1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* 81 * Scan pressure balancing between anon and file LRUs 82 */ 83 unsigned long anon_cost; 84 unsigned long file_cost; 85 86 /* Can active pages be deactivated as part of reclaim? */ 87 #define DEACTIVATE_ANON 1 88 #define DEACTIVATE_FILE 2 89 unsigned int may_deactivate:2; 90 unsigned int force_deactivate:1; 91 unsigned int skipped_deactivate:1; 92 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 94 unsigned int may_writepage:1; 95 96 /* Can mapped pages be reclaimed? */ 97 unsigned int may_unmap:1; 98 99 /* Can pages be swapped as part of reclaim? */ 100 unsigned int may_swap:1; 101 102 /* 103 * Cgroups are not reclaimed below their configured memory.low, 104 * unless we threaten to OOM. If any cgroups are skipped due to 105 * memory.low and nothing was reclaimed, go back for memory.low. 106 */ 107 unsigned int memcg_low_reclaim:1; 108 unsigned int memcg_low_skipped:1; 109 110 unsigned int hibernation_mode:1; 111 112 /* One of the zones is ready for compaction */ 113 unsigned int compaction_ready:1; 114 115 /* There is easily reclaimable cold cache in the current node */ 116 unsigned int cache_trim_mode:1; 117 118 /* The file pages on the current node are dangerously low */ 119 unsigned int file_is_tiny:1; 120 121 /* Allocation order */ 122 s8 order; 123 124 /* Scan (total_size >> priority) pages at once */ 125 s8 priority; 126 127 /* The highest zone to isolate pages for reclaim from */ 128 s8 reclaim_idx; 129 130 /* This context's GFP mask */ 131 gfp_t gfp_mask; 132 133 /* Incremented by the number of inactive pages that were scanned */ 134 unsigned long nr_scanned; 135 136 /* Number of pages freed so far during a call to shrink_zones() */ 137 unsigned long nr_reclaimed; 138 139 struct { 140 unsigned int dirty; 141 unsigned int unqueued_dirty; 142 unsigned int congested; 143 unsigned int writeback; 144 unsigned int immediate; 145 unsigned int file_taken; 146 unsigned int taken; 147 } nr; 148 149 /* for recording the reclaimed slab by now */ 150 struct reclaim_state reclaim_state; 151 }; 152 153 #ifdef ARCH_HAS_PREFETCHW 154 #define prefetchw_prev_lru_page(_page, _base, _field) \ 155 do { \ 156 if ((_page)->lru.prev != _base) { \ 157 struct page *prev; \ 158 \ 159 prev = lru_to_page(&(_page->lru)); \ 160 prefetchw(&prev->_field); \ 161 } \ 162 } while (0) 163 #else 164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 165 #endif 166 167 /* 168 * From 0 .. 200. Higher means more swappy. 169 */ 170 int vm_swappiness = 60; 171 172 static void set_task_reclaim_state(struct task_struct *task, 173 struct reclaim_state *rs) 174 { 175 /* Check for an overwrite */ 176 WARN_ON_ONCE(rs && task->reclaim_state); 177 178 /* Check for the nulling of an already-nulled member */ 179 WARN_ON_ONCE(!rs && !task->reclaim_state); 180 181 task->reclaim_state = rs; 182 } 183 184 static LIST_HEAD(shrinker_list); 185 static DECLARE_RWSEM(shrinker_rwsem); 186 187 #ifdef CONFIG_MEMCG 188 /* 189 * We allow subsystems to populate their shrinker-related 190 * LRU lists before register_shrinker_prepared() is called 191 * for the shrinker, since we don't want to impose 192 * restrictions on their internal registration order. 193 * In this case shrink_slab_memcg() may find corresponding 194 * bit is set in the shrinkers map. 195 * 196 * This value is used by the function to detect registering 197 * shrinkers and to skip do_shrink_slab() calls for them. 198 */ 199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 200 201 static DEFINE_IDR(shrinker_idr); 202 static int shrinker_nr_max; 203 204 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 205 { 206 int id, ret = -ENOMEM; 207 208 down_write(&shrinker_rwsem); 209 /* This may call shrinker, so it must use down_read_trylock() */ 210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 211 if (id < 0) 212 goto unlock; 213 214 if (id >= shrinker_nr_max) { 215 if (memcg_expand_shrinker_maps(id)) { 216 idr_remove(&shrinker_idr, id); 217 goto unlock; 218 } 219 220 shrinker_nr_max = id + 1; 221 } 222 shrinker->id = id; 223 ret = 0; 224 unlock: 225 up_write(&shrinker_rwsem); 226 return ret; 227 } 228 229 static void unregister_memcg_shrinker(struct shrinker *shrinker) 230 { 231 int id = shrinker->id; 232 233 BUG_ON(id < 0); 234 235 down_write(&shrinker_rwsem); 236 idr_remove(&shrinker_idr, id); 237 up_write(&shrinker_rwsem); 238 } 239 240 static bool cgroup_reclaim(struct scan_control *sc) 241 { 242 return sc->target_mem_cgroup; 243 } 244 245 /** 246 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 247 * @sc: scan_control in question 248 * 249 * The normal page dirty throttling mechanism in balance_dirty_pages() is 250 * completely broken with the legacy memcg and direct stalling in 251 * shrink_page_list() is used for throttling instead, which lacks all the 252 * niceties such as fairness, adaptive pausing, bandwidth proportional 253 * allocation and configurability. 254 * 255 * This function tests whether the vmscan currently in progress can assume 256 * that the normal dirty throttling mechanism is operational. 257 */ 258 static bool writeback_throttling_sane(struct scan_control *sc) 259 { 260 if (!cgroup_reclaim(sc)) 261 return true; 262 #ifdef CONFIG_CGROUP_WRITEBACK 263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 264 return true; 265 #endif 266 return false; 267 } 268 #else 269 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 270 { 271 return 0; 272 } 273 274 static void unregister_memcg_shrinker(struct shrinker *shrinker) 275 { 276 } 277 278 static bool cgroup_reclaim(struct scan_control *sc) 279 { 280 return false; 281 } 282 283 static bool writeback_throttling_sane(struct scan_control *sc) 284 { 285 return true; 286 } 287 #endif 288 289 /* 290 * This misses isolated pages which are not accounted for to save counters. 291 * As the data only determines if reclaim or compaction continues, it is 292 * not expected that isolated pages will be a dominating factor. 293 */ 294 unsigned long zone_reclaimable_pages(struct zone *zone) 295 { 296 unsigned long nr; 297 298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 300 if (get_nr_swap_pages() > 0) 301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 303 304 return nr; 305 } 306 307 /** 308 * lruvec_lru_size - Returns the number of pages on the given LRU list. 309 * @lruvec: lru vector 310 * @lru: lru to use 311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 312 */ 313 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 314 { 315 unsigned long size = 0; 316 int zid; 317 318 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 319 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 320 321 if (!managed_zone(zone)) 322 continue; 323 324 if (!mem_cgroup_disabled()) 325 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 326 else 327 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 328 } 329 return size; 330 } 331 332 /* 333 * Add a shrinker callback to be called from the vm. 334 */ 335 int prealloc_shrinker(struct shrinker *shrinker) 336 { 337 unsigned int size = sizeof(*shrinker->nr_deferred); 338 339 if (shrinker->flags & SHRINKER_NUMA_AWARE) 340 size *= nr_node_ids; 341 342 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 343 if (!shrinker->nr_deferred) 344 return -ENOMEM; 345 346 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 347 if (prealloc_memcg_shrinker(shrinker)) 348 goto free_deferred; 349 } 350 351 return 0; 352 353 free_deferred: 354 kfree(shrinker->nr_deferred); 355 shrinker->nr_deferred = NULL; 356 return -ENOMEM; 357 } 358 359 void free_prealloced_shrinker(struct shrinker *shrinker) 360 { 361 if (!shrinker->nr_deferred) 362 return; 363 364 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 365 unregister_memcg_shrinker(shrinker); 366 367 kfree(shrinker->nr_deferred); 368 shrinker->nr_deferred = NULL; 369 } 370 371 void register_shrinker_prepared(struct shrinker *shrinker) 372 { 373 down_write(&shrinker_rwsem); 374 list_add_tail(&shrinker->list, &shrinker_list); 375 #ifdef CONFIG_MEMCG 376 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 377 idr_replace(&shrinker_idr, shrinker, shrinker->id); 378 #endif 379 up_write(&shrinker_rwsem); 380 } 381 382 int register_shrinker(struct shrinker *shrinker) 383 { 384 int err = prealloc_shrinker(shrinker); 385 386 if (err) 387 return err; 388 register_shrinker_prepared(shrinker); 389 return 0; 390 } 391 EXPORT_SYMBOL(register_shrinker); 392 393 /* 394 * Remove one 395 */ 396 void unregister_shrinker(struct shrinker *shrinker) 397 { 398 if (!shrinker->nr_deferred) 399 return; 400 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 401 unregister_memcg_shrinker(shrinker); 402 down_write(&shrinker_rwsem); 403 list_del(&shrinker->list); 404 up_write(&shrinker_rwsem); 405 kfree(shrinker->nr_deferred); 406 shrinker->nr_deferred = NULL; 407 } 408 EXPORT_SYMBOL(unregister_shrinker); 409 410 #define SHRINK_BATCH 128 411 412 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 413 struct shrinker *shrinker, int priority) 414 { 415 unsigned long freed = 0; 416 unsigned long long delta; 417 long total_scan; 418 long freeable; 419 long nr; 420 long new_nr; 421 int nid = shrinkctl->nid; 422 long batch_size = shrinker->batch ? shrinker->batch 423 : SHRINK_BATCH; 424 long scanned = 0, next_deferred; 425 426 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 427 nid = 0; 428 429 freeable = shrinker->count_objects(shrinker, shrinkctl); 430 if (freeable == 0 || freeable == SHRINK_EMPTY) 431 return freeable; 432 433 /* 434 * copy the current shrinker scan count into a local variable 435 * and zero it so that other concurrent shrinker invocations 436 * don't also do this scanning work. 437 */ 438 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 439 440 total_scan = nr; 441 if (shrinker->seeks) { 442 delta = freeable >> priority; 443 delta *= 4; 444 do_div(delta, shrinker->seeks); 445 } else { 446 /* 447 * These objects don't require any IO to create. Trim 448 * them aggressively under memory pressure to keep 449 * them from causing refetches in the IO caches. 450 */ 451 delta = freeable / 2; 452 } 453 454 total_scan += delta; 455 if (total_scan < 0) { 456 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 457 shrinker->scan_objects, total_scan); 458 total_scan = freeable; 459 next_deferred = nr; 460 } else 461 next_deferred = total_scan; 462 463 /* 464 * We need to avoid excessive windup on filesystem shrinkers 465 * due to large numbers of GFP_NOFS allocations causing the 466 * shrinkers to return -1 all the time. This results in a large 467 * nr being built up so when a shrink that can do some work 468 * comes along it empties the entire cache due to nr >>> 469 * freeable. This is bad for sustaining a working set in 470 * memory. 471 * 472 * Hence only allow the shrinker to scan the entire cache when 473 * a large delta change is calculated directly. 474 */ 475 if (delta < freeable / 4) 476 total_scan = min(total_scan, freeable / 2); 477 478 /* 479 * Avoid risking looping forever due to too large nr value: 480 * never try to free more than twice the estimate number of 481 * freeable entries. 482 */ 483 if (total_scan > freeable * 2) 484 total_scan = freeable * 2; 485 486 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 487 freeable, delta, total_scan, priority); 488 489 /* 490 * Normally, we should not scan less than batch_size objects in one 491 * pass to avoid too frequent shrinker calls, but if the slab has less 492 * than batch_size objects in total and we are really tight on memory, 493 * we will try to reclaim all available objects, otherwise we can end 494 * up failing allocations although there are plenty of reclaimable 495 * objects spread over several slabs with usage less than the 496 * batch_size. 497 * 498 * We detect the "tight on memory" situations by looking at the total 499 * number of objects we want to scan (total_scan). If it is greater 500 * than the total number of objects on slab (freeable), we must be 501 * scanning at high prio and therefore should try to reclaim as much as 502 * possible. 503 */ 504 while (total_scan >= batch_size || 505 total_scan >= freeable) { 506 unsigned long ret; 507 unsigned long nr_to_scan = min(batch_size, total_scan); 508 509 shrinkctl->nr_to_scan = nr_to_scan; 510 shrinkctl->nr_scanned = nr_to_scan; 511 ret = shrinker->scan_objects(shrinker, shrinkctl); 512 if (ret == SHRINK_STOP) 513 break; 514 freed += ret; 515 516 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 517 total_scan -= shrinkctl->nr_scanned; 518 scanned += shrinkctl->nr_scanned; 519 520 cond_resched(); 521 } 522 523 if (next_deferred >= scanned) 524 next_deferred -= scanned; 525 else 526 next_deferred = 0; 527 /* 528 * move the unused scan count back into the shrinker in a 529 * manner that handles concurrent updates. If we exhausted the 530 * scan, there is no need to do an update. 531 */ 532 if (next_deferred > 0) 533 new_nr = atomic_long_add_return(next_deferred, 534 &shrinker->nr_deferred[nid]); 535 else 536 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 537 538 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 539 return freed; 540 } 541 542 #ifdef CONFIG_MEMCG 543 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 544 struct mem_cgroup *memcg, int priority) 545 { 546 struct memcg_shrinker_map *map; 547 unsigned long ret, freed = 0; 548 int i; 549 550 if (!mem_cgroup_online(memcg)) 551 return 0; 552 553 if (!down_read_trylock(&shrinker_rwsem)) 554 return 0; 555 556 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 557 true); 558 if (unlikely(!map)) 559 goto unlock; 560 561 for_each_set_bit(i, map->map, shrinker_nr_max) { 562 struct shrink_control sc = { 563 .gfp_mask = gfp_mask, 564 .nid = nid, 565 .memcg = memcg, 566 }; 567 struct shrinker *shrinker; 568 569 shrinker = idr_find(&shrinker_idr, i); 570 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 571 if (!shrinker) 572 clear_bit(i, map->map); 573 continue; 574 } 575 576 /* Call non-slab shrinkers even though kmem is disabled */ 577 if (!memcg_kmem_enabled() && 578 !(shrinker->flags & SHRINKER_NONSLAB)) 579 continue; 580 581 ret = do_shrink_slab(&sc, shrinker, priority); 582 if (ret == SHRINK_EMPTY) { 583 clear_bit(i, map->map); 584 /* 585 * After the shrinker reported that it had no objects to 586 * free, but before we cleared the corresponding bit in 587 * the memcg shrinker map, a new object might have been 588 * added. To make sure, we have the bit set in this 589 * case, we invoke the shrinker one more time and reset 590 * the bit if it reports that it is not empty anymore. 591 * The memory barrier here pairs with the barrier in 592 * memcg_set_shrinker_bit(): 593 * 594 * list_lru_add() shrink_slab_memcg() 595 * list_add_tail() clear_bit() 596 * <MB> <MB> 597 * set_bit() do_shrink_slab() 598 */ 599 smp_mb__after_atomic(); 600 ret = do_shrink_slab(&sc, shrinker, priority); 601 if (ret == SHRINK_EMPTY) 602 ret = 0; 603 else 604 memcg_set_shrinker_bit(memcg, nid, i); 605 } 606 freed += ret; 607 608 if (rwsem_is_contended(&shrinker_rwsem)) { 609 freed = freed ? : 1; 610 break; 611 } 612 } 613 unlock: 614 up_read(&shrinker_rwsem); 615 return freed; 616 } 617 #else /* CONFIG_MEMCG */ 618 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 619 struct mem_cgroup *memcg, int priority) 620 { 621 return 0; 622 } 623 #endif /* CONFIG_MEMCG */ 624 625 /** 626 * shrink_slab - shrink slab caches 627 * @gfp_mask: allocation context 628 * @nid: node whose slab caches to target 629 * @memcg: memory cgroup whose slab caches to target 630 * @priority: the reclaim priority 631 * 632 * Call the shrink functions to age shrinkable caches. 633 * 634 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 635 * unaware shrinkers will receive a node id of 0 instead. 636 * 637 * @memcg specifies the memory cgroup to target. Unaware shrinkers 638 * are called only if it is the root cgroup. 639 * 640 * @priority is sc->priority, we take the number of objects and >> by priority 641 * in order to get the scan target. 642 * 643 * Returns the number of reclaimed slab objects. 644 */ 645 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 646 struct mem_cgroup *memcg, 647 int priority) 648 { 649 unsigned long ret, freed = 0; 650 struct shrinker *shrinker; 651 652 /* 653 * The root memcg might be allocated even though memcg is disabled 654 * via "cgroup_disable=memory" boot parameter. This could make 655 * mem_cgroup_is_root() return false, then just run memcg slab 656 * shrink, but skip global shrink. This may result in premature 657 * oom. 658 */ 659 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 660 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 661 662 if (!down_read_trylock(&shrinker_rwsem)) 663 goto out; 664 665 list_for_each_entry(shrinker, &shrinker_list, list) { 666 struct shrink_control sc = { 667 .gfp_mask = gfp_mask, 668 .nid = nid, 669 .memcg = memcg, 670 }; 671 672 ret = do_shrink_slab(&sc, shrinker, priority); 673 if (ret == SHRINK_EMPTY) 674 ret = 0; 675 freed += ret; 676 /* 677 * Bail out if someone want to register a new shrinker to 678 * prevent the registration from being stalled for long periods 679 * by parallel ongoing shrinking. 