1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* This context's GFP mask */ 59 gfp_t gfp_mask; 60 61 int may_writepage; 62 63 /* Can mapped pages be reclaimed? */ 64 int may_unmap; 65 66 /* Can pages be swapped as part of reclaim? */ 67 int may_swap; 68 69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 70 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 71 * In this context, it doesn't matter that we scan the 72 * whole list at once. */ 73 int swap_cluster_max; 74 75 int swappiness; 76 77 int all_unreclaimable; 78 79 int order; 80 81 /* Which cgroup do we reclaim from */ 82 struct mem_cgroup *mem_cgroup; 83 84 /* 85 * Nodemask of nodes allowed by the caller. If NULL, all nodes 86 * are scanned. 87 */ 88 nodemask_t *nodemask; 89 90 /* Pluggable isolate pages callback */ 91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 92 unsigned long *scanned, int order, int mode, 93 struct zone *z, struct mem_cgroup *mem_cont, 94 int active, int file); 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 138 #else 139 #define scanning_global_lru(sc) (1) 140 #endif 141 142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 143 struct scan_control *sc) 144 { 145 if (!scanning_global_lru(sc)) 146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 147 148 return &zone->reclaim_stat; 149 } 150 151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc, 152 enum lru_list lru) 153 { 154 if (!scanning_global_lru(sc)) 155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 156 157 return zone_page_state(zone, NR_LRU_BASE + lru); 158 } 159 160 161 /* 162 * Add a shrinker callback to be called from the vm 163 */ 164 void register_shrinker(struct shrinker *shrinker) 165 { 166 shrinker->nr = 0; 167 down_write(&shrinker_rwsem); 168 list_add_tail(&shrinker->list, &shrinker_list); 169 up_write(&shrinker_rwsem); 170 } 171 EXPORT_SYMBOL(register_shrinker); 172 173 /* 174 * Remove one 175 */ 176 void unregister_shrinker(struct shrinker *shrinker) 177 { 178 down_write(&shrinker_rwsem); 179 list_del(&shrinker->list); 180 up_write(&shrinker_rwsem); 181 } 182 EXPORT_SYMBOL(unregister_shrinker); 183 184 #define SHRINK_BATCH 128 185 /* 186 * Call the shrink functions to age shrinkable caches 187 * 188 * Here we assume it costs one seek to replace a lru page and that it also 189 * takes a seek to recreate a cache object. With this in mind we age equal 190 * percentages of the lru and ageable caches. This should balance the seeks 191 * generated by these structures. 192 * 193 * If the vm encountered mapped pages on the LRU it increase the pressure on 194 * slab to avoid swapping. 195 * 196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 197 * 198 * `lru_pages' represents the number of on-LRU pages in all the zones which 199 * are eligible for the caller's allocation attempt. It is used for balancing 200 * slab reclaim versus page reclaim. 201 * 202 * Returns the number of slab objects which we shrunk. 203 */ 204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 205 unsigned long lru_pages) 206 { 207 struct shrinker *shrinker; 208 unsigned long ret = 0; 209 210 if (scanned == 0) 211 scanned = SWAP_CLUSTER_MAX; 212 213 if (!down_read_trylock(&shrinker_rwsem)) 214 return 1; /* Assume we'll be able to shrink next time */ 215 216 list_for_each_entry(shrinker, &shrinker_list, list) { 217 unsigned long long delta; 218 unsigned long total_scan; 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 220 221 delta = (4 * scanned) / shrinker->seeks; 222 delta *= max_pass; 223 do_div(delta, lru_pages + 1); 224 shrinker->nr += delta; 225 if (shrinker->nr < 0) { 226 printk(KERN_ERR "shrink_slab: %pF negative objects to " 227 "delete nr=%ld\n", 228 shrinker->shrink, shrinker->nr); 229 shrinker->nr = max_pass; 230 } 231 232 /* 233 * Avoid risking looping forever due to too large nr value: 234 * never try to free more than twice the estimate number of 235 * freeable entries. 236 */ 237 if (shrinker->nr > max_pass * 2) 238 shrinker->nr = max_pass * 2; 239 240 total_scan = shrinker->nr; 241 shrinker->nr = 0; 242 243 while (total_scan >= SHRINK_BATCH) { 244 long this_scan = SHRINK_BATCH; 245 int shrink_ret; 246 int nr_before; 247 248 nr_before = (*shrinker->shrink)(0, gfp_mask); 249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 250 if (shrink_ret == -1) 251 break; 252 if (shrink_ret < nr_before) 253 ret += nr_before - shrink_ret; 254 count_vm_events(SLABS_SCANNED, this_scan); 255 total_scan -= this_scan; 256 257 cond_resched(); 258 } 259 260 shrinker->nr += total_scan; 261 } 262 up_read(&shrinker_rwsem); 263 return ret; 264 } 265 266 /* Called without lock on whether page is mapped, so answer is unstable */ 267 static inline int page_mapping_inuse(struct page *page) 268 { 269 struct address_space *mapping; 270 271 /* Page is in somebody's page tables. */ 272 if (page_mapped(page)) 273 return 1; 274 275 /* Be more reluctant to reclaim swapcache than pagecache */ 276 if (PageSwapCache(page)) 277 return 1; 278 279 mapping = page_mapping(page); 280 if (!mapping) 281 return 0; 282 283 /* File is mmap'd by somebody? */ 284 return mapping_mapped(mapping); 285 } 286 287 static inline int is_page_cache_freeable(struct page *page) 288 { 289 return page_count(page) - !!page_has_private(page) == 2; 290 } 291 292 static int may_write_to_queue(struct backing_dev_info *bdi) 293 { 294 if (current->flags & PF_SWAPWRITE) 295 return 1; 296 if (!bdi_write_congested(bdi)) 297 return 1; 298 if (bdi == current->backing_dev_info) 299 return 1; 300 return 0; 301 } 302 303 /* 304 * We detected a synchronous write error writing a page out. Probably 305 * -ENOSPC. We need to propagate that into the address_space for a subsequent 306 * fsync(), msync() or close(). 307 * 308 * The tricky part is that after writepage we cannot touch the mapping: nothing 309 * prevents it from being freed up. But we have a ref on the page and once 310 * that page is locked, the mapping is pinned. 311 * 312 * We're allowed to run sleeping lock_page() here because we know the caller has 313 * __GFP_FS. 314 */ 315 static void handle_write_error(struct address_space *mapping, 316 struct page *page, int error) 317 { 318 lock_page(page); 319 if (page_mapping(page) == mapping) 320 mapping_set_error(mapping, error); 321 unlock_page(page); 322 } 323 324 /* Request for sync pageout. */ 325 enum pageout_io { 326 PAGEOUT_IO_ASYNC, 327 PAGEOUT_IO_SYNC, 328 }; 329 330 /* possible outcome of pageout() */ 331 typedef enum { 332 /* failed to write page out, page is locked */ 333 PAGE_KEEP, 334 /* move page to the active list, page is locked */ 335 PAGE_ACTIVATE, 336 /* page has been sent to the disk successfully, page is unlocked */ 337 PAGE_SUCCESS, 338 /* page is clean and locked */ 339 PAGE_CLEAN, 340 } pageout_t; 341 342 /* 343 * pageout is called by shrink_page_list() for each dirty page. 344 * Calls ->writepage(). 345 */ 346 static pageout_t pageout(struct page *page, struct address_space *mapping, 347 enum pageout_io sync_writeback) 348 { 349 /* 350 * If the page is dirty, only perform writeback if that write 351 * will be non-blocking. To prevent this allocation from being 352 * stalled by pagecache activity. But note that there may be 353 * stalls if we need to run get_block(). We could test 354 * PagePrivate for that. 355 * 356 * If this process is currently in generic_file_write() against 357 * this page's queue, we can perform writeback even if that 358 * will block. 359 * 360 * If the page is swapcache, write it back even if that would 361 * block, for some throttling. This happens by accident, because 362 * swap_backing_dev_info is bust: it doesn't reflect the 363 * congestion state of the swapdevs. Easy to fix, if needed. 364 * See swapfile.c:page_queue_congested(). 365 */ 366 if (!is_page_cache_freeable(page)) 367 return PAGE_KEEP; 368 if (!mapping) { 369 /* 370 * Some data journaling orphaned pages can have 371 * page->mapping == NULL while being dirty with clean buffers. 372 */ 373 if (page_has_private(page)) { 374 if (try_to_free_buffers(page)) { 375 ClearPageDirty(page); 376 printk("%s: orphaned page\n", __func__); 377 return PAGE_CLEAN; 378 } 379 } 380 return PAGE_KEEP; 381 } 382 if (mapping->a_ops->writepage == NULL) 383 return PAGE_ACTIVATE; 384 if (!may_write_to_queue(mapping->backing_dev_info)) 385 return PAGE_KEEP; 386 387 if (clear_page_dirty_for_io(page)) { 388 int res; 389 struct writeback_control wbc = { 390 .sync_mode = WB_SYNC_NONE, 391 .nr_to_write = SWAP_CLUSTER_MAX, 392 .range_start = 0, 393 .range_end = LLONG_MAX, 394 .nonblocking = 1, 395 .for_reclaim = 1, 396 }; 397 398 SetPageReclaim(page); 399 res = mapping->a_ops->writepage(page, &wbc); 400 if (res < 0) 401 handle_write_error(mapping, page, res); 402 if (res == AOP_WRITEPAGE_ACTIVATE) { 403 ClearPageReclaim(page); 404 return PAGE_ACTIVATE; 405 } 406 407 /* 408 * Wait on writeback if requested to. This happens when 409 * direct reclaiming a large contiguous area and the 410 * first attempt to free a range of pages fails. 411 */ 412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 413 wait_on_page_writeback(page); 414 415 if (!PageWriteback(page)) { 416 /* synchronous write or broken a_ops? */ 417 ClearPageReclaim(page); 418 } 419 inc_zone_page_state(page, NR_VMSCAN_WRITE); 420 return PAGE_SUCCESS; 421 } 422 423 return PAGE_CLEAN; 424 } 425 426 /* 427 * Same as remove_mapping, but if the page is removed from the mapping, it 428 * gets returned with a refcount of 0. 