
7167 		if (zone->watermark_boost)
7168 			return true;
7169 	}
7170 
7171 	return false;
7172 }
7173 
7174 /*
7175  * Returns true if there is an eligible zone balanced for the request order
7176  * and highest_zoneidx
7177  */
7178 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7179 {
7180 	int i;
7181 	unsigned long mark = -1;
7182 	struct zone *zone;
7183 
7184 	/*
7185 	 * Check watermarks bottom-up as lower zones are more likely to
7186 	 * meet watermarks.
7187 	 */
7188 	for (i = 0; i <= highest_zoneidx; i++) {
7189 		zone = pgdat->node_zones + i;
7190 
7191 		if (!managed_zone(zone))
7192 			continue;
7193 
7194 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7195 			mark = wmark_pages(zone, WMARK_PROMO);
7196 		else
7197 			mark = high_wmark_pages(zone);
7198 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7199 			return true;
7200 	}
7201 
7202 	/*
7203 	 * If a node has no managed zone within highest_zoneidx, it does not
7204 	 * need balancing by definition. This can happen if a zone-restricted
7205 	 * allocation tries to wake a remote kswapd.
7206 	 */
7207 	if (mark == -1)
7208 		return true;
7209 
7210 	return false;
7211 }
7212 
7213 /* Clear pgdat state for congested, dirty or under writeback. */
7214 static void clear_pgdat_congested(pg_data_t *pgdat)
7215 {
7216 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7217 
7218 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7219 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7220 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7221 }
7222 
7223 /*
7224  * Prepare kswapd for sleeping. This verifies that there are no processes
7225  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7226  *
7227  * Returns true if kswapd is ready to sleep
7228  */
7229 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7230 				int highest_zoneidx)
7231 {
7232 	/*
7233 	 * The throttled processes are normally woken up in balance_pgdat() as
7234 	 * soon as allow_direct_reclaim() is true. But there is a potential
7235 	 * race between when kswapd checks the watermarks and a process gets
7236 	 * throttled. There is also a potential race if processes get
7237 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7238 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7239 	 * the wake up checks. If kswapd is going to sleep, no process should
7240 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7241 	 * the wake up is premature, processes will wake kswapd and get
7242 	 * throttled again. The difference from wake ups in balance_pgdat() is
7243 	 * that here we are under prepare_to_wait().
7244 	 */
7245 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7246 		wake_up_all(&pgdat->pfmemalloc_wait);
7247 
7248 	/* Hopeless node, leave it to direct reclaim */
7249 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7250 		return true;
7251 
7252 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7253 		clear_pgdat_congested(pgdat);
7254 		return true;
7255 	}
7256 
7257 	return false;
7258 }
7259 
7260 /*
7261  * kswapd shrinks a node of pages that are at or below the highest usable
7262  * zone that is currently unbalanced.
7263  *
7264  * Returns true if kswapd scanned at least the requested number of pages to
7265  * reclaim or if the lack of progress was due to pages under writeback.
7266  * This is used to determine if the scanning priority needs to be raised.
7267  */
7268 static bool kswapd_shrink_node(pg_data_t *pgdat,
7269 			       struct scan_control *sc)
7270 {
7271 	struct zone *zone;
7272 	int z;
7273 
7274 	/* Reclaim a number of pages proportional to the number of zones */
7275 	sc->nr_to_reclaim = 0;
7276 	for (z = 0; z <= sc->reclaim_idx; z++) {
7277 		zone = pgdat->node_zones + z;
7278 		if (!managed_zone(zone))
7279 			continue;
7280 
7281 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7282 	}
7283 
7284 	/*
7285 	 * Historically care was taken to put equal pressure on all zones but
7286 	 * now pressure is applied based on node LRU order.