680 */ 681 if (rwsem_is_contended(&shrinker_rwsem)) { 682 freed = freed ? : 1; 683 break; 684 } 685 } 686 687 up_read(&shrinker_rwsem); 688 out: 689 cond_resched(); 690 return freed; 691 } 692 693 void drop_slab_node(int nid) 694 { 695 unsigned long freed; 696 697 do { 698 struct mem_cgroup *memcg = NULL; 699 700 if (fatal_signal_pending(current)) 701 return; 702 703 freed = 0; 704 memcg = mem_cgroup_iter(NULL, NULL, NULL); 705 do { 706 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 707 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 708 } while (freed > 10); 709 } 710 711 void drop_slab(void) 712 { 713 int nid; 714 715 for_each_online_node(nid) 716 drop_slab_node(nid); 717 } 718 719 static inline int is_page_cache_freeable(struct page *page) 720 { 721 /* 722 * A freeable page cache page is referenced only by the caller 723 * that isolated the page, the page cache and optional buffer 724 * heads at page->private. 725 */ 726 int page_cache_pins = thp_nr_pages(page); 727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 728 } 729 730 static int may_write_to_inode(struct inode *inode) 731 { 732 if (current->flags & PF_SWAPWRITE) 733 return 1; 734 if (!inode_write_congested(inode)) 735 return 1; 736 if (inode_to_bdi(inode) == current->backing_dev_info) 737 return 1; 738 return 0; 739 } 740 741 /* 742 * We detected a synchronous write error writing a page out. Probably 743 * -ENOSPC. We need to propagate that into the address_space for a subsequent 744 * fsync(), msync() or close(). 745 * 746 * The tricky part is that after writepage we cannot touch the mapping: nothing 747 * prevents it from being freed up. But we have a ref on the page and once 748 * that page is locked, the mapping is pinned. 749 * 750 * We're allowed to run sleeping lock_page() here because we know the caller has 751 * __GFP_FS. 752 */ 753 static void handle_write_error(struct address_space *mapping, 754 struct page *page, int error) 755 { 756 lock_page(page); 757 if (page_mapping(page) == mapping) 758 mapping_set_error(mapping, error); 759 unlock_page(page); 760 } 761 762 /* possible outcome of pageout() */ 763 typedef enum { 764 /* failed to write page out, page is locked */ 765 PAGE_KEEP, 766 /* move page to the active list, page is locked */ 767 PAGE_ACTIVATE, 768 /* page has been sent to the disk successfully, page is unlocked */ 769 PAGE_SUCCESS, 770 /* page is clean and locked */ 771 PAGE_CLEAN, 772 } pageout_t; 773 774 /* 775 * pageout is called by shrink_page_list() for each dirty page. 776 * Calls ->writepage(). 777 */ 778 static pageout_t pageout(struct page *page, struct address_space *mapping) 779 { 780 /* 781 * If the page is dirty, only perform writeback if that write 782 * will be non-blocking. To prevent this allocation from being 783 * stalled by pagecache activity. But note that there may be 784 * stalls if we need to run get_block(). We could test 785 * PagePrivate for that. 786 * 787 * If this process is currently in __generic_file_write_iter() against 788 * this page's queue, we can perform writeback even if that 789 * will block. 790 * 791 * If the page is swapcache, write it back even if that would 792 * block, for some throttling. This happens by accident, because 793 * swap_backing_dev_info is bust: it doesn't reflect the 794 * congestion state of the swapdevs. Easy to fix, if needed. 795 */ 796 if (!is_page_cache_freeable(page)) 797 return PAGE_KEEP; 798 if (!mapping) { 799 /* 800 * Some data journaling orphaned pages can have 801 * page->mapping == NULL while being dirty with clean buffers. 802 */ 803 if (page_has_private(page)) { 804 if (try_to_free_buffers(page)) { 805 ClearPageDirty(page); 806 pr_info("%s: orphaned page\n", __func__); 807 return PAGE_CLEAN; 808 } 809 } 810 return PAGE_KEEP; 811 } 812 if (mapping->a_ops->writepage == NULL) 813 return PAGE_ACTIVATE; 814 if (!may_write_to_inode(mapping->host)) 815 return PAGE_KEEP; 816 817 if (clear_page_dirty_for_io(page)) { 818 int res; 819 struct writeback_control wbc = { 820 .sync_mode = WB_SYNC_NONE, 821 .nr_to_write = SWAP_CLUSTER_MAX, 822 .range_start = 0, 823 .range_end = LLONG_MAX, 824 .for_reclaim = 1, 825 }; 826 827 SetPageReclaim(page); 828 res = mapping->a_ops->writepage(page, &wbc); 829 if (res < 0) 830 handle_write_error(mapping, page, res); 831 if (res == AOP_WRITEPAGE_ACTIVATE) { 832 ClearPageReclaim(page); 833 return PAGE_ACTIVATE; 834 } 835 836 if (!PageWriteback(page)) { 837 /* synchronous write or broken a_ops? */ 838 ClearPageReclaim(page); 839 } 840 trace_mm_vmscan_writepage(page); 841 inc_node_page_state(page, NR_VMSCAN_WRITE); 842 return PAGE_SUCCESS; 843 } 844 845 return PAGE_CLEAN; 846 } 847 848 /* 849 * Same as remove_mapping, but if the page is removed from the mapping, it 850 * gets returned with a refcount of 0. 851 */ 852 static int __remove_mapping(struct address_space *mapping, struct page *page, 853 bool reclaimed, struct mem_cgroup *target_memcg) 854 { 855 unsigned long flags; 856 int refcount; 857 void *shadow = NULL; 858 859 BUG_ON(!PageLocked(page)); 860 BUG_ON(mapping != page_mapping(page)); 861 862 xa_lock_irqsave(&mapping->i_pages, flags); 863 /* 864 * The non racy check for a busy page. 865 * 866 * Must be careful with the order of the tests. When someone has 867 * a ref to the page, it may be possible that they dirty it then 868 * drop the reference. So if PageDirty is tested before page_count 869 * here, then the following race may occur: 870 * 871 * get_user_pages(&page); 872 * [user mapping goes away] 873 * write_to(page); 874 * !PageDirty(page) [good] 875 * SetPageDirty(page); 876 * put_page(page); 877 * !page_count(page) [good, discard it] 878 * 879 * [oops, our write_to data is lost] 880 * 881 * Reversing the order of the tests ensures such a situation cannot 882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 883 * load is not satisfied before that of page->_refcount. 884 * 885 * Note that if SetPageDirty is always performed via set_page_dirty, 886 * and thus under the i_pages lock, then this ordering is not required. 887 */ 888 refcount = 1 + compound_nr(page); 889 if (!page_ref_freeze(page, refcount)) 890 goto cannot_free; 891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 892 if (unlikely(PageDirty(page))) { 893 page_ref_unfreeze(page, refcount); 894 goto cannot_free; 895 } 896 897 if (PageSwapCache(page)) { 898 swp_entry_t swap = { .val = page_private(page) }; 899 mem_cgroup_swapout(page, swap); 900 if (reclaimed && !mapping_exiting(mapping)) 901 shadow = workingset_eviction(page, target_memcg); 902 __delete_from_swap_cache(page, swap, shadow); 903 xa_unlock_irqrestore(&mapping->i_pages, flags); 904 put_swap_page(page, swap); 905 } else { 906 void (*freepage)(struct page *); 907 908 freepage = mapping->a_ops->freepage; 909 /* 910 * Remember a shadow entry for reclaimed file cache in 911 * order to detect refaults, thus thrashing, later on. 912 * 913 * But don't store shadows in an address space that is 914 * already exiting. This is not just an optimization, 915 * inode reclaim needs to empty out the radix tree or 916 * the nodes are lost. Don't plant shadows behind its 917 * back. 918 * 919 * We also don't store shadows for DAX mappings because the 920 * only page cache pages found in these are zero pages 921 * covering holes, and because we don't want to mix DAX 922 * exceptional entries and shadow exceptional entries in the 923 * same address_space. 924 */ 925 if (reclaimed && page_is_file_lru(page) && 926 !mapping_exiting(mapping) && !dax_mapping(mapping)) 927 shadow = workingset_eviction(page, target_memcg); 928 __delete_from_page_cache(page, shadow); 929 xa_unlock_irqrestore(&mapping->i_pages, flags); 930 931 if (freepage != NULL) 932 freepage(page); 933 } 934 935 return 1; 936 937 cannot_free: 938 xa_unlock_irqrestore(&mapping->i_pages, flags); 939 return 0; 940 } 941 942 /* 943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 944 * someone else has a ref on the page, abort and return 0. If it was 945 * successfully detached, return 1. Assumes the caller has a single ref on 946 * this page. 947 */ 948 int remove_mapping(struct address_space *mapping, struct page *page) 949 { 950 if (__remove_mapping(mapping, page, false, NULL)) { 951 /* 952 * Unfreezing the refcount with 1 rather than 2 effectively 953 * drops the pagecache ref for us without requiring another 954 * atomic operation. 955 */ 956 page_ref_unfreeze(page, 1); 957 return 1; 958 } 959 return 0; 960 } 961 962 /** 963 * putback_lru_page - put previously isolated page onto appropriate LRU list 964 * @page: page to be put back to appropriate lru list 965 * 966 * Add previously isolated @page to appropriate LRU list. 967 * Page may still be unevictable for other reasons. 968 * 969 * lru_lock must not be held, interrupts must be enabled. 970 */ 971 void putback_lru_page(struct page *page) 972 { 973 lru_cache_add(page); 974 put_page(page); /* drop ref from isolate */ 975 } 976 977 enum page_references { 978 PAGEREF_RECLAIM, 979 PAGEREF_RECLAIM_CLEAN, 980 PAGEREF_KEEP, 981 PAGEREF_ACTIVATE, 982 }; 983 984 static enum page_references page_check_references(struct page *page, 985 struct scan_control *sc) 986 { 987 int referenced_ptes, referenced_page; 988 unsigned long vm_flags; 989 990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 991 &vm_flags); 992 referenced_page = TestClearPageReferenced(page); 993 994 /* 995 * Mlock lost the isolation race with us. Let try_to_unmap() 996 * move the page to the unevictable list. 997 */ 998 if (vm_flags & VM_LOCKED) 999 return PAGEREF_RECLAIM; 1000 1001 if (referenced_ptes) { 1002 /* 1003 * All mapped pages start out with page table 1004 * references from the instantiating fault, so we need 1005 * to look twice if a mapped file page is used more 1006 * than once. 1007 * 1008 * Mark it and spare it for another trip around the 1009 * inactive list. Another page table reference will 1010 * lead to its activation. 1011 * 1012 * Note: the mark is set for activated pages as well 1013 * so that recently deactivated but used pages are 1014 * quickly recovered. 1015 */ 1016 SetPageReferenced(page); 1017 1018 if (referenced_page || referenced_ptes > 1) 1019 return PAGEREF_ACTIVATE; 1020 1021 /* 1022 * Activate file-backed executable pages after first usage. 1023 */ 1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1025 return PAGEREF_ACTIVATE; 1026 1027 return PAGEREF_KEEP; 1028 } 1029 1030 /* Reclaim if clean, defer dirty pages to writeback */ 1031 if (referenced_page && !PageSwapBacked(page)) 1032 return PAGEREF_RECLAIM_CLEAN; 1033 1034 return PAGEREF_RECLAIM; 1035 } 1036 1037 /* Check if a page is dirty or under writeback */ 1038 static void page_check_dirty_writeback(struct page *page, 1039 bool *dirty, bool *writeback) 1040 { 1041 struct address_space *mapping; 1042 1043 /* 1044 * Anonymous pages are not handled by flushers and must be written 1045 * from reclaim context. Do not stall reclaim based on them 1046 */ 1047 if (!page_is_file_lru(page) || 1048 (PageAnon(page) && !PageSwapBacked(page))) { 1049 *dirty = false; 1050 *writeback = false; 1051 return; 1052 } 1053 1054 /* By default assume that the page flags are accurate */ 1055 *dirty = PageDirty(page); 1056 *writeback = PageWriteback(page); 1057 1058 /* Verify dirty/writeback state if the filesystem supports it */ 1059 if (!page_has_private(page)) 1060 return; 1061 1062 mapping = page_mapping(page); 1063 if (mapping && mapping->a_ops->is_dirty_writeback) 1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1065 } 1066 1067 /* 1068 * shrink_page_list() returns the number of reclaimed pages 1069 */ 1070 static unsigned int shrink_page_list(struct list_head *page_list, 1071 struct pglist_data *pgdat, 1072 struct scan_control *sc, 1073 struct reclaim_stat *stat, 1074 bool ignore_references) 1075 { 1076 LIST_HEAD(ret_pages); 1077 LIST_HEAD(free_pages); 1078 unsigned int nr_reclaimed = 0; 1079 unsigned int pgactivate = 0; 1080 1081 memset(stat, 0, sizeof(*stat)); 1082 cond_resched(); 1083 1084 while (!list_empty(page_list)) { 1085 struct address_space *mapping; 1086 struct page *page; 1087 enum page_references references = PAGEREF_RECLAIM; 1088 bool dirty, writeback, may_enter_fs; 1089 unsigned int nr_pages; 1090 1091 cond_resched(); 1092 1093 page = lru_to_page(page_list); 1094 list_del(&page->lru); 1095 1096 if (!trylock_page(page)) 1097 goto keep; 1098 1099 VM_BUG_ON_PAGE(PageActive(page), page); 1100 1101 nr_pages = compound_nr(page); 1102 1103 /* Account the number of base pages even though THP */ 1104 sc->nr_scanned += nr_pages; 1105 1106 if (unlikely(!page_evictable(page))) 1107 goto activate_locked; 1108 1109 if (!sc->may_unmap && page_mapped(page)) 1110 goto keep_locked; 1111 1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1114 1115 /* 1116 * The number of dirty pages determines if a node is marked 1117 * reclaim_congested which affects wait_iff_congested. kswapd 1118 * will stall and start writing pages if the tail of the LRU 1119 * is all dirty unqueued pages. 1120 */ 1121 page_check_dirty_writeback(page, &dirty, &writeback); 1122 if (dirty || writeback) 1123 stat->nr_dirty++; 1124 1125 if (dirty && !writeback) 1126 stat->nr_unqueued_dirty++; 1127 1128 /* 1129 * Treat this page as congested if the underlying BDI is or if 1130 * pages are cycling through the LRU so quickly that the 1131 * pages marked for immediate reclaim are making it to the 1132 * end of the LRU a second time. 1133 */ 1134 mapping = page_mapping(page); 1135 if (((dirty || writeback) && mapping && 1136 inode_write_congested(mapping->host)) || 1137 (writeback && PageReclaim(page))) 1138 stat->nr_congested++; 1139 1140 /* 1141 * If a page at the tail of the LRU is under writeback, there 1142 * are three cases to consider. 1143 * 1144 * 1) If reclaim is encountering an excessive number of pages 1145 * under writeback and this page is both under writeback and 1146 * PageReclaim then it indicates that pages are being queued 1147 * for IO but are being recycled through the LRU before the 1148 * IO can complete. Waiting on the page itself risks an 1149 * indefinite stall if it is impossible to writeback the 1150 * page due to IO error or disconnected storage so instead 1151 * note that the LRU is being scanned too quickly and the 1152 * caller can stall after page list has been processed. 1153 * 1154 * 2) Global or new memcg reclaim encounters a page that is 1155 * not marked for immediate reclaim, or the caller does not 1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1157 * not to fs). In this case mark the page for immediate 1158 * reclaim and continue scanning. 1159 * 1160 * Require may_enter_fs because we would wait on fs, which 1161 * may not have submitted IO yet. And the loop driver might 1162 * enter reclaim, and deadlock if it waits on a page for 1163 * which it is needed to do the write (loop masks off 1164 * __GFP_IO|__GFP_FS for this reason); but more thought 1165 * would probably show more reasons. 1166 * 1167 * 3) Legacy memcg encounters a page that is already marked 1168 * PageReclaim. memcg does not have any dirty pages 1169 * throttling so we could easily OOM just because too many 1170 * pages are in writeback and there is nothing else to 1171 * reclaim. Wait for the writeback to complete. 1172 * 1173 * In cases 1) and 2) we activate the pages to get them out of 1174 * the way while we continue scanning for clean pages on the 1175 * inactive list and refilling from the active list. The 1176 * observation here is that waiting for disk writes is more 1177 * expensive than potentially causing reloads down the line. 1178 * Since they're marked for immediate reclaim, they won't put 1179 * memory pressure on the cache working set any longer than it 1180 * takes to write them to disk. 1181 */ 1182 if (PageWriteback(page)) { 1183 /* Case 1 above */ 1184 if (current_is_kswapd() && 1185 PageReclaim(page) && 1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1187 stat->nr_immediate++; 1188 goto activate_locked; 1189 1190 /* Case 2 above */ 1191 } else if (writeback_throttling_sane(sc) || 1192 !PageReclaim(page) || !may_enter_fs) { 1193 /* 1194 * This is slightly racy - end_page_writeback() 1195 * might have just cleared PageReclaim, then 1196 * setting PageReclaim here end up interpreted 1197 * as PageReadahead - but that does not matter 1198 * enough to care. What we do want is for this 1199 * page to have PageReclaim set next time memcg 1200 * reclaim reaches the tests above, so it will 1201 * then wait_on_page_writeback() to avoid OOM; 1202 * and it's also appropriate in global reclaim. 