xref: /openbmc/linux/mm/vmscan.c (revision 82ced6fd)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can mapped pages be reclaimed? */
64 	int may_unmap;
65 
66 	/* Can pages be swapped as part of reclaim? */
67 	int may_swap;
68 
69 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 	 * In this context, it doesn't matter that we scan the
72 	 * whole list at once. */
73 	int swap_cluster_max;
74 
75 	int swappiness;
76 
77 	int all_unreclaimable;
78 
79 	int order;
80 
81 	/* Which cgroup do we reclaim from */
82 	struct mem_cgroup *mem_cgroup;
83 
84 	/*
85 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 	 * are scanned.
87 	 */
88 	nodemask_t	*nodemask;
89 
90 	/* Pluggable isolate pages callback */
91 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 			unsigned long *scanned, int order, int mode,
93 			struct zone *z, struct mem_cgroup *mem_cont,
94 			int active, int file);
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc)	(1)
140 #endif
141 
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 						  struct scan_control *sc)
144 {
145 	if (!scanning_global_lru(sc))
146 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147 
148 	return &zone->reclaim_stat;
149 }
150 
151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 				   enum lru_list lru)
153 {
154 	if (!scanning_global_lru(sc))
155 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156 
157 	return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159 
160 
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 	shrinker->nr = 0;
167 	down_write(&shrinker_rwsem);
168 	list_add_tail(&shrinker->list, &shrinker_list);
169 	up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172 
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 	down_write(&shrinker_rwsem);
179 	list_del(&shrinker->list);
180 	up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183 
184 #define SHRINK_BATCH 128
185 /*
186  * Call the shrink functions to age shrinkable caches
187  *
188  * Here we assume it costs one seek to replace a lru page and that it also
189  * takes a seek to recreate a cache object.  With this in mind we age equal
190  * percentages of the lru and ageable caches.  This should balance the seeks
191  * generated by these structures.
192  *
193  * If the vm encountered mapped pages on the LRU it increase the pressure on
194  * slab to avoid swapping.
195  *
196  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197  *
198  * `lru_pages' represents the number of on-LRU pages in all the zones which
199  * are eligible for the caller's allocation attempt.  It is used for balancing
200  * slab reclaim versus page reclaim.
201  *
202  * Returns the number of slab objects which we shrunk.
203  */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 			unsigned long lru_pages)
206 {
207 	struct shrinker *shrinker;
208 	unsigned long ret = 0;
209 
210 	if (scanned == 0)
211 		scanned = SWAP_CLUSTER_MAX;
212 
213 	if (!down_read_trylock(&shrinker_rwsem))
214 		return 1;	/* Assume we'll be able to shrink next time */
215 
216 	list_for_each_entry(shrinker, &shrinker_list, list) {
217 		unsigned long long delta;
218 		unsigned long total_scan;
219 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220 
221 		delta = (4 * scanned) / shrinker->seeks;
222 		delta *= max_pass;
223 		do_div(delta, lru_pages + 1);
224 		shrinker->nr += delta;
225 		if (shrinker->nr < 0) {
226 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 			       "delete nr=%ld\n",
228 			       shrinker->shrink, shrinker->nr);
229 			shrinker->nr = max_pass;
230 		}
231 
232 		/*
233 		 * Avoid risking looping forever due to too large nr value:
234 		 * never try to free more than twice the estimate number of
235 		 * freeable entries.
236 		 */
237 		if (shrinker->nr > max_pass * 2)
238 			shrinker->nr = max_pass * 2;
239 
240 		total_scan = shrinker->nr;
241 		shrinker->nr = 0;
242 
243 		while (total_scan >= SHRINK_BATCH) {
244 			long this_scan = SHRINK_BATCH;
245 			int shrink_ret;
246 			int nr_before;
247 
248 			nr_before = (*shrinker->shrink)(0, gfp_mask);
249 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 			if (shrink_ret == -1)
251 				break;
252 			if (shrink_ret < nr_before)
253 				ret += nr_before - shrink_ret;
254 			count_vm_events(SLABS_SCANNED, this_scan);
255 			total_scan -= this_scan;
256 
257 			cond_resched();
258 		}
259 
260 		shrinker->nr += total_scan;
261 	}
262 	up_read(&shrinker_rwsem);
263 	return ret;
264 }
265 
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 	struct address_space *mapping;
270 
271 	/* Page is in somebody's page tables. */
272 	if (page_mapped(page))
273 		return 1;
274 
275 	/* Be more reluctant to reclaim swapcache than pagecache */
276 	if (PageSwapCache(page))
277 		return 1;
278 
279 	mapping = page_mapping(page);
280 	if (!mapping)
281 		return 0;
282 
283 	/* File is mmap'd by somebody? */
284 	return mapping_mapped(mapping);
285 }
286 
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 	return page_count(page) - !!page_has_private(page) == 2;
290 }
291 
292 static int may_write_to_queue(struct backing_dev_info *bdi)
293 {
294 	if (current->flags & PF_SWAPWRITE)
295 		return 1;
296 	if (!bdi_write_congested(bdi))
297 		return 1;
298 	if (bdi == current->backing_dev_info)
299 		return 1;
300 	return 0;
301 }
302 
303 /*
304  * We detected a synchronous write error writing a page out.  Probably
305  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
306  * fsync(), msync() or close().
307  *
308  * The tricky part is that after writepage we cannot touch the mapping: nothing
309  * prevents it from being freed up.  But we have a ref on the page and once
310  * that page is locked, the mapping is pinned.
311  *
312  * We're allowed to run sleeping lock_page() here because we know the caller has
313  * __GFP_FS.
314  */
315 static void handle_write_error(struct address_space *mapping,
316 				struct page *page, int error)
317 {
318 	lock_page(page);
319 	if (page_mapping(page) == mapping)
320 		mapping_set_error(mapping, error);
321 	unlock_page(page);
322 }
323 
324 /* Request for sync pageout. */
325 enum pageout_io {
326 	PAGEOUT_IO_ASYNC,
327 	PAGEOUT_IO_SYNC,
328 };
329 
330 /* possible outcome of pageout() */
331 typedef enum {
332 	/* failed to write page out, page is locked */
333 	PAGE_KEEP,
334 	/* move page to the active list, page is locked */
335 	PAGE_ACTIVATE,
336 	/* page has been sent to the disk successfully, page is unlocked */
337 	PAGE_SUCCESS,
338 	/* page is clean and locked */
339 	PAGE_CLEAN,
340 } pageout_t;
341 
342 /*
343  * pageout is called by shrink_page_list() for each dirty page.
344  * Calls ->writepage().
345  */
346 static pageout_t pageout(struct page *page, struct address_space *mapping,
347 						enum pageout_io sync_writeback)
348 {
349 	/*
350 	 * If the page is dirty, only perform writeback if that write
351 	 * will be non-blocking.  To prevent this allocation from being
352 	 * stalled by pagecache activity.  But note that there may be
353 	 * stalls if we need to run get_block().  We could test
354 	 * PagePrivate for that.
355 	 *
356 	 * If this process is currently in generic_file_write() against
357 	 * this page's queue, we can perform writeback even if that
358 	 * will block.
359 	 *
360 	 * If the page is swapcache, write it back even if that would
361 	 * block, for some throttling. This happens by accident, because
362 	 * swap_backing_dev_info is bust: it doesn't reflect the
363 	 * congestion state of the swapdevs.  Easy to fix, if needed.
364 	 * See swapfile.c:page_queue_congested().
365 	 */
366 	if (!is_page_cache_freeable(page))
367 		return PAGE_KEEP;
368 	if (!mapping) {
369 		/*
370 		 * Some data journaling orphaned pages can have
371 		 * page->mapping == NULL while being dirty with clean buffers.
372 		 */
373 		if (page_has_private(page)) {
374 			if (try_to_free_buffers(page)) {
375 				ClearPageDirty(page);
376 				printk("%s: orphaned page\n", __func__);
377 				return PAGE_CLEAN;
378 			}
379 		}
380 		return PAGE_KEEP;
381 	}
382 	if (mapping->a_ops->writepage == NULL)
383 		return PAGE_ACTIVATE;
384 	if (!may_write_to_queue(mapping->backing_dev_info))
385 		return PAGE_KEEP;
386 
387 	if (clear_page_dirty_for_io(page)) {
388 		int res;
389 		struct writeback_control wbc = {
390 			.sync_mode = WB_SYNC_NONE,
391 			.nr_to_write = SWAP_CLUSTER_MAX,
392 			.range_start = 0,
393 			.range_end = LLONG_MAX,
394 			.nonblocking = 1,
395 			.for_reclaim = 1,
396 		};
397 
398 		SetPageReclaim(page);
399 		res = mapping->a_ops->writepage(page, &wbc);
400 		if (res < 0)
401 			handle_write_error(mapping, page, res);
402 		if (res == AOP_WRITEPAGE_ACTIVATE) {
403 			ClearPageReclaim(page);
404 			return PAGE_ACTIVATE;
405 		}
406 
407 		/*
408 		 * Wait on writeback if requested to. This happens when
409 		 * direct reclaiming a large contiguous area and the
410 		 * first attempt to free a range of pages fails.
411 		 */
412 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 			wait_on_page_writeback(page);
414 
415 		if (!PageWriteback(page)) {
416 			/* synchronous write or broken a_ops? */
417 			ClearPageReclaim(page);
418 		}
419 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
420 		return PAGE_SUCCESS;
421 	}
422 
423 	return PAGE_CLEAN;
424 }
425 
426 /*
427  * Same as remove_mapping, but if the page is removed from the mapping, it
428  * gets returned with a refcount of 0.
429  */
430 static int __remove_mapping(struct address_space *mapping, struct page *page)
431 {
432 	BUG_ON(!PageLocked(page));
433 	BUG_ON(mapping != page_mapping(page));
434 
435 	spin_lock_irq(&mapping->tree_lock);
436 	/*
437 	 * The non racy check for a busy page.
438 	 *
439 	 * Must be careful with the order of the tests. When someone has
440 	 * a ref to the page, it may be possible that they dirty it then
441 	 * drop the reference. So if PageDirty is tested before page_count
442 	 * here, then the following race may occur:
443 	 *
444 	 * get_user_pages(&page);
445 	 * [user mapping goes away]
446 	 * write_to(page);
447 	 *				!PageDirty(page)    [good]
448 	 * SetPageDirty(page);
449 	 * put_page(page);
450 	 *				!page_count(page)   [good, discard it]
451 	 *
452 	 * [oops, our write_to data is lost]
453 	 *
454 	 * Reversing the order of the tests ensures such a situation cannot
455 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 	 * load is not satisfied before that of page->_count.