7287 	 */
7288 	shrink_node(pgdat, sc);
7289 
7290 	/*
7291 	 * Fragmentation may mean that the system cannot be rebalanced for
7292 	 * high-order allocations. If twice the allocation size has been
7293 	 * reclaimed then recheck watermarks only at order-0 to prevent
7294 	 * excessive reclaim. Assume that a process requested a high-order
7295 	 * can direct reclaim/compact.
7296 	 */
7297 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7298 		sc->order = 0;
7299 
7300 	return sc->nr_scanned >= sc->nr_to_reclaim;
7301 }
7302 
7303 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7304 static inline void
7305 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7306 {
7307 	int i;
7308 	struct zone *zone;
7309 
7310 	for (i = 0; i <= highest_zoneidx; i++) {
7311 		zone = pgdat->node_zones + i;
7312 
7313 		if (!managed_zone(zone))
7314 			continue;
7315 
7316 		if (active)
7317 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7318 		else
7319 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7320 	}
7321 }
7322 
7323 static inline void
7324 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7325 {
7326 	update_reclaim_active(pgdat, highest_zoneidx, true);
7327 }
7328 
7329 static inline void
7330 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7331 {
7332 	update_reclaim_active(pgdat, highest_zoneidx, false);
7333 }
7334 
7335 /*
7336  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7337  * that are eligible for use by the caller until at least one zone is
7338  * balanced.
7339  *
7340  * Returns the order kswapd finished reclaiming at.
7341  *
7342  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7343  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7344  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7345  * or lower is eligible for reclaim until at least one usable zone is
7346  * balanced.
7347  */
7348 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7349 {
7350 	int i;
7351 	unsigned long nr_soft_reclaimed;
7352 	unsigned long nr_soft_scanned;
7353 	unsigned long pflags;
7354 	unsigned long nr_boost_reclaim;
7355 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7356 	bool boosted;
7357 	struct zone *zone;
7358 	struct scan_control sc = {
7359 		.gfp_mask = GFP_KERNEL,
7360 		.order = order,
7361 		.may_unmap = 1,
7362 	};
7363 
7364 	set_task_reclaim_state(current, &sc.reclaim_state);
7365 	psi_memstall_enter(&pflags);
7366 	__fs_reclaim_acquire(_THIS_IP_);
7367 
7368 	count_vm_event(PAGEOUTRUN);
7369 
7370 	/*
7371 	 * Account for the reclaim boost. Note that the zone boost is left in
7372 	 * place so that parallel allocations that are near the watermark will
7373 	 * stall or direct reclaim until kswapd is finished.
7374 	 */
7375 	nr_boost_reclaim = 0;
7376 	for (i = 0; i <= highest_zoneidx; i++) {
7377 		zone = pgdat->node_zones + i;
7378 		if (!managed_zone(zone))
7379 			continue;
7380 
7381 		nr_boost_reclaim += zone->watermark_boost;
7382 		zone_boosts[i] = zone->watermark_boost;
7383 	}
7384 	boosted = nr_boost_reclaim;
7385 
7386 restart:
7387 	set_reclaim_active(pgdat, highest_zoneidx);
7388 	sc.priority = DEF_PRIORITY;
7389 	do {
7390 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7391 		bool raise_priority = true;
7392 		bool balanced;
7393 		bool ret;
7394 
7395 		sc.reclaim_idx = highest_zoneidx;
7396 
7397 		/*
7398 		 * If the number of buffer_heads exceeds the maximum allowed
7399 		 * then consider reclaiming from all zones. This has a dual
7400 		 * purpose -- on 64-bit systems it is expected that
7401 		 * buffer_heads are stripped during active rotation. On 32-bit
7402 		 * systems, highmem pages can pin lowmem memory and shrinking
7403 		 * buffers can relieve lowmem pressure. Reclaim may still not
7404 		 * go ahead if all eligible zones for the original allocation
7405 		 * request are balanced to avoid excessive reclaim from kswapd.