1203 */ 1204 SetPageReclaim(page); 1205 stat->nr_writeback++; 1206 goto activate_locked; 1207 1208 /* Case 3 above */ 1209 } else { 1210 unlock_page(page); 1211 wait_on_page_writeback(page); 1212 /* then go back and try same page again */ 1213 list_add_tail(&page->lru, page_list); 1214 continue; 1215 } 1216 } 1217 1218 if (!ignore_references) 1219 references = page_check_references(page, sc); 1220 1221 switch (references) { 1222 case PAGEREF_ACTIVATE: 1223 goto activate_locked; 1224 case PAGEREF_KEEP: 1225 stat->nr_ref_keep += nr_pages; 1226 goto keep_locked; 1227 case PAGEREF_RECLAIM: 1228 case PAGEREF_RECLAIM_CLEAN: 1229 ; /* try to reclaim the page below */ 1230 } 1231 1232 /* 1233 * Anonymous process memory has backing store? 1234 * Try to allocate it some swap space here. 1235 * Lazyfree page could be freed directly 1236 */ 1237 if (PageAnon(page) && PageSwapBacked(page)) { 1238 if (!PageSwapCache(page)) { 1239 if (!(sc->gfp_mask & __GFP_IO)) 1240 goto keep_locked; 1241 if (page_maybe_dma_pinned(page)) 1242 goto keep_locked; 1243 if (PageTransHuge(page)) { 1244 /* cannot split THP, skip it */ 1245 if (!can_split_huge_page(page, NULL)) 1246 goto activate_locked; 1247 /* 1248 * Split pages without a PMD map right 1249 * away. Chances are some or all of the 1250 * tail pages can be freed without IO. 1251 */ 1252 if (!compound_mapcount(page) && 1253 split_huge_page_to_list(page, 1254 page_list)) 1255 goto activate_locked; 1256 } 1257 if (!add_to_swap(page)) { 1258 if (!PageTransHuge(page)) 1259 goto activate_locked_split; 1260 /* Fallback to swap normal pages */ 1261 if (split_huge_page_to_list(page, 1262 page_list)) 1263 goto activate_locked; 1264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1265 count_vm_event(THP_SWPOUT_FALLBACK); 1266 #endif 1267 if (!add_to_swap(page)) 1268 goto activate_locked_split; 1269 } 1270 1271 may_enter_fs = true; 1272 1273 /* Adding to swap updated mapping */ 1274 mapping = page_mapping(page); 1275 } 1276 } else if (unlikely(PageTransHuge(page))) { 1277 /* Split file THP */ 1278 if (split_huge_page_to_list(page, page_list)) 1279 goto keep_locked; 1280 } 1281 1282 /* 1283 * THP may get split above, need minus tail pages and update 1284 * nr_pages to avoid accounting tail pages twice. 1285 * 1286 * The tail pages that are added into swap cache successfully 1287 * reach here. 1288 */ 1289 if ((nr_pages > 1) && !PageTransHuge(page)) { 1290 sc->nr_scanned -= (nr_pages - 1); 1291 nr_pages = 1; 1292 } 1293 1294 /* 1295 * The page is mapped into the page tables of one or more 1296 * processes. Try to unmap it here. 1297 */ 1298 if (page_mapped(page)) { 1299 enum ttu_flags flags = TTU_BATCH_FLUSH; 1300 bool was_swapbacked = PageSwapBacked(page); 1301 1302 if (unlikely(PageTransHuge(page))) 1303 flags |= TTU_SPLIT_HUGE_PMD; 1304 1305 if (!try_to_unmap(page, flags)) { 1306 stat->nr_unmap_fail += nr_pages; 1307 if (!was_swapbacked && PageSwapBacked(page)) 1308 stat->nr_lazyfree_fail += nr_pages; 1309 goto activate_locked; 1310 } 1311 } 1312 1313 if (PageDirty(page)) { 1314 /* 1315 * Only kswapd can writeback filesystem pages 1316 * to avoid risk of stack overflow. But avoid 1317 * injecting inefficient single-page IO into 1318 * flusher writeback as much as possible: only 1319 * write pages when we've encountered many 1320 * dirty pages, and when we've already scanned 1321 * the rest of the LRU for clean pages and see 1322 * the same dirty pages again (PageReclaim). 1323 */ 1324 if (page_is_file_lru(page) && 1325 (!current_is_kswapd() || !PageReclaim(page) || 1326 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1327 /* 1328 * Immediately reclaim when written back. 1329 * Similar in principal to deactivate_page() 1330 * except we already have the page isolated 1331 * and know it's dirty 1332 */ 1333 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1334 SetPageReclaim(page); 1335 1336 goto activate_locked; 1337 } 1338 1339 if (references == PAGEREF_RECLAIM_CLEAN) 1340 goto keep_locked; 1341 if (!may_enter_fs) 1342 goto keep_locked; 1343 if (!sc->may_writepage) 1344 goto keep_locked; 1345 1346 /* 1347 * Page is dirty. Flush the TLB if a writable entry 1348 * potentially exists to avoid CPU writes after IO 1349 * starts and then write it out here. 1350 */ 1351 try_to_unmap_flush_dirty(); 1352 switch (pageout(page, mapping)) { 1353 case PAGE_KEEP: 1354 goto keep_locked; 1355 case PAGE_ACTIVATE: 1356 goto activate_locked; 1357 case PAGE_SUCCESS: 1358 stat->nr_pageout += thp_nr_pages(page); 1359 1360 if (PageWriteback(page)) 1361 goto keep; 1362 if (PageDirty(page)) 1363 goto keep; 1364 1365 /* 1366 * A synchronous write - probably a ramdisk. Go 1367 * ahead and try to reclaim the page. 1368 */ 1369 if (!trylock_page(page)) 1370 goto keep; 1371 if (PageDirty(page) || PageWriteback(page)) 1372 goto keep_locked; 1373 mapping = page_mapping(page); 1374 fallthrough; 1375 case PAGE_CLEAN: 1376 ; /* try to free the page below */ 1377 } 1378 } 1379 1380 /* 1381 * If the page has buffers, try to free the buffer mappings 1382 * associated with this page. If we succeed we try to free 1383 * the page as well. 1384 * 1385 * We do this even if the page is PageDirty(). 1386 * try_to_release_page() does not perform I/O, but it is 1387 * possible for a page to have PageDirty set, but it is actually 1388 * clean (all its buffers are clean). This happens if the 1389 * buffers were written out directly, with submit_bh(). ext3 1390 * will do this, as well as the blockdev mapping. 1391 * try_to_release_page() will discover that cleanness and will 1392 * drop the buffers and mark the page clean - it can be freed. 1393 * 1394 * Rarely, pages can have buffers and no ->mapping. These are 1395 * the pages which were not successfully invalidated in 1396 * truncate_cleanup_page(). We try to drop those buffers here 1397 * and if that worked, and the page is no longer mapped into 1398 * process address space (page_count == 1) it can be freed. 1399 * Otherwise, leave the page on the LRU so it is swappable. 1400 */ 1401 if (page_has_private(page)) { 1402 if (!try_to_release_page(page, sc->gfp_mask)) 1403 goto activate_locked; 1404 if (!mapping && page_count(page) == 1) { 1405 unlock_page(page); 1406 if (put_page_testzero(page)) 1407 goto free_it; 1408 else { 1409 /* 1410 * rare race with speculative reference. 1411 * the speculative reference will free 1412 * this page shortly, so we may 1413 * increment nr_reclaimed here (and 1414 * leave it off the LRU). 1415 */ 1416 nr_reclaimed++; 1417 continue; 1418 } 1419 } 1420 } 1421 1422 if (PageAnon(page) && !PageSwapBacked(page)) { 1423 /* follow __remove_mapping for reference */ 1424 if (!page_ref_freeze(page, 1)) 1425 goto keep_locked; 1426 if (PageDirty(page)) { 1427 page_ref_unfreeze(page, 1); 1428 goto keep_locked; 1429 } 1430 1431 count_vm_event(PGLAZYFREED); 1432 count_memcg_page_event(page, PGLAZYFREED); 1433 } else if (!mapping || !__remove_mapping(mapping, page, true, 1434 sc->target_mem_cgroup)) 1435 goto keep_locked; 1436 1437 unlock_page(page); 1438 free_it: 1439 /* 1440 * THP may get swapped out in a whole, need account 1441 * all base pages. 1442 */ 1443 nr_reclaimed += nr_pages; 1444 1445 /* 1446 * Is there need to periodically free_page_list? It would 1447 * appear not as the counts should be low 1448 */ 1449 if (unlikely(PageTransHuge(page))) 1450 destroy_compound_page(page); 1451 else 1452 list_add(&page->lru, &free_pages); 1453 continue; 1454 1455 activate_locked_split: 1456 /* 1457 * The tail pages that are failed to add into swap cache 1458 * reach here. Fixup nr_scanned and nr_pages. 1459 */ 1460 if (nr_pages > 1) { 1461 sc->nr_scanned -= (nr_pages - 1); 1462 nr_pages = 1; 1463 } 1464 activate_locked: 1465 /* Not a candidate for swapping, so reclaim swap space. */ 1466 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1467 PageMlocked(page))) 1468 try_to_free_swap(page); 1469 VM_BUG_ON_PAGE(PageActive(page), page); 1470 if (!PageMlocked(page)) { 1471 int type = page_is_file_lru(page); 1472 SetPageActive(page); 1473 stat->nr_activate[type] += nr_pages; 1474 count_memcg_page_event(page, PGACTIVATE); 1475 } 1476 keep_locked: 1477 unlock_page(page); 1478 keep: 1479 list_add(&page->lru, &ret_pages); 1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1481 } 1482 1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1484 1485 mem_cgroup_uncharge_list(&free_pages); 1486 try_to_unmap_flush(); 1487 free_unref_page_list(&free_pages); 1488 1489 list_splice(&ret_pages, page_list); 1490 count_vm_events(PGACTIVATE, pgactivate); 1491 1492 return nr_reclaimed; 1493 } 1494 1495 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1496 struct list_head *page_list) 1497 { 1498 struct scan_control sc = { 1499 .gfp_mask = GFP_KERNEL, 1500 .priority = DEF_PRIORITY, 1501 .may_unmap = 1, 1502 }; 1503 struct reclaim_stat stat; 1504 unsigned int nr_reclaimed; 1505 struct page *page, *next; 1506 LIST_HEAD(clean_pages); 1507 1508 list_for_each_entry_safe(page, next, page_list, lru) { 1509 if (page_is_file_lru(page) && !PageDirty(page) && 1510 !__PageMovable(page) && !PageUnevictable(page)) { 1511 ClearPageActive(page); 1512 list_move(&page->lru, &clean_pages); 1513 } 1514 } 1515 1516 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1517 &stat, true); 1518 list_splice(&clean_pages, page_list); 1519 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1520 -(long)nr_reclaimed); 1521 /* 1522 * Since lazyfree pages are isolated from file LRU from the beginning, 1523 * they will rotate back to anonymous LRU in the end if it failed to 1524 * discard so isolated count will be mismatched. 1525 * Compensate the isolated count for both LRU lists. 1526 */ 1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1528 stat.nr_lazyfree_fail); 1529 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1530 -(long)stat.nr_lazyfree_fail); 1531 return nr_reclaimed; 1532 } 1533 1534 /* 1535 * Attempt to remove the specified page from its LRU. Only take this page 1536 * if it is of the appropriate PageActive status. Pages which are being 1537 * freed elsewhere are also ignored. 1538 * 1539 * page: page to consider 1540 * mode: one of the LRU isolation modes defined above 1541 * 1542 * returns 0 on success, -ve errno on failure. 1543 */ 1544 int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1545 { 1546 int ret = -EBUSY; 1547 1548 /* Only take pages on the LRU. */ 1549 if (!PageLRU(page)) 1550 return ret; 1551 1552 /* Compaction should not handle unevictable pages but CMA can do so */ 1553 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1554 return ret; 1555 1556 /* 1557 * To minimise LRU disruption, the caller can indicate that it only 1558 * wants to isolate pages it will be able to operate on without 1559 * blocking - clean pages for the most part. 1560 * 1561 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1562 * that it is possible to migrate without blocking 1563 */ 1564 if (mode & ISOLATE_ASYNC_MIGRATE) { 1565 /* All the caller can do on PageWriteback is block */ 1566 if (PageWriteback(page)) 1567 return ret; 1568 1569 if (PageDirty(page)) { 1570 struct address_space *mapping; 1571 bool migrate_dirty; 1572 1573 /* 1574 * Only pages without mappings or that have a 1575 * ->migratepage callback are possible to migrate 1576 * without blocking. However, we can be racing with 1577 * truncation so it's necessary to lock the page 1578 * to stabilise the mapping as truncation holds 1579 * the page lock until after the page is removed 1580 * from the page cache. 1581 */ 1582 if (!trylock_page(page)) 1583 return ret; 1584 1585 mapping = page_mapping(page); 1586 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1587 unlock_page(page); 1588 if (!migrate_dirty) 1589 return ret; 1590 } 1591 } 1592 1593 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1594 return ret; 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Update LRU sizes after isolating pages. The LRU size updates must 1601 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1602 */ 1603 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1604 enum lru_list lru, unsigned long *nr_zone_taken) 1605 { 1606 int zid; 1607 1608 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1609 if (!nr_zone_taken[zid]) 1610 continue; 1611 1612 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1613 } 1614 1615 } 1616 1617 /** 1618 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1619 * 1620 * lruvec->lru_lock is heavily contended. Some of the functions that 1621 * shrink the lists perform better by taking out a batch of pages 1622 * and working on them outside the LRU lock. 1623 * 1624 * For pagecache intensive workloads, this function is the hottest 1625 * spot in the kernel (apart from copy_*_user functions). 1626 * 1627 * Lru_lock must be held before calling this function. 1628 * 1629 * @nr_to_scan: The number of eligible pages to look through on the list. 1630 * @lruvec: The LRU vector to pull pages from. 1631 * @dst: The temp list to put pages on to. 1632 * @nr_scanned: The number of pages that were scanned. 1633 * @sc: The scan_control struct for this reclaim session 1634 * @lru: LRU list id for isolating 1635 * 1636 * returns how many pages were moved onto *@dst. 1637 */ 1638 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1639 struct lruvec *lruvec, struct list_head *dst, 1640 unsigned long *nr_scanned, struct scan_control *sc, 1641 enum lru_list lru) 1642 { 1643 struct list_head *src = &lruvec->lists[lru]; 1644 unsigned long nr_taken = 0; 1645 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1646 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1647 unsigned long skipped = 0; 1648 unsigned long scan, total_scan, nr_pages; 1649 LIST_HEAD(pages_skipped); 1650 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1651 1652 total_scan = 0; 1653 scan = 0; 1654 while (scan < nr_to_scan && !list_empty(src)) { 1655 struct page *page; 1656 1657 page = lru_to_page(src); 1658 prefetchw_prev_lru_page(page, src, flags); 1659 1660 nr_pages = compound_nr(page); 1661 total_scan += nr_pages; 1662 1663 if (page_zonenum(page) > sc->reclaim_idx) { 1664 list_move(&page->lru, &pages_skipped); 1665 nr_skipped[page_zonenum(page)] += nr_pages; 1666 continue; 1667 } 1668 1669 /* 1670 * Do not count skipped pages because that makes the function 1671 * return with no isolated pages if the LRU mostly contains 1672 * ineligible pages. This causes the VM to not reclaim any 1673 * pages, triggering a premature OOM. 1674 * 1675 * Account all tail pages of THP. This would not cause 1676 * premature OOM since __isolate_lru_page() returns -EBUSY 1677 * only when the page is being freed somewhere else. 1678 */ 1679 scan += nr_pages; 1680 switch (__isolate_lru_page_prepare(page, mode)) { 1681 case 0: 1682 /* 1683 * Be careful not to clear PageLRU until after we're 1684 * sure the page is not being freed elsewhere -- the 1685 * page release code relies on it. 1686 */ 1687 if (unlikely(!get_page_unless_zero(page))) 1688 goto busy; 1689 1690 if (!TestClearPageLRU(page)) { 1691 /* 1692 * This page may in other isolation path, 1693 * but we still hold lru_lock. 1694 */ 1695 put_page(page); 1696 goto busy; 1697 } 1698 1699 nr_taken += nr_pages; 1700 nr_zone_taken[page_zonenum(page)] += nr_pages; 1701 list_move(&page->lru, dst); 1702 break; 1703 1704 default: 1705 busy: 1706 /* else it is being freed elsewhere */ 1707 list_move(&page->lru, src); 1708 } 1709 } 1710 1711 /* 1712 * Splice any skipped pages to the start of the LRU list. Note that 1713 * this disrupts the LRU order when reclaiming for lower zones but 1714 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1715 * scanning would soon rescan the same pages to skip and put the 1716 * system at risk of premature OOM. 1717 */ 1718 if (!list_empty(&pages_skipped)) { 1719 int zid; 1720 1721 list_splice(&pages_skipped, src); 1722 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1723 if (!nr_skipped[zid]) 1724 continue; 1725 1726 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1727 skipped += nr_skipped[zid]; 1728 } 1729 } 1730 *nr_scanned = total_scan; 1731 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1732 total_scan, skipped, nr_taken, mode, lru); 1733 update_lru_sizes(lruvec, lru, nr_zone_taken); 1734 return nr_taken; 1735 } 1736 1737 /** 1738 * isolate_lru_page - tries to isolate a page from its LRU list 1739 * @page: page to isolate from its LRU list 1740 * 1741 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1742 * vmstat statistic corresponding to whatever LRU list the page was on. 1743 * 1744 * Returns 0 if the page was removed from an LRU list. 1745 * Returns -EBUSY if the page was not on an LRU list. 1746 * 1747 * The returned page will have PageLRU() cleared. If it was found on 1748 * the active list, it will have PageActive set. If it was found on 1749 * the unevictable list, it will have the PageUnevictable bit set. That flag 1750 * may need to be cleared by the caller before letting the page go. 1751 * 1752 * The vmstat statistic corresponding to the list on which the page was 1753 * found will be decremented. 