1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 #define SHRINK_BATCH 128 691 692 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 693 struct shrinker *shrinker, int priority) 694 { 695 unsigned long freed = 0; 696 unsigned long long delta; 697 long total_scan; 698 long freeable; 699 long nr; 700 long new_nr; 701 long batch_size = shrinker->batch ? shrinker->batch 702 : SHRINK_BATCH; 703 long scanned = 0, next_deferred; 704 705 freeable = shrinker->count_objects(shrinker, shrinkctl); 706 if (freeable == 0 || freeable == SHRINK_EMPTY) 707 return freeable; 708 709 /* 710 * copy the current shrinker scan count into a local variable 711 * and zero it so that other concurrent shrinker invocations 712 * don't also do this scanning work. 713 */ 714 nr = xchg_nr_deferred(shrinker, shrinkctl); 715 716 if (shrinker->seeks) { 717 delta = freeable >> priority; 718 delta *= 4; 719 do_div(delta, shrinker->seeks); 720 } else { 721 /* 722 * These objects don't require any IO to create. Trim 723 * them aggressively under memory pressure to keep 724 * them from causing refetches in the IO caches. 725 */ 726 delta = freeable / 2; 727 } 728 729 total_scan = nr >> priority; 730 total_scan += delta; 731 total_scan = min(total_scan, (2 * freeable)); 732 733 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 734 freeable, delta, total_scan, priority); 735 736 /* 737 * Normally, we should not scan less than batch_size objects in one 738 * pass to avoid too frequent shrinker calls, but if the slab has less 739 * than batch_size objects in total and we are really tight on memory, 740 * we will try to reclaim all available objects, otherwise we can end 741 * up failing allocations although there are plenty of reclaimable 742 * objects spread over several slabs with usage less than the 743 * batch_size. 744 * 745 * We detect the "tight on memory" situations by looking at the total 746 * number of objects we want to scan (total_scan). If it is greater 747 * than the total number of objects on slab (freeable), we must be 748 * scanning at high prio and therefore should try to reclaim as much as 749 * possible. 750 */ 751 while (total_scan >= batch_size || 752 total_scan >= freeable) { 753 unsigned long ret; 754 unsigned long nr_to_scan = min(batch_size, total_scan); 755 756 shrinkctl->nr_to_scan = nr_to_scan; 757 shrinkctl->nr_scanned = nr_to_scan; 758 ret = shrinker->scan_objects(shrinker, shrinkctl); 759 if (ret == SHRINK_STOP) 760 break; 761 freed += ret; 762 763 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 764 total_scan -= shrinkctl->nr_scanned; 765 scanned += shrinkctl->nr_scanned; 766 767 cond_resched(); 768 } 769 770 /* 771 * The deferred work is increased by any new work (delta) that wasn't 772 * done, decreased by old deferred work that was done now. 773 * 774 * And it is capped to two times of the freeable items. 775 */ 776 next_deferred = max_t(long, (nr + delta - scanned), 0); 777 next_deferred = min(next_deferred, (2 * freeable)); 778 779 /* 780 * move the unused scan count back into the shrinker in a 781 * manner that handles concurrent updates. 782 */ 783 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 784 785 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 786 return freed; 787 } 788 789 #ifdef CONFIG_MEMCG 790 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 791 struct mem_cgroup *memcg, int priority) 792 { 793 struct shrinker_info *info; 794 unsigned long ret, freed = 0; 795 int i; 796 797 if (!mem_cgroup_online(memcg)) 798 return 0; 799 800 if (!down_read_trylock(&shrinker_rwsem)) 801 return 0; 802 803 info = shrinker_info_protected(memcg, nid); 804 if (unlikely(!info)) 805 goto unlock; 806 807 for_each_set_bit(i, info->map, shrinker_nr_max) { 808 struct shrink_control sc = { 809 .gfp_mask = gfp_mask, 810 .nid = nid, 811 .memcg = memcg, 812 }; 813 struct shrinker *shrinker; 814 815 shrinker = idr_find(&shrinker_idr, i); 816 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 817 if (!shrinker) 818 clear_bit(i, info->map); 819 continue; 820 } 821 822 /* Call non-slab shrinkers even though kmem is disabled */ 823 if (!memcg_kmem_enabled() && 824 !(shrinker->flags & SHRINKER_NONSLAB)) 825 continue; 826 827 ret = do_shrink_slab(&sc, shrinker, priority); 828 if (ret == SHRINK_EMPTY) { 829 clear_bit(i, info->map); 830 /* 831 * After the shrinker reported that it had no objects to 832 * free, but before we cleared the corresponding bit in 833 * the memcg shrinker map, a new object might have been 834 * added. To make sure, we have the bit set in this 835 * case, we invoke the shrinker one more time and reset 836 * the bit if it reports that it is not empty anymore. 837 * The memory barrier here pairs with the barrier in 838 * set_shrinker_bit(): 839 * 840 * list_lru_add() shrink_slab_memcg() 841 * list_add_tail() clear_bit() 842 * <MB> <MB> 843 * set_bit() do_shrink_slab() 844 */ 845 smp_mb__after_atomic(); 846 ret = do_shrink_slab(&sc, shrinker, priority); 847 if (ret == SHRINK_EMPTY) 848 ret = 0; 849 else 850 set_shrinker_bit(memcg, nid, i); 851 } 852 freed += ret; 853 854 if (rwsem_is_contended(&shrinker_rwsem)) { 855 freed = freed ? : 1; 856 break; 857 } 858 } 859 unlock: 860 up_read(&shrinker_rwsem); 861 return freed; 862 } 863 #else /* CONFIG_MEMCG */ 864 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 865 struct mem_cgroup *memcg, int priority) 866 { 867 return 0; 868 } 869 #endif /* CONFIG_MEMCG */ 870 871 /** 872 * shrink_slab - shrink slab caches 873 * @gfp_mask: allocation context 874 * @nid: node whose slab caches to target 875 * @memcg: memory cgroup whose slab caches to target 876 * @priority: the reclaim priority 877 * 878 * Call the shrink functions to age shrinkable caches. 879 * 880 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 881 * unaware shrinkers will receive a node id of 0 instead. 882 * 883 * @memcg specifies the memory cgroup to target. Unaware shrinkers 884 * are called only if it is the root cgroup. 885 * 886 * @priority is sc->priority, we take the number of objects and >> by priority 887 * in order to get the scan target. 888 * 889 * Returns the number of reclaimed slab objects. 890 */ 891 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 892 struct mem_cgroup *memcg, 893 int priority) 894 { 895 unsigned long ret, freed = 0; 896 struct shrinker *shrinker; 897 898 /* 899 * The root memcg might be allocated even though memcg is disabled 900 * via "cgroup_disable=memory" boot parameter. This could make 901 * mem_cgroup_is_root() return false, then just run memcg slab 902 * shrink, but skip global shrink. This may result in premature 903 * oom. 904 */ 905 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 906 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 907 908 if (!down_read_trylock(&shrinker_rwsem)) 909 goto out; 910 911 list_for_each_entry(shrinker, &shrinker_list, list) { 912 struct shrink_control sc = { 913 .gfp_mask = gfp_mask, 914 .nid = nid, 915 .memcg = memcg, 916 }; 917 918 ret = do_shrink_slab(&sc, shrinker, priority); 919 if (ret == SHRINK_EMPTY) 920 ret = 0; 921 freed += ret; 922 /* 923 * Bail out if someone want to register a new shrinker to 924 * prevent the registration from being stalled for long periods 925 * by parallel ongoing shrinking. 926 */ 927 if (rwsem_is_contended(&shrinker_rwsem)) { 928 freed = freed ? : 1; 929 break; 930 } 931 } 932 933 up_read(&shrinker_rwsem); 934 out: 935 cond_resched(); 936 return freed; 937 } 938 939 void drop_slab_node(int nid) 940 { 941 unsigned long freed; 942 int shift = 0; 943 944 do { 945 struct mem_cgroup *memcg = NULL; 946 947 if (fatal_signal_pending(current)) 948 return; 949 950 freed = 0; 951 memcg = mem_cgroup_iter(NULL, NULL, NULL); 952 do { 953 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 954 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 955 } while ((freed >> shift++) > 1); 956 } 957 958 void drop_slab(void) 959 { 960 int nid; 961 962 for_each_online_node(nid) 963 drop_slab_node(nid); 964 } 965 966 static inline int is_page_cache_freeable(struct page *page) 967 { 968 /* 969 * A freeable page cache page is referenced only by the caller 970 * that isolated the page, the page cache and optional buffer 971 * heads at page->private. 972 */ 973 int page_cache_pins = thp_nr_pages(page); 974 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 975 } 976 977 static int may_write_to_inode(struct inode *inode) 978 { 979 if (current->flags & PF_SWAPWRITE) 980 return 1; 981 if (!inode_write_congested(inode)) 982 return 1; 983 if (inode_to_bdi(inode) == current->backing_dev_info) 984 return 1; 985 return 0; 986 } 987 988 /* 989 * We detected a synchronous write error writing a page out. Probably 990 * -ENOSPC. We need to propagate that into the address_space for a subsequent 991 * fsync(), msync() or close(). 992 * 993 * The tricky part is that after writepage we cannot touch the mapping: nothing 994 * prevents it from being freed up. But we have a ref on the page and once 995 * that page is locked, the mapping is pinned. 996 * 997 * We're allowed to run sleeping lock_page() here because we know the caller has 998 * __GFP_FS. 999 */ 1000 static void handle_write_error(struct address_space *mapping, 1001 struct page *page, int error) 1002 { 1003 lock_page(page); 1004 if (page_mapping(page) == mapping) 1005 mapping_set_error(mapping, error); 1006 unlock_page(page); 1007 } 1008 1009 /* possible outcome of pageout() */ 1010 typedef enum { 1011 /* failed to write page out, page is locked */ 1012 PAGE_KEEP, 1013 /* move page to the active list, page is locked */ 1014 PAGE_ACTIVATE, 1015 /* page has been sent to the disk successfully, page is unlocked */ 1016 PAGE_SUCCESS, 1017 /* page is clean and locked */ 1018 PAGE_CLEAN, 1019 } pageout_t; 1020 1021 /* 1022 * pageout is called by shrink_page_list() for each dirty page. 1023 * Calls ->writepage(). 1024 */ 1025 static pageout_t pageout(struct page *page, struct address_space *mapping) 1026 { 1027 /* 1028 * If the page is dirty, only perform writeback if that write 1029 * will be non-blocking. To prevent this allocation from being 1030 * stalled by pagecache activity. But note that there may be 1031 * stalls if we need to run get_block(). We could test 1032 * PagePrivate for that. 1033 * 1034 * If this process is currently in __generic_file_write_iter() against 1035 * this page's queue, we can perform writeback even if that 1036 * will block. 1037 * 1038 * If the page is swapcache, write it back even if that would 1039 * block, for some throttling. This happens by accident, because 1040 * swap_backing_dev_info is bust: it doesn't reflect the 1041 * congestion state of the swapdevs. Easy to fix, if needed. 1042 */ 1043 if (!is_page_cache_freeable(page)) 1044 return PAGE_KEEP; 1045 if (!mapping) { 1046 /* 1047 * Some data journaling orphaned pages can have 1048 * page->mapping == NULL while being dirty with clean buffers. 1049 */ 1050 if (page_has_private(page)) { 1051 if (try_to_free_buffers(page)) { 1052 ClearPageDirty(page); 1053 pr_info("%s: orphaned page\n", __func__); 1054 return PAGE_CLEAN; 1055 } 1056 } 1057 return PAGE_KEEP; 1058 } 1059 if (mapping->a_ops->writepage == NULL) 1060 return PAGE_ACTIVATE; 1061 if (!may_write_to_inode(mapping->host)) 1062 return PAGE_KEEP; 1063 1064 if (clear_page_dirty_for_io(page)) { 1065 int res; 1066 struct writeback_control wbc = { 1067 .sync_mode = WB_SYNC_NONE, 1068 .nr_to_write = SWAP_CLUSTER_MAX, 1069 .range_start = 0, 1070 .range_end = LLONG_MAX, 1071 .for_reclaim = 1, 1072 }; 1073 1074 SetPageReclaim(page); 1075 res = mapping->a_ops->writepage(page, &wbc); 1076 if (res < 0) 1077 handle_write_error(mapping, page, res); 1078 if (res == AOP_WRITEPAGE_ACTIVATE) { 1079 ClearPageReclaim(page); 1080 return PAGE_ACTIVATE; 1081 } 1082 1083 if (!PageWriteback(page)) { 1084 /* synchronous write or broken a_ops? */ 1085 ClearPageReclaim(page); 1086 } 1087 trace_mm_vmscan_writepage(page); 1088 inc_node_page_state(page, NR_VMSCAN_WRITE); 1089 return PAGE_SUCCESS; 1090 } 1091 1092 return PAGE_CLEAN; 1093 } 1094 1095 /* 1096 * Same as remove_mapping, but if the page is removed from the mapping, it 1097 * gets returned with a refcount of 0. 1098 */ 1099 static int __remove_mapping(struct address_space *mapping, struct page *page, 1100 bool reclaimed, struct mem_cgroup *target_memcg) 1101 { 1102 int refcount; 1103 void *shadow = NULL; 1104 1105 BUG_ON(!PageLocked(page)); 1106 BUG_ON(mapping != page_mapping(page)); 1107 1108 xa_lock_irq(&mapping->i_pages); 1109 /* 1110 * The non racy check for a busy page. 1111 * 1112 * Must be careful with the order of the tests. When someone has 1113 * a ref to the page, it may be possible that they dirty it then 1114 * drop the reference. So if PageDirty is tested before page_count 1115 * here, then the following race may occur: 1116 * 1117 * get_user_pages(&page); 1118 * [user mapping goes away] 1119 * write_to(page); 1120 * !PageDirty(page) [good] 1121 * SetPageDirty(page); 1122 * put_page(page); 1123 * !page_count(page) [good, discard it] 1124 * 1125 * [oops, our write_to data is lost] 1126 * 1127 * Reversing the order of the tests ensures such a situation cannot 1128 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1129 * load is not satisfied before that of page->_refcount. 1130 * 1131 * Note that if SetPageDirty is always performed via set_page_dirty, 1132 * and thus under the i_pages lock, then this ordering is not required. 1133 */ 1134 refcount = 1 + compound_nr(page); 1135 if (!page_ref_freeze(page, refcount)) 1136 goto cannot_free; 1137 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1138 if (unlikely(PageDirty(page))) { 1139 page_ref_unfreeze(page, refcount); 1140 goto cannot_free; 1141 } 1142 1143 if (PageSwapCache(page)) { 1144 swp_entry_t swap = { .val = page_private(page) }; 1145 mem_cgroup_swapout(page, swap); 1146 if (reclaimed && !mapping_exiting(mapping)) 1147 shadow = workingset_eviction(page, target_memcg); 1148 __delete_from_swap_cache(page, swap, shadow); 1149 xa_unlock_irq(&mapping->i_pages); 1150 put_swap_page(page, swap); 1151 } else { 1152 void (*freepage)(struct page *); 1153 1154 freepage = mapping->a_ops->freepage; 1155 /* 1156 * Remember a shadow entry for reclaimed file cache in 1157 * order to detect refaults, thus thrashing, later on. 1158 * 1159 * But don't store shadows in an address space that is 1160 * already exiting. This is not just an optimization, 1161 * inode reclaim needs to empty out the radix tree or 1162 * the nodes are lost. Don't plant shadows behind its 1163 * back. 1164 * 1165 * We also don't store shadows for DAX mappings because the 1166 * only page cache pages found in these are zero pages 1167 * covering holes, and because we don't want to mix DAX 1168 * exceptional entries and shadow exceptional entries in the 1169 * same address_space. 1170 */ 1171 if (reclaimed && page_is_file_lru(page) && 1172 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1173 shadow = workingset_eviction(page, target_memcg); 1174 __delete_from_page_cache(page, shadow); 1175 xa_unlock_irq(&mapping->i_pages); 1176 1177 if (freepage != NULL) 1178 freepage(page); 1179 } 1180 1181 return 1; 1182 1183 cannot_free: 1184 xa_unlock_irq(&mapping->i_pages); 1185 return 0; 1186 } 1187 1188 /* 1189 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1190 * someone else has a ref on the page, abort and return 0. If it was 1191 * successfully detached, return 1. Assumes the caller has a single ref on 1192 * this page. 1193 */ 1194 int remove_mapping(struct address_space *mapping, struct page *page) 1195 { 1196 if (__remove_mapping(mapping, page, false, NULL)) { 1197 /* 1198 * Unfreezing the refcount with 1 rather than 2 effectively 1199 * drops the pagecache ref for us without requiring another 1200 * atomic operation. 1201 */ 1202 page_ref_unfreeze(page, 1); 1203 return 1; 1204 } 1205 return 0; 1206 } 1207 1208 /** 1209 * putback_lru_page - put previously isolated page onto appropriate LRU list 1210 * @page: page to be put back to appropriate lru list 1211 * 1212 * Add previously isolated @page to appropriate LRU list. 1213 * Page may still be unevictable for other reasons. 