7406 		 */
7407 		if (buffer_heads_over_limit) {
7408 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7409 				zone = pgdat->node_zones + i;
7410 				if (!managed_zone(zone))
7411 					continue;
7412 
7413 				sc.reclaim_idx = i;
7414 				break;
7415 			}
7416 		}
7417 
7418 		/*
7419 		 * If the pgdat is imbalanced then ignore boosting and preserve
7420 		 * the watermarks for a later time and restart. Note that the
7421 		 * zone watermarks will be still reset at the end of balancing
7422 		 * on the grounds that the normal reclaim should be enough to
7423 		 * re-evaluate if boosting is required when kswapd next wakes.
7424 		 */
7425 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7426 		if (!balanced && nr_boost_reclaim) {
7427 			nr_boost_reclaim = 0;
7428 			goto restart;
7429 		}
7430 
7431 		/*
7432 		 * If boosting is not active then only reclaim if there are no
7433 		 * eligible zones. Note that sc.reclaim_idx is not used as
7434 		 * buffer_heads_over_limit may have adjusted it.
7435 		 */
7436 		if (!nr_boost_reclaim && balanced)
7437 			goto out;
7438 
7439 		/* Limit the priority of boosting to avoid reclaim writeback */
7440 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7441 			raise_priority = false;
7442 
7443 		/*
7444 		 * Do not writeback or swap pages for boosted reclaim. The
7445 		 * intent is to relieve pressure not issue sub-optimal IO
7446 		 * from reclaim context. If no pages are reclaimed, the
7447 		 * reclaim will be aborted.
7448 		 */
7449 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7450 		sc.may_swap = !nr_boost_reclaim;
7451 
7452 		/*
7453 		 * Do some background aging, to give pages a chance to be
7454 		 * referenced before reclaiming. All pages are rotated
7455 		 * regardless of classzone as this is about consistent aging.
7456 		 */
7457 		kswapd_age_node(pgdat, &sc);
7458 
7459 		/*
7460 		 * If we're getting trouble reclaiming, start doing writepage
7461 		 * even in laptop mode.
7462 		 */
7463 		if (sc.priority < DEF_PRIORITY - 2)
7464 			sc.may_writepage = 1;
7465 
7466 		/* Call soft limit reclaim before calling shrink_node. */
7467 		sc.nr_scanned = 0;
7468 		nr_soft_scanned = 0;
7469 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7470 						sc.gfp_mask, &nr_soft_scanned);
7471 		sc.nr_reclaimed += nr_soft_reclaimed;
7472 
7473 		/*
7474 		 * There should be no need to raise the scanning priority if
7475 		 * enough pages are already being scanned that that high
7476 		 * watermark would be met at 100% efficiency.
7477 		 */
7478 		if (kswapd_shrink_node(pgdat, &sc))
7479 			raise_priority = false;
7480 
7481 		/*
7482 		 * If the low watermark is met there is no need for processes
7483 		 * to be throttled on pfmemalloc_wait as they should not be
7484 		 * able to safely make forward progress. Wake them
7485 		 */
7486 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7487 				allow_direct_reclaim(pgdat))
7488 			wake_up_all(&pgdat->pfmemalloc_wait);
7489 
7490 		/* Check if kswapd should be suspending */
7491 		__fs_reclaim_release(_THIS_IP_);
7492 		ret = try_to_freeze();
7493 		__fs_reclaim_acquire(_THIS_IP_);
7494 		if (ret || kthread_should_stop())
7495 			break;
7496 
7497 		/*
7498 		 * Raise priority if scanning rate is too low or there was no
7499 		 * progress in reclaiming pages
7500 		 */
7501 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7502 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7503 
7504 		/*
7505 		 * If reclaim made no progress for a boost, stop reclaim as
7506 		 * IO cannot be queued and it could be an infinite loop in
7507 		 * extreme circumstances.