1754 * 1755 * Restrictions: 1756 * 1757 * (1) Must be called with an elevated refcount on the page. This is a 1758 * fundamental difference from isolate_lru_pages (which is called 1759 * without a stable reference). 1760 * (2) the lru_lock must not be held. 1761 * (3) interrupts must be enabled. 1762 */ 1763 int isolate_lru_page(struct page *page) 1764 { 1765 int ret = -EBUSY; 1766 1767 VM_BUG_ON_PAGE(!page_count(page), page); 1768 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1769 1770 if (TestClearPageLRU(page)) { 1771 struct lruvec *lruvec; 1772 1773 get_page(page); 1774 lruvec = lock_page_lruvec_irq(page); 1775 del_page_from_lru_list(page, lruvec, page_lru(page)); 1776 unlock_page_lruvec_irq(lruvec); 1777 ret = 0; 1778 } 1779 1780 return ret; 1781 } 1782 1783 /* 1784 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1785 * then get rescheduled. When there are massive number of tasks doing page 1786 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1787 * the LRU list will go small and be scanned faster than necessary, leading to 1788 * unnecessary swapping, thrashing and OOM. 1789 */ 1790 static int too_many_isolated(struct pglist_data *pgdat, int file, 1791 struct scan_control *sc) 1792 { 1793 unsigned long inactive, isolated; 1794 1795 if (current_is_kswapd()) 1796 return 0; 1797 1798 if (!writeback_throttling_sane(sc)) 1799 return 0; 1800 1801 if (file) { 1802 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1803 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1804 } else { 1805 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1806 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1807 } 1808 1809 /* 1810 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1811 * won't get blocked by normal direct-reclaimers, forming a circular 1812 * deadlock. 1813 */ 1814 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1815 inactive >>= 3; 1816 1817 return isolated > inactive; 1818 } 1819 1820 /* 1821 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 1822 * On return, @list is reused as a list of pages to be freed by the caller. 1823 * 1824 * Returns the number of pages moved to the given lruvec. 1825 */ 1826 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1827 struct list_head *list) 1828 { 1829 int nr_pages, nr_moved = 0; 1830 LIST_HEAD(pages_to_free); 1831 struct page *page; 1832 enum lru_list lru; 1833 1834 while (!list_empty(list)) { 1835 page = lru_to_page(list); 1836 VM_BUG_ON_PAGE(PageLRU(page), page); 1837 list_del(&page->lru); 1838 if (unlikely(!page_evictable(page))) { 1839 spin_unlock_irq(&lruvec->lru_lock); 1840 putback_lru_page(page); 1841 spin_lock_irq(&lruvec->lru_lock); 1842 continue; 1843 } 1844 1845 /* 1846 * The SetPageLRU needs to be kept here for list integrity. 1847 * Otherwise: 1848 * #0 move_pages_to_lru #1 release_pages 1849 * if !put_page_testzero 1850 * if (put_page_testzero()) 1851 * !PageLRU //skip lru_lock 1852 * SetPageLRU() 1853 * list_add(&page->lru,) 1854 * list_add(&page->lru,) 1855 */ 1856 SetPageLRU(page); 1857 1858 if (unlikely(put_page_testzero(page))) { 1859 __ClearPageLRU(page); 1860 __ClearPageActive(page); 1861 1862 if (unlikely(PageCompound(page))) { 1863 spin_unlock_irq(&lruvec->lru_lock); 1864 destroy_compound_page(page); 1865 spin_lock_irq(&lruvec->lru_lock); 1866 } else 1867 list_add(&page->lru, &pages_to_free); 1868 1869 continue; 1870 } 1871 1872 /* 1873 * All pages were isolated from the same lruvec (and isolation 1874 * inhibits memcg migration). 1875 */ 1876 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page); 1877 lru = page_lru(page); 1878 nr_pages = thp_nr_pages(page); 1879 1880 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1881 list_add(&page->lru, &lruvec->lists[lru]); 1882 nr_moved += nr_pages; 1883 if (PageActive(page)) 1884 workingset_age_nonresident(lruvec, nr_pages); 1885 } 1886 1887 /* 1888 * To save our caller's stack, now use input list for pages to free. 1889 */ 1890 list_splice(&pages_to_free, list); 1891 1892 return nr_moved; 1893 } 1894 1895 /* 1896 * If a kernel thread (such as nfsd for loop-back mounts) services 1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1898 * In that case we should only throttle if the backing device it is 1899 * writing to is congested. In other cases it is safe to throttle. 1900 */ 1901 static int current_may_throttle(void) 1902 { 1903 return !(current->flags & PF_LOCAL_THROTTLE) || 1904 current->backing_dev_info == NULL || 1905 bdi_write_congested(current->backing_dev_info); 1906 } 1907 1908 /* 1909 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1910 * of reclaimed pages 1911 */ 1912 static noinline_for_stack unsigned long 1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1914 struct scan_control *sc, enum lru_list lru) 1915 { 1916 LIST_HEAD(page_list); 1917 unsigned long nr_scanned; 1918 unsigned int nr_reclaimed = 0; 1919 unsigned long nr_taken; 1920 struct reclaim_stat stat; 1921 bool file = is_file_lru(lru); 1922 enum vm_event_item item; 1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1924 bool stalled = false; 1925 1926 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1927 if (stalled) 1928 return 0; 1929 1930 /* wait a bit for the reclaimer. */ 1931 msleep(100); 1932 stalled = true; 1933 1934 /* We are about to die and free our memory. Return now. */ 1935 if (fatal_signal_pending(current)) 1936 return SWAP_CLUSTER_MAX; 1937 } 1938 1939 lru_add_drain(); 1940 1941 spin_lock_irq(&lruvec->lru_lock); 1942 1943 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1944 &nr_scanned, sc, lru); 1945 1946 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1947 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1948 if (!cgroup_reclaim(sc)) 1949 __count_vm_events(item, nr_scanned); 1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1951 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1952 1953 spin_unlock_irq(&lruvec->lru_lock); 1954 1955 if (nr_taken == 0) 1956 return 0; 1957 1958 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 1959 1960 spin_lock_irq(&lruvec->lru_lock); 1961 move_pages_to_lru(lruvec, &page_list); 1962 1963 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1964 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1965 if (!cgroup_reclaim(sc)) 1966 __count_vm_events(item, nr_reclaimed); 1967 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1968 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1969 spin_unlock_irq(&lruvec->lru_lock); 1970 1971 lru_note_cost(lruvec, file, stat.nr_pageout); 1972 mem_cgroup_uncharge_list(&page_list); 1973 free_unref_page_list(&page_list); 1974 1975 /* 1976 * If dirty pages are scanned that are not queued for IO, it 1977 * implies that flushers are not doing their job. This can 1978 * happen when memory pressure pushes dirty pages to the end of 1979 * the LRU before the dirty limits are breached and the dirty 1980 * data has expired. It can also happen when the proportion of 1981 * dirty pages grows not through writes but through memory 1982 * pressure reclaiming all the clean cache. And in some cases, 1983 * the flushers simply cannot keep up with the allocation 1984 * rate. Nudge the flusher threads in case they are asleep. 1985 */ 1986 if (stat.nr_unqueued_dirty == nr_taken) 1987 wakeup_flusher_threads(WB_REASON_VMSCAN); 1988 1989 sc->nr.dirty += stat.nr_dirty; 1990 sc->nr.congested += stat.nr_congested; 1991 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1992 sc->nr.writeback += stat.nr_writeback; 1993 sc->nr.immediate += stat.nr_immediate; 1994 sc->nr.taken += nr_taken; 1995 if (file) 1996 sc->nr.file_taken += nr_taken; 1997 1998 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1999 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2000 return nr_reclaimed; 2001 } 2002 2003 /* 2004 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2005 * 2006 * We move them the other way if the page is referenced by one or more 2007 * processes. 2008 * 2009 * If the pages are mostly unmapped, the processing is fast and it is 2010 * appropriate to hold lru_lock across the whole operation. But if 2011 * the pages are mapped, the processing is slow (page_referenced()), so 2012 * we should drop lru_lock around each page. It's impossible to balance 2013 * this, so instead we remove the pages from the LRU while processing them. 2014 * It is safe to rely on PG_active against the non-LRU pages in here because 2015 * nobody will play with that bit on a non-LRU page. 2016 * 2017 * The downside is that we have to touch page->_refcount against each page. 2018 * But we had to alter page->flags anyway. 2019 */ 2020 static void shrink_active_list(unsigned long nr_to_scan, 2021 struct lruvec *lruvec, 2022 struct scan_control *sc, 2023 enum lru_list lru) 2024 { 2025 unsigned long nr_taken; 2026 unsigned long nr_scanned; 2027 unsigned long vm_flags; 2028 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2029 LIST_HEAD(l_active); 2030 LIST_HEAD(l_inactive); 2031 struct page *page; 2032 unsigned nr_deactivate, nr_activate; 2033 unsigned nr_rotated = 0; 2034 int file = is_file_lru(lru); 2035 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2036 2037 lru_add_drain(); 2038 2039 spin_lock_irq(&lruvec->lru_lock); 2040 2041 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2042 &nr_scanned, sc, lru); 2043 2044 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2045 2046 if (!cgroup_reclaim(sc)) 2047 __count_vm_events(PGREFILL, nr_scanned); 2048 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2049 2050 spin_unlock_irq(&lruvec->lru_lock); 2051 2052 while (!list_empty(&l_hold)) { 2053 cond_resched(); 2054 page = lru_to_page(&l_hold); 2055 list_del(&page->lru); 2056 2057 if (unlikely(!page_evictable(page))) { 2058 putback_lru_page(page); 2059 continue; 2060 } 2061 2062 if (unlikely(buffer_heads_over_limit)) { 2063 if (page_has_private(page) && trylock_page(page)) { 2064 if (page_has_private(page)) 2065 try_to_release_page(page, 0); 2066 unlock_page(page); 2067 } 2068 } 2069 2070 if (page_referenced(page, 0, sc->target_mem_cgroup, 2071 &vm_flags)) { 2072 /* 2073 * Identify referenced, file-backed active pages and 2074 * give them one more trip around the active list. So 2075 * that executable code get better chances to stay in 2076 * memory under moderate memory pressure. Anon pages 2077 * are not likely to be evicted by use-once streaming 2078 * IO, plus JVM can create lots of anon VM_EXEC pages, 2079 * so we ignore them here. 2080 */ 2081 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2082 nr_rotated += thp_nr_pages(page); 2083 list_add(&page->lru, &l_active); 2084 continue; 2085 } 2086 } 2087 2088 ClearPageActive(page); /* we are de-activating */ 2089 SetPageWorkingset(page); 2090 list_add(&page->lru, &l_inactive); 2091 } 2092 2093 /* 2094 * Move pages back to the lru list. 2095 */ 2096 spin_lock_irq(&lruvec->lru_lock); 2097 2098 nr_activate = move_pages_to_lru(lruvec, &l_active); 2099 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2100 /* Keep all free pages in l_active list */ 2101 list_splice(&l_inactive, &l_active); 2102 2103 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2104 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2105 2106 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2107 spin_unlock_irq(&lruvec->lru_lock); 2108 2109 mem_cgroup_uncharge_list(&l_active); 2110 free_unref_page_list(&l_active); 2111 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2112 nr_deactivate, nr_rotated, sc->priority, file); 2113 } 2114 2115 unsigned long reclaim_pages(struct list_head *page_list) 2116 { 2117 int nid = NUMA_NO_NODE; 2118 unsigned int nr_reclaimed = 0; 2119 LIST_HEAD(node_page_list); 2120 struct reclaim_stat dummy_stat; 2121 struct page *page; 2122 struct scan_control sc = { 2123 .gfp_mask = GFP_KERNEL, 2124 .priority = DEF_PRIORITY, 2125 .may_writepage = 1, 2126 .may_unmap = 1, 2127 .may_swap = 1, 2128 }; 2129 2130 while (!list_empty(page_list)) { 2131 page = lru_to_page(page_list); 2132 if (nid == NUMA_NO_NODE) { 2133 nid = page_to_nid(page); 2134 INIT_LIST_HEAD(&node_page_list); 2135 } 2136 2137 if (nid == page_to_nid(page)) { 2138 ClearPageActive(page); 2139 list_move(&page->lru, &node_page_list); 2140 continue; 2141 } 2142 2143 nr_reclaimed += shrink_page_list(&node_page_list, 2144 NODE_DATA(nid), 2145 &sc, &dummy_stat, false); 2146 while (!list_empty(&node_page_list)) { 2147 page = lru_to_page(&node_page_list); 2148 list_del(&page->lru); 2149 putback_lru_page(page); 2150 } 2151 2152 nid = NUMA_NO_NODE; 2153 } 2154 2155 if (!list_empty(&node_page_list)) { 2156 nr_reclaimed += shrink_page_list(&node_page_list, 2157 NODE_DATA(nid), 2158 &sc, &dummy_stat, false); 2159 while (!list_empty(&node_page_list)) { 2160 page = lru_to_page(&node_page_list); 2161 list_del(&page->lru); 2162 putback_lru_page(page); 2163 } 2164 } 2165 2166 return nr_reclaimed; 2167 } 2168 2169 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2170 struct lruvec *lruvec, struct scan_control *sc) 2171 { 2172 if (is_active_lru(lru)) { 2173 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2174 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2175 else 2176 sc->skipped_deactivate = 1; 2177 return 0; 2178 } 2179 2180 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2181 } 2182 2183 /* 2184 * The inactive anon list should be small enough that the VM never has 2185 * to do too much work. 2186 * 2187 * The inactive file list should be small enough to leave most memory 2188 * to the established workingset on the scan-resistant active list, 2189 * but large enough to avoid thrashing the aggregate readahead window. 2190 * 2191 * Both inactive lists should also be large enough that each inactive 2192 * page has a chance to be referenced again before it is reclaimed. 2193 * 2194 * If that fails and refaulting is observed, the inactive list grows. 2195 * 2196 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2197 * on this LRU, maintained by the pageout code. An inactive_ratio 2198 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2199 * 2200 * total target max 2201 * memory ratio inactive 2202 * ------------------------------------- 2203 * 10MB 1 5MB 2204 * 100MB 1 50MB 2205 * 1GB 3 250MB 2206 * 10GB 10 0.9GB 2207 * 100GB 31 3GB 2208 * 1TB 101 10GB 2209 * 10TB 320 32GB 2210 */ 2211 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2212 { 2213 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2214 unsigned long inactive, active; 2215 unsigned long inactive_ratio; 2216 unsigned long gb; 2217 2218 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2219 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2220 2221 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2222 if (gb) 2223 inactive_ratio = int_sqrt(10 * gb); 2224 else 2225 inactive_ratio = 1; 2226 2227 return inactive * inactive_ratio < active; 2228 } 2229 2230 enum scan_balance { 2231 SCAN_EQUAL, 2232 SCAN_FRACT, 2233 SCAN_ANON, 2234 SCAN_FILE, 2235 }; 2236 2237 /* 2238 * Determine how aggressively the anon and file LRU lists should be 2239 * scanned. The relative value of each set of LRU lists is determined 2240 * by looking at the fraction of the pages scanned we did rotate back 2241 * onto the active list instead of evict. 2242 * 2243 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2244 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2245 */ 2246 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2247 unsigned long *nr) 2248 { 2249 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2250 unsigned long anon_cost, file_cost, total_cost; 2251 int swappiness = mem_cgroup_swappiness(memcg); 2252 u64 fraction[ANON_AND_FILE]; 2253 u64 denominator = 0; /* gcc */ 2254 enum scan_balance scan_balance; 2255 unsigned long ap, fp; 2256 enum lru_list lru; 2257 2258 /* If we have no swap space, do not bother scanning anon pages. */ 2259 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2260 scan_balance = SCAN_FILE; 2261 goto out; 2262 } 2263 2264 /* 2265 * Global reclaim will swap to prevent OOM even with no 2266 * swappiness, but memcg users want to use this knob to 2267 * disable swapping for individual groups completely when 2268 * using the memory controller's swap limit feature would be 2269 * too expensive. 