1214 * 1215 * lru_lock must not be held, interrupts must be enabled. 1216 */ 1217 void putback_lru_page(struct page *page) 1218 { 1219 lru_cache_add(page); 1220 put_page(page); /* drop ref from isolate */ 1221 } 1222 1223 enum page_references { 1224 PAGEREF_RECLAIM, 1225 PAGEREF_RECLAIM_CLEAN, 1226 PAGEREF_KEEP, 1227 PAGEREF_ACTIVATE, 1228 }; 1229 1230 static enum page_references page_check_references(struct page *page, 1231 struct scan_control *sc) 1232 { 1233 int referenced_ptes, referenced_page; 1234 unsigned long vm_flags; 1235 1236 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1237 &vm_flags); 1238 referenced_page = TestClearPageReferenced(page); 1239 1240 /* 1241 * Mlock lost the isolation race with us. Let try_to_unmap() 1242 * move the page to the unevictable list. 1243 */ 1244 if (vm_flags & VM_LOCKED) 1245 return PAGEREF_RECLAIM; 1246 1247 if (referenced_ptes) { 1248 /* 1249 * All mapped pages start out with page table 1250 * references from the instantiating fault, so we need 1251 * to look twice if a mapped file page is used more 1252 * than once. 1253 * 1254 * Mark it and spare it for another trip around the 1255 * inactive list. Another page table reference will 1256 * lead to its activation. 1257 * 1258 * Note: the mark is set for activated pages as well 1259 * so that recently deactivated but used pages are 1260 * quickly recovered. 1261 */ 1262 SetPageReferenced(page); 1263 1264 if (referenced_page || referenced_ptes > 1) 1265 return PAGEREF_ACTIVATE; 1266 1267 /* 1268 * Activate file-backed executable pages after first usage. 1269 */ 1270 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1271 return PAGEREF_ACTIVATE; 1272 1273 return PAGEREF_KEEP; 1274 } 1275 1276 /* Reclaim if clean, defer dirty pages to writeback */ 1277 if (referenced_page && !PageSwapBacked(page)) 1278 return PAGEREF_RECLAIM_CLEAN; 1279 1280 return PAGEREF_RECLAIM; 1281 } 1282 1283 /* Check if a page is dirty or under writeback */ 1284 static void page_check_dirty_writeback(struct page *page, 1285 bool *dirty, bool *writeback) 1286 { 1287 struct address_space *mapping; 1288 1289 /* 1290 * Anonymous pages are not handled by flushers and must be written 1291 * from reclaim context. Do not stall reclaim based on them 1292 */ 1293 if (!page_is_file_lru(page) || 1294 (PageAnon(page) && !PageSwapBacked(page))) { 1295 *dirty = false; 1296 *writeback = false; 1297 return; 1298 } 1299 1300 /* By default assume that the page flags are accurate */ 1301 *dirty = PageDirty(page); 1302 *writeback = PageWriteback(page); 1303 1304 /* Verify dirty/writeback state if the filesystem supports it */ 1305 if (!page_has_private(page)) 1306 return; 1307 1308 mapping = page_mapping(page); 1309 if (mapping && mapping->a_ops->is_dirty_writeback) 1310 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1311 } 1312 1313 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1314 { 1315 struct migration_target_control mtc = { 1316 /* 1317 * Allocate from 'node', or fail quickly and quietly. 1318 * When this happens, 'page' will likely just be discarded 1319 * instead of migrated. 1320 */ 1321 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1322 __GFP_THISNODE | __GFP_NOWARN | 1323 __GFP_NOMEMALLOC | GFP_NOWAIT, 1324 .nid = node 1325 }; 1326 1327 return alloc_migration_target(page, (unsigned long)&mtc); 1328 } 1329 1330 /* 1331 * Take pages on @demote_list and attempt to demote them to 1332 * another node. Pages which are not demoted are left on 1333 * @demote_pages. 1334 */ 1335 static unsigned int demote_page_list(struct list_head *demote_pages, 1336 struct pglist_data *pgdat) 1337 { 1338 int target_nid = next_demotion_node(pgdat->node_id); 1339 unsigned int nr_succeeded; 1340 int err; 1341 1342 if (list_empty(demote_pages)) 1343 return 0; 1344 1345 if (target_nid == NUMA_NO_NODE) 1346 return 0; 1347 1348 /* Demotion ignores all cpuset and mempolicy settings */ 1349 err = migrate_pages(demote_pages, alloc_demote_page, NULL, 1350 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1351 &nr_succeeded); 1352 1353 if (current_is_kswapd()) 1354 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1355 else 1356 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1357 1358 return nr_succeeded; 1359 } 1360 1361 /* 1362 * shrink_page_list() returns the number of reclaimed pages 1363 */ 1364 static unsigned int shrink_page_list(struct list_head *page_list, 1365 struct pglist_data *pgdat, 1366 struct scan_control *sc, 1367 struct reclaim_stat *stat, 1368 bool ignore_references) 1369 { 1370 LIST_HEAD(ret_pages); 1371 LIST_HEAD(free_pages); 1372 LIST_HEAD(demote_pages); 1373 unsigned int nr_reclaimed = 0; 1374 unsigned int pgactivate = 0; 1375 bool do_demote_pass; 1376 1377 memset(stat, 0, sizeof(*stat)); 1378 cond_resched(); 1379 do_demote_pass = can_demote(pgdat->node_id, sc); 1380 1381 retry: 1382 while (!list_empty(page_list)) { 1383 struct address_space *mapping; 1384 struct page *page; 1385 enum page_references references = PAGEREF_RECLAIM; 1386 bool dirty, writeback, may_enter_fs; 1387 unsigned int nr_pages; 1388 1389 cond_resched(); 1390 1391 page = lru_to_page(page_list); 1392 list_del(&page->lru); 1393 1394 if (!trylock_page(page)) 1395 goto keep; 1396 1397 VM_BUG_ON_PAGE(PageActive(page), page); 1398 1399 nr_pages = compound_nr(page); 1400 1401 /* Account the number of base pages even though THP */ 1402 sc->nr_scanned += nr_pages; 1403 1404 if (unlikely(!page_evictable(page))) 1405 goto activate_locked; 1406 1407 if (!sc->may_unmap && page_mapped(page)) 1408 goto keep_locked; 1409 1410 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1411 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1412 1413 /* 1414 * The number of dirty pages determines if a node is marked 1415 * reclaim_congested which affects wait_iff_congested. kswapd 1416 * will stall and start writing pages if the tail of the LRU 1417 * is all dirty unqueued pages. 1418 */ 1419 page_check_dirty_writeback(page, &dirty, &writeback); 1420 if (dirty || writeback) 1421 stat->nr_dirty++; 1422 1423 if (dirty && !writeback) 1424 stat->nr_unqueued_dirty++; 1425 1426 /* 1427 * Treat this page as congested if the underlying BDI is or if 1428 * pages are cycling through the LRU so quickly that the 1429 * pages marked for immediate reclaim are making it to the 1430 * end of the LRU a second time. 1431 */ 1432 mapping = page_mapping(page); 1433 if (((dirty || writeback) && mapping && 1434 inode_write_congested(mapping->host)) || 1435 (writeback && PageReclaim(page))) 1436 stat->nr_congested++; 1437 1438 /* 1439 * If a page at the tail of the LRU is under writeback, there 1440 * are three cases to consider. 1441 * 1442 * 1) If reclaim is encountering an excessive number of pages 1443 * under writeback and this page is both under writeback and 1444 * PageReclaim then it indicates that pages are being queued 1445 * for IO but are being recycled through the LRU before the 1446 * IO can complete. Waiting on the page itself risks an 1447 * indefinite stall if it is impossible to writeback the 1448 * page due to IO error or disconnected storage so instead 1449 * note that the LRU is being scanned too quickly and the 1450 * caller can stall after page list has been processed. 1451 * 1452 * 2) Global or new memcg reclaim encounters a page that is 1453 * not marked for immediate reclaim, or the caller does not 1454 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1455 * not to fs). In this case mark the page for immediate 1456 * reclaim and continue scanning. 1457 * 1458 * Require may_enter_fs because we would wait on fs, which 1459 * may not have submitted IO yet. And the loop driver might 1460 * enter reclaim, and deadlock if it waits on a page for 1461 * which it is needed to do the write (loop masks off 1462 * __GFP_IO|__GFP_FS for this reason); but more thought 1463 * would probably show more reasons. 1464 * 1465 * 3) Legacy memcg encounters a page that is already marked 1466 * PageReclaim. memcg does not have any dirty pages 1467 * throttling so we could easily OOM just because too many 1468 * pages are in writeback and there is nothing else to 1469 * reclaim. Wait for the writeback to complete. 1470 * 1471 * In cases 1) and 2) we activate the pages to get them out of 1472 * the way while we continue scanning for clean pages on the 1473 * inactive list and refilling from the active list. The 1474 * observation here is that waiting for disk writes is more 1475 * expensive than potentially causing reloads down the line. 1476 * Since they're marked for immediate reclaim, they won't put 1477 * memory pressure on the cache working set any longer than it 1478 * takes to write them to disk. 1479 */ 1480 if (PageWriteback(page)) { 1481 /* Case 1 above */ 1482 if (current_is_kswapd() && 1483 PageReclaim(page) && 1484 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1485 stat->nr_immediate++; 1486 goto activate_locked; 1487 1488 /* Case 2 above */ 1489 } else if (writeback_throttling_sane(sc) || 1490 !PageReclaim(page) || !may_enter_fs) { 1491 /* 1492 * This is slightly racy - end_page_writeback() 1493 * might have just cleared PageReclaim, then 1494 * setting PageReclaim here end up interpreted 1495 * as PageReadahead - but that does not matter 1496 * enough to care. What we do want is for this 1497 * page to have PageReclaim set next time memcg 1498 * reclaim reaches the tests above, so it will 1499 * then wait_on_page_writeback() to avoid OOM; 1500 * and it's also appropriate in global reclaim. 1501 */ 1502 SetPageReclaim(page); 1503 stat->nr_writeback++; 1504 goto activate_locked; 1505 1506 /* Case 3 above */ 1507 } else { 1508 unlock_page(page); 1509 wait_on_page_writeback(page); 1510 /* then go back and try same page again */ 1511 list_add_tail(&page->lru, page_list); 1512 continue; 1513 } 1514 } 1515 1516 if (!ignore_references) 1517 references = page_check_references(page, sc); 1518 1519 switch (references) { 1520 case PAGEREF_ACTIVATE: 1521 goto activate_locked; 1522 case PAGEREF_KEEP: 1523 stat->nr_ref_keep += nr_pages; 1524 goto keep_locked; 1525 case PAGEREF_RECLAIM: 1526 case PAGEREF_RECLAIM_CLEAN: 1527 ; /* try to reclaim the page below */ 1528 } 1529 1530 /* 1531 * Before reclaiming the page, try to relocate 1532 * its contents to another node. 1533 */ 1534 if (do_demote_pass && 1535 (thp_migration_supported() || !PageTransHuge(page))) { 1536 list_add(&page->lru, &demote_pages); 1537 unlock_page(page); 1538 continue; 1539 } 1540 1541 /* 1542 * Anonymous process memory has backing store? 1543 * Try to allocate it some swap space here. 1544 * Lazyfree page could be freed directly 1545 */ 1546 if (PageAnon(page) && PageSwapBacked(page)) { 1547 if (!PageSwapCache(page)) { 1548 if (!(sc->gfp_mask & __GFP_IO)) 1549 goto keep_locked; 1550 if (page_maybe_dma_pinned(page)) 1551 goto keep_locked; 1552 if (PageTransHuge(page)) { 1553 /* cannot split THP, skip it */ 1554 if (!can_split_huge_page(page, NULL)) 1555 goto activate_locked; 1556 /* 1557 * Split pages without a PMD map right 1558 * away. Chances are some or all of the 1559 * tail pages can be freed without IO. 1560 */ 1561 if (!compound_mapcount(page) && 1562 split_huge_page_to_list(page, 1563 page_list)) 1564 goto activate_locked; 1565 } 1566 if (!add_to_swap(page)) { 1567 if (!PageTransHuge(page)) 1568 goto activate_locked_split; 1569 /* Fallback to swap normal pages */ 1570 if (split_huge_page_to_list(page, 1571 page_list)) 1572 goto activate_locked; 1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1574 count_vm_event(THP_SWPOUT_FALLBACK); 1575 #endif 1576 if (!add_to_swap(page)) 1577 goto activate_locked_split; 1578 } 1579 1580 may_enter_fs = true; 1581 1582 /* Adding to swap updated mapping */ 1583 mapping = page_mapping(page); 1584 } 1585 } else if (unlikely(PageTransHuge(page))) { 1586 /* Split file THP */ 1587 if (split_huge_page_to_list(page, page_list)) 1588 goto keep_locked; 1589 } 1590 1591 /* 1592 * THP may get split above, need minus tail pages and update 1593 * nr_pages to avoid accounting tail pages twice. 1594 * 1595 * The tail pages that are added into swap cache successfully 1596 * reach here. 1597 */ 1598 if ((nr_pages > 1) && !PageTransHuge(page)) { 1599 sc->nr_scanned -= (nr_pages - 1); 1600 nr_pages = 1; 1601 } 1602 1603 /* 1604 * The page is mapped into the page tables of one or more 1605 * processes. Try to unmap it here. 1606 */ 1607 if (page_mapped(page)) { 1608 enum ttu_flags flags = TTU_BATCH_FLUSH; 1609 bool was_swapbacked = PageSwapBacked(page); 1610 1611 if (unlikely(PageTransHuge(page))) 1612 flags |= TTU_SPLIT_HUGE_PMD; 1613 1614 try_to_unmap(page, flags); 1615 if (page_mapped(page)) { 1616 stat->nr_unmap_fail += nr_pages; 1617 if (!was_swapbacked && PageSwapBacked(page)) 1618 stat->nr_lazyfree_fail += nr_pages; 1619 goto activate_locked; 1620 } 1621 } 1622 1623 if (PageDirty(page)) { 1624 /* 1625 * Only kswapd can writeback filesystem pages 1626 * to avoid risk of stack overflow. But avoid 1627 * injecting inefficient single-page IO into 1628 * flusher writeback as much as possible: only 1629 * write pages when we've encountered many 1630 * dirty pages, and when we've already scanned 1631 * the rest of the LRU for clean pages and see 1632 * the same dirty pages again (PageReclaim). 1633 */ 1634 if (page_is_file_lru(page) && 1635 (!current_is_kswapd() || !PageReclaim(page) || 1636 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1637 /* 1638 * Immediately reclaim when written back. 1639 * Similar in principal to deactivate_page() 1640 * except we already have the page isolated 1641 * and know it's dirty 1642 */ 1643 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1644 SetPageReclaim(page); 1645 1646 goto activate_locked; 1647 } 1648 1649 if (references == PAGEREF_RECLAIM_CLEAN) 1650 goto keep_locked; 1651 if (!may_enter_fs) 1652 goto keep_locked; 1653 if (!sc->may_writepage) 1654 goto keep_locked; 1655 1656 /* 1657 * Page is dirty. Flush the TLB if a writable entry 1658 * potentially exists to avoid CPU writes after IO 1659 * starts and then write it out here. 1660 */ 1661 try_to_unmap_flush_dirty(); 1662 switch (pageout(page, mapping)) { 1663 case PAGE_KEEP: 1664 goto keep_locked; 1665 case PAGE_ACTIVATE: 1666 goto activate_locked; 1667 case PAGE_SUCCESS: 1668 stat->nr_pageout += thp_nr_pages(page); 1669 1670 if (PageWriteback(page)) 1671 goto keep; 1672 if (PageDirty(page)) 1673 goto keep; 1674 1675 /* 1676 * A synchronous write - probably a ramdisk. Go 1677 * ahead and try to reclaim the page. 1678 */ 1679 if (!trylock_page(page)) 1680 goto keep; 1681 if (PageDirty(page) || PageWriteback(page)) 1682 goto keep_locked; 1683 mapping = page_mapping(page); 1684 fallthrough; 1685 case PAGE_CLEAN: 1686 ; /* try to free the page below */ 1687 } 1688 } 1689 1690 /* 1691 * If the page has buffers, try to free the buffer mappings 1692 * associated with this page. If we succeed we try to free 1693 * the page as well. 1694 * 1695 * We do this even if the page is PageDirty(). 1696 * try_to_release_page() does not perform I/O, but it is 1697 * possible for a page to have PageDirty set, but it is actually 1698 * clean (all its buffers are clean). This happens if the 1699 * buffers were written out directly, with submit_bh(). ext3 1700 * will do this, as well as the blockdev mapping. 1701 * try_to_release_page() will discover that cleanness and will 1702 * drop the buffers and mark the page clean - it can be freed. 1703 * 1704 * Rarely, pages can have buffers and no ->mapping. These are 1705 * the pages which were not successfully invalidated in 1706 * truncate_cleanup_page(). We try to drop those buffers here 1707 * and if that worked, and the page is no longer mapped into 1708 * process address space (page_count == 1) it can be freed. 1709 * Otherwise, leave the page on the LRU so it is swappable. 1710 */ 1711 if (page_has_private(page)) { 1712 if (!try_to_release_page(page, sc->gfp_mask)) 1713 goto activate_locked; 1714 if (!mapping && page_count(page) == 1) { 1715 unlock_page(page); 1716 if (put_page_testzero(page)) 1717 goto free_it; 1718 else { 1719 /* 1720 * rare race with speculative reference. 