457 	 *
458 	 * Note that if SetPageDirty is always performed via set_page_dirty,
459 	 * and thus under tree_lock, then this ordering is not required.
460 	 */
461 	if (!page_freeze_refs(page, 2))
462 		goto cannot_free;
463 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 	if (unlikely(PageDirty(page))) {
465 		page_unfreeze_refs(page, 2);
466 		goto cannot_free;
467 	}
468 
469 	if (PageSwapCache(page)) {
470 		swp_entry_t swap = { .val = page_private(page) };
471 		__delete_from_swap_cache(page);
472 		spin_unlock_irq(&mapping->tree_lock);
473 		mem_cgroup_uncharge_swapcache(page, swap);
474 		swap_free(swap);
475 	} else {
476 		__remove_from_page_cache(page);
477 		spin_unlock_irq(&mapping->tree_lock);
478 		mem_cgroup_uncharge_cache_page(page);
479 	}
480 
481 	return 1;
482 
483 cannot_free:
484 	spin_unlock_irq(&mapping->tree_lock);
485 	return 0;
486 }
487 
488 /*
489  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
490  * someone else has a ref on the page, abort and return 0.  If it was
491  * successfully detached, return 1.  Assumes the caller has a single ref on
492  * this page.
493  */
494 int remove_mapping(struct address_space *mapping, struct page *page)
495 {
496 	if (__remove_mapping(mapping, page)) {
497 		/*
498 		 * Unfreezing the refcount with 1 rather than 2 effectively
499 		 * drops the pagecache ref for us without requiring another
500 		 * atomic operation.
501 		 */
502 		page_unfreeze_refs(page, 1);
503 		return 1;
504 	}
505 	return 0;
506 }
507 
508 /**
509  * putback_lru_page - put previously isolated page onto appropriate LRU list
510  * @page: page to be put back to appropriate lru list
511  *
512  * Add previously isolated @page to appropriate LRU list.
513  * Page may still be unevictable for other reasons.
514  *
515  * lru_lock must not be held, interrupts must be enabled.
516  */
517 #ifdef CONFIG_UNEVICTABLE_LRU
518 void putback_lru_page(struct page *page)
519 {
520 	int lru;
521 	int active = !!TestClearPageActive(page);
522 	int was_unevictable = PageUnevictable(page);
523 
524 	VM_BUG_ON(PageLRU(page));
525 
526 redo:
527 	ClearPageUnevictable(page);
528 
529 	if (page_evictable(page, NULL)) {
530 		/*
531 		 * For evictable pages, we can use the cache.
532 		 * In event of a race, worst case is we end up with an
533 		 * unevictable page on [in]active list.
534 		 * We know how to handle that.
535 		 */
536 		lru = active + page_is_file_cache(page);
537 		lru_cache_add_lru(page, lru);
538 	} else {
539 		/*
540 		 * Put unevictable pages directly on zone's unevictable
541 		 * list.
542 		 */
543 		lru = LRU_UNEVICTABLE;
544 		add_page_to_unevictable_list(page);
545 	}
546 
547 	/*
548 	 * page's status can change while we move it among lru. If an evictable
549 	 * page is on unevictable list, it never be freed. To avoid that,
550 	 * check after we added it to the list, again.
551 	 */
552 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
553 		if (!isolate_lru_page(page)) {
554 			put_page(page);
555 			goto redo;
556 		}
557 		/* This means someone else dropped this page from LRU
558 		 * So, it will be freed or putback to LRU again. There is
559 		 * nothing to do here.
560 		 */
561 	}
562 
563 	if (was_unevictable && lru != LRU_UNEVICTABLE)
564 		count_vm_event(UNEVICTABLE_PGRESCUED);
565 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
566 		count_vm_event(UNEVICTABLE_PGCULLED);
567 
568 	put_page(page);		/* drop ref from isolate */
569 }
570 
571 #else /* CONFIG_UNEVICTABLE_LRU */
572 
573 void putback_lru_page(struct page *page)
574 {
575 	int lru;
576 	VM_BUG_ON(PageLRU(page));
577 
578 	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
579 	lru_cache_add_lru(page, lru);
580 	put_page(page);
581 }
582 #endif /* CONFIG_UNEVICTABLE_LRU */
583 
584 
585 /*
586  * shrink_page_list() returns the number of reclaimed pages
587  */
588 static unsigned long shrink_page_list(struct list_head *page_list,
589 					struct scan_control *sc,
590 					enum pageout_io sync_writeback)
591 {
592 	LIST_HEAD(ret_pages);
593 	struct pagevec freed_pvec;
594 	int pgactivate = 0;
595 	unsigned long nr_reclaimed = 0;
596 
597 	cond_resched();
598 
599 	pagevec_init(&freed_pvec, 1);
600 	while (!list_empty(page_list)) {
601 		struct address_space *mapping;
602 		struct page *page;
603 		int may_enter_fs;
604 		int referenced;
605 
606 		cond_resched();
607 
608 		page = lru_to_page(page_list);
609 		list_del(&page->lru);
610 
611 		if (!trylock_page(page))
612 			goto keep;
613 
614 		VM_BUG_ON(PageActive(page));
615 
616 		sc->nr_scanned++;
617 
618 		if (unlikely(!page_evictable(page, NULL)))
619 			goto cull_mlocked;
620 
621 		if (!sc->may_unmap && page_mapped(page))
622 			goto keep_locked;
623 
624 		/* Double the slab pressure for mapped and swapcache pages */
625 		if (page_mapped(page) || PageSwapCache(page))
626 			sc->nr_scanned++;
627 
628 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
629 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
630 
631 		if (PageWriteback(page)) {
632 			/*
633 			 * Synchronous reclaim is performed in two passes,
634 			 * first an asynchronous pass over the list to
635 			 * start parallel writeback, and a second synchronous
636 			 * pass to wait for the IO to complete.  Wait here
637 			 * for any page for which writeback has already
638 			 * started.
639 			 */
640 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
641 				wait_on_page_writeback(page);
642 			else
643 				goto keep_locked;
644 		}
645 
646 		referenced = page_referenced(page, 1, sc->mem_cgroup);
647 		/* In active use or really unfreeable?  Activate it. */
648 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
649 					referenced && page_mapping_inuse(page))
650 			goto activate_locked;
651 
652 		/*
653 		 * Anonymous process memory has backing store?
654 		 * Try to allocate it some swap space here.
655 		 */
656 		if (PageAnon(page) && !PageSwapCache(page)) {
657 			if (!(sc->gfp_mask & __GFP_IO))
658 				goto keep_locked;
659 			if (!add_to_swap(page))
660 				goto activate_locked;
661 			may_enter_fs = 1;
662 		}
663 
664 		mapping = page_mapping(page);
665 
666 		/*
667 		 * The page is mapped into the page tables of one or more
668 		 * processes. Try to unmap it here.
669 		 */
670 		if (page_mapped(page) && mapping) {
671 			switch (try_to_unmap(page, 0)) {
672 			case SWAP_FAIL:
673 				goto activate_locked;
674 			case SWAP_AGAIN:
675 				goto keep_locked;
676 			case SWAP_MLOCK:
677 				goto cull_mlocked;
678 			case SWAP_SUCCESS:
679 				; /* try to free the page below */
680 			}
681 		}
682 
683 		if (PageDirty(page)) {
684 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
685 				goto keep_locked;
686 			if (!may_enter_fs)
687 				goto keep_locked;
688 			if (!sc->may_writepage)
689 				goto keep_locked;
690 
691 			/* Page is dirty, try to write it out here */
692 			switch (pageout(page, mapping, sync_writeback)) {
693 			case PAGE_KEEP:
694 				goto keep_locked;
695 			case PAGE_ACTIVATE:
696 				goto activate_locked;
697 			case PAGE_SUCCESS:
698 				if (PageWriteback(page) || PageDirty(page))
699 					goto keep;
700 				/*
701 				 * A synchronous write - probably a ramdisk.  Go
702 				 * ahead and try to reclaim the page.
703 				 */
704 				if (!trylock_page(page))
705 					goto keep;
706 				if (PageDirty(page) || PageWriteback(page))
707 					goto keep_locked;
708 				mapping = page_mapping(page);
709 			case PAGE_CLEAN:
710 				; /* try to free the page below */
711 			}
712 		}
713 
714 		/*
715 		 * If the page has buffers, try to free the buffer mappings
716 		 * associated with this page. If we succeed we try to free
717 		 * the page as well.
718 		 *
719 		 * We do this even if the page is PageDirty().
720 		 * try_to_release_page() does not perform I/O, but it is
721 		 * possible for a page to have PageDirty set, but it is actually
722 		 * clean (all its buffers are clean).  This happens if the
723 		 * buffers were written out directly, with submit_bh(). ext3
724 		 * will do this, as well as the blockdev mapping.
725 		 * try_to_release_page() will discover that cleanness and will
726 		 * drop the buffers and mark the page clean - it can be freed.
727 		 *
728 		 * Rarely, pages can have buffers and no ->mapping.  These are
729 		 * the pages which were not successfully invalidated in
730 		 * truncate_complete_page().  We try to drop those buffers here
731 		 * and if that worked, and the page is no longer mapped into
732 		 * process address space (page_count == 1) it can be freed.
733 		 * Otherwise, leave the page on the LRU so it is swappable.
734 		 */
735 		if (page_has_private(page)) {
736 			if (!try_to_release_page(page, sc->gfp_mask))
737 				goto activate_locked;
738 			if (!mapping && page_count(page) == 1) {
739 				unlock_page(page);
740 				if (put_page_testzero(page))
741 					goto free_it;
742 				else {
743 					/*
744 					 * rare race with speculative reference.
745 					 * the speculative reference will free
746 					 * this page shortly, so we may
747 					 * increment nr_reclaimed here (and
748 					 * leave it off the LRU).
