xref: /openbmc/linux/mm/vmscan.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/*
83 	 * Scan pressure balancing between anon and file LRUs
84 	 */
85 	unsigned long	anon_cost;
86 	unsigned long	file_cost;
87 
88 	/* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 	unsigned int may_deactivate:2;
92 	unsigned int force_deactivate:1;
93 	unsigned int skipped_deactivate:1;
94 
95 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 	unsigned int may_writepage:1;
97 
98 	/* Can mapped pages be reclaimed? */
99 	unsigned int may_unmap:1;
100 
101 	/* Can pages be swapped as part of reclaim? */
102 	unsigned int may_swap:1;
103 
104 	/*
105 	 * Cgroups are not reclaimed below their configured memory.low,
106 	 * unless we threaten to OOM. If any cgroups are skipped due to
107 	 * memory.low and nothing was reclaimed, go back for memory.low.
108 	 */
109 	unsigned int memcg_low_reclaim:1;
110 	unsigned int memcg_low_skipped:1;
111 
112 	unsigned int hibernation_mode:1;
113 
114 	/* One of the zones is ready for compaction */
115 	unsigned int compaction_ready:1;
116 
117 	/* There is easily reclaimable cold cache in the current node */
118 	unsigned int cache_trim_mode:1;
119 
120 	/* The file pages on the current node are dangerously low */
121 	unsigned int file_is_tiny:1;
122 
123 	/* Allocation order */
124 	s8 order;
125 
126 	/* Scan (total_size >> priority) pages at once */
127 	s8 priority;
128 
129 	/* The highest zone to isolate pages for reclaim from */
130 	s8 reclaim_idx;
131 
132 	/* This context's GFP mask */
133 	gfp_t gfp_mask;
134 
135 	/* Incremented by the number of inactive pages that were scanned */
136 	unsigned long nr_scanned;
137 
138 	/* Number of pages freed so far during a call to shrink_zones() */
139 	unsigned long nr_reclaimed;
140 
141 	struct {
142 		unsigned int dirty;
143 		unsigned int unqueued_dirty;
144 		unsigned int congested;
145 		unsigned int writeback;
146 		unsigned int immediate;
147 		unsigned int file_taken;
148 		unsigned int taken;
149 	} nr;
150 
151 	/* for recording the reclaimed slab by now */
152 	struct reclaim_state reclaim_state;
153 };
154 
155 #ifdef ARCH_HAS_PREFETCHW
156 #define prefetchw_prev_lru_page(_page, _base, _field)			\
157 	do {								\
158 		if ((_page)->lru.prev != _base) {			\
159 			struct page *prev;				\
160 									\
161 			prev = lru_to_page(&(_page->lru));		\
162 			prefetchw(&prev->_field);			\
163 		}							\
164 	} while (0)
165 #else
166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167 #endif
168 
169 /*
170  * From 0 .. 200.  Higher means more swappy.
171  */
172 int vm_swappiness = 60;
173 /*
174  * The total number of pages which are beyond the high watermark within all
175  * zones.
176  */
177 unsigned long vm_total_pages;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 /*
196  * We allow subsystems to populate their shrinker-related
197  * LRU lists before register_shrinker_prepared() is called
198  * for the shrinker, since we don't want to impose
199  * restrictions on their internal registration order.
200  * In this case shrink_slab_memcg() may find corresponding
201  * bit is set in the shrinkers map.
202  *
203  * This value is used by the function to detect registering
204  * shrinkers and to skip do_shrink_slab() calls for them.
205  */
206 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
207 
208 static DEFINE_IDR(shrinker_idr);
209 static int shrinker_nr_max;
210 
211 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
212 {
213 	int id, ret = -ENOMEM;
214 
215 	down_write(&shrinker_rwsem);
216 	/* This may call shrinker, so it must use down_read_trylock() */
217 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
218 	if (id < 0)
219 		goto unlock;
220 
221 	if (id >= shrinker_nr_max) {
222 		if (memcg_expand_shrinker_maps(id)) {
223 			idr_remove(&shrinker_idr, id);
224 			goto unlock;
225 		}
226 
227 		shrinker_nr_max = id + 1;
228 	}
229 	shrinker->id = id;
230 	ret = 0;
231 unlock:
232 	up_write(&shrinker_rwsem);
233 	return ret;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 	int id = shrinker->id;
239 
240 	BUG_ON(id < 0);
241 
242 	down_write(&shrinker_rwsem);
243 	idr_remove(&shrinker_idr, id);
244 	up_write(&shrinker_rwsem);
245 }
246 
247 static bool cgroup_reclaim(struct scan_control *sc)
248 {
249 	return sc->target_mem_cgroup;
250 }
251 
252 /**
253  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
254  * @sc: scan_control in question
255  *
256  * The normal page dirty throttling mechanism in balance_dirty_pages() is
257  * completely broken with the legacy memcg and direct stalling in
258  * shrink_page_list() is used for throttling instead, which lacks all the
259  * niceties such as fairness, adaptive pausing, bandwidth proportional
260  * allocation and configurability.
261  *
262  * This function tests whether the vmscan currently in progress can assume
263  * that the normal dirty throttling mechanism is operational.
264  */
265 static bool writeback_throttling_sane(struct scan_control *sc)
266 {
267 	if (!cgroup_reclaim(sc))
268 		return true;
269 #ifdef CONFIG_CGROUP_WRITEBACK
270 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
271 		return true;
272 #endif
273 	return false;
274 }
275 #else
276 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
277 {
278 	return 0;
279 }
280 
281 static void unregister_memcg_shrinker(struct shrinker *shrinker)
282 {
283 }
284 
285 static bool cgroup_reclaim(struct scan_control *sc)
286 {
287 	return false;
288 }
289 
290 static bool writeback_throttling_sane(struct scan_control *sc)
291 {
292 	return true;
293 }
294 #endif
295 
296 /*
297  * This misses isolated pages which are not accounted for to save counters.
298  * As the data only determines if reclaim or compaction continues, it is
299  * not expected that isolated pages will be a dominating factor.
300  */
301 unsigned long zone_reclaimable_pages(struct zone *zone)
302 {
303 	unsigned long nr;
304 
305 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
306 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
307 	if (get_nr_swap_pages() > 0)
308 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
309 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
310 
311 	return nr;
312 }
313 
314 /**
315  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
316  * @lruvec: lru vector
317  * @lru: lru to use
318  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
319  */
320 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
321 {
322 	unsigned long size = 0;
323 	int zid;
324 
325 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
326 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
327 
328 		if (!managed_zone(zone))
329 			continue;
330 
331 		if (!mem_cgroup_disabled())
332 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
333 		else
334 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
335 	}
336 	return size;
337 }
338 
339 /*
340  * Add a shrinker callback to be called from the vm.
341  */
342 int prealloc_shrinker(struct shrinker *shrinker)
343 {
344 	unsigned int size = sizeof(*shrinker->nr_deferred);
345 
346 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
347 		size *= nr_node_ids;
348 
349 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
350 	if (!shrinker->nr_deferred)
351 		return -ENOMEM;
352 
353 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
354 		if (prealloc_memcg_shrinker(shrinker))
355 			goto free_deferred;
356 	}
357 
358 	return 0;
359 
360 free_deferred:
361 	kfree(shrinker->nr_deferred);
362 	shrinker->nr_deferred = NULL;
363 	return -ENOMEM;
364 }
365 
366 void free_prealloced_shrinker(struct shrinker *shrinker)
367 {
368 	if (!shrinker->nr_deferred)
369 		return;
370 
371 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
372 		unregister_memcg_shrinker(shrinker);
373 
374 	kfree(shrinker->nr_deferred);
375 	shrinker->nr_deferred = NULL;
376 }
377 
378 void register_shrinker_prepared(struct shrinker *shrinker)
379 {
380 	down_write(&shrinker_rwsem);
381 	list_add_tail(&shrinker->list, &shrinker_list);
382 #ifdef CONFIG_MEMCG
383 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
384 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
385 #endif
386 	up_write(&shrinker_rwsem);
387 }
388 
389 int register_shrinker(struct shrinker *shrinker)
390 {
391 	int err = prealloc_shrinker(shrinker);
392 
393 	if (err)
394 		return err;
395 	register_shrinker_prepared(shrinker);
396 	return 0;
397 }
398 EXPORT_SYMBOL(register_shrinker);
399 
400 /*
401  * Remove one
402  */
403 void unregister_shrinker(struct shrinker *shrinker)
404 {
405 	if (!shrinker->nr_deferred)
406 		return;
407 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
408 		unregister_memcg_shrinker(shrinker);
409 	down_write(&shrinker_rwsem);
410 	list_del(&shrinker->list);
411 	up_write(&shrinker_rwsem);
412 	kfree(shrinker->nr_deferred);
413 	shrinker->nr_deferred = NULL;
414 }
415 EXPORT_SYMBOL(unregister_shrinker);
416 
417 #define SHRINK_BATCH 128
418 
419 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
420 				    struct shrinker *shrinker, int priority)
421 {
422 	unsigned long freed = 0;
423 	unsigned long long delta;
424 	long total_scan;
425 	long freeable;
426 	long nr;
427 	long new_nr;
428 	int nid = shrinkctl->nid;
429 	long batch_size = shrinker->batch ? shrinker->batch
430 					  : SHRINK_BATCH;
431 	long scanned = 0, next_deferred;
432 
433 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
434 		nid = 0;
435 
436 	freeable = shrinker->count_objects(shrinker, shrinkctl);
437 	if (freeable == 0 || freeable == SHRINK_EMPTY)
438 		return freeable;
439 
440 	/*
441 	 * copy the current shrinker scan count into a local variable
442 	 * and zero it so that other concurrent shrinker invocations
443 	 * don't also do this scanning work.
444 	 */
445 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
446 
447 	total_scan = nr;
448 	if (shrinker->seeks) {
449 		delta = freeable >> priority;
450 		delta *= 4;
451 		do_div(delta, shrinker->seeks);
452 	} else {
453 		/*
454 		 * These objects don't require any IO to create. Trim
455 		 * them aggressively under memory pressure to keep
456 		 * them from causing refetches in the IO caches.
457 		 */
458 		delta = freeable / 2;
459 	}
460 
461 	total_scan += delta;
462 	if (total_scan < 0) {
463 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
464 		       shrinker->scan_objects, total_scan);
465 		total_scan = freeable;
466 		next_deferred = nr;
467 	} else
468 		next_deferred = total_scan;
469 
470 	/*
471 	 * We need to avoid excessive windup on filesystem shrinkers
472 	 * due to large numbers of GFP_NOFS allocations causing the
473 	 * shrinkers to return -1 all the time. This results in a large
474 	 * nr being built up so when a shrink that can do some work
475 	 * comes along it empties the entire cache due to nr >>>
476 	 * freeable. This is bad for sustaining a working set in
477 	 * memory.
478 	 *
479 	 * Hence only allow the shrinker to scan the entire cache when
480 	 * a large delta change is calculated directly.
481 	 */
482 	if (delta < freeable / 4)
483 		total_scan = min(total_scan, freeable / 2);
484 
485 	/*
486 	 * Avoid risking looping forever due to too large nr value:
487 	 * never try to free more than twice the estimate number of
488 	 * freeable entries.
489 	 */
490 	if (total_scan > freeable * 2)
491 		total_scan = freeable * 2;
492 
493 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
494 				   freeable, delta, total_scan, priority);
495 
496 	/*
497 	 * Normally, we should not scan less than batch_size objects in one
498 	 * pass to avoid too frequent shrinker calls, but if the slab has less
499 	 * than batch_size objects in total and we are really tight on memory,
500 	 * we will try to reclaim all available objects, otherwise we can end
501 	 * up failing allocations although there are plenty of reclaimable
502 	 * objects spread over several slabs with usage less than the
503 	 * batch_size.
504 	 *
505 	 * We detect the "tight on memory" situations by looking at the total
506 	 * number of objects we want to scan (total_scan). If it is greater
507 	 * than the total number of objects on slab (freeable), we must be
508 	 * scanning at high prio and therefore should try to reclaim as much as
509 	 * possible.
510 	 */
511 	while (total_scan >= batch_size ||
512 	       total_scan >= freeable) {
513 		unsigned long ret;
514 		unsigned long nr_to_scan = min(batch_size, total_scan);
515 
516 		shrinkctl->nr_to_scan = nr_to_scan;
517 		shrinkctl->nr_scanned = nr_to_scan;
518 		ret = shrinker->scan_objects(shrinker, shrinkctl);
519 		if (ret == SHRINK_STOP)
520 			break;
521 		freed += ret;
522 
523 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
524 		total_scan -= shrinkctl->nr_scanned;
525 		scanned += shrinkctl->nr_scanned;
526 
527 		cond_resched();
528 	}
529 
530 	if (next_deferred >= scanned)
531 		next_deferred -= scanned;
532 	else
533 		next_deferred = 0;
534 	/*
535 	 * move the unused scan count back into the shrinker in a
536 	 * manner that handles concurrent updates. If we exhausted the
537 	 * scan, there is no need to do an update.
538 	 */
539 	if (next_deferred > 0)
540 		new_nr = atomic_long_add_return(next_deferred,
541 						&shrinker->nr_deferred[nid]);
542 	else
543 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
544 
545 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
546 	return freed;
547 }
548 
549 #ifdef CONFIG_MEMCG
550 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
551 			struct mem_cgroup *memcg, int priority)
552 {
553 	struct memcg_shrinker_map *map;
554 	unsigned long ret, freed = 0;
555 	int i;
556 
557 	if (!mem_cgroup_online(memcg))
558 		return 0;
559 
560 	if (!down_read_trylock(&shrinker_rwsem))
561 		return 0;
562 
563 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
564 					true);
565 	if (unlikely(!map))
566 		goto unlock;
567 
568 	for_each_set_bit(i, map->map, shrinker_nr_max) {
569 		struct shrink_control sc = {
570 			.gfp_mask = gfp_mask,
571 			.nid = nid,
572 			.memcg = memcg,
573 		};
574 		struct shrinker *shrinker;
575 
576 		shrinker = idr_find(&shrinker_idr, i);
577 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
578 			if (!shrinker)
579 				clear_bit(i, map->map);
580 			continue;
581 		}
582 
583 		/* Call non-slab shrinkers even though kmem is disabled */
584 		if (!memcg_kmem_enabled() &&
585 		    !(shrinker->flags & SHRINKER_NONSLAB))
586 			continue;
587 
588 		ret = do_shrink_slab(&sc, shrinker, priority);
589 		if (ret == SHRINK_EMPTY) {
590 			clear_bit(i, map->map);
591 			/*
592 			 * After the shrinker reported that it had no objects to
593 			 * free, but before we cleared the corresponding bit in
594 			 * the memcg shrinker map, a new object might have been
595 			 * added. To make sure, we have the bit set in this
596 			 * case, we invoke the shrinker one more time and reset
597 			 * the bit if it reports that it is not empty anymore.
598 			 * The memory barrier here pairs with the barrier in
599 			 * memcg_set_shrinker_bit():
600 			 *
601 			 * list_lru_add()     shrink_slab_memcg()
602 			 *   list_add_tail()    clear_bit()
603 			 *   <MB>               <MB>
604 			 *   set_bit()          do_shrink_slab()
605 			 */
606 			smp_mb__after_atomic();
607 			ret = do_shrink_slab(&sc, shrinker, priority);
608 			if (ret == SHRINK_EMPTY)
609 				ret = 0;
610 			else
611 				memcg_set_shrinker_bit(memcg, nid, i);
612 		}
613 		freed += ret;
614 
615 		if (rwsem_is_contended(&shrinker_rwsem)) {
616 			freed = freed ? : 1;
617 			break;
618 		}
619 	}
620 unlock:
621 	up_read(&shrinker_rwsem);
622 	return freed;
623 }
624 #else /* CONFIG_MEMCG */
625 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
626 			struct mem_cgroup *memcg, int priority)
627 {
628 	return 0;
629 }
630 #endif /* CONFIG_MEMCG */
631 
632 /**
633  * shrink_slab - shrink slab caches
634  * @gfp_mask: allocation context
635  * @nid: node whose slab caches to target
636  * @memcg: memory cgroup whose slab caches to target
637  * @priority: the reclaim priority
638  *
639  * Call the shrink functions to age shrinkable caches.
640  *
641  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
642  * unaware shrinkers will receive a node id of 0 instead.
643  *
644  * @memcg specifies the memory cgroup to target. Unaware shrinkers
645  * are called only if it is the root cgroup.
646  *
647  * @priority is sc->priority, we take the number of objects and >> by priority
648  * in order to get the scan target.
649  *
650  * Returns the number of reclaimed slab objects.
651  */
652 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
653 				 struct mem_cgroup *memcg,
654 				 int priority)
655 {
656 	unsigned long ret, freed = 0;
657 	struct shrinker *shrinker;
658 
659 	/*
660 	 * The root memcg might be allocated even though memcg is disabled
661 	 * via "cgroup_disable=memory" boot parameter.  This could make
662 	 * mem_cgroup_is_root() return false, then just run memcg slab
663 	 * shrink, but skip global shrink.  This may result in premature
664 	 * oom.