2270 */ 2271 if (cgroup_reclaim(sc) && !swappiness) { 2272 scan_balance = SCAN_FILE; 2273 goto out; 2274 } 2275 2276 /* 2277 * Do not apply any pressure balancing cleverness when the 2278 * system is close to OOM, scan both anon and file equally 2279 * (unless the swappiness setting disagrees with swapping). 2280 */ 2281 if (!sc->priority && swappiness) { 2282 scan_balance = SCAN_EQUAL; 2283 goto out; 2284 } 2285 2286 /* 2287 * If the system is almost out of file pages, force-scan anon. 2288 */ 2289 if (sc->file_is_tiny) { 2290 scan_balance = SCAN_ANON; 2291 goto out; 2292 } 2293 2294 /* 2295 * If there is enough inactive page cache, we do not reclaim 2296 * anything from the anonymous working right now. 2297 */ 2298 if (sc->cache_trim_mode) { 2299 scan_balance = SCAN_FILE; 2300 goto out; 2301 } 2302 2303 scan_balance = SCAN_FRACT; 2304 /* 2305 * Calculate the pressure balance between anon and file pages. 2306 * 2307 * The amount of pressure we put on each LRU is inversely 2308 * proportional to the cost of reclaiming each list, as 2309 * determined by the share of pages that are refaulting, times 2310 * the relative IO cost of bringing back a swapped out 2311 * anonymous page vs reloading a filesystem page (swappiness). 2312 * 2313 * Although we limit that influence to ensure no list gets 2314 * left behind completely: at least a third of the pressure is 2315 * applied, before swappiness. 2316 * 2317 * With swappiness at 100, anon and file have equal IO cost. 2318 */ 2319 total_cost = sc->anon_cost + sc->file_cost; 2320 anon_cost = total_cost + sc->anon_cost; 2321 file_cost = total_cost + sc->file_cost; 2322 total_cost = anon_cost + file_cost; 2323 2324 ap = swappiness * (total_cost + 1); 2325 ap /= anon_cost + 1; 2326 2327 fp = (200 - swappiness) * (total_cost + 1); 2328 fp /= file_cost + 1; 2329 2330 fraction[0] = ap; 2331 fraction[1] = fp; 2332 denominator = ap + fp; 2333 out: 2334 for_each_evictable_lru(lru) { 2335 int file = is_file_lru(lru); 2336 unsigned long lruvec_size; 2337 unsigned long scan; 2338 unsigned long protection; 2339 2340 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2341 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2342 memcg, 2343 sc->memcg_low_reclaim); 2344 2345 if (protection) { 2346 /* 2347 * Scale a cgroup's reclaim pressure by proportioning 2348 * its current usage to its memory.low or memory.min 2349 * setting. 2350 * 2351 * This is important, as otherwise scanning aggression 2352 * becomes extremely binary -- from nothing as we 2353 * approach the memory protection threshold, to totally 2354 * nominal as we exceed it. This results in requiring 2355 * setting extremely liberal protection thresholds. It 2356 * also means we simply get no protection at all if we 2357 * set it too low, which is not ideal. 2358 * 2359 * If there is any protection in place, we reduce scan 2360 * pressure by how much of the total memory used is 2361 * within protection thresholds. 2362 * 2363 * There is one special case: in the first reclaim pass, 2364 * we skip over all groups that are within their low 2365 * protection. If that fails to reclaim enough pages to 2366 * satisfy the reclaim goal, we come back and override 2367 * the best-effort low protection. However, we still 2368 * ideally want to honor how well-behaved groups are in 2369 * that case instead of simply punishing them all 2370 * equally. As such, we reclaim them based on how much 2371 * memory they are using, reducing the scan pressure 2372 * again by how much of the total memory used is under 2373 * hard protection. 2374 */ 2375 unsigned long cgroup_size = mem_cgroup_size(memcg); 2376 2377 /* Avoid TOCTOU with earlier protection check */ 2378 cgroup_size = max(cgroup_size, protection); 2379 2380 scan = lruvec_size - lruvec_size * protection / 2381 cgroup_size; 2382 2383 /* 2384 * Minimally target SWAP_CLUSTER_MAX pages to keep 2385 * reclaim moving forwards, avoiding decrementing 2386 * sc->priority further than desirable. 2387 */ 2388 scan = max(scan, SWAP_CLUSTER_MAX); 2389 } else { 2390 scan = lruvec_size; 2391 } 2392 2393 scan >>= sc->priority; 2394 2395 /* 2396 * If the cgroup's already been deleted, make sure to 2397 * scrape out the remaining cache. 2398 */ 2399 if (!scan && !mem_cgroup_online(memcg)) 2400 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2401 2402 switch (scan_balance) { 2403 case SCAN_EQUAL: 2404 /* Scan lists relative to size */ 2405 break; 2406 case SCAN_FRACT: 2407 /* 2408 * Scan types proportional to swappiness and 2409 * their relative recent reclaim efficiency. 2410 * Make sure we don't miss the last page on 2411 * the offlined memory cgroups because of a 2412 * round-off error. 2413 */ 2414 scan = mem_cgroup_online(memcg) ? 2415 div64_u64(scan * fraction[file], denominator) : 2416 DIV64_U64_ROUND_UP(scan * fraction[file], 2417 denominator); 2418 break; 2419 case SCAN_FILE: 2420 case SCAN_ANON: 2421 /* Scan one type exclusively */ 2422 if ((scan_balance == SCAN_FILE) != file) 2423 scan = 0; 2424 break; 2425 default: 2426 /* Look ma, no brain */ 2427 BUG(); 2428 } 2429 2430 nr[lru] = scan; 2431 } 2432 } 2433 2434 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2435 { 2436 unsigned long nr[NR_LRU_LISTS]; 2437 unsigned long targets[NR_LRU_LISTS]; 2438 unsigned long nr_to_scan; 2439 enum lru_list lru; 2440 unsigned long nr_reclaimed = 0; 2441 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2442 struct blk_plug plug; 2443 bool scan_adjusted; 2444 2445 get_scan_count(lruvec, sc, nr); 2446 2447 /* Record the original scan target for proportional adjustments later */ 2448 memcpy(targets, nr, sizeof(nr)); 2449 2450 /* 2451 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2452 * event that can occur when there is little memory pressure e.g. 2453 * multiple streaming readers/writers. Hence, we do not abort scanning 2454 * when the requested number of pages are reclaimed when scanning at 2455 * DEF_PRIORITY on the assumption that the fact we are direct 2456 * reclaiming implies that kswapd is not keeping up and it is best to 2457 * do a batch of work at once. For memcg reclaim one check is made to 2458 * abort proportional reclaim if either the file or anon lru has already 2459 * dropped to zero at the first pass. 2460 */ 2461 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2462 sc->priority == DEF_PRIORITY); 2463 2464 blk_start_plug(&plug); 2465 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2466 nr[LRU_INACTIVE_FILE]) { 2467 unsigned long nr_anon, nr_file, percentage; 2468 unsigned long nr_scanned; 2469 2470 for_each_evictable_lru(lru) { 2471 if (nr[lru]) { 2472 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2473 nr[lru] -= nr_to_scan; 2474 2475 nr_reclaimed += shrink_list(lru, nr_to_scan, 2476 lruvec, sc); 2477 } 2478 } 2479 2480 cond_resched(); 2481 2482 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2483 continue; 2484 2485 /* 2486 * For kswapd and memcg, reclaim at least the number of pages 2487 * requested. Ensure that the anon and file LRUs are scanned 2488 * proportionally what was requested by get_scan_count(). We 2489 * stop reclaiming one LRU and reduce the amount scanning 2490 * proportional to the original scan target. 2491 */ 2492 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2493 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2494 2495 /* 2496 * It's just vindictive to attack the larger once the smaller 2497 * has gone to zero. And given the way we stop scanning the 2498 * smaller below, this makes sure that we only make one nudge 2499 * towards proportionality once we've got nr_to_reclaim. 2500 */ 2501 if (!nr_file || !nr_anon) 2502 break; 2503 2504 if (nr_file > nr_anon) { 2505 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2506 targets[LRU_ACTIVE_ANON] + 1; 2507 lru = LRU_BASE; 2508 percentage = nr_anon * 100 / scan_target; 2509 } else { 2510 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2511 targets[LRU_ACTIVE_FILE] + 1; 2512 lru = LRU_FILE; 2513 percentage = nr_file * 100 / scan_target; 2514 } 2515 2516 /* Stop scanning the smaller of the LRU */ 2517 nr[lru] = 0; 2518 nr[lru + LRU_ACTIVE] = 0; 2519 2520 /* 2521 * Recalculate the other LRU scan count based on its original 2522 * scan target and the percentage scanning already complete 2523 */ 2524 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2525 nr_scanned = targets[lru] - nr[lru]; 2526 nr[lru] = targets[lru] * (100 - percentage) / 100; 2527 nr[lru] -= min(nr[lru], nr_scanned); 2528 2529 lru += LRU_ACTIVE; 2530 nr_scanned = targets[lru] - nr[lru]; 2531 nr[lru] = targets[lru] * (100 - percentage) / 100; 2532 nr[lru] -= min(nr[lru], nr_scanned); 2533 2534 scan_adjusted = true; 2535 } 2536 blk_finish_plug(&plug); 2537 sc->nr_reclaimed += nr_reclaimed; 2538 2539 /* 2540 * Even if we did not try to evict anon pages at all, we want to 2541 * rebalance the anon lru active/inactive ratio. 2542 */ 2543 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2544 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2545 sc, LRU_ACTIVE_ANON); 2546 } 2547 2548 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2549 static bool in_reclaim_compaction(struct scan_control *sc) 2550 { 2551 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2552 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2553 sc->priority < DEF_PRIORITY - 2)) 2554 return true; 2555 2556 return false; 2557 } 2558 2559 /* 2560 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2561 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2562 * true if more pages should be reclaimed such that when the page allocator 2563 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2564 * It will give up earlier than that if there is difficulty reclaiming pages. 2565 */ 2566 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2567 unsigned long nr_reclaimed, 2568 struct scan_control *sc) 2569 { 2570 unsigned long pages_for_compaction; 2571 unsigned long inactive_lru_pages; 2572 int z; 2573 2574 /* If not in reclaim/compaction mode, stop */ 2575 if (!in_reclaim_compaction(sc)) 2576 return false; 2577 2578 /* 2579 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2580 * number of pages that were scanned. This will return to the caller 2581 * with the risk reclaim/compaction and the resulting allocation attempt 2582 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2583 * allocations through requiring that the full LRU list has been scanned 2584 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2585 * scan, but that approximation was wrong, and there were corner cases 2586 * where always a non-zero amount of pages were scanned. 2587 */ 2588 if (!nr_reclaimed) 2589 return false; 2590 2591 /* If compaction would go ahead or the allocation would succeed, stop */ 2592 for (z = 0; z <= sc->reclaim_idx; z++) { 2593 struct zone *zone = &pgdat->node_zones[z]; 2594 if (!managed_zone(zone)) 2595 continue; 2596 2597 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2598 case COMPACT_SUCCESS: 2599 case COMPACT_CONTINUE: 2600 return false; 2601 default: 2602 /* check next zone */ 2603 ; 2604 } 2605 } 2606 2607 /* 2608 * If we have not reclaimed enough pages for compaction and the 2609 * inactive lists are large enough, continue reclaiming 2610 */ 2611 pages_for_compaction = compact_gap(sc->order); 2612 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2613 if (get_nr_swap_pages() > 0) 2614 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2615 2616 return inactive_lru_pages > pages_for_compaction; 2617 } 2618 2619 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2620 { 2621 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2622 struct mem_cgroup *memcg; 2623 2624 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2625 do { 2626 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2627 unsigned long reclaimed; 2628 unsigned long scanned; 2629 2630 /* 2631 * This loop can become CPU-bound when target memcgs 2632 * aren't eligible for reclaim - either because they 2633 * don't have any reclaimable pages, or because their 2634 * memory is explicitly protected. Avoid soft lockups. 2635 */ 2636 cond_resched(); 2637 2638 mem_cgroup_calculate_protection(target_memcg, memcg); 2639 2640 if (mem_cgroup_below_min(memcg)) { 2641 /* 2642 * Hard protection. 2643 * If there is no reclaimable memory, OOM. 2644 */ 2645 continue; 2646 } else if (mem_cgroup_below_low(memcg)) { 2647 /* 2648 * Soft protection. 2649 * Respect the protection only as long as 2650 * there is an unprotected supply 2651 * of reclaimable memory from other cgroups. 2652 */ 2653 if (!sc->memcg_low_reclaim) { 2654 sc->memcg_low_skipped = 1; 2655 continue; 2656 } 2657 memcg_memory_event(memcg, MEMCG_LOW); 2658 } 2659 2660 reclaimed = sc->nr_reclaimed; 2661 scanned = sc->nr_scanned; 2662 2663 shrink_lruvec(lruvec, sc); 2664 2665 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2666 sc->priority); 2667 2668 /* Record the group's reclaim efficiency */ 2669 vmpressure(sc->gfp_mask, memcg, false, 2670 sc->nr_scanned - scanned, 2671 sc->nr_reclaimed - reclaimed); 2672 2673 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2674 } 2675 2676 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2677 { 2678 struct reclaim_state *reclaim_state = current->reclaim_state; 2679 unsigned long nr_reclaimed, nr_scanned; 2680 struct lruvec *target_lruvec; 2681 bool reclaimable = false; 2682 unsigned long file; 2683 2684 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2685 2686 again: 2687 memset(&sc->nr, 0, sizeof(sc->nr)); 2688 2689 nr_reclaimed = sc->nr_reclaimed; 2690 nr_scanned = sc->nr_scanned; 2691 2692 /* 2693 * Determine the scan balance between anon and file LRUs. 2694 */ 2695 spin_lock_irq(&target_lruvec->lru_lock); 2696 sc->anon_cost = target_lruvec->anon_cost; 2697 sc->file_cost = target_lruvec->file_cost; 2698 spin_unlock_irq(&target_lruvec->lru_lock); 2699 2700 /* 2701 * Target desirable inactive:active list ratios for the anon 2702 * and file LRU lists. 2703 */ 2704 if (!sc->force_deactivate) { 2705 unsigned long refaults; 2706 2707 refaults = lruvec_page_state(target_lruvec, 2708 WORKINGSET_ACTIVATE_ANON); 2709 if (refaults != target_lruvec->refaults[0] || 2710 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2711 sc->may_deactivate |= DEACTIVATE_ANON; 2712 else 2713 sc->may_deactivate &= ~DEACTIVATE_ANON; 2714 2715 /* 2716 * When refaults are being observed, it means a new 2717 * workingset is being established. Deactivate to get 2718 * rid of any stale active pages quickly. 2719 */ 2720 refaults = lruvec_page_state(target_lruvec, 2721 WORKINGSET_ACTIVATE_FILE); 2722 if (refaults != target_lruvec->refaults[1] || 2723 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2724 sc->may_deactivate |= DEACTIVATE_FILE; 2725 else 2726 sc->may_deactivate &= ~DEACTIVATE_FILE; 2727 } else 2728 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2729 2730 /* 2731 * If we have plenty of inactive file pages that aren't 2732 * thrashing, try to reclaim those first before touching 2733 * anonymous pages. 2734 */ 2735 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2736 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2737 sc->cache_trim_mode = 1; 2738 else 2739 sc->cache_trim_mode = 0; 2740 2741 /* 2742 * Prevent the reclaimer from falling into the cache trap: as 2743 * cache pages start out inactive, every cache fault will tip 2744 * the scan balance towards the file LRU. And as the file LRU 2745 * shrinks, so does the window for rotation from references. 2746 * This means we have a runaway feedback loop where a tiny 2747 * thrashing file LRU becomes infinitely more attractive than 2748 * anon pages. Try to detect this based on file LRU size. 2749 */ 2750 if (!cgroup_reclaim(sc)) { 2751 unsigned long total_high_wmark = 0; 2752 unsigned long free, anon; 2753 int z; 2754 2755 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2756 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2757 node_page_state(pgdat, NR_INACTIVE_FILE); 2758 2759 for (z = 0; z < MAX_NR_ZONES; z++) { 2760 struct zone *zone = &pgdat->node_zones[z]; 2761 if (!managed_zone(zone)) 2762 continue; 2763 2764 total_high_wmark += high_wmark_pages(zone); 2765 } 2766 2767 /* 2768 * Consider anon: if that's low too, this isn't a 2769 * runaway file reclaim problem, but rather just 2770 * extreme pressure. Reclaim as per usual then. 2771 */ 2772 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2773 2774 sc->file_is_tiny = 2775 file + free <= total_high_wmark && 2776 !