749 					 */
750 					nr_reclaimed++;
751 					continue;
752 				}
753 			}
754 		}
755 
756 		if (!mapping || !__remove_mapping(mapping, page))
757 			goto keep_locked;
758 
759 		/*
760 		 * At this point, we have no other references and there is
761 		 * no way to pick any more up (removed from LRU, removed
762 		 * from pagecache). Can use non-atomic bitops now (and
763 		 * we obviously don't have to worry about waking up a process
764 		 * waiting on the page lock, because there are no references.
765 		 */
766 		__clear_page_locked(page);
767 free_it:
768 		nr_reclaimed++;
769 		if (!pagevec_add(&freed_pvec, page)) {
770 			__pagevec_free(&freed_pvec);
771 			pagevec_reinit(&freed_pvec);
772 		}
773 		continue;
774 
775 cull_mlocked:
776 		if (PageSwapCache(page))
777 			try_to_free_swap(page);
778 		unlock_page(page);
779 		putback_lru_page(page);
780 		continue;
781 
782 activate_locked:
783 		/* Not a candidate for swapping, so reclaim swap space. */
784 		if (PageSwapCache(page) && vm_swap_full())
785 			try_to_free_swap(page);
786 		VM_BUG_ON(PageActive(page));
787 		SetPageActive(page);
788 		pgactivate++;
789 keep_locked:
790 		unlock_page(page);
791 keep:
792 		list_add(&page->lru, &ret_pages);
793 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
794 	}
795 	list_splice(&ret_pages, page_list);
796 	if (pagevec_count(&freed_pvec))
797 		__pagevec_free(&freed_pvec);
798 	count_vm_events(PGACTIVATE, pgactivate);
799 	return nr_reclaimed;
800 }
801 
802 /* LRU Isolation modes. */
803 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
804 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
805 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
806 
807 /*
808  * Attempt to remove the specified page from its LRU.  Only take this page
809  * if it is of the appropriate PageActive status.  Pages which are being
810  * freed elsewhere are also ignored.
811  *
812  * page:	page to consider
813  * mode:	one of the LRU isolation modes defined above
814  *
815  * returns 0 on success, -ve errno on failure.
816  */
817 int __isolate_lru_page(struct page *page, int mode, int file)
818 {
819 	int ret = -EINVAL;
820 
821 	/* Only take pages on the LRU. */
822 	if (!PageLRU(page))
823 		return ret;
824 
825 	/*
826 	 * When checking the active state, we need to be sure we are
827 	 * dealing with comparible boolean values.  Take the logical not
828 	 * of each.
829 	 */
830 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
831 		return ret;
832 
833 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
834 		return ret;
835 
836 	/*
837 	 * When this function is being called for lumpy reclaim, we
838 	 * initially look into all LRU pages, active, inactive and
839 	 * unevictable; only give shrink_page_list evictable pages.
840 	 */
841 	if (PageUnevictable(page))
842 		return ret;
843 
844 	ret = -EBUSY;
845 
846 	if (likely(get_page_unless_zero(page))) {
847 		/*
848 		 * Be careful not to clear PageLRU until after we're
849 		 * sure the page is not being freed elsewhere -- the
850 		 * page release code relies on it.
851 		 */
852 		ClearPageLRU(page);
853 		ret = 0;
854 		mem_cgroup_del_lru(page);
855 	}
856 
857 	return ret;
858 }
859 
860 /*
861  * zone->lru_lock is heavily contended.  Some of the functions that
862  * shrink the lists perform better by taking out a batch of pages
863  * and working on them outside the LRU lock.
864  *
865  * For pagecache intensive workloads, this function is the hottest
866  * spot in the kernel (apart from copy_*_user functions).
867  *
868  * Appropriate locks must be held before calling this function.
869  *
870  * @nr_to_scan:	The number of pages to look through on the list.
871  * @src:	The LRU list to pull pages off.
872  * @dst:	The temp list to put pages on to.
873  * @scanned:	The number of pages that were scanned.
874  * @order:	The caller's attempted allocation order
875  * @mode:	One of the LRU isolation modes
876  * @file:	True [1] if isolating file [!anon] pages
877  *
878  * returns how many pages were moved onto *@dst.
879  */
880 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
881 		struct list_head *src, struct list_head *dst,
882 		unsigned long *scanned, int order, int mode, int file)
883 {
884 	unsigned long nr_taken = 0;
885 	unsigned long scan;
886 
887 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
888 		struct page *page;
889 		unsigned long pfn;
890 		unsigned long end_pfn;
891 		unsigned long page_pfn;
892 		int zone_id;
893 
894 		page = lru_to_page(src);
895 		prefetchw_prev_lru_page(page, src, flags);
896 
897 		VM_BUG_ON(!PageLRU(page));
898 
899 		switch (__isolate_lru_page(page, mode, file)) {
900 		case 0:
901 			list_move(&page->lru, dst);
902 			nr_taken++;
903 			break;
904 
905 		case -EBUSY:
906 			/* else it is being freed elsewhere */
907 			list_move(&page->lru, src);
908 			continue;
909 
910 		default:
911 			BUG();
912 		}
913 
914 		if (!order)
915 			continue;
916 
917 		/*
918 		 * Attempt to take all pages in the order aligned region
919 		 * surrounding the tag page.  Only take those pages of
920 		 * the same active state as that tag page.  We may safely
921 		 * round the target page pfn down to the requested order
922 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
923 		 * where that page is in a different zone we will detect
924 		 * it from its zone id and abort this block scan.
925 		 */
926 		zone_id = page_zone_id(page);
927 		page_pfn = page_to_pfn(page);
928 		pfn = page_pfn & ~((1 << order) - 1);
929 		end_pfn = pfn + (1 << order);
930 		for (; pfn < end_pfn; pfn++) {
931 			struct page *cursor_page;
932 
933 			/* The target page is in the block, ignore it. */
934 			if (unlikely(pfn == page_pfn))
935 				continue;
936 
937 			/* Avoid holes within the zone. */
938 			if (unlikely(!pfn_valid_within(pfn)))
939 				break;
940 
941 			cursor_page = pfn_to_page(pfn);
942 
943 			/* Check that we have not crossed a zone boundary. */
944 			if (unlikely(page_zone_id(cursor_page) != zone_id))
945 				continue;
946 			switch (__isolate_lru_page(cursor_page, mode, file)) {
947 			case 0:
948 				list_move(&cursor_page->lru, dst);
949 				nr_taken++;
950 				scan++;
951 				break;
952 
953 			case -EBUSY:
954 				/* else it is being freed elsewhere */
955 				list_move(&cursor_page->lru, src);
956 			default:
957 				break;	/* ! on LRU or wrong list */
958 			}
959 		}
960 	}
961 
962 	*scanned = scan;
963 	return nr_taken;
964 }
965 
966 static unsigned long isolate_pages_global(unsigned long nr,
967 					struct list_head *dst,
968 					unsigned long *scanned, int order,
969 					int mode, struct zone *z,
970 					struct mem_cgroup *mem_cont,
971 					int active, int file)
972 {
973 	int lru = LRU_BASE;
974 	if (active)
975 		lru += LRU_ACTIVE;
976 	if (file)
977 		lru += LRU_FILE;
978 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
979 								mode, !!file);
980 }
981 
982 /*
983  * clear_active_flags() is a helper for shrink_active_list(), clearing
984  * any active bits from the pages in the list.
985  */
986 static unsigned long clear_active_flags(struct list_head *page_list,
987 					unsigned int *count)
988 {
989 	int nr_active = 0;
990 	int lru;
991 	struct page *page;
992 
993 	list_for_each_entry(page, page_list, lru) {
994 		lru = page_is_file_cache(page);
995 		if (PageActive(page)) {
996 			lru += LRU_ACTIVE;
997 			ClearPageActive(page);
998 			nr_active++;
999 		}
1000 		count[lru]++;
1001 	}
1002 
1003 	return nr_active;
1004 }
1005 
1006 /**
1007  * isolate_lru_page - tries to isolate a page from its LRU list
1008  * @page: page to isolate from its LRU list
1009  *
1010  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1011  * vmstat statistic corresponding to whatever LRU list the page was on.
1012  *
1013  * Returns 0 if the page was removed from an LRU list.
1014  * Returns -EBUSY if the page was not on an LRU list.
1015  *
1016  * The returned page will have PageLRU() cleared.  If it was found on
1017  * the active list, it will have PageActive set.  If it was found on
1018  * the unevictable list, it will have the PageUnevictable bit set. That flag
1019  * may need to be cleared by the caller before letting the page go.
1020  *
1021  * The vmstat statistic corresponding to the list on which the page was
1022  * found will be decremented.
1023  *
1024  * Restrictions:
1025  * (1) Must be called with an elevated refcount on the page. This is a
1026  *     fundamentnal difference from isolate_lru_pages (which is called
1027  *     without a stable reference).
1028  * (2) the lru_lock must not be held.
1029  * (3) interrupts must be enabled.
1030  */
1031 int isolate_lru_page(struct page *page)
1032 {
1033 	int ret = -EBUSY;
1034 
1035 	if (PageLRU(page)) {
1036 		struct zone *zone = page_zone(page);
1037 
1038 		spin_lock_irq(&zone->lru_lock);
1039 		if (PageLRU(page) && get_page_unless_zero(page)) {
1040 			int lru = page_lru(page);
1041 			ret = 0;
1042 			ClearPageLRU(page);
1043 
1044 			del_page_from_lru_list(zone, page, lru);
1045 		}
1046 		spin_unlock_irq(&zone->lru_lock);
1047 	}
1048 	return ret;
1049 }
1050 
1051 /*
1052  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1053  * of reclaimed pages
1054  */
1055 static unsigned long shrink_inactive_list(unsigned long max_scan,
1056 			struct zone *zone, struct scan_control *sc,
1057 			int priority, int file)
1058 {
1059 	LIST_HEAD(page_list);
1060 	struct pagevec pvec;
1061 	unsigned long nr_scanned = 0;
1062 	unsigned long nr_reclaimed = 0;
1063 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1064 
1065 	pagevec_init(&pvec, 1);
1066 
1067 	lru_add_drain();
1068 	spin_lock_irq(&zone->lru_lock);
1069 	do {
1070 		struct page *page;
1071 		unsigned long nr_taken;
1072 		unsigned long nr_scan;
1073 		unsigned long nr_freed;
1074 		unsigned long nr_active;
1075 		unsigned int count[NR_LRU_LISTS] = { 0, };
1076 		int mode = ISOLATE_INACTIVE;
1077 
1078 		/*
1079 		 * If we need a large contiguous chunk of memory, or have
1080 		 * trouble getting a small set of contiguous pages, we
1081 		 * will reclaim both active and inactive pages.
