xref: /openbmc/linux/mm/vmscan.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/*
81 	 * Scan pressure balancing between anon and file LRUs
82 	 */
83 	unsigned long	anon_cost;
84 	unsigned long	file_cost;
85 
86 	/* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 	unsigned int may_deactivate:2;
90 	unsigned int force_deactivate:1;
91 	unsigned int skipped_deactivate:1;
92 
93 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
94 	unsigned int may_writepage:1;
95 
96 	/* Can mapped pages be reclaimed? */
97 	unsigned int may_unmap:1;
98 
99 	/* Can pages be swapped as part of reclaim? */
100 	unsigned int may_swap:1;
101 
102 	/*
103 	 * Cgroups are not reclaimed below their configured memory.low,
104 	 * unless we threaten to OOM. If any cgroups are skipped due to
105 	 * memory.low and nothing was reclaimed, go back for memory.low.
106 	 */
107 	unsigned int memcg_low_reclaim:1;
108 	unsigned int memcg_low_skipped:1;
109 
110 	unsigned int hibernation_mode:1;
111 
112 	/* One of the zones is ready for compaction */
113 	unsigned int compaction_ready:1;
114 
115 	/* There is easily reclaimable cold cache in the current node */
116 	unsigned int cache_trim_mode:1;
117 
118 	/* The file pages on the current node are dangerously low */
119 	unsigned int file_is_tiny:1;
120 
121 	/* Allocation order */
122 	s8 order;
123 
124 	/* Scan (total_size >> priority) pages at once */
125 	s8 priority;
126 
127 	/* The highest zone to isolate pages for reclaim from */
128 	s8 reclaim_idx;
129 
130 	/* This context's GFP mask */
131 	gfp_t gfp_mask;
132 
133 	/* Incremented by the number of inactive pages that were scanned */
134 	unsigned long nr_scanned;
135 
136 	/* Number of pages freed so far during a call to shrink_zones() */
137 	unsigned long nr_reclaimed;
138 
139 	struct {
140 		unsigned int dirty;
141 		unsigned int unqueued_dirty;
142 		unsigned int congested;
143 		unsigned int writeback;
144 		unsigned int immediate;
145 		unsigned int file_taken;
146 		unsigned int taken;
147 	} nr;
148 
149 	/* for recording the reclaimed slab by now */
150 	struct reclaim_state reclaim_state;
151 };
152 
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field)			\
155 	do {								\
156 		if ((_page)->lru.prev != _base) {			\
157 			struct page *prev;				\
158 									\
159 			prev = lru_to_page(&(_page->lru));		\
160 			prefetchw(&prev->_field);			\
161 		}							\
162 	} while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166 
167 /*
168  * From 0 .. 200.  Higher means more swappy.
169  */
170 int vm_swappiness = 60;
171 
172 static void set_task_reclaim_state(struct task_struct *task,
173 				   struct reclaim_state *rs)
174 {
175 	/* Check for an overwrite */
176 	WARN_ON_ONCE(rs && task->reclaim_state);
177 
178 	/* Check for the nulling of an already-nulled member */
179 	WARN_ON_ONCE(!rs && !task->reclaim_state);
180 
181 	task->reclaim_state = rs;
182 }
183 
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
186 
187 #ifdef CONFIG_MEMCG
188 /*
189  * We allow subsystems to populate their shrinker-related
190  * LRU lists before register_shrinker_prepared() is called
191  * for the shrinker, since we don't want to impose
192  * restrictions on their internal registration order.
193  * In this case shrink_slab_memcg() may find corresponding
194  * bit is set in the shrinkers map.
195  *
196  * This value is used by the function to detect registering
197  * shrinkers and to skip do_shrink_slab() calls for them.
198  */
199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
200 
201 static DEFINE_IDR(shrinker_idr);
202 static int shrinker_nr_max;
203 
204 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
205 {
206 	int id, ret = -ENOMEM;
207 
208 	down_write(&shrinker_rwsem);
209 	/* This may call shrinker, so it must use down_read_trylock() */
210 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
211 	if (id < 0)
212 		goto unlock;
213 
214 	if (id >= shrinker_nr_max) {
215 		if (memcg_expand_shrinker_maps(id)) {
216 			idr_remove(&shrinker_idr, id);
217 			goto unlock;
218 		}
219 
220 		shrinker_nr_max = id + 1;
221 	}
222 	shrinker->id = id;
223 	ret = 0;
224 unlock:
225 	up_write(&shrinker_rwsem);
226 	return ret;
227 }
228 
229 static void unregister_memcg_shrinker(struct shrinker *shrinker)
230 {
231 	int id = shrinker->id;
232 
233 	BUG_ON(id < 0);
234 
235 	down_write(&shrinker_rwsem);
236 	idr_remove(&shrinker_idr, id);
237 	up_write(&shrinker_rwsem);
238 }
239 
240 static bool cgroup_reclaim(struct scan_control *sc)
241 {
242 	return sc->target_mem_cgroup;
243 }
244 
245 /**
246  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
247  * @sc: scan_control in question
248  *
249  * The normal page dirty throttling mechanism in balance_dirty_pages() is
250  * completely broken with the legacy memcg and direct stalling in
251  * shrink_page_list() is used for throttling instead, which lacks all the
252  * niceties such as fairness, adaptive pausing, bandwidth proportional
253  * allocation and configurability.
254  *
255  * This function tests whether the vmscan currently in progress can assume
256  * that the normal dirty throttling mechanism is operational.
257  */
258 static bool writeback_throttling_sane(struct scan_control *sc)
259 {
260 	if (!cgroup_reclaim(sc))
261 		return true;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 		return true;
265 #endif
266 	return false;
267 }
268 #else
269 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
270 {
271 	return 0;
272 }
273 
274 static void unregister_memcg_shrinker(struct shrinker *shrinker)
275 {
276 }
277 
278 static bool cgroup_reclaim(struct scan_control *sc)
279 {
280 	return false;
281 }
282 
283 static bool writeback_throttling_sane(struct scan_control *sc)
284 {
285 	return true;
286 }
287 #endif
288 
289 /*
290  * This misses isolated pages which are not accounted for to save counters.
291  * As the data only determines if reclaim or compaction continues, it is
292  * not expected that isolated pages will be a dominating factor.
293  */
294 unsigned long zone_reclaimable_pages(struct zone *zone)
295 {
296 	unsigned long nr;
297 
298 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 	if (get_nr_swap_pages() > 0)
301 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
303 
304 	return nr;
305 }
306 
307 /**
308  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
309  * @lruvec: lru vector
310  * @lru: lru to use
311  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
312  */
313 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
314 {
315 	unsigned long size = 0;
316 	int zid;
317 
318 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
319 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
320 
321 		if (!managed_zone(zone))
322 			continue;
323 
324 		if (!mem_cgroup_disabled())
325 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
326 		else
327 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
328 	}
329 	return size;
330 }
331 
332 /*
333  * Add a shrinker callback to be called from the vm.
334  */
335 int prealloc_shrinker(struct shrinker *shrinker)
336 {
337 	unsigned int size = sizeof(*shrinker->nr_deferred);
338 
339 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
340 		size *= nr_node_ids;
341 
342 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
343 	if (!shrinker->nr_deferred)
344 		return -ENOMEM;
345 
346 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
347 		if (prealloc_memcg_shrinker(shrinker))
348 			goto free_deferred;
349 	}
350 
351 	return 0;
352 
353 free_deferred:
354 	kfree(shrinker->nr_deferred);
355 	shrinker->nr_deferred = NULL;
356 	return -ENOMEM;
357 }
358 
359 void free_prealloced_shrinker(struct shrinker *shrinker)
360 {
361 	if (!shrinker->nr_deferred)
362 		return;
363 
364 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
365 		unregister_memcg_shrinker(shrinker);
366 
367 	kfree(shrinker->nr_deferred);
368 	shrinker->nr_deferred = NULL;
369 }
370 
371 void register_shrinker_prepared(struct shrinker *shrinker)
372 {
373 	down_write(&shrinker_rwsem);
374 	list_add_tail(&shrinker->list, &shrinker_list);
375 #ifdef CONFIG_MEMCG
376 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
377 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
378 #endif
379 	up_write(&shrinker_rwsem);
380 }
381 
382 int register_shrinker(struct shrinker *shrinker)
383 {
384 	int err = prealloc_shrinker(shrinker);
385 
386 	if (err)
387 		return err;
388 	register_shrinker_prepared(shrinker);
389 	return 0;
390 }
391 EXPORT_SYMBOL(register_shrinker);
392 
393 /*
394  * Remove one
395  */
396 void unregister_shrinker(struct shrinker *shrinker)
397 {
398 	if (!shrinker->nr_deferred)
399 		return;
400 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 		unregister_memcg_shrinker(shrinker);
402 	down_write(&shrinker_rwsem);
403 	list_del(&shrinker->list);
404 	up_write(&shrinker_rwsem);
405 	kfree(shrinker->nr_deferred);
406 	shrinker->nr_deferred = NULL;
407 }
408 EXPORT_SYMBOL(unregister_shrinker);
409 
410 #define SHRINK_BATCH 128
411 
412 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
413 				    struct shrinker *shrinker, int priority)
414 {
415 	unsigned long freed = 0;
416 	unsigned long long delta;
417 	long total_scan;
418 	long freeable;
419 	long nr;
420 	long new_nr;
421 	int nid = shrinkctl->nid;
422 	long batch_size = shrinker->batch ? shrinker->batch
423 					  : SHRINK_BATCH;
424 	long scanned = 0, next_deferred;
425 
426 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
427 		nid = 0;
428 
429 	freeable = shrinker->count_objects(shrinker, shrinkctl);
430 	if (freeable == 0 || freeable == SHRINK_EMPTY)
431 		return freeable;
432 
433 	/*
434 	 * copy the current shrinker scan count into a local variable
435 	 * and zero it so that other concurrent shrinker invocations
436 	 * don't also do this scanning work.
437 	 */
438 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
439 
440 	total_scan = nr;
441 	if (shrinker->seeks) {
442 		delta = freeable >> priority;
443 		delta *= 4;
444 		do_div(delta, shrinker->seeks);
445 	} else {
446 		/*
447 		 * These objects don't require any IO to create. Trim
448 		 * them aggressively under memory pressure to keep
449 		 * them from causing refetches in the IO caches.
450 		 */
451 		delta = freeable / 2;
452 	}
453 
454 	total_scan += delta;
455 	if (total_scan < 0) {
456 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
457 		       shrinker->scan_objects, total_scan);
458 		total_scan = freeable;
459 		next_deferred = nr;
460 	} else
461 		next_deferred = total_scan;
462 
463 	/*
464 	 * We need to avoid excessive windup on filesystem shrinkers
465 	 * due to large numbers of GFP_NOFS allocations causing the
466 	 * shrinkers to return -1 all the time. This results in a large
467 	 * nr being built up so when a shrink that can do some work
468 	 * comes along it empties the entire cache due to nr >>>
469 	 * freeable. This is bad for sustaining a working set in
470 	 * memory.
471 	 *
472 	 * Hence only allow the shrinker to scan the entire cache when
473 	 * a large delta change is calculated directly.
474 	 */
475 	if (delta < freeable / 4)
476 		total_scan = min(total_scan, freeable / 2);
477 
478 	/*
479 	 * Avoid risking looping forever due to too large nr value:
480 	 * never try to free more than twice the estimate number of
481 	 * freeable entries.
482 	 */
483 	if (total_scan > freeable * 2)
484 		total_scan = freeable * 2;
485 
486 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
487 				   freeable, delta, total_scan, priority);
488 
489 	/*
490 	 * Normally, we should not scan less than batch_size objects in one
491 	 * pass to avoid too frequent shrinker calls, but if the slab has less
492 	 * than batch_size objects in total and we are really tight on memory,
493 	 * we will try to reclaim all available objects, otherwise we can end
494 	 * up failing allocations although there are plenty of reclaimable
495 	 * objects spread over several slabs with usage less than the
496 	 * batch_size.
497 	 *
498 	 * We detect the "tight on memory" situations by looking at the total
499 	 * number of objects we want to scan (total_scan). If it is greater
500 	 * than the total number of objects on slab (freeable), we must be
501 	 * scanning at high prio and therefore should try to reclaim as much as
502 	 * possible.
503 	 */
504 	while (total_scan >= batch_size ||
505 	       total_scan >= freeable) {
506 		unsigned long ret;
507 		unsigned long nr_to_scan = min(batch_size, total_scan);
508 
509 		shrinkctl->nr_to_scan = nr_to_scan;
510 		shrinkctl->nr_scanned = nr_to_scan;
511 		ret = shrinker->scan_objects(shrinker, shrinkctl);
512 		if (ret == SHRINK_STOP)
513 			break;
514 		freed += ret;
515 
516 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
517 		total_scan -= shrinkctl->nr_scanned;
518 		scanned += shrinkctl->nr_scanned;
519 
520 		cond_resched();
521 	}
522 
523 	if (next_deferred >= scanned)
524 		next_deferred -= scanned;
525 	else
526 		next_deferred = 0;
527 	/*
528 	 * move the unused scan count back into the shrinker in a
529 	 * manner that handles concurrent updates. If we exhausted the
530 	 * scan, there is no need to do an update.
531 	 */
532 	if (next_deferred > 0)
533 		new_nr = atomic_long_add_return(next_deferred,
534 						&shrinker->nr_deferred[nid]);
535 	else
536 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
537 
538 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
539 	return freed;
540 }
541 
542 #ifdef CONFIG_MEMCG
543 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
544 			struct mem_cgroup *memcg, int priority)
545 {
546 	struct memcg_shrinker_map *map;
547 	unsigned long ret, freed = 0;
548 	int i;
549 
550 	if (!mem_cgroup_online(memcg))
551 		return 0;
552 
553 	if (!down_read_trylock(&shrinker_rwsem))
554 		return 0;
555 
556 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
557 					true);
558 	if (unlikely(!map))
559 		goto unlock;
560 
561 	for_each_set_bit(i, map->map, shrinker_nr_max) {
562 		struct shrink_control sc = {
563 			.gfp_mask = gfp_mask,
564 			.nid = nid,
565 			.memcg = memcg,
566 		};
567 		struct shrinker *shrinker;
568 
569 		shrinker = idr_find(&shrinker_idr, i);
570 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
571 			if (!shrinker)
572 				clear_bit(i, map->map);
573 			continue;
574 		}
575 
576 		/* Call non-slab shrinkers even though kmem is disabled */
577 		if (!memcg_kmem_enabled() &&
578 		    !(shrinker->flags & SHRINKER_NONSLAB))
579 			continue;
580 
581 		ret = do_shrink_slab(&sc, shrinker, priority);
582 		if (ret == SHRINK_EMPTY) {
583 			clear_bit(i, map->map);
584 			/*
585 			 * After the shrinker reported that it had no objects to
586 			 * free, but before we cleared the corresponding bit in
587 			 * the memcg shrinker map, a new object might have been
588 			 * added. To make sure, we have the bit set in this
589 			 * case, we invoke the shrinker one more time and reset
590 			 * the bit if it reports that it is not empty anymore.
591 			 * The memory barrier here pairs with the barrier in
592 			 * memcg_set_shrinker_bit():
593 			 *
594 			 * list_lru_add()     shrink_slab_memcg()
595 			 *   list_add_tail()    clear_bit()
596 			 *   <MB>               <MB>
597 			 *   set_bit()          do_shrink_slab()
598 			 */
599 			smp_mb__after_atomic();
600 			ret = do_shrink_slab(&sc, shrinker, priority);
601 			if (ret == SHRINK_EMPTY)
602 				ret = 0;
603 			else
604 				memcg_set_shrinker_bit(memcg, nid, i);
605 		}
606 		freed += ret;
607 
608 		if (rwsem_is_contended(&shrinker_rwsem)) {
609 			freed = freed ? : 1;
610 			break;
611 		}
612 	}
613 unlock:
614 	up_read(&shrinker_rwsem);
615 	return freed;
616 }
617 #else /* CONFIG_MEMCG */
618 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
619 			struct mem_cgroup *memcg, int priority)
620 {
621 	return 0;
622 }
623 #endif /* CONFIG_MEMCG */
624 
625 /**
626  * shrink_slab - shrink slab caches
627  * @gfp_mask: allocation context
628  * @nid: node whose slab caches to target
629  * @memcg: memory cgroup whose slab caches to target
630  * @priority: the reclaim priority
631  *
632  * Call the shrink functions to age shrinkable caches.
633  *
634  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
635  * unaware shrinkers will receive a node id of 0 instead.
636  *
637  * @memcg specifies the memory cgroup to target. Unaware shrinkers
638  * are called only if it is the root cgroup.
639  *
640  * @priority is sc->priority, we take the number of objects and >> by priority
641  * in order to get the scan target.
642  *
643  * Returns the number of reclaimed slab objects.
644  */
645 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
646 				 struct mem_cgroup *memcg,
647 				 int priority)
648 {
649 	unsigned long ret, freed = 0;
650 	struct shrinker *shrinker;
651 
652 	/*
653 	 * The root memcg might be allocated even though memcg is disabled
654 	 * via "cgroup_disable=memory" boot parameter.  This could make
655 	 * mem_cgroup_is_root() return false, then just run memcg slab
656 	 * shrink, but skip global shrink.  This may result in premature
657 	 * oom.