7508 		 */
7509 		if (nr_boost_reclaim && !nr_reclaimed)
7510 			break;
7511 
7512 		if (raise_priority || !nr_reclaimed)
7513 			sc.priority--;
7514 	} while (sc.priority >= 1);
7515 
7516 	if (!sc.nr_reclaimed)
7517 		pgdat->kswapd_failures++;
7518 
7519 out:
7520 	clear_reclaim_active(pgdat, highest_zoneidx);
7521 
7522 	/* If reclaim was boosted, account for the reclaim done in this pass */
7523 	if (boosted) {
7524 		unsigned long flags;
7525 
7526 		for (i = 0; i <= highest_zoneidx; i++) {
7527 			if (!zone_boosts[i])
7528 				continue;
7529 
7530 			/* Increments are under the zone lock */
7531 			zone = pgdat->node_zones + i;
7532 			spin_lock_irqsave(&zone->lock, flags);
7533 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7534 			spin_unlock_irqrestore(&zone->lock, flags);
7535 		}
7536 
7537 		/*
7538 		 * As there is now likely space, wakeup kcompact to defragment
7539 		 * pageblocks.
7540 		 */
7541 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7542 	}
7543 
7544 	snapshot_refaults(NULL, pgdat);
7545 	__fs_reclaim_release(_THIS_IP_);
7546 	psi_memstall_leave(&pflags);
7547 	set_task_reclaim_state(current, NULL);
7548 
7549 	/*
7550 	 * Return the order kswapd stopped reclaiming at as
7551 	 * prepare_kswapd_sleep() takes it into account. If another caller
7552 	 * entered the allocator slow path while kswapd was awake, order will
7553 	 * remain at the higher level.
7554 	 */
7555 	return sc.order;
7556 }
7557 
7558 /*
7559  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7560  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7561  * not a valid index then either kswapd runs for first time or kswapd couldn't
7562  * sleep after previous reclaim attempt (node is still unbalanced). In that
7563  * case return the zone index of the previous kswapd reclaim cycle.
7564  */
7565 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7566 					   enum zone_type prev_highest_zoneidx)
7567 {
7568 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7569 
7570 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7571 }
7572 
7573 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7574 				unsigned int highest_zoneidx)
7575 {
7576 	long remaining = 0;
7577 	DEFINE_WAIT(wait);
7578 
7579 	if (freezing(current) || kthread_should_stop())
7580 		return;
7581 
7582 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7583 
7584 	/*
7585 	 * Try to sleep for a short interval. Note that kcompactd will only be
7586 	 * woken if it is possible to sleep for a short interval. This is
7587 	 * deliberate on the assumption that if reclaim cannot keep an
7588 	 * eligible zone balanced that it's also unlikely that compaction will
7589 	 * succeed.
7590 	 */
7591 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7592 		/*
7593 		 * Compaction records what page blocks it recently failed to
7594 		 * isolate pages from and skips them in the future scanning.
7595 		 * When kswapd is going to sleep, it is reasonable to assume
7596 		 * that pages and compaction may succeed so reset the cache.
7597 		 */
7598 		reset_isolation_suitable(pgdat);
7599 
7600 		/*
7601 		 * We have freed the memory, now we should compact it to make
7602 		 * allocation of the requested order possible.
7603 		 */
7604 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7605 
7606 		remaining = schedule_timeout(HZ/10);
7607 
7608 		/*
7609 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7610 		 * order. The values will either be from a wakeup request or
7611 		 * the previous request that slept prematurely.
7612 		 */
7613 		if (remaining) {
7614 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7615 					kswapd_highest_zoneidx(pgdat,
7616 							highest_zoneidx));
7617 
7618 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7619 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7620 		}
7621 
7622 		finish_wait(&pgdat->kswapd_wait, &wait);
7623 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7624 	}
7625 
7626 	/*
7627 	 * After a short sleep, check if it was a premature sleep. If not, then
7628 	 * go fully to sleep until explicitly woken up.