665 	 */
666 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
667 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
668 
669 	if (!down_read_trylock(&shrinker_rwsem))
670 		goto out;
671 
672 	list_for_each_entry(shrinker, &shrinker_list, list) {
673 		struct shrink_control sc = {
674 			.gfp_mask = gfp_mask,
675 			.nid = nid,
676 			.memcg = memcg,
677 		};
678 
679 		ret = do_shrink_slab(&sc, shrinker, priority);
680 		if (ret == SHRINK_EMPTY)
681 			ret = 0;
682 		freed += ret;
683 		/*
684 		 * Bail out if someone want to register a new shrinker to
685 		 * prevent the registration from being stalled for long periods
686 		 * by parallel ongoing shrinking.
687 		 */
688 		if (rwsem_is_contended(&shrinker_rwsem)) {
689 			freed = freed ? : 1;
690 			break;
691 		}
692 	}
693 
694 	up_read(&shrinker_rwsem);
695 out:
696 	cond_resched();
697 	return freed;
698 }
699 
700 void drop_slab_node(int nid)
701 {
702 	unsigned long freed;
703 
704 	do {
705 		struct mem_cgroup *memcg = NULL;
706 
707 		freed = 0;
708 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
709 		do {
710 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
711 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
712 	} while (freed > 10);
713 }
714 
715 void drop_slab(void)
716 {
717 	int nid;
718 
719 	for_each_online_node(nid)
720 		drop_slab_node(nid);
721 }
722 
723 static inline int is_page_cache_freeable(struct page *page)
724 {
725 	/*
726 	 * A freeable page cache page is referenced only by the caller
727 	 * that isolated the page, the page cache and optional buffer
728 	 * heads at page->private.
729 	 */
730 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
731 		HPAGE_PMD_NR : 1;
732 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
733 }
734 
735 static int may_write_to_inode(struct inode *inode)
736 {
737 	if (current->flags & PF_SWAPWRITE)
738 		return 1;
739 	if (!inode_write_congested(inode))
740 		return 1;
741 	if (inode_to_bdi(inode) == current->backing_dev_info)
742 		return 1;
743 	return 0;
744 }
745 
746 /*
747  * We detected a synchronous write error writing a page out.  Probably
748  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
749  * fsync(), msync() or close().
750  *
751  * The tricky part is that after writepage we cannot touch the mapping: nothing
752  * prevents it from being freed up.  But we have a ref on the page and once
753  * that page is locked, the mapping is pinned.
754  *
755  * We're allowed to run sleeping lock_page() here because we know the caller has
756  * __GFP_FS.
757  */
758 static void handle_write_error(struct address_space *mapping,
759 				struct page *page, int error)
760 {
761 	lock_page(page);
762 	if (page_mapping(page) == mapping)
763 		mapping_set_error(mapping, error);
764 	unlock_page(page);
765 }
766 
767 /* possible outcome of pageout() */
768 typedef enum {
769 	/* failed to write page out, page is locked */
770 	PAGE_KEEP,
771 	/* move page to the active list, page is locked */
772 	PAGE_ACTIVATE,
773 	/* page has been sent to the disk successfully, page is unlocked */
774 	PAGE_SUCCESS,
775 	/* page is clean and locked */
776 	PAGE_CLEAN,
777 } pageout_t;
778 
779 /*
780  * pageout is called by shrink_page_list() for each dirty page.
781  * Calls ->writepage().
782  */
783 static pageout_t pageout(struct page *page, struct address_space *mapping)
784 {
785 	/*
786 	 * If the page is dirty, only perform writeback if that write
787 	 * will be non-blocking.  To prevent this allocation from being
788 	 * stalled by pagecache activity.  But note that there may be
789 	 * stalls if we need to run get_block().  We could test
790 	 * PagePrivate for that.
791 	 *
792 	 * If this process is currently in __generic_file_write_iter() against
793 	 * this page's queue, we can perform writeback even if that
794 	 * will block.
795 	 *
796 	 * If the page is swapcache, write it back even if that would
797 	 * block, for some throttling. This happens by accident, because
798 	 * swap_backing_dev_info is bust: it doesn't reflect the
799 	 * congestion state of the swapdevs.  Easy to fix, if needed.
800 	 */
801 	if (!is_page_cache_freeable(page))
802 		return PAGE_KEEP;
803 	if (!mapping) {
804 		/*
805 		 * Some data journaling orphaned pages can have
806 		 * page->mapping == NULL while being dirty with clean buffers.
807 		 */
808 		if (page_has_private(page)) {
809 			if (try_to_free_buffers(page)) {
810 				ClearPageDirty(page);
811 				pr_info("%s: orphaned page\n", __func__);
812 				return PAGE_CLEAN;
813 			}
814 		}
815 		return PAGE_KEEP;
816 	}
817 	if (mapping->a_ops->writepage == NULL)
818 		return PAGE_ACTIVATE;
819 	if (!may_write_to_inode(mapping->host))
820 		return PAGE_KEEP;
821 
822 	if (clear_page_dirty_for_io(page)) {
823 		int res;
824 		struct writeback_control wbc = {
825 			.sync_mode = WB_SYNC_NONE,
826 			.nr_to_write = SWAP_CLUSTER_MAX,
827 			.range_start = 0,
828 			.range_end = LLONG_MAX,
829 			.for_reclaim = 1,
830 		};
831 
832 		SetPageReclaim(page);
833 		res = mapping->a_ops->writepage(page, &wbc);
834 		if (res < 0)
835 			handle_write_error(mapping, page, res);
836 		if (res == AOP_WRITEPAGE_ACTIVATE) {
837 			ClearPageReclaim(page);
838 			return PAGE_ACTIVATE;
839 		}
840 
841 		if (!PageWriteback(page)) {
842 			/* synchronous write or broken a_ops? */
843 			ClearPageReclaim(page);
844 		}
845 		trace_mm_vmscan_writepage(page);
846 		inc_node_page_state(page, NR_VMSCAN_WRITE);
847 		return PAGE_SUCCESS;
848 	}
849 
850 	return PAGE_CLEAN;
851 }
852 
853 /*
854  * Same as remove_mapping, but if the page is removed from the mapping, it
855  * gets returned with a refcount of 0.
856  */
857 static int __remove_mapping(struct address_space *mapping, struct page *page,
858 			    bool reclaimed, struct mem_cgroup *target_memcg)
859 {
860 	unsigned long flags;
861 	int refcount;
862 
863 	BUG_ON(!PageLocked(page));
864 	BUG_ON(mapping != page_mapping(page));
865 
866 	xa_lock_irqsave(&mapping->i_pages, flags);
867 	/*
868 	 * The non racy check for a busy page.
869 	 *
870 	 * Must be careful with the order of the tests. When someone has
871 	 * a ref to the page, it may be possible that they dirty it then
872 	 * drop the reference. So if PageDirty is tested before page_count
873 	 * here, then the following race may occur:
874 	 *
875 	 * get_user_pages(&page);
876 	 * [user mapping goes away]
877 	 * write_to(page);
878 	 *				!PageDirty(page)    [good]
879 	 * SetPageDirty(page);
880 	 * put_page(page);
881 	 *				!page_count(page)   [good, discard it]
882 	 *
883 	 * [oops, our write_to data is lost]
884 	 *
885 	 * Reversing the order of the tests ensures such a situation cannot
886 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
887 	 * load is not satisfied before that of page->_refcount.
888 	 *
889 	 * Note that if SetPageDirty is always performed via set_page_dirty,
890 	 * and thus under the i_pages lock, then this ordering is not required.
891 	 */
892 	refcount = 1 + compound_nr(page);
893 	if (!page_ref_freeze(page, refcount))
894 		goto cannot_free;
895 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
896 	if (unlikely(PageDirty(page))) {
897 		page_ref_unfreeze(page, refcount);
898 		goto cannot_free;
899 	}
900 
901 	if (PageSwapCache(page)) {
902 		swp_entry_t swap = { .val = page_private(page) };
903 		mem_cgroup_swapout(page, swap);
904 		__delete_from_swap_cache(page, swap);
905 		xa_unlock_irqrestore(&mapping->i_pages, flags);
906 		put_swap_page(page, swap);
907 		workingset_eviction(page, target_memcg);
908 	} else {
909 		void (*freepage)(struct page *);
910 		void *shadow = NULL;
911 
912 		freepage = mapping->a_ops->freepage;
913 		/*
914 		 * Remember a shadow entry for reclaimed file cache in
915 		 * order to detect refaults, thus thrashing, later on.
916 		 *
917 		 * But don't store shadows in an address space that is
918 		 * already exiting.  This is not just an optizimation,
919 		 * inode reclaim needs to empty out the radix tree or
920 		 * the nodes are lost.  Don't plant shadows behind its
921 		 * back.
922 		 *
923 		 * We also don't store shadows for DAX mappings because the
924 		 * only page cache pages found in these are zero pages
925 		 * covering holes, and because we don't want to mix DAX
926 		 * exceptional entries and shadow exceptional entries in the
927 		 * same address_space.
928 		 */
929 		if (reclaimed && page_is_file_lru(page) &&
930 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
931 			shadow = workingset_eviction(page, target_memcg);
932 		__delete_from_page_cache(page, shadow);
933 		xa_unlock_irqrestore(&mapping->i_pages, flags);
934 
935 		if (freepage != NULL)
936 			freepage(page);
937 	}
938 
939 	return 1;
940 
941 cannot_free:
942 	xa_unlock_irqrestore(&mapping->i_pages, flags);
943 	return 0;
944 }
945 
946 /*
947  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
948  * someone else has a ref on the page, abort and return 0.  If it was
949  * successfully detached, return 1.  Assumes the caller has a single ref on
950  * this page.
951  */
952 int remove_mapping(struct address_space *mapping, struct page *page)
953 {
954 	if (__remove_mapping(mapping, page, false, NULL)) {
955 		/*
956 		 * Unfreezing the refcount with 1 rather than 2 effectively
957 		 * drops the pagecache ref for us without requiring another
958 		 * atomic operation.
959 		 */
960 		page_ref_unfreeze(page, 1);
961 		return 1;
962 	}
963 	return 0;
964 }
965 
966 /**
967  * putback_lru_page - put previously isolated page onto appropriate LRU list
968  * @page: page to be put back to appropriate lru list
969  *
970  * Add previously isolated @page to appropriate LRU list.
971  * Page may still be unevictable for other reasons.
972  *
973  * lru_lock must not be held, interrupts must be enabled.
974  */
975 void putback_lru_page(struct page *page)
976 {
977 	lru_cache_add(page);
978 	put_page(page);		/* drop ref from isolate */
979 }
980 
981 enum page_references {
982 	PAGEREF_RECLAIM,
983 	PAGEREF_RECLAIM_CLEAN,
984 	PAGEREF_KEEP,
985 	PAGEREF_ACTIVATE,
986 };
987 
988 static enum page_references page_check_references(struct page *page,
989 						  struct scan_control *sc)
990 {
991 	int referenced_ptes, referenced_page;
992 	unsigned long vm_flags;
993 
994 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
995 					  &vm_flags);
996 	referenced_page = TestClearPageReferenced(page);
997 
998 	/*
999 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1000 	 * move the page to the unevictable list.
1001 	 */
1002 	if (vm_flags & VM_LOCKED)
1003 		return PAGEREF_RECLAIM;
1004 
1005 	if (referenced_ptes) {
1006 		if (PageSwapBacked(page))
1007 			return PAGEREF_ACTIVATE;
1008 		/*
1009 		 * All mapped pages start out with page table
1010 		 * references from the instantiating fault, so we need
1011 		 * to look twice if a mapped file page is used more
1012 		 * than once.
1013 		 *
1014 		 * Mark it and spare it for another trip around the
1015 		 * inactive list.  Another page table reference will
1016 		 * lead to its activation.
1017 		 *
1018 		 * Note: the mark is set for activated pages as well
1019 		 * so that recently deactivated but used pages are
1020 		 * quickly recovered.
1021 		 */
1022 		SetPageReferenced(page);
1023 
1024 		if (referenced_page || referenced_ptes > 1)
1025 			return PAGEREF_ACTIVATE;
1026 
1027 		/*
1028 		 * Activate file-backed executable pages after first usage.
1029 		 */
1030 		if (vm_flags & VM_EXEC)
1031 			return PAGEREF_ACTIVATE;
1032 
1033 		return PAGEREF_KEEP;
1034 	}
1035 
1036 	/* Reclaim if clean, defer dirty pages to writeback */
1037 	if (referenced_page && !PageSwapBacked(page))
1038 		return PAGEREF_RECLAIM_CLEAN;
1039 
1040 	return PAGEREF_RECLAIM;
1041 }
1042 
1043 /* Check if a page is dirty or under writeback */
1044 static void page_check_dirty_writeback(struct page *page,
1045 				       bool *dirty, bool *writeback)
1046 {
1047 	struct address_space *mapping;
1048 
1049 	/*
1050 	 * Anonymous pages are not handled by flushers and must be written
1051 	 * from reclaim context. Do not stall reclaim based on them
1052 	 */
1053 	if (!page_is_file_lru(page) ||
1054 	    (PageAnon(page) && !PageSwapBacked(page))) {
1055 		*dirty = false;
1056 		*writeback = false;
1057 		return;
1058 	}
1059 
1060 	/* By default assume that the page flags are accurate */
1061 	*dirty = PageDirty(page);
1062 	*writeback = PageWriteback(page);
1063 
1064 	/* Verify dirty/writeback state if the filesystem supports it */
1065 	if (!page_has_private(page))
1066 		return;
1067 
1068 	mapping = page_mapping(page);
1069 	if (mapping && mapping->a_ops->is_dirty_writeback)
1070 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1071 }
1072 
1073 /*
1074  * shrink_page_list() returns the number of reclaimed pages
1075  */
1076 static unsigned int shrink_page_list(struct list_head *page_list,
1077 				     struct pglist_data *pgdat,
1078 				     struct scan_control *sc,
1079 				     enum ttu_flags ttu_flags,
1080 				     struct reclaim_stat *stat,
1081 				     bool ignore_references)
1082 {
1083 	LIST_HEAD(ret_pages);
1084 	LIST_HEAD(free_pages);
1085 	unsigned int nr_reclaimed = 0;
1086 	unsigned int pgactivate = 0;
1087 
1088 	memset(stat, 0, sizeof(*stat));
1089 	cond_resched();
1090 
1091 	while (!list_empty(page_list)) {
1092 		struct address_space *mapping;
1093 		struct page *page;
1094 		enum page_references references = PAGEREF_RECLAIM;
1095 		bool dirty, writeback, may_enter_fs;
1096 		unsigned int nr_pages;
1097 
1098 		cond_resched();
1099 
1100 		page = lru_to_page(page_list);
1101 		list_del(&page->lru);
1102 
1103 		if (!trylock_page(page))
1104 			goto keep;
1105 
1106 		VM_BUG_ON_PAGE(PageActive(page), page);
1107 
1108 		nr_pages = compound_nr(page);
1109 
1110 		/* Account the number of base pages even though THP */
1111 		sc->nr_scanned += nr_pages;
1112 
1113 		if (unlikely(!page_evictable(page)))
1114 			goto activate_locked;
1115 
1116 		if (!sc->may_unmap && page_mapped(page))
1117 			goto keep_locked;
1118 
1119 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1120 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1121 
1122 		/*
1123 		 * The number of dirty pages determines if a node is marked
1124 		 * reclaim_congested which affects wait_iff_congested. kswapd
1125 		 * will stall and start writing pages if the tail of the LRU
1126 		 * is all dirty unqueued pages.
1127 		 */
1128 		page_check_dirty_writeback(page, &dirty, &writeback);
1129 		if (dirty || writeback)
1130 			stat->nr_dirty++;
1131 
1132 		if (dirty && !writeback)
1133 			stat->nr_unqueued_dirty++;
1134 
1135 		/*
1136 		 * Treat this page as congested if the underlying BDI is or if
1137 		 * pages are cycling through the LRU so quickly that the
1138 		 * pages marked for immediate reclaim are making it to the
1139 		 * end of the LRU a second time.
1140 		 */
1141 		mapping = page_mapping(page);
1142 		if (((dirty || writeback) && mapping &&
1143 		     inode_write_congested(mapping->host)) ||
1144 		    (writeback && PageReclaim(page)))
1145 			stat->nr_congested++;
1146 
1147 		/*
1148 		 * If a page at the tail of the LRU is under writeback, there
1149 		 * are three cases to consider.
1150 		 *
1151 		 * 1) If reclaim is encountering an excessive number of pages
1152 		 *    under writeback and this page is both under writeback and
1153 		 *    PageReclaim then it indicates that pages are being queued
1154 		 *    for IO but are being recycled through the LRU before the
1155 		 *    IO can complete. Waiting on the page itself risks an
1156 		 *    indefinite stall if it is impossible to writeback the
1157 		 *    page due to IO error or disconnected storage so instead
1158 		 *    note that the LRU is being scanned too quickly and the
1159 		 *    caller can stall after page list has been processed.
1160 		 *
1161 		 * 2) Global or new memcg reclaim encounters a page that is
1162 		 *    not marked for immediate reclaim, or the caller does not
1163 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1164 		 *    not to fs). In this case mark the page for immediate
1165 		 *    reclaim and continue scanning.