1082 		 *
1083 		 * We use the same threshold as pageout congestion_wait below.
1084 		 */
1085 		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1086 			mode = ISOLATE_BOTH;
1087 		else if (sc->order && priority < DEF_PRIORITY - 2)
1088 			mode = ISOLATE_BOTH;
1089 
1090 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1091 			     &page_list, &nr_scan, sc->order, mode,
1092 				zone, sc->mem_cgroup, 0, file);
1093 		nr_active = clear_active_flags(&page_list, count);
1094 		__count_vm_events(PGDEACTIVATE, nr_active);
1095 
1096 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1097 						-count[LRU_ACTIVE_FILE]);
1098 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1099 						-count[LRU_INACTIVE_FILE]);
1100 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1101 						-count[LRU_ACTIVE_ANON]);
1102 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1103 						-count[LRU_INACTIVE_ANON]);
1104 
1105 		if (scanning_global_lru(sc))
1106 			zone->pages_scanned += nr_scan;
1107 
1108 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1109 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1110 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1111 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1112 
1113 		spin_unlock_irq(&zone->lru_lock);
1114 
1115 		nr_scanned += nr_scan;
1116 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1117 
1118 		/*
1119 		 * If we are direct reclaiming for contiguous pages and we do
1120 		 * not reclaim everything in the list, try again and wait
1121 		 * for IO to complete. This will stall high-order allocations
1122 		 * but that should be acceptable to the caller
1123 		 */
1124 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1125 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1126 			congestion_wait(WRITE, HZ/10);
1127 
1128 			/*
1129 			 * The attempt at page out may have made some
1130 			 * of the pages active, mark them inactive again.
1131 			 */
1132 			nr_active = clear_active_flags(&page_list, count);
1133 			count_vm_events(PGDEACTIVATE, nr_active);
1134 
1135 			nr_freed += shrink_page_list(&page_list, sc,
1136 							PAGEOUT_IO_SYNC);
1137 		}
1138 
1139 		nr_reclaimed += nr_freed;
1140 		local_irq_disable();
1141 		if (current_is_kswapd()) {
1142 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1143 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1144 		} else if (scanning_global_lru(sc))
1145 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1146 
1147 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1148 
1149 		if (nr_taken == 0)
1150 			goto done;
1151 
1152 		spin_lock(&zone->lru_lock);
1153 		/*
1154 		 * Put back any unfreeable pages.
1155 		 */
1156 		while (!list_empty(&page_list)) {
1157 			int lru;
1158 			page = lru_to_page(&page_list);
1159 			VM_BUG_ON(PageLRU(page));
1160 			list_del(&page->lru);
1161 			if (unlikely(!page_evictable(page, NULL))) {
1162 				spin_unlock_irq(&zone->lru_lock);
1163 				putback_lru_page(page);
1164 				spin_lock_irq(&zone->lru_lock);
1165 				continue;
1166 			}
1167 			SetPageLRU(page);
1168 			lru = page_lru(page);
1169 			add_page_to_lru_list(zone, page, lru);
1170 			if (PageActive(page)) {
1171 				int file = !!page_is_file_cache(page);
1172 				reclaim_stat->recent_rotated[file]++;
1173 			}
1174 			if (!pagevec_add(&pvec, page)) {
1175 				spin_unlock_irq(&zone->lru_lock);
1176 				__pagevec_release(&pvec);
1177 				spin_lock_irq(&zone->lru_lock);
1178 			}
1179 		}
1180   	} while (nr_scanned < max_scan);
1181 	spin_unlock(&zone->lru_lock);
1182 done:
1183 	local_irq_enable();
1184 	pagevec_release(&pvec);
1185 	return nr_reclaimed;
1186 }
1187 
1188 /*
1189  * We are about to scan this zone at a certain priority level.  If that priority
1190  * level is smaller (ie: more urgent) than the previous priority, then note
1191  * that priority level within the zone.  This is done so that when the next
1192  * process comes in to scan this zone, it will immediately start out at this
1193  * priority level rather than having to build up its own scanning priority.
1194  * Here, this priority affects only the reclaim-mapped threshold.
1195  */
1196 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1197 {
1198 	if (priority < zone->prev_priority)
1199 		zone->prev_priority = priority;
1200 }
1201 
1202 /*
1203  * This moves pages from the active list to the inactive list.
1204  *
1205  * We move them the other way if the page is referenced by one or more
1206  * processes, from rmap.
1207  *
1208  * If the pages are mostly unmapped, the processing is fast and it is
1209  * appropriate to hold zone->lru_lock across the whole operation.  But if
1210  * the pages are mapped, the processing is slow (page_referenced()) so we
1211  * should drop zone->lru_lock around each page.  It's impossible to balance
1212  * this, so instead we remove the pages from the LRU while processing them.
1213  * It is safe to rely on PG_active against the non-LRU pages in here because
1214  * nobody will play with that bit on a non-LRU page.
1215  *
1216  * The downside is that we have to touch page->_count against each page.
1217  * But we had to alter page->flags anyway.
1218  */
1219 
1220 
1221 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1222 			struct scan_control *sc, int priority, int file)
1223 {
1224 	unsigned long pgmoved;
1225 	int pgdeactivate = 0;
1226 	unsigned long pgscanned;
1227 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1228 	LIST_HEAD(l_inactive);
1229 	struct page *page;
1230 	struct pagevec pvec;
1231 	enum lru_list lru;
1232 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1233 
1234 	lru_add_drain();
1235 	spin_lock_irq(&zone->lru_lock);
1236 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1237 					ISOLATE_ACTIVE, zone,
1238 					sc->mem_cgroup, 1, file);
1239 	/*
1240 	 * zone->pages_scanned is used for detect zone's oom
1241 	 * mem_cgroup remembers nr_scan by itself.
1242 	 */
1243 	if (scanning_global_lru(sc)) {
1244 		zone->pages_scanned += pgscanned;
1245 	}
1246 	reclaim_stat->recent_scanned[!!file] += pgmoved;
1247 
1248 	if (file)
1249 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1250 	else
1251 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1252 	spin_unlock_irq(&zone->lru_lock);
1253 
1254 	pgmoved = 0;
1255 	while (!list_empty(&l_hold)) {
1256 		cond_resched();
1257 		page = lru_to_page(&l_hold);
1258 		list_del(&page->lru);
1259 
1260 		if (unlikely(!page_evictable(page, NULL))) {
1261 			putback_lru_page(page);
1262 			continue;
1263 		}
1264 
1265 		/* page_referenced clears PageReferenced */
1266 		if (page_mapping_inuse(page) &&
1267 		    page_referenced(page, 0, sc->mem_cgroup))
1268 			pgmoved++;
1269 
1270 		list_add(&page->lru, &l_inactive);
1271 	}
1272 
1273 	/*
1274 	 * Move the pages to the [file or anon] inactive list.
1275 	 */
1276 	pagevec_init(&pvec, 1);
1277 	lru = LRU_BASE + file * LRU_FILE;
1278 
1279 	spin_lock_irq(&zone->lru_lock);
1280 	/*
1281 	 * Count referenced pages from currently used mappings as
1282 	 * rotated, even though they are moved to the inactive list.
1283 	 * This helps balance scan pressure between file and anonymous
1284 	 * pages in get_scan_ratio.
1285 	 */
1286 	reclaim_stat->recent_rotated[!!file] += pgmoved;
1287 
1288 	pgmoved = 0;
1289 	while (!list_empty(&l_inactive)) {
1290 		page = lru_to_page(&l_inactive);
1291 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1292 		VM_BUG_ON(PageLRU(page));
1293 		SetPageLRU(page);
1294 		VM_BUG_ON(!PageActive(page));
1295 		ClearPageActive(page);
1296 
1297 		list_move(&page->lru, &zone->lru[lru].list);
1298 		mem_cgroup_add_lru_list(page, lru);
1299 		pgmoved++;
1300 		if (!pagevec_add(&pvec, page)) {
1301 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1302 			spin_unlock_irq(&zone->lru_lock);
1303 			pgdeactivate += pgmoved;
1304 			pgmoved = 0;
1305 			if (buffer_heads_over_limit)
1306 				pagevec_strip(&pvec);
1307 			__pagevec_release(&pvec);
1308 			spin_lock_irq(&zone->lru_lock);
1309 		}
1310 	}
1311 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1312 	pgdeactivate += pgmoved;
1313 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1314 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1315 	spin_unlock_irq(&zone->lru_lock);
1316 	if (buffer_heads_over_limit)
1317 		pagevec_strip(&pvec);
1318 	pagevec_release(&pvec);
1319 }
1320 
1321 static int inactive_anon_is_low_global(struct zone *zone)
1322 {
1323 	unsigned long active, inactive;
1324 
1325 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1326 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1327 
1328 	if (inactive * zone->inactive_ratio < active)
1329 		return 1;
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1336  * @zone: zone to check
1337  * @sc:   scan control of this context
1338  *
1339  * Returns true if the zone does not have enough inactive anon pages,
1340  * meaning some active anon pages need to be deactivated.
1341  */
1342 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1343 {
1344 	int low;
1345 
1346 	if (scanning_global_lru(sc))
1347 		low = inactive_anon_is_low_global(zone);
1348 	else
1349 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1350 	return low;
1351 }
1352 
1353 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1354 	struct zone *zone, struct scan_control *sc, int priority)
1355 {
1356 	int file = is_file_lru(lru);
1357 
1358 	if (lru == LRU_ACTIVE_FILE) {
1359 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1360 		return 0;
1361 	}
1362 
1363 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1364 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1365 		return 0;
1366 	}
1367 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1368 }
1369 
1370 /*
1371  * Determine how aggressively the anon and file LRU lists should be
1372  * scanned.  The relative value of each set of LRU lists is determined
1373  * by looking at the fraction of the pages scanned we did rotate back
1374  * onto the active list instead of evict.
1375  *
1376  * percent[0] specifies how much pressure to put on ram/swap backed
1377  * memory, while percent[1] determines pressure on the file LRUs.