429 */ 430 static int __remove_mapping(struct address_space *mapping, struct page *page) 431 { 432 BUG_ON(!PageLocked(page)); 433 BUG_ON(mapping != page_mapping(page)); 434 435 spin_lock_irq(&mapping->tree_lock); 436 /* 437 * The non racy check for a busy page. 438 * 439 * Must be careful with the order of the tests. When someone has 440 * a ref to the page, it may be possible that they dirty it then 441 * drop the reference. So if PageDirty is tested before page_count 442 * here, then the following race may occur: 443 * 444 * get_user_pages(&page); 445 * [user mapping goes away] 446 * write_to(page); 447 * !PageDirty(page) [good] 448 * SetPageDirty(page); 449 * put_page(page); 450 * !page_count(page) [good, discard it] 451 * 452 * [oops, our write_to data is lost] 453 * 454 * Reversing the order of the tests ensures such a situation cannot 455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 456 * load is not satisfied before that of page->_count. 457 * 458 * Note that if SetPageDirty is always performed via set_page_dirty, 459 * and thus under tree_lock, then this ordering is not required. 460 */ 461 if (!page_freeze_refs(page, 2)) 462 goto cannot_free; 463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 464 if (unlikely(PageDirty(page))) { 465 page_unfreeze_refs(page, 2); 466 goto cannot_free; 467 } 468 469 if (PageSwapCache(page)) { 470 swp_entry_t swap = { .val = page_private(page) }; 471 __delete_from_swap_cache(page); 472 spin_unlock_irq(&mapping->tree_lock); 473 mem_cgroup_uncharge_swapcache(page, swap); 474 swap_free(swap); 475 } else { 476 __remove_from_page_cache(page); 477 spin_unlock_irq(&mapping->tree_lock); 478 mem_cgroup_uncharge_cache_page(page); 479 } 480 481 return 1; 482 483 cannot_free: 484 spin_unlock_irq(&mapping->tree_lock); 485 return 0; 486 } 487 488 /* 489 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 490 * someone else has a ref on the page, abort and return 0. If it was 491 * successfully detached, return 1. Assumes the caller has a single ref on 492 * this page. 493 */ 494 int remove_mapping(struct address_space *mapping, struct page *page) 495 { 496 if (__remove_mapping(mapping, page)) { 497 /* 498 * Unfreezing the refcount with 1 rather than 2 effectively 499 * drops the pagecache ref for us without requiring another 500 * atomic operation. 501 */ 502 page_unfreeze_refs(page, 1); 503 return 1; 504 } 505 return 0; 506 } 507 508 /** 509 * putback_lru_page - put previously isolated page onto appropriate LRU list 510 * @page: page to be put back to appropriate lru list 511 * 512 * Add previously isolated @page to appropriate LRU list. 513 * Page may still be unevictable for other reasons. 514 * 515 * lru_lock must not be held, interrupts must be enabled. 516 */ 517 #ifdef CONFIG_UNEVICTABLE_LRU 518 void putback_lru_page(struct page *page) 519 { 520 int lru; 521 int active = !!TestClearPageActive(page); 522 int was_unevictable = PageUnevictable(page); 523 524 VM_BUG_ON(PageLRU(page)); 525 526 redo: 527 ClearPageUnevictable(page); 528 529 if (page_evictable(page, NULL)) { 530 /* 531 * For evictable pages, we can use the cache. 532 * In event of a race, worst case is we end up with an 533 * unevictable page on [in]active list. 534 * We know how to handle that. 535 */ 536 lru = active + page_is_file_cache(page); 537 lru_cache_add_lru(page, lru); 538 } else { 539 /* 540 * Put unevictable pages directly on zone's unevictable 541 * list. 542 */ 543 lru = LRU_UNEVICTABLE; 544 add_page_to_unevictable_list(page); 545 } 546 547 /* 548 * page's status can change while we move it among lru. If an evictable 549 * page is on unevictable list, it never be freed. To avoid that, 550 * check after we added it to the list, again. 551 */ 552 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 553 if (!isolate_lru_page(page)) { 554 put_page(page); 555 goto redo; 556 } 557 /* This means someone else dropped this page from LRU 558 * So, it will be freed or putback to LRU again. There is 559 * nothing to do here. 560 */ 561 } 562 563 if (was_unevictable && lru != LRU_UNEVICTABLE) 564 count_vm_event(UNEVICTABLE_PGRESCUED); 565 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 566 count_vm_event(UNEVICTABLE_PGCULLED); 567 568 put_page(page); /* drop ref from isolate */ 569 } 570 571 #else /* CONFIG_UNEVICTABLE_LRU */ 572 573 void putback_lru_page(struct page *page) 574 { 575 int lru; 576 VM_BUG_ON(PageLRU(page)); 577 578 lru = !!TestClearPageActive(page) + page_is_file_cache(page); 579 lru_cache_add_lru(page, lru); 580 put_page(page); 581 } 582 #endif /* CONFIG_UNEVICTABLE_LRU */ 583 584 585 /* 586 * shrink_page_list() returns the number of reclaimed pages 587 */ 588 static unsigned long shrink_page_list(struct list_head *page_list, 589 struct scan_control *sc, 590 enum pageout_io sync_writeback) 591 { 592 LIST_HEAD(ret_pages); 593 struct pagevec freed_pvec; 594 int pgactivate = 0; 595 unsigned long nr_reclaimed = 0; 596 597 cond_resched(); 598 599 pagevec_init(&freed_pvec, 1); 600 while (!list_empty(page_list)) { 601 struct address_space *mapping; 602 struct page *page; 603 int may_enter_fs; 604 int referenced; 605 606 cond_resched(); 607 608 page = lru_to_page(page_list); 609 list_del(&page->lru); 610 611 if (!trylock_page(page)) 612 goto keep; 613 614 VM_BUG_ON(PageActive(page)); 615 616 sc->nr_scanned++; 617 618 if (unlikely(!page_evictable(page, NULL))) 619 goto cull_mlocked; 620 621 if (!sc->may_unmap && page_mapped(page)) 622 goto keep_locked; 623 624 /* Double the slab pressure for mapped and swapcache pages */ 625 if (page_mapped(page) || PageSwapCache(page)) 626 sc->nr_scanned++; 627 628 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 629 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 630 631 if (PageWriteback(page)) { 632 /* 633 * Synchronous reclaim is performed in two passes, 634 * first an asynchronous pass over the list to 635 * start parallel writeback, and a second synchronous 636 * pass to wait for the IO to complete. Wait here 637 * for any page for which writeback has already 638 * started. 639 */ 640 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 641 wait_on_page_writeback(page); 642 else 643 goto keep_locked; 644 } 645 646 referenced = page_referenced(page, 1, sc->mem_cgroup); 647 /* In active use or really unfreeable? Activate it. */ 648 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 649 referenced && page_mapping_inuse(page)) 650 goto activate_locked; 651 652 /* 653 * Anonymous process memory has backing store? 654 * Try to allocate it some swap space here. 655 */ 656 if (PageAnon(page) && !PageSwapCache(page)) { 657 if (!(sc->gfp_mask & __GFP_IO)) 658 goto keep_locked; 659 if (!add_to_swap(page)) 660 goto activate_locked; 661 may_enter_fs = 1; 662 } 663 664 mapping = page_mapping(page); 665 666 /* 667 * The page is mapped into the page tables of one or more 668 * processes. Try to unmap it here. 669 */ 670 if (page_mapped(page) && mapping) { 671 switch (try_to_unmap(page, 0)) { 672 case SWAP_FAIL: 673 goto activate_locked; 674 case SWAP_AGAIN: 675 goto keep_locked; 676 case SWAP_MLOCK: 677 goto cull_mlocked; 678 case SWAP_SUCCESS: 679 ; /* try to free the page below */ 680 } 681 } 682 683 if (PageDirty(page)) { 684 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 685 goto keep_locked; 686 if (!may_enter_fs) 687 goto keep_locked; 688 if (!sc->may_writepage) 689 goto keep_locked; 690 691 /* Page is dirty, try to write it out here */ 692 switch (pageout(page, mapping, sync_writeback)) { 693 case PAGE_KEEP: 694 goto keep_locked; 695 case PAGE_ACTIVATE: 696 goto activate_locked; 697 case PAGE_SUCCESS: 698 if (PageWriteback(page) || PageDirty(page)) 699 goto keep; 700 /* 701 * A synchronous write - probably a ramdisk. Go 702 * ahead and try to reclaim the page. 703 */ 704 if (!trylock_page(page)) 705 goto keep; 706 if (PageDirty(page) || PageWriteback(page)) 707 goto keep_locked; 708 mapping = page_mapping(page); 709 case PAGE_CLEAN: 710 ; /* try to free the page below */ 711 } 712 } 713 714 /* 715 * If the page has buffers, try to free the buffer mappings 716 * associated with this page. If we succeed we try to free 717 * the page as well. 718 * 719 * We do this even if the page is PageDirty(). 720 * try_to_release_page() does not perform I/O, but it is 721 * possible for a page to have PageDirty set, but it is actually 722 * clean (all its buffers are clean). This happens if the 723 * buffers were written out directly, with submit_bh(). ext3 724 * will do this, as well as the blockdev mapping. 725 * try_to_release_page() will discover that cleanness and will 726 * drop the buffers and mark the page clean - it can be freed. 727 * 728 * Rarely, pages can have buffers and no ->mapping. These are 729 * the pages which were not successfully invalidated in 730 * truncate_complete_page(). We try to drop those buffers here 731 * and if that worked, and the page is no longer mapped into 732 * process address space (page_count == 1) it can be freed. 733 * Otherwise, leave the page on the LRU so it is swappable. 734 */ 735 if (page_has_private(page)) { 736 if (!try_to_release_page(page, sc->gfp_mask)) 737 goto activate_locked; 738 if (!mapping && page_count(page) == 1) { 739 unlock_page(page); 740 if (put_page_testzero(page)) 741 goto free_it; 742 else { 743 /* 744 * rare race with speculative reference. 745 * the speculative reference will free 746 * this page shortly, so we may 747 * increment nr_reclaimed here (and 748 * leave it off the LRU). 749 */ 750 nr_reclaimed++; 751 continue; 752 } 753 } 754 } 755 756 if (!mapping || !__remove_mapping(mapping, page)) 757 goto keep_locked; 758 759 /* 760 * At this point, we have no other references and there is 761 * no way to pick any more up (removed from LRU, removed 762 * from pagecache). Can use non-atomic bitops now (and 763 * we obviously don't have to worry about waking up a process 764 * waiting on the page lock, because there are no references. 