1166 		 *
1167 		 *    Require may_enter_fs because we would wait on fs, which
1168 		 *    may not have submitted IO yet. And the loop driver might
1169 		 *    enter reclaim, and deadlock if it waits on a page for
1170 		 *    which it is needed to do the write (loop masks off
1171 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1172 		 *    would probably show more reasons.
1173 		 *
1174 		 * 3) Legacy memcg encounters a page that is already marked
1175 		 *    PageReclaim. memcg does not have any dirty pages
1176 		 *    throttling so we could easily OOM just because too many
1177 		 *    pages are in writeback and there is nothing else to
1178 		 *    reclaim. Wait for the writeback to complete.
1179 		 *
1180 		 * In cases 1) and 2) we activate the pages to get them out of
1181 		 * the way while we continue scanning for clean pages on the
1182 		 * inactive list and refilling from the active list. The
1183 		 * observation here is that waiting for disk writes is more
1184 		 * expensive than potentially causing reloads down the line.
1185 		 * Since they're marked for immediate reclaim, they won't put
1186 		 * memory pressure on the cache working set any longer than it
1187 		 * takes to write them to disk.
1188 		 */
1189 		if (PageWriteback(page)) {
1190 			/* Case 1 above */
1191 			if (current_is_kswapd() &&
1192 			    PageReclaim(page) &&
1193 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1194 				stat->nr_immediate++;
1195 				goto activate_locked;
1196 
1197 			/* Case 2 above */
1198 			} else if (writeback_throttling_sane(sc) ||
1199 			    !PageReclaim(page) || !may_enter_fs) {
1200 				/*
1201 				 * This is slightly racy - end_page_writeback()
1202 				 * might have just cleared PageReclaim, then
1203 				 * setting PageReclaim here end up interpreted
1204 				 * as PageReadahead - but that does not matter
1205 				 * enough to care.  What we do want is for this
1206 				 * page to have PageReclaim set next time memcg
1207 				 * reclaim reaches the tests above, so it will
1208 				 * then wait_on_page_writeback() to avoid OOM;
1209 				 * and it's also appropriate in global reclaim.
1210 				 */
1211 				SetPageReclaim(page);
1212 				stat->nr_writeback++;
1213 				goto activate_locked;
1214 
1215 			/* Case 3 above */
1216 			} else {
1217 				unlock_page(page);
1218 				wait_on_page_writeback(page);
1219 				/* then go back and try same page again */
1220 				list_add_tail(&page->lru, page_list);
1221 				continue;
1222 			}
1223 		}
1224 
1225 		if (!ignore_references)
1226 			references = page_check_references(page, sc);
1227 
1228 		switch (references) {
1229 		case PAGEREF_ACTIVATE:
1230 			goto activate_locked;
1231 		case PAGEREF_KEEP:
1232 			stat->nr_ref_keep += nr_pages;
1233 			goto keep_locked;
1234 		case PAGEREF_RECLAIM:
1235 		case PAGEREF_RECLAIM_CLEAN:
1236 			; /* try to reclaim the page below */
1237 		}
1238 
1239 		/*
1240 		 * Anonymous process memory has backing store?
1241 		 * Try to allocate it some swap space here.
1242 		 * Lazyfree page could be freed directly
1243 		 */
1244 		if (PageAnon(page) && PageSwapBacked(page)) {
1245 			if (!PageSwapCache(page)) {
1246 				if (!(sc->gfp_mask & __GFP_IO))
1247 					goto keep_locked;
1248 				if (PageTransHuge(page)) {
1249 					/* cannot split THP, skip it */
1250 					if (!can_split_huge_page(page, NULL))
1251 						goto activate_locked;
1252 					/*
1253 					 * Split pages without a PMD map right
1254 					 * away. Chances are some or all of the
1255 					 * tail pages can be freed without IO.
1256 					 */
1257 					if (!compound_mapcount(page) &&
1258 					    split_huge_page_to_list(page,
1259 								    page_list))
1260 						goto activate_locked;
1261 				}
1262 				if (!add_to_swap(page)) {
1263 					if (!PageTransHuge(page))
1264 						goto activate_locked_split;
1265 					/* Fallback to swap normal pages */
1266 					if (split_huge_page_to_list(page,
1267 								    page_list))
1268 						goto activate_locked;
1269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1270 					count_vm_event(THP_SWPOUT_FALLBACK);
1271 #endif
1272 					if (!add_to_swap(page))
1273 						goto activate_locked_split;
1274 				}
1275 
1276 				may_enter_fs = true;
1277 
1278 				/* Adding to swap updated mapping */
1279 				mapping = page_mapping(page);
1280 			}
1281 		} else if (unlikely(PageTransHuge(page))) {
1282 			/* Split file THP */
1283 			if (split_huge_page_to_list(page, page_list))
1284 				goto keep_locked;
1285 		}
1286 
1287 		/*
1288 		 * THP may get split above, need minus tail pages and update
1289 		 * nr_pages to avoid accounting tail pages twice.
1290 		 *
1291 		 * The tail pages that are added into swap cache successfully
1292 		 * reach here.
1293 		 */
1294 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1295 			sc->nr_scanned -= (nr_pages - 1);
1296 			nr_pages = 1;
1297 		}
1298 
1299 		/*
1300 		 * The page is mapped into the page tables of one or more
1301 		 * processes. Try to unmap it here.
1302 		 */
1303 		if (page_mapped(page)) {
1304 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1305 			bool was_swapbacked = PageSwapBacked(page);
1306 
1307 			if (unlikely(PageTransHuge(page)))
1308 				flags |= TTU_SPLIT_HUGE_PMD;
1309 
1310 			if (!try_to_unmap(page, flags)) {
1311 				stat->nr_unmap_fail += nr_pages;
1312 				if (!was_swapbacked && PageSwapBacked(page))
1313 					stat->nr_lazyfree_fail += nr_pages;
1314 				goto activate_locked;
1315 			}
1316 		}
1317 
1318 		if (PageDirty(page)) {
1319 			/*
1320 			 * Only kswapd can writeback filesystem pages
1321 			 * to avoid risk of stack overflow. But avoid
1322 			 * injecting inefficient single-page IO into
1323 			 * flusher writeback as much as possible: only
1324 			 * write pages when we've encountered many
1325 			 * dirty pages, and when we've already scanned
1326 			 * the rest of the LRU for clean pages and see
1327 			 * the same dirty pages again (PageReclaim).
1328 			 */
1329 			if (page_is_file_lru(page) &&
1330 			    (!current_is_kswapd() || !PageReclaim(page) ||
1331 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1332 				/*
1333 				 * Immediately reclaim when written back.
1334 				 * Similar in principal to deactivate_page()
1335 				 * except we already have the page isolated
1336 				 * and know it's dirty
1337 				 */
1338 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1339 				SetPageReclaim(page);
1340 
1341 				goto activate_locked;
1342 			}
1343 
1344 			if (references == PAGEREF_RECLAIM_CLEAN)
1345 				goto keep_locked;
1346 			if (!may_enter_fs)
1347 				goto keep_locked;
1348 			if (!sc->may_writepage)
1349 				goto keep_locked;
1350 
1351 			/*
1352 			 * Page is dirty. Flush the TLB if a writable entry
1353 			 * potentially exists to avoid CPU writes after IO
1354 			 * starts and then write it out here.
1355 			 */
1356 			try_to_unmap_flush_dirty();
1357 			switch (pageout(page, mapping)) {
1358 			case PAGE_KEEP:
1359 				goto keep_locked;
1360 			case PAGE_ACTIVATE:
1361 				goto activate_locked;
1362 			case PAGE_SUCCESS:
1363 				stat->nr_pageout += hpage_nr_pages(page);
1364 
1365 				if (PageWriteback(page))
1366 					goto keep;
1367 				if (PageDirty(page))
1368 					goto keep;
1369 
1370 				/*
1371 				 * A synchronous write - probably a ramdisk.  Go
1372 				 * ahead and try to reclaim the page.
1373 				 */
1374 				if (!trylock_page(page))
1375 					goto keep;
1376 				if (PageDirty(page) || PageWriteback(page))
1377 					goto keep_locked;
1378 				mapping = page_mapping(page);
1379 			case PAGE_CLEAN:
1380 				; /* try to free the page below */
1381 			}
1382 		}
1383 
1384 		/*
1385 		 * If the page has buffers, try to free the buffer mappings
1386 		 * associated with this page. If we succeed we try to free
1387 		 * the page as well.
1388 		 *
1389 		 * We do this even if the page is PageDirty().
1390 		 * try_to_release_page() does not perform I/O, but it is
1391 		 * possible for a page to have PageDirty set, but it is actually
1392 		 * clean (all its buffers are clean).  This happens if the
1393 		 * buffers were written out directly, with submit_bh(). ext3
1394 		 * will do this, as well as the blockdev mapping.
1395 		 * try_to_release_page() will discover that cleanness and will
1396 		 * drop the buffers and mark the page clean - it can be freed.
1397 		 *
1398 		 * Rarely, pages can have buffers and no ->mapping.  These are
1399 		 * the pages which were not successfully invalidated in
1400 		 * truncate_complete_page().  We try to drop those buffers here
1401 		 * and if that worked, and the page is no longer mapped into
1402 		 * process address space (page_count == 1) it can be freed.
1403 		 * Otherwise, leave the page on the LRU so it is swappable.
1404 		 */
1405 		if (page_has_private(page)) {
1406 			if (!try_to_release_page(page, sc->gfp_mask))
1407 				goto activate_locked;
1408 			if (!mapping && page_count(page) == 1) {
1409 				unlock_page(page);
1410 				if (put_page_testzero(page))
1411 					goto free_it;
1412 				else {
1413 					/*
1414 					 * rare race with speculative reference.
1415 					 * the speculative reference will free
1416 					 * this page shortly, so we may
1417 					 * increment nr_reclaimed here (and
1418 					 * leave it off the LRU).
1419 					 */
1420 					nr_reclaimed++;
1421 					continue;
1422 				}
1423 			}
1424 		}
1425 
1426 		if (PageAnon(page) && !PageSwapBacked(page)) {
1427 			/* follow __remove_mapping for reference */
1428 			if (!page_ref_freeze(page, 1))
1429 				goto keep_locked;
1430 			if (PageDirty(page)) {
1431 				page_ref_unfreeze(page, 1);
1432 				goto keep_locked;
1433 			}
1434 
1435 			count_vm_event(PGLAZYFREED);
1436 			count_memcg_page_event(page, PGLAZYFREED);
1437 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1438 							 sc->target_mem_cgroup))
1439 			goto keep_locked;
1440 
1441 		unlock_page(page);
1442 free_it:
1443 		/*
1444 		 * THP may get swapped out in a whole, need account
1445 		 * all base pages.
1446 		 */
1447 		nr_reclaimed += nr_pages;
1448 
1449 		/*
1450 		 * Is there need to periodically free_page_list? It would
1451 		 * appear not as the counts should be low
1452 		 */
1453 		if (unlikely(PageTransHuge(page)))
1454 			destroy_compound_page(page);
1455 		else
1456 			list_add(&page->lru, &free_pages);
1457 		continue;
1458 
1459 activate_locked_split:
1460 		/*
1461 		 * The tail pages that are failed to add into swap cache
1462 		 * reach here.  Fixup nr_scanned and nr_pages.
1463 		 */
1464 		if (nr_pages > 1) {
1465 			sc->nr_scanned -= (nr_pages - 1);
1466 			nr_pages = 1;
1467 		}
1468 activate_locked:
1469 		/* Not a candidate for swapping, so reclaim swap space. */
1470 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1471 						PageMlocked(page)))
1472 			try_to_free_swap(page);
1473 		VM_BUG_ON_PAGE(PageActive(page), page);
1474 		if (!PageMlocked(page)) {
1475 			int type = page_is_file_lru(page);
1476 			SetPageActive(page);
1477 			stat->nr_activate[type] += nr_pages;
1478 			count_memcg_page_event(page, PGACTIVATE);
1479 		}
1480 keep_locked:
1481 		unlock_page(page);
1482 keep:
1483 		list_add(&page->lru, &ret_pages);
1484 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1485 	}
1486 
1487 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1488 
1489 	mem_cgroup_uncharge_list(&free_pages);
1490 	try_to_unmap_flush();
1491 	free_unref_page_list(&free_pages);
1492 
1493 	list_splice(&ret_pages, page_list);
1494 	count_vm_events(PGACTIVATE, pgactivate);
1495 
1496 	return nr_reclaimed;
1497 }
1498 
1499 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1500 					    struct list_head *page_list)
1501 {
1502 	struct scan_control sc = {
1503 		.gfp_mask = GFP_KERNEL,
1504 		.priority = DEF_PRIORITY,
1505 		.may_unmap = 1,
1506 	};
1507 	struct reclaim_stat stat;
1508 	unsigned int nr_reclaimed;
1509 	struct page *page, *next;
1510 	LIST_HEAD(clean_pages);
1511 
1512 	list_for_each_entry_safe(page, next, page_list, lru) {
1513 		if (page_is_file_lru(page) && !PageDirty(page) &&
1514 		    !__PageMovable(page) && !PageUnevictable(page)) {
1515 			ClearPageActive(page);
1516 			list_move(&page->lru, &clean_pages);
1517 		}
1518 	}
1519 
1520 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1521 			TTU_IGNORE_ACCESS, &stat, true);
1522 	list_splice(&clean_pages, page_list);
1523 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1524 	/*
1525 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1526 	 * they will rotate back to anonymous LRU in the end if it failed to
1527 	 * discard so isolated count will be mismatched.
1528 	 * Compensate the isolated count for both LRU lists.
1529 	 */
1530 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1531 			    stat.nr_lazyfree_fail);
1532 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1533 			    -stat.nr_lazyfree_fail);
1534 	return nr_reclaimed;
1535 }
1536 
1537 /*
1538  * Attempt to remove the specified page from its LRU.  Only take this page
1539  * if it is of the appropriate PageActive status.  Pages which are being
1540  * freed elsewhere are also ignored.
1541  *
1542  * page:	page to consider
1543  * mode:	one of the LRU isolation modes defined above
1544  *
1545  * returns 0 on success, -ve errno on failure.
1546  */
1547 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1548 {
1549 	int ret = -EINVAL;
1550 
1551 	/* Only take pages on the LRU. */
1552 	if (!PageLRU(page))
1553 		return ret;
1554 
1555 	/* Compaction should not handle unevictable pages but CMA can do so */
1556 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1557 		return ret;
1558 
1559 	ret = -EBUSY;
1560 
1561 	/*
1562 	 * To minimise LRU disruption, the caller can indicate that it only
1563 	 * wants to isolate pages it will be able to operate on without
1564 	 * blocking - clean pages for the most part.
1565 	 *
1566 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1567 	 * that it is possible to migrate without blocking
1568 	 */
1569 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1570 		/* All the caller can do on PageWriteback is block */
1571 		if (PageWriteback(page))
1572 			return ret;
1573 
1574 		if (PageDirty(page)) {
1575 			struct address_space *mapping;
1576 			bool migrate_dirty;
1577 
1578 			/*
1579 			 * Only pages without mappings or that have a
1580 			 * ->migratepage callback are possible to migrate
1581 			 * without blocking. However, we can be racing with
1582 			 * truncation so it's necessary to lock the page
1583 			 * to stabilise the mapping as truncation holds
1584 			 * the page lock until after the page is removed
1585 			 * from the page cache.
1586 			 */
1587 			if (!trylock_page(page))
1588 				return ret;
1589 
1590 			mapping = page_mapping(page);
1591 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1592 			unlock_page(page);
1593 			if (!migrate_dirty)
1594 				return ret;
1595 		}
1596 	}
1597 
1598 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1599 		return ret;
1600 
1601 	if (likely(get_page_unless_zero(page))) {
1602 		/*
1603 		 * Be careful not to clear PageLRU until after we're
1604 		 * sure the page is not being freed elsewhere -- the
1605 		 * page release code relies on it.
1606 		 */
1607 		ClearPageLRU(page);
1608 		ret = 0;
1609 	}
1610 
1611 	return ret;
1612 }
1613 
1614 
1615 /*
1616  * Update LRU sizes after isolating pages. The LRU size updates must
1617  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1618  */
1619 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1620 			enum lru_list lru, unsigned long *nr_zone_taken)
1621 {
1622 	int zid;
1623 
1624 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1625 		if (!nr_zone_taken[zid])
1626 			continue;
1627 
1628 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1629 	}
1630 
1631 }
1632 
1633 /**
1634  * pgdat->lru_lock is heavily contended.  Some of the functions that
1635  * shrink the lists perform better by taking out a batch of pages
1636  * and working on them outside the LRU lock.
1637  *
1638  * For pagecache intensive workloads, this function is the hottest
1639  * spot in the kernel (apart from copy_*_user functions).
1640  *
1641  * Appropriate locks must be held before calling this function.
1642  *
1643  * @nr_to_scan:	The number of eligible pages to look through on the list.
1644  * @lruvec:	The LRU vector to pull pages from.
1645  * @dst:	The temp list to put pages on to.
1646  * @nr_scanned:	The number of pages that were scanned.
1647  * @sc:		The scan_control struct for this reclaim session
1648  * @lru:	LRU list id for isolating
1649  *
1650  * returns how many pages were moved onto *@dst.