658 	 */
659 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
660 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
661 
662 	if (!down_read_trylock(&shrinker_rwsem))
663 		goto out;
664 
665 	list_for_each_entry(shrinker, &shrinker_list, list) {
666 		struct shrink_control sc = {
667 			.gfp_mask = gfp_mask,
668 			.nid = nid,
669 			.memcg = memcg,
670 		};
671 
672 		ret = do_shrink_slab(&sc, shrinker, priority);
673 		if (ret == SHRINK_EMPTY)
674 			ret = 0;
675 		freed += ret;
676 		/*
677 		 * Bail out if someone want to register a new shrinker to
678 		 * prevent the registration from being stalled for long periods
679 		 * by parallel ongoing shrinking.
680 		 */
681 		if (rwsem_is_contended(&shrinker_rwsem)) {
682 			freed = freed ? : 1;
683 			break;
684 		}
685 	}
686 
687 	up_read(&shrinker_rwsem);
688 out:
689 	cond_resched();
690 	return freed;
691 }
692 
693 void drop_slab_node(int nid)
694 {
695 	unsigned long freed;
696 
697 	do {
698 		struct mem_cgroup *memcg = NULL;
699 
700 		if (fatal_signal_pending(current))
701 			return;
702 
703 		freed = 0;
704 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
705 		do {
706 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
707 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
708 	} while (freed > 10);
709 }
710 
711 void drop_slab(void)
712 {
713 	int nid;
714 
715 	for_each_online_node(nid)
716 		drop_slab_node(nid);
717 }
718 
719 static inline int is_page_cache_freeable(struct page *page)
720 {
721 	/*
722 	 * A freeable page cache page is referenced only by the caller
723 	 * that isolated the page, the page cache and optional buffer
724 	 * heads at page->private.
725 	 */
726 	int page_cache_pins = thp_nr_pages(page);
727 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
728 }
729 
730 static int may_write_to_inode(struct inode *inode)
731 {
732 	if (current->flags & PF_SWAPWRITE)
733 		return 1;
734 	if (!inode_write_congested(inode))
735 		return 1;
736 	if (inode_to_bdi(inode) == current->backing_dev_info)
737 		return 1;
738 	return 0;
739 }
740 
741 /*
742  * We detected a synchronous write error writing a page out.  Probably
743  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
744  * fsync(), msync() or close().
745  *
746  * The tricky part is that after writepage we cannot touch the mapping: nothing
747  * prevents it from being freed up.  But we have a ref on the page and once
748  * that page is locked, the mapping is pinned.
749  *
750  * We're allowed to run sleeping lock_page() here because we know the caller has
751  * __GFP_FS.
752  */
753 static void handle_write_error(struct address_space *mapping,
754 				struct page *page, int error)
755 {
756 	lock_page(page);
757 	if (page_mapping(page) == mapping)
758 		mapping_set_error(mapping, error);
759 	unlock_page(page);
760 }
761 
762 /* possible outcome of pageout() */
763 typedef enum {
764 	/* failed to write page out, page is locked */
765 	PAGE_KEEP,
766 	/* move page to the active list, page is locked */
767 	PAGE_ACTIVATE,
768 	/* page has been sent to the disk successfully, page is unlocked */
769 	PAGE_SUCCESS,
770 	/* page is clean and locked */
771 	PAGE_CLEAN,
772 } pageout_t;
773 
774 /*
775  * pageout is called by shrink_page_list() for each dirty page.
776  * Calls ->writepage().
777  */
778 static pageout_t pageout(struct page *page, struct address_space *mapping)
779 {
780 	/*
781 	 * If the page is dirty, only perform writeback if that write
782 	 * will be non-blocking.  To prevent this allocation from being
783 	 * stalled by pagecache activity.  But note that there may be
784 	 * stalls if we need to run get_block().  We could test
785 	 * PagePrivate for that.
786 	 *
787 	 * If this process is currently in __generic_file_write_iter() against
788 	 * this page's queue, we can perform writeback even if that
789 	 * will block.
790 	 *
791 	 * If the page is swapcache, write it back even if that would
792 	 * block, for some throttling. This happens by accident, because
793 	 * swap_backing_dev_info is bust: it doesn't reflect the
794 	 * congestion state of the swapdevs.  Easy to fix, if needed.
795 	 */
796 	if (!is_page_cache_freeable(page))
797 		return PAGE_KEEP;
798 	if (!mapping) {
799 		/*
800 		 * Some data journaling orphaned pages can have
801 		 * page->mapping == NULL while being dirty with clean buffers.
802 		 */
803 		if (page_has_private(page)) {
804 			if (try_to_free_buffers(page)) {
805 				ClearPageDirty(page);
806 				pr_info("%s: orphaned page\n", __func__);
807 				return PAGE_CLEAN;
808 			}
809 		}
810 		return PAGE_KEEP;
811 	}
812 	if (mapping->a_ops->writepage == NULL)
813 		return PAGE_ACTIVATE;
814 	if (!may_write_to_inode(mapping->host))
815 		return PAGE_KEEP;
816 
817 	if (clear_page_dirty_for_io(page)) {
818 		int res;
819 		struct writeback_control wbc = {
820 			.sync_mode = WB_SYNC_NONE,
821 			.nr_to_write = SWAP_CLUSTER_MAX,
822 			.range_start = 0,
823 			.range_end = LLONG_MAX,
824 			.for_reclaim = 1,
825 		};
826 
827 		SetPageReclaim(page);
828 		res = mapping->a_ops->writepage(page, &wbc);
829 		if (res < 0)
830 			handle_write_error(mapping, page, res);
831 		if (res == AOP_WRITEPAGE_ACTIVATE) {
832 			ClearPageReclaim(page);
833 			return PAGE_ACTIVATE;
834 		}
835 
836 		if (!PageWriteback(page)) {
837 			/* synchronous write or broken a_ops? */
838 			ClearPageReclaim(page);
839 		}
840 		trace_mm_vmscan_writepage(page);
841 		inc_node_page_state(page, NR_VMSCAN_WRITE);
842 		return PAGE_SUCCESS;
843 	}
844 
845 	return PAGE_CLEAN;
846 }
847 
848 /*
849  * Same as remove_mapping, but if the page is removed from the mapping, it
850  * gets returned with a refcount of 0.
851  */
852 static int __remove_mapping(struct address_space *mapping, struct page *page,
853 			    bool reclaimed, struct mem_cgroup *target_memcg)
854 {
855 	unsigned long flags;
856 	int refcount;
857 	void *shadow = NULL;
858 
859 	BUG_ON(!PageLocked(page));
860 	BUG_ON(mapping != page_mapping(page));
861 
862 	xa_lock_irqsave(&mapping->i_pages, flags);
863 	/*
864 	 * The non racy check for a busy page.
865 	 *
866 	 * Must be careful with the order of the tests. When someone has
867 	 * a ref to the page, it may be possible that they dirty it then
868 	 * drop the reference. So if PageDirty is tested before page_count
869 	 * here, then the following race may occur:
870 	 *
871 	 * get_user_pages(&page);
872 	 * [user mapping goes away]
873 	 * write_to(page);
874 	 *				!PageDirty(page)    [good]
875 	 * SetPageDirty(page);
876 	 * put_page(page);
877 	 *				!page_count(page)   [good, discard it]
878 	 *
879 	 * [oops, our write_to data is lost]
880 	 *
881 	 * Reversing the order of the tests ensures such a situation cannot
882 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
883 	 * load is not satisfied before that of page->_refcount.
884 	 *
885 	 * Note that if SetPageDirty is always performed via set_page_dirty,
886 	 * and thus under the i_pages lock, then this ordering is not required.
887 	 */
888 	refcount = 1 + compound_nr(page);
889 	if (!page_ref_freeze(page, refcount))
890 		goto cannot_free;
891 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
892 	if (unlikely(PageDirty(page))) {
893 		page_ref_unfreeze(page, refcount);
894 		goto cannot_free;
895 	}
896 
897 	if (PageSwapCache(page)) {
898 		swp_entry_t swap = { .val = page_private(page) };
899 		mem_cgroup_swapout(page, swap);
900 		if (reclaimed && !mapping_exiting(mapping))
901 			shadow = workingset_eviction(page, target_memcg);
902 		__delete_from_swap_cache(page, swap, shadow);
903 		xa_unlock_irqrestore(&mapping->i_pages, flags);
904 		put_swap_page(page, swap);
905 	} else {
906 		void (*freepage)(struct page *);
907 
908 		freepage = mapping->a_ops->freepage;
909 		/*
910 		 * Remember a shadow entry for reclaimed file cache in
911 		 * order to detect refaults, thus thrashing, later on.
912 		 *
913 		 * But don't store shadows in an address space that is
914 		 * already exiting.  This is not just an optimization,
915 		 * inode reclaim needs to empty out the radix tree or
916 		 * the nodes are lost.  Don't plant shadows behind its
917 		 * back.
918 		 *
919 		 * We also don't store shadows for DAX mappings because the
920 		 * only page cache pages found in these are zero pages
921 		 * covering holes, and because we don't want to mix DAX
922 		 * exceptional entries and shadow exceptional entries in the
923 		 * same address_space.
924 		 */
925 		if (reclaimed && page_is_file_lru(page) &&
926 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
927 			shadow = workingset_eviction(page, target_memcg);
928 		__delete_from_page_cache(page, shadow);
929 		xa_unlock_irqrestore(&mapping->i_pages, flags);
930 
931 		if (freepage != NULL)
932 			freepage(page);
933 	}
934 
935 	return 1;
936 
937 cannot_free:
938 	xa_unlock_irqrestore(&mapping->i_pages, flags);
939 	return 0;
940 }
941 
942 /*
943  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
944  * someone else has a ref on the page, abort and return 0.  If it was
945  * successfully detached, return 1.  Assumes the caller has a single ref on
946  * this page.
947  */
948 int remove_mapping(struct address_space *mapping, struct page *page)
949 {
950 	if (__remove_mapping(mapping, page, false, NULL)) {
951 		/*
952 		 * Unfreezing the refcount with 1 rather than 2 effectively
953 		 * drops the pagecache ref for us without requiring another
954 		 * atomic operation.
955 		 */
956 		page_ref_unfreeze(page, 1);
957 		return 1;
958 	}
959 	return 0;
960 }
961 
962 /**
963  * putback_lru_page - put previously isolated page onto appropriate LRU list
964  * @page: page to be put back to appropriate lru list
965  *
966  * Add previously isolated @page to appropriate LRU list.
967  * Page may still be unevictable for other reasons.
968  *
969  * lru_lock must not be held, interrupts must be enabled.
970  */
971 void putback_lru_page(struct page *page)
972 {
973 	lru_cache_add(page);
974 	put_page(page);		/* drop ref from isolate */
975 }
976 
977 enum page_references {
978 	PAGEREF_RECLAIM,
979 	PAGEREF_RECLAIM_CLEAN,
980 	PAGEREF_KEEP,
981 	PAGEREF_ACTIVATE,
982 };
983 
984 static enum page_references page_check_references(struct page *page,
985 						  struct scan_control *sc)
986 {
987 	int referenced_ptes, referenced_page;
988 	unsigned long vm_flags;
989 
990 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 					  &vm_flags);
992 	referenced_page = TestClearPageReferenced(page);
993 
994 	/*
995 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
996 	 * move the page to the unevictable list.
997 	 */
998 	if (vm_flags & VM_LOCKED)
999 		return PAGEREF_RECLAIM;
1000 
1001 	if (referenced_ptes) {
1002 		/*
1003 		 * All mapped pages start out with page table
1004 		 * references from the instantiating fault, so we need
1005 		 * to look twice if a mapped file page is used more
1006 		 * than once.
1007 		 *
1008 		 * Mark it and spare it for another trip around the
1009 		 * inactive list.  Another page table reference will
1010 		 * lead to its activation.
1011 		 *
1012 		 * Note: the mark is set for activated pages as well
1013 		 * so that recently deactivated but used pages are
1014 		 * quickly recovered.
1015 		 */
1016 		SetPageReferenced(page);
1017 
1018 		if (referenced_page || referenced_ptes > 1)
1019 			return PAGEREF_ACTIVATE;
1020 
1021 		/*
1022 		 * Activate file-backed executable pages after first usage.
1023 		 */
1024 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025 			return PAGEREF_ACTIVATE;
1026 
1027 		return PAGEREF_KEEP;
1028 	}
1029 
1030 	/* Reclaim if clean, defer dirty pages to writeback */
1031 	if (referenced_page && !PageSwapBacked(page))
1032 		return PAGEREF_RECLAIM_CLEAN;
1033 
1034 	return PAGEREF_RECLAIM;
1035 }
1036 
1037 /* Check if a page is dirty or under writeback */
1038 static void page_check_dirty_writeback(struct page *page,
1039 				       bool *dirty, bool *writeback)
1040 {
1041 	struct address_space *mapping;
1042 
1043 	/*
1044 	 * Anonymous pages are not handled by flushers and must be written
1045 	 * from reclaim context. Do not stall reclaim based on them
1046 	 */
1047 	if (!page_is_file_lru(page) ||
1048 	    (PageAnon(page) && !PageSwapBacked(page))) {
1049 		*dirty = false;
1050 		*writeback = false;
1051 		return;
1052 	}
1053 
1054 	/* By default assume that the page flags are accurate */
1055 	*dirty = PageDirty(page);
1056 	*writeback = PageWriteback(page);
1057 
1058 	/* Verify dirty/writeback state if the filesystem supports it */
1059 	if (!page_has_private(page))
1060 		return;
1061 
1062 	mapping = page_mapping(page);
1063 	if (mapping && mapping->a_ops->is_dirty_writeback)
1064 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065 }
1066 
1067 /*
1068  * shrink_page_list() returns the number of reclaimed pages
1069  */
1070 static unsigned int shrink_page_list(struct list_head *page_list,
1071 				     struct pglist_data *pgdat,
1072 				     struct scan_control *sc,
1073 				     struct reclaim_stat *stat,
1074 				     bool ignore_references)
1075 {
1076 	LIST_HEAD(ret_pages);
1077 	LIST_HEAD(free_pages);
1078 	unsigned int nr_reclaimed = 0;
1079 	unsigned int pgactivate = 0;
1080 
1081 	memset(stat, 0, sizeof(*stat));
1082 	cond_resched();
1083 
1084 	while (!list_empty(page_list)) {
1085 		struct address_space *mapping;
1086 		struct page *page;
1087 		enum page_references references = PAGEREF_RECLAIM;
1088 		bool dirty, writeback, may_enter_fs;
1089 		unsigned int nr_pages;
1090 
1091 		cond_resched();
1092 
1093 		page = lru_to_page(page_list);
1094 		list_del(&page->lru);
1095 
1096 		if (!trylock_page(page))
1097 			goto keep;
1098 
1099 		VM_BUG_ON_PAGE(PageActive(page), page);
1100 
1101 		nr_pages = compound_nr(page);
1102 
1103 		/* Account the number of base pages even though THP */
1104 		sc->nr_scanned += nr_pages;
1105 
1106 		if (unlikely(!page_evictable(page)))
1107 			goto activate_locked;
1108 
1109 		if (!sc->may_unmap && page_mapped(page))
1110 			goto keep_locked;
1111 
1112 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1114 
1115 		/*
1116 		 * The number of dirty pages determines if a node is marked
1117 		 * reclaim_congested which affects wait_iff_congested. kswapd
1118 		 * will stall and start writing pages if the tail of the LRU
1119 		 * is all dirty unqueued pages.
1120 		 */
1121 		page_check_dirty_writeback(page, &dirty, &writeback);
1122 		if (dirty || writeback)
1123 			stat->nr_dirty++;
1124 
1125 		if (dirty && !writeback)
1126 			stat->nr_unqueued_dirty++;
1127 
1128 		/*
1129 		 * Treat this page as congested if the underlying BDI is or if
1130 		 * pages are cycling through the LRU so quickly that the
1131 		 * pages marked for immediate reclaim are making it to the
1132 		 * end of the LRU a second time.
1133 		 */
1134 		mapping = page_mapping(page);
1135 		if (((dirty || writeback) && mapping &&
1136 		     inode_write_congested(mapping->host)) ||
1137 		    (writeback && PageReclaim(page)))
1138 			stat->nr_congested++;
1139 
1140 		/*
1141 		 * If a page at the tail of the LRU is under writeback, there
1142 		 * are three cases to consider.
1143 		 *
1144 		 * 1) If reclaim is encountering an excessive number of pages
1145 		 *    under writeback and this page is both under writeback and
1146 		 *    PageReclaim then it indicates that pages are being queued
1147 		 *    for IO but are being recycled through the LRU before the
1148 		 *    IO can complete. Waiting on the page itself risks an
1149 		 *    indefinite stall if it is impossible to writeback the
1150 		 *    page due to IO error or disconnected storage so instead
1151 		 *    note that the LRU is being scanned too quickly and the
1152 		 *    caller can stall after page list has been processed.
1153 		 *
1154 		 * 2) Global or new memcg reclaim encounters a page that is
1155 		 *    not marked for immediate reclaim, or the caller does not
1156 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 		 *    not to fs). In this case mark the page for immediate
1158 		 *    reclaim and continue scanning.