765 */ 766 __clear_page_locked(page); 767 free_it: 768 nr_reclaimed++; 769 if (!pagevec_add(&freed_pvec, page)) { 770 __pagevec_free(&freed_pvec); 771 pagevec_reinit(&freed_pvec); 772 } 773 continue; 774 775 cull_mlocked: 776 if (PageSwapCache(page)) 777 try_to_free_swap(page); 778 unlock_page(page); 779 putback_lru_page(page); 780 continue; 781 782 activate_locked: 783 /* Not a candidate for swapping, so reclaim swap space. */ 784 if (PageSwapCache(page) && vm_swap_full()) 785 try_to_free_swap(page); 786 VM_BUG_ON(PageActive(page)); 787 SetPageActive(page); 788 pgactivate++; 789 keep_locked: 790 unlock_page(page); 791 keep: 792 list_add(&page->lru, &ret_pages); 793 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 794 } 795 list_splice(&ret_pages, page_list); 796 if (pagevec_count(&freed_pvec)) 797 __pagevec_free(&freed_pvec); 798 count_vm_events(PGACTIVATE, pgactivate); 799 return nr_reclaimed; 800 } 801 802 /* LRU Isolation modes. */ 803 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 804 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 805 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 806 807 /* 808 * Attempt to remove the specified page from its LRU. Only take this page 809 * if it is of the appropriate PageActive status. Pages which are being 810 * freed elsewhere are also ignored. 811 * 812 * page: page to consider 813 * mode: one of the LRU isolation modes defined above 814 * 815 * returns 0 on success, -ve errno on failure. 816 */ 817 int __isolate_lru_page(struct page *page, int mode, int file) 818 { 819 int ret = -EINVAL; 820 821 /* Only take pages on the LRU. */ 822 if (!PageLRU(page)) 823 return ret; 824 825 /* 826 * When checking the active state, we need to be sure we are 827 * dealing with comparible boolean values. Take the logical not 828 * of each. 829 */ 830 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 831 return ret; 832 833 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) 834 return ret; 835 836 /* 837 * When this function is being called for lumpy reclaim, we 838 * initially look into all LRU pages, active, inactive and 839 * unevictable; only give shrink_page_list evictable pages. 840 */ 841 if (PageUnevictable(page)) 842 return ret; 843 844 ret = -EBUSY; 845 846 if (likely(get_page_unless_zero(page))) { 847 /* 848 * Be careful not to clear PageLRU until after we're 849 * sure the page is not being freed elsewhere -- the 850 * page release code relies on it. 851 */ 852 ClearPageLRU(page); 853 ret = 0; 854 mem_cgroup_del_lru(page); 855 } 856 857 return ret; 858 } 859 860 /* 861 * zone->lru_lock is heavily contended. Some of the functions that 862 * shrink the lists perform better by taking out a batch of pages 863 * and working on them outside the LRU lock. 864 * 865 * For pagecache intensive workloads, this function is the hottest 866 * spot in the kernel (apart from copy_*_user functions). 867 * 868 * Appropriate locks must be held before calling this function. 869 * 870 * @nr_to_scan: The number of pages to look through on the list. 871 * @src: The LRU list to pull pages off. 872 * @dst: The temp list to put pages on to. 873 * @scanned: The number of pages that were scanned. 874 * @order: The caller's attempted allocation order 875 * @mode: One of the LRU isolation modes 876 * @file: True [1] if isolating file [!anon] pages 877 * 878 * returns how many pages were moved onto *@dst. 879 */ 880 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 881 struct list_head *src, struct list_head *dst, 882 unsigned long *scanned, int order, int mode, int file) 883 { 884 unsigned long nr_taken = 0; 885 unsigned long scan; 886 887 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 888 struct page *page; 889 unsigned long pfn; 890 unsigned long end_pfn; 891 unsigned long page_pfn; 892 int zone_id; 893 894 page = lru_to_page(src); 895 prefetchw_prev_lru_page(page, src, flags); 896 897 VM_BUG_ON(!PageLRU(page)); 898 899 switch (__isolate_lru_page(page, mode, file)) { 900 case 0: 901 list_move(&page->lru, dst); 902 nr_taken++; 903 break; 904 905 case -EBUSY: 906 /* else it is being freed elsewhere */ 907 list_move(&page->lru, src); 908 continue; 909 910 default: 911 BUG(); 912 } 913 914 if (!order) 915 continue; 916 917 /* 918 * Attempt to take all pages in the order aligned region 919 * surrounding the tag page. Only take those pages of 920 * the same active state as that tag page. We may safely 921 * round the target page pfn down to the requested order 922 * as the mem_map is guarenteed valid out to MAX_ORDER, 923 * where that page is in a different zone we will detect 924 * it from its zone id and abort this block scan. 925 */ 926 zone_id = page_zone_id(page); 927 page_pfn = page_to_pfn(page); 928 pfn = page_pfn & ~((1 << order) - 1); 929 end_pfn = pfn + (1 << order); 930 for (; pfn < end_pfn; pfn++) { 931 struct page *cursor_page; 932 933 /* The target page is in the block, ignore it. */ 934 if (unlikely(pfn == page_pfn)) 935 continue; 936 937 /* Avoid holes within the zone. */ 938 if (unlikely(!pfn_valid_within(pfn))) 939 break; 940 941 cursor_page = pfn_to_page(pfn); 942 943 /* Check that we have not crossed a zone boundary. */ 944 if (unlikely(page_zone_id(cursor_page) != zone_id)) 945 continue; 946 switch (__isolate_lru_page(cursor_page, mode, file)) { 947 case 0: 948 list_move(&cursor_page->lru, dst); 949 nr_taken++; 950 scan++; 951 break; 952 953 case -EBUSY: 954 /* else it is being freed elsewhere */ 955 list_move(&cursor_page->lru, src); 956 default: 957 break; /* ! on LRU or wrong list */ 958 } 959 } 960 } 961 962 *scanned = scan; 963 return nr_taken; 964 } 965 966 static unsigned long isolate_pages_global(unsigned long nr, 967 struct list_head *dst, 968 unsigned long *scanned, int order, 969 int mode, struct zone *z, 970 struct mem_cgroup *mem_cont, 971 int active, int file) 972 { 973 int lru = LRU_BASE; 974 if (active) 975 lru += LRU_ACTIVE; 976 if (file) 977 lru += LRU_FILE; 978 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 979 mode, !!file); 980 } 981 982 /* 983 * clear_active_flags() is a helper for shrink_active_list(), clearing 984 * any active bits from the pages in the list. 985 */ 986 static unsigned long clear_active_flags(struct list_head *page_list, 987 unsigned int *count) 988 { 989 int nr_active = 0; 990 int lru; 991 struct page *page; 992 993 list_for_each_entry(page, page_list, lru) { 994 lru = page_is_file_cache(page); 995 if (PageActive(page)) { 996 lru += LRU_ACTIVE; 997 ClearPageActive(page); 998 nr_active++; 999 } 1000 count[lru]++; 1001 } 1002 1003 return nr_active; 1004 } 1005 1006 /** 1007 * isolate_lru_page - tries to isolate a page from its LRU list 1008 * @page: page to isolate from its LRU list 1009 * 1010 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1011 * vmstat statistic corresponding to whatever LRU list the page was on. 1012 * 1013 * Returns 0 if the page was removed from an LRU list. 1014 * Returns -EBUSY if the page was not on an LRU list. 1015 * 1016 * The returned page will have PageLRU() cleared. If it was found on 1017 * the active list, it will have PageActive set. If it was found on 1018 * the unevictable list, it will have the PageUnevictable bit set. That flag 1019 * may need to be cleared by the caller before letting the page go. 1020 * 1021 * The vmstat statistic corresponding to the list on which the page was 1022 * found will be decremented. 1023 * 1024 * Restrictions: 1025 * (1) Must be called with an elevated refcount on the page. This is a 1026 * fundamentnal difference from isolate_lru_pages (which is called 1027 * without a stable reference). 1028 * (2) the lru_lock must not be held. 1029 * (3) interrupts must be enabled. 1030 */ 1031 int isolate_lru_page(struct page *page) 1032 { 1033 int ret = -EBUSY; 1034 1035 if (PageLRU(page)) { 1036 struct zone *zone = page_zone(page); 1037 1038 spin_lock_irq(&zone->lru_lock); 1039 if (PageLRU(page) && get_page_unless_zero(page)) { 1040 int lru = page_lru(page); 1041 ret = 0; 1042 ClearPageLRU(page); 1043 1044 del_page_from_lru_list(zone, page, lru); 1045 } 1046 spin_unlock_irq(&zone->lru_lock); 1047 } 1048 return ret; 1049 } 1050 1051 /* 1052 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1053 * of reclaimed pages 1054 */ 1055 static unsigned long shrink_inactive_list(unsigned long max_scan, 1056 struct zone *zone, struct scan_control *sc, 1057 int priority, int file) 1058 { 1059 LIST_HEAD(page_list); 1060 struct pagevec pvec; 1061 unsigned long nr_scanned = 0; 1062 unsigned long nr_reclaimed = 0; 1063 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1064 1065 pagevec_init(&pvec, 1); 1066 1067 lru_add_drain(); 1068 spin_lock_irq(&zone->lru_lock); 1069 do { 1070 struct page *page; 1071 unsigned long nr_taken; 1072 unsigned long nr_scan; 1073 unsigned long nr_freed; 1074 unsigned long nr_active; 1075 unsigned int count[NR_LRU_LISTS] = { 0, }; 1076 int mode = ISOLATE_INACTIVE; 1077 1078 /* 1079 * If we need a large contiguous chunk of memory, or have 1080 * trouble getting a small set of contiguous pages, we 1081 * will reclaim both active and inactive pages. 1082 * 1083 * We use the same threshold as pageout congestion_wait below. 