1721 * the speculative reference will free 1722 * this page shortly, so we may 1723 * increment nr_reclaimed here (and 1724 * leave it off the LRU). 1725 */ 1726 nr_reclaimed++; 1727 continue; 1728 } 1729 } 1730 } 1731 1732 if (PageAnon(page) && !PageSwapBacked(page)) { 1733 /* follow __remove_mapping for reference */ 1734 if (!page_ref_freeze(page, 1)) 1735 goto keep_locked; 1736 /* 1737 * The page has only one reference left, which is 1738 * from the isolation. After the caller puts the 1739 * page back on lru and drops the reference, the 1740 * page will be freed anyway. It doesn't matter 1741 * which lru it goes. So we don't bother checking 1742 * PageDirty here. 1743 */ 1744 count_vm_event(PGLAZYFREED); 1745 count_memcg_page_event(page, PGLAZYFREED); 1746 } else if (!mapping || !__remove_mapping(mapping, page, true, 1747 sc->target_mem_cgroup)) 1748 goto keep_locked; 1749 1750 unlock_page(page); 1751 free_it: 1752 /* 1753 * THP may get swapped out in a whole, need account 1754 * all base pages. 1755 */ 1756 nr_reclaimed += nr_pages; 1757 1758 /* 1759 * Is there need to periodically free_page_list? It would 1760 * appear not as the counts should be low 1761 */ 1762 if (unlikely(PageTransHuge(page))) 1763 destroy_compound_page(page); 1764 else 1765 list_add(&page->lru, &free_pages); 1766 continue; 1767 1768 activate_locked_split: 1769 /* 1770 * The tail pages that are failed to add into swap cache 1771 * reach here. Fixup nr_scanned and nr_pages. 1772 */ 1773 if (nr_pages > 1) { 1774 sc->nr_scanned -= (nr_pages - 1); 1775 nr_pages = 1; 1776 } 1777 activate_locked: 1778 /* Not a candidate for swapping, so reclaim swap space. */ 1779 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1780 PageMlocked(page))) 1781 try_to_free_swap(page); 1782 VM_BUG_ON_PAGE(PageActive(page), page); 1783 if (!PageMlocked(page)) { 1784 int type = page_is_file_lru(page); 1785 SetPageActive(page); 1786 stat->nr_activate[type] += nr_pages; 1787 count_memcg_page_event(page, PGACTIVATE); 1788 } 1789 keep_locked: 1790 unlock_page(page); 1791 keep: 1792 list_add(&page->lru, &ret_pages); 1793 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1794 } 1795 /* 'page_list' is always empty here */ 1796 1797 /* Migrate pages selected for demotion */ 1798 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1799 /* Pages that could not be demoted are still in @demote_pages */ 1800 if (!list_empty(&demote_pages)) { 1801 /* Pages which failed to demoted go back on @page_list for retry: */ 1802 list_splice_init(&demote_pages, page_list); 1803 do_demote_pass = false; 1804 goto retry; 1805 } 1806 1807 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1808 1809 mem_cgroup_uncharge_list(&free_pages); 1810 try_to_unmap_flush(); 1811 free_unref_page_list(&free_pages); 1812 1813 list_splice(&ret_pages, page_list); 1814 count_vm_events(PGACTIVATE, pgactivate); 1815 1816 return nr_reclaimed; 1817 } 1818 1819 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1820 struct list_head *page_list) 1821 { 1822 struct scan_control sc = { 1823 .gfp_mask = GFP_KERNEL, 1824 .may_unmap = 1, 1825 }; 1826 struct reclaim_stat stat; 1827 unsigned int nr_reclaimed; 1828 struct page *page, *next; 1829 LIST_HEAD(clean_pages); 1830 unsigned int noreclaim_flag; 1831 1832 list_for_each_entry_safe(page, next, page_list, lru) { 1833 if (!PageHuge(page) && page_is_file_lru(page) && 1834 !PageDirty(page) && !__PageMovable(page) && 1835 !PageUnevictable(page)) { 1836 ClearPageActive(page); 1837 list_move(&page->lru, &clean_pages); 1838 } 1839 } 1840 1841 /* 1842 * We should be safe here since we are only dealing with file pages and 1843 * we are not kswapd and therefore cannot write dirty file pages. But 1844 * call memalloc_noreclaim_save() anyway, just in case these conditions 1845 * change in the future. 1846 */ 1847 noreclaim_flag = memalloc_noreclaim_save(); 1848 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1849 &stat, true); 1850 memalloc_noreclaim_restore(noreclaim_flag); 1851 1852 list_splice(&clean_pages, page_list); 1853 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1854 -(long)nr_reclaimed); 1855 /* 1856 * Since lazyfree pages are isolated from file LRU from the beginning, 1857 * they will rotate back to anonymous LRU in the end if it failed to 1858 * discard so isolated count will be mismatched. 1859 * Compensate the isolated count for both LRU lists. 1860 */ 1861 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1862 stat.nr_lazyfree_fail); 1863 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1864 -(long)stat.nr_lazyfree_fail); 1865 return nr_reclaimed; 1866 } 1867 1868 /* 1869 * Attempt to remove the specified page from its LRU. Only take this page 1870 * if it is of the appropriate PageActive status. Pages which are being 1871 * freed elsewhere are also ignored. 1872 * 1873 * page: page to consider 1874 * mode: one of the LRU isolation modes defined above 1875 * 1876 * returns true on success, false on failure. 1877 */ 1878 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1879 { 1880 /* Only take pages on the LRU. */ 1881 if (!PageLRU(page)) 1882 return false; 1883 1884 /* Compaction should not handle unevictable pages but CMA can do so */ 1885 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1886 return false; 1887 1888 /* 1889 * To minimise LRU disruption, the caller can indicate that it only 1890 * wants to isolate pages it will be able to operate on without 1891 * blocking - clean pages for the most part. 1892 * 1893 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1894 * that it is possible to migrate without blocking 1895 */ 1896 if (mode & ISOLATE_ASYNC_MIGRATE) { 1897 /* All the caller can do on PageWriteback is block */ 1898 if (PageWriteback(page)) 1899 return false; 1900 1901 if (PageDirty(page)) { 1902 struct address_space *mapping; 1903 bool migrate_dirty; 1904 1905 /* 1906 * Only pages without mappings or that have a 1907 * ->migratepage callback are possible to migrate 1908 * without blocking. However, we can be racing with 1909 * truncation so it's necessary to lock the page 1910 * to stabilise the mapping as truncation holds 1911 * the page lock until after the page is removed 1912 * from the page cache. 1913 */ 1914 if (!trylock_page(page)) 1915 return false; 1916 1917 mapping = page_mapping(page); 1918 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1919 unlock_page(page); 1920 if (!migrate_dirty) 1921 return false; 1922 } 1923 } 1924 1925 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1926 return false; 1927 1928 return true; 1929 } 1930 1931 /* 1932 * Update LRU sizes after isolating pages. The LRU size updates must 1933 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1934 */ 1935 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1936 enum lru_list lru, unsigned long *nr_zone_taken) 1937 { 1938 int zid; 1939 1940 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1941 if (!nr_zone_taken[zid]) 1942 continue; 1943 1944 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1945 } 1946 1947 } 1948 1949 /* 1950 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1951 * 1952 * lruvec->lru_lock is heavily contended. Some of the functions that 1953 * shrink the lists perform better by taking out a batch of pages 1954 * and working on them outside the LRU lock. 1955 * 1956 * For pagecache intensive workloads, this function is the hottest 1957 * spot in the kernel (apart from copy_*_user functions). 1958 * 1959 * Lru_lock must be held before calling this function. 1960 * 1961 * @nr_to_scan: The number of eligible pages to look through on the list. 1962 * @lruvec: The LRU vector to pull pages from. 1963 * @dst: The temp list to put pages on to. 1964 * @nr_scanned: The number of pages that were scanned. 1965 * @sc: The scan_control struct for this reclaim session 1966 * @lru: LRU list id for isolating 1967 * 1968 * returns how many pages were moved onto *@dst. 1969 */ 1970 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1971 struct lruvec *lruvec, struct list_head *dst, 1972 unsigned long *nr_scanned, struct scan_control *sc, 1973 enum lru_list lru) 1974 { 1975 struct list_head *src = &lruvec->lists[lru]; 1976 unsigned long nr_taken = 0; 1977 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1978 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1979 unsigned long skipped = 0; 1980 unsigned long scan, total_scan, nr_pages; 1981 LIST_HEAD(pages_skipped); 1982 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1983 1984 total_scan = 0; 1985 scan = 0; 1986 while (scan < nr_to_scan && !list_empty(src)) { 1987 struct page *page; 1988 1989 page = lru_to_page(src); 1990 prefetchw_prev_lru_page(page, src, flags); 1991 1992 nr_pages = compound_nr(page); 1993 total_scan += nr_pages; 1994 1995 if (page_zonenum(page) > sc->reclaim_idx) { 1996 list_move(&page->lru, &pages_skipped); 1997 nr_skipped[page_zonenum(page)] += nr_pages; 1998 continue; 1999 } 2000 2001 /* 2002 * Do not count skipped pages because that makes the function 2003 * return with no isolated pages if the LRU mostly contains 2004 * ineligible pages. This causes the VM to not reclaim any 2005 * pages, triggering a premature OOM. 2006 * 2007 * Account all tail pages of THP. This would not cause 2008 * premature OOM since __isolate_lru_page() returns -EBUSY 2009 * only when the page is being freed somewhere else. 2010 */ 2011 scan += nr_pages; 2012 if (!__isolate_lru_page_prepare(page, mode)) { 2013 /* It is being freed elsewhere */ 2014 list_move(&page->lru, src); 2015 continue; 2016 } 2017 /* 2018 * Be careful not to clear PageLRU until after we're 2019 * sure the page is not being freed elsewhere -- the 2020 * page release code relies on it. 2021 */ 2022 if (unlikely(!get_page_unless_zero(page))) { 2023 list_move(&page->lru, src); 2024 continue; 2025 } 2026 2027 if (!TestClearPageLRU(page)) { 2028 /* Another thread is already isolating this page */ 2029 put_page(page); 2030 list_move(&page->lru, src); 2031 continue; 2032 } 2033 2034 nr_taken += nr_pages; 2035 nr_zone_taken[page_zonenum(page)] += nr_pages; 2036 list_move(&page->lru, dst); 2037 } 2038 2039 /* 2040 * Splice any skipped pages to the start of the LRU list. Note that 2041 * this disrupts the LRU order when reclaiming for lower zones but 2042 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2043 * scanning would soon rescan the same pages to skip and put the 2044 * system at risk of premature OOM. 2045 */ 2046 if (!list_empty(&pages_skipped)) { 2047 int zid; 2048 2049 list_splice(&pages_skipped, src); 2050 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2051 if (!nr_skipped[zid]) 2052 continue; 2053 2054 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2055 skipped += nr_skipped[zid]; 2056 } 2057 } 2058 *nr_scanned = total_scan; 2059 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2060 total_scan, skipped, nr_taken, mode, lru); 2061 update_lru_sizes(lruvec, lru, nr_zone_taken); 2062 return nr_taken; 2063 } 2064 2065 /** 2066 * isolate_lru_page - tries to isolate a page from its LRU list 2067 * @page: page to isolate from its LRU list 2068 * 2069 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2070 * vmstat statistic corresponding to whatever LRU list the page was on. 2071 * 2072 * Returns 0 if the page was removed from an LRU list. 2073 * Returns -EBUSY if the page was not on an LRU list. 2074 * 2075 * The returned page will have PageLRU() cleared. If it was found on 2076 * the active list, it will have PageActive set. If it was found on 2077 * the unevictable list, it will have the PageUnevictable bit set. That flag 2078 * may need to be cleared by the caller before letting the page go. 2079 * 2080 * The vmstat statistic corresponding to the list on which the page was 2081 * found will be decremented. 2082 * 2083 * Restrictions: 2084 * 2085 * (1) Must be called with an elevated refcount on the page. This is a 2086 * fundamental difference from isolate_lru_pages (which is called 2087 * without a stable reference). 2088 * (2) the lru_lock must not be held. 2089 * (3) interrupts must be enabled. 2090 */ 2091 int isolate_lru_page(struct page *page) 2092 { 2093 struct folio *folio = page_folio(page); 2094 int ret = -EBUSY; 2095 2096 VM_BUG_ON_PAGE(!page_count(page), page); 2097 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2098 2099 if (TestClearPageLRU(page)) { 2100 struct lruvec *lruvec; 2101 2102 get_page(page); 2103 lruvec = folio_lruvec_lock_irq(folio); 2104 del_page_from_lru_list(page, lruvec); 2105 unlock_page_lruvec_irq(lruvec); 2106 ret = 0; 2107 } 2108 2109 return ret; 2110 } 2111 2112 /* 2113 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2114 * then get rescheduled. When there are massive number of tasks doing page 2115 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2116 * the LRU list will go small and be scanned faster than necessary, leading to 2117 * unnecessary swapping, thrashing and OOM. 2118 */ 2119 static int too_many_isolated(struct pglist_data *pgdat, int file, 2120 struct scan_control *sc) 2121 { 2122 unsigned long inactive, isolated; 2123 2124 if (current_is_kswapd()) 2125 return 0; 2126 2127 if (!writeback_throttling_sane(sc)) 2128 return 0; 2129 2130 if (file) { 2131 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2132 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2133 } else { 2134 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2135 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2136 } 2137 2138 /* 2139 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2140 * won't get blocked by normal direct-reclaimers, forming a circular 2141 * deadlock. 2142 */ 2143 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2144 inactive >>= 3; 2145 2146 return isolated > inactive; 2147 } 2148 2149 /* 2150 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2151 * On return, @list is reused as a list of pages to be freed by the caller. 2152 * 2153 * Returns the number of pages moved to the given lruvec. 2154 */ 2155 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2156 struct list_head *list) 2157 { 2158 int nr_pages, nr_moved = 0; 2159 LIST_HEAD(pages_to_free); 2160 struct page *page; 2161 2162 while (!list_empty(list)) { 2163 page = lru_to_page(list); 2164 VM_BUG_ON_PAGE(PageLRU(page), page); 2165 list_del(&page->lru); 2166 if (unlikely(!page_evictable(page))) { 2167 spin_unlock_irq(&lruvec->lru_lock); 2168 putback_lru_page(page); 2169 spin_lock_irq(&lruvec->lru_lock); 2170 continue; 2171 } 2172 2173 /* 2174 * The SetPageLRU needs to be kept here for list integrity. 2175 * Otherwise: 2176 * #0 move_pages_to_lru #1 release_pages 2177 * if !put_page_testzero 2178 * if (put_page_testzero()) 2179 * !PageLRU //skip lru_lock 2180 * SetPageLRU() 2181 * list_add(&page->lru,) 2182 * list_add(&page->lru,) 2183 */ 2184 SetPageLRU(page); 2185 2186 if (unlikely(put_page_testzero(page))) { 2187 __clear_page_lru_flags(page); 2188 2189 if (unlikely(PageCompound(page))) { 2190 spin_unlock_irq(&lruvec->lru_lock); 2191 destroy_compound_page(page); 2192 spin_lock_irq(&lruvec->lru_lock); 2193 } else 2194 list_add(&page->lru, &pages_to_free); 2195 2196 continue; 2197 } 2198 2199 /* 2200 * All pages were isolated from the same lruvec (and isolation 2201 * inhibits memcg migration). 2202 */ 2203 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2204 add_page_to_lru_list(page, lruvec); 2205 nr_pages = thp_nr_pages(page); 2206 nr_moved += nr_pages; 2207 if (PageActive(page)) 2208 workingset_age_nonresident(lruvec, nr_pages); 2209 } 2210 2211 /* 2212 * To save our caller's stack, now use input list for pages to free. 2213 */ 2214 list_splice(&pages_to_free, list); 2215 2216 return nr_moved; 2217 } 2218 2219 /* 2220 * If a kernel thread (such as nfsd for loop-back mounts) services 2221 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2222 * In that case we should only throttle if the backing device it is 2223 * writing to is congested. In other cases it is safe to throttle. 2224 */ 2225 static int current_may_throttle(void) 2226 { 2227 return !