1159 		 *
1160 		 *    Require may_enter_fs because we would wait on fs, which
1161 		 *    may not have submitted IO yet. And the loop driver might
1162 		 *    enter reclaim, and deadlock if it waits on a page for
1163 		 *    which it is needed to do the write (loop masks off
1164 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1165 		 *    would probably show more reasons.
1166 		 *
1167 		 * 3) Legacy memcg encounters a page that is already marked
1168 		 *    PageReclaim. memcg does not have any dirty pages
1169 		 *    throttling so we could easily OOM just because too many
1170 		 *    pages are in writeback and there is nothing else to
1171 		 *    reclaim. Wait for the writeback to complete.
1172 		 *
1173 		 * In cases 1) and 2) we activate the pages to get them out of
1174 		 * the way while we continue scanning for clean pages on the
1175 		 * inactive list and refilling from the active list. The
1176 		 * observation here is that waiting for disk writes is more
1177 		 * expensive than potentially causing reloads down the line.
1178 		 * Since they're marked for immediate reclaim, they won't put
1179 		 * memory pressure on the cache working set any longer than it
1180 		 * takes to write them to disk.
1181 		 */
1182 		if (PageWriteback(page)) {
1183 			/* Case 1 above */
1184 			if (current_is_kswapd() &&
1185 			    PageReclaim(page) &&
1186 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1187 				stat->nr_immediate++;
1188 				goto activate_locked;
1189 
1190 			/* Case 2 above */
1191 			} else if (writeback_throttling_sane(sc) ||
1192 			    !PageReclaim(page) || !may_enter_fs) {
1193 				/*
1194 				 * This is slightly racy - end_page_writeback()
1195 				 * might have just cleared PageReclaim, then
1196 				 * setting PageReclaim here end up interpreted
1197 				 * as PageReadahead - but that does not matter
1198 				 * enough to care.  What we do want is for this
1199 				 * page to have PageReclaim set next time memcg
1200 				 * reclaim reaches the tests above, so it will
1201 				 * then wait_on_page_writeback() to avoid OOM;
1202 				 * and it's also appropriate in global reclaim.
1203 				 */
1204 				SetPageReclaim(page);
1205 				stat->nr_writeback++;
1206 				goto activate_locked;
1207 
1208 			/* Case 3 above */
1209 			} else {
1210 				unlock_page(page);
1211 				wait_on_page_writeback(page);
1212 				/* then go back and try same page again */
1213 				list_add_tail(&page->lru, page_list);
1214 				continue;
1215 			}
1216 		}
1217 
1218 		if (!ignore_references)
1219 			references = page_check_references(page, sc);
1220 
1221 		switch (references) {
1222 		case PAGEREF_ACTIVATE:
1223 			goto activate_locked;
1224 		case PAGEREF_KEEP:
1225 			stat->nr_ref_keep += nr_pages;
1226 			goto keep_locked;
1227 		case PAGEREF_RECLAIM:
1228 		case PAGEREF_RECLAIM_CLEAN:
1229 			; /* try to reclaim the page below */
1230 		}
1231 
1232 		/*
1233 		 * Anonymous process memory has backing store?
1234 		 * Try to allocate it some swap space here.
1235 		 * Lazyfree page could be freed directly
1236 		 */
1237 		if (PageAnon(page) && PageSwapBacked(page)) {
1238 			if (!PageSwapCache(page)) {
1239 				if (!(sc->gfp_mask & __GFP_IO))
1240 					goto keep_locked;
1241 				if (page_maybe_dma_pinned(page))
1242 					goto keep_locked;
1243 				if (PageTransHuge(page)) {
1244 					/* cannot split THP, skip it */
1245 					if (!can_split_huge_page(page, NULL))
1246 						goto activate_locked;
1247 					/*
1248 					 * Split pages without a PMD map right
1249 					 * away. Chances are some or all of the
1250 					 * tail pages can be freed without IO.
1251 					 */
1252 					if (!compound_mapcount(page) &&
1253 					    split_huge_page_to_list(page,
1254 								    page_list))
1255 						goto activate_locked;
1256 				}
1257 				if (!add_to_swap(page)) {
1258 					if (!PageTransHuge(page))
1259 						goto activate_locked_split;
1260 					/* Fallback to swap normal pages */
1261 					if (split_huge_page_to_list(page,
1262 								    page_list))
1263 						goto activate_locked;
1264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1265 					count_vm_event(THP_SWPOUT_FALLBACK);
1266 #endif
1267 					if (!add_to_swap(page))
1268 						goto activate_locked_split;
1269 				}
1270 
1271 				may_enter_fs = true;
1272 
1273 				/* Adding to swap updated mapping */
1274 				mapping = page_mapping(page);
1275 			}
1276 		} else if (unlikely(PageTransHuge(page))) {
1277 			/* Split file THP */
1278 			if (split_huge_page_to_list(page, page_list))
1279 				goto keep_locked;
1280 		}
1281 
1282 		/*
1283 		 * THP may get split above, need minus tail pages and update
1284 		 * nr_pages to avoid accounting tail pages twice.
1285 		 *
1286 		 * The tail pages that are added into swap cache successfully
1287 		 * reach here.
1288 		 */
1289 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1290 			sc->nr_scanned -= (nr_pages - 1);
1291 			nr_pages = 1;
1292 		}
1293 
1294 		/*
1295 		 * The page is mapped into the page tables of one or more
1296 		 * processes. Try to unmap it here.
1297 		 */
1298 		if (page_mapped(page)) {
1299 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1300 			bool was_swapbacked = PageSwapBacked(page);
1301 
1302 			if (unlikely(PageTransHuge(page)))
1303 				flags |= TTU_SPLIT_HUGE_PMD;
1304 
1305 			if (!try_to_unmap(page, flags)) {
1306 				stat->nr_unmap_fail += nr_pages;
1307 				if (!was_swapbacked && PageSwapBacked(page))
1308 					stat->nr_lazyfree_fail += nr_pages;
1309 				goto activate_locked;
1310 			}
1311 		}
1312 
1313 		if (PageDirty(page)) {
1314 			/*
1315 			 * Only kswapd can writeback filesystem pages
1316 			 * to avoid risk of stack overflow. But avoid
1317 			 * injecting inefficient single-page IO into
1318 			 * flusher writeback as much as possible: only
1319 			 * write pages when we've encountered many
1320 			 * dirty pages, and when we've already scanned
1321 			 * the rest of the LRU for clean pages and see
1322 			 * the same dirty pages again (PageReclaim).
1323 			 */
1324 			if (page_is_file_lru(page) &&
1325 			    (!current_is_kswapd() || !PageReclaim(page) ||
1326 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1327 				/*
1328 				 * Immediately reclaim when written back.
1329 				 * Similar in principal to deactivate_page()
1330 				 * except we already have the page isolated
1331 				 * and know it's dirty
1332 				 */
1333 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1334 				SetPageReclaim(page);
1335 
1336 				goto activate_locked;
1337 			}
1338 
1339 			if (references == PAGEREF_RECLAIM_CLEAN)
1340 				goto keep_locked;
1341 			if (!may_enter_fs)
1342 				goto keep_locked;
1343 			if (!sc->may_writepage)
1344 				goto keep_locked;
1345 
1346 			/*
1347 			 * Page is dirty. Flush the TLB if a writable entry
1348 			 * potentially exists to avoid CPU writes after IO
1349 			 * starts and then write it out here.
1350 			 */
1351 			try_to_unmap_flush_dirty();
1352 			switch (pageout(page, mapping)) {
1353 			case PAGE_KEEP:
1354 				goto keep_locked;
1355 			case PAGE_ACTIVATE:
1356 				goto activate_locked;
1357 			case PAGE_SUCCESS:
1358 				stat->nr_pageout += thp_nr_pages(page);
1359 
1360 				if (PageWriteback(page))
1361 					goto keep;
1362 				if (PageDirty(page))
1363 					goto keep;
1364 
1365 				/*
1366 				 * A synchronous write - probably a ramdisk.  Go
1367 				 * ahead and try to reclaim the page.
1368 				 */
1369 				if (!trylock_page(page))
1370 					goto keep;
1371 				if (PageDirty(page) || PageWriteback(page))
1372 					goto keep_locked;
1373 				mapping = page_mapping(page);
1374 				fallthrough;
1375 			case PAGE_CLEAN:
1376 				; /* try to free the page below */
1377 			}
1378 		}
1379 
1380 		/*
1381 		 * If the page has buffers, try to free the buffer mappings
1382 		 * associated with this page. If we succeed we try to free
1383 		 * the page as well.
1384 		 *
1385 		 * We do this even if the page is PageDirty().
1386 		 * try_to_release_page() does not perform I/O, but it is
1387 		 * possible for a page to have PageDirty set, but it is actually
1388 		 * clean (all its buffers are clean).  This happens if the
1389 		 * buffers were written out directly, with submit_bh(). ext3
1390 		 * will do this, as well as the blockdev mapping.
1391 		 * try_to_release_page() will discover that cleanness and will
1392 		 * drop the buffers and mark the page clean - it can be freed.
1393 		 *
1394 		 * Rarely, pages can have buffers and no ->mapping.  These are
1395 		 * the pages which were not successfully invalidated in
1396 		 * truncate_cleanup_page().  We try to drop those buffers here
1397 		 * and if that worked, and the page is no longer mapped into
1398 		 * process address space (page_count == 1) it can be freed.
1399 		 * Otherwise, leave the page on the LRU so it is swappable.
1400 		 */
1401 		if (page_has_private(page)) {
1402 			if (!try_to_release_page(page, sc->gfp_mask))
1403 				goto activate_locked;
1404 			if (!mapping && page_count(page) == 1) {
1405 				unlock_page(page);
1406 				if (put_page_testzero(page))
1407 					goto free_it;
1408 				else {
1409 					/*
1410 					 * rare race with speculative reference.
1411 					 * the speculative reference will free
1412 					 * this page shortly, so we may
1413 					 * increment nr_reclaimed here (and
1414 					 * leave it off the LRU).
1415 					 */
1416 					nr_reclaimed++;
1417 					continue;
1418 				}
1419 			}
1420 		}
1421 
1422 		if (PageAnon(page) && !PageSwapBacked(page)) {
1423 			/* follow __remove_mapping for reference */
1424 			if (!page_ref_freeze(page, 1))
1425 				goto keep_locked;
1426 			if (PageDirty(page)) {
1427 				page_ref_unfreeze(page, 1);
1428 				goto keep_locked;
1429 			}
1430 
1431 			count_vm_event(PGLAZYFREED);
1432 			count_memcg_page_event(page, PGLAZYFREED);
1433 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1434 							 sc->target_mem_cgroup))
1435 			goto keep_locked;
1436 
1437 		unlock_page(page);
1438 free_it:
1439 		/*
1440 		 * THP may get swapped out in a whole, need account
1441 		 * all base pages.
1442 		 */
1443 		nr_reclaimed += nr_pages;
1444 
1445 		/*
1446 		 * Is there need to periodically free_page_list? It would
1447 		 * appear not as the counts should be low
1448 		 */
1449 		if (unlikely(PageTransHuge(page)))
1450 			destroy_compound_page(page);
1451 		else
1452 			list_add(&page->lru, &free_pages);
1453 		continue;
1454 
1455 activate_locked_split:
1456 		/*
1457 		 * The tail pages that are failed to add into swap cache
1458 		 * reach here.  Fixup nr_scanned and nr_pages.
1459 		 */
1460 		if (nr_pages > 1) {
1461 			sc->nr_scanned -= (nr_pages - 1);
1462 			nr_pages = 1;
1463 		}
1464 activate_locked:
1465 		/* Not a candidate for swapping, so reclaim swap space. */
1466 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1467 						PageMlocked(page)))
1468 			try_to_free_swap(page);
1469 		VM_BUG_ON_PAGE(PageActive(page), page);
1470 		if (!PageMlocked(page)) {
1471 			int type = page_is_file_lru(page);
1472 			SetPageActive(page);
1473 			stat->nr_activate[type] += nr_pages;
1474 			count_memcg_page_event(page, PGACTIVATE);
1475 		}
1476 keep_locked:
1477 		unlock_page(page);
1478 keep:
1479 		list_add(&page->lru, &ret_pages);
1480 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1481 	}
1482 
1483 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484 
1485 	mem_cgroup_uncharge_list(&free_pages);
1486 	try_to_unmap_flush();
1487 	free_unref_page_list(&free_pages);
1488 
1489 	list_splice(&ret_pages, page_list);
1490 	count_vm_events(PGACTIVATE, pgactivate);
1491 
1492 	return nr_reclaimed;
1493 }
1494 
1495 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1496 					    struct list_head *page_list)
1497 {
1498 	struct scan_control sc = {
1499 		.gfp_mask = GFP_KERNEL,
1500 		.priority = DEF_PRIORITY,
1501 		.may_unmap = 1,
1502 	};
1503 	struct reclaim_stat stat;
1504 	unsigned int nr_reclaimed;
1505 	struct page *page, *next;
1506 	LIST_HEAD(clean_pages);
1507 
1508 	list_for_each_entry_safe(page, next, page_list, lru) {
1509 		if (page_is_file_lru(page) && !PageDirty(page) &&
1510 		    !__PageMovable(page) && !PageUnevictable(page)) {
1511 			ClearPageActive(page);
1512 			list_move(&page->lru, &clean_pages);
1513 		}
1514 	}
1515 
1516 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1517 					&stat, true);
1518 	list_splice(&clean_pages, page_list);
1519 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1520 			    -(long)nr_reclaimed);
1521 	/*
1522 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1523 	 * they will rotate back to anonymous LRU in the end if it failed to
1524 	 * discard so isolated count will be mismatched.
1525 	 * Compensate the isolated count for both LRU lists.
1526 	 */
1527 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1528 			    stat.nr_lazyfree_fail);
1529 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1530 			    -(long)stat.nr_lazyfree_fail);
1531 	return nr_reclaimed;
1532 }
1533 
1534 /*
1535  * Attempt to remove the specified page from its LRU.  Only take this page
1536  * if it is of the appropriate PageActive status.  Pages which are being
1537  * freed elsewhere are also ignored.
1538  *
1539  * page:	page to consider
1540  * mode:	one of the LRU isolation modes defined above
1541  *
1542  * returns 0 on success, -ve errno on failure.
1543  */
1544 int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1545 {
1546 	int ret = -EBUSY;
1547 
1548 	/* Only take pages on the LRU. */
1549 	if (!PageLRU(page))
1550 		return ret;
1551 
1552 	/* Compaction should not handle unevictable pages but CMA can do so */
1553 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1554 		return ret;
1555 
1556 	/*
1557 	 * To minimise LRU disruption, the caller can indicate that it only
1558 	 * wants to isolate pages it will be able to operate on without
1559 	 * blocking - clean pages for the most part.
1560 	 *
1561 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1562 	 * that it is possible to migrate without blocking
1563 	 */
1564 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1565 		/* All the caller can do on PageWriteback is block */
1566 		if (PageWriteback(page))
1567 			return ret;
1568 
1569 		if (PageDirty(page)) {
1570 			struct address_space *mapping;
1571 			bool migrate_dirty;
1572 
1573 			/*
1574 			 * Only pages without mappings or that have a
1575 			 * ->migratepage callback are possible to migrate
1576 			 * without blocking. However, we can be racing with
1577 			 * truncation so it's necessary to lock the page
1578 			 * to stabilise the mapping as truncation holds
1579 			 * the page lock until after the page is removed
1580 			 * from the page cache.
1581 			 */
1582 			if (!trylock_page(page))
1583 				return ret;
1584 
1585 			mapping = page_mapping(page);
1586 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1587 			unlock_page(page);
1588 			if (!migrate_dirty)
1589 				return ret;
1590 		}
1591 	}
1592 
1593 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1594 		return ret;
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Update LRU sizes after isolating pages. The LRU size updates must
1601  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1602  */
1603 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1604 			enum lru_list lru, unsigned long *nr_zone_taken)
1605 {
1606 	int zid;
1607 
1608 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609 		if (!nr_zone_taken[zid])
1610 			continue;
1611 
1612 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1613 	}
1614 
1615 }
1616 
1617 /**
1618  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1619  *
1620  * lruvec->lru_lock is heavily contended.  Some of the functions that
1621  * shrink the lists perform better by taking out a batch of pages
1622  * and working on them outside the LRU lock.
1623  *
1624  * For pagecache intensive workloads, this function is the hottest
1625  * spot in the kernel (apart from copy_*_user functions).
1626  *
1627  * Lru_lock must be held before calling this function.
1628  *
1629  * @nr_to_scan:	The number of eligible pages to look through on the list.
1630  * @lruvec:	The LRU vector to pull pages from.
1631  * @dst:	The temp list to put pages on to.
1632  * @nr_scanned:	The number of pages that were scanned.
1633  * @sc:		The scan_control struct for this reclaim session
1634  * @lru:	LRU list id for isolating
1635  *
1636  * returns how many pages were moved onto *@dst.