1084 */ 1085 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1086 mode = ISOLATE_BOTH; 1087 else if (sc->order && priority < DEF_PRIORITY - 2) 1088 mode = ISOLATE_BOTH; 1089 1090 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 1091 &page_list, &nr_scan, sc->order, mode, 1092 zone, sc->mem_cgroup, 0, file); 1093 nr_active = clear_active_flags(&page_list, count); 1094 __count_vm_events(PGDEACTIVATE, nr_active); 1095 1096 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1097 -count[LRU_ACTIVE_FILE]); 1098 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1099 -count[LRU_INACTIVE_FILE]); 1100 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1101 -count[LRU_ACTIVE_ANON]); 1102 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1103 -count[LRU_INACTIVE_ANON]); 1104 1105 if (scanning_global_lru(sc)) 1106 zone->pages_scanned += nr_scan; 1107 1108 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 1109 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 1110 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 1111 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 1112 1113 spin_unlock_irq(&zone->lru_lock); 1114 1115 nr_scanned += nr_scan; 1116 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1117 1118 /* 1119 * If we are direct reclaiming for contiguous pages and we do 1120 * not reclaim everything in the list, try again and wait 1121 * for IO to complete. This will stall high-order allocations 1122 * but that should be acceptable to the caller 1123 */ 1124 if (nr_freed < nr_taken && !current_is_kswapd() && 1125 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 1126 congestion_wait(WRITE, HZ/10); 1127 1128 /* 1129 * The attempt at page out may have made some 1130 * of the pages active, mark them inactive again. 1131 */ 1132 nr_active = clear_active_flags(&page_list, count); 1133 count_vm_events(PGDEACTIVATE, nr_active); 1134 1135 nr_freed += shrink_page_list(&page_list, sc, 1136 PAGEOUT_IO_SYNC); 1137 } 1138 1139 nr_reclaimed += nr_freed; 1140 local_irq_disable(); 1141 if (current_is_kswapd()) { 1142 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 1143 __count_vm_events(KSWAPD_STEAL, nr_freed); 1144 } else if (scanning_global_lru(sc)) 1145 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 1146 1147 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1148 1149 if (nr_taken == 0) 1150 goto done; 1151 1152 spin_lock(&zone->lru_lock); 1153 /* 1154 * Put back any unfreeable pages. 1155 */ 1156 while (!list_empty(&page_list)) { 1157 int lru; 1158 page = lru_to_page(&page_list); 1159 VM_BUG_ON(PageLRU(page)); 1160 list_del(&page->lru); 1161 if (unlikely(!page_evictable(page, NULL))) { 1162 spin_unlock_irq(&zone->lru_lock); 1163 putback_lru_page(page); 1164 spin_lock_irq(&zone->lru_lock); 1165 continue; 1166 } 1167 SetPageLRU(page); 1168 lru = page_lru(page); 1169 add_page_to_lru_list(zone, page, lru); 1170 if (PageActive(page)) { 1171 int file = !!page_is_file_cache(page); 1172 reclaim_stat->recent_rotated[file]++; 1173 } 1174 if (!pagevec_add(&pvec, page)) { 1175 spin_unlock_irq(&zone->lru_lock); 1176 __pagevec_release(&pvec); 1177 spin_lock_irq(&zone->lru_lock); 1178 } 1179 } 1180 } while (nr_scanned < max_scan); 1181 spin_unlock(&zone->lru_lock); 1182 done: 1183 local_irq_enable(); 1184 pagevec_release(&pvec); 1185 return nr_reclaimed; 1186 } 1187 1188 /* 1189 * We are about to scan this zone at a certain priority level. If that priority 1190 * level is smaller (ie: more urgent) than the previous priority, then note 1191 * that priority level within the zone. This is done so that when the next 1192 * process comes in to scan this zone, it will immediately start out at this 1193 * priority level rather than having to build up its own scanning priority. 1194 * Here, this priority affects only the reclaim-mapped threshold. 1195 */ 1196 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1197 { 1198 if (priority < zone->prev_priority) 1199 zone->prev_priority = priority; 1200 } 1201 1202 /* 1203 * This moves pages from the active list to the inactive list. 1204 * 1205 * We move them the other way if the page is referenced by one or more 1206 * processes, from rmap. 1207 * 1208 * If the pages are mostly unmapped, the processing is fast and it is 1209 * appropriate to hold zone->lru_lock across the whole operation. But if 1210 * the pages are mapped, the processing is slow (page_referenced()) so we 1211 * should drop zone->lru_lock around each page. It's impossible to balance 1212 * this, so instead we remove the pages from the LRU while processing them. 1213 * It is safe to rely on PG_active against the non-LRU pages in here because 1214 * nobody will play with that bit on a non-LRU page. 1215 * 1216 * The downside is that we have to touch page->_count against each page. 1217 * But we had to alter page->flags anyway. 1218 */ 1219 1220 1221 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1222 struct scan_control *sc, int priority, int file) 1223 { 1224 unsigned long pgmoved; 1225 int pgdeactivate = 0; 1226 unsigned long pgscanned; 1227 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1228 LIST_HEAD(l_inactive); 1229 struct page *page; 1230 struct pagevec pvec; 1231 enum lru_list lru; 1232 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1233 1234 lru_add_drain(); 1235 spin_lock_irq(&zone->lru_lock); 1236 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1237 ISOLATE_ACTIVE, zone, 1238 sc->mem_cgroup, 1, file); 1239 /* 1240 * zone->pages_scanned is used for detect zone's oom 1241 * mem_cgroup remembers nr_scan by itself. 1242 */ 1243 if (scanning_global_lru(sc)) { 1244 zone->pages_scanned += pgscanned; 1245 } 1246 reclaim_stat->recent_scanned[!!file] += pgmoved; 1247 1248 if (file) 1249 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); 1250 else 1251 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); 1252 spin_unlock_irq(&zone->lru_lock); 1253 1254 pgmoved = 0; 1255 while (!list_empty(&l_hold)) { 1256 cond_resched(); 1257 page = lru_to_page(&l_hold); 1258 list_del(&page->lru); 1259 1260 if (unlikely(!page_evictable(page, NULL))) { 1261 putback_lru_page(page); 1262 continue; 1263 } 1264 1265 /* page_referenced clears PageReferenced */ 1266 if (page_mapping_inuse(page) && 1267 page_referenced(page, 0, sc->mem_cgroup)) 1268 pgmoved++; 1269 1270 list_add(&page->lru, &l_inactive); 1271 } 1272 1273 /* 1274 * Move the pages to the [file or anon] inactive list. 1275 */ 1276 pagevec_init(&pvec, 1); 1277 lru = LRU_BASE + file * LRU_FILE; 1278 1279 spin_lock_irq(&zone->lru_lock); 1280 /* 1281 * Count referenced pages from currently used mappings as 1282 * rotated, even though they are moved to the inactive list. 1283 * This helps balance scan pressure between file and anonymous 1284 * pages in get_scan_ratio. 1285 */ 1286 reclaim_stat->recent_rotated[!!file] += pgmoved; 1287 1288 pgmoved = 0; 1289 while (!list_empty(&l_inactive)) { 1290 page = lru_to_page(&l_inactive); 1291 prefetchw_prev_lru_page(page, &l_inactive, flags); 1292 VM_BUG_ON(PageLRU(page)); 1293 SetPageLRU(page); 1294 VM_BUG_ON(!PageActive(page)); 1295 ClearPageActive(page); 1296 1297 list_move(&page->lru, &zone->lru[lru].list); 1298 mem_cgroup_add_lru_list(page, lru); 1299 pgmoved++; 1300 if (!pagevec_add(&pvec, page)) { 1301 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1302 spin_unlock_irq(&zone->lru_lock); 1303 pgdeactivate += pgmoved; 1304 pgmoved = 0; 1305 if (buffer_heads_over_limit) 1306 pagevec_strip(&pvec); 1307 __pagevec_release(&pvec); 1308 spin_lock_irq(&zone->lru_lock); 1309 } 1310 } 1311 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1312 pgdeactivate += pgmoved; 1313 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1314 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1315 spin_unlock_irq(&zone->lru_lock); 1316 if (buffer_heads_over_limit) 1317 pagevec_strip(&pvec); 1318 pagevec_release(&pvec); 1319 } 1320 1321 static int inactive_anon_is_low_global(struct zone *zone) 1322 { 1323 unsigned long active, inactive; 1324 1325 active = zone_page_state(zone, NR_ACTIVE_ANON); 1326 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1327 1328 if (inactive * zone->inactive_ratio < active) 1329 return 1; 1330 1331 return 0; 1332 } 1333 1334 /** 1335 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1336 * @zone: zone to check 1337 * @sc: scan control of this context 1338 * 1339 * Returns true if the zone does not have enough inactive anon pages, 1340 * meaning some active anon pages need to be deactivated. 1341 */ 1342 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1343 { 1344 int low; 1345 1346 if (scanning_global_lru(sc)) 1347 low = inactive_anon_is_low_global(zone); 1348 else 1349 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1350 return low; 1351 } 1352 1353 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1354 struct zone *zone, struct scan_control *sc, int priority) 1355 { 1356 int file = is_file_lru(lru); 1357 1358 if (lru == LRU_ACTIVE_FILE) { 1359 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1360 return 0; 1361 } 1362 1363 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) { 1364 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1365 return 0; 1366 } 1367 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1368 } 1369 1370 /* 1371 * Determine how aggressively the anon and file LRU lists should be 1372 * scanned. The relative value of each set of LRU lists is determined 1373 * by looking at the fraction of the pages scanned we did rotate back 1374 * onto the active list instead of evict. 1375 * 1376 * percent[0] specifies how much pressure to put on ram/swap backed 1377 * memory, while percent[1] determines pressure on the file LRUs. 1378 */ 1379 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1380 unsigned long *percent) 1381 { 1382 unsigned long anon, file, free; 1383 unsigned long anon_prio, file_prio; 1384 unsigned long ap, fp; 1385 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1386 1387 /* If we have no swap space, do not bother scanning anon pages. */ 1388 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1389 percent[0] = 0; 1390 percent[1] = 100; 1391 return; 1392 } 1393 1394 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) + 1395 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON); 1396 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) + 1397 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE); 1398 1399 if (scanning_global_lru(sc)) { 1400 free = zone_page_state(zone, NR_FREE_PAGES); 1401 /* If we have very few page cache pages, 1402 force-scan anon pages. */ 1403 if (unlikely(file + free <= zone->pages_high)) { 1404 percent[0] = 100; 1405 percent[1] = 0; 1406 return; 1407 } 1408 } 1409 1410 /* 1411 * OK, so we have swap space and a fair amount of page cache 1412 * pages. We use the recently rotated / recently scanned 1413 * ratios to determine how valuable each cache is. 1414 * 1415 * Because workloads change over time (and to avoid overflow) 1416 * we keep these statistics as a floating average, which ends 1417 * up weighing recent references more than old ones. 1418 * 1419 * anon in [0], file in [1] 1420 */ 1421 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1422 spin_lock_irq(&zone->lru_lock); 1423 reclaim_stat->recent_scanned[0] /= 2; 1424 reclaim_stat->recent_rotated[0] /= 2; 1425 spin_unlock_irq(&zone->lru_lock); 1426 } 1427 1428 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1429 spin_lock_irq(&zone->lru_lock); 1430 reclaim_stat->recent_scanned[1] /= 2; 1431 reclaim_stat->recent_rotated[1] /= 2; 1432 spin_unlock_irq(&zone->lru_lock); 1433 } 1434 1435 /* 1436 * With swappiness at 100, anonymous and file have the same priority. 