7629 	 */
7630 	if (!remaining &&
7631 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7632 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7633 
7634 		/*
7635 		 * vmstat counters are not perfectly accurate and the estimated
7636 		 * value for counters such as NR_FREE_PAGES can deviate from the
7637 		 * true value by nr_online_cpus * threshold. To avoid the zone
7638 		 * watermarks being breached while under pressure, we reduce the
7639 		 * per-cpu vmstat threshold while kswapd is awake and restore
7640 		 * them before going back to sleep.
7641 		 */
7642 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7643 
7644 		if (!kthread_should_stop())
7645 			schedule();
7646 
7647 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7648 	} else {
7649 		if (remaining)
7650 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7651 		else
7652 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7653 	}
7654 	finish_wait(&pgdat->kswapd_wait, &wait);
7655 }
7656 
7657 /*
7658  * The background pageout daemon, started as a kernel thread
7659  * from the init process.
7660  *
7661  * This basically trickles out pages so that we have _some_
7662  * free memory available even if there is no other activity
7663  * that frees anything up. This is needed for things like routing
7664  * etc, where we otherwise might have all activity going on in
7665  * asynchronous contexts that cannot page things out.
7666  *
7667  * If there are applications that are active memory-allocators
7668  * (most normal use), this basically shouldn't matter.
7669  */
7670 static int kswapd(void *p)
7671 {
7672 	unsigned int alloc_order, reclaim_order;
7673 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7674 	pg_data_t *pgdat = (pg_data_t *)p;
7675 	struct task_struct *tsk = current;
7676 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7677 
7678 	if (!cpumask_empty(cpumask))
7679 		set_cpus_allowed_ptr(tsk, cpumask);
7680 
7681 	/*
7682 	 * Tell the memory management that we're a "memory allocator",
7683 	 * and that if we need more memory we should get access to it
7684 	 * regardless (see "__alloc_pages()"). "kswapd" should
7685 	 * never get caught in the normal page freeing logic.
7686 	 *
7687 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7688 	 * you need a small amount of memory in order to be able to
7689 	 * page out something else, and this flag essentially protects
7690 	 * us from recursively trying to free more memory as we're
7691 	 * trying to free the first piece of memory in the first place).
7692 	 */
7693 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7694 	set_freezable();
7695 
7696 	WRITE_ONCE(pgdat->kswapd_order, 0);
7697 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7698 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7699 	for ( ; ; ) {
7700 		bool ret;
7701 
7702 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7703 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7704 							highest_zoneidx);
7705 
7706 kswapd_try_sleep:
7707 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7708 					highest_zoneidx);
7709 
7710 		/* Read the new order and highest_zoneidx */
7711 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7712 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7713 							highest_zoneidx);
7714 		WRITE_ONCE(pgdat->kswapd_order, 0);
7715 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7716 
7717 		ret = try_to_freeze();
7718 		if (kthread_should_stop())
7719 			break;
7720 
7721 		/*
7722 		 * We can speed up thawing tasks if we don't call balance_pgdat
7723 		 * after returning from the refrigerator
7724 		 */
7725 		if (ret)
7726 			continue;
7727 
7728 		/*
7729 		 * Reclaim begins at the requested order but if a high-order
7730 		 * reclaim fails then kswapd falls back to reclaiming for
7731 		 * order-0. If that happens, kswapd will consider sleeping
7732 		 * for the order it finished reclaiming at (reclaim_order)
7733 		 * but kcompactd is woken to compact for the original
7734 		 * request (alloc_order).
7735 		 */
7736 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7737 						alloc_order);
7738 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7739 						highest_zoneidx);
7740 		if (reclaim_order < alloc_order)
7741 			goto kswapd_try_sleep;
7742 	}
7743 
7744 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7745 
7746 	return 0;
7747 }
7748 
7749 /*
7750  * A zone is low on free memory or too fragmented for high-order memory.  If
7751  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7752  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7753  * has failed or is not needed, still wake up kcompactd if only compaction is
7754  * needed.