(current->flags & PF_LOCAL_THROTTLE) || 2228 current->backing_dev_info == NULL || 2229 bdi_write_congested(current->backing_dev_info); 2230 } 2231 2232 /* 2233 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2234 * of reclaimed pages 2235 */ 2236 static unsigned long 2237 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2238 struct scan_control *sc, enum lru_list lru) 2239 { 2240 LIST_HEAD(page_list); 2241 unsigned long nr_scanned; 2242 unsigned int nr_reclaimed = 0; 2243 unsigned long nr_taken; 2244 struct reclaim_stat stat; 2245 bool file = is_file_lru(lru); 2246 enum vm_event_item item; 2247 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2248 bool stalled = false; 2249 2250 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2251 if (stalled) 2252 return 0; 2253 2254 /* wait a bit for the reclaimer. */ 2255 msleep(100); 2256 stalled = true; 2257 2258 /* We are about to die and free our memory. Return now. */ 2259 if (fatal_signal_pending(current)) 2260 return SWAP_CLUSTER_MAX; 2261 } 2262 2263 lru_add_drain(); 2264 2265 spin_lock_irq(&lruvec->lru_lock); 2266 2267 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2268 &nr_scanned, sc, lru); 2269 2270 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2271 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2272 if (!cgroup_reclaim(sc)) 2273 __count_vm_events(item, nr_scanned); 2274 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2275 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2276 2277 spin_unlock_irq(&lruvec->lru_lock); 2278 2279 if (nr_taken == 0) 2280 return 0; 2281 2282 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2283 2284 spin_lock_irq(&lruvec->lru_lock); 2285 move_pages_to_lru(lruvec, &page_list); 2286 2287 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2288 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2289 if (!cgroup_reclaim(sc)) 2290 __count_vm_events(item, nr_reclaimed); 2291 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2292 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2293 spin_unlock_irq(&lruvec->lru_lock); 2294 2295 lru_note_cost(lruvec, file, stat.nr_pageout); 2296 mem_cgroup_uncharge_list(&page_list); 2297 free_unref_page_list(&page_list); 2298 2299 /* 2300 * If dirty pages are scanned that are not queued for IO, it 2301 * implies that flushers are not doing their job. This can 2302 * happen when memory pressure pushes dirty pages to the end of 2303 * the LRU before the dirty limits are breached and the dirty 2304 * data has expired. It can also happen when the proportion of 2305 * dirty pages grows not through writes but through memory 2306 * pressure reclaiming all the clean cache. And in some cases, 2307 * the flushers simply cannot keep up with the allocation 2308 * rate. Nudge the flusher threads in case they are asleep. 2309 */ 2310 if (stat.nr_unqueued_dirty == nr_taken) 2311 wakeup_flusher_threads(WB_REASON_VMSCAN); 2312 2313 sc->nr.dirty += stat.nr_dirty; 2314 sc->nr.congested += stat.nr_congested; 2315 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2316 sc->nr.writeback += stat.nr_writeback; 2317 sc->nr.immediate += stat.nr_immediate; 2318 sc->nr.taken += nr_taken; 2319 if (file) 2320 sc->nr.file_taken += nr_taken; 2321 2322 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2323 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2324 return nr_reclaimed; 2325 } 2326 2327 /* 2328 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2329 * 2330 * We move them the other way if the page is referenced by one or more 2331 * processes. 2332 * 2333 * If the pages are mostly unmapped, the processing is fast and it is 2334 * appropriate to hold lru_lock across the whole operation. But if 2335 * the pages are mapped, the processing is slow (page_referenced()), so 2336 * we should drop lru_lock around each page. It's impossible to balance 2337 * this, so instead we remove the pages from the LRU while processing them. 2338 * It is safe to rely on PG_active against the non-LRU pages in here because 2339 * nobody will play with that bit on a non-LRU page. 2340 * 2341 * The downside is that we have to touch page->_refcount against each page. 2342 * But we had to alter page->flags anyway. 2343 */ 2344 static void shrink_active_list(unsigned long nr_to_scan, 2345 struct lruvec *lruvec, 2346 struct scan_control *sc, 2347 enum lru_list lru) 2348 { 2349 unsigned long nr_taken; 2350 unsigned long nr_scanned; 2351 unsigned long vm_flags; 2352 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2353 LIST_HEAD(l_active); 2354 LIST_HEAD(l_inactive); 2355 struct page *page; 2356 unsigned nr_deactivate, nr_activate; 2357 unsigned nr_rotated = 0; 2358 int file = is_file_lru(lru); 2359 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2360 2361 lru_add_drain(); 2362 2363 spin_lock_irq(&lruvec->lru_lock); 2364 2365 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2366 &nr_scanned, sc, lru); 2367 2368 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2369 2370 if (!cgroup_reclaim(sc)) 2371 __count_vm_events(PGREFILL, nr_scanned); 2372 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2373 2374 spin_unlock_irq(&lruvec->lru_lock); 2375 2376 while (!list_empty(&l_hold)) { 2377 cond_resched(); 2378 page = lru_to_page(&l_hold); 2379 list_del(&page->lru); 2380 2381 if (unlikely(!page_evictable(page))) { 2382 putback_lru_page(page); 2383 continue; 2384 } 2385 2386 if (unlikely(buffer_heads_over_limit)) { 2387 if (page_has_private(page) && trylock_page(page)) { 2388 if (page_has_private(page)) 2389 try_to_release_page(page, 0); 2390 unlock_page(page); 2391 } 2392 } 2393 2394 if (page_referenced(page, 0, sc->target_mem_cgroup, 2395 &vm_flags)) { 2396 /* 2397 * Identify referenced, file-backed active pages and 2398 * give them one more trip around the active list. So 2399 * that executable code get better chances to stay in 2400 * memory under moderate memory pressure. Anon pages 2401 * are not likely to be evicted by use-once streaming 2402 * IO, plus JVM can create lots of anon VM_EXEC pages, 2403 * so we ignore them here. 2404 */ 2405 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2406 nr_rotated += thp_nr_pages(page); 2407 list_add(&page->lru, &l_active); 2408 continue; 2409 } 2410 } 2411 2412 ClearPageActive(page); /* we are de-activating */ 2413 SetPageWorkingset(page); 2414 list_add(&page->lru, &l_inactive); 2415 } 2416 2417 /* 2418 * Move pages back to the lru list. 2419 */ 2420 spin_lock_irq(&lruvec->lru_lock); 2421 2422 nr_activate = move_pages_to_lru(lruvec, &l_active); 2423 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2424 /* Keep all free pages in l_active list */ 2425 list_splice(&l_inactive, &l_active); 2426 2427 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2428 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2429 2430 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2431 spin_unlock_irq(&lruvec->lru_lock); 2432 2433 mem_cgroup_uncharge_list(&l_active); 2434 free_unref_page_list(&l_active); 2435 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2436 nr_deactivate, nr_rotated, sc->priority, file); 2437 } 2438 2439 unsigned long reclaim_pages(struct list_head *page_list) 2440 { 2441 int nid = NUMA_NO_NODE; 2442 unsigned int nr_reclaimed = 0; 2443 LIST_HEAD(node_page_list); 2444 struct reclaim_stat dummy_stat; 2445 struct page *page; 2446 unsigned int noreclaim_flag; 2447 struct scan_control sc = { 2448 .gfp_mask = GFP_KERNEL, 2449 .may_writepage = 1, 2450 .may_unmap = 1, 2451 .may_swap = 1, 2452 .no_demotion = 1, 2453 }; 2454 2455 noreclaim_flag = memalloc_noreclaim_save(); 2456 2457 while (!list_empty(page_list)) { 2458 page = lru_to_page(page_list); 2459 if (nid == NUMA_NO_NODE) { 2460 nid = page_to_nid(page); 2461 INIT_LIST_HEAD(&node_page_list); 2462 } 2463 2464 if (nid == page_to_nid(page)) { 2465 ClearPageActive(page); 2466 list_move(&page->lru, &node_page_list); 2467 continue; 2468 } 2469 2470 nr_reclaimed += shrink_page_list(&node_page_list, 2471 NODE_DATA(nid), 2472 &sc, &dummy_stat, false); 2473 while (!list_empty(&node_page_list)) { 2474 page = lru_to_page(&node_page_list); 2475 list_del(&page->lru); 2476 putback_lru_page(page); 2477 } 2478 2479 nid = NUMA_NO_NODE; 2480 } 2481 2482 if (!list_empty(&node_page_list)) { 2483 nr_reclaimed += shrink_page_list(&node_page_list, 2484 NODE_DATA(nid), 2485 &sc, &dummy_stat, false); 2486 while (!list_empty(&node_page_list)) { 2487 page = lru_to_page(&node_page_list); 2488 list_del(&page->lru); 2489 putback_lru_page(page); 2490 } 2491 } 2492 2493 memalloc_noreclaim_restore(noreclaim_flag); 2494 2495 return nr_reclaimed; 2496 } 2497 2498 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2499 struct lruvec *lruvec, struct scan_control *sc) 2500 { 2501 if (is_active_lru(lru)) { 2502 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2503 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2504 else 2505 sc->skipped_deactivate = 1; 2506 return 0; 2507 } 2508 2509 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2510 } 2511 2512 /* 2513 * The inactive anon list should be small enough that the VM never has 2514 * to do too much work. 2515 * 2516 * The inactive file list should be small enough to leave most memory 2517 * to the established workingset on the scan-resistant active list, 2518 * but large enough to avoid thrashing the aggregate readahead window. 2519 * 2520 * Both inactive lists should also be large enough that each inactive 2521 * page has a chance to be referenced again before it is reclaimed. 2522 * 2523 * If that fails and refaulting is observed, the inactive list grows. 2524 * 2525 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2526 * on this LRU, maintained by the pageout code. An inactive_ratio 2527 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2528 * 2529 * total target max 2530 * memory ratio inactive 2531 * ------------------------------------- 2532 * 10MB 1 5MB 2533 * 100MB 1 50MB 2534 * 1GB 3 250MB 2535 * 10GB 10 0.9GB 2536 * 100GB 31 3GB 2537 * 1TB 101 10GB 2538 * 10TB 320 32GB 2539 */ 2540 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2541 { 2542 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2543 unsigned long inactive, active; 2544 unsigned long inactive_ratio; 2545 unsigned long gb; 2546 2547 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2548 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2549 2550 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2551 if (gb) 2552 inactive_ratio = int_sqrt(10 * gb); 2553 else 2554 inactive_ratio = 1; 2555 2556 return inactive * inactive_ratio < active; 2557 } 2558 2559 enum scan_balance { 2560 SCAN_EQUAL, 2561 SCAN_FRACT, 2562 SCAN_ANON, 2563 SCAN_FILE, 2564 }; 2565 2566 /* 2567 * Determine how aggressively the anon and file LRU lists should be 2568 * scanned. The relative value of each set of LRU lists is determined 2569 * by looking at the fraction of the pages scanned we did rotate back 2570 * onto the active list instead of evict. 2571 * 2572 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2573 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2574 */ 2575 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2576 unsigned long *nr) 2577 { 2578 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2579 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2580 unsigned long anon_cost, file_cost, total_cost; 2581 int swappiness = mem_cgroup_swappiness(memcg); 2582 u64 fraction[ANON_AND_FILE]; 2583 u64 denominator = 0; /* gcc */ 2584 enum scan_balance scan_balance; 2585 unsigned long ap, fp; 2586 enum lru_list lru; 2587 2588 /* If we have no swap space, do not bother scanning anon pages. */ 2589 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2590 scan_balance = SCAN_FILE; 2591 goto out; 2592 } 2593 2594 /* 2595 * Global reclaim will swap to prevent OOM even with no 2596 * swappiness, but memcg users want to use this knob to 2597 * disable swapping for individual groups completely when 2598 * using the memory controller's swap limit feature would be 2599 * too expensive. 2600 */ 2601 if (cgroup_reclaim(sc) && !swappiness) { 2602 scan_balance = SCAN_FILE; 2603 goto out; 2604 } 2605 2606 /* 2607 * Do not apply any pressure balancing cleverness when the 2608 * system is close to OOM, scan both anon and file equally 2609 * (unless the swappiness setting disagrees with swapping). 2610 */ 2611 if (!sc->priority && swappiness) { 2612 scan_balance = SCAN_EQUAL; 2613 goto out; 2614 } 2615 2616 /* 2617 * If the system is almost out of file pages, force-scan anon. 2618 */ 2619 if (sc->file_is_tiny) { 2620 scan_balance = SCAN_ANON; 2621 goto out; 2622 } 2623 2624 /* 2625 * If there is enough inactive page cache, we do not reclaim 2626 * anything from the anonymous working right now. 2627 */ 2628 if (sc->cache_trim_mode) { 2629 scan_balance = SCAN_FILE; 2630 goto out; 2631 } 2632 2633 scan_balance = SCAN_FRACT; 2634 /* 2635 * Calculate the pressure balance between anon and file pages. 2636 * 2637 * The amount of pressure we put on each LRU is inversely 2638 * proportional to the cost of reclaiming each list, as 2639 * determined by the share of pages that are refaulting, times 2640 * the relative IO cost of bringing back a swapped out 2641 * anonymous page vs reloading a filesystem page (swappiness). 2642 * 2643 * Although we limit that influence to ensure no list gets 2644 * left behind completely: at least a third of the pressure is 2645 * applied, before swappiness. 2646 * 2647 * With swappiness at 100, anon and file have equal IO cost. 2648 */ 2649 total_cost = sc->anon_cost + sc->file_cost; 2650 anon_cost = total_cost + sc->anon_cost; 2651 file_cost = total_cost + sc->file_cost; 2652 total_cost = anon_cost + file_cost; 2653 2654 ap = swappiness * (total_cost + 1); 2655 ap /= anon_cost + 1; 2656 2657 fp = (200 - swappiness) * (total_cost + 1); 2658 fp /= file_cost + 1; 2659 2660 fraction[0] = ap; 2661 fraction[1] = fp; 2662 denominator = ap + fp; 2663 out: 2664 for_each_evictable_lru(lru) { 2665 int file = is_file_lru(lru); 2666 unsigned long lruvec_size; 2667 unsigned long low, min; 2668 unsigned long scan; 2669 2670 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2671 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2672 &min, &low); 2673 2674 if (min || low) { 2675 /* 2676 * Scale a cgroup's reclaim pressure by proportioning 2677 * its current usage to its memory.low or memory.min 2678 * setting. 2679 * 2680 * This is important, as otherwise scanning aggression 2681 * becomes extremely binary -- from nothing as we 2682 * approach the memory protection threshold, to totally 2683 * nominal as we exceed it. This results in requiring 2684 * setting extremely liberal protection thresholds. It 2685 * also means we simply get no protection at all if we 2686 * set it too low, which is not ideal. 2687 * 2688 * If there is any protection in place, we reduce scan 2689 * pressure by how much of the total memory used is 2690 * within protection thresholds. 2691 * 2692 * There is one special case: in the first reclaim pass, 2693 * we skip over all groups that are within their low 2694 * protection. If that fails to reclaim enough pages to 2695 * satisfy the reclaim goal, we come back and override 2696 * the best-effort low protection. However, we still 2697 * ideally want to honor how well-behaved groups are in 2698 * that case instead of simply punishing them all 2699 * equally. As such, we reclaim them based on how much 2700 * memory they are using, reducing the scan pressure 2701 * again by how much of the total memory used is under 2702 * hard protection. 2703 */ 2704 unsigned long cgroup_size = mem_cgroup_size(memcg); 2705 unsigned long protection; 2706 2707 /* memory.low scaling, make sure we retry before OOM */ 2708 if (!sc->memcg_low_reclaim && low > min) { 2709 protection = low; 2710 sc->memcg_low_skipped = 1; 2711 } else { 2712 protection = min; 2713 } 2714 2715 /* Avoid TOCTOU with earlier protection check */ 2716 cgroup_size = max(cgroup_size, protection); 2717 2718 scan = lruvec_size - lruvec_size * protection / 2719 (cgroup_size + 1); 2720 2721 /* 2722 * Minimally target SWAP_CLUSTER_MAX pages to keep 2723 * reclaim moving forwards, avoiding decrementing 2724 * sc->priority further than desirable. 