1437 * This scanning priority is essentially the inverse of IO cost. 1438 */ 1439 anon_prio = sc->swappiness; 1440 file_prio = 200 - sc->swappiness; 1441 1442 /* 1443 * The amount of pressure on anon vs file pages is inversely 1444 * proportional to the fraction of recently scanned pages on 1445 * each list that were recently referenced and in active use. 1446 */ 1447 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1448 ap /= reclaim_stat->recent_rotated[0] + 1; 1449 1450 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1451 fp /= reclaim_stat->recent_rotated[1] + 1; 1452 1453 /* Normalize to percentages */ 1454 percent[0] = 100 * ap / (ap + fp + 1); 1455 percent[1] = 100 - percent[0]; 1456 } 1457 1458 1459 /* 1460 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1461 */ 1462 static void shrink_zone(int priority, struct zone *zone, 1463 struct scan_control *sc) 1464 { 1465 unsigned long nr[NR_LRU_LISTS]; 1466 unsigned long nr_to_scan; 1467 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1468 enum lru_list l; 1469 unsigned long nr_reclaimed = sc->nr_reclaimed; 1470 unsigned long swap_cluster_max = sc->swap_cluster_max; 1471 1472 get_scan_ratio(zone, sc, percent); 1473 1474 for_each_evictable_lru(l) { 1475 int file = is_file_lru(l); 1476 unsigned long scan; 1477 1478 scan = zone_nr_pages(zone, sc, l); 1479 if (priority) { 1480 scan >>= priority; 1481 scan = (scan * percent[file]) / 100; 1482 } 1483 if (scanning_global_lru(sc)) { 1484 zone->lru[l].nr_scan += scan; 1485 nr[l] = zone->lru[l].nr_scan; 1486 if (nr[l] >= swap_cluster_max) 1487 zone->lru[l].nr_scan = 0; 1488 else 1489 nr[l] = 0; 1490 } else 1491 nr[l] = scan; 1492 } 1493 1494 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1495 nr[LRU_INACTIVE_FILE]) { 1496 for_each_evictable_lru(l) { 1497 if (nr[l]) { 1498 nr_to_scan = min(nr[l], swap_cluster_max); 1499 nr[l] -= nr_to_scan; 1500 1501 nr_reclaimed += shrink_list(l, nr_to_scan, 1502 zone, sc, priority); 1503 } 1504 } 1505 /* 1506 * On large memory systems, scan >> priority can become 1507 * really large. This is fine for the starting priority; 1508 * we want to put equal scanning pressure on each zone. 1509 * However, if the VM has a harder time of freeing pages, 1510 * with multiple processes reclaiming pages, the total 1511 * freeing target can get unreasonably large. 1512 */ 1513 if (nr_reclaimed > swap_cluster_max && 1514 priority < DEF_PRIORITY && !current_is_kswapd()) 1515 break; 1516 } 1517 1518 sc->nr_reclaimed = nr_reclaimed; 1519 1520 /* 1521 * Even if we did not try to evict anon pages at all, we want to 1522 * rebalance the anon lru active/inactive ratio. 1523 */ 1524 if (inactive_anon_is_low(zone, sc)) 1525 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1526 1527 throttle_vm_writeout(sc->gfp_mask); 1528 } 1529 1530 /* 1531 * This is the direct reclaim path, for page-allocating processes. We only 1532 * try to reclaim pages from zones which will satisfy the caller's allocation 1533 * request. 1534 * 1535 * We reclaim from a zone even if that zone is over pages_high. Because: 1536 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1537 * allocation or 1538 * b) The zones may be over pages_high but they must go *over* pages_high to 1539 * satisfy the `incremental min' zone defense algorithm. 1540 * 1541 * If a zone is deemed to be full of pinned pages then just give it a light 1542 * scan then give up on it. 1543 */ 1544 static void shrink_zones(int priority, struct zonelist *zonelist, 1545 struct scan_control *sc) 1546 { 1547 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1548 struct zoneref *z; 1549 struct zone *zone; 1550 1551 sc->all_unreclaimable = 1; 1552 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1553 sc->nodemask) { 1554 if (!populated_zone(zone)) 1555 continue; 1556 /* 1557 * Take care memory controller reclaiming has small influence 1558 * to global LRU. 1559 */ 1560 if (scanning_global_lru(sc)) { 1561 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1562 continue; 1563 note_zone_scanning_priority(zone, priority); 1564 1565 if (zone_is_all_unreclaimable(zone) && 1566 priority != DEF_PRIORITY) 1567 continue; /* Let kswapd poll it */ 1568 sc->all_unreclaimable = 0; 1569 } else { 1570 /* 1571 * Ignore cpuset limitation here. We just want to reduce 1572 * # of used pages by us regardless of memory shortage. 1573 */ 1574 sc->all_unreclaimable = 0; 1575 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1576 priority); 1577 } 1578 1579 shrink_zone(priority, zone, sc); 1580 } 1581 } 1582 1583 /* 1584 * This is the main entry point to direct page reclaim. 1585 * 1586 * If a full scan of the inactive list fails to free enough memory then we 1587 * are "out of memory" and something needs to be killed. 1588 * 1589 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1590 * high - the zone may be full of dirty or under-writeback pages, which this 1591 * caller can't do much about. We kick pdflush and take explicit naps in the 1592 * hope that some of these pages can be written. But if the allocating task 1593 * holds filesystem locks which prevent writeout this might not work, and the 1594 * allocation attempt will fail. 1595 * 1596 * returns: 0, if no pages reclaimed 1597 * else, the number of pages reclaimed 1598 */ 1599 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1600 struct scan_control *sc) 1601 { 1602 int priority; 1603 unsigned long ret = 0; 1604 unsigned long total_scanned = 0; 1605 struct reclaim_state *reclaim_state = current->reclaim_state; 1606 unsigned long lru_pages = 0; 1607 struct zoneref *z; 1608 struct zone *zone; 1609 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1610 1611 delayacct_freepages_start(); 1612 1613 if (scanning_global_lru(sc)) 1614 count_vm_event(ALLOCSTALL); 1615 /* 1616 * mem_cgroup will not do shrink_slab. 1617 */ 1618 if (scanning_global_lru(sc)) { 1619 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1620 1621 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1622 continue; 1623 1624 lru_pages += zone_lru_pages(zone); 1625 } 1626 } 1627 1628 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1629 sc->nr_scanned = 0; 1630 if (!priority) 1631 disable_swap_token(); 1632 shrink_zones(priority, zonelist, sc); 1633 /* 1634 * Don't shrink slabs when reclaiming memory from 1635 * over limit cgroups 1636 */ 1637 if (scanning_global_lru(sc)) { 1638 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1639 if (reclaim_state) { 1640 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1641 reclaim_state->reclaimed_slab = 0; 1642 } 1643 } 1644 total_scanned += sc->nr_scanned; 1645 if (sc->nr_reclaimed >= sc->swap_cluster_max) { 1646 ret = sc->nr_reclaimed; 1647 goto out; 1648 } 1649 1650 /* 1651 * Try to write back as many pages as we just scanned. This 1652 * tends to cause slow streaming writers to write data to the 1653 * disk smoothly, at the dirtying rate, which is nice. But 1654 * that's undesirable in laptop mode, where we *want* lumpy 1655 * writeout. So in laptop mode, write out the whole world. 1656 */ 1657 if (total_scanned > sc->swap_cluster_max + 1658 sc->swap_cluster_max / 2) { 1659 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1660 sc->may_writepage = 1; 1661 } 1662 1663 /* Take a nap, wait for some writeback to complete */ 1664 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1665 congestion_wait(WRITE, HZ/10); 1666 } 1667 /* top priority shrink_zones still had more to do? don't OOM, then */ 1668 if (!sc->all_unreclaimable && scanning_global_lru(sc)) 1669 ret = sc->nr_reclaimed; 1670 out: 1671 /* 1672 * Now that we've scanned all the zones at this priority level, note 1673 * that level within the zone so that the next thread which performs 1674 * scanning of this zone will immediately start out at this priority 1675 * level. This affects only the decision whether or not to bring 1676 * mapped pages onto the inactive list. 1677 */ 1678 if (priority < 0) 1679 priority = 0; 1680 1681 if (scanning_global_lru(sc)) { 1682 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1683 1684 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1685 continue; 1686 1687 zone->prev_priority = priority; 1688 } 1689 } else 1690 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1691 1692 delayacct_freepages_end(); 1693 1694 return ret; 1695 } 1696 1697 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1698 gfp_t gfp_mask, nodemask_t *nodemask) 1699 { 1700 struct scan_control sc = { 1701 .gfp_mask = gfp_mask, 1702 .may_writepage = !laptop_mode, 1703 .swap_cluster_max = SWAP_CLUSTER_MAX, 1704 .may_unmap = 1, 1705 .may_swap = 1, 1706 .swappiness = vm_swappiness, 1707 .order = order, 1708 .mem_cgroup = NULL, 1709 .isolate_pages = isolate_pages_global, 1710 .nodemask = nodemask, 1711 }; 1712 1713 return do_try_to_free_pages(zonelist, &sc); 1714 } 1715 1716 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1717 1718 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1719 gfp_t gfp_mask, 1720 bool noswap, 1721 unsigned int swappiness) 1722 { 1723 struct scan_control sc = { 1724 .may_writepage = !laptop_mode, 1725 .may_unmap = 1, 1726 .may_swap = !noswap, 1727 .swap_cluster_max = SWAP_CLUSTER_MAX, 1728 .swappiness = swappiness, 1729 .order = 0, 1730 .mem_cgroup = mem_cont, 1731 .isolate_pages = mem_cgroup_isolate_pages, 1732 .nodemask = NULL, /* we don't care the placement */ 1733 }; 1734 struct zonelist *zonelist; 1735 1736 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1737 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1738 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1739 return do_try_to_free_pages(zonelist, &sc); 1740 } 1741 #endif 1742 1743 /* 1744 * For kswapd, balance_pgdat() will work across all this node's zones until 1745 * they are all at pages_high. 1746 * 1747 * Returns the number of pages which were actually freed. 