7755  */
7756 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7757 		   enum zone_type highest_zoneidx)
7758 {
7759 	pg_data_t *pgdat;
7760 	enum zone_type curr_idx;
7761 
7762 	if (!managed_zone(zone))
7763 		return;
7764 
7765 	if (!cpuset_zone_allowed(zone, gfp_flags))
7766 		return;
7767 
7768 	pgdat = zone->zone_pgdat;
7769 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7770 
7771 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7772 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7773 
7774 	if (READ_ONCE(pgdat->kswapd_order) < order)
7775 		WRITE_ONCE(pgdat->kswapd_order, order);
7776 
7777 	if (!waitqueue_active(&pgdat->kswapd_wait))
7778 		return;
7779 
7780 	/* Hopeless node, leave it to direct reclaim if possible */
7781 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7782 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7783 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7784 		/*
7785 		 * There may be plenty of free memory available, but it's too
7786 		 * fragmented for high-order allocations.  Wake up kcompactd
7787 		 * and rely on compaction_suitable() to determine if it's
7788 		 * needed.  If it fails, it will defer subsequent attempts to
7789 		 * ratelimit its work.
7790 		 */
7791 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7792 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7793 		return;
7794 	}
7795 
7796 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7797 				      gfp_flags);
7798 	wake_up_interruptible(&pgdat->kswapd_wait);
7799 }
7800 
7801 #ifdef CONFIG_HIBERNATION
7802 /*
7803  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7804  * freed pages.
7805  *
7806  * Rather than trying to age LRUs the aim is to preserve the overall
7807  * LRU order by reclaiming preferentially
7808  * inactive > active > active referenced > active mapped
7809  */
7810 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7811 {
7812 	struct scan_control sc = {
7813 		.nr_to_reclaim = nr_to_reclaim,
7814 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7815 		.reclaim_idx = MAX_NR_ZONES - 1,
7816 		.priority = DEF_PRIORITY,
7817 		.may_writepage = 1,
7818 		.may_unmap = 1,
7819 		.may_swap = 1,
7820 		.hibernation_mode = 1,
7821 	};
7822 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7823 	unsigned long nr_reclaimed;
7824 	unsigned int noreclaim_flag;
7825 
7826 	fs_reclaim_acquire(sc.gfp_mask);
7827 	noreclaim_flag = memalloc_noreclaim_save();
7828 	set_task_reclaim_state(current, &sc.reclaim_state);
7829 
7830 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7831 
7832 	set_task_reclaim_state(current, NULL);
7833 	memalloc_noreclaim_restore(noreclaim_flag);
7834 	fs_reclaim_release(sc.gfp_mask);
7835 
7836 	return nr_reclaimed;
7837 }
7838 #endif /* CONFIG_HIBERNATION */
7839 
7840 /*
7841  * This kswapd start function will be called by init and node-hot-add.
7842  */
7843 void kswapd_run(int nid)
7844 {
7845 	pg_data_t *pgdat = NODE_DATA(nid);
7846 
7847 	pgdat_kswapd_lock(pgdat);
7848 	if (!pgdat->kswapd) {
7849 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7850 		if (IS_ERR(pgdat->kswapd)) {
7851 			/* failure at boot is fatal */
7852 			BUG_ON(system_state < SYSTEM_RUNNING);
7853 			pr_err("Failed to start kswapd on node %d\n", nid);
7854 			pgdat->kswapd = NULL;
7855 		}
7856 	}
7857 	pgdat_kswapd_unlock(pgdat);
7858 }
7859 
7860 /*
7861  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7862  * be holding mem_hotplug_begin/done().