2725 */ 2726 scan = max(scan, SWAP_CLUSTER_MAX); 2727 } else { 2728 scan = lruvec_size; 2729 } 2730 2731 scan >>= sc->priority; 2732 2733 /* 2734 * If the cgroup's already been deleted, make sure to 2735 * scrape out the remaining cache. 2736 */ 2737 if (!scan && !mem_cgroup_online(memcg)) 2738 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2739 2740 switch (scan_balance) { 2741 case SCAN_EQUAL: 2742 /* Scan lists relative to size */ 2743 break; 2744 case SCAN_FRACT: 2745 /* 2746 * Scan types proportional to swappiness and 2747 * their relative recent reclaim efficiency. 2748 * Make sure we don't miss the last page on 2749 * the offlined memory cgroups because of a 2750 * round-off error. 2751 */ 2752 scan = mem_cgroup_online(memcg) ? 2753 div64_u64(scan * fraction[file], denominator) : 2754 DIV64_U64_ROUND_UP(scan * fraction[file], 2755 denominator); 2756 break; 2757 case SCAN_FILE: 2758 case SCAN_ANON: 2759 /* Scan one type exclusively */ 2760 if ((scan_balance == SCAN_FILE) != file) 2761 scan = 0; 2762 break; 2763 default: 2764 /* Look ma, no brain */ 2765 BUG(); 2766 } 2767 2768 nr[lru] = scan; 2769 } 2770 } 2771 2772 /* 2773 * Anonymous LRU management is a waste if there is 2774 * ultimately no way to reclaim the memory. 2775 */ 2776 static bool can_age_anon_pages(struct pglist_data *pgdat, 2777 struct scan_control *sc) 2778 { 2779 /* Aging the anon LRU is valuable if swap is present: */ 2780 if (total_swap_pages > 0) 2781 return true; 2782 2783 /* Also valuable if anon pages can be demoted: */ 2784 return can_demote(pgdat->node_id, sc); 2785 } 2786 2787 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2788 { 2789 unsigned long nr[NR_LRU_LISTS]; 2790 unsigned long targets[NR_LRU_LISTS]; 2791 unsigned long nr_to_scan; 2792 enum lru_list lru; 2793 unsigned long nr_reclaimed = 0; 2794 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2795 struct blk_plug plug; 2796 bool scan_adjusted; 2797 2798 get_scan_count(lruvec, sc, nr); 2799 2800 /* Record the original scan target for proportional adjustments later */ 2801 memcpy(targets, nr, sizeof(nr)); 2802 2803 /* 2804 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2805 * event that can occur when there is little memory pressure e.g. 2806 * multiple streaming readers/writers. Hence, we do not abort scanning 2807 * when the requested number of pages are reclaimed when scanning at 2808 * DEF_PRIORITY on the assumption that the fact we are direct 2809 * reclaiming implies that kswapd is not keeping up and it is best to 2810 * do a batch of work at once. For memcg reclaim one check is made to 2811 * abort proportional reclaim if either the file or anon lru has already 2812 * dropped to zero at the first pass. 2813 */ 2814 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2815 sc->priority == DEF_PRIORITY); 2816 2817 blk_start_plug(&plug); 2818 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2819 nr[LRU_INACTIVE_FILE]) { 2820 unsigned long nr_anon, nr_file, percentage; 2821 unsigned long nr_scanned; 2822 2823 for_each_evictable_lru(lru) { 2824 if (nr[lru]) { 2825 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2826 nr[lru] -= nr_to_scan; 2827 2828 nr_reclaimed += shrink_list(lru, nr_to_scan, 2829 lruvec, sc); 2830 } 2831 } 2832 2833 cond_resched(); 2834 2835 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2836 continue; 2837 2838 /* 2839 * For kswapd and memcg, reclaim at least the number of pages 2840 * requested. Ensure that the anon and file LRUs are scanned 2841 * proportionally what was requested by get_scan_count(). We 2842 * stop reclaiming one LRU and reduce the amount scanning 2843 * proportional to the original scan target. 2844 */ 2845 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2846 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2847 2848 /* 2849 * It's just vindictive to attack the larger once the smaller 2850 * has gone to zero. And given the way we stop scanning the 2851 * smaller below, this makes sure that we only make one nudge 2852 * towards proportionality once we've got nr_to_reclaim. 2853 */ 2854 if (!nr_file || !nr_anon) 2855 break; 2856 2857 if (nr_file > nr_anon) { 2858 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2859 targets[LRU_ACTIVE_ANON] + 1; 2860 lru = LRU_BASE; 2861 percentage = nr_anon * 100 / scan_target; 2862 } else { 2863 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2864 targets[LRU_ACTIVE_FILE] + 1; 2865 lru = LRU_FILE; 2866 percentage = nr_file * 100 / scan_target; 2867 } 2868 2869 /* Stop scanning the smaller of the LRU */ 2870 nr[lru] = 0; 2871 nr[lru + LRU_ACTIVE] = 0; 2872 2873 /* 2874 * Recalculate the other LRU scan count based on its original 2875 * scan target and the percentage scanning already complete 2876 */ 2877 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2878 nr_scanned = targets[lru] - nr[lru]; 2879 nr[lru] = targets[lru] * (100 - percentage) / 100; 2880 nr[lru] -= min(nr[lru], nr_scanned); 2881 2882 lru += LRU_ACTIVE; 2883 nr_scanned = targets[lru] - nr[lru]; 2884 nr[lru] = targets[lru] * (100 - percentage) / 100; 2885 nr[lru] -= min(nr[lru], nr_scanned); 2886 2887 scan_adjusted = true; 2888 } 2889 blk_finish_plug(&plug); 2890 sc->nr_reclaimed += nr_reclaimed; 2891 2892 /* 2893 * Even if we did not try to evict anon pages at all, we want to 2894 * rebalance the anon lru active/inactive ratio. 2895 */ 2896 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 2897 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2898 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2899 sc, LRU_ACTIVE_ANON); 2900 } 2901 2902 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2903 static bool in_reclaim_compaction(struct scan_control *sc) 2904 { 2905 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2906 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2907 sc->priority < DEF_PRIORITY - 2)) 2908 return true; 2909 2910 return false; 2911 } 2912 2913 /* 2914 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2915 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2916 * true if more pages should be reclaimed such that when the page allocator 2917 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2918 * It will give up earlier than that if there is difficulty reclaiming pages. 2919 */ 2920 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2921 unsigned long nr_reclaimed, 2922 struct scan_control *sc) 2923 { 2924 unsigned long pages_for_compaction; 2925 unsigned long inactive_lru_pages; 2926 int z; 2927 2928 /* If not in reclaim/compaction mode, stop */ 2929 if (!in_reclaim_compaction(sc)) 2930 return false; 2931 2932 /* 2933 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2934 * number of pages that were scanned. This will return to the caller 2935 * with the risk reclaim/compaction and the resulting allocation attempt 2936 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2937 * allocations through requiring that the full LRU list has been scanned 2938 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2939 * scan, but that approximation was wrong, and there were corner cases 2940 * where always a non-zero amount of pages were scanned. 2941 */ 2942 if (!nr_reclaimed) 2943 return false; 2944 2945 /* If compaction would go ahead or the allocation would succeed, stop */ 2946 for (z = 0; z <= sc->reclaim_idx; z++) { 2947 struct zone *zone = &pgdat->node_zones[z]; 2948 if (!managed_zone(zone)) 2949 continue; 2950 2951 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2952 case COMPACT_SUCCESS: 2953 case COMPACT_CONTINUE: 2954 return false; 2955 default: 2956 /* check next zone */ 2957 ; 2958 } 2959 } 2960 2961 /* 2962 * If we have not reclaimed enough pages for compaction and the 2963 * inactive lists are large enough, continue reclaiming 2964 */ 2965 pages_for_compaction = compact_gap(sc->order); 2966 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2967 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 2968 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2969 2970 return inactive_lru_pages > pages_for_compaction; 2971 } 2972 2973 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2974 { 2975 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2976 struct mem_cgroup *memcg; 2977 2978 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2979 do { 2980 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2981 unsigned long reclaimed; 2982 unsigned long scanned; 2983 2984 /* 2985 * This loop can become CPU-bound when target memcgs 2986 * aren't eligible for reclaim - either because they 2987 * don't have any reclaimable pages, or because their 2988 * memory is explicitly protected. Avoid soft lockups. 2989 */ 2990 cond_resched(); 2991 2992 mem_cgroup_calculate_protection(target_memcg, memcg); 2993 2994 if (mem_cgroup_below_min(memcg)) { 2995 /* 2996 * Hard protection. 2997 * If there is no reclaimable memory, OOM. 2998 */ 2999 continue; 3000 } else if (mem_cgroup_below_low(memcg)) { 3001 /* 3002 * Soft protection. 3003 * Respect the protection only as long as 3004 * there is an unprotected supply 3005 * of reclaimable memory from other cgroups. 3006 */ 3007 if (!sc->memcg_low_reclaim) { 3008 sc->memcg_low_skipped = 1; 3009 continue; 3010 } 3011 memcg_memory_event(memcg, MEMCG_LOW); 3012 } 3013 3014 reclaimed = sc->nr_reclaimed; 3015 scanned = sc->nr_scanned; 3016 3017 shrink_lruvec(lruvec, sc); 3018 3019 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3020 sc->priority); 3021 3022 /* Record the group's reclaim efficiency */ 3023 vmpressure(sc->gfp_mask, memcg, false, 3024 sc->nr_scanned - scanned, 3025 sc->nr_reclaimed - reclaimed); 3026 3027 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3028 } 3029 3030 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3031 { 3032 struct reclaim_state *reclaim_state = current->reclaim_state; 3033 unsigned long nr_reclaimed, nr_scanned; 3034 struct lruvec *target_lruvec; 3035 bool reclaimable = false; 3036 unsigned long file; 3037 3038 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3039 3040 again: 3041 /* 3042 * Flush the memory cgroup stats, so that we read accurate per-memcg 3043 * lruvec stats for heuristics. 3044 */ 3045 mem_cgroup_flush_stats(); 3046 3047 memset(&sc->nr, 0, sizeof(sc->nr)); 3048 3049 nr_reclaimed = sc->nr_reclaimed; 3050 nr_scanned = sc->nr_scanned; 3051 3052 /* 3053 * Determine the scan balance between anon and file LRUs. 3054 */ 3055 spin_lock_irq(&target_lruvec->lru_lock); 3056 sc->anon_cost = target_lruvec->anon_cost; 3057 sc->file_cost = target_lruvec->file_cost; 3058 spin_unlock_irq(&target_lruvec->lru_lock); 3059 3060 /* 3061 * Target desirable inactive:active list ratios for the anon 3062 * and file LRU lists. 3063 */ 3064 if (!sc->force_deactivate) { 3065 unsigned long refaults; 3066 3067 refaults = lruvec_page_state(target_lruvec, 3068 WORKINGSET_ACTIVATE_ANON); 3069 if (refaults != target_lruvec->refaults[0] || 3070 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3071 sc->may_deactivate |= DEACTIVATE_ANON; 3072 else 3073 sc->may_deactivate &= ~DEACTIVATE_ANON; 3074 3075 /* 3076 * When refaults are being observed, it means a new 3077 * workingset is being established. Deactivate to get 3078 * rid of any stale active pages quickly. 3079 */ 3080 refaults = lruvec_page_state(target_lruvec, 3081 WORKINGSET_ACTIVATE_FILE); 3082 if (refaults != target_lruvec->refaults[1] || 3083 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3084 sc->may_deactivate |= DEACTIVATE_FILE; 3085 else 3086 sc->may_deactivate &= ~DEACTIVATE_FILE; 3087 } else 3088 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3089 3090 /* 3091 * If we have plenty of inactive file pages that aren't 3092 * thrashing, try to reclaim those first before touching 3093 * anonymous pages. 3094 */ 3095 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3096 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3097 sc->cache_trim_mode = 1; 3098 else 3099 sc->cache_trim_mode = 0; 3100 3101 /* 3102 * Prevent the reclaimer from falling into the cache trap: as 3103 * cache pages start out inactive, every cache fault will tip 3104 * the scan balance towards the file LRU. And as the file LRU 3105 * shrinks, so does the window for rotation from references. 3106 * This means we have a runaway feedback loop where a tiny 3107 * thrashing file LRU becomes infinitely more attractive than 3108 * anon pages. Try to detect this based on file LRU size. 3109 */ 3110 if (!cgroup_reclaim(sc)) { 3111 unsigned long total_high_wmark = 0; 3112 unsigned long free, anon; 3113 int z; 3114 3115 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3116 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3117 node_page_state(pgdat, NR_INACTIVE_FILE); 3118 3119 for (z = 0; z < MAX_NR_ZONES; z++) { 3120 struct zone *zone = &pgdat->node_zones[z]; 3121 if (!managed_zone(zone)) 3122 continue; 3123 3124 total_high_wmark += high_wmark_pages(zone); 3125 } 3126 3127 /* 3128 * Consider anon: if that's low too, this isn't a 3129 * runaway file reclaim problem, but rather just 3130 * extreme pressure. Reclaim as per usual then. 3131 */ 3132 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3133 3134 sc->file_is_tiny = 3135 file + free <= total_high_wmark && 3136 !(sc->may_deactivate & DEACTIVATE_ANON) && 3137 anon >> sc->priority; 3138 } 3139 3140 shrink_node_memcgs(pgdat, sc); 3141 3142 if (reclaim_state) { 3143 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3144 reclaim_state->reclaimed_slab = 0; 3145 } 3146 3147 /* Record the subtree's reclaim efficiency */ 3148 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3149 sc->nr_scanned - nr_scanned, 3150 sc->nr_reclaimed - nr_reclaimed); 3151 3152 if (sc->nr_reclaimed - nr_reclaimed) 3153 reclaimable = true; 3154 3155 if (current_is_kswapd()) { 3156 /* 3157 * If reclaim is isolating dirty pages under writeback, 3158 * it implies that the long-lived page allocation rate 3159 * is exceeding the page laundering rate. Either the 3160 * global limits are not being effective at throttling 3161 * processes due to the page distribution throughout 3162 * zones or there is heavy usage of a slow backing 3163 * device. The only option is to throttle from reclaim 3164 * context which is not ideal as there is no guarantee 3165 * the dirtying process is throttled in the same way 3166 * balance_dirty_pages() manages. 3167 * 3168 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3169 * count the number of pages under pages flagged for 3170 * immediate reclaim and stall if any are encountered 3171 * in the nr_immediate check below. 3172 */ 3173 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3174 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3175 3176 /* Allow kswapd to start writing pages during reclaim.*/ 3177 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3178 set_bit(PGDAT_DIRTY, &pgdat->flags); 3179 3180 /* 3181 * If kswapd scans pages marked for immediate 3182 * reclaim and under writeback (nr_immediate), it 3183 * implies that pages are cycling through the LRU 3184 * faster than they are written so also forcibly stall. 3185 */ 3186 if (sc->nr.immediate) 3187 congestion_wait(BLK_RW_ASYNC, HZ/10); 3188 } 3189 3190 /* 3191 * Tag a node/memcg as congested if all the dirty pages 3192 * scanned were backed by a congested BDI and 3193 * wait_iff_congested will stall. 3194 * 3195 * Legacy memcg will stall in page writeback so avoid forcibly 3196 * stalling in wait_iff_congested(). 3197 */ 3198 if ((current_is_kswapd() || 3199 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3200 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3201 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3202 3203 /* 3204 * Stall direct reclaim for IO completions if underlying BDIs 3205 * and node is congested. Allow kswapd to continue until it 3206 * starts encountering unqueued dirty pages or cycling through 3207 * the LRU too quickly. 