1748 * 1749 * There is special handling here for zones which are full of pinned pages. 1750 * This can happen if the pages are all mlocked, or if they are all used by 1751 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1752 * What we do is to detect the case where all pages in the zone have been 1753 * scanned twice and there has been zero successful reclaim. Mark the zone as 1754 * dead and from now on, only perform a short scan. Basically we're polling 1755 * the zone for when the problem goes away. 1756 * 1757 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1758 * zones which have free_pages > pages_high, but once a zone is found to have 1759 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1760 * of the number of free pages in the lower zones. This interoperates with 1761 * the page allocator fallback scheme to ensure that aging of pages is balanced 1762 * across the zones. 1763 */ 1764 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1765 { 1766 int all_zones_ok; 1767 int priority; 1768 int i; 1769 unsigned long total_scanned; 1770 struct reclaim_state *reclaim_state = current->reclaim_state; 1771 struct scan_control sc = { 1772 .gfp_mask = GFP_KERNEL, 1773 .may_unmap = 1, 1774 .may_swap = 1, 1775 .swap_cluster_max = SWAP_CLUSTER_MAX, 1776 .swappiness = vm_swappiness, 1777 .order = order, 1778 .mem_cgroup = NULL, 1779 .isolate_pages = isolate_pages_global, 1780 }; 1781 /* 1782 * temp_priority is used to remember the scanning priority at which 1783 * this zone was successfully refilled to free_pages == pages_high. 1784 */ 1785 int temp_priority[MAX_NR_ZONES]; 1786 1787 loop_again: 1788 total_scanned = 0; 1789 sc.nr_reclaimed = 0; 1790 sc.may_writepage = !laptop_mode; 1791 count_vm_event(PAGEOUTRUN); 1792 1793 for (i = 0; i < pgdat->nr_zones; i++) 1794 temp_priority[i] = DEF_PRIORITY; 1795 1796 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1797 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1798 unsigned long lru_pages = 0; 1799 1800 /* The swap token gets in the way of swapout... */ 1801 if (!priority) 1802 disable_swap_token(); 1803 1804 all_zones_ok = 1; 1805 1806 /* 1807 * Scan in the highmem->dma direction for the highest 1808 * zone which needs scanning 1809 */ 1810 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1811 struct zone *zone = pgdat->node_zones + i; 1812 1813 if (!populated_zone(zone)) 1814 continue; 1815 1816 if (zone_is_all_unreclaimable(zone) && 1817 priority != DEF_PRIORITY) 1818 continue; 1819 1820 /* 1821 * Do some background aging of the anon list, to give 1822 * pages a chance to be referenced before reclaiming. 1823 */ 1824 if (inactive_anon_is_low(zone, &sc)) 1825 shrink_active_list(SWAP_CLUSTER_MAX, zone, 1826 &sc, priority, 0); 1827 1828 if (!zone_watermark_ok(zone, order, zone->pages_high, 1829 0, 0)) { 1830 end_zone = i; 1831 break; 1832 } 1833 } 1834 if (i < 0) 1835 goto out; 1836 1837 for (i = 0; i <= end_zone; i++) { 1838 struct zone *zone = pgdat->node_zones + i; 1839 1840 lru_pages += zone_lru_pages(zone); 1841 } 1842 1843 /* 1844 * Now scan the zone in the dma->highmem direction, stopping 1845 * at the last zone which needs scanning. 1846 * 1847 * We do this because the page allocator works in the opposite 1848 * direction. This prevents the page allocator from allocating 1849 * pages behind kswapd's direction of progress, which would 1850 * cause too much scanning of the lower zones. 1851 */ 1852 for (i = 0; i <= end_zone; i++) { 1853 struct zone *zone = pgdat->node_zones + i; 1854 int nr_slab; 1855 1856 if (!populated_zone(zone)) 1857 continue; 1858 1859 if (zone_is_all_unreclaimable(zone) && 1860 priority != DEF_PRIORITY) 1861 continue; 1862 1863 if (!zone_watermark_ok(zone, order, zone->pages_high, 1864 end_zone, 0)) 1865 all_zones_ok = 0; 1866 temp_priority[i] = priority; 1867 sc.nr_scanned = 0; 1868 note_zone_scanning_priority(zone, priority); 1869 /* 1870 * We put equal pressure on every zone, unless one 1871 * zone has way too many pages free already. 1872 */ 1873 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1874 end_zone, 0)) 1875 shrink_zone(priority, zone, &sc); 1876 reclaim_state->reclaimed_slab = 0; 1877 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1878 lru_pages); 1879 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 1880 total_scanned += sc.nr_scanned; 1881 if (zone_is_all_unreclaimable(zone)) 1882 continue; 1883 if (nr_slab == 0 && zone->pages_scanned >= 1884 (zone_lru_pages(zone) * 6)) 1885 zone_set_flag(zone, 1886 ZONE_ALL_UNRECLAIMABLE); 1887 /* 1888 * If we've done a decent amount of scanning and 1889 * the reclaim ratio is low, start doing writepage 1890 * even in laptop mode 1891 */ 1892 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1893 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 1894 sc.may_writepage = 1; 1895 } 1896 if (all_zones_ok) 1897 break; /* kswapd: all done */ 1898 /* 1899 * OK, kswapd is getting into trouble. Take a nap, then take 1900 * another pass across the zones. 1901 */ 1902 if (total_scanned && priority < DEF_PRIORITY - 2) 1903 congestion_wait(WRITE, HZ/10); 1904 1905 /* 1906 * We do this so kswapd doesn't build up large priorities for 1907 * example when it is freeing in parallel with allocators. It 1908 * matches the direct reclaim path behaviour in terms of impact 1909 * on zone->*_priority. 1910 */ 1911 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 1912 break; 1913 } 1914 out: 1915 /* 1916 * Note within each zone the priority level at which this zone was 1917 * brought into a happy state. So that the next thread which scans this 1918 * zone will start out at that priority level. 1919 */ 1920 for (i = 0; i < pgdat->nr_zones; i++) { 1921 struct zone *zone = pgdat->node_zones + i; 1922 1923 zone->prev_priority = temp_priority[i]; 1924 } 1925 if (!all_zones_ok) { 1926 cond_resched(); 1927 1928 try_to_freeze(); 1929 1930 /* 1931 * Fragmentation may mean that the system cannot be 1932 * rebalanced for high-order allocations in all zones. 1933 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 1934 * it means the zones have been fully scanned and are still 1935 * not balanced. For high-order allocations, there is 1936 * little point trying all over again as kswapd may 1937 * infinite loop. 1938 * 1939 * Instead, recheck all watermarks at order-0 as they 1940 * are the most important. If watermarks are ok, kswapd will go 1941 * back to sleep. High-order users can still perform direct 1942 * reclaim if they wish. 1943 */ 1944 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 1945 order = sc.order = 0; 1946 1947 goto loop_again; 1948 } 1949 1950 return sc.nr_reclaimed; 1951 } 1952 1953 /* 1954 * The background pageout daemon, started as a kernel thread 1955 * from the init process. 1956 * 1957 * This basically trickles out pages so that we have _some_ 1958 * free memory available even if there is no other activity 1959 * that frees anything up. This is needed for things like routing 1960 * etc, where we otherwise might have all activity going on in 1961 * asynchronous contexts that cannot page things out. 1962 * 1963 * If there are applications that are active memory-allocators 1964 * (most normal use), this basically shouldn't matter. 1965 */ 1966 static int kswapd(void *p) 1967 { 1968 unsigned long order; 1969 pg_data_t *pgdat = (pg_data_t*)p; 1970 struct task_struct *tsk = current; 1971 DEFINE_WAIT(wait); 1972 struct reclaim_state reclaim_state = { 1973 .reclaimed_slab = 0, 1974 }; 1975 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1976 1977 lockdep_set_current_reclaim_state(GFP_KERNEL); 1978 1979 if (!cpumask_empty(cpumask)) 1980 set_cpus_allowed_ptr(tsk, cpumask); 1981 current->reclaim_state = &reclaim_state; 1982 1983 /* 1984 * Tell the memory management that we're a "memory allocator", 1985 * and that if we need more memory we should get access to it 1986 * regardless (see "__alloc_pages()"). "kswapd" should 1987 * never get caught in the normal page freeing logic. 1988 * 1989 * (Kswapd normally doesn't need memory anyway, but sometimes 1990 * you need a small amount of memory in order to be able to 1991 * page out something else, and this flag essentially protects 1992 * us from recursively trying to free more memory as we're 1993 * trying to free the first piece of memory in the first place). 