1378  */
1379 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1380 					unsigned long *percent)
1381 {
1382 	unsigned long anon, file, free;
1383 	unsigned long anon_prio, file_prio;
1384 	unsigned long ap, fp;
1385 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1386 
1387 	/* If we have no swap space, do not bother scanning anon pages. */
1388 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1389 		percent[0] = 0;
1390 		percent[1] = 100;
1391 		return;
1392 	}
1393 
1394 	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1395 		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1396 	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1397 		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1398 
1399 	if (scanning_global_lru(sc)) {
1400 		free  = zone_page_state(zone, NR_FREE_PAGES);
1401 		/* If we have very few page cache pages,
1402 		   force-scan anon pages. */
1403 		if (unlikely(file + free <= zone->pages_high)) {
1404 			percent[0] = 100;
1405 			percent[1] = 0;
1406 			return;
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * OK, so we have swap space and a fair amount of page cache
1412 	 * pages.  We use the recently rotated / recently scanned
1413 	 * ratios to determine how valuable each cache is.
1414 	 *
1415 	 * Because workloads change over time (and to avoid overflow)
1416 	 * we keep these statistics as a floating average, which ends
1417 	 * up weighing recent references more than old ones.
1418 	 *
1419 	 * anon in [0], file in [1]
1420 	 */
1421 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1422 		spin_lock_irq(&zone->lru_lock);
1423 		reclaim_stat->recent_scanned[0] /= 2;
1424 		reclaim_stat->recent_rotated[0] /= 2;
1425 		spin_unlock_irq(&zone->lru_lock);
1426 	}
1427 
1428 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1429 		spin_lock_irq(&zone->lru_lock);
1430 		reclaim_stat->recent_scanned[1] /= 2;
1431 		reclaim_stat->recent_rotated[1] /= 2;
1432 		spin_unlock_irq(&zone->lru_lock);
1433 	}
1434 
1435 	/*
1436 	 * With swappiness at 100, anonymous and file have the same priority.
1437 	 * This scanning priority is essentially the inverse of IO cost.
1438 	 */
1439 	anon_prio = sc->swappiness;
1440 	file_prio = 200 - sc->swappiness;
1441 
1442 	/*
1443 	 * The amount of pressure on anon vs file pages is inversely
1444 	 * proportional to the fraction of recently scanned pages on
1445 	 * each list that were recently referenced and in active use.
1446 	 */
1447 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1448 	ap /= reclaim_stat->recent_rotated[0] + 1;
1449 
1450 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1451 	fp /= reclaim_stat->recent_rotated[1] + 1;
1452 
1453 	/* Normalize to percentages */
1454 	percent[0] = 100 * ap / (ap + fp + 1);
1455 	percent[1] = 100 - percent[0];
1456 }
1457 
1458 
1459 /*
1460  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1461  */
1462 static void shrink_zone(int priority, struct zone *zone,
1463 				struct scan_control *sc)
1464 {
1465 	unsigned long nr[NR_LRU_LISTS];
1466 	unsigned long nr_to_scan;
1467 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1468 	enum lru_list l;
1469 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1470 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1471 
1472 	get_scan_ratio(zone, sc, percent);
1473 
1474 	for_each_evictable_lru(l) {
1475 		int file = is_file_lru(l);
1476 		unsigned long scan;
1477 
1478 		scan = zone_nr_pages(zone, sc, l);
1479 		if (priority) {
1480 			scan >>= priority;
1481 			scan = (scan * percent[file]) / 100;
1482 		}
1483 		if (scanning_global_lru(sc)) {
1484 			zone->lru[l].nr_scan += scan;
1485 			nr[l] = zone->lru[l].nr_scan;
1486 			if (nr[l] >= swap_cluster_max)
1487 				zone->lru[l].nr_scan = 0;
1488 			else
1489 				nr[l] = 0;
1490 		} else
1491 			nr[l] = scan;
1492 	}
1493 
1494 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1495 					nr[LRU_INACTIVE_FILE]) {
1496 		for_each_evictable_lru(l) {
1497 			if (nr[l]) {
1498 				nr_to_scan = min(nr[l], swap_cluster_max);
1499 				nr[l] -= nr_to_scan;
1500 
1501 				nr_reclaimed += shrink_list(l, nr_to_scan,
1502 							    zone, sc, priority);
1503 			}
1504 		}
1505 		/*
1506 		 * On large memory systems, scan >> priority can become
1507 		 * really large. This is fine for the starting priority;
1508 		 * we want to put equal scanning pressure on each zone.
1509 		 * However, if the VM has a harder time of freeing pages,
1510 		 * with multiple processes reclaiming pages, the total
1511 		 * freeing target can get unreasonably large.
1512 		 */
1513 		if (nr_reclaimed > swap_cluster_max &&
1514 			priority < DEF_PRIORITY && !current_is_kswapd())
1515 			break;
1516 	}
1517 
1518 	sc->nr_reclaimed = nr_reclaimed;
1519 
1520 	/*
1521 	 * Even if we did not try to evict anon pages at all, we want to
1522 	 * rebalance the anon lru active/inactive ratio.
1523 	 */
1524 	if (inactive_anon_is_low(zone, sc))
1525 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1526 
1527 	throttle_vm_writeout(sc->gfp_mask);
1528 }
1529 
1530 /*
1531  * This is the direct reclaim path, for page-allocating processes.  We only
1532  * try to reclaim pages from zones which will satisfy the caller's allocation
1533  * request.
1534  *
1535  * We reclaim from a zone even if that zone is over pages_high.  Because:
1536  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1537  *    allocation or
1538  * b) The zones may be over pages_high but they must go *over* pages_high to
1539  *    satisfy the `incremental min' zone defense algorithm.
1540  *
1541  * If a zone is deemed to be full of pinned pages then just give it a light
1542  * scan then give up on it.
1543  */
1544 static void shrink_zones(int priority, struct zonelist *zonelist,
1545 					struct scan_control *sc)
1546 {
1547 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1548 	struct zoneref *z;
1549 	struct zone *zone;
1550 
1551 	sc->all_unreclaimable = 1;
1552 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1553 					sc->nodemask) {
1554 		if (!populated_zone(zone))
1555 			continue;
1556 		/*
1557 		 * Take care memory controller reclaiming has small influence
1558 		 * to global LRU.
1559 		 */
1560 		if (scanning_global_lru(sc)) {
1561 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1562 				continue;
1563 			note_zone_scanning_priority(zone, priority);
1564 
1565 			if (zone_is_all_unreclaimable(zone) &&
1566 						priority != DEF_PRIORITY)
1567 				continue;	/* Let kswapd poll it */
1568 			sc->all_unreclaimable = 0;
1569 		} else {
1570 			/*
1571 			 * Ignore cpuset limitation here. We just want to reduce
1572 			 * # of used pages by us regardless of memory shortage.
1573 			 */
1574 			sc->all_unreclaimable = 0;
1575 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1576 							priority);
1577 		}
1578 
1579 		shrink_zone(priority, zone, sc);
1580 	}
1581 }
1582 
1583 /*
1584  * This is the main entry point to direct page reclaim.
1585  *
1586  * If a full scan of the inactive list fails to free enough memory then we
1587  * are "out of memory" and something needs to be killed.
1588  *
1589  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1590  * high - the zone may be full of dirty or under-writeback pages, which this
1591  * caller can't do much about.  We kick pdflush and take explicit naps in the
1592  * hope that some of these pages can be written.  But if the allocating task
1593  * holds filesystem locks which prevent writeout this might not work, and the
1594  * allocation attempt will fail.
1595  *
1596  * returns:	0, if no pages reclaimed
1597  * 		else, the number of pages reclaimed
1598  */
1599 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1600 					struct scan_control *sc)
1601 {
1602 	int priority;
1603 	unsigned long ret = 0;
1604 	unsigned long total_scanned = 0;
1605 	struct reclaim_state *reclaim_state = current->reclaim_state;
1606 	unsigned long lru_pages = 0;
1607 	struct zoneref *z;
1608 	struct zone *zone;
1609 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1610 
1611 	delayacct_freepages_start();
1612 
1613 	if (scanning_global_lru(sc))
1614 		count_vm_event(ALLOCSTALL);
1615 	/*
1616 	 * mem_cgroup will not do shrink_slab.
1617 	 */
1618 	if (scanning_global_lru(sc)) {
1619 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1620 
1621 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1622 				continue;
1623 
1624 			lru_pages += zone_lru_pages(zone);
1625 		}
1626 	}
1627 
1628 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1629 		sc->nr_scanned = 0;
1630 		if (!priority)
1631 			disable_swap_token();
1632 		shrink_zones(priority, zonelist, sc);
1633 		/*
1634 		 * Don't shrink slabs when reclaiming memory from
1635 		 * over limit cgroups
1636 		 */
1637 		if (scanning_global_lru(sc)) {
1638 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1639 			if (reclaim_state) {
1640 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1641 				reclaim_state->reclaimed_slab = 0;
1642 			}
1643 		}
1644 		total_scanned += sc->nr_scanned;
1645 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1646 			ret = sc->nr_reclaimed;
1647 			goto out;
1648 		}
1649 
1650 		/*
1651 		 * Try to write back as many pages as we just scanned.  This
1652 		 * tends to cause slow streaming writers to write data to the
1653 		 * disk smoothly, at the dirtying rate, which is nice.   But
1654 		 * that's undesirable in laptop mode, where we *want* lumpy
1655 		 * writeout.  So in laptop mode, write out the whole world.
1656 		 */
1657 		if (total_scanned > sc->swap_cluster_max +
1658 					sc->swap_cluster_max / 2) {
1659 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1660 			sc->may_writepage = 1;
1661 		}
1662 
1663 		/* Take a nap, wait for some writeback to complete */
1664 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1665 			congestion_wait(WRITE, HZ/10);
1666 	}
1667 	/* top priority shrink_zones still had more to do? don't OOM, then */
1668 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1669 		ret = sc->nr_reclaimed;
1670 out:
1671 	/*
1672 	 * Now that we've scanned all the zones at this priority level, note
1673 	 * that level within the zone so that the next thread which performs
1674 	 * scanning of this zone will immediately start out at this priority
1675 	 * level.  This affects only the decision whether or not to bring
1676 	 * mapped pages onto the inactive list.