1651  */
1652 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1653 		struct lruvec *lruvec, struct list_head *dst,
1654 		unsigned long *nr_scanned, struct scan_control *sc,
1655 		enum lru_list lru)
1656 {
1657 	struct list_head *src = &lruvec->lists[lru];
1658 	unsigned long nr_taken = 0;
1659 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1660 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1661 	unsigned long skipped = 0;
1662 	unsigned long scan, total_scan, nr_pages;
1663 	LIST_HEAD(pages_skipped);
1664 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1665 
1666 	total_scan = 0;
1667 	scan = 0;
1668 	while (scan < nr_to_scan && !list_empty(src)) {
1669 		struct page *page;
1670 
1671 		page = lru_to_page(src);
1672 		prefetchw_prev_lru_page(page, src, flags);
1673 
1674 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1675 
1676 		nr_pages = compound_nr(page);
1677 		total_scan += nr_pages;
1678 
1679 		if (page_zonenum(page) > sc->reclaim_idx) {
1680 			list_move(&page->lru, &pages_skipped);
1681 			nr_skipped[page_zonenum(page)] += nr_pages;
1682 			continue;
1683 		}
1684 
1685 		/*
1686 		 * Do not count skipped pages because that makes the function
1687 		 * return with no isolated pages if the LRU mostly contains
1688 		 * ineligible pages.  This causes the VM to not reclaim any
1689 		 * pages, triggering a premature OOM.
1690 		 *
1691 		 * Account all tail pages of THP.  This would not cause
1692 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1693 		 * only when the page is being freed somewhere else.
1694 		 */
1695 		scan += nr_pages;
1696 		switch (__isolate_lru_page(page, mode)) {
1697 		case 0:
1698 			nr_taken += nr_pages;
1699 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1700 			list_move(&page->lru, dst);
1701 			break;
1702 
1703 		case -EBUSY:
1704 			/* else it is being freed elsewhere */
1705 			list_move(&page->lru, src);
1706 			continue;
1707 
1708 		default:
1709 			BUG();
1710 		}
1711 	}
1712 
1713 	/*
1714 	 * Splice any skipped pages to the start of the LRU list. Note that
1715 	 * this disrupts the LRU order when reclaiming for lower zones but
1716 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1717 	 * scanning would soon rescan the same pages to skip and put the
1718 	 * system at risk of premature OOM.
1719 	 */
1720 	if (!list_empty(&pages_skipped)) {
1721 		int zid;
1722 
1723 		list_splice(&pages_skipped, src);
1724 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1725 			if (!nr_skipped[zid])
1726 				continue;
1727 
1728 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1729 			skipped += nr_skipped[zid];
1730 		}
1731 	}
1732 	*nr_scanned = total_scan;
1733 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1734 				    total_scan, skipped, nr_taken, mode, lru);
1735 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1736 	return nr_taken;
1737 }
1738 
1739 /**
1740  * isolate_lru_page - tries to isolate a page from its LRU list
1741  * @page: page to isolate from its LRU list
1742  *
1743  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1744  * vmstat statistic corresponding to whatever LRU list the page was on.
1745  *
1746  * Returns 0 if the page was removed from an LRU list.
1747  * Returns -EBUSY if the page was not on an LRU list.
1748  *
1749  * The returned page will have PageLRU() cleared.  If it was found on
1750  * the active list, it will have PageActive set.  If it was found on
1751  * the unevictable list, it will have the PageUnevictable bit set. That flag
1752  * may need to be cleared by the caller before letting the page go.
1753  *
1754  * The vmstat statistic corresponding to the list on which the page was
1755  * found will be decremented.
1756  *
1757  * Restrictions:
1758  *
1759  * (1) Must be called with an elevated refcount on the page. This is a
1760  *     fundamentnal difference from isolate_lru_pages (which is called
1761  *     without a stable reference).
1762  * (2) the lru_lock must not be held.
1763  * (3) interrupts must be enabled.
1764  */
1765 int isolate_lru_page(struct page *page)
1766 {
1767 	int ret = -EBUSY;
1768 
1769 	VM_BUG_ON_PAGE(!page_count(page), page);
1770 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1771 
1772 	if (PageLRU(page)) {
1773 		pg_data_t *pgdat = page_pgdat(page);
1774 		struct lruvec *lruvec;
1775 
1776 		spin_lock_irq(&pgdat->lru_lock);
1777 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1778 		if (PageLRU(page)) {
1779 			int lru = page_lru(page);
1780 			get_page(page);
1781 			ClearPageLRU(page);
1782 			del_page_from_lru_list(page, lruvec, lru);
1783 			ret = 0;
1784 		}
1785 		spin_unlock_irq(&pgdat->lru_lock);
1786 	}
1787 	return ret;
1788 }
1789 
1790 /*
1791  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1792  * then get rescheduled. When there are massive number of tasks doing page
1793  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1794  * the LRU list will go small and be scanned faster than necessary, leading to
1795  * unnecessary swapping, thrashing and OOM.
1796  */
1797 static int too_many_isolated(struct pglist_data *pgdat, int file,
1798 		struct scan_control *sc)
1799 {
1800 	unsigned long inactive, isolated;
1801 
1802 	if (current_is_kswapd())
1803 		return 0;
1804 
1805 	if (!writeback_throttling_sane(sc))
1806 		return 0;
1807 
1808 	if (file) {
1809 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1810 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1811 	} else {
1812 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1813 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1814 	}
1815 
1816 	/*
1817 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1818 	 * won't get blocked by normal direct-reclaimers, forming a circular
1819 	 * deadlock.
1820 	 */
1821 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1822 		inactive >>= 3;
1823 
1824 	return isolated > inactive;
1825 }
1826 
1827 /*
1828  * This moves pages from @list to corresponding LRU list.
1829  *
1830  * We move them the other way if the page is referenced by one or more
1831  * processes, from rmap.
1832  *
1833  * If the pages are mostly unmapped, the processing is fast and it is
1834  * appropriate to hold zone_lru_lock across the whole operation.  But if
1835  * the pages are mapped, the processing is slow (page_referenced()) so we
1836  * should drop zone_lru_lock around each page.  It's impossible to balance
1837  * this, so instead we remove the pages from the LRU while processing them.
1838  * It is safe to rely on PG_active against the non-LRU pages in here because
1839  * nobody will play with that bit on a non-LRU page.
1840  *
1841  * The downside is that we have to touch page->_refcount against each page.
1842  * But we had to alter page->flags anyway.
1843  *
1844  * Returns the number of pages moved to the given lruvec.
1845  */
1846 
1847 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1848 						     struct list_head *list)
1849 {
1850 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1851 	int nr_pages, nr_moved = 0;
1852 	LIST_HEAD(pages_to_free);
1853 	struct page *page;
1854 	enum lru_list lru;
1855 
1856 	while (!list_empty(list)) {
1857 		page = lru_to_page(list);
1858 		VM_BUG_ON_PAGE(PageLRU(page), page);
1859 		if (unlikely(!page_evictable(page))) {
1860 			list_del(&page->lru);
1861 			spin_unlock_irq(&pgdat->lru_lock);
1862 			putback_lru_page(page);
1863 			spin_lock_irq(&pgdat->lru_lock);
1864 			continue;
1865 		}
1866 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1867 
1868 		SetPageLRU(page);
1869 		lru = page_lru(page);
1870 
1871 		nr_pages = hpage_nr_pages(page);
1872 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1873 		list_move(&page->lru, &lruvec->lists[lru]);
1874 
1875 		if (put_page_testzero(page)) {
1876 			__ClearPageLRU(page);
1877 			__ClearPageActive(page);
1878 			del_page_from_lru_list(page, lruvec, lru);
1879 
1880 			if (unlikely(PageCompound(page))) {
1881 				spin_unlock_irq(&pgdat->lru_lock);
1882 				destroy_compound_page(page);
1883 				spin_lock_irq(&pgdat->lru_lock);
1884 			} else
1885 				list_add(&page->lru, &pages_to_free);
1886 		} else {
1887 			nr_moved += nr_pages;
1888 			if (PageActive(page))
1889 				workingset_age_nonresident(lruvec, nr_pages);
1890 		}
1891 	}
1892 
1893 	/*
1894 	 * To save our caller's stack, now use input list for pages to free.
1895 	 */
1896 	list_splice(&pages_to_free, list);
1897 
1898 	return nr_moved;
1899 }
1900 
1901 /*
1902  * If a kernel thread (such as nfsd for loop-back mounts) services
1903  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1904  * In that case we should only throttle if the backing device it is
1905  * writing to is congested.  In other cases it is safe to throttle.
1906  */
1907 static int current_may_throttle(void)
1908 {
1909 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1910 		current->backing_dev_info == NULL ||
1911 		bdi_write_congested(current->backing_dev_info);
1912 }
1913 
1914 /*
1915  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1916  * of reclaimed pages
1917  */
1918 static noinline_for_stack unsigned long
1919 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1920 		     struct scan_control *sc, enum lru_list lru)
1921 {
1922 	LIST_HEAD(page_list);
1923 	unsigned long nr_scanned;
1924 	unsigned int nr_reclaimed = 0;
1925 	unsigned long nr_taken;
1926 	struct reclaim_stat stat;
1927 	bool file = is_file_lru(lru);
1928 	enum vm_event_item item;
1929 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1930 	bool stalled = false;
1931 
1932 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1933 		if (stalled)
1934 			return 0;
1935 
1936 		/* wait a bit for the reclaimer. */
1937 		msleep(100);
1938 		stalled = true;
1939 
1940 		/* We are about to die and free our memory. Return now. */
1941 		if (fatal_signal_pending(current))
1942 			return SWAP_CLUSTER_MAX;
1943 	}
1944 
1945 	lru_add_drain();
1946 
1947 	spin_lock_irq(&pgdat->lru_lock);
1948 
1949 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1950 				     &nr_scanned, sc, lru);
1951 
1952 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1954 	if (!cgroup_reclaim(sc))
1955 		__count_vm_events(item, nr_scanned);
1956 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1957 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1958 
1959 	spin_unlock_irq(&pgdat->lru_lock);
1960 
1961 	if (nr_taken == 0)
1962 		return 0;
1963 
1964 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1965 				&stat, false);
1966 
1967 	spin_lock_irq(&pgdat->lru_lock);
1968 
1969 	move_pages_to_lru(lruvec, &page_list);
1970 
1971 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1972 	lru_note_cost(lruvec, file, stat.nr_pageout);
1973 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1974 	if (!cgroup_reclaim(sc))
1975 		__count_vm_events(item, nr_reclaimed);
1976 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1977 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1978 
1979 	spin_unlock_irq(&pgdat->lru_lock);
1980 
1981 	mem_cgroup_uncharge_list(&page_list);
1982 	free_unref_page_list(&page_list);
1983 
1984 	/*
1985 	 * If dirty pages are scanned that are not queued for IO, it
1986 	 * implies that flushers are not doing their job. This can
1987 	 * happen when memory pressure pushes dirty pages to the end of
1988 	 * the LRU before the dirty limits are breached and the dirty
1989 	 * data has expired. It can also happen when the proportion of
1990 	 * dirty pages grows not through writes but through memory
1991 	 * pressure reclaiming all the clean cache. And in some cases,
1992 	 * the flushers simply cannot keep up with the allocation
1993 	 * rate. Nudge the flusher threads in case they are asleep.
1994 	 */
1995 	if (stat.nr_unqueued_dirty == nr_taken)
1996 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1997 
1998 	sc->nr.dirty += stat.nr_dirty;
1999 	sc->nr.congested += stat.nr_congested;
2000 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2001 	sc->nr.writeback += stat.nr_writeback;
2002 	sc->nr.immediate += stat.nr_immediate;
2003 	sc->nr.taken += nr_taken;
2004 	if (file)
2005 		sc->nr.file_taken += nr_taken;
2006 
2007 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2008 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2009 	return nr_reclaimed;
2010 }
2011 
2012 static void shrink_active_list(unsigned long nr_to_scan,
2013 			       struct lruvec *lruvec,
2014 			       struct scan_control *sc,
2015 			       enum lru_list lru)
2016 {
2017 	unsigned long nr_taken;
2018 	unsigned long nr_scanned;
2019 	unsigned long vm_flags;
2020 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2021 	LIST_HEAD(l_active);
2022 	LIST_HEAD(l_inactive);
2023 	struct page *page;
2024 	unsigned nr_deactivate, nr_activate;
2025 	unsigned nr_rotated = 0;
2026 	int file = is_file_lru(lru);
2027 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2028 
2029 	lru_add_drain();
2030 
2031 	spin_lock_irq(&pgdat->lru_lock);
2032 
2033 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2034 				     &nr_scanned, sc, lru);
2035 
2036 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2037 
2038 	__count_vm_events(PGREFILL, nr_scanned);
2039 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2040 
2041 	spin_unlock_irq(&pgdat->lru_lock);
2042 
2043 	while (!list_empty(&l_hold)) {
2044 		cond_resched();
2045 		page = lru_to_page(&l_hold);
2046 		list_del(&page->lru);
2047 
2048 		if (unlikely(!page_evictable(page))) {
2049 			putback_lru_page(page);
2050 			continue;
2051 		}
2052 
2053 		if (unlikely(buffer_heads_over_limit)) {
2054 			if (page_has_private(page) && trylock_page(page)) {
2055 				if (page_has_private(page))
2056 					try_to_release_page(page, 0);
2057 				unlock_page(page);
2058 			}
2059 		}
2060 
2061 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2062 				    &vm_flags)) {
2063 			/*
2064 			 * Identify referenced, file-backed active pages and
2065 			 * give them one more trip around the active list. So
2066 			 * that executable code get better chances to stay in
2067 			 * memory under moderate memory pressure.  Anon pages
2068 			 * are not likely to be evicted by use-once streaming
2069 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2070 			 * so we ignore them here.
2071 			 */
2072 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2073 				nr_rotated += hpage_nr_pages(page);
2074 				list_add(&page->lru, &l_active);
2075 				continue;
2076 			}
2077 		}
2078 
2079 		ClearPageActive(page);	/* we are de-activating */
2080 		SetPageWorkingset(page);
2081 		list_add(&page->lru, &l_inactive);
2082 	}
2083 
2084 	/*
2085 	 * Move pages back to the lru list.
2086 	 */
2087 	spin_lock_irq(&pgdat->lru_lock);
2088 
2089 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2090 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2091 	/* Keep all free pages in l_active list */
2092 	list_splice(&l_inactive, &l_active);
2093 
2094 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2095 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2096 
2097 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2098 	spin_unlock_irq(&pgdat->lru_lock);
2099 
2100 	mem_cgroup_uncharge_list(&l_active);
2101 	free_unref_page_list(&l_active);
2102 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2103 			nr_deactivate, nr_rotated, sc->priority, file);
2104 }
2105 
2106 unsigned long reclaim_pages(struct list_head *page_list)
2107 {
2108 	int nid = NUMA_NO_NODE;
2109 	unsigned int nr_reclaimed = 0;
2110 	LIST_HEAD(node_page_list);
2111 	struct reclaim_stat dummy_stat;
2112 	struct page *page;
2113 	struct scan_control sc = {
2114 		.gfp_mask = GFP_KERNEL,
2115 		.priority = DEF_PRIORITY,
2116 		.may_writepage = 1,
2117 		.may_unmap = 1,
2118 		.may_swap = 1,
2119 	};
2120 
2121 	while (!list_empty(page_list)) {
2122 		page = lru_to_page(page_list);
2123 		if (nid == NUMA_NO_NODE) {
2124 			nid = page_to_nid(page);
2125 			INIT_LIST_HEAD(&node_page_list);
2126 		}
2127 
2128 		if (nid == page_to_nid(page)) {
2129 			ClearPageActive(page);
2130 			list_move(&page->lru, &node_page_list);
2131 			continue;
2132 		}
2133 
2134 		nr_reclaimed += shrink_page_list(&node_page_list,
2135 						NODE_DATA(nid),
2136 						&sc, 0,
2137 						&dummy_stat, false);
2138 		while (!list_empty(&node_page_list)) {
2139 			page = lru_to_page(&node_page_list);
2140 			list_del(&page->lru);
2141 			putback_lru_page(page);
2142 		}
2143 
2144 		nid = NUMA_NO_NODE;
2145 	}
2146 
2147 	if (!list_empty(&node_page_list)) {
2148 		nr_reclaimed += shrink_page_list(&node_page_list,
2149 						NODE_DATA(nid),
2150 						&sc, 0,
2151 						&dummy_stat, false);
2152 		while (!list_empty(&node_page_list)) {
2153 			page = lru_to_page(&node_page_list);
2154 			list_del(&page->lru);
2155 			putback_lru_page(page);
2156 		}
2157 	}
2158 
2159 	return nr_reclaimed;
2160 }
2161 
2162 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2163 				 struct lruvec *lruvec, struct scan_control *sc)
2164 {
2165 	if (is_active_lru(lru)) {
2166 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2167 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2168 		else
2169 			sc->skipped_deactivate = 1;
2170 		return 0;
2171 	}
2172 
2173 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2174 }
2175 
2176 /*
2177  * The inactive anon list should be small enough that the VM never has
2178  * to do too much work.