1994 */ 1995 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1996 set_freezable(); 1997 1998 order = 0; 1999 for ( ; ; ) { 2000 unsigned long new_order; 2001 2002 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2003 new_order = pgdat->kswapd_max_order; 2004 pgdat->kswapd_max_order = 0; 2005 if (order < new_order) { 2006 /* 2007 * Don't sleep if someone wants a larger 'order' 2008 * allocation 2009 */ 2010 order = new_order; 2011 } else { 2012 if (!freezing(current)) 2013 schedule(); 2014 2015 order = pgdat->kswapd_max_order; 2016 } 2017 finish_wait(&pgdat->kswapd_wait, &wait); 2018 2019 if (!try_to_freeze()) { 2020 /* We can speed up thawing tasks if we don't call 2021 * balance_pgdat after returning from the refrigerator 2022 */ 2023 balance_pgdat(pgdat, order); 2024 } 2025 } 2026 return 0; 2027 } 2028 2029 /* 2030 * A zone is low on free memory, so wake its kswapd task to service it. 2031 */ 2032 void wakeup_kswapd(struct zone *zone, int order) 2033 { 2034 pg_data_t *pgdat; 2035 2036 if (!populated_zone(zone)) 2037 return; 2038 2039 pgdat = zone->zone_pgdat; 2040 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 2041 return; 2042 if (pgdat->kswapd_max_order < order) 2043 pgdat->kswapd_max_order = order; 2044 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2045 return; 2046 if (!waitqueue_active(&pgdat->kswapd_wait)) 2047 return; 2048 wake_up_interruptible(&pgdat->kswapd_wait); 2049 } 2050 2051 unsigned long global_lru_pages(void) 2052 { 2053 return global_page_state(NR_ACTIVE_ANON) 2054 + global_page_state(NR_ACTIVE_FILE) 2055 + global_page_state(NR_INACTIVE_ANON) 2056 + global_page_state(NR_INACTIVE_FILE); 2057 } 2058 2059 #ifdef CONFIG_PM 2060 /* 2061 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 2062 * from LRU lists system-wide, for given pass and priority. 2063 * 2064 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 2065 */ 2066 static void shrink_all_zones(unsigned long nr_pages, int prio, 2067 int pass, struct scan_control *sc) 2068 { 2069 struct zone *zone; 2070 unsigned long nr_reclaimed = 0; 2071 2072 for_each_populated_zone(zone) { 2073 enum lru_list l; 2074 2075 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 2076 continue; 2077 2078 for_each_evictable_lru(l) { 2079 enum zone_stat_item ls = NR_LRU_BASE + l; 2080 unsigned long lru_pages = zone_page_state(zone, ls); 2081 2082 /* For pass = 0, we don't shrink the active list */ 2083 if (pass == 0 && (l == LRU_ACTIVE_ANON || 2084 l == LRU_ACTIVE_FILE)) 2085 continue; 2086 2087 zone->lru[l].nr_scan += (lru_pages >> prio) + 1; 2088 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) { 2089 unsigned long nr_to_scan; 2090 2091 zone->lru[l].nr_scan = 0; 2092 nr_to_scan = min(nr_pages, lru_pages); 2093 nr_reclaimed += shrink_list(l, nr_to_scan, zone, 2094 sc, prio); 2095 if (nr_reclaimed >= nr_pages) { 2096 sc->nr_reclaimed += nr_reclaimed; 2097 return; 2098 } 2099 } 2100 } 2101 } 2102 sc->nr_reclaimed += nr_reclaimed; 2103 } 2104 2105 /* 2106 * Try to free `nr_pages' of memory, system-wide, and return the number of 2107 * freed pages. 2108 * 2109 * Rather than trying to age LRUs the aim is to preserve the overall 2110 * LRU order by reclaiming preferentially 2111 * inactive > active > active referenced > active mapped 2112 */ 2113 unsigned long shrink_all_memory(unsigned long nr_pages) 2114 { 2115 unsigned long lru_pages, nr_slab; 2116 int pass; 2117 struct reclaim_state reclaim_state; 2118 struct scan_control sc = { 2119 .gfp_mask = GFP_KERNEL, 2120 .may_unmap = 0, 2121 .may_writepage = 1, 2122 .isolate_pages = isolate_pages_global, 2123 .nr_reclaimed = 0, 2124 }; 2125 2126 current->reclaim_state = &reclaim_state; 2127 2128 lru_pages = global_lru_pages(); 2129 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 2130 /* If slab caches are huge, it's better to hit them first */ 2131 while (nr_slab >= lru_pages) { 2132 reclaim_state.reclaimed_slab = 0; 2133 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 2134 if (!reclaim_state.reclaimed_slab) 2135 break; 2136 2137 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2138 if (sc.nr_reclaimed >= nr_pages) 2139 goto out; 2140 2141 nr_slab -= reclaim_state.reclaimed_slab; 2142 } 2143 2144 /* 2145 * We try to shrink LRUs in 5 passes: 2146 * 0 = Reclaim from inactive_list only 2147 * 1 = Reclaim from active list but don't reclaim mapped 2148 * 2 = 2nd pass of type 1 2149 * 3 = Reclaim mapped (normal reclaim) 2150 * 4 = 2nd pass of type 3 2151 */ 2152 for (pass = 0; pass < 5; pass++) { 2153 int prio; 2154 2155 /* Force reclaiming mapped pages in the passes #3 and #4 */ 2156 if (pass > 2) 2157 sc.may_unmap = 1; 2158 2159 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 2160 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed; 2161 2162 sc.nr_scanned = 0; 2163 sc.swap_cluster_max = nr_to_scan; 2164 shrink_all_zones(nr_to_scan, prio, pass, &sc); 2165 if (sc.nr_reclaimed >= nr_pages) 2166 goto out; 2167 2168 reclaim_state.reclaimed_slab = 0; 2169 shrink_slab(sc.nr_scanned, sc.gfp_mask, 2170 global_lru_pages()); 2171 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2172 if (sc.nr_reclaimed >= nr_pages) 2173 goto out; 2174 2175 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 2176 congestion_wait(WRITE, HZ / 10); 2177 } 2178 } 2179 2180 /* 2181 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be 2182 * something in slab caches 2183 */ 2184 if (!sc.nr_reclaimed) { 2185 do { 2186 reclaim_state.reclaimed_slab = 0; 2187 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); 2188 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2189 } while (sc.nr_reclaimed < nr_pages && 2190 reclaim_state.reclaimed_slab > 0); 2191 } 2192 2193 2194 out: 2195 current->reclaim_state = NULL; 2196 2197 return sc.nr_reclaimed; 2198 } 2199 #endif 2200 2201 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2202 not required for correctness. So if the last cpu in a node goes 2203 away, we get changed to run anywhere: as the first one comes back, 2204 restore their cpu bindings. */ 2205 static int __devinit cpu_callback(struct notifier_block *nfb, 2206 unsigned long action, void *hcpu) 2207 { 2208 int nid; 2209 2210 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2211 for_each_node_state(nid, N_HIGH_MEMORY) { 2212 pg_data_t *pgdat = NODE_DATA(nid); 2213 const struct cpumask *mask; 2214 2215 mask = cpumask_of_node(pgdat->node_id); 2216 2217 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2218 /* One of our CPUs online: restore mask */ 2219 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2220 } 2221 } 2222 return NOTIFY_OK; 2223 } 2224 2225 /* 2226 * This kswapd start function will be called by init and node-hot-add. 2227 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2228 */ 2229 int kswapd_run(int nid) 2230 { 2231 pg_data_t *pgdat = NODE_DATA(nid); 2232 int ret = 0; 2233 2234 if (pgdat->kswapd) 2235 return 0; 2236 2237 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2238 if (IS_ERR(pgdat->kswapd)) { 2239 /* failure at boot is fatal */ 2240 BUG_ON(system_state == SYSTEM_BOOTING); 2241 printk("Failed to start kswapd on node %d\n",nid); 2242 ret = -1; 2243 } 2244 return ret; 2245 } 2246 2247 static int __init kswapd_init(void) 2248 { 2249 int nid; 2250 2251 swap_setup(); 2252 for_each_node_state(nid, N_HIGH_MEMORY) 2253 kswapd_run(nid); 2254 hotcpu_notifier(cpu_callback, 0); 2255 return 0; 2256 } 2257 2258 module_init(kswapd_init) 2259 2260 #ifdef CONFIG_NUMA 2261 /* 2262 * Zone reclaim mode 2263 * 2264 * If non-zero call zone_reclaim when the number of free pages falls below 2265 * the watermarks. 2266 */ 2267 int zone_reclaim_mode __read_mostly; 2268 2269 #define RECLAIM_OFF 0 2270 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2271 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2272 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2273 2274 /* 2275 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2276 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2277 * a zone. 2278 */ 2279 #define ZONE_RECLAIM_PRIORITY 4 2280 2281 /* 2282 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2283 * occur. 2284 */ 2285 int sysctl_min_unmapped_ratio = 1; 2286 2287 /* 2288 * If the number of slab pages in a zone grows beyond this percentage then 2289 * slab reclaim needs to occur. 2290 */ 2291 int sysctl_min_slab_ratio = 5; 2292 2293 /* 2294 * Try to free up some pages from this zone through reclaim. 2295 */ 2296 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2297 { 2298 /* Minimum pages needed in order to stay on node */ 2299 const unsigned long nr_pages = 1 << order; 2300 struct task_struct *p = current; 2301 struct reclaim_state reclaim_state; 2302 int priority; 2303 struct scan_control sc = { 2304 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2305 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2306 .may_swap = 1, 2307 .swap_cluster_max = max_t(unsigned long, nr_pages, 2308 SWAP_CLUSTER_MAX), 2309 .gfp_mask = gfp_mask, 2310 .swappiness = vm_swappiness, 2311 .order = order, 2312 .isolate_pages = isolate_pages_global, 2313 }; 2314 unsigned long slab_reclaimable; 2315 2316 disable_swap_token(); 2317 cond_resched(); 2318 /* 2319 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2320 * and we also need to be able to write out pages for RECLAIM_WRITE 2321 * and RECLAIM_SWAP. 2322 */ 2323 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2324 reclaim_state.reclaimed_slab = 0; 2325 p->reclaim_state = &reclaim_state; 2326 2327 if (zone_page_state(zone, NR_FILE_PAGES) - 2328 zone_page_state(zone, NR_FILE_MAPPED) > 2329 zone->min_unmapped_pages) { 2330 /* 2331 * Free memory by calling shrink zone with increasing 2332 * priorities until we have enough memory freed. 2333 */ 2334 priority = ZONE_RECLAIM_PRIORITY; 2335 do { 2336 note_zone_scanning_priority(zone, priority); 2337 shrink_zone(priority, zone, &sc); 2338 priority--; 2339 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2340 } 2341 2342 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2343 if (slab_reclaimable > zone->min_slab_pages) { 2344 /* 2345 * shrink_slab() does not currently allow us to determine how 2346 * many pages were freed in this zone. So we take the current 2347 * number of slab pages and shake the slab until it is reduced 2348 * by the same nr_pages that we used for reclaiming unmapped 2349 * pages. 