1637  */
1638 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1639 		struct lruvec *lruvec, struct list_head *dst,
1640 		unsigned long *nr_scanned, struct scan_control *sc,
1641 		enum lru_list lru)
1642 {
1643 	struct list_head *src = &lruvec->lists[lru];
1644 	unsigned long nr_taken = 0;
1645 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1646 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1647 	unsigned long skipped = 0;
1648 	unsigned long scan, total_scan, nr_pages;
1649 	LIST_HEAD(pages_skipped);
1650 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1651 
1652 	total_scan = 0;
1653 	scan = 0;
1654 	while (scan < nr_to_scan && !list_empty(src)) {
1655 		struct page *page;
1656 
1657 		page = lru_to_page(src);
1658 		prefetchw_prev_lru_page(page, src, flags);
1659 
1660 		nr_pages = compound_nr(page);
1661 		total_scan += nr_pages;
1662 
1663 		if (page_zonenum(page) > sc->reclaim_idx) {
1664 			list_move(&page->lru, &pages_skipped);
1665 			nr_skipped[page_zonenum(page)] += nr_pages;
1666 			continue;
1667 		}
1668 
1669 		/*
1670 		 * Do not count skipped pages because that makes the function
1671 		 * return with no isolated pages if the LRU mostly contains
1672 		 * ineligible pages.  This causes the VM to not reclaim any
1673 		 * pages, triggering a premature OOM.
1674 		 *
1675 		 * Account all tail pages of THP.  This would not cause
1676 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1677 		 * only when the page is being freed somewhere else.
1678 		 */
1679 		scan += nr_pages;
1680 		switch (__isolate_lru_page_prepare(page, mode)) {
1681 		case 0:
1682 			/*
1683 			 * Be careful not to clear PageLRU until after we're
1684 			 * sure the page is not being freed elsewhere -- the
1685 			 * page release code relies on it.
1686 			 */
1687 			if (unlikely(!get_page_unless_zero(page)))
1688 				goto busy;
1689 
1690 			if (!TestClearPageLRU(page)) {
1691 				/*
1692 				 * This page may in other isolation path,
1693 				 * but we still hold lru_lock.
1694 				 */
1695 				put_page(page);
1696 				goto busy;
1697 			}
1698 
1699 			nr_taken += nr_pages;
1700 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1701 			list_move(&page->lru, dst);
1702 			break;
1703 
1704 		default:
1705 busy:
1706 			/* else it is being freed elsewhere */
1707 			list_move(&page->lru, src);
1708 		}
1709 	}
1710 
1711 	/*
1712 	 * Splice any skipped pages to the start of the LRU list. Note that
1713 	 * this disrupts the LRU order when reclaiming for lower zones but
1714 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1715 	 * scanning would soon rescan the same pages to skip and put the
1716 	 * system at risk of premature OOM.
1717 	 */
1718 	if (!list_empty(&pages_skipped)) {
1719 		int zid;
1720 
1721 		list_splice(&pages_skipped, src);
1722 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1723 			if (!nr_skipped[zid])
1724 				continue;
1725 
1726 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1727 			skipped += nr_skipped[zid];
1728 		}
1729 	}
1730 	*nr_scanned = total_scan;
1731 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1732 				    total_scan, skipped, nr_taken, mode, lru);
1733 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1734 	return nr_taken;
1735 }
1736 
1737 /**
1738  * isolate_lru_page - tries to isolate a page from its LRU list
1739  * @page: page to isolate from its LRU list
1740  *
1741  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1742  * vmstat statistic corresponding to whatever LRU list the page was on.
1743  *
1744  * Returns 0 if the page was removed from an LRU list.
1745  * Returns -EBUSY if the page was not on an LRU list.
1746  *
1747  * The returned page will have PageLRU() cleared.  If it was found on
1748  * the active list, it will have PageActive set.  If it was found on
1749  * the unevictable list, it will have the PageUnevictable bit set. That flag
1750  * may need to be cleared by the caller before letting the page go.
1751  *
1752  * The vmstat statistic corresponding to the list on which the page was
1753  * found will be decremented.
1754  *
1755  * Restrictions:
1756  *
1757  * (1) Must be called with an elevated refcount on the page. This is a
1758  *     fundamental difference from isolate_lru_pages (which is called
1759  *     without a stable reference).
1760  * (2) the lru_lock must not be held.
1761  * (3) interrupts must be enabled.
1762  */
1763 int isolate_lru_page(struct page *page)
1764 {
1765 	int ret = -EBUSY;
1766 
1767 	VM_BUG_ON_PAGE(!page_count(page), page);
1768 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1769 
1770 	if (TestClearPageLRU(page)) {
1771 		struct lruvec *lruvec;
1772 
1773 		get_page(page);
1774 		lruvec = lock_page_lruvec_irq(page);
1775 		del_page_from_lru_list(page, lruvec, page_lru(page));
1776 		unlock_page_lruvec_irq(lruvec);
1777 		ret = 0;
1778 	}
1779 
1780 	return ret;
1781 }
1782 
1783 /*
1784  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1785  * then get rescheduled. When there are massive number of tasks doing page
1786  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1787  * the LRU list will go small and be scanned faster than necessary, leading to
1788  * unnecessary swapping, thrashing and OOM.
1789  */
1790 static int too_many_isolated(struct pglist_data *pgdat, int file,
1791 		struct scan_control *sc)
1792 {
1793 	unsigned long inactive, isolated;
1794 
1795 	if (current_is_kswapd())
1796 		return 0;
1797 
1798 	if (!writeback_throttling_sane(sc))
1799 		return 0;
1800 
1801 	if (file) {
1802 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1803 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1804 	} else {
1805 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1806 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1807 	}
1808 
1809 	/*
1810 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1811 	 * won't get blocked by normal direct-reclaimers, forming a circular
1812 	 * deadlock.
1813 	 */
1814 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1815 		inactive >>= 3;
1816 
1817 	return isolated > inactive;
1818 }
1819 
1820 /*
1821  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1822  * On return, @list is reused as a list of pages to be freed by the caller.
1823  *
1824  * Returns the number of pages moved to the given lruvec.
1825  */
1826 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1827 						     struct list_head *list)
1828 {
1829 	int nr_pages, nr_moved = 0;
1830 	LIST_HEAD(pages_to_free);
1831 	struct page *page;
1832 	enum lru_list lru;
1833 
1834 	while (!list_empty(list)) {
1835 		page = lru_to_page(list);
1836 		VM_BUG_ON_PAGE(PageLRU(page), page);
1837 		list_del(&page->lru);
1838 		if (unlikely(!page_evictable(page))) {
1839 			spin_unlock_irq(&lruvec->lru_lock);
1840 			putback_lru_page(page);
1841 			spin_lock_irq(&lruvec->lru_lock);
1842 			continue;
1843 		}
1844 
1845 		/*
1846 		 * The SetPageLRU needs to be kept here for list integrity.
1847 		 * Otherwise:
1848 		 *   #0 move_pages_to_lru             #1 release_pages
1849 		 *   if !put_page_testzero
1850 		 *				      if (put_page_testzero())
1851 		 *				        !PageLRU //skip lru_lock
1852 		 *     SetPageLRU()
1853 		 *     list_add(&page->lru,)
1854 		 *                                        list_add(&page->lru,)
1855 		 */
1856 		SetPageLRU(page);
1857 
1858 		if (unlikely(put_page_testzero(page))) {
1859 			__ClearPageLRU(page);
1860 			__ClearPageActive(page);
1861 
1862 			if (unlikely(PageCompound(page))) {
1863 				spin_unlock_irq(&lruvec->lru_lock);
1864 				destroy_compound_page(page);
1865 				spin_lock_irq(&lruvec->lru_lock);
1866 			} else
1867 				list_add(&page->lru, &pages_to_free);
1868 
1869 			continue;
1870 		}
1871 
1872 		/*
1873 		 * All pages were isolated from the same lruvec (and isolation
1874 		 * inhibits memcg migration).
1875 		 */
1876 		VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
1877 		lru = page_lru(page);
1878 		nr_pages = thp_nr_pages(page);
1879 
1880 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1881 		list_add(&page->lru, &lruvec->lists[lru]);
1882 		nr_moved += nr_pages;
1883 		if (PageActive(page))
1884 			workingset_age_nonresident(lruvec, nr_pages);
1885 	}
1886 
1887 	/*
1888 	 * To save our caller's stack, now use input list for pages to free.
1889 	 */
1890 	list_splice(&pages_to_free, list);
1891 
1892 	return nr_moved;
1893 }
1894 
1895 /*
1896  * If a kernel thread (such as nfsd for loop-back mounts) services
1897  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1898  * In that case we should only throttle if the backing device it is
1899  * writing to is congested.  In other cases it is safe to throttle.
1900  */
1901 static int current_may_throttle(void)
1902 {
1903 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1904 		current->backing_dev_info == NULL ||
1905 		bdi_write_congested(current->backing_dev_info);
1906 }
1907 
1908 /*
1909  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1910  * of reclaimed pages
1911  */
1912 static noinline_for_stack unsigned long
1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914 		     struct scan_control *sc, enum lru_list lru)
1915 {
1916 	LIST_HEAD(page_list);
1917 	unsigned long nr_scanned;
1918 	unsigned int nr_reclaimed = 0;
1919 	unsigned long nr_taken;
1920 	struct reclaim_stat stat;
1921 	bool file = is_file_lru(lru);
1922 	enum vm_event_item item;
1923 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924 	bool stalled = false;
1925 
1926 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1927 		if (stalled)
1928 			return 0;
1929 
1930 		/* wait a bit for the reclaimer. */
1931 		msleep(100);
1932 		stalled = true;
1933 
1934 		/* We are about to die and free our memory. Return now. */
1935 		if (fatal_signal_pending(current))
1936 			return SWAP_CLUSTER_MAX;
1937 	}
1938 
1939 	lru_add_drain();
1940 
1941 	spin_lock_irq(&lruvec->lru_lock);
1942 
1943 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1944 				     &nr_scanned, sc, lru);
1945 
1946 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1947 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1948 	if (!cgroup_reclaim(sc))
1949 		__count_vm_events(item, nr_scanned);
1950 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1951 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952 
1953 	spin_unlock_irq(&lruvec->lru_lock);
1954 
1955 	if (nr_taken == 0)
1956 		return 0;
1957 
1958 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1959 
1960 	spin_lock_irq(&lruvec->lru_lock);
1961 	move_pages_to_lru(lruvec, &page_list);
1962 
1963 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1964 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1965 	if (!cgroup_reclaim(sc))
1966 		__count_vm_events(item, nr_reclaimed);
1967 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1968 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1969 	spin_unlock_irq(&lruvec->lru_lock);
1970 
1971 	lru_note_cost(lruvec, file, stat.nr_pageout);
1972 	mem_cgroup_uncharge_list(&page_list);
1973 	free_unref_page_list(&page_list);
1974 
1975 	/*
1976 	 * If dirty pages are scanned that are not queued for IO, it
1977 	 * implies that flushers are not doing their job. This can
1978 	 * happen when memory pressure pushes dirty pages to the end of
1979 	 * the LRU before the dirty limits are breached and the dirty
1980 	 * data has expired. It can also happen when the proportion of
1981 	 * dirty pages grows not through writes but through memory
1982 	 * pressure reclaiming all the clean cache. And in some cases,
1983 	 * the flushers simply cannot keep up with the allocation
1984 	 * rate. Nudge the flusher threads in case they are asleep.
1985 	 */
1986 	if (stat.nr_unqueued_dirty == nr_taken)
1987 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1988 
1989 	sc->nr.dirty += stat.nr_dirty;
1990 	sc->nr.congested += stat.nr_congested;
1991 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1992 	sc->nr.writeback += stat.nr_writeback;
1993 	sc->nr.immediate += stat.nr_immediate;
1994 	sc->nr.taken += nr_taken;
1995 	if (file)
1996 		sc->nr.file_taken += nr_taken;
1997 
1998 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1999 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2000 	return nr_reclaimed;
2001 }
2002 
2003 /*
2004  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2005  *
2006  * We move them the other way if the page is referenced by one or more
2007  * processes.
2008  *
2009  * If the pages are mostly unmapped, the processing is fast and it is
2010  * appropriate to hold lru_lock across the whole operation.  But if
2011  * the pages are mapped, the processing is slow (page_referenced()), so
2012  * we should drop lru_lock around each page.  It's impossible to balance
2013  * this, so instead we remove the pages from the LRU while processing them.
2014  * It is safe to rely on PG_active against the non-LRU pages in here because
2015  * nobody will play with that bit on a non-LRU page.
2016  *
2017  * The downside is that we have to touch page->_refcount against each page.
2018  * But we had to alter page->flags anyway.
2019  */
2020 static void shrink_active_list(unsigned long nr_to_scan,
2021 			       struct lruvec *lruvec,
2022 			       struct scan_control *sc,
2023 			       enum lru_list lru)
2024 {
2025 	unsigned long nr_taken;
2026 	unsigned long nr_scanned;
2027 	unsigned long vm_flags;
2028 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2029 	LIST_HEAD(l_active);
2030 	LIST_HEAD(l_inactive);
2031 	struct page *page;
2032 	unsigned nr_deactivate, nr_activate;
2033 	unsigned nr_rotated = 0;
2034 	int file = is_file_lru(lru);
2035 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2036 
2037 	lru_add_drain();
2038 
2039 	spin_lock_irq(&lruvec->lru_lock);
2040 
2041 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2042 				     &nr_scanned, sc, lru);
2043 
2044 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2045 
2046 	if (!cgroup_reclaim(sc))
2047 		__count_vm_events(PGREFILL, nr_scanned);
2048 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2049 
2050 	spin_unlock_irq(&lruvec->lru_lock);
2051 
2052 	while (!list_empty(&l_hold)) {
2053 		cond_resched();
2054 		page = lru_to_page(&l_hold);
2055 		list_del(&page->lru);
2056 
2057 		if (unlikely(!page_evictable(page))) {
2058 			putback_lru_page(page);
2059 			continue;
2060 		}
2061 
2062 		if (unlikely(buffer_heads_over_limit)) {
2063 			if (page_has_private(page) && trylock_page(page)) {
2064 				if (page_has_private(page))
2065 					try_to_release_page(page, 0);
2066 				unlock_page(page);
2067 			}
2068 		}
2069 
2070 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2071 				    &vm_flags)) {
2072 			/*
2073 			 * Identify referenced, file-backed active pages and
2074 			 * give them one more trip around the active list. So
2075 			 * that executable code get better chances to stay in
2076 			 * memory under moderate memory pressure.  Anon pages
2077 			 * are not likely to be evicted by use-once streaming
2078 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2079 			 * so we ignore them here.
2080 			 */
2081 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2082 				nr_rotated += thp_nr_pages(page);
2083 				list_add(&page->lru, &l_active);
2084 				continue;
2085 			}
2086 		}
2087 
2088 		ClearPageActive(page);	/* we are de-activating */
2089 		SetPageWorkingset(page);
2090 		list_add(&page->lru, &l_inactive);
2091 	}
2092 
2093 	/*
2094 	 * Move pages back to the lru list.
2095 	 */
2096 	spin_lock_irq(&lruvec->lru_lock);
2097 
2098 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2099 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2100 	/* Keep all free pages in l_active list */
2101 	list_splice(&l_inactive, &l_active);
2102 
2103 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2104 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2105 
2106 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2107 	spin_unlock_irq(&lruvec->lru_lock);
2108 
2109 	mem_cgroup_uncharge_list(&l_active);
2110 	free_unref_page_list(&l_active);
2111 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2112 			nr_deactivate, nr_rotated, sc->priority, file);
2113 }
2114 
2115 unsigned long reclaim_pages(struct list_head *page_list)
2116 {
2117 	int nid = NUMA_NO_NODE;
2118 	unsigned int nr_reclaimed = 0;
2119 	LIST_HEAD(node_page_list);
2120 	struct reclaim_stat dummy_stat;
2121 	struct page *page;
2122 	struct scan_control sc = {
2123 		.gfp_mask = GFP_KERNEL,
2124 		.priority = DEF_PRIORITY,
2125 		.may_writepage = 1,
2126 		.may_unmap = 1,
2127 		.may_swap = 1,
2128 	};
2129 
2130 	while (!list_empty(page_list)) {
2131 		page = lru_to_page(page_list);
2132 		if (nid == NUMA_NO_NODE) {
2133 			nid = page_to_nid(page);
2134 			INIT_LIST_HEAD(&node_page_list);
2135 		}
2136 
2137 		if (nid == page_to_nid(page)) {
2138 			ClearPageActive(page);
2139 			list_move(&page->lru, &node_page_list);
2140 			continue;
2141 		}
2142 
2143 		nr_reclaimed += shrink_page_list(&node_page_list,
2144 						NODE_DATA(nid),
2145 						&sc, &dummy_stat, false);
2146 		while (!list_empty(&node_page_list)) {
2147 			page = lru_to_page(&node_page_list);
2148 			list_del(&page->lru);
2149 			putback_lru_page(page);
2150 		}
2151 
2152 		nid = NUMA_NO_NODE;
2153 	}
2154 
2155 	if (!list_empty(&node_page_list)) {
2156 		nr_reclaimed += shrink_page_list(&node_page_list,
2157 						NODE_DATA(nid),
2158 						&sc, &dummy_stat, false);
2159 		while (!list_empty(&node_page_list)) {
2160 			page = lru_to_page(&node_page_list);
2161 			list_del(&page->lru);
2162 			putback_lru_page(page);
2163 		}
2164 	}
2165 
2166 	return nr_reclaimed;
2167 }
2168 
2169 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2170 				 struct lruvec *lruvec, struct scan_control *sc)
2171 {
2172 	if (is_active_lru(lru)) {
2173 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2174 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2175 		else
2176 			sc->skipped_deactivate = 1;
2177 		return 0;
2178 	}
2179 
2180 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2181 }
2182 
2183 /*
2184  * The inactive anon list should be small enough that the VM never has
2185  * to do too much work.