2179  *
2180  * The inactive file list should be small enough to leave most memory
2181  * to the established workingset on the scan-resistant active list,
2182  * but large enough to avoid thrashing the aggregate readahead window.
2183  *
2184  * Both inactive lists should also be large enough that each inactive
2185  * page has a chance to be referenced again before it is reclaimed.
2186  *
2187  * If that fails and refaulting is observed, the inactive list grows.
2188  *
2189  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2190  * on this LRU, maintained by the pageout code. An inactive_ratio
2191  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2192  *
2193  * total     target    max
2194  * memory    ratio     inactive
2195  * -------------------------------------
2196  *   10MB       1         5MB
2197  *  100MB       1        50MB
2198  *    1GB       3       250MB
2199  *   10GB      10       0.9GB
2200  *  100GB      31         3GB
2201  *    1TB     101        10GB
2202  *   10TB     320        32GB
2203  */
2204 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2205 {
2206 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2207 	unsigned long inactive, active;
2208 	unsigned long inactive_ratio;
2209 	unsigned long gb;
2210 
2211 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2212 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2213 
2214 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2215 	if (gb)
2216 		inactive_ratio = int_sqrt(10 * gb);
2217 	else
2218 		inactive_ratio = 1;
2219 
2220 	return inactive * inactive_ratio < active;
2221 }
2222 
2223 enum scan_balance {
2224 	SCAN_EQUAL,
2225 	SCAN_FRACT,
2226 	SCAN_ANON,
2227 	SCAN_FILE,
2228 };
2229 
2230 /*
2231  * Determine how aggressively the anon and file LRU lists should be
2232  * scanned.  The relative value of each set of LRU lists is determined
2233  * by looking at the fraction of the pages scanned we did rotate back
2234  * onto the active list instead of evict.
2235  *
2236  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2237  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2238  */
2239 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2240 			   unsigned long *nr)
2241 {
2242 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2243 	unsigned long anon_cost, file_cost, total_cost;
2244 	int swappiness = mem_cgroup_swappiness(memcg);
2245 	u64 fraction[2];
2246 	u64 denominator = 0;	/* gcc */
2247 	enum scan_balance scan_balance;
2248 	unsigned long ap, fp;
2249 	enum lru_list lru;
2250 
2251 	/* If we have no swap space, do not bother scanning anon pages. */
2252 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2253 		scan_balance = SCAN_FILE;
2254 		goto out;
2255 	}
2256 
2257 	/*
2258 	 * Global reclaim will swap to prevent OOM even with no
2259 	 * swappiness, but memcg users want to use this knob to
2260 	 * disable swapping for individual groups completely when
2261 	 * using the memory controller's swap limit feature would be
2262 	 * too expensive.
2263 	 */
2264 	if (cgroup_reclaim(sc) && !swappiness) {
2265 		scan_balance = SCAN_FILE;
2266 		goto out;
2267 	}
2268 
2269 	/*
2270 	 * Do not apply any pressure balancing cleverness when the
2271 	 * system is close to OOM, scan both anon and file equally
2272 	 * (unless the swappiness setting disagrees with swapping).
2273 	 */
2274 	if (!sc->priority && swappiness) {
2275 		scan_balance = SCAN_EQUAL;
2276 		goto out;
2277 	}
2278 
2279 	/*
2280 	 * If the system is almost out of file pages, force-scan anon.
2281 	 */
2282 	if (sc->file_is_tiny) {
2283 		scan_balance = SCAN_ANON;
2284 		goto out;
2285 	}
2286 
2287 	/*
2288 	 * If there is enough inactive page cache, we do not reclaim
2289 	 * anything from the anonymous working right now.
2290 	 */
2291 	if (sc->cache_trim_mode) {
2292 		scan_balance = SCAN_FILE;
2293 		goto out;
2294 	}
2295 
2296 	scan_balance = SCAN_FRACT;
2297 	/*
2298 	 * Calculate the pressure balance between anon and file pages.
2299 	 *
2300 	 * The amount of pressure we put on each LRU is inversely
2301 	 * proportional to the cost of reclaiming each list, as
2302 	 * determined by the share of pages that are refaulting, times
2303 	 * the relative IO cost of bringing back a swapped out
2304 	 * anonymous page vs reloading a filesystem page (swappiness).
2305 	 *
2306 	 * Although we limit that influence to ensure no list gets
2307 	 * left behind completely: at least a third of the pressure is
2308 	 * applied, before swappiness.
2309 	 *
2310 	 * With swappiness at 100, anon and file have equal IO cost.
2311 	 */
2312 	total_cost = sc->anon_cost + sc->file_cost;
2313 	anon_cost = total_cost + sc->anon_cost;
2314 	file_cost = total_cost + sc->file_cost;
2315 	total_cost = anon_cost + file_cost;
2316 
2317 	ap = swappiness * (total_cost + 1);
2318 	ap /= anon_cost + 1;
2319 
2320 	fp = (200 - swappiness) * (total_cost + 1);
2321 	fp /= file_cost + 1;
2322 
2323 	fraction[0] = ap;
2324 	fraction[1] = fp;
2325 	denominator = ap + fp;
2326 out:
2327 	for_each_evictable_lru(lru) {
2328 		int file = is_file_lru(lru);
2329 		unsigned long lruvec_size;
2330 		unsigned long scan;
2331 		unsigned long protection;
2332 
2333 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2334 		protection = mem_cgroup_protection(memcg,
2335 						   sc->memcg_low_reclaim);
2336 
2337 		if (protection) {
2338 			/*
2339 			 * Scale a cgroup's reclaim pressure by proportioning
2340 			 * its current usage to its memory.low or memory.min
2341 			 * setting.
2342 			 *
2343 			 * This is important, as otherwise scanning aggression
2344 			 * becomes extremely binary -- from nothing as we
2345 			 * approach the memory protection threshold, to totally
2346 			 * nominal as we exceed it.  This results in requiring
2347 			 * setting extremely liberal protection thresholds. It
2348 			 * also means we simply get no protection at all if we
2349 			 * set it too low, which is not ideal.
2350 			 *
2351 			 * If there is any protection in place, we reduce scan
2352 			 * pressure by how much of the total memory used is
2353 			 * within protection thresholds.
2354 			 *
2355 			 * There is one special case: in the first reclaim pass,
2356 			 * we skip over all groups that are within their low
2357 			 * protection. If that fails to reclaim enough pages to
2358 			 * satisfy the reclaim goal, we come back and override
2359 			 * the best-effort low protection. However, we still
2360 			 * ideally want to honor how well-behaved groups are in
2361 			 * that case instead of simply punishing them all
2362 			 * equally. As such, we reclaim them based on how much
2363 			 * memory they are using, reducing the scan pressure
2364 			 * again by how much of the total memory used is under
2365 			 * hard protection.
2366 			 */
2367 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2368 
2369 			/* Avoid TOCTOU with earlier protection check */
2370 			cgroup_size = max(cgroup_size, protection);
2371 
2372 			scan = lruvec_size - lruvec_size * protection /
2373 				cgroup_size;
2374 
2375 			/*
2376 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2377 			 * reclaim moving forwards, avoiding decrementing
2378 			 * sc->priority further than desirable.
2379 			 */
2380 			scan = max(scan, SWAP_CLUSTER_MAX);
2381 		} else {
2382 			scan = lruvec_size;
2383 		}
2384 
2385 		scan >>= sc->priority;
2386 
2387 		/*
2388 		 * If the cgroup's already been deleted, make sure to
2389 		 * scrape out the remaining cache.
2390 		 */
2391 		if (!scan && !mem_cgroup_online(memcg))
2392 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2393 
2394 		switch (scan_balance) {
2395 		case SCAN_EQUAL:
2396 			/* Scan lists relative to size */
2397 			break;
2398 		case SCAN_FRACT:
2399 			/*
2400 			 * Scan types proportional to swappiness and
2401 			 * their relative recent reclaim efficiency.
2402 			 * Make sure we don't miss the last page on
2403 			 * the offlined memory cgroups because of a
2404 			 * round-off error.
2405 			 */
2406 			scan = mem_cgroup_online(memcg) ?
2407 			       div64_u64(scan * fraction[file], denominator) :
2408 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2409 						  denominator);
2410 			break;
2411 		case SCAN_FILE:
2412 		case SCAN_ANON:
2413 			/* Scan one type exclusively */
2414 			if ((scan_balance == SCAN_FILE) != file)
2415 				scan = 0;
2416 			break;
2417 		default:
2418 			/* Look ma, no brain */
2419 			BUG();
2420 		}
2421 
2422 		nr[lru] = scan;
2423 	}
2424 }
2425 
2426 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2427 {
2428 	unsigned long nr[NR_LRU_LISTS];
2429 	unsigned long targets[NR_LRU_LISTS];
2430 	unsigned long nr_to_scan;
2431 	enum lru_list lru;
2432 	unsigned long nr_reclaimed = 0;
2433 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2434 	struct blk_plug plug;
2435 	bool scan_adjusted;
2436 
2437 	get_scan_count(lruvec, sc, nr);
2438 
2439 	/* Record the original scan target for proportional adjustments later */
2440 	memcpy(targets, nr, sizeof(nr));
2441 
2442 	/*
2443 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2444 	 * event that can occur when there is little memory pressure e.g.
2445 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2446 	 * when the requested number of pages are reclaimed when scanning at
2447 	 * DEF_PRIORITY on the assumption that the fact we are direct
2448 	 * reclaiming implies that kswapd is not keeping up and it is best to
2449 	 * do a batch of work at once. For memcg reclaim one check is made to
2450 	 * abort proportional reclaim if either the file or anon lru has already
2451 	 * dropped to zero at the first pass.
2452 	 */
2453 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2454 			 sc->priority == DEF_PRIORITY);
2455 
2456 	blk_start_plug(&plug);
2457 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2458 					nr[LRU_INACTIVE_FILE]) {
2459 		unsigned long nr_anon, nr_file, percentage;
2460 		unsigned long nr_scanned;
2461 
2462 		for_each_evictable_lru(lru) {
2463 			if (nr[lru]) {
2464 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2465 				nr[lru] -= nr_to_scan;
2466 
2467 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2468 							    lruvec, sc);
2469 			}
2470 		}
2471 
2472 		cond_resched();
2473 
2474 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2475 			continue;
2476 
2477 		/*
2478 		 * For kswapd and memcg, reclaim at least the number of pages
2479 		 * requested. Ensure that the anon and file LRUs are scanned
2480 		 * proportionally what was requested by get_scan_count(). We
2481 		 * stop reclaiming one LRU and reduce the amount scanning
2482 		 * proportional to the original scan target.
2483 		 */
2484 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2485 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2486 
2487 		/*
2488 		 * It's just vindictive to attack the larger once the smaller
2489 		 * has gone to zero.  And given the way we stop scanning the
2490 		 * smaller below, this makes sure that we only make one nudge
2491 		 * towards proportionality once we've got nr_to_reclaim.
2492 		 */
2493 		if (!nr_file || !nr_anon)
2494 			break;
2495 
2496 		if (nr_file > nr_anon) {
2497 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2498 						targets[LRU_ACTIVE_ANON] + 1;
2499 			lru = LRU_BASE;
2500 			percentage = nr_anon * 100 / scan_target;
2501 		} else {
2502 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2503 						targets[LRU_ACTIVE_FILE] + 1;
2504 			lru = LRU_FILE;
2505 			percentage = nr_file * 100 / scan_target;
2506 		}
2507 
2508 		/* Stop scanning the smaller of the LRU */
2509 		nr[lru] = 0;
2510 		nr[lru + LRU_ACTIVE] = 0;
2511 
2512 		/*
2513 		 * Recalculate the other LRU scan count based on its original
2514 		 * scan target and the percentage scanning already complete
2515 		 */
2516 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2517 		nr_scanned = targets[lru] - nr[lru];
2518 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2519 		nr[lru] -= min(nr[lru], nr_scanned);
2520 
2521 		lru += LRU_ACTIVE;
2522 		nr_scanned = targets[lru] - nr[lru];
2523 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2524 		nr[lru] -= min(nr[lru], nr_scanned);
2525 
2526 		scan_adjusted = true;
2527 	}
2528 	blk_finish_plug(&plug);
2529 	sc->nr_reclaimed += nr_reclaimed;
2530 
2531 	/*
2532 	 * Even if we did not try to evict anon pages at all, we want to
2533 	 * rebalance the anon lru active/inactive ratio.
2534 	 */
2535 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2536 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2537 				   sc, LRU_ACTIVE_ANON);
2538 }
2539 
2540 /* Use reclaim/compaction for costly allocs or under memory pressure */
2541 static bool in_reclaim_compaction(struct scan_control *sc)
2542 {
2543 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2544 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2545 			 sc->priority < DEF_PRIORITY - 2))
2546 		return true;
2547 
2548 	return false;
2549 }
2550 
2551 /*
2552  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2553  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2554  * true if more pages should be reclaimed such that when the page allocator
2555  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2556  * It will give up earlier than that if there is difficulty reclaiming pages.
2557  */
2558 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2559 					unsigned long nr_reclaimed,
2560 					struct scan_control *sc)
2561 {
2562 	unsigned long pages_for_compaction;
2563 	unsigned long inactive_lru_pages;
2564 	int z;
2565 
2566 	/* If not in reclaim/compaction mode, stop */
2567 	if (!in_reclaim_compaction(sc))
2568 		return false;
2569 
2570 	/*
2571 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2572 	 * number of pages that were scanned. This will return to the caller
2573 	 * with the risk reclaim/compaction and the resulting allocation attempt
2574 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2575 	 * allocations through requiring that the full LRU list has been scanned
2576 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2577 	 * scan, but that approximation was wrong, and there were corner cases
2578 	 * where always a non-zero amount of pages were scanned.
2579 	 */
2580 	if (!nr_reclaimed)
2581 		return false;
2582 
2583 	/* If compaction would go ahead or the allocation would succeed, stop */
2584 	for (z = 0; z <= sc->reclaim_idx; z++) {
2585 		struct zone *zone = &pgdat->node_zones[z];
2586 		if (!managed_zone(zone))
2587 			continue;
2588 
2589 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2590 		case COMPACT_SUCCESS:
2591 		case COMPACT_CONTINUE:
2592 			return false;
2593 		default:
2594 			/* check next zone */
2595 			;
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * If we have not reclaimed enough pages for compaction and the
2601 	 * inactive lists are large enough, continue reclaiming
2602 	 */
2603 	pages_for_compaction = compact_gap(sc->order);
2604 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2605 	if (get_nr_swap_pages() > 0)
2606 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2607 
2608 	return inactive_lru_pages > pages_for_compaction;
2609 }
2610 
2611 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2612 {
2613 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2614 	struct mem_cgroup *memcg;
2615 
2616 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2617 	do {
2618 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2619 		unsigned long reclaimed;
2620 		unsigned long scanned;
2621 
2622 		switch (mem_cgroup_protected(target_memcg, memcg)) {
2623 		case MEMCG_PROT_MIN:
2624 			/*
2625 			 * Hard protection.
2626 			 * If there is no reclaimable memory, OOM.
2627 			 */
2628 			continue;
2629 		case MEMCG_PROT_LOW:
2630 			/*
2631 			 * Soft protection.
2632 			 * Respect the protection only as long as
2633 			 * there is an unprotected supply
2634 			 * of reclaimable memory from other cgroups.
2635 			 */
2636 			if (!sc->memcg_low_reclaim) {
2637 				sc->memcg_low_skipped = 1;
2638 				continue;
2639 			}
2640 			memcg_memory_event(memcg, MEMCG_LOW);
2641 			break;
2642 		case MEMCG_PROT_NONE:
2643 			/*
2644 			 * All protection thresholds breached. We may
2645 			 * still choose to vary the scan pressure
2646 			 * applied based on by how much the cgroup in
2647 			 * question has exceeded its protection
2648 			 * thresholds (see get_scan_count).
2649 			 */
2650 			break;
2651 		}
2652 
2653 		reclaimed = sc->nr_reclaimed;
2654 		scanned = sc->nr_scanned;
2655 
2656 		shrink_lruvec(lruvec, sc);
2657 
2658 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2659 			    sc->priority);
2660 
2661 		/* Record the group's reclaim efficiency */
2662 		vmpressure(sc->gfp_mask, memcg, false,
2663 			   sc->nr_scanned - scanned,
2664 			   sc->nr_reclaimed - reclaimed);
2665 
2666 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2667 }
2668 
2669 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2670 {
2671 	struct reclaim_state *reclaim_state = current->reclaim_state;
2672 	unsigned long nr_reclaimed, nr_scanned;
2673 	struct lruvec *target_lruvec;
2674 	bool reclaimable = false;
2675 	unsigned long file;
2676 
2677 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2678 
2679 again:
2680 	memset(&sc->nr, 0, sizeof(sc->nr));
2681 
2682 	nr_reclaimed = sc->nr_reclaimed;
2683 	nr_scanned = sc->nr_scanned;
2684 
2685 	/*
2686 	 * Determine the scan balance between anon and file LRUs.
2687 	 */
2688 	spin_lock_irq(&pgdat->lru_lock);
2689 	sc->anon_cost = target_lruvec->anon_cost;
2690 	sc->file_cost = target_lruvec->file_cost;
2691 	spin_unlock_irq(&pgdat->lru_lock);
2692 
2693 	/*
2694 	 * Target desirable inactive:active list ratios for the anon
2695 	 * and file LRU lists.