7863  */
7864 void kswapd_stop(int nid)
7865 {
7866 	pg_data_t *pgdat = NODE_DATA(nid);
7867 	struct task_struct *kswapd;
7868 
7869 	pgdat_kswapd_lock(pgdat);
7870 	kswapd = pgdat->kswapd;
7871 	if (kswapd) {
7872 		kthread_stop(kswapd);
7873 		pgdat->kswapd = NULL;
7874 	}
7875 	pgdat_kswapd_unlock(pgdat);
7876 }
7877 
7878 static int __init kswapd_init(void)
7879 {
7880 	int nid;
7881 
7882 	swap_setup();
7883 	for_each_node_state(nid, N_MEMORY)
7884  		kswapd_run(nid);
7885 	return 0;
7886 }
7887 
7888 module_init(kswapd_init)
7889 
7890 #ifdef CONFIG_NUMA
7891 /*
7892  * Node reclaim mode
7893  *
7894  * If non-zero call node_reclaim when the number of free pages falls below
7895  * the watermarks.
7896  */
7897 int node_reclaim_mode __read_mostly;
7898 
7899 /*
7900  * Priority for NODE_RECLAIM. This determines the fraction of pages
7901  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7902  * a zone.
7903  */
7904 #define NODE_RECLAIM_PRIORITY 4
7905 
7906 /*
7907  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7908  * occur.
7909  */
7910 int sysctl_min_unmapped_ratio = 1;
7911 
7912 /*
7913  * If the number of slab pages in a zone grows beyond this percentage then
7914  * slab reclaim needs to occur.
7915  */
7916 int sysctl_min_slab_ratio = 5;
7917 
7918 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7919 {
7920 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7921 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7922 		node_page_state(pgdat, NR_ACTIVE_FILE);
7923 
7924 	/*
7925 	 * It's possible for there to be more file mapped pages than
7926 	 * accounted for by the pages on the file LRU lists because
7927 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7928 	 */
7929 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7930 }
7931 
7932 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7933 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7934 {
7935 	unsigned long nr_pagecache_reclaimable;
7936 	unsigned long delta = 0;
7937 
7938 	/*
7939 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7940 	 * potentially reclaimable. Otherwise, we have to worry about
7941 	 * pages like swapcache and node_unmapped_file_pages() provides
7942 	 * a better estimate
7943 	 */
7944 	if (node_reclaim_mode & RECLAIM_UNMAP)
7945 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7946 	else
7947 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7948 
7949 	/* If we can't clean pages, remove dirty pages from consideration */
7950 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7951 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7952 
7953 	/* Watch for any possible underflows due to delta */
7954 	if (unlikely(delta > nr_pagecache_reclaimable))
7955 		delta = nr_pagecache_reclaimable;
7956 
7957 	return nr_pagecache_reclaimable - delta;
7958 }
7959 
7960 /*
7961  * Try to free up some pages from this node through reclaim.
7962  */
7963 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7964 {
7965 	/* Minimum pages needed in order to stay on node */
7966 	const unsigned long nr_pages = 1 << order;
7967 	struct task_struct *p = current;
7968 	unsigned int noreclaim_flag;
7969 	struct scan_control sc = {
7970 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7971 		.gfp_mask = current_gfp_context(gfp_mask),
7972 		.order = order,
7973 		.priority = NODE_RECLAIM_PRIORITY,
7974 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7975 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7976 		.may_swap = 1,
7977 		.reclaim_idx = gfp_zone(gfp_mask),
7978 	};
7979 	unsigned long pflags;
7980 
7981 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7982 					   sc.gfp_mask);
7983 
7984 	cond_resched();
7985 	psi_memstall_enter(&pflags);
7986 	fs_reclaim_acquire(sc.gfp_mask);
7987 	/*
7988 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7989 	 */
7990 	noreclaim_flag = memalloc_noreclaim_save();
7991 	set_task_reclaim_state(p, &sc.reclaim_state);
7992 
7993 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7994 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7995 		/*
7996 		 * Free memory by calling shrink node with increasing
7997 		 * priorities until we have enough memory freed.