2186  *
2187  * The inactive file list should be small enough to leave most memory
2188  * to the established workingset on the scan-resistant active list,
2189  * but large enough to avoid thrashing the aggregate readahead window.
2190  *
2191  * Both inactive lists should also be large enough that each inactive
2192  * page has a chance to be referenced again before it is reclaimed.
2193  *
2194  * If that fails and refaulting is observed, the inactive list grows.
2195  *
2196  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2197  * on this LRU, maintained by the pageout code. An inactive_ratio
2198  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2199  *
2200  * total     target    max
2201  * memory    ratio     inactive
2202  * -------------------------------------
2203  *   10MB       1         5MB
2204  *  100MB       1        50MB
2205  *    1GB       3       250MB
2206  *   10GB      10       0.9GB
2207  *  100GB      31         3GB
2208  *    1TB     101        10GB
2209  *   10TB     320        32GB
2210  */
2211 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2212 {
2213 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2214 	unsigned long inactive, active;
2215 	unsigned long inactive_ratio;
2216 	unsigned long gb;
2217 
2218 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2219 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2220 
2221 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2222 	if (gb)
2223 		inactive_ratio = int_sqrt(10 * gb);
2224 	else
2225 		inactive_ratio = 1;
2226 
2227 	return inactive * inactive_ratio < active;
2228 }
2229 
2230 enum scan_balance {
2231 	SCAN_EQUAL,
2232 	SCAN_FRACT,
2233 	SCAN_ANON,
2234 	SCAN_FILE,
2235 };
2236 
2237 /*
2238  * Determine how aggressively the anon and file LRU lists should be
2239  * scanned.  The relative value of each set of LRU lists is determined
2240  * by looking at the fraction of the pages scanned we did rotate back
2241  * onto the active list instead of evict.
2242  *
2243  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2244  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2245  */
2246 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2247 			   unsigned long *nr)
2248 {
2249 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2250 	unsigned long anon_cost, file_cost, total_cost;
2251 	int swappiness = mem_cgroup_swappiness(memcg);
2252 	u64 fraction[ANON_AND_FILE];
2253 	u64 denominator = 0;	/* gcc */
2254 	enum scan_balance scan_balance;
2255 	unsigned long ap, fp;
2256 	enum lru_list lru;
2257 
2258 	/* If we have no swap space, do not bother scanning anon pages. */
2259 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2260 		scan_balance = SCAN_FILE;
2261 		goto out;
2262 	}
2263 
2264 	/*
2265 	 * Global reclaim will swap to prevent OOM even with no
2266 	 * swappiness, but memcg users want to use this knob to
2267 	 * disable swapping for individual groups completely when
2268 	 * using the memory controller's swap limit feature would be
2269 	 * too expensive.
2270 	 */
2271 	if (cgroup_reclaim(sc) && !swappiness) {
2272 		scan_balance = SCAN_FILE;
2273 		goto out;
2274 	}
2275 
2276 	/*
2277 	 * Do not apply any pressure balancing cleverness when the
2278 	 * system is close to OOM, scan both anon and file equally
2279 	 * (unless the swappiness setting disagrees with swapping).
2280 	 */
2281 	if (!sc->priority && swappiness) {
2282 		scan_balance = SCAN_EQUAL;
2283 		goto out;
2284 	}
2285 
2286 	/*
2287 	 * If the system is almost out of file pages, force-scan anon.
2288 	 */
2289 	if (sc->file_is_tiny) {
2290 		scan_balance = SCAN_ANON;
2291 		goto out;
2292 	}
2293 
2294 	/*
2295 	 * If there is enough inactive page cache, we do not reclaim
2296 	 * anything from the anonymous working right now.
2297 	 */
2298 	if (sc->cache_trim_mode) {
2299 		scan_balance = SCAN_FILE;
2300 		goto out;
2301 	}
2302 
2303 	scan_balance = SCAN_FRACT;
2304 	/*
2305 	 * Calculate the pressure balance between anon and file pages.
2306 	 *
2307 	 * The amount of pressure we put on each LRU is inversely
2308 	 * proportional to the cost of reclaiming each list, as
2309 	 * determined by the share of pages that are refaulting, times
2310 	 * the relative IO cost of bringing back a swapped out
2311 	 * anonymous page vs reloading a filesystem page (swappiness).
2312 	 *
2313 	 * Although we limit that influence to ensure no list gets
2314 	 * left behind completely: at least a third of the pressure is
2315 	 * applied, before swappiness.
2316 	 *
2317 	 * With swappiness at 100, anon and file have equal IO cost.
2318 	 */
2319 	total_cost = sc->anon_cost + sc->file_cost;
2320 	anon_cost = total_cost + sc->anon_cost;
2321 	file_cost = total_cost + sc->file_cost;
2322 	total_cost = anon_cost + file_cost;
2323 
2324 	ap = swappiness * (total_cost + 1);
2325 	ap /= anon_cost + 1;
2326 
2327 	fp = (200 - swappiness) * (total_cost + 1);
2328 	fp /= file_cost + 1;
2329 
2330 	fraction[0] = ap;
2331 	fraction[1] = fp;
2332 	denominator = ap + fp;
2333 out:
2334 	for_each_evictable_lru(lru) {
2335 		int file = is_file_lru(lru);
2336 		unsigned long lruvec_size;
2337 		unsigned long scan;
2338 		unsigned long protection;
2339 
2340 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2341 		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2342 						   memcg,
2343 						   sc->memcg_low_reclaim);
2344 
2345 		if (protection) {
2346 			/*
2347 			 * Scale a cgroup's reclaim pressure by proportioning
2348 			 * its current usage to its memory.low or memory.min
2349 			 * setting.
2350 			 *
2351 			 * This is important, as otherwise scanning aggression
2352 			 * becomes extremely binary -- from nothing as we
2353 			 * approach the memory protection threshold, to totally
2354 			 * nominal as we exceed it.  This results in requiring
2355 			 * setting extremely liberal protection thresholds. It
2356 			 * also means we simply get no protection at all if we
2357 			 * set it too low, which is not ideal.
2358 			 *
2359 			 * If there is any protection in place, we reduce scan
2360 			 * pressure by how much of the total memory used is
2361 			 * within protection thresholds.
2362 			 *
2363 			 * There is one special case: in the first reclaim pass,
2364 			 * we skip over all groups that are within their low
2365 			 * protection. If that fails to reclaim enough pages to
2366 			 * satisfy the reclaim goal, we come back and override
2367 			 * the best-effort low protection. However, we still
2368 			 * ideally want to honor how well-behaved groups are in
2369 			 * that case instead of simply punishing them all
2370 			 * equally. As such, we reclaim them based on how much
2371 			 * memory they are using, reducing the scan pressure
2372 			 * again by how much of the total memory used is under
2373 			 * hard protection.
2374 			 */
2375 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2376 
2377 			/* Avoid TOCTOU with earlier protection check */
2378 			cgroup_size = max(cgroup_size, protection);
2379 
2380 			scan = lruvec_size - lruvec_size * protection /
2381 				cgroup_size;
2382 
2383 			/*
2384 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2385 			 * reclaim moving forwards, avoiding decrementing
2386 			 * sc->priority further than desirable.
2387 			 */
2388 			scan = max(scan, SWAP_CLUSTER_MAX);
2389 		} else {
2390 			scan = lruvec_size;
2391 		}
2392 
2393 		scan >>= sc->priority;
2394 
2395 		/*
2396 		 * If the cgroup's already been deleted, make sure to
2397 		 * scrape out the remaining cache.
2398 		 */
2399 		if (!scan && !mem_cgroup_online(memcg))
2400 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2401 
2402 		switch (scan_balance) {
2403 		case SCAN_EQUAL:
2404 			/* Scan lists relative to size */
2405 			break;
2406 		case SCAN_FRACT:
2407 			/*
2408 			 * Scan types proportional to swappiness and
2409 			 * their relative recent reclaim efficiency.
2410 			 * Make sure we don't miss the last page on
2411 			 * the offlined memory cgroups because of a
2412 			 * round-off error.
2413 			 */
2414 			scan = mem_cgroup_online(memcg) ?
2415 			       div64_u64(scan * fraction[file], denominator) :
2416 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2417 						  denominator);
2418 			break;
2419 		case SCAN_FILE:
2420 		case SCAN_ANON:
2421 			/* Scan one type exclusively */
2422 			if ((scan_balance == SCAN_FILE) != file)
2423 				scan = 0;
2424 			break;
2425 		default:
2426 			/* Look ma, no brain */
2427 			BUG();
2428 		}
2429 
2430 		nr[lru] = scan;
2431 	}
2432 }
2433 
2434 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2435 {
2436 	unsigned long nr[NR_LRU_LISTS];
2437 	unsigned long targets[NR_LRU_LISTS];
2438 	unsigned long nr_to_scan;
2439 	enum lru_list lru;
2440 	unsigned long nr_reclaimed = 0;
2441 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2442 	struct blk_plug plug;
2443 	bool scan_adjusted;
2444 
2445 	get_scan_count(lruvec, sc, nr);
2446 
2447 	/* Record the original scan target for proportional adjustments later */
2448 	memcpy(targets, nr, sizeof(nr));
2449 
2450 	/*
2451 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2452 	 * event that can occur when there is little memory pressure e.g.
2453 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2454 	 * when the requested number of pages are reclaimed when scanning at
2455 	 * DEF_PRIORITY on the assumption that the fact we are direct
2456 	 * reclaiming implies that kswapd is not keeping up and it is best to
2457 	 * do a batch of work at once. For memcg reclaim one check is made to
2458 	 * abort proportional reclaim if either the file or anon lru has already
2459 	 * dropped to zero at the first pass.
2460 	 */
2461 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2462 			 sc->priority == DEF_PRIORITY);
2463 
2464 	blk_start_plug(&plug);
2465 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2466 					nr[LRU_INACTIVE_FILE]) {
2467 		unsigned long nr_anon, nr_file, percentage;
2468 		unsigned long nr_scanned;
2469 
2470 		for_each_evictable_lru(lru) {
2471 			if (nr[lru]) {
2472 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2473 				nr[lru] -= nr_to_scan;
2474 
2475 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2476 							    lruvec, sc);
2477 			}
2478 		}
2479 
2480 		cond_resched();
2481 
2482 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2483 			continue;
2484 
2485 		/*
2486 		 * For kswapd and memcg, reclaim at least the number of pages
2487 		 * requested. Ensure that the anon and file LRUs are scanned
2488 		 * proportionally what was requested by get_scan_count(). We
2489 		 * stop reclaiming one LRU and reduce the amount scanning
2490 		 * proportional to the original scan target.
2491 		 */
2492 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2493 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2494 
2495 		/*
2496 		 * It's just vindictive to attack the larger once the smaller
2497 		 * has gone to zero.  And given the way we stop scanning the
2498 		 * smaller below, this makes sure that we only make one nudge
2499 		 * towards proportionality once we've got nr_to_reclaim.
2500 		 */
2501 		if (!nr_file || !nr_anon)
2502 			break;
2503 
2504 		if (nr_file > nr_anon) {
2505 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2506 						targets[LRU_ACTIVE_ANON] + 1;
2507 			lru = LRU_BASE;
2508 			percentage = nr_anon * 100 / scan_target;
2509 		} else {
2510 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2511 						targets[LRU_ACTIVE_FILE] + 1;
2512 			lru = LRU_FILE;
2513 			percentage = nr_file * 100 / scan_target;
2514 		}
2515 
2516 		/* Stop scanning the smaller of the LRU */
2517 		nr[lru] = 0;
2518 		nr[lru + LRU_ACTIVE] = 0;
2519 
2520 		/*
2521 		 * Recalculate the other LRU scan count based on its original
2522 		 * scan target and the percentage scanning already complete
2523 		 */
2524 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2525 		nr_scanned = targets[lru] - nr[lru];
2526 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2527 		nr[lru] -= min(nr[lru], nr_scanned);
2528 
2529 		lru += LRU_ACTIVE;
2530 		nr_scanned = targets[lru] - nr[lru];
2531 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2532 		nr[lru] -= min(nr[lru], nr_scanned);
2533 
2534 		scan_adjusted = true;
2535 	}
2536 	blk_finish_plug(&plug);
2537 	sc->nr_reclaimed += nr_reclaimed;
2538 
2539 	/*
2540 	 * Even if we did not try to evict anon pages at all, we want to
2541 	 * rebalance the anon lru active/inactive ratio.
2542 	 */
2543 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2544 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2545 				   sc, LRU_ACTIVE_ANON);
2546 }
2547 
2548 /* Use reclaim/compaction for costly allocs or under memory pressure */
2549 static bool in_reclaim_compaction(struct scan_control *sc)
2550 {
2551 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2552 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2553 			 sc->priority < DEF_PRIORITY - 2))
2554 		return true;
2555 
2556 	return false;
2557 }
2558 
2559 /*
2560  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2561  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2562  * true if more pages should be reclaimed such that when the page allocator
2563  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2564  * It will give up earlier than that if there is difficulty reclaiming pages.
2565  */
2566 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2567 					unsigned long nr_reclaimed,
2568 					struct scan_control *sc)
2569 {
2570 	unsigned long pages_for_compaction;
2571 	unsigned long inactive_lru_pages;
2572 	int z;
2573 
2574 	/* If not in reclaim/compaction mode, stop */
2575 	if (!in_reclaim_compaction(sc))
2576 		return false;
2577 
2578 	/*
2579 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2580 	 * number of pages that were scanned. This will return to the caller
2581 	 * with the risk reclaim/compaction and the resulting allocation attempt
2582 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2583 	 * allocations through requiring that the full LRU list has been scanned
2584 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2585 	 * scan, but that approximation was wrong, and there were corner cases
2586 	 * where always a non-zero amount of pages were scanned.
2587 	 */
2588 	if (!nr_reclaimed)
2589 		return false;
2590 
2591 	/* If compaction would go ahead or the allocation would succeed, stop */
2592 	for (z = 0; z <= sc->reclaim_idx; z++) {
2593 		struct zone *zone = &pgdat->node_zones[z];
2594 		if (!managed_zone(zone))
2595 			continue;
2596 
2597 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2598 		case COMPACT_SUCCESS:
2599 		case COMPACT_CONTINUE:
2600 			return false;
2601 		default:
2602 			/* check next zone */
2603 			;
2604 		}
2605 	}
2606 
2607 	/*
2608 	 * If we have not reclaimed enough pages for compaction and the
2609 	 * inactive lists are large enough, continue reclaiming
2610 	 */
2611 	pages_for_compaction = compact_gap(sc->order);
2612 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2613 	if (get_nr_swap_pages() > 0)
2614 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2615 
2616 	return inactive_lru_pages > pages_for_compaction;
2617 }
2618 
2619 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2620 {
2621 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2622 	struct mem_cgroup *memcg;
2623 
2624 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2625 	do {
2626 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2627 		unsigned long reclaimed;
2628 		unsigned long scanned;
2629 
2630 		/*
2631 		 * This loop can become CPU-bound when target memcgs
2632 		 * aren't eligible for reclaim - either because they
2633 		 * don't have any reclaimable pages, or because their
2634 		 * memory is explicitly protected. Avoid soft lockups.
2635 		 */
2636 		cond_resched();
2637 
2638 		mem_cgroup_calculate_protection(target_memcg, memcg);
2639 
2640 		if (mem_cgroup_below_min(memcg)) {
2641 			/*
2642 			 * Hard protection.
2643 			 * If there is no reclaimable memory, OOM.
2644 			 */
2645 			continue;
2646 		} else if (mem_cgroup_below_low(memcg)) {
2647 			/*
2648 			 * Soft protection.
2649 			 * Respect the protection only as long as
2650 			 * there is an unprotected supply
2651 			 * of reclaimable memory from other cgroups.
2652 			 */
2653 			if (!sc->memcg_low_reclaim) {
2654 				sc->memcg_low_skipped = 1;
2655 				continue;
2656 			}
2657 			memcg_memory_event(memcg, MEMCG_LOW);
2658 		}
2659 
2660 		reclaimed = sc->nr_reclaimed;
2661 		scanned = sc->nr_scanned;
2662 
2663 		shrink_lruvec(lruvec, sc);
2664 
2665 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2666 			    sc->priority);
2667 
2668 		/* Record the group's reclaim efficiency */
2669 		vmpressure(sc->gfp_mask, memcg, false,
2670 			   sc->nr_scanned - scanned,
2671 			   sc->nr_reclaimed - reclaimed);
2672 
2673 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2674 }
2675 
2676 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2677 {
2678 	struct reclaim_state *reclaim_state = current->reclaim_state;
2679 	unsigned long nr_reclaimed, nr_scanned;
2680 	struct lruvec *target_lruvec;
2681 	bool reclaimable = false;
2682 	unsigned long file;
2683 
2684 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2685 
2686 again:
2687 	memset(&sc->nr, 0, sizeof(sc->nr));
2688 
2689 	nr_reclaimed = sc->nr_reclaimed;
2690 	nr_scanned = sc->nr_scanned;
2691 
2692 	/*
2693 	 * Determine the scan balance between anon and file LRUs.