2696 	 */
2697 	if (!sc->force_deactivate) {
2698 		unsigned long refaults;
2699 
2700 		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2701 			sc->may_deactivate |= DEACTIVATE_ANON;
2702 		else
2703 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2704 
2705 		/*
2706 		 * When refaults are being observed, it means a new
2707 		 * workingset is being established. Deactivate to get
2708 		 * rid of any stale active pages quickly.
2709 		 */
2710 		refaults = lruvec_page_state(target_lruvec,
2711 					     WORKINGSET_ACTIVATE);
2712 		if (refaults != target_lruvec->refaults ||
2713 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2714 			sc->may_deactivate |= DEACTIVATE_FILE;
2715 		else
2716 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2717 	} else
2718 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2719 
2720 	/*
2721 	 * If we have plenty of inactive file pages that aren't
2722 	 * thrashing, try to reclaim those first before touching
2723 	 * anonymous pages.
2724 	 */
2725 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2726 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2727 		sc->cache_trim_mode = 1;
2728 	else
2729 		sc->cache_trim_mode = 0;
2730 
2731 	/*
2732 	 * Prevent the reclaimer from falling into the cache trap: as
2733 	 * cache pages start out inactive, every cache fault will tip
2734 	 * the scan balance towards the file LRU.  And as the file LRU
2735 	 * shrinks, so does the window for rotation from references.
2736 	 * This means we have a runaway feedback loop where a tiny
2737 	 * thrashing file LRU becomes infinitely more attractive than
2738 	 * anon pages.  Try to detect this based on file LRU size.
2739 	 */
2740 	if (!cgroup_reclaim(sc)) {
2741 		unsigned long total_high_wmark = 0;
2742 		unsigned long free, anon;
2743 		int z;
2744 
2745 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2746 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2747 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2748 
2749 		for (z = 0; z < MAX_NR_ZONES; z++) {
2750 			struct zone *zone = &pgdat->node_zones[z];
2751 			if (!managed_zone(zone))
2752 				continue;
2753 
2754 			total_high_wmark += high_wmark_pages(zone);
2755 		}
2756 
2757 		/*
2758 		 * Consider anon: if that's low too, this isn't a
2759 		 * runaway file reclaim problem, but rather just
2760 		 * extreme pressure. Reclaim as per usual then.
2761 		 */
2762 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2763 
2764 		sc->file_is_tiny =
2765 			file + free <= total_high_wmark &&
2766 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2767 			anon >> sc->priority;
2768 	}
2769 
2770 	shrink_node_memcgs(pgdat, sc);
2771 
2772 	if (reclaim_state) {
2773 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2774 		reclaim_state->reclaimed_slab = 0;
2775 	}
2776 
2777 	/* Record the subtree's reclaim efficiency */
2778 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2779 		   sc->nr_scanned - nr_scanned,
2780 		   sc->nr_reclaimed - nr_reclaimed);
2781 
2782 	if (sc->nr_reclaimed - nr_reclaimed)
2783 		reclaimable = true;
2784 
2785 	if (current_is_kswapd()) {
2786 		/*
2787 		 * If reclaim is isolating dirty pages under writeback,
2788 		 * it implies that the long-lived page allocation rate
2789 		 * is exceeding the page laundering rate. Either the
2790 		 * global limits are not being effective at throttling
2791 		 * processes due to the page distribution throughout
2792 		 * zones or there is heavy usage of a slow backing
2793 		 * device. The only option is to throttle from reclaim
2794 		 * context which is not ideal as there is no guarantee
2795 		 * the dirtying process is throttled in the same way
2796 		 * balance_dirty_pages() manages.
2797 		 *
2798 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2799 		 * count the number of pages under pages flagged for
2800 		 * immediate reclaim and stall if any are encountered
2801 		 * in the nr_immediate check below.
2802 		 */
2803 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2804 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2805 
2806 		/* Allow kswapd to start writing pages during reclaim.*/
2807 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2808 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2809 
2810 		/*
2811 		 * If kswapd scans pages marked marked for immediate
2812 		 * reclaim and under writeback (nr_immediate), it
2813 		 * implies that pages are cycling through the LRU
2814 		 * faster than they are written so also forcibly stall.
2815 		 */
2816 		if (sc->nr.immediate)
2817 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2818 	}
2819 
2820 	/*
2821 	 * Tag a node/memcg as congested if all the dirty pages
2822 	 * scanned were backed by a congested BDI and
2823 	 * wait_iff_congested will stall.
2824 	 *
2825 	 * Legacy memcg will stall in page writeback so avoid forcibly
2826 	 * stalling in wait_iff_congested().
2827 	 */
2828 	if ((current_is_kswapd() ||
2829 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2830 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2831 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2832 
2833 	/*
2834 	 * Stall direct reclaim for IO completions if underlying BDIs
2835 	 * and node is congested. Allow kswapd to continue until it
2836 	 * starts encountering unqueued dirty pages or cycling through
2837 	 * the LRU too quickly.
2838 	 */
2839 	if (!current_is_kswapd() && current_may_throttle() &&
2840 	    !sc->hibernation_mode &&
2841 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2842 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2843 
2844 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2845 				    sc))
2846 		goto again;
2847 
2848 	/*
2849 	 * Kswapd gives up on balancing particular nodes after too
2850 	 * many failures to reclaim anything from them and goes to
2851 	 * sleep. On reclaim progress, reset the failure counter. A
2852 	 * successful direct reclaim run will revive a dormant kswapd.
2853 	 */
2854 	if (reclaimable)
2855 		pgdat->kswapd_failures = 0;
2856 }
2857 
2858 /*
2859  * Returns true if compaction should go ahead for a costly-order request, or
2860  * the allocation would already succeed without compaction. Return false if we
2861  * should reclaim first.
2862  */
2863 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2864 {
2865 	unsigned long watermark;
2866 	enum compact_result suitable;
2867 
2868 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2869 	if (suitable == COMPACT_SUCCESS)
2870 		/* Allocation should succeed already. Don't reclaim. */
2871 		return true;
2872 	if (suitable == COMPACT_SKIPPED)
2873 		/* Compaction cannot yet proceed. Do reclaim. */
2874 		return false;
2875 
2876 	/*
2877 	 * Compaction is already possible, but it takes time to run and there
2878 	 * are potentially other callers using the pages just freed. So proceed
2879 	 * with reclaim to make a buffer of free pages available to give
2880 	 * compaction a reasonable chance of completing and allocating the page.
2881 	 * Note that we won't actually reclaim the whole buffer in one attempt
2882 	 * as the target watermark in should_continue_reclaim() is lower. But if
2883 	 * we are already above the high+gap watermark, don't reclaim at all.
2884 	 */
2885 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2886 
2887 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2888 }
2889 
2890 /*
2891  * This is the direct reclaim path, for page-allocating processes.  We only
2892  * try to reclaim pages from zones which will satisfy the caller's allocation
2893  * request.
2894  *
2895  * If a zone is deemed to be full of pinned pages then just give it a light
2896  * scan then give up on it.
2897  */
2898 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2899 {
2900 	struct zoneref *z;
2901 	struct zone *zone;
2902 	unsigned long nr_soft_reclaimed;
2903 	unsigned long nr_soft_scanned;
2904 	gfp_t orig_mask;
2905 	pg_data_t *last_pgdat = NULL;
2906 
2907 	/*
2908 	 * If the number of buffer_heads in the machine exceeds the maximum
2909 	 * allowed level, force direct reclaim to scan the highmem zone as
2910 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2911 	 */
2912 	orig_mask = sc->gfp_mask;
2913 	if (buffer_heads_over_limit) {
2914 		sc->gfp_mask |= __GFP_HIGHMEM;
2915 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2916 	}
2917 
2918 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2919 					sc->reclaim_idx, sc->nodemask) {
2920 		/*
2921 		 * Take care memory controller reclaiming has small influence
2922 		 * to global LRU.
2923 		 */
2924 		if (!cgroup_reclaim(sc)) {
2925 			if (!cpuset_zone_allowed(zone,
2926 						 GFP_KERNEL | __GFP_HARDWALL))
2927 				continue;
2928 
2929 			/*
2930 			 * If we already have plenty of memory free for
2931 			 * compaction in this zone, don't free any more.
2932 			 * Even though compaction is invoked for any
2933 			 * non-zero order, only frequent costly order
2934 			 * reclamation is disruptive enough to become a
2935 			 * noticeable problem, like transparent huge
2936 			 * page allocations.
2937 			 */
2938 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2939 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2940 			    compaction_ready(zone, sc)) {
2941 				sc->compaction_ready = true;
2942 				continue;
2943 			}
2944 
2945 			/*
2946 			 * Shrink each node in the zonelist once. If the
2947 			 * zonelist is ordered by zone (not the default) then a
2948 			 * node may be shrunk multiple times but in that case
2949 			 * the user prefers lower zones being preserved.
2950 			 */
2951 			if (zone->zone_pgdat == last_pgdat)
2952 				continue;
2953 
2954 			/*
2955 			 * This steals pages from memory cgroups over softlimit
2956 			 * and returns the number of reclaimed pages and
2957 			 * scanned pages. This works for global memory pressure
2958 			 * and balancing, not for a memcg's limit.
2959 			 */
2960 			nr_soft_scanned = 0;
2961 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2962 						sc->order, sc->gfp_mask,
2963 						&nr_soft_scanned);
2964 			sc->nr_reclaimed += nr_soft_reclaimed;
2965 			sc->nr_scanned += nr_soft_scanned;
2966 			/* need some check for avoid more shrink_zone() */
2967 		}
2968 
2969 		/* See comment about same check for global reclaim above */
2970 		if (zone->zone_pgdat == last_pgdat)
2971 			continue;
2972 		last_pgdat = zone->zone_pgdat;
2973 		shrink_node(zone->zone_pgdat, sc);
2974 	}
2975 
2976 	/*
2977 	 * Restore to original mask to avoid the impact on the caller if we
2978 	 * promoted it to __GFP_HIGHMEM.
2979 	 */
2980 	sc->gfp_mask = orig_mask;
2981 }
2982 
2983 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2984 {
2985 	struct lruvec *target_lruvec;
2986 	unsigned long refaults;
2987 
2988 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2989 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
2990 	target_lruvec->refaults = refaults;
2991 }
2992 
2993 /*
2994  * This is the main entry point to direct page reclaim.
2995  *
2996  * If a full scan of the inactive list fails to free enough memory then we
2997  * are "out of memory" and something needs to be killed.
2998  *
2999  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000  * high - the zone may be full of dirty or under-writeback pages, which this
3001  * caller can't do much about.  We kick the writeback threads and take explicit
3002  * naps in the hope that some of these pages can be written.  But if the
3003  * allocating task holds filesystem locks which prevent writeout this might not
3004  * work, and the allocation attempt will fail.
3005  *
3006  * returns:	0, if no pages reclaimed
3007  * 		else, the number of pages reclaimed
3008  */
3009 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010 					  struct scan_control *sc)
3011 {
3012 	int initial_priority = sc->priority;
3013 	pg_data_t *last_pgdat;
3014 	struct zoneref *z;
3015 	struct zone *zone;
3016 retry:
3017 	delayacct_freepages_start();
3018 
3019 	if (!cgroup_reclaim(sc))
3020 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021 
3022 	do {
3023 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024 				sc->priority);
3025 		sc->nr_scanned = 0;
3026 		shrink_zones(zonelist, sc);
3027 
3028 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029 			break;
3030 
3031 		if (sc->compaction_ready)
3032 			break;
3033 
3034 		/*
3035 		 * If we're getting trouble reclaiming, start doing
3036 		 * writepage even in laptop mode.
3037 		 */
3038 		if (sc->priority < DEF_PRIORITY - 2)
3039 			sc->may_writepage = 1;
3040 	} while (--sc->priority >= 0);
3041 
3042 	last_pgdat = NULL;
3043 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044 					sc->nodemask) {
3045 		if (zone->zone_pgdat == last_pgdat)
3046 			continue;
3047 		last_pgdat = zone->zone_pgdat;
3048 
3049 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3050 
3051 		if (cgroup_reclaim(sc)) {
3052 			struct lruvec *lruvec;
3053 
3054 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3055 						   zone->zone_pgdat);
3056 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3057 		}
3058 	}
3059 
3060 	delayacct_freepages_end();
3061 
3062 	if (sc->nr_reclaimed)
3063 		return sc->nr_reclaimed;
3064 
3065 	/* Aborted reclaim to try compaction? don't OOM, then */
3066 	if (sc->compaction_ready)
3067 		return 1;
3068 
3069 	/*
3070 	 * We make inactive:active ratio decisions based on the node's
3071 	 * composition of memory, but a restrictive reclaim_idx or a
3072 	 * memory.low cgroup setting can exempt large amounts of
3073 	 * memory from reclaim. Neither of which are very common, so
3074 	 * instead of doing costly eligibility calculations of the
3075 	 * entire cgroup subtree up front, we assume the estimates are
3076 	 * good, and retry with forcible deactivation if that fails.
3077 	 */
3078 	if (sc->skipped_deactivate) {
3079 		sc->priority = initial_priority;
3080 		sc->force_deactivate = 1;
3081 		sc->skipped_deactivate = 0;
3082 		goto retry;
3083 	}
3084 
3085 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3086 	if (sc->memcg_low_skipped) {
3087 		sc->priority = initial_priority;
3088 		sc->force_deactivate = 0;
3089 		sc->memcg_low_reclaim = 1;
3090 		sc->memcg_low_skipped = 0;
3091 		goto retry;
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 static bool allow_direct_reclaim(pg_data_t *pgdat)
3098 {
3099 	struct zone *zone;
3100 	unsigned long pfmemalloc_reserve = 0;
3101 	unsigned long free_pages = 0;
3102 	int i;
3103 	bool wmark_ok;
3104 
3105 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3106 		return true;
3107 
3108 	for (i = 0; i <= ZONE_NORMAL; i++) {
3109 		zone = &pgdat->node_zones[i];
3110 		if (!managed_zone(zone))
3111 			continue;
3112 
3113 		if (!zone_reclaimable_pages(zone))
3114 			continue;
3115 
3116 		pfmemalloc_reserve += min_wmark_pages(zone);
3117 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3118 	}
3119 
3120 	/* If there are no reserves (unexpected config) then do not throttle */
3121 	if (!pfmemalloc_reserve)
3122 		return true;
3123 
3124 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3125 
3126 	/* kswapd must be awake if processes are being throttled */
3127 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3128 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3129 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3130 
3131 		wake_up_interruptible(&pgdat->kswapd_wait);
3132 	}
3133 
3134 	return wmark_ok;
3135 }
3136 
3137 /*
3138  * Throttle direct reclaimers if backing storage is backed by the network
3139  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3140  * depleted. kswapd will continue to make progress and wake the processes
3141  * when the low watermark is reached.
3142  *
3143  * Returns true if a fatal signal was delivered during throttling. If this
3144  * happens, the page allocator should not consider triggering the OOM killer.
3145  */
3146 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3147 					nodemask_t *nodemask)
3148 {
3149 	struct zoneref *z;
3150 	struct zone *zone;
3151 	pg_data_t *pgdat = NULL;
3152 
3153 	/*
3154 	 * Kernel threads should not be throttled as they may be indirectly
3155 	 * responsible for cleaning pages necessary for reclaim to make forward
3156 	 * progress. kjournald for example may enter direct reclaim while
3157 	 * committing a transaction where throttling it could forcing other
3158 	 * processes to block on log_wait_commit().
3159 	 */
3160 	if (current->flags & PF_KTHREAD)
3161 		goto out;
3162 
3163 	/*
3164 	 * If a fatal signal is pending, this process should not throttle.
3165 	 * It should return quickly so it can exit and free its memory
3166 	 */
3167 	if (fatal_signal_pending(current))
3168 		goto out;
3169 
3170 	/*
3171 	 * Check if the pfmemalloc reserves are ok by finding the first node
3172 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3173 	 * GFP_KERNEL will be required for allocating network buffers when
3174 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3175 	 *
3176 	 * Throttling is based on the first usable node and throttled processes
3177 	 * wait on a queue until kswapd makes progress and wakes them. There
3178 	 * is an affinity then between processes waking up and where reclaim
3179 	 * progress has been made assuming the process wakes on the same node.
3180 	 * More importantly, processes running on remote nodes will not compete
3181 	 * for remote pfmemalloc reserves and processes on different nodes
3182 	 * should make reasonable progress.
3183 	 */
3184 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3185 					gfp_zone(gfp_mask), nodemask) {
3186 		if (zone_idx(zone) > ZONE_NORMAL)
3187 			continue;
3188 
3189 		/* Throttle based on the first usable node */
3190 		pgdat = zone->zone_pgdat;
3191 		if (allow_direct_reclaim(pgdat))
3192 			goto out;
3193 		break;
3194 	}
3195 
3196 	/* If no zone was usable by the allocation flags then do not throttle */
3197 	if (!pgdat)
3198 		goto out;
3199 
3200 	/* Account for the throttling */
3201 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3202 
3203 	/*
3204 	 * If the caller cannot enter the filesystem, it's possible that it
3205 	 * is due to the caller holding an FS lock or performing a journal
3206 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3207 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3208 	 * blocked waiting on the same lock. Instead, throttle for up to a
3209 	 * second before continuing.