(sc->may_deactivate & DEACTIVATE_ANON) && 2777 anon >> sc->priority; 2778 } 2779 2780 shrink_node_memcgs(pgdat, sc); 2781 2782 if (reclaim_state) { 2783 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2784 reclaim_state->reclaimed_slab = 0; 2785 } 2786 2787 /* Record the subtree's reclaim efficiency */ 2788 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2789 sc->nr_scanned - nr_scanned, 2790 sc->nr_reclaimed - nr_reclaimed); 2791 2792 if (sc->nr_reclaimed - nr_reclaimed) 2793 reclaimable = true; 2794 2795 if (current_is_kswapd()) { 2796 /* 2797 * If reclaim is isolating dirty pages under writeback, 2798 * it implies that the long-lived page allocation rate 2799 * is exceeding the page laundering rate. Either the 2800 * global limits are not being effective at throttling 2801 * processes due to the page distribution throughout 2802 * zones or there is heavy usage of a slow backing 2803 * device. The only option is to throttle from reclaim 2804 * context which is not ideal as there is no guarantee 2805 * the dirtying process is throttled in the same way 2806 * balance_dirty_pages() manages. 2807 * 2808 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2809 * count the number of pages under pages flagged for 2810 * immediate reclaim and stall if any are encountered 2811 * in the nr_immediate check below. 2812 */ 2813 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2814 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2815 2816 /* Allow kswapd to start writing pages during reclaim.*/ 2817 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2818 set_bit(PGDAT_DIRTY, &pgdat->flags); 2819 2820 /* 2821 * If kswapd scans pages marked for immediate 2822 * reclaim and under writeback (nr_immediate), it 2823 * implies that pages are cycling through the LRU 2824 * faster than they are written so also forcibly stall. 2825 */ 2826 if (sc->nr.immediate) 2827 congestion_wait(BLK_RW_ASYNC, HZ/10); 2828 } 2829 2830 /* 2831 * Tag a node/memcg as congested if all the dirty pages 2832 * scanned were backed by a congested BDI and 2833 * wait_iff_congested will stall. 2834 * 2835 * Legacy memcg will stall in page writeback so avoid forcibly 2836 * stalling in wait_iff_congested(). 2837 */ 2838 if ((current_is_kswapd() || 2839 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2840 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2841 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2842 2843 /* 2844 * Stall direct reclaim for IO completions if underlying BDIs 2845 * and node is congested. Allow kswapd to continue until it 2846 * starts encountering unqueued dirty pages or cycling through 2847 * the LRU too quickly. 2848 */ 2849 if (!current_is_kswapd() && current_may_throttle() && 2850 !sc->hibernation_mode && 2851 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2852 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2853 2854 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2855 sc)) 2856 goto again; 2857 2858 /* 2859 * Kswapd gives up on balancing particular nodes after too 2860 * many failures to reclaim anything from them and goes to 2861 * sleep. On reclaim progress, reset the failure counter. A 2862 * successful direct reclaim run will revive a dormant kswapd. 2863 */ 2864 if (reclaimable) 2865 pgdat->kswapd_failures = 0; 2866 } 2867 2868 /* 2869 * Returns true if compaction should go ahead for a costly-order request, or 2870 * the allocation would already succeed without compaction. Return false if we 2871 * should reclaim first. 2872 */ 2873 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2874 { 2875 unsigned long watermark; 2876 enum compact_result suitable; 2877 2878 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2879 if (suitable == COMPACT_SUCCESS) 2880 /* Allocation should succeed already. Don't reclaim. */ 2881 return true; 2882 if (suitable == COMPACT_SKIPPED) 2883 /* Compaction cannot yet proceed. Do reclaim. */ 2884 return false; 2885 2886 /* 2887 * Compaction is already possible, but it takes time to run and there 2888 * are potentially other callers using the pages just freed. So proceed 2889 * with reclaim to make a buffer of free pages available to give 2890 * compaction a reasonable chance of completing and allocating the page. 2891 * Note that we won't actually reclaim the whole buffer in one attempt 2892 * as the target watermark in should_continue_reclaim() is lower. But if 2893 * we are already above the high+gap watermark, don't reclaim at all. 2894 */ 2895 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2896 2897 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2898 } 2899 2900 /* 2901 * This is the direct reclaim path, for page-allocating processes. We only 2902 * try to reclaim pages from zones which will satisfy the caller's allocation 2903 * request. 2904 * 2905 * If a zone is deemed to be full of pinned pages then just give it a light 2906 * scan then give up on it. 2907 */ 2908 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2909 { 2910 struct zoneref *z; 2911 struct zone *zone; 2912 unsigned long nr_soft_reclaimed; 2913 unsigned long nr_soft_scanned; 2914 gfp_t orig_mask; 2915 pg_data_t *last_pgdat = NULL; 2916 2917 /* 2918 * If the number of buffer_heads in the machine exceeds the maximum 2919 * allowed level, force direct reclaim to scan the highmem zone as 2920 * highmem pages could be pinning lowmem pages storing buffer_heads 2921 */ 2922 orig_mask = sc->gfp_mask; 2923 if (buffer_heads_over_limit) { 2924 sc->gfp_mask |= __GFP_HIGHMEM; 2925 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2926 } 2927 2928 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2929 sc->reclaim_idx, sc->nodemask) { 2930 /* 2931 * Take care memory controller reclaiming has small influence 2932 * to global LRU. 2933 */ 2934 if (!cgroup_reclaim(sc)) { 2935 if (!cpuset_zone_allowed(zone, 2936 GFP_KERNEL | __GFP_HARDWALL)) 2937 continue; 2938 2939 /* 2940 * If we already have plenty of memory free for 2941 * compaction in this zone, don't free any more. 2942 * Even though compaction is invoked for any 2943 * non-zero order, only frequent costly order 2944 * reclamation is disruptive enough to become a 2945 * noticeable problem, like transparent huge 2946 * page allocations. 2947 */ 2948 if (IS_ENABLED(CONFIG_COMPACTION) && 2949 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2950 compaction_ready(zone, sc)) { 2951 sc->compaction_ready = true; 2952 continue; 2953 } 2954 2955 /* 2956 * Shrink each node in the zonelist once. If the 2957 * zonelist is ordered by zone (not the default) then a 2958 * node may be shrunk multiple times but in that case 2959 * the user prefers lower zones being preserved. 2960 */ 2961 if (zone->zone_pgdat == last_pgdat) 2962 continue; 2963 2964 /* 2965 * This steals pages from memory cgroups over softlimit 2966 * and returns the number of reclaimed pages and 2967 * scanned pages. This works for global memory pressure 2968 * and balancing, not for a memcg's limit. 2969 */ 2970 nr_soft_scanned = 0; 2971 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2972 sc->order, sc->gfp_mask, 2973 &nr_soft_scanned); 2974 sc->nr_reclaimed += nr_soft_reclaimed; 2975 sc->nr_scanned += nr_soft_scanned; 2976 /* need some check for avoid more shrink_zone() */ 2977 } 2978 2979 /* See comment about same check for global reclaim above */ 2980 if (zone->zone_pgdat == last_pgdat) 2981 continue; 2982 last_pgdat = zone->zone_pgdat; 2983 shrink_node(zone->zone_pgdat, sc); 2984 } 2985 2986 /* 2987 * Restore to original mask to avoid the impact on the caller if we 2988 * promoted it to __GFP_HIGHMEM. 2989 */ 2990 sc->gfp_mask = orig_mask; 2991 } 2992 2993 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2994 { 2995 struct lruvec *target_lruvec; 2996 unsigned long refaults; 2997 2998 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2999 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3000 target_lruvec->refaults[0] = refaults; 3001 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3002 target_lruvec->refaults[1] = refaults; 3003 } 3004 3005 /* 3006 * This is the main entry point to direct page reclaim. 3007 * 3008 * If a full scan of the inactive list fails to free enough memory then we 3009 * are "out of memory" and something needs to be killed. 3010 * 3011 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3012 * high - the zone may be full of dirty or under-writeback pages, which this 3013 * caller can't do much about. We kick the writeback threads and take explicit 3014 * naps in the hope that some of these pages can be written. But if the 3015 * allocating task holds filesystem locks which prevent writeout this might not 3016 * work, and the allocation attempt will fail. 3017 * 3018 * returns: 0, if no pages reclaimed 3019 * else, the number of pages reclaimed 3020 */ 3021 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3022 struct scan_control *sc) 3023 { 3024 int initial_priority = sc->priority; 3025 pg_data_t *last_pgdat; 3026 struct zoneref *z; 3027 struct zone *zone; 3028 retry: 3029 delayacct_freepages_start(); 3030 3031 if (!cgroup_reclaim(sc)) 3032 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3033 3034 do { 3035 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3036 sc->priority); 3037 sc->nr_scanned = 0; 3038 shrink_zones(zonelist, sc); 3039 3040 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3041 break; 3042 3043 if (sc->compaction_ready) 3044 break; 3045 3046 /* 3047 * If we're getting trouble reclaiming, start doing 3048 * writepage even in laptop mode. 3049 */ 3050 if (sc->priority < DEF_PRIORITY - 2) 3051 sc->may_writepage = 1; 3052 } while (--sc->priority >= 0); 3053 3054 last_pgdat = NULL; 3055 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3056 sc->nodemask) { 3057 if (zone->zone_pgdat == last_pgdat) 3058 continue; 3059 last_pgdat = zone->zone_pgdat; 3060 3061 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3062 3063 if (cgroup_reclaim(sc)) { 3064 struct lruvec *lruvec; 3065 3066 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3067 zone->zone_pgdat); 3068 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3069 } 3070 } 3071 3072 delayacct_freepages_end(); 3073 3074 if (sc->nr_reclaimed) 3075 return sc->nr_reclaimed; 3076 3077 /* Aborted reclaim to try compaction? don't OOM, then */ 3078 if (sc->compaction_ready) 3079 return 1; 3080 3081 /* 3082 * We make inactive:active ratio decisions based on the node's 3083 * composition of memory, but a restrictive reclaim_idx or a 3084 * memory.low cgroup setting can exempt large amounts of 3085 * memory from reclaim. Neither of which are very common, so 3086 * instead of doing costly eligibility calculations of the 3087 * entire cgroup subtree up front, we assume the estimates are 3088 * good, and retry with forcible deactivation if that fails. 3089 */ 3090 if (sc->skipped_deactivate) { 3091 sc->priority = initial_priority; 3092 sc->force_deactivate = 1; 3093 sc->skipped_deactivate = 0; 3094 goto retry; 3095 } 3096 3097 /* Untapped cgroup reserves? Don't OOM, retry. */ 3098 if (sc->memcg_low_skipped) { 3099 sc->priority = initial_priority; 3100 sc->force_deactivate = 0; 3101 sc->memcg_low_reclaim = 1; 3102 sc->memcg_low_skipped = 0; 3103 goto retry; 3104 } 3105 3106 return 0; 3107 } 3108 3109 static bool allow_direct_reclaim(pg_data_t *pgdat) 3110 { 3111 struct zone *zone; 3112 unsigned long pfmemalloc_reserve = 0; 3113 unsigned long free_pages = 0; 3114 int i; 3115 bool wmark_ok; 3116 3117 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3118 return true; 3119 3120 for (i = 0; i <= ZONE_NORMAL; i++) { 3121 zone = &pgdat->node_zones[i]; 3122 if (!managed_zone(zone)) 3123 continue; 3124 3125 if (!zone_reclaimable_pages(zone)) 3126 continue; 3127 3128 pfmemalloc_reserve += min_wmark_pages(zone); 3129 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3130 } 3131 3132 /* If there are no reserves (unexpected config) then do not throttle */ 3133 if (!pfmemalloc_reserve) 3134 return true; 3135 3136 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3137 3138 /* kswapd must be awake if processes are being throttled */ 3139 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3140 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3141 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3142 3143 wake_up_interruptible(&pgdat->kswapd_wait); 3144 } 3145 3146 return wmark_ok; 3147 } 3148 3149 /* 3150 * Throttle direct reclaimers if backing storage is backed by the network 3151 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3152 * depleted. kswapd will continue to make progress and wake the processes 3153 * when the low watermark is reached. 3154 * 3155 * Returns true if a fatal signal was delivered during throttling. If this 3156 * happens, the page allocator should not consider triggering the OOM killer. 3157 */ 3158 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3159 nodemask_t *nodemask) 3160 { 3161 struct zoneref *z; 3162 struct zone *zone; 3163 pg_data_t *pgdat = NULL; 3164 3165 /* 3166 * Kernel threads should not be throttled as they may be indirectly 3167 * responsible for cleaning pages necessary for reclaim to make forward 3168 * progress. kjournald for example may enter direct reclaim while 3169 * committing a transaction where throttling it could forcing other 3170 * processes to block on log_wait_commit(). 3171 */ 3172 if (current->flags & PF_KTHREAD) 3173 goto out; 3174 3175 /* 3176 * If a fatal signal is pending, this process should not throttle. 3177 * It should return quickly so it can exit and free its memory 3178 */ 3179 if (fatal_signal_pending(current)) 3180 goto out; 3181 3182 /* 3183 * Check if the pfmemalloc reserves are ok by finding the first node 3184 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3185 * GFP_KERNEL will be required for allocating network buffers when 3186 * swapping over the network so ZONE_HIGHMEM is unusable. 3187 * 3188 * Throttling is based on the first usable node and throttled processes 3189 * wait on a queue until kswapd makes progress and wakes them. There 3190 * is an affinity then between processes waking up and where reclaim 3191 * progress has been made assuming the process wakes on the same node. 3192 * More importantly, processes running on remote nodes will not compete 3193 * for remote pfmemalloc reserves and processes on different nodes 3194 * should make reasonable progress. 3195 */ 3196 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3197 gfp_zone(gfp_mask), nodemask) { 3198 if (zone_idx(zone) > ZONE_NORMAL) 3199 continue; 3200 3201 /* Throttle based on the first usable node */ 3202 pgdat = zone->zone_pgdat; 3203 if (allow_direct_reclaim(pgdat)) 3204 goto out; 3205 break; 3206 } 3207 3208 /* If no zone was usable by the allocation flags then do not throttle */ 3209 if (!pgdat) 3210 goto out; 3211 3212 /* Account for the throttling */ 3213 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3214 3215 /* 3216 * If the caller cannot enter the filesystem, it's possible that it 3217 * is due to the caller holding an FS lock or performing a journal 3218 * transaction in the case of a filesystem like ext[3|4]. In this case, 3219 * it is not safe to block on pfmemalloc_wait as kswapd could be 3220 * blocked waiting on the same lock. Instead, throttle for up to a 3221 * second before continuing. 3222 */ 3223 if (!(gfp_mask & __GFP_FS)) { 3224 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3225 allow_direct_reclaim(pgdat), HZ); 3226 3227 goto check_pending; 3228 } 3229 3230 /* Throttle until kswapd wakes the process */ 3231 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3232 allow_direct_reclaim(pgdat)); 3233 3234 check_pending: 3235 if (fatal_signal_pending(current)) 3236 return true; 3237 3238 out: 3239 return false; 3240 } 3241 3242 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3243 gfp_t gfp_mask, nodemask_t *nodemask) 3244 { 3245 unsigned long nr_reclaimed; 3246 struct scan_control sc = { 3247 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3248 .gfp_mask = current_gfp_context(gfp_mask), 3249 .reclaim_idx = gfp_zone(gfp_mask), 3250 .order = order, 3251 .nodemask = nodemask, 3252 .priority = DEF_PRIORITY, 3253 .may_writepage = !laptop_mode, 3254 .may_unmap = 1, 3255 .may_swap = 1, 3256 }; 3257 3258 /* 3259 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3260 * Confirm they are large enough for max values. 3261 */ 3262 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3263 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3264 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3265 3266 /* 3267 * Do not enter reclaim if fatal signal was delivered while throttled. 3268 * 1 is returned so that the page allocator does not OOM kill at this 3269 * point. 