7998 		 */
7999 		do {
8000 			shrink_node(pgdat, &sc);
8001 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8002 	}
8003 
8004 	set_task_reclaim_state(p, NULL);
8005 	memalloc_noreclaim_restore(noreclaim_flag);
8006 	fs_reclaim_release(sc.gfp_mask);
8007 	psi_memstall_leave(&pflags);
8008 
8009 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8010 
8011 	return sc.nr_reclaimed >= nr_pages;
8012 }
8013 
8014 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8015 {
8016 	int ret;
8017 
8018 	/*
8019 	 * Node reclaim reclaims unmapped file backed pages and
8020 	 * slab pages if we are over the defined limits.
8021 	 *
8022 	 * A small portion of unmapped file backed pages is needed for
8023 	 * file I/O otherwise pages read by file I/O will be immediately
8024 	 * thrown out if the node is overallocated. So we do not reclaim
8025 	 * if less than a specified percentage of the node is used by
8026 	 * unmapped file backed pages.
8027 	 */
8028 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8029 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8030 	    pgdat->min_slab_pages)
8031 		return NODE_RECLAIM_FULL;
8032 
8033 	/*
8034 	 * Do not scan if the allocation should not be delayed.
8035 	 */
8036 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8037 		return NODE_RECLAIM_NOSCAN;
8038 
8039 	/*
8040 	 * Only run node reclaim on the local node or on nodes that do not
8041 	 * have associated processors. This will favor the local processor
8042 	 * over remote processors and spread off node memory allocations
8043 	 * as wide as possible.
8044 	 */
8045 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8046 		return NODE_RECLAIM_NOSCAN;
8047 
8048 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8049 		return NODE_RECLAIM_NOSCAN;
8050 
8051 	ret = __node_reclaim(pgdat, gfp_mask, order);
8052 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8053 
8054 	if (!ret)
8055 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8056 
8057 	return ret;
8058 }
8059 #endif
8060 
8061 void check_move_unevictable_pages(struct pagevec *pvec)
8062 {
8063 	struct folio_batch fbatch;
8064 	unsigned i;
8065 
8066 	folio_batch_init(&fbatch);
8067 	for (i = 0; i < pvec->nr; i++) {
8068 		struct page *page = pvec->pages[i];
8069 
8070 		if (PageTransTail(page))
8071 			continue;
8072 		folio_batch_add(&fbatch, page_folio(page));
8073 	}
8074 	check_move_unevictable_folios(&fbatch);
8075 }
8076 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8077 
8078 /**
8079  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8080  * lru list
8081  * @fbatch: Batch of lru folios to check.
8082  *
8083  * Checks folios for evictability, if an evictable folio is in the unevictable
8084  * lru list, moves it to the appropriate evictable lru list. This function
8085  * should be only used for lru folios.
8086  */
8087 void check_move_unevictable_folios(struct folio_batch *fbatch)
8088 {
8089 	struct lruvec *lruvec = NULL;
8090 	int pgscanned = 0;
8091 	int pgrescued = 0;
8092 	int i;
8093 
8094 	for (i = 0; i < fbatch->nr; i++) {
8095 		struct folio *folio = fbatch->folios[i];
8096 		int nr_pages = folio_nr_pages(folio);
8097 
8098 		pgscanned += nr_pages;
8099 
8100 		/* block memcg migration while the folio moves between lrus */
8101 		if (!folio_test_clear_lru(folio))
8102 			continue;
8103 
8104 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8105 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8106 			lruvec_del_folio(lruvec, folio);
8107 			folio_clear_unevictable(folio);
8108 			lruvec_add_folio(lruvec, folio);
8109 			pgrescued += nr_pages;
8110 		}
8111 		folio_set_lru(folio);
8112 	}
8113 
8114 	if (lruvec) {
8115 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8116 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8117 		unlock_page_lruvec_irq(lruvec);
8118 	} else if (pgscanned) {
8119 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8120 	}
8121 }
8122 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8123