2694 	 */
2695 	spin_lock_irq(&target_lruvec->lru_lock);
2696 	sc->anon_cost = target_lruvec->anon_cost;
2697 	sc->file_cost = target_lruvec->file_cost;
2698 	spin_unlock_irq(&target_lruvec->lru_lock);
2699 
2700 	/*
2701 	 * Target desirable inactive:active list ratios for the anon
2702 	 * and file LRU lists.
2703 	 */
2704 	if (!sc->force_deactivate) {
2705 		unsigned long refaults;
2706 
2707 		refaults = lruvec_page_state(target_lruvec,
2708 				WORKINGSET_ACTIVATE_ANON);
2709 		if (refaults != target_lruvec->refaults[0] ||
2710 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2711 			sc->may_deactivate |= DEACTIVATE_ANON;
2712 		else
2713 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2714 
2715 		/*
2716 		 * When refaults are being observed, it means a new
2717 		 * workingset is being established. Deactivate to get
2718 		 * rid of any stale active pages quickly.
2719 		 */
2720 		refaults = lruvec_page_state(target_lruvec,
2721 				WORKINGSET_ACTIVATE_FILE);
2722 		if (refaults != target_lruvec->refaults[1] ||
2723 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2724 			sc->may_deactivate |= DEACTIVATE_FILE;
2725 		else
2726 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2727 	} else
2728 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2729 
2730 	/*
2731 	 * If we have plenty of inactive file pages that aren't
2732 	 * thrashing, try to reclaim those first before touching
2733 	 * anonymous pages.
2734 	 */
2735 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2736 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2737 		sc->cache_trim_mode = 1;
2738 	else
2739 		sc->cache_trim_mode = 0;
2740 
2741 	/*
2742 	 * Prevent the reclaimer from falling into the cache trap: as
2743 	 * cache pages start out inactive, every cache fault will tip
2744 	 * the scan balance towards the file LRU.  And as the file LRU
2745 	 * shrinks, so does the window for rotation from references.
2746 	 * This means we have a runaway feedback loop where a tiny
2747 	 * thrashing file LRU becomes infinitely more attractive than
2748 	 * anon pages.  Try to detect this based on file LRU size.
2749 	 */
2750 	if (!cgroup_reclaim(sc)) {
2751 		unsigned long total_high_wmark = 0;
2752 		unsigned long free, anon;
2753 		int z;
2754 
2755 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2756 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2757 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2758 
2759 		for (z = 0; z < MAX_NR_ZONES; z++) {
2760 			struct zone *zone = &pgdat->node_zones[z];
2761 			if (!managed_zone(zone))
2762 				continue;
2763 
2764 			total_high_wmark += high_wmark_pages(zone);
2765 		}
2766 
2767 		/*
2768 		 * Consider anon: if that's low too, this isn't a
2769 		 * runaway file reclaim problem, but rather just
2770 		 * extreme pressure. Reclaim as per usual then.
2771 		 */
2772 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2773 
2774 		sc->file_is_tiny =
2775 			file + free <= total_high_wmark &&
2776 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2777 			anon >> sc->priority;
2778 	}
2779 
2780 	shrink_node_memcgs(pgdat, sc);
2781 
2782 	if (reclaim_state) {
2783 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2784 		reclaim_state->reclaimed_slab = 0;
2785 	}
2786 
2787 	/* Record the subtree's reclaim efficiency */
2788 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2789 		   sc->nr_scanned - nr_scanned,
2790 		   sc->nr_reclaimed - nr_reclaimed);
2791 
2792 	if (sc->nr_reclaimed - nr_reclaimed)
2793 		reclaimable = true;
2794 
2795 	if (current_is_kswapd()) {
2796 		/*
2797 		 * If reclaim is isolating dirty pages under writeback,
2798 		 * it implies that the long-lived page allocation rate
2799 		 * is exceeding the page laundering rate. Either the
2800 		 * global limits are not being effective at throttling
2801 		 * processes due to the page distribution throughout
2802 		 * zones or there is heavy usage of a slow backing
2803 		 * device. The only option is to throttle from reclaim
2804 		 * context which is not ideal as there is no guarantee
2805 		 * the dirtying process is throttled in the same way
2806 		 * balance_dirty_pages() manages.
2807 		 *
2808 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2809 		 * count the number of pages under pages flagged for
2810 		 * immediate reclaim and stall if any are encountered
2811 		 * in the nr_immediate check below.
2812 		 */
2813 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2814 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2815 
2816 		/* Allow kswapd to start writing pages during reclaim.*/
2817 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2818 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2819 
2820 		/*
2821 		 * If kswapd scans pages marked for immediate
2822 		 * reclaim and under writeback (nr_immediate), it
2823 		 * implies that pages are cycling through the LRU
2824 		 * faster than they are written so also forcibly stall.
2825 		 */
2826 		if (sc->nr.immediate)
2827 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2828 	}
2829 
2830 	/*
2831 	 * Tag a node/memcg as congested if all the dirty pages
2832 	 * scanned were backed by a congested BDI and
2833 	 * wait_iff_congested will stall.
2834 	 *
2835 	 * Legacy memcg will stall in page writeback so avoid forcibly
2836 	 * stalling in wait_iff_congested().
2837 	 */
2838 	if ((current_is_kswapd() ||
2839 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2840 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2841 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2842 
2843 	/*
2844 	 * Stall direct reclaim for IO completions if underlying BDIs
2845 	 * and node is congested. Allow kswapd to continue until it
2846 	 * starts encountering unqueued dirty pages or cycling through
2847 	 * the LRU too quickly.
2848 	 */
2849 	if (!current_is_kswapd() && current_may_throttle() &&
2850 	    !sc->hibernation_mode &&
2851 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2852 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2853 
2854 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2855 				    sc))
2856 		goto again;
2857 
2858 	/*
2859 	 * Kswapd gives up on balancing particular nodes after too
2860 	 * many failures to reclaim anything from them and goes to
2861 	 * sleep. On reclaim progress, reset the failure counter. A
2862 	 * successful direct reclaim run will revive a dormant kswapd.
2863 	 */
2864 	if (reclaimable)
2865 		pgdat->kswapd_failures = 0;
2866 }
2867 
2868 /*
2869  * Returns true if compaction should go ahead for a costly-order request, or
2870  * the allocation would already succeed without compaction. Return false if we
2871  * should reclaim first.
2872  */
2873 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2874 {
2875 	unsigned long watermark;
2876 	enum compact_result suitable;
2877 
2878 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2879 	if (suitable == COMPACT_SUCCESS)
2880 		/* Allocation should succeed already. Don't reclaim. */
2881 		return true;
2882 	if (suitable == COMPACT_SKIPPED)
2883 		/* Compaction cannot yet proceed. Do reclaim. */
2884 		return false;
2885 
2886 	/*
2887 	 * Compaction is already possible, but it takes time to run and there
2888 	 * are potentially other callers using the pages just freed. So proceed
2889 	 * with reclaim to make a buffer of free pages available to give
2890 	 * compaction a reasonable chance of completing and allocating the page.
2891 	 * Note that we won't actually reclaim the whole buffer in one attempt
2892 	 * as the target watermark in should_continue_reclaim() is lower. But if
2893 	 * we are already above the high+gap watermark, don't reclaim at all.
2894 	 */
2895 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2896 
2897 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2898 }
2899 
2900 /*
2901  * This is the direct reclaim path, for page-allocating processes.  We only
2902  * try to reclaim pages from zones which will satisfy the caller's allocation
2903  * request.
2904  *
2905  * If a zone is deemed to be full of pinned pages then just give it a light
2906  * scan then give up on it.
2907  */
2908 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2909 {
2910 	struct zoneref *z;
2911 	struct zone *zone;
2912 	unsigned long nr_soft_reclaimed;
2913 	unsigned long nr_soft_scanned;
2914 	gfp_t orig_mask;
2915 	pg_data_t *last_pgdat = NULL;
2916 
2917 	/*
2918 	 * If the number of buffer_heads in the machine exceeds the maximum
2919 	 * allowed level, force direct reclaim to scan the highmem zone as
2920 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2921 	 */
2922 	orig_mask = sc->gfp_mask;
2923 	if (buffer_heads_over_limit) {
2924 		sc->gfp_mask |= __GFP_HIGHMEM;
2925 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2926 	}
2927 
2928 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2929 					sc->reclaim_idx, sc->nodemask) {
2930 		/*
2931 		 * Take care memory controller reclaiming has small influence
2932 		 * to global LRU.
2933 		 */
2934 		if (!cgroup_reclaim(sc)) {
2935 			if (!cpuset_zone_allowed(zone,
2936 						 GFP_KERNEL | __GFP_HARDWALL))
2937 				continue;
2938 
2939 			/*
2940 			 * If we already have plenty of memory free for
2941 			 * compaction in this zone, don't free any more.
2942 			 * Even though compaction is invoked for any
2943 			 * non-zero order, only frequent costly order
2944 			 * reclamation is disruptive enough to become a
2945 			 * noticeable problem, like transparent huge
2946 			 * page allocations.
2947 			 */
2948 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2949 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2950 			    compaction_ready(zone, sc)) {
2951 				sc->compaction_ready = true;
2952 				continue;
2953 			}
2954 
2955 			/*
2956 			 * Shrink each node in the zonelist once. If the
2957 			 * zonelist is ordered by zone (not the default) then a
2958 			 * node may be shrunk multiple times but in that case
2959 			 * the user prefers lower zones being preserved.
2960 			 */
2961 			if (zone->zone_pgdat == last_pgdat)
2962 				continue;
2963 
2964 			/*
2965 			 * This steals pages from memory cgroups over softlimit
2966 			 * and returns the number of reclaimed pages and
2967 			 * scanned pages. This works for global memory pressure
2968 			 * and balancing, not for a memcg's limit.
2969 			 */
2970 			nr_soft_scanned = 0;
2971 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2972 						sc->order, sc->gfp_mask,
2973 						&nr_soft_scanned);
2974 			sc->nr_reclaimed += nr_soft_reclaimed;
2975 			sc->nr_scanned += nr_soft_scanned;
2976 			/* need some check for avoid more shrink_zone() */
2977 		}
2978 
2979 		/* See comment about same check for global reclaim above */
2980 		if (zone->zone_pgdat == last_pgdat)
2981 			continue;
2982 		last_pgdat = zone->zone_pgdat;
2983 		shrink_node(zone->zone_pgdat, sc);
2984 	}
2985 
2986 	/*
2987 	 * Restore to original mask to avoid the impact on the caller if we
2988 	 * promoted it to __GFP_HIGHMEM.
2989 	 */
2990 	sc->gfp_mask = orig_mask;
2991 }
2992 
2993 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2994 {
2995 	struct lruvec *target_lruvec;
2996 	unsigned long refaults;
2997 
2998 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2999 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3000 	target_lruvec->refaults[0] = refaults;
3001 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3002 	target_lruvec->refaults[1] = refaults;
3003 }
3004 
3005 /*
3006  * This is the main entry point to direct page reclaim.
3007  *
3008  * If a full scan of the inactive list fails to free enough memory then we
3009  * are "out of memory" and something needs to be killed.
3010  *
3011  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3012  * high - the zone may be full of dirty or under-writeback pages, which this
3013  * caller can't do much about.  We kick the writeback threads and take explicit
3014  * naps in the hope that some of these pages can be written.  But if the
3015  * allocating task holds filesystem locks which prevent writeout this might not
3016  * work, and the allocation attempt will fail.
3017  *
3018  * returns:	0, if no pages reclaimed
3019  * 		else, the number of pages reclaimed
3020  */
3021 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3022 					  struct scan_control *sc)
3023 {
3024 	int initial_priority = sc->priority;
3025 	pg_data_t *last_pgdat;
3026 	struct zoneref *z;
3027 	struct zone *zone;
3028 retry:
3029 	delayacct_freepages_start();
3030 
3031 	if (!cgroup_reclaim(sc))
3032 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3033 
3034 	do {
3035 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3036 				sc->priority);
3037 		sc->nr_scanned = 0;
3038 		shrink_zones(zonelist, sc);
3039 
3040 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3041 			break;
3042 
3043 		if (sc->compaction_ready)
3044 			break;
3045 
3046 		/*
3047 		 * If we're getting trouble reclaiming, start doing
3048 		 * writepage even in laptop mode.
3049 		 */
3050 		if (sc->priority < DEF_PRIORITY - 2)
3051 			sc->may_writepage = 1;
3052 	} while (--sc->priority >= 0);
3053 
3054 	last_pgdat = NULL;
3055 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3056 					sc->nodemask) {
3057 		if (zone->zone_pgdat == last_pgdat)
3058 			continue;
3059 		last_pgdat = zone->zone_pgdat;
3060 
3061 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3062 
3063 		if (cgroup_reclaim(sc)) {
3064 			struct lruvec *lruvec;
3065 
3066 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3067 						   zone->zone_pgdat);
3068 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3069 		}
3070 	}
3071 
3072 	delayacct_freepages_end();
3073 
3074 	if (sc->nr_reclaimed)
3075 		return sc->nr_reclaimed;
3076 
3077 	/* Aborted reclaim to try compaction? don't OOM, then */
3078 	if (sc->compaction_ready)
3079 		return 1;
3080 
3081 	/*
3082 	 * We make inactive:active ratio decisions based on the node's
3083 	 * composition of memory, but a restrictive reclaim_idx or a
3084 	 * memory.low cgroup setting can exempt large amounts of
3085 	 * memory from reclaim. Neither of which are very common, so
3086 	 * instead of doing costly eligibility calculations of the
3087 	 * entire cgroup subtree up front, we assume the estimates are
3088 	 * good, and retry with forcible deactivation if that fails.
3089 	 */
3090 	if (sc->skipped_deactivate) {
3091 		sc->priority = initial_priority;
3092 		sc->force_deactivate = 1;
3093 		sc->skipped_deactivate = 0;
3094 		goto retry;
3095 	}
3096 
3097 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3098 	if (sc->memcg_low_skipped) {
3099 		sc->priority = initial_priority;
3100 		sc->force_deactivate = 0;
3101 		sc->memcg_low_reclaim = 1;
3102 		sc->memcg_low_skipped = 0;
3103 		goto retry;
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 static bool allow_direct_reclaim(pg_data_t *pgdat)
3110 {
3111 	struct zone *zone;
3112 	unsigned long pfmemalloc_reserve = 0;
3113 	unsigned long free_pages = 0;
3114 	int i;
3115 	bool wmark_ok;
3116 
3117 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3118 		return true;
3119 
3120 	for (i = 0; i <= ZONE_NORMAL; i++) {
3121 		zone = &pgdat->node_zones[i];
3122 		if (!managed_zone(zone))
3123 			continue;
3124 
3125 		if (!zone_reclaimable_pages(zone))
3126 			continue;
3127 
3128 		pfmemalloc_reserve += min_wmark_pages(zone);
3129 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3130 	}
3131 
3132 	/* If there are no reserves (unexpected config) then do not throttle */
3133 	if (!pfmemalloc_reserve)
3134 		return true;
3135 
3136 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3137 
3138 	/* kswapd must be awake if processes are being throttled */
3139 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3140 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3141 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3142 
3143 		wake_up_interruptible(&pgdat->kswapd_wait);
3144 	}
3145 
3146 	return wmark_ok;
3147 }
3148 
3149 /*
3150  * Throttle direct reclaimers if backing storage is backed by the network
3151  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3152  * depleted. kswapd will continue to make progress and wake the processes
3153  * when the low watermark is reached.
3154  *
3155  * Returns true if a fatal signal was delivered during throttling. If this
3156  * happens, the page allocator should not consider triggering the OOM killer.
3157  */
3158 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3159 					nodemask_t *nodemask)
3160 {
3161 	struct zoneref *z;
3162 	struct zone *zone;
3163 	pg_data_t *pgdat = NULL;
3164 
3165 	/*
3166 	 * Kernel threads should not be throttled as they may be indirectly
3167 	 * responsible for cleaning pages necessary for reclaim to make forward
3168 	 * progress. kjournald for example may enter direct reclaim while
3169 	 * committing a transaction where throttling it could forcing other
3170 	 * processes to block on log_wait_commit().
3171 	 */
3172 	if (current->flags & PF_KTHREAD)
3173 		goto out;
3174 
3175 	/*
3176 	 * If a fatal signal is pending, this process should not throttle.
3177 	 * It should return quickly so it can exit and free its memory
3178 	 */
3179 	if (fatal_signal_pending(current))
3180 		goto out;
3181 
3182 	/*
3183 	 * Check if the pfmemalloc reserves are ok by finding the first node
3184 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3185 	 * GFP_KERNEL will be required for allocating network buffers when
3186 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3187 	 *
3188 	 * Throttling is based on the first usable node and throttled processes
3189 	 * wait on a queue until kswapd makes progress and wakes them. There
3190 	 * is an affinity then between processes waking up and where reclaim
3191 	 * progress has been made assuming the process wakes on the same node.
3192 	 * More importantly, processes running on remote nodes will not compete
3193 	 * for remote pfmemalloc reserves and processes on different nodes
3194 	 * should make reasonable progress.