1677 	 */
1678 	if (priority < 0)
1679 		priority = 0;
1680 
1681 	if (scanning_global_lru(sc)) {
1682 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1683 
1684 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1685 				continue;
1686 
1687 			zone->prev_priority = priority;
1688 		}
1689 	} else
1690 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1691 
1692 	delayacct_freepages_end();
1693 
1694 	return ret;
1695 }
1696 
1697 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1698 				gfp_t gfp_mask, nodemask_t *nodemask)
1699 {
1700 	struct scan_control sc = {
1701 		.gfp_mask = gfp_mask,
1702 		.may_writepage = !laptop_mode,
1703 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1704 		.may_unmap = 1,
1705 		.may_swap = 1,
1706 		.swappiness = vm_swappiness,
1707 		.order = order,
1708 		.mem_cgroup = NULL,
1709 		.isolate_pages = isolate_pages_global,
1710 		.nodemask = nodemask,
1711 	};
1712 
1713 	return do_try_to_free_pages(zonelist, &sc);
1714 }
1715 
1716 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1717 
1718 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1719 					   gfp_t gfp_mask,
1720 					   bool noswap,
1721 					   unsigned int swappiness)
1722 {
1723 	struct scan_control sc = {
1724 		.may_writepage = !laptop_mode,
1725 		.may_unmap = 1,
1726 		.may_swap = !noswap,
1727 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1728 		.swappiness = swappiness,
1729 		.order = 0,
1730 		.mem_cgroup = mem_cont,
1731 		.isolate_pages = mem_cgroup_isolate_pages,
1732 		.nodemask = NULL, /* we don't care the placement */
1733 	};
1734 	struct zonelist *zonelist;
1735 
1736 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1737 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1738 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1739 	return do_try_to_free_pages(zonelist, &sc);
1740 }
1741 #endif
1742 
1743 /*
1744  * For kswapd, balance_pgdat() will work across all this node's zones until
1745  * they are all at pages_high.
1746  *
1747  * Returns the number of pages which were actually freed.
1748  *
1749  * There is special handling here for zones which are full of pinned pages.
1750  * This can happen if the pages are all mlocked, or if they are all used by
1751  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1752  * What we do is to detect the case where all pages in the zone have been
1753  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1754  * dead and from now on, only perform a short scan.  Basically we're polling
1755  * the zone for when the problem goes away.
1756  *
1757  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1758  * zones which have free_pages > pages_high, but once a zone is found to have
1759  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1760  * of the number of free pages in the lower zones.  This interoperates with
1761  * the page allocator fallback scheme to ensure that aging of pages is balanced
1762  * across the zones.
1763  */
1764 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1765 {
1766 	int all_zones_ok;
1767 	int priority;
1768 	int i;
1769 	unsigned long total_scanned;
1770 	struct reclaim_state *reclaim_state = current->reclaim_state;
1771 	struct scan_control sc = {
1772 		.gfp_mask = GFP_KERNEL,
1773 		.may_unmap = 1,
1774 		.may_swap = 1,
1775 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1776 		.swappiness = vm_swappiness,
1777 		.order = order,
1778 		.mem_cgroup = NULL,
1779 		.isolate_pages = isolate_pages_global,
1780 	};
1781 	/*
1782 	 * temp_priority is used to remember the scanning priority at which
1783 	 * this zone was successfully refilled to free_pages == pages_high.
1784 	 */
1785 	int temp_priority[MAX_NR_ZONES];
1786 
1787 loop_again:
1788 	total_scanned = 0;
1789 	sc.nr_reclaimed = 0;
1790 	sc.may_writepage = !laptop_mode;
1791 	count_vm_event(PAGEOUTRUN);
1792 
1793 	for (i = 0; i < pgdat->nr_zones; i++)
1794 		temp_priority[i] = DEF_PRIORITY;
1795 
1796 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1797 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1798 		unsigned long lru_pages = 0;
1799 
1800 		/* The swap token gets in the way of swapout... */
1801 		if (!priority)
1802 			disable_swap_token();
1803 
1804 		all_zones_ok = 1;
1805 
1806 		/*
1807 		 * Scan in the highmem->dma direction for the highest
1808 		 * zone which needs scanning
1809 		 */
1810 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1811 			struct zone *zone = pgdat->node_zones + i;
1812 
1813 			if (!populated_zone(zone))
1814 				continue;
1815 
1816 			if (zone_is_all_unreclaimable(zone) &&
1817 			    priority != DEF_PRIORITY)
1818 				continue;
1819 
1820 			/*
1821 			 * Do some background aging of the anon list, to give
1822 			 * pages a chance to be referenced before reclaiming.
1823 			 */
1824 			if (inactive_anon_is_low(zone, &sc))
1825 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1826 							&sc, priority, 0);
1827 
1828 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1829 					       0, 0)) {
1830 				end_zone = i;
1831 				break;
1832 			}
1833 		}
1834 		if (i < 0)
1835 			goto out;
1836 
1837 		for (i = 0; i <= end_zone; i++) {
1838 			struct zone *zone = pgdat->node_zones + i;
1839 
1840 			lru_pages += zone_lru_pages(zone);
1841 		}
1842 
1843 		/*
1844 		 * Now scan the zone in the dma->highmem direction, stopping
1845 		 * at the last zone which needs scanning.
1846 		 *
1847 		 * We do this because the page allocator works in the opposite
1848 		 * direction.  This prevents the page allocator from allocating
1849 		 * pages behind kswapd's direction of progress, which would
1850 		 * cause too much scanning of the lower zones.
1851 		 */
1852 		for (i = 0; i <= end_zone; i++) {
1853 			struct zone *zone = pgdat->node_zones + i;
1854 			int nr_slab;
1855 
1856 			if (!populated_zone(zone))
1857 				continue;
1858 
1859 			if (zone_is_all_unreclaimable(zone) &&
1860 					priority != DEF_PRIORITY)
1861 				continue;
1862 
1863 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1864 					       end_zone, 0))
1865 				all_zones_ok = 0;
1866 			temp_priority[i] = priority;
1867 			sc.nr_scanned = 0;
1868 			note_zone_scanning_priority(zone, priority);
1869 			/*
1870 			 * We put equal pressure on every zone, unless one
1871 			 * zone has way too many pages free already.
1872 			 */
1873 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1874 						end_zone, 0))
1875 				shrink_zone(priority, zone, &sc);
1876 			reclaim_state->reclaimed_slab = 0;
1877 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1878 						lru_pages);
1879 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1880 			total_scanned += sc.nr_scanned;
1881 			if (zone_is_all_unreclaimable(zone))
1882 				continue;
1883 			if (nr_slab == 0 && zone->pages_scanned >=
1884 						(zone_lru_pages(zone) * 6))
1885 					zone_set_flag(zone,
1886 						      ZONE_ALL_UNRECLAIMABLE);
1887 			/*
1888 			 * If we've done a decent amount of scanning and
1889 			 * the reclaim ratio is low, start doing writepage
1890 			 * even in laptop mode
1891 			 */
1892 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1893 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1894 				sc.may_writepage = 1;
1895 		}
1896 		if (all_zones_ok)
1897 			break;		/* kswapd: all done */
1898 		/*
1899 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1900 		 * another pass across the zones.
1901 		 */
1902 		if (total_scanned && priority < DEF_PRIORITY - 2)
1903 			congestion_wait(WRITE, HZ/10);
1904 
1905 		/*
1906 		 * We do this so kswapd doesn't build up large priorities for
1907 		 * example when it is freeing in parallel with allocators. It
1908 		 * matches the direct reclaim path behaviour in terms of impact
1909 		 * on zone->*_priority.
1910 		 */
1911 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1912 			break;
1913 	}
1914 out:
1915 	/*
1916 	 * Note within each zone the priority level at which this zone was
1917 	 * brought into a happy state.  So that the next thread which scans this
1918 	 * zone will start out at that priority level.
1919 	 */
1920 	for (i = 0; i < pgdat->nr_zones; i++) {
1921 		struct zone *zone = pgdat->node_zones + i;
1922 
1923 		zone->prev_priority = temp_priority[i];
1924 	}
1925 	if (!all_zones_ok) {
1926 		cond_resched();
1927 
1928 		try_to_freeze();
1929 
1930 		/*
1931 		 * Fragmentation may mean that the system cannot be
1932 		 * rebalanced for high-order allocations in all zones.
1933 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1934 		 * it means the zones have been fully scanned and are still
1935 		 * not balanced. For high-order allocations, there is
1936 		 * little point trying all over again as kswapd may
1937 		 * infinite loop.
1938 		 *
1939 		 * Instead, recheck all watermarks at order-0 as they
1940 		 * are the most important. If watermarks are ok, kswapd will go
1941 		 * back to sleep. High-order users can still perform direct
1942 		 * reclaim if they wish.
1943 		 */
1944 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1945 			order = sc.order = 0;
1946 
1947 		goto loop_again;
1948 	}
1949 
1950 	return sc.nr_reclaimed;
1951 }
1952 
1953 /*
1954  * The background pageout daemon, started as a kernel thread
1955  * from the init process.
1956  *
1957  * This basically trickles out pages so that we have _some_
1958  * free memory available even if there is no other activity
1959  * that frees anything up. This is needed for things like routing
1960  * etc, where we otherwise might have all activity going on in
1961  * asynchronous contexts that cannot page things out.
1962  *
1963  * If there are applications that are active memory-allocators
1964  * (most normal use), this basically shouldn't matter.
1965  */
1966 static int kswapd(void *p)
1967 {
1968 	unsigned long order;
1969 	pg_data_t *pgdat = (pg_data_t*)p;
1970 	struct task_struct *tsk = current;
1971 	DEFINE_WAIT(wait);
1972 	struct reclaim_state reclaim_state = {
1973 		.reclaimed_slab = 0,
1974 	};
1975 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1976 
1977 	lockdep_set_current_reclaim_state(GFP_KERNEL);
1978 
1979 	if (!cpumask_empty(cpumask))
1980 		set_cpus_allowed_ptr(tsk, cpumask);
1981 	current->reclaim_state = &reclaim_state;
1982 
1983 	/*
1984 	 * Tell the memory management that we're a "memory allocator",
1985 	 * and that if we need more memory we should get access to it
1986 	 * regardless (see "__alloc_pages()"). "kswapd" should
1987 	 * never get caught in the normal page freeing logic.