3210 	 */
3211 	if (!(gfp_mask & __GFP_FS)) {
3212 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3213 			allow_direct_reclaim(pgdat), HZ);
3214 
3215 		goto check_pending;
3216 	}
3217 
3218 	/* Throttle until kswapd wakes the process */
3219 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3220 		allow_direct_reclaim(pgdat));
3221 
3222 check_pending:
3223 	if (fatal_signal_pending(current))
3224 		return true;
3225 
3226 out:
3227 	return false;
3228 }
3229 
3230 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3231 				gfp_t gfp_mask, nodemask_t *nodemask)
3232 {
3233 	unsigned long nr_reclaimed;
3234 	struct scan_control sc = {
3235 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3236 		.gfp_mask = current_gfp_context(gfp_mask),
3237 		.reclaim_idx = gfp_zone(gfp_mask),
3238 		.order = order,
3239 		.nodemask = nodemask,
3240 		.priority = DEF_PRIORITY,
3241 		.may_writepage = !laptop_mode,
3242 		.may_unmap = 1,
3243 		.may_swap = 1,
3244 	};
3245 
3246 	/*
3247 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3248 	 * Confirm they are large enough for max values.
3249 	 */
3250 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3251 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3252 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3253 
3254 	/*
3255 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3256 	 * 1 is returned so that the page allocator does not OOM kill at this
3257 	 * point.
3258 	 */
3259 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3260 		return 1;
3261 
3262 	set_task_reclaim_state(current, &sc.reclaim_state);
3263 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3264 
3265 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3266 
3267 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3268 	set_task_reclaim_state(current, NULL);
3269 
3270 	return nr_reclaimed;
3271 }
3272 
3273 #ifdef CONFIG_MEMCG
3274 
3275 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3276 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3277 						gfp_t gfp_mask, bool noswap,
3278 						pg_data_t *pgdat,
3279 						unsigned long *nr_scanned)
3280 {
3281 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3282 	struct scan_control sc = {
3283 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3284 		.target_mem_cgroup = memcg,
3285 		.may_writepage = !laptop_mode,
3286 		.may_unmap = 1,
3287 		.reclaim_idx = MAX_NR_ZONES - 1,
3288 		.may_swap = !noswap,
3289 	};
3290 
3291 	WARN_ON_ONCE(!current->reclaim_state);
3292 
3293 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3294 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3295 
3296 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3297 						      sc.gfp_mask);
3298 
3299 	/*
3300 	 * NOTE: Although we can get the priority field, using it
3301 	 * here is not a good idea, since it limits the pages we can scan.
3302 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3303 	 * will pick up pages from other mem cgroup's as well. We hack
3304 	 * the priority and make it zero.
3305 	 */
3306 	shrink_lruvec(lruvec, &sc);
3307 
3308 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3309 
3310 	*nr_scanned = sc.nr_scanned;
3311 
3312 	return sc.nr_reclaimed;
3313 }
3314 
3315 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3316 					   unsigned long nr_pages,
3317 					   gfp_t gfp_mask,
3318 					   bool may_swap)
3319 {
3320 	unsigned long nr_reclaimed;
3321 	unsigned long pflags;
3322 	unsigned int noreclaim_flag;
3323 	struct scan_control sc = {
3324 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3325 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3326 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3327 		.reclaim_idx = MAX_NR_ZONES - 1,
3328 		.target_mem_cgroup = memcg,
3329 		.priority = DEF_PRIORITY,
3330 		.may_writepage = !laptop_mode,
3331 		.may_unmap = 1,
3332 		.may_swap = may_swap,
3333 	};
3334 	/*
3335 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3336 	 * equal pressure on all the nodes. This is based on the assumption that
3337 	 * the reclaim does not bail out early.
3338 	 */
3339 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3340 
3341 	set_task_reclaim_state(current, &sc.reclaim_state);
3342 
3343 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3344 
3345 	psi_memstall_enter(&pflags);
3346 	noreclaim_flag = memalloc_noreclaim_save();
3347 
3348 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3349 
3350 	memalloc_noreclaim_restore(noreclaim_flag);
3351 	psi_memstall_leave(&pflags);
3352 
3353 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3354 	set_task_reclaim_state(current, NULL);
3355 
3356 	return nr_reclaimed;
3357 }
3358 #endif
3359 
3360 static void age_active_anon(struct pglist_data *pgdat,
3361 				struct scan_control *sc)
3362 {
3363 	struct mem_cgroup *memcg;
3364 	struct lruvec *lruvec;
3365 
3366 	if (!total_swap_pages)
3367 		return;
3368 
3369 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3370 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3371 		return;
3372 
3373 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3374 	do {
3375 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3376 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3377 				   sc, LRU_ACTIVE_ANON);
3378 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3379 	} while (memcg);
3380 }
3381 
3382 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3383 {
3384 	int i;
3385 	struct zone *zone;
3386 
3387 	/*
3388 	 * Check for watermark boosts top-down as the higher zones
3389 	 * are more likely to be boosted. Both watermarks and boosts
3390 	 * should not be checked at the time time as reclaim would
3391 	 * start prematurely when there is no boosting and a lower
3392 	 * zone is balanced.
3393 	 */
3394 	for (i = highest_zoneidx; i >= 0; i--) {
3395 		zone = pgdat->node_zones + i;
3396 		if (!managed_zone(zone))
3397 			continue;
3398 
3399 		if (zone->watermark_boost)
3400 			return true;
3401 	}
3402 
3403 	return false;
3404 }
3405 
3406 /*
3407  * Returns true if there is an eligible zone balanced for the request order
3408  * and highest_zoneidx
3409  */
3410 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3411 {
3412 	int i;
3413 	unsigned long mark = -1;
3414 	struct zone *zone;
3415 
3416 	/*
3417 	 * Check watermarks bottom-up as lower zones are more likely to
3418 	 * meet watermarks.
3419 	 */
3420 	for (i = 0; i <= highest_zoneidx; i++) {
3421 		zone = pgdat->node_zones + i;
3422 
3423 		if (!managed_zone(zone))
3424 			continue;
3425 
3426 		mark = high_wmark_pages(zone);
3427 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3428 			return true;
3429 	}
3430 
3431 	/*
3432 	 * If a node has no populated zone within highest_zoneidx, it does not
3433 	 * need balancing by definition. This can happen if a zone-restricted
3434 	 * allocation tries to wake a remote kswapd.
3435 	 */
3436 	if (mark == -1)
3437 		return true;
3438 
3439 	return false;
3440 }
3441 
3442 /* Clear pgdat state for congested, dirty or under writeback. */
3443 static void clear_pgdat_congested(pg_data_t *pgdat)
3444 {
3445 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3446 
3447 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3448 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3449 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3450 }
3451 
3452 /*
3453  * Prepare kswapd for sleeping. This verifies that there are no processes
3454  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3455  *
3456  * Returns true if kswapd is ready to sleep
3457  */
3458 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3459 				int highest_zoneidx)
3460 {
3461 	/*
3462 	 * The throttled processes are normally woken up in balance_pgdat() as
3463 	 * soon as allow_direct_reclaim() is true. But there is a potential
3464 	 * race between when kswapd checks the watermarks and a process gets
3465 	 * throttled. There is also a potential race if processes get
3466 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3467 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3468 	 * the wake up checks. If kswapd is going to sleep, no process should
3469 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3470 	 * the wake up is premature, processes will wake kswapd and get
3471 	 * throttled again. The difference from wake ups in balance_pgdat() is
3472 	 * that here we are under prepare_to_wait().
3473 	 */
3474 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3475 		wake_up_all(&pgdat->pfmemalloc_wait);
3476 
3477 	/* Hopeless node, leave it to direct reclaim */
3478 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3479 		return true;
3480 
3481 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3482 		clear_pgdat_congested(pgdat);
3483 		return true;
3484 	}
3485 
3486 	return false;
3487 }
3488 
3489 /*
3490  * kswapd shrinks a node of pages that are at or below the highest usable
3491  * zone that is currently unbalanced.
3492  *
3493  * Returns true if kswapd scanned at least the requested number of pages to
3494  * reclaim or if the lack of progress was due to pages under writeback.
3495  * This is used to determine if the scanning priority needs to be raised.
3496  */
3497 static bool kswapd_shrink_node(pg_data_t *pgdat,
3498 			       struct scan_control *sc)
3499 {
3500 	struct zone *zone;
3501 	int z;
3502 
3503 	/* Reclaim a number of pages proportional to the number of zones */
3504 	sc->nr_to_reclaim = 0;
3505 	for (z = 0; z <= sc->reclaim_idx; z++) {
3506 		zone = pgdat->node_zones + z;
3507 		if (!managed_zone(zone))
3508 			continue;
3509 
3510 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3511 	}
3512 
3513 	/*
3514 	 * Historically care was taken to put equal pressure on all zones but
3515 	 * now pressure is applied based on node LRU order.
3516 	 */
3517 	shrink_node(pgdat, sc);
3518 
3519 	/*
3520 	 * Fragmentation may mean that the system cannot be rebalanced for
3521 	 * high-order allocations. If twice the allocation size has been
3522 	 * reclaimed then recheck watermarks only at order-0 to prevent
3523 	 * excessive reclaim. Assume that a process requested a high-order
3524 	 * can direct reclaim/compact.
3525 	 */
3526 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3527 		sc->order = 0;
3528 
3529 	return sc->nr_scanned >= sc->nr_to_reclaim;
3530 }
3531 
3532 /*
3533  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3534  * that are eligible for use by the caller until at least one zone is
3535  * balanced.
3536  *
3537  * Returns the order kswapd finished reclaiming at.
3538  *
3539  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3540  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3541  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3542  * or lower is eligible for reclaim until at least one usable zone is
3543  * balanced.
3544  */
3545 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3546 {
3547 	int i;
3548 	unsigned long nr_soft_reclaimed;
3549 	unsigned long nr_soft_scanned;
3550 	unsigned long pflags;
3551 	unsigned long nr_boost_reclaim;
3552 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3553 	bool boosted;
3554 	struct zone *zone;
3555 	struct scan_control sc = {
3556 		.gfp_mask = GFP_KERNEL,
3557 		.order = order,
3558 		.may_unmap = 1,
3559 	};
3560 
3561 	set_task_reclaim_state(current, &sc.reclaim_state);
3562 	psi_memstall_enter(&pflags);
3563 	__fs_reclaim_acquire();
3564 
3565 	count_vm_event(PAGEOUTRUN);
3566 
3567 	/*
3568 	 * Account for the reclaim boost. Note that the zone boost is left in
3569 	 * place so that parallel allocations that are near the watermark will
3570 	 * stall or direct reclaim until kswapd is finished.
3571 	 */
3572 	nr_boost_reclaim = 0;
3573 	for (i = 0; i <= highest_zoneidx; i++) {
3574 		zone = pgdat->node_zones + i;
3575 		if (!managed_zone(zone))
3576 			continue;
3577 
3578 		nr_boost_reclaim += zone->watermark_boost;
3579 		zone_boosts[i] = zone->watermark_boost;
3580 	}
3581 	boosted = nr_boost_reclaim;
3582 
3583 restart:
3584 	sc.priority = DEF_PRIORITY;
3585 	do {
3586 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3587 		bool raise_priority = true;
3588 		bool balanced;
3589 		bool ret;
3590 
3591 		sc.reclaim_idx = highest_zoneidx;
3592 
3593 		/*
3594 		 * If the number of buffer_heads exceeds the maximum allowed
3595 		 * then consider reclaiming from all zones. This has a dual
3596 		 * purpose -- on 64-bit systems it is expected that
3597 		 * buffer_heads are stripped during active rotation. On 32-bit
3598 		 * systems, highmem pages can pin lowmem memory and shrinking
3599 		 * buffers can relieve lowmem pressure. Reclaim may still not
3600 		 * go ahead if all eligible zones for the original allocation
3601 		 * request are balanced to avoid excessive reclaim from kswapd.
3602 		 */
3603 		if (buffer_heads_over_limit) {
3604 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3605 				zone = pgdat->node_zones + i;
3606 				if (!managed_zone(zone))
3607 					continue;
3608 
3609 				sc.reclaim_idx = i;
3610 				break;
3611 			}
3612 		}
3613 
3614 		/*
3615 		 * If the pgdat is imbalanced then ignore boosting and preserve
3616 		 * the watermarks for a later time and restart. Note that the
3617 		 * zone watermarks will be still reset at the end of balancing
3618 		 * on the grounds that the normal reclaim should be enough to
3619 		 * re-evaluate if boosting is required when kswapd next wakes.
3620 		 */
3621 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3622 		if (!balanced && nr_boost_reclaim) {
3623 			nr_boost_reclaim = 0;
3624 			goto restart;
3625 		}
3626 
3627 		/*
3628 		 * If boosting is not active then only reclaim if there are no
3629 		 * eligible zones. Note that sc.reclaim_idx is not used as
3630 		 * buffer_heads_over_limit may have adjusted it.
3631 		 */
3632 		if (!nr_boost_reclaim && balanced)
3633 			goto out;
3634 
3635 		/* Limit the priority of boosting to avoid reclaim writeback */
3636 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3637 			raise_priority = false;
3638 
3639 		/*
3640 		 * Do not writeback or swap pages for boosted reclaim. The
3641 		 * intent is to relieve pressure not issue sub-optimal IO
3642 		 * from reclaim context. If no pages are reclaimed, the
3643 		 * reclaim will be aborted.
3644 		 */
3645 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3646 		sc.may_swap = !nr_boost_reclaim;
3647 
3648 		/*
3649 		 * Do some background aging of the anon list, to give
3650 		 * pages a chance to be referenced before reclaiming. All
3651 		 * pages are rotated regardless of classzone as this is
3652 		 * about consistent aging.
3653 		 */
3654 		age_active_anon(pgdat, &sc);
3655 
3656 		/*
3657 		 * If we're getting trouble reclaiming, start doing writepage
3658 		 * even in laptop mode.
3659 		 */
3660 		if (sc.priority < DEF_PRIORITY - 2)
3661 			sc.may_writepage = 1;
3662 
3663 		/* Call soft limit reclaim before calling shrink_node. */
3664 		sc.nr_scanned = 0;
3665 		nr_soft_scanned = 0;
3666 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3667 						sc.gfp_mask, &nr_soft_scanned);
3668 		sc.nr_reclaimed += nr_soft_reclaimed;
3669 
3670 		/*
3671 		 * There should be no need to raise the scanning priority if
3672 		 * enough pages are already being scanned that that high
3673 		 * watermark would be met at 100% efficiency.
3674 		 */
3675 		if (kswapd_shrink_node(pgdat, &sc))
3676 			raise_priority = false;
3677 
3678 		/*
3679 		 * If the low watermark is met there is no need for processes
3680 		 * to be throttled on pfmemalloc_wait as they should not be
3681 		 * able to safely make forward progress. Wake them
3682 		 */
3683 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3684 				allow_direct_reclaim(pgdat))
3685 			wake_up_all(&pgdat->pfmemalloc_wait);
3686 
3687 		/* Check if kswapd should be suspending */
3688 		__fs_reclaim_release();
3689 		ret = try_to_freeze();
3690 		__fs_reclaim_acquire();
3691 		if (ret || kthread_should_stop())
3692 			break;
3693 
3694 		/*
3695 		 * Raise priority if scanning rate is too low or there was no
3696 		 * progress in reclaiming pages
3697 		 */
3698 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3699 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3700 
3701 		/*
3702 		 * If reclaim made no progress for a boost, stop reclaim as
3703 		 * IO cannot be queued and it could be an infinite loop in
3704 		 * extreme circumstances.
3705 		 */
3706 		if (nr_boost_reclaim && !nr_reclaimed)
3707 			break;
3708 
3709 		if (raise_priority || !nr_reclaimed)
3710 			sc.priority--;
3711 	} while (sc.priority >= 1);
3712 
3713 	if (!sc.nr_reclaimed)
3714 		pgdat->kswapd_failures++;
3715 
3716 out:
3717 	/* If reclaim was boosted, account for the reclaim done in this pass */
3718 	if (boosted) {
3719 		unsigned long flags;
3720 
3721 		for (i = 0; i <= highest_zoneidx; i++) {
3722 			if (!zone_boosts[i])
3723 				continue;
3724 
3725 			/* Increments are under the zone lock */
3726 			zone = pgdat->node_zones + i;
3727 			spin_lock_irqsave(&zone->lock, flags);
3728 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3729 			spin_unlock_irqrestore(&zone->lock, flags);
3730 		}
3731 
3732 		/*
3733 		 * As there is now likely space, wakeup kcompact to defragment
3734 		 * pageblocks.
3735 		 */
3736 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3737 	}
3738 
3739 	snapshot_refaults(NULL, pgdat);
3740 	__fs_reclaim_release();
3741 	psi_memstall_leave(&pflags);
3742 	set_task_reclaim_state(current, NULL);
3743 
3744 	/*
3745 	 * Return the order kswapd stopped reclaiming at as
3746 	 * prepare_kswapd_sleep() takes it into account. If another caller
3747 	 * entered the allocator slow path while kswapd was awake, order will
3748 	 * remain at the higher level.