3195 	 */
3196 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3197 					gfp_zone(gfp_mask), nodemask) {
3198 		if (zone_idx(zone) > ZONE_NORMAL)
3199 			continue;
3200 
3201 		/* Throttle based on the first usable node */
3202 		pgdat = zone->zone_pgdat;
3203 		if (allow_direct_reclaim(pgdat))
3204 			goto out;
3205 		break;
3206 	}
3207 
3208 	/* If no zone was usable by the allocation flags then do not throttle */
3209 	if (!pgdat)
3210 		goto out;
3211 
3212 	/* Account for the throttling */
3213 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3214 
3215 	/*
3216 	 * If the caller cannot enter the filesystem, it's possible that it
3217 	 * is due to the caller holding an FS lock or performing a journal
3218 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3219 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3220 	 * blocked waiting on the same lock. Instead, throttle for up to a
3221 	 * second before continuing.
3222 	 */
3223 	if (!(gfp_mask & __GFP_FS)) {
3224 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3225 			allow_direct_reclaim(pgdat), HZ);
3226 
3227 		goto check_pending;
3228 	}
3229 
3230 	/* Throttle until kswapd wakes the process */
3231 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3232 		allow_direct_reclaim(pgdat));
3233 
3234 check_pending:
3235 	if (fatal_signal_pending(current))
3236 		return true;
3237 
3238 out:
3239 	return false;
3240 }
3241 
3242 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3243 				gfp_t gfp_mask, nodemask_t *nodemask)
3244 {
3245 	unsigned long nr_reclaimed;
3246 	struct scan_control sc = {
3247 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3248 		.gfp_mask = current_gfp_context(gfp_mask),
3249 		.reclaim_idx = gfp_zone(gfp_mask),
3250 		.order = order,
3251 		.nodemask = nodemask,
3252 		.priority = DEF_PRIORITY,
3253 		.may_writepage = !laptop_mode,
3254 		.may_unmap = 1,
3255 		.may_swap = 1,
3256 	};
3257 
3258 	/*
3259 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3260 	 * Confirm they are large enough for max values.
3261 	 */
3262 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3263 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3264 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3265 
3266 	/*
3267 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3268 	 * 1 is returned so that the page allocator does not OOM kill at this
3269 	 * point.
3270 	 */
3271 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3272 		return 1;
3273 
3274 	set_task_reclaim_state(current, &sc.reclaim_state);
3275 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3276 
3277 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3278 
3279 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3280 	set_task_reclaim_state(current, NULL);
3281 
3282 	return nr_reclaimed;
3283 }
3284 
3285 #ifdef CONFIG_MEMCG
3286 
3287 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3288 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3289 						gfp_t gfp_mask, bool noswap,
3290 						pg_data_t *pgdat,
3291 						unsigned long *nr_scanned)
3292 {
3293 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3294 	struct scan_control sc = {
3295 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3296 		.target_mem_cgroup = memcg,
3297 		.may_writepage = !laptop_mode,
3298 		.may_unmap = 1,
3299 		.reclaim_idx = MAX_NR_ZONES - 1,
3300 		.may_swap = !noswap,
3301 	};
3302 
3303 	WARN_ON_ONCE(!current->reclaim_state);
3304 
3305 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3306 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3307 
3308 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3309 						      sc.gfp_mask);
3310 
3311 	/*
3312 	 * NOTE: Although we can get the priority field, using it
3313 	 * here is not a good idea, since it limits the pages we can scan.
3314 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3315 	 * will pick up pages from other mem cgroup's as well. We hack
3316 	 * the priority and make it zero.
3317 	 */
3318 	shrink_lruvec(lruvec, &sc);
3319 
3320 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3321 
3322 	*nr_scanned = sc.nr_scanned;
3323 
3324 	return sc.nr_reclaimed;
3325 }
3326 
3327 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3328 					   unsigned long nr_pages,
3329 					   gfp_t gfp_mask,
3330 					   bool may_swap)
3331 {
3332 	unsigned long nr_reclaimed;
3333 	unsigned int noreclaim_flag;
3334 	struct scan_control sc = {
3335 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3336 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3337 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3338 		.reclaim_idx = MAX_NR_ZONES - 1,
3339 		.target_mem_cgroup = memcg,
3340 		.priority = DEF_PRIORITY,
3341 		.may_writepage = !laptop_mode,
3342 		.may_unmap = 1,
3343 		.may_swap = may_swap,
3344 	};
3345 	/*
3346 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3347 	 * equal pressure on all the nodes. This is based on the assumption that
3348 	 * the reclaim does not bail out early.
3349 	 */
3350 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3351 
3352 	set_task_reclaim_state(current, &sc.reclaim_state);
3353 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3354 	noreclaim_flag = memalloc_noreclaim_save();
3355 
3356 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3357 
3358 	memalloc_noreclaim_restore(noreclaim_flag);
3359 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3360 	set_task_reclaim_state(current, NULL);
3361 
3362 	return nr_reclaimed;
3363 }
3364 #endif
3365 
3366 static void age_active_anon(struct pglist_data *pgdat,
3367 				struct scan_control *sc)
3368 {
3369 	struct mem_cgroup *memcg;
3370 	struct lruvec *lruvec;
3371 
3372 	if (!total_swap_pages)
3373 		return;
3374 
3375 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3376 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3377 		return;
3378 
3379 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3380 	do {
3381 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3382 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3383 				   sc, LRU_ACTIVE_ANON);
3384 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3385 	} while (memcg);
3386 }
3387 
3388 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3389 {
3390 	int i;
3391 	struct zone *zone;
3392 
3393 	/*
3394 	 * Check for watermark boosts top-down as the higher zones
3395 	 * are more likely to be boosted. Both watermarks and boosts
3396 	 * should not be checked at the same time as reclaim would
3397 	 * start prematurely when there is no boosting and a lower
3398 	 * zone is balanced.
3399 	 */
3400 	for (i = highest_zoneidx; i >= 0; i--) {
3401 		zone = pgdat->node_zones + i;
3402 		if (!managed_zone(zone))
3403 			continue;
3404 
3405 		if (zone->watermark_boost)
3406 			return true;
3407 	}
3408 
3409 	return false;
3410 }
3411 
3412 /*
3413  * Returns true if there is an eligible zone balanced for the request order
3414  * and highest_zoneidx
3415  */
3416 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3417 {
3418 	int i;
3419 	unsigned long mark = -1;
3420 	struct zone *zone;
3421 
3422 	/*
3423 	 * Check watermarks bottom-up as lower zones are more likely to
3424 	 * meet watermarks.
3425 	 */
3426 	for (i = 0; i <= highest_zoneidx; i++) {
3427 		zone = pgdat->node_zones + i;
3428 
3429 		if (!managed_zone(zone))
3430 			continue;
3431 
3432 		mark = high_wmark_pages(zone);
3433 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3434 			return true;
3435 	}
3436 
3437 	/*
3438 	 * If a node has no populated zone within highest_zoneidx, it does not
3439 	 * need balancing by definition. This can happen if a zone-restricted
3440 	 * allocation tries to wake a remote kswapd.
3441 	 */
3442 	if (mark == -1)
3443 		return true;
3444 
3445 	return false;
3446 }
3447 
3448 /* Clear pgdat state for congested, dirty or under writeback. */
3449 static void clear_pgdat_congested(pg_data_t *pgdat)
3450 {
3451 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3452 
3453 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3454 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3455 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3456 }
3457 
3458 /*
3459  * Prepare kswapd for sleeping. This verifies that there are no processes
3460  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3461  *
3462  * Returns true if kswapd is ready to sleep
3463  */
3464 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3465 				int highest_zoneidx)
3466 {
3467 	/*
3468 	 * The throttled processes are normally woken up in balance_pgdat() as
3469 	 * soon as allow_direct_reclaim() is true. But there is a potential
3470 	 * race between when kswapd checks the watermarks and a process gets
3471 	 * throttled. There is also a potential race if processes get
3472 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3473 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3474 	 * the wake up checks. If kswapd is going to sleep, no process should
3475 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3476 	 * the wake up is premature, processes will wake kswapd and get
3477 	 * throttled again. The difference from wake ups in balance_pgdat() is
3478 	 * that here we are under prepare_to_wait().
3479 	 */
3480 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3481 		wake_up_all(&pgdat->pfmemalloc_wait);
3482 
3483 	/* Hopeless node, leave it to direct reclaim */
3484 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3485 		return true;
3486 
3487 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3488 		clear_pgdat_congested(pgdat);
3489 		return true;
3490 	}
3491 
3492 	return false;
3493 }
3494 
3495 /*
3496  * kswapd shrinks a node of pages that are at or below the highest usable
3497  * zone that is currently unbalanced.
3498  *
3499  * Returns true if kswapd scanned at least the requested number of pages to
3500  * reclaim or if the lack of progress was due to pages under writeback.
3501  * This is used to determine if the scanning priority needs to be raised.
3502  */
3503 static bool kswapd_shrink_node(pg_data_t *pgdat,
3504 			       struct scan_control *sc)
3505 {
3506 	struct zone *zone;
3507 	int z;
3508 
3509 	/* Reclaim a number of pages proportional to the number of zones */
3510 	sc->nr_to_reclaim = 0;
3511 	for (z = 0; z <= sc->reclaim_idx; z++) {
3512 		zone = pgdat->node_zones + z;
3513 		if (!managed_zone(zone))
3514 			continue;
3515 
3516 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3517 	}
3518 
3519 	/*
3520 	 * Historically care was taken to put equal pressure on all zones but
3521 	 * now pressure is applied based on node LRU order.
3522 	 */
3523 	shrink_node(pgdat, sc);
3524 
3525 	/*
3526 	 * Fragmentation may mean that the system cannot be rebalanced for
3527 	 * high-order allocations. If twice the allocation size has been
3528 	 * reclaimed then recheck watermarks only at order-0 to prevent
3529 	 * excessive reclaim. Assume that a process requested a high-order
3530 	 * can direct reclaim/compact.
3531 	 */
3532 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3533 		sc->order = 0;
3534 
3535 	return sc->nr_scanned >= sc->nr_to_reclaim;
3536 }
3537 
3538 /*
3539  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3540  * that are eligible for use by the caller until at least one zone is
3541  * balanced.
3542  *
3543  * Returns the order kswapd finished reclaiming at.
3544  *
3545  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3546  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3547  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3548  * or lower is eligible for reclaim until at least one usable zone is
3549  * balanced.
3550  */
3551 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3552 {
3553 	int i;
3554 	unsigned long nr_soft_reclaimed;
3555 	unsigned long nr_soft_scanned;
3556 	unsigned long pflags;
3557 	unsigned long nr_boost_reclaim;
3558 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3559 	bool boosted;
3560 	struct zone *zone;
3561 	struct scan_control sc = {
3562 		.gfp_mask = GFP_KERNEL,
3563 		.order = order,
3564 		.may_unmap = 1,
3565 	};
3566 
3567 	set_task_reclaim_state(current, &sc.reclaim_state);
3568 	psi_memstall_enter(&pflags);
3569 	__fs_reclaim_acquire();
3570 
3571 	count_vm_event(PAGEOUTRUN);
3572 
3573 	/*
3574 	 * Account for the reclaim boost. Note that the zone boost is left in
3575 	 * place so that parallel allocations that are near the watermark will
3576 	 * stall or direct reclaim until kswapd is finished.
3577 	 */
3578 	nr_boost_reclaim = 0;
3579 	for (i = 0; i <= highest_zoneidx; i++) {
3580 		zone = pgdat->node_zones + i;
3581 		if (!managed_zone(zone))
3582 			continue;
3583 
3584 		nr_boost_reclaim += zone->watermark_boost;
3585 		zone_boosts[i] = zone->watermark_boost;
3586 	}
3587 	boosted = nr_boost_reclaim;
3588 
3589 restart:
3590 	sc.priority = DEF_PRIORITY;
3591 	do {
3592 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3593 		bool raise_priority = true;
3594 		bool balanced;
3595 		bool ret;
3596 
3597 		sc.reclaim_idx = highest_zoneidx;
3598 
3599 		/*
3600 		 * If the number of buffer_heads exceeds the maximum allowed
3601 		 * then consider reclaiming from all zones. This has a dual
3602 		 * purpose -- on 64-bit systems it is expected that
3603 		 * buffer_heads are stripped during active rotation. On 32-bit
3604 		 * systems, highmem pages can pin lowmem memory and shrinking
3605 		 * buffers can relieve lowmem pressure. Reclaim may still not
3606 		 * go ahead if all eligible zones for the original allocation
3607 		 * request are balanced to avoid excessive reclaim from kswapd.
3608 		 */
3609 		if (buffer_heads_over_limit) {
3610 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3611 				zone = pgdat->node_zones + i;
3612 				if (!managed_zone(zone))
3613 					continue;
3614 
3615 				sc.reclaim_idx = i;
3616 				break;
3617 			}
3618 		}
3619 
3620 		/*
3621 		 * If the pgdat is imbalanced then ignore boosting and preserve
3622 		 * the watermarks for a later time and restart. Note that the
3623 		 * zone watermarks will be still reset at the end of balancing
3624 		 * on the grounds that the normal reclaim should be enough to
3625 		 * re-evaluate if boosting is required when kswapd next wakes.
3626 		 */
3627 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3628 		if (!balanced && nr_boost_reclaim) {
3629 			nr_boost_reclaim = 0;
3630 			goto restart;
3631 		}
3632 
3633 		/*
3634 		 * If boosting is not active then only reclaim if there are no
3635 		 * eligible zones. Note that sc.reclaim_idx is not used as
3636 		 * buffer_heads_over_limit may have adjusted it.
3637 		 */
3638 		if (!nr_boost_reclaim && balanced)
3639 			goto out;
3640 
3641 		/* Limit the priority of boosting to avoid reclaim writeback */
3642 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3643 			raise_priority = false;
3644 
3645 		/*
3646 		 * Do not writeback or swap pages for boosted reclaim. The
3647 		 * intent is to relieve pressure not issue sub-optimal IO
3648 		 * from reclaim context. If no pages are reclaimed, the
3649 		 * reclaim will be aborted.
3650 		 */
3651 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3652 		sc.may_swap = !nr_boost_reclaim;
3653 
3654 		/*
3655 		 * Do some background aging of the anon list, to give
3656 		 * pages a chance to be referenced before reclaiming. All
3657 		 * pages are rotated regardless of classzone as this is
3658 		 * about consistent aging.
3659 		 */
3660 		age_active_anon(pgdat, &sc);
3661 
3662 		/*
3663 		 * If we're getting trouble reclaiming, start doing writepage
3664 		 * even in laptop mode.
3665 		 */
3666 		if (sc.priority < DEF_PRIORITY - 2)
3667 			sc.may_writepage = 1;
3668 
3669 		/* Call soft limit reclaim before calling shrink_node. */
3670 		sc.nr_scanned = 0;
3671 		nr_soft_scanned = 0;
3672 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3673 						sc.gfp_mask, &nr_soft_scanned);
3674 		sc.nr_reclaimed += nr_soft_reclaimed;
3675 
3676 		/*
3677 		 * There should be no need to raise the scanning priority if
3678 		 * enough pages are already being scanned that that high
3679 		 * watermark would be met at 100% efficiency.
3680 		 */
3681 		if (kswapd_shrink_node(pgdat, &sc))
3682 			raise_priority = false;
3683 
3684 		/*
3685 		 * If the low watermark is met there is no need for processes
3686 		 * to be throttled on pfmemalloc_wait as they should not be
3687 		 * able to safely make forward progress. Wake them
3688 		 */
3689 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3690 				allow_direct_reclaim(pgdat))
3691 			wake_up_all(&pgdat->pfmemalloc_wait);
3692 
3693 		/* Check if kswapd should be suspending */
3694 		__fs_reclaim_release();
3695 		ret = try_to_freeze();
3696 		__fs_reclaim_acquire();
3697 		if (ret || kthread_should_stop())
3698 			break;
3699 
3700 		/*
3701 		 * Raise priority if scanning rate is too low or there was no
3702 		 * progress in reclaiming pages
3703 		 */
3704 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3705 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3706 
3707 		/*
3708 		 * If reclaim made no progress for a boost, stop reclaim as
3709 		 * IO cannot be queued and it could be an infinite loop in
3710 		 * extreme circumstances.
3711 		 */
3712 		if (nr_boost_reclaim && !nr_reclaimed)
3713 			break;
3714 
3715 		if (raise_priority || !nr_reclaimed)
3716 			sc.priority--;
3717 	} while (sc.priority >= 1);
3718 
3719 	if (!sc.nr_reclaimed)
3720 		pgdat->kswapd_failures++;
3721 
3722 out:
3723 	/* If reclaim was boosted, account for the reclaim done in this pass */
3724 	if (boosted) {
3725 		unsigned long flags;
3726 
3727 		for (i = 0; i <= highest_zoneidx; i++) {
3728 			if (!zone_boosts[i])
3729 				continue;
3730 
3731 			/* Increments are under the zone lock */
3732 			zone = pgdat->node_zones + i;
3733 			spin_lock_irqsave(&zone->lock, flags);
3734 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3735 			spin_unlock_irqrestore(&zone->lock, flags);
3736 		}
3737 
3738 		/*
3739 		 * As there is now likely space, wakeup kcompact to defragment
3740 		 * pageblocks.
3741 		 */
3742 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3743 	}
3744 
3745 	snapshot_refaults(NULL, pgdat);
3746 	__fs_reclaim_release();
3747 	psi_memstall_leave(&pflags);
3748 	set_task_reclaim_state(current, NULL);
3749 
3750 	/*
3751 	 * Return the order kswapd stopped reclaiming at as
3752 	 * prepare_kswapd_sleep() takes it into account. If another caller
3753 	 * entered the allocator slow path while kswapd was awake, order will
3754 	 * remain at the higher level.