1988 	 *
1989 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1990 	 * you need a small amount of memory in order to be able to
1991 	 * page out something else, and this flag essentially protects
1992 	 * us from recursively trying to free more memory as we're
1993 	 * trying to free the first piece of memory in the first place).
1994 	 */
1995 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1996 	set_freezable();
1997 
1998 	order = 0;
1999 	for ( ; ; ) {
2000 		unsigned long new_order;
2001 
2002 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2003 		new_order = pgdat->kswapd_max_order;
2004 		pgdat->kswapd_max_order = 0;
2005 		if (order < new_order) {
2006 			/*
2007 			 * Don't sleep if someone wants a larger 'order'
2008 			 * allocation
2009 			 */
2010 			order = new_order;
2011 		} else {
2012 			if (!freezing(current))
2013 				schedule();
2014 
2015 			order = pgdat->kswapd_max_order;
2016 		}
2017 		finish_wait(&pgdat->kswapd_wait, &wait);
2018 
2019 		if (!try_to_freeze()) {
2020 			/* We can speed up thawing tasks if we don't call
2021 			 * balance_pgdat after returning from the refrigerator
2022 			 */
2023 			balance_pgdat(pgdat, order);
2024 		}
2025 	}
2026 	return 0;
2027 }
2028 
2029 /*
2030  * A zone is low on free memory, so wake its kswapd task to service it.
2031  */
2032 void wakeup_kswapd(struct zone *zone, int order)
2033 {
2034 	pg_data_t *pgdat;
2035 
2036 	if (!populated_zone(zone))
2037 		return;
2038 
2039 	pgdat = zone->zone_pgdat;
2040 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2041 		return;
2042 	if (pgdat->kswapd_max_order < order)
2043 		pgdat->kswapd_max_order = order;
2044 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2045 		return;
2046 	if (!waitqueue_active(&pgdat->kswapd_wait))
2047 		return;
2048 	wake_up_interruptible(&pgdat->kswapd_wait);
2049 }
2050 
2051 unsigned long global_lru_pages(void)
2052 {
2053 	return global_page_state(NR_ACTIVE_ANON)
2054 		+ global_page_state(NR_ACTIVE_FILE)
2055 		+ global_page_state(NR_INACTIVE_ANON)
2056 		+ global_page_state(NR_INACTIVE_FILE);
2057 }
2058 
2059 #ifdef CONFIG_PM
2060 /*
2061  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2062  * from LRU lists system-wide, for given pass and priority.
2063  *
2064  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2065  */
2066 static void shrink_all_zones(unsigned long nr_pages, int prio,
2067 				      int pass, struct scan_control *sc)
2068 {
2069 	struct zone *zone;
2070 	unsigned long nr_reclaimed = 0;
2071 
2072 	for_each_populated_zone(zone) {
2073 		enum lru_list l;
2074 
2075 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2076 			continue;
2077 
2078 		for_each_evictable_lru(l) {
2079 			enum zone_stat_item ls = NR_LRU_BASE + l;
2080 			unsigned long lru_pages = zone_page_state(zone, ls);
2081 
2082 			/* For pass = 0, we don't shrink the active list */
2083 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2084 						l == LRU_ACTIVE_FILE))
2085 				continue;
2086 
2087 			zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2088 			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2089 				unsigned long nr_to_scan;
2090 
2091 				zone->lru[l].nr_scan = 0;
2092 				nr_to_scan = min(nr_pages, lru_pages);
2093 				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2094 								sc, prio);
2095 				if (nr_reclaimed >= nr_pages) {
2096 					sc->nr_reclaimed += nr_reclaimed;
2097 					return;
2098 				}
2099 			}
2100 		}
2101 	}
2102 	sc->nr_reclaimed += nr_reclaimed;
2103 }
2104 
2105 /*
2106  * Try to free `nr_pages' of memory, system-wide, and return the number of
2107  * freed pages.
2108  *
2109  * Rather than trying to age LRUs the aim is to preserve the overall
2110  * LRU order by reclaiming preferentially
2111  * inactive > active > active referenced > active mapped
2112  */
2113 unsigned long shrink_all_memory(unsigned long nr_pages)
2114 {
2115 	unsigned long lru_pages, nr_slab;
2116 	int pass;
2117 	struct reclaim_state reclaim_state;
2118 	struct scan_control sc = {
2119 		.gfp_mask = GFP_KERNEL,
2120 		.may_unmap = 0,
2121 		.may_writepage = 1,
2122 		.isolate_pages = isolate_pages_global,
2123 		.nr_reclaimed = 0,
2124 	};
2125 
2126 	current->reclaim_state = &reclaim_state;
2127 
2128 	lru_pages = global_lru_pages();
2129 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2130 	/* If slab caches are huge, it's better to hit them first */
2131 	while (nr_slab >= lru_pages) {
2132 		reclaim_state.reclaimed_slab = 0;
2133 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2134 		if (!reclaim_state.reclaimed_slab)
2135 			break;
2136 
2137 		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2138 		if (sc.nr_reclaimed >= nr_pages)
2139 			goto out;
2140 
2141 		nr_slab -= reclaim_state.reclaimed_slab;
2142 	}
2143 
2144 	/*
2145 	 * We try to shrink LRUs in 5 passes:
2146 	 * 0 = Reclaim from inactive_list only
2147 	 * 1 = Reclaim from active list but don't reclaim mapped
2148 	 * 2 = 2nd pass of type 1
2149 	 * 3 = Reclaim mapped (normal reclaim)
2150 	 * 4 = 2nd pass of type 3
2151 	 */
2152 	for (pass = 0; pass < 5; pass++) {
2153 		int prio;
2154 
2155 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2156 		if (pass > 2)
2157 			sc.may_unmap = 1;
2158 
2159 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2160 			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2161 
2162 			sc.nr_scanned = 0;
2163 			sc.swap_cluster_max = nr_to_scan;
2164 			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2165 			if (sc.nr_reclaimed >= nr_pages)
2166 				goto out;
2167 
2168 			reclaim_state.reclaimed_slab = 0;
2169 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2170 					global_lru_pages());
2171 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2172 			if (sc.nr_reclaimed >= nr_pages)
2173 				goto out;
2174 
2175 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2176 				congestion_wait(WRITE, HZ / 10);
2177 		}
2178 	}
2179 
2180 	/*
2181 	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2182 	 * something in slab caches
2183 	 */
2184 	if (!sc.nr_reclaimed) {
2185 		do {
2186 			reclaim_state.reclaimed_slab = 0;
2187 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2188 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2189 		} while (sc.nr_reclaimed < nr_pages &&
2190 				reclaim_state.reclaimed_slab > 0);
2191 	}
2192 
2193 
2194 out:
2195 	current->reclaim_state = NULL;
2196 
2197 	return sc.nr_reclaimed;
2198 }
2199 #endif
2200 
2201 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2202    not required for correctness.  So if the last cpu in a node goes
2203    away, we get changed to run anywhere: as the first one comes back,
2204    restore their cpu bindings. */
2205 static int __devinit cpu_callback(struct notifier_block *nfb,
2206 				  unsigned long action, void *hcpu)
2207 {
2208 	int nid;
2209 
2210 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2211 		for_each_node_state(nid, N_HIGH_MEMORY) {
2212 			pg_data_t *pgdat = NODE_DATA(nid);
2213 			const struct cpumask *mask;
2214 
2215 			mask = cpumask_of_node(pgdat->node_id);
2216 
2217 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2218 				/* One of our CPUs online: restore mask */
2219 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2220 		}
2221 	}
2222 	return NOTIFY_OK;
2223 }
2224 
2225 /*
2226  * This kswapd start function will be called by init and node-hot-add.
2227  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2228  */
2229 int kswapd_run(int nid)
2230 {
2231 	pg_data_t *pgdat = NODE_DATA(nid);
2232 	int ret = 0;
2233 
2234 	if (pgdat->kswapd)
2235 		return 0;
2236 
2237 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2238 	if (IS_ERR(pgdat->kswapd)) {
2239 		/* failure at boot is fatal */
2240 		BUG_ON(system_state == SYSTEM_BOOTING);
2241 		printk("Failed to start kswapd on node %d\n",nid);
2242 		ret = -1;
2243 	}
2244 	return ret;
2245 }
2246 
2247 static int __init kswapd_init(void)
2248 {
2249 	int nid;
2250 
2251 	swap_setup();
2252 	for_each_node_state(nid, N_HIGH_MEMORY)
2253  		kswapd_run(nid);
2254 	hotcpu_notifier(cpu_callback, 0);
2255 	return 0;
2256 }
2257 
2258 module_init(kswapd_init)
2259 
2260 #ifdef CONFIG_NUMA
2261 /*
2262  * Zone reclaim mode
2263  *
2264  * If non-zero call zone_reclaim when the number of free pages falls below
2265  * the watermarks.
2266  */
2267 int zone_reclaim_mode __read_mostly;
2268 
2269 #define RECLAIM_OFF 0
2270 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2271 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2272 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2273 
2274 /*
2275  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2276  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2277  * a zone.
2278  */
2279 #define ZONE_RECLAIM_PRIORITY 4
2280 
2281 /*
2282  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2283  * occur.
2284  */
2285 int sysctl_min_unmapped_ratio = 1;
2286 
2287 /*
2288  * If the number of slab pages in a zone grows beyond this percentage then
2289  * slab reclaim needs to occur.
2290  */
2291 int sysctl_min_slab_ratio = 5;
2292 
2293 /*
2294  * Try to free up some pages from this zone through reclaim.
2295  */
2296 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2297 {
2298 	/* Minimum pages needed in order to stay on node */
2299 	const unsigned long nr_pages = 1 << order;
2300 	struct task_struct *p = current;
2301 	struct reclaim_state reclaim_state;
2302 	int priority;
2303 	struct scan_control sc = {
2304 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2305 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2306 		.may_swap = 1,
2307 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2308 					SWAP_CLUSTER_MAX),
2309 		.gfp_mask = gfp_mask,
2310 		.swappiness = vm_swappiness,
2311 		.order = order,
2312 		.isolate_pages = isolate_pages_global,
2313 	};
2314 	unsigned long slab_reclaimable;
2315 
2316 	disable_swap_token();
2317 	cond_resched();
2318 	/*
2319 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2320 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2321 	 * and RECLAIM_SWAP.