3208 */ 3209 if (!current_is_kswapd() && current_may_throttle() && 3210 !sc->hibernation_mode && 3211 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3212 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 3213 3214 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3215 sc)) 3216 goto again; 3217 3218 /* 3219 * Kswapd gives up on balancing particular nodes after too 3220 * many failures to reclaim anything from them and goes to 3221 * sleep. On reclaim progress, reset the failure counter. A 3222 * successful direct reclaim run will revive a dormant kswapd. 3223 */ 3224 if (reclaimable) 3225 pgdat->kswapd_failures = 0; 3226 } 3227 3228 /* 3229 * Returns true if compaction should go ahead for a costly-order request, or 3230 * the allocation would already succeed without compaction. Return false if we 3231 * should reclaim first. 3232 */ 3233 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3234 { 3235 unsigned long watermark; 3236 enum compact_result suitable; 3237 3238 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3239 if (suitable == COMPACT_SUCCESS) 3240 /* Allocation should succeed already. Don't reclaim. */ 3241 return true; 3242 if (suitable == COMPACT_SKIPPED) 3243 /* Compaction cannot yet proceed. Do reclaim. */ 3244 return false; 3245 3246 /* 3247 * Compaction is already possible, but it takes time to run and there 3248 * are potentially other callers using the pages just freed. So proceed 3249 * with reclaim to make a buffer of free pages available to give 3250 * compaction a reasonable chance of completing and allocating the page. 3251 * Note that we won't actually reclaim the whole buffer in one attempt 3252 * as the target watermark in should_continue_reclaim() is lower. But if 3253 * we are already above the high+gap watermark, don't reclaim at all. 3254 */ 3255 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3256 3257 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3258 } 3259 3260 /* 3261 * This is the direct reclaim path, for page-allocating processes. We only 3262 * try to reclaim pages from zones which will satisfy the caller's allocation 3263 * request. 3264 * 3265 * If a zone is deemed to be full of pinned pages then just give it a light 3266 * scan then give up on it. 3267 */ 3268 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3269 { 3270 struct zoneref *z; 3271 struct zone *zone; 3272 unsigned long nr_soft_reclaimed; 3273 unsigned long nr_soft_scanned; 3274 gfp_t orig_mask; 3275 pg_data_t *last_pgdat = NULL; 3276 3277 /* 3278 * If the number of buffer_heads in the machine exceeds the maximum 3279 * allowed level, force direct reclaim to scan the highmem zone as 3280 * highmem pages could be pinning lowmem pages storing buffer_heads 3281 */ 3282 orig_mask = sc->gfp_mask; 3283 if (buffer_heads_over_limit) { 3284 sc->gfp_mask |= __GFP_HIGHMEM; 3285 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3286 } 3287 3288 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3289 sc->reclaim_idx, sc->nodemask) { 3290 /* 3291 * Take care memory controller reclaiming has small influence 3292 * to global LRU. 3293 */ 3294 if (!cgroup_reclaim(sc)) { 3295 if (!cpuset_zone_allowed(zone, 3296 GFP_KERNEL | __GFP_HARDWALL)) 3297 continue; 3298 3299 /* 3300 * If we already have plenty of memory free for 3301 * compaction in this zone, don't free any more. 3302 * Even though compaction is invoked for any 3303 * non-zero order, only frequent costly order 3304 * reclamation is disruptive enough to become a 3305 * noticeable problem, like transparent huge 3306 * page allocations. 3307 */ 3308 if (IS_ENABLED(CONFIG_COMPACTION) && 3309 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3310 compaction_ready(zone, sc)) { 3311 sc->compaction_ready = true; 3312 continue; 3313 } 3314 3315 /* 3316 * Shrink each node in the zonelist once. If the 3317 * zonelist is ordered by zone (not the default) then a 3318 * node may be shrunk multiple times but in that case 3319 * the user prefers lower zones being preserved. 3320 */ 3321 if (zone->zone_pgdat == last_pgdat) 3322 continue; 3323 3324 /* 3325 * This steals pages from memory cgroups over softlimit 3326 * and returns the number of reclaimed pages and 3327 * scanned pages. This works for global memory pressure 3328 * and balancing, not for a memcg's limit. 3329 */ 3330 nr_soft_scanned = 0; 3331 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3332 sc->order, sc->gfp_mask, 3333 &nr_soft_scanned); 3334 sc->nr_reclaimed += nr_soft_reclaimed; 3335 sc->nr_scanned += nr_soft_scanned; 3336 /* need some check for avoid more shrink_zone() */ 3337 } 3338 3339 /* See comment about same check for global reclaim above */ 3340 if (zone->zone_pgdat == last_pgdat) 3341 continue; 3342 last_pgdat = zone->zone_pgdat; 3343 shrink_node(zone->zone_pgdat, sc); 3344 } 3345 3346 /* 3347 * Restore to original mask to avoid the impact on the caller if we 3348 * promoted it to __GFP_HIGHMEM. 3349 */ 3350 sc->gfp_mask = orig_mask; 3351 } 3352 3353 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3354 { 3355 struct lruvec *target_lruvec; 3356 unsigned long refaults; 3357 3358 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3359 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3360 target_lruvec->refaults[0] = refaults; 3361 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3362 target_lruvec->refaults[1] = refaults; 3363 } 3364 3365 /* 3366 * This is the main entry point to direct page reclaim. 3367 * 3368 * If a full scan of the inactive list fails to free enough memory then we 3369 * are "out of memory" and something needs to be killed. 3370 * 3371 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3372 * high - the zone may be full of dirty or under-writeback pages, which this 3373 * caller can't do much about. We kick the writeback threads and take explicit 3374 * naps in the hope that some of these pages can be written. But if the 3375 * allocating task holds filesystem locks which prevent writeout this might not 3376 * work, and the allocation attempt will fail. 3377 * 3378 * returns: 0, if no pages reclaimed 3379 * else, the number of pages reclaimed 3380 */ 3381 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3382 struct scan_control *sc) 3383 { 3384 int initial_priority = sc->priority; 3385 pg_data_t *last_pgdat; 3386 struct zoneref *z; 3387 struct zone *zone; 3388 retry: 3389 delayacct_freepages_start(); 3390 3391 if (!cgroup_reclaim(sc)) 3392 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3393 3394 do { 3395 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3396 sc->priority); 3397 sc->nr_scanned = 0; 3398 shrink_zones(zonelist, sc); 3399 3400 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3401 break; 3402 3403 if (sc->compaction_ready) 3404 break; 3405 3406 /* 3407 * If we're getting trouble reclaiming, start doing 3408 * writepage even in laptop mode. 3409 */ 3410 if (sc->priority < DEF_PRIORITY - 2) 3411 sc->may_writepage = 1; 3412 } while (--sc->priority >= 0); 3413 3414 last_pgdat = NULL; 3415 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3416 sc->nodemask) { 3417 if (zone->zone_pgdat == last_pgdat) 3418 continue; 3419 last_pgdat = zone->zone_pgdat; 3420 3421 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3422 3423 if (cgroup_reclaim(sc)) { 3424 struct lruvec *lruvec; 3425 3426 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3427 zone->zone_pgdat); 3428 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3429 } 3430 } 3431 3432 delayacct_freepages_end(); 3433 3434 if (sc->nr_reclaimed) 3435 return sc->nr_reclaimed; 3436 3437 /* Aborted reclaim to try compaction? don't OOM, then */ 3438 if (sc->compaction_ready) 3439 return 1; 3440 3441 /* 3442 * We make inactive:active ratio decisions based on the node's 3443 * composition of memory, but a restrictive reclaim_idx or a 3444 * memory.low cgroup setting can exempt large amounts of 3445 * memory from reclaim. Neither of which are very common, so 3446 * instead of doing costly eligibility calculations of the 3447 * entire cgroup subtree up front, we assume the estimates are 3448 * good, and retry with forcible deactivation if that fails. 3449 */ 3450 if (sc->skipped_deactivate) { 3451 sc->priority = initial_priority; 3452 sc->force_deactivate = 1; 3453 sc->skipped_deactivate = 0; 3454 goto retry; 3455 } 3456 3457 /* Untapped cgroup reserves? Don't OOM, retry. */ 3458 if (sc->memcg_low_skipped) { 3459 sc->priority = initial_priority; 3460 sc->force_deactivate = 0; 3461 sc->memcg_low_reclaim = 1; 3462 sc->memcg_low_skipped = 0; 3463 goto retry; 3464 } 3465 3466 return 0; 3467 } 3468 3469 static bool allow_direct_reclaim(pg_data_t *pgdat) 3470 { 3471 struct zone *zone; 3472 unsigned long pfmemalloc_reserve = 0; 3473 unsigned long free_pages = 0; 3474 int i; 3475 bool wmark_ok; 3476 3477 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3478 return true; 3479 3480 for (i = 0; i <= ZONE_NORMAL; i++) { 3481 zone = &pgdat->node_zones[i]; 3482 if (!managed_zone(zone)) 3483 continue; 3484 3485 if (!zone_reclaimable_pages(zone)) 3486 continue; 3487 3488 pfmemalloc_reserve += min_wmark_pages(zone); 3489 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3490 } 3491 3492 /* If there are no reserves (unexpected config) then do not throttle */ 3493 if (!pfmemalloc_reserve) 3494 return true; 3495 3496 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3497 3498 /* kswapd must be awake if processes are being throttled */ 3499 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3500 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3501 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3502 3503 wake_up_interruptible(&pgdat->kswapd_wait); 3504 } 3505 3506 return wmark_ok; 3507 } 3508 3509 /* 3510 * Throttle direct reclaimers if backing storage is backed by the network 3511 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3512 * depleted. kswapd will continue to make progress and wake the processes 3513 * when the low watermark is reached. 3514 * 3515 * Returns true if a fatal signal was delivered during throttling. If this 3516 * happens, the page allocator should not consider triggering the OOM killer. 3517 */ 3518 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3519 nodemask_t *nodemask) 3520 { 3521 struct zoneref *z; 3522 struct zone *zone; 3523 pg_data_t *pgdat = NULL; 3524 3525 /* 3526 * Kernel threads should not be throttled as they may be indirectly 3527 * responsible for cleaning pages necessary for reclaim to make forward 3528 * progress. kjournald for example may enter direct reclaim while 3529 * committing a transaction where throttling it could forcing other 3530 * processes to block on log_wait_commit(). 3531 */ 3532 if (current->flags & PF_KTHREAD) 3533 goto out; 3534 3535 /* 3536 * If a fatal signal is pending, this process should not throttle. 3537 * It should return quickly so it can exit and free its memory 3538 */ 3539 if (fatal_signal_pending(current)) 3540 goto out; 3541 3542 /* 3543 * Check if the pfmemalloc reserves are ok by finding the first node 3544 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3545 * GFP_KERNEL will be required for allocating network buffers when 3546 * swapping over the network so ZONE_HIGHMEM is unusable. 3547 * 3548 * Throttling is based on the first usable node and throttled processes 3549 * wait on a queue until kswapd makes progress and wakes them. There 3550 * is an affinity then between processes waking up and where reclaim 3551 * progress has been made assuming the process wakes on the same node. 3552 * More importantly, processes running on remote nodes will not compete 3553 * for remote pfmemalloc reserves and processes on different nodes 3554 * should make reasonable progress. 3555 */ 3556 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3557 gfp_zone(gfp_mask), nodemask) { 3558 if (zone_idx(zone) > ZONE_NORMAL) 3559 continue; 3560 3561 /* Throttle based on the first usable node */ 3562 pgdat = zone->zone_pgdat; 3563 if (allow_direct_reclaim(pgdat)) 3564 goto out; 3565 break; 3566 } 3567 3568 /* If no zone was usable by the allocation flags then do not throttle */ 3569 if (!pgdat) 3570 goto out; 3571 3572 /* Account for the throttling */ 3573 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3574 3575 /* 3576 * If the caller cannot enter the filesystem, it's possible that it 3577 * is due to the caller holding an FS lock or performing a journal 3578 * transaction in the case of a filesystem like ext[3|4]. In this case, 3579 * it is not safe to block on pfmemalloc_wait as kswapd could be 3580 * blocked waiting on the same lock. Instead, throttle for up to a 3581 * second before continuing. 3582 */ 3583 if (!(gfp_mask & __GFP_FS)) 3584 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3585 allow_direct_reclaim(pgdat), HZ); 3586 else 3587 /* Throttle until kswapd wakes the process */ 3588 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3589 allow_direct_reclaim(pgdat)); 3590 3591 if (fatal_signal_pending(current)) 3592 return true; 3593 3594 out: 3595 return false; 3596 } 3597 3598 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3599 gfp_t gfp_mask, nodemask_t *nodemask) 3600 { 3601 unsigned long nr_reclaimed; 3602 struct scan_control sc = { 3603 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3604 .gfp_mask = current_gfp_context(gfp_mask), 3605 .reclaim_idx = gfp_zone(gfp_mask), 3606 .order = order, 3607 .nodemask = nodemask, 3608 .priority = DEF_PRIORITY, 3609 .may_writepage = !laptop_mode, 3610 .may_unmap = 1, 3611 .may_swap = 1, 3612 }; 3613 3614 /* 3615 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3616 * Confirm they are large enough for max values. 3617 */ 3618 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3619 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3620 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3621 3622 /* 3623 * Do not enter reclaim if fatal signal was delivered while throttled. 3624 * 1 is returned so that the page allocator does not OOM kill at this 3625 * point. 3626 */ 3627 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3628 return 1; 3629 3630 set_task_reclaim_state(current, &sc.reclaim_state); 3631 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3632 3633 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3634 3635 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3636 set_task_reclaim_state(current, NULL); 3637 3638 return nr_reclaimed; 3639 } 3640 3641 #ifdef CONFIG_MEMCG 3642 3643 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3644 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3645 gfp_t gfp_mask, bool noswap, 3646 pg_data_t *pgdat, 3647 unsigned long *nr_scanned) 3648 { 3649 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3650 struct scan_control sc = { 3651 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3652 .target_mem_cgroup = memcg, 3653 .may_writepage = !laptop_mode, 3654 .may_unmap = 1, 3655 .reclaim_idx = MAX_NR_ZONES - 1, 3656 .may_swap = !noswap, 3657 }; 3658 3659 WARN_ON_ONCE(!current->reclaim_state); 3660 3661 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3662 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3663 3664 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3665 sc.gfp_mask); 3666 3667 /* 3668 * NOTE: Although we can get the priority field, using it 3669 * here is not a good idea, since it limits the pages we can scan. 3670 * if we don't reclaim here, the shrink_node from balance_pgdat 3671 * will pick up pages from other mem cgroup's as well. We hack 3672 * the priority and make it zero. 3673 */ 3674 shrink_lruvec(lruvec, &sc); 3675 3676 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3677 3678 *nr_scanned = sc.nr_scanned; 3679 3680 return sc.nr_reclaimed; 3681 } 3682 3683 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3684 unsigned long nr_pages, 3685 gfp_t gfp_mask, 3686 bool may_swap) 3687 { 3688 unsigned long nr_reclaimed; 3689 unsigned int noreclaim_flag; 3690 struct scan_control sc = { 3691 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3692 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3693 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3694 .reclaim_idx = MAX_NR_ZONES - 1, 3695 .target_mem_cgroup = memcg, 3696 .priority = DEF_PRIORITY, 3697 .may_writepage = !laptop_mode, 3698 .may_unmap = 1, 3699 .may_swap = may_swap, 3700 }; 3701 /* 3702 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3703 * equal pressure on all the nodes. This is based on the assumption that 3704 * the reclaim does not bail out early. 