3270 */ 3271 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3272 return 1; 3273 3274 set_task_reclaim_state(current, &sc.reclaim_state); 3275 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3276 3277 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3278 3279 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3280 set_task_reclaim_state(current, NULL); 3281 3282 return nr_reclaimed; 3283 } 3284 3285 #ifdef CONFIG_MEMCG 3286 3287 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3288 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3289 gfp_t gfp_mask, bool noswap, 3290 pg_data_t *pgdat, 3291 unsigned long *nr_scanned) 3292 { 3293 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3294 struct scan_control sc = { 3295 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3296 .target_mem_cgroup = memcg, 3297 .may_writepage = !laptop_mode, 3298 .may_unmap = 1, 3299 .reclaim_idx = MAX_NR_ZONES - 1, 3300 .may_swap = !noswap, 3301 }; 3302 3303 WARN_ON_ONCE(!current->reclaim_state); 3304 3305 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3306 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3307 3308 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3309 sc.gfp_mask); 3310 3311 /* 3312 * NOTE: Although we can get the priority field, using it 3313 * here is not a good idea, since it limits the pages we can scan. 3314 * if we don't reclaim here, the shrink_node from balance_pgdat 3315 * will pick up pages from other mem cgroup's as well. We hack 3316 * the priority and make it zero. 3317 */ 3318 shrink_lruvec(lruvec, &sc); 3319 3320 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3321 3322 *nr_scanned = sc.nr_scanned; 3323 3324 return sc.nr_reclaimed; 3325 } 3326 3327 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3328 unsigned long nr_pages, 3329 gfp_t gfp_mask, 3330 bool may_swap) 3331 { 3332 unsigned long nr_reclaimed; 3333 unsigned int noreclaim_flag; 3334 struct scan_control sc = { 3335 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3336 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3337 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3338 .reclaim_idx = MAX_NR_ZONES - 1, 3339 .target_mem_cgroup = memcg, 3340 .priority = DEF_PRIORITY, 3341 .may_writepage = !laptop_mode, 3342 .may_unmap = 1, 3343 .may_swap = may_swap, 3344 }; 3345 /* 3346 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3347 * equal pressure on all the nodes. This is based on the assumption that 3348 * the reclaim does not bail out early. 3349 */ 3350 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3351 3352 set_task_reclaim_state(current, &sc.reclaim_state); 3353 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3354 noreclaim_flag = memalloc_noreclaim_save(); 3355 3356 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3357 3358 memalloc_noreclaim_restore(noreclaim_flag); 3359 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3360 set_task_reclaim_state(current, NULL); 3361 3362 return nr_reclaimed; 3363 } 3364 #endif 3365 3366 static void age_active_anon(struct pglist_data *pgdat, 3367 struct scan_control *sc) 3368 { 3369 struct mem_cgroup *memcg; 3370 struct lruvec *lruvec; 3371 3372 if (!total_swap_pages) 3373 return; 3374 3375 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3376 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3377 return; 3378 3379 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3380 do { 3381 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3382 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3383 sc, LRU_ACTIVE_ANON); 3384 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3385 } while (memcg); 3386 } 3387 3388 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3389 { 3390 int i; 3391 struct zone *zone; 3392 3393 /* 3394 * Check for watermark boosts top-down as the higher zones 3395 * are more likely to be boosted. Both watermarks and boosts 3396 * should not be checked at the same time as reclaim would 3397 * start prematurely when there is no boosting and a lower 3398 * zone is balanced. 3399 */ 3400 for (i = highest_zoneidx; i >= 0; i--) { 3401 zone = pgdat->node_zones + i; 3402 if (!managed_zone(zone)) 3403 continue; 3404 3405 if (zone->watermark_boost) 3406 return true; 3407 } 3408 3409 return false; 3410 } 3411 3412 /* 3413 * Returns true if there is an eligible zone balanced for the request order 3414 * and highest_zoneidx 3415 */ 3416 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3417 { 3418 int i; 3419 unsigned long mark = -1; 3420 struct zone *zone; 3421 3422 /* 3423 * Check watermarks bottom-up as lower zones are more likely to 3424 * meet watermarks. 3425 */ 3426 for (i = 0; i <= highest_zoneidx; i++) { 3427 zone = pgdat->node_zones + i; 3428 3429 if (!managed_zone(zone)) 3430 continue; 3431 3432 mark = high_wmark_pages(zone); 3433 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3434 return true; 3435 } 3436 3437 /* 3438 * If a node has no populated zone within highest_zoneidx, it does not 3439 * need balancing by definition. This can happen if a zone-restricted 3440 * allocation tries to wake a remote kswapd. 3441 */ 3442 if (mark == -1) 3443 return true; 3444 3445 return false; 3446 } 3447 3448 /* Clear pgdat state for congested, dirty or under writeback. */ 3449 static void clear_pgdat_congested(pg_data_t *pgdat) 3450 { 3451 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3452 3453 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3454 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3455 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3456 } 3457 3458 /* 3459 * Prepare kswapd for sleeping. This verifies that there are no processes 3460 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3461 * 3462 * Returns true if kswapd is ready to sleep 3463 */ 3464 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3465 int highest_zoneidx) 3466 { 3467 /* 3468 * The throttled processes are normally woken up in balance_pgdat() as 3469 * soon as allow_direct_reclaim() is true. But there is a potential 3470 * race between when kswapd checks the watermarks and a process gets 3471 * throttled. There is also a potential race if processes get 3472 * throttled, kswapd wakes, a large process exits thereby balancing the 3473 * zones, which causes kswapd to exit balance_pgdat() before reaching 3474 * the wake up checks. If kswapd is going to sleep, no process should 3475 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3476 * the wake up is premature, processes will wake kswapd and get 3477 * throttled again. The difference from wake ups in balance_pgdat() is 3478 * that here we are under prepare_to_wait(). 3479 */ 3480 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3481 wake_up_all(&pgdat->pfmemalloc_wait); 3482 3483 /* Hopeless node, leave it to direct reclaim */ 3484 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3485 return true; 3486 3487 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3488 clear_pgdat_congested(pgdat); 3489 return true; 3490 } 3491 3492 return false; 3493 } 3494 3495 /* 3496 * kswapd shrinks a node of pages that are at or below the highest usable 3497 * zone that is currently unbalanced. 3498 * 3499 * Returns true if kswapd scanned at least the requested number of pages to 3500 * reclaim or if the lack of progress was due to pages under writeback. 3501 * This is used to determine if the scanning priority needs to be raised. 3502 */ 3503 static bool kswapd_shrink_node(pg_data_t *pgdat, 3504 struct scan_control *sc) 3505 { 3506 struct zone *zone; 3507 int z; 3508 3509 /* Reclaim a number of pages proportional to the number of zones */ 3510 sc->nr_to_reclaim = 0; 3511 for (z = 0; z <= sc->reclaim_idx; z++) { 3512 zone = pgdat->node_zones + z; 3513 if (!managed_zone(zone)) 3514 continue; 3515 3516 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3517 } 3518 3519 /* 3520 * Historically care was taken to put equal pressure on all zones but 3521 * now pressure is applied based on node LRU order. 3522 */ 3523 shrink_node(pgdat, sc); 3524 3525 /* 3526 * Fragmentation may mean that the system cannot be rebalanced for 3527 * high-order allocations. If twice the allocation size has been 3528 * reclaimed then recheck watermarks only at order-0 to prevent 3529 * excessive reclaim. Assume that a process requested a high-order 3530 * can direct reclaim/compact. 3531 */ 3532 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3533 sc->order = 0; 3534 3535 return sc->nr_scanned >= sc->nr_to_reclaim; 3536 } 3537 3538 /* 3539 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3540 * that are eligible for use by the caller until at least one zone is 3541 * balanced. 3542 * 3543 * Returns the order kswapd finished reclaiming at. 3544 * 3545 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3546 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3547 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3548 * or lower is eligible for reclaim until at least one usable zone is 3549 * balanced. 3550 */ 3551 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3552 { 3553 int i; 3554 unsigned long nr_soft_reclaimed; 3555 unsigned long nr_soft_scanned; 3556 unsigned long pflags; 3557 unsigned long nr_boost_reclaim; 3558 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3559 bool boosted; 3560 struct zone *zone; 3561 struct scan_control sc = { 3562 .gfp_mask = GFP_KERNEL, 3563 .order = order, 3564 .may_unmap = 1, 3565 }; 3566 3567 set_task_reclaim_state(current, &sc.reclaim_state); 3568 psi_memstall_enter(&pflags); 3569 __fs_reclaim_acquire(); 3570 3571 count_vm_event(PAGEOUTRUN); 3572 3573 /* 3574 * Account for the reclaim boost. Note that the zone boost is left in 3575 * place so that parallel allocations that are near the watermark will 3576 * stall or direct reclaim until kswapd is finished. 3577 */ 3578 nr_boost_reclaim = 0; 3579 for (i = 0; i <= highest_zoneidx; i++) { 3580 zone = pgdat->node_zones + i; 3581 if (!managed_zone(zone)) 3582 continue; 3583 3584 nr_boost_reclaim += zone->watermark_boost; 3585 zone_boosts[i] = zone->watermark_boost; 3586 } 3587 boosted = nr_boost_reclaim; 3588 3589 restart: 3590 sc.priority = DEF_PRIORITY; 3591 do { 3592 unsigned long nr_reclaimed = sc.nr_reclaimed; 3593 bool raise_priority = true; 3594 bool balanced; 3595 bool ret; 3596 3597 sc.reclaim_idx = highest_zoneidx; 3598 3599 /* 3600 * If the number of buffer_heads exceeds the maximum allowed 3601 * then consider reclaiming from all zones. This has a dual 3602 * purpose -- on 64-bit systems it is expected that 3603 * buffer_heads are stripped during active rotation. On 32-bit 3604 * systems, highmem pages can pin lowmem memory and shrinking 3605 * buffers can relieve lowmem pressure. Reclaim may still not 3606 * go ahead if all eligible zones for the original allocation 3607 * request are balanced to avoid excessive reclaim from kswapd. 3608 */ 3609 if (buffer_heads_over_limit) { 3610 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3611 zone = pgdat->node_zones + i; 3612 if (!managed_zone(zone)) 3613 continue; 3614 3615 sc.reclaim_idx = i; 3616 break; 3617 } 3618 } 3619 3620 /* 3621 * If the pgdat is imbalanced then ignore boosting and preserve 3622 * the watermarks for a later time and restart. Note that the 3623 * zone watermarks will be still reset at the end of balancing 3624 * on the grounds that the normal reclaim should be enough to 3625 * re-evaluate if boosting is required when kswapd next wakes. 3626 */ 3627 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3628 if (!balanced && nr_boost_reclaim) { 3629 nr_boost_reclaim = 0; 3630 goto restart; 3631 } 3632 3633 /* 3634 * If boosting is not active then only reclaim if there are no 3635 * eligible zones. Note that sc.reclaim_idx is not used as 3636 * buffer_heads_over_limit may have adjusted it. 3637 */ 3638 if (!nr_boost_reclaim && balanced) 3639 goto out; 3640 3641 /* Limit the priority of boosting to avoid reclaim writeback */ 3642 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3643 raise_priority = false; 3644 3645 /* 3646 * Do not writeback or swap pages for boosted reclaim. The 3647 * intent is to relieve pressure not issue sub-optimal IO 3648 * from reclaim context. If no pages are reclaimed, the 3649 * reclaim will be aborted. 3650 */ 3651 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3652 sc.may_swap = !nr_boost_reclaim; 3653 3654 /* 3655 * Do some background aging of the anon list, to give 3656 * pages a chance to be referenced before reclaiming. All 3657 * pages are rotated regardless of classzone as this is 3658 * about consistent aging. 3659 */ 3660 age_active_anon(pgdat, &sc); 3661 3662 /* 3663 * If we're getting trouble reclaiming, start doing writepage 3664 * even in laptop mode. 3665 */ 3666 if (sc.priority < DEF_PRIORITY - 2) 3667 sc.may_writepage = 1; 3668 3669 /* Call soft limit reclaim before calling shrink_node. */ 3670 sc.nr_scanned = 0; 3671 nr_soft_scanned = 0; 3672 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3673 sc.gfp_mask, &nr_soft_scanned); 3674 sc.nr_reclaimed += nr_soft_reclaimed; 3675 3676 /* 3677 * There should be no need to raise the scanning priority if 3678 * enough pages are already being scanned that that high 3679 * watermark would be met at 100% efficiency. 3680 */ 3681 if (kswapd_shrink_node(pgdat, &sc)) 3682 raise_priority = false; 3683 3684 /* 3685 * If the low watermark is met there is no need for processes 3686 * to be throttled on pfmemalloc_wait as they should not be 3687 * able to safely make forward progress. Wake them 3688 */ 3689 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3690 allow_direct_reclaim(pgdat)) 3691 wake_up_all(&pgdat->pfmemalloc_wait); 3692 3693 /* Check if kswapd should be suspending */ 3694 __fs_reclaim_release(); 3695 ret = try_to_freeze(); 3696 __fs_reclaim_acquire(); 3697 if (ret || kthread_should_stop()) 3698 break; 3699 3700 /* 3701 * Raise priority if scanning rate is too low or there was no 3702 * progress in reclaiming pages 3703 */ 3704 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3705 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3706 3707 /* 3708 * If reclaim made no progress for a boost, stop reclaim as 3709 * IO cannot be queued and it could be an infinite loop in 3710 * extreme circumstances. 3711 */ 3712 if (nr_boost_reclaim && !nr_reclaimed) 3713 break; 3714 3715 if (raise_priority || !nr_reclaimed) 3716 sc.priority--; 3717 } while (sc.priority >= 1); 3718 3719 if (!sc.nr_reclaimed) 3720 pgdat->kswapd_failures++; 3721 3722 out: 3723 /* If reclaim was boosted, account for the reclaim done in this pass */ 3724 if (boosted) { 3725 unsigned long flags; 3726 3727 for (i = 0; i <= highest_zoneidx; i++) { 3728 if (!zone_boosts[i]) 3729 continue; 3730 3731 /* Increments are under the zone lock */ 3732 zone = pgdat->node_zones + i; 3733 spin_lock_irqsave(&zone->lock, flags); 3734 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3735 spin_unlock_irqrestore(&zone->lock, flags); 3736 } 3737 3738 /* 3739 * As there is now likely space, wakeup kcompact to defragment 3740 * pageblocks. 3741 */ 3742 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3743 } 3744 3745 snapshot_refaults(NULL, pgdat); 3746 __fs_reclaim_release(); 3747 psi_memstall_leave(&pflags); 3748 set_task_reclaim_state(current, NULL); 3749 3750 /* 3751 * Return the order kswapd stopped reclaiming at as 3752 * prepare_kswapd_sleep() takes it into account. If another caller 3753 * entered the allocator slow path while kswapd was awake, order will 3754 * remain at the higher level. 3755 */ 3756 return sc.order; 3757 } 3758 3759 /* 3760 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3761 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3762 * not a valid index then either kswapd runs for first time or kswapd couldn't 3763 * sleep after previous reclaim attempt (node is still unbalanced). In that 3764 * case return the zone index of the previous kswapd reclaim cycle. 3765 */ 3766 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3767 enum zone_type prev_highest_zoneidx) 3768 { 3769 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3770 3771 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3772 } 3773 3774 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3775 unsigned int highest_zoneidx) 3776 { 3777 long remaining = 0; 3778 DEFINE_WAIT(wait); 3779 3780 if (freezing(current) || kthread_should_stop()) 3781 return; 3782 3783 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3784 3785 /* 3786 * Try to sleep for a short interval. Note that kcompactd will only be 3787 * woken if it is possible to sleep for a short interval. This is 3788 * deliberate on the assumption that if reclaim cannot keep an 3789 * eligible zone balanced that it's also unlikely that compaction will 3790 * succeed. 3791 */ 3792 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3793 /* 3794 * Compaction records what page blocks it recently failed to 3795 * isolate pages from and skips them in the future scanning. 