3749 	 */
3750 	return sc.order;
3751 }
3752 
3753 /*
3754  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3755  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3756  * not a valid index then either kswapd runs for first time or kswapd couldn't
3757  * sleep after previous reclaim attempt (node is still unbalanced). In that
3758  * case return the zone index of the previous kswapd reclaim cycle.
3759  */
3760 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3761 					   enum zone_type prev_highest_zoneidx)
3762 {
3763 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3764 
3765 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3766 }
3767 
3768 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3769 				unsigned int highest_zoneidx)
3770 {
3771 	long remaining = 0;
3772 	DEFINE_WAIT(wait);
3773 
3774 	if (freezing(current) || kthread_should_stop())
3775 		return;
3776 
3777 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3778 
3779 	/*
3780 	 * Try to sleep for a short interval. Note that kcompactd will only be
3781 	 * woken if it is possible to sleep for a short interval. This is
3782 	 * deliberate on the assumption that if reclaim cannot keep an
3783 	 * eligible zone balanced that it's also unlikely that compaction will
3784 	 * succeed.
3785 	 */
3786 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3787 		/*
3788 		 * Compaction records what page blocks it recently failed to
3789 		 * isolate pages from and skips them in the future scanning.
3790 		 * When kswapd is going to sleep, it is reasonable to assume
3791 		 * that pages and compaction may succeed so reset the cache.
3792 		 */
3793 		reset_isolation_suitable(pgdat);
3794 
3795 		/*
3796 		 * We have freed the memory, now we should compact it to make
3797 		 * allocation of the requested order possible.
3798 		 */
3799 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3800 
3801 		remaining = schedule_timeout(HZ/10);
3802 
3803 		/*
3804 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3805 		 * order. The values will either be from a wakeup request or
3806 		 * the previous request that slept prematurely.
3807 		 */
3808 		if (remaining) {
3809 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3810 					kswapd_highest_zoneidx(pgdat,
3811 							highest_zoneidx));
3812 
3813 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3814 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3815 		}
3816 
3817 		finish_wait(&pgdat->kswapd_wait, &wait);
3818 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3819 	}
3820 
3821 	/*
3822 	 * After a short sleep, check if it was a premature sleep. If not, then
3823 	 * go fully to sleep until explicitly woken up.
3824 	 */
3825 	if (!remaining &&
3826 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3827 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3828 
3829 		/*
3830 		 * vmstat counters are not perfectly accurate and the estimated
3831 		 * value for counters such as NR_FREE_PAGES can deviate from the
3832 		 * true value by nr_online_cpus * threshold. To avoid the zone
3833 		 * watermarks being breached while under pressure, we reduce the
3834 		 * per-cpu vmstat threshold while kswapd is awake and restore
3835 		 * them before going back to sleep.
3836 		 */
3837 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3838 
3839 		if (!kthread_should_stop())
3840 			schedule();
3841 
3842 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3843 	} else {
3844 		if (remaining)
3845 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3846 		else
3847 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3848 	}
3849 	finish_wait(&pgdat->kswapd_wait, &wait);
3850 }
3851 
3852 /*
3853  * The background pageout daemon, started as a kernel thread
3854  * from the init process.
3855  *
3856  * This basically trickles out pages so that we have _some_
3857  * free memory available even if there is no other activity
3858  * that frees anything up. This is needed for things like routing
3859  * etc, where we otherwise might have all activity going on in
3860  * asynchronous contexts that cannot page things out.
3861  *
3862  * If there are applications that are active memory-allocators
3863  * (most normal use), this basically shouldn't matter.
3864  */
3865 static int kswapd(void *p)
3866 {
3867 	unsigned int alloc_order, reclaim_order;
3868 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3869 	pg_data_t *pgdat = (pg_data_t*)p;
3870 	struct task_struct *tsk = current;
3871 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3872 
3873 	if (!cpumask_empty(cpumask))
3874 		set_cpus_allowed_ptr(tsk, cpumask);
3875 
3876 	/*
3877 	 * Tell the memory management that we're a "memory allocator",
3878 	 * and that if we need more memory we should get access to it
3879 	 * regardless (see "__alloc_pages()"). "kswapd" should
3880 	 * never get caught in the normal page freeing logic.
3881 	 *
3882 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3883 	 * you need a small amount of memory in order to be able to
3884 	 * page out something else, and this flag essentially protects
3885 	 * us from recursively trying to free more memory as we're
3886 	 * trying to free the first piece of memory in the first place).
3887 	 */
3888 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3889 	set_freezable();
3890 
3891 	WRITE_ONCE(pgdat->kswapd_order, 0);
3892 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3893 	for ( ; ; ) {
3894 		bool ret;
3895 
3896 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3897 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3898 							highest_zoneidx);
3899 
3900 kswapd_try_sleep:
3901 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3902 					highest_zoneidx);
3903 
3904 		/* Read the new order and highest_zoneidx */
3905 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3906 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3907 							highest_zoneidx);
3908 		WRITE_ONCE(pgdat->kswapd_order, 0);
3909 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3910 
3911 		ret = try_to_freeze();
3912 		if (kthread_should_stop())
3913 			break;
3914 
3915 		/*
3916 		 * We can speed up thawing tasks if we don't call balance_pgdat
3917 		 * after returning from the refrigerator
3918 		 */
3919 		if (ret)
3920 			continue;
3921 
3922 		/*
3923 		 * Reclaim begins at the requested order but if a high-order
3924 		 * reclaim fails then kswapd falls back to reclaiming for
3925 		 * order-0. If that happens, kswapd will consider sleeping
3926 		 * for the order it finished reclaiming at (reclaim_order)
3927 		 * but kcompactd is woken to compact for the original
3928 		 * request (alloc_order).
3929 		 */
3930 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3931 						alloc_order);
3932 		reclaim_order = balance_pgdat(pgdat, alloc_order,
3933 						highest_zoneidx);
3934 		if (reclaim_order < alloc_order)
3935 			goto kswapd_try_sleep;
3936 	}
3937 
3938 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3939 
3940 	return 0;
3941 }
3942 
3943 /*
3944  * A zone is low on free memory or too fragmented for high-order memory.  If
3945  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3946  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3947  * has failed or is not needed, still wake up kcompactd if only compaction is
3948  * needed.
3949  */
3950 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3951 		   enum zone_type highest_zoneidx)
3952 {
3953 	pg_data_t *pgdat;
3954 	enum zone_type curr_idx;
3955 
3956 	if (!managed_zone(zone))
3957 		return;
3958 
3959 	if (!cpuset_zone_allowed(zone, gfp_flags))
3960 		return;
3961 
3962 	pgdat = zone->zone_pgdat;
3963 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3964 
3965 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3966 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3967 
3968 	if (READ_ONCE(pgdat->kswapd_order) < order)
3969 		WRITE_ONCE(pgdat->kswapd_order, order);
3970 
3971 	if (!waitqueue_active(&pgdat->kswapd_wait))
3972 		return;
3973 
3974 	/* Hopeless node, leave it to direct reclaim if possible */
3975 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3976 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3977 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3978 		/*
3979 		 * There may be plenty of free memory available, but it's too
3980 		 * fragmented for high-order allocations.  Wake up kcompactd
3981 		 * and rely on compaction_suitable() to determine if it's
3982 		 * needed.  If it fails, it will defer subsequent attempts to
3983 		 * ratelimit its work.
3984 		 */
3985 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3986 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3987 		return;
3988 	}
3989 
3990 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3991 				      gfp_flags);
3992 	wake_up_interruptible(&pgdat->kswapd_wait);
3993 }
3994 
3995 #ifdef CONFIG_HIBERNATION
3996 /*
3997  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3998  * freed pages.
3999  *
4000  * Rather than trying to age LRUs the aim is to preserve the overall
4001  * LRU order by reclaiming preferentially
4002  * inactive > active > active referenced > active mapped
4003  */
4004 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4005 {
4006 	struct scan_control sc = {
4007 		.nr_to_reclaim = nr_to_reclaim,
4008 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4009 		.reclaim_idx = MAX_NR_ZONES - 1,
4010 		.priority = DEF_PRIORITY,
4011 		.may_writepage = 1,
4012 		.may_unmap = 1,
4013 		.may_swap = 1,
4014 		.hibernation_mode = 1,
4015 	};
4016 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4017 	unsigned long nr_reclaimed;
4018 	unsigned int noreclaim_flag;
4019 
4020 	fs_reclaim_acquire(sc.gfp_mask);
4021 	noreclaim_flag = memalloc_noreclaim_save();
4022 	set_task_reclaim_state(current, &sc.reclaim_state);
4023 
4024 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4025 
4026 	set_task_reclaim_state(current, NULL);
4027 	memalloc_noreclaim_restore(noreclaim_flag);
4028 	fs_reclaim_release(sc.gfp_mask);
4029 
4030 	return nr_reclaimed;
4031 }
4032 #endif /* CONFIG_HIBERNATION */
4033 
4034 /*
4035  * This kswapd start function will be called by init and node-hot-add.
4036  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4037  */
4038 int kswapd_run(int nid)
4039 {
4040 	pg_data_t *pgdat = NODE_DATA(nid);
4041 	int ret = 0;
4042 
4043 	if (pgdat->kswapd)
4044 		return 0;
4045 
4046 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4047 	if (IS_ERR(pgdat->kswapd)) {
4048 		/* failure at boot is fatal */
4049 		BUG_ON(system_state < SYSTEM_RUNNING);
4050 		pr_err("Failed to start kswapd on node %d\n", nid);
4051 		ret = PTR_ERR(pgdat->kswapd);
4052 		pgdat->kswapd = NULL;
4053 	}
4054 	return ret;
4055 }
4056 
4057 /*
4058  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4059  * hold mem_hotplug_begin/end().
4060  */
4061 void kswapd_stop(int nid)
4062 {
4063 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4064 
4065 	if (kswapd) {
4066 		kthread_stop(kswapd);
4067 		NODE_DATA(nid)->kswapd = NULL;
4068 	}
4069 }
4070 
4071 static int __init kswapd_init(void)
4072 {
4073 	int nid;
4074 
4075 	swap_setup();
4076 	for_each_node_state(nid, N_MEMORY)
4077  		kswapd_run(nid);
4078 	return 0;
4079 }
4080 
4081 module_init(kswapd_init)
4082 
4083 #ifdef CONFIG_NUMA
4084 /*
4085  * Node reclaim mode
4086  *
4087  * If non-zero call node_reclaim when the number of free pages falls below
4088  * the watermarks.
4089  */
4090 int node_reclaim_mode __read_mostly;
4091 
4092 #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4093 #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4094 
4095 /*
4096  * Priority for NODE_RECLAIM. This determines the fraction of pages
4097  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4098  * a zone.
4099  */
4100 #define NODE_RECLAIM_PRIORITY 4
4101 
4102 /*
4103  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4104  * occur.
4105  */
4106 int sysctl_min_unmapped_ratio = 1;
4107 
4108 /*
4109  * If the number of slab pages in a zone grows beyond this percentage then
4110  * slab reclaim needs to occur.
4111  */
4112 int sysctl_min_slab_ratio = 5;
4113 
4114 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4115 {
4116 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4117 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4118 		node_page_state(pgdat, NR_ACTIVE_FILE);
4119 
4120 	/*
4121 	 * It's possible for there to be more file mapped pages than
4122 	 * accounted for by the pages on the file LRU lists because
4123 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4124 	 */
4125 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4126 }
4127 
4128 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4129 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4130 {
4131 	unsigned long nr_pagecache_reclaimable;
4132 	unsigned long delta = 0;
4133 
4134 	/*
4135 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4136 	 * potentially reclaimable. Otherwise, we have to worry about
4137 	 * pages like swapcache and node_unmapped_file_pages() provides
4138 	 * a better estimate
4139 	 */
4140 	if (node_reclaim_mode & RECLAIM_UNMAP)
4141 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4142 	else
4143 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4144 
4145 	/* If we can't clean pages, remove dirty pages from consideration */
4146 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4147 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4148 
4149 	/* Watch for any possible underflows due to delta */
4150 	if (unlikely(delta > nr_pagecache_reclaimable))
4151 		delta = nr_pagecache_reclaimable;
4152 
4153 	return nr_pagecache_reclaimable - delta;
4154 }
4155 
4156 /*
4157  * Try to free up some pages from this node through reclaim.
4158  */
4159 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4160 {
4161 	/* Minimum pages needed in order to stay on node */
4162 	const unsigned long nr_pages = 1 << order;
4163 	struct task_struct *p = current;
4164 	unsigned int noreclaim_flag;
4165 	struct scan_control sc = {
4166 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4167 		.gfp_mask = current_gfp_context(gfp_mask),
4168 		.order = order,
4169 		.priority = NODE_RECLAIM_PRIORITY,
4170 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4171 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4172 		.may_swap = 1,
4173 		.reclaim_idx = gfp_zone(gfp_mask),
4174 	};
4175 
4176 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4177 					   sc.gfp_mask);
4178 
4179 	cond_resched();
4180 	fs_reclaim_acquire(sc.gfp_mask);
4181 	/*
4182 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4183 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4184 	 * and RECLAIM_UNMAP.
4185 	 */
4186 	noreclaim_flag = memalloc_noreclaim_save();
4187 	p->flags |= PF_SWAPWRITE;
4188 	set_task_reclaim_state(p, &sc.reclaim_state);
4189 
4190 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4191 		/*
4192 		 * Free memory by calling shrink node with increasing
4193 		 * priorities until we have enough memory freed.
4194 		 */
4195 		do {
4196 			shrink_node(pgdat, &sc);
4197 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4198 	}
4199 
4200 	set_task_reclaim_state(p, NULL);
4201 	current->flags &= ~PF_SWAPWRITE;
4202 	memalloc_noreclaim_restore(noreclaim_flag);
4203 	fs_reclaim_release(sc.gfp_mask);
4204 
4205 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4206 
4207 	return sc.nr_reclaimed >= nr_pages;
4208 }
4209 
4210 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4211 {
4212 	int ret;
4213 
4214 	/*
4215 	 * Node reclaim reclaims unmapped file backed pages and
4216 	 * slab pages if we are over the defined limits.
4217 	 *
4218 	 * A small portion of unmapped file backed pages is needed for
4219 	 * file I/O otherwise pages read by file I/O will be immediately
4220 	 * thrown out if the node is overallocated. So we do not reclaim
4221 	 * if less than a specified percentage of the node is used by
4222 	 * unmapped file backed pages.
4223 	 */
4224 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4225 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4226 		return NODE_RECLAIM_FULL;
4227 
4228 	/*
4229 	 * Do not scan if the allocation should not be delayed.
4230 	 */
4231 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4232 		return NODE_RECLAIM_NOSCAN;
4233 
4234 	/*
4235 	 * Only run node reclaim on the local node or on nodes that do not
4236 	 * have associated processors. This will favor the local processor
4237 	 * over remote processors and spread off node memory allocations
4238 	 * as wide as possible.
4239 	 */
4240 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4241 		return NODE_RECLAIM_NOSCAN;
4242 
4243 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4244 		return NODE_RECLAIM_NOSCAN;
4245 
4246 	ret = __node_reclaim(pgdat, gfp_mask, order);
4247 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4248 
4249 	if (!ret)
4250 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4251 
4252 	return ret;
4253 }
4254 #endif
4255 
4256 /**
4257  * check_move_unevictable_pages - check pages for evictability and move to
4258  * appropriate zone lru list
4259  * @pvec: pagevec with lru pages to check
4260  *
4261  * Checks pages for evictability, if an evictable page is in the unevictable
4262  * lru list, moves it to the appropriate evictable lru list. This function
4263  * should be only used for lru pages.
4264  */
4265 void check_move_unevictable_pages(struct pagevec *pvec)
4266 {
4267 	struct lruvec *lruvec;
4268 	struct pglist_data *pgdat = NULL;
4269 	int pgscanned = 0;
4270 	int pgrescued = 0;
4271 	int i;
4272 
4273 	for (i = 0; i < pvec->nr; i++) {
4274 		struct page *page = pvec->pages[i];
4275 		struct pglist_data *pagepgdat = page_pgdat(page);
4276 
4277 		pgscanned++;
4278 		if (pagepgdat != pgdat) {
4279 			if (pgdat)
4280 				spin_unlock_irq(&pgdat->lru_lock);
4281 			pgdat = pagepgdat;
4282 			spin_lock_irq(&pgdat->lru_lock);
4283 		}
4284 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4285 
4286 		if (!PageLRU(page) || !PageUnevictable(page))
4287 			continue;
4288 
4289 		if (page_evictable(page)) {
4290 			enum lru_list lru = page_lru_base_type(page);
4291 
4292 			VM_BUG_ON_PAGE(PageActive(page), page);
4293 			ClearPageUnevictable(page);
4294 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4295 			add_page_to_lru_list(page, lruvec, lru);
4296 			pgrescued++;
4297 		}
4298 	}
4299 
4300 	if (pgdat) {
4301 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4302 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4303 		spin_unlock_irq(&pgdat->lru_lock);
4304 	}
4305 }
4306 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4307