3705 */ 3706 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3707 3708 set_task_reclaim_state(current, &sc.reclaim_state); 3709 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3710 noreclaim_flag = memalloc_noreclaim_save(); 3711 3712 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3713 3714 memalloc_noreclaim_restore(noreclaim_flag); 3715 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3716 set_task_reclaim_state(current, NULL); 3717 3718 return nr_reclaimed; 3719 } 3720 #endif 3721 3722 static void age_active_anon(struct pglist_data *pgdat, 3723 struct scan_control *sc) 3724 { 3725 struct mem_cgroup *memcg; 3726 struct lruvec *lruvec; 3727 3728 if (!can_age_anon_pages(pgdat, sc)) 3729 return; 3730 3731 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3732 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3733 return; 3734 3735 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3736 do { 3737 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3738 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3739 sc, LRU_ACTIVE_ANON); 3740 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3741 } while (memcg); 3742 } 3743 3744 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3745 { 3746 int i; 3747 struct zone *zone; 3748 3749 /* 3750 * Check for watermark boosts top-down as the higher zones 3751 * are more likely to be boosted. Both watermarks and boosts 3752 * should not be checked at the same time as reclaim would 3753 * start prematurely when there is no boosting and a lower 3754 * zone is balanced. 3755 */ 3756 for (i = highest_zoneidx; i >= 0; i--) { 3757 zone = pgdat->node_zones + i; 3758 if (!managed_zone(zone)) 3759 continue; 3760 3761 if (zone->watermark_boost) 3762 return true; 3763 } 3764 3765 return false; 3766 } 3767 3768 /* 3769 * Returns true if there is an eligible zone balanced for the request order 3770 * and highest_zoneidx 3771 */ 3772 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3773 { 3774 int i; 3775 unsigned long mark = -1; 3776 struct zone *zone; 3777 3778 /* 3779 * Check watermarks bottom-up as lower zones are more likely to 3780 * meet watermarks. 3781 */ 3782 for (i = 0; i <= highest_zoneidx; i++) { 3783 zone = pgdat->node_zones + i; 3784 3785 if (!managed_zone(zone)) 3786 continue; 3787 3788 mark = high_wmark_pages(zone); 3789 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3790 return true; 3791 } 3792 3793 /* 3794 * If a node has no populated zone within highest_zoneidx, it does not 3795 * need balancing by definition. This can happen if a zone-restricted 3796 * allocation tries to wake a remote kswapd. 3797 */ 3798 if (mark == -1) 3799 return true; 3800 3801 return false; 3802 } 3803 3804 /* Clear pgdat state for congested, dirty or under writeback. */ 3805 static void clear_pgdat_congested(pg_data_t *pgdat) 3806 { 3807 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3808 3809 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3810 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3811 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3812 } 3813 3814 /* 3815 * Prepare kswapd for sleeping. This verifies that there are no processes 3816 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3817 * 3818 * Returns true if kswapd is ready to sleep 3819 */ 3820 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3821 int highest_zoneidx) 3822 { 3823 /* 3824 * The throttled processes are normally woken up in balance_pgdat() as 3825 * soon as allow_direct_reclaim() is true. But there is a potential 3826 * race between when kswapd checks the watermarks and a process gets 3827 * throttled. There is also a potential race if processes get 3828 * throttled, kswapd wakes, a large process exits thereby balancing the 3829 * zones, which causes kswapd to exit balance_pgdat() before reaching 3830 * the wake up checks. If kswapd is going to sleep, no process should 3831 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3832 * the wake up is premature, processes will wake kswapd and get 3833 * throttled again. The difference from wake ups in balance_pgdat() is 3834 * that here we are under prepare_to_wait(). 3835 */ 3836 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3837 wake_up_all(&pgdat->pfmemalloc_wait); 3838 3839 /* Hopeless node, leave it to direct reclaim */ 3840 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3841 return true; 3842 3843 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3844 clear_pgdat_congested(pgdat); 3845 return true; 3846 } 3847 3848 return false; 3849 } 3850 3851 /* 3852 * kswapd shrinks a node of pages that are at or below the highest usable 3853 * zone that is currently unbalanced. 3854 * 3855 * Returns true if kswapd scanned at least the requested number of pages to 3856 * reclaim or if the lack of progress was due to pages under writeback. 3857 * This is used to determine if the scanning priority needs to be raised. 3858 */ 3859 static bool kswapd_shrink_node(pg_data_t *pgdat, 3860 struct scan_control *sc) 3861 { 3862 struct zone *zone; 3863 int z; 3864 3865 /* Reclaim a number of pages proportional to the number of zones */ 3866 sc->nr_to_reclaim = 0; 3867 for (z = 0; z <= sc->reclaim_idx; z++) { 3868 zone = pgdat->node_zones + z; 3869 if (!managed_zone(zone)) 3870 continue; 3871 3872 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3873 } 3874 3875 /* 3876 * Historically care was taken to put equal pressure on all zones but 3877 * now pressure is applied based on node LRU order. 3878 */ 3879 shrink_node(pgdat, sc); 3880 3881 /* 3882 * Fragmentation may mean that the system cannot be rebalanced for 3883 * high-order allocations. If twice the allocation size has been 3884 * reclaimed then recheck watermarks only at order-0 to prevent 3885 * excessive reclaim. Assume that a process requested a high-order 3886 * can direct reclaim/compact. 3887 */ 3888 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3889 sc->order = 0; 3890 3891 return sc->nr_scanned >= sc->nr_to_reclaim; 3892 } 3893 3894 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 3895 static inline void 3896 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 3897 { 3898 int i; 3899 struct zone *zone; 3900 3901 for (i = 0; i <= highest_zoneidx; i++) { 3902 zone = pgdat->node_zones + i; 3903 3904 if (!managed_zone(zone)) 3905 continue; 3906 3907 if (active) 3908 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3909 else 3910 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3911 } 3912 } 3913 3914 static inline void 3915 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3916 { 3917 update_reclaim_active(pgdat, highest_zoneidx, true); 3918 } 3919 3920 static inline void 3921 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3922 { 3923 update_reclaim_active(pgdat, highest_zoneidx, false); 3924 } 3925 3926 /* 3927 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3928 * that are eligible for use by the caller until at least one zone is 3929 * balanced. 3930 * 3931 * Returns the order kswapd finished reclaiming at. 3932 * 3933 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3934 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3935 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3936 * or lower is eligible for reclaim until at least one usable zone is 3937 * balanced. 3938 */ 3939 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3940 { 3941 int i; 3942 unsigned long nr_soft_reclaimed; 3943 unsigned long nr_soft_scanned; 3944 unsigned long pflags; 3945 unsigned long nr_boost_reclaim; 3946 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3947 bool boosted; 3948 struct zone *zone; 3949 struct scan_control sc = { 3950 .gfp_mask = GFP_KERNEL, 3951 .order = order, 3952 .may_unmap = 1, 3953 }; 3954 3955 set_task_reclaim_state(current, &sc.reclaim_state); 3956 psi_memstall_enter(&pflags); 3957 __fs_reclaim_acquire(_THIS_IP_); 3958 3959 count_vm_event(PAGEOUTRUN); 3960 3961 /* 3962 * Account for the reclaim boost. Note that the zone boost is left in 3963 * place so that parallel allocations that are near the watermark will 3964 * stall or direct reclaim until kswapd is finished. 3965 */ 3966 nr_boost_reclaim = 0; 3967 for (i = 0; i <= highest_zoneidx; i++) { 3968 zone = pgdat->node_zones + i; 3969 if (!managed_zone(zone)) 3970 continue; 3971 3972 nr_boost_reclaim += zone->watermark_boost; 3973 zone_boosts[i] = zone->watermark_boost; 3974 } 3975 boosted = nr_boost_reclaim; 3976 3977 restart: 3978 set_reclaim_active(pgdat, highest_zoneidx); 3979 sc.priority = DEF_PRIORITY; 3980 do { 3981 unsigned long nr_reclaimed = sc.nr_reclaimed; 3982 bool raise_priority = true; 3983 bool balanced; 3984 bool ret; 3985 3986 sc.reclaim_idx = highest_zoneidx; 3987 3988 /* 3989 * If the number of buffer_heads exceeds the maximum allowed 3990 * then consider reclaiming from all zones. This has a dual 3991 * purpose -- on 64-bit systems it is expected that 3992 * buffer_heads are stripped during active rotation. On 32-bit 3993 * systems, highmem pages can pin lowmem memory and shrinking 3994 * buffers can relieve lowmem pressure. Reclaim may still not 3995 * go ahead if all eligible zones for the original allocation 3996 * request are balanced to avoid excessive reclaim from kswapd. 3997 */ 3998 if (buffer_heads_over_limit) { 3999 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4000 zone = pgdat->node_zones + i; 4001 if (!managed_zone(zone)) 4002 continue; 4003 4004 sc.reclaim_idx = i; 4005 break; 4006 } 4007 } 4008 4009 /* 4010 * If the pgdat is imbalanced then ignore boosting and preserve 4011 * the watermarks for a later time and restart. Note that the 4012 * zone watermarks will be still reset at the end of balancing 4013 * on the grounds that the normal reclaim should be enough to 4014 * re-evaluate if boosting is required when kswapd next wakes. 4015 */ 4016 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4017 if (!balanced && nr_boost_reclaim) { 4018 nr_boost_reclaim = 0; 4019 goto restart; 4020 } 4021 4022 /* 4023 * If boosting is not active then only reclaim if there are no 4024 * eligible zones. Note that sc.reclaim_idx is not used as 4025 * buffer_heads_over_limit may have adjusted it. 4026 */ 4027 if (!nr_boost_reclaim && balanced) 4028 goto out; 4029 4030 /* Limit the priority of boosting to avoid reclaim writeback */ 4031 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4032 raise_priority = false; 4033 4034 /* 4035 * Do not writeback or swap pages for boosted reclaim. The 4036 * intent is to relieve pressure not issue sub-optimal IO 4037 * from reclaim context. If no pages are reclaimed, the 4038 * reclaim will be aborted. 4039 */ 4040 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4041 sc.may_swap = !nr_boost_reclaim; 4042 4043 /* 4044 * Do some background aging of the anon list, to give 4045 * pages a chance to be referenced before reclaiming. All 4046 * pages are rotated regardless of classzone as this is 4047 * about consistent aging. 4048 */ 4049 age_active_anon(pgdat, &sc); 4050 4051 /* 4052 * If we're getting trouble reclaiming, start doing writepage 4053 * even in laptop mode. 4054 */ 4055 if (sc.priority < DEF_PRIORITY - 2) 4056 sc.may_writepage = 1; 4057 4058 /* Call soft limit reclaim before calling shrink_node. */ 4059 sc.nr_scanned = 0; 4060 nr_soft_scanned = 0; 4061 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4062 sc.gfp_mask, &nr_soft_scanned); 4063 sc.nr_reclaimed += nr_soft_reclaimed; 4064 4065 /* 4066 * There should be no need to raise the scanning priority if 4067 * enough pages are already being scanned that that high 4068 * watermark would be met at 100% efficiency. 4069 */ 4070 if (kswapd_shrink_node(pgdat, &sc)) 4071 raise_priority = false; 4072 4073 /* 4074 * If the low watermark is met there is no need for processes 4075 * to be throttled on pfmemalloc_wait as they should not be 4076 * able to safely make forward progress. Wake them 4077 */ 4078 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4079 allow_direct_reclaim(pgdat)) 4080 wake_up_all(&pgdat->pfmemalloc_wait); 4081 4082 /* Check if kswapd should be suspending */ 4083 __fs_reclaim_release(_THIS_IP_); 4084 ret = try_to_freeze(); 4085 __fs_reclaim_acquire(_THIS_IP_); 4086 if (ret || kthread_should_stop()) 4087 break; 4088 4089 /* 4090 * Raise priority if scanning rate is too low or there was no 4091 * progress in reclaiming pages 4092 */ 4093 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4094 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4095 4096 /* 4097 * If reclaim made no progress for a boost, stop reclaim as 4098 * IO cannot be queued and it could be an infinite loop in 4099 * extreme circumstances. 4100 */ 4101 if (nr_boost_reclaim && !nr_reclaimed) 4102 break; 4103 4104 if (raise_priority || !nr_reclaimed) 4105 sc.priority--; 4106 } while (sc.priority >= 1); 4107 4108 if (!sc.nr_reclaimed) 4109 pgdat->kswapd_failures++; 4110 4111 out: 4112 clear_reclaim_active(pgdat, highest_zoneidx); 4113 4114 /* If reclaim was boosted, account for the reclaim done in this pass */ 4115 if (boosted) { 4116 unsigned long flags; 4117 4118 for (i = 0; i <= highest_zoneidx; i++) { 4119 if (!zone_boosts[i]) 4120 continue; 4121 4122 /* Increments are under the zone lock */ 4123 zone = pgdat->node_zones + i; 4124 spin_lock_irqsave(&zone->lock, flags); 4125 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4126 spin_unlock_irqrestore(&zone->lock, flags); 4127 } 4128 4129 /* 4130 * As there is now likely space, wakeup kcompact to defragment 4131 * pageblocks. 4132 */ 4133 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4134 } 4135 4136 snapshot_refaults(NULL, pgdat); 4137 __fs_reclaim_release(_THIS_IP_); 4138 psi_memstall_leave(&pflags); 4139 set_task_reclaim_state(current, NULL); 4140 4141 /* 4142 * Return the order kswapd stopped reclaiming at as 4143 * prepare_kswapd_sleep() takes it into account. If another caller 4144 * entered the allocator slow path while kswapd was awake, order will 4145 * remain at the higher level. 4146 */ 4147 return sc.order; 4148 } 4149 4150 /* 4151 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4152 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4153 * not a valid index then either kswapd runs for first time or kswapd couldn't 4154 * sleep after previous reclaim attempt (node is still unbalanced). In that 4155 * case return the zone index of the previous kswapd reclaim cycle. 4156 */ 4157 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4158 enum zone_type prev_highest_zoneidx) 4159 { 4160 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4161 4162 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4163 } 4164 4165 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4166 unsigned int highest_zoneidx) 4167 { 4168 long remaining = 0; 4169 DEFINE_WAIT(wait); 4170 4171 if (freezing(current) || kthread_should_stop()) 4172 return; 4173 4174 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4175 4176 /* 4177 * Try to sleep for a short interval. Note that kcompactd will only be 4178 * woken if it is possible to sleep for a short interval. This is 4179 * deliberate on the assumption that if reclaim cannot keep an 4180 * eligible zone balanced that it's also unlikely that compaction will 4181 * succeed. 4182 */ 4183 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4184 /* 4185 * Compaction records what page blocks it recently failed to 4186 * isolate pages from and skips them in the future scanning. 4187 * When kswapd is going to sleep, it is reasonable to assume 4188 * that pages and compaction may succeed so reset the cache. 4189 */ 4190 reset_isolation_suitable(pgdat); 4191 4192 /* 4193 * We have freed the memory, now we should compact it to make 4194 * allocation of the requested order possible. 4195 */ 4196 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4197 4198 remaining = schedule_timeout(HZ/10); 4199 4200 /* 4201 * If woken prematurely then reset kswapd_highest_zoneidx and 4202 * order. The values will either be from a wakeup request or 4203 * the previous request that slept prematurely. 