3755 	 */
3756 	return sc.order;
3757 }
3758 
3759 /*
3760  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3761  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3762  * not a valid index then either kswapd runs for first time or kswapd couldn't
3763  * sleep after previous reclaim attempt (node is still unbalanced). In that
3764  * case return the zone index of the previous kswapd reclaim cycle.
3765  */
3766 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3767 					   enum zone_type prev_highest_zoneidx)
3768 {
3769 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3770 
3771 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3772 }
3773 
3774 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3775 				unsigned int highest_zoneidx)
3776 {
3777 	long remaining = 0;
3778 	DEFINE_WAIT(wait);
3779 
3780 	if (freezing(current) || kthread_should_stop())
3781 		return;
3782 
3783 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3784 
3785 	/*
3786 	 * Try to sleep for a short interval. Note that kcompactd will only be
3787 	 * woken if it is possible to sleep for a short interval. This is
3788 	 * deliberate on the assumption that if reclaim cannot keep an
3789 	 * eligible zone balanced that it's also unlikely that compaction will
3790 	 * succeed.
3791 	 */
3792 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3793 		/*
3794 		 * Compaction records what page blocks it recently failed to
3795 		 * isolate pages from and skips them in the future scanning.
3796 		 * When kswapd is going to sleep, it is reasonable to assume
3797 		 * that pages and compaction may succeed so reset the cache.
3798 		 */
3799 		reset_isolation_suitable(pgdat);
3800 
3801 		/*
3802 		 * We have freed the memory, now we should compact it to make
3803 		 * allocation of the requested order possible.
3804 		 */
3805 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3806 
3807 		remaining = schedule_timeout(HZ/10);
3808 
3809 		/*
3810 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3811 		 * order. The values will either be from a wakeup request or
3812 		 * the previous request that slept prematurely.
3813 		 */
3814 		if (remaining) {
3815 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3816 					kswapd_highest_zoneidx(pgdat,
3817 							highest_zoneidx));
3818 
3819 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3820 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3821 		}
3822 
3823 		finish_wait(&pgdat->kswapd_wait, &wait);
3824 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3825 	}
3826 
3827 	/*
3828 	 * After a short sleep, check if it was a premature sleep. If not, then
3829 	 * go fully to sleep until explicitly woken up.
3830 	 */
3831 	if (!remaining &&
3832 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3833 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3834 
3835 		/*
3836 		 * vmstat counters are not perfectly accurate and the estimated
3837 		 * value for counters such as NR_FREE_PAGES can deviate from the
3838 		 * true value by nr_online_cpus * threshold. To avoid the zone
3839 		 * watermarks being breached while under pressure, we reduce the
3840 		 * per-cpu vmstat threshold while kswapd is awake and restore
3841 		 * them before going back to sleep.
3842 		 */
3843 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3844 
3845 		if (!kthread_should_stop())
3846 			schedule();
3847 
3848 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3849 	} else {
3850 		if (remaining)
3851 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3852 		else
3853 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3854 	}
3855 	finish_wait(&pgdat->kswapd_wait, &wait);
3856 }
3857 
3858 /*
3859  * The background pageout daemon, started as a kernel thread
3860  * from the init process.
3861  *
3862  * This basically trickles out pages so that we have _some_
3863  * free memory available even if there is no other activity
3864  * that frees anything up. This is needed for things like routing
3865  * etc, where we otherwise might have all activity going on in
3866  * asynchronous contexts that cannot page things out.
3867  *
3868  * If there are applications that are active memory-allocators
3869  * (most normal use), this basically shouldn't matter.
3870  */
3871 static int kswapd(void *p)
3872 {
3873 	unsigned int alloc_order, reclaim_order;
3874 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3875 	pg_data_t *pgdat = (pg_data_t*)p;
3876 	struct task_struct *tsk = current;
3877 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3878 
3879 	if (!cpumask_empty(cpumask))
3880 		set_cpus_allowed_ptr(tsk, cpumask);
3881 
3882 	/*
3883 	 * Tell the memory management that we're a "memory allocator",
3884 	 * and that if we need more memory we should get access to it
3885 	 * regardless (see "__alloc_pages()"). "kswapd" should
3886 	 * never get caught in the normal page freeing logic.
3887 	 *
3888 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3889 	 * you need a small amount of memory in order to be able to
3890 	 * page out something else, and this flag essentially protects
3891 	 * us from recursively trying to free more memory as we're
3892 	 * trying to free the first piece of memory in the first place).
3893 	 */
3894 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3895 	set_freezable();
3896 
3897 	WRITE_ONCE(pgdat->kswapd_order, 0);
3898 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3899 	for ( ; ; ) {
3900 		bool ret;
3901 
3902 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3903 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3904 							highest_zoneidx);
3905 
3906 kswapd_try_sleep:
3907 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3908 					highest_zoneidx);
3909 
3910 		/* Read the new order and highest_zoneidx */
3911 		alloc_order = READ_ONCE(pgdat->kswapd_order);
3912 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3913 							highest_zoneidx);
3914 		WRITE_ONCE(pgdat->kswapd_order, 0);
3915 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3916 
3917 		ret = try_to_freeze();
3918 		if (kthread_should_stop())
3919 			break;
3920 
3921 		/*
3922 		 * We can speed up thawing tasks if we don't call balance_pgdat
3923 		 * after returning from the refrigerator
3924 		 */
3925 		if (ret)
3926 			continue;
3927 
3928 		/*
3929 		 * Reclaim begins at the requested order but if a high-order
3930 		 * reclaim fails then kswapd falls back to reclaiming for
3931 		 * order-0. If that happens, kswapd will consider sleeping
3932 		 * for the order it finished reclaiming at (reclaim_order)
3933 		 * but kcompactd is woken to compact for the original
3934 		 * request (alloc_order).
3935 		 */
3936 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3937 						alloc_order);
3938 		reclaim_order = balance_pgdat(pgdat, alloc_order,
3939 						highest_zoneidx);
3940 		if (reclaim_order < alloc_order)
3941 			goto kswapd_try_sleep;
3942 	}
3943 
3944 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3945 
3946 	return 0;
3947 }
3948 
3949 /*
3950  * A zone is low on free memory or too fragmented for high-order memory.  If
3951  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3952  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3953  * has failed or is not needed, still wake up kcompactd if only compaction is
3954  * needed.
3955  */
3956 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3957 		   enum zone_type highest_zoneidx)
3958 {
3959 	pg_data_t *pgdat;
3960 	enum zone_type curr_idx;
3961 
3962 	if (!managed_zone(zone))
3963 		return;
3964 
3965 	if (!cpuset_zone_allowed(zone, gfp_flags))
3966 		return;
3967 
3968 	pgdat = zone->zone_pgdat;
3969 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3970 
3971 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3972 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3973 
3974 	if (READ_ONCE(pgdat->kswapd_order) < order)
3975 		WRITE_ONCE(pgdat->kswapd_order, order);
3976 
3977 	if (!waitqueue_active(&pgdat->kswapd_wait))
3978 		return;
3979 
3980 	/* Hopeless node, leave it to direct reclaim if possible */
3981 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3982 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3983 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3984 		/*
3985 		 * There may be plenty of free memory available, but it's too
3986 		 * fragmented for high-order allocations.  Wake up kcompactd
3987 		 * and rely on compaction_suitable() to determine if it's
3988 		 * needed.  If it fails, it will defer subsequent attempts to
3989 		 * ratelimit its work.
3990 		 */
3991 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3992 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3993 		return;
3994 	}
3995 
3996 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3997 				      gfp_flags);
3998 	wake_up_interruptible(&pgdat->kswapd_wait);
3999 }
4000 
4001 #ifdef CONFIG_HIBERNATION
4002 /*
4003  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4004  * freed pages.
4005  *
4006  * Rather than trying to age LRUs the aim is to preserve the overall
4007  * LRU order by reclaiming preferentially
4008  * inactive > active > active referenced > active mapped
4009  */
4010 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4011 {
4012 	struct scan_control sc = {
4013 		.nr_to_reclaim = nr_to_reclaim,
4014 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4015 		.reclaim_idx = MAX_NR_ZONES - 1,
4016 		.priority = DEF_PRIORITY,
4017 		.may_writepage = 1,
4018 		.may_unmap = 1,
4019 		.may_swap = 1,
4020 		.hibernation_mode = 1,
4021 	};
4022 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4023 	unsigned long nr_reclaimed;
4024 	unsigned int noreclaim_flag;
4025 
4026 	fs_reclaim_acquire(sc.gfp_mask);
4027 	noreclaim_flag = memalloc_noreclaim_save();
4028 	set_task_reclaim_state(current, &sc.reclaim_state);
4029 
4030 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4031 
4032 	set_task_reclaim_state(current, NULL);
4033 	memalloc_noreclaim_restore(noreclaim_flag);
4034 	fs_reclaim_release(sc.gfp_mask);
4035 
4036 	return nr_reclaimed;
4037 }
4038 #endif /* CONFIG_HIBERNATION */
4039 
4040 /*
4041  * This kswapd start function will be called by init and node-hot-add.
4042  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4043  */
4044 int kswapd_run(int nid)
4045 {
4046 	pg_data_t *pgdat = NODE_DATA(nid);
4047 	int ret = 0;
4048 
4049 	if (pgdat->kswapd)
4050 		return 0;
4051 
4052 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4053 	if (IS_ERR(pgdat->kswapd)) {
4054 		/* failure at boot is fatal */
4055 		BUG_ON(system_state < SYSTEM_RUNNING);
4056 		pr_err("Failed to start kswapd on node %d\n", nid);
4057 		ret = PTR_ERR(pgdat->kswapd);
4058 		pgdat->kswapd = NULL;
4059 	}
4060 	return ret;
4061 }
4062 
4063 /*
4064  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4065  * hold mem_hotplug_begin/end().
4066  */
4067 void kswapd_stop(int nid)
4068 {
4069 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4070 
4071 	if (kswapd) {
4072 		kthread_stop(kswapd);
4073 		NODE_DATA(nid)->kswapd = NULL;
4074 	}
4075 }
4076 
4077 static int __init kswapd_init(void)
4078 {
4079 	int nid;
4080 
4081 	swap_setup();
4082 	for_each_node_state(nid, N_MEMORY)
4083  		kswapd_run(nid);
4084 	return 0;
4085 }
4086 
4087 module_init(kswapd_init)
4088 
4089 #ifdef CONFIG_NUMA
4090 /*
4091  * Node reclaim mode
4092  *
4093  * If non-zero call node_reclaim when the number of free pages falls below
4094  * the watermarks.
4095  */
4096 int node_reclaim_mode __read_mostly;
4097 
4098 #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4099 #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4100 
4101 /*
4102  * Priority for NODE_RECLAIM. This determines the fraction of pages
4103  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4104  * a zone.
4105  */
4106 #define NODE_RECLAIM_PRIORITY 4
4107 
4108 /*
4109  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4110  * occur.
4111  */
4112 int sysctl_min_unmapped_ratio = 1;
4113 
4114 /*
4115  * If the number of slab pages in a zone grows beyond this percentage then
4116  * slab reclaim needs to occur.
4117  */
4118 int sysctl_min_slab_ratio = 5;
4119 
4120 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4121 {
4122 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4123 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4124 		node_page_state(pgdat, NR_ACTIVE_FILE);
4125 
4126 	/*
4127 	 * It's possible for there to be more file mapped pages than
4128 	 * accounted for by the pages on the file LRU lists because
4129 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4130 	 */
4131 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4132 }
4133 
4134 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4135 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4136 {
4137 	unsigned long nr_pagecache_reclaimable;
4138 	unsigned long delta = 0;
4139 
4140 	/*
4141 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4142 	 * potentially reclaimable. Otherwise, we have to worry about
4143 	 * pages like swapcache and node_unmapped_file_pages() provides
4144 	 * a better estimate
4145 	 */
4146 	if (node_reclaim_mode & RECLAIM_UNMAP)
4147 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4148 	else
4149 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4150 
4151 	/* If we can't clean pages, remove dirty pages from consideration */
4152 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4153 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4154 
4155 	/* Watch for any possible underflows due to delta */
4156 	if (unlikely(delta > nr_pagecache_reclaimable))
4157 		delta = nr_pagecache_reclaimable;
4158 
4159 	return nr_pagecache_reclaimable - delta;
4160 }
4161 
4162 /*
4163  * Try to free up some pages from this node through reclaim.
4164  */
4165 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4166 {
4167 	/* Minimum pages needed in order to stay on node */
4168 	const unsigned long nr_pages = 1 << order;
4169 	struct task_struct *p = current;
4170 	unsigned int noreclaim_flag;
4171 	struct scan_control sc = {
4172 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4173 		.gfp_mask = current_gfp_context(gfp_mask),
4174 		.order = order,
4175 		.priority = NODE_RECLAIM_PRIORITY,
4176 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4177 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4178 		.may_swap = 1,
4179 		.reclaim_idx = gfp_zone(gfp_mask),
4180 	};
4181 
4182 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4183 					   sc.gfp_mask);
4184 
4185 	cond_resched();
4186 	fs_reclaim_acquire(sc.gfp_mask);
4187 	/*
4188 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4189 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4190 	 * and RECLAIM_UNMAP.
4191 	 */
4192 	noreclaim_flag = memalloc_noreclaim_save();
4193 	p->flags |= PF_SWAPWRITE;
4194 	set_task_reclaim_state(p, &sc.reclaim_state);
4195 
4196 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4197 		/*
4198 		 * Free memory by calling shrink node with increasing
4199 		 * priorities until we have enough memory freed.
4200 		 */
4201 		do {
4202 			shrink_node(pgdat, &sc);
4203 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4204 	}
4205 
4206 	set_task_reclaim_state(p, NULL);
4207 	current->flags &= ~PF_SWAPWRITE;
4208 	memalloc_noreclaim_restore(noreclaim_flag);
4209 	fs_reclaim_release(sc.gfp_mask);
4210 
4211 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4212 
4213 	return sc.nr_reclaimed >= nr_pages;
4214 }
4215 
4216 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4217 {
4218 	int ret;
4219 
4220 	/*
4221 	 * Node reclaim reclaims unmapped file backed pages and
4222 	 * slab pages if we are over the defined limits.
4223 	 *
4224 	 * A small portion of unmapped file backed pages is needed for
4225 	 * file I/O otherwise pages read by file I/O will be immediately
4226 	 * thrown out if the node is overallocated. So we do not reclaim
4227 	 * if less than a specified percentage of the node is used by
4228 	 * unmapped file backed pages.
4229 	 */
4230 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4231 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4232 	    pgdat->min_slab_pages)
4233 		return NODE_RECLAIM_FULL;
4234 
4235 	/*
4236 	 * Do not scan if the allocation should not be delayed.
4237 	 */
4238 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4239 		return NODE_RECLAIM_NOSCAN;
4240 
4241 	/*
4242 	 * Only run node reclaim on the local node or on nodes that do not
4243 	 * have associated processors. This will favor the local processor
4244 	 * over remote processors and spread off node memory allocations
4245 	 * as wide as possible.
4246 	 */
4247 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4248 		return NODE_RECLAIM_NOSCAN;
4249 
4250 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4251 		return NODE_RECLAIM_NOSCAN;
4252 
4253 	ret = __node_reclaim(pgdat, gfp_mask, order);
4254 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4255 
4256 	if (!ret)
4257 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4258 
4259 	return ret;
4260 }
4261 #endif
4262 
4263 /**
4264  * check_move_unevictable_pages - check pages for evictability and move to
4265  * appropriate zone lru list
4266  * @pvec: pagevec with lru pages to check
4267  *
4268  * Checks pages for evictability, if an evictable page is in the unevictable
4269  * lru list, moves it to the appropriate evictable lru list. This function
4270  * should be only used for lru pages.
4271  */
4272 void check_move_unevictable_pages(struct pagevec *pvec)
4273 {
4274 	struct lruvec *lruvec = NULL;
4275 	int pgscanned = 0;
4276 	int pgrescued = 0;
4277 	int i;
4278 
4279 	for (i = 0; i < pvec->nr; i++) {
4280 		struct page *page = pvec->pages[i];
4281 		int nr_pages;
4282 
4283 		if (PageTransTail(page))
4284 			continue;
4285 
4286 		nr_pages = thp_nr_pages(page);
4287 		pgscanned += nr_pages;
4288 
4289 		/* block memcg migration during page moving between lru */
4290 		if (!TestClearPageLRU(page))
4291 			continue;
4292 
4293 		lruvec = relock_page_lruvec_irq(page, lruvec);
4294 		if (page_evictable(page) && PageUnevictable(page)) {
4295 			enum lru_list lru = page_lru_base_type(page);
4296 
4297 			VM_BUG_ON_PAGE(PageActive(page), page);
4298 			ClearPageUnevictable(page);
4299 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4300 			add_page_to_lru_list(page, lruvec, lru);
4301 			pgrescued += nr_pages;
4302 		}
4303 		SetPageLRU(page);
4304 	}
4305 
4306 	if (lruvec) {
4307 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4308 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4309 		unlock_page_lruvec_irq(lruvec);
4310 	} else if (pgscanned) {
4311 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4312 	}
4313 }
4314 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4315