3796 * When kswapd is going to sleep, it is reasonable to assume 3797 * that pages and compaction may succeed so reset the cache. 3798 */ 3799 reset_isolation_suitable(pgdat); 3800 3801 /* 3802 * We have freed the memory, now we should compact it to make 3803 * allocation of the requested order possible. 3804 */ 3805 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3806 3807 remaining = schedule_timeout(HZ/10); 3808 3809 /* 3810 * If woken prematurely then reset kswapd_highest_zoneidx and 3811 * order. The values will either be from a wakeup request or 3812 * the previous request that slept prematurely. 3813 */ 3814 if (remaining) { 3815 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3816 kswapd_highest_zoneidx(pgdat, 3817 highest_zoneidx)); 3818 3819 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3820 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3821 } 3822 3823 finish_wait(&pgdat->kswapd_wait, &wait); 3824 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3825 } 3826 3827 /* 3828 * After a short sleep, check if it was a premature sleep. If not, then 3829 * go fully to sleep until explicitly woken up. 3830 */ 3831 if (!remaining && 3832 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3833 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3834 3835 /* 3836 * vmstat counters are not perfectly accurate and the estimated 3837 * value for counters such as NR_FREE_PAGES can deviate from the 3838 * true value by nr_online_cpus * threshold. To avoid the zone 3839 * watermarks being breached while under pressure, we reduce the 3840 * per-cpu vmstat threshold while kswapd is awake and restore 3841 * them before going back to sleep. 3842 */ 3843 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3844 3845 if (!kthread_should_stop()) 3846 schedule(); 3847 3848 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3849 } else { 3850 if (remaining) 3851 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3852 else 3853 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3854 } 3855 finish_wait(&pgdat->kswapd_wait, &wait); 3856 } 3857 3858 /* 3859 * The background pageout daemon, started as a kernel thread 3860 * from the init process. 3861 * 3862 * This basically trickles out pages so that we have _some_ 3863 * free memory available even if there is no other activity 3864 * that frees anything up. This is needed for things like routing 3865 * etc, where we otherwise might have all activity going on in 3866 * asynchronous contexts that cannot page things out. 3867 * 3868 * If there are applications that are active memory-allocators 3869 * (most normal use), this basically shouldn't matter. 3870 */ 3871 static int kswapd(void *p) 3872 { 3873 unsigned int alloc_order, reclaim_order; 3874 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3875 pg_data_t *pgdat = (pg_data_t*)p; 3876 struct task_struct *tsk = current; 3877 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3878 3879 if (!cpumask_empty(cpumask)) 3880 set_cpus_allowed_ptr(tsk, cpumask); 3881 3882 /* 3883 * Tell the memory management that we're a "memory allocator", 3884 * and that if we need more memory we should get access to it 3885 * regardless (see "__alloc_pages()"). "kswapd" should 3886 * never get caught in the normal page freeing logic. 3887 * 3888 * (Kswapd normally doesn't need memory anyway, but sometimes 3889 * you need a small amount of memory in order to be able to 3890 * page out something else, and this flag essentially protects 3891 * us from recursively trying to free more memory as we're 3892 * trying to free the first piece of memory in the first place). 3893 */ 3894 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3895 set_freezable(); 3896 3897 WRITE_ONCE(pgdat->kswapd_order, 0); 3898 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3899 for ( ; ; ) { 3900 bool ret; 3901 3902 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3903 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3904 highest_zoneidx); 3905 3906 kswapd_try_sleep: 3907 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3908 highest_zoneidx); 3909 3910 /* Read the new order and highest_zoneidx */ 3911 alloc_order = READ_ONCE(pgdat->kswapd_order); 3912 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3913 highest_zoneidx); 3914 WRITE_ONCE(pgdat->kswapd_order, 0); 3915 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3916 3917 ret = try_to_freeze(); 3918 if (kthread_should_stop()) 3919 break; 3920 3921 /* 3922 * We can speed up thawing tasks if we don't call balance_pgdat 3923 * after returning from the refrigerator 3924 */ 3925 if (ret) 3926 continue; 3927 3928 /* 3929 * Reclaim begins at the requested order but if a high-order 3930 * reclaim fails then kswapd falls back to reclaiming for 3931 * order-0. If that happens, kswapd will consider sleeping 3932 * for the order it finished reclaiming at (reclaim_order) 3933 * but kcompactd is woken to compact for the original 3934 * request (alloc_order). 3935 */ 3936 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3937 alloc_order); 3938 reclaim_order = balance_pgdat(pgdat, alloc_order, 3939 highest_zoneidx); 3940 if (reclaim_order < alloc_order) 3941 goto kswapd_try_sleep; 3942 } 3943 3944 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3945 3946 return 0; 3947 } 3948 3949 /* 3950 * A zone is low on free memory or too fragmented for high-order memory. If 3951 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3952 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3953 * has failed or is not needed, still wake up kcompactd if only compaction is 3954 * needed. 3955 */ 3956 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3957 enum zone_type highest_zoneidx) 3958 { 3959 pg_data_t *pgdat; 3960 enum zone_type curr_idx; 3961 3962 if (!managed_zone(zone)) 3963 return; 3964 3965 if (!cpuset_zone_allowed(zone, gfp_flags)) 3966 return; 3967 3968 pgdat = zone->zone_pgdat; 3969 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3970 3971 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3972 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3973 3974 if (READ_ONCE(pgdat->kswapd_order) < order) 3975 WRITE_ONCE(pgdat->kswapd_order, order); 3976 3977 if (!waitqueue_active(&pgdat->kswapd_wait)) 3978 return; 3979 3980 /* Hopeless node, leave it to direct reclaim if possible */ 3981 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3982 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3983 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3984 /* 3985 * There may be plenty of free memory available, but it's too 3986 * fragmented for high-order allocations. Wake up kcompactd 3987 * and rely on compaction_suitable() to determine if it's 3988 * needed. If it fails, it will defer subsequent attempts to 3989 * ratelimit its work. 3990 */ 3991 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3992 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3993 return; 3994 } 3995 3996 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3997 gfp_flags); 3998 wake_up_interruptible(&pgdat->kswapd_wait); 3999 } 4000 4001 #ifdef CONFIG_HIBERNATION 4002 /* 4003 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4004 * freed pages. 4005 * 4006 * Rather than trying to age LRUs the aim is to preserve the overall 4007 * LRU order by reclaiming preferentially 4008 * inactive > active > active referenced > active mapped 4009 */ 4010 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4011 { 4012 struct scan_control sc = { 4013 .nr_to_reclaim = nr_to_reclaim, 4014 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4015 .reclaim_idx = MAX_NR_ZONES - 1, 4016 .priority = DEF_PRIORITY, 4017 .may_writepage = 1, 4018 .may_unmap = 1, 4019 .may_swap = 1, 4020 .hibernation_mode = 1, 4021 }; 4022 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4023 unsigned long nr_reclaimed; 4024 unsigned int noreclaim_flag; 4025 4026 fs_reclaim_acquire(sc.gfp_mask); 4027 noreclaim_flag = memalloc_noreclaim_save(); 4028 set_task_reclaim_state(current, &sc.reclaim_state); 4029 4030 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4031 4032 set_task_reclaim_state(current, NULL); 4033 memalloc_noreclaim_restore(noreclaim_flag); 4034 fs_reclaim_release(sc.gfp_mask); 4035 4036 return nr_reclaimed; 4037 } 4038 #endif /* CONFIG_HIBERNATION */ 4039 4040 /* 4041 * This kswapd start function will be called by init and node-hot-add. 4042 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4043 */ 4044 int kswapd_run(int nid) 4045 { 4046 pg_data_t *pgdat = NODE_DATA(nid); 4047 int ret = 0; 4048 4049 if (pgdat->kswapd) 4050 return 0; 4051 4052 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4053 if (IS_ERR(pgdat->kswapd)) { 4054 /* failure at boot is fatal */ 4055 BUG_ON(system_state < SYSTEM_RUNNING); 4056 pr_err("Failed to start kswapd on node %d\n", nid); 4057 ret = PTR_ERR(pgdat->kswapd); 4058 pgdat->kswapd = NULL; 4059 } 4060 return ret; 4061 } 4062 4063 /* 4064 * Called by memory hotplug when all memory in a node is offlined. Caller must 4065 * hold mem_hotplug_begin/end(). 4066 */ 4067 void kswapd_stop(int nid) 4068 { 4069 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4070 4071 if (kswapd) { 4072 kthread_stop(kswapd); 4073 NODE_DATA(nid)->kswapd = NULL; 4074 } 4075 } 4076 4077 static int __init kswapd_init(void) 4078 { 4079 int nid; 4080 4081 swap_setup(); 4082 for_each_node_state(nid, N_MEMORY) 4083 kswapd_run(nid); 4084 return 0; 4085 } 4086 4087 module_init(kswapd_init) 4088 4089 #ifdef CONFIG_NUMA 4090 /* 4091 * Node reclaim mode 4092 * 4093 * If non-zero call node_reclaim when the number of free pages falls below 4094 * the watermarks. 4095 */ 4096 int node_reclaim_mode __read_mostly; 4097 4098 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4099 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4100 4101 /* 4102 * Priority for NODE_RECLAIM. This determines the fraction of pages 4103 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4104 * a zone. 4105 */ 4106 #define NODE_RECLAIM_PRIORITY 4 4107 4108 /* 4109 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4110 * occur. 4111 */ 4112 int sysctl_min_unmapped_ratio = 1; 4113 4114 /* 4115 * If the number of slab pages in a zone grows beyond this percentage then 4116 * slab reclaim needs to occur. 4117 */ 4118 int sysctl_min_slab_ratio = 5; 4119 4120 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4121 { 4122 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4123 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4124 node_page_state(pgdat, NR_ACTIVE_FILE); 4125 4126 /* 4127 * It's possible for there to be more file mapped pages than 4128 * accounted for by the pages on the file LRU lists because 4129 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4130 */ 4131 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4132 } 4133 4134 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4135 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4136 { 4137 unsigned long nr_pagecache_reclaimable; 4138 unsigned long delta = 0; 4139 4140 /* 4141 * If RECLAIM_UNMAP is set, then all file pages are considered 4142 * potentially reclaimable. Otherwise, we have to worry about 4143 * pages like swapcache and node_unmapped_file_pages() provides 4144 * a better estimate 4145 */ 4146 if (node_reclaim_mode & RECLAIM_UNMAP) 4147 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4148 else 4149 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4150 4151 /* If we can't clean pages, remove dirty pages from consideration */ 4152 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4153 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4154 4155 /* Watch for any possible underflows due to delta */ 4156 if (unlikely(delta > nr_pagecache_reclaimable)) 4157 delta = nr_pagecache_reclaimable; 4158 4159 return nr_pagecache_reclaimable - delta; 4160 } 4161 4162 /* 4163 * Try to free up some pages from this node through reclaim. 4164 */ 4165 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4166 { 4167 /* Minimum pages needed in order to stay on node */ 4168 const unsigned long nr_pages = 1 << order; 4169 struct task_struct *p = current; 4170 unsigned int noreclaim_flag; 4171 struct scan_control sc = { 4172 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4173 .gfp_mask = current_gfp_context(gfp_mask), 4174 .order = order, 4175 .priority = NODE_RECLAIM_PRIORITY, 4176 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4177 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4178 .may_swap = 1, 4179 .reclaim_idx = gfp_zone(gfp_mask), 4180 }; 4181 4182 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4183 sc.gfp_mask); 4184 4185 cond_resched(); 4186 fs_reclaim_acquire(sc.gfp_mask); 4187 /* 4188 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4189 * and we also need to be able to write out pages for RECLAIM_WRITE 4190 * and RECLAIM_UNMAP. 4191 */ 4192 noreclaim_flag = memalloc_noreclaim_save(); 4193 p->flags |= PF_SWAPWRITE; 4194 set_task_reclaim_state(p, &sc.reclaim_state); 4195 4196 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4197 /* 4198 * Free memory by calling shrink node with increasing 4199 * priorities until we have enough memory freed. 4200 */ 4201 do { 4202 shrink_node(pgdat, &sc); 4203 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4204 } 4205 4206 set_task_reclaim_state(p, NULL); 4207 current->flags &= ~PF_SWAPWRITE; 4208 memalloc_noreclaim_restore(noreclaim_flag); 4209 fs_reclaim_release(sc.gfp_mask); 4210 4211 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4212 4213 return sc.nr_reclaimed >= nr_pages; 4214 } 4215 4216 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4217 { 4218 int ret; 4219 4220 /* 4221 * Node reclaim reclaims unmapped file backed pages and 4222 * slab pages if we are over the defined limits. 4223 * 4224 * A small portion of unmapped file backed pages is needed for 4225 * file I/O otherwise pages read by file I/O will be immediately 4226 * thrown out if the node is overallocated. So we do not reclaim 4227 * if less than a specified percentage of the node is used by 4228 * unmapped file backed pages. 4229 */ 4230 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4231 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4232 pgdat->min_slab_pages) 4233 return NODE_RECLAIM_FULL; 4234 4235 /* 4236 * Do not scan if the allocation should not be delayed. 4237 */ 4238 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4239 return NODE_RECLAIM_NOSCAN; 4240 4241 /* 4242 * Only run node reclaim on the local node or on nodes that do not 4243 * have associated processors. This will favor the local processor 4244 * over remote processors and spread off node memory allocations 4245 * as wide as possible. 4246 */ 4247 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4248 return NODE_RECLAIM_NOSCAN; 4249 4250 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4251 return NODE_RECLAIM_NOSCAN; 4252 4253 ret = __node_reclaim(pgdat, gfp_mask, order); 4254 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4255 4256 if (!ret) 4257 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4258 4259 return ret; 4260 } 4261 #endif 4262 4263 /** 4264 * check_move_unevictable_pages - check pages for evictability and move to 4265 * appropriate zone lru list 4266 * @pvec: pagevec with lru pages to check 4267 * 4268 * Checks pages for evictability, if an evictable page is in the unevictable 4269 * lru list, moves it to the appropriate evictable lru list. This function 4270 * should be only used for lru pages. 4271 */ 4272 void check_move_unevictable_pages(struct pagevec *pvec) 4273 { 4274 struct lruvec *lruvec = NULL; 4275 int pgscanned = 0; 4276 int pgrescued = 0; 4277 int i; 4278 4279 for (i = 0; i < pvec->nr; i++) { 4280 struct page *page = pvec->pages[i]; 4281 int nr_pages; 4282 4283 if (PageTransTail(page)) 4284 continue; 4285 4286 nr_pages = thp_nr_pages(page); 4287 pgscanned += nr_pages; 4288 4289 /* block memcg migration during page moving between lru */ 4290 if (!TestClearPageLRU(page)) 4291 continue; 4292 4293 lruvec = relock_page_lruvec_irq(page, lruvec); 4294 if (page_evictable(page) && PageUnevictable(page)) { 4295 enum lru_list lru = page_lru_base_type(page); 4296 4297 VM_BUG_ON_PAGE(PageActive(page), page); 4298 ClearPageUnevictable(page); 4299 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4300 add_page_to_lru_list(page, lruvec, lru); 4301 pgrescued += nr_pages; 4302 } 4303 SetPageLRU(page); 4304 } 4305 4306 if (lruvec) { 4307 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4308 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4309 unlock_page_lruvec_irq(lruvec); 4310 } else if (pgscanned) { 4311 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4312 } 4313 } 4314 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4315