2350 * 2351 * Note that shrink_slab will free memory on all zones and may 2352 * take a long time. 2353 */ 2354 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2355 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2356 slab_reclaimable - nr_pages) 2357 ; 2358 2359 /* 2360 * Update nr_reclaimed by the number of slab pages we 2361 * reclaimed from this zone. 2362 */ 2363 sc.nr_reclaimed += slab_reclaimable - 2364 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2365 } 2366 2367 p->reclaim_state = NULL; 2368 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2369 return sc.nr_reclaimed >= nr_pages; 2370 } 2371 2372 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2373 { 2374 int node_id; 2375 int ret; 2376 2377 /* 2378 * Zone reclaim reclaims unmapped file backed pages and 2379 * slab pages if we are over the defined limits. 2380 * 2381 * A small portion of unmapped file backed pages is needed for 2382 * file I/O otherwise pages read by file I/O will be immediately 2383 * thrown out if the zone is overallocated. So we do not reclaim 2384 * if less than a specified percentage of the zone is used by 2385 * unmapped file backed pages. 2386 */ 2387 if (zone_page_state(zone, NR_FILE_PAGES) - 2388 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 2389 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 2390 <= zone->min_slab_pages) 2391 return 0; 2392 2393 if (zone_is_all_unreclaimable(zone)) 2394 return 0; 2395 2396 /* 2397 * Do not scan if the allocation should not be delayed. 2398 */ 2399 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2400 return 0; 2401 2402 /* 2403 * Only run zone reclaim on the local zone or on zones that do not 2404 * have associated processors. This will favor the local processor 2405 * over remote processors and spread off node memory allocations 2406 * as wide as possible. 2407 */ 2408 node_id = zone_to_nid(zone); 2409 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2410 return 0; 2411 2412 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2413 return 0; 2414 ret = __zone_reclaim(zone, gfp_mask, order); 2415 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2416 2417 return ret; 2418 } 2419 #endif 2420 2421 #ifdef CONFIG_UNEVICTABLE_LRU 2422 /* 2423 * page_evictable - test whether a page is evictable 2424 * @page: the page to test 2425 * @vma: the VMA in which the page is or will be mapped, may be NULL 2426 * 2427 * Test whether page is evictable--i.e., should be placed on active/inactive 2428 * lists vs unevictable list. The vma argument is !NULL when called from the 2429 * fault path to determine how to instantate a new page. 2430 * 2431 * Reasons page might not be evictable: 2432 * (1) page's mapping marked unevictable 2433 * (2) page is part of an mlocked VMA 2434 * 2435 */ 2436 int page_evictable(struct page *page, struct vm_area_struct *vma) 2437 { 2438 2439 if (mapping_unevictable(page_mapping(page))) 2440 return 0; 2441 2442 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2443 return 0; 2444 2445 return 1; 2446 } 2447 2448 /** 2449 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2450 * @page: page to check evictability and move to appropriate lru list 2451 * @zone: zone page is in 2452 * 2453 * Checks a page for evictability and moves the page to the appropriate 2454 * zone lru list. 2455 * 2456 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2457 * have PageUnevictable set. 2458 */ 2459 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2460 { 2461 VM_BUG_ON(PageActive(page)); 2462 2463 retry: 2464 ClearPageUnevictable(page); 2465 if (page_evictable(page, NULL)) { 2466 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page); 2467 2468 __dec_zone_state(zone, NR_UNEVICTABLE); 2469 list_move(&page->lru, &zone->lru[l].list); 2470 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2471 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2472 __count_vm_event(UNEVICTABLE_PGRESCUED); 2473 } else { 2474 /* 2475 * rotate unevictable list 2476 */ 2477 SetPageUnevictable(page); 2478 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2479 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2480 if (page_evictable(page, NULL)) 2481 goto retry; 2482 } 2483 } 2484 2485 /** 2486 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2487 * @mapping: struct address_space to scan for evictable pages 2488 * 2489 * Scan all pages in mapping. Check unevictable pages for 2490 * evictability and move them to the appropriate zone lru list. 2491 */ 2492 void scan_mapping_unevictable_pages(struct address_space *mapping) 2493 { 2494 pgoff_t next = 0; 2495 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2496 PAGE_CACHE_SHIFT; 2497 struct zone *zone; 2498 struct pagevec pvec; 2499 2500 if (mapping->nrpages == 0) 2501 return; 2502 2503 pagevec_init(&pvec, 0); 2504 while (next < end && 2505 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2506 int i; 2507 int pg_scanned = 0; 2508 2509 zone = NULL; 2510 2511 for (i = 0; i < pagevec_count(&pvec); i++) { 2512 struct page *page = pvec.pages[i]; 2513 pgoff_t page_index = page->index; 2514 struct zone *pagezone = page_zone(page); 2515 2516 pg_scanned++; 2517 if (page_index > next) 2518 next = page_index; 2519 next++; 2520 2521 if (pagezone != zone) { 2522 if (zone) 2523 spin_unlock_irq(&zone->lru_lock); 2524 zone = pagezone; 2525 spin_lock_irq(&zone->lru_lock); 2526 } 2527 2528 if (PageLRU(page) && PageUnevictable(page)) 2529 check_move_unevictable_page(page, zone); 2530 } 2531 if (zone) 2532 spin_unlock_irq(&zone->lru_lock); 2533 pagevec_release(&pvec); 2534 2535 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2536 } 2537 2538 } 2539 2540 /** 2541 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2542 * @zone - zone of which to scan the unevictable list 2543 * 2544 * Scan @zone's unevictable LRU lists to check for pages that have become 2545 * evictable. Move those that have to @zone's inactive list where they 2546 * become candidates for reclaim, unless shrink_inactive_zone() decides 2547 * to reactivate them. Pages that are still unevictable are rotated 2548 * back onto @zone's unevictable list. 2549 */ 2550 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2551 static void scan_zone_unevictable_pages(struct zone *zone) 2552 { 2553 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2554 unsigned long scan; 2555 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2556 2557 while (nr_to_scan > 0) { 2558 unsigned long batch_size = min(nr_to_scan, 2559 SCAN_UNEVICTABLE_BATCH_SIZE); 2560 2561 spin_lock_irq(&zone->lru_lock); 2562 for (scan = 0; scan < batch_size; scan++) { 2563 struct page *page = lru_to_page(l_unevictable); 2564 2565 if (!trylock_page(page)) 2566 continue; 2567 2568 prefetchw_prev_lru_page(page, l_unevictable, flags); 2569 2570 if (likely(PageLRU(page) && PageUnevictable(page))) 2571 check_move_unevictable_page(page, zone); 2572 2573 unlock_page(page); 2574 } 2575 spin_unlock_irq(&zone->lru_lock); 2576 2577 nr_to_scan -= batch_size; 2578 } 2579 } 2580 2581 2582 /** 2583 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2584 * 2585 * A really big hammer: scan all zones' unevictable LRU lists to check for 2586 * pages that have become evictable. Move those back to the zones' 2587 * inactive list where they become candidates for reclaim. 2588 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2589 * and we add swap to the system. As such, it runs in the context of a task 2590 * that has possibly/probably made some previously unevictable pages 2591 * evictable. 2592 */ 2593 static void scan_all_zones_unevictable_pages(void) 2594 { 2595 struct zone *zone; 2596 2597 for_each_zone(zone) { 2598 scan_zone_unevictable_pages(zone); 2599 } 2600 } 2601 2602 /* 2603 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2604 * all nodes' unevictable lists for evictable pages 2605 */ 2606 unsigned long scan_unevictable_pages; 2607 2608 int scan_unevictable_handler(struct ctl_table *table, int write, 2609 struct file *file, void __user *buffer, 2610 size_t *length, loff_t *ppos) 2611 { 2612 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 2613 2614 if (write && *(unsigned long *)table->data) 2615 scan_all_zones_unevictable_pages(); 2616 2617 scan_unevictable_pages = 0; 2618 return 0; 2619 } 2620 2621 /* 2622 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2623 * a specified node's per zone unevictable lists for evictable pages. 2624 */ 2625 2626 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2627 struct sysdev_attribute *attr, 2628 char *buf) 2629 { 2630 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2631 } 2632 2633 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2634 struct sysdev_attribute *attr, 2635 const char *buf, size_t count) 2636 { 2637 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2638 struct zone *zone; 2639 unsigned long res; 2640 unsigned long req = strict_strtoul(buf, 10, &res); 2641 2642 if (!req) 2643 return 1; /* zero is no-op */ 2644 2645 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2646 if (!populated_zone(zone)) 2647 continue; 2648 scan_zone_unevictable_pages(zone); 2649 } 2650 return 1; 2651 } 2652 2653 2654 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2655 read_scan_unevictable_node, 2656 write_scan_unevictable_node); 2657 2658 int scan_unevictable_register_node(struct node *node) 2659 { 2660 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2661 } 2662 2663 void scan_unevictable_unregister_node(struct node *node) 2664 { 2665 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2666 } 2667 2668 #endif 2669