2322 	 */
2323 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2324 	reclaim_state.reclaimed_slab = 0;
2325 	p->reclaim_state = &reclaim_state;
2326 
2327 	if (zone_page_state(zone, NR_FILE_PAGES) -
2328 		zone_page_state(zone, NR_FILE_MAPPED) >
2329 		zone->min_unmapped_pages) {
2330 		/*
2331 		 * Free memory by calling shrink zone with increasing
2332 		 * priorities until we have enough memory freed.
2333 		 */
2334 		priority = ZONE_RECLAIM_PRIORITY;
2335 		do {
2336 			note_zone_scanning_priority(zone, priority);
2337 			shrink_zone(priority, zone, &sc);
2338 			priority--;
2339 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2340 	}
2341 
2342 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2343 	if (slab_reclaimable > zone->min_slab_pages) {
2344 		/*
2345 		 * shrink_slab() does not currently allow us to determine how
2346 		 * many pages were freed in this zone. So we take the current
2347 		 * number of slab pages and shake the slab until it is reduced
2348 		 * by the same nr_pages that we used for reclaiming unmapped
2349 		 * pages.
2350 		 *
2351 		 * Note that shrink_slab will free memory on all zones and may
2352 		 * take a long time.
2353 		 */
2354 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2355 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2356 				slab_reclaimable - nr_pages)
2357 			;
2358 
2359 		/*
2360 		 * Update nr_reclaimed by the number of slab pages we
2361 		 * reclaimed from this zone.
2362 		 */
2363 		sc.nr_reclaimed += slab_reclaimable -
2364 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2365 	}
2366 
2367 	p->reclaim_state = NULL;
2368 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2369 	return sc.nr_reclaimed >= nr_pages;
2370 }
2371 
2372 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2373 {
2374 	int node_id;
2375 	int ret;
2376 
2377 	/*
2378 	 * Zone reclaim reclaims unmapped file backed pages and
2379 	 * slab pages if we are over the defined limits.
2380 	 *
2381 	 * A small portion of unmapped file backed pages is needed for
2382 	 * file I/O otherwise pages read by file I/O will be immediately
2383 	 * thrown out if the zone is overallocated. So we do not reclaim
2384 	 * if less than a specified percentage of the zone is used by
2385 	 * unmapped file backed pages.
2386 	 */
2387 	if (zone_page_state(zone, NR_FILE_PAGES) -
2388 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2389 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2390 			<= zone->min_slab_pages)
2391 		return 0;
2392 
2393 	if (zone_is_all_unreclaimable(zone))
2394 		return 0;
2395 
2396 	/*
2397 	 * Do not scan if the allocation should not be delayed.
2398 	 */
2399 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2400 			return 0;
2401 
2402 	/*
2403 	 * Only run zone reclaim on the local zone or on zones that do not
2404 	 * have associated processors. This will favor the local processor
2405 	 * over remote processors and spread off node memory allocations
2406 	 * as wide as possible.
2407 	 */
2408 	node_id = zone_to_nid(zone);
2409 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2410 		return 0;
2411 
2412 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2413 		return 0;
2414 	ret = __zone_reclaim(zone, gfp_mask, order);
2415 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2416 
2417 	return ret;
2418 }
2419 #endif
2420 
2421 #ifdef CONFIG_UNEVICTABLE_LRU
2422 /*
2423  * page_evictable - test whether a page is evictable
2424  * @page: the page to test
2425  * @vma: the VMA in which the page is or will be mapped, may be NULL
2426  *
2427  * Test whether page is evictable--i.e., should be placed on active/inactive
2428  * lists vs unevictable list.  The vma argument is !NULL when called from the
2429  * fault path to determine how to instantate a new page.
2430  *
2431  * Reasons page might not be evictable:
2432  * (1) page's mapping marked unevictable
2433  * (2) page is part of an mlocked VMA
2434  *
2435  */
2436 int page_evictable(struct page *page, struct vm_area_struct *vma)
2437 {
2438 
2439 	if (mapping_unevictable(page_mapping(page)))
2440 		return 0;
2441 
2442 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2443 		return 0;
2444 
2445 	return 1;
2446 }
2447 
2448 /**
2449  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2450  * @page: page to check evictability and move to appropriate lru list
2451  * @zone: zone page is in
2452  *
2453  * Checks a page for evictability and moves the page to the appropriate
2454  * zone lru list.
2455  *
2456  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2457  * have PageUnevictable set.
2458  */
2459 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2460 {
2461 	VM_BUG_ON(PageActive(page));
2462 
2463 retry:
2464 	ClearPageUnevictable(page);
2465 	if (page_evictable(page, NULL)) {
2466 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2467 
2468 		__dec_zone_state(zone, NR_UNEVICTABLE);
2469 		list_move(&page->lru, &zone->lru[l].list);
2470 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2471 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2472 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2473 	} else {
2474 		/*
2475 		 * rotate unevictable list
2476 		 */
2477 		SetPageUnevictable(page);
2478 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2479 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2480 		if (page_evictable(page, NULL))
2481 			goto retry;
2482 	}
2483 }
2484 
2485 /**
2486  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2487  * @mapping: struct address_space to scan for evictable pages
2488  *
2489  * Scan all pages in mapping.  Check unevictable pages for
2490  * evictability and move them to the appropriate zone lru list.
2491  */
2492 void scan_mapping_unevictable_pages(struct address_space *mapping)
2493 {
2494 	pgoff_t next = 0;
2495 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2496 			 PAGE_CACHE_SHIFT;
2497 	struct zone *zone;
2498 	struct pagevec pvec;
2499 
2500 	if (mapping->nrpages == 0)
2501 		return;
2502 
2503 	pagevec_init(&pvec, 0);
2504 	while (next < end &&
2505 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2506 		int i;
2507 		int pg_scanned = 0;
2508 
2509 		zone = NULL;
2510 
2511 		for (i = 0; i < pagevec_count(&pvec); i++) {
2512 			struct page *page = pvec.pages[i];
2513 			pgoff_t page_index = page->index;
2514 			struct zone *pagezone = page_zone(page);
2515 
2516 			pg_scanned++;
2517 			if (page_index > next)
2518 				next = page_index;
2519 			next++;
2520 
2521 			if (pagezone != zone) {
2522 				if (zone)
2523 					spin_unlock_irq(&zone->lru_lock);
2524 				zone = pagezone;
2525 				spin_lock_irq(&zone->lru_lock);
2526 			}
2527 
2528 			if (PageLRU(page) && PageUnevictable(page))
2529 				check_move_unevictable_page(page, zone);
2530 		}
2531 		if (zone)
2532 			spin_unlock_irq(&zone->lru_lock);
2533 		pagevec_release(&pvec);
2534 
2535 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2536 	}
2537 
2538 }
2539 
2540 /**
2541  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2542  * @zone - zone of which to scan the unevictable list
2543  *
2544  * Scan @zone's unevictable LRU lists to check for pages that have become
2545  * evictable.  Move those that have to @zone's inactive list where they
2546  * become candidates for reclaim, unless shrink_inactive_zone() decides
2547  * to reactivate them.  Pages that are still unevictable are rotated
2548  * back onto @zone's unevictable list.
2549  */
2550 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2551 static void scan_zone_unevictable_pages(struct zone *zone)
2552 {
2553 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2554 	unsigned long scan;
2555 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2556 
2557 	while (nr_to_scan > 0) {
2558 		unsigned long batch_size = min(nr_to_scan,
2559 						SCAN_UNEVICTABLE_BATCH_SIZE);
2560 
2561 		spin_lock_irq(&zone->lru_lock);
2562 		for (scan = 0;  scan < batch_size; scan++) {
2563 			struct page *page = lru_to_page(l_unevictable);
2564 
2565 			if (!trylock_page(page))
2566 				continue;
2567 
2568 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2569 
2570 			if (likely(PageLRU(page) && PageUnevictable(page)))
2571 				check_move_unevictable_page(page, zone);
2572 
2573 			unlock_page(page);
2574 		}
2575 		spin_unlock_irq(&zone->lru_lock);
2576 
2577 		nr_to_scan -= batch_size;
2578 	}
2579 }
2580 
2581 
2582 /**
2583  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2584  *
2585  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2586  * pages that have become evictable.  Move those back to the zones'
2587  * inactive list where they become candidates for reclaim.
2588  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2589  * and we add swap to the system.  As such, it runs in the context of a task
2590  * that has possibly/probably made some previously unevictable pages
2591  * evictable.
2592  */
2593 static void scan_all_zones_unevictable_pages(void)
2594 {
2595 	struct zone *zone;
2596 
2597 	for_each_zone(zone) {
2598 		scan_zone_unevictable_pages(zone);
2599 	}
2600 }
2601 
2602 /*
2603  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2604  * all nodes' unevictable lists for evictable pages
2605  */
2606 unsigned long scan_unevictable_pages;
2607 
2608 int scan_unevictable_handler(struct ctl_table *table, int write,
2609 			   struct file *file, void __user *buffer,
2610 			   size_t *length, loff_t *ppos)
2611 {
2612 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2613 
2614 	if (write && *(unsigned long *)table->data)
2615 		scan_all_zones_unevictable_pages();
2616 
2617 	scan_unevictable_pages = 0;
2618 	return 0;
2619 }
2620 
2621 /*
2622  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2623  * a specified node's per zone unevictable lists for evictable pages.
2624  */
2625 
2626 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2627 					  struct sysdev_attribute *attr,
2628 					  char *buf)
2629 {
2630 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2631 }
2632 
2633 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2634 					   struct sysdev_attribute *attr,
2635 					const char *buf, size_t count)
2636 {
2637 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2638 	struct zone *zone;
2639 	unsigned long res;
2640 	unsigned long req = strict_strtoul(buf, 10, &res);
2641 
2642 	if (!req)
2643 		return 1;	/* zero is no-op */
2644 
2645 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2646 		if (!populated_zone(zone))
2647 			continue;
2648 		scan_zone_unevictable_pages(zone);
2649 	}
2650 	return 1;
2651 }
2652 
2653 
2654 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2655 			read_scan_unevictable_node,
2656 			write_scan_unevictable_node);
2657 
2658 int scan_unevictable_register_node(struct node *node)
2659 {
2660 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2661 }
2662 
2663 void scan_unevictable_unregister_node(struct node *node)
2664 {
2665 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2666 }
2667 
2668 #endif
2669