4204 */ 4205 if (remaining) { 4206 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4207 kswapd_highest_zoneidx(pgdat, 4208 highest_zoneidx)); 4209 4210 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4211 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4212 } 4213 4214 finish_wait(&pgdat->kswapd_wait, &wait); 4215 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4216 } 4217 4218 /* 4219 * After a short sleep, check if it was a premature sleep. If not, then 4220 * go fully to sleep until explicitly woken up. 4221 */ 4222 if (!remaining && 4223 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4224 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4225 4226 /* 4227 * vmstat counters are not perfectly accurate and the estimated 4228 * value for counters such as NR_FREE_PAGES can deviate from the 4229 * true value by nr_online_cpus * threshold. To avoid the zone 4230 * watermarks being breached while under pressure, we reduce the 4231 * per-cpu vmstat threshold while kswapd is awake and restore 4232 * them before going back to sleep. 4233 */ 4234 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4235 4236 if (!kthread_should_stop()) 4237 schedule(); 4238 4239 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4240 } else { 4241 if (remaining) 4242 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4243 else 4244 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4245 } 4246 finish_wait(&pgdat->kswapd_wait, &wait); 4247 } 4248 4249 /* 4250 * The background pageout daemon, started as a kernel thread 4251 * from the init process. 4252 * 4253 * This basically trickles out pages so that we have _some_ 4254 * free memory available even if there is no other activity 4255 * that frees anything up. This is needed for things like routing 4256 * etc, where we otherwise might have all activity going on in 4257 * asynchronous contexts that cannot page things out. 4258 * 4259 * If there are applications that are active memory-allocators 4260 * (most normal use), this basically shouldn't matter. 4261 */ 4262 static int kswapd(void *p) 4263 { 4264 unsigned int alloc_order, reclaim_order; 4265 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4266 pg_data_t *pgdat = (pg_data_t *)p; 4267 struct task_struct *tsk = current; 4268 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4269 4270 if (!cpumask_empty(cpumask)) 4271 set_cpus_allowed_ptr(tsk, cpumask); 4272 4273 /* 4274 * Tell the memory management that we're a "memory allocator", 4275 * and that if we need more memory we should get access to it 4276 * regardless (see "__alloc_pages()"). "kswapd" should 4277 * never get caught in the normal page freeing logic. 4278 * 4279 * (Kswapd normally doesn't need memory anyway, but sometimes 4280 * you need a small amount of memory in order to be able to 4281 * page out something else, and this flag essentially protects 4282 * us from recursively trying to free more memory as we're 4283 * trying to free the first piece of memory in the first place). 4284 */ 4285 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4286 set_freezable(); 4287 4288 WRITE_ONCE(pgdat->kswapd_order, 0); 4289 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4290 for ( ; ; ) { 4291 bool ret; 4292 4293 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4294 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4295 highest_zoneidx); 4296 4297 kswapd_try_sleep: 4298 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4299 highest_zoneidx); 4300 4301 /* Read the new order and highest_zoneidx */ 4302 alloc_order = READ_ONCE(pgdat->kswapd_order); 4303 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4304 highest_zoneidx); 4305 WRITE_ONCE(pgdat->kswapd_order, 0); 4306 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4307 4308 ret = try_to_freeze(); 4309 if (kthread_should_stop()) 4310 break; 4311 4312 /* 4313 * We can speed up thawing tasks if we don't call balance_pgdat 4314 * after returning from the refrigerator 4315 */ 4316 if (ret) 4317 continue; 4318 4319 /* 4320 * Reclaim begins at the requested order but if a high-order 4321 * reclaim fails then kswapd falls back to reclaiming for 4322 * order-0. If that happens, kswapd will consider sleeping 4323 * for the order it finished reclaiming at (reclaim_order) 4324 * but kcompactd is woken to compact for the original 4325 * request (alloc_order). 4326 */ 4327 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4328 alloc_order); 4329 reclaim_order = balance_pgdat(pgdat, alloc_order, 4330 highest_zoneidx); 4331 if (reclaim_order < alloc_order) 4332 goto kswapd_try_sleep; 4333 } 4334 4335 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4336 4337 return 0; 4338 } 4339 4340 /* 4341 * A zone is low on free memory or too fragmented for high-order memory. If 4342 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4343 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4344 * has failed or is not needed, still wake up kcompactd if only compaction is 4345 * needed. 4346 */ 4347 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4348 enum zone_type highest_zoneidx) 4349 { 4350 pg_data_t *pgdat; 4351 enum zone_type curr_idx; 4352 4353 if (!managed_zone(zone)) 4354 return; 4355 4356 if (!cpuset_zone_allowed(zone, gfp_flags)) 4357 return; 4358 4359 pgdat = zone->zone_pgdat; 4360 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4361 4362 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4363 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4364 4365 if (READ_ONCE(pgdat->kswapd_order) < order) 4366 WRITE_ONCE(pgdat->kswapd_order, order); 4367 4368 if (!waitqueue_active(&pgdat->kswapd_wait)) 4369 return; 4370 4371 /* Hopeless node, leave it to direct reclaim if possible */ 4372 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4373 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4374 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4375 /* 4376 * There may be plenty of free memory available, but it's too 4377 * fragmented for high-order allocations. Wake up kcompactd 4378 * and rely on compaction_suitable() to determine if it's 4379 * needed. If it fails, it will defer subsequent attempts to 4380 * ratelimit its work. 4381 */ 4382 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4383 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4384 return; 4385 } 4386 4387 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4388 gfp_flags); 4389 wake_up_interruptible(&pgdat->kswapd_wait); 4390 } 4391 4392 #ifdef CONFIG_HIBERNATION 4393 /* 4394 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4395 * freed pages. 4396 * 4397 * Rather than trying to age LRUs the aim is to preserve the overall 4398 * LRU order by reclaiming preferentially 4399 * inactive > active > active referenced > active mapped 4400 */ 4401 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4402 { 4403 struct scan_control sc = { 4404 .nr_to_reclaim = nr_to_reclaim, 4405 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4406 .reclaim_idx = MAX_NR_ZONES - 1, 4407 .priority = DEF_PRIORITY, 4408 .may_writepage = 1, 4409 .may_unmap = 1, 4410 .may_swap = 1, 4411 .hibernation_mode = 1, 4412 }; 4413 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4414 unsigned long nr_reclaimed; 4415 unsigned int noreclaim_flag; 4416 4417 fs_reclaim_acquire(sc.gfp_mask); 4418 noreclaim_flag = memalloc_noreclaim_save(); 4419 set_task_reclaim_state(current, &sc.reclaim_state); 4420 4421 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4422 4423 set_task_reclaim_state(current, NULL); 4424 memalloc_noreclaim_restore(noreclaim_flag); 4425 fs_reclaim_release(sc.gfp_mask); 4426 4427 return nr_reclaimed; 4428 } 4429 #endif /* CONFIG_HIBERNATION */ 4430 4431 /* 4432 * This kswapd start function will be called by init and node-hot-add. 4433 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4434 */ 4435 void kswapd_run(int nid) 4436 { 4437 pg_data_t *pgdat = NODE_DATA(nid); 4438 4439 if (pgdat->kswapd) 4440 return; 4441 4442 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4443 if (IS_ERR(pgdat->kswapd)) { 4444 /* failure at boot is fatal */ 4445 BUG_ON(system_state < SYSTEM_RUNNING); 4446 pr_err("Failed to start kswapd on node %d\n", nid); 4447 pgdat->kswapd = NULL; 4448 } 4449 } 4450 4451 /* 4452 * Called by memory hotplug when all memory in a node is offlined. Caller must 4453 * hold mem_hotplug_begin/end(). 4454 */ 4455 void kswapd_stop(int nid) 4456 { 4457 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4458 4459 if (kswapd) { 4460 kthread_stop(kswapd); 4461 NODE_DATA(nid)->kswapd = NULL; 4462 } 4463 } 4464 4465 static int __init kswapd_init(void) 4466 { 4467 int nid; 4468 4469 swap_setup(); 4470 for_each_node_state(nid, N_MEMORY) 4471 kswapd_run(nid); 4472 return 0; 4473 } 4474 4475 module_init(kswapd_init) 4476 4477 #ifdef CONFIG_NUMA 4478 /* 4479 * Node reclaim mode 4480 * 4481 * If non-zero call node_reclaim when the number of free pages falls below 4482 * the watermarks. 4483 */ 4484 int node_reclaim_mode __read_mostly; 4485 4486 /* 4487 * Priority for NODE_RECLAIM. This determines the fraction of pages 4488 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4489 * a zone. 4490 */ 4491 #define NODE_RECLAIM_PRIORITY 4 4492 4493 /* 4494 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4495 * occur. 4496 */ 4497 int sysctl_min_unmapped_ratio = 1; 4498 4499 /* 4500 * If the number of slab pages in a zone grows beyond this percentage then 4501 * slab reclaim needs to occur. 4502 */ 4503 int sysctl_min_slab_ratio = 5; 4504 4505 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4506 { 4507 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4508 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4509 node_page_state(pgdat, NR_ACTIVE_FILE); 4510 4511 /* 4512 * It's possible for there to be more file mapped pages than 4513 * accounted for by the pages on the file LRU lists because 4514 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4515 */ 4516 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4517 } 4518 4519 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4520 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4521 { 4522 unsigned long nr_pagecache_reclaimable; 4523 unsigned long delta = 0; 4524 4525 /* 4526 * If RECLAIM_UNMAP is set, then all file pages are considered 4527 * potentially reclaimable. Otherwise, we have to worry about 4528 * pages like swapcache and node_unmapped_file_pages() provides 4529 * a better estimate 4530 */ 4531 if (node_reclaim_mode & RECLAIM_UNMAP) 4532 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4533 else 4534 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4535 4536 /* If we can't clean pages, remove dirty pages from consideration */ 4537 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4538 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4539 4540 /* Watch for any possible underflows due to delta */ 4541 if (unlikely(delta > nr_pagecache_reclaimable)) 4542 delta = nr_pagecache_reclaimable; 4543 4544 return nr_pagecache_reclaimable - delta; 4545 } 4546 4547 /* 4548 * Try to free up some pages from this node through reclaim. 4549 */ 4550 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4551 { 4552 /* Minimum pages needed in order to stay on node */ 4553 const unsigned long nr_pages = 1 << order; 4554 struct task_struct *p = current; 4555 unsigned int noreclaim_flag; 4556 struct scan_control sc = { 4557 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4558 .gfp_mask = current_gfp_context(gfp_mask), 4559 .order = order, 4560 .priority = NODE_RECLAIM_PRIORITY, 4561 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4562 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4563 .may_swap = 1, 4564 .reclaim_idx = gfp_zone(gfp_mask), 4565 }; 4566 unsigned long pflags; 4567 4568 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4569 sc.gfp_mask); 4570 4571 cond_resched(); 4572 psi_memstall_enter(&pflags); 4573 fs_reclaim_acquire(sc.gfp_mask); 4574 /* 4575 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4576 * and we also need to be able to write out pages for RECLAIM_WRITE 4577 * and RECLAIM_UNMAP. 4578 */ 4579 noreclaim_flag = memalloc_noreclaim_save(); 4580 p->flags |= PF_SWAPWRITE; 4581 set_task_reclaim_state(p, &sc.reclaim_state); 4582 4583 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4584 /* 4585 * Free memory by calling shrink node with increasing 4586 * priorities until we have enough memory freed. 4587 */ 4588 do { 4589 shrink_node(pgdat, &sc); 4590 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4591 } 4592 4593 set_task_reclaim_state(p, NULL); 4594 current->flags &= ~PF_SWAPWRITE; 4595 memalloc_noreclaim_restore(noreclaim_flag); 4596 fs_reclaim_release(sc.gfp_mask); 4597 psi_memstall_leave(&pflags); 4598 4599 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4600 4601 return sc.nr_reclaimed >= nr_pages; 4602 } 4603 4604 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4605 { 4606 int ret; 4607 4608 /* 4609 * Node reclaim reclaims unmapped file backed pages and 4610 * slab pages if we are over the defined limits. 4611 * 4612 * A small portion of unmapped file backed pages is needed for 4613 * file I/O otherwise pages read by file I/O will be immediately 4614 * thrown out if the node is overallocated. So we do not reclaim 4615 * if less than a specified percentage of the node is used by 4616 * unmapped file backed pages. 4617 */ 4618 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4619 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4620 pgdat->min_slab_pages) 4621 return NODE_RECLAIM_FULL; 4622 4623 /* 4624 * Do not scan if the allocation should not be delayed. 4625 */ 4626 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4627 return NODE_RECLAIM_NOSCAN; 4628 4629 /* 4630 * Only run node reclaim on the local node or on nodes that do not 4631 * have associated processors. This will favor the local processor 4632 * over remote processors and spread off node memory allocations 4633 * as wide as possible. 4634 */ 4635 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4636 return NODE_RECLAIM_NOSCAN; 4637 4638 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4639 return NODE_RECLAIM_NOSCAN; 4640 4641 ret = __node_reclaim(pgdat, gfp_mask, order); 4642 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4643 4644 if (!ret) 4645 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4646 4647 return ret; 4648 } 4649 #endif 4650 4651 /** 4652 * check_move_unevictable_pages - check pages for evictability and move to 4653 * appropriate zone lru list 4654 * @pvec: pagevec with lru pages to check 4655 * 4656 * Checks pages for evictability, if an evictable page is in the unevictable 4657 * lru list, moves it to the appropriate evictable lru list. This function 4658 * should be only used for lru pages. 4659 */ 4660 void check_move_unevictable_pages(struct pagevec *pvec) 4661 { 4662 struct lruvec *lruvec = NULL; 4663 int pgscanned = 0; 4664 int pgrescued = 0; 4665 int i; 4666 4667 for (i = 0; i < pvec->nr; i++) { 4668 struct page *page = pvec->pages[i]; 4669 struct folio *folio = page_folio(page); 4670 int nr_pages; 4671 4672 if (PageTransTail(page)) 4673 continue; 4674 4675 nr_pages = thp_nr_pages(page); 4676 pgscanned += nr_pages; 4677 4678 /* block memcg migration during page moving between lru */ 4679 if (!TestClearPageLRU(page)) 4680 continue; 4681 4682 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4683 if (page_evictable(page) && PageUnevictable(page)) { 4684 del_page_from_lru_list(page, lruvec); 4685 ClearPageUnevictable(page); 4686 add_page_to_lru_list(page, lruvec); 4687 pgrescued += nr_pages; 4688 } 4689 SetPageLRU(page); 4690 } 4691 4692 if (lruvec) { 4693 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4694 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4695 unlock_page_lruvec_irq(lruvec); 4696 } else if (pgscanned